xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision b1c5f60ce87cc2f179dfb81de507d9b7bf59564c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_kern_tls.h"
37 #include "opt_ratelimit.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/priv.h>
43 #include <sys/kernel.h>
44 #include <sys/bus.h>
45 #include <sys/eventhandler.h>
46 #include <sys/module.h>
47 #include <sys/malloc.h>
48 #include <sys/queue.h>
49 #include <sys/taskqueue.h>
50 #include <sys/pciio.h>
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 #include <dev/pci/pci_private.h>
54 #include <sys/firmware.h>
55 #include <sys/sbuf.h>
56 #include <sys/smp.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/sysctl.h>
60 #include <net/ethernet.h>
61 #include <net/if.h>
62 #include <net/if_types.h>
63 #include <net/if_dl.h>
64 #include <net/if_vlan_var.h>
65 #ifdef RSS
66 #include <net/rss_config.h>
67 #endif
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #ifdef KERN_TLS
71 #include <netinet/tcp_seq.h>
72 #endif
73 #if defined(__i386__) || defined(__amd64__)
74 #include <machine/md_var.h>
75 #include <machine/cputypes.h>
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #endif
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #include <ddb/db_lex.h>
82 #endif
83 
84 #include "common/common.h"
85 #include "common/t4_msg.h"
86 #include "common/t4_regs.h"
87 #include "common/t4_regs_values.h"
88 #include "cudbg/cudbg.h"
89 #include "t4_clip.h"
90 #include "t4_ioctl.h"
91 #include "t4_l2t.h"
92 #include "t4_mp_ring.h"
93 #include "t4_if.h"
94 #include "t4_smt.h"
95 
96 /* T4 bus driver interface */
97 static int t4_probe(device_t);
98 static int t4_attach(device_t);
99 static int t4_detach(device_t);
100 static int t4_child_location(device_t, device_t, struct sbuf *);
101 static int t4_ready(device_t);
102 static int t4_read_port_device(device_t, int, device_t *);
103 static int t4_suspend(device_t);
104 static int t4_resume(device_t);
105 static int t4_reset_prepare(device_t, device_t);
106 static int t4_reset_post(device_t, device_t);
107 static device_method_t t4_methods[] = {
108 	DEVMETHOD(device_probe,		t4_probe),
109 	DEVMETHOD(device_attach,	t4_attach),
110 	DEVMETHOD(device_detach,	t4_detach),
111 	DEVMETHOD(device_suspend,	t4_suspend),
112 	DEVMETHOD(device_resume,	t4_resume),
113 
114 	DEVMETHOD(bus_child_location,	t4_child_location),
115 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
116 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
117 
118 	DEVMETHOD(t4_is_main_ready,	t4_ready),
119 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
120 
121 	DEVMETHOD_END
122 };
123 static driver_t t4_driver = {
124 	"t4nex",
125 	t4_methods,
126 	sizeof(struct adapter)
127 };
128 
129 
130 /* T4 port (cxgbe) interface */
131 static int cxgbe_probe(device_t);
132 static int cxgbe_attach(device_t);
133 static int cxgbe_detach(device_t);
134 device_method_t cxgbe_methods[] = {
135 	DEVMETHOD(device_probe,		cxgbe_probe),
136 	DEVMETHOD(device_attach,	cxgbe_attach),
137 	DEVMETHOD(device_detach,	cxgbe_detach),
138 	{ 0, 0 }
139 };
140 static driver_t cxgbe_driver = {
141 	"cxgbe",
142 	cxgbe_methods,
143 	sizeof(struct port_info)
144 };
145 
146 /* T4 VI (vcxgbe) interface */
147 static int vcxgbe_probe(device_t);
148 static int vcxgbe_attach(device_t);
149 static int vcxgbe_detach(device_t);
150 static device_method_t vcxgbe_methods[] = {
151 	DEVMETHOD(device_probe,		vcxgbe_probe),
152 	DEVMETHOD(device_attach,	vcxgbe_attach),
153 	DEVMETHOD(device_detach,	vcxgbe_detach),
154 	{ 0, 0 }
155 };
156 static driver_t vcxgbe_driver = {
157 	"vcxgbe",
158 	vcxgbe_methods,
159 	sizeof(struct vi_info)
160 };
161 
162 static d_ioctl_t t4_ioctl;
163 
164 static struct cdevsw t4_cdevsw = {
165        .d_version = D_VERSION,
166        .d_ioctl = t4_ioctl,
167        .d_name = "t4nex",
168 };
169 
170 /* T5 bus driver interface */
171 static int t5_probe(device_t);
172 static device_method_t t5_methods[] = {
173 	DEVMETHOD(device_probe,		t5_probe),
174 	DEVMETHOD(device_attach,	t4_attach),
175 	DEVMETHOD(device_detach,	t4_detach),
176 	DEVMETHOD(device_suspend,	t4_suspend),
177 	DEVMETHOD(device_resume,	t4_resume),
178 
179 	DEVMETHOD(bus_child_location,	t4_child_location),
180 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
181 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
182 
183 	DEVMETHOD(t4_is_main_ready,	t4_ready),
184 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
185 
186 	DEVMETHOD_END
187 };
188 static driver_t t5_driver = {
189 	"t5nex",
190 	t5_methods,
191 	sizeof(struct adapter)
192 };
193 
194 
195 /* T5 port (cxl) interface */
196 static driver_t cxl_driver = {
197 	"cxl",
198 	cxgbe_methods,
199 	sizeof(struct port_info)
200 };
201 
202 /* T5 VI (vcxl) interface */
203 static driver_t vcxl_driver = {
204 	"vcxl",
205 	vcxgbe_methods,
206 	sizeof(struct vi_info)
207 };
208 
209 /* T6 bus driver interface */
210 static int t6_probe(device_t);
211 static device_method_t t6_methods[] = {
212 	DEVMETHOD(device_probe,		t6_probe),
213 	DEVMETHOD(device_attach,	t4_attach),
214 	DEVMETHOD(device_detach,	t4_detach),
215 	DEVMETHOD(device_suspend,	t4_suspend),
216 	DEVMETHOD(device_resume,	t4_resume),
217 
218 	DEVMETHOD(bus_child_location,	t4_child_location),
219 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
220 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
221 
222 	DEVMETHOD(t4_is_main_ready,	t4_ready),
223 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
224 
225 	DEVMETHOD_END
226 };
227 static driver_t t6_driver = {
228 	"t6nex",
229 	t6_methods,
230 	sizeof(struct adapter)
231 };
232 
233 
234 /* T6 port (cc) interface */
235 static driver_t cc_driver = {
236 	"cc",
237 	cxgbe_methods,
238 	sizeof(struct port_info)
239 };
240 
241 /* T6 VI (vcc) interface */
242 static driver_t vcc_driver = {
243 	"vcc",
244 	vcxgbe_methods,
245 	sizeof(struct vi_info)
246 };
247 
248 /* ifnet interface */
249 static void cxgbe_init(void *);
250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
251 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
252 static void cxgbe_qflush(struct ifnet *);
253 #if defined(KERN_TLS) || defined(RATELIMIT)
254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *,
255     struct m_snd_tag **);
256 #endif
257 
258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
259 
260 /*
261  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
262  * then ADAPTER_LOCK, then t4_uld_list_lock.
263  */
264 static struct sx t4_list_lock;
265 SLIST_HEAD(, adapter) t4_list;
266 #ifdef TCP_OFFLOAD
267 static struct sx t4_uld_list_lock;
268 SLIST_HEAD(, uld_info) t4_uld_list;
269 #endif
270 
271 /*
272  * Tunables.  See tweak_tunables() too.
273  *
274  * Each tunable is set to a default value here if it's known at compile-time.
275  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
276  * provide a reasonable default (upto n) when the driver is loaded.
277  *
278  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
279  * T5 are under hw.cxl.
280  */
281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) parameters");
283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) T5+ parameters");
285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
286     "cxgbe(4) TOE parameters");
287 
288 /*
289  * Number of queues for tx and rx, NIC and offload.
290  */
291 #define NTXQ 16
292 int t4_ntxq = -NTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
294     "Number of TX queues per port");
295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
296 
297 #define NRXQ 8
298 int t4_nrxq = -NRXQ;
299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
300     "Number of RX queues per port");
301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
302 
303 #define NTXQ_VI 1
304 static int t4_ntxq_vi = -NTXQ_VI;
305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
306     "Number of TX queues per VI");
307 
308 #define NRXQ_VI 1
309 static int t4_nrxq_vi = -NRXQ_VI;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
311     "Number of RX queues per VI");
312 
313 static int t4_rsrv_noflowq = 0;
314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
315     0, "Reserve TX queue 0 of each VI for non-flowid packets");
316 
317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
318 #define NOFLDTXQ 8
319 static int t4_nofldtxq = -NOFLDTXQ;
320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
321     "Number of offload TX queues per port");
322 
323 #define NOFLDRXQ 2
324 static int t4_nofldrxq = -NOFLDRXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
326     "Number of offload RX queues per port");
327 
328 #define NOFLDTXQ_VI 1
329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
331     "Number of offload TX queues per VI");
332 
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336     "Number of offload RX queues per VI");
337 
338 #define TMR_IDX_OFLD 1
339 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342 
343 #define PKTC_IDX_OFLD (-1)
344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347 
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352 
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357 
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362 
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367 
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372 
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377 
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384     "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416     &t4_toe_rexmt_backoff[15], 0, "");
417 
418 static int t4_toe_tls_rx_timeout = 5;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN,
420     &t4_toe_tls_rx_timeout, 0,
421     "Timeout in seconds to downgrade TLS sockets to plain TOE");
422 #endif
423 
424 #ifdef DEV_NETMAP
425 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
426 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
427 static int t4_native_netmap = NN_EXTRA_VI;
428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
429     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
430 
431 #define NNMTXQ 8
432 static int t4_nnmtxq = -NNMTXQ;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
434     "Number of netmap TX queues");
435 
436 #define NNMRXQ 8
437 static int t4_nnmrxq = -NNMRXQ;
438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
439     "Number of netmap RX queues");
440 
441 #define NNMTXQ_VI 2
442 static int t4_nnmtxq_vi = -NNMTXQ_VI;
443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
444     "Number of netmap TX queues per VI");
445 
446 #define NNMRXQ_VI 2
447 static int t4_nnmrxq_vi = -NNMRXQ_VI;
448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
449     "Number of netmap RX queues per VI");
450 #endif
451 
452 /*
453  * Holdoff parameters for ports.
454  */
455 #define TMR_IDX 1
456 int t4_tmr_idx = TMR_IDX;
457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
458     0, "Holdoff timer index");
459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
460 
461 #define PKTC_IDX (-1)
462 int t4_pktc_idx = PKTC_IDX;
463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
464     0, "Holdoff packet counter index");
465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
466 
467 /*
468  * Size (# of entries) of each tx and rx queue.
469  */
470 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
472     "Number of descriptors in each TX queue");
473 
474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
476     "Number of descriptors in each RX queue");
477 
478 /*
479  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
480  */
481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
483     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
484 
485 /*
486  * Configuration file.  All the _CF names here are special.
487  */
488 #define DEFAULT_CF	"default"
489 #define BUILTIN_CF	"built-in"
490 #define FLASH_CF	"flash"
491 #define UWIRE_CF	"uwire"
492 #define FPGA_CF		"fpga"
493 static char t4_cfg_file[32] = DEFAULT_CF;
494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
495     sizeof(t4_cfg_file), "Firmware configuration file");
496 
497 /*
498  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
499  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
500  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
501  *            mark or when signalled to do so, 0 to never emit PAUSE.
502  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
503  *                 negotiated settings will override rx_pause/tx_pause.
504  *                 Otherwise rx_pause/tx_pause are applied forcibly.
505  */
506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
508     &t4_pause_settings, 0,
509     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
510 
511 /*
512  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
513  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
514  *  0 to disable FEC.
515  */
516 static int t4_fec = -1;
517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
518     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
519 
520 /*
521  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
522  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
523  * driver runs as if this is set to 0.
524  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
525  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
526  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
527  *    the firmware anyway (may result in l1cfg errors with old firmwares).
528  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
529  *    means set all FEC bits that are valid for the speed.
530  */
531 static int t4_force_fec = -1;
532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
533     "Controls the use of FORCE_FEC bit in L1 configuration.");
534 
535 /*
536  * Link autonegotiation.
537  * -1 to run with the firmware default.
538  *  0 to disable.
539  *  1 to enable.
540  */
541 static int t4_autoneg = -1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
543     "Link autonegotiation");
544 
545 /*
546  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
547  * encouraged respectively).  '-n' is the same as 'n' except the firmware
548  * version used in the checks is read from the firmware bundled with the driver.
549  */
550 static int t4_fw_install = 1;
551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
552     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
553 
554 /*
555  * ASIC features that will be used.  Disable the ones you don't want so that the
556  * chip resources aren't wasted on features that will not be used.
557  */
558 static int t4_nbmcaps_allowed = 0;
559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
560     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
561 
562 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
564     &t4_linkcaps_allowed, 0, "Default link capabilities");
565 
566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
567     FW_CAPS_CONFIG_SWITCH_EGRESS;
568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
569     &t4_switchcaps_allowed, 0, "Default switch capabilities");
570 
571 #ifdef RATELIMIT
572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
573 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
574 #else
575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
576 	FW_CAPS_CONFIG_NIC_HASHFILTER;
577 #endif
578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
579     &t4_niccaps_allowed, 0, "Default NIC capabilities");
580 
581 static int t4_toecaps_allowed = -1;
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
583     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
584 
585 static int t4_rdmacaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
587     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
588 
589 static int t4_cryptocaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
591     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
592 
593 static int t4_iscsicaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
595     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
596 
597 static int t4_fcoecaps_allowed = 0;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
599     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
600 
601 static int t5_write_combine = 0;
602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
603     0, "Use WC instead of UC for BAR2");
604 
605 static int t4_num_vis = 1;
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
607     "Number of VIs per port");
608 
609 /*
610  * PCIe Relaxed Ordering.
611  * -1: driver should figure out a good value.
612  * 0: disable RO.
613  * 1: enable RO.
614  * 2: leave RO alone.
615  */
616 static int pcie_relaxed_ordering = -1;
617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
618     &pcie_relaxed_ordering, 0,
619     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
620 
621 static int t4_panic_on_fatal_err = 0;
622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
623     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
624 
625 static int t4_reset_on_fatal_err = 0;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
627     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
628 
629 static int t4_tx_vm_wr = 0;
630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
631     "Use VM work requests to transmit packets.");
632 
633 /*
634  * Set to non-zero to enable the attack filter.  A packet that matches any of
635  * these conditions will get dropped on ingress:
636  * 1) IP && source address == destination address.
637  * 2) TCP/IP && source address is not a unicast address.
638  * 3) TCP/IP && destination address is not a unicast address.
639  * 4) IP && source address is loopback (127.x.y.z).
640  * 5) IP && destination address is loopback (127.x.y.z).
641  * 6) IPv6 && source address == destination address.
642  * 7) IPv6 && source address is not a unicast address.
643  * 8) IPv6 && source address is loopback (::1/128).
644  * 9) IPv6 && destination address is loopback (::1/128).
645  * 10) IPv6 && source address is unspecified (::/128).
646  * 11) IPv6 && destination address is unspecified (::/128).
647  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
648  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
649  */
650 static int t4_attack_filter = 0;
651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
652     &t4_attack_filter, 0, "Drop suspicious traffic");
653 
654 static int t4_drop_ip_fragments = 0;
655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
656     &t4_drop_ip_fragments, 0, "Drop IP fragments");
657 
658 static int t4_drop_pkts_with_l2_errors = 1;
659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
660     &t4_drop_pkts_with_l2_errors, 0,
661     "Drop all frames with Layer 2 length or checksum errors");
662 
663 static int t4_drop_pkts_with_l3_errors = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
665     &t4_drop_pkts_with_l3_errors, 0,
666     "Drop all frames with IP version, length, or checksum errors");
667 
668 static int t4_drop_pkts_with_l4_errors = 0;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
670     &t4_drop_pkts_with_l4_errors, 0,
671     "Drop all frames with Layer 4 length, checksum, or other errors");
672 
673 #ifdef TCP_OFFLOAD
674 /*
675  * TOE tunables.
676  */
677 static int t4_cop_managed_offloading = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
679     &t4_cop_managed_offloading, 0,
680     "COP (Connection Offload Policy) controls all TOE offload");
681 #endif
682 
683 #ifdef KERN_TLS
684 /*
685  * This enables KERN_TLS for all adapters if set.
686  */
687 static int t4_kern_tls = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
689     "Enable KERN_TLS mode for all supported adapters");
690 
691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
692     "cxgbe(4) KERN_TLS parameters");
693 
694 static int t4_tls_inline_keys = 0;
695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
696     &t4_tls_inline_keys, 0,
697     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
698     "in card memory.");
699 
700 static int t4_tls_combo_wrs = 0;
701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
702     0, "Attempt to combine TCB field updates with TLS record work requests.");
703 #endif
704 
705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
706 static int vi_mac_funcs[] = {
707 	FW_VI_FUNC_ETH,
708 	FW_VI_FUNC_OFLD,
709 	FW_VI_FUNC_IWARP,
710 	FW_VI_FUNC_OPENISCSI,
711 	FW_VI_FUNC_OPENFCOE,
712 	FW_VI_FUNC_FOISCSI,
713 	FW_VI_FUNC_FOFCOE,
714 };
715 
716 struct intrs_and_queues {
717 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
718 	uint16_t num_vis;	/* number of VIs for each port */
719 	uint16_t nirq;		/* Total # of vectors */
720 	uint16_t ntxq;		/* # of NIC txq's for each port */
721 	uint16_t nrxq;		/* # of NIC rxq's for each port */
722 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
723 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
724 	uint16_t nnmtxq;	/* # of netmap txq's */
725 	uint16_t nnmrxq;	/* # of netmap rxq's */
726 
727 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
728 	uint16_t ntxq_vi;	/* # of NIC txq's */
729 	uint16_t nrxq_vi;	/* # of NIC rxq's */
730 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
731 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
732 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
733 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
734 };
735 
736 static void setup_memwin(struct adapter *);
737 static void position_memwin(struct adapter *, int, uint32_t);
738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
739 static int fwmtype_to_hwmtype(int);
740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
741     uint32_t *);
742 static int fixup_devlog_params(struct adapter *);
743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
744 static int contact_firmware(struct adapter *);
745 static int partition_resources(struct adapter *);
746 static int get_params__pre_init(struct adapter *);
747 static int set_params__pre_init(struct adapter *);
748 static int get_params__post_init(struct adapter *);
749 static int set_params__post_init(struct adapter *);
750 static void t4_set_desc(struct adapter *);
751 static bool fixed_ifmedia(struct port_info *);
752 static void build_medialist(struct port_info *);
753 static void init_link_config(struct port_info *);
754 static int fixup_link_config(struct port_info *);
755 static int apply_link_config(struct port_info *);
756 static int cxgbe_init_synchronized(struct vi_info *);
757 static int cxgbe_uninit_synchronized(struct vi_info *);
758 static int adapter_full_init(struct adapter *);
759 static void adapter_full_uninit(struct adapter *);
760 static int vi_full_init(struct vi_info *);
761 static void vi_full_uninit(struct vi_info *);
762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
763 static void quiesce_txq(struct sge_txq *);
764 static void quiesce_wrq(struct sge_wrq *);
765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
766 static void quiesce_vi(struct vi_info *);
767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
768     driver_intr_t *, void *, char *);
769 static int t4_free_irq(struct adapter *, struct irq *);
770 static void t4_init_atid_table(struct adapter *);
771 static void t4_free_atid_table(struct adapter *);
772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
773 static void vi_refresh_stats(struct vi_info *);
774 static void cxgbe_refresh_stats(struct vi_info *);
775 static void cxgbe_tick(void *);
776 static void vi_tick(void *);
777 static void cxgbe_sysctls(struct port_info *);
778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
829 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
830 #ifdef TCP_OFFLOAD
831 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
841 #endif
842 static int get_sge_context(struct adapter *, struct t4_sge_context *);
843 static int load_fw(struct adapter *, struct t4_data *);
844 static int load_cfg(struct adapter *, struct t4_data *);
845 static int load_boot(struct adapter *, struct t4_bootrom *);
846 static int load_bootcfg(struct adapter *, struct t4_data *);
847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
848 static void free_offload_policy(struct t4_offload_policy *);
849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
851 static int read_i2c(struct adapter *, struct t4_i2c_data *);
852 static int clear_stats(struct adapter *, u_int);
853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
855 #ifdef TCP_OFFLOAD
856 static int toe_capability(struct vi_info *, bool);
857 static void t4_async_event(struct adapter *);
858 #endif
859 #ifdef KERN_TLS
860 static int ktls_capability(struct adapter *, bool);
861 #endif
862 static int mod_event(module_t, int, void *);
863 static int notify_siblings(device_t, int);
864 static uint64_t vi_get_counter(struct ifnet *, ift_counter);
865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter);
866 static void enable_vxlan_rx(struct adapter *);
867 static void reset_adapter_task(void *, int);
868 static void fatal_error_task(void *, int);
869 static void dump_devlog(struct adapter *);
870 static void dump_cim_regs(struct adapter *);
871 static void dump_cimla(struct adapter *);
872 
873 struct {
874 	uint16_t device;
875 	char *desc;
876 } t4_pciids[] = {
877 	{0xa000, "Chelsio Terminator 4 FPGA"},
878 	{0x4400, "Chelsio T440-dbg"},
879 	{0x4401, "Chelsio T420-CR"},
880 	{0x4402, "Chelsio T422-CR"},
881 	{0x4403, "Chelsio T440-CR"},
882 	{0x4404, "Chelsio T420-BCH"},
883 	{0x4405, "Chelsio T440-BCH"},
884 	{0x4406, "Chelsio T440-CH"},
885 	{0x4407, "Chelsio T420-SO"},
886 	{0x4408, "Chelsio T420-CX"},
887 	{0x4409, "Chelsio T420-BT"},
888 	{0x440a, "Chelsio T404-BT"},
889 	{0x440e, "Chelsio T440-LP-CR"},
890 }, t5_pciids[] = {
891 	{0xb000, "Chelsio Terminator 5 FPGA"},
892 	{0x5400, "Chelsio T580-dbg"},
893 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
894 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
895 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
896 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
897 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
898 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
899 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
900 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
901 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
902 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
903 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
904 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
905 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
906 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
907 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
908 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
909 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
910 
911 	/* Custom */
912 	{0x5483, "Custom T540-CR"},
913 	{0x5484, "Custom T540-BT"},
914 }, t6_pciids[] = {
915 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
916 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
917 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
918 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
919 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
920 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
921 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
922 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
923 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
924 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
925 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
926 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
927 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
928 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
929 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
930 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
931 
932 	/* Custom */
933 	{0x6480, "Custom T6225-CR"},
934 	{0x6481, "Custom T62100-CR"},
935 	{0x6482, "Custom T6225-CR"},
936 	{0x6483, "Custom T62100-CR"},
937 	{0x6484, "Custom T64100-CR"},
938 	{0x6485, "Custom T6240-SO"},
939 	{0x6486, "Custom T6225-SO-CR"},
940 	{0x6487, "Custom T6225-CR"},
941 };
942 
943 #ifdef TCP_OFFLOAD
944 /*
945  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
946  * be exactly the same for both rxq and ofld_rxq.
