1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 static int cxgbe_snd_tag_modify(struct m_snd_tag *, 257 union if_snd_tag_modify_params *); 258 static int cxgbe_snd_tag_query(struct m_snd_tag *, 259 union if_snd_tag_query_params *); 260 static void cxgbe_snd_tag_free(struct m_snd_tag *); 261 #endif 262 263 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 264 265 /* 266 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 267 * then ADAPTER_LOCK, then t4_uld_list_lock. 268 */ 269 static struct sx t4_list_lock; 270 SLIST_HEAD(, adapter) t4_list; 271 #ifdef TCP_OFFLOAD 272 static struct sx t4_uld_list_lock; 273 SLIST_HEAD(, uld_info) t4_uld_list; 274 #endif 275 276 /* 277 * Tunables. See tweak_tunables() too. 278 * 279 * Each tunable is set to a default value here if it's known at compile-time. 280 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 281 * provide a reasonable default (upto n) when the driver is loaded. 282 * 283 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 284 * T5 are under hw.cxl. 285 */ 286 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 287 "cxgbe(4) parameters"); 288 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 289 "cxgbe(4) T5+ parameters"); 290 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 291 "cxgbe(4) TOE parameters"); 292 293 /* 294 * Number of queues for tx and rx, NIC and offload. 295 */ 296 #define NTXQ 16 297 int t4_ntxq = -NTXQ; 298 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 299 "Number of TX queues per port"); 300 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 301 302 #define NRXQ 8 303 int t4_nrxq = -NRXQ; 304 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 305 "Number of RX queues per port"); 306 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 307 308 #define NTXQ_VI 1 309 static int t4_ntxq_vi = -NTXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 311 "Number of TX queues per VI"); 312 313 #define NRXQ_VI 1 314 static int t4_nrxq_vi = -NRXQ_VI; 315 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 316 "Number of RX queues per VI"); 317 318 static int t4_rsrv_noflowq = 0; 319 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 320 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 321 322 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 323 #define NOFLDTXQ 8 324 static int t4_nofldtxq = -NOFLDTXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 326 "Number of offload TX queues per port"); 327 328 #define NOFLDRXQ 2 329 static int t4_nofldrxq = -NOFLDRXQ; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 331 "Number of offload RX queues per port"); 332 333 #define NOFLDTXQ_VI 1 334 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 336 "Number of offload TX queues per VI"); 337 338 #define NOFLDRXQ_VI 1 339 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 341 "Number of offload RX queues per VI"); 342 343 #define TMR_IDX_OFLD 1 344 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 346 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 347 348 #define PKTC_IDX_OFLD (-1) 349 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 350 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 351 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_idle = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is value in microseconds */ 359 static u_long t4_toe_keepalive_interval = 0; 360 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 362 363 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 364 static int t4_toe_keepalive_count = 0; 365 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 366 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_min = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is value in microseconds */ 374 static u_long t4_toe_rexmt_max = 0; 375 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 377 378 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 379 static int t4_toe_rexmt_count = 0; 380 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 381 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 382 383 /* -1 means chip/fw default, other values are raw backoff values to use */ 384 static int t4_toe_rexmt_backoff[16] = { 385 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 386 }; 387 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 388 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 389 "cxgbe(4) TOE retransmit backoff values"); 390 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 391 &t4_toe_rexmt_backoff[0], 0, ""); 392 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 393 &t4_toe_rexmt_backoff[1], 0, ""); 394 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 395 &t4_toe_rexmt_backoff[2], 0, ""); 396 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 397 &t4_toe_rexmt_backoff[3], 0, ""); 398 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 399 &t4_toe_rexmt_backoff[4], 0, ""); 400 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 401 &t4_toe_rexmt_backoff[5], 0, ""); 402 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 403 &t4_toe_rexmt_backoff[6], 0, ""); 404 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 405 &t4_toe_rexmt_backoff[7], 0, ""); 406 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 407 &t4_toe_rexmt_backoff[8], 0, ""); 408 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 409 &t4_toe_rexmt_backoff[9], 0, ""); 410 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 411 &t4_toe_rexmt_backoff[10], 0, ""); 412 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 413 &t4_toe_rexmt_backoff[11], 0, ""); 414 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 415 &t4_toe_rexmt_backoff[12], 0, ""); 416 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 417 &t4_toe_rexmt_backoff[13], 0, ""); 418 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 419 &t4_toe_rexmt_backoff[14], 0, ""); 420 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 421 &t4_toe_rexmt_backoff[15], 0, ""); 422 423 static int t4_toe_tls_rx_timeout = 5; 424 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 425 &t4_toe_tls_rx_timeout, 0, 426 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 427 #endif 428 429 #ifdef DEV_NETMAP 430 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 431 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 432 static int t4_native_netmap = NN_EXTRA_VI; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 434 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 435 436 #define NNMTXQ 8 437 static int t4_nnmtxq = -NNMTXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 439 "Number of netmap TX queues"); 440 441 #define NNMRXQ 8 442 static int t4_nnmrxq = -NNMRXQ; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 444 "Number of netmap RX queues"); 445 446 #define NNMTXQ_VI 2 447 static int t4_nnmtxq_vi = -NNMTXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 449 "Number of netmap TX queues per VI"); 450 451 #define NNMRXQ_VI 2 452 static int t4_nnmrxq_vi = -NNMRXQ_VI; 453 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 454 "Number of netmap RX queues per VI"); 455 #endif 456 457 /* 458 * Holdoff parameters for ports. 459 */ 460 #define TMR_IDX 1 461 int t4_tmr_idx = TMR_IDX; 462 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 463 0, "Holdoff timer index"); 464 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 465 466 #define PKTC_IDX (-1) 467 int t4_pktc_idx = PKTC_IDX; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 469 0, "Holdoff packet counter index"); 470 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 471 472 /* 473 * Size (# of entries) of each tx and rx queue. 474 */ 475 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 477 "Number of descriptors in each TX queue"); 478 479 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 480 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 481 "Number of descriptors in each RX queue"); 482 483 /* 484 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 485 */ 486 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 488 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 489 490 /* 491 * Configuration file. All the _CF names here are special. 492 */ 493 #define DEFAULT_CF "default" 494 #define BUILTIN_CF "built-in" 495 #define FLASH_CF "flash" 496 #define UWIRE_CF "uwire" 497 #define FPGA_CF "fpga" 498 static char t4_cfg_file[32] = DEFAULT_CF; 499 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 500 sizeof(t4_cfg_file), "Firmware configuration file"); 501 502 /* 503 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 504 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 505 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 506 * mark or when signalled to do so, 0 to never emit PAUSE. 507 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 508 * negotiated settings will override rx_pause/tx_pause. 509 * Otherwise rx_pause/tx_pause are applied forcibly. 510 */ 511 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 512 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 513 &t4_pause_settings, 0, 514 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 515 516 /* 517 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 518 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 519 * 0 to disable FEC. 520 */ 521 static int t4_fec = -1; 522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 523 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 524 525 /* 526 * Link autonegotiation. 527 * -1 to run with the firmware default. 528 * 0 to disable. 529 * 1 to enable. 530 */ 531 static int t4_autoneg = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 533 "Link autonegotiation"); 534 535 /* 536 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 537 * encouraged respectively). '-n' is the same as 'n' except the firmware 538 * version used in the checks is read from the firmware bundled with the driver. 539 */ 540 static int t4_fw_install = 1; 541 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 542 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 543 544 /* 545 * ASIC features that will be used. Disable the ones you don't want so that the 546 * chip resources aren't wasted on features that will not be used. 547 */ 548 static int t4_nbmcaps_allowed = 0; 549 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 550 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 551 552 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 554 &t4_linkcaps_allowed, 0, "Default link capabilities"); 555 556 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 557 FW_CAPS_CONFIG_SWITCH_EGRESS; 558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 559 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 560 561 #ifdef RATELIMIT 562 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 563 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 564 #else 565 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 566 FW_CAPS_CONFIG_NIC_HASHFILTER; 567 #endif 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 569 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 570 571 static int t4_toecaps_allowed = -1; 572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 573 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 574 575 static int t4_rdmacaps_allowed = -1; 576 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 577 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 578 579 static int t4_cryptocaps_allowed = -1; 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 581 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 582 583 static int t4_iscsicaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 585 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 586 587 static int t4_fcoecaps_allowed = 0; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 589 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 590 591 static int t5_write_combine = 0; 592 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 593 0, "Use WC instead of UC for BAR2"); 594 595 static int t4_num_vis = 1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 597 "Number of VIs per port"); 598 599 /* 600 * PCIe Relaxed Ordering. 601 * -1: driver should figure out a good value. 602 * 0: disable RO. 603 * 1: enable RO. 604 * 2: leave RO alone. 605 */ 606 static int pcie_relaxed_ordering = -1; 607 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 608 &pcie_relaxed_ordering, 0, 609 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 610 611 static int t4_panic_on_fatal_err = 0; 612 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 613 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 614 615 static int t4_reset_on_fatal_err = 0; 616 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 617 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 618 619 static int t4_tx_vm_wr = 0; 620 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 621 "Use VM work requests to transmit packets."); 622 623 /* 624 * Set to non-zero to enable the attack filter. A packet that matches any of 625 * these conditions will get dropped on ingress: 626 * 1) IP && source address == destination address. 627 * 2) TCP/IP && source address is not a unicast address. 628 * 3) TCP/IP && destination address is not a unicast address. 629 * 4) IP && source address is loopback (127.x.y.z). 630 * 5) IP && destination address is loopback (127.x.y.z). 631 * 6) IPv6 && source address == destination address. 632 * 7) IPv6 && source address is not a unicast address. 633 * 8) IPv6 && source address is loopback (::1/128). 634 * 9) IPv6 && destination address is loopback (::1/128). 635 * 10) IPv6 && source address is unspecified (::/128). 636 * 11) IPv6 && destination address is unspecified (::/128). 637 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 638 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 639 */ 640 static int t4_attack_filter = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 642 &t4_attack_filter, 0, "Drop suspicious traffic"); 643 644 static int t4_drop_ip_fragments = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 646 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 647 648 static int t4_drop_pkts_with_l2_errors = 1; 649 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 650 &t4_drop_pkts_with_l2_errors, 0, 651 "Drop all frames with Layer 2 length or checksum errors"); 652 653 static int t4_drop_pkts_with_l3_errors = 0; 654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 655 &t4_drop_pkts_with_l3_errors, 0, 656 "Drop all frames with IP version, length, or checksum errors"); 657 658 static int t4_drop_pkts_with_l4_errors = 0; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l4_errors, 0, 661 "Drop all frames with Layer 4 length, checksum, or other errors"); 662 663 #ifdef TCP_OFFLOAD 664 /* 665 * TOE tunables. 666 */ 667 static int t4_cop_managed_offloading = 0; 668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 669 &t4_cop_managed_offloading, 0, 670 "COP (Connection Offload Policy) controls all TOE offload"); 671 #endif 672 673 #ifdef KERN_TLS 674 /* 675 * This enables KERN_TLS for all adapters if set. 676 */ 677 static int t4_kern_tls = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 679 "Enable KERN_TLS mode for all supported adapters"); 680 681 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 682 "cxgbe(4) KERN_TLS parameters"); 683 684 static int t4_tls_inline_keys = 0; 685 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 686 &t4_tls_inline_keys, 0, 687 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 688 "in card memory."); 689 690 static int t4_tls_combo_wrs = 0; 691 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 692 0, "Attempt to combine TCB field updates with TLS record work requests."); 693 #endif 694 695 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 696 static int vi_mac_funcs[] = { 697 FW_VI_FUNC_ETH, 698 FW_VI_FUNC_OFLD, 699 FW_VI_FUNC_IWARP, 700 FW_VI_FUNC_OPENISCSI, 701 FW_VI_FUNC_OPENFCOE, 702 FW_VI_FUNC_FOISCSI, 703 FW_VI_FUNC_FOFCOE, 704 }; 705 706 struct intrs_and_queues { 707 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 708 uint16_t num_vis; /* number of VIs for each port */ 709 uint16_t nirq; /* Total # of vectors */ 710 uint16_t ntxq; /* # of NIC txq's for each port */ 711 uint16_t nrxq; /* # of NIC rxq's for each port */ 712 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 713 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 714 uint16_t nnmtxq; /* # of netmap txq's */ 715 uint16_t nnmrxq; /* # of netmap rxq's */ 716 717 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 718 uint16_t ntxq_vi; /* # of NIC txq's */ 719 uint16_t nrxq_vi; /* # of NIC rxq's */ 720 uint16_t nofldtxq_vi; /* # of TOE txq's */ 721 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 722 uint16_t nnmtxq_vi; /* # of netmap txq's */ 723 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 724 }; 725 726 static void setup_memwin(struct adapter *); 727 static void position_memwin(struct adapter *, int, uint32_t); 728 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 729 static int fwmtype_to_hwmtype(int); 730 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 731 uint32_t *); 732 static int fixup_devlog_params(struct adapter *); 733 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 734 static int contact_firmware(struct adapter *); 735 static int partition_resources(struct adapter *); 736 static int get_params__pre_init(struct adapter *); 737 static int set_params__pre_init(struct adapter *); 738 static int get_params__post_init(struct adapter *); 739 static int set_params__post_init(struct adapter *); 740 static void t4_set_desc(struct adapter *); 741 static bool fixed_ifmedia(struct port_info *); 742 static void build_medialist(struct port_info *); 743 static void init_link_config(struct port_info *); 744 static int fixup_link_config(struct port_info *); 745 static int apply_link_config(struct port_info *); 746 static int cxgbe_init_synchronized(struct vi_info *); 747 static int cxgbe_uninit_synchronized(struct vi_info *); 748 static int adapter_full_init(struct adapter *); 749 static void adapter_full_uninit(struct adapter *); 750 static int vi_full_init(struct vi_info *); 751 static void vi_full_uninit(struct vi_info *); 752 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 753 static void quiesce_txq(struct sge_txq *); 754 static void quiesce_wrq(struct sge_wrq *); 755 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 756 static void quiesce_vi(struct vi_info *); 757 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 758 driver_intr_t *, void *, char *); 759 static int t4_free_irq(struct adapter *, struct irq *); 760 static void t4_init_atid_table(struct adapter *); 761 static void t4_free_atid_table(struct adapter *); 762 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 763 static void vi_refresh_stats(struct vi_info *); 764 static void cxgbe_refresh_stats(struct vi_info *); 765 static void cxgbe_tick(void *); 766 static void vi_tick(void *); 767 static void cxgbe_sysctls(struct port_info *); 768 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 769 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 770 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 771 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 772 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 773 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 774 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 775 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 776 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 777 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 778 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 779 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 780 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 781 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 782 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 783 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 784 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 785 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 786 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 787 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 788 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 789 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 790 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 791 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 792 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 794 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 795 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 796 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 797 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 798 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 799 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 800 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 801 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 802 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 803 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 804 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 805 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 809 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 811 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 812 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 813 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 814 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 818 #ifdef TCP_OFFLOAD 819 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 826 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 827 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 828 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 829 #endif 830 static int get_sge_context(struct adapter *, struct t4_sge_context *); 831 static int load_fw(struct adapter *, struct t4_data *); 832 static int load_cfg(struct adapter *, struct t4_data *); 833 static int load_boot(struct adapter *, struct t4_bootrom *); 834 static int load_bootcfg(struct adapter *, struct t4_data *); 835 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 836 static void free_offload_policy(struct t4_offload_policy *); 837 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 838 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 839 static int read_i2c(struct adapter *, struct t4_i2c_data *); 840 static int clear_stats(struct adapter *, u_int); 841 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 842 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 843 #ifdef TCP_OFFLOAD 844 static int toe_capability(struct vi_info *, bool); 845 static void t4_async_event(void *, int); 846 #endif 847 #ifdef KERN_TLS 848 static int ktls_capability(struct adapter *, bool); 849 #endif 850 static int mod_event(module_t, int, void *); 851 static int notify_siblings(device_t, int); 852 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 853 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 854 static void enable_vxlan_rx(struct adapter *); 855 static void reset_adapter(void *, int); 856 857 struct { 858 uint16_t device; 859 char *desc; 860 } t4_pciids[] = { 861 {0xa000, "Chelsio Terminator 4 FPGA"}, 862 {0x4400, "Chelsio T440-dbg"}, 863 {0x4401, "Chelsio T420-CR"}, 864 {0x4402, "Chelsio T422-CR"}, 865 {0x4403, "Chelsio T440-CR"}, 866 {0x4404, "Chelsio T420-BCH"}, 867 {0x4405, "Chelsio T440-BCH"}, 868 {0x4406, "Chelsio T440-CH"}, 869 {0x4407, "Chelsio T420-SO"}, 870 {0x4408, "Chelsio T420-CX"}, 871 {0x4409, "Chelsio T420-BT"}, 872 {0x440a, "Chelsio T404-BT"}, 873 {0x440e, "Chelsio T440-LP-CR"}, 874 }, t5_pciids[] = { 875 {0xb000, "Chelsio Terminator 5 FPGA"}, 876 {0x5400, "Chelsio T580-dbg"}, 877 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 878 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 879 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 880 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 881 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 882 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 883 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 884 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 885 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 886 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 887 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 888 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 889 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 890 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 891 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 892 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 893 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 894 895 /* Custom */ 896 {0x5483, "Custom T540-CR"}, 897 {0x5484, "Custom T540-BT"}, 898 }, t6_pciids[] = { 899 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 900 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 901 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 902 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 903 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 904 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 905 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 906 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 907 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 908 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 909 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 910 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 911 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 912 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 913 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 914 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 915 916 /* Custom */ 917 {0x6480, "Custom T6225-CR"}, 918 {0x6481, "Custom T62100-CR"}, 919 {0x6482, "Custom T6225-CR"}, 920 {0x6483, "Custom T62100-CR"}, 921 {0x6484, "Custom T64100-CR"}, 922 {0x6485, "Custom T6240-SO"}, 923 {0x6486, "Custom T6225-SO-CR"}, 924 {0x6487, "Custom T6225-CR"}, 925 }; 926 927 #ifdef TCP_OFFLOAD 928 /* 929 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 930 * be exactly the same for both rxq and ofld_rxq. 931 */ 932 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 933 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 934 #endif 935 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 936 937 static int 938 t4_probe(device_t dev) 939 { 940 int i; 941 uint16_t v = pci_get_vendor(dev); 942 uint16_t d = pci_get_device(dev); 943 uint8_t f = pci_get_function(dev); 944 945 if (v != PCI_VENDOR_ID_CHELSIO) 946 return (ENXIO); 947 948 /* Attach only to PF0 of the FPGA */ 949 if (d == 0xa000 && f != 0) 950 return (ENXIO); 951 952 for (i = 0; i < nitems(t4_pciids); i++) { 953 if (d == t4_pciids[i].device) { 954 device_set_desc(dev, t4_pciids[i].desc); 955 return (BUS_PROBE_DEFAULT); 956 } 957 } 958 959 return (ENXIO); 960 } 961 962 static int 963 t5_probe(device_t dev) 964 { 965 int i; 966 uint16_t v = pci_get_vendor(dev); 967 uint16_t d = pci_get_device(dev); 968 uint8_t f = pci_get_function(dev); 969 970 if (v != PCI_VENDOR_ID_CHELSIO) 971 return (ENXIO); 972 973 /* Attach only to PF0 of the FPGA */ 974 if (d == 0xb000 && f != 0) 975 return (ENXIO); 976 977 for (i = 0; i < nitems(t5_pciids); i++) { 978 if (d == t5_pciids[i].device) { 979 device_set_desc(dev, t5_pciids[i].desc); 980 return (BUS_PROBE_DEFAULT); 981 } 982 } 983 984 return (ENXIO); 985 } 986 987 static int 988 t6_probe(device_t dev) 989 { 990 int i; 991 uint16_t v = pci_get_vendor(dev); 992 uint16_t d = pci_get_device(dev); 993 994 if (v != PCI_VENDOR_ID_CHELSIO) 995 return (ENXIO); 996 997 for (i = 0; i < nitems(t6_pciids); i++) { 998 if (d == t6_pciids[i].device) { 999 device_set_desc(dev, t6_pciids[i].desc); 1000 return (BUS_PROBE_DEFAULT); 1001 } 1002 } 1003 1004 return (ENXIO); 1005 } 1006 1007 static void 1008 t5_attribute_workaround(device_t dev) 1009 { 1010 device_t root_port; 1011 uint32_t v; 1012 1013 /* 1014 * The T5 chips do not properly echo the No Snoop and Relaxed 1015 * Ordering attributes when replying to a TLP from a Root 1016 * Port. As a workaround, find the parent Root Port and 1017 * disable No Snoop and Relaxed Ordering. Note that this 1018 * affects all devices under this root port. 1019 */ 1020 root_port = pci_find_pcie_root_port(dev); 1021 if (root_port == NULL) { 1022 device_printf(dev, "Unable to find parent root port\n"); 1023 return; 1024 } 1025 1026 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1027 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1028 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1029 0) 1030 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1031 device_get_nameunit(root_port)); 1032 } 1033 1034 static const struct devnames devnames[] = { 1035 { 1036 .nexus_name = "t4nex", 1037 .ifnet_name = "cxgbe", 1038 .vi_ifnet_name = "vcxgbe", 1039 .pf03_drv_name = "t4iov", 1040 .vf_nexus_name = "t4vf", 1041 .vf_ifnet_name = "cxgbev" 1042 }, { 1043 .nexus_name = "t5nex", 1044 .ifnet_name = "cxl", 1045 .vi_ifnet_name = "vcxl", 1046 .pf03_drv_name = "t5iov", 1047 .vf_nexus_name = "t5vf", 1048 .vf_ifnet_name = "cxlv" 1049 }, { 1050 .nexus_name = "t6nex", 1051 .ifnet_name = "cc", 1052 .vi_ifnet_name = "vcc", 1053 .pf03_drv_name = "t6iov", 1054 .vf_nexus_name = "t6vf", 1055 .vf_ifnet_name = "ccv" 1056 } 1057 }; 1058 1059 void 1060 t4_init_devnames(struct adapter *sc) 1061 { 1062 int id; 1063 1064 id = chip_id(sc); 1065 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1066 sc->names = &devnames[id - CHELSIO_T4]; 1067 else { 1068 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1069 sc->names = NULL; 1070 } 1071 } 1072 1073 static int 1074 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1075 { 1076 const char *parent, *name; 1077 long value; 1078 int line, unit; 1079 1080 line = 0; 1081 parent = device_get_nameunit(sc->dev); 1082 name = sc->names->ifnet_name; 1083 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1084 if (resource_long_value(name, unit, "port", &value) == 0 && 1085 value == pi->port_id) 1086 return (unit); 1087 } 1088 return (-1); 1089 } 1090 1091 static int 1092 t4_attach(device_t dev) 1093 { 1094 struct adapter *sc; 1095 int rc = 0, i, j, rqidx, tqidx, nports; 1096 struct make_dev_args mda; 1097 struct intrs_and_queues iaq; 1098 struct sge *s; 1099 uint32_t *buf; 1100 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1101 int ofld_tqidx; 1102 #endif 1103 #ifdef TCP_OFFLOAD 1104 int ofld_rqidx; 1105 #endif 1106 #ifdef DEV_NETMAP 1107 int nm_rqidx, nm_tqidx; 1108 #endif 1109 int num_vis; 1110 1111 sc = device_get_softc(dev); 1112 sc->dev = dev; 1113 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1114 1115 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1116 t5_attribute_workaround(dev); 1117 pci_enable_busmaster(dev); 1118 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1119 uint32_t v; 1120 1121 pci_set_max_read_req(dev, 4096); 1122 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1123 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1124 if (pcie_relaxed_ordering == 0 && 1125 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1126 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1127 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1128 } else if (pcie_relaxed_ordering == 1 && 1129 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1130 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1131 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1132 } 1133 } 1134 1135 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1136 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1137 sc->traceq = -1; 1138 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1139 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1140 device_get_nameunit(dev)); 1141 1142 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1143 device_get_nameunit(dev)); 1144 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1145 t4_add_adapter(sc); 1146 1147 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1148 TAILQ_INIT(&sc->sfl); 1149 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1150 1151 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1152 1153 sc->policy = NULL; 1154 rw_init(&sc->policy_lock, "connection offload policy"); 1155 1156 callout_init(&sc->ktls_tick, 1); 1157 1158 #ifdef TCP_OFFLOAD 1159 TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc); 1160 #endif 1161 1162 refcount_init(&sc->vxlan_refcount, 0); 1163 1164 TASK_INIT(&sc->reset_task, 0, reset_adapter, sc); 1165 1166 sc->ctrlq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1167 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1168 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1169 sc->fwq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1170 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1171 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1172 1173 rc = t4_map_bars_0_and_4(sc); 1174 if (rc != 0) 1175 goto done; /* error message displayed already */ 1176 1177 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1178 1179 /* Prepare the adapter for operation. */ 1180 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1181 rc = -t4_prep_adapter(sc, buf); 1182 free(buf, M_CXGBE); 1183 if (rc != 0) { 1184 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1185 goto done; 1186 } 1187 1188 /* 1189 * This is the real PF# to which we're attaching. Works from within PCI 1190 * passthrough environments too, where pci_get_function() could return a 1191 * different PF# depending on the passthrough configuration. We need to 1192 * use the real PF# in all our communication with the firmware. 1193 */ 1194 j = t4_read_reg(sc, A_PL_WHOAMI); 1195 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1196 sc->mbox = sc->pf; 1197 1198 t4_init_devnames(sc); 1199 if (sc->names == NULL) { 1200 rc = ENOTSUP; 1201 goto done; /* error message displayed already */ 1202 } 1203 1204 /* 1205 * Do this really early, with the memory windows set up even before the 1206 * character device. The userland tool's register i/o and mem read 1207 * will work even in "recovery mode". 1208 */ 1209 setup_memwin(sc); 1210 if (t4_init_devlog_params(sc, 0) == 0) 1211 fixup_devlog_params(sc); 1212 make_dev_args_init(&mda); 1213 mda.mda_devsw = &t4_cdevsw; 1214 mda.mda_uid = UID_ROOT; 1215 mda.mda_gid = GID_WHEEL; 1216 mda.mda_mode = 0600; 1217 mda.mda_si_drv1 = sc; 1218 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1219 if (rc != 0) 1220 device_printf(dev, "failed to create nexus char device: %d.\n", 1221 rc); 1222 1223 /* Go no further if recovery mode has been requested. */ 1224 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1225 device_printf(dev, "recovery mode.\n"); 1226 goto done; 1227 } 1228 1229 #if defined(__i386__) 1230 if ((cpu_feature & CPUID_CX8) == 0) { 1231 device_printf(dev, "64 bit atomics not available.\n"); 1232 rc = ENOTSUP; 1233 goto done; 1234 } 1235 #endif 1236 1237 /* Contact the firmware and try to become the master driver. */ 1238 rc = contact_firmware(sc); 1239 if (rc != 0) 1240 goto done; /* error message displayed already */ 1241 MPASS(sc->flags & FW_OK); 1242 1243 rc = get_params__pre_init(sc); 1244 if (rc != 0) 1245 goto done; /* error message displayed already */ 1246 1247 if (sc->flags & MASTER_PF) { 1248 rc = partition_resources(sc); 1249 if (rc != 0) 1250 goto done; /* error message displayed already */ 1251 t4_intr_clear(sc); 1252 } 1253 1254 rc = get_params__post_init(sc); 1255 if (rc != 0) 1256 goto done; /* error message displayed already */ 1257 1258 rc = set_params__post_init(sc); 1259 if (rc != 0) 1260 goto done; /* error message displayed already */ 1261 1262 rc = t4_map_bar_2(sc); 1263 if (rc != 0) 1264 goto done; /* error message displayed already */ 1265 1266 rc = t4_create_dma_tag(sc); 1267 if (rc != 0) 1268 goto done; /* error message displayed already */ 1269 1270 /* 1271 * First pass over all the ports - allocate VIs and initialize some 1272 * basic parameters like mac address, port type, etc. 1273 */ 1274 for_each_port(sc, i) { 1275 struct port_info *pi; 1276 1277 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1278 sc->port[i] = pi; 1279 1280 /* These must be set before t4_port_init */ 1281 pi->adapter = sc; 1282 pi->port_id = i; 1283 /* 1284 * XXX: vi[0] is special so we can't delay this allocation until 1285 * pi->nvi's final value is known. 1286 */ 1287 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1288 M_ZERO | M_WAITOK); 1289 1290 /* 1291 * Allocate the "main" VI and initialize parameters 1292 * like mac addr. 1293 */ 1294 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1295 if (rc != 0) { 1296 device_printf(dev, "unable to initialize port %d: %d\n", 1297 i, rc); 1298 free(pi->vi, M_CXGBE); 1299 free(pi, M_CXGBE); 1300 sc->port[i] = NULL; 1301 goto done; 1302 } 1303 1304 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1305 device_get_nameunit(dev), i); 1306 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1307 sc->chan_map[pi->tx_chan] = i; 1308 1309 /* 1310 * The MPS counter for FCS errors doesn't work correctly on the 1311 * T6 so we use the MAC counter here. Which MAC is in use 1312 * depends on the link settings which will be known when the 1313 * link comes up. 1314 */ 1315 if (is_t6(sc)) { 1316 pi->fcs_reg = -1; 1317 } else if (is_t4(sc)) { 1318 pi->fcs_reg = PORT_REG(pi->tx_chan, 1319 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1320 } else { 1321 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1322 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1323 } 1324 pi->fcs_base = 0; 1325 1326 /* All VIs on this port share this media. */ 1327 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1328 cxgbe_media_status); 1329 1330 PORT_LOCK(pi); 1331 init_link_config(pi); 1332 fixup_link_config(pi); 1333 build_medialist(pi); 1334 if (fixed_ifmedia(pi)) 1335 pi->flags |= FIXED_IFMEDIA; 1336 PORT_UNLOCK(pi); 1337 1338 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1339 t4_ifnet_unit(sc, pi)); 1340 if (pi->dev == NULL) { 1341 device_printf(dev, 1342 "failed to add device for port %d.\n", i); 1343 rc = ENXIO; 1344 goto done; 1345 } 1346 pi->vi[0].dev = pi->dev; 1347 device_set_softc(pi->dev, pi); 1348 } 1349 1350 /* 1351 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1352 */ 1353 nports = sc->params.nports; 1354 rc = cfg_itype_and_nqueues(sc, &iaq); 1355 if (rc != 0) 1356 goto done; /* error message displayed already */ 1357 1358 num_vis = iaq.num_vis; 1359 sc->intr_type = iaq.intr_type; 1360 sc->intr_count = iaq.nirq; 1361 1362 s = &sc->sge; 1363 s->nrxq = nports * iaq.nrxq; 1364 s->ntxq = nports * iaq.ntxq; 1365 if (num_vis > 1) { 1366 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1367 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1368 } 1369 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1370 s->neq += nports; /* ctrl queues: 1 per port */ 1371 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1372 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1373 if (is_offload(sc) || is_ethoffload(sc)) { 1374 s->nofldtxq = nports * iaq.nofldtxq; 1375 if (num_vis > 1) 1376 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1377 s->neq += s->nofldtxq; 1378 1379 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1380 M_CXGBE, M_ZERO | M_WAITOK); 1381 } 1382 #endif 1383 #ifdef TCP_OFFLOAD 1384 if (is_offload(sc)) { 1385 s->nofldrxq = nports * iaq.nofldrxq; 1386 if (num_vis > 1) 1387 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1388 s->neq += s->nofldrxq; /* free list */ 1389 s->niq += s->nofldrxq; 1390 1391 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1392 M_CXGBE, M_ZERO | M_WAITOK); 1393 } 1394 #endif 1395 #ifdef DEV_NETMAP 1396 s->nnmrxq = 0; 1397 s->nnmtxq = 0; 1398 if (t4_native_netmap & NN_MAIN_VI) { 1399 s->nnmrxq += nports * iaq.nnmrxq; 1400 s->nnmtxq += nports * iaq.nnmtxq; 1401 } 1402 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1403 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1404 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1405 } 1406 s->neq += s->nnmtxq + s->nnmrxq; 1407 s->niq += s->nnmrxq; 1408 1409 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1410 M_CXGBE, M_ZERO | M_WAITOK); 1411 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1412 M_CXGBE, M_ZERO | M_WAITOK); 1413 #endif 1414 MPASS(s->niq <= s->iqmap_sz); 1415 MPASS(s->neq <= s->eqmap_sz); 1416 1417 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1418 M_ZERO | M_WAITOK); 1419 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1420 M_ZERO | M_WAITOK); 1421 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1422 M_ZERO | M_WAITOK); 1423 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1424 M_ZERO | M_WAITOK); 1425 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1426 M_ZERO | M_WAITOK); 1427 1428 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1429 M_ZERO | M_WAITOK); 1430 1431 t4_init_l2t(sc, M_WAITOK); 1432 t4_init_smt(sc, M_WAITOK); 1433 t4_init_tx_sched(sc); 1434 t4_init_atid_table(sc); 1435 #ifdef RATELIMIT 1436 t4_init_etid_table(sc); 1437 #endif 1438 #ifdef INET6 1439 t4_init_clip_table(sc); 1440 #endif 1441 if (sc->vres.key.size != 0) 1442 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1443 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1444 1445 /* 1446 * Second pass over the ports. This time we know the number of rx and 1447 * tx queues that each port should get. 1448 */ 1449 rqidx = tqidx = 0; 1450 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1451 ofld_tqidx = 0; 1452 #endif 1453 #ifdef TCP_OFFLOAD 1454 ofld_rqidx = 0; 1455 #endif 1456 #ifdef DEV_NETMAP 1457 nm_rqidx = nm_tqidx = 0; 1458 #endif 1459 for_each_port(sc, i) { 1460 struct port_info *pi = sc->port[i]; 1461 struct vi_info *vi; 1462 1463 if (pi == NULL) 1464 continue; 1465 1466 pi->nvi = num_vis; 1467 for_each_vi(pi, j, vi) { 1468 vi->pi = pi; 1469 vi->adapter = sc; 1470 vi->first_intr = -1; 1471 vi->qsize_rxq = t4_qsize_rxq; 1472 vi->qsize_txq = t4_qsize_txq; 1473 1474 vi->first_rxq = rqidx; 1475 vi->first_txq = tqidx; 1476 vi->tmr_idx = t4_tmr_idx; 1477 vi->pktc_idx = t4_pktc_idx; 1478 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1479 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1480 1481 rqidx += vi->nrxq; 1482 tqidx += vi->ntxq; 1483 1484 if (j == 0 && vi->ntxq > 1) 1485 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1486 else 1487 vi->rsrv_noflowq = 0; 1488 1489 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1490 vi->first_ofld_txq = ofld_tqidx; 1491 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1492 ofld_tqidx += vi->nofldtxq; 1493 #endif 1494 #ifdef TCP_OFFLOAD 1495 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1496 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1497 vi->first_ofld_rxq = ofld_rqidx; 1498 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1499 1500 ofld_rqidx += vi->nofldrxq; 1501 #endif 1502 #ifdef DEV_NETMAP 1503 vi->first_nm_rxq = nm_rqidx; 1504 vi->first_nm_txq = nm_tqidx; 1505 if (j == 0) { 1506 vi->nnmrxq = iaq.nnmrxq; 1507 vi->nnmtxq = iaq.nnmtxq; 1508 } else { 1509 vi->nnmrxq = iaq.nnmrxq_vi; 1510 vi->nnmtxq = iaq.nnmtxq_vi; 1511 } 1512 nm_rqidx += vi->nnmrxq; 1513 nm_tqidx += vi->nnmtxq; 1514 #endif 1515 } 1516 } 1517 1518 rc = t4_setup_intr_handlers(sc); 1519 if (rc != 0) { 1520 device_printf(dev, 1521 "failed to setup interrupt handlers: %d\n", rc); 1522 goto done; 1523 } 1524 1525 rc = bus_generic_probe(dev); 1526 if (rc != 0) { 1527 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1528 goto done; 1529 } 1530 1531 /* 1532 * Ensure thread-safe mailbox access (in debug builds). 1533 * 1534 * So far this was the only thread accessing the mailbox but various 1535 * ifnets and sysctls are about to be created and their handlers/ioctls 1536 * will access the mailbox from different threads. 1537 */ 1538 sc->flags |= CHK_MBOX_ACCESS; 1539 1540 rc = bus_generic_attach(dev); 1541 if (rc != 0) { 1542 device_printf(dev, 1543 "failed to attach all child ports: %d\n", rc); 1544 goto done; 1545 } 1546 1547 device_printf(dev, 1548 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1549 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1550 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1551 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1552 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1553 1554 t4_set_desc(sc); 1555 1556 notify_siblings(dev, 0); 1557 1558 done: 1559 if (rc != 0 && sc->cdev) { 1560 /* cdev was created and so cxgbetool works; recover that way. */ 1561 device_printf(dev, 1562 "error during attach, adapter is now in recovery mode.\n"); 1563 rc = 0; 1564 } 1565 1566 if (rc != 0) 1567 t4_detach_common(dev); 1568 else 1569 t4_sysctls(sc); 1570 1571 return (rc); 1572 } 1573 1574 static int 1575 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1576 { 1577 struct adapter *sc; 1578 struct port_info *pi; 1579 int i; 1580 1581 sc = device_get_softc(bus); 1582 for_each_port(sc, i) { 1583 pi = sc->port[i]; 1584 if (pi != NULL && pi->dev == dev) { 1585 sbuf_printf(sb, "port=%d", pi->port_id); 1586 break; 1587 } 1588 } 1589 return (0); 1590 } 1591 1592 static int 1593 t4_ready(device_t dev) 1594 { 1595 struct adapter *sc; 1596 1597 sc = device_get_softc(dev); 1598 if (sc->flags & FW_OK) 1599 return (0); 1600 return (ENXIO); 1601 } 1602 1603 static int 1604 t4_read_port_device(device_t dev, int port, device_t *child) 1605 { 1606 struct adapter *sc; 1607 struct port_info *pi; 1608 1609 sc = device_get_softc(dev); 1610 if (port < 0 || port >= MAX_NPORTS) 1611 return (EINVAL); 1612 pi = sc->port[port]; 1613 if (pi == NULL || pi->dev == NULL) 1614 return (ENXIO); 1615 *child = pi->dev; 1616 return (0); 1617 } 1618 1619 static int 1620 notify_siblings(device_t dev, int detaching) 1621 { 1622 device_t sibling; 1623 int error, i; 1624 1625 error = 0; 1626 for (i = 0; i < PCI_FUNCMAX; i++) { 1627 if (i == pci_get_function(dev)) 1628 continue; 1629 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1630 pci_get_slot(dev), i); 1631 if (sibling == NULL || !device_is_attached(sibling)) 1632 continue; 1633 if (detaching) 1634 error = T4_DETACH_CHILD(sibling); 1635 else 1636 (void)T4_ATTACH_CHILD(sibling); 1637 if (error) 1638 break; 1639 } 1640 return (error); 1641 } 1642 1643 /* 1644 * Idempotent 1645 */ 1646 static int 1647 t4_detach(device_t dev) 1648 { 1649 struct adapter *sc; 1650 int rc; 1651 1652 sc = device_get_softc(dev); 1653 1654 rc = notify_siblings(dev, 1); 1655 if (rc) { 1656 device_printf(dev, 1657 "failed to detach sibling devices: %d\n", rc); 1658 return (rc); 1659 } 1660 1661 return (t4_detach_common(dev)); 1662 } 1663 1664 int 1665 t4_detach_common(device_t dev) 1666 { 1667 struct adapter *sc; 1668 struct port_info *pi; 1669 int i, rc; 1670 1671 sc = device_get_softc(dev); 1672 1673 if (sc->cdev) { 1674 destroy_dev(sc->cdev); 1675 sc->cdev = NULL; 1676 } 1677 1678 sx_xlock(&t4_list_lock); 1679 SLIST_REMOVE(&t4_list, sc, adapter, link); 1680 sx_xunlock(&t4_list_lock); 1681 1682 sc->flags &= ~CHK_MBOX_ACCESS; 1683 if (sc->flags & FULL_INIT_DONE) { 1684 if (!