947  */
948 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
949 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
950 #endif
951 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
952 
953 static int
954 t4_probe(device_t dev)
955 {
956 	int i;
957 	uint16_t v = pci_get_vendor(dev);
958 	uint16_t d = pci_get_device(dev);
959 	uint8_t f = pci_get_function(dev);
960 
961 	if (v != PCI_VENDOR_ID_CHELSIO)
962 		return (ENXIO);
963 
964 	/* Attach only to PF0 of the FPGA */
965 	if (d == 0xa000 && f != 0)
966 		return (ENXIO);
967 
968 	for (i = 0; i < nitems(t4_pciids); i++) {
969 		if (d == t4_pciids[i].device) {
970 			device_set_desc(dev, t4_pciids[i].desc);
971 			return (BUS_PROBE_DEFAULT);
972 		}
973 	}
974 
975 	return (ENXIO);
976 }
977 
978 static int
979 t5_probe(device_t dev)
980 {
981 	int i;
982 	uint16_t v = pci_get_vendor(dev);
983 	uint16_t d = pci_get_device(dev);
984 	uint8_t f = pci_get_function(dev);
985 
986 	if (v != PCI_VENDOR_ID_CHELSIO)
987 		return (ENXIO);
988 
989 	/* Attach only to PF0 of the FPGA */
990 	if (d == 0xb000 && f != 0)
991 		return (ENXIO);
992 
993 	for (i = 0; i < nitems(t5_pciids); i++) {
994 		if (d == t5_pciids[i].device) {
995 			device_set_desc(dev, t5_pciids[i].desc);
996 			return (BUS_PROBE_DEFAULT);
997 		}
998 	}
999 
1000 	return (ENXIO);
1001 }
1002 
1003 static int
1004 t6_probe(device_t dev)
1005 {
1006 	int i;
1007 	uint16_t v = pci_get_vendor(dev);
1008 	uint16_t d = pci_get_device(dev);
1009 
1010 	if (v != PCI_VENDOR_ID_CHELSIO)
1011 		return (ENXIO);
1012 
1013 	for (i = 0; i < nitems(t6_pciids); i++) {
1014 		if (d == t6_pciids[i].device) {
1015 			device_set_desc(dev, t6_pciids[i].desc);
1016 			return (BUS_PROBE_DEFAULT);
1017 		}
1018 	}
1019 
1020 	return (ENXIO);
1021 }
1022 
1023 static void
1024 t5_attribute_workaround(device_t dev)
1025 {
1026 	device_t root_port;
1027 	uint32_t v;
1028 
1029 	/*
1030 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1031 	 * Ordering attributes when replying to a TLP from a Root
1032 	 * Port.  As a workaround, find the parent Root Port and
1033 	 * disable No Snoop and Relaxed Ordering.  Note that this
1034 	 * affects all devices under this root port.
1035 	 */
1036 	root_port = pci_find_pcie_root_port(dev);
1037 	if (root_port == NULL) {
1038 		device_printf(dev, "Unable to find parent root port\n");
1039 		return;
1040 	}
1041 
1042 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1043 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1044 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1045 	    0)
1046 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1047 		    device_get_nameunit(root_port));
1048 }
1049 
1050 static const struct devnames devnames[] = {
1051 	{
1052 		.nexus_name = "t4nex",
1053 		.ifnet_name = "cxgbe",
1054 		.vi_ifnet_name = "vcxgbe",
1055 		.pf03_drv_name = "t4iov",
1056 		.vf_nexus_name = "t4vf",
1057 		.vf_ifnet_name = "cxgbev"
1058 	}, {
1059 		.nexus_name = "t5nex",
1060 		.ifnet_name = "cxl",
1061 		.vi_ifnet_name = "vcxl",
1062 		.pf03_drv_name = "t5iov",
1063 		.vf_nexus_name = "t5vf",
1064 		.vf_ifnet_name = "cxlv"
1065 	}, {
1066 		.nexus_name = "t6nex",
1067 		.ifnet_name = "cc",
1068 		.vi_ifnet_name = "vcc",
1069 		.pf03_drv_name = "t6iov",
1070 		.vf_nexus_name = "t6vf",
1071 		.vf_ifnet_name = "ccv"
1072 	}
1073 };
1074 
1075 void
1076 t4_init_devnames(struct adapter *sc)
1077 {
1078 	int id;
1079 
1080 	id = chip_id(sc);
1081 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1082 		sc->names = &devnames[id - CHELSIO_T4];
1083 	else {
1084 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1085 		sc->names = NULL;
1086 	}
1087 }
1088 
1089 static int
1090 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1091 {
1092 	const char *parent, *name;
1093 	long value;
1094 	int line, unit;
1095 
1096 	line = 0;
1097 	parent = device_get_nameunit(sc->dev);
1098 	name = sc->names->ifnet_name;
1099 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1100 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1101 		    value == pi->port_id)
1102 			return (unit);
1103 	}
1104 	return (-1);
1105 }
1106 
1107 static int
1108 t4_attach(device_t dev)
1109 {
1110 	struct adapter *sc;
1111 	int rc = 0, i, j, rqidx, tqidx, nports;
1112 	struct make_dev_args mda;
1113 	struct intrs_and_queues iaq;
1114 	struct sge *s;
1115 	uint32_t *buf;
1116 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1117 	int ofld_tqidx;
1118 #endif
1119 #ifdef TCP_OFFLOAD
1120 	int ofld_rqidx;
1121 #endif
1122 #ifdef DEV_NETMAP
1123 	int nm_rqidx, nm_tqidx;
1124 #endif
1125 	int num_vis;
1126 
1127 	sc = device_get_softc(dev);
1128 	sc->dev = dev;
1129 	sysctl_ctx_init(&sc->ctx);
1130 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1131 
1132 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1133 		t5_attribute_workaround(dev);
1134 	pci_enable_busmaster(dev);
1135 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1136 		uint32_t v;
1137 
1138 		pci_set_max_read_req(dev, 4096);
1139 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1140 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1141 		if (pcie_relaxed_ordering == 0 &&
1142 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1143 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1144 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1145 		} else if (pcie_relaxed_ordering == 1 &&
1146 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1147 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1148 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1149 		}
1150 	}
1151 
1152 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1153 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1154 	sc->traceq = -1;
1155 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1156 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1157 	    device_get_nameunit(dev));
1158 
1159 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1160 	    device_get_nameunit(dev));
1161 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1162 	t4_add_adapter(sc);
1163 
1164 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1165 	TAILQ_INIT(&sc->sfl);
1166 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1167 
1168 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1169 
1170 	sc->policy = NULL;
1171 	rw_init(&sc->policy_lock, "connection offload policy");
1172 
1173 	callout_init(&sc->ktls_tick, 1);
1174 
1175 	refcount_init(&sc->vxlan_refcount, 0);
1176 
1177 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1178 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1179 
1180 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1181 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1182 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1183 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1184 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1185 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1186 
1187 	rc = t4_map_bars_0_and_4(sc);
1188 	if (rc != 0)
1189 		goto done; /* error message displayed already */
1190 
1191 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1192 
1193 	/* Prepare the adapter for operation. */
1194 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1195 	rc = -t4_prep_adapter(sc, buf);
1196 	free(buf, M_CXGBE);
1197 	if (rc != 0) {
1198 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1199 		goto done;
1200 	}
1201 
1202 	/*
1203 	 * This is the real PF# to which we're attaching.  Works from within PCI
1204 	 * passthrough environments too, where pci_get_function() could return a
1205 	 * different PF# depending on the passthrough configuration.  We need to
1206 	 * use the real PF# in all our communication with the firmware.
1207 	 */
1208 	j = t4_read_reg(sc, A_PL_WHOAMI);
1209 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1210 	sc->mbox = sc->pf;
1211 
1212 	t4_init_devnames(sc);
1213 	if (sc->names == NULL) {
1214 		rc = ENOTSUP;
1215 		goto done; /* error message displayed already */
1216 	}
1217 
1218 	/*
1219 	 * Do this really early, with the memory windows set up even before the
1220 	 * character device.  The userland tool's register i/o and mem read
1221 	 * will work even in "recovery mode".
1222 	 */
1223 	setup_memwin(sc);
1224 	if (t4_init_devlog_params(sc, 0) == 0)
1225 		fixup_devlog_params(sc);
1226 	make_dev_args_init(&mda);
1227 	mda.mda_devsw = &t4_cdevsw;
1228 	mda.mda_uid = UID_ROOT;
1229 	mda.mda_gid = GID_WHEEL;
1230 	mda.mda_mode = 0600;
1231 	mda.mda_si_drv1 = sc;
1232 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1233 	if (rc != 0)
1234 		device_printf(dev, "failed to create nexus char device: %d.\n",
1235 		    rc);
1236 
1237 	/* Go no further if recovery mode has been requested. */
1238 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1239 		device_printf(dev, "recovery mode.\n");
1240 		goto done;
1241 	}
1242 
1243 #if defined(__i386__)
1244 	if ((cpu_feature & CPUID_CX8) == 0) {
1245 		device_printf(dev, "64 bit atomics not available.\n");
1246 		rc = ENOTSUP;
1247 		goto done;
1248 	}
1249 #endif
1250 
1251 	/* Contact the firmware and try to become the master driver. */
1252 	rc = contact_firmware(sc);
1253 	if (rc != 0)
1254 		goto done; /* error message displayed already */
1255 	MPASS(sc->flags & FW_OK);
1256 
1257 	rc = get_params__pre_init(sc);
1258 	if (rc != 0)
1259 		goto done; /* error message displayed already */
1260 
1261 	if (sc->flags & MASTER_PF) {
1262 		rc = partition_resources(sc);
1263 		if (rc != 0)
1264 			goto done; /* error message displayed already */
1265 		t4_intr_clear(sc);
1266 	}
1267 
1268 	rc = get_params__post_init(sc);
1269 	if (rc != 0)
1270 		goto done; /* error message displayed already */
1271 
1272 	rc = set_params__post_init(sc);
1273 	if (rc != 0)
1274 		goto done; /* error message displayed already */
1275 
1276 	rc = t4_map_bar_2(sc);
1277 	if (rc != 0)
1278 		goto done; /* error message displayed already */
1279 
1280 	rc = t4_create_dma_tag(sc);
1281 	if (rc != 0)
1282 		goto done; /* error message displayed already */
1283 
1284 	/*
1285 	 * First pass over all the ports - allocate VIs and initialize some
1286 	 * basic parameters like mac address, port type, etc.
1287 	 */
1288 	for_each_port(sc, i) {
1289 		struct port_info *pi;
1290 
1291 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1292 		sc->port[i] = pi;
1293 
1294 		/* These must be set before t4_port_init */
1295 		pi->adapter = sc;
1296 		pi->port_id = i;
1297 		/*
1298 		 * XXX: vi[0] is special so we can't delay this allocation until
1299 		 * pi->nvi's final value is known.
1300 		 */
1301 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1302 		    M_ZERO | M_WAITOK);
1303 
1304 		/*
1305 		 * Allocate the "main" VI and initialize parameters
1306 		 * like mac addr.
1307 		 */
1308 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1309 		if (rc != 0) {
1310 			device_printf(dev, "unable to initialize port %d: %d\n",
1311 			    i, rc);
1312 			free(pi->vi, M_CXGBE);
1313 			free(pi, M_CXGBE);
1314 			sc->port[i] = NULL;
1315 			goto done;
1316 		}
1317 
1318 		if (is_bt(pi->port_type))
1319 			setbit(&sc->bt_map, pi->tx_chan);
1320 		else
1321 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1322 
1323 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1324 		    device_get_nameunit(dev), i);
1325 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1326 		sc->chan_map[pi->tx_chan] = i;
1327 
1328 		/*
1329 		 * The MPS counter for FCS errors doesn't work correctly on the
1330 		 * T6 so we use the MAC counter here.  Which MAC is in use
1331 		 * depends on the link settings which will be known when the
1332 		 * link comes up.
1333 		 */
1334 		if (is_t6(sc)) {
1335 			pi->fcs_reg = -1;
1336 		} else if (is_t4(sc)) {
1337 			pi->fcs_reg = PORT_REG(pi->tx_chan,
1338 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1339 		} else {
1340 			pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
1341 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1342 		}
1343 		pi->fcs_base = 0;
1344 
1345 		/* All VIs on this port share this media. */
1346 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1347 		    cxgbe_media_status);
1348 
1349 		PORT_LOCK(pi);
1350 		init_link_config(pi);
1351 		fixup_link_config(pi);
1352 		build_medialist(pi);
1353 		if (fixed_ifmedia(pi))
1354 			pi->flags |= FIXED_IFMEDIA;
1355 		PORT_UNLOCK(pi);
1356 
1357 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1358 		    t4_ifnet_unit(sc, pi));
1359 		if (pi->dev == NULL) {
1360 			device_printf(dev,
1361 			    "failed to add device for port %d.\n", i);
1362 			rc = ENXIO;
1363 			goto done;
1364 		}
1365 		pi->vi[0].dev = pi->dev;
1366 		device_set_softc(pi->dev, pi);
1367 	}
1368 
1369 	/*
1370 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1371 	 */
1372 	nports = sc->params.nports;
1373 	rc = cfg_itype_and_nqueues(sc, &iaq);
1374 	if (rc != 0)
1375 		goto done; /* error message displayed already */
1376 
1377 	num_vis = iaq.num_vis;
1378 	sc->intr_type = iaq.intr_type;
1379 	sc->intr_count = iaq.nirq;
1380 
1381 	s = &sc->sge;
1382 	s->nrxq = nports * iaq.nrxq;
1383 	s->ntxq = nports * iaq.ntxq;
1384 	if (num_vis > 1) {
1385 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1386 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1387 	}
1388 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1389 	s->neq += nports;		/* ctrl queues: 1 per port */
1390 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1391 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1392 	if (is_offload(sc) || is_ethoffload(sc)) {
1393 		s->nofldtxq = nports * iaq.nofldtxq;
1394 		if (num_vis > 1)
1395 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1396 		s->neq += s->nofldtxq;
1397 
1398 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1399 		    M_CXGBE, M_ZERO | M_WAITOK);
1400 	}
1401 #endif
1402 #ifdef TCP_OFFLOAD
1403 	if (is_offload(sc)) {
1404 		s->nofldrxq = nports * iaq.nofldrxq;
1405 		if (num_vis > 1)
1406 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1407 		s->neq += s->nofldrxq;	/* free list */
1408 		s->niq += s->nofldrxq;
1409 
1410 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1411 		    M_CXGBE, M_ZERO | M_WAITOK);
1412 	}
1413 #endif
1414 #ifdef DEV_NETMAP
1415 	s->nnmrxq = 0;
1416 	s->nnmtxq = 0;
1417 	if (t4_native_netmap & NN_MAIN_VI) {
1418 		s->nnmrxq += nports * iaq.nnmrxq;
1419 		s->nnmtxq += nports * iaq.nnmtxq;
1420 	}
1421 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1422 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1423 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1424 	}
1425 	s->neq += s->nnmtxq + s->nnmrxq;
1426 	s->niq += s->nnmrxq;
1427 
1428 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1429 	    M_CXGBE, M_ZERO | M_WAITOK);
1430 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1431 	    M_CXGBE, M_ZERO | M_WAITOK);
1432 #endif
1433 	MPASS(s->niq <= s->iqmap_sz);
1434 	MPASS(s->neq <= s->eqmap_sz);
1435 
1436 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1437 	    M_ZERO | M_WAITOK);
1438 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1439 	    M_ZERO | M_WAITOK);
1440 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1441 	    M_ZERO | M_WAITOK);
1442 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1443 	    M_ZERO | M_WAITOK);
1444 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1445 	    M_ZERO | M_WAITOK);
1446 
1447 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1448 	    M_ZERO | M_WAITOK);
1449 
1450 	t4_init_l2t(sc, M_WAITOK);
1451 	t4_init_smt(sc, M_WAITOK);
1452 	t4_init_tx_sched(sc);
1453 	t4_init_atid_table(sc);
1454 #ifdef RATELIMIT
1455 	t4_init_etid_table(sc);
1456 #endif
1457 #ifdef INET6
1458 	t4_init_clip_table(sc);
1459 #endif
1460 	if (sc->vres.key.size != 0)
1461 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1462 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1463 
1464 	/*
1465 	 * Second pass over the ports.  This time we know the number of rx and
1466 	 * tx queues that each port should get.
1467 	 */
1468 	rqidx = tqidx = 0;
1469 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1470 	ofld_tqidx = 0;
1471 #endif
1472 #ifdef TCP_OFFLOAD
1473 	ofld_rqidx = 0;
1474 #endif
1475 #ifdef DEV_NETMAP
1476 	nm_rqidx = nm_tqidx = 0;
1477 #endif
1478 	for_each_port(sc, i) {
1479 		struct port_info *pi = sc->port[i];
1480 		struct vi_info *vi;
1481 
1482 		if (pi == NULL)
1483 			continue;
1484 
1485 		pi->nvi = num_vis;
1486 		for_each_vi(pi, j, vi) {
1487 			vi->pi = pi;
1488 			vi->adapter = sc;
1489 			vi->first_intr = -1;
1490 			vi->qsize_rxq = t4_qsize_rxq;
1491 			vi->qsize_txq = t4_qsize_txq;
1492 
1493 			vi->first_rxq = rqidx;
1494 			vi->first_txq = tqidx;
1495 			vi->tmr_idx = t4_tmr_idx;
1496 			vi->pktc_idx = t4_pktc_idx;
1497 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1498 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1499 
1500 			rqidx += vi->nrxq;
1501 			tqidx += vi->ntxq;
1502 
1503 			if (j == 0 && vi->ntxq > 1)
1504 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1505 			else
1506 				vi->rsrv_noflowq = 0;
1507 
1508 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1509 			vi->first_ofld_txq = ofld_tqidx;
1510 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1511 			ofld_tqidx += vi->nofldtxq;
1512 #endif
1513 #ifdef TCP_OFFLOAD
1514 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1515 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1516 			vi->first_ofld_rxq = ofld_rqidx;
1517 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1518 
1519 			ofld_rqidx += vi->nofldrxq;
1520 #endif
1521 #ifdef DEV_NETMAP
1522 			vi->first_nm_rxq = nm_rqidx;
1523 			vi->first_nm_txq = nm_tqidx;
1524 			if (j == 0) {
1525 				vi->nnmrxq = iaq.nnmrxq;
1526 				vi->nnmtxq = iaq.nnmtxq;
1527 			} else {
1528 				vi->nnmrxq = iaq.nnmrxq_vi;
1529 				vi->nnmtxq = iaq.nnmtxq_vi;
1530 			}
1531 			nm_rqidx += vi->nnmrxq;
1532 			nm_tqidx += vi->nnmtxq;
1533 #endif
1534 		}
1535 	}
1536 
1537 	rc = t4_setup_intr_handlers(sc);
1538 	if (rc != 0) {
1539 		device_printf(dev,
1540 		    "failed to setup interrupt handlers: %d\n", rc);
1541 		goto done;
1542 	}
1543 
1544 	rc = bus_generic_probe(dev);
1545 	if (rc != 0) {
1546 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1547 		goto done;
1548 	}
1549 
1550 	/*
1551 	 * Ensure thread-safe mailbox access (in debug builds).
1552 	 *
1553 	 * So far this was the only thread accessing the mailbox but various
1554 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1555 	 * will access the mailbox from different threads.
1556 	 */
1557 	sc->flags |= CHK_MBOX_ACCESS;
1558 
1559 	rc = bus_generic_attach(dev);
1560 	if (rc != 0) {
1561 		device_printf(dev,
1562 		    "failed to attach all child ports: %d\n", rc);
1563 		goto done;
1564 	}
1565 
1566 	device_printf(dev,
1567 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1568 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1569 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1570 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1571 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1572 
1573 	t4_set_desc(sc);
1574 
1575 	notify_siblings(dev, 0);
1576 
1577 done:
1578 	if (rc != 0 && sc->cdev) {
1579 		/* cdev was created and so cxgbetool works; recover that way. */
1580 		device_printf(dev,
1581 		    "error during attach, adapter is now in recovery mode.\n");
1582 		rc = 0;
1583 	}
1584 
1585 	if (rc != 0)
1586 		t4_detach_common(dev);
1587 	else
1588 		t4_sysctls(sc);
1589 
1590 	return (rc);
1591 }
1592 
1593 static int
1594 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1595 {
1596 	struct adapter *sc;
1597 	struct port_info *pi;
1598 	int i;
1599 
1600 	sc = device_get_softc(bus);
1601 	for_each_port(sc, i) {
1602 		pi = sc->port[i];
1603 		if (pi != NULL && pi->dev == dev) {
1604 			sbuf_printf(sb, "port=%d", pi->port_id);
1605 			break;
1606 		}
1607 	}
1608 	return (0);
1609 }
1610 
1611 static int
1612 t4_ready(device_t dev)
1613 {
1614 	struct adapter *sc;
1615 
1616 	sc = device_get_softc(dev);
1617 	if (sc->flags & FW_OK)
1618 		return (0);
1619 	return (ENXIO);
1620 }
1621 
1622 static int
1623 t4_read_port_device(device_t dev, int port, device_t *child)
1624 {
1625 	struct adapter *sc;
1626 	struct port_info *pi;
1627 
1628 	sc = device_get_softc(dev);
1629 	if (port < 0 || port >= MAX_NPORTS)
1630 		return (EINVAL);
1631 	pi = sc->port[port];
1632 	if (pi == NULL || pi->dev == NULL)
1633 		return (ENXIO);
1634 	*child = pi->dev;
1635 	return (0);
1636 }
1637 
1638 static int
1639 notify_siblings(device_t dev, int detaching)
1640 {
1641 	device_t sibling;
1642 	int error, i;
1643 
1644 	error = 0;
1645 	for (i = 0; i < PCI_FUNCMAX; i++) {
1646 		if (i == pci_get_function(dev))
1647 			continue;
1648 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1649 		    pci_get_slot(dev), i);
1650 		if (sibling == NULL || !device_is_attached(sibling))
1651 			continue;
1652 		if (detaching)
1653 			error = T4_DETACH_CHILD(sibling);
1654 		else
1655 			(void)T4_ATTACH_CHILD(sibling);
1656 		if (error)
1657 			break;
1658 	}
1659 	return (error);
1660 }
1661 
1662 /*
1663  * Idempotent
1664  */
1665 static int
1666 t4_detach(device_t dev)
1667 {
1668 	int rc;
1669 
1670 	rc = notify_siblings(dev, 1);
1671 	if (rc) {
1672 		device_printf(dev,
1673 		    "failed to detach sibling devices: %d\n", rc);
1674 		return (rc);
1675 	}
1676 
1677 	return (t4_detach_common(dev));
1678 }
1679 
1680 int
1681 t4_detach_common(device_t dev)
1682 {
1683 	struct adapter *sc;
1684 	struct port_info *pi;
1685 	int i, rc;
1686 
1687 	sc = device_get_softc(dev);
1688 
1689 	if (sc->cdev) {
1690 		destroy_dev(sc->cdev);
1691 		sc->cdev = NULL;
1692 	}
1693 
1694 	sx_xlock(&t4_list_lock);
1695 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1696 	sx_xunlock(&t4_list_lock);
1697 
1698 	sc->flags &= ~CHK_MBOX_ACCESS;
1699 	if (sc->flags & FULL_INIT_DONE) {
1700 		if (!(sc->flags & IS_VF))
1701 			t4_intr_disable(sc);
1702 	}
1703 
1704 	if (device_is_attached(dev)) {
1705 		rc = bus_generic_detach(dev);
1706 		if (rc) {
1707 			device_printf(dev,
1708 			    "failed to detach child devices: %d\n", rc);
1709 			return (rc);
1710 		}
1711 	}
1712 
1713 	for (i = 0; i < sc->intr_count; i++)
1714 		t4_free_irq(sc, &sc->irq[i]);
1715 
1716 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1717 		t4_free_tx_sched(sc);
1718 
1719 	for (i = 0; i < MAX_NPORTS; i++) {
1720 		pi = sc->port[i];
1721 		if (pi) {
1722 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1723 			if (pi->dev)
1724 				device_delete_child(dev, pi->dev);
1725 
1726 			mtx_destroy(&pi->pi_lock);
1727 			free(pi->vi, M_CXGBE);
1728 			free(pi, M_CXGBE);
1729 		}
1730 	}
1731 
1732 	device_delete_children(dev);
1733 	sysctl_ctx_free(&sc->ctx);
1734 	adapter_full_uninit(sc);
1735 
1736 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1737 		t4_fw_bye(sc, sc->mbox);
1738 
1739 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1740 		pci_release_msi(dev);
1741 
1742 	if (sc->regs_res)
1743 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1744 		    sc->regs_res);
1745 
1746 	if (sc->udbs_res)
1747 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1748 		    sc->udbs_res);
1749 
1750 	if (sc->msix_res)
1751 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1752 		    sc->msix_res);
1753 
1754 	if (sc->l2t)
1755 		t4_free_l2t(sc->l2t);
1756 	if (sc->smt)
1757 		t4_free_smt(sc->smt);
1758 	t4_free_atid_table(sc);
1759 #ifdef RATELIMIT
1760 	t4_free_etid_table(sc);
1761 #endif
1762 	if (sc->key_map)
1763 		vmem_destroy(sc->key_map);
1764 #ifdef INET6
1765 	t4_destroy_clip_table(sc);
1766 #endif
1767 
1768 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1769 	free(sc->sge.ofld_txq, M_CXGBE);
1770 #endif
1771 #ifdef TCP_OFFLOAD
1772 	free(sc->sge.ofld_rxq, M_CXGBE);
1773 #endif
1774 #ifdef DEV_NETMAP
1775 	free(sc->sge.nm_rxq, M_CXGBE);
1776 	free(sc->sge.nm_txq, M_CXGBE);
1777 #endif
1778 	free(sc->irq, M_CXGBE);
1779 	free(sc->sge.rxq, M_CXGBE);
1780 	free(sc->sge.txq, M_CXGBE);
1781 	free(sc->sge.ctrlq, M_CXGBE);
1782 	free(sc->sge.iqmap, M_CXGBE);
1783 	free(sc->sge.eqmap, M_CXGBE);
1784 	free(sc->tids.ftid_tab, M_CXGBE);
1785 	free(sc->tids.hpftid_tab, M_CXGBE);
1786 	free_hftid_hash(&sc->tids);
1787 	free(sc->tids.tid_tab, M_CXGBE);
1788 	free(sc->tt.tls_rx_ports, M_CXGBE);
1789 	t4_destroy_dma_tag(sc);
1790 
1791 	callout_drain(&sc->ktls_tick);
1792 	callout_drain(&sc->sfl_callout);
1793 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1794 		mtx_destroy(&sc->tids.ftid_lock);
1795 		cv_destroy(&sc->tids.ftid_cv);
1796 	}
1797 	if (mtx_initialized(&sc->tids.atid_lock))
1798 		mtx_destroy(&sc->tids.atid_lock);
1799 	if (mtx_initialized(&sc->ifp_lock))
1800 		mtx_destroy(&sc->ifp_lock);
1801 
1802 	if (rw_initialized(&sc->policy_lock)) {
1803 		rw_destroy(&sc->policy_lock);
1804 #ifdef TCP_OFFLOAD
1805 		if (sc->policy != NULL)
1806 			free_offload_policy(sc->policy);
1807 #endif
1808 	}
1809 
1810 	for (i = 0; i < NUM_MEMWIN; i++) {
1811 		struct memwin *mw = &sc->memwin[i];
1812 
1813 		if (rw_initialized(&mw->mw_lock))
1814 			rw_destroy(&mw->mw_lock);
1815 	}
1816 
1817 	mtx_destroy(&sc->sfl_lock);
1818 	mtx_destroy(&sc->reg_lock);
1819 	mtx_destroy(&sc->sc_lock);
1820 
1821 	bzero(sc, sizeof(*sc));
1822 
1823 	return (0);
1824 }
1825 
1826 static inline bool
1827 ok_to_reset(struct adapter *sc)
1828 {
1829 	struct tid_info *t = &sc->tids;
1830 	struct port_info *pi;
1831 	struct vi_info *vi;
1832 	int i, j;
1833 	const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT;
1834 
1835 	ASSERT_SYNCHRONIZED_OP(sc);
1836 	MPASS(!(sc->flags & IS_VF));
1837 
1838 	for_each_port(sc, i) {
1839 		pi = sc->port[i];
1840 		for_each_vi(pi, j, vi) {
1841 			if (vi->ifp->if_capenable & caps)
1842 				return (false);
1843 		}
1844 	}
1845 
1846 	if (atomic_load_int(&t->tids_in_use) > 0)
1847 		return (false);
1848 	if (atomic_load_int(&t->stids_in_use) > 0)
1849 		return (false);
1850 	if (atomic_load_int(&t->atids_in_use) > 0)
1851 		return (false);
1852 	if (atomic_load_int(&t->ftids_in_use) > 0)
1853 		return (false);
1854 	if (atomic_load_int(&t->hpftids_in_use) > 0)
1855 		return (false);
1856 	if (atomic_load_int(&t->etids_in_use) > 0)
1857 		return (false);
1858 
1859 	return (true);
1860 }
1861 
1862 static inline int
1863 stop_adapter(struct adapter *sc)
1864 {
1865 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED)))
1866 		return (1);		/* Already stopped. */
1867 	return (t4_shutdown_adapter(sc));
1868 }
1869 
1870 static int
1871 t4_suspend(device_t dev)
1872 {
1873 	struct adapter *sc = device_get_softc(dev);
1874 	struct port_info *pi;
1875 	struct vi_info *vi;
1876 	struct ifnet *ifp;
1877 	struct sge_rxq *rxq;
1878 	struct sge_txq *txq;
1879 	struct sge_wrq *wrq;
1880 #ifdef TCP_OFFLOAD
1881 	struct sge_ofld_rxq *ofld_rxq;
1882 #endif
1883 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1884 	struct sge_ofld_txq *ofld_txq;
1885 #endif
1886 	int rc, i, j, k;
1887 
1888 	CH_ALERT(sc, "suspend requested\n");
1889 
1890 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1891 	if (rc != 0)
1892 		return (ENXIO);
1893 
1894 	/* XXX: Can the kernel call suspend repeatedly without resume? */
1895 	MPASS(!hw_off_limits(sc));
1896 
1897 	if (!ok_to_reset(sc)) {
1898 		/* XXX: should list what resource is preventing suspend. */
1899 		CH_ERR(sc, "not safe to suspend.\n");
1900 		rc = EBUSY;
1901 		goto done;
1902 	}
1903 
1904 	/* No more DMA or interrupts. */
1905 	stop_adapter(sc);
1906 
1907 	/* Quiesce all activity. */
1908 	for_each_port(sc, i) {
1909 		pi = sc->port[i];
1910 		pi->vxlan_tcam_entry = false;
1911 
1912 		PORT_LOCK(pi);
1913 		if (pi->up_vis > 0) {
1914 			/*
1915 			 * t4_shutdown_adapter has already shut down all the
1916 			 * PHYs but it also disables interrupts and DMA so there
1917 			 * won't be a link interrupt.  So we update the state
1918 			 * manually and inform the kernel.
1919 			 */
1920 			pi->link_cfg.link_ok = false;
1921 			t4_os_link_changed(pi);
1922 		}
1923 		PORT_UNLOCK(pi);
1924 
1925 		for_each_vi(pi, j, vi) {
1926 			vi->xact_addr_filt = -1;
1927 			mtx_lock(&vi->tick_mtx);
1928 			vi->flags |= VI_SKIP_STATS;
1929 			mtx_unlock(&vi->tick_mtx);
1930 			if (!(vi->flags & VI_INIT_DONE))
1931 				continue;
1932 
1933 			ifp = vi->ifp;
1934 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1935 				mtx_lock(&vi->tick_mtx);
1936 				callout_stop(&vi->tick);
1937 				mtx_unlock(&vi->tick_mtx);
1938 				callout_drain(&vi->tick);
1939 			}
1940 
1941 			/*
1942 			 * Note that the HW is not available.
1943 			 */
1944 			for_each_txq(vi, k, txq) {
1945 				TXQ_LOCK(txq);
1946 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
1947 				TXQ_UNLOCK(txq);
1948 			}
1949 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1950 			for_each_ofld_txq(vi, k, ofld_txq) {
1951 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
1952 			}
1953 #endif
1954 			for_each_rxq(vi, k, rxq) {
1955 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1956 			}
1957 #if defined(TCP_OFFLOAD)
1958 			for_each_ofld_rxq(vi, k, ofld_rxq) {
1959 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1960 			}
1961 #endif
1962 
1963 			quiesce_vi(vi);
1964 		}
1965 
1966 		if (sc->flags & FULL_INIT_DONE) {
1967 			/* Control queue */
1968 			wrq = &sc->sge.ctrlq[i];
1969 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
1970 			quiesce_wrq(wrq);
1971 		}
1972 	}
1973 	if (sc->flags & FULL_INIT_DONE) {
1974 		/* Firmware event queue */
1975 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
1976 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
1977 	}
1978 
1979 	/* Mark the adapter totally off limits. */
1980 	mtx_lock(&sc->reg_lock);
1981 	atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1982 	sc->flags &= ~(FW_OK | MASTER_PF);
1983 	sc->reset_thread = NULL;
1984 	mtx_unlock(&sc->reg_lock);
1985 
1986 	CH_ALERT(sc, "suspend completed.\n");
1987 done:
1988 	end_synchronized_op(sc, 0);
1989 	return (rc);
1990 }
1991 
1992 struct adapter_pre_reset_state {
1993 	u_int flags;
1994 	uint16_t nbmcaps;
1995 	uint16_t linkcaps;
1996 	uint16_t switchcaps;
1997 	uint16_t niccaps;
1998 	uint16_t toecaps;
1999 	uint16_t rdmacaps;
2000 	uint16_t cryptocaps;
2001 	uint16_t iscsicaps;
2002 	uint16_t fcoecaps;
2003 
2004 	u_int cfcsum;
2005 	char cfg_file[32];
2006 
2007 	struct adapter_params params;
2008 	struct t4_virt_res vres;
2009 	struct tid_info tids;
2010 	struct sge sge;
2011 
2012 	int rawf_base;
2013 	int nrawf;
2014 
2015 };
2016 
2017 static void
2018 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2019 {
2020 
2021 	ASSERT_SYNCHRONIZED_OP(sc);
2022 
2023 	o->flags = sc->flags;
2024 
2025 	o->nbmcaps =  sc->nbmcaps;
2026 	o->linkcaps = sc->linkcaps;
2027 	o->switchcaps = sc->switchcaps;
2028 	o->niccaps = sc->niccaps;
2029 	o->toecaps = sc->toecaps;
2030 	o->rdmacaps = sc->rdmacaps;
2031 	o->cryptocaps = sc->cryptocaps;
2032 	o->iscsicaps = sc->iscsicaps;
2033 	o->fcoecaps = sc->fcoecaps;
2034 
2035 	o->cfcsum = sc->cfcsum;
2036 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2037 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2038 
2039 	o->params = sc->params;
2040 	o->vres = sc->vres;
2041 	o->tids = sc->tids;
2042 	o->sge = sc->sge;
2043 
2044 	o->rawf_base = sc->rawf_base;
2045 	o->nrawf = sc->nrawf;
2046 }
2047 
2048 static int
2049 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2050 {
2051 	int rc = 0;
2052 
2053 	ASSERT_SYNCHRONIZED_OP(sc);
2054 
2055 	/* Capabilities */
2056 #define COMPARE_CAPS(c) do { \
2057 	if (o->c##caps != sc->c##caps) { \
2058 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2059 		    sc->c##caps); \
2060 		rc = EINVAL; \
2061 	} \
2062 } while (0)
2063 	COMPARE_CAPS(nbm);
2064 	COMPARE_CAPS(link);
2065 	COMPARE_CAPS(switch);
2066 	COMPARE_CAPS(nic);
2067 	COMPARE_CAPS(toe);
2068 	COMPARE_CAPS(rdma);
2069 	COMPARE_CAPS(crypto);
2070 	COMPARE_CAPS(iscsi);
2071 	COMPARE_CAPS(fcoe);
2072 #undef COMPARE_CAPS
2073 
2074 	/* Firmware config file */
2075 	if (o->cfcsum != sc->cfcsum) {
2076 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2077 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2078 		rc = EINVAL;
2079 	}
2080 
2081 #define COMPARE_PARAM(p, name) do { \
2082 	if (o->p != sc->p) { \
2083 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2084 		rc = EINVAL; \
2085 	} \
2086 } while (0)
2087 	COMPARE_PARAM(sge.iq_start, iq_start);
2088 	COMPARE_PARAM(sge.eq_start, eq_start);
2089 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2090 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2091 	COMPARE_PARAM(tids.nftids, nftids);
2092 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2093 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2094 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2095 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2096 	COMPARE_PARAM(tids.tid_base, tid_base);
2097 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2098 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2099 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2100 	COMPARE_PARAM(rawf_base, rawf_base);
2101 	COMPARE_PARAM(nrawf, nrawf);
2102 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2103 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2104 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2105 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2106 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2107 	COMPARE_PARAM(tids.ntids, ntids);
2108 	COMPARE_PARAM(tids.etid_base, etid_base);
2109 	COMPARE_PARAM(tids.etid_end, etid_end);
2110 	COMPARE_PARAM(tids.netids, netids);
2111 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2112 	COMPARE_PARAM(params.ethoffload, ethoffload);
2113 	COMPARE_PARAM(tids.natids, natids);
2114 	COMPARE_PARAM(tids.stid_base, stid_base);
2115 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2116 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2117 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2118 	COMPARE_PARAM(vres.stag.start, stag_start);
2119 	COMPARE_PARAM(vres.stag.size, stag_size);
2120 	COMPARE_PARAM(vres.rq.start, rq_start);
2121 	COMPARE_PARAM(vres.rq.size, rq_size);
2122 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2123 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2124 	COMPARE_PARAM(vres.qp.start, qp_start);
2125 	COMPARE_PARAM(vres.qp.size, qp_size);
2126 	COMPARE_PARAM(vres.cq.start, cq_start);
2127 	COMPARE_PARAM(vres.cq.size, cq_size);
2128 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2129 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2130 	COMPARE_PARAM(vres.srq.start, srq_start);
2131 	COMPARE_PARAM(vres.srq.size, srq_size);
2132 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2133 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2134 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2135 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2136 	COMPARE_PARAM(vres.key.start, key_start);
2137 	COMPARE_PARAM(vres.key.size, key_size);
2138 #undef COMPARE_PARAM
2139 
2140 	return (rc);
2141 }
2142 
2143 static int
2144 t4_resume(device_t dev)
2145 {
2146 	struct adapter *sc = device_get_softc(dev);
2147 	struct adapter_pre_reset_state *old_state = NULL;
2148 	struct port_info *pi;
2149 	struct vi_info *vi;
2150 	struct ifnet *ifp;
2151 	struct sge_txq *txq;
2152 	int rc, i, j, k;
2153 
2154 	CH_ALERT(sc, "resume requested.\n");
2155 
2156 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2157 	if (rc != 0)
2158 		return (ENXIO);
2159 	MPASS(hw_off_limits(sc));
2160 	MPASS((sc->flags & FW_OK) == 0);
2161 	MPASS((sc->flags & MASTER_PF) == 0);
2162 	MPASS(sc->reset_thread == NULL);
2163 	sc->reset_thread = curthread;
2164 
2165 	/* Register access is expected to work by the time we're here. */
2166 	if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2167 		CH_ERR(sc, "%s: can't read device registers\n", __func__);
2168 		rc = ENXIO;
2169 		goto done;
2170 	}
2171 
2172 	/* Note that HW_OFF_LIMITS is cleared a bit later. */
2173 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED);
2174 
2175 	/* Restore memory window. */
2176 	setup_memwin(sc);
2177 
2178 	/* Go no further if recovery mode has been requested. */
2179 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2180 		CH_ALERT(sc, "recovery mode on resume.\n");
2181 		rc = 0;
2182 		mtx_lock(&sc->reg_lock);
2183 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2184 		mtx_unlock(&sc->reg_lock);
2185 		goto done;
2186 	}
2187 
2188 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2189 	save_caps_and_params(sc, old_state);
2190 
2191 	/* Reestablish contact with firmware and become the primary PF. */
2192 	rc = contact_firmware(sc);
2193 	if (rc != 0)
2194 		goto done; /* error message displayed already */
2195 	MPASS(sc->flags & FW_OK);
2196 
2197 	if (sc->flags & MASTER_PF) {
2198 		rc = partition_resources(sc);
2199 		if (rc != 0)
2200 			goto done; /* error message displayed already */
2201 		t4_intr_clear(sc);
2202 	}
2203 
2204 	rc = get_params__post_init(sc);
2205 	if (rc != 0)
2206 		goto done; /* error message displayed already */
2207 
2208 	rc = set_params__post_init(sc);
2209 	if (rc != 0)
2210 		goto done; /* error message displayed already */
2211 
2212 	rc = compare_caps_and_params(sc, old_state);
2213 	if (rc != 0)
2214 		goto done; /* error message displayed already */
2215 
2216 	for_each_port(sc, i) {
2217 		pi = sc->port[i];
2218 		MPASS(pi != NULL);
2219 		MPASS(pi->vi != NULL);
2220 		MPASS(pi->vi[0].dev == pi->dev);
2221 
2222 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2223 		if (rc != 0) {
2224 			CH_ERR(sc,
2225 			    "failed to re-initialize port %d: %d\n", i, rc);
2226 			goto done;
2227 		}
2228 		MPASS(sc->chan_map[pi->tx_chan] == i);
2229 
2230 		PORT_LOCK(pi);
2231 		fixup_link_config(pi);
2232 		build_medialist(pi);
2233 		PORT_UNLOCK(pi);
2234 		for_each_vi(pi, j, vi) {
2235 			if (IS_MAIN_VI(vi))
2236 				continue;
2237 			rc = alloc_extra_vi(sc, pi, vi);
2238 			if (rc != 0) {
2239 				CH_ERR(vi,
2240 				    "failed to re-allocate extra VI: %d\n", rc);
2241 				goto done;
2242 			}
2243 		}
2244 	}
2245 
2246 	/*
2247 	 * Interrupts and queues are about to be enabled and other threads will
2248 	 * want to access the hardware too.  It is safe to do so.  Note that
2249 	 * this thread is still in the middle of a synchronized_op.
2250 	 */
2251 	mtx_lock(&sc->reg_lock);
2252 	atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2253 	mtx_unlock(&sc->reg_lock);
2254 
2255 	if (sc->flags & FULL_INIT_DONE) {
2256 		rc = adapter_full_init(sc);
2257 		if (rc != 0) {
2258 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2259 			goto done;
2260 		}
2261 
2262 		if (sc->vxlan_refcount > 0)
2263 			enable_vxlan_rx(sc);
2264 
2265 		for_each_port(sc, i) {
2266 			pi = sc->port[i];
2267 			for_each_vi(pi, j, vi) {
2268 				mtx_lock(&vi->tick_mtx);
2269 				vi->flags &= ~VI_SKIP_STATS;
2270 				mtx_unlock(&vi->tick_mtx);
2271 				if (!(vi->flags & VI_INIT_DONE))
2272 					continue;
2273 				rc = vi_full_init(vi);
2274 				if (rc != 0) {
2275 					CH_ERR(vi, "failed to re-initialize "
2276 					    "interface: %d\n", rc);
2277 					goto done;
2278 				}
2279 
2280 				ifp = vi->ifp;
2281 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2282 					continue;
2283 				/*
2284 				 * Note that we do not setup multicast addresses
2285 				 * in the first pass.  This ensures that the
2286 				 * unicast DMACs for all VIs on all ports get an
2287 				 * MPS TCAM entry.