(sc->flags & IS_VF)) 1685 t4_intr_disable(sc); 1686 } 1687 1688 if (device_is_attached(dev)) { 1689 rc = bus_generic_detach(dev); 1690 if (rc) { 1691 device_printf(dev, 1692 "failed to detach child devices: %d\n", rc); 1693 return (rc); 1694 } 1695 } 1696 1697 #ifdef TCP_OFFLOAD 1698 taskqueue_drain(taskqueue_thread, &sc->async_event_task); 1699 #endif 1700 1701 for (i = 0; i < sc->intr_count; i++) 1702 t4_free_irq(sc, &sc->irq[i]); 1703 1704 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1705 t4_free_tx_sched(sc); 1706 1707 for (i = 0; i < MAX_NPORTS; i++) { 1708 pi = sc->port[i]; 1709 if (pi) { 1710 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1711 if (pi->dev) 1712 device_delete_child(dev, pi->dev); 1713 1714 mtx_destroy(&pi->pi_lock); 1715 free(pi->vi, M_CXGBE); 1716 free(pi, M_CXGBE); 1717 } 1718 } 1719 1720 device_delete_children(dev); 1721 adapter_full_uninit(sc); 1722 1723 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1724 t4_fw_bye(sc, sc->mbox); 1725 1726 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1727 pci_release_msi(dev); 1728 1729 if (sc->regs_res) 1730 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1731 sc->regs_res); 1732 1733 if (sc->udbs_res) 1734 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1735 sc->udbs_res); 1736 1737 if (sc->msix_res) 1738 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1739 sc->msix_res); 1740 1741 if (sc->l2t) 1742 t4_free_l2t(sc->l2t); 1743 if (sc->smt) 1744 t4_free_smt(sc->smt); 1745 t4_free_atid_table(sc); 1746 #ifdef RATELIMIT 1747 t4_free_etid_table(sc); 1748 #endif 1749 if (sc->key_map) 1750 vmem_destroy(sc->key_map); 1751 #ifdef INET6 1752 t4_destroy_clip_table(sc); 1753 #endif 1754 1755 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1756 free(sc->sge.ofld_txq, M_CXGBE); 1757 #endif 1758 #ifdef TCP_OFFLOAD 1759 free(sc->sge.ofld_rxq, M_CXGBE); 1760 #endif 1761 #ifdef DEV_NETMAP 1762 free(sc->sge.nm_rxq, M_CXGBE); 1763 free(sc->sge.nm_txq, M_CXGBE); 1764 #endif 1765 free(sc->irq, M_CXGBE); 1766 free(sc->sge.rxq, M_CXGBE); 1767 free(sc->sge.txq, M_CXGBE); 1768 free(sc->sge.ctrlq, M_CXGBE); 1769 free(sc->sge.iqmap, M_CXGBE); 1770 free(sc->sge.eqmap, M_CXGBE); 1771 free(sc->tids.ftid_tab, M_CXGBE); 1772 free(sc->tids.hpftid_tab, M_CXGBE); 1773 free_hftid_hash(&sc->tids); 1774 free(sc->tids.tid_tab, M_CXGBE); 1775 free(sc->tt.tls_rx_ports, M_CXGBE); 1776 t4_destroy_dma_tag(sc); 1777 1778 callout_drain(&sc->ktls_tick); 1779 callout_drain(&sc->sfl_callout); 1780 if (mtx_initialized(&sc->tids.ftid_lock)) { 1781 mtx_destroy(&sc->tids.ftid_lock); 1782 cv_destroy(&sc->tids.ftid_cv); 1783 } 1784 if (mtx_initialized(&sc->tids.atid_lock)) 1785 mtx_destroy(&sc->tids.atid_lock); 1786 if (mtx_initialized(&sc->ifp_lock)) 1787 mtx_destroy(&sc->ifp_lock); 1788 1789 if (rw_initialized(&sc->policy_lock)) { 1790 rw_destroy(&sc->policy_lock); 1791 #ifdef TCP_OFFLOAD 1792 if (sc->policy != NULL) 1793 free_offload_policy(sc->policy); 1794 #endif 1795 } 1796 1797 for (i = 0; i < NUM_MEMWIN; i++) { 1798 struct memwin *mw = &sc->memwin[i]; 1799 1800 if (rw_initialized(&mw->mw_lock)) 1801 rw_destroy(&mw->mw_lock); 1802 } 1803 1804 mtx_destroy(&sc->sfl_lock); 1805 mtx_destroy(&sc->reg_lock); 1806 mtx_destroy(&sc->sc_lock); 1807 1808 bzero(sc, sizeof(*sc)); 1809 1810 return (0); 1811 } 1812 1813 static inline bool 1814 ok_to_reset(struct adapter *sc) 1815 { 1816 struct tid_info *t = &sc->tids; 1817 struct port_info *pi; 1818 struct vi_info *vi; 1819 int i, j; 1820 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1821 1822 ASSERT_SYNCHRONIZED_OP(sc); 1823 MPASS(!(sc->flags & IS_VF)); 1824 1825 for_each_port(sc, i) { 1826 pi = sc->port[i]; 1827 for_each_vi(pi, j, vi) { 1828 if (vi->ifp->if_capenable & caps) 1829 return (false); 1830 } 1831 } 1832 1833 if (atomic_load_int(&t->tids_in_use) > 0) 1834 return (false); 1835 if (atomic_load_int(&t->stids_in_use) > 0) 1836 return (false); 1837 if (atomic_load_int(&t->atids_in_use) > 0) 1838 return (false); 1839 if (atomic_load_int(&t->ftids_in_use) > 0) 1840 return (false); 1841 if (atomic_load_int(&t->hpftids_in_use) > 0) 1842 return (false); 1843 if (atomic_load_int(&t->etids_in_use) > 0) 1844 return (false); 1845 1846 return (true); 1847 } 1848 1849 static int 1850 t4_suspend(device_t dev) 1851 { 1852 struct adapter *sc = device_get_softc(dev); 1853 struct port_info *pi; 1854 struct vi_info *vi; 1855 struct ifnet *ifp; 1856 struct sge_rxq *rxq; 1857 struct sge_txq *txq; 1858 struct sge_wrq *wrq; 1859 #ifdef TCP_OFFLOAD 1860 struct sge_ofld_rxq *ofld_rxq; 1861 #endif 1862 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1863 struct sge_ofld_txq *ofld_txq; 1864 #endif 1865 int rc, i, j, k; 1866 1867 CH_ALERT(sc, "suspend requested\n"); 1868 1869 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1870 if (rc != 0) 1871 return (ENXIO); 1872 1873 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1874 MPASS(!hw_off_limits(sc)); 1875 1876 if (!ok_to_reset(sc)) { 1877 /* XXX: should list what resource is preventing suspend. */ 1878 CH_ERR(sc, "not safe to suspend.\n"); 1879 rc = EBUSY; 1880 goto done; 1881 } 1882 1883 /* No more DMA or interrupts. */ 1884 t4_shutdown_adapter(sc); 1885 1886 /* Quiesce all activity. */ 1887 for_each_port(sc, i) { 1888 pi = sc->port[i]; 1889 pi->vxlan_tcam_entry = false; 1890 1891 PORT_LOCK(pi); 1892 if (pi->up_vis > 0) { 1893 /* 1894 * t4_shutdown_adapter has already shut down all the 1895 * PHYs but it also disables interrupts and DMA so there 1896 * won't be a link interrupt. So we update the state 1897 * manually and inform the kernel. 1898 */ 1899 pi->link_cfg.link_ok = false; 1900 t4_os_link_changed(pi); 1901 } 1902 PORT_UNLOCK(pi); 1903 1904 for_each_vi(pi, j, vi) { 1905 vi->xact_addr_filt = -1; 1906 if (!(vi->flags & VI_INIT_DONE)) 1907 continue; 1908 1909 ifp = vi->ifp; 1910 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1911 mtx_lock(&vi->tick_mtx); 1912 vi->flags |= VI_SKIP_STATS; 1913 callout_stop(&vi->tick); 1914 mtx_unlock(&vi->tick_mtx); 1915 callout_drain(&vi->tick); 1916 } 1917 1918 /* 1919 * Note that the HW is not available. 1920 */ 1921 for_each_txq(vi, k, txq) { 1922 TXQ_LOCK(txq); 1923 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1924 TXQ_UNLOCK(txq); 1925 } 1926 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1927 for_each_ofld_txq(vi, k, ofld_txq) { 1928 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1929 } 1930 #endif 1931 for_each_rxq(vi, k, rxq) { 1932 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1933 } 1934 #if defined(TCP_OFFLOAD) 1935 for_each_ofld_rxq(vi, k, ofld_rxq) { 1936 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1937 } 1938 #endif 1939 1940 quiesce_vi(vi); 1941 } 1942 1943 if (sc->flags & FULL_INIT_DONE) { 1944 /* Control queue */ 1945 wrq = &sc->sge.ctrlq[i]; 1946 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1947 quiesce_wrq(wrq); 1948 } 1949 } 1950 if (sc->flags & FULL_INIT_DONE) { 1951 /* Firmware event queue */ 1952 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1953 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1954 } 1955 1956 /* Mark the adapter totally off limits. */ 1957 mtx_lock(&sc->reg_lock); 1958 sc->flags |= HW_OFF_LIMITS; 1959 sc->flags &= ~(FW_OK | MASTER_PF); 1960 sc->reset_thread = NULL; 1961 mtx_unlock(&sc->reg_lock); 1962 1963 sc->num_resets++; 1964 CH_ALERT(sc, "suspend completed.\n"); 1965 done: 1966 end_synchronized_op(sc, 0); 1967 return (rc); 1968 } 1969 1970 struct adapter_pre_reset_state { 1971 u_int flags; 1972 uint16_t nbmcaps; 1973 uint16_t linkcaps; 1974 uint16_t switchcaps; 1975 uint16_t niccaps; 1976 uint16_t toecaps; 1977 uint16_t rdmacaps; 1978 uint16_t cryptocaps; 1979 uint16_t iscsicaps; 1980 uint16_t fcoecaps; 1981 1982 u_int cfcsum; 1983 char cfg_file[32]; 1984 1985 struct adapter_params params; 1986 struct t4_virt_res vres; 1987 struct tid_info tids; 1988 struct sge sge; 1989 1990 int rawf_base; 1991 int nrawf; 1992 1993 }; 1994 1995 static void 1996 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 1997 { 1998 1999 ASSERT_SYNCHRONIZED_OP(sc); 2000 2001 o->flags = sc->flags; 2002 2003 o->nbmcaps = sc->nbmcaps; 2004 o->linkcaps = sc->linkcaps; 2005 o->switchcaps = sc->switchcaps; 2006 o->niccaps = sc->niccaps; 2007 o->toecaps = sc->toecaps; 2008 o->rdmacaps = sc->rdmacaps; 2009 o->cryptocaps = sc->cryptocaps; 2010 o->iscsicaps = sc->iscsicaps; 2011 o->fcoecaps = sc->fcoecaps; 2012 2013 o->cfcsum = sc->cfcsum; 2014 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2015 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2016 2017 o->params = sc->params; 2018 o->vres = sc->vres; 2019 o->tids = sc->tids; 2020 o->sge = sc->sge; 2021 2022 o->rawf_base = sc->rawf_base; 2023 o->nrawf = sc->nrawf; 2024 } 2025 2026 static int 2027 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2028 { 2029 int rc = 0; 2030 2031 ASSERT_SYNCHRONIZED_OP(sc); 2032 2033 /* Capabilities */ 2034 #define COMPARE_CAPS(c) do { \ 2035 if (o->c##caps != sc->c##caps) { \ 2036 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2037 sc->c##caps); \ 2038 rc = EINVAL; \ 2039 } \ 2040 } while (0) 2041 COMPARE_CAPS(nbm); 2042 COMPARE_CAPS(link); 2043 COMPARE_CAPS(switch); 2044 COMPARE_CAPS(nic); 2045 COMPARE_CAPS(toe); 2046 COMPARE_CAPS(rdma); 2047 COMPARE_CAPS(crypto); 2048 COMPARE_CAPS(iscsi); 2049 COMPARE_CAPS(fcoe); 2050 #undef COMPARE_CAPS 2051 2052 /* Firmware config file */ 2053 if (o->cfcsum != sc->cfcsum) { 2054 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2055 o->cfcsum, sc->cfg_file, sc->cfcsum); 2056 rc = EINVAL; 2057 } 2058 2059 #define COMPARE_PARAM(p, name) do { \ 2060 if (o->p != sc->p) { \ 2061 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2062 rc = EINVAL; \ 2063 } \ 2064 } while (0) 2065 COMPARE_PARAM(sge.iq_start, iq_start); 2066 COMPARE_PARAM(sge.eq_start, eq_start); 2067 COMPARE_PARAM(tids.ftid_base, ftid_base); 2068 COMPARE_PARAM(tids.ftid_end, ftid_end); 2069 COMPARE_PARAM(tids.nftids, nftids); 2070 COMPARE_PARAM(vres.l2t.start, l2t_start); 2071 COMPARE_PARAM(vres.l2t.size, l2t_size); 2072 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2073 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2074 COMPARE_PARAM(tids.tid_base, tid_base); 2075 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2076 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2077 COMPARE_PARAM(tids.nhpftids, nhpftids); 2078 COMPARE_PARAM(rawf_base, rawf_base); 2079 COMPARE_PARAM(nrawf, nrawf); 2080 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2081 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2082 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2083 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2084 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2085 COMPARE_PARAM(tids.ntids, ntids); 2086 COMPARE_PARAM(tids.etid_base, etid_base); 2087 COMPARE_PARAM(tids.etid_end, etid_end); 2088 COMPARE_PARAM(tids.netids, netids); 2089 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2090 COMPARE_PARAM(params.ethoffload, ethoffload); 2091 COMPARE_PARAM(tids.natids, natids); 2092 COMPARE_PARAM(tids.stid_base, stid_base); 2093 COMPARE_PARAM(vres.ddp.start, ddp_start); 2094 COMPARE_PARAM(vres.ddp.size, ddp_size); 2095 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2096 COMPARE_PARAM(vres.stag.start, stag_start); 2097 COMPARE_PARAM(vres.stag.size, stag_size); 2098 COMPARE_PARAM(vres.rq.start, rq_start); 2099 COMPARE_PARAM(vres.rq.size, rq_size); 2100 COMPARE_PARAM(vres.pbl.start, pbl_start); 2101 COMPARE_PARAM(vres.pbl.size, pbl_size); 2102 COMPARE_PARAM(vres.qp.start, qp_start); 2103 COMPARE_PARAM(vres.qp.size, qp_size); 2104 COMPARE_PARAM(vres.cq.start, cq_start); 2105 COMPARE_PARAM(vres.cq.size, cq_size); 2106 COMPARE_PARAM(vres.ocq.start, ocq_start); 2107 COMPARE_PARAM(vres.ocq.size, ocq_size); 2108 COMPARE_PARAM(vres.srq.start, srq_start); 2109 COMPARE_PARAM(vres.srq.size, srq_size); 2110 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2111 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2112 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2113 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2114 COMPARE_PARAM(vres.key.start, key_start); 2115 COMPARE_PARAM(vres.key.size, key_size); 2116 #undef COMPARE_PARAM 2117 2118 return (rc); 2119 } 2120 2121 static int 2122 t4_resume(device_t dev) 2123 { 2124 struct adapter *sc = device_get_softc(dev); 2125 struct adapter_pre_reset_state *old_state = NULL; 2126 struct port_info *pi; 2127 struct vi_info *vi; 2128 struct ifnet *ifp; 2129 struct sge_txq *txq; 2130 int rc, i, j, k; 2131 2132 CH_ALERT(sc, "resume requested.\n"); 2133 2134 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2135 if (rc != 0) 2136 return (ENXIO); 2137 MPASS(hw_off_limits(sc)); 2138 MPASS((sc->flags & FW_OK) == 0); 2139 MPASS((sc->flags & MASTER_PF) == 0); 2140 MPASS(sc->reset_thread == NULL); 2141 sc->reset_thread = curthread; 2142 2143 /* Register access is expected to work by the time we're here. */ 2144 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2145 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2146 rc = ENXIO; 2147 goto done; 2148 } 2149 2150 /* Restore memory window. */ 2151 setup_memwin(sc); 2152 2153 /* Go no further if recovery mode has been requested. */ 2154 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2155 CH_ALERT(sc, "recovery mode on resume.\n"); 2156 rc = 0; 2157 mtx_lock(&sc->reg_lock); 2158 sc->flags &= ~HW_OFF_LIMITS; 2159 mtx_unlock(&sc->reg_lock); 2160 goto done; 2161 } 2162 2163 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2164 save_caps_and_params(sc, old_state); 2165 2166 /* Reestablish contact with firmware and become the primary PF. */ 2167 rc = contact_firmware(sc); 2168 if (rc != 0) 2169 goto done; /* error message displayed already */ 2170 MPASS(sc->flags & FW_OK); 2171 2172 if (sc->flags & MASTER_PF) { 2173 rc = partition_resources(sc); 2174 if (rc != 0) 2175 goto done; /* error message displayed already */ 2176 t4_intr_clear(sc); 2177 } 2178 2179 rc = get_params__post_init(sc); 2180 if (rc != 0) 2181 goto done; /* error message displayed already */ 2182 2183 rc = set_params__post_init(sc); 2184 if (rc != 0) 2185 goto done; /* error message displayed already */ 2186 2187 rc = compare_caps_and_params(sc, old_state); 2188 if (rc != 0) 2189 goto done; /* error message displayed already */ 2190 2191 for_each_port(sc, i) { 2192 pi = sc->port[i]; 2193 MPASS(pi != NULL); 2194 MPASS(pi->vi != NULL); 2195 MPASS(pi->vi[0].dev == pi->dev); 2196 2197 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2198 if (rc != 0) { 2199 CH_ERR(sc, 2200 "failed to re-initialize port %d: %d\n", i, rc); 2201 goto done; 2202 } 2203 MPASS(sc->chan_map[pi->tx_chan] == i); 2204 2205 PORT_LOCK(pi); 2206 fixup_link_config(pi); 2207 build_medialist(pi); 2208 PORT_UNLOCK(pi); 2209 for_each_vi(pi, j, vi) { 2210 if (IS_MAIN_VI(vi)) 2211 continue; 2212 rc = alloc_extra_vi(sc, pi, vi); 2213 if (rc != 0) { 2214 CH_ERR(vi, 2215 "failed to re-allocate extra VI: %d\n", rc); 2216 goto done; 2217 } 2218 } 2219 } 2220 2221 /* 2222 * Interrupts and queues are about to be enabled and other threads will 2223 * want to access the hardware too. It is safe to do so. Note that 2224 * this thread is still in the middle of a synchronized_op. 2225 */ 2226 mtx_lock(&sc->reg_lock); 2227 sc->flags &= ~HW_OFF_LIMITS; 2228 mtx_unlock(&sc->reg_lock); 2229 2230 if (sc->flags & FULL_INIT_DONE) { 2231 rc = adapter_full_init(sc); 2232 if (rc != 0) { 2233 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2234 goto done; 2235 } 2236 2237 if (sc->vxlan_refcount > 0) 2238 enable_vxlan_rx(sc); 2239 2240 for_each_port(sc, i) { 2241 pi = sc->port[i]; 2242 for_each_vi(pi, j, vi) { 2243 if (!(vi->flags & VI_INIT_DONE)) 2244 continue; 2245 rc = vi_full_init(vi); 2246 if (rc != 0) { 2247 CH_ERR(vi, "failed to re-initialize " 2248 "interface: %d\n", rc); 2249 goto done; 2250 } 2251 2252 ifp = vi->ifp; 2253 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2254 continue; 2255 /* 2256 * Note that we do not setup multicast addresses 2257 * in the first pass. This ensures that the 2258 * unicast DMACs for all VIs on all ports get an 2259 * MPS TCAM entry. 2260 */ 2261 rc = update_mac_settings(ifp, XGMAC_ALL & 2262 ~XGMAC_MCADDRS); 2263 if (rc != 0) { 2264 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2265 goto done; 2266 } 2267 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2268 true); 2269 if (rc != 0) { 2270 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2271 goto done; 2272 } 2273 for_each_txq(vi, k, txq) { 2274 TXQ_LOCK(txq); 2275 txq->eq.flags |= EQ_ENABLED; 2276 TXQ_UNLOCK(txq); 2277 } 2278 mtx_lock(&vi->tick_mtx); 2279 vi->flags &= ~VI_SKIP_STATS; 2280 callout_schedule(&vi->tick, hz); 2281 mtx_unlock(&vi->tick_mtx); 2282 } 2283 PORT_LOCK(pi); 2284 if (pi->up_vis > 0) { 2285 t4_update_port_info(pi); 2286 fixup_link_config(pi); 2287 build_medialist(pi); 2288 apply_link_config(pi); 2289 if (pi->link_cfg.link_ok) 2290 t4_os_link_changed(pi); 2291 } 2292 PORT_UNLOCK(pi); 2293 } 2294 2295 /* Now reprogram the L2 multicast addresses. */ 2296 for_each_port(sc, i) { 2297 pi = sc->port[i]; 2298 for_each_vi(pi, j, vi) { 2299 if (!(vi->flags & VI_INIT_DONE)) 2300 continue; 2301 ifp = vi->ifp; 2302 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2303 continue; 2304 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2305 if (rc != 0) { 2306 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2307 rc = 0; /* carry on */ 2308 } 2309 } 2310 } 2311 } 2312 done: 2313 if (rc == 0) { 2314 sc->incarnation++; 2315 CH_ALERT(sc, "resume completed.\n"); 2316 } 2317 end_synchronized_op(sc, 0); 2318 free(old_state, M_CXGBE); 2319 return (rc); 2320 } 2321 2322 static int 2323 t4_reset_prepare(device_t dev, device_t child) 2324 { 2325 struct adapter *sc = device_get_softc(dev); 2326 2327 CH_ALERT(sc, "reset_prepare.\n"); 2328 return (0); 2329 } 2330 2331 static int 2332 t4_reset_post(device_t dev, device_t child) 2333 { 2334 struct adapter *sc = device_get_softc(dev); 2335 2336 CH_ALERT(sc, "reset_post.\n"); 2337 return (0); 2338 } 2339 2340 static void 2341 reset_adapter(void *arg, int pending) 2342 { 2343 struct adapter *sc = arg; 2344 int rc; 2345 2346 CH_ALERT(sc, "reset requested.\n"); 2347 2348 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2349 if (rc != 0) 2350 return; 2351 2352 if (hw_off_limits(sc)) { 2353 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2354 rc = ENXIO; 2355 goto done; 2356 } 2357 2358 if (!ok_to_reset(sc)) { 2359 /* XXX: should list what resource is preventing reset. */ 2360 CH_ERR(sc, "not safe to reset.\n"); 2361 rc = EBUSY; 2362 goto done; 2363 } 2364 2365 done: 2366 end_synchronized_op(sc, 0); 2367 if (rc != 0) 2368 return; /* Error logged already. */ 2369 2370 mtx_lock(&Giant); 2371 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2372 mtx_unlock(&Giant); 2373 if (rc != 0) 2374 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2375 else 2376 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2377 } 2378 2379 static int 2380 cxgbe_probe(device_t dev) 2381 { 2382 char buf[128]; 2383 struct port_info *pi = device_get_softc(dev); 2384 2385 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2386 device_set_desc_copy(dev, buf); 2387 2388 return (BUS_PROBE_DEFAULT); 2389 } 2390 2391 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2392 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2393 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2394 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2395 #define T4_CAP_ENABLE (T4_CAP) 2396 2397 static int 2398 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2399 { 2400 struct ifnet *ifp; 2401 struct sbuf *sb; 2402 struct sysctl_ctx_list *ctx; 2403 struct sysctl_oid_list *children; 2404 struct pfil_head_args pa; 2405 struct adapter *sc = vi->adapter; 2406 2407 ctx = device_get_sysctl_ctx(vi->dev); 2408 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2409 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2410 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2411 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2412 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2413 #ifdef DEV_NETMAP 2414 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2415 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2416 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2417 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2418 #endif 2419 #ifdef TCP_OFFLOAD 2420 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2421 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2422 #endif 2423 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2424 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2425 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2426 #endif 2427 2428 vi->xact_addr_filt = -1; 2429 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2430 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2431 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2432 vi->flags |= TX_USES_VM_WR; 2433 2434 /* Allocate an ifnet and set it up */ 2435 ifp = if_alloc_dev(IFT_ETHER, dev); 2436 if (ifp == NULL) { 2437 device_printf(dev, "Cannot allocate ifnet\n"); 2438 return (ENOMEM); 2439 } 2440 vi->ifp = ifp; 2441 ifp->if_softc = vi; 2442 2443 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2445 2446 ifp->if_init = cxgbe_init; 2447 ifp->if_ioctl = cxgbe_ioctl; 2448 ifp->if_transmit = cxgbe_transmit; 2449 ifp->if_qflush = cxgbe_qflush; 2450 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2451 ifp->if_get_counter = vi_get_counter; 2452 else 2453 ifp->if_get_counter = cxgbe_get_counter; 2454 #if defined(KERN_TLS) || defined(RATELIMIT) 2455 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2456 ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; 2457 ifp->if_snd_tag_query = cxgbe_snd_tag_query; 2458 ifp->if_snd_tag_free = cxgbe_snd_tag_free; 2459 #endif 2460 #ifdef RATELIMIT 2461 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2462 #endif 2463 2464 ifp->if_capabilities = T4_CAP; 2465 ifp->if_capenable = T4_CAP_ENABLE; 2466 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2467 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2468 if (chip_id(sc) >= CHELSIO_T6) { 2469 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2470 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2471 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2472 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2473 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2474 } 2475 2476 #ifdef TCP_OFFLOAD 2477 if (vi->nofldrxq != 0) 2478 ifp->if_capabilities |= IFCAP_TOE; 2479 #endif 2480 #ifdef RATELIMIT 2481 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2482 ifp->if_capabilities |= IFCAP_TXRTLMT; 2483 ifp->if_capenable |= IFCAP_TXRTLMT; 2484 } 2485 #endif 2486 2487 ifp->if_hw_tsomax = IP_MAXPACKET; 2488 if (vi->flags & TX_USES_VM_WR) 2489 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2490 else 2491 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2492 #ifdef RATELIMIT 2493 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2494 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2495 #endif 2496 ifp->if_hw_tsomaxsegsize = 65536; 2497 #ifdef KERN_TLS 2498 if (is_ktls(sc)) { 2499 ifp->if_capabilities |= IFCAP_TXTLS; 2500 if (sc->flags & KERN_TLS_ON) 2501 ifp->if_capenable |= IFCAP_TXTLS; 2502 } 2503 #endif 2504 2505 ether_ifattach(ifp, vi->hw_addr); 2506 #ifdef DEV_NETMAP 2507 if (vi->nnmrxq != 0) 2508 cxgbe_nm_attach(vi); 2509 #endif 2510 sb = sbuf_new_auto(); 2511 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2512 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2513 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2514 case IFCAP_TOE: 2515 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2516 break; 2517 case IFCAP_TOE | IFCAP_TXRTLMT: 2518 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2519 break; 2520 case IFCAP_TXRTLMT: 2521 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2522 break; 2523 } 2524 #endif 2525 #ifdef TCP_OFFLOAD 2526 if (ifp->if_capabilities & IFCAP_TOE) 2527 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2528 #endif 2529 #ifdef DEV_NETMAP 2530 if (ifp->if_capabilities & IFCAP_NETMAP) 2531 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2532 vi->nnmtxq, vi->nnmrxq); 2533 #endif 2534 sbuf_finish(sb); 2535 device_printf(dev, "%s\n", sbuf_data(sb)); 2536 sbuf_delete(sb); 2537 2538 vi_sysctls(vi); 2539 2540 pa.pa_version = PFIL_VERSION; 2541 pa.pa_flags = PFIL_IN; 2542 pa.pa_type = PFIL_TYPE_ETHERNET; 2543 pa.pa_headname = ifp->if_xname; 2544 vi->pfil = pfil_head_register(&pa); 2545 2546 return (0); 2547 } 2548 2549 static int 2550 cxgbe_attach(device_t dev) 2551 { 2552 struct port_info *pi = device_get_softc(dev); 2553 struct adapter *sc = pi->adapter; 2554 struct vi_info *vi; 2555 int i, rc; 2556 2557 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2558 if (rc) 2559 return (rc); 2560 2561 for_each_vi(pi, i, vi) { 2562 if (i == 0) 2563 continue; 2564 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2565 if (vi->dev == NULL) { 2566 device_printf(dev, "failed to add VI %d\n", i); 2567 continue; 2568 } 2569 device_set_softc(vi->dev, vi); 2570 } 2571 2572 cxgbe_sysctls(pi); 2573 2574 bus_generic_attach(dev); 2575 2576 return (0); 2577 } 2578 2579 static void 2580 cxgbe_vi_detach(struct vi_info *vi) 2581 { 2582 struct ifnet *ifp = vi->ifp; 2583 2584 if (vi->pfil != NULL) { 2585 pfil_head_unregister(vi->pfil); 2586 vi->pfil = NULL; 2587 } 2588 2589 ether_ifdetach(ifp); 2590 2591 /* Let detach proceed even if these fail. */ 2592 #ifdef DEV_NETMAP 2593 if (ifp->if_capabilities & IFCAP_NETMAP) 2594 cxgbe_nm_detach(vi); 2595 #endif 2596 cxgbe_uninit_synchronized(vi); 2597 callout_drain(&vi->tick); 2598 vi_full_uninit(vi); 2599 2600 if_free(vi->ifp); 2601 vi->ifp = NULL; 2602 } 2603 2604 static int 2605 cxgbe_detach(device_t dev) 2606 { 2607 struct port_info *pi = device_get_softc(dev); 2608 struct adapter *sc = pi->adapter; 2609 int rc; 2610 2611 /* Detach the extra VIs first. */ 2612 rc = bus_generic_detach(dev); 2613 if (rc) 2614 return (rc); 2615 device_delete_children(dev); 2616 2617 doom_vi(sc, &pi->vi[0]); 2618 2619 if (pi->flags & HAS_TRACEQ) { 2620 sc->traceq = -1; /* cloner should not create ifnet */ 2621 t4_tracer_port_detach(sc); 2622 } 2623 2624 cxgbe_vi_detach(&pi->vi[0]); 2625 ifmedia_removeall(&pi->media); 2626 2627 end_synchronized_op(sc, 0); 2628 2629 return (0); 2630 } 2631 2632 static void 2633 cxgbe_init(void *arg) 2634 { 2635 struct vi_info *vi = arg; 2636 struct adapter *sc = vi->adapter; 2637 2638 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2639 return; 2640 cxgbe_init_synchronized(vi); 2641 end_synchronized_op(sc, 0); 2642 } 2643 2644 static int 2645 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2646 { 2647 int rc = 0, mtu, flags; 2648 struct vi_info *vi = ifp->if_softc; 2649 struct port_info *pi = vi->pi; 2650 struct adapter *sc = pi->adapter; 2651 struct ifreq *ifr = (struct ifreq *)data; 2652 uint32_t mask; 2653 2654 switch (cmd) { 2655 case SIOCSIFMTU: 2656 mtu = ifr->ifr_mtu; 2657 if (mtu < ETHERMIN || mtu > MAX_MTU) 2658 return (EINVAL); 2659 2660 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2661 if (rc) 2662 return (rc); 2663 ifp->if_mtu = mtu; 2664 if (vi->flags & VI_INIT_DONE) { 2665 t4_update_fl_bufsize(ifp); 2666 if (!hw_off_limits(sc) && 2667 ifp->if_drv_flags & IFF_DRV_RUNNING) 2668 rc = update_mac_settings(ifp, XGMAC_MTU); 2669 } 2670 end_synchronized_op(sc, 0); 2671 break; 2672 2673 case SIOCSIFFLAGS: 2674 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2675 if (rc) 2676 return (rc); 2677 2678 if (hw_off_limits(sc)) { 2679 rc = ENXIO; 2680 goto fail; 2681 } 2682 2683 if (ifp->if_flags & IFF_UP) { 2684 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2685 flags = vi->if_flags; 2686 if ((ifp->if_flags ^ flags) & 2687 (IFF_PROMISC | IFF_ALLMULTI)) { 2688 rc = update_mac_settings(ifp, 2689 XGMAC_PROMISC | XGMAC_ALLMULTI); 2690 } 2691 } else { 2692 rc = cxgbe_init_synchronized(vi); 2693 } 2694 vi->if_flags = ifp->if_flags; 2695 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2696 rc = cxgbe_uninit_synchronized(vi); 2697 } 2698 end_synchronized_op(sc, 0); 2699 break; 2700 2701 case SIOCADDMULTI: 2702 case SIOCDELMULTI: 2703 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2704 if (rc) 2705 return (rc); 2706 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2707 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2708 end_synchronized_op(sc, 0); 2709 break; 2710 2711 case SIOCSIFCAP: 2712 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2713 if (rc) 2714 return (rc); 2715 2716 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2717 if (mask & IFCAP_TXCSUM) { 2718 ifp->if_capenable ^= IFCAP_TXCSUM; 2719 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2720 2721 if (IFCAP_TSO4 & ifp->if_capenable && 2722 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2723 mask &= ~IFCAP_TSO4; 2724 ifp->if_capenable &= ~IFCAP_TSO4; 2725 if_printf(ifp, 2726 "tso4 disabled due to -txcsum.\n"); 2727 } 2728 } 2729 if (mask & IFCAP_TXCSUM_IPV6) { 2730 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2731 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2732 2733 if (IFCAP_TSO6 & ifp->if_capenable && 2734 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2735 mask &= ~IFCAP_TSO6; 2736 ifp->if_capenable &= ~IFCAP_TSO6; 2737 if_printf(ifp, 2738 "tso6 disabled due to -txcsum6.\n"); 2739 } 2740 } 2741 if (mask & IFCAP_RXCSUM) 2742 ifp->if_capenable ^= IFCAP_RXCSUM; 2743 if (mask & IFCAP_RXCSUM_IPV6) 2744 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2745 2746 /* 2747 * Note that we leave CSUM_TSO alone (it is always set). The 2748 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2749 * sending a TSO request our way, so it's sufficient to toggle 2750 * IFCAP_TSOx only. 2751 */ 2752 if (mask & IFCAP_TSO4) { 2753 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2754 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2755 if_printf(ifp, "enable txcsum first.\n"); 2756 rc = EAGAIN; 2757 goto fail; 2758 } 2759 ifp->if_capenable ^= IFCAP_TSO4; 2760 } 2761 if (mask & IFCAP_TSO6) { 2762 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2763 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2764 if_printf(ifp, "enable txcsum6 first.\n"); 2765 rc = EAGAIN; 2766 goto fail; 2767 } 2768 ifp->if_capenable ^= IFCAP_TSO6; 2769 } 2770 if (mask & IFCAP_LRO) { 2771 #if defined(INET) || defined(INET6) 2772 int i; 2773 struct sge_rxq *rxq; 2774 2775 ifp->if_capenable ^= IFCAP_LRO; 2776 for_each_rxq(vi, i, rxq) { 2777 if (ifp->if_capenable & IFCAP_LRO) 2778 rxq->iq.flags |= IQ_LRO_ENABLED; 2779 else 2780 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2781 } 2782 #endif 2783 } 2784 #ifdef TCP_OFFLOAD 2785 if (mask & IFCAP_TOE) { 2786 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2787 2788 rc = toe_capability(vi, enable); 2789 if (rc != 0) 2790 goto fail; 2791 2792 ifp->if_capenable ^= mask; 2793 } 2794 #endif 2795 if (mask & IFCAP_VLAN_HWTAGGING) { 2796 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2797 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2798 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2799 } 2800 if (mask & IFCAP_VLAN_MTU) { 2801 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2802 2803 /* Need to find out how to disable auto-mtu-inflation */ 2804 } 2805 if (mask & IFCAP_VLAN_HWTSO) 2806 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2807 if (mask & IFCAP_VLAN_HWCSUM) 2808 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2809 #ifdef RATELIMIT 2810 if (mask & IFCAP_TXRTLMT) 2811 ifp->if_capenable ^= IFCAP_TXRTLMT; 2812 #endif 2813 if (mask & IFCAP_HWRXTSTMP) { 2814 int i; 2815 struct sge_rxq *rxq; 2816 2817 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2818 for_each_rxq(vi, i, rxq) { 2819 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2820 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2821 else 2822 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2823 } 2824 } 2825 if (mask & IFCAP_MEXTPG) 2826 ifp->if_capenable ^= IFCAP_MEXTPG; 2827 2828 #ifdef KERN_TLS 2829 if (mask & IFCAP_TXTLS) { 2830 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2831 2832 rc = ktls_capability(sc, enable); 2833 if (rc != 0) 2834 goto fail; 2835 2836 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2837 } 2838 #endif 2839 if (mask & IFCAP_VXLAN_HWCSUM) { 2840 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2841 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2842 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2843 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2844 } 2845 if (mask & IFCAP_VXLAN_HWTSO) { 2846 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2847 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2848 CSUM_INNER_IP_TSO; 2849 } 2850 2851 #ifdef VLAN_CAPABILITIES 2852 VLAN_CAPABILITIES(ifp); 2853 #endif 2854 fail: 2855 end_synchronized_op(sc, 0); 2856 break; 2857 2858 case SIOCSIFMEDIA: 2859 case SIOCGIFMEDIA: 2860 case SIOCGIFXMEDIA: 2861 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2862 break; 2863 2864 case SIOCGI2C: { 2865 struct ifi2creq i2c; 2866 2867 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2868 if (rc != 0) 2869 break; 2870 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2871 rc = EPERM; 2872 break; 2873 } 2874 if (i2c.len > sizeof(i2c.data)) { 2875 rc = EINVAL; 2876 break; 2877 } 2878 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2879 if (rc) 2880 return (rc); 2881 if (hw_off_limits(sc)) 2882 rc = ENXIO; 2883 else 2884 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2885 i2c.offset, i2c.len, &i2c.data[0]); 2886 end_synchronized_op(sc, 0); 2887 if (rc == 0) 2888 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2889 break; 2890 } 2891 2892 default: 2893 rc = ether_ioctl(ifp, cmd, data); 2894 } 2895 2896 return (rc); 2897 } 2898 2899 static int 2900 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2901 { 2902 struct vi_info *vi = ifp->if_softc; 2903 struct port_info *pi = vi->pi; 2904 struct adapter *sc; 2905 struct sge_txq *txq; 2906 void *items[1]; 2907 int rc; 2908 2909 M_ASSERTPKTHDR(m); 2910 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2911 #if defined(KERN_TLS) || defined(RATELIMIT) 2912 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2913 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2914 #endif 2915 2916 if (__predict_false(pi->link_cfg.link_ok == false)) { 2917 m_freem(m); 2918 return (ENETDOWN); 2919 } 2920 2921 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2922 if (__predict_false(rc != 0)) { 2923 MPASS(m == NULL); /* was freed already */ 2924 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2925 return (rc); 2926 } 2927 #ifdef RATELIMIT 2928 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2929 if (m->m_pkthdr.snd_tag->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2930 return (ethofld_transmit(ifp, m)); 2931 } 2932 #endif 2933 2934 /* Select a txq. */ 2935 sc = vi->adapter; 2936 txq = &sc->sge.txq[vi->first_txq]; 2937 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2938 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2939 vi->rsrv_noflowq); 2940 2941 items[0] = m; 2942 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2943 if (__predict_false(rc != 0)) 2944 m_freem(m); 2945 2946 return (rc); 2947 } 2948 2949 static void 2950 cxgbe_qflush(struct ifnet *ifp) 2951 { 2952 struct vi_info *vi = ifp->if_softc; 2953 struct sge_txq *txq; 2954 int i; 2955 2956 /* queues do not exist if !VI_INIT_DONE. */ 2957 if (vi->flags & VI_INIT_DONE) { 2958 for_each_txq(vi, i, txq) { 2959 TXQ_LOCK(txq); 2960 txq->eq.flags |= EQ_QFLUSH; 2961 TXQ_UNLOCK(txq); 2962 while (!mp_ring_is_idle(txq->r)) { 2963 mp_ring_check_drainage(txq->r, 4096); 2964 pause("qflush", 1); 2965 } 2966 TXQ_LOCK(txq); 2967 txq->eq.flags &= ~EQ_QFLUSH; 2968 TXQ_UNLOCK(txq); 2969 } 2970 } 2971 if_qflush(ifp); 2972 } 2973 2974 static uint64_t 2975 vi_get_counter(struct ifnet *ifp, ift_counter c) 2976 { 2977 struct vi_info *vi = ifp->if_softc; 2978 struct fw_vi_stats_vf *s = &vi->stats; 2979 2980 mtx_lock(&vi->tick_mtx); 2981 vi_refresh_stats(vi); 2982 mtx_unlock(&vi->tick_mtx); 2983 2984 switch (c) { 2985 case IFCOUNTER_IPACKETS: 2986 return (s->rx_bcast_frames + s->rx_mcast_frames + 2987 s->rx_ucast_frames); 2988 case IFCOUNTER_IERRORS: 2989 return (s->rx_err_frames); 2990 case IFCOUNTER_OPACKETS: 2991 return (s->tx_bcast_frames + s->tx_mcast_frames + 2992 s->tx_ucast_frames + s->tx_offload_frames); 2993 case IFCOUNTER_OERRORS: 2994 return (s->tx_drop_frames); 2995 case IFCOUNTER_IBYTES: 2996 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 2997 s->rx_ucast_bytes); 2998 case IFCOUNTER_OBYTES: 2999 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3000 s->tx_ucast_bytes + s->tx_offload_bytes); 3001 case IFCOUNTER_IMCASTS: 3002 return (s->rx_mcast_frames); 3003 case IFCOUNTER_OMCASTS: 3004 return (s->tx_mcast_frames); 3005 case IFCOUNTER_OQDROPS: { 3006 uint64_t drops; 3007 3008 drops = 0; 3009 if (vi->flags & VI_INIT_DONE) { 3010 int i; 3011 struct sge_txq *txq; 3012 3013 for_each_txq(vi, i, txq) 3014 drops += counter_u64_fetch(txq->r->dropped); 3015 } 3016 3017 return (drops); 3018 3019 } 3020 3021 default: 3022 return (if_get_counter_default(ifp, c)); 3023 } 3024 } 3025 3026 static uint64_t 3027 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3028 { 3029 struct vi_info *vi = ifp->if_softc; 3030 struct port_info *pi = vi->pi; 3031 struct port_stats *s = &pi->stats; 3032 3033 mtx_lock(&vi->tick_mtx); 3034 cxgbe_refresh_stats(vi); 3035 mtx_unlock(&vi->tick_mtx); 3036 3037 switch (c) { 3038 case IFCOUNTER_IPACKETS: 3039 return (s->rx_frames); 3040 3041 case IFCOUNTER_IERRORS: 3042 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3043 s->rx_fcs_err + s->rx_len_err); 3044 3045 case IFCOUNTER_OPACKETS: 3046 return (s->tx_frames); 3047 3048 case IFCOUNTER_OERRORS: 3049 return (s->tx_error_frames); 3050 3051 case IFCOUNTER_IBYTES: 3052 return (s->rx_octets); 3053 3054 case IFCOUNTER_OBYTES: 3055 return (s->tx_octets); 3056 3057 case IFCOUNTER_IMCASTS: 3058 return (s->rx_mcast_frames); 3059 3060 case IFCOUNTER_OMCASTS: 3061 return (s->tx_mcast_frames); 3062 3063 case IFCOUNTER_IQDROPS: 3064 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3065 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3066 s->rx_trunc3 + pi->tnl_cong_drops); 3067 3068 case IFCOUNTER_OQDROPS: { 3069 uint64_t drops; 3070 3071 drops = s->tx_drop; 3072 if (vi->flags & VI_INIT_DONE) { 3073 int i; 3074 struct sge_txq *txq; 3075 3076 for_each_txq(vi, i, txq) 3077 drops += counter_u64_fetch(txq->r->dropped); 3078 } 3079 3080 return (drops); 3081 3082 } 3083 3084 default: 3085 return (if_get_counter_default(ifp, c)); 3086 } 3087 } 3088 3089 #if defined(KERN_TLS) || defined(RATELIMIT) 3090 static int 3091 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3092 struct m_snd_tag **pt) 3093 { 3094 int error; 3095 3096 switch (params->hdr.type) { 3097 #ifdef RATELIMIT 3098 case IF_SND_TAG_TYPE_RATE_LIMIT: 3099 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3100 break; 3101 #endif 3102 #ifdef KERN_TLS 3103 case IF_SND_TAG_TYPE_TLS: 3104 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3105 break; 3106 #endif 3107 default: 3108 error = EOPNOTSUPP; 3109 } 3110 return (error); 3111 } 3112 3113 static int 3114 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 3115 union if_snd_tag_modify_params *params) 3116 { 3117 3118 switch (mst->type) { 3119 #ifdef RATELIMIT 3120 case IF_SND_TAG_TYPE_RATE_LIMIT: 3121 return (cxgbe_rate_tag_modify(mst, params)); 3122 #endif 3123 default: 3124 return (EOPNOTSUPP); 3125 } 3126 } 3127 3128 static int 3129 cxgbe_snd_tag_query(struct m_snd_tag *mst, 3130 union if_snd_tag_query_params *params) 3131 { 3132 3133 switch (mst->type) { 3134 #ifdef RATELIMIT 3135 case IF_SND_TAG_TYPE_RATE_LIMIT: 3136 return (cxgbe_rate_tag_query(mst, params)); 3137 #endif 3138 default: 3139 return (EOPNOTSUPP); 3140 } 3141 } 3142 3143 static void 3144 cxgbe_snd_tag_free(struct m_snd_tag *mst) 3145 { 3146 3147 switch (mst->type) { 3148 #ifdef RATELIMIT 3149 case IF_SND_TAG_TYPE_RATE_LIMIT: 3150 cxgbe_rate_tag_free(mst); 3151 return; 3152 #endif 3153 #ifdef KERN_TLS 3154 case IF_SND_TAG_TYPE_TLS: 3155 cxgbe_tls_tag_free(mst); 3156 return; 3157 #endif 3158 default: 3159 panic("shouldn't get here"); 3160 } 3161 } 3162 #endif 3163 3164 /* 3165 * The kernel picks a media from the list we had provided but we still validate 3166 * the requeste. 3167 */ 3168 int 3169 cxgbe_media_change(struct ifnet *ifp) 3170 { 3171 struct vi_info *vi = ifp->if_softc; 3172 struct port_info *pi = vi->pi; 3173 struct ifmedia *ifm = &pi->media; 3174 struct link_config *lc = &pi->link_cfg; 3175 struct adapter *sc = pi->adapter; 3176 int rc; 3177 3178 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3179 if (rc != 0) 3180 return (rc); 3181 PORT_LOCK(pi); 3182 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3183 /* ifconfig .. media autoselect */ 3184 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3185 rc = ENOTSUP; /* AN not supported by transceiver */ 3186 goto done; 3187 } 3188 lc->requested_aneg = AUTONEG_ENABLE; 3189 lc->requested_speed = 0; 3190 lc->requested_fc |= PAUSE_AUTONEG; 3191 } else { 3192 lc->requested_aneg = AUTONEG_DISABLE; 3193 lc->requested_speed = 3194 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3195 lc->requested_fc = 0; 3196 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3197 lc->requested_fc |= PAUSE_RX; 3198 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3199 lc->requested_fc |= PAUSE_TX; 3200 } 3201 if (pi->up_vis > 0) { 3202 fixup_link_config(pi); 3203 rc = apply_link_config(pi); 3204 } 3205 done: 3206 PORT_UNLOCK(pi); 3207 end_synchronized_op(sc, 0); 3208 return (rc); 3209 } 3210 3211 /* 3212 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3213 * given speed. 3214 */ 3215 static int 3216 port_mword(struct port_info *pi, uint32_t speed) 3217 { 3218 3219 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3220 MPASS(powerof2(speed)); 3221 3222 switch(pi->port_type) { 3223 case FW_PORT_TYPE_BT_SGMII: 3224 case FW_PORT_TYPE_BT_XFI: 3225 case FW_PORT_TYPE_BT_XAUI: 3226 /* BaseT */ 3227 switch (speed) { 3228 case FW_PORT_CAP32_SPEED_100M: 3229 return (IFM_100_T); 3230 case FW_PORT_CAP32_SPEED_1G: 3231 return (IFM_1000_T); 3232 case FW_PORT_CAP32_SPEED_10G: 3233 return (IFM_10G_T); 3234 } 3235 break; 3236 case FW_PORT_TYPE_KX4: 3237 if (speed == FW_PORT_CAP32_SPEED_10G) 3238 return (IFM_10G_KX4); 3239 break; 3240 case FW_PORT_TYPE_CX4: 3241 if (speed == FW_PORT_CAP32_SPEED_10G) 3242 return (IFM_10G_CX4); 3243 break; 3244 case FW_PORT_TYPE_KX: 3245 if (speed == FW_PORT_CAP32_SPEED_1G) 3246 return (IFM_1000_KX); 3247 break; 3248 case FW_PORT_TYPE_KR: 3249 case FW_PORT_TYPE_BP_AP: 3250 case FW_PORT_TYPE_BP4_AP: 3251 case FW_PORT_TYPE_BP40_BA: 3252 case FW_PORT_TYPE_KR4_100G: 3253 case FW_PORT_TYPE_KR_SFP28: 3254 case FW_PORT_TYPE_KR_XLAUI: 3255 switch (speed) { 3256 case FW_PORT_CAP32_SPEED_1G: 3257 return (IFM_1000_KX); 3258 case FW_PORT_CAP32_SPEED_10G: 3259 return (IFM_10G_KR); 3260 case FW_PORT_CAP32_SPEED_25G: 3261 return (IFM_25G_KR); 3262 case FW_PORT_CAP32_SPEED_40G: 3263 return (IFM_40G_KR4); 3264 case FW_PORT_CAP32_SPEED_50G: 3265 return (IFM_50G_KR2); 3266 case FW_PORT_CAP32_SPEED_100G: 3267 return (IFM_100G_KR4); 3268 } 3269 break; 3270 case FW_PORT_TYPE_FIBER_XFI: 3271 case FW_PORT_TYPE_FIBER_XAUI: 3272 case FW_PORT_TYPE_SFP: 3273 case FW_PORT_TYPE_QSFP_10G: 3274 case FW_PORT_TYPE_QSA: 3275 case FW_PORT_TYPE_QSFP: 3276 case FW_PORT_TYPE_CR4_QSFP: 3277 case FW_PORT_TYPE_CR_QSFP: 3278 case FW_PORT_TYPE_CR2_QSFP: 3279 case FW_PORT_TYPE_SFP28: 3280 /* Pluggable transceiver */ 3281 switch (pi->mod_type) { 3282 case FW_PORT_MOD_TYPE_LR: 3283 switch (speed) { 3284 case FW_PORT_CAP32_SPEED_1G: 3285 return (IFM_1000_LX); 3286 case FW_PORT_CAP32_SPEED_10G: 3287 return (IFM_10G_LR); 3288 case FW_PORT_CAP32_SPEED_25G: 3289 return (IFM_25G_LR); 3290 case FW_PORT_CAP32_SPEED_40G: 3291 return (IFM_40G_LR4); 3292 case FW_PORT_CAP32_SPEED_50G: 3293 return (IFM_50G_LR2); 3294 case FW_PORT_CAP32_SPEED_100G: 3295 return (IFM_100G_LR4); 3296 } 3297 break; 3298 case FW_PORT_MOD_TYPE_SR: 3299 switch (speed) { 3300 case FW_PORT_CAP32_SPEED_1G: 3301 return (IFM_1000_SX); 3302 case FW_PORT_CAP32_SPEED_10G: 3303 return (IFM_10G_SR); 3304 case FW_PORT_CAP32_SPEED_25G: 3305 return (IFM_25G_SR); 3306 case FW_PORT_CAP32_SPEED_40G: 3307 return (IFM_40G_SR4); 3308 case FW_PORT_CAP32_SPEED_50G: 3309 return (IFM_50G_SR2); 3310 case FW_PORT_CAP32_SPEED_100G: 3311 return (IFM_100G_SR4); 3312 } 3313 break; 3314 case FW_PORT_MOD_TYPE_ER: 3315 if (speed == FW_PORT_CAP32_SPEED_10G) 3316 return (IFM_10G_ER); 3317 break; 3318 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3319 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3320 switch (speed) { 3321 case FW_PORT_CAP32_SPEED_1G: 3322 return (IFM_1000_CX); 3323 case FW_PORT_CAP32_SPEED_10G: 3324 return (IFM_10G_TWINAX); 3325 case FW_PORT_CAP32_SPEED_25G: 3326 return (IFM_25G_CR); 3327 case FW_PORT_CAP32_SPEED_40G: 3328 return (IFM_40G_CR4); 3329 case FW_PORT_CAP32_SPEED_50G: 3330 return (IFM_50G_CR2); 3331 case FW_PORT_CAP32_SPEED_100G: 3332 return (IFM_100G_CR4); 3333 } 3334 break; 3335 case FW_PORT_MOD_TYPE_LRM: 3336 if (speed == FW_PORT_CAP32_SPEED_10G) 3337 return (IFM_10G_LRM); 3338 break; 3339 case FW_PORT_MOD_TYPE_NA: 3340 MPASS(0); /* Not pluggable? */ 3341 /* fall throough */ 3342 case FW_PORT_MOD_TYPE_ERROR: 3343 case FW_PORT_MOD_TYPE_UNKNOWN: 3344 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3345 break; 3346 case FW_PORT_MOD_TYPE_NONE: 3347 return (IFM_NONE); 3348 } 3349 break; 3350 case FW_PORT_TYPE_NONE: 3351 return (IFM_NONE); 3352 } 3353 3354 return (IFM_UNKNOWN); 3355 } 3356 3357 void 3358 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3359 { 3360 struct vi_info *vi = ifp->if_softc; 3361 struct port_info *pi = vi->pi; 3362 struct adapter *sc = pi->adapter; 3363 struct link_config *lc = &pi->link_cfg; 3364 3365 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3366 return; 3367 PORT_LOCK(pi); 3368 3369 if (pi->up_vis == 0) { 3370 /* 3371 * If all the interfaces are administratively down the firmware 3372 * does not report transceiver changes. Refresh port info here 3373 * so that ifconfig displays accurate ifmedia at all times. 3374 * This is the only reason we have a synchronized op in this 3375 * function. Just PORT_LOCK would have been enough otherwise. 