2288 				 */
2289 				rc = update_mac_settings(ifp, XGMAC_ALL &
2290 				    ~XGMAC_MCADDRS);
2291 				if (rc != 0) {
2292 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2293 					goto done;
2294 				}
2295 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2296 				    true);
2297 				if (rc != 0) {
2298 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2299 					goto done;
2300 				}
2301 				for_each_txq(vi, k, txq) {
2302 					TXQ_LOCK(txq);
2303 					txq->eq.flags |= EQ_ENABLED;
2304 					TXQ_UNLOCK(txq);
2305 				}
2306 				mtx_lock(&vi->tick_mtx);
2307 				callout_schedule(&vi->tick, hz);
2308 				mtx_unlock(&vi->tick_mtx);
2309 			}
2310 			PORT_LOCK(pi);
2311 			if (pi->up_vis > 0) {
2312 				t4_update_port_info(pi);
2313 				fixup_link_config(pi);
2314 				build_medialist(pi);
2315 				apply_link_config(pi);
2316 				if (pi->link_cfg.link_ok)
2317 					t4_os_link_changed(pi);
2318 			}
2319 			PORT_UNLOCK(pi);
2320 		}
2321 
2322 		/* Now reprogram the L2 multicast addresses. */
2323 		for_each_port(sc, i) {
2324 			pi = sc->port[i];
2325 			for_each_vi(pi, j, vi) {
2326 				if (!(vi->flags & VI_INIT_DONE))
2327 					continue;
2328 				ifp = vi->ifp;
2329 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2330 					continue;
2331 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2332 				if (rc != 0) {
2333 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2334 					rc = 0;	/* carry on */
2335 				}
2336 			}
2337 		}
2338 	}
2339 done:
2340 	if (rc == 0) {
2341 		sc->incarnation++;
2342 		CH_ALERT(sc, "resume completed.\n");
2343 	}
2344 	end_synchronized_op(sc, 0);
2345 	free(old_state, M_CXGBE);
2346 	return (rc);
2347 }
2348 
2349 static int
2350 t4_reset_prepare(device_t dev, device_t child)
2351 {
2352 	struct adapter *sc = device_get_softc(dev);
2353 
2354 	CH_ALERT(sc, "reset_prepare.\n");
2355 	return (0);
2356 }
2357 
2358 static int
2359 t4_reset_post(device_t dev, device_t child)
2360 {
2361 	struct adapter *sc = device_get_softc(dev);
2362 
2363 	CH_ALERT(sc, "reset_post.\n");
2364 	return (0);
2365 }
2366 
2367 static int
2368 reset_adapter(struct adapter *sc)
2369 {
2370 	int rc, oldinc, error_flags;
2371 
2372 	CH_ALERT(sc, "reset requested.\n");
2373 
2374 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2375 	if (rc != 0)
2376 		return (EBUSY);
2377 
2378 	if (hw_off_limits(sc)) {
2379 		CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2380 		rc = ENXIO;
2381 		goto done;
2382 	}
2383 
2384 	if (!ok_to_reset(sc)) {
2385 		/* XXX: should list what resource is preventing reset. */
2386 		CH_ERR(sc, "not safe to reset.\n");
2387 		rc = EBUSY;
2388 		goto done;
2389 	}
2390 
2391 done:
2392 	oldinc = sc->incarnation;
2393 	end_synchronized_op(sc, 0);
2394 	if (rc != 0)
2395 		return (rc);	/* Error logged already. */
2396 
2397 	atomic_add_int(&sc->num_resets, 1);
2398 	mtx_lock(&Giant);
2399 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2400 	mtx_unlock(&Giant);
2401 	if (rc != 0)
2402 		CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2403 	else {
2404 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2");
2405 		if (rc != 0)
2406 			return (EBUSY);
2407 		error_flags = atomic_load_int(&sc->error_flags);
2408 		if (sc->incarnation > oldinc && error_flags == 0) {
2409 			CH_ALERT(sc, "bus_reset_child succeeded.\n");
2410 		} else {
2411 			CH_ERR(sc, "adapter did not reset properly, flags "
2412 			    "0x%08x, error_flags 0x%08x.\n", sc->flags,
2413 			    error_flags);
2414 			rc = ENXIO;
2415 		}
2416 		end_synchronized_op(sc, 0);
2417 	}
2418 
2419 	return (rc);
2420 }
2421 
2422 static void
2423 reset_adapter_task(void *arg, int pending)
2424 {
2425 	/* XXX: t4_async_event here? */
2426 	reset_adapter(arg);
2427 }
2428 
2429 static int
2430 cxgbe_probe(device_t dev)
2431 {
2432 	char buf[128];
2433 	struct port_info *pi = device_get_softc(dev);
2434 
2435 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
2436 	device_set_desc_copy(dev, buf);
2437 
2438 	return (BUS_PROBE_DEFAULT);
2439 }
2440 
2441 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2442     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2443     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2444     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2445 #define T4_CAP_ENABLE (T4_CAP)
2446 
2447 static int
2448 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2449 {
2450 	struct ifnet *ifp;
2451 	struct sbuf *sb;
2452 	struct sysctl_ctx_list *ctx = &vi->ctx;
2453 	struct sysctl_oid_list *children;
2454 	struct pfil_head_args pa;
2455 	struct adapter *sc = vi->adapter;
2456 
2457 	sysctl_ctx_init(ctx);
2458 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2459 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2460 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2461 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2462 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2463 #ifdef DEV_NETMAP
2464 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2465 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2466 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2467 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2468 #endif
2469 #ifdef TCP_OFFLOAD
2470 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2471 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2472 #endif
2473 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2474 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2475 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2476 #endif
2477 
2478 	vi->xact_addr_filt = -1;
2479 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2480 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2481 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2482 		vi->flags |= TX_USES_VM_WR;
2483 
2484 	/* Allocate an ifnet and set it up */
2485 	ifp = if_alloc_dev(IFT_ETHER, dev);
2486 	if (ifp == NULL) {
2487 		device_printf(dev, "Cannot allocate ifnet\n");
2488 		return (ENOMEM);
2489 	}
2490 	vi->ifp = ifp;
2491 	ifp->if_softc = vi;
2492 
2493 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2494 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2495 
2496 	ifp->if_init = cxgbe_init;
2497 	ifp->if_ioctl = cxgbe_ioctl;
2498 	ifp->if_transmit = cxgbe_transmit;
2499 	ifp->if_qflush = cxgbe_qflush;
2500 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2501 		ifp->if_get_counter = vi_get_counter;
2502 	else
2503 		ifp->if_get_counter = cxgbe_get_counter;
2504 #if defined(KERN_TLS) || defined(RATELIMIT)
2505 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
2506 #endif
2507 #ifdef RATELIMIT
2508 	ifp->if_ratelimit_query = cxgbe_ratelimit_query;
2509 #endif
2510 
2511 	ifp->if_capabilities = T4_CAP;
2512 	ifp->if_capenable = T4_CAP_ENABLE;
2513 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2514 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
2515 	if (chip_id(sc) >= CHELSIO_T6) {
2516 		ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2517 		ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2518 		ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2519 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2520 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN;
2521 	}
2522 
2523 #ifdef TCP_OFFLOAD
2524 	if (vi->nofldrxq != 0)
2525 		ifp->if_capabilities |= IFCAP_TOE;
2526 #endif
2527 #ifdef RATELIMIT
2528 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2529 		ifp->if_capabilities |= IFCAP_TXRTLMT;
2530 		ifp->if_capenable |= IFCAP_TXRTLMT;
2531 	}
2532 #endif
2533 
2534 	ifp->if_hw_tsomax = IP_MAXPACKET;
2535 	if (vi->flags & TX_USES_VM_WR)
2536 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
2537 	else
2538 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
2539 #ifdef RATELIMIT
2540 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2541 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
2542 #endif
2543 	ifp->if_hw_tsomaxsegsize = 65536;
2544 #ifdef KERN_TLS
2545 	if (is_ktls(sc)) {
2546 		ifp->if_capabilities |= IFCAP_TXTLS;
2547 		if (sc->flags & KERN_TLS_ON)
2548 			ifp->if_capenable |= IFCAP_TXTLS;
2549 	}
2550 #endif
2551 
2552 	ether_ifattach(ifp, vi->hw_addr);
2553 #ifdef DEV_NETMAP
2554 	if (vi->nnmrxq != 0)
2555 		cxgbe_nm_attach(vi);
2556 #endif
2557 	sb = sbuf_new_auto();
2558 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2559 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2560 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2561 	case IFCAP_TOE:
2562 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2563 		break;
2564 	case IFCAP_TOE | IFCAP_TXRTLMT:
2565 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2566 		break;
2567 	case IFCAP_TXRTLMT:
2568 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2569 		break;
2570 	}
2571 #endif
2572 #ifdef TCP_OFFLOAD
2573 	if (ifp->if_capabilities & IFCAP_TOE)
2574 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2575 #endif
2576 #ifdef DEV_NETMAP
2577 	if (ifp->if_capabilities & IFCAP_NETMAP)
2578 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2579 		    vi->nnmtxq, vi->nnmrxq);
2580 #endif
2581 	sbuf_finish(sb);
2582 	device_printf(dev, "%s\n", sbuf_data(sb));
2583 	sbuf_delete(sb);
2584 
2585 	vi_sysctls(vi);
2586 
2587 	pa.pa_version = PFIL_VERSION;
2588 	pa.pa_flags = PFIL_IN;
2589 	pa.pa_type = PFIL_TYPE_ETHERNET;
2590 	pa.pa_headname = ifp->if_xname;
2591 	vi->pfil = pfil_head_register(&pa);
2592 
2593 	return (0);
2594 }
2595 
2596 static int
2597 cxgbe_attach(device_t dev)
2598 {
2599 	struct port_info *pi = device_get_softc(dev);
2600 	struct adapter *sc = pi->adapter;
2601 	struct vi_info *vi;
2602 	int i, rc;
2603 
2604 	sysctl_ctx_init(&pi->ctx);
2605 
2606 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2607 	if (rc)
2608 		return (rc);
2609 
2610 	for_each_vi(pi, i, vi) {
2611 		if (i == 0)
2612 			continue;
2613 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2614 		if (vi->dev == NULL) {
2615 			device_printf(dev, "failed to add VI %d\n", i);
2616 			continue;
2617 		}
2618 		device_set_softc(vi->dev, vi);
2619 	}
2620 
2621 	cxgbe_sysctls(pi);
2622 
2623 	bus_generic_attach(dev);
2624 
2625 	return (0);
2626 }
2627 
2628 static void
2629 cxgbe_vi_detach(struct vi_info *vi)
2630 {
2631 	struct ifnet *ifp = vi->ifp;
2632 
2633 	if (vi->pfil != NULL) {
2634 		pfil_head_unregister(vi->pfil);
2635 		vi->pfil = NULL;
2636 	}
2637 
2638 	ether_ifdetach(ifp);
2639 
2640 	/* Let detach proceed even if these fail. */
2641 #ifdef DEV_NETMAP
2642 	if (ifp->if_capabilities & IFCAP_NETMAP)
2643 		cxgbe_nm_detach(vi);
2644 #endif
2645 	cxgbe_uninit_synchronized(vi);
2646 	callout_drain(&vi->tick);
2647 	sysctl_ctx_free(&vi->ctx);
2648 	vi_full_uninit(vi);
2649 
2650 	if_free(vi->ifp);
2651 	vi->ifp = NULL;
2652 }
2653 
2654 static int
2655 cxgbe_detach(device_t dev)
2656 {
2657 	struct port_info *pi = device_get_softc(dev);
2658 	struct adapter *sc = pi->adapter;
2659 	int rc;
2660 
2661 	/* Detach the extra VIs first. */
2662 	rc = bus_generic_detach(dev);
2663 	if (rc)
2664 		return (rc);
2665 	device_delete_children(dev);
2666 
2667 	sysctl_ctx_free(&pi->ctx);
2668 	doom_vi(sc, &pi->vi[0]);
2669 
2670 	if (pi->flags & HAS_TRACEQ) {
2671 		sc->traceq = -1;	/* cloner should not create ifnet */
2672 		t4_tracer_port_detach(sc);
2673 	}
2674 
2675 	cxgbe_vi_detach(&pi->vi[0]);
2676 	ifmedia_removeall(&pi->media);
2677 
2678 	end_synchronized_op(sc, 0);
2679 
2680 	return (0);
2681 }
2682 
2683 static void
2684 cxgbe_init(void *arg)
2685 {
2686 	struct vi_info *vi = arg;
2687 	struct adapter *sc = vi->adapter;
2688 
2689 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2690 		return;
2691 	cxgbe_init_synchronized(vi);
2692 	end_synchronized_op(sc, 0);
2693 }
2694 
2695 static int
2696 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
2697 {
2698 	int rc = 0, mtu, flags;
2699 	struct vi_info *vi = ifp->if_softc;
2700 	struct port_info *pi = vi->pi;
2701 	struct adapter *sc = pi->adapter;
2702 	struct ifreq *ifr = (struct ifreq *)data;
2703 	uint32_t mask;
2704 
2705 	switch (cmd) {
2706 	case SIOCSIFMTU:
2707 		mtu = ifr->ifr_mtu;
2708 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2709 			return (EINVAL);
2710 
2711 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2712 		if (rc)
2713 			return (rc);
2714 		ifp->if_mtu = mtu;
2715 		if (vi->flags & VI_INIT_DONE) {
2716 			t4_update_fl_bufsize(ifp);
2717 			if (!hw_off_limits(sc) &&
2718 			    ifp->if_drv_flags & IFF_DRV_RUNNING)
2719 				rc = update_mac_settings(ifp, XGMAC_MTU);
2720 		}
2721 		end_synchronized_op(sc, 0);
2722 		break;
2723 
2724 	case SIOCSIFFLAGS:
2725 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2726 		if (rc)
2727 			return (rc);
2728 
2729 		if (hw_off_limits(sc)) {
2730 			rc = ENXIO;
2731 			goto fail;
2732 		}
2733 
2734 		if (ifp->if_flags & IFF_UP) {
2735 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2736 				flags = vi->if_flags;
2737 				if ((ifp->if_flags ^ flags) &
2738 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2739 					rc = update_mac_settings(ifp,
2740 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2741 				}
2742 			} else {
2743 				rc = cxgbe_init_synchronized(vi);
2744 			}
2745 			vi->if_flags = ifp->if_flags;
2746 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2747 			rc = cxgbe_uninit_synchronized(vi);
2748 		}
2749 		end_synchronized_op(sc, 0);
2750 		break;
2751 
2752 	case SIOCADDMULTI:
2753 	case SIOCDELMULTI:
2754 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2755 		if (rc)
2756 			return (rc);
2757 		if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING)
2758 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2759 		end_synchronized_op(sc, 0);
2760 		break;
2761 
2762 	case SIOCSIFCAP:
2763 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2764 		if (rc)
2765 			return (rc);
2766 
2767 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2768 		if (mask & IFCAP_TXCSUM) {
2769 			ifp->if_capenable ^= IFCAP_TXCSUM;
2770 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
2771 
2772 			if (IFCAP_TSO4 & ifp->if_capenable &&
2773 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
2774 				mask &= ~IFCAP_TSO4;
2775 				ifp->if_capenable &= ~IFCAP_TSO4;
2776 				if_printf(ifp,
2777 				    "tso4 disabled due to -txcsum.\n");
2778 			}
2779 		}
2780 		if (mask & IFCAP_TXCSUM_IPV6) {
2781 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
2782 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2783 
2784 			if (IFCAP_TSO6 & ifp->if_capenable &&
2785 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2786 				mask &= ~IFCAP_TSO6;
2787 				ifp->if_capenable &= ~IFCAP_TSO6;
2788 				if_printf(ifp,
2789 				    "tso6 disabled due to -txcsum6.\n");
2790 			}
2791 		}
2792 		if (mask & IFCAP_RXCSUM)
2793 			ifp->if_capenable ^= IFCAP_RXCSUM;
2794 		if (mask & IFCAP_RXCSUM_IPV6)
2795 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
2796 
2797 		/*
2798 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2799 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2800 		 * sending a TSO request our way, so it's sufficient to toggle
2801 		 * IFCAP_TSOx only.
2802 		 */
2803 		if (mask & IFCAP_TSO4) {
2804 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
2805 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
2806 				if_printf(ifp, "enable txcsum first.\n");
2807 				rc = EAGAIN;
2808 				goto fail;
2809 			}
2810 			ifp->if_capenable ^= IFCAP_TSO4;
2811 		}
2812 		if (mask & IFCAP_TSO6) {
2813 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
2814 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2815 				if_printf(ifp, "enable txcsum6 first.\n");
2816 				rc = EAGAIN;
2817 				goto fail;
2818 			}
2819 			ifp->if_capenable ^= IFCAP_TSO6;
2820 		}
2821 		if (mask & IFCAP_LRO) {
2822 #if defined(INET) || defined(INET6)
2823 			int i;
2824 			struct sge_rxq *rxq;
2825 
2826 			ifp->if_capenable ^= IFCAP_LRO;
2827 			for_each_rxq(vi, i, rxq) {
2828 				if (ifp->if_capenable & IFCAP_LRO)
2829 					rxq->iq.flags |= IQ_LRO_ENABLED;
2830 				else
2831 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2832 			}
2833 #endif
2834 		}
2835 #ifdef TCP_OFFLOAD
2836 		if (mask & IFCAP_TOE) {
2837 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
2838 
2839 			rc = toe_capability(vi, enable);
2840 			if (rc != 0)
2841 				goto fail;
2842 
2843 			ifp->if_capenable ^= mask;
2844 		}
2845 #endif
2846 		if (mask & IFCAP_VLAN_HWTAGGING) {
2847 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2848 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2849 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2850 		}
2851 		if (mask & IFCAP_VLAN_MTU) {
2852 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2853 
2854 			/* Need to find out how to disable auto-mtu-inflation */
2855 		}
2856 		if (mask & IFCAP_VLAN_HWTSO)
2857 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2858 		if (mask & IFCAP_VLAN_HWCSUM)
2859 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2860 #ifdef RATELIMIT
2861 		if (mask & IFCAP_TXRTLMT)
2862 			ifp->if_capenable ^= IFCAP_TXRTLMT;
2863 #endif
2864 		if (mask & IFCAP_HWRXTSTMP) {
2865 			int i;
2866 			struct sge_rxq *rxq;
2867 
2868 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
2869 			for_each_rxq(vi, i, rxq) {
2870 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
2871 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2872 				else
2873 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2874 			}
2875 		}
2876 		if (mask & IFCAP_MEXTPG)
2877 			ifp->if_capenable ^= IFCAP_MEXTPG;
2878 
2879 #ifdef KERN_TLS
2880 		if (mask & IFCAP_TXTLS) {
2881 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS;
2882 
2883 			rc = ktls_capability(sc, enable);
2884 			if (rc != 0)
2885 				goto fail;
2886 
2887 			ifp->if_capenable ^= (mask & IFCAP_TXTLS);
2888 		}
2889 #endif
2890 		if (mask & IFCAP_VXLAN_HWCSUM) {
2891 			ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM;
2892 			ifp->if_hwassist ^= CSUM_INNER_IP6_UDP |
2893 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2894 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP;
2895 		}
2896 		if (mask & IFCAP_VXLAN_HWTSO) {
2897 			ifp->if_capenable ^= IFCAP_VXLAN_HWTSO;
2898 			ifp->if_hwassist ^= CSUM_INNER_IP6_TSO |
2899 			    CSUM_INNER_IP_TSO;
2900 		}
2901 
2902 #ifdef VLAN_CAPABILITIES
2903 		VLAN_CAPABILITIES(ifp);
2904 #endif
2905 fail:
2906 		end_synchronized_op(sc, 0);
2907 		break;
2908 
2909 	case SIOCSIFMEDIA:
2910 	case SIOCGIFMEDIA:
2911 	case SIOCGIFXMEDIA:
2912 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2913 		break;
2914 
2915 	case SIOCGI2C: {
2916 		struct ifi2creq i2c;
2917 
2918 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2919 		if (rc != 0)
2920 			break;
2921 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2922 			rc = EPERM;
2923 			break;
2924 		}
2925 		if (i2c.len > sizeof(i2c.data)) {
2926 			rc = EINVAL;
2927 			break;
2928 		}
2929 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2930 		if (rc)
2931 			return (rc);
2932 		if (hw_off_limits(sc))
2933 			rc = ENXIO;
2934 		else
2935 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2936 			    i2c.offset, i2c.len, &i2c.data[0]);
2937 		end_synchronized_op(sc, 0);
2938 		if (rc == 0)
2939 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2940 		break;
2941 	}
2942 
2943 	default:
2944 		rc = ether_ioctl(ifp, cmd, data);
2945 	}
2946 
2947 	return (rc);
2948 }
2949 
2950 static int
2951 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2952 {
2953 	struct vi_info *vi = ifp->if_softc;
2954 	struct port_info *pi = vi->pi;
2955 	struct adapter *sc;
2956 	struct sge_txq *txq;
2957 	void *items[1];
2958 	int rc;
2959 
2960 	M_ASSERTPKTHDR(m);
2961 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2962 #if defined(KERN_TLS) || defined(RATELIMIT)
2963 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
2964 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2965 #endif
2966 
2967 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2968 		m_freem(m);
2969 		return (ENETDOWN);
2970 	}
2971 
2972 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
2973 	if (__predict_false(rc != 0)) {
2974 		MPASS(m == NULL);			/* was freed already */
2975 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2976 		return (rc);
2977 	}
2978 #ifdef RATELIMIT
2979 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2980 		if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT)
2981 			return (ethofld_transmit(ifp, m));
2982 	}
2983 #endif
2984 
2985 	/* Select a txq. */
2986 	sc = vi->adapter;
2987 	txq = &sc->sge.txq[vi->first_txq];
2988 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2989 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2990 		    vi->rsrv_noflowq);
2991 
2992 	items[0] = m;
2993 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
2994 	if (__predict_false(rc != 0))
2995 		m_freem(m);
2996 
2997 	return (rc);
2998 }
2999 
3000 static void
3001 cxgbe_qflush(struct ifnet *ifp)
3002 {
3003 	struct vi_info *vi = ifp->if_softc;
3004 	struct sge_txq *txq;
3005 	int i;
3006 
3007 	/* queues do not exist if !VI_INIT_DONE. */
3008 	if (vi->flags & VI_INIT_DONE) {
3009 		for_each_txq(vi, i, txq) {
3010 			TXQ_LOCK(txq);
3011 			txq->eq.flags |= EQ_QFLUSH;
3012 			TXQ_UNLOCK(txq);
3013 			while (!mp_ring_is_idle(txq->r)) {
3014 				mp_ring_check_drainage(txq->r, 4096);
3015 				pause("qflush", 1);
3016 			}
3017 			TXQ_LOCK(txq);
3018 			txq->eq.flags &= ~EQ_QFLUSH;
3019 			TXQ_UNLOCK(txq);
3020 		}
3021 	}
3022 	if_qflush(ifp);
3023 }
3024 
3025 static uint64_t
3026 vi_get_counter(struct ifnet *ifp, ift_counter c)
3027 {
3028 	struct vi_info *vi = ifp->if_softc;
3029 	struct fw_vi_stats_vf *s = &vi->stats;
3030 
3031 	mtx_lock(&vi->tick_mtx);
3032 	vi_refresh_stats(vi);
3033 	mtx_unlock(&vi->tick_mtx);
3034 
3035 	switch (c) {
3036 	case IFCOUNTER_IPACKETS:
3037 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3038 		    s->rx_ucast_frames);
3039 	case IFCOUNTER_IERRORS:
3040 		return (s->rx_err_frames);
3041 	case IFCOUNTER_OPACKETS:
3042 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3043 		    s->tx_ucast_frames + s->tx_offload_frames);
3044 	case IFCOUNTER_OERRORS:
3045 		return (s->tx_drop_frames);
3046 	case IFCOUNTER_IBYTES:
3047 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3048 		    s->rx_ucast_bytes);
3049 	case IFCOUNTER_OBYTES:
3050 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3051 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3052 	case IFCOUNTER_IMCASTS:
3053 		return (s->rx_mcast_frames);
3054 	case IFCOUNTER_OMCASTS:
3055 		return (s->tx_mcast_frames);
3056 	case IFCOUNTER_OQDROPS: {
3057 		uint64_t drops;
3058 
3059 		drops = 0;
3060 		if (vi->flags & VI_INIT_DONE) {
3061 			int i;
3062 			struct sge_txq *txq;
3063 
3064 			for_each_txq(vi, i, txq)
3065 				drops += counter_u64_fetch(txq->r->dropped);
3066 		}
3067 
3068 		return (drops);
3069 
3070 	}
3071 
3072 	default:
3073 		return (if_get_counter_default(ifp, c));
3074 	}
3075 }
3076 
3077 static uint64_t
3078 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
3079 {
3080 	struct vi_info *vi = ifp->if_softc;
3081 	struct port_info *pi = vi->pi;
3082 	struct port_stats *s = &pi->stats;
3083 
3084 	mtx_lock(&vi->tick_mtx);
3085 	cxgbe_refresh_stats(vi);
3086 	mtx_unlock(&vi->tick_mtx);
3087 
3088 	switch (c) {
3089 	case IFCOUNTER_IPACKETS:
3090 		return (s->rx_frames);
3091 
3092 	case IFCOUNTER_IERRORS:
3093 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3094 		    s->rx_fcs_err + s->rx_len_err);
3095 
3096 	case IFCOUNTER_OPACKETS:
3097 		return (s->tx_frames);
3098 
3099 	case IFCOUNTER_OERRORS:
3100 		return (s->tx_error_frames);
3101 
3102 	case IFCOUNTER_IBYTES:
3103 		return (s->rx_octets);
3104 
3105 	case IFCOUNTER_OBYTES:
3106 		return (s->tx_octets);
3107 
3108 	case IFCOUNTER_IMCASTS:
3109 		return (s->rx_mcast_frames);
3110 
3111 	case IFCOUNTER_OMCASTS:
3112 		return (s->tx_mcast_frames);
3113 
3114 	case IFCOUNTER_IQDROPS:
3115 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3116 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3117 		    s->rx_trunc3 + pi->tnl_cong_drops);
3118 
3119 	case IFCOUNTER_OQDROPS: {
3120 		uint64_t drops;
3121 
3122 		drops = s->tx_drop;
3123 		if (vi->flags & VI_INIT_DONE) {
3124 			int i;
3125 			struct sge_txq *txq;
3126 
3127 			for_each_txq(vi, i, txq)
3128 				drops += counter_u64_fetch(txq->r->dropped);
3129 		}
3130 
3131 		return (drops);
3132 
3133 	}
3134 
3135 	default:
3136 		return (if_get_counter_default(ifp, c));
3137 	}
3138 }
3139 
3140 #if defined(KERN_TLS) || defined(RATELIMIT)
3141 static int
3142 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
3143     struct m_snd_tag **pt)
3144 {
3145 	int error;
3146 
3147 	switch (params->hdr.type) {
3148 #ifdef RATELIMIT
3149 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3150 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3151 		break;
3152 #endif
3153 #ifdef KERN_TLS
3154 	case IF_SND_TAG_TYPE_TLS:
3155 		error = cxgbe_tls_tag_alloc(ifp, params, pt);
3156 		break;
3157 #endif
3158 	default:
3159 		error = EOPNOTSUPP;
3160 	}
3161 	return (error);
3162 }
3163 #endif
3164 
3165 /*
3166  * The kernel picks a media from the list we had provided but we still validate
3167  * the requeste.
3168  */
3169 int
3170 cxgbe_media_change(struct ifnet *ifp)
3171 {
3172 	struct vi_info *vi = ifp->if_softc;
3173 	struct port_info *pi = vi->pi;
3174 	struct ifmedia *ifm = &pi->media;
3175 	struct link_config *lc = &pi->link_cfg;
3176 	struct adapter *sc = pi->adapter;
3177 	int rc;
3178 
3179 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3180 	if (rc != 0)
3181 		return (rc);
3182 	PORT_LOCK(pi);
3183 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3184 		/* ifconfig .. media autoselect */
3185 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3186 			rc = ENOTSUP; /* AN not supported by transceiver */
3187 			goto done;
3188 		}
3189 		lc->requested_aneg = AUTONEG_ENABLE;
3190 		lc->requested_speed = 0;
3191 		lc->requested_fc |= PAUSE_AUTONEG;
3192 	} else {
3193 		lc->requested_aneg = AUTONEG_DISABLE;
3194 		lc->requested_speed =
3195 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3196 		lc->requested_fc = 0;
3197 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3198 			lc->requested_fc |= PAUSE_RX;
3199 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3200 			lc->requested_fc |= PAUSE_TX;
3201 	}
3202 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3203 		fixup_link_config(pi);
3204 		rc = apply_link_config(pi);
3205 	}
3206 done:
3207 	PORT_UNLOCK(pi);
3208 	end_synchronized_op(sc, 0);
3209 	return (rc);
3210 }
3211 
3212 /*
3213  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3214  * given speed.
3215  */
3216 static int
3217 port_mword(struct port_info *pi, uint32_t speed)
3218 {
3219 
3220 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3221 	MPASS(powerof2(speed));
3222 
3223 	switch(pi->port_type) {
3224 	case FW_PORT_TYPE_BT_SGMII:
3225 	case FW_PORT_TYPE_BT_XFI:
3226 	case FW_PORT_TYPE_BT_XAUI:
3227 		/* BaseT */
3228 		switch (speed) {
3229 		case FW_PORT_CAP32_SPEED_100M:
3230 			return (IFM_100_T);
3231 		case FW_PORT_CAP32_SPEED_1G:
3232 			return (IFM_1000_T);
3233 		case FW_PORT_CAP32_SPEED_10G:
3234 			return (IFM_10G_T);
3235 		}
3236 		break;
3237 	case FW_PORT_TYPE_KX4:
3238 		if (speed == FW_PORT_CAP32_SPEED_10G)
3239 			return (IFM_10G_KX4);
3240 		break;
3241 	case FW_PORT_TYPE_CX4:
3242 		if (speed == FW_PORT_CAP32_SPEED_10G)
3243 			return (IFM_10G_CX4);
3244 		break;
3245 	case FW_PORT_TYPE_KX:
3246 		if (speed == FW_PORT_CAP32_SPEED_1G)
3247 			return (IFM_1000_KX);
3248 		break;
3249 	case FW_PORT_TYPE_KR:
3250 	case FW_PORT_TYPE_BP_AP:
3251 	case FW_PORT_TYPE_BP4_AP:
3252 	case FW_PORT_TYPE_BP40_BA:
3253 	case FW_PORT_TYPE_KR4_100G:
3254 	case FW_PORT_TYPE_KR_SFP28:
3255 	case FW_PORT_TYPE_KR_XLAUI:
3256 		switch (speed) {
3257 		case FW_PORT_CAP32_SPEED_1G:
3258 			return (IFM_1000_KX);
3259 		case FW_PORT_CAP32_SPEED_10G:
3260 			return (IFM_10G_KR);
3261 		case FW_PORT_CAP32_SPEED_25G:
3262 			return (IFM_25G_KR);
3263 		case FW_PORT_CAP32_SPEED_40G:
3264 			return (IFM_40G_KR4);
3265 		case FW_PORT_CAP32_SPEED_50G:
3266 			return (IFM_50G_KR2);
3267 		case FW_PORT_CAP32_SPEED_100G:
3268 			return (IFM_100G_KR4);
3269 		}
3270 		break;
3271 	case FW_PORT_TYPE_FIBER_XFI:
3272 	case FW_PORT_TYPE_FIBER_XAUI:
3273 	case FW_PORT_TYPE_SFP:
3274 	case FW_PORT_TYPE_QSFP_10G:
3275 	case FW_PORT_TYPE_QSA:
3276 	case FW_PORT_TYPE_QSFP:
3277 	case FW_PORT_TYPE_CR4_QSFP:
3278 	case FW_PORT_TYPE_CR_QSFP:
3279 	case FW_PORT_TYPE_CR2_QSFP:
3280 	case FW_PORT_TYPE_SFP28:
3281 		/* Pluggable transceiver */
3282 		switch (pi->mod_type) {
3283 		case FW_PORT_MOD_TYPE_LR:
3284 			switch (speed) {
3285 			case FW_PORT_CAP32_SPEED_1G:
3286 				return (IFM_1000_LX);
3287 			case FW_PORT_CAP32_SPEED_10G:
3288 				return (IFM_10G_LR);
3289 			case FW_PORT_CAP32_SPEED_25G:
3290 				return (IFM_25G_LR);
3291 			case FW_PORT_CAP32_SPEED_40G:
3292 				return (IFM_40G_LR4);
3293 			case FW_PORT_CAP32_SPEED_50G:
3294 				return (IFM_50G_LR2);
3295 			case FW_PORT_CAP32_SPEED_100G:
3296 				return (IFM_100G_LR4);
3297 			}
3298 			break;
3299 		case FW_PORT_MOD_TYPE_SR:
3300 			switch (speed) {
3301 			case FW_PORT_CAP32_SPEED_1G:
3302 				return (IFM_1000_SX);
3303 			case FW_PORT_CAP32_SPEED_10G:
3304 				return (IFM_10G_SR);
3305 			case FW_PORT_CAP32_SPEED_25G:
3306 				return (IFM_25G_SR);
3307 			case FW_PORT_CAP32_SPEED_40G:
3308 				return (IFM_40G_SR4);
3309 			case FW_PORT_CAP32_SPEED_50G:
3310 				return (IFM_50G_SR2);
3311 			case FW_PORT_CAP32_SPEED_100G:
3312 				return (IFM_100G_SR4);
3313 			}
3314 			break;
3315 		case FW_PORT_MOD_TYPE_ER:
3316 			if (speed == FW_PORT_CAP32_SPEED_10G)
3317 				return (IFM_10G_ER);
3318 			break;
3319 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3320 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3321 			switch (speed) {
3322 			case FW_PORT_CAP32_SPEED_1G:
3323 				return (IFM_1000_CX);
3324 			case FW_PORT_CAP32_SPEED_10G:
3325 				return (IFM_10G_TWINAX);
3326 			case FW_PORT_CAP32_SPEED_25G:
3327 				return (IFM_25G_CR);
3328 			case FW_PORT_CAP32_SPEED_40G:
3329 				return (IFM_40G_CR4);
3330 			case FW_PORT_CAP32_SPEED_50G:
3331 				return (IFM_50G_CR2);
3332 			case FW_PORT_CAP32_SPEED_100G:
3333 				return (IFM_100G_CR4);
3334 			}
3335 			break;
3336 		case FW_PORT_MOD_TYPE_LRM:
3337 			if (speed == FW_PORT_CAP32_SPEED_10G)
3338 				return (IFM_10G_LRM);
3339 			break;
3340 		case FW_PORT_MOD_TYPE_NA:
3341 			MPASS(0);	/* Not pluggable? */
3342 			/* fall throough */
3343 		case FW_PORT_MOD_TYPE_ERROR:
3344 		case FW_PORT_MOD_TYPE_UNKNOWN:
3345 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3346 			break;
3347 		case FW_PORT_MOD_TYPE_NONE:
3348 			return (IFM_NONE);
3349 		}
3350 		break;
3351 	case FW_PORT_TYPE_NONE:
3352 		return (IFM_NONE);
3353 	}
3354 
3355 	return (IFM_UNKNOWN);
3356 }
3357 
3358 void
3359 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
3360 {
3361 	struct vi_info *vi = ifp->if_softc;
3362 	struct port_info *pi = vi->pi;
3363 	struct adapter *sc = pi->adapter;
3364 	struct link_config *lc = &pi->link_cfg;
3365 
3366 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
3367 		return;
3368 	PORT_LOCK(pi);
3369 
3370 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3371 		/*
3372 		 * If all the interfaces are administratively down the firmware
3373 		 * does not report transceiver changes.  Refresh port info here
3374 		 * so that ifconfig displays accurate ifmedia at all times.
3375 		 * This is the only reason we have a synchronized op in this
3376 		 * function.  Just PORT_LOCK would have been enough otherwise.
3377 		 */
3378 		t4_update_port_info(pi);
3379 		build_medialist(pi);
3380 	}
3381 
3382 	/* ifm_status */
3383 	ifmr->ifm_status = IFM_AVALID;
3384 	if (lc->link_ok == false)
3385 		goto done;
3386 	ifmr->ifm_status |= IFM_ACTIVE;
3387 
3388 	/* ifm_active */
3389 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3390 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3391 	if (lc->fc & PAUSE_RX)
3392 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3393 	if (lc->fc & PAUSE_TX)
3394 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3395 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3396 done:
3397 	PORT_UNLOCK(pi);
3398 	end_synchronized_op(sc, 0);
3399 }
3400 
3401 static int
3402 vcxgbe_probe(device_t dev)
3403 {
3404 	char buf[128];
3405 	struct vi_info *vi = device_get_softc(dev);
3406 
3407 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
3408 	    vi - vi->pi->vi);
3409 	device_set_desc_copy(dev, buf);
3410 
3411 	return (BUS_PROBE_DEFAULT);
3412 }
3413 
3414 static int
3415 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3416 {
3417 	int func, index, rc;
3418 	uint32_t param, val;
3419 
3420 	ASSERT_SYNCHRONIZED_OP(sc);
3421 
3422 	index = vi - pi->vi;
3423 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3424 	KASSERT(index < nitems(vi_mac_funcs),
3425 	    ("%s: VI %s doesn't have a MAC func", __func__,
3426 	    device_get_nameunit(vi->dev)));
3427 	func = vi_mac_funcs[index];
3428 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3429 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3430 	if (rc < 0) {
3431 		CH_ERR(vi, "failed to allocate virtual interface %d"
3432 		    "for port %d: %d\n", index, pi->port_id, -rc);
3433 		return (-rc);
3434 	}
3435 	vi->viid = rc;
3436 
3437 	if (vi->rss_size == 1) {
3438 		/*
3439 		 * This VI didn't get a slice of the RSS table.  Reduce the
3440 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3441 		 * configuration file (nvi, rssnvi for this PF) if this is a
3442 		 * problem.
3443 		 */
3444 		device_printf(vi->dev, "RSS table not available.\n");
3445 		vi->rss_base = 0xffff;
3446 
3447 		return (0);
3448 	}
3449 
3450 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3452 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3453 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3454 	if (rc)
3455 		vi->rss_base = 0xffff;
3456 	else {
3457 		MPASS((val >> 16) == vi->rss_size);
3458 		vi->rss_base = val & 0xffff;
3459 	}
3460 
3461 	return (0);
3462 }
3463 
3464 static int
3465 vcxgbe_attach(device_t dev)
3466 {
3467 	struct vi_info *vi;
3468 	struct port_info *pi;
3469 	struct adapter *sc;
3470 	int rc;
3471 
3472 	vi = device_get_softc(dev);
3473 	pi = vi->pi;
3474 	sc = pi->adapter;
3475 
3476 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3477 	if (rc)
3478 		return (rc);
3479 	rc = alloc_extra_vi(sc, pi, vi);
3480 	end_synchronized_op(sc, 0);
3481 	if (rc)
3482 		return (rc);
3483 
3484 	rc = cxgbe_vi_attach(dev, vi);
3485 	if (rc) {
3486 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3487 		return (rc);
3488 	}
3489 	return (0);
3490 }
3491 
3492 static int
3493 vcxgbe_detach(device_t dev)
3494 {
3495 	struct vi_info *vi;
3496 	struct adapter *sc;
3497 
3498 	vi = device_get_softc(dev);
3499 	sc = vi->adapter;
3500 
3501 	doom_vi(sc, vi);
3502 
3503 	cxgbe_vi_detach(vi);
3504 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3505 
3506 	end_synchronized_op(sc, 0);
3507 
3508 	return (0);
3509 }
3510 
3511 static struct callout fatal_callout;
3512 static struct taskqueue *reset_tq;
3513 
3514 static void
3515 delayed_panic(void *arg)
3516 {
3517 	struct adapter *sc = arg;
3518 
3519 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3520 }
3521 
3522 static void
3523 fatal_error_task(void *arg, int pending)
3524 {
3525 	struct adapter *sc = arg;
3526 	int rc;
3527 
3528 #ifdef TCP_OFFLOAD
3529 	t4_async_event(sc);
3530 #endif
3531 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3532 		dump_cim_regs(sc);
3533 		dump_cimla(sc);
3534 		dump_devlog(sc);
3535 	}
3536 
3537 	if (t4_reset_on_fatal_err) {
3538 		CH_ALERT(sc, "resetting on fatal error.\n");
3539 		rc = reset_adapter(sc);
3540 		if (rc == 0 && t4_panic_on_fatal_err) {
3541 			CH_ALERT(sc, "reset was successful, "
3542 			    "system will NOT panic.\n");
3543 			return;
3544 		}
3545 	}
3546 
3547 	if (t4_panic_on_fatal_err) {
3548 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3549 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3550 	}
3551 }
3552 
3553 void
3554 t4_fatal_err(struct adapter *sc, bool fw_error)
3555 {
3556 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3557 
3558 	stop_adapter(sc);
3559 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3560 		return;
3561 	if (fw_error) {
3562 		/*
3563 		 * We are here because of a firmware error/timeout and not
3564 		 * because of a hardware interrupt.  It is possible (although
3565 		 * not very likely) that an error interrupt was also raised but
3566 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3567 		 * main INT_CAUSE registers here to make sure we haven't missed
3568 		 * anything interesting.
3569 		 */
3570 		t4_slow_intr_handler(sc, verbose);
3571 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3572 	}
3573 	t4_report_fw_error(sc);
3574 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3575 	    device_get_nameunit(sc->dev), fw_error);
3576 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3577 }
3578 
3579 void
3580 t4_add_adapter(struct adapter *sc)
3581 {
3582 	sx_xlock(&t4_list_lock);
3583 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3584 	sx_xunlock(&t4_list_lock);
3585 }
3586 
3587 int
3588 t4_map_bars_0_and_4(struct adapter *sc)
3589 {
3590 	sc->regs_rid = PCIR_BAR(0);
3591 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3592 	    &sc->regs_rid, RF_ACTIVE);
3593 	if (sc->regs_res == NULL) {
3594 		device_printf(sc->dev, "cannot map registers.\n");
3595 		return (ENXIO);
3596 	}
3597 	sc->bt = rman_get_bustag(sc->regs_res);
3598 	sc->bh = rman_get_bushandle(sc->regs_res);
3599 	sc->mmio_len = rman_get_size(sc->regs_res);
3600 	setbit(&sc->doorbells, DOORBELL_KDB);
3601 
3602 	sc->msix_rid = PCIR_BAR(4);
3603 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3604 	    &sc->msix_rid, RF_ACTIVE);
3605 	if (sc->msix_res == NULL) {
3606 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3607 		return (ENXIO);
3608 	}
3609 
3610 	return (0);
3611 }
3612 
3613 int
3614 t4_map_bar_2(struct adapter *sc)
3615 {
3616 
3617 	/*
3618 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3619 	 * to map it if RDMA is disabled.
3620 	 */
3621 	if (is_t4(sc) && sc->rdmacaps == 0)
3622 		return (0);
3623 
3624 	sc->udbs_rid = PCIR_BAR(2);
3625 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3626 	    &sc->udbs_rid, RF_ACTIVE);
3627 	if (sc->udbs_res == NULL) {
3628 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3629 		return (ENXIO);
3630 	}
3631 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3632 
3633 	if (chip_id(sc) >= CHELSIO_T5) {
3634 		setbit(&sc->doorbells, DOORBELL_UDB);
3635 #if defined(__i386__) || defined(__amd64__)
3636 		if (t5_write_combine) {
3637 			int rc, mode;
3638 
3639 			/*
3640 			 * Enable write combining on BAR2.  This is the
3641 			 * userspace doorbell BAR and is split into 128B
3642 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3643 			 * with an egress queue.  The first 64B has the doorbell
3644 			 * and the second 64B can be used to submit a tx work
3645 			 * request with an implicit doorbell.
3646 			 */
3647 
3648 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3649 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3650 			if (rc == 0) {
3651 				clrbit(&sc->doorbells, DOORBELL_UDB);
3652 				setbit(&sc->doorbells, DOORBELL_WCWR);
3653 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3654 			} else {
3655 				device_printf(sc->dev,
3656 				    "couldn't enable write combining: %d\n",
3657 				    rc);
3658 			}
3659 
3660 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3661 			t4_write_reg(sc, A_SGE_STAT_CFG,
3662 			    V_STATSOURCE_T5(7) | mode);
3663 		}
3664 #endif
3665 	}
3666 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3667 
3668 	return (0);
3669 }
3670 
3671 struct memwin_init {
3672 	uint32_t base;
3673 	uint32_t aperture;
3674 };
3675 
3676 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3677 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3678 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3679 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3680 };
3681 
3682 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3683 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3684 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3685 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3686 };
3687 
3688 static void
3689 setup_memwin(struct adapter *sc)
3690 {
3691 	const struct memwin_init *mw_init;
3692 	struct memwin *mw;
3693 	int i;
3694 	uint32_t bar0;
3695 
3696 	if (is_t4(sc)) {
3697 		/*
3698 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3699 		 * mechanism.  Works from within PCI passthrough environments
3700 		 * too, where rman_get_start() can return a different value.  We
3701 		 * need to program the T4 memory window decoders with the actual
3702 		 * addresses that will be coming across the PCIe link.
3703 		 */
3704 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3705 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3706 
3707 		mw_init = &t4_memwin[0];
3708 	} else {
3709 		/* T5+ use the relative offset inside the PCIe BAR */
3710 		bar0 = 0;
3711 
3712 		mw_init = &t5_memwin[0];
3713 	}
3714 
3715 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3716 		if (!rw_initialized(&mw->mw_lock)) {
3717 			rw_init(&mw->mw_lock, "memory window access");
3718 			mw->mw_base = mw_init->base;
3719 			mw->mw_aperture = mw_init->aperture;
3720 			mw->mw_curpos = 0;
3721 		}
3722 		t4_write_reg(sc,
3723 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3724 		    (mw->mw_base + bar0) | V_BIR(0) |
3725 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3726 		rw_wlock(&mw->mw_lock);
3727 		position_memwin(sc, i, mw->mw_curpos);
3728 		rw_wunlock(&mw->mw_lock);
3729 	}
3730 
3731 	/* flush */
3732 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3733 }
3734 
3735 /*
3736  * Positions the memory window at the given address in the card's address space.
3737  * There are some alignment requirements and the actual position may be at an
3738  * address prior to the requested address.  mw->mw_curpos always has the actual
3739  * position of the window.