3376 */ 3377 t4_update_port_info(pi); 3378 build_medialist(pi); 3379 } 3380 3381 /* ifm_status */ 3382 ifmr->ifm_status = IFM_AVALID; 3383 if (lc->link_ok == false) 3384 goto done; 3385 ifmr->ifm_status |= IFM_ACTIVE; 3386 3387 /* ifm_active */ 3388 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3389 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3390 if (lc->fc & PAUSE_RX) 3391 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3392 if (lc->fc & PAUSE_TX) 3393 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3394 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3395 done: 3396 PORT_UNLOCK(pi); 3397 end_synchronized_op(sc, 0); 3398 } 3399 3400 static int 3401 vcxgbe_probe(device_t dev) 3402 { 3403 char buf[128]; 3404 struct vi_info *vi = device_get_softc(dev); 3405 3406 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3407 vi - vi->pi->vi); 3408 device_set_desc_copy(dev, buf); 3409 3410 return (BUS_PROBE_DEFAULT); 3411 } 3412 3413 static int 3414 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3415 { 3416 int func, index, rc; 3417 uint32_t param, val; 3418 3419 ASSERT_SYNCHRONIZED_OP(sc); 3420 3421 index = vi - pi->vi; 3422 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3423 KASSERT(index < nitems(vi_mac_funcs), 3424 ("%s: VI %s doesn't have a MAC func", __func__, 3425 device_get_nameunit(vi->dev))); 3426 func = vi_mac_funcs[index]; 3427 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3428 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3429 if (rc < 0) { 3430 CH_ERR(vi, "failed to allocate virtual interface %d" 3431 "for port %d: %d\n", index, pi->port_id, -rc); 3432 return (-rc); 3433 } 3434 vi->viid = rc; 3435 3436 if (vi->rss_size == 1) { 3437 /* 3438 * This VI didn't get a slice of the RSS table. Reduce the 3439 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3440 * configuration file (nvi, rssnvi for this PF) if this is a 3441 * problem. 3442 */ 3443 device_printf(vi->dev, "RSS table not available.\n"); 3444 vi->rss_base = 0xffff; 3445 3446 return (0); 3447 } 3448 3449 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3450 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3451 V_FW_PARAMS_PARAM_YZ(vi->viid); 3452 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3453 if (rc) 3454 vi->rss_base = 0xffff; 3455 else { 3456 MPASS((val >> 16) == vi->rss_size); 3457 vi->rss_base = val & 0xffff; 3458 } 3459 3460 return (0); 3461 } 3462 3463 static int 3464 vcxgbe_attach(device_t dev) 3465 { 3466 struct vi_info *vi; 3467 struct port_info *pi; 3468 struct adapter *sc; 3469 int rc; 3470 3471 vi = device_get_softc(dev); 3472 pi = vi->pi; 3473 sc = pi->adapter; 3474 3475 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3476 if (rc) 3477 return (rc); 3478 rc = alloc_extra_vi(sc, pi, vi); 3479 end_synchronized_op(sc, 0); 3480 if (rc) 3481 return (rc); 3482 3483 rc = cxgbe_vi_attach(dev, vi); 3484 if (rc) { 3485 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3486 return (rc); 3487 } 3488 return (0); 3489 } 3490 3491 static int 3492 vcxgbe_detach(device_t dev) 3493 { 3494 struct vi_info *vi; 3495 struct adapter *sc; 3496 3497 vi = device_get_softc(dev); 3498 sc = vi->adapter; 3499 3500 doom_vi(sc, vi); 3501 3502 cxgbe_vi_detach(vi); 3503 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3504 3505 end_synchronized_op(sc, 0); 3506 3507 return (0); 3508 } 3509 3510 static struct callout fatal_callout; 3511 static struct taskqueue *reset_tq; 3512 3513 static void 3514 delayed_panic(void *arg) 3515 { 3516 struct adapter *sc = arg; 3517 3518 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3519 } 3520 3521 void 3522 t4_fatal_err(struct adapter *sc, bool fw_error) 3523 { 3524 3525 t4_shutdown_adapter(sc); 3526 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 3527 device_get_nameunit(sc->dev)); 3528 if (fw_error) { 3529 if (sc->flags & CHK_MBOX_ACCESS) 3530 ASSERT_SYNCHRONIZED_OP(sc); 3531 sc->flags |= ADAP_ERR; 3532 } else { 3533 ADAPTER_LOCK(sc); 3534 sc->flags |= ADAP_ERR; 3535 ADAPTER_UNLOCK(sc); 3536 } 3537 #ifdef TCP_OFFLOAD 3538 taskqueue_enqueue(taskqueue_thread, &sc->async_event_task); 3539 #endif 3540 3541 if (t4_panic_on_fatal_err) { 3542 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3543 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3544 } else if (t4_reset_on_fatal_err) { 3545 CH_ALERT(sc, "resetting on fatal error.\n"); 3546 taskqueue_enqueue(reset_tq, &sc->reset_task); 3547 } 3548 } 3549 3550 void 3551 t4_add_adapter(struct adapter *sc) 3552 { 3553 sx_xlock(&t4_list_lock); 3554 SLIST_INSERT_HEAD(&t4_list, sc, link); 3555 sx_xunlock(&t4_list_lock); 3556 } 3557 3558 int 3559 t4_map_bars_0_and_4(struct adapter *sc) 3560 { 3561 sc->regs_rid = PCIR_BAR(0); 3562 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3563 &sc->regs_rid, RF_ACTIVE); 3564 if (sc->regs_res == NULL) { 3565 device_printf(sc->dev, "cannot map registers.\n"); 3566 return (ENXIO); 3567 } 3568 sc->bt = rman_get_bustag(sc->regs_res); 3569 sc->bh = rman_get_bushandle(sc->regs_res); 3570 sc->mmio_len = rman_get_size(sc->regs_res); 3571 setbit(&sc->doorbells, DOORBELL_KDB); 3572 3573 sc->msix_rid = PCIR_BAR(4); 3574 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3575 &sc->msix_rid, RF_ACTIVE); 3576 if (sc->msix_res == NULL) { 3577 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3578 return (ENXIO); 3579 } 3580 3581 return (0); 3582 } 3583 3584 int 3585 t4_map_bar_2(struct adapter *sc) 3586 { 3587 3588 /* 3589 * T4: only iWARP driver uses the userspace doorbells. There is no need 3590 * to map it if RDMA is disabled. 3591 */ 3592 if (is_t4(sc) && sc->rdmacaps == 0) 3593 return (0); 3594 3595 sc->udbs_rid = PCIR_BAR(2); 3596 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3597 &sc->udbs_rid, RF_ACTIVE); 3598 if (sc->udbs_res == NULL) { 3599 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3600 return (ENXIO); 3601 } 3602 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3603 3604 if (chip_id(sc) >= CHELSIO_T5) { 3605 setbit(&sc->doorbells, DOORBELL_UDB); 3606 #if defined(__i386__) || defined(__amd64__) 3607 if (t5_write_combine) { 3608 int rc, mode; 3609 3610 /* 3611 * Enable write combining on BAR2. This is the 3612 * userspace doorbell BAR and is split into 128B 3613 * (UDBS_SEG_SIZE) doorbell regions, each associated 3614 * with an egress queue. The first 64B has the doorbell 3615 * and the second 64B can be used to submit a tx work 3616 * request with an implicit doorbell. 3617 */ 3618 3619 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3620 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3621 if (rc == 0) { 3622 clrbit(&sc->doorbells, DOORBELL_UDB); 3623 setbit(&sc->doorbells, DOORBELL_WCWR); 3624 setbit(&sc->doorbells, DOORBELL_UDBWC); 3625 } else { 3626 device_printf(sc->dev, 3627 "couldn't enable write combining: %d\n", 3628 rc); 3629 } 3630 3631 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3632 t4_write_reg(sc, A_SGE_STAT_CFG, 3633 V_STATSOURCE_T5(7) | mode); 3634 } 3635 #endif 3636 } 3637 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3638 3639 return (0); 3640 } 3641 3642 struct memwin_init { 3643 uint32_t base; 3644 uint32_t aperture; 3645 }; 3646 3647 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3648 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3649 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3650 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3651 }; 3652 3653 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3654 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3655 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3656 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3657 }; 3658 3659 static void 3660 setup_memwin(struct adapter *sc) 3661 { 3662 const struct memwin_init *mw_init; 3663 struct memwin *mw; 3664 int i; 3665 uint32_t bar0; 3666 3667 if (is_t4(sc)) { 3668 /* 3669 * Read low 32b of bar0 indirectly via the hardware backdoor 3670 * mechanism. Works from within PCI passthrough environments 3671 * too, where rman_get_start() can return a different value. We 3672 * need to program the T4 memory window decoders with the actual 3673 * addresses that will be coming across the PCIe link. 3674 */ 3675 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3676 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3677 3678 mw_init = &t4_memwin[0]; 3679 } else { 3680 /* T5+ use the relative offset inside the PCIe BAR */ 3681 bar0 = 0; 3682 3683 mw_init = &t5_memwin[0]; 3684 } 3685 3686 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3687 if (!rw_initialized(&mw->mw_lock)) { 3688 rw_init(&mw->mw_lock, "memory window access"); 3689 mw->mw_base = mw_init->base; 3690 mw->mw_aperture = mw_init->aperture; 3691 mw->mw_curpos = 0; 3692 } 3693 t4_write_reg(sc, 3694 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3695 (mw->mw_base + bar0) | V_BIR(0) | 3696 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3697 rw_wlock(&mw->mw_lock); 3698 position_memwin(sc, i, mw->mw_curpos); 3699 rw_wunlock(&mw->mw_lock); 3700 } 3701 3702 /* flush */ 3703 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3704 } 3705 3706 /* 3707 * Positions the memory window at the given address in the card's address space. 3708 * There are some alignment requirements and the actual position may be at an 3709 * address prior to the requested address. mw->mw_curpos always has the actual 3710 * position of the window. 3711 */ 3712 static void 3713 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3714 { 3715 struct memwin *mw; 3716 uint32_t pf; 3717 uint32_t reg; 3718 3719 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3720 mw = &sc->memwin[idx]; 3721 rw_assert(&mw->mw_lock, RA_WLOCKED); 3722 3723 if (is_t4(sc)) { 3724 pf = 0; 3725 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3726 } else { 3727 pf = V_PFNUM(sc->pf); 3728 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3729 } 3730 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3731 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3732 t4_read_reg(sc, reg); /* flush */ 3733 } 3734 3735 int 3736 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3737 int len, int rw) 3738 { 3739 struct memwin *mw; 3740 uint32_t mw_end, v; 3741 3742 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3743 3744 /* Memory can only be accessed in naturally aligned 4 byte units */ 3745 if (addr & 3 || len & 3 || len <= 0) 3746 return (EINVAL); 3747 3748 mw = &sc->memwin[idx]; 3749 while (len > 0) { 3750 rw_rlock(&mw->mw_lock); 3751 mw_end = mw->mw_curpos + mw->mw_aperture; 3752 if (addr >= mw_end || addr < mw->mw_curpos) { 3753 /* Will need to reposition the window */ 3754 if (!rw_try_upgrade(&mw->mw_lock)) { 3755 rw_runlock(&mw->mw_lock); 3756 rw_wlock(&mw->mw_lock); 3757 } 3758 rw_assert(&mw->mw_lock, RA_WLOCKED); 3759 position_memwin(sc, idx, addr); 3760 rw_downgrade(&mw->mw_lock); 3761 mw_end = mw->mw_curpos + mw->mw_aperture; 3762 } 3763 rw_assert(&mw->mw_lock, RA_RLOCKED); 3764 while (addr < mw_end && len > 0) { 3765 if (rw == 0) { 3766 v = t4_read_reg(sc, mw->mw_base + addr - 3767 mw->mw_curpos); 3768 *val++ = le32toh(v); 3769 } else { 3770 v = *val++; 3771 t4_write_reg(sc, mw->mw_base + addr - 3772 mw->mw_curpos, htole32(v)); 3773 } 3774 addr += 4; 3775 len -= 4; 3776 } 3777 rw_runlock(&mw->mw_lock); 3778 } 3779 3780 return (0); 3781 } 3782 3783 static void 3784 t4_init_atid_table(struct adapter *sc) 3785 { 3786 struct tid_info *t; 3787 int i; 3788 3789 t = &sc->tids; 3790 if (t->natids == 0) 3791 return; 3792 3793 MPASS(t->atid_tab == NULL); 3794 3795 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3796 M_ZERO | M_WAITOK); 3797 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3798 t->afree = t->atid_tab; 3799 t->atids_in_use = 0; 3800 for (i = 1; i < t->natids; i++) 3801 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3802 t->atid_tab[t->natids - 1].next = NULL; 3803 } 3804 3805 static void 3806 t4_free_atid_table(struct adapter *sc) 3807 { 3808 struct tid_info *t; 3809 3810 t = &sc->tids; 3811 3812 KASSERT(t->atids_in_use == 0, 3813 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3814 3815 if (mtx_initialized(&t->atid_lock)) 3816 mtx_destroy(&t->atid_lock); 3817 free(t->atid_tab, M_CXGBE); 3818 t->atid_tab = NULL; 3819 } 3820 3821 int 3822 alloc_atid(struct adapter *sc, void *ctx) 3823 { 3824 struct tid_info *t = &sc->tids; 3825 int atid = -1; 3826 3827 mtx_lock(&t->atid_lock); 3828 if (t->afree) { 3829 union aopen_entry *p = t->afree; 3830 3831 atid = p - t->atid_tab; 3832 MPASS(atid <= M_TID_TID); 3833 t->afree = p->next; 3834 p->data = ctx; 3835 t->atids_in_use++; 3836 } 3837 mtx_unlock(&t->atid_lock); 3838 return (atid); 3839 } 3840 3841 void * 3842 lookup_atid(struct adapter *sc, int atid) 3843 { 3844 struct tid_info *t = &sc->tids; 3845 3846 return (t->atid_tab[atid].data); 3847 } 3848 3849 void 3850 free_atid(struct adapter *sc, int atid) 3851 { 3852 struct tid_info *t = &sc->tids; 3853 union aopen_entry *p = &t->atid_tab[atid]; 3854 3855 mtx_lock(&t->atid_lock); 3856 p->next = t->afree; 3857 t->afree = p; 3858 t->atids_in_use--; 3859 mtx_unlock(&t->atid_lock); 3860 } 3861 3862 static void 3863 queue_tid_release(struct adapter *sc, int tid) 3864 { 3865 3866 CXGBE_UNIMPLEMENTED("deferred tid release"); 3867 } 3868 3869 void 3870 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3871 { 3872 struct wrqe *wr; 3873 struct cpl_tid_release *req; 3874 3875 wr = alloc_wrqe(sizeof(*req), ctrlq); 3876 if (wr == NULL) { 3877 queue_tid_release(sc, tid); /* defer */ 3878 return; 3879 } 3880 req = wrtod(wr); 3881 3882 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3883 3884 t4_wrq_tx(sc, wr); 3885 } 3886 3887 static int 3888 t4_range_cmp(const void *a, const void *b) 3889 { 3890 return ((const struct t4_range *)a)->start - 3891 ((const struct t4_range *)b)->start; 3892 } 3893 3894 /* 3895 * Verify that the memory range specified by the addr/len pair is valid within 3896 * the card's address space. 3897 */ 3898 static int 3899 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3900 { 3901 struct t4_range mem_ranges[4], *r, *next; 3902 uint32_t em, addr_len; 3903 int i, n, remaining; 3904 3905 /* Memory can only be accessed in naturally aligned 4 byte units */ 3906 if (addr & 3 || len & 3 || len == 0) 3907 return (EINVAL); 3908 3909 /* Enabled memories */ 3910 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3911 3912 r = &mem_ranges[0]; 3913 n = 0; 3914 bzero(r, sizeof(mem_ranges)); 3915 if (em & F_EDRAM0_ENABLE) { 3916 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3917 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3918 if (r->size > 0) { 3919 r->start = G_EDRAM0_BASE(addr_len) << 20; 3920 if (addr >= r->start && 3921 addr + len <= r->start + r->size) 3922 return (0); 3923 r++; 3924 n++; 3925 } 3926 } 3927 if (em & F_EDRAM1_ENABLE) { 3928 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3929 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3930 if (r->size > 0) { 3931 r->start = G_EDRAM1_BASE(addr_len) << 20; 3932 if (addr >= r->start && 3933 addr + len <= r->start + r->size) 3934 return (0); 3935 r++; 3936 n++; 3937 } 3938 } 3939 if (em & F_EXT_MEM_ENABLE) { 3940 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3941 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3942 if (r->size > 0) { 3943 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3944 if (addr >= r->start && 3945 addr + len <= r->start + r->size) 3946 return (0); 3947 r++; 3948 n++; 3949 } 3950 } 3951 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3952 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3953 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3954 if (r->size > 0) { 3955 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3956 if (addr >= r->start && 3957 addr + len <= r->start + r->size) 3958 return (0); 3959 r++; 3960 n++; 3961 } 3962 } 3963 MPASS(n <= nitems(mem_ranges)); 3964 3965 if (n > 1) { 3966 /* Sort and merge the ranges. */ 3967 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3968 3969 /* Start from index 0 and examine the next n - 1 entries. */ 3970 r = &mem_ranges[0]; 3971 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3972 3973 MPASS(r->size > 0); /* r is a valid entry. */ 3974 next = r + 1; 3975 MPASS(next->size > 0); /* and so is the next one. */ 3976 3977 while (r->start + r->size >= next->start) { 3978 /* Merge the next one into the current entry. */ 3979 r->size = max(r->start + r->size, 3980 next->start + next->size) - r->start; 3981 n--; /* One fewer entry in total. */ 3982 if (--remaining == 0) 3983 goto done; /* short circuit */ 3984 next++; 3985 } 3986 if (next != r + 1) { 3987 /* 3988 * Some entries were merged into r and next 3989 * points to the first valid entry that couldn't 3990 * be merged. 3991 */ 3992 MPASS(next->size > 0); /* must be valid */ 3993 memcpy(r + 1, next, remaining * sizeof(*r)); 3994 #ifdef INVARIANTS 3995 /* 3996 * This so that the foo->size assertion in the 3997 * next iteration of the loop do the right 3998 * thing for entries that were pulled up and are 3999 * no longer valid. 4000 */ 4001 MPASS(n < nitems(mem_ranges)); 4002 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4003 sizeof(struct t4_range)); 4004 #endif 4005 } 4006 } 4007 done: 4008 /* Done merging the ranges. */ 4009 MPASS(n > 0); 4010 r = &mem_ranges[0]; 4011 for (i = 0; i < n; i++, r++) { 4012 if (addr >= r->start && 4013 addr + len <= r->start + r->size) 4014 return (0); 4015 } 4016 } 4017 4018 return (EFAULT); 4019 } 4020 4021 static int 4022 fwmtype_to_hwmtype(int mtype) 4023 { 4024 4025 switch (mtype) { 4026 case FW_MEMTYPE_EDC0: 4027 return (MEM_EDC0); 4028 case FW_MEMTYPE_EDC1: 4029 return (MEM_EDC1); 4030 case FW_MEMTYPE_EXTMEM: 4031 return (MEM_MC0); 4032 case FW_MEMTYPE_EXTMEM1: 4033 return (MEM_MC1); 4034 default: 4035 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4036 } 4037 } 4038 4039 /* 4040 * Verify that the memory range specified by the memtype/offset/len pair is 4041 * valid and lies entirely within the memtype specified. The global address of 4042 * the start of the range is returned in addr. 4043 */ 4044 static int 4045 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4046 uint32_t *addr) 4047 { 4048 uint32_t em, addr_len, maddr; 4049 4050 /* Memory can only be accessed in naturally aligned 4 byte units */ 4051 if (off & 3 || len & 3 || len == 0) 4052 return (EINVAL); 4053 4054 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4055 switch (fwmtype_to_hwmtype(mtype)) { 4056 case MEM_EDC0: 4057 if (!(em & F_EDRAM0_ENABLE)) 4058 return (EINVAL); 4059 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4060 maddr = G_EDRAM0_BASE(addr_len) << 20; 4061 break; 4062 case MEM_EDC1: 4063 if (!(em & F_EDRAM1_ENABLE)) 4064 return (EINVAL); 4065 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4066 maddr = G_EDRAM1_BASE(addr_len) << 20; 4067 break; 4068 case MEM_MC: 4069 if (!(em & F_EXT_MEM_ENABLE)) 4070 return (EINVAL); 4071 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4072 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4073 break; 4074 case MEM_MC1: 4075 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4076 return (EINVAL); 4077 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4078 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4079 break; 4080 default: 4081 return (EINVAL); 4082 } 4083 4084 *addr = maddr + off; /* global address */ 4085 return (validate_mem_range(sc, *addr, len)); 4086 } 4087 4088 static int 4089 fixup_devlog_params(struct adapter *sc) 4090 { 4091 struct devlog_params *dparams = &sc->params.devlog; 4092 int rc; 4093 4094 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4095 dparams->size, &dparams->addr); 4096 4097 return (rc); 4098 } 4099 4100 static void 4101 update_nirq(struct intrs_and_queues *iaq, int nports) 4102 { 4103 4104 iaq->nirq = T4_EXTRA_INTR; 4105 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4106 iaq->nirq += nports * iaq->nofldrxq; 4107 iaq->nirq += nports * (iaq->num_vis - 1) * 4108 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4109 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4110 } 4111 4112 /* 4113 * Adjust requirements to fit the number of interrupts available. 4114 */ 4115 static void 4116 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4117 int navail) 4118 { 4119 int old_nirq; 4120 const int nports = sc->params.nports; 4121 4122 MPASS(nports > 0); 4123 MPASS(navail > 0); 4124 4125 bzero(iaq, sizeof(*iaq)); 4126 iaq->intr_type = itype; 4127 iaq->num_vis = t4_num_vis; 4128 iaq->ntxq = t4_ntxq; 4129 iaq->ntxq_vi = t4_ntxq_vi; 4130 iaq->nrxq = t4_nrxq; 4131 iaq->nrxq_vi = t4_nrxq_vi; 4132 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4133 if (is_offload(sc) || is_ethoffload(sc)) { 4134 iaq->nofldtxq = t4_nofldtxq; 4135 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4136 } 4137 #endif 4138 #ifdef TCP_OFFLOAD 4139 if (is_offload(sc)) { 4140 iaq->nofldrxq = t4_nofldrxq; 4141 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4142 } 4143 #endif 4144 #ifdef DEV_NETMAP 4145 if (t4_native_netmap & NN_MAIN_VI) { 4146 iaq->nnmtxq = t4_nnmtxq; 4147 iaq->nnmrxq = t4_nnmrxq; 4148 } 4149 if (t4_native_netmap & NN_EXTRA_VI) { 4150 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4151 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4152 } 4153 #endif 4154 4155 update_nirq(iaq, nports); 4156 if (iaq->nirq <= navail && 4157 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4158 /* 4159 * This is the normal case -- there are enough interrupts for 4160 * everything. 4161 */ 4162 goto done; 4163 } 4164 4165 /* 4166 * If extra VIs have been configured try reducing their count and see if 4167 * that works. 4168 */ 4169 while (iaq->num_vis > 1) { 4170 iaq->num_vis--; 4171 update_nirq(iaq, nports); 4172 if (iaq->nirq <= navail && 4173 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4174 device_printf(sc->dev, "virtual interfaces per port " 4175 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4176 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4177 "itype %d, navail %u, nirq %d.\n", 4178 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4179 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4180 itype, navail, iaq->nirq); 4181 goto done; 4182 } 4183 } 4184 4185 /* 4186 * Extra VIs will not be created. Log a message if they were requested. 4187 */ 4188 MPASS(iaq->num_vis == 1); 4189 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4190 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4191 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4192 if (iaq->num_vis != t4_num_vis) { 4193 device_printf(sc->dev, "extra virtual interfaces disabled. " 4194 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4195 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4196 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4197 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4198 } 4199 4200 /* 4201 * Keep reducing the number of NIC rx queues to the next lower power of 4202 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4203 * if that works. 4204 */ 4205 do { 4206 if (iaq->nrxq > 1) { 4207 do { 4208 iaq->nrxq--; 4209 } while (!powerof2(iaq->nrxq)); 4210 if (iaq->nnmrxq > iaq->nrxq) 4211 iaq->nnmrxq = iaq->nrxq; 4212 } 4213 if (iaq->nofldrxq > 1) 4214 iaq->nofldrxq >>= 1; 4215 4216 old_nirq = iaq->nirq; 4217 update_nirq(iaq, nports); 4218 if (iaq->nirq <= navail && 4219 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4220 device_printf(sc->dev, "running with reduced number of " 4221 "rx queues because of shortage of interrupts. " 4222 "nrxq=%u, nofldrxq=%u. " 4223 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4224 iaq->nofldrxq, itype, navail, iaq->nirq); 4225 goto done; 4226 } 4227 } while (old_nirq != iaq->nirq); 4228 4229 /* One interrupt for everything. Ugh. */ 4230 device_printf(sc->dev, "running with minimal number of queues. " 4231 "itype %d, navail %u.\n", itype, navail); 4232 iaq->nirq = 1; 4233 iaq->nrxq = 1; 4234 iaq->ntxq = 1; 4235 if (iaq->nofldrxq > 0) { 4236 iaq->nofldrxq = 1; 4237 iaq->nofldtxq = 1; 4238 } 4239 iaq->nnmtxq = 0; 4240 iaq->nnmrxq = 0; 4241 done: 4242 MPASS(iaq->num_vis > 0); 4243 if (iaq->num_vis > 1) { 4244 MPASS(iaq->nrxq_vi > 0); 4245 MPASS(iaq->ntxq_vi > 0); 4246 } 4247 MPASS(iaq->nirq > 0); 4248 MPASS(iaq->nrxq > 0); 4249 MPASS(iaq->ntxq > 0); 4250 if (itype == INTR_MSI) { 4251 MPASS(powerof2(iaq->nirq)); 4252 } 4253 } 4254 4255 static int 4256 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4257 { 4258 int rc, itype, navail, nalloc; 4259 4260 for (itype = INTR_MSIX; itype; itype >>= 1) { 4261 4262 if ((itype & t4_intr_types) == 0) 4263 continue; /* not allowed */ 4264 4265 if (itype == INTR_MSIX) 4266 navail = pci_msix_count(sc->dev); 4267 else if (itype == INTR_MSI) 4268 navail = pci_msi_count(sc->dev); 4269 else 4270 navail = 1; 4271 restart: 4272 if (navail == 0) 4273 continue; 4274 4275 calculate_iaq(sc, iaq, itype, navail); 4276 nalloc = iaq->nirq; 4277 rc = 0; 4278 if (itype == INTR_MSIX) 4279 rc = pci_alloc_msix(sc->dev, &nalloc); 4280 else if (itype == INTR_MSI) 4281 rc = pci_alloc_msi(sc->dev, &nalloc); 4282 4283 if (rc == 0 && nalloc > 0) { 4284 if (nalloc == iaq->nirq) 4285 return (0); 4286 4287 /* 4288 * Didn't get the number requested. Use whatever number 4289 * the kernel is willing to allocate. 4290 */ 4291 device_printf(sc->dev, "fewer vectors than requested, " 4292 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4293 itype, iaq->nirq, nalloc); 4294 pci_release_msi(sc->dev); 4295 navail = nalloc; 4296 goto restart; 4297 } 4298 4299 device_printf(sc->dev, 4300 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4301 itype, rc, iaq->nirq, nalloc); 4302 } 4303 4304 device_printf(sc->dev, 4305 "failed to find a usable interrupt type. " 4306 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4307 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4308 4309 return (ENXIO); 4310 } 4311 4312 #define FW_VERSION(chip) ( \ 4313 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4314 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4315 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4316 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4317 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4318 4319 /* Just enough of fw_hdr to cover all version info. */ 4320 struct fw_h { 4321 __u8 ver; 4322 __u8 chip; 4323 __be16 len512; 4324 __be32 fw_ver; 4325 __be32 tp_microcode_ver; 4326 __u8 intfver_nic; 4327 __u8 intfver_vnic; 4328 __u8 intfver_ofld; 4329 __u8 intfver_ri; 4330 __u8 intfver_iscsipdu; 4331 __u8 intfver_iscsi; 4332 __u8 intfver_fcoepdu; 4333 __u8 intfver_fcoe; 4334 }; 4335 /* Spot check a couple of fields. */ 4336 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4337 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4338 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4339 4340 struct fw_info { 4341 uint8_t chip; 4342 char *kld_name; 4343 char *fw_mod_name; 4344 struct fw_h fw_h; 4345 } fw_info[] = { 4346 { 4347 .chip = CHELSIO_T4, 4348 .kld_name = "t4fw_cfg", 4349 .fw_mod_name = "t4fw", 4350 .fw_h = { 4351 .chip = FW_HDR_CHIP_T4, 4352 .fw_ver = htobe32(FW_VERSION(T4)), 4353 .intfver_nic = FW_INTFVER(T4, NIC), 4354 .intfver_vnic = FW_INTFVER(T4, VNIC), 4355 .intfver_ofld = FW_INTFVER(T4, OFLD), 4356 .intfver_ri = FW_INTFVER(T4, RI), 4357 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4358 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4359 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4360 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4361 }, 4362 }, { 4363 .chip = CHELSIO_T5, 4364 .kld_name = "t5fw_cfg", 4365 .fw_mod_name = "t5fw", 4366 .fw_h = { 4367 .chip = FW_HDR_CHIP_T5, 4368 .fw_ver = htobe32(FW_VERSION(T5)), 4369 .intfver_nic = FW_INTFVER(T5, NIC), 4370 .intfver_vnic = FW_INTFVER(T5, VNIC), 4371 .intfver_ofld = FW_INTFVER(T5, OFLD), 4372 .intfver_ri = FW_INTFVER(T5, RI), 4373 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4374 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4375 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4376 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4377 }, 4378 }, { 4379 .chip = CHELSIO_T6, 4380 .kld_name = "t6fw_cfg", 4381 .fw_mod_name = "t6fw", 4382 .fw_h = { 4383 .chip = FW_HDR_CHIP_T6, 4384 .fw_ver = htobe32(FW_VERSION(T6)), 4385 .intfver_nic = FW_INTFVER(T6, NIC), 4386 .intfver_vnic = FW_INTFVER(T6, VNIC), 4387 .intfver_ofld = FW_INTFVER(T6, OFLD), 4388 .intfver_ri = FW_INTFVER(T6, RI), 4389 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4390 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4391 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4392 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4393 }, 4394 } 4395 }; 4396 4397 static struct fw_info * 4398 find_fw_info(int chip) 4399 { 4400 int i; 4401 4402 for (i = 0; i < nitems(fw_info); i++) { 4403 if (fw_info[i].chip == chip) 4404 return (&fw_info[i]); 4405 } 4406 return (NULL); 4407 } 4408 4409 /* 4410 * Is the given firmware API compatible with the one the driver was compiled 4411 * with? 4412 */ 4413 static int 4414 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4415 { 4416 4417 /* short circuit if it's the exact same firmware version */ 4418 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4419 return (1); 4420 4421 /* 4422 * XXX: Is this too conservative? Perhaps I should limit this to the 4423 * features that are supported in the driver. 4424 */ 4425 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4426 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4427 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4428 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4429 return (1); 4430 #undef SAME_INTF 4431 4432 return (0); 4433 } 4434 4435 static int 4436 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4437 const struct firmware **fw) 4438 { 4439 struct fw_info *fw_info; 4440 4441 *dcfg = NULL; 4442 if (fw != NULL) 4443 *fw = NULL; 4444 4445 fw_info = find_fw_info(chip_id(sc)); 4446 if (fw_info == NULL) { 4447 device_printf(sc->dev, 4448 "unable to look up firmware information for chip %d.\n", 4449 chip_id(sc)); 4450 return (EINVAL); 4451 } 4452 4453 *dcfg = firmware_get(fw_info->kld_name); 4454 if (*dcfg != NULL) { 4455 if (fw != NULL) 4456 *fw = firmware_get(fw_info->fw_mod_name); 4457 return (0); 4458 } 4459 4460 return (ENOENT); 4461 } 4462 4463 static void 4464 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4465 const struct firmware *fw) 4466 { 4467 4468 if (fw != NULL) 4469 firmware_put(fw, FIRMWARE_UNLOAD); 4470 if (dcfg != NULL) 4471 firmware_put(dcfg, FIRMWARE_UNLOAD); 4472 } 4473 4474 /* 4475 * Return values: 4476 * 0 means no firmware install attempted. 4477 * ERESTART means a firmware install was attempted and was successful. 4478 * +ve errno means a firmware install was attempted but failed. 4479 */ 4480 static int 4481 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4482 const struct fw_h *drv_fw, const char *reason, int *already) 4483 { 4484 const struct firmware *cfg, *fw; 4485 const uint32_t c = be32toh(card_fw->fw_ver); 4486 uint32_t d, k; 4487 int rc, fw_install; 4488 struct fw_h bundled_fw; 4489 bool load_attempted; 4490 4491 cfg = fw = NULL; 4492 load_attempted = false; 4493 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4494 4495 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4496 if (t4_fw_install < 0) { 4497 rc = load_fw_module(sc, &cfg, &fw); 4498 if (rc != 0 || fw == NULL) { 4499 device_printf(sc->dev, 4500 "failed to load firmware module: %d. cfg %p, fw %p;" 4501 " will use compiled-in firmware version for" 4502 "hw.cxgbe.fw_install checks.\n", 4503 rc, cfg, fw); 4504 } else { 4505 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4506 } 4507 load_attempted = true; 4508 } 4509 d = be32toh(bundled_fw.fw_ver); 4510 4511 if (reason != NULL) 4512 goto install; 4513 4514 if ((sc->flags & FW_OK) == 0) { 4515 4516 if (c == 0xffffffff) { 4517 reason = "missing"; 4518 goto install; 4519 } 4520 4521 rc = 0; 4522 goto done; 4523 } 4524 4525 if (!fw_compatible(card_fw, &bundled_fw)) { 4526 reason = "incompatible or unusable"; 4527 goto install; 4528 } 4529 4530 if (d > c) { 4531 reason = "older than the version bundled with this driver"; 4532 goto install; 4533 } 4534 4535 if (fw_install == 2 && d != c) { 4536 reason = "different than the version bundled with this driver"; 4537 goto install; 4538 } 4539 4540 /* No reason to do anything to the firmware already on the card. */ 4541 rc = 0; 4542 goto done; 4543 4544 install: 4545 rc = 0; 4546 if ((*already)++) 4547 goto done; 4548 4549 if (fw_install == 0) { 4550 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4551 "but the driver is prohibited from installing a firmware " 4552 "on the card.\n", 4553 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4554 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4555 4556 goto done; 4557 } 4558 4559 /* 4560 * We'll attempt to install a firmware. Load the module first (if it 4561 * hasn't been loaded already). 4562 */ 4563 if (!load_attempted) { 4564 rc = load_fw_module(sc, &cfg, &fw); 4565 if (rc != 0 || fw == NULL) { 4566 device_printf(sc->dev, 4567 "failed to load firmware module: %d. cfg %p, fw %p\n", 4568 rc, cfg, fw); 4569 /* carry on */ 4570 } 4571 } 4572 if (fw == NULL) { 4573 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4574 "but the driver cannot take corrective action because it " 4575 "is unable to load the firmware module.\n", 4576 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4577 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4578 rc = sc->flags & FW_OK ? 0 : ENOENT; 4579 goto done; 4580 } 4581 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4582 if (k != d) { 4583 MPASS(t4_fw_install > 0); 4584 device_printf(sc->dev, 4585 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4586 "expecting (%u.%u.%u.%u) and will not be used.\n", 4587 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4588 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4589 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4590 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4591 rc = sc->flags & FW_OK ? 0 : EINVAL; 4592 goto done; 4593 } 4594 4595 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4596 "installing firmware %u.%u.%u.%u on card.\n", 4597 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4598 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4599 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4600 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4601 4602 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4603 if (rc != 0) { 4604 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4605 } else { 4606 /* Installed successfully, update the cached header too. */ 4607 rc = ERESTART; 4608 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4609 } 4610 done: 4611 unload_fw_module(sc, cfg, fw); 4612 4613 return (rc); 4614 } 4615 4616 /* 4617 * Establish contact with the firmware and attempt to become the master driver. 4618 * 4619 * A firmware will be installed to the card if needed (if the driver is allowed 4620 * to do so). 4621 */ 4622 static int 4623 contact_firmware(struct adapter *sc) 4624 { 4625 int rc, already = 0; 4626 enum dev_state state; 4627 struct fw_info *fw_info; 4628 struct fw_hdr *card_fw; /* fw on the card */ 4629 const struct fw_h *drv_fw; 4630 4631 fw_info = find_fw_info(chip_id(sc)); 4632 if (fw_info == NULL) { 4633 device_printf(sc->dev, 4634 "unable to look up firmware information for chip %d.\n", 4635 chip_id(sc)); 4636 return (EINVAL); 4637 } 4638 drv_fw = &fw_info->fw_h; 4639 4640 /* Read the header of the firmware on the card */ 4641 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4642 restart: 4643 rc = -t4_get_fw_hdr(sc, card_fw); 4644 if (rc != 0) { 4645 device_printf(sc->dev, 4646 "unable to read firmware header from card's flash: %d\n", 4647 rc); 4648 goto done; 4649 } 4650 4651 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4652 &already); 4653 if (rc == ERESTART) 4654 goto restart; 4655 if (rc != 0) 4656 goto done; 4657 4658 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4659 if (rc < 0 || state == DEV_STATE_ERR) { 4660 rc = -rc; 4661 device_printf(sc->dev, 4662 "failed to connect to the firmware: %d, %d. " 4663 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4664 #if 0 4665 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4666 "not responding properly to HELLO", &already) == ERESTART) 4667 goto restart; 4668 #endif 4669 goto done; 4670 } 4671 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4672 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4673 4674 if (rc == sc->pf) { 4675 sc->flags |= MASTER_PF; 4676 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4677 NULL, &already); 4678 if (rc == ERESTART) 4679 rc = 0; 4680 else if (rc != 0) 4681 goto done; 4682 } else if (state == DEV_STATE_UNINIT) { 4683 /* 4684 * We didn't get to be the master so we definitely won't be 4685 * configuring the chip. It's a bug if someone else hasn't 4686 * configured it already. 4687 */ 4688 device_printf(sc->dev, "couldn't be master(%d), " 4689 "device not already initialized either(%d). " 4690 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4691 rc = EPROTO; 4692 goto done; 4693 } else { 4694 /* 4695 * Some other PF is the master and has configured the chip. 4696 * This is allowed but untested. 4697 */ 4698 device_printf(sc->dev, "PF%d is master, device state %d. " 4699 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4700 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4701 sc->cfcsum = 0; 4702 rc = 0; 4703 } 4704 done: 4705 if (rc != 0 && sc->flags & FW_OK) { 4706 t4_fw_bye(sc, sc->mbox); 4707 sc->flags &= ~FW_OK; 4708 } 4709 free(card_fw, M_CXGBE); 4710 return (rc); 4711 } 4712 4713 static int 4714 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4715 uint32_t mtype, uint32_t moff) 4716 { 4717 struct fw_info *fw_info; 4718 const struct firmware *dcfg, *rcfg = NULL; 4719 const uint32_t *cfdata; 4720 uint32_t cflen, addr; 4721 int rc; 4722 4723 load_fw_module(sc, &dcfg, NULL); 4724 4725 /* Card specific interpretation of "default". */ 4726 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4727 if (pci_get_device(sc->dev) == 0x440a) 4728 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4729 if (is_fpga(sc)) 4730 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4731 } 4732 4733 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4734 if (dcfg == NULL) { 4735 device_printf(sc->dev, 4736 "KLD with default config is not available.\n"); 4737 rc = ENOENT; 4738 goto done; 4739 } 4740 cfdata = dcfg->data; 4741 cflen = dcfg->datasize & ~3; 4742 } else { 4743 char s[32]; 4744 4745 fw_info = find_fw_info(chip_id(sc)); 4746 if (fw_info == NULL) { 4747 device_printf(sc->dev, 4748 "unable to look up firmware information for chip %d.\n", 4749 chip_id(sc)); 4750 rc = EINVAL; 4751 goto done; 4752 } 4753 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4754 4755 rcfg = firmware_get(s); 4756 if (rcfg == NULL) { 4757 device_printf(sc->dev, 4758 "unable to load module \"%s\" for configuration " 4759 "profile \"%s\".\n", s, cfg_file); 4760 rc = ENOENT; 4761 goto done; 4762 } 4763 cfdata = rcfg->data; 4764 cflen = rcfg->datasize & ~3; 4765 } 4766 4767 if (cflen > FLASH_CFG_MAX_SIZE) { 4768 device_printf(sc->dev, 4769 "config file too long (%d, max allowed is %d).\n", 4770 cflen, FLASH_CFG_MAX_SIZE); 4771 rc = EINVAL; 4772 goto done; 4773 } 4774 4775 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4776 if (rc != 0) { 4777 device_printf(sc->dev, 4778 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4779 __func__, mtype, moff, cflen, rc); 4780 rc = EINVAL; 4781 goto done; 4782 } 4783 write_via_memwin(sc, 2, addr, cfdata, cflen); 4784 done: 4785 if (rcfg != NULL) 4786 firmware_put(rcfg, FIRMWARE_UNLOAD); 4787 unload_fw_module(sc, dcfg, NULL); 4788 return (rc); 4789 } 4790 4791 struct caps_allowed { 4792 uint16_t nbmcaps; 4793 uint16_t linkcaps; 4794 uint16_t switchcaps; 4795 uint16_t niccaps; 4796 uint16_t toecaps; 4797 uint16_t rdmacaps; 4798 uint16_t cryptocaps; 4799 uint16_t iscsicaps; 4800 uint16_t fcoecaps; 4801 }; 4802 4803 #define FW_PARAM_DEV(param) \ 4804 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4805 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4806 #define FW_PARAM_PFVF(param) \ 4807 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4808 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4809 4810 /* 4811 * Provide a configuration profile to the firmware and have it initialize the 4812 * chip accordingly. This may involve uploading a configuration file to the 4813 * card. 4814 */ 4815 static int 4816 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4817 const struct caps_allowed *caps_allowed) 4818 { 4819 int rc; 4820 struct fw_caps_config_cmd caps; 4821 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4822 4823 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4824 if (rc != 0) { 4825 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4826 return (rc); 4827 } 4828 4829 bzero(&caps, sizeof(caps)); 4830 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4831 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4832 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4833 mtype = 0; 4834 moff = 0; 4835 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4836 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4837 mtype = FW_MEMTYPE_FLASH; 4838 moff = t4_flash_cfg_addr(sc); 4839 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4840 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4841 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4842 FW_LEN16(caps)); 4843 } else { 4844 /* 4845 * Ask the firmware where it wants us to upload the config file. 4846 */ 4847 param = FW_PARAM_DEV(CF); 4848 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4849 if (rc != 0) { 4850 /* No support for config file? Shouldn't happen. */ 4851 device_printf(sc->dev, 4852 "failed to query config file location: %d.\n", rc); 4853 goto done; 4854 } 4855 mtype = G_FW_PARAMS_PARAM_Y(val); 4856 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4857 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4858 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4859 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4860 FW_LEN16(caps)); 4861 4862 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4863 if (rc != 0) { 4864 device_printf(sc->dev, 4865 "failed to upload config file to card: %d.\n", rc); 4866 goto done; 4867 } 4868 } 4869 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4870 if (rc != 0) { 4871 device_printf(sc->dev, "failed to pre-process config file: %d " 4872 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4873 goto done; 4874 } 4875 4876 finicsum = be32toh(caps.finicsum); 4877 cfcsum = be32toh(caps.cfcsum); /* actual */ 4878 if (finicsum != cfcsum) { 4879 device_printf(sc->dev, 4880 "WARNING: config file checksum mismatch: %08x %08x\n", 4881 finicsum, cfcsum); 4882 } 4883 sc->cfcsum = cfcsum; 4884 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4885 4886 /* 4887 * Let the firmware know what features will (not) be used so it can tune 4888 * things accordingly. 4889 */ 4890 #define LIMIT_CAPS(x) do { \ 4891 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4892 } while (0) 4893 LIMIT_CAPS(nbm); 4894 LIMIT_CAPS(link); 4895 LIMIT_CAPS(switch); 4896 LIMIT_CAPS(nic); 4897 LIMIT_CAPS(toe); 4898 LIMIT_CAPS(rdma); 4899 LIMIT_CAPS(crypto); 4900 LIMIT_CAPS(iscsi); 4901 LIMIT_CAPS(fcoe); 4902 #undef LIMIT_CAPS 4903 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4904 /* 4905 * TOE and hashfilters are mutually exclusive. It is a config 4906 * file or firmware bug if both are reported as available. Try 4907 * to cope with the situation in non-debug builds by disabling 4908 * TOE. 4909 */ 4910 MPASS(caps.toecaps == 0); 4911 4912 caps.toecaps = 0; 4913 caps.rdmacaps = 0; 4914 caps.iscsicaps = 0; 4915 } 4916 4917 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4918 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4919 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4920 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4921 if (rc != 0) { 4922 device_printf(sc->dev, 4923 "failed to process config file: %d.\n", rc); 4924 goto done; 4925 } 4926 4927 t4_tweak_chip_settings(sc); 4928 set_params__pre_init(sc); 4929 4930 /* get basic stuff going */ 4931 rc = -t4_fw_initialize(sc, sc->mbox); 4932 if (rc != 0) { 4933 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4934 goto done; 4935 } 4936 done: 4937 return (rc); 4938 } 4939 4940 /* 4941 * Partition chip resources for use between various PFs, VFs, etc. 4942 */ 4943 static int 4944 partition_resources(struct adapter *sc) 4945 { 4946 char cfg_file[sizeof(t4_cfg_file)]; 4947 struct caps_allowed caps_allowed; 4948 int rc; 4949 bool fallback; 4950 4951 /* Only the master driver gets to configure the chip resources. */ 4952 MPASS(sc->flags & MASTER_PF); 4953 4954 #define COPY_CAPS(x) do { \ 4955 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4956 } while (0) 4957 bzero(&caps_allowed, sizeof(caps_allowed)); 4958 COPY_CAPS(nbm); 4959 COPY_CAPS(link); 4960 COPY_CAPS(switch); 4961 COPY_CAPS(nic); 4962 COPY_CAPS(toe); 4963 COPY_CAPS(rdma); 4964 COPY_CAPS(crypto); 4965 COPY_CAPS(iscsi); 4966 COPY_CAPS(fcoe); 4967 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4968 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4969 retry: 4970 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4971 if (rc != 0 && fallback) { 4972 device_printf(sc->dev, 4973 "failed (%d) to configure card with \"%s\" profile, " 4974 "will fall back to a basic configuration and retry.\n", 4975 rc, cfg_file); 4976 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4977 bzero(&caps_allowed, sizeof(caps_allowed)); 4978 COPY_CAPS(switch); 4979 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4980 fallback = false; 4981 goto retry; 4982 } 4983 #undef COPY_CAPS 4984 return (rc); 4985 } 4986 4987 /* 4988 * Retrieve parameters that are needed (or nice to have) very early. 4989 */ 4990 static int 4991 get_params__pre_init(struct adapter *sc) 4992 { 4993 int rc; 4994 uint32_t param[2], val[2]; 4995 4996 t4_get_version_info(sc); 4997 4998 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4999 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5000 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5001 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5002 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5003 5004 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5005 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5006 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5007 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5008 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5009 5010 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5011 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5012 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5013 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5014 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5015 5016 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5017 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5018 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5019 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5020 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5021 5022 param[0] = FW_PARAM_DEV(PORTVEC); 5023 param[1] = FW_PARAM_DEV(CCLK); 5024 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5025 if (rc != 0) { 5026 device_printf(sc->dev, 5027 "failed to query parameters (pre_init): %d.\n", rc); 5028 return (rc); 5029 } 5030 5031 sc->params.portvec = val[0]; 5032 sc->params.nports = bitcount32(val[0]); 5033 sc->params.vpd.cclk = val[1]; 5034 5035 /* Read device log parameters. */ 5036 rc = -t4_init_devlog_params(sc, 1); 5037 if (rc == 0) 5038 fixup_devlog_params(sc); 5039 else { 5040 device_printf(sc->dev, 5041 "failed to get devlog parameters: %d.