3740  */
3741 static void
3742 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3743 {
3744 	struct memwin *mw;
3745 	uint32_t pf;
3746 	uint32_t reg;
3747 
3748 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3749 	mw = &sc->memwin[idx];
3750 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3751 
3752 	if (is_t4(sc)) {
3753 		pf = 0;
3754 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3755 	} else {
3756 		pf = V_PFNUM(sc->pf);
3757 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3758 	}
3759 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3760 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3761 	t4_read_reg(sc, reg);	/* flush */
3762 }
3763 
3764 int
3765 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3766     int len, int rw)
3767 {
3768 	struct memwin *mw;
3769 	uint32_t mw_end, v;
3770 
3771 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3772 
3773 	/* Memory can only be accessed in naturally aligned 4 byte units */
3774 	if (addr & 3 || len & 3 || len <= 0)
3775 		return (EINVAL);
3776 
3777 	mw = &sc->memwin[idx];
3778 	while (len > 0) {
3779 		rw_rlock(&mw->mw_lock);
3780 		mw_end = mw->mw_curpos + mw->mw_aperture;
3781 		if (addr >= mw_end || addr < mw->mw_curpos) {
3782 			/* Will need to reposition the window */
3783 			if (!rw_try_upgrade(&mw->mw_lock)) {
3784 				rw_runlock(&mw->mw_lock);
3785 				rw_wlock(&mw->mw_lock);
3786 			}
3787 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3788 			position_memwin(sc, idx, addr);
3789 			rw_downgrade(&mw->mw_lock);
3790 			mw_end = mw->mw_curpos + mw->mw_aperture;
3791 		}
3792 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3793 		while (addr < mw_end && len > 0) {
3794 			if (rw == 0) {
3795 				v = t4_read_reg(sc, mw->mw_base + addr -
3796 				    mw->mw_curpos);
3797 				*val++ = le32toh(v);
3798 			} else {
3799 				v = *val++;
3800 				t4_write_reg(sc, mw->mw_base + addr -
3801 				    mw->mw_curpos, htole32(v));
3802 			}
3803 			addr += 4;
3804 			len -= 4;
3805 		}
3806 		rw_runlock(&mw->mw_lock);
3807 	}
3808 
3809 	return (0);
3810 }
3811 
3812 static void
3813 t4_init_atid_table(struct adapter *sc)
3814 {
3815 	struct tid_info *t;
3816 	int i;
3817 
3818 	t = &sc->tids;
3819 	if (t->natids == 0)
3820 		return;
3821 
3822 	MPASS(t->atid_tab == NULL);
3823 
3824 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3825 	    M_ZERO | M_WAITOK);
3826 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3827 	t->afree = t->atid_tab;
3828 	t->atids_in_use = 0;
3829 	for (i = 1; i < t->natids; i++)
3830 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3831 	t->atid_tab[t->natids - 1].next = NULL;
3832 }
3833 
3834 static void
3835 t4_free_atid_table(struct adapter *sc)
3836 {
3837 	struct tid_info *t;
3838 
3839 	t = &sc->tids;
3840 
3841 	KASSERT(t->atids_in_use == 0,
3842 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3843 
3844 	if (mtx_initialized(&t->atid_lock))
3845 		mtx_destroy(&t->atid_lock);
3846 	free(t->atid_tab, M_CXGBE);
3847 	t->atid_tab = NULL;
3848 }
3849 
3850 int
3851 alloc_atid(struct adapter *sc, void *ctx)
3852 {
3853 	struct tid_info *t = &sc->tids;
3854 	int atid = -1;
3855 
3856 	mtx_lock(&t->atid_lock);
3857 	if (t->afree) {
3858 		union aopen_entry *p = t->afree;
3859 
3860 		atid = p - t->atid_tab;
3861 		MPASS(atid <= M_TID_TID);
3862 		t->afree = p->next;
3863 		p->data = ctx;
3864 		t->atids_in_use++;
3865 	}
3866 	mtx_unlock(&t->atid_lock);
3867 	return (atid);
3868 }
3869 
3870 void *
3871 lookup_atid(struct adapter *sc, int atid)
3872 {
3873 	struct tid_info *t = &sc->tids;
3874 
3875 	return (t->atid_tab[atid].data);
3876 }
3877 
3878 void
3879 free_atid(struct adapter *sc, int atid)
3880 {
3881 	struct tid_info *t = &sc->tids;
3882 	union aopen_entry *p = &t->atid_tab[atid];
3883 
3884 	mtx_lock(&t->atid_lock);
3885 	p->next = t->afree;
3886 	t->afree = p;
3887 	t->atids_in_use--;
3888 	mtx_unlock(&t->atid_lock);
3889 }
3890 
3891 static void
3892 queue_tid_release(struct adapter *sc, int tid)
3893 {
3894 
3895 	CXGBE_UNIMPLEMENTED("deferred tid release");
3896 }
3897 
3898 void
3899 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3900 {
3901 	struct wrqe *wr;
3902 	struct cpl_tid_release *req;
3903 
3904 	wr = alloc_wrqe(sizeof(*req), ctrlq);
3905 	if (wr == NULL) {
3906 		queue_tid_release(sc, tid);	/* defer */
3907 		return;
3908 	}
3909 	req = wrtod(wr);
3910 
3911 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
3912 
3913 	t4_wrq_tx(sc, wr);
3914 }
3915 
3916 static int
3917 t4_range_cmp(const void *a, const void *b)
3918 {
3919 	return ((const struct t4_range *)a)->start -
3920 	       ((const struct t4_range *)b)->start;
3921 }
3922 
3923 /*
3924  * Verify that the memory range specified by the addr/len pair is valid within
3925  * the card's address space.
3926  */
3927 static int
3928 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
3929 {
3930 	struct t4_range mem_ranges[4], *r, *next;
3931 	uint32_t em, addr_len;
3932 	int i, n, remaining;
3933 
3934 	/* Memory can only be accessed in naturally aligned 4 byte units */
3935 	if (addr & 3 || len & 3 || len == 0)
3936 		return (EINVAL);
3937 
3938 	/* Enabled memories */
3939 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3940 
3941 	r = &mem_ranges[0];
3942 	n = 0;
3943 	bzero(r, sizeof(mem_ranges));
3944 	if (em & F_EDRAM0_ENABLE) {
3945 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3946 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
3947 		if (r->size > 0) {
3948 			r->start = G_EDRAM0_BASE(addr_len) << 20;
3949 			if (addr >= r->start &&
3950 			    addr + len <= r->start + r->size)
3951 				return (0);
3952 			r++;
3953 			n++;
3954 		}
3955 	}
3956 	if (em & F_EDRAM1_ENABLE) {
3957 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3958 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
3959 		if (r->size > 0) {
3960 			r->start = G_EDRAM1_BASE(addr_len) << 20;
3961 			if (addr >= r->start &&
3962 			    addr + len <= r->start + r->size)
3963 				return (0);
3964 			r++;
3965 			n++;
3966 		}
3967 	}
3968 	if (em & F_EXT_MEM_ENABLE) {
3969 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3970 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
3971 		if (r->size > 0) {
3972 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
3973 			if (addr >= r->start &&
3974 			    addr + len <= r->start + r->size)
3975 				return (0);
3976 			r++;
3977 			n++;
3978 		}
3979 	}
3980 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
3981 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3982 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3983 		if (r->size > 0) {
3984 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3985 			if (addr >= r->start &&
3986 			    addr + len <= r->start + r->size)
3987 				return (0);
3988 			r++;
3989 			n++;
3990 		}
3991 	}
3992 	MPASS(n <= nitems(mem_ranges));
3993 
3994 	if (n > 1) {
3995 		/* Sort and merge the ranges. */
3996 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3997 
3998 		/* Start from index 0 and examine the next n - 1 entries. */
3999 		r = &mem_ranges[0];
4000 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4001 
4002 			MPASS(r->size > 0);	/* r is a valid entry. */
4003 			next = r + 1;
4004 			MPASS(next->size > 0);	/* and so is the next one. */
4005 
4006 			while (r->start + r->size >= next->start) {
4007 				/* Merge the next one into the current entry. */
4008 				r->size = max(r->start + r->size,
4009 				    next->start + next->size) - r->start;
4010 				n--;	/* One fewer entry in total. */
4011 				if (--remaining == 0)
4012 					goto done;	/* short circuit */
4013 				next++;
4014 			}
4015 			if (next != r + 1) {
4016 				/*
4017 				 * Some entries were merged into r and next
4018 				 * points to the first valid entry that couldn't
4019 				 * be merged.
4020 				 */
4021 				MPASS(next->size > 0);	/* must be valid */
4022 				memcpy(r + 1, next, remaining * sizeof(*r));
4023 #ifdef INVARIANTS
4024 				/*
4025 				 * This so that the foo->size assertion in the
4026 				 * next iteration of the loop do the right
4027 				 * thing for entries that were pulled up and are
4028 				 * no longer valid.
4029 				 */
4030 				MPASS(n < nitems(mem_ranges));
4031 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4032 				    sizeof(struct t4_range));
4033 #endif
4034 			}
4035 		}
4036 done:
4037 		/* Done merging the ranges. */
4038 		MPASS(n > 0);
4039 		r = &mem_ranges[0];
4040 		for (i = 0; i < n; i++, r++) {
4041 			if (addr >= r->start &&
4042 			    addr + len <= r->start + r->size)
4043 				return (0);
4044 		}
4045 	}
4046 
4047 	return (EFAULT);
4048 }
4049 
4050 static int
4051 fwmtype_to_hwmtype(int mtype)
4052 {
4053 
4054 	switch (mtype) {
4055 	case FW_MEMTYPE_EDC0:
4056 		return (MEM_EDC0);
4057 	case FW_MEMTYPE_EDC1:
4058 		return (MEM_EDC1);
4059 	case FW_MEMTYPE_EXTMEM:
4060 		return (MEM_MC0);
4061 	case FW_MEMTYPE_EXTMEM1:
4062 		return (MEM_MC1);
4063 	default:
4064 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4065 	}
4066 }
4067 
4068 /*
4069  * Verify that the memory range specified by the memtype/offset/len pair is
4070  * valid and lies entirely within the memtype specified.  The global address of
4071  * the start of the range is returned in addr.
4072  */
4073 static int
4074 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4075     uint32_t *addr)
4076 {
4077 	uint32_t em, addr_len, maddr;
4078 
4079 	/* Memory can only be accessed in naturally aligned 4 byte units */
4080 	if (off & 3 || len & 3 || len == 0)
4081 		return (EINVAL);
4082 
4083 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4084 	switch (fwmtype_to_hwmtype(mtype)) {
4085 	case MEM_EDC0:
4086 		if (!(em & F_EDRAM0_ENABLE))
4087 			return (EINVAL);
4088 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4089 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4090 		break;
4091 	case MEM_EDC1:
4092 		if (!(em & F_EDRAM1_ENABLE))
4093 			return (EINVAL);
4094 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4095 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4096 		break;
4097 	case MEM_MC:
4098 		if (!(em & F_EXT_MEM_ENABLE))
4099 			return (EINVAL);
4100 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4101 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4102 		break;
4103 	case MEM_MC1:
4104 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4105 			return (EINVAL);
4106 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4107 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4108 		break;
4109 	default:
4110 		return (EINVAL);
4111 	}
4112 
4113 	*addr = maddr + off;	/* global address */
4114 	return (validate_mem_range(sc, *addr, len));
4115 }
4116 
4117 static int
4118 fixup_devlog_params(struct adapter *sc)
4119 {
4120 	struct devlog_params *dparams = &sc->params.devlog;
4121 	int rc;
4122 
4123 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4124 	    dparams->size, &dparams->addr);
4125 
4126 	return (rc);
4127 }
4128 
4129 static void
4130 update_nirq(struct intrs_and_queues *iaq, int nports)
4131 {
4132 
4133 	iaq->nirq = T4_EXTRA_INTR;
4134 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4135 	iaq->nirq += nports * iaq->nofldrxq;
4136 	iaq->nirq += nports * (iaq->num_vis - 1) *
4137 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4138 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4139 }
4140 
4141 /*
4142  * Adjust requirements to fit the number of interrupts available.
4143  */
4144 static void
4145 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4146     int navail)
4147 {
4148 	int old_nirq;
4149 	const int nports = sc->params.nports;
4150 
4151 	MPASS(nports > 0);
4152 	MPASS(navail > 0);
4153 
4154 	bzero(iaq, sizeof(*iaq));
4155 	iaq->intr_type = itype;
4156 	iaq->num_vis = t4_num_vis;
4157 	iaq->ntxq = t4_ntxq;
4158 	iaq->ntxq_vi = t4_ntxq_vi;
4159 	iaq->nrxq = t4_nrxq;
4160 	iaq->nrxq_vi = t4_nrxq_vi;
4161 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4162 	if (is_offload(sc) || is_ethoffload(sc)) {
4163 		iaq->nofldtxq = t4_nofldtxq;
4164 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4165 	}
4166 #endif
4167 #ifdef TCP_OFFLOAD
4168 	if (is_offload(sc)) {
4169 		iaq->nofldrxq = t4_nofldrxq;
4170 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4171 	}
4172 #endif
4173 #ifdef DEV_NETMAP
4174 	if (t4_native_netmap & NN_MAIN_VI) {
4175 		iaq->nnmtxq = t4_nnmtxq;
4176 		iaq->nnmrxq = t4_nnmrxq;
4177 	}
4178 	if (t4_native_netmap & NN_EXTRA_VI) {
4179 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4180 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4181 	}
4182 #endif
4183 
4184 	update_nirq(iaq, nports);
4185 	if (iaq->nirq <= navail &&
4186 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4187 		/*
4188 		 * This is the normal case -- there are enough interrupts for
4189 		 * everything.
4190 		 */
4191 		goto done;
4192 	}
4193 
4194 	/*
4195 	 * If extra VIs have been configured try reducing their count and see if
4196 	 * that works.
4197 	 */
4198 	while (iaq->num_vis > 1) {
4199 		iaq->num_vis--;
4200 		update_nirq(iaq, nports);
4201 		if (iaq->nirq <= navail &&
4202 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4203 			device_printf(sc->dev, "virtual interfaces per port "
4204 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4205 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4206 			    "itype %d, navail %u, nirq %d.\n",
4207 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4208 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4209 			    itype, navail, iaq->nirq);
4210 			goto done;
4211 		}
4212 	}
4213 
4214 	/*
4215 	 * Extra VIs will not be created.  Log a message if they were requested.
4216 	 */
4217 	MPASS(iaq->num_vis == 1);
4218 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4219 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4220 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4221 	if (iaq->num_vis != t4_num_vis) {
4222 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4223 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4224 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4225 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4226 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4227 	}
4228 
4229 	/*
4230 	 * Keep reducing the number of NIC rx queues to the next lower power of
4231 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4232 	 * if that works.
4233 	 */
4234 	do {
4235 		if (iaq->nrxq > 1) {
4236 			do {
4237 				iaq->nrxq--;
4238 			} while (!powerof2(iaq->nrxq));
4239 			if (iaq->nnmrxq > iaq->nrxq)
4240 				iaq->nnmrxq = iaq->nrxq;
4241 		}
4242 		if (iaq->nofldrxq > 1)
4243 			iaq->nofldrxq >>= 1;
4244 
4245 		old_nirq = iaq->nirq;
4246 		update_nirq(iaq, nports);
4247 		if (iaq->nirq <= navail &&
4248 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4249 			device_printf(sc->dev, "running with reduced number of "
4250 			    "rx queues because of shortage of interrupts.  "
4251 			    "nrxq=%u, nofldrxq=%u.  "
4252 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4253 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4254 			goto done;
4255 		}
4256 	} while (old_nirq != iaq->nirq);
4257 
4258 	/* One interrupt for everything.  Ugh. */
4259 	device_printf(sc->dev, "running with minimal number of queues.  "
4260 	    "itype %d, navail %u.\n", itype, navail);
4261 	iaq->nirq = 1;
4262 	iaq->nrxq = 1;
4263 	iaq->ntxq = 1;
4264 	if (iaq->nofldrxq > 0) {
4265 		iaq->nofldrxq = 1;
4266 		iaq->nofldtxq = 1;
4267 	}
4268 	iaq->nnmtxq = 0;
4269 	iaq->nnmrxq = 0;
4270 done:
4271 	MPASS(iaq->num_vis > 0);
4272 	if (iaq->num_vis > 1) {
4273 		MPASS(iaq->nrxq_vi > 0);
4274 		MPASS(iaq->ntxq_vi > 0);
4275 	}
4276 	MPASS(iaq->nirq > 0);
4277 	MPASS(iaq->nrxq > 0);
4278 	MPASS(iaq->ntxq > 0);
4279 	if (itype == INTR_MSI) {
4280 		MPASS(powerof2(iaq->nirq));
4281 	}
4282 }
4283 
4284 static int
4285 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4286 {
4287 	int rc, itype, navail, nalloc;
4288 
4289 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4290 
4291 		if ((itype & t4_intr_types) == 0)
4292 			continue;	/* not allowed */
4293 
4294 		if (itype == INTR_MSIX)
4295 			navail = pci_msix_count(sc->dev);
4296 		else if (itype == INTR_MSI)
4297 			navail = pci_msi_count(sc->dev);
4298 		else
4299 			navail = 1;
4300 restart:
4301 		if (navail == 0)
4302 			continue;
4303 
4304 		calculate_iaq(sc, iaq, itype, navail);
4305 		nalloc = iaq->nirq;
4306 		rc = 0;
4307 		if (itype == INTR_MSIX)
4308 			rc = pci_alloc_msix(sc->dev, &nalloc);
4309 		else if (itype == INTR_MSI)
4310 			rc = pci_alloc_msi(sc->dev, &nalloc);
4311 
4312 		if (rc == 0 && nalloc > 0) {
4313 			if (nalloc == iaq->nirq)
4314 				return (0);
4315 
4316 			/*
4317 			 * Didn't get the number requested.  Use whatever number
4318 			 * the kernel is willing to allocate.
4319 			 */
4320 			device_printf(sc->dev, "fewer vectors than requested, "
4321 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4322 			    itype, iaq->nirq, nalloc);
4323 			pci_release_msi(sc->dev);
4324 			navail = nalloc;
4325 			goto restart;
4326 		}
4327 
4328 		device_printf(sc->dev,
4329 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4330 		    itype, rc, iaq->nirq, nalloc);
4331 	}
4332 
4333 	device_printf(sc->dev,
4334 	    "failed to find a usable interrupt type.  "
4335 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4336 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4337 
4338 	return (ENXIO);
4339 }
4340 
4341 #define FW_VERSION(chip) ( \
4342     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4343     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4344     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4345     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4346 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4347 
4348 /* Just enough of fw_hdr to cover all version info. */
4349 struct fw_h {
4350 	__u8	ver;
4351 	__u8	chip;
4352 	__be16	len512;
4353 	__be32	fw_ver;
4354 	__be32	tp_microcode_ver;
4355 	__u8	intfver_nic;
4356 	__u8	intfver_vnic;
4357 	__u8	intfver_ofld;
4358 	__u8	intfver_ri;
4359 	__u8	intfver_iscsipdu;
4360 	__u8	intfver_iscsi;
4361 	__u8	intfver_fcoepdu;
4362 	__u8	intfver_fcoe;
4363 };
4364 /* Spot check a couple of fields. */
4365 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4366 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4367 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4368 
4369 struct fw_info {
4370 	uint8_t chip;
4371 	char *kld_name;
4372 	char *fw_mod_name;
4373 	struct fw_h fw_h;
4374 } fw_info[] = {
4375 	{
4376 		.chip = CHELSIO_T4,
4377 		.kld_name = "t4fw_cfg",
4378 		.fw_mod_name = "t4fw",
4379 		.fw_h = {
4380 			.chip = FW_HDR_CHIP_T4,
4381 			.fw_ver = htobe32(FW_VERSION(T4)),
4382 			.intfver_nic = FW_INTFVER(T4, NIC),
4383 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4384 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4385 			.intfver_ri = FW_INTFVER(T4, RI),
4386 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4387 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4388 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4389 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4390 		},
4391 	}, {
4392 		.chip = CHELSIO_T5,
4393 		.kld_name = "t5fw_cfg",
4394 		.fw_mod_name = "t5fw",
4395 		.fw_h = {
4396 			.chip = FW_HDR_CHIP_T5,
4397 			.fw_ver = htobe32(FW_VERSION(T5)),
4398 			.intfver_nic = FW_INTFVER(T5, NIC),
4399 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4400 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4401 			.intfver_ri = FW_INTFVER(T5, RI),
4402 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4403 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4404 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4405 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4406 		},
4407 	}, {
4408 		.chip = CHELSIO_T6,
4409 		.kld_name = "t6fw_cfg",
4410 		.fw_mod_name = "t6fw",
4411 		.fw_h = {
4412 			.chip = FW_HDR_CHIP_T6,
4413 			.fw_ver = htobe32(FW_VERSION(T6)),
4414 			.intfver_nic = FW_INTFVER(T6, NIC),
4415 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4416 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4417 			.intfver_ri = FW_INTFVER(T6, RI),
4418 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4419 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4420 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4421 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4422 		},
4423 	}
4424 };
4425 
4426 static struct fw_info *
4427 find_fw_info(int chip)
4428 {
4429 	int i;
4430 
4431 	for (i = 0; i < nitems(fw_info); i++) {
4432 		if (fw_info[i].chip == chip)
4433 			return (&fw_info[i]);
4434 	}
4435 	return (NULL);
4436 }
4437 
4438 /*
4439  * Is the given firmware API compatible with the one the driver was compiled
4440  * with?
4441  */
4442 static int
4443 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4444 {
4445 
4446 	/* short circuit if it's the exact same firmware version */
4447 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4448 		return (1);
4449 
4450 	/*
4451 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4452 	 * features that are supported in the driver.
4453 	 */
4454 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4455 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4456 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4457 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4458 		return (1);
4459 #undef SAME_INTF
4460 
4461 	return (0);
4462 }
4463 
4464 static int
4465 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4466     const struct firmware **fw)
4467 {
4468 	struct fw_info *fw_info;
4469 
4470 	*dcfg = NULL;
4471 	if (fw != NULL)
4472 		*fw = NULL;
4473 
4474 	fw_info = find_fw_info(chip_id(sc));
4475 	if (fw_info == NULL) {
4476 		device_printf(sc->dev,
4477 		    "unable to look up firmware information for chip %d.\n",
4478 		    chip_id(sc));
4479 		return (EINVAL);
4480 	}
4481 
4482 	*dcfg = firmware_get(fw_info->kld_name);
4483 	if (*dcfg != NULL) {
4484 		if (fw != NULL)
4485 			*fw = firmware_get(fw_info->fw_mod_name);
4486 		return (0);
4487 	}
4488 
4489 	return (ENOENT);
4490 }
4491 
4492 static void
4493 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4494     const struct firmware *fw)
4495 {
4496 
4497 	if (fw != NULL)
4498 		firmware_put(fw, FIRMWARE_UNLOAD);
4499 	if (dcfg != NULL)
4500 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4501 }
4502 
4503 /*
4504  * Return values:
4505  * 0 means no firmware install attempted.
4506  * ERESTART means a firmware install was attempted and was successful.
4507  * +ve errno means a firmware install was attempted but failed.
4508  */
4509 static int
4510 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4511     const struct fw_h *drv_fw, const char *reason, int *already)
4512 {
4513 	const struct firmware *cfg, *fw;
4514 	const uint32_t c = be32toh(card_fw->fw_ver);
4515 	uint32_t d, k;
4516 	int rc, fw_install;
4517 	struct fw_h bundled_fw;
4518 	bool load_attempted;
4519 
4520 	cfg = fw = NULL;
4521 	load_attempted = false;
4522 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4523 
4524 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4525 	if (t4_fw_install < 0) {
4526 		rc = load_fw_module(sc, &cfg, &fw);
4527 		if (rc != 0 || fw == NULL) {
4528 			device_printf(sc->dev,
4529 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4530 			    " will use compiled-in firmware version for"
4531 			    "hw.cxgbe.fw_install checks.\n",
4532 			    rc, cfg, fw);
4533 		} else {
4534 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4535 		}
4536 		load_attempted = true;
4537 	}
4538 	d = be32toh(bundled_fw.fw_ver);
4539 
4540 	if (reason != NULL)
4541 		goto install;
4542 
4543 	if ((sc->flags & FW_OK) == 0) {
4544 
4545 		if (c == 0xffffffff) {
4546 			reason = "missing";
4547 			goto install;
4548 		}
4549 
4550 		rc = 0;
4551 		goto done;
4552 	}
4553 
4554 	if (!fw_compatible(card_fw, &bundled_fw)) {
4555 		reason = "incompatible or unusable";
4556 		goto install;
4557 	}
4558 
4559 	if (d > c) {
4560 		reason = "older than the version bundled with this driver";
4561 		goto install;
4562 	}
4563 
4564 	if (fw_install == 2 && d != c) {
4565 		reason = "different than the version bundled with this driver";
4566 		goto install;
4567 	}
4568 
4569 	/* No reason to do anything to the firmware already on the card. */
4570 	rc = 0;
4571 	goto done;
4572 
4573 install:
4574 	rc = 0;
4575 	if ((*already)++)
4576 		goto done;
4577 
4578 	if (fw_install == 0) {
4579 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4580 		    "but the driver is prohibited from installing a firmware "
4581 		    "on the card.\n",
4582 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4583 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4584 
4585 		goto done;
4586 	}
4587 
4588 	/*
4589 	 * We'll attempt to install a firmware.  Load the module first (if it
4590 	 * hasn't been loaded already).
4591 	 */
4592 	if (!load_attempted) {
4593 		rc = load_fw_module(sc, &cfg, &fw);
4594 		if (rc != 0 || fw == NULL) {
4595 			device_printf(sc->dev,
4596 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4597 			    rc, cfg, fw);
4598 			/* carry on */
4599 		}
4600 	}
4601 	if (fw == NULL) {
4602 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4603 		    "but the driver cannot take corrective action because it "
4604 		    "is unable to load the firmware module.\n",
4605 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4606 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4607 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4608 		goto done;
4609 	}
4610 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4611 	if (k != d) {
4612 		MPASS(t4_fw_install > 0);
4613 		device_printf(sc->dev,
4614 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4615 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4616 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4617 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4618 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4619 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4620 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4621 		goto done;
4622 	}
4623 
4624 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4625 	    "installing firmware %u.%u.%u.%u on card.\n",
4626 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4627 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4628 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4629 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4630 
4631 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4632 	if (rc != 0) {
4633 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4634 	} else {
4635 		/* Installed successfully, update the cached header too. */
4636 		rc = ERESTART;
4637 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4638 	}
4639 done:
4640 	unload_fw_module(sc, cfg, fw);
4641 
4642 	return (rc);
4643 }
4644 
4645 /*
4646  * Establish contact with the firmware and attempt to become the master driver.
4647  *
4648  * A firmware will be installed to the card if needed (if the driver is allowed
4649  * to do so).
4650  */
4651 static int
4652 contact_firmware(struct adapter *sc)
4653 {
4654 	int rc, already = 0;
4655 	enum dev_state state;
4656 	struct fw_info *fw_info;
4657 	struct fw_hdr *card_fw;		/* fw on the card */
4658 	const struct fw_h *drv_fw;
4659 
4660 	fw_info = find_fw_info(chip_id(sc));
4661 	if (fw_info == NULL) {
4662 		device_printf(sc->dev,
4663 		    "unable to look up firmware information for chip %d.\n",
4664 		    chip_id(sc));
4665 		return (EINVAL);
4666 	}
4667 	drv_fw = &fw_info->fw_h;
4668 
4669 	/* Read the header of the firmware on the card */
4670 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4671 restart:
4672 	rc = -t4_get_fw_hdr(sc, card_fw);
4673 	if (rc != 0) {
4674 		device_printf(sc->dev,
4675 		    "unable to read firmware header from card's flash: %d\n",
4676 		    rc);
4677 		goto done;
4678 	}
4679 
4680 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4681 	    &already);
4682 	if (rc == ERESTART)
4683 		goto restart;
4684 	if (rc != 0)
4685 		goto done;
4686 
4687 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4688 	if (rc < 0 || state == DEV_STATE_ERR) {
4689 		rc = -rc;
4690 		device_printf(sc->dev,
4691 		    "failed to connect to the firmware: %d, %d.  "
4692 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4693 #if 0
4694 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4695 		    "not responding properly to HELLO", &already) == ERESTART)
4696 			goto restart;
4697 #endif
4698 		goto done;
4699 	}
4700 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4701 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4702 
4703 	if (rc == sc->pf) {
4704 		sc->flags |= MASTER_PF;
4705 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4706 		    NULL, &already);
4707 		if (rc == ERESTART)
4708 			rc = 0;
4709 		else if (rc != 0)
4710 			goto done;
4711 	} else if (state == DEV_STATE_UNINIT) {
4712 		/*
4713 		 * We didn't get to be the master so we definitely won't be
4714 		 * configuring the chip.  It's a bug if someone else hasn't
4715 		 * configured it already.
4716 		 */
4717 		device_printf(sc->dev, "couldn't be master(%d), "
4718 		    "device not already initialized either(%d).  "
4719 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4720 		rc = EPROTO;
4721 		goto done;
4722 	} else {
4723 		/*
4724 		 * Some other PF is the master and has configured the chip.
4725 		 * This is allowed but untested.
4726 		 */
4727 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4728 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4729 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4730 		sc->cfcsum = 0;
4731 		rc = 0;
4732 	}
4733 done:
4734 	if (rc != 0 && sc->flags & FW_OK) {
4735 		t4_fw_bye(sc, sc->mbox);
4736 		sc->flags &= ~FW_OK;
4737 	}
4738 	free(card_fw, M_CXGBE);
4739 	return (rc);
4740 }
4741 
4742 static int
4743 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4744     uint32_t mtype, uint32_t moff)
4745 {
4746 	struct fw_info *fw_info;
4747 	const struct firmware *dcfg, *rcfg = NULL;
4748 	const uint32_t *cfdata;
4749 	uint32_t cflen, addr;
4750 	int rc;
4751 
4752 	load_fw_module(sc, &dcfg, NULL);
4753 
4754 	/* Card specific interpretation of "default". */
4755 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4756 		if (pci_get_device(sc->dev) == 0x440a)
4757 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4758 		if (is_fpga(sc))
4759 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4760 	}
4761 
4762 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4763 		if (dcfg == NULL) {
4764 			device_printf(sc->dev,
4765 			    "KLD with default config is not available.\n");
4766 			rc = ENOENT;
4767 			goto done;
4768 		}
4769 		cfdata = dcfg->data;
4770 		cflen = dcfg->datasize & ~3;
4771 	} else {
4772 		char s[32];
4773 
4774 		fw_info = find_fw_info(chip_id(sc));
4775 		if (fw_info == NULL) {
4776 			device_printf(sc->dev,
4777 			    "unable to look up firmware information for chip %d.\n",
4778 			    chip_id(sc));
4779 			rc = EINVAL;
4780 			goto done;
4781 		}
4782 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4783 
4784 		rcfg = firmware_get(s);
4785 		if (rcfg == NULL) {
4786 			device_printf(sc->dev,
4787 			    "unable to load module \"%s\" for configuration "
4788 			    "profile \"%s\".\n", s, cfg_file);
4789 			rc = ENOENT;
4790 			goto done;
4791 		}
4792 		cfdata = rcfg->data;
4793 		cflen = rcfg->datasize & ~3;
4794 	}
4795 
4796 	if (cflen > FLASH_CFG_MAX_SIZE) {
4797 		device_printf(sc->dev,
4798 		    "config file too long (%d, max allowed is %d).\n",
4799 		    cflen, FLASH_CFG_MAX_SIZE);
4800 		rc = EINVAL;
4801 		goto done;
4802 	}
4803 
4804 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4805 	if (rc != 0) {
4806 		device_printf(sc->dev,
4807 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4808 		    __func__, mtype, moff, cflen, rc);
4809 		rc = EINVAL;
4810 		goto done;
4811 	}
4812 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4813 done:
4814 	if (rcfg != NULL)
4815 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4816 	unload_fw_module(sc, dcfg, NULL);
4817 	return (rc);
4818 }
4819 
4820 struct caps_allowed {
4821 	uint16_t nbmcaps;
4822 	uint16_t linkcaps;
4823 	uint16_t switchcaps;
4824 	uint16_t niccaps;
4825 	uint16_t toecaps;
4826 	uint16_t rdmacaps;
4827 	uint16_t cryptocaps;
4828 	uint16_t iscsicaps;
4829 	uint16_t fcoecaps;
4830 };
4831 
4832 #define FW_PARAM_DEV(param) \
4833 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4834 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4835 #define FW_PARAM_PFVF(param) \
4836 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4837 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4838 
4839 /*
4840  * Provide a configuration profile to the firmware and have it initialize the
4841  * chip accordingly.  This may involve uploading a configuration file to the
4842  * card.
4843  */
4844 static int
4845 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4846     const struct caps_allowed *caps_allowed)
4847 {
4848 	int rc;
4849 	struct fw_caps_config_cmd caps;
4850 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4851 
4852 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4853 	if (rc != 0) {
4854 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4855 		return (rc);
4856 	}
4857 
4858 	bzero(&caps, sizeof(caps));
4859 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4860 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4861 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4862 		mtype = 0;
4863 		moff = 0;
4864 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4865 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4866 		mtype = FW_MEMTYPE_FLASH;
4867 		moff = t4_flash_cfg_addr(sc);
4868 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4869 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4870 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4871 		    FW_LEN16(caps));
4872 	} else {
4873 		/*
4874 		 * Ask the firmware where it wants us to upload the config file.
4875 		 */
4876 		param = FW_PARAM_DEV(CF);
4877 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4878 		if (rc != 0) {
4879 			/* No support for config file?  Shouldn't happen. */
4880 			device_printf(sc->dev,
4881 			    "failed to query config file location: %d.\n", rc);
4882 			goto done;
4883 		}
4884 		mtype = G_FW_PARAMS_PARAM_Y(val);
4885 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4886 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4887 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4888 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4889 		    FW_LEN16(caps));
4890 
4891 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4892 		if (rc != 0) {
4893 			device_printf(sc->dev,
4894 			    "failed to upload config file to card: %d.\n", rc);
4895 			goto done;
4896 		}
4897 	}
4898 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4899 	if (rc != 0) {
4900 		device_printf(sc->dev, "failed to pre-process config file: %d "
4901 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
4902 		goto done;
4903 	}
4904 
4905 	finicsum = be32toh(caps.finicsum);
4906 	cfcsum = be32toh(caps.cfcsum);	/* actual */
4907 	if (finicsum != cfcsum) {
4908 		device_printf(sc->dev,
4909 		    "WARNING: config file checksum mismatch: %08x %08x\n",
4910 		    finicsum, cfcsum);
4911 	}
4912 	sc->cfcsum = cfcsum;
4913 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
4914 
4915 	/*
4916 	 * Let the firmware know what features will (not) be used so it can tune
4917 	 * things accordingly.
4918 	 */
4919 #define LIMIT_CAPS(x) do { \
4920 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
4921 } while (0)
4922 	LIMIT_CAPS(nbm);
4923 	LIMIT_CAPS(link);
4924 	LIMIT_CAPS(switch);
4925 	LIMIT_CAPS(nic);
4926 	LIMIT_CAPS(toe);
4927 	LIMIT_CAPS(rdma);
4928 	LIMIT_CAPS(crypto);
4929 	LIMIT_CAPS(iscsi);
4930 	LIMIT_CAPS(fcoe);
4931 #undef LIMIT_CAPS
4932 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4933 		/*
4934 		 * TOE and hashfilters are mutually exclusive.  It is a config
4935 		 * file or firmware bug if both are reported as available.  Try
4936 		 * to cope with the situation in non-debug builds by disabling
4937 		 * TOE.
4938 		 */
4939 		MPASS(caps.toecaps == 0);
4940 
4941 		caps.toecaps = 0;
4942 		caps.rdmacaps = 0;
4943 		caps.iscsicaps = 0;
4944 	}
4945 
4946 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4947 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4948 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4949 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
4950 	if (rc != 0) {
4951 		device_printf(sc->dev,
4952 		    "failed to process config file: %d.\n", rc);
4953 		goto done;
4954 	}
4955 
4956 	t4_tweak_chip_settings(sc);
4957 	set_params__pre_init(sc);
4958 
4959 	/* get basic stuff going */
4960 	rc = -t4_fw_initialize(sc, sc->mbox);
4961 	if (rc != 0) {
4962 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
4963 		goto done;
4964 	}
4965 done:
4966 	return (rc);
4967 }
4968 
4969 /*
4970  * Partition chip resources for use between various PFs, VFs, etc.
4971  */
4972 static int
4973 partition_resources(struct adapter *sc)
4974 {
4975 	char cfg_file[sizeof(t4_cfg_file)];
4976 	struct caps_allowed caps_allowed;
4977 	int rc;
4978 	bool fallback;
4979 
4980 	/* Only the master driver gets to configure the chip resources. */
4981 	MPASS(sc->flags & MASTER_PF);
4982 
4983 #define COPY_CAPS(x) do { \
4984 	caps_allowed.x##caps = t4_##x##caps_allowed; \
4985 } while (0)
4986 	bzero(&caps_allowed, sizeof(caps_allowed));
4987 	COPY_CAPS(nbm);
4988 	COPY_CAPS(link);
4989 	COPY_CAPS(switch);
4990 	COPY_CAPS(nic);
4991 	COPY_CAPS(toe);
4992 	COPY_CAPS(rdma);
4993 	COPY_CAPS(crypto);
4994 	COPY_CAPS(iscsi);
4995 	COPY_CAPS(fcoe);
4996 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4997 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4998 retry:
4999 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5000 	if (rc != 0 && fallback) {
5001 		device_printf(sc->dev,
5002 		    "failed (%d) to configure card with \"%s\" profile, "
5003 		    "will fall back to a basic configuration and retry.\n",
5004 		    rc, cfg_file);
5005 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5006 		bzero(&caps_allowed, sizeof(caps_allowed));
5007 		COPY_CAPS(switch);
5008 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5009 		fallback = false;
5010 		goto retry;
5011 	}
5012 #undef COPY_CAPS
5013 	return (rc);
5014 }
5015 
5016 /*
5017  * Retrieve parameters that are needed (or nice to have) very early.
5018  */
5019 static int
5020 get_params__pre_init(struct adapter *sc)
5021 {
5022 	int rc;
5023 	uint32_t param[2], val[2];
5024 
5025 	t4_get_version_info(sc);
5026 
5027 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5028 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5029 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5030 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5031 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5032 
5033 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5034 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5035 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5036 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5037 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5038 
5039 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5040 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5041 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5042 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5043 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5044 
5045 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5046 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5047 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5048 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5049 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5050 
5051 	param[0] = FW_PARAM_DEV(PORTVEC);
5052 	param[1] = FW_PARAM_DEV(CCLK);
5053 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5054 	if (rc != 0) {
5055 		device_printf(sc->dev,
5056 		    "failed to query parameters (pre_init): %d.\n", rc);
5057 		return (rc);
5058 	}
5059 
5060 	sc->params.portvec = val[0];
5061 	sc->params.nports = bitcount32(val[0]);
5062 	sc->params.vpd.cclk = val[1];
5063 
5064 	/* Read device log parameters. */
5065 	rc = -t4_init_devlog_params(sc, 1);
5066 	if (rc == 0)
5067 		fixup_devlog_params(sc);
5068 	else {
5069 		device_printf(sc->dev,
5070 		    "failed to get devlog parameters: %d.\n", rc);
5071 		rc = 0;	/* devlog isn't critical for device operation */
5072 	}
5073 
5074 	return (rc);
5075 }
5076 
5077 /*
5078  * Any params that need to be set before FW_INITIALIZE.
5079  */
5080 static int
5081 set_params__pre_init(struct adapter *sc)
5082 {
5083 	int rc = 0;
5084 	uint32_t param, val;
5085 
5086 	if (chip_id(sc) >= CHELSIO_T6) {
5087 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5088 		val = 1;
5089 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5090 		/* firmwares < 1.20.1.0 do not have this param. */
5091 		if (rc == FW_EINVAL &&
5092 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5093 			rc = 0;
5094 		}
5095 		if (rc != 0) {
5096 			device_printf(sc->dev,
5097 			    "failed to enable high priority filters :%d.\n",
5098 			    rc);
5099 		}
5100 	}
5101 
5102 	/* Enable opaque VIIDs with firmwares that support it. */
5103 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5104 	val = 1;
5105 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5106 	if (rc == 0 && val == 1)
5107 		sc->params.viid_smt_extn_support = true;
5108 	else
5109 		sc->params.viid_smt_extn_support = false;
5110 
5111 	return (rc);
5112 }
5113 
5114 /*
5115  * Retrieve various parameters that are of interest to the driver.  The device
5116  * has been initialized by the firmware at this point.
5117  */
5118 static int
5119 get_params__post_init(struct adapter *sc)
5120 {
5121 	int rc;
5122 	uint32_t param[7], val[7];
5123 	struct fw_caps_config_cmd caps;
5124 
5125 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5126 	param[1] = FW_PARAM_PFVF(EQ_START);
5127 	param[2] = FW_PARAM_PFVF(FILTER_START);
5128 	param[3] = FW_PARAM_PFVF(FILTER_END);
5129 	param[4] = FW_PARAM_PFVF(L2T_START);
5130 	param[5] = FW_PARAM_PFVF(L2T_END);
5131 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5132 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5133 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5134 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5135 	if (rc != 0) {
5136 		device_printf(sc->dev,
5137 		    "failed to query parameters (post_init): %d.\n", rc);
5138 		return (rc);
5139 	}
5140 
5141 	sc->sge.iq_start = val[0];
5142 	sc->sge.eq_start = val[1];
5143 	if ((int)val[3] > (int)val[2]) {
5144 		sc->tids.ftid_base = val[2];
5145 		sc->tids.ftid_end = val[3];
5146 		sc->tids.nftids = val[3] - val[2] + 1;
5147 	}
5148 	sc->vres.l2t.start = val[4];
5149 	sc->vres.l2t.size = val[5] - val[4] + 1;
5150 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5151 	    ("%s: L2 table size (%u) larger than expected (%u)",
5152 	    __func__, sc->vres.l2t.size, L2T_SIZE));
5153 	sc->params.core_vdd = val[6];
5154 
5155 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5156 	param[1] = FW_PARAM_PFVF(EQ_END);
5157 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5158 	if (rc != 0) {
5159 		device_printf(sc->dev,
5160 		    "failed to query parameters (post_init2): %d.\n", rc);
5161 		return (rc);
5162 	}
5163 	MPASS((int)val[0] >= sc->sge.iq_start);
5164 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5165 	MPASS((int)val[1] >= sc->sge.eq_start);
5166 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5167 
5168 	if (chip_id(sc) >= CHELSIO_T6) {
5169 
5170 		sc->tids.tid_base = t4_read_reg(sc,
5171 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5172 
5173 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5174 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5175 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5176 		if (rc != 0) {
5177 			device_printf(sc->dev,
5178 			   "failed to query hpfilter parameters: %d.\n", rc);
5179 			return (rc);
5180 		}
5181 		if ((int)val[1] > (int)val[0]) {
5182 			sc->tids.hpftid_base = val[0];
5183 			sc->tids.hpftid_end = val[1];
5184 			sc->tids.nhpftids = val[1] - val[0] + 1;
5185 
5186 			/*
5187 			 * These should go off if the layout changes and the
5188 			 * driver needs to catch up.
5189 			 */
5190 			MPASS(sc->tids.hpftid_base == 0);
5191 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5192 		}
5193 
5194 		param[0] = FW_PARAM_PFVF(RAWF_START);
5195 		param[1] = FW_PARAM_PFVF(RAWF_END);
5196 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5197 		if (rc != 0) {
5198 			device_printf(sc->dev,
5199 			   "failed to query rawf parameters: %d.\n", rc);
5200 			return (rc);
5201 		}
5202 		if ((int)val[1] > (int)val[0]) {
5203 			sc->rawf_base = val[0];
5204 			sc->nrawf = val[1] - val[0] + 1;
5205 		}
5206 	}
5207 
5208 	/*
5209 	 * MPSBGMAP is queried separately because only recent firmwares support
5210 	 * it as a parameter and we don't want the compound query above to fail
5211 	 * on older firmwares.
5212 	 */
5213 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5214 	val[0] = 0;
5215 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5216 	if (rc == 0)
5217 		sc->params.mps_bg_map = val[0];
5218 	else
5219 		sc->params.mps_bg_map = 0;
5220 
5221 	/*
5222 	 * Determine whether the firmware supports the filter2 work request.
5223 	 * This is queried separately for the same reason as MPSBGMAP above.
5224 	 */
5225 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5226 	val[0] = 0;
5227 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5228 	if (rc == 0)
5229 		sc->params.filter2_wr_support = val[0] != 0;
5230 	else
5231 		sc->params.filter2_wr_support = 0;
5232 
5233 	/*
5234 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5235 	 * This is queried separately for the same reason as other params above.
5236 	 */
5237 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5238 	val[0] = 0;
5239 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5240 	if (rc == 0)
5241 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5242 	else
5243 		sc->params.ulptx_memwrite_dsgl = false;
5244 
5245 	/* FW_RI_FR_NSMR_TPTE_WR support */
5246 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5247 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5248 	if (rc == 0)
5249 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5250 	else
5251 		sc->params.fr_nsmr_tpte_wr_support = false;
5252 
5253 	/* Support for 512 SGL entries per FR MR. */
5254 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5255 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5256 	if (rc == 0)
5257 		sc->params.dev_512sgl_mr = val[0] != 0;
5258 	else
5259 		sc->params.dev_512sgl_mr = false;
5260 
5261 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5262 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5263 	if (rc == 0)
5264 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5265 	else
5266 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5267 
5268 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5269 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5270 	if (rc == 0) {
5271 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5272 		sc->params.nsched_cls = val[0];
5273 	} else
5274 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5275 
5276 	/* get capabilites */
5277 	bzero(&caps, sizeof(caps));
5278 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5279 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5280 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5281 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5282 	if (rc != 0) {
5283 		device_printf(sc->dev,
5284 		    "failed to get card capabilities: %d.\n", rc);
5285 		return (rc);
5286 	}
5287 
5288 #define READ_CAPS(x) do { \
5289 	sc->x = htobe16(caps.x); \
5290 } while (0)
5291 	READ_CAPS(nbmcaps);
5292 	READ_CAPS(linkcaps);
5293 	READ_CAPS(switchcaps);
5294 	READ_CAPS(niccaps);
5295 	READ_CAPS(toecaps);
5296 	READ_CAPS(rdmacaps);
5297 	READ_CAPS(cryptocaps);
5298 	READ_CAPS(iscsicaps);
5299 	READ_CAPS(fcoecaps);
5300 
5301 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5302 		MPASS(chip_id(sc) > CHELSIO_T4);
5303 		MPASS(sc->toecaps == 0);
5304 		sc->toecaps = 0;
5305 
5306 		param[0] = FW_PARAM_DEV(NTID);
5307 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5308 		if (rc != 0) {
5309 			device_printf(sc->dev,
5310 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5311 			return (rc);
5312 		}
5313 		sc->tids.ntids = val[0];
5314 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5315 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5316 			sc->tids.ntids -= sc->tids.nhpftids;
5317 		}
5318 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5319 		sc->params.hash_filter = 1;
5320 	}
5321 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5322 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5323 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5324 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5325 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5326 		if (rc != 0) {
5327 			device_printf(sc->dev,
5328 			    "failed to query NIC parameters: %d.\n", rc);
5329 			return (rc);
5330 		}
5331 		if ((int)val[1] > (int)val[0]) {
5332 			sc->tids.etid_base = val[0];
5333 			sc->tids.etid_end = val[1];
5334 			sc->tids.netids = val[1] - val[0] + 1;
5335 			sc->params.eo_wr_cred = val[2];
5336 			sc->params.ethoffload = 1;
5337 		}
5338 	}
5339 	if (sc->toecaps) {
5340 		/* query offload-related parameters */
5341 		param[0] = FW_PARAM_DEV(NTID);
5342 		param[1] = FW_PARAM_PFVF(SERVER_START);
5343 		param[2] = FW_PARAM_PFVF(SERVER_END);
5344 		param[3] = FW_PARAM_PFVF(TDDP_START);
5345 		param[4] = FW_PARAM_PFVF(TDDP_END);
5346 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5347 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5348 		if (rc != 0) {
5349 			device_printf(sc->dev,
5350 			    "failed to query TOE parameters: %d.\n", rc);
5351 			return (rc);
5352 		}
5353 		sc->tids.ntids = val[0];
5354 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5355 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5356 			sc->tids.ntids -= sc->tids.nhpftids;
5357 		}
5358 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5359 		if ((int)val[2] > (int)val[1]) {
5360 			sc->tids.stid_base = val[1];
5361 			sc->tids.nstids = val[2] - val[1] + 1;
5362 		}
5363 		sc->vres.ddp.start = val[3];
5364 		sc->vres.ddp.size = val[4] - val[3] + 1;
5365 		sc->params.ofldq_wr_cred = val[5];
5366 		sc->params.offload = 1;
5367 	} else {
5368 		/*
5369 		 * The firmware attempts memfree TOE configuration for -SO cards
5370 		 * and will report toecaps=0 if it runs out of resources (this
5371 		 * depends on the config file).  It may not report 0 for other
5372 		 * capabilities dependent on the TOE in this case.  Set them to
5373 		 * 0 here so that the driver doesn't bother tracking resources
5374 		 * that will never be used.