\n", rc); 5042 rc = 0; /* devlog isn't critical for device operation */ 5043 } 5044 5045 return (rc); 5046 } 5047 5048 /* 5049 * Any params that need to be set before FW_INITIALIZE. 5050 */ 5051 static int 5052 set_params__pre_init(struct adapter *sc) 5053 { 5054 int rc = 0; 5055 uint32_t param, val; 5056 5057 if (chip_id(sc) >= CHELSIO_T6) { 5058 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5059 val = 1; 5060 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5061 /* firmwares < 1.20.1.0 do not have this param. */ 5062 if (rc == FW_EINVAL && 5063 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5064 rc = 0; 5065 } 5066 if (rc != 0) { 5067 device_printf(sc->dev, 5068 "failed to enable high priority filters :%d.\n", 5069 rc); 5070 } 5071 } 5072 5073 /* Enable opaque VIIDs with firmwares that support it. */ 5074 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5075 val = 1; 5076 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5077 if (rc == 0 && val == 1) 5078 sc->params.viid_smt_extn_support = true; 5079 else 5080 sc->params.viid_smt_extn_support = false; 5081 5082 return (rc); 5083 } 5084 5085 /* 5086 * Retrieve various parameters that are of interest to the driver. The device 5087 * has been initialized by the firmware at this point. 5088 */ 5089 static int 5090 get_params__post_init(struct adapter *sc) 5091 { 5092 int rc; 5093 uint32_t param[7], val[7]; 5094 struct fw_caps_config_cmd caps; 5095 5096 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5097 param[1] = FW_PARAM_PFVF(EQ_START); 5098 param[2] = FW_PARAM_PFVF(FILTER_START); 5099 param[3] = FW_PARAM_PFVF(FILTER_END); 5100 param[4] = FW_PARAM_PFVF(L2T_START); 5101 param[5] = FW_PARAM_PFVF(L2T_END); 5102 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5103 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5104 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5105 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5106 if (rc != 0) { 5107 device_printf(sc->dev, 5108 "failed to query parameters (post_init): %d.\n", rc); 5109 return (rc); 5110 } 5111 5112 sc->sge.iq_start = val[0]; 5113 sc->sge.eq_start = val[1]; 5114 if ((int)val[3] > (int)val[2]) { 5115 sc->tids.ftid_base = val[2]; 5116 sc->tids.ftid_end = val[3]; 5117 sc->tids.nftids = val[3] - val[2] + 1; 5118 } 5119 sc->vres.l2t.start = val[4]; 5120 sc->vres.l2t.size = val[5] - val[4] + 1; 5121 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5122 ("%s: L2 table size (%u) larger than expected (%u)", 5123 __func__, sc->vres.l2t.size, L2T_SIZE)); 5124 sc->params.core_vdd = val[6]; 5125 5126 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5127 param[1] = FW_PARAM_PFVF(EQ_END); 5128 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5129 if (rc != 0) { 5130 device_printf(sc->dev, 5131 "failed to query parameters (post_init2): %d.\n", rc); 5132 return (rc); 5133 } 5134 MPASS((int)val[0] >= sc->sge.iq_start); 5135 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5136 MPASS((int)val[1] >= sc->sge.eq_start); 5137 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5138 5139 if (chip_id(sc) >= CHELSIO_T6) { 5140 5141 sc->tids.tid_base = t4_read_reg(sc, 5142 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5143 5144 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5145 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5146 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5147 if (rc != 0) { 5148 device_printf(sc->dev, 5149 "failed to query hpfilter parameters: %d.\n", rc); 5150 return (rc); 5151 } 5152 if ((int)val[1] > (int)val[0]) { 5153 sc->tids.hpftid_base = val[0]; 5154 sc->tids.hpftid_end = val[1]; 5155 sc->tids.nhpftids = val[1] - val[0] + 1; 5156 5157 /* 5158 * These should go off if the layout changes and the 5159 * driver needs to catch up. 5160 */ 5161 MPASS(sc->tids.hpftid_base == 0); 5162 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5163 } 5164 5165 param[0] = FW_PARAM_PFVF(RAWF_START); 5166 param[1] = FW_PARAM_PFVF(RAWF_END); 5167 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5168 if (rc != 0) { 5169 device_printf(sc->dev, 5170 "failed to query rawf parameters: %d.\n", rc); 5171 return (rc); 5172 } 5173 if ((int)val[1] > (int)val[0]) { 5174 sc->rawf_base = val[0]; 5175 sc->nrawf = val[1] - val[0] + 1; 5176 } 5177 } 5178 5179 /* 5180 * MPSBGMAP is queried separately because only recent firmwares support 5181 * it as a parameter and we don't want the compound query above to fail 5182 * on older firmwares. 5183 */ 5184 param[0] = FW_PARAM_DEV(MPSBGMAP); 5185 val[0] = 0; 5186 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5187 if (rc == 0) 5188 sc->params.mps_bg_map = val[0]; 5189 else 5190 sc->params.mps_bg_map = 0; 5191 5192 /* 5193 * Determine whether the firmware supports the filter2 work request. 5194 * This is queried separately for the same reason as MPSBGMAP above. 5195 */ 5196 param[0] = FW_PARAM_DEV(FILTER2_WR); 5197 val[0] = 0; 5198 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5199 if (rc == 0) 5200 sc->params.filter2_wr_support = val[0] != 0; 5201 else 5202 sc->params.filter2_wr_support = 0; 5203 5204 /* 5205 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5206 * This is queried separately for the same reason as other params above. 5207 */ 5208 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5209 val[0] = 0; 5210 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5211 if (rc == 0) 5212 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5213 else 5214 sc->params.ulptx_memwrite_dsgl = false; 5215 5216 /* FW_RI_FR_NSMR_TPTE_WR support */ 5217 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5218 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5219 if (rc == 0) 5220 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5221 else 5222 sc->params.fr_nsmr_tpte_wr_support = false; 5223 5224 /* Support for 512 SGL entries per FR MR. */ 5225 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5226 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5227 if (rc == 0) 5228 sc->params.dev_512sgl_mr = val[0] != 0; 5229 else 5230 sc->params.dev_512sgl_mr = false; 5231 5232 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5233 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5234 if (rc == 0) 5235 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5236 else 5237 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5238 5239 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5240 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5241 if (rc == 0) { 5242 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5243 sc->params.nsched_cls = val[0]; 5244 } else 5245 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5246 5247 /* get capabilites */ 5248 bzero(&caps, sizeof(caps)); 5249 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5250 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5251 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5252 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5253 if (rc != 0) { 5254 device_printf(sc->dev, 5255 "failed to get card capabilities: %d.\n", rc); 5256 return (rc); 5257 } 5258 5259 #define READ_CAPS(x) do { \ 5260 sc->x = htobe16(caps.x); \ 5261 } while (0) 5262 READ_CAPS(nbmcaps); 5263 READ_CAPS(linkcaps); 5264 READ_CAPS(switchcaps); 5265 READ_CAPS(niccaps); 5266 READ_CAPS(toecaps); 5267 READ_CAPS(rdmacaps); 5268 READ_CAPS(cryptocaps); 5269 READ_CAPS(iscsicaps); 5270 READ_CAPS(fcoecaps); 5271 5272 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5273 MPASS(chip_id(sc) > CHELSIO_T4); 5274 MPASS(sc->toecaps == 0); 5275 sc->toecaps = 0; 5276 5277 param[0] = FW_PARAM_DEV(NTID); 5278 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5279 if (rc != 0) { 5280 device_printf(sc->dev, 5281 "failed to query HASHFILTER parameters: %d.\n", rc); 5282 return (rc); 5283 } 5284 sc->tids.ntids = val[0]; 5285 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5286 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5287 sc->tids.ntids -= sc->tids.nhpftids; 5288 } 5289 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5290 sc->params.hash_filter = 1; 5291 } 5292 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5293 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5294 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5295 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5296 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5297 if (rc != 0) { 5298 device_printf(sc->dev, 5299 "failed to query NIC parameters: %d.\n", rc); 5300 return (rc); 5301 } 5302 if ((int)val[1] > (int)val[0]) { 5303 sc->tids.etid_base = val[0]; 5304 sc->tids.etid_end = val[1]; 5305 sc->tids.netids = val[1] - val[0] + 1; 5306 sc->params.eo_wr_cred = val[2]; 5307 sc->params.ethoffload = 1; 5308 } 5309 } 5310 if (sc->toecaps) { 5311 /* query offload-related parameters */ 5312 param[0] = FW_PARAM_DEV(NTID); 5313 param[1] = FW_PARAM_PFVF(SERVER_START); 5314 param[2] = FW_PARAM_PFVF(SERVER_END); 5315 param[3] = FW_PARAM_PFVF(TDDP_START); 5316 param[4] = FW_PARAM_PFVF(TDDP_END); 5317 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5318 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5319 if (rc != 0) { 5320 device_printf(sc->dev, 5321 "failed to query TOE parameters: %d.\n", rc); 5322 return (rc); 5323 } 5324 sc->tids.ntids = val[0]; 5325 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5326 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5327 sc->tids.ntids -= sc->tids.nhpftids; 5328 } 5329 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5330 if ((int)val[2] > (int)val[1]) { 5331 sc->tids.stid_base = val[1]; 5332 sc->tids.nstids = val[2] - val[1] + 1; 5333 } 5334 sc->vres.ddp.start = val[3]; 5335 sc->vres.ddp.size = val[4] - val[3] + 1; 5336 sc->params.ofldq_wr_cred = val[5]; 5337 sc->params.offload = 1; 5338 } else { 5339 /* 5340 * The firmware attempts memfree TOE configuration for -SO cards 5341 * and will report toecaps=0 if it runs out of resources (this 5342 * depends on the config file). It may not report 0 for other 5343 * capabilities dependent on the TOE in this case. Set them to 5344 * 0 here so that the driver doesn't bother tracking resources 5345 * that will never be used. 5346 */ 5347 sc->iscsicaps = 0; 5348 sc->rdmacaps = 0; 5349 } 5350 if (sc->rdmacaps) { 5351 param[0] = FW_PARAM_PFVF(STAG_START); 5352 param[1] = FW_PARAM_PFVF(STAG_END); 5353 param[2] = FW_PARAM_PFVF(RQ_START); 5354 param[3] = FW_PARAM_PFVF(RQ_END); 5355 param[4] = FW_PARAM_PFVF(PBL_START); 5356 param[5] = FW_PARAM_PFVF(PBL_END); 5357 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5358 if (rc != 0) { 5359 device_printf(sc->dev, 5360 "failed to query RDMA parameters(1): %d.\n", rc); 5361 return (rc); 5362 } 5363 sc->vres.stag.start = val[0]; 5364 sc->vres.stag.size = val[1] - val[0] + 1; 5365 sc->vres.rq.start = val[2]; 5366 sc->vres.rq.size = val[3] - val[2] + 1; 5367 sc->vres.pbl.start = val[4]; 5368 sc->vres.pbl.size = val[5] - val[4] + 1; 5369 5370 param[0] = FW_PARAM_PFVF(SQRQ_START); 5371 param[1] = FW_PARAM_PFVF(SQRQ_END); 5372 param[2] = FW_PARAM_PFVF(CQ_START); 5373 param[3] = FW_PARAM_PFVF(CQ_END); 5374 param[4] = FW_PARAM_PFVF(OCQ_START); 5375 param[5] = FW_PARAM_PFVF(OCQ_END); 5376 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5377 if (rc != 0) { 5378 device_printf(sc->dev, 5379 "failed to query RDMA parameters(2): %d.\n", rc); 5380 return (rc); 5381 } 5382 sc->vres.qp.start = val[0]; 5383 sc->vres.qp.size = val[1] - val[0] + 1; 5384 sc->vres.cq.start = val[2]; 5385 sc->vres.cq.size = val[3] - val[2] + 1; 5386 sc->vres.ocq.start = val[4]; 5387 sc->vres.ocq.size = val[5] - val[4] + 1; 5388 5389 param[0] = FW_PARAM_PFVF(SRQ_START); 5390 param[1] = FW_PARAM_PFVF(SRQ_END); 5391 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5392 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5393 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5394 if (rc != 0) { 5395 device_printf(sc->dev, 5396 "failed to query RDMA parameters(3): %d.\n", rc); 5397 return (rc); 5398 } 5399 sc->vres.srq.start = val[0]; 5400 sc->vres.srq.size = val[1] - val[0] + 1; 5401 sc->params.max_ordird_qp = val[2]; 5402 sc->params.max_ird_adapter = val[3]; 5403 } 5404 if (sc->iscsicaps) { 5405 param[0] = FW_PARAM_PFVF(ISCSI_START); 5406 param[1] = FW_PARAM_PFVF(ISCSI_END); 5407 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5408 if (rc != 0) { 5409 device_printf(sc->dev, 5410 "failed to query iSCSI parameters: %d.\n", rc); 5411 return (rc); 5412 } 5413 sc->vres.iscsi.start = val[0]; 5414 sc->vres.iscsi.size = val[1] - val[0] + 1; 5415 } 5416 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5417 param[0] = FW_PARAM_PFVF(TLS_START); 5418 param[1] = FW_PARAM_PFVF(TLS_END); 5419 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5420 if (rc != 0) { 5421 device_printf(sc->dev, 5422 "failed to query TLS parameters: %d.\n", rc); 5423 return (rc); 5424 } 5425 sc->vres.key.start = val[0]; 5426 sc->vres.key.size = val[1] - val[0] + 1; 5427 } 5428 5429 /* 5430 * We've got the params we wanted to query directly from the firmware. 5431 * Grab some others via other means. 5432 */ 5433 t4_init_sge_params(sc); 5434 t4_init_tp_params(sc); 5435 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5436 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5437 5438 rc = t4_verify_chip_settings(sc); 5439 if (rc != 0) 5440 return (rc); 5441 t4_init_rx_buf_info(sc); 5442 5443 return (rc); 5444 } 5445 5446 #ifdef KERN_TLS 5447 static void 5448 ktls_tick(void *arg) 5449 { 5450 struct adapter *sc; 5451 uint32_t tstamp; 5452 5453 sc = arg; 5454 if (sc->flags & KERN_TLS_ON) { 5455 tstamp = tcp_ts_getticks(); 5456 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5457 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5458 } 5459 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5460 } 5461 5462 static int 5463 t4_config_kern_tls(struct adapter *sc, bool enable) 5464 { 5465 int rc; 5466 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5467 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5468 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5469 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5470 5471 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5472 if (rc != 0) { 5473 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5474 enable ? "enable" : "disable", rc); 5475 return (rc); 5476 } 5477 5478 if (enable) 5479 sc->flags |= KERN_TLS_ON; 5480 else 5481 sc->flags &= ~KERN_TLS_ON; 5482 5483 return (rc); 5484 } 5485 #endif 5486 5487 static int 5488 set_params__post_init(struct adapter *sc) 5489 { 5490 uint32_t mask, param, val; 5491 #ifdef TCP_OFFLOAD 5492 int i, v, shift; 5493 #endif 5494 5495 /* ask for encapsulated CPLs */ 5496 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5497 val = 1; 5498 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5499 5500 /* Enable 32b port caps if the firmware supports it. */ 5501 param = FW_PARAM_PFVF(PORT_CAPS32); 5502 val = 1; 5503 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5504 sc->params.port_caps32 = 1; 5505 5506 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5507 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5508 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5509 V_MASKFILTER(val - 1)); 5510 5511 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5512 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5513 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5514 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5515 val = 0; 5516 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5517 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5518 F_ATTACKFILTERENABLE); 5519 val |= F_DROPERRORATTACK; 5520 } 5521 if (t4_drop_ip_fragments != 0) { 5522 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5523 F_FRAGMENTDROP); 5524 val |= F_DROPERRORFRAG; 5525 } 5526 if (t4_drop_pkts_with_l2_errors != 0) 5527 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5528 if (t4_drop_pkts_with_l3_errors != 0) { 5529 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5530 F_DROPERRORCSUMIP; 5531 } 5532 if (t4_drop_pkts_with_l4_errors != 0) { 5533 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5534 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5535 } 5536 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5537 5538 #ifdef TCP_OFFLOAD 5539 /* 5540 * Override the TOE timers with user provided tunables. This is not the 5541 * recommended way to change the timers (the firmware config file is) so 5542 * these tunables are not documented. 5543 * 5544 * All the timer tunables are in microseconds. 5545 */ 5546 if (t4_toe_keepalive_idle != 0) { 5547 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5548 v &= M_KEEPALIVEIDLE; 5549 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5550 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5551 } 5552 if (t4_toe_keepalive_interval != 0) { 5553 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5554 v &= M_KEEPALIVEINTVL; 5555 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5556 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5557 } 5558 if (t4_toe_keepalive_count != 0) { 5559 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5560 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5561 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5562 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5563 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5564 } 5565 if (t4_toe_rexmt_min != 0) { 5566 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5567 v &= M_RXTMIN; 5568 t4_set_reg_field(sc, A_TP_RXT_MIN, 5569 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5570 } 5571 if (t4_toe_rexmt_max != 0) { 5572 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5573 v &= M_RXTMAX; 5574 t4_set_reg_field(sc, A_TP_RXT_MAX, 5575 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5576 } 5577 if (t4_toe_rexmt_count != 0) { 5578 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5579 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5580 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5581 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5582 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5583 } 5584 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5585 if (t4_toe_rexmt_backoff[i] != -1) { 5586 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5587 shift = (i & 3) << 3; 5588 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5589 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5590 } 5591 } 5592 #endif 5593 5594 #ifdef KERN_TLS 5595 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5596 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5597 /* 5598 * Limit TOE connections to 2 reassembly "islands". This is 5599 * required for TOE TLS connections to downgrade to plain TOE 5600 * connections if an unsupported TLS version or ciphersuite is 5601 * used. 5602 */ 5603 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5604 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5605 if (is_ktls(sc)) { 5606 sc->tlst.inline_keys = t4_tls_inline_keys; 5607 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5608 if (t4_kern_tls != 0) 5609 t4_config_kern_tls(sc, true); 5610 } 5611 } 5612 #endif 5613 return (0); 5614 } 5615 5616 #undef FW_PARAM_PFVF 5617 #undef FW_PARAM_DEV 5618 5619 static void 5620 t4_set_desc(struct adapter *sc) 5621 { 5622 char buf[128]; 5623 struct adapter_params *p = &sc->params; 5624 5625 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5626 5627 device_set_desc_copy(sc->dev, buf); 5628 } 5629 5630 static inline void 5631 ifmedia_add4(struct ifmedia *ifm, int m) 5632 { 5633 5634 ifmedia_add(ifm, m, 0, NULL); 5635 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5636 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5637 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5638 } 5639 5640 /* 5641 * This is the selected media, which is not quite the same as the active media. 5642 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5643 * and active are not the same, and "media: Ethernet selected" otherwise. 5644 */ 5645 static void 5646 set_current_media(struct port_info *pi) 5647 { 5648 struct link_config *lc; 5649 struct ifmedia *ifm; 5650 int mword; 5651 u_int speed; 5652 5653 PORT_LOCK_ASSERT_OWNED(pi); 5654 5655 /* Leave current media alone if it's already set to IFM_NONE. */ 5656 ifm = &pi->media; 5657 if (ifm->ifm_cur != NULL && 5658 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5659 return; 5660 5661 lc = &pi->link_cfg; 5662 if (lc->requested_aneg != AUTONEG_DISABLE && 5663 lc->pcaps & FW_PORT_CAP32_ANEG) { 5664 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5665 return; 5666 } 5667 mword = IFM_ETHER | IFM_FDX; 5668 if (lc->requested_fc & PAUSE_TX) 5669 mword |= IFM_ETH_TXPAUSE; 5670 if (lc->requested_fc & PAUSE_RX) 5671 mword |= IFM_ETH_RXPAUSE; 5672 if (lc->requested_speed == 0) 5673 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5674 else 5675 speed = lc->requested_speed; 5676 mword |= port_mword(pi, speed_to_fwcap(speed)); 5677 ifmedia_set(ifm, mword); 5678 } 5679 5680 /* 5681 * Returns true if the ifmedia list for the port cannot change. 5682 */ 5683 static bool 5684 fixed_ifmedia(struct port_info *pi) 5685 { 5686 5687 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5688 pi->port_type == FW_PORT_TYPE_BT_XFI || 5689 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5690 pi->port_type == FW_PORT_TYPE_KX4 || 5691 pi->port_type == FW_PORT_TYPE_KX || 5692 pi->port_type == FW_PORT_TYPE_KR || 5693 pi->port_type == FW_PORT_TYPE_BP_AP || 5694 pi->port_type == FW_PORT_TYPE_BP4_AP || 5695 pi->port_type == FW_PORT_TYPE_BP40_BA || 5696 pi->port_type == FW_PORT_TYPE_KR4_100G || 5697 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5698 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5699 } 5700 5701 static void 5702 build_medialist(struct port_info *pi) 5703 { 5704 uint32_t ss, speed; 5705 int unknown, mword, bit; 5706 struct link_config *lc; 5707 struct ifmedia *ifm; 5708 5709 PORT_LOCK_ASSERT_OWNED(pi); 5710 5711 if (pi->flags & FIXED_IFMEDIA) 5712 return; 5713 5714 /* 5715 * Rebuild the ifmedia list. 5716 */ 5717 ifm = &pi->media; 5718 ifmedia_removeall(ifm); 5719 lc = &pi->link_cfg; 5720 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5721 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5722 MPASS(ss != 0); 5723 no_media: 5724 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5725 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5726 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5727 return; 5728 } 5729 5730 unknown = 0; 5731 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5732 speed = 1 << bit; 5733 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5734 if (ss & speed) { 5735 mword = port_mword(pi, speed); 5736 if (mword == IFM_NONE) { 5737 goto no_media; 5738 } else if (mword == IFM_UNKNOWN) 5739 unknown++; 5740 else 5741 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5742 } 5743 } 5744 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5745 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5746 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5747 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5748 5749 set_current_media(pi); 5750 } 5751 5752 /* 5753 * Initialize the requested fields in the link config based on driver tunables. 5754 */ 5755 static void 5756 init_link_config(struct port_info *pi) 5757 { 5758 struct link_config *lc = &pi->link_cfg; 5759 5760 PORT_LOCK_ASSERT_OWNED(pi); 5761 5762 lc->requested_speed = 0; 5763 5764 if (t4_autoneg == 0) 5765 lc->requested_aneg = AUTONEG_DISABLE; 5766 else if (t4_autoneg == 1) 5767 lc->requested_aneg = AUTONEG_ENABLE; 5768 else 5769 lc->requested_aneg = AUTONEG_AUTO; 5770 5771 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5772 PAUSE_AUTONEG); 5773 5774 if (t4_fec & FEC_AUTO) 5775 lc->requested_fec = FEC_AUTO; 5776 else if (t4_fec == 0) 5777 lc->requested_fec = FEC_NONE; 5778 else { 5779 /* -1 is handled by the FEC_AUTO block above and not here. */ 5780 lc->requested_fec = t4_fec & 5781 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5782 if (lc->requested_fec == 0) 5783 lc->requested_fec = FEC_AUTO; 5784 } 5785 } 5786 5787 /* 5788 * Makes sure that all requested settings comply with what's supported by the 5789 * port. Returns the number of settings that were invalid and had to be fixed. 5790 */ 5791 static int 5792 fixup_link_config(struct port_info *pi) 5793 { 5794 int n = 0; 5795 struct link_config *lc = &pi->link_cfg; 5796 uint32_t fwspeed; 5797 5798 PORT_LOCK_ASSERT_OWNED(pi); 5799 5800 /* Speed (when not autonegotiating) */ 5801 if (lc->requested_speed != 0) { 5802 fwspeed = speed_to_fwcap(lc->requested_speed); 5803 if ((fwspeed & lc->pcaps) == 0) { 5804 n++; 5805 lc->requested_speed = 0; 5806 } 5807 } 5808 5809 /* Link autonegotiation */ 5810 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5811 lc->requested_aneg == AUTONEG_DISABLE || 5812 lc->requested_aneg == AUTONEG_AUTO); 5813 if (lc->requested_aneg == AUTONEG_ENABLE && 5814 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5815 n++; 5816 lc->requested_aneg = AUTONEG_AUTO; 5817 } 5818 5819 /* Flow control */ 5820 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5821 if (lc->requested_fc & PAUSE_TX && 5822 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5823 n++; 5824 lc->requested_fc &= ~PAUSE_TX; 5825 } 5826 if (lc->requested_fc & PAUSE_RX && 5827 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5828 n++; 5829 lc->requested_fc &= ~PAUSE_RX; 5830 } 5831 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5832 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5833 n++; 5834 lc->requested_fc |= PAUSE_AUTONEG; 5835 } 5836 5837 /* FEC */ 5838 if ((lc->requested_fec & FEC_RS && 5839 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5840 (lc->requested_fec & FEC_BASER_RS && 5841 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5842 n++; 5843 lc->requested_fec = FEC_AUTO; 5844 } 5845 5846 return (n); 5847 } 5848 5849 /* 5850 * Apply the requested L1 settings, which are expected to be valid, to the 5851 * hardware. 5852 */ 5853 static int 5854 apply_link_config(struct port_info *pi) 5855 { 5856 struct adapter *sc = pi->adapter; 5857 struct link_config *lc = &pi->link_cfg; 5858 int rc; 5859 5860 #ifdef INVARIANTS 5861 ASSERT_SYNCHRONIZED_OP(sc); 5862 PORT_LOCK_ASSERT_OWNED(pi); 5863 5864 if (lc->requested_aneg == AUTONEG_ENABLE) 5865 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5866 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5867 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5868 if (lc->requested_fc & PAUSE_TX) 5869 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5870 if (lc->requested_fc & PAUSE_RX) 5871 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5872 if (lc->requested_fec & FEC_RS) 5873 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5874 if (lc->requested_fec & FEC_BASER_RS) 5875 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5876 #endif 5877 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5878 if (rc != 0) { 5879 /* Don't complain if the VF driver gets back an EPERM. */ 5880 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5881 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5882 } else { 5883 /* 5884 * An L1_CFG will almost always result in a link-change event if 5885 * the link is up, and the driver will refresh the actual 5886 * fec/fc/etc. when the notification is processed. If the link 5887 * is down then the actual settings are meaningless. 5888 * 5889 * This takes care of the case where a change in the L1 settings 5890 * may not result in a notification. 5891 */ 5892 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5893 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5894 } 5895 return (rc); 5896 } 5897 5898 #define FW_MAC_EXACT_CHUNK 7 5899 struct mcaddr_ctx { 5900 struct ifnet *ifp; 5901 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5902 uint64_t hash; 5903 int i; 5904 int del; 5905 int rc; 5906 }; 5907 5908 static u_int 5909 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5910 { 5911 struct mcaddr_ctx *ctx = arg; 5912 struct vi_info *vi = ctx->ifp->if_softc; 5913 struct port_info *pi = vi->pi; 5914 struct adapter *sc = pi->adapter; 5915 5916 if (ctx->rc < 0) 5917 return (0); 5918 5919 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5920 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5921 ctx->i++; 5922 5923 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5924 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5925 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5926 if (ctx->rc < 0) { 5927 int j; 5928 5929 for (j = 0; j < ctx->i; j++) { 5930 if_printf(ctx->ifp, 5931 "failed to add mc address" 5932 " %02x:%02x:%02x:" 5933 "%02x:%02x:%02x rc=%d\n", 5934 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5935 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5936 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5937 -ctx->rc); 5938 } 5939 return (0); 5940 } 5941 ctx->del = 0; 5942 ctx->i = 0; 5943 } 5944 5945 return (1); 5946 } 5947 5948 /* 5949 * Program the port's XGMAC based on parameters in ifnet. The caller also 5950 * indicates which parameters should be programmed (the rest are left alone). 5951 */ 5952 int 5953 update_mac_settings(struct ifnet *ifp, int flags) 5954 { 5955 int rc = 0; 5956 struct vi_info *vi = ifp->if_softc; 5957 struct port_info *pi = vi->pi; 5958 struct adapter *sc = pi->adapter; 5959 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5960 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 5961 5962 ASSERT_SYNCHRONIZED_OP(sc); 5963 KASSERT(flags, ("%s: not told what to update.", __func__)); 5964 5965 if (flags & XGMAC_MTU) 5966 mtu = ifp->if_mtu; 5967 5968 if (flags & XGMAC_PROMISC) 5969 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5970 5971 if (flags & XGMAC_ALLMULTI) 5972 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5973 5974 if (flags & XGMAC_VLANEX) 5975 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5976 5977 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5978 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5979 allmulti, 1, vlanex, false); 5980 if (rc) { 5981 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5982 rc); 5983 return (rc); 5984 } 5985 } 5986 5987 if (flags & XGMAC_UCADDR) { 5988 uint8_t ucaddr[ETHER_ADDR_LEN]; 5989 5990 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5991 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5992 ucaddr, true, &vi->smt_idx); 5993 if (rc < 0) { 5994 rc = -rc; 5995 if_printf(ifp, "change_mac failed: %d\n", rc); 5996 return (rc); 5997 } else { 5998 vi->xact_addr_filt = rc; 5999 rc = 0; 6000 } 6001 } 6002 6003 if (flags & XGMAC_MCADDRS) { 6004 struct epoch_tracker et; 6005 struct mcaddr_ctx ctx; 6006 int j; 6007 6008 ctx.ifp = ifp; 6009 ctx.hash = 0; 6010 ctx.i = 0; 6011 ctx.del = 1; 6012 ctx.rc = 0; 6013 /* 6014 * Unlike other drivers, we accumulate list of pointers into 6015 * interface address lists and we need to keep it safe even 6016 * after if_foreach_llmaddr() returns, thus we must enter the 6017 * network epoch. 6018 */ 6019 NET_EPOCH_ENTER(et); 6020 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6021 if (ctx.rc < 0) { 6022 NET_EPOCH_EXIT(et); 6023 rc = -ctx.rc; 6024 return (rc); 6025 } 6026 if (ctx.i > 0) { 6027 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6028 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6029 NET_EPOCH_EXIT(et); 6030 if (rc < 0) { 6031 rc = -rc; 6032 for (j = 0; j < ctx.i; j++) { 6033 if_printf(ifp, 6034 "failed to add mcast address" 6035 " %02x:%02x:%02x:" 6036 "%02x:%02x:%02x rc=%d\n", 6037 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6038 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6039 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6040 rc); 6041 } 6042 return (rc); 6043 } 6044 ctx.del = 0; 6045 } else 6046 NET_EPOCH_EXIT(et); 6047 6048 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6049 if (rc != 0) 6050 if_printf(ifp, "failed to set mcast address hash: %d\n", 6051 rc); 6052 if (ctx.del == 0) { 6053 /* We clobbered the VXLAN entry if there was one. */ 6054 pi->vxlan_tcam_entry = false; 6055 } 6056 } 6057 6058 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6059 pi->vxlan_tcam_entry == false) { 6060 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6061 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6062 true); 6063 if (rc < 0) { 6064 rc = -rc; 6065 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6066 rc); 6067 } else { 6068 MPASS(rc == sc->rawf_base + pi->port_id); 6069 rc = 0; 6070 pi->vxlan_tcam_entry = true; 6071 } 6072 } 6073 6074 return (rc); 6075 } 6076 6077 /* 6078 * {begin|end}_synchronized_op must be called from the same thread. 6079 */ 6080 int 6081 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6082 char *wmesg) 6083 { 6084 int rc, pri; 6085 6086 #ifdef WITNESS 6087 /* the caller thinks it's ok to sleep, but is it really? */ 6088 if (flags & SLEEP_OK) 6089 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6090 "begin_synchronized_op"); 6091 #endif 6092 6093 if (INTR_OK) 6094 pri = PCATCH; 6095 else 6096 pri = 0; 6097 6098 ADAPTER_LOCK(sc); 6099 for (;;) { 6100 6101 if (vi && IS_DOOMED(vi)) { 6102 rc = ENXIO; 6103 goto done; 6104 } 6105 6106 if (!IS_BUSY(sc)) { 6107 rc = 0; 6108 break; 6109 } 6110 6111 if (!(flags & SLEEP_OK)) { 6112 rc = EBUSY; 6113 goto done; 6114 } 6115 6116 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6117 rc = EINTR; 6118 goto done; 6119 } 6120 } 6121 6122 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6123 SET_BUSY(sc); 6124 #ifdef INVARIANTS 6125 sc->last_op = wmesg; 6126 sc->last_op_thr = curthread; 6127 sc->last_op_flags = flags; 6128 #endif 6129 6130 done: 6131 if (!(flags & HOLD_LOCK) || rc) 6132 ADAPTER_UNLOCK(sc); 6133 6134 return (rc); 6135 } 6136 6137 /* 6138 * Tell if_ioctl and if_init that the VI is going away. This is 6139 * special variant of begin_synchronized_op and must be paired with a 6140 * call to end_synchronized_op. 6141 */ 6142 void 6143 doom_vi(struct adapter *sc, struct vi_info *vi) 6144 { 6145 6146 ADAPTER_LOCK(sc); 6147 SET_DOOMED(vi); 6148 wakeup(&sc->flags); 6149 while (IS_BUSY(sc)) 6150 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6151 SET_BUSY(sc); 6152 #ifdef INVARIANTS 6153 sc->last_op = "t4detach"; 6154 sc->last_op_thr = curthread; 6155 sc->last_op_flags = 0; 6156 #endif 6157 ADAPTER_UNLOCK(sc); 6158 } 6159 6160 /* 6161 * {begin|end}_synchronized_op must be called from the same thread. 6162 */ 6163 void 6164 end_synchronized_op(struct adapter *sc, int flags) 6165 { 6166 6167 if (flags & LOCK_HELD) 6168 ADAPTER_LOCK_ASSERT_OWNED(sc); 6169 else 6170 ADAPTER_LOCK(sc); 6171 6172 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6173 CLR_BUSY(sc); 6174 wakeup(&sc->flags); 6175 ADAPTER_UNLOCK(sc); 6176 } 6177 6178 static int 6179 cxgbe_init_synchronized(struct vi_info *vi) 6180 { 6181 struct port_info *pi = vi->pi; 6182 struct adapter *sc = pi->adapter; 6183 struct ifnet *ifp = vi->ifp; 6184 int rc = 0, i; 6185 struct sge_txq *txq; 6186 6187 ASSERT_SYNCHRONIZED_OP(sc); 6188 6189 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6190 return (0); /* already running */ 6191 6192 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6193 return (rc); /* error message displayed already */ 6194 6195 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6196 return (rc); /* error message displayed already */ 6197 6198 rc = update_mac_settings(ifp, XGMAC_ALL); 6199 if (rc) 6200 goto done; /* error message displayed already */ 6201 6202 PORT_LOCK(pi); 6203 if (pi->up_vis == 0) { 6204 t4_update_port_info(pi); 6205 fixup_link_config(pi); 6206 build_medialist(pi); 6207 apply_link_config(pi); 6208 } 6209 6210 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6211 if (rc != 0) { 6212 if_printf(ifp, "enable_vi failed: %d\n", rc); 6213 PORT_UNLOCK(pi); 6214 goto done; 6215 } 6216 6217 /* 6218 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6219 * if this changes. 6220 */ 6221 6222 for_each_txq(vi, i, txq) { 6223 TXQ_LOCK(txq); 6224 txq->eq.flags |= EQ_ENABLED; 6225 TXQ_UNLOCK(txq); 6226 } 6227 6228 /* 6229 * The first iq of the first port to come up is used for tracing. 6230 */ 6231 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6232 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6233 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6234 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6235 V_QUEUENUMBER(sc->traceq)); 6236 pi->flags |= HAS_TRACEQ; 6237 } 6238 6239 /* all ok */ 6240 pi->up_vis++; 6241 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6242 if (pi->link_cfg.link_ok) 6243 t4_os_link_changed(pi); 6244 PORT_UNLOCK(pi); 6245 6246 mtx_lock(&vi->tick_mtx); 6247 if (ifp->if_get_counter == vi_get_counter) 6248 callout_reset(&vi->tick, hz, vi_tick, vi); 6249 else 6250 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6251 mtx_unlock(&vi->tick_mtx); 6252 done: 6253 if (rc != 0) 6254 cxgbe_uninit_synchronized(vi); 6255 6256 return (rc); 6257 } 6258 6259 /* 6260 * Idempotent. 6261 */ 6262 static int 6263 cxgbe_uninit_synchronized(struct vi_info *vi) 6264 { 6265 struct port_info *pi = vi->pi; 6266 struct adapter *sc = pi->adapter; 6267 struct ifnet *ifp = vi->ifp; 6268 int rc, i; 6269 struct sge_txq *txq; 6270 6271 ASSERT_SYNCHRONIZED_OP(sc); 6272 6273 if (!(vi->flags & VI_INIT_DONE)) { 6274 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6275 KASSERT(0, ("uninited VI is running")); 6276 if_printf(ifp, "uninited VI with running ifnet. " 6277 "vi->flags 0x%016lx, if_flags 0x%08x, " 6278 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6279 ifp->if_drv_flags); 6280 } 6281 return (0); 6282 } 6283 6284 /* 6285 * Disable the VI so that all its data in either direction is discarded 6286 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6287 * tick) intact as the TP can deliver negative advice or data that it's 6288 * holding in its RAM (for an offloaded connection) even after the VI is 6289 * disabled. 6290 */ 6291 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6292 if (rc) { 6293 if_printf(ifp, "disable_vi failed: %d\n", rc); 6294 return (rc); 6295 } 6296 6297 for_each_txq(vi, i, txq) { 6298 TXQ_LOCK(txq); 6299 txq->eq.flags &= ~EQ_ENABLED; 6300 TXQ_UNLOCK(txq); 6301 } 6302 6303 mtx_lock(&vi->tick_mtx); 6304 callout_stop(&vi->tick); 6305 mtx_unlock(&vi->tick_mtx); 6306 6307 PORT_LOCK(pi); 6308 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6309 PORT_UNLOCK(pi); 6310 return (0); 6311 } 6312 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6313 pi->up_vis--; 6314 if (pi->up_vis > 0) { 6315 PORT_UNLOCK(pi); 6316 return (0); 6317 } 6318 6319 pi->link_cfg.link_ok = false; 6320 pi->link_cfg.speed = 0; 6321 pi->link_cfg.link_down_rc = 255; 6322 t4_os_link_changed(pi); 6323 PORT_UNLOCK(pi); 6324 6325 return (0); 6326 } 6327 6328 /* 6329 * It is ok for this function to fail midway and return right away. t4_detach 6330 * will walk the entire sc->irq list and clean up whatever is valid. 6331 */ 6332 int 6333 t4_setup_intr_handlers(struct adapter *sc) 6334 { 6335 int rc, rid, p, q, v; 6336 char s[8]; 6337 struct irq *irq; 6338 struct port_info *pi; 6339 struct vi_info *vi; 6340 struct sge *sge = &sc->sge; 6341 struct sge_rxq *rxq; 6342 #ifdef TCP_OFFLOAD 6343 struct sge_ofld_rxq *ofld_rxq; 6344 #endif 6345 #ifdef DEV_NETMAP 6346 struct sge_nm_rxq *nm_rxq; 6347 #endif 6348 #ifdef RSS 6349 int nbuckets = rss_getnumbuckets(); 6350 #endif 6351 6352 /* 6353 * Setup interrupts. 6354 */ 6355 irq = &sc->irq[0]; 6356 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6357 if (forwarding_intr_to_fwq(sc)) 6358 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6359 6360 /* Multiple interrupts. */ 6361 if (sc->flags & IS_VF) 6362 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6363 ("%s: too few intr.", __func__)); 6364 else 6365 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6366 ("%s: too few intr.", __func__)); 6367 6368 /* The first one is always error intr on PFs */ 6369 if (!(sc->flags & IS_VF)) { 6370 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6371 if (rc != 0) 6372 return (rc); 6373 irq++; 6374 rid++; 6375 } 6376 6377 /* The second one is always the firmware event queue (first on VFs) */ 6378 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6379 if (rc != 0) 6380 return (rc); 6381 irq++; 6382 rid++; 6383 6384 for_each_port(sc, p) { 6385 pi = sc->port[p]; 6386 for_each_vi(pi, v, vi) { 6387 vi->first_intr = rid - 1; 6388 6389 if (vi->nnmrxq > 0) { 6390 int n = max(vi->nrxq, vi->nnmrxq); 6391 6392 rxq = &sge->rxq[vi->first_rxq]; 6393 #ifdef DEV_NETMAP 6394 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6395 #endif 6396 for (q = 0; q < n; q++) { 6397 snprintf(s, sizeof(s), "%x%c%x", p, 6398 'a' + v, q); 6399 if (q < vi->nrxq) 6400 irq->rxq = rxq++; 6401 #ifdef DEV_NETMAP 6402 if (q < vi->nnmrxq) 6403 irq->nm_rxq = nm_rxq++; 6404 6405 if (irq->nm_rxq != NULL && 6406 irq->rxq == NULL) { 6407 /* Netmap rx only */ 6408 rc = t4_alloc_irq(sc, irq, rid, 6409 t4_nm_intr, irq->nm_rxq, s); 6410 } 6411 if (irq->nm_rxq != NULL && 6412 irq->rxq != NULL) { 6413 /* NIC and Netmap rx */ 6414 rc = t4_alloc_irq(sc, irq, rid, 6415 t4_vi_intr, irq, s); 6416 } 6417 #endif 6418 if (irq->rxq != NULL && 6419 irq->nm_rxq == NULL) { 6420 /* NIC rx only */ 6421 rc = t4_alloc_irq(sc, irq, rid, 6422 t4_intr, irq->rxq, s); 6423 } 6424 if (rc != 0) 6425 return (rc); 6426 #ifdef RSS 6427 if (q < vi->nrxq) { 6428 bus_bind_intr(sc->dev, irq->res, 6429 rss_getcpu(q % nbuckets)); 6430 } 6431 #endif 6432 irq++; 6433 rid++; 6434 vi->nintr++; 6435 } 6436 } else { 6437 for_each_rxq(vi, q, rxq) { 6438 snprintf(s, sizeof(s), "%x%c%x", p, 6439 'a' + v, q); 6440 rc = t4_alloc_irq(sc, irq, rid, 6441 t4_intr, rxq, s); 6442 if (rc != 0) 6443 return (rc); 6444 #ifdef RSS 6445 bus_bind_intr(sc->dev, irq->res, 6446 rss_getcpu(q % nbuckets)); 6447 #endif 6448 irq++; 6449 rid++; 6450 vi->nintr++; 6451 } 6452 } 6453 #ifdef TCP_OFFLOAD 6454 for_each_ofld_rxq(vi, q, ofld_rxq) { 6455 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6456 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6457 ofld_rxq, s); 6458 if (rc != 0) 6459 return (rc); 6460 irq++; 6461 rid++; 6462 vi->nintr++; 6463 } 6464 #endif 6465 } 6466 } 6467 MPASS(irq == &sc->irq[sc->intr_count]); 6468 6469 return (0); 6470 } 6471 6472 static void 6473 write_global_rss_key(struct adapter *sc) 6474 { 6475 #ifdef RSS 6476 int i; 6477 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6478 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6479 6480 CTASSERT(RSS_KEYSIZE == 40); 6481 6482 rss_getkey((void *)&raw_rss_key[0]); 6483 for (i = 0; i < nitems(rss_key); i++) { 6484 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6485 } 6486 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6487 #endif 6488 } 6489 6490 /* 6491 * Idempotent. 6492 */ 6493 static int 6494 adapter_full_init(struct adapter *sc) 6495 { 6496 int rc, i; 6497 6498 ASSERT_SYNCHRONIZED_OP(sc); 6499 6500 if (!(sc->flags & ADAP_SYSCTL_CTX)) { 6501 sysctl_ctx_init(&sc->ctx); 6502 sc->flags |= ADAP_SYSCTL_CTX; 6503 } 6504 6505 /* 6506 * queues that belong to the adapter (not any particular port). 6507 */ 6508 rc = t4_setup_adapter_queues(sc); 6509 if (rc != 0) 6510 return (rc); 6511 6512 for (i = 0; i < nitems(sc->tq); i++) { 6513 if (sc->tq[i] != NULL) 6514 continue; 6515 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6516 taskqueue_thread_enqueue, &sc->tq[i]); 6517 if (sc->tq[i] == NULL) { 6518 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6519 return (ENOMEM); 6520 } 6521 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6522 device_get_nameunit(sc->dev), i); 6523 } 6524 6525 if (!(sc->flags & IS_VF)) { 6526 write_global_rss_key(sc); 6527 t4_intr_enable(sc); 6528 } 6529 #ifdef KERN_TLS 6530 if (is_ktls(sc)) 6531 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6532 C_HARDCLOCK); 6533 #endif 6534 return (0); 6535 } 6536 6537 int 6538 adapter_init(struct adapter *sc) 6539 { 6540 int rc; 6541 6542 ASSERT_SYNCHRONIZED_OP(sc); 6543 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6544 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6545 ("%s: FULL_INIT_DONE already", __func__)); 6546 6547 rc = adapter_full_init(sc); 6548 if (rc != 0) 6549 adapter_full_uninit(sc); 6550 else 6551 sc->flags |= FULL_INIT_DONE; 6552 6553 return (rc); 6554 } 6555 6556 /* 6557 * Idempotent. 6558 */ 6559 static void 6560 adapter_full_uninit(struct adapter *sc) 6561 { 6562 int i; 6563 6564 /* Do this before freeing the adapter queues. */ 6565 if (sc->flags & ADAP_SYSCTL_CTX) { 6566 sysctl_ctx_free(&sc->ctx); 6567 sc->flags &= ~ADAP_SYSCTL_CTX; 6568 } 6569 6570 t4_teardown_adapter_queues(sc); 6571 6572 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6573 taskqueue_free(sc->tq[i]); 6574 sc->tq[i] = NULL; 6575 } 6576 6577 sc->flags &= ~FULL_INIT_DONE; 6578 } 6579 6580 #ifdef RSS 6581 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6582 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6583 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6584 RSS_HASHTYPE_RSS_UDP_IPV6) 6585 6586 /* Translates kernel hash types to hardware. */ 6587 static int 6588 hashconfig_to_hashen(int hashconfig) 6589 { 6590 int hashen = 0; 6591 6592 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6593 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6594 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6595 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6596 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6597 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6598 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6599 } 6600 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6601 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6602 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6603 } 6604 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6605 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6606 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6607 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6608 6609 return (hashen); 6610 } 6611 6612 /* Translates hardware hash types to kernel. */ 6613 static int 6614 hashen_to_hashconfig(int hashen) 6615 { 6616 int hashconfig = 0; 6617 6618 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6619 /* 6620 * If UDP hashing was enabled it must have been enabled for 6621 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6622 * enabling any 4-tuple hash is nonsense configuration. 6623 */ 6624 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6625 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6626 6627 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6628 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6629 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6630 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6631 } 6632 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6633 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6634 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6635 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6636 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6637 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6638 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6639 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6640 6641 return (hashconfig); 6642 } 6643 #endif 6644 6645 /* 6646 * Idempotent. 6647 */ 6648 static int 6649 vi_full_init(struct vi_info *vi) 6650 { 6651 struct adapter *sc = vi->adapter; 6652 struct sge_rxq *rxq; 6653 int rc, i, j; 6654 #ifdef RSS 6655 int nbuckets = rss_getnumbuckets(); 6656 int hashconfig = rss_gethashconfig(); 6657 int extra; 6658 #endif 6659 6660 ASSERT_SYNCHRONIZED_OP(sc); 6661 6662 if (!(vi->flags & VI_SYSCTL_CTX)) { 6663 sysctl_ctx_init(&vi->ctx); 6664 vi->flags |= VI_SYSCTL_CTX; 6665 } 6666 6667 /* 6668 * Allocate tx/rx/fl queues for this VI. 6669 */ 6670 rc = t4_setup_vi_queues(vi); 6671 if (rc != 0) 6672 return (rc); 6673 6674 /* 6675 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6676 */ 6677 if (vi->nrxq > vi->rss_size) { 6678 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6679 "some queues will never receive traffic.\n", vi->nrxq, 6680 vi->rss_size); 6681 } else if (vi->rss_size % vi->nrxq) { 6682 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6683 "expect uneven traffic distribution.\n", vi->nrxq, 6684 vi->rss_size); 6685 } 6686 #ifdef RSS 6687 if (vi->nrxq != nbuckets) { 6688 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6689 "performance will be impacted.\n", vi->nrxq, nbuckets); 6690 } 6691 #endif 6692 if (vi->rss == NULL) 6693 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6694 M_ZERO | M_WAITOK); 6695 for (i = 0; i < vi->rss_size;) { 6696 #ifdef RSS 6697 j = rss_get_indirection_to_bucket(i); 6698 j %= vi->nrxq; 6699 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6700 vi->rss[i++] = rxq->iq.abs_id; 6701 #else 6702 for_each_rxq(vi, j, rxq) { 6703 vi->rss[i++] = rxq->iq.abs_id; 6704 if (i == vi->rss_size) 6705 break; 6706 } 6707 #endif 6708 } 6709 6710 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6711 vi->rss, vi->rss_size); 6712 if (rc != 0) { 6713 CH_ERR(vi, "rss_config failed: %d\n", rc); 6714 return (rc); 6715 } 6716 6717 #ifdef RSS 6718 vi->hashen = hashconfig_to_hashen(hashconfig); 6719 6720 /* 6721 * We may have had to enable some hashes even though the global config 6722 * wants them disabled. This is a potential problem that must be 6723 * reported to the user. 6724 */ 6725 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6726 6727 /* 6728 * If we consider only the supported hash types, then the enabled hashes 6729 * are a superset of the requested hashes. In other words, there cannot 6730 * be any supported hash that was requested but not enabled, but there 6731 * can be hashes that were not requested but had to be enabled. 6732 */ 6733 extra &= SUPPORTED_RSS_HASHTYPES; 6734 MPASS((extra & hashconfig) == 0); 6735 6736 if (extra) { 6737 CH_ALERT(vi, 6738 "global RSS config (0x%x) cannot be accommodated.\n", 6739 hashconfig); 6740 } 6741 if (extra & RSS_HASHTYPE_RSS_IPV4) 6742 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6743 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6744 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6745 if (extra & RSS_HASHTYPE_RSS_IPV6) 6746 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6747 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6748 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6749 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6750 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6751 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6752 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6753 #else 6754 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6755 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6756 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6757 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6758 #endif 6759 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6760 0, 0); 6761 if (rc != 0) { 6762 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6763 return (rc); 6764 } 6765 6766 return (0); 6767 } 6768 6769 int 6770 vi_init(struct vi_info *vi) 6771 { 6772 int rc; 6773 6774 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6775 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6776 ("%s: VI_INIT_DONE already", __func__)); 6777 6778 rc = vi_full_init(vi); 6779 if (rc != 0) 6780 vi_full_uninit(vi); 6781 else 6782 vi->flags |= VI_INIT_DONE; 6783 6784 return (rc); 6785 } 6786 6787 /* 6788 * Idempotent. 6789 */ 6790 static void 6791 vi_full_uninit(struct vi_info *vi) 6792 { 6793 6794 if (vi->flags & VI_INIT_DONE) { 6795 quiesce_vi(vi); 6796 free(vi->rss, M_CXGBE); 6797 free(vi->nm_rss, M_CXGBE); 6798 } 6799 6800 /* Do this before freeing the VI queues. */ 6801 if (vi->flags & VI_SYSCTL_CTX) { 6802 sysctl_ctx_free(&vi->ctx); 6803 vi->flags &= ~VI_SYSCTL_CTX; 6804 } 6805 6806 t4_teardown_vi_queues(vi); 6807 vi->flags &= ~VI_INIT_DONE; 6808 } 6809 6810 static void 6811 quiesce_txq(struct sge_txq *txq) 6812 { 6813 struct sge_eq *eq = &txq->eq; 6814 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6815 6816 MPASS(eq->flags & EQ_SW_ALLOCATED); 6817 MPASS(!(eq->flags & EQ_ENABLED)); 6818 6819 /* Wait for the mp_ring to empty. */ 6820 while (!mp_ring_is_idle(txq->r)) { 6821 mp_ring_check_drainage(txq->r, 4096); 6822 pause("rquiesce", 1); 6823 } 6824 MPASS(txq->txp.npkt == 0); 6825 6826 if (eq->flags & EQ_HW_ALLOCATED) { 6827 /* 6828 * Hardware is alive and working normally. Wait for it to 6829 * finish and then wait for the driver to catch up and reclaim 6830 * all descriptors. 6831 */ 6832 while (spg->cidx != htobe16(eq->pidx)) 6833 pause("equiesce", 1); 6834 while (eq->cidx != eq->pidx) 6835 pause("dquiesce", 1); 6836 } else { 6837 /* 6838 * Hardware is unavailable. Discard all pending tx and reclaim 6839 * descriptors directly. 6840 */ 6841 TXQ_LOCK(txq); 6842 while (eq->cidx != eq->pidx) { 6843 struct mbuf *m, *nextpkt; 6844 struct tx_sdesc *txsd; 6845 6846 txsd = &txq->sdesc[eq->cidx]; 6847 for (m = txsd->m; m != NULL; m = nextpkt) { 6848 nextpkt = m->m_nextpkt; 6849 m->m_nextpkt = NULL; 6850 m_freem(m); 6851 } 6852 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6853 } 6854 spg->pidx = spg->cidx = htobe16(eq->cidx); 6855 TXQ_UNLOCK(txq); 6856 } 6857 } 6858 6859 static void 6860 quiesce_wrq(struct sge_wrq *wrq) 6861 { 6862 6863 /* XXXTX */ 6864 } 6865 6866 static void 6867 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6868 { 6869 /* Synchronize with the interrupt handler */ 6870 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6871 pause("iqfree", 1); 6872 6873 if (fl != NULL) { 6874 MPASS(iq->flags & IQ_HAS_FL); 6875 6876 mtx_lock(&sc->sfl_lock); 6877 FL_LOCK(fl); 6878 fl->flags |= FL_DOOMED; 6879 FL_UNLOCK(fl); 6880 callout_stop(&sc->sfl_callout); 6881 mtx_unlock(&sc->sfl_lock); 6882 6883 KASSERT((fl->flags & FL_STARVING) == 0, 6884 ("%s: still starving", __func__)); 6885 6886 /* Release all buffers if hardware is no longer available. */ 6887 if (!(iq->flags & IQ_HW_ALLOCATED)) 6888 free_fl_buffers(sc, fl); 6889 } 6890 } 6891 6892 /* 6893 * Wait for all activity on all the queues of the VI to complete. It is assumed 6894 * that no new work is being enqueued by the hardware or the driver. That part 6895 * should be arranged before calling this function. 6896 */ 6897 static void 6898 quiesce_vi(struct vi_info *vi) 6899 { 6900 int i; 6901 struct adapter *sc = vi->adapter; 6902 struct sge_rxq *rxq; 6903 struct sge_txq *txq; 6904 #ifdef TCP_OFFLOAD 6905 struct sge_ofld_rxq *ofld_rxq; 6906 #endif 6907 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6908 struct sge_ofld_txq *ofld_txq; 6909 #endif 6910 6911 if (!(vi->flags & VI_INIT_DONE)) 6912 return; 6913 6914 for_each_txq(vi, i, txq) { 6915 quiesce_txq(txq); 6916 } 6917 6918 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6919 for_each_ofld_txq(vi, i, ofld_txq) { 6920 quiesce_wrq(&ofld_txq->wrq); 6921 } 6922 #endif 6923 6924 for_each_rxq(vi, i, rxq) { 6925 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6926 } 6927 6928 #ifdef TCP_OFFLOAD 6929 for_each_ofld_rxq(vi, i, ofld_rxq) { 6930 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6931 } 6932 #endif 6933 } 6934 6935 static int 6936 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6937 driver_intr_t *handler, void *arg, char *name) 6938 { 6939 int rc; 6940 6941 irq->rid = rid; 6942 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6943 RF_SHAREABLE | RF_ACTIVE); 6944 if (irq->res == NULL) { 6945 device_printf(sc->dev, 6946 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6947 return (ENOMEM); 6948 } 6949 6950 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6951 NULL, handler, arg, &irq->tag); 6952 if (rc != 0) { 6953 device_printf(sc->dev, 6954 "failed to setup interrupt for rid %d, name %s: %d\n", 6955 rid, name, rc); 6956 } else if (name) 6957 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6958 6959 return (rc); 6960 } 6961 6962 static int 6963 t4_free_irq(struct adapter *sc, struct irq *irq) 6964 { 6965 if (irq->tag) 6966 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6967 if (irq->res) 6968 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6969 6970 bzero(irq, sizeof(*irq)); 6971 6972 return (0); 6973 } 6974 6975 static void 6976 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6977 { 6978 6979 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6980 t4_get_regs(sc, buf, regs->len); 6981 } 6982 6983 #define A_PL_INDIR_CMD 0x1f8 6984 6985 #define S_PL_AUTOINC 31 6986 #define M_PL_AUTOINC 0x1U 6987 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6988 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6989 6990 #define S_PL_VFID 20 6991 #define M_PL_VFID 0xffU 6992 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6993 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6994 6995 #define S_PL_ADDR 0 6996 #define M_PL_ADDR 0xfffffU 6997 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6998 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6999 7000 #define A_PL_INDIR_DATA 0x1fc 7001 7002 static uint64_t 7003 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7004 { 7005 u32 stats[2]; 7006 7007 if (sc->flags & IS_VF) { 7008 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7009 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7010 } else { 7011 mtx_assert(&sc->reg_lock, MA_OWNED); 7012 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7013 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7014 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7015 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7016 } 7017 return (((uint64_t)stats[1]) << 32 | stats[0]); 7018 } 7019 7020 static void 7021 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7022 { 7023 7024 #define GET_STAT(name) \ 7025 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7026 7027 if (!(sc->flags & IS_VF)) 7028 mtx_lock(&sc->reg_lock); 7029 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7030 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7031 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7032 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7033 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7034 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7035 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7036 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7037 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7038 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7039 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7040 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7041 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7042 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7043 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7044 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7045 if (!(sc->flags & IS_VF)) 7046 mtx_unlock(&sc->reg_lock); 7047 7048 #undef GET_STAT 7049 } 7050 7051 static void 7052 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7053 { 7054 int reg; 7055 7056 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7057 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7058 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7059 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7060 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7061 } 7062 7063 static void 7064 vi_refresh_stats(struct vi_info *vi) 7065 { 7066 struct timeval tv; 7067 const struct timeval interval = {0, 250000}; /* 250ms */ 7068 7069 mtx_assert(&vi->tick_mtx, MA_OWNED); 7070 7071 if (!(vi->flags & VI_INIT_DONE) || vi->flags & VI_SKIP_STATS) 7072 return; 7073 7074 getmicrotime(&tv); 7075 timevalsub(&tv, &interval); 7076 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7077 return; 7078 7079 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7080 getmicrotime(&vi->last_refreshed); 7081 } 7082 7083 static void 7084 cxgbe_refresh_stats(struct vi_info *vi) 7085 { 7086 u_int i, v, tnl_cong_drops, chan_map; 7087 struct timeval tv; 7088 const struct timeval interval = {0, 250000}; /* 250ms */ 7089 struct port_info *pi; 7090 struct adapter *sc; 7091 7092 mtx_assert(&vi->tick_mtx, MA_OWNED); 7093 7094 if (vi->flags & VI_SKIP_STATS) 7095 return; 7096 7097 getmicrotime(&tv); 7098 timevalsub(&tv, &interval); 7099 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7100 return; 7101 7102 pi = vi->pi; 7103 sc = vi->adapter; 7104 tnl_cong_drops = 0; 7105 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 7106 chan_map = pi->rx_e_chan_map; 7107 while (chan_map) { 7108 i = ffs(chan_map) - 1; 7109 mtx_lock(&sc->reg_lock); 7110 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7111 A_TP_MIB_TNL_CNG_DROP_0 + i); 7112 mtx_unlock(&sc->reg_lock); 7113 tnl_cong_drops += v; 7114 chan_map &= ~(1 << i); 7115 } 7116 pi->tnl_cong_drops = tnl_cong_drops; 7117 getmicrotime(&vi->last_refreshed); 7118 } 7119 7120 static void 7121 cxgbe_tick(void *arg) 7122 { 7123 struct vi_info *vi = arg; 7124 7125 MPASS(IS_MAIN_VI(vi)); 7126 mtx_assert(&vi->tick_mtx, MA_OWNED); 7127 7128 cxgbe_refresh_stats(vi); 7129 callout_schedule(&vi->tick, hz); 7130 } 7131 7132 static void 7133 vi_tick(void *arg) 7134 { 7135 struct vi_info *vi = arg; 7136 7137 mtx_assert(&vi->tick_mtx, MA_OWNED); 7138 7139 vi_refresh_stats(vi); 7140 callout_schedule(&vi->tick, hz); 7141 } 7142 7143 /* 7144 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7145 */ 7146 static char *caps_decoder[] = { 7147 "\20\001IPMI\002NCSI", /* 0: NBM */ 7148 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7149 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7150 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7151 "\006HASHFILTER\007ETHOFLD", 7152 "\20\001TOE", /* 4: TOE */ 7153 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7154 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7155 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7156 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7157 "\007T10DIF" 7158 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7159 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7160 "\004TLS_HW", 7161 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7162 "\004PO_INITIATOR\005PO_TARGET", 7163 }; 7164 7165 void 7166 t4_sysctls(struct adapter *sc) 7167 { 7168 struct sysctl_ctx_list *ctx; 7169 struct sysctl_oid *oid; 7170 struct sysctl_oid_list *children, *c0; 7171 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7172 7173 ctx = device_get_sysctl_ctx(sc->dev); 7174 7175 /* 7176 * dev.t4nex.X. 7177 */ 7178 oid = device_get_sysctl_tree(sc->dev); 7179 c0 = children = SYSCTL_CHILDREN(oid); 7180 7181 sc->sc_do_rxcopy = 1; 7182 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7183 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7184 7185 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7186 sc->params.nports, "# of ports"); 7187 7188 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7189 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7190 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7191 "available doorbells"); 7192 7193 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7194 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7195 7196 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7197 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7198 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7199 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7200 7201 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7202 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7203 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7204 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7205 7206 t4_sge_sysctls(sc, ctx, children); 7207 7208 sc->lro_timeout = 100; 7209 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7210 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7211 7212 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7213 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7214 7215 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7216 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7217 7218 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7219 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7220 7221 if (sc->flags & IS_VF) 7222 return; 7223 7224 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7225 NULL, chip_rev(sc), "chip hardware revision"); 7226 7227 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7228 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7229 7230 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7231 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7232 7233 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7234 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7235 7236 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7237 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7238 7239 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7240 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7241 7242 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7243 sc->er_version, 0, "expansion ROM version"); 7244 7245 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7246 sc->bs_version, 0, "bootstrap firmware version"); 7247 7248 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7249 NULL, sc->params.scfg_vers, "serial config version"); 7250 7251 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7252 NULL, sc->params.vpd_vers, "VPD version"); 7253 7254 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7255 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7256 7257 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7258 sc->cfcsum, "config file checksum"); 7259 7260 #define SYSCTL_CAP(name, n, text) \ 7261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7262 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7263 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7264 "available " text " capabilities") 7265 7266 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7267 SYSCTL_CAP(linkcaps, 1, "link"); 7268 SYSCTL_CAP(switchcaps, 2, "switch"); 7269 SYSCTL_CAP(niccaps, 3, "NIC"); 7270 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7271 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7272 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7273 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7274 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7275 #undef SYSCTL_CAP 7276 7277 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7278 NULL, sc->tids.nftids, "number of filters"); 7279 7280 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7281 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7282 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7283 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7284 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7285 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7286 7287 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7288 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7289 sysctl_loadavg, "A", 7290 "microprocessor load averages (debug firmwares only)"); 7291 7292 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7293 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7294 "I", "core Vdd (in mV)"); 7295 7296 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7297 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7298 sysctl_cpus, "A", "local CPUs"); 7299 7300 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7301 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7302 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7303 7304 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7305 &sc->swintr, 0, "software triggered interrupts"); 7306 7307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7308 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7309 "1 = reset adapter, 0 = zero reset counter"); 7310 7311 /* 7312 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7313 */ 7314 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7315 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7316 "logs and miscellaneous information"); 7317 children = SYSCTL_CHILDREN(oid); 7318 7319 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7321 sysctl_cctrl, "A", "congestion control"); 7322 7323 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7325 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7326 7327 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7328 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7329 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7330 7331 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7332 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7333 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7334 7335 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7336 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7337 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7338 7339 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7340 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7341 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7342 7343 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7344 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7345 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7346 7347 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7348 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7349 sysctl_cim_la, "A", "CIM logic analyzer"); 7350 7351 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7352 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7353 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7354 7355 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7356 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7357 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7358 7359 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7361 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7362 7363 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7364 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7365 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7366 7367 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7368 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7369 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7370 7371 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7372 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7373 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7374 7375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7376 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7377 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7378 7379 if (chip_id(sc) > CHELSIO_T4) { 7380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7381 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7382 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7383 "CIM OBQ 6 (SGE0-RX)"); 7384 7385 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7386 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7387 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7388 "CIM OBQ 7 (SGE1-RX)"); 7389 } 7390 7391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7392 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7393 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7394 7395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7396 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7397 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7398 7399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7400 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7401 sysctl_cpl_stats, "A", "CPL statistics"); 7402 7403 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7404 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7405 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7406 7407 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7408 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7409 sysctl_tid_stats, "A", "tid stats"); 7410 7411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7412 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7413 sysctl_devlog, "A", "firmware's device log"); 7414 7415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7416 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7417 sysctl_fcoe_stats, "A", "FCoE statistics"); 7418 7419 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7420 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7421 sysctl_hw_sched, "A", "hardware scheduler "); 7422 7423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7424 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7425 sysctl_l2t, "A", "hardware L2 table"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7428 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7429 sysctl_smt, "A", "hardware source MAC table"); 7430 7431 #ifdef INET6 7432 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7433 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7434 sysctl_clip, "A", "active CLIP table entries"); 7435 #endif 7436 7437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7438 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7439 sysctl_lb_stats, "A", "loopback statistics"); 7440 7441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7442 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7443 sysctl_meminfo, "A", "memory regions"); 7444 7445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7446 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7447 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7448 "A", "MPS TCAM entries"); 7449 7450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7451 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7452 sysctl_path_mtus, "A", "path MTUs"); 7453 7454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7455 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7456 sysctl_pm_stats, "A", "PM statistics"); 7457 7458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7459 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7460 sysctl_rdma_stats, "A", "RDMA statistics"); 7461 7462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7463 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7464 sysctl_tcp_stats, "A", "TCP statistics"); 7465 7466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7467 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7468 sysctl_tids, "A", "TID information"); 7469 7470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7471 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7472 sysctl_tp_err_stats, "A", "TP error statistics"); 7473 7474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7475 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7476 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7479 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7480 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7481 7482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7483 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7484 sysctl_tp_la, "A", "TP logic analyzer"); 7485 7486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7487 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7488 sysctl_tx_rate, "A", "Tx rate"); 7489 7490 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7491 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7492 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7493 7494 if (chip_id(sc) >= CHELSIO_T5) { 7495 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7496 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7497 sysctl_wcwr_stats, "A", "write combined work requests"); 7498 } 7499 7500 #ifdef KERN_TLS 7501 if (is_ktls(sc)) { 7502 /* 7503 * dev.t4nex.0.tls. 7504 */ 7505 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7506 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7507 children = SYSCTL_CHILDREN(oid); 7508 7509 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7510 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7511 "keys in work requests (1) or attempt to store TLS keys " 7512 "in card memory."); 7513 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7514 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7515 "TCB field updates with TLS record work requests."); 7516 } 7517 #endif 7518 7519 #ifdef TCP_OFFLOAD 7520 if (is_offload(sc)) { 7521 int i; 7522 char s[4]; 7523 7524 /* 7525 * dev.t4nex.X.toe. 7526 */ 7527 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7528 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7529 children = SYSCTL_CHILDREN(oid); 7530 7531 sc->tt.cong_algorithm = -1; 7532 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7533 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7534 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7535 "3 = highspeed)"); 7536 7537 sc->tt.sndbuf = -1; 7538 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7539 &sc->tt.sndbuf, 0, "hardware send buffer"); 7540 7541 sc->tt.ddp = 0; 7542 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7543 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7544 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7545 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7546 7547 sc->tt.rx_coalesce = -1; 7548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7549 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7550 7551 sc->tt.tls = 0; 7552 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7553 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7554 "Inline TLS allowed"); 7555 7556 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7557 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7558 sysctl_tls_rx_ports, "I", 7559 "TCP ports that use inline TLS+TOE RX"); 7560 7561 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7563 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7564 sysctl_tls_rx_timeout, "I", 7565 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7566 7567 sc->tt.tx_align = -1; 7568 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7569 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7570 7571 sc->tt.tx_zcopy = 0; 7572 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7573 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7574 "Enable zero-copy aio_write(2)"); 7575 7576 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7577 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7578 "cop_managed_offloading", CTLFLAG_RW, 7579 &sc->tt.cop_managed_offloading, 0, 7580 "COP (Connection Offload Policy) controls all TOE offload"); 7581 7582 sc->tt.autorcvbuf_inc = 16 * 1024; 7583 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7584 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7585 "autorcvbuf increment"); 7586 7587 sc->tt.update_hc_on_pmtu_change = 1; 7588 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7589 "update_hc_on_pmtu_change", CTLFLAG_RW, 7590 &sc->tt.update_hc_on_pmtu_change, 0, 7591 "Update hostcache entry if the PMTU changes"); 7592 7593 sc->tt.iso = 1; 7594 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7595 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7599 sysctl_tp_tick, "A", "TP timer tick (us)"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7603 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7606 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7607 sysctl_tp_tick, "A", "DACK tick (us)"); 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7610 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7611 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7614 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7615 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7616 "Minimum retransmit interval (us)"); 7617 7618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7619 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7620 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7621 "Maximum retransmit interval (us)"); 7622 7623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7624 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7625 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7626 "Persist timer min (us)"); 7627 7628 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7629 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7630 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7631 "Persist timer max (us)"); 7632 7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7634 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7635 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7636 "Keepalive idle timer (us)"); 7637 7638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7639 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7640 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7641 "Keepalive interval timer (us)"); 7642 7643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7644 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7645 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7646 7647 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7648 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7649 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7650 "FINWAIT2 timer (us)"); 7651 7652 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7653 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7654 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7655 "Number of SYN retransmissions before abort"); 7656 7657 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7658 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7659 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7660 "Number of retransmissions before abort"); 7661 7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7663 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7664 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7665 "Number of keepalive probes before abort"); 7666 7667 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7668 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7669 "TOE retransmit backoffs"); 7670 children = SYSCTL_CHILDREN(oid); 7671 for (i = 0; i < 16; i++) { 7672 snprintf(s, sizeof(s), "%u", i); 7673 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7674 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7675 i, sysctl_tp_backoff, "IU", 7676 "TOE retransmit backoff"); 7677 } 7678 } 7679 #endif 7680 } 7681 7682 void 7683 vi_sysctls(struct vi_info *vi) 7684 { 7685 struct sysctl_ctx_list *ctx; 7686 struct sysctl_oid *oid; 7687 struct sysctl_oid_list *children; 7688 7689 ctx = device_get_sysctl_ctx(vi->dev); 7690 7691 /* 7692 * dev.v?(cxgbe|cxl).X. 7693 */ 7694 oid = device_get_sysctl_tree(vi->dev); 7695 children = SYSCTL_CHILDREN(oid); 7696 7697 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7698 vi->viid, "VI identifer"); 7699 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7700 &vi->nrxq, 0, "# of rx queues"); 7701 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7702 &vi->ntxq, 0, "# of tx queues"); 7703 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7704 &vi->first_rxq, 0, "index of first rx queue"); 7705 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7706 &vi->first_txq, 0, "index of first tx queue"); 7707 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7708 vi->rss_base, "start of RSS indirection table"); 7709 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7710 vi->rss_size, "size of RSS indirection table"); 7711 7712 if (IS_MAIN_VI(vi)) { 7713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7714 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7715 sysctl_noflowq, "IU", 7716 "Reserve queue 0 for non-flowid packets"); 7717 } 7718 7719 if (vi->adapter->flags & IS_VF) { 7720 MPASS(vi->flags & TX_USES_VM_WR); 7721 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7722 NULL, 1, "use VM work requests for transmit"); 7723 } else { 7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7725 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7726 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7727 } 7728 7729 #ifdef TCP_OFFLOAD 7730 if (vi->nofldrxq != 0) { 7731 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7732 &vi->nofldrxq, 0, 7733 "# of rx queues for offloaded TCP connections"); 7734 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7735 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7736 "index of first TOE rx queue"); 7737 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7738 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7739 sysctl_holdoff_tmr_idx_ofld, "I", 7740 "holdoff timer index for TOE queues"); 7741 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7742 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7743 sysctl_holdoff_pktc_idx_ofld, "I", 7744 "holdoff packet counter index for TOE queues"); 7745 } 7746 #endif 7747 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7748 if (vi->nofldtxq != 0) { 7749 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7750 &vi->nofldtxq, 0, 7751 "# of tx queues for TOE/ETHOFLD"); 7752 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7753 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7754 "index of first TOE/ETHOFLD tx queue"); 7755 } 7756 #endif 7757 #ifdef DEV_NETMAP 7758 if (vi->nnmrxq != 0) { 7759 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7760 &vi->nnmrxq, 0, "# of netmap rx queues"); 7761 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7762 &vi->nnmtxq, 0, "# of netmap tx queues"); 7763 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7764 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7765 "index of first netmap rx queue"); 7766 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7767 CTLFLAG_RD, &vi->first_nm_txq, 0, 7768 "index of first netmap tx queue"); 7769 } 7770 #endif 7771 7772 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7773 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7774 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7775 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7776 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7777 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7778 7779 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7780 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7781 sysctl_qsize_rxq, "I", "rx queue size"); 7782 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7783 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7784 sysctl_qsize_txq, "I", "tx queue size"); 7785 } 7786 7787 static void 7788 cxgbe_sysctls(struct port_info *pi) 7789 { 7790 struct sysctl_ctx_list *ctx; 7791 struct sysctl_oid *oid; 7792 struct sysctl_oid_list *children, *children2; 7793 struct adapter *sc = pi->adapter; 7794 int i; 7795 char name[16]; 7796 static char *tc_flags = {"\20\1USER"}; 7797 7798 ctx = device_get_sysctl_ctx(pi->dev); 7799 7800 /* 7801 * dev.cxgbe.X. 7802 */ 7803 oid = device_get_sysctl_tree(pi->dev); 7804 children = SYSCTL_CHILDREN(oid); 7805 7806 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7807 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7808 sysctl_linkdnrc, "A", "reason why link is down"); 7809 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7810 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7811 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7812 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7813 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7814 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7815 sysctl_btphy, "I", "PHY firmware version"); 7816 } 7817 7818 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7819 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7820 sysctl_pause_settings, "A", 7821 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7822 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 7823 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7824 sysctl_fec, "A", 7825 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7826 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7827 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7828 "FEC recommended by the cable/transceiver"); 7829 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7830 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7831 sysctl_autoneg, "I", 7832 "autonegotiation (-1 = not supported)"); 7833 7834 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7835 &pi->link_cfg.pcaps, 0, "port capabilities"); 7836 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7837 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7838 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7839 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7840 7841 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7842 port_top_speed(pi), "max speed (in Gbps)"); 7843 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7844 pi->mps_bg_map, "MPS buffer group map"); 7845 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7846 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7847 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7848 pi->rx_c_chan, "TP rx c-channel"); 7849 7850 if (sc->flags & IS_VF) 7851 return; 7852 7853 /* 7854 * dev.(cxgbe|cxl).X.tc. 7855 */ 7856 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7857 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7858 "Tx scheduler traffic classes (cl_rl)"); 7859 children2 = SYSCTL_CHILDREN(oid); 7860 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7861 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7862 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7863 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7864 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7865 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7866 for (i = 0; i < sc->params.nsched_cls; i++) { 7867 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7868 7869 snprintf(name, sizeof(name), "%d", i); 7870 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7871 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7872 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7873 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7874 CTLFLAG_RD, &tc->state, 0, "current state"); 7875 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7876 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7877 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7878 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7879 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7880 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7881 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7882 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7883 "traffic class parameters"); 7884 } 7885 7886 /* 7887 * dev.cxgbe.X.stats. 7888 */ 7889 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7890 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7891 children = SYSCTL_CHILDREN(oid); 7892 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7893 &pi->tx_parse_error, 0, 7894 "# of tx packets with invalid length or # of segments"); 7895 7896 #define T4_REGSTAT(name, stat, desc) \ 7897 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7898 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7899 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7900 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7901 sysctl_handle_t4_reg64, "QU", desc) 7902 7903 /* We get these from port_stats and they may be stale by up to 1s */ 7904 #define T4_PORTSTAT(name, desc) \ 7905 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7906 &pi->stats.name, desc) 7907 7908 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7909 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7910 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7911 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7912 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7913 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7914 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7915 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7916 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7917 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7918 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7919 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7920 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7921 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7922 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7923 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7924 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7925 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7926 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7927 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7928 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7929 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7930 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7931 7932 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7933 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7934 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7935 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7936 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7937 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7938 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7939 if (is_t6(sc)) { 7940 T4_PORTSTAT(rx_fcs_err, 7941 "# of frames received with bad FCS since last link up"); 7942 } else { 7943 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7944 "# of frames received with bad FCS"); 7945 } 7946 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7947 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7948 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7949 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7950 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7951 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7952 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7953 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7954 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7955 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7956 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7957 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7958 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7959 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7960 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7961 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7962 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7963 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7964 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7965 7966 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7967 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7968 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7969 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7970 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7971 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7972 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7973 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7974 7975 #undef T4_REGSTAT 7976 #undef T4_PORTSTAT 7977 } 7978 7979 static int 7980 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7981 { 7982 int rc, *i, space = 0; 7983 struct sbuf sb; 7984 7985 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7986 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7987 if (space) 7988 sbuf_printf(&sb, " "); 7989 sbuf_printf(&sb, "%d", *i); 7990 space = 1; 7991 } 7992 rc = sbuf_finish(&sb); 7993 sbuf_delete(&sb); 7994 return (rc); 7995 } 7996 7997 static int 7998 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7999 { 8000 int rc; 8001 struct sbuf *sb; 8002 8003 rc = sysctl_wire_old_buffer(req, 0); 8004 if (rc != 0) 8005 return(rc); 8006 8007 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8008 if (sb == NULL) 8009 return (ENOMEM); 8010 8011 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8012 rc = sbuf_finish(sb); 8013 sbuf_delete(sb); 8014 8015 return (rc); 8016 } 8017 8018 static int 8019 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8020 { 8021 int rc; 8022 struct sbuf *sb; 8023 8024 rc = sysctl_wire_old_buffer(req, 0); 8025 if (rc != 0) 8026 return(rc); 8027 8028 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8029 if (sb == NULL) 8030 return (ENOMEM); 8031 8032 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8033 rc = sbuf_finish(sb); 8034 sbuf_delete(sb); 8035 8036 return (rc); 8037 } 8038 8039 static int 8040 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8041 { 8042 struct port_info *pi = arg1; 8043 int op = arg2; 8044 struct adapter *sc = pi->adapter; 8045 u_int v; 8046 int rc; 8047 8048 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8049 if (rc) 8050 return (rc); 8051 if (hw_off_limits(sc)) 8052 rc = ENXIO; 8053 else { 8054 /* XXX: magic numbers */ 8055 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8056 op ? 0x20 : 0xc820, &v); 8057 } 8058 end_synchronized_op(sc, 0); 8059 if (rc) 8060 return (rc); 8061 if (op == 0) 8062 v /= 256; 8063 8064 rc = sysctl_handle_int(oidp, &v, 0, req); 8065 return (rc); 8066 } 8067 8068 static int 8069 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8070 { 8071 struct vi_info *vi = arg1; 8072 int rc, val; 8073 8074 val = vi->rsrv_noflowq; 8075 rc = sysctl_handle_int(oidp, &val, 0, req); 8076 if (rc != 0 || req->newptr == NULL) 8077 return (rc); 8078 8079 if ((val >= 1) && (vi->ntxq > 1)) 8080 vi->rsrv_noflowq = 1; 8081 else 8082 vi->rsrv_noflowq = 0; 8083 8084 return (rc); 8085 } 8086 8087 static int 8088 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8089 { 8090 struct vi_info *vi = arg1; 8091 struct adapter *sc = vi->adapter; 8092 int rc, val, i; 8093 8094 MPASS(!(sc->flags & IS_VF)); 8095 8096 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8097 rc = sysctl_handle_int(oidp, &val, 0, req); 8098 if (rc != 0 || req->newptr == NULL) 8099 return (rc); 8100 8101 if (val != 0 && val != 1) 8102 return (EINVAL); 8103 8104 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8105 "t4txvm"); 8106 if (rc) 8107 return (rc); 8108 if (hw_off_limits(sc)) 8109 rc = ENXIO; 8110 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8111 /* 8112 * We don't want parse_pkt to run with one setting (VF or PF) 8113 * and then eth_tx to see a different setting but still use 8114 * stale information calculated by parse_pkt. 8115 */ 8116 rc = EBUSY; 8117 } else { 8118 struct port_info *pi = vi->pi; 8119 struct sge_txq *txq; 8120 uint32_t ctrl0; 8121 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8122 8123 if (val) { 8124 vi->flags |= TX_USES_VM_WR; 8125 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8126 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8127 V_TXPKT_INTF(pi->tx_chan)); 8128 if (!(sc->flags & IS_VF)) 8129 npkt--; 8130 } else { 8131 vi->flags &= ~TX_USES_VM_WR; 8132 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8133 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8134 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8135 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8136 } 8137 for_each_txq(vi, i, txq) { 8138 txq->cpl_ctrl0 = ctrl0; 8139 txq->txp.max_npkt = npkt; 8140 } 8141 } 8142 end_synchronized_op(sc, LOCK_HELD); 8143 return (rc); 8144 } 8145 8146 static int 8147 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8148 { 8149 struct vi_info *vi = arg1; 8150 struct adapter *sc = vi->adapter; 8151 int idx, rc, i; 8152 struct sge_rxq *rxq; 8153 uint8_t v; 8154 8155 idx = vi->tmr_idx; 8156 8157 rc = sysctl_handle_int(oidp, &idx, 0, req); 8158 if (rc != 0 || req->newptr == NULL) 8159 return (rc); 8160 8161 if (idx < 0 || idx >= SGE_NTIMERS) 8162 return (EINVAL); 8163 8164 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8165 "t4tmr"); 8166 if (rc) 8167 return (rc); 8168 8169 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8170 for_each_rxq(vi, i, rxq) { 8171 #ifdef atomic_store_rel_8 8172 atomic_store_rel_8(&rxq->iq.intr_params, v); 8173 #else 8174 rxq->iq.intr_params = v; 8175 #endif 8176 } 8177 vi->tmr_idx = idx; 8178 8179 end_synchronized_op(sc, LOCK_HELD); 8180 return (0); 8181 } 8182 8183 static int 8184 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8185 { 8186 struct vi_info *vi = arg1; 8187 struct adapter *sc = vi->adapter; 8188 int idx, rc; 8189 8190 idx = vi->pktc_idx; 8191 8192 rc = sysctl_handle_int(oidp, &idx, 0, req); 8193 if (rc != 0 || req->newptr == NULL) 8194 return (rc); 8195 8196 if (idx < -1 || idx >= SGE_NCOUNTERS) 8197 return (EINVAL); 8198 8199 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8200 "t4pktc"); 8201 if (rc) 8202 return (rc); 8203 8204 if (vi->flags & VI_INIT_DONE) 8205 rc = EBUSY; /* cannot be changed once the queues are created */ 8206 else 8207 vi->pktc_idx = idx; 8208 8209 end_synchronized_op(sc, LOCK_HELD); 8210 return (rc); 8211 } 8212 8213 static int 8214 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8215 { 8216 struct vi_info *vi = arg1; 8217 struct adapter *sc = vi->adapter; 8218 int qsize, rc; 8219 8220 qsize = vi->qsize_rxq; 8221 8222 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8223 if (rc != 0 || req->newptr == NULL) 8224 return (rc); 8225 8226 if (qsize < 128 || (qsize & 7)) 8227 return (EINVAL); 8228 8229 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8230 "t4rxqs"); 8231 if (rc) 8232 return (rc); 8233 8234 if (vi->flags & VI_INIT_DONE) 8235 rc = EBUSY; /* cannot be changed once the queues are created */ 8236 else 8237 vi->qsize_rxq = qsize; 8238 8239 end_synchronized_op(sc, LOCK_HELD); 8240 return (rc); 8241 } 8242 8243 static int 8244 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8245 { 8246 struct vi_info *vi = arg1; 8247 struct adapter *sc = vi->adapter; 8248 int qsize, rc; 8249 8250 qsize = vi->qsize_txq; 8251 8252 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8253 if (rc != 0 || req->newptr == NULL) 8254 return (rc); 8255 8256 if (qsize < 128 || qsize > 65536) 8257 return (EINVAL); 8258 8259 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8260 "t4txqs"); 8261 if (rc) 8262 return (rc); 8263 8264 if (vi->flags & VI_INIT_DONE) 8265 rc = EBUSY; /* cannot be changed once the queues are created */ 8266 else 8267 vi->qsize_txq = qsize; 8268 8269 end_synchronized_op(sc, LOCK_HELD); 8270 return (rc); 8271 } 8272 8273 static int 8274 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8275 { 8276 struct port_info *pi = arg1; 8277 struct adapter *sc = pi->adapter; 8278 struct link_config *lc = &pi->link_cfg; 8279 int rc; 8280 8281 if (req->newptr == NULL) { 8282 struct sbuf *sb; 8283 static char *bits = "\20\1RX\2TX\3AUTO"; 8284 8285 rc = sysctl_wire_old_buffer(req, 0); 8286 if (rc != 0) 8287 return(rc); 8288 8289 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8290 if (sb == NULL) 8291 return (ENOMEM); 8292 8293 if (lc->link_ok) { 8294 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8295 (lc->requested_fc & PAUSE_AUTONEG), bits); 8296 } else { 8297 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8298 PAUSE_RX | PAUSE_AUTONEG), bits); 8299 } 8300 rc = sbuf_finish(sb); 8301 sbuf_delete(sb); 8302 } else { 8303 char s[2]; 8304 int n; 8305 8306 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8307 PAUSE_AUTONEG)); 8308 s[1] = 0; 8309 8310 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8311 if (rc != 0) 8312 return(rc); 8313 8314 if (s[1] != 0) 8315 return (EINVAL); 8316 if (s[0] < '0' || s[0] > '9') 8317 return (EINVAL); /* not a number */ 8318 n = s[0] - '0'; 8319 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8320 return (EINVAL); /* some other bit is set too */ 8321 8322 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8323 "t4PAUSE"); 8324 if (rc) 8325 return (rc); 8326 if (!hw_off_limits(sc)) { 8327 PORT_LOCK(pi); 8328 lc->requested_fc = n; 8329 fixup_link_config(pi); 8330 if (pi->up_vis > 0) 8331 rc = apply_link_config(pi); 8332 set_current_media(pi); 8333 PORT_UNLOCK(pi); 8334 } 8335 end_synchronized_op(sc, 0); 8336 } 8337 8338 return (rc); 8339 } 8340 8341 static int 8342 sysctl_fec(SYSCTL_HANDLER_ARGS) 8343 { 8344 struct port_info *pi = arg1; 8345 struct adapter *sc = pi->adapter; 8346 struct link_config *lc = &pi->link_cfg; 8347 int rc; 8348 int8_t old; 8349 8350 if (req->newptr == NULL) { 8351 struct sbuf *sb; 8352 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8353 "\5RSVD3\6auto\7module"; 8354 8355 rc = sysctl_wire_old_buffer(req, 0); 8356 if (rc != 0) 8357 return(rc); 8358 8359 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8360 if (sb == NULL) 8361 return (ENOMEM); 8362 8363 /* 8364 * Display the requested_fec when the link is down -- the actual 8365 * FEC makes sense only when the link is up. 8366 */ 8367 if (lc->link_ok) { 8368 sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | 8369 (lc->requested_fec & (FEC_AUTO | FEC_MODULE)), 8370 bits); 8371 } else { 8372 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8373 } 8374 rc = sbuf_finish(sb); 8375 sbuf_delete(sb); 8376 } else { 8377 char s[8]; 8378 int n; 8379 8380 snprintf(s, sizeof(s), "%d", 8381 lc->requested_fec == FEC_AUTO ? -1 : 8382 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8383 8384 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8385 if (rc != 0) 8386 return(rc); 8387 8388 n = strtol(&s[0], NULL, 0); 8389 if (n < 0 || n & FEC_AUTO) 8390 n = FEC_AUTO; 8391 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8392 return (EINVAL);/* some other bit is set too */ 8393 8394 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8395 "t4fec"); 8396 if (rc) 8397 return (rc); 8398 PORT_LOCK(pi); 8399 old = lc->requested_fec; 8400 if (n == FEC_AUTO) 8401 lc->requested_fec = FEC_AUTO; 8402 else if (n == 0 || n == FEC_NONE) 8403 lc->requested_fec = FEC_NONE; 8404 else { 8405 if ((lc->pcaps | 8406 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8407 lc->pcaps) { 8408 rc = ENOTSUP; 8409 goto done; 8410 } 8411 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8412 FEC_MODULE); 8413 } 8414 if (!hw_off_limits(sc)) { 8415 fixup_link_config(pi); 8416 if (pi->up_vis > 0) { 8417 rc = apply_link_config(pi); 8418 if (rc != 0) { 8419 lc->requested_fec = old; 8420 if (rc == FW_EPROTO) 8421 rc = ENOTSUP; 8422 } 8423 } 8424 } 8425 done: 8426 PORT_UNLOCK(pi); 8427 end_synchronized_op(sc, 0); 8428 } 8429 8430 return (rc); 8431 } 8432 8433 static int 8434 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8435 { 8436 struct port_info *pi = arg1; 8437 struct adapter *sc = pi->adapter; 8438 struct link_config *lc = &pi->link_cfg; 8439 int rc; 8440 int8_t fec; 8441 struct sbuf *sb; 8442 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8443 8444 rc = sysctl_wire_old_buffer(req, 0); 8445 if (rc != 0) 8446 return (rc); 8447 8448 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8449 if (sb == NULL) 8450 return (ENOMEM); 8451 8452 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8453 rc = EBUSY; 8454 goto done; 8455 } 8456 if (hw_off_limits(sc)) { 8457 rc = ENXIO; 8458 goto done; 8459 } 8460 PORT_LOCK(pi); 8461 if (pi->up_vis == 0) { 8462 /* 8463 * If all the interfaces are administratively down the firmware 8464 * does not report transceiver changes. Refresh port info here. 8465 * This is the only reason we have a synchronized op in this 8466 * function. Just PORT_LOCK would have been enough otherwise. 8467 */ 8468 t4_update_port_info(pi); 8469 } 8470 8471 fec = lc->fec_hint; 8472 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8473 !fec_supported(lc->pcaps)) { 8474 sbuf_printf(sb, "n/a"); 8475 } else { 8476 if (fec == 0) 8477 fec = FEC_NONE; 8478 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8479 } 8480 rc = sbuf_finish(sb); 8481 PORT_UNLOCK(pi); 8482 done: 8483 sbuf_delete(sb); 8484 end_synchronized_op(sc, 0); 8485 8486 return (rc); 8487 } 8488 8489 static int 8490 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8491 { 8492 struct port_info *pi = arg1; 8493 struct adapter *sc = pi->adapter; 8494 struct link_config *lc = &pi->link_cfg; 8495 int rc, val; 8496 8497 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8498 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8499 else 8500 val = -1; 8501 rc = sysctl_handle_int(oidp, &val, 0, req); 8502 if (rc != 0 || req->newptr == NULL) 8503 return (rc); 8504 if (val == 0) 8505 val = AUTONEG_DISABLE; 8506 else if (val == 1) 8507 val = AUTONEG_ENABLE; 8508 else 8509 val = AUTONEG_AUTO; 8510 8511 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8512 "t4aneg"); 8513 if (rc) 8514 return (rc); 8515 PORT_LOCK(pi); 8516 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8517 rc = ENOTSUP; 8518 goto done; 8519 } 8520 lc->requested_aneg = val; 8521 if (!hw_off_limits(sc)) { 8522 fixup_link_config(pi); 8523 if (pi->up_vis > 0) 8524 rc = apply_link_config(pi); 8525 set_current_media(pi); 8526 } 8527 done: 8528 PORT_UNLOCK(pi); 8529 end_synchronized_op(sc, 0); 8530 return (rc); 8531 } 8532 8533 static int 8534 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8535 { 8536 struct adapter *sc = arg1; 8537 int rc, reg = arg2; 8538 uint64_t val; 8539 8540 mtx_lock(&sc->reg_lock); 8541 if (hw_off_limits(sc)) 8542 rc = ENXIO; 8543 else { 8544 rc = 0; 8545 val = t4_read_reg64(sc, reg); 8546 } 8547 mtx_unlock(&sc->reg_lock); 8548 if (rc == 0) 8549 rc = sysctl_handle_64(oidp, &val, 0, req); 8550 return (rc); 8551 } 8552 8553 static int 8554 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8555 { 8556 struct adapter *sc = arg1; 8557 int rc, t; 8558 uint32_t param, val; 8559 8560 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8561 if (rc) 8562 return (rc); 8563 if (hw_off_limits(sc)) 8564 rc = ENXIO; 8565 else { 8566 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8567 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8568 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8569 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8570 } 8571 end_synchronized_op(sc, 0); 8572 if (rc) 8573 return (rc); 8574 8575 /* unknown is returned as 0 but we display -1 in that case */ 8576 t = val == 0 ? -1 : val; 8577 8578 rc = sysctl_handle_int(oidp, &t, 0, req); 8579 return (rc); 8580 } 8581 8582 static int 8583 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8584 { 8585 struct adapter *sc = arg1; 8586 int rc; 8587 uint32_t param, val; 8588 8589 if (sc->params.core_vdd == 0) { 8590 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8591 "t4vdd"); 8592 if (rc) 8593 return (rc); 8594 if (hw_off_limits(sc)) 8595 rc = ENXIO; 8596 else { 8597 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8598 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8599 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8600 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8601 ¶m, &val); 8602 } 8603 end_synchronized_op(sc, 0); 8604 if (rc) 8605 return (rc); 8606 sc->params.core_vdd = val; 8607 } 8608 8609 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8610 } 8611 8612 static int 8613 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8614 { 8615 struct adapter *sc = arg1; 8616 int rc, v; 8617 uint32_t param, val; 8618 8619 v = sc->sensor_resets; 8620 rc = sysctl_handle_int(oidp, &v, 0, req); 8621 if (rc != 0 || req->newptr == NULL || v <= 0) 8622 return (rc); 8623 8624 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8625 chip_id(sc) < CHELSIO_T5) 8626 return (ENOTSUP); 8627 8628 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8629 if (rc) 8630 return (rc); 8631 if (hw_off_limits(sc)) 8632 rc = ENXIO; 8633 else { 8634 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8635 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8636 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8637 val = 1; 8638 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8639 } 8640 end_synchronized_op(sc, 0); 8641 if (rc == 0) 8642 sc->sensor_resets++; 8643 return (rc); 8644 } 8645 8646 static int 8647 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8648 { 8649 struct adapter *sc = arg1; 8650 struct sbuf *sb; 8651 int rc; 8652 uint32_t param, val; 8653 8654 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8655 if (rc) 8656 return (rc); 8657 if (hw_off_limits(sc)) 8658 rc = ENXIO; 8659 else { 8660 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8661 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8662 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8663 } 8664 end_synchronized_op(sc, 0); 8665 if (rc) 8666 return (rc); 8667 8668 rc = sysctl_wire_old_buffer(req, 0); 8669 if (rc != 0) 8670 return (rc); 8671 8672 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8673 if (sb == NULL) 8674 return (ENOMEM); 8675 8676 if (val == 0xffffffff) { 8677 /* Only debug and custom firmwares report load averages. */ 8678 sbuf_printf(sb, "not available"); 8679 } else { 8680 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8681 (val >> 16) & 0xff); 8682 } 8683 rc = sbuf_finish(sb); 8684 sbuf_delete(sb); 8685 8686 return (rc); 8687 } 8688 8689 static int 8690 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8691 { 8692 struct adapter *sc = arg1; 8693 struct sbuf *sb; 8694 int rc, i; 8695 uint16_t incr[NMTUS][NCCTRL_WIN]; 8696 static const char *dec_fac[] = { 8697 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8698 "0.9375" 8699 }; 8700 8701 rc = sysctl_wire_old_buffer(req, 0); 8702 if (rc != 0) 8703 return (rc); 8704 8705 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8706 if (sb == NULL) 8707 return (ENOMEM); 8708 8709 mtx_lock(&sc->reg_lock); 8710 if (hw_off_limits(sc)) 8711 rc = ENXIO; 8712 else 8713 t4_read_cong_tbl(sc, incr); 8714 mtx_unlock(&sc->reg_lock); 8715 if (rc) 8716 goto done; 8717 8718 for (i = 0; i < NCCTRL_WIN; ++i) { 8719 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8720 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8721 incr[5][i], incr[6][i], incr[7][i]); 8722 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8723 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8724 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8725 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8726 } 8727 8728 rc = sbuf_finish(sb); 8729 done: 8730 sbuf_delete(sb); 8731 return (rc); 8732 } 8733 8734 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8735 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8736 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8737 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8738 }; 8739 8740 static int 8741 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8742 { 8743 struct adapter *sc = arg1; 8744 struct sbuf *sb; 8745 int rc, i, n, qid = arg2; 8746 uint32_t *buf, *p; 8747 char *qtype; 8748 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8749 8750 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8751 ("%s: bad qid %d\n", __func__, qid)); 8752 8753 if (qid < CIM_NUM_IBQ) { 8754 /* inbound queue */ 8755 qtype = "IBQ"; 8756 n = 4 * CIM_IBQ_SIZE; 8757 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8758 mtx_lock(&sc->reg_lock); 8759 if (hw_off_limits(sc)) 8760 rc = -ENXIO; 8761 else 8762 rc = t4_read_cim_ibq(sc, qid, buf, n); 8763 mtx_unlock(&sc->reg_lock); 8764 } else { 8765 /* outbound queue */ 8766 qtype = "OBQ"; 8767 qid -= CIM_NUM_IBQ; 8768 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8769 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8770 mtx_lock(&sc->reg_lock); 8771 if (hw_off_limits(sc)) 8772 rc = -ENXIO; 8773 else 8774 rc = t4_read_cim_obq(sc, qid, buf, n); 8775 mtx_unlock(&sc->reg_lock); 8776 } 8777 8778 if (rc < 0) { 8779 rc = -rc; 8780 goto done; 8781 } 8782 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8783 8784 rc = sysctl_wire_old_buffer(req, 0); 8785 if (rc != 0) 8786 goto done; 8787 8788 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8789 if (sb == NULL) { 8790 rc = ENOMEM; 8791 goto done; 8792 } 8793 8794 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8795 for (i = 0, p = buf; i < n; i += 16, p += 4) 8796 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8797 p[2], p[3]); 8798 8799 rc = sbuf_finish(sb); 8800 sbuf_delete(sb); 8801 done: 8802 free(buf, M_CXGBE); 8803 return (rc); 8804 } 8805 8806 static void 8807 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8808 { 8809 uint32_t *p; 8810 8811 sbuf_printf(sb, "Status Data PC%s", 8812 cfg & F_UPDBGLACAPTPCONLY ? "" : 8813 " LS0Stat LS0Addr LS0Data"); 8814 8815 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8816 if (cfg & F_UPDBGLACAPTPCONLY) { 8817 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8818 p[6], p[7]); 8819 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8820 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8821 p[4] & 0xff, p[5] >> 8); 8822 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8823 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8824 p[1] & 0xf, p[2] >> 4); 8825 } else { 8826 sbuf_printf(sb, 8827 "\n %02x %x%07x %x%07x %08x %08x " 8828 "%08x%08x%08x%08x", 8829 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8830 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8831 p[6], p[7]); 8832 } 8833 } 8834 } 8835 8836 static void 8837 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8838 { 8839 uint32_t *p; 8840 8841 sbuf_printf(sb, "Status Inst Data PC%s", 8842 cfg & F_UPDBGLACAPTPCONLY ? "" : 8843 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8844 8845 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8846 if (cfg & F_UPDBGLACAPTPCONLY) { 8847 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8848 p[3] & 0xff, p[2], p[1], p[0]); 8849 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8850 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8851 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8852 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8853 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8854 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8855 p[6] >> 16); 8856 } else { 8857 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8858 "%08x %08x %08x %08x %08x %08x", 8859 (p[9] >> 16) & 0xff, 8860 p[9] & 0xffff, p[8] >> 16, 8861 p[8] & 0xffff, p[7] >> 16, 8862 p[7] & 0xffff, p[6] >> 16, 8863 p[2], p[1], p[0], p[5], p[4], p[3]); 8864 } 8865 } 8866 } 8867 8868 static int 8869 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8870 { 8871 uint32_t cfg, *buf; 8872 int rc; 8873 8874 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8875 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8876 M_ZERO | flags); 8877 if (buf == NULL) 8878 return (ENOMEM); 8879 8880 mtx_lock(&sc->reg_lock); 8881 if (hw_off_limits(sc)) 8882 rc = ENXIO; 8883 else { 8884 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8885 if (rc == 0) 8886 rc = -t4_cim_read_la(sc, buf, NULL); 8887 } 8888 mtx_unlock(&sc->reg_lock); 8889 if (rc == 0) { 8890 if (chip_id(sc) < CHELSIO_T6) 8891 sbuf_cim_la4(sc, sb, buf, cfg); 8892 else 8893 sbuf_cim_la6(sc, sb, buf, cfg); 8894 } 8895 free(buf, M_CXGBE); 8896 return (rc); 8897 } 8898 8899 static int 8900 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8901 { 8902 struct adapter *sc = arg1; 8903 struct sbuf *sb; 8904 int rc; 8905 8906 rc = sysctl_wire_old_buffer(req, 0); 8907 if (rc != 0) 8908 return (rc); 8909 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8910 if (sb == NULL) 8911 return (ENOMEM); 8912 8913 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8914 if (rc == 0) 8915 rc = sbuf_finish(sb); 8916 sbuf_delete(sb); 8917 return (rc); 8918 } 8919 8920 bool 8921 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 8922 { 8923 struct sbuf sb; 8924 int rc; 8925 8926 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8927 return (false); 8928 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 8929 if (rc == 0) { 8930 rc = sbuf_finish(&sb); 8931 if (rc == 0) { 8932 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 8933 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8934 } 8935 } 8936 sbuf_delete(&sb); 8937 return (false); 8938 } 8939 8940 static int 8941 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 8942 { 8943 struct adapter *sc = arg1; 8944 u_int i; 8945 struct sbuf *sb; 8946 uint32_t *buf, *p; 8947 int rc; 8948 8949 rc = sysctl_wire_old_buffer(req, 0); 8950 if (rc != 0) 8951 return (rc); 8952 8953 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8954 if (sb == NULL) 8955 return (ENOMEM); 8956 8957 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 8958 M_ZERO | M_WAITOK); 8959 8960 mtx_lock(&sc->reg_lock); 8961 if (hw_off_limits(sc)) 8962 rc = ENXIO; 8963 else 8964 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 8965 mtx_unlock(&sc->reg_lock); 8966 if (rc) 8967 goto done; 8968 8969 p = buf; 8970 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8971 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 8972 p[1], p[0]); 8973 } 8974 8975 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 8976 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8977 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 8978 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 8979 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 8980 (p[1] >> 2) | ((p[2] & 3) << 30), 8981 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 8982 p[0] & 1); 8983 } 8984 rc = sbuf_finish(sb); 8985 done: 8986 sbuf_delete(sb); 8987 free(buf, M_CXGBE); 8988 return (rc); 8989 } 8990 8991 static int 8992 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 8993 { 8994 struct adapter *sc = arg1; 8995 u_int i; 8996 struct sbuf *sb; 8997 uint32_t *buf, *p; 8998 int rc; 8999 9000 rc = sysctl_wire_old_buffer(req, 0); 9001 if (rc != 0) 9002 return (rc); 9003 9004 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9005 if (sb == NULL) 9006 return (ENOMEM); 9007 9008 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9009 M_ZERO | M_WAITOK); 9010 9011 mtx_lock(&sc->reg_lock); 9012 if (hw_off_limits(sc)) 9013 rc = ENXIO; 9014 else 9015 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9016 mtx_unlock(&sc->reg_lock); 9017 if (rc) 9018 goto done; 9019 9020 p = buf; 9021 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9022 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9023 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9024 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9025 p[4], p[3], p[2], p[1], p[0]); 9026 } 9027 9028 sbuf_printf(sb, "\n\nCntl ID Data"); 9029 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9030 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9031 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9032 } 9033 9034 rc = sbuf_finish(sb); 9035 done: 9036 sbuf_delete(sb); 9037 free(buf, M_CXGBE); 9038 return (rc); 9039 } 9040 9041 static int 9042 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9043 { 9044 struct adapter *sc = arg1; 9045 struct sbuf *sb; 9046 int rc, i; 9047 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9048 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9049 uint16_t thres[CIM_NUM_IBQ]; 9050 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9051 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9052 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9053 9054 cim_num_obq = sc->chip_params->cim_num_obq; 9055 if (is_t4(sc)) { 9056 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9057 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9058 } else { 9059 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9060 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9061 } 9062 nq = CIM_NUM_IBQ + cim_num_obq; 9063 9064 mtx_lock(&sc->reg_lock); 9065 if (hw_off_limits(sc)) 9066 rc = ENXIO; 9067 else { 9068 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9069 if (rc == 0) { 9070 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9071 obq_wr); 9072 if (rc == 0) 9073 t4_read_cimq_cfg(sc, base, size, thres); 9074 } 9075 } 9076 mtx_unlock(&sc->reg_lock); 9077 if (rc) 9078 return (rc); 9079 9080 rc = sysctl_wire_old_buffer(req, 0); 9081 if (rc != 0) 9082 return (rc); 9083 9084 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9085 if (sb == NULL) 9086 return (ENOMEM); 9087 9088 sbuf_printf(sb, 9089 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9090 9091 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9092 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9093 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9094 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9095 G_QUEREMFLITS(p[2]) * 16); 9096 for ( ; i < nq; i++, p += 4, wr += 2) 9097 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9098 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9099 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9100 G_QUEREMFLITS(p[2]) * 16); 9101 9102 rc = sbuf_finish(sb); 9103 sbuf_delete(sb); 9104 9105 return (rc); 9106 } 9107 9108 static int 9109 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9110 { 9111 struct adapter *sc = arg1; 9112 struct sbuf *sb; 9113 int rc; 9114 struct tp_cpl_stats stats; 9115 9116 rc = sysctl_wire_old_buffer(req, 0); 9117 if (rc != 0) 9118 return (rc); 9119 9120 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9121 if (sb == NULL) 9122 return (ENOMEM); 9123 9124 mtx_lock(&sc->reg_lock); 9125 if (hw_off_limits(sc)) 9126 rc = ENXIO; 9127 else 9128 t4_tp_get_cpl_stats(sc, &stats, 0); 9129 mtx_unlock(&sc->reg_lock); 9130 if (rc) 9131 goto done; 9132 9133 if (sc->chip_params->nchan > 2) { 9134 sbuf_printf(sb, " channel 0 channel 1" 9135 " channel 2 channel 3"); 9136 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9137 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9138 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9139 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9140 } else { 9141 sbuf_printf(sb, " channel 0 channel 1"); 9142 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9143 stats.req[0], stats.req[1]); 9144 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9145 stats.rsp[0], stats.rsp[1]); 9146 } 9147 9148 rc = sbuf_finish(sb); 9149 done: 9150 sbuf_delete(sb); 9151 return (rc); 9152 } 9153 9154 static int 9155 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9156 { 9157 struct adapter *sc = arg1; 9158 struct sbuf *sb; 9159 int rc; 9160 struct tp_usm_stats stats; 9161 9162 rc = sysctl_wire_old_buffer(req, 0); 9163 if (rc != 0) 9164 return(rc); 9165 9166 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9167 if (sb == NULL) 9168 return (ENOMEM); 9169 9170 mtx_lock(&sc->reg_lock); 9171 if (hw_off_limits(sc)) 9172 rc = ENXIO; 9173 else 9174 t4_get_usm_stats(sc, &stats, 1); 9175 mtx_unlock(&sc->reg_lock); 9176 if (rc == 0) { 9177 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9178 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9179 sbuf_printf(sb, "Drops: %u", stats.drops); 9180 rc = sbuf_finish(sb); 9181 } 9182 sbuf_delete(sb); 9183 9184 return (rc); 9185 } 9186 9187 static int 9188 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9189 { 9190 struct adapter *sc = arg1; 9191 struct sbuf *sb; 9192 int rc; 9193 struct tp_tid_stats stats; 9194 9195 rc = sysctl_wire_old_buffer(req, 0); 9196 if (rc != 0) 9197 return(rc); 9198 9199 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9200 if (sb == NULL) 9201 return (ENOMEM); 9202 9203 mtx_lock(&sc->reg_lock); 9204 if (hw_off_limits(sc)) 9205 rc = ENXIO; 9206 else 9207 t4_tp_get_tid_stats(sc, &stats, 1); 9208 mtx_unlock(&sc->reg_lock); 9209 if (rc == 0) { 9210 sbuf_printf(sb, "Delete: %u\n", stats.del); 9211 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9212 sbuf_printf(sb, "Active: %u\n", stats.act); 9213 sbuf_printf(sb, "Passive: %u", stats.pas); 9214 rc = sbuf_finish(sb); 9215 } 9216 sbuf_delete(sb); 9217 9218 return (rc); 9219 } 9220 9221 static const char * const devlog_level_strings[] = { 9222 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9223 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9224 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9225 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9226 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9227 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9228 }; 9229 9230 static const char * const devlog_facility_strings[] = { 9231 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9232 [FW_DEVLOG_FACILITY_CF] = "CF", 9233 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9234 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9235 [FW_DEVLOG_FACILITY_RES] = "RES", 9236 [FW_DEVLOG_FACILITY_HW] = "HW", 9237 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9238 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9239 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9240 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9241 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9242 [FW_DEVLOG_FACILITY_VI] = "VI", 9243 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9244 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9245 [FW_DEVLOG_FACILITY_TM] = "TM", 9246 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9247 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9248 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9249 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9250 [FW_DEVLOG_FACILITY_RI] = "RI", 9251 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9252 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9253 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9254 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9255 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9256 }; 9257 9258 static int 9259 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9260 { 9261 int i, j, rc, nentries, first = 0; 9262 struct devlog_params *dparams = &sc->params.devlog; 9263 struct fw_devlog_e *buf, *e; 9264 uint64_t ftstamp = UINT64_MAX; 9265 9266 if (dparams->addr == 0) 9267 return (ENXIO); 9268 9269 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9270 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9271 if (buf == NULL) 9272 return (ENOMEM); 9273 9274 mtx_lock(&sc->reg_lock); 9275 if (hw_off_limits(sc)) 9276 rc = ENXIO; 9277 else 9278 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9279 dparams->size); 9280 mtx_unlock(&sc->reg_lock); 9281 if (rc != 0) 9282 goto done; 9283 9284 nentries = dparams->size / sizeof(struct fw_devlog_e); 9285 for (i = 0; i < nentries; i++) { 9286 e = &buf[i]; 9287 9288 if (e->timestamp == 0) 9289 break; /* end */ 9290 9291 e->timestamp = be64toh(e->timestamp); 9292 e->seqno = be32toh(e->seqno); 9293 for (j = 0; j < 8; j++) 9294 e->params[j] = be32toh(e->params[j]); 9295 9296 if (e->timestamp < ftstamp) { 9297 ftstamp = e->timestamp; 9298 first = i; 9299 } 9300 } 9301 9302 if (buf[first].timestamp == 0) 9303 goto done; /* nothing in the log */ 9304 9305 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9306 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9307 9308 i = first; 9309 do { 9310 e = &buf[i]; 9311 if (e->timestamp == 0) 9312 break; /* end */ 9313 9314 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9315 e->seqno, e->timestamp, 9316 (e->level < nitems(devlog_level_strings) ? 9317 devlog_level_strings[e->level] : "UNKNOWN"), 9318 (e->facility < nitems(devlog_facility_strings) ? 9319 devlog_facility_strings[e->facility] : "UNKNOWN")); 9320 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9321 e->params[2], e->params[3], e->params[4], 9322 e->params[5], e->params[6], e->params[7]); 9323 9324 if (++i == nentries) 9325 i = 0; 9326 } while (i != first); 9327 done: 9328 free(buf, M_CXGBE); 9329 return (rc); 9330 } 9331 9332 static int 9333 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9334 { 9335 struct adapter *sc = arg1; 9336 int rc; 9337 struct sbuf *sb; 9338 9339 rc = sysctl_wire_old_buffer(req, 0); 9340 if (rc != 0) 9341 return (rc); 9342 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9343 if (sb == NULL) 9344 return (ENOMEM); 9345 9346 rc = sbuf_devlog(sc, sb, M_WAITOK); 9347 if (rc == 0) 9348 rc = sbuf_finish(sb); 9349 sbuf_delete(sb); 9350 return (rc); 9351 } 9352 9353 void 9354 t4_os_dump_devlog(struct adapter *sc) 9355 { 9356 int rc; 9357 struct sbuf sb; 9358 9359 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 9360 return; 9361 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 9362 if (rc == 0) { 9363 rc = sbuf_finish(&sb); 9364 if (rc == 0) { 9365 log(LOG_DEBUG, "%s: device log follows.\n%s", 9366 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9367 } 9368 } 9369 sbuf_delete(&sb); 9370 } 9371 9372 static int 9373 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9374 { 9375 struct adapter *sc = arg1; 9376 struct sbuf *sb; 9377 int rc; 9378 struct tp_fcoe_stats stats[MAX_NCHAN]; 9379 int i, nchan = sc->chip_params->nchan; 9380 9381 rc = sysctl_wire_old_buffer(req, 0); 9382 if (rc != 0) 9383 return (rc); 9384 9385 mtx_lock(&sc->reg_lock); 9386 if (hw_off_limits(sc)) 9387 rc = ENXIO; 9388 else { 9389 for (i = 0; i < nchan; i++) 9390 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9391 } 9392 mtx_unlock(&sc->reg_lock); 9393 if (rc != 0) 9394 return (rc); 9395 9396 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9397 if (sb == NULL) 9398 return (ENOMEM); 9399 9400 if (nchan > 2) { 9401 sbuf_printf(sb, " channel 0 channel 1" 9402 " channel 2 channel 3"); 9403 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9404 stats[0].octets_ddp, stats[1].octets_ddp, 9405 stats[2].octets_ddp, stats[3].octets_ddp); 9406 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9407 stats[0].frames_ddp, stats[1].frames_ddp, 9408 stats[2].frames_ddp, stats[3].frames_ddp); 9409 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9410 stats[0].frames_drop, stats[1].frames_drop, 9411 stats[2].frames_drop, stats[3].frames_drop); 9412 } else { 9413 sbuf_printf(sb, " channel 0 channel 1"); 9414 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9415 stats[0].octets_ddp, stats[1].octets_ddp); 9416 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9417 stats[0].frames_ddp, stats[1].frames_ddp); 9418 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9419 stats[0].frames_drop, stats[1].frames_drop); 9420 } 9421 9422 rc = sbuf_finish(sb); 9423 sbuf_delete(sb); 9424 9425 return (rc); 9426 } 9427 9428 static int 9429 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9430 { 9431 struct adapter *sc = arg1; 9432 struct sbuf *sb; 9433 int rc, i; 9434 unsigned int map, kbps, ipg, mode; 9435 unsigned int pace_tab[NTX_SCHED]; 9436 9437 rc = sysctl_wire_old_buffer(req, 0); 9438 if (rc != 0) 9439 return (rc); 9440 9441 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9442 if (sb == NULL) 9443 return (ENOMEM); 9444 9445 mtx_lock(&sc->reg_lock); 9446 if (hw_off_limits(sc)) { 9447 rc = ENXIO; 9448 goto done; 9449 } 9450 9451 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9452 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9453 t4_read_pace_tbl(sc, pace_tab); 9454 9455 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9456 "Class IPG (0.1 ns) Flow IPG (us)"); 9457 9458 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9459 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9460 sbuf_printf(sb, "\n %u %-5s %u ", i, 9461 (mode & (1 << i)) ? "flow" : "class", map & 3); 9462 if (kbps) 9463 sbuf_printf(sb, "%9u ", kbps); 9464 else 9465 sbuf_printf(sb, " disabled "); 9466 9467 if (ipg) 9468 sbuf_printf(sb, "%13u ", ipg); 9469 else 9470 sbuf_printf(sb, " disabled "); 9471 9472 if (pace_tab[i]) 9473 sbuf_printf(sb, "%10u", pace_tab[i]); 9474 else 9475 sbuf_printf(sb, " disabled"); 9476 } 9477 rc = sbuf_finish(sb); 9478 done: 9479 mtx_unlock(&sc->reg_lock); 9480 sbuf_delete(sb); 9481 return (rc); 9482 } 9483 9484 static int 9485 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9486 { 9487 struct adapter *sc = arg1; 9488 struct sbuf *sb; 9489 int rc, i, j; 9490 uint64_t *p0, *p1; 9491 struct lb_port_stats s[2]; 9492 static const char *stat_name[] = { 9493 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9494 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9495 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9496 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9497 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9498 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9499 "BG2FramesTrunc:", "BG3FramesTrunc:" 9500 }; 9501 9502 rc = sysctl_wire_old_buffer(req, 0); 9503 if (rc != 0) 9504 return (rc); 9505 9506 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9507 if (sb == NULL) 9508 return (ENOMEM); 9509 9510 memset(s, 0, sizeof(s)); 9511 9512 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9513 mtx_lock(&sc->reg_lock); 9514 if (hw_off_limits(sc)) 9515 rc = ENXIO; 9516 else { 9517 t4_get_lb_stats(sc, i, &s[0]); 9518 t4_get_lb_stats(sc, i + 1, &s[1]); 9519 } 9520 mtx_unlock(&sc->reg_lock); 9521 if (rc != 0) 9522 break; 9523 9524 p0 = &s[0].octets; 9525 p1 = &s[1].octets; 9526 sbuf_printf(sb, "%s Loopback %u" 9527 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9528 9529 for (j = 0; j < nitems(stat_name); j++) 9530 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9531 *p0++, *p1++); 9532 } 9533 9534 rc = sbuf_finish(sb); 9535 sbuf_delete(sb); 9536 9537 return (rc); 9538 } 9539 9540 static int 9541 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9542 { 9543 int rc = 0; 9544 struct port_info *pi = arg1; 9545 struct link_config *lc = &pi->link_cfg; 9546 struct sbuf *sb; 9547 9548 rc = sysctl_wire_old_buffer(req, 0); 9549 if (rc != 0) 9550 return(rc); 9551 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9552 if (sb == NULL) 9553 return (ENOMEM); 9554 9555 if (lc->link_ok || lc->link_down_rc == 255) 9556 sbuf_printf(sb, "n/a"); 9557 else 9558 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9559 9560 rc = sbuf_finish(sb); 9561 sbuf_delete(sb); 9562 9563 return (rc); 9564 } 9565 9566 struct mem_desc { 9567 unsigned int base; 9568 unsigned int limit; 9569 unsigned int idx; 9570 }; 9571 9572 static int 9573 mem_desc_cmp(const void *a, const void *b) 9574 { 9575 return ((const struct mem_desc *)a)->base - 9576 ((const struct mem_desc *)b)->base; 9577 } 9578 9579 static void 9580 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9581 unsigned int to) 9582 { 9583 unsigned int size; 9584 9585 if (from == to) 9586 return; 9587 9588 size = to - from + 1; 9589 if (size == 0) 9590 return; 9591 9592 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9593 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9594 } 9595 9596 static int 9597 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9598 { 9599 struct adapter *sc = arg1; 9600 struct sbuf *sb; 9601 int rc, i, n; 9602 uint32_t lo, hi, used, alloc; 9603 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 9604 static const char *region[] = { 9605 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9606 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9607 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9608 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9609 "RQUDP region:", "PBL region:", "TXPBL region:", 9610 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 9611 "On-chip queues:", "TLS keys:", 9612 }; 9613 struct mem_desc avail[4]; 9614 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9615 struct mem_desc *md = mem; 9616 9617 rc = sysctl_wire_old_buffer(req, 0); 9618 if (rc != 0) 9619 return (rc); 9620 9621 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9622 if (sb == NULL) 9623 return (ENOMEM); 9624 9625 for (i = 0; i < nitems(mem); i++) { 9626 mem[i].limit = 0; 9627 mem[i].idx = i; 9628 } 9629 9630 mtx_lock(&sc->reg_lock); 9631 if (hw_off_limits(sc)) { 9632 rc = ENXIO; 9633 goto done; 9634 } 9635 9636 /* Find and sort the populated memory ranges */ 9637 i = 0; 9638 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9639 if (lo & F_EDRAM0_ENABLE) { 9640 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9641 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9642 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9643 avail[i].idx = 0; 9644 i++; 9645 } 9646 if (lo & F_EDRAM1_ENABLE) { 9647 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9648 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9649 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9650 avail[i].idx = 1; 9651 i++; 9652 } 9653 if (lo & F_EXT_MEM_ENABLE) { 9654 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9655 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9656 avail[i].limit = avail[i].base + 9657 (G_EXT_MEM_SIZE(hi) << 20); 9658 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9659 i++; 9660 } 9661 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9662 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9663 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9664 avail[i].limit = avail[i].base + 9665 (G_EXT_MEM1_SIZE(hi) << 20); 9666 avail[i].idx = 4; 9667 i++; 9668 } 9669 if (!i) /* no memory available */ 9670 goto done; 9671 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9672 9673 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9674 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9675 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9676 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9677 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9678 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9679 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9680 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9681 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9682 9683 /* the next few have explicit upper bounds */ 9684 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9685 md->limit = md->base - 1 + 9686 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9687 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9688 md++; 9689 9690 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9691 md->limit = md->base - 1 + 9692 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9693 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9694 md++; 9695 9696 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9697 if (chip_id(sc) <= CHELSIO_T5) 9698 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9699 else 9700 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9701 md->limit = 0; 9702 } else { 9703 md->base = 0; 9704 md->idx = nitems(region); /* hide it */ 9705 } 9706 md++; 9707 9708 #define ulp_region(reg) \ 9709 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9710 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9711 9712 ulp_region(RX_ISCSI); 9713 ulp_region(RX_TDDP); 9714 ulp_region(TX_TPT); 9715 ulp_region(RX_STAG); 9716 ulp_region(RX_RQ); 9717 ulp_region(RX_RQUDP); 9718 ulp_region(RX_PBL); 9719 ulp_region(TX_PBL); 9720 #undef ulp_region 9721 9722 md->base = 0; 9723 md->idx = nitems(region); 9724 if (!is_t4(sc)) { 9725 uint32_t size = 0; 9726 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9727 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9728 9729 if (is_t5(sc)) { 9730 if (sge_ctrl & F_VFIFO_ENABLE) 9731 size = G_DBVFIFO_SIZE(fifo_size); 9732 } else 9733 size = G_T6_DBVFIFO_SIZE(fifo_size); 9734 9735 if (size) { 9736 md->base = G_BASEADDR(t4_read_reg(sc, 9737 A_SGE_DBVFIFO_BADDR)); 9738 md->limit = md->base + (size << 2) - 1; 9739 } 9740 } 9741 md++; 9742 9743 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9744 md->limit = 0; 9745 md++; 9746 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9747 md->limit = 0; 9748 md++; 9749 9750 md->base = sc->vres.ocq.start; 9751 if (sc->vres.ocq.size) 9752 md->limit = md->base + sc->vres.ocq.size - 1; 9753 else 9754 md->idx = nitems(region); /* hide it */ 9755 md++; 9756 9757 md->base = sc->vres.key.start; 9758 if (sc->vres.key.size) 9759 md->limit = md->base + sc->vres.key.size - 1; 9760 else 9761 md->idx = nitems(region); /* hide it */ 9762 md++; 9763 9764 /* add any address-space holes, there can be up to 3 */ 9765 for (n = 0; n < i - 1; n++) 9766 if (avail[n].limit < avail[n + 1].base) 9767 (md++)->base = avail[n].limit; 9768 if (avail[n].limit) 9769 (md++)->base = avail[n].limit; 9770 9771 n = md - mem; 9772 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9773 9774 for (lo = 0; lo < i; lo++) 9775 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9776 avail[lo].limit - 1); 9777 9778 sbuf_printf(sb, "\n"); 9779 for (i = 0; i < n; i++) { 9780 if (mem[i].idx >= nitems(region)) 9781 continue; /* skip holes */ 9782 if (!mem[i].limit) 9783 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9784 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9785 mem[i].limit); 9786 } 9787 9788 sbuf_printf(sb, "\n"); 9789 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9790 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9791 mem_region_show(sb, "uP RAM:", lo, hi); 9792 9793 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9794 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9795 mem_region_show(sb, "uP Extmem2:", lo, hi); 9796 9797 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9798 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 9799 G_PMRXMAXPAGE(lo), 9800 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9801 (lo & F_PMRXNUMCHN) ? 2 : 1); 9802 9803 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9804 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9805 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 9806 G_PMTXMAXPAGE(lo), 9807 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9808 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9809 sbuf_printf(sb, "%u p-structs\n", 9810 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 9811 9812 for (i = 0; i < 4; i++) { 9813 if (chip_id(sc) > CHELSIO_T5) 9814 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9815 else 9816 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9817 if (is_t5(sc)) { 9818 used = G_T5_USED(lo); 9819 alloc = G_T5_ALLOC(lo); 9820 } else { 9821 used = G_USED(lo); 9822 alloc = G_ALLOC(lo); 9823 } 9824 /* For T6 these are MAC buffer groups */ 9825 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9826 i, used, alloc); 9827 } 9828 for (i = 0; i < sc->chip_params->nchan; i++) { 9829 if (chip_id(sc) > CHELSIO_T5) 9830 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9831 else 9832 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9833 if (is_t5(sc)) { 9834 used = G_T5_USED(lo); 9835 alloc = G_T5_ALLOC(lo); 9836 } else { 9837 used = G_USED(lo); 9838 alloc = G_ALLOC(lo); 9839 } 9840 /* For T6 these are MAC buffer groups */ 9841 sbuf_printf(sb, 9842 "\nLoopback %d using %u pages out of %u allocated", 9843 i, used, alloc); 9844 } 9845 done: 9846 mtx_unlock(&sc->reg_lock); 9847 if (rc == 0) 9848 rc = sbuf_finish(sb); 9849 sbuf_delete(sb); 9850 return (rc); 9851 } 9852 9853 static inline void 9854 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9855 { 9856 *mask = x | y; 9857 y = htobe64(y); 9858 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9859 } 9860 9861 static int 9862 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9863 { 9864 struct adapter *sc = arg1; 9865 struct sbuf *sb; 9866 int rc, i; 9867 9868 MPASS(chip_id(sc) <= CHELSIO_T5); 9869 9870 rc = sysctl_wire_old_buffer(req, 0); 9871 if (rc != 0) 9872 return (rc); 9873 9874 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9875 if (sb == NULL) 9876 return (ENOMEM); 9877 9878 sbuf_printf(sb, 9879 "Idx Ethernet address Mask Vld Ports PF" 9880 " VF Replication P0 P1 P2 P3 ML"); 9881 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9882 uint64_t tcamx, tcamy, mask; 9883 uint32_t cls_lo, cls_hi; 9884 uint8_t addr[ETHER_ADDR_LEN]; 9885 9886 mtx_lock(&sc->reg_lock); 9887 if (hw_off_limits(sc)) 9888 rc = ENXIO; 9889 else { 9890 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 9891 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 9892 } 9893 mtx_unlock(&sc->reg_lock); 9894 if (rc != 0) 9895 break; 9896 if (tcamx & tcamy) 9897 continue; 9898 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9899 mtx_lock(&sc->reg_lock); 9900 if (hw_off_limits(sc)) 9901 rc = ENXIO; 9902 else { 9903 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 9904 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 9905 } 9906 mtx_unlock(&sc->reg_lock); 9907 if (rc != 0) 9908 break; 9909 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 9910 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 9911 addr[3], addr[4], addr[5], (uintmax_t)mask, 9912 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 9913 G_PORTMAP(cls_hi), G_PF(cls_lo), 9914 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 9915 9916 if (cls_lo & F_REPLICATE) { 9917 struct fw_ldst_cmd ldst_cmd; 9918 9919 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9920 ldst_cmd.op_to_addrspace = 9921 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 9922 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9923 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 9924 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 9925 ldst_cmd.u.mps.rplc.fid_idx = 9926 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 9927 V_FW_LDST_CMD_IDX(i)); 9928 9929 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9930 "t4mps"); 9931 if (rc) 9932 break; 9933 if (hw_off_limits(sc)) 9934 rc = ENXIO; 9935 else 9936 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 9937 sizeof(ldst_cmd), &ldst_cmd); 9938 end_synchronized_op(sc, 0); 9939 if (rc != 0) 9940 break; 9941 else { 9942 sbuf_printf(sb, " %08x %08x %08x %08x", 9943 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 9944 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 9945 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 9946 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 9947 } 9948 } else 9949 sbuf_printf(sb, "%36s", ""); 9950 9951 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 9952 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 9953 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 9954 } 9955 9956 if (rc) 9957 (void) sbuf_finish(sb); 9958 else 9959 rc = sbuf_finish(sb); 9960 sbuf_delete(sb); 9961 9962 return (rc); 9963 } 9964 9965 static int 9966 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 9967 { 9968 struct adapter *sc = arg1; 9969 struct sbuf *sb; 9970 int rc, i; 9971 9972 MPASS(chip_id(sc) > CHELSIO_T5); 9973 9974 rc = sysctl_wire_old_buffer(req, 0); 9975 if (rc != 0) 9976 return (rc); 9977 9978 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9979 if (sb == NULL) 9980 return (ENOMEM); 9981 9982 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 9983 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 9984 " Replication" 9985 " P0 P1 P2 P3 ML\n"); 9986 9987 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9988 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 9989 uint16_t ivlan; 9990 uint64_t tcamx, tcamy, val, mask; 9991 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 9992 uint8_t addr[ETHER_ADDR_LEN]; 9993 9994 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 9995 if (i < 256) 9996 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 9997 else 9998 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 9999 mtx_lock(&sc->reg_lock); 10000 if (hw_off_limits(sc)) 10001 rc = ENXIO; 10002 else { 10003 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10004 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10005 tcamy = G_DMACH(val) << 32; 10006 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10007 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10008 } 10009 mtx_unlock(&sc->reg_lock); 10010 if (rc != 0) 10011 break; 10012 10013 lookup_type = G_DATALKPTYPE(data2); 10014 port_num = G_DATAPORTNUM(data2); 10015 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10016 /* Inner header VNI */ 10017 vniy = ((data2 & F_DATAVIDH2) << 23) | 10018 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10019 dip_hit = data2 & F_DATADIPHIT; 10020 vlan_vld = 0; 10021 } else { 10022 vniy = 0; 10023 dip_hit = 0; 10024 vlan_vld = data2 & F_DATAVIDH2; 10025 ivlan = G_VIDL(val); 10026 } 10027 10028 ctl |= V_CTLXYBITSEL(1); 10029 mtx_lock(&sc->reg_lock); 10030 if (hw_off_limits(sc)) 10031 rc = ENXIO; 10032 else { 10033 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10034 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10035 tcamx = G_DMACH(val) << 32; 10036 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10037 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10038 } 10039 mtx_unlock(&sc->reg_lock); 10040 if (rc != 0) 10041 break; 10042 10043 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10044 /* Inner header VNI mask */ 10045 vnix = ((data2 & F_DATAVIDH2) << 23) | 10046 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10047 } else 10048 vnix = 0; 10049 10050 if (tcamx & tcamy) 10051 continue; 10052 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10053 10054 mtx_lock(&sc->reg_lock); 10055 if (hw_off_limits(sc)) 10056 rc = ENXIO; 10057 else { 10058 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10059 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10060 } 10061 mtx_unlock(&sc->reg_lock); 10062 if (rc != 0) 10063 break; 10064 10065 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10066 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10067 "%012jx %06x %06x - - %3c" 10068 " I %4x %3c %#x%4u%4d", i, addr[0], 10069 addr[1], addr[2], addr[3], addr[4], addr[5], 10070 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10071 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10072 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10073 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10074 } else { 10075 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10076 "%012jx - - ", i, addr[0], addr[1], 10077 addr[2], addr[3], addr[4], addr[5], 10078 (uintmax_t)mask); 10079 10080 if (vlan_vld) 10081 sbuf_printf(sb, "%4u Y ", ivlan); 10082 else 10083 sbuf_printf(sb, " - N "); 10084 10085 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10086 lookup_type ? 'I' : 'O', port_num, 10087 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10088 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10089 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10090 } 10091 10092 10093 if (cls_lo & F_T6_REPLICATE) { 10094 struct fw_ldst_cmd ldst_cmd; 10095 10096 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10097 ldst_cmd.op_to_addrspace = 10098 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10099 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10100 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10101 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10102 ldst_cmd.u.mps.rplc.fid_idx = 10103 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10104 V_FW_LDST_CMD_IDX(i)); 10105 10106 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10107 "t6mps"); 10108 if (rc) 10109 break; 10110 if (hw_off_limits(sc)) 10111 rc = ENXIO; 10112 else 10113 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10114 sizeof(ldst_cmd), &ldst_cmd); 10115 end_synchronized_op(sc, 0); 10116 if (rc != 0) 10117 break; 10118 else { 10119 sbuf_printf(sb, " %08x %08x %08x %08x" 10120 " %08x %08x %08x %08x", 10121 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10122 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10123 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10124 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10125 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10126 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10127 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10128 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10129 } 10130 } else 10131 sbuf_printf(sb, "%72s", ""); 10132 10133 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10134 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10135 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10136 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10137 } 10138 10139 if (rc) 10140 (void) sbuf_finish(sb); 10141 else 10142 rc = sbuf_finish(sb); 10143 sbuf_delete(sb); 10144 10145 return (rc); 10146 } 10147 10148 static int 10149 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10150 { 10151 struct adapter *sc = arg1; 10152 struct sbuf *sb; 10153 int rc; 10154 uint16_t mtus[NMTUS]; 10155 10156 rc = sysctl_wire_old_buffer(req, 0); 10157 if (rc != 0) 10158 return (rc); 10159 10160 mtx_lock(&sc->reg_lock); 10161 if (hw_off_limits(sc)) 10162 rc = ENXIO; 10163 else 10164 t4_read_mtu_tbl(sc, mtus, NULL); 10165 mtx_unlock(&sc->reg_lock); 10166 if (rc != 0) 10167 return (rc); 10168 10169 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10170 if (sb == NULL) 10171 return (ENOMEM); 10172 10173 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10174 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10175 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10176 mtus[14], mtus[15]); 10177 10178 rc = sbuf_finish(sb); 10179 sbuf_delete(sb); 10180 10181 return (rc); 10182 } 10183 10184 static int 10185 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10186 { 10187 struct adapter *sc = arg1; 10188 struct sbuf *sb; 10189 int rc, i; 10190 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10191 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10192 static const char *tx_stats[MAX_PM_NSTATS] = { 10193 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10194 "Tx FIFO wait", NULL, "Tx latency" 10195 }; 10196 static const char *rx_stats[MAX_PM_NSTATS] = { 10197 "Read:", "Write bypass:", "Write mem:", "Flush:", 10198 "Rx FIFO wait", NULL, "Rx latency" 10199 }; 10200 10201 rc = sysctl_wire_old_buffer(req, 0); 10202 if (rc != 0) 10203 return (rc); 10204 10205 mtx_lock(&sc->reg_lock); 10206 if (hw_off_limits(sc)) 10207 rc = ENXIO; 10208 else { 10209 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10210 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10211 } 10212 mtx_unlock(&sc->reg_lock); 10213 if (rc != 0) 10214 return (rc); 10215 10216 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10217 if (sb == NULL) 10218 return (ENOMEM); 10219 10220 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10221 for (i = 0; i < 4; i++) { 10222 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10223 tx_cyc[i]); 10224 } 10225 10226 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10227 for (i = 0; i < 4; i++) { 10228 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10229 rx_cyc[i]); 10230 } 10231 10232 if (chip_id(sc) > CHELSIO_T5) { 10233 sbuf_printf(sb, 10234 "\n Total wait Total occupancy"); 10235 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10236 tx_cyc[i]); 10237 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10238 rx_cyc[i]); 10239 10240 i += 2; 10241 MPASS(i < nitems(tx_stats)); 10242 10243 sbuf_printf(sb, 10244 "\n Reads Total wait"); 10245 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10246 tx_cyc[i]); 10247 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10248 rx_cyc[i]); 10249 } 10250 10251 rc = sbuf_finish(sb); 10252 sbuf_delete(sb); 10253 10254 return (rc); 10255 } 10256 10257 static int 10258 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10259 { 10260 struct adapter *sc = arg1; 10261 struct sbuf *sb; 10262 int rc; 10263 struct tp_rdma_stats stats; 10264 10265 rc = sysctl_wire_old_buffer(req, 0); 10266 if (rc != 0) 10267 return (rc); 10268 10269 mtx_lock(&sc->reg_lock); 10270 if (hw_off_limits(sc)) 10271 rc = ENXIO; 10272 else 10273 t4_tp_get_rdma_stats(sc, &stats, 0); 10274 mtx_unlock(&sc->reg_lock); 10275 if (rc != 0) 10276 return (rc); 10277 10278 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10279 if (sb == NULL) 10280 return (ENOMEM); 10281 10282 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10283 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10284 10285 rc = sbuf_finish(sb); 10286 sbuf_delete(sb); 10287 10288 return (rc); 10289 } 10290 10291 static int 10292 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10293 { 10294 struct adapter *sc = arg1; 10295 struct sbuf *sb; 10296 int rc; 10297 struct tp_tcp_stats v4, v6; 10298 10299 rc = sysctl_wire_old_buffer(req, 0); 10300 if (rc != 0) 10301 return (rc); 10302 10303 mtx_lock(&sc->reg_lock); 10304 if (hw_off_limits(sc)) 10305 rc = ENXIO; 10306 else 10307 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10308 mtx_unlock(&sc->reg_lock); 10309 if (rc != 0) 10310 return (rc); 10311 10312 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10313 if (sb == NULL) 10314 return (ENOMEM); 10315 10316 sbuf_printf(sb, 10317 " IP IPv6\n"); 10318 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10319 v4.tcp_out_rsts, v6.tcp_out_rsts); 10320 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10321 v4.tcp_in_segs, v6.tcp_in_segs); 10322 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10323 v4.tcp_out_segs, v6.tcp_out_segs); 10324 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10325 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10326 10327 rc = sbuf_finish(sb); 10328 sbuf_delete(sb); 10329 10330 return (rc); 10331 } 10332 10333 static int 10334 sysctl_tids(SYSCTL_HANDLER_ARGS) 10335 { 10336 struct adapter *sc = arg1; 10337 struct sbuf *sb; 10338 int rc; 10339 uint32_t x, y; 10340 struct tid_info *t = &sc->tids; 10341 10342 rc = sysctl_wire_old_buffer(req, 0); 10343 if (rc != 0) 10344 return (rc); 10345 10346 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10347 if (sb == NULL) 10348 return (ENOMEM); 10349 10350 if (t->natids) { 10351 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10352 t->atids_in_use); 10353 } 10354 10355 if (t->nhpftids) { 10356 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10357 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10358 } 10359 10360 if (t->ntids) { 10361 bool hashen = false; 10362 10363 mtx_lock(&sc->reg_lock); 10364 if (hw_off_limits(sc)) 10365 rc = ENXIO; 10366 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10367 hashen = true; 10368 if (chip_id(sc) <= CHELSIO_T5) { 10369 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10370 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10371 } else { 10372 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10373 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10374 } 10375 } 10376 mtx_unlock(&sc->reg_lock); 10377 if (rc != 0) 10378 goto done; 10379 10380 sbuf_printf(sb, "TID range: "); 10381 if (hashen) { 10382 if (x) 10383 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10384 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10385 } else { 10386 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10387 t->ntids - 1); 10388 } 10389 sbuf_printf(sb, ", in use: %u\n", 10390 atomic_load_acq_int(&t->tids_in_use)); 10391 } 10392 10393 if (t->nstids) { 10394 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10395 t->stid_base + t->nstids - 1, t->stids_in_use); 10396 } 10397 10398 if (t->nftids) { 10399 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10400 t->ftid_end, t->ftids_in_use); 10401 } 10402 10403 if (t->netids) { 10404 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10405 t->etid_base + t->netids - 1, t->etids_in_use); 10406 } 10407 10408 mtx_lock(&sc->reg_lock); 10409 if (hw_off_limits(sc)) 10410 rc = ENXIO; 10411 else { 10412 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10413 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10414 } 10415 mtx_unlock(&sc->reg_lock); 10416 if (rc != 0) 10417 goto done; 10418 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10419 done: 10420 if (rc == 0) 10421 rc = sbuf_finish(sb); 10422 else 10423 (void)sbuf_finish(sb); 10424 sbuf_delete(sb); 10425 10426 return (rc); 10427 } 10428 10429 static int 10430 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10431 { 10432 struct adapter *sc = arg1; 10433 struct sbuf *sb; 10434 int rc; 10435 struct tp_err_stats stats; 10436 10437 rc = sysctl_wire_old_buffer(req, 0); 10438 if (rc != 0) 10439 return (rc); 10440 10441 mtx_lock(&sc->reg_lock); 10442 if (hw_off_limits(sc)) 10443 rc = ENXIO; 10444 else 10445 t4_tp_get_err_stats(sc, &stats, 0); 10446 mtx_unlock(&sc->reg_lock); 10447 if (rc != 0) 10448 return (rc); 10449 10450 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10451 if (sb == NULL) 10452 return (ENOMEM); 10453 10454 if (sc->chip_params->nchan > 2) { 10455 sbuf_printf(sb, " channel 0 channel 1" 10456 " channel 2 channel 3\n"); 10457 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10458 stats.mac_in_errs[0], stats.mac_in_errs[1], 10459 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10460 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10461 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10462 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10463 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10464 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10465 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10466 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10467 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10468 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10469 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10470 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10471 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10472 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10473 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10474 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10475 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10476 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10477 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10478 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10479 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10480 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10481 } else { 10482 sbuf_printf(sb, " channel 0 channel 1\n"); 10483 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10484 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10485 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10486 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10487 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10488 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10489 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10490 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10491 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10492 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10493 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10494 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10495 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10496 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10497 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10498 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10499 } 10500 10501 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10502 stats.ofld_no_neigh, stats.ofld_cong_defer); 10503 10504 rc = sbuf_finish(sb); 10505 sbuf_delete(sb); 10506 10507 return (rc); 10508 } 10509 10510 static int 10511 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10512 { 10513 struct adapter *sc = arg1; 10514 struct sbuf *sb; 10515 int rc; 10516 struct tp_tnl_stats stats; 10517 10518 rc = sysctl_wire_old_buffer(req, 0); 10519 if (rc != 0) 10520 return(rc); 10521 10522 mtx_lock(&sc->reg_lock); 10523 if (hw_off_limits(sc)) 10524 rc = ENXIO; 10525 else 10526 t4_tp_get_tnl_stats(sc, &stats, 1); 10527 mtx_unlock(&sc->reg_lock); 10528 if (rc != 0) 10529 return (rc); 10530 10531 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10532 if (sb == NULL) 10533 return (ENOMEM); 10534 10535 if (sc->chip_params->nchan > 2) { 10536 sbuf_printf(sb, " channel 0 channel 1" 10537 " channel 2 channel 3\n"); 10538 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10539 stats.out_pkt[0], stats.out_pkt[1], 10540 stats.out_pkt[2], stats.out_pkt[3]); 10541 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10542 stats.in_pkt[0], stats.in_pkt[1], 10543 stats.in_pkt[2], stats.in_pkt[3]); 10544 } else { 10545 sbuf_printf(sb, " channel 0 channel 1\n"); 10546 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10547 stats.out_pkt[0], stats.out_pkt[1]); 10548 sbuf_printf(sb, "InPkts: %10u %10u", 10549 stats.in_pkt[0], stats.in_pkt[1]); 10550 } 10551 10552 rc = sbuf_finish(sb); 10553 sbuf_delete(sb); 10554 10555 return (rc); 10556 } 10557 10558 static int 10559 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10560 { 10561 struct adapter *sc = arg1; 10562 struct tp_params *tpp = &sc->params.tp; 10563 u_int mask; 10564 int rc; 10565 10566 mask = tpp->la_mask >> 16; 10567 rc = sysctl_handle_int(oidp, &mask, 0, req); 10568 if (rc != 0 || req->newptr == NULL) 10569 return (rc); 10570 if (mask > 0xffff) 10571 return (EINVAL); 10572 mtx_lock(&sc->reg_lock); 10573 if (hw_off_limits(sc)) 10574 rc = ENXIO; 10575 else { 10576 tpp->la_mask = mask << 16; 10577 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10578 tpp->la_mask); 10579 } 10580 mtx_unlock(&sc->reg_lock); 10581 10582 return (rc); 10583 } 10584 10585 struct field_desc { 10586 const char *name; 10587 u_int start; 10588 u_int width; 10589 }; 10590 10591 static void 10592 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10593 { 10594 char buf[32]; 10595 int line_size = 0; 10596 10597 while (f->name) { 10598 uint64_t mask = (1ULL << f->width) - 1; 10599 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10600 ((uintmax_t)v >> f->start) & mask); 10601 10602 if (line_size + len >= 79) { 10603 line_size = 8; 10604 sbuf_printf(sb, "\n "); 10605 } 10606 sbuf_printf(sb, "%s ", buf); 10607 line_size += len + 1; 10608 f++; 10609 } 10610 sbuf_printf(sb, "\n"); 10611 } 10612 10613 static const struct field_desc tp_la0[] = { 10614 { "RcfOpCodeOut", 60, 4 }, 10615 { "State", 56, 4 }, 10616 { "WcfState", 52, 4 }, 10617 { "RcfOpcSrcOut", 50, 2 }, 10618 { "CRxError", 49, 1 }, 10619 { "ERxError", 48, 1 }, 10620 { "SanityFailed", 47, 1 }, 10621 { "SpuriousMsg", 46, 1 }, 10622 { "FlushInputMsg", 45, 1 }, 10623 { "FlushInputCpl", 44, 1 }, 10624 { "RssUpBit", 43, 1 }, 10625 { "RssFilterHit", 42, 1 }, 10626 { "Tid", 32, 10 }, 10627 { "InitTcb", 31, 1 }, 10628 { "LineNumber", 24, 7 }, 10629 { "Emsg", 23, 1 }, 10630 { "EdataOut", 22, 1 }, 10631 { "Cmsg", 21, 1 }, 10632 { "CdataOut", 20, 1 }, 10633 { "EreadPdu", 19, 1 }, 10634 { "CreadPdu", 18, 1 }, 10635 { "TunnelPkt", 17, 1 }, 10636 { "RcfPeerFin", 16, 1 }, 10637 { "RcfReasonOut", 12, 4 }, 10638 { "TxCchannel", 10, 2 }, 10639 { "RcfTxChannel", 8, 2 }, 10640 { "RxEchannel", 6, 2 }, 10641 { "RcfRxChannel", 5, 1 }, 10642 { "RcfDataOutSrdy", 4, 1 }, 10643 { "RxDvld", 3, 1 }, 10644 { "RxOoDvld", 2, 1 }, 10645 { "RxCongestion", 1, 1 }, 10646 { "TxCongestion", 0, 1 }, 10647 { NULL } 10648 }; 10649 10650 static const struct field_desc tp_la1[] = { 10651 { "CplCmdIn", 56, 8 }, 10652 { "CplCmdOut", 48, 8 }, 10653 { "ESynOut", 47, 1 }, 10654 { "EAckOut", 46, 1 }, 10655 { "EFinOut", 45, 1 }, 10656 { "ERstOut", 44, 1 }, 10657 { "SynIn", 43, 1 }, 10658 { "AckIn", 42, 1 }, 10659 { "FinIn", 41, 1 }, 10660 { "RstIn", 40, 1 }, 10661 { "DataIn", 39, 1 }, 10662 { "DataInVld", 38, 1 }, 10663 { "PadIn", 37, 1 }, 10664 { "RxBufEmpty", 36, 1 }, 10665 { "RxDdp", 35, 1 }, 10666 { "RxFbCongestion", 34, 1 }, 10667 { "TxFbCongestion", 33, 1 }, 10668 { "TxPktSumSrdy", 32, 1 }, 10669 { "RcfUlpType", 28, 4 }, 10670 { "Eread", 27, 1 }, 10671 { "Ebypass", 26, 1 }, 10672 { "Esave", 25, 1 }, 10673 { "Static0", 24, 1 }, 10674 { "Cread", 23, 1 }, 10675 { "Cbypass", 22, 1 }, 10676 { "Csave", 21, 1 }, 10677 { "CPktOut", 20, 1 }, 10678 { "RxPagePoolFull", 18, 2 }, 10679 { "RxLpbkPkt", 17, 1 }, 10680 { "TxLpbkPkt", 16, 1 }, 10681 { "RxVfValid", 15, 1 }, 10682 { "SynLearned", 14, 1 }, 10683 { "SetDelEntry", 13, 1 }, 10684 { "SetInvEntry", 12, 1 }, 10685 { "CpcmdDvld", 11, 1 }, 10686 { "CpcmdSave", 10, 1 }, 10687 { "RxPstructsFull", 8, 2 }, 10688 { "EpcmdDvld", 7, 1 }, 10689 { "EpcmdFlush", 6, 1 }, 10690 { "EpcmdTrimPrefix", 5, 1 }, 10691 { "EpcmdTrimPostfix", 4, 1 }, 10692 { "ERssIp4Pkt", 3, 1 }, 10693 { "ERssIp6Pkt", 2, 1 }, 10694 { "ERssTcpUdpPkt", 1, 1 }, 10695 { "ERssFceFipPkt", 0, 1 }, 10696 { NULL } 10697 }; 10698 10699 static const struct field_desc tp_la2[] = { 10700 { "CplCmdIn", 56, 8 }, 10701 { "MpsVfVld", 55, 1 }, 10702 { "MpsPf", 52, 3 }, 10703 { "MpsVf", 44, 8 }, 10704 { "SynIn", 43, 1 }, 10705 { "AckIn", 42, 1 }, 10706 { "FinIn", 41, 1 }, 10707 { "RstIn", 40, 1 }, 10708 { "DataIn", 39, 1 }, 10709 { "DataInVld", 38, 1 }, 10710 { "PadIn", 37, 1 }, 10711 { "RxBufEmpty", 36, 1 }, 10712 { "RxDdp", 35, 1 }, 10713 { "RxFbCongestion", 34, 1 }, 10714 { "TxFbCongestion", 33, 1 }, 10715 { "TxPktSumSrdy", 32, 1 }, 10716 { "RcfUlpType", 28, 4 }, 10717 { "Eread", 27, 1 }, 10718 { "Ebypass", 26, 1 }, 10719 { "Esave", 25, 1 }, 10720 { "Static0", 24, 1 }, 10721 { "Cread", 23, 1 }, 10722 { "Cbypass", 22, 1 }, 10723 { "Csave", 21, 1 }, 10724 { "CPktOut", 20, 1 }, 10725 { "RxPagePoolFull", 18, 2 }, 10726 { "RxLpbkPkt", 17, 1 }, 10727 { "TxLpbkPkt", 16, 1 }, 10728 { "RxVfValid", 15, 1 }, 10729 { "SynLearned", 14, 1 }, 10730 { "SetDelEntry", 13, 1 }, 10731 { "SetInvEntry", 12, 1 }, 10732 { "CpcmdDvld", 11, 1 }, 10733 { "CpcmdSave", 10, 1 }, 10734 { "RxPstructsFull", 8, 2 }, 10735 { "EpcmdDvld", 7, 1 }, 10736 { "EpcmdFlush", 6, 1 }, 10737 { "EpcmdTrimPrefix", 5, 1 }, 10738 { "EpcmdTrimPostfix", 4, 1 }, 10739 { "ERssIp4Pkt", 3, 1 }, 10740 { "ERssIp6Pkt", 2, 1 }, 10741 { "ERssTcpUdpPkt", 1, 1 }, 10742 { "ERssFceFipPkt", 0, 1 }, 10743 { NULL } 10744 }; 10745 10746 static void 10747 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10748 { 10749 10750 field_desc_show(sb, *p, tp_la0); 10751 } 10752 10753 static void 10754 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10755 { 10756 10757 if (idx) 10758 sbuf_printf(sb, "\n"); 10759 field_desc_show(sb, p[0], tp_la0); 10760 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10761 field_desc_show(sb, p[1], tp_la0); 10762 } 10763 10764 static void 10765 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10766 { 10767 10768 if (idx) 10769 sbuf_printf(sb, "\n"); 10770 field_desc_show(sb, p[0], tp_la0); 10771 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10772 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10773 } 10774 10775 static int 10776 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10777 { 10778 struct adapter *sc = arg1; 10779 struct sbuf *sb; 10780 uint64_t *buf, *p; 10781 int rc; 10782 u_int i, inc; 10783 void (*show_func)(struct sbuf *, uint64_t *, int); 10784 10785 rc = sysctl_wire_old_buffer(req, 0); 10786 if (rc != 0) 10787 return (rc); 10788 10789 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10790 if (sb == NULL) 10791 return (ENOMEM); 10792 10793 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10794 10795 mtx_lock(&sc->reg_lock); 10796 if (hw_off_limits(sc)) 10797 rc = ENXIO; 10798 else { 10799 t4_tp_read_la(sc, buf, NULL); 10800 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10801 case 2: 10802 inc = 2; 10803 show_func = tp_la_show2; 10804 break; 10805 case 3: 10806 inc = 2; 10807 show_func = tp_la_show3; 10808 break; 10809 default: 10810 inc = 1; 10811 show_func = tp_la_show; 10812 } 10813 } 10814 mtx_unlock(&sc->reg_lock); 10815 if (rc != 0) 10816 goto done; 10817 10818 p = buf; 10819 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10820 (*show_func)(sb, p, i); 10821 rc = sbuf_finish(sb); 10822 done: 10823 sbuf_delete(sb); 10824 free(buf, M_CXGBE); 10825 return (rc); 10826 } 10827 10828 static int 10829 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10830 { 10831 struct adapter *sc = arg1; 10832 struct sbuf *sb; 10833 int rc; 10834 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10835 10836 rc = sysctl_wire_old_buffer(req, 0); 10837 if (rc != 0) 10838 return (rc); 10839 10840 mtx_lock(&sc->reg_lock); 10841 if (hw_off_limits(sc)) 10842 rc = ENXIO; 10843 else 10844 t4_get_chan_txrate(sc, nrate, orate); 10845 mtx_unlock(&sc->reg_lock); 10846 if (rc != 0) 10847 return (rc); 10848 10849 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10850 if (sb == NULL) 10851 return (ENOMEM); 10852 10853 if (sc->chip_params->nchan > 2) { 10854 sbuf_printf(sb, " channel 0 channel 1" 10855 " channel 2 channel 3\n"); 10856 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10857 nrate[0], nrate[1], nrate[2], nrate[3]); 10858 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10859 orate[0], orate[1], orate[2], orate[3]); 10860 } else { 10861 sbuf_printf(sb, " channel 0 channel 1\n"); 10862 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10863 nrate[0], nrate[1]); 10864 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10865 orate[0], orate[1]); 10866 } 10867 10868 rc = sbuf_finish(sb); 10869 sbuf_delete(sb); 10870 10871 return (rc); 10872 } 10873 10874 static int 10875 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10876 { 10877 struct adapter *sc = arg1; 10878 struct sbuf *sb; 10879 uint32_t *buf, *p; 10880 int rc, i; 10881 10882 rc = sysctl_wire_old_buffer(req, 0); 10883 if (rc != 0) 10884 return (rc); 10885 10886 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10887 if (sb == NULL) 10888 return (ENOMEM); 10889 10890 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 10891 M_ZERO | M_WAITOK); 10892 10893 mtx_lock(&sc->reg_lock); 10894 if (hw_off_limits(sc)) 10895 rc = ENXIO; 10896 else 10897 t4_ulprx_read_la(sc, buf); 10898 mtx_unlock(&sc->reg_lock); 10899 if (rc != 0) 10900 goto done; 10901 10902 p = buf; 10903 sbuf_printf(sb, " Pcmd Type Message" 10904 " Data"); 10905 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 10906 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 10907 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 10908 } 10909 rc = sbuf_finish(sb); 10910 done: 10911 sbuf_delete(sb); 10912 free(buf, M_CXGBE); 10913 return (rc); 10914 } 10915 10916 static int 10917 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 10918 { 10919 struct adapter *sc = arg1; 10920 struct sbuf *sb; 10921 int rc; 10922 uint32_t cfg, s1, s2; 10923 10924 MPASS(chip_id(sc) >= CHELSIO_T5); 10925 10926 rc = sysctl_wire_old_buffer(req, 0); 10927 if (rc != 0) 10928 return (rc); 10929 10930 mtx_lock(&sc->reg_lock); 10931 if (hw_off_limits(sc)) 10932 rc = ENXIO; 10933 else { 10934 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 10935 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 10936 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 10937 } 10938 mtx_unlock(&sc->reg_lock); 10939 if (rc != 0) 10940 return (rc); 10941 10942 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10943 if (sb == NULL) 10944 return (ENOMEM); 10945 10946 if (G_STATSOURCE_T5(cfg) == 7) { 10947 int mode; 10948 10949 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 10950 if (mode == 0) 10951 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 10952 else if (mode == 1) 10953 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 10954 else 10955 sbuf_printf(sb, "unknown mode %d", mode); 10956 } 10957 rc = sbuf_finish(sb); 10958 sbuf_delete(sb); 10959 10960 return (rc); 10961 } 10962 10963 static int 10964 sysctl_cpus(SYSCTL_HANDLER_ARGS) 10965 { 10966 struct adapter *sc = arg1; 10967 enum cpu_sets op = arg2; 10968 cpuset_t cpuset; 10969 struct sbuf *sb; 10970 int i, rc; 10971 10972 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 10973 10974 CPU_ZERO(&cpuset); 10975 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 10976 if (rc != 0) 10977 return (rc); 10978 10979 rc = sysctl_wire_old_buffer(req, 0); 10980 if (rc != 0) 10981 return (rc); 10982 10983 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10984 if (sb == NULL) 10985 return (ENOMEM); 10986 10987 CPU_FOREACH(i) 10988 sbuf_printf(sb, "%d ", i); 10989 rc = sbuf_finish(sb); 10990 sbuf_delete(sb); 10991 10992 return (rc); 10993 } 10994 10995 static int 10996 sysctl_reset(SYSCTL_HANDLER_ARGS) 10997 { 10998 struct adapter *sc = arg1; 10999 u_int val; 11000 int rc; 11001 11002 val = sc->num_resets; 11003 rc = sysctl_handle_int(oidp, &val, 0, req); 11004 if (rc != 0 || req->newptr == NULL) 11005 return (rc); 11006 11007 if (val == 0) { 11008 /* Zero out the counter that tracks reset. */ 11009 sc->num_resets = 0; 11010 return (0); 11011 } 11012 11013 if (val != 1) 11014 return (EINVAL); /* 0 or 1 are the only legal values */ 11015 11016 if (hw_off_limits(sc)) /* harmless race */ 11017 return (EALREADY); 11018 11019 taskqueue_enqueue(reset_tq, &sc->reset_task); 11020 return (0); 11021 } 11022 11023 #ifdef TCP_OFFLOAD 11024 static int 11025 sysctl_tls(SYSCTL_HANDLER_ARGS) 11026 { 11027 struct adapter *sc = arg1; 11028 int i, j, v, rc; 11029 struct vi_info *vi; 11030 11031 v = sc->tt.tls; 11032 rc = sysctl_handle_int(oidp, &v, 0, req); 11033 if (rc != 0 || req->newptr == NULL) 11034 return (rc); 11035 11036 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11037 return (ENOTSUP); 11038 11039 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11040 if (rc) 11041 return (rc); 11042 if (hw_off_limits(sc)) 11043 rc = ENXIO; 11044 else { 11045 sc->tt.tls = !!v; 11046 for_each_port(sc, i) { 11047 for_each_vi(sc->port[i], j, vi) { 11048 if (vi->flags & VI_INIT_DONE) 11049 t4_update_fl_bufsize(vi->ifp); 11050 } 11051 } 11052 } 11053 end_synchronized_op(sc, 0); 11054 11055 return (rc); 11056 11057 } 11058 11059 static int 11060 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11061 { 11062 struct adapter *sc = arg1; 11063 int *old_ports, *new_ports; 11064 int i, new_count, rc; 11065 11066 if (req->newptr == NULL && req->oldptr == NULL) 11067 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11068 sizeof(sc->tt.tls_rx_ports[0]))); 11069 11070 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11071 if (rc) 11072 return (rc); 11073 11074 if (hw_off_limits(sc)) { 11075 rc = ENXIO; 11076 goto done; 11077 } 11078 11079 if (sc->tt.num_tls_rx_ports == 0) { 11080 i = -1; 11081 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11082 } else 11083 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11084 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11085 if (rc == 0 && req->newptr != NULL) { 11086 new_count = req->newlen / sizeof(new_ports[0]); 11087 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11088 M_WAITOK); 11089 rc = SYSCTL_IN(req, new_ports, new_count * 11090 sizeof(new_ports[0])); 11091 if (rc) 11092 goto err; 11093 11094 /* Allow setting to a single '-1' to clear the list. */ 11095 if (new_count == 1 && new_ports[0] == -1) { 11096 ADAPTER_LOCK(sc); 11097 old_ports = sc->tt.tls_rx_ports; 11098 sc->tt.tls_rx_ports = NULL; 11099 sc->tt.num_tls_rx_ports = 0; 11100 ADAPTER_UNLOCK(sc); 11101 free(old_ports, M_CXGBE); 11102 } else { 11103 for (i = 0; i < new_count; i++) { 11104 if (new_ports[i] < 1 || 11105 new_ports[i] > IPPORT_MAX) { 11106 rc = EINVAL; 11107 goto err; 11108 } 11109 } 11110 11111 ADAPTER_LOCK(sc); 11112 old_ports = sc->tt.tls_rx_ports; 11113 sc->tt.tls_rx_ports = new_ports; 11114 sc->tt.num_tls_rx_ports = new_count; 11115 ADAPTER_UNLOCK(sc); 11116 free(old_ports, M_CXGBE); 11117 new_ports = NULL; 11118 } 11119 err: 11120 free(new_ports, M_CXGBE); 11121 } 11122 done: 11123 end_synchronized_op(sc, 0); 11124 return (rc); 11125 } 11126 11127 static int 11128 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11129 { 11130 struct adapter *sc = arg1; 11131 int v, rc; 11132 11133 v = sc->tt.tls_rx_timeout; 11134 rc = sysctl_handle_int(oidp, &v, 0, req); 11135 if (rc != 0 || req->newptr == NULL) 11136 return (rc); 11137 11138 if (v < 0) 11139 return (EINVAL); 11140 11141 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11142 return (ENOTSUP); 11143 11144 sc->tt.tls_rx_timeout = v; 11145 11146 return (0); 11147 11148 } 11149 11150 static void 11151 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11152 { 11153 u_int rem = val % factor; 11154 11155 if (rem == 0) 11156 snprintf(buf, len, "%u", val / factor); 11157 else { 11158 while (rem % 10 == 0) 11159 rem /= 10; 11160 snprintf(buf, len, "%u.%u", val / factor, rem); 11161 } 11162 } 11163 11164 static int 11165 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11166 { 11167 struct adapter *sc = arg1; 11168 char buf[16]; 11169 u_int res, re; 11170 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11171 11172 mtx_lock(&sc->reg_lock); 11173 if (hw_off_limits(sc)) 11174 res = (u_int)-1; 11175 else 11176 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11177 mtx_unlock(&sc->reg_lock); 11178 if (res == (u_int)-1) 11179 return (ENXIO); 11180 11181 switch (arg2) { 11182 case 0: 11183 /* timer_tick */ 11184 re = G_TIMERRESOLUTION(res); 11185 break; 11186 case 1: 11187 /* TCP timestamp tick */ 11188 re = G_TIMESTAMPRESOLUTION(res); 11189 break; 11190 case 2: 11191 /* DACK tick */ 11192 re = G_DELAYEDACKRESOLUTION(res); 11193 break; 11194 default: 11195 return (EDOOFUS); 11196 } 11197 11198 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11199 11200 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11201 } 11202 11203 static int 11204 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11205 { 11206 struct adapter *sc = arg1; 11207 int rc; 11208 u_int dack_tmr, dack_re, v; 11209 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11210 11211 mtx_lock(&sc->reg_lock); 11212 if (hw_off_limits(sc)) 11213 rc = ENXIO; 11214 else { 11215 rc = 0; 11216 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11217 A_TP_TIMER_RESOLUTION)); 11218 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11219 } 11220 mtx_unlock(&sc->reg_lock); 11221 if (rc != 0) 11222 return (rc); 11223 11224 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11225 11226 return (sysctl_handle_int(oidp, &v, 0, req)); 11227 } 11228 11229 static int 11230 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11231 { 11232 struct adapter *sc = arg1; 11233 int rc, reg = arg2; 11234 u_int tre; 11235 u_long tp_tick_us, v; 11236 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11237 11238 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11239 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11240 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11241 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11242 11243 mtx_lock(&sc->reg_lock); 11244 if (hw_off_limits(sc)) 11245 rc = ENXIO; 11246 else { 11247 rc = 0; 11248 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11249 tp_tick_us = (cclk_ps << tre) / 1000000; 11250 if (reg == A_TP_INIT_SRTT) 11251 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11252 else 11253 v = tp_tick_us * t4_read_reg(sc, reg); 11254 } 11255 mtx_unlock(&sc->reg_lock); 11256 if (rc != 0) 11257 return (rc); 11258 else 11259 return (sysctl_handle_long(oidp, &v, 0, req)); 11260 } 11261 11262 /* 11263 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11264 * passed to this function. 11265 */ 11266 static int 11267 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11268 { 11269 struct adapter *sc = arg1; 11270 int rc, idx = arg2; 11271 u_int v; 11272 11273 MPASS(idx >= 0 && idx <= 24); 11274 11275 mtx_lock(&sc->reg_lock); 11276 if (hw_off_limits(sc)) 11277 rc = ENXIO; 11278 else { 11279 rc = 0; 11280 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11281 } 11282 mtx_unlock(&sc->reg_lock); 11283 if (rc != 0) 11284 return (rc); 11285 else 11286 return (sysctl_handle_int(oidp, &v, 0, req)); 11287 } 11288 11289 static int 11290 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11291 { 11292 struct adapter *sc = arg1; 11293 int rc, idx = arg2; 11294 u_int shift, v, r; 11295 11296 MPASS(idx >= 0 && idx < 16); 11297 11298 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11299 shift = (idx & 3) << 3; 11300 mtx_lock(&sc->reg_lock); 11301 if (hw_off_limits(sc)) 11302 rc = ENXIO; 11303 else { 11304 rc = 0; 11305 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11306 } 11307 mtx_unlock(&sc->reg_lock); 11308 if (rc != 0) 11309 return (rc); 11310 else 11311 return (sysctl_handle_int(oidp, &v, 0, req)); 11312 } 11313 11314 static int 11315 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11316 { 11317 struct vi_info *vi = arg1; 11318 struct adapter *sc = vi->adapter; 11319 int idx, rc, i; 11320 struct sge_ofld_rxq *ofld_rxq; 11321 uint8_t v; 11322 11323 idx = vi->ofld_tmr_idx; 11324 11325 rc = sysctl_handle_int(oidp, &idx, 0, req); 11326 if (rc != 0 || req->newptr == NULL) 11327 return (rc); 11328 11329 if (idx < 0 || idx >= SGE_NTIMERS) 11330 return (EINVAL); 11331 11332 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11333 "t4otmr"); 11334 if (rc) 11335 return (rc); 11336 11337 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11338 for_each_ofld_rxq(vi, i, ofld_rxq) { 11339 #ifdef atomic_store_rel_8 11340 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11341 #else 11342 ofld_rxq->iq.intr_params = v; 11343 #endif 11344 } 11345 vi->ofld_tmr_idx = idx; 11346 11347 end_synchronized_op(sc, LOCK_HELD); 11348 return (0); 11349 } 11350 11351 static int 11352 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11353 { 11354 struct vi_info *vi = arg1; 11355 struct adapter *sc = vi->adapter; 11356 int idx, rc; 11357 11358 idx = vi->ofld_pktc_idx; 11359 11360 rc = sysctl_handle_int(oidp, &idx, 0, req); 11361 if (rc != 0 || req->newptr == NULL) 11362 return (rc); 11363 11364 if (idx < -1 || idx >= SGE_NCOUNTERS) 11365 return (EINVAL); 11366 11367 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11368 "t4opktc"); 11369 if (rc) 11370 return (rc); 11371 11372 if (vi->flags & VI_INIT_DONE) 11373 rc = EBUSY; /* cannot be changed once the queues are created */ 11374 else 11375 vi->ofld_pktc_idx = idx; 11376 11377 end_synchronized_op(sc, LOCK_HELD); 11378 return (rc); 11379 } 11380 #endif 11381 11382 static int 11383 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11384 { 11385 int rc; 11386 11387 if (cntxt->cid > M_CTXTQID) 11388 return (EINVAL); 11389 11390 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11391 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11392 return (EINVAL); 11393 11394 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11395 if (rc) 11396 return (rc); 11397 11398 if (hw_off_limits(sc)) { 11399 rc = ENXIO; 11400 goto done; 11401 } 11402 11403 if (sc->flags & FW_OK) { 11404 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11405 &cntxt->data[0]); 11406 if (rc == 0) 11407 goto done; 11408 } 11409 11410 /* 11411 * Read via firmware failed or wasn't even attempted. Read directly via 11412 * the backdoor. 11413 */ 11414 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11415 done: 11416 end_synchronized_op(sc, 0); 11417 return (rc); 11418 } 11419 11420 static int 11421 load_fw(struct adapter *sc, struct t4_data *fw) 11422 { 11423 int rc; 11424 uint8_t *fw_data; 11425 11426 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11427 if (rc) 11428 return (rc); 11429 11430 if (hw_off_limits(sc)) { 11431 rc = ENXIO; 11432 goto done; 11433 } 11434 11435 /* 11436 * The firmware, with the sole exception of the memory parity error 11437 * handler, runs from memory and not flash. It is almost always safe to 11438 * install a new firmware on a running system. Just set bit 1 in 11439 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11440 */ 11441 if (sc->flags & FULL_INIT_DONE && 11442 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11443 rc = EBUSY; 11444 goto done; 11445 } 11446 11447 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11448 11449 rc = copyin(fw->data, fw_data, fw->len); 11450 if (rc == 0) 11451 rc = -t4_load_fw(sc, fw_data, fw->len); 11452 11453 free(fw_data, M_CXGBE); 11454 done: 11455 end_synchronized_op(sc, 0); 11456 return (rc); 11457 } 11458 11459 static int 11460 load_cfg(struct adapter *sc, struct t4_data *cfg) 11461 { 11462 int rc; 11463 uint8_t *cfg_data = NULL; 11464 11465 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11466 if (rc) 11467 return (rc); 11468 11469 if (hw_off_limits(sc)) { 11470 rc = ENXIO; 11471 goto done; 11472 } 11473 11474 if (cfg->len == 0) { 11475 /* clear */ 11476 rc = -t4_load_cfg(sc, NULL, 0); 11477 goto done; 11478 } 11479 11480 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11481 11482 rc = copyin(cfg->data, cfg_data, cfg->len); 11483 if (rc == 0) 11484 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11485 11486 free(cfg_data, M_CXGBE); 11487 done: 11488 end_synchronized_op(sc, 0); 11489 return (rc); 11490 } 11491 11492 static int 11493 load_boot(struct adapter *sc, struct t4_bootrom *br) 11494 { 11495 int rc; 11496 uint8_t *br_data = NULL; 11497 u_int offset; 11498 11499 if (br->len > 1024 * 1024) 11500 return (EFBIG); 11501 11502 if (br->pf_offset == 0) { 11503 /* pfidx */ 11504 if (br->pfidx_addr > 7) 11505 return (EINVAL); 11506 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11507 A_PCIE_PF_EXPROM_OFST))); 11508 } else if (br->pf_offset == 1) { 11509 /* offset */ 11510 offset = G_OFFSET(br->pfidx_addr); 11511 } else { 11512 return (EINVAL); 11513 } 11514 11515 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11516 if (rc) 11517 return (rc); 11518 11519 if (hw_off_limits(sc)) { 11520 rc = ENXIO; 11521 goto done; 11522 } 11523 11524 if (br->len == 0) { 11525 /* clear */ 11526 rc = -t4_load_boot(sc, NULL, offset, 0); 11527 goto done; 11528 } 11529 11530 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11531 11532 rc = copyin(br->data, br_data, br->len); 11533 if (rc == 0) 11534 rc = -t4_load_boot(sc, br_data, offset, br->len); 11535 11536 free(br_data, M_CXGBE); 11537 done: 11538 end_synchronized_op(sc, 0); 11539 return (rc); 11540 } 11541 11542 static int 11543 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11544 { 11545 int rc; 11546 uint8_t *bc_data = NULL; 11547 11548 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11549 if (rc) 11550 return (rc); 11551 11552 if (hw_off_limits(sc)) { 11553 rc = ENXIO; 11554 goto done; 11555 } 11556 11557 if (bc->len == 0) { 11558 /* clear */ 11559 rc = -t4_load_bootcfg(sc, NULL, 0); 11560 goto done; 11561 } 11562 11563 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11564 11565 rc = copyin(bc->data, bc_data, bc->len); 11566 if (rc == 0) 11567 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11568 11569 free(bc_data, M_CXGBE); 11570 done: 11571 end_synchronized_op(sc, 0); 11572 return (rc); 11573 } 11574 11575 static int 11576 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11577 { 11578 int rc; 11579 struct cudbg_init *cudbg; 11580 void *handle, *buf; 11581 11582 /* buf is large, don't block if no memory is available */ 11583 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11584 if (buf == NULL) 11585 return (ENOMEM); 11586 11587 handle = cudbg_alloc_handle(); 11588 if (handle == NULL) { 11589 rc = ENOMEM; 11590 goto done; 11591 } 11592 11593 cudbg = cudbg_get_init(handle); 11594 cudbg->adap = sc; 11595 cudbg->print = (cudbg_print_cb)printf; 11596 11597 #ifndef notyet 11598 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11599 __func__, dump->wr_flash, dump->len, dump->data); 11600 #endif 11601 11602 if (dump->wr_flash) 11603 cudbg->use_flash = 1; 11604 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11605 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11606 11607 rc = cudbg_collect(handle, buf, &dump->len); 11608 if (rc != 0) 11609 goto done; 11610 11611 rc = copyout(buf, dump->data, dump->len); 11612 done: 11613 cudbg_free_handle(handle); 11614 free(buf, M_CXGBE); 11615 return (rc); 11616 } 11617 11618 static void 11619 free_offload_policy(struct t4_offload_policy *op) 11620 { 11621 struct offload_rule *r; 11622 int i; 11623 11624 if (op == NULL) 11625 return; 11626 11627 r = &op->rule[0]; 11628 for (i = 0; i < op->nrules; i++, r++) { 11629 free(r->bpf_prog.bf_insns, M_CXGBE); 11630 } 11631 free(op->rule, M_CXGBE); 11632 free(op, M_CXGBE); 11633 } 11634 11635 static int 11636 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11637 { 11638 int i, rc, len; 11639 struct t4_offload_policy *op, *old; 11640 struct bpf_program *bf; 11641 const struct offload_settings *s; 11642 struct offload_rule *r; 11643 void *u; 11644 11645 if (!is_offload(sc)) 11646 return (ENODEV); 11647 11648 if (uop->nrules == 0) { 11649 /* Delete installed policies. */ 11650 op = NULL; 11651 goto set_policy; 11652 } else if (uop->nrules > 256) { /* arbitrary */ 11653 return (E2BIG); 11654 } 11655 11656 /* Copy userspace offload policy to kernel */ 11657 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11658 op->nrules = uop->nrules; 11659 len = op->nrules * sizeof(struct offload_rule); 11660 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11661 rc = copyin(uop->rule, op->rule, len); 11662 if (rc) { 11663 free(op->rule, M_CXGBE); 11664 free(op, M_CXGBE); 11665 return (rc); 11666 } 11667 11668 r = &op->rule[0]; 11669 for (i = 0; i < op->nrules; i++, r++) { 11670 11671 /* Validate open_type */ 11672 if (r->open_type != OPEN_TYPE_LISTEN && 11673 r->open_type != OPEN_TYPE_ACTIVE && 11674 r->open_type != OPEN_TYPE_PASSIVE && 11675 r->open_type != OPEN_TYPE_DONTCARE) { 11676 error: 11677 /* 11678 * Rules 0 to i have malloc'd filters that need to be 11679 * freed. Rules i+1 to nrules have userspace pointers 11680 * and should be left alone. 11681 */ 11682 op->nrules = i; 11683 free_offload_policy(op); 11684 return (rc); 11685 } 11686 11687 /* Validate settings */ 11688 s = &r->settings; 11689 if ((s->offload != 0 && s->offload != 1) || 11690 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11691 s->sched_class < -1 || 11692 s->sched_class >= sc->params.nsched_cls) { 11693 rc = EINVAL; 11694 goto error; 11695 } 11696 11697 bf = &r->bpf_prog; 11698 u = bf->bf_insns; /* userspace ptr */ 11699 bf->bf_insns = NULL; 11700 if (bf->bf_len == 0) { 11701 /* legal, matches everything */ 11702 continue; 11703 } 11704 len = bf->bf_len * sizeof(*bf->bf_insns); 11705 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11706 rc = copyin(u, bf->bf_insns, len); 11707 if (rc != 0) 11708 goto error; 11709 11710 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11711 rc = EINVAL; 11712 goto error; 11713 } 11714 } 11715 set_policy: 11716 rw_wlock(&sc->policy_lock); 11717 old = sc->policy; 11718 sc->policy = op; 11719 rw_wunlock(&sc->policy_lock); 11720 free_offload_policy(old); 11721 11722 return (0); 11723 } 11724 11725 #define MAX_READ_BUF_SIZE (128 * 1024) 11726 static int 11727 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11728 { 11729 uint32_t addr, remaining, n; 11730 uint32_t *buf; 11731 int rc; 11732 uint8_t *dst; 11733 11734 mtx_lock(&sc->reg_lock); 11735 if (hw_off_limits(sc)) 11736 rc = ENXIO; 11737 else 11738 rc = validate_mem_range(sc, mr->addr, mr->len); 11739 mtx_unlock(&sc->reg_lock); 11740 if (rc != 0) 11741 return (rc); 11742 11743 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11744 addr = mr->addr; 11745 remaining = mr->len; 11746 dst = (void *)mr->data; 11747 11748 while (remaining) { 11749 n = min(remaining, MAX_READ_BUF_SIZE); 11750 mtx_lock(&sc->reg_lock); 11751 if (hw_off_limits(sc)) 11752 rc = ENXIO; 11753 else 11754 read_via_memwin(sc, 2, addr, buf, n); 11755 mtx_unlock(&sc->reg_lock); 11756 if (rc != 0) 11757 break; 11758 11759 rc = copyout(buf, dst, n); 11760 if (rc != 0) 11761 break; 11762 11763 dst += n; 11764 remaining -= n; 11765 addr += n; 11766 } 11767 11768 free(buf, M_CXGBE); 11769 return (rc); 11770 } 11771 #undef MAX_READ_BUF_SIZE 11772 11773 static int 11774 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11775 { 11776 int rc; 11777 11778 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11779 return (EINVAL); 11780 11781 if (i2cd->len > sizeof(i2cd->data)) 11782 return (EFBIG); 11783 11784 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11785 if (rc) 11786 return (rc); 11787 if (hw_off_limits(sc)) 11788 rc = ENXIO; 11789 else 11790 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11791 i2cd->offset, i2cd->len, &i2cd->data[0]); 11792 end_synchronized_op(sc, 0); 11793 11794 return (rc); 11795 } 11796 11797 static int 11798 clear_stats(struct adapter *sc, u_int port_id) 11799 { 11800 int i, v, chan_map; 11801 struct port_info *pi; 11802 struct vi_info *vi; 11803 struct sge_rxq *rxq; 11804 struct sge_txq *txq; 11805 struct sge_wrq *wrq; 11806 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11807 struct sge_ofld_txq *ofld_txq; 11808 #endif 11809 #ifdef TCP_OFFLOAD 11810 struct sge_ofld_rxq *ofld_rxq; 11811 #endif 11812 11813 if (port_id >= sc->params.nports) 11814 return (EINVAL); 11815 pi = sc->port[port_id]; 11816 if (pi == NULL) 11817 return (EIO); 11818 11819 mtx_lock(&sc->reg_lock); 11820 if (!hw_off_limits(sc)) { 11821 /* MAC stats */ 11822 t4_clr_port_stats(sc, pi->tx_chan); 11823 if (is_t6(sc)) { 11824 if (pi->fcs_reg != -1) 11825 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11826 else 11827 pi->stats.rx_fcs_err = 0; 11828 } 11829 for_each_vi(pi, v, vi) { 11830 if (vi->flags & VI_INIT_DONE) 11831 t4_clr_vi_stats(sc, vi->vin); 11832 } 11833 chan_map = pi->rx_e_chan_map; 11834 v = 0; /* reuse */ 11835 while (chan_map) { 11836 i = ffs(chan_map) - 1; 11837 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11838 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11839 chan_map &= ~(1 << i); 11840 } 11841 } 11842 mtx_unlock(&sc->reg_lock); 11843 pi->tx_parse_error = 0; 11844 pi->tnl_cong_drops = 0; 11845 11846 /* 11847 * Since this command accepts a port, clear stats for 11848 * all VIs on this port. 11849 */ 11850 for_each_vi(pi, v, vi) { 11851 if (vi->flags & VI_INIT_DONE) { 11852 11853 for_each_rxq(vi, i, rxq) { 11854 #if defined(INET) || defined(INET6) 11855 rxq->lro.lro_queued = 0; 11856 rxq->lro.lro_flushed = 0; 11857 #endif 11858 rxq->rxcsum = 0; 11859 rxq->vlan_extraction = 0; 11860 rxq->vxlan_rxcsum = 0; 11861 11862 rxq->fl.cl_allocated = 0; 11863 rxq->fl.cl_recycled = 0; 11864 rxq->fl.cl_fast_recycled = 0; 11865 } 11866 11867 for_each_txq(vi, i, txq) { 11868 txq->txcsum = 0; 11869 txq->tso_wrs = 0; 11870 txq->vlan_insertion = 0; 11871 txq->imm_wrs = 0; 11872 txq->sgl_wrs = 0; 11873 txq->txpkt_wrs = 0; 11874 txq->txpkts0_wrs = 0; 11875 txq->txpkts1_wrs = 0; 11876 txq->txpkts0_pkts = 0; 11877 txq->txpkts1_pkts = 0; 11878 txq->txpkts_flush = 0; 11879 txq->raw_wrs = 0; 11880 txq->vxlan_tso_wrs = 0; 11881 txq->vxlan_txcsum = 0; 11882 txq->kern_tls_records = 0; 11883 txq->kern_tls_short = 0; 11884 txq->kern_tls_partial = 0; 11885 txq->kern_tls_full = 0; 11886 txq->kern_tls_octets = 0; 11887 txq->kern_tls_waste = 0; 11888 txq->kern_tls_options = 0; 11889 txq->kern_tls_header = 0; 11890 txq->kern_tls_fin = 0; 11891 txq->kern_tls_fin_short = 0; 11892 txq->kern_tls_cbc = 0; 11893 txq->kern_tls_gcm = 0; 11894 mp_ring_reset_stats(txq->r); 11895 } 11896 11897 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11898 for_each_ofld_txq(vi, i, ofld_txq) { 11899 ofld_txq->wrq.tx_wrs_direct = 0; 11900 ofld_txq->wrq.tx_wrs_copied = 0; 11901 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 11902 counter_u64_zero(ofld_txq->tx_iscsi_octets); 11903 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 11904 counter_u64_zero(ofld_txq->tx_toe_tls_records); 11905 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 11906 } 11907 #endif 11908 #ifdef TCP_OFFLOAD 11909 for_each_ofld_rxq(vi, i, ofld_rxq) { 11910 ofld_rxq->fl.cl_allocated = 0; 11911 ofld_rxq->fl.cl_recycled = 0; 11912 ofld_rxq->fl.cl_fast_recycled = 0; 11913 counter_u64_zero( 11914 ofld_rxq->rx_iscsi_ddp_setup_ok); 11915 counter_u64_zero( 11916 ofld_rxq->rx_iscsi_ddp_setup_error); 11917 ofld_rxq->rx_iscsi_ddp_pdus = 0; 11918 ofld_rxq->rx_iscsi_ddp_octets = 0; 11919 ofld_rxq->rx_iscsi_fl_pdus = 0; 11920 ofld_rxq->rx_iscsi_fl_octets = 0; 11921 ofld_rxq->rx_toe_tls_records = 0; 11922 ofld_rxq->rx_toe_tls_octets = 0; 11923 } 11924 #endif 11925 11926 if (IS_MAIN_VI(vi)) { 11927 wrq = &sc->sge.ctrlq[pi->port_id]; 11928 wrq->tx_wrs_direct = 0; 11929 wrq->tx_wrs_copied = 0; 11930 } 11931 } 11932 } 11933 11934 return (0); 11935 } 11936 11937 static int 11938 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11939 { 11940 #ifdef INET6 11941 struct in6_addr in6; 11942 11943 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11944 if (t4_get_clip_entry(sc, &in6, true) != NULL) 11945 return (0); 11946 else 11947 return (EIO); 11948 #else 11949 return (ENOTSUP); 11950 #endif 11951 } 11952 11953 static int 11954 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11955 { 11956 #ifdef INET6 11957 struct in6_addr in6; 11958 11959 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11960 return (t4_release_clip_addr(sc, &in6)); 11961 #else 11962 return (ENOTSUP); 11963 #endif 11964 } 11965 11966 int 11967 t4_os_find_pci_capability(struct adapter *sc, int cap) 11968 { 11969 int i; 11970 11971 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 11972 } 11973 11974 int 11975 t4_os_pci_save_state(struct adapter *sc) 11976 { 11977 device_t dev; 11978 struct pci_devinfo *dinfo; 11979 11980 dev = sc->dev; 11981 dinfo = device_get_ivars(dev); 11982 11983 pci_cfg_save(dev, dinfo, 0); 11984 return (0); 11985 } 11986 11987 int 11988 t4_os_pci_restore_state(struct adapter *sc) 11989 { 11990 device_t dev; 11991 struct pci_devinfo *dinfo; 11992 11993 dev = sc->dev; 11994 dinfo = device_get_ivars(dev); 11995 11996 pci_cfg_restore(dev, dinfo); 11997 return (0); 11998 } 11999 12000 void 12001 t4_os_portmod_changed(struct port_info *pi) 12002 { 12003 struct adapter *sc = pi->adapter; 12004 struct vi_info *vi; 12005 struct ifnet *ifp; 12006 static const char *mod_str[] = { 12007 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12008 }; 12009 12010 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12011 ("%s: port_type %u", __func__, pi->port_type)); 12012 12013 vi = &pi->vi[0]; 12014 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12015 PORT_LOCK(pi); 12016 build_medialist(pi); 12017 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12018 fixup_link_config(pi); 12019 apply_link_config(pi); 12020 } 12021 PORT_UNLOCK(pi); 12022 end_synchronized_op(sc, LOCK_HELD); 12023 } 12024 12025 ifp = vi->ifp; 12026 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12027 if_printf(ifp, "transceiver unplugged.\n"); 12028 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12029 if_printf(ifp, "unknown transceiver inserted.\n"); 12030 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12031 if_printf(ifp, "unsupported transceiver inserted.\n"); 12032 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12033 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12034 port_top_speed(pi), mod_str[pi->mod_type]); 12035 } else { 12036 if_printf(ifp, "transceiver (type %d) inserted.\n", 12037 pi->mod_type); 12038 } 12039 } 12040 12041 void 12042 t4_os_link_changed(struct port_info *pi) 12043 { 12044 struct vi_info *vi; 12045 struct ifnet *ifp; 12046 struct link_config *lc = &pi->link_cfg; 12047 struct adapter *sc = pi->adapter; 12048 int v; 12049 12050 PORT_LOCK_ASSERT_OWNED(pi); 12051 12052 if (is_t6(sc)) { 12053 if (lc->link_ok) { 12054 if (lc->speed > 25000 || 12055 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12056 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12057 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12058 } else { 12059 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12060 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12061 } 12062 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12063 pi->stats.rx_fcs_err = 0; 12064 } else { 12065 pi->fcs_reg = -1; 12066 } 12067 } else { 12068 MPASS(pi->fcs_reg != -1); 12069 MPASS(pi->fcs_base == 0); 12070 } 12071 12072 for_each_vi(pi, v, vi) { 12073 ifp = vi->ifp; 12074 if (ifp == NULL) 12075 continue; 12076 12077 if (lc->link_ok) { 12078 ifp->if_baudrate = IF_Mbps(lc->speed); 12079 if_link_state_change(ifp, LINK_STATE_UP); 12080 } else { 12081 if_link_state_change(ifp, LINK_STATE_DOWN); 12082 } 12083 } 12084 } 12085 12086 void 12087 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12088 { 12089 struct adapter *sc; 12090 12091 sx_slock(&t4_list_lock); 12092 SLIST_FOREACH(sc, &t4_list, link) { 12093 /* 12094 * func should not make any assumptions about what state sc is 12095 * in - the only guarantee is that sc->sc_lock is a valid lock. 12096 */ 12097 func(sc, arg); 12098 } 12099 sx_sunlock(&t4_list_lock); 12100 } 12101 12102 static int 12103 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12104 struct thread *td) 12105 { 12106 int rc; 12107 struct adapter *sc = dev->si_drv1; 12108 12109 rc = priv_check(td, PRIV_DRIVER); 12110 if (rc != 0) 12111 return (rc); 12112 12113 switch (cmd) { 12114 case CHELSIO_T4_GETREG: { 12115 struct t4_reg *edata = (struct t4_reg *)data; 12116 12117 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12118 return (EFAULT); 12119 12120 mtx_lock(&sc->reg_lock); 12121 if (hw_off_limits(sc)) 12122 rc = ENXIO; 12123 else if (edata->size == 4) 12124 edata->val = t4_read_reg(sc, edata->addr); 12125 else if (edata->size == 8) 12126 edata->val = t4_read_reg64(sc, edata->addr); 12127 else 12128 rc = EINVAL; 12129 mtx_unlock(&sc->reg_lock); 12130 12131 break; 12132 } 12133 case CHELSIO_T4_SETREG: { 12134 struct t4_reg *edata = (struct t4_reg *)data; 12135 12136 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12137 return (EFAULT); 12138 12139 mtx_lock(&sc->reg_lock); 12140 if (hw_off_limits(sc)) 12141 rc = ENXIO; 12142 else if (edata->size == 4) { 12143 if (edata->val & 0xffffffff00000000) 12144 rc = EINVAL; 12145 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12146 } else if (edata->size == 8) 12147 t4_write_reg64(sc, edata->addr, edata->val); 12148 else 12149 rc = EINVAL; 12150 mtx_unlock(&sc->reg_lock); 12151 12152 break; 12153 } 12154 case CHELSIO_T4_REGDUMP: { 12155 struct t4_regdump *regs = (struct t4_regdump *)data; 12156 int reglen = t4_get_regs_len(sc); 12157 uint8_t *buf; 12158 12159 if (regs->len < reglen) { 12160 regs->len = reglen; /* hint to the caller */ 12161 return (ENOBUFS); 12162 } 12163 12164 regs->len = reglen; 12165 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12166 mtx_lock(&sc->reg_lock); 12167 if (hw_off_limits(sc)) 12168 rc = ENXIO; 12169 else 12170 get_regs(sc, regs, buf); 12171 mtx_unlock(&sc->reg_lock); 12172 if (rc == 0) 12173 rc = copyout(buf, regs->data, reglen); 12174 free(buf, M_CXGBE); 12175 break; 12176 } 12177 case CHELSIO_T4_GET_FILTER_MODE: 12178 rc = get_filter_mode(sc, (uint32_t *)data); 12179 break; 12180 case CHELSIO_T4_SET_FILTER_MODE: 12181 rc = set_filter_mode(sc, *(uint32_t *)data); 12182 break; 12183 case CHELSIO_T4_SET_FILTER_MASK: 12184 rc = set_filter_mask(sc, *(uint32_t *)data); 12185 break; 12186 case CHELSIO_T4_GET_FILTER: 12187 rc = get_filter(sc, (struct t4_filter *)data); 12188 break; 12189 case CHELSIO_T4_SET_FILTER: 12190 rc = set_filter(sc, (struct t4_filter *)data); 12191 break; 12192 case CHELSIO_T4_DEL_FILTER: 12193 rc = del_filter(sc, (struct t4_filter *)data); 12194 break; 12195 case CHELSIO_T4_GET_SGE_CONTEXT: 12196 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12197 break; 12198 case CHELSIO_T4_LOAD_FW: 12199 rc = load_fw(sc, (struct t4_data *)data); 12200 break; 12201 case CHELSIO_T4_GET_MEM: 12202 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12203 break; 12204 case CHELSIO_T4_GET_I2C: 12205 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12206 break; 12207 case CHELSIO_T4_CLEAR_STATS: 12208 rc = clear_stats(sc, *(uint32_t *)data); 12209 break; 12210 case CHELSIO_T4_SCHED_CLASS: 12211 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12212 break; 12213 case CHELSIO_T4_SCHED_QUEUE: 12214 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12215 break; 12216 case CHELSIO_T4_GET_TRACER: 12217 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12218 break; 12219 case CHELSIO_T4_SET_TRACER: 12220 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12221 break; 12222 case CHELSIO_T4_LOAD_CFG: 12223 rc = load_cfg(sc, (struct t4_data *)data); 12224 break; 12225 case CHELSIO_T4_LOAD_BOOT: 12226 rc = load_boot(sc, (struct t4_bootrom *)data); 12227 break; 12228 case CHELSIO_T4_LOAD_BOOTCFG: 12229 rc = load_bootcfg(sc, (struct t4_data *)data); 12230 break; 12231 case CHELSIO_T4_CUDBG_DUMP: 12232 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12233 break; 12234 case CHELSIO_T4_SET_OFLD_POLICY: 12235 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12236 break; 12237 case CHELSIO_T4_HOLD_CLIP_ADDR: 12238 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12239 break; 12240 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12241 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12242 break; 12243 default: 12244 rc = ENOTTY; 12245 } 12246 12247 return (rc); 12248 } 12249 12250 #ifdef TCP_OFFLOAD 12251 static int 12252 toe_capability(struct vi_info *vi, bool enable) 12253 { 12254 int rc; 12255 struct port_info *pi = vi->pi; 12256 struct adapter *sc = pi->adapter; 12257 12258 ASSERT_SYNCHRONIZED_OP(sc); 12259 12260 if (!is_offload(sc)) 12261 return (ENODEV); 12262 if (hw_off_limits(sc)) 12263 return (ENXIO); 12264 12265 if (enable) { 12266 #ifdef KERN_TLS 12267 if (sc->flags & KERN_TLS_ON) { 12268 int i, j, n; 12269 struct port_info *p; 12270 struct vi_info *v; 12271 12272 /* 12273 * Reconfigure hardware for TOE if TXTLS is not enabled 12274 * on any ifnet. 12275 */ 12276 n = 0; 12277 for_each_port(sc, i) { 12278 p = sc->port[i]; 12279 for_each_vi(p, j, v) { 12280 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12281 CH_WARN(sc, 12282 "%s has NIC TLS enabled.\n", 12283 device_get_nameunit(v->dev)); 12284 n++; 12285 } 12286 } 12287 } 12288 if (n > 0) { 12289 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12290 "associated with this adapter before " 12291 "trying to enable TOE.\n"); 12292 return (EAGAIN); 12293 } 12294 rc = t4_config_kern_tls(sc, false); 12295 if (rc) 12296 return (rc); 12297 } 12298 #endif 12299 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12300 /* TOE is already enabled. */ 12301 return (0); 12302 } 12303 12304 /* 12305 * We need the port's queues around so that we're able to send 12306 * and receive CPLs to/from the TOE even if the ifnet for this 12307 * port has never been UP'd administratively. 12308 */ 12309 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12310 return (rc); 12311 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12312 ((rc = vi_init(&pi->vi[0])) != 0)) 12313 return (rc); 12314 12315 if (isset(&sc->offload_map, pi->port_id)) { 12316 /* TOE is enabled on another VI of this port. */ 12317 pi->uld_vis++; 12318 return (0); 12319 } 12320 12321 if (!uld_active(sc, ULD_TOM)) { 12322 rc = t4_activate_uld(sc, ULD_TOM); 12323 if (rc == EAGAIN) { 12324 log(LOG_WARNING, 12325 "You must kldload t4_tom.ko before trying " 12326 "to enable TOE on a cxgbe interface.\n"); 12327 } 12328 if (rc != 0) 12329 return (rc); 12330 KASSERT(sc->tom_softc != NULL, 12331 ("%s: TOM activated but softc NULL", __func__)); 12332 KASSERT(uld_active(sc, ULD_TOM), 12333 ("%s: TOM activated but flag not set", __func__)); 12334 } 12335 12336 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12337 if (!uld_active(sc, ULD_IWARP)) 12338 (void) t4_activate_uld(sc, ULD_IWARP); 12339 if (!uld_active(sc, ULD_ISCSI)) 12340 (void) t4_activate_uld(sc, ULD_ISCSI); 12341 12342 pi->uld_vis++; 12343 setbit(&sc->offload_map, pi->port_id); 12344 } else { 12345 pi->uld_vis--; 12346 12347 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12348 return (0); 12349 12350 KASSERT(uld_active(sc, ULD_TOM), 12351 ("%s: TOM never initialized?", __func__)); 12352 clrbit(&sc->offload_map, pi->port_id); 12353 } 12354 12355 return (0); 12356 } 12357 12358 /* 12359 * Add an upper layer driver to the global list. 12360 */ 12361 int 12362 t4_register_uld(struct uld_info *ui) 12363 { 12364 int rc = 0; 12365 struct uld_info *u; 12366 12367 sx_xlock(&t4_uld_list_lock); 12368 SLIST_FOREACH(u, &t4_uld_list, link) { 12369 if (u->uld_id == ui->uld_id) { 12370 rc = EEXIST; 12371 goto done; 12372 } 12373 } 12374 12375 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12376 ui->refcount = 0; 12377 done: 12378 sx_xunlock(&t4_uld_list_lock); 12379 return (rc); 12380 } 12381 12382 int 12383 t4_unregister_uld(struct uld_info *ui) 12384 { 12385 int rc = EINVAL; 12386 struct uld_info *u; 12387 12388 sx_xlock(&t4_uld_list_lock); 12389 12390 SLIST_FOREACH(u, &t4_uld_list, link) { 12391 if (u == ui) { 12392 if (ui->refcount > 0) { 12393 rc = EBUSY; 12394 goto done; 12395 } 12396 12397 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12398 rc = 0; 12399 goto done; 12400 } 12401 } 12402 done: 12403 sx_xunlock(&t4_uld_list_lock); 12404 return (rc); 12405 } 12406 12407 int 12408 t4_activate_uld(struct adapter *sc, int id) 12409 { 12410 int rc; 12411 struct uld_info *ui; 12412 12413 ASSERT_SYNCHRONIZED_OP(sc); 12414 12415 if (id < 0 || id > ULD_MAX) 12416 return (EINVAL); 12417 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12418 12419 sx_slock(&t4_uld_list_lock); 12420 12421 SLIST_FOREACH(ui, &t4_uld_list, link) { 12422 if (ui->uld_id == id) { 12423 if (!(sc->flags & FULL_INIT_DONE)) { 12424 rc = adapter_init(sc); 12425 if (rc != 0) 12426 break; 12427 } 12428 12429 rc = ui->activate(sc); 12430 if (rc == 0) { 12431 setbit(&sc->active_ulds, id); 12432 ui->refcount++; 12433 } 12434 break; 12435 } 12436 } 12437 12438 sx_sunlock(&t4_uld_list_lock); 12439 12440 return (rc); 12441 } 12442 12443 int 12444 t4_deactivate_uld(struct adapter *sc, int id) 12445 { 12446 int rc; 12447 struct uld_info *ui; 12448 12449 ASSERT_SYNCHRONIZED_OP(sc); 12450 12451 if (id < 0 || id > ULD_MAX) 12452 return (EINVAL); 12453 rc = ENXIO; 12454 12455 sx_slock(&t4_uld_list_lock); 12456 12457 SLIST_FOREACH(ui, &t4_uld_list, link) { 12458 if (ui->uld_id == id) { 12459 rc = ui->deactivate(sc); 12460 if (rc == 0) { 12461 clrbit(&sc->active_ulds, id); 12462 ui->refcount--; 12463 } 12464 break; 12465 } 12466 } 12467 12468 sx_sunlock(&t4_uld_list_lock); 12469 12470 return (rc); 12471 } 12472 12473 static void 12474 t4_async_event(void *arg, int n) 12475 { 12476 struct uld_info *ui; 12477 struct adapter *sc = (struct adapter *)arg; 12478 12479 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12480 return; 12481 sx_slock(&t4_uld_list_lock); 12482 SLIST_FOREACH(ui, &t4_uld_list, link) { 12483 if (ui->uld_id == ULD_IWARP) { 12484 ui->async_event(sc); 12485 break; 12486 } 12487 } 12488 sx_sunlock(&t4_uld_list_lock); 12489 end_synchronized_op(sc, 0); 12490 } 12491 12492 int 12493 uld_active(struct adapter *sc, int uld_id) 12494 { 12495 12496 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12497 12498 return (isset(&sc->active_ulds, uld_id)); 12499 } 12500 #endif 12501 12502 #ifdef KERN_TLS 12503 static int 12504 ktls_capability(struct adapter *sc, bool enable) 12505 { 12506 ASSERT_SYNCHRONIZED_OP(sc); 12507 12508 if (!is_ktls(sc)) 12509 return (ENODEV); 12510 if (hw_off_limits(sc)) 12511 return (ENXIO); 12512 12513 if (enable) { 12514 if (sc->flags & KERN_TLS_ON) 12515 return (0); /* already on */ 12516 if (sc->offload_map != 0) { 12517 CH_WARN(sc, 12518 "Disable TOE on all interfaces associated with " 12519 "this adapter before trying to enable NIC TLS.\n"); 12520 return (EAGAIN); 12521 } 12522 return (t4_config_kern_tls(sc, true)); 12523 } else { 12524 /* 12525 * Nothing to do for disable. If TOE is enabled sometime later 12526 * then toe_capability will reconfigure the hardware. 12527 */ 12528 return (0); 12529 } 12530 } 12531 #endif 12532 12533 /* 12534 * t = ptr to tunable. 12535 * nc = number of CPUs. 12536 * c = compiled in default for that tunable. 12537 */ 12538 static void 12539 calculate_nqueues(int *t, int nc, const int c) 12540 { 12541 int nq; 12542 12543 if (*t > 0) 12544 return; 12545 nq = *t < 0 ? -*t : c; 12546 *t = min(nc, nq); 12547 } 12548 12549 /* 12550 * Come up with reasonable defaults for some of the tunables, provided they're 12551 * not set by the user (in which case we'll use the values as is). 12552 */ 12553 static void 12554 tweak_tunables(void) 12555 { 12556 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12557 12558 if (t4_ntxq < 1) { 12559 #ifdef RSS 12560 t4_ntxq = rss_getnumbuckets(); 12561 #else 12562 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12563 #endif 12564 } 12565 12566 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12567 12568 if (t4_nrxq < 1) { 12569 #ifdef RSS 12570 t4_nrxq = rss_getnumbuckets(); 12571 #else 12572 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12573 #endif 12574 } 12575 12576 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12577 12578 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12579 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12580 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12581 #endif 12582 #ifdef TCP_OFFLOAD 12583 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12584 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12585 #endif 12586 12587 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12588 if (t4_toecaps_allowed == -1) 12589 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12590 #else 12591 if (t4_toecaps_allowed == -1) 12592 t4_toecaps_allowed = 0; 12593 #endif 12594 12595 #ifdef TCP_OFFLOAD 12596 if (t4_rdmacaps_allowed == -1) { 12597 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12598 FW_CAPS_CONFIG_RDMA_RDMAC; 12599 } 12600 12601 if (t4_iscsicaps_allowed == -1) { 12602 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12603 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12604 FW_CAPS_CONFIG_ISCSI_T10DIF; 12605 } 12606 12607 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12608 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12609 12610 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12611 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12612 12613 if (t4_toe_tls_rx_timeout < 0) 12614 t4_toe_tls_rx_timeout = 0; 12615 #else 12616 if (t4_rdmacaps_allowed == -1) 12617 t4_rdmacaps_allowed = 0; 12618 12619 if (t4_iscsicaps_allowed == -1) 12620 t4_iscsicaps_allowed = 0; 12621 #endif 12622 12623 #ifdef DEV_NETMAP 12624 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12625 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12626 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12627 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12628 #endif 12629 12630 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12631 t4_tmr_idx = TMR_IDX; 12632 12633 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12634 t4_pktc_idx = PKTC_IDX; 12635 12636 if (t4_qsize_txq < 128) 12637 t4_qsize_txq = 128; 12638 12639 if (t4_qsize_rxq < 128) 12640 t4_qsize_rxq = 128; 12641 while (t4_qsize_rxq & 7) 12642 t4_qsize_rxq++; 12643 12644 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12645 12646 /* 12647 * Number of VIs to create per-port. The first VI is the "main" regular 12648 * VI for the port. The rest are additional virtual interfaces on the 12649 * same physical port. Note that the main VI does not have native 12650 * netmap support but the extra VIs do. 12651 * 12652 * Limit the number of VIs per port to the number of available 12653 * MAC addresses per port. 12654 */ 12655 if (t4_num_vis < 1) 12656 t4_num_vis = 1; 12657 if (t4_num_vis > nitems(vi_mac_funcs)) { 12658 t4_num_vis = nitems(vi_mac_funcs); 12659 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12660 } 12661 12662 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12663 pcie_relaxed_ordering = 1; 12664 #if defined(__i386__) || defined(__amd64__) 12665 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12666 pcie_relaxed_ordering = 0; 12667 #endif 12668 } 12669 } 12670 12671 #ifdef DDB 12672 static void 12673 t4_dump_tcb(struct adapter *sc, int tid) 12674 { 12675 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12676 12677 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12678 save = t4_read_reg(sc, reg); 12679 base = sc->memwin[2].mw_base; 12680 12681 /* Dump TCB for the tid */ 12682 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12683 tcb_addr += tid * TCB_SIZE; 12684 12685 if (is_t4(sc)) { 12686 pf = 0; 12687 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12688 } else { 12689 pf = V_PFNUM(sc->pf); 12690 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12691 } 12692 t4_write_reg(sc, reg, win_pos | pf); 12693 t4_read_reg(sc, reg); 12694 12695 off = tcb_addr - win_pos; 12696 for (i = 0; i < 4; i++) { 12697 uint32_t buf[8]; 12698 for (j = 0; j < 8; j++, off += 4) 12699 buf[j] = htonl(t4_read_reg(sc, base + off)); 12700 12701 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12702 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12703 buf[7]); 12704 } 12705 12706 t4_write_reg(sc, reg, save); 12707 t4_read_reg(sc, reg); 12708 } 12709 12710 static void 12711 t4_dump_devlog(struct adapter *sc) 12712 { 12713 struct devlog_params *dparams = &sc->params.devlog; 12714 struct fw_devlog_e e; 12715 int i, first, j, m, nentries, rc; 12716 uint64_t ftstamp = UINT64_MAX; 12717 12718 if (dparams->start == 0) { 12719 db_printf("devlog params not valid\n"); 12720 return; 12721 } 12722 12723 nentries = dparams->size / sizeof(struct fw_devlog_e); 12724 m = fwmtype_to_hwmtype(dparams->memtype); 12725 12726 /* Find the first entry. */ 12727 first = -1; 12728 for (i = 0; i < nentries && !db_pager_quit; i++) { 12729 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12730 sizeof(e), (void *)&e); 12731 if (rc != 0) 12732 break; 12733 12734 if (e.timestamp == 0) 12735 break; 12736 12737 e.timestamp = be64toh(e.timestamp); 12738 if (e.timestamp < ftstamp) { 12739 ftstamp = e.timestamp; 12740 first = i; 12741 } 12742 } 12743 12744 if (first == -1) 12745 return; 12746 12747 i = first; 12748 do { 12749 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12750 sizeof(e), (void *)&e); 12751 if (rc != 0) 12752 return; 12753 12754 if (e.timestamp == 0) 12755 return; 12756 12757 e.timestamp = be64toh(e.timestamp); 12758 e.seqno = be32toh(e.seqno); 12759 for (j = 0; j < 8; j++) 12760 e.params[j] = be32toh(e.params[j]); 12761 12762 db_printf("%10d %15ju %8s %8s ", 12763 e.seqno, e.timestamp, 12764 (e.level < nitems(devlog_level_strings) ? 12765 devlog_level_strings[e.level] : "UNKNOWN"), 12766 (e.facility < nitems(devlog_facility_strings) ? 12767 devlog_facility_strings[e.facility] : "UNKNOWN")); 12768 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12769 e.params[3], e.params[4], e.params[5], e.params[6], 12770 e.params[7]); 12771 12772 if (++i == nentries) 12773 i = 0; 12774 } while (i != first && !db_pager_quit); 12775 } 12776 12777 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12778 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12779 12780 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12781 { 12782 device_t dev; 12783 int t; 12784 bool valid; 12785 12786 valid = false; 12787 t = db_read_token(); 12788 if (t == tIDENT) { 12789 dev = device_lookup_by_name(db_tok_string); 12790 valid = true; 12791 } 12792 db_skip_to_eol(); 12793 if (!valid) { 12794 db_printf("usage: show t4 devlog <nexus>\n"); 12795 return; 12796 } 12797 12798 if (dev == NULL) { 12799 db_printf("device not found\n"); 12800 return; 12801 } 12802 12803 t4_dump_devlog(device_get_softc(dev)); 12804 } 12805 12806 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12807 { 12808 device_t dev; 12809 int radix, tid, t; 12810 bool valid; 12811 12812 valid = false; 12813 radix = db_radix; 12814 db_radix = 10; 12815 t = db_read_token(); 12816 if (t == tIDENT) { 12817 dev = device_lookup_by_name(db_tok_string); 12818 t = db_read_token(); 12819 if (t == tNUMBER) { 12820 tid = db_tok_number; 12821 valid = true; 12822 } 12823 } 12824 db_radix = radix; 12825 db_skip_to_eol(); 12826 if (!valid) { 12827 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12828 return; 12829 } 12830 12831 if (dev == NULL) { 12832 db_printf("device not found\n"); 12833 return; 12834 } 12835 if (tid < 0) { 12836 db_printf("invalid tid\n"); 12837 return; 12838 } 12839 12840 t4_dump_tcb(device_get_softc(dev), tid); 12841 } 12842 #endif 12843 12844 static eventhandler_tag vxlan_start_evtag; 12845 static eventhandler_tag vxlan_stop_evtag; 12846 12847 struct vxlan_evargs { 12848 struct ifnet *ifp; 12849 uint16_t port; 12850 }; 12851 12852 static void 12853 enable_vxlan_rx(struct adapter *sc) 12854 { 12855 int i, rc; 12856 struct port_info *pi; 12857 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12858 12859 ASSERT_SYNCHRONIZED_OP(sc); 12860 12861 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12862 F_VXLAN_EN); 12863 for_each_port(sc, i) { 12864 pi = sc->port[i]; 12865 if (pi->vxlan_tcam_entry == true) 12866 continue; 12867 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12868 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12869 true); 12870 if (rc < 0) { 12871 rc = -rc; 12872 CH_ERR(&pi->vi[0], 12873 "failed to add VXLAN TCAM entry: %d.\n", rc); 12874 } else { 12875 MPASS(rc == sc->rawf_base + pi->port_id); 12876 pi->vxlan_tcam_entry = true; 12877 } 12878 } 12879 } 12880 12881 static void 12882 t4_vxlan_start(struct adapter *sc, void *arg) 12883 { 12884 struct vxlan_evargs *v = arg; 12885 12886 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12887 return; 12888 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 12889 return; 12890 12891 if (sc->vxlan_refcount == 0) { 12892 sc->vxlan_port = v->port; 12893 sc->vxlan_refcount = 1; 12894 if (!hw_off_limits(sc)) 12895 enable_vxlan_rx(sc); 12896 } else if (sc->vxlan_port == v->port) { 12897 sc->vxlan_refcount++; 12898 } else { 12899 CH_ERR(sc, "VXLAN already configured on port %d; " 12900 "ignoring attempt to configure it on port %d\n", 12901 sc->vxlan_port, v->port); 12902 } 12903 end_synchronized_op(sc, 0); 12904 } 12905 12906 static void 12907 t4_vxlan_stop(struct adapter *sc, void *arg) 12908 { 12909 struct vxlan_evargs *v = arg; 12910 12911 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12912 return; 12913 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 12914 return; 12915 12916 /* 12917 * VXLANs may have been configured before the driver was loaded so we 12918 * may see more stops than starts. This is not handled cleanly but at 12919 * least we keep the refcount sane. 12920 */ 12921 if (sc->vxlan_port != v->port) 12922 goto done; 12923 if (sc->vxlan_refcount == 0) { 12924 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 12925 "ignoring attempt to stop it again.\n", sc->vxlan_port); 12926 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 12927 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 12928 done: 12929 end_synchronized_op(sc, 0); 12930 } 12931 12932 static void 12933 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 12934 sa_family_t family, u_int port) 12935 { 12936 struct vxlan_evargs v; 12937 12938 MPASS(family == AF_INET || family == AF_INET6); 12939 v.ifp = ifp; 12940 v.port = port; 12941 12942 t4_iterate(t4_vxlan_start, &v); 12943 } 12944 12945 static void 12946 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 12947 u_int port) 12948 { 12949 struct vxlan_evargs v; 12950 12951 MPASS(family == AF_INET || family == AF_INET6); 12952 v.ifp = ifp; 12953 v.port = port; 12954 12955 t4_iterate(t4_vxlan_stop, &v); 12956 } 12957 12958 12959 static struct sx mlu; /* mod load unload */ 12960 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 12961 12962 static int 12963 mod_event(module_t mod, int cmd, void *arg) 12964 { 12965 int rc = 0; 12966 static int loaded = 0; 12967 12968 switch (cmd) { 12969 case MOD_LOAD: 12970 sx_xlock(&mlu); 12971 if (loaded++ == 0) { 12972 t4_sge_modload(); 12973 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12974 t4_filter_rpl, CPL_COOKIE_FILTER); 12975 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 12976 do_l2t_write_rpl, CPL_COOKIE_FILTER); 12977 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 12978 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 12979 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12980 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 12981 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 12982 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 12983 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 12984 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 12985 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 12986 do_smt_write_rpl); 12987 sx_init(&t4_list_lock, "T4/T5 adapters"); 12988 SLIST_INIT(&t4_list); 12989 callout_init(&fatal_callout, 1); 12990 #ifdef TCP_OFFLOAD 12991 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 12992 SLIST_INIT(&t4_uld_list); 12993 #endif 12994 #ifdef INET6 12995 t4_clip_modload(); 12996 #endif 12997 #ifdef KERN_TLS 12998 t6_ktls_modload(); 12999 #endif 13000 t4_tracer_modload(); 13001 tweak_tunables(); 13002 vxlan_start_evtag = 13003 EVENTHANDLER_REGISTER(vxlan_start, 13004 t4_vxlan_start_handler, NULL, 13005 EVENTHANDLER_PRI_ANY); 13006 vxlan_stop_evtag = 13007 EVENTHANDLER_REGISTER(vxlan_stop, 13008 t4_vxlan_stop_handler, NULL, 13009 EVENTHANDLER_PRI_ANY); 13010 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13011 taskqueue_thread_enqueue, &reset_tq); 13012 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13013 "t4_rst_thr"); 13014 } 13015 sx_xunlock(&mlu); 13016 break; 13017 13018 case MOD_UNLOAD: 13019 sx_xlock(&mlu); 13020 if (--loaded == 0) { 13021 int tries; 13022 13023 taskqueue_free(reset_tq); 13024 sx_slock(&t4_list_lock); 13025 if (!SLIST_EMPTY(&t4_list)) { 13026 rc = EBUSY; 13027 sx_sunlock(&t4_list_lock); 13028 goto done_unload; 13029 } 13030 #ifdef TCP_OFFLOAD 13031 sx_slock(&t4_uld_list_lock); 13032 if (!SLIST_EMPTY(&t4_uld_list)) { 13033 rc = EBUSY; 13034 sx_sunlock(&t4_uld_list_lock); 13035 sx_sunlock(&t4_list_lock); 13036 goto done_unload; 13037 } 13038 #endif 13039 tries = 0; 13040 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13041 uprintf("%ju clusters with custom free routine " 13042 "still is use.\n", t4_sge_extfree_refs()); 13043 pause("t4unload", 2 * hz); 13044 } 13045 #ifdef TCP_OFFLOAD 13046 sx_sunlock(&t4_uld_list_lock); 13047 #endif 13048 sx_sunlock(&t4_list_lock); 13049 13050 if (t4_sge_extfree_refs() == 0) { 13051 EVENTHANDLER_DEREGISTER(vxlan_start, 13052 vxlan_start_evtag); 13053 EVENTHANDLER_DEREGISTER(vxlan_stop, 13054 vxlan_stop_evtag); 13055 t4_tracer_modunload(); 13056 #ifdef KERN_TLS 13057 t6_ktls_modunload(); 13058 #endif 13059 #ifdef INET6 13060 t4_clip_modunload(); 13061 #endif 13062 #ifdef TCP_OFFLOAD 13063 sx_destroy(&t4_uld_list_lock); 13064 #endif 13065 sx_destroy(&t4_list_lock); 13066 t4_sge_modunload(); 13067 loaded = 0; 13068 } else { 13069 rc = EBUSY; 13070 loaded++; /* undo earlier decrement */ 13071 } 13072 } 13073 done_unload: 13074 sx_xunlock(&mlu); 13075 break; 13076 } 13077 13078 return (rc); 13079 } 13080 13081 static devclass_t t4_devclass, t5_devclass, t6_devclass; 13082 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 13083 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 13084 13085 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 13086 MODULE_VERSION(t4nex, 1); 13087 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13088 #ifdef DEV_NETMAP 13089 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13090 #endif /* DEV_NETMAP */ 13091 13092 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 13093 MODULE_VERSION(t5nex, 1); 13094 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13095 #ifdef DEV_NETMAP 13096 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13097 #endif /* DEV_NETMAP */ 13098 13099 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 13100 MODULE_VERSION(t6nex, 1); 13101 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13102 #ifdef DEV_NETMAP 13103 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13104 #endif /* DEV_NETMAP */ 13105 13106 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 13107 MODULE_VERSION(cxgbe, 1); 13108 13109 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 13110 MODULE_VERSION(cxl, 1); 13111 13112 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 13113 MODULE_VERSION(cc, 1); 13114 13115 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 13116 MODULE_VERSION(vcxgbe, 1); 13117 13118 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 13119 MODULE_VERSION(vcxl, 1); 13120 13121 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 13122 MODULE_VERSION(vcc, 1); 13123