5375 		 */
5376 		sc->iscsicaps = 0;
5377 		sc->rdmacaps = 0;
5378 	}
5379 	if (sc->rdmacaps) {
5380 		param[0] = FW_PARAM_PFVF(STAG_START);
5381 		param[1] = FW_PARAM_PFVF(STAG_END);
5382 		param[2] = FW_PARAM_PFVF(RQ_START);
5383 		param[3] = FW_PARAM_PFVF(RQ_END);
5384 		param[4] = FW_PARAM_PFVF(PBL_START);
5385 		param[5] = FW_PARAM_PFVF(PBL_END);
5386 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5387 		if (rc != 0) {
5388 			device_printf(sc->dev,
5389 			    "failed to query RDMA parameters(1): %d.\n", rc);
5390 			return (rc);
5391 		}
5392 		sc->vres.stag.start = val[0];
5393 		sc->vres.stag.size = val[1] - val[0] + 1;
5394 		sc->vres.rq.start = val[2];
5395 		sc->vres.rq.size = val[3] - val[2] + 1;
5396 		sc->vres.pbl.start = val[4];
5397 		sc->vres.pbl.size = val[5] - val[4] + 1;
5398 
5399 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5400 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5401 		param[2] = FW_PARAM_PFVF(CQ_START);
5402 		param[3] = FW_PARAM_PFVF(CQ_END);
5403 		param[4] = FW_PARAM_PFVF(OCQ_START);
5404 		param[5] = FW_PARAM_PFVF(OCQ_END);
5405 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5406 		if (rc != 0) {
5407 			device_printf(sc->dev,
5408 			    "failed to query RDMA parameters(2): %d.\n", rc);
5409 			return (rc);
5410 		}
5411 		sc->vres.qp.start = val[0];
5412 		sc->vres.qp.size = val[1] - val[0] + 1;
5413 		sc->vres.cq.start = val[2];
5414 		sc->vres.cq.size = val[3] - val[2] + 1;
5415 		sc->vres.ocq.start = val[4];
5416 		sc->vres.ocq.size = val[5] - val[4] + 1;
5417 
5418 		param[0] = FW_PARAM_PFVF(SRQ_START);
5419 		param[1] = FW_PARAM_PFVF(SRQ_END);
5420 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5421 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5422 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5423 		if (rc != 0) {
5424 			device_printf(sc->dev,
5425 			    "failed to query RDMA parameters(3): %d.\n", rc);
5426 			return (rc);
5427 		}
5428 		sc->vres.srq.start = val[0];
5429 		sc->vres.srq.size = val[1] - val[0] + 1;
5430 		sc->params.max_ordird_qp = val[2];
5431 		sc->params.max_ird_adapter = val[3];
5432 	}
5433 	if (sc->iscsicaps) {
5434 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5435 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5436 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5437 		if (rc != 0) {
5438 			device_printf(sc->dev,
5439 			    "failed to query iSCSI parameters: %d.\n", rc);
5440 			return (rc);
5441 		}
5442 		sc->vres.iscsi.start = val[0];
5443 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5444 	}
5445 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5446 		param[0] = FW_PARAM_PFVF(TLS_START);
5447 		param[1] = FW_PARAM_PFVF(TLS_END);
5448 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5449 		if (rc != 0) {
5450 			device_printf(sc->dev,
5451 			    "failed to query TLS parameters: %d.\n", rc);
5452 			return (rc);
5453 		}
5454 		sc->vres.key.start = val[0];
5455 		sc->vres.key.size = val[1] - val[0] + 1;
5456 	}
5457 
5458 	/*
5459 	 * We've got the params we wanted to query directly from the firmware.
5460 	 * Grab some others via other means.
5461 	 */
5462 	t4_init_sge_params(sc);
5463 	t4_init_tp_params(sc);
5464 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5465 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5466 
5467 	rc = t4_verify_chip_settings(sc);
5468 	if (rc != 0)
5469 		return (rc);
5470 	t4_init_rx_buf_info(sc);
5471 
5472 	return (rc);
5473 }
5474 
5475 #ifdef KERN_TLS
5476 static void
5477 ktls_tick(void *arg)
5478 {
5479 	struct adapter *sc;
5480 	uint32_t tstamp;
5481 
5482 	sc = arg;
5483 	tstamp = tcp_ts_getticks();
5484 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5485 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5486 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5487 }
5488 
5489 static int
5490 t4_config_kern_tls(struct adapter *sc, bool enable)
5491 {
5492 	int rc;
5493 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5494 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5495 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5496 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5497 
5498 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5499 	if (rc != 0) {
5500 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5501 		    enable ?  "enable" : "disable", rc);
5502 		return (rc);
5503 	}
5504 
5505 	if (enable) {
5506 		sc->flags |= KERN_TLS_ON;
5507 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5508 		    C_HARDCLOCK);
5509 	} else {
5510 		sc->flags &= ~KERN_TLS_ON;
5511 		callout_stop(&sc->ktls_tick);
5512 	}
5513 
5514 	return (rc);
5515 }
5516 #endif
5517 
5518 static int
5519 set_params__post_init(struct adapter *sc)
5520 {
5521 	uint32_t mask, param, val;
5522 #ifdef TCP_OFFLOAD
5523 	int i, v, shift;
5524 #endif
5525 
5526 	/* ask for encapsulated CPLs */
5527 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5528 	val = 1;
5529 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5530 
5531 	/* Enable 32b port caps if the firmware supports it. */
5532 	param = FW_PARAM_PFVF(PORT_CAPS32);
5533 	val = 1;
5534 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5535 		sc->params.port_caps32 = 1;
5536 
5537 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5538 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5539 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5540 	    V_MASKFILTER(val - 1));
5541 
5542 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5543 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5544 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5545 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5546 	val = 0;
5547 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5548 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5549 		    F_ATTACKFILTERENABLE);
5550 		val |= F_DROPERRORATTACK;
5551 	}
5552 	if (t4_drop_ip_fragments != 0) {
5553 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5554 		    F_FRAGMENTDROP);
5555 		val |= F_DROPERRORFRAG;
5556 	}
5557 	if (t4_drop_pkts_with_l2_errors != 0)
5558 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5559 	if (t4_drop_pkts_with_l3_errors != 0) {
5560 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5561 		    F_DROPERRORCSUMIP;
5562 	}
5563 	if (t4_drop_pkts_with_l4_errors != 0) {
5564 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5565 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5566 	}
5567 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5568 
5569 #ifdef TCP_OFFLOAD
5570 	/*
5571 	 * Override the TOE timers with user provided tunables.  This is not the
5572 	 * recommended way to change the timers (the firmware config file is) so
5573 	 * these tunables are not documented.
5574 	 *
5575 	 * All the timer tunables are in microseconds.
5576 	 */
5577 	if (t4_toe_keepalive_idle != 0) {
5578 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5579 		v &= M_KEEPALIVEIDLE;
5580 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5581 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5582 	}
5583 	if (t4_toe_keepalive_interval != 0) {
5584 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5585 		v &= M_KEEPALIVEINTVL;
5586 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5587 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5588 	}
5589 	if (t4_toe_keepalive_count != 0) {
5590 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5591 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5592 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5593 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5594 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5595 	}
5596 	if (t4_toe_rexmt_min != 0) {
5597 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5598 		v &= M_RXTMIN;
5599 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5600 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5601 	}
5602 	if (t4_toe_rexmt_max != 0) {
5603 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5604 		v &= M_RXTMAX;
5605 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5606 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5607 	}
5608 	if (t4_toe_rexmt_count != 0) {
5609 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5610 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5611 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5612 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5613 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5614 	}
5615 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5616 		if (t4_toe_rexmt_backoff[i] != -1) {
5617 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5618 			shift = (i & 3) << 3;
5619 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5620 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5621 		}
5622 	}
5623 #endif
5624 
5625 #ifdef KERN_TLS
5626 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
5627 	    sc->toecaps & FW_CAPS_CONFIG_TOE) {
5628 		/*
5629 		 * Limit TOE connections to 2 reassembly "islands".  This is
5630 		 * required for TOE TLS connections to downgrade to plain TOE
5631 		 * connections if an unsupported TLS version or ciphersuite is
5632 		 * used.
5633 		 */
5634 		t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG,
5635 		    V_PASSMODE(M_PASSMODE), V_PASSMODE(2));
5636 		if (is_ktls(sc)) {
5637 			sc->tlst.inline_keys = t4_tls_inline_keys;
5638 			sc->tlst.combo_wrs = t4_tls_combo_wrs;
5639 			if (t4_kern_tls != 0)
5640 				t4_config_kern_tls(sc, true);
5641 		}
5642 	}
5643 #endif
5644 	return (0);
5645 }
5646 
5647 #undef FW_PARAM_PFVF
5648 #undef FW_PARAM_DEV
5649 
5650 static void
5651 t4_set_desc(struct adapter *sc)
5652 {
5653 	char buf[128];
5654 	struct adapter_params *p = &sc->params;
5655 
5656 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
5657 
5658 	device_set_desc_copy(sc->dev, buf);
5659 }
5660 
5661 static inline void
5662 ifmedia_add4(struct ifmedia *ifm, int m)
5663 {
5664 
5665 	ifmedia_add(ifm, m, 0, NULL);
5666 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5667 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5668 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5669 }
5670 
5671 /*
5672  * This is the selected media, which is not quite the same as the active media.
5673  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5674  * and active are not the same, and "media: Ethernet selected" otherwise.
5675  */
5676 static void
5677 set_current_media(struct port_info *pi)
5678 {
5679 	struct link_config *lc;
5680 	struct ifmedia *ifm;
5681 	int mword;
5682 	u_int speed;
5683 
5684 	PORT_LOCK_ASSERT_OWNED(pi);
5685 
5686 	/* Leave current media alone if it's already set to IFM_NONE. */
5687 	ifm = &pi->media;
5688 	if (ifm->ifm_cur != NULL &&
5689 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5690 		return;
5691 
5692 	lc = &pi->link_cfg;
5693 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5694 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5695 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5696 		return;
5697 	}
5698 	mword = IFM_ETHER | IFM_FDX;
5699 	if (lc->requested_fc & PAUSE_TX)
5700 		mword |= IFM_ETH_TXPAUSE;
5701 	if (lc->requested_fc & PAUSE_RX)
5702 		mword |= IFM_ETH_RXPAUSE;
5703 	if (lc->requested_speed == 0)
5704 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5705 	else
5706 		speed = lc->requested_speed;
5707 	mword |= port_mword(pi, speed_to_fwcap(speed));
5708 	ifmedia_set(ifm, mword);
5709 }
5710 
5711 /*
5712  * Returns true if the ifmedia list for the port cannot change.
5713  */
5714 static bool
5715 fixed_ifmedia(struct port_info *pi)
5716 {
5717 
5718 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5719 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5720 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5721 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5722 	    pi->port_type == FW_PORT_TYPE_KX ||
5723 	    pi->port_type == FW_PORT_TYPE_KR ||
5724 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5725 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5726 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5727 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5728 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5729 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5730 }
5731 
5732 static void
5733 build_medialist(struct port_info *pi)
5734 {
5735 	uint32_t ss, speed;
5736 	int unknown, mword, bit;
5737 	struct link_config *lc;
5738 	struct ifmedia *ifm;
5739 
5740 	PORT_LOCK_ASSERT_OWNED(pi);
5741 
5742 	if (pi->flags & FIXED_IFMEDIA)
5743 		return;
5744 
5745 	/*
5746 	 * Rebuild the ifmedia list.
5747 	 */
5748 	ifm = &pi->media;
5749 	ifmedia_removeall(ifm);
5750 	lc = &pi->link_cfg;
5751 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5752 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5753 		MPASS(ss != 0);
5754 no_media:
5755 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5756 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5757 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5758 		return;
5759 	}
5760 
5761 	unknown = 0;
5762 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5763 		speed = 1 << bit;
5764 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5765 		if (ss & speed) {
5766 			mword = port_mword(pi, speed);
5767 			if (mword == IFM_NONE) {
5768 				goto no_media;
5769 			} else if (mword == IFM_UNKNOWN)
5770 				unknown++;
5771 			else
5772 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5773 		}
5774 	}
5775 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5776 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5777 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5778 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5779 
5780 	set_current_media(pi);
5781 }
5782 
5783 /*
5784  * Initialize the requested fields in the link config based on driver tunables.
5785  */
5786 static void
5787 init_link_config(struct port_info *pi)
5788 {
5789 	struct link_config *lc = &pi->link_cfg;
5790 
5791 	PORT_LOCK_ASSERT_OWNED(pi);
5792 
5793 	lc->requested_caps = 0;
5794 	lc->requested_speed = 0;
5795 
5796 	if (t4_autoneg == 0)
5797 		lc->requested_aneg = AUTONEG_DISABLE;
5798 	else if (t4_autoneg == 1)
5799 		lc->requested_aneg = AUTONEG_ENABLE;
5800 	else
5801 		lc->requested_aneg = AUTONEG_AUTO;
5802 
5803 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5804 	    PAUSE_AUTONEG);
5805 
5806 	if (t4_fec & FEC_AUTO)
5807 		lc->requested_fec = FEC_AUTO;
5808 	else if (t4_fec == 0)
5809 		lc->requested_fec = FEC_NONE;
5810 	else {
5811 		/* -1 is handled by the FEC_AUTO block above and not here. */
5812 		lc->requested_fec = t4_fec &
5813 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5814 		if (lc->requested_fec == 0)
5815 			lc->requested_fec = FEC_AUTO;
5816 	}
5817 	if (t4_force_fec < 0)
5818 		lc->force_fec = -1;
5819 	else if (t4_force_fec > 0)
5820 		lc->force_fec = 1;
5821 	else
5822 		lc->force_fec = 0;
5823 }
5824 
5825 /*
5826  * Makes sure that all requested settings comply with what's supported by the
5827  * port.  Returns the number of settings that were invalid and had to be fixed.
5828  */
5829 static int
5830 fixup_link_config(struct port_info *pi)
5831 {
5832 	int n = 0;
5833 	struct link_config *lc = &pi->link_cfg;
5834 	uint32_t fwspeed;
5835 
5836 	PORT_LOCK_ASSERT_OWNED(pi);
5837 
5838 	/* Speed (when not autonegotiating) */
5839 	if (lc->requested_speed != 0) {
5840 		fwspeed = speed_to_fwcap(lc->requested_speed);
5841 		if ((fwspeed & lc->pcaps) == 0) {
5842 			n++;
5843 			lc->requested_speed = 0;
5844 		}
5845 	}
5846 
5847 	/* Link autonegotiation */
5848 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5849 	    lc->requested_aneg == AUTONEG_DISABLE ||
5850 	    lc->requested_aneg == AUTONEG_AUTO);
5851 	if (lc->requested_aneg == AUTONEG_ENABLE &&
5852 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5853 		n++;
5854 		lc->requested_aneg = AUTONEG_AUTO;
5855 	}
5856 
5857 	/* Flow control */
5858 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5859 	if (lc->requested_fc & PAUSE_TX &&
5860 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5861 		n++;
5862 		lc->requested_fc &= ~PAUSE_TX;
5863 	}
5864 	if (lc->requested_fc & PAUSE_RX &&
5865 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5866 		n++;
5867 		lc->requested_fc &= ~PAUSE_RX;
5868 	}
5869 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
5870 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
5871 		n++;
5872 		lc->requested_fc |= PAUSE_AUTONEG;
5873 	}
5874 
5875 	/* FEC */
5876 	if ((lc->requested_fec & FEC_RS &&
5877 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
5878 	    (lc->requested_fec & FEC_BASER_RS &&
5879 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
5880 		n++;
5881 		lc->requested_fec = FEC_AUTO;
5882 	}
5883 
5884 	return (n);
5885 }
5886 
5887 /*
5888  * Apply the requested L1 settings, which are expected to be valid, to the
5889  * hardware.
5890  */
5891 static int
5892 apply_link_config(struct port_info *pi)
5893 {
5894 	struct adapter *sc = pi->adapter;
5895 	struct link_config *lc = &pi->link_cfg;
5896 	int rc;
5897 
5898 #ifdef INVARIANTS
5899 	ASSERT_SYNCHRONIZED_OP(sc);
5900 	PORT_LOCK_ASSERT_OWNED(pi);
5901 
5902 	if (lc->requested_aneg == AUTONEG_ENABLE)
5903 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
5904 	if (!(lc->requested_fc & PAUSE_AUTONEG))
5905 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
5906 	if (lc->requested_fc & PAUSE_TX)
5907 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
5908 	if (lc->requested_fc & PAUSE_RX)
5909 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
5910 	if (lc->requested_fec & FEC_RS)
5911 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
5912 	if (lc->requested_fec & FEC_BASER_RS)
5913 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
5914 #endif
5915 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5916 	if (rc != 0) {
5917 		/* Don't complain if the VF driver gets back an EPERM. */
5918 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
5919 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
5920 	} else {
5921 		/*
5922 		 * An L1_CFG will almost always result in a link-change event if
5923 		 * the link is up, and the driver will refresh the actual
5924 		 * fec/fc/etc. when the notification is processed.  If the link
5925 		 * is down then the actual settings are meaningless.
5926 		 *
5927 		 * This takes care of the case where a change in the L1 settings
5928 		 * may not result in a notification.
5929 		 */
5930 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
5931 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
5932 	}
5933 	return (rc);
5934 }
5935 
5936 #define FW_MAC_EXACT_CHUNK	7
5937 struct mcaddr_ctx {
5938 	struct ifnet *ifp;
5939 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
5940 	uint64_t hash;
5941 	int i;
5942 	int del;
5943 	int rc;
5944 };
5945 
5946 static u_int
5947 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
5948 {
5949 	struct mcaddr_ctx *ctx = arg;
5950 	struct vi_info *vi = ctx->ifp->if_softc;
5951 	struct port_info *pi = vi->pi;
5952 	struct adapter *sc = pi->adapter;
5953 
5954 	if (ctx->rc < 0)
5955 		return (0);
5956 
5957 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
5958 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
5959 	ctx->i++;
5960 
5961 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
5962 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
5963 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
5964 		if (ctx->rc < 0) {
5965 			int j;
5966 
5967 			for (j = 0; j < ctx->i; j++) {
5968 				if_printf(ctx->ifp,
5969 				    "failed to add mc address"
5970 				    " %02x:%02x:%02x:"
5971 				    "%02x:%02x:%02x rc=%d\n",
5972 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
5973 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
5974 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
5975 				    -ctx->rc);
5976 			}
5977 			return (0);
5978 		}
5979 		ctx->del = 0;
5980 		ctx->i = 0;
5981 	}
5982 
5983 	return (1);
5984 }
5985 
5986 /*
5987  * Program the port's XGMAC based on parameters in ifnet.  The caller also
5988  * indicates which parameters should be programmed (the rest are left alone).
5989  */
5990 int
5991 update_mac_settings(struct ifnet *ifp, int flags)
5992 {
5993 	int rc = 0;
5994 	struct vi_info *vi = ifp->if_softc;
5995 	struct port_info *pi = vi->pi;
5996 	struct adapter *sc = pi->adapter;
5997 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
5998 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
5999 
6000 	ASSERT_SYNCHRONIZED_OP(sc);
6001 	KASSERT(flags, ("%s: not told what to update.", __func__));
6002 
6003 	if (flags & XGMAC_MTU)
6004 		mtu = ifp->if_mtu;
6005 
6006 	if (flags & XGMAC_PROMISC)
6007 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
6008 
6009 	if (flags & XGMAC_ALLMULTI)
6010 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
6011 
6012 	if (flags & XGMAC_VLANEX)
6013 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6014 
6015 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6016 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6017 		    allmulti, 1, vlanex, false);
6018 		if (rc) {
6019 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6020 			    rc);
6021 			return (rc);
6022 		}
6023 	}
6024 
6025 	if (flags & XGMAC_UCADDR) {
6026 		uint8_t ucaddr[ETHER_ADDR_LEN];
6027 
6028 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
6029 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6030 		    ucaddr, true, &vi->smt_idx);
6031 		if (rc < 0) {
6032 			rc = -rc;
6033 			if_printf(ifp, "change_mac failed: %d\n", rc);
6034 			return (rc);
6035 		} else {
6036 			vi->xact_addr_filt = rc;
6037 			rc = 0;
6038 		}
6039 	}
6040 
6041 	if (flags & XGMAC_MCADDRS) {
6042 		struct epoch_tracker et;
6043 		struct mcaddr_ctx ctx;
6044 		int j;
6045 
6046 		ctx.ifp = ifp;
6047 		ctx.hash = 0;
6048 		ctx.i = 0;
6049 		ctx.del = 1;
6050 		ctx.rc = 0;
6051 		/*
6052 		 * Unlike other drivers, we accumulate list of pointers into
6053 		 * interface address lists and we need to keep it safe even
6054 		 * after if_foreach_llmaddr() returns, thus we must enter the
6055 		 * network epoch.
6056 		 */
6057 		NET_EPOCH_ENTER(et);
6058 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6059 		if (ctx.rc < 0) {
6060 			NET_EPOCH_EXIT(et);
6061 			rc = -ctx.rc;
6062 			return (rc);
6063 		}
6064 		if (ctx.i > 0) {
6065 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6066 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6067 			NET_EPOCH_EXIT(et);
6068 			if (rc < 0) {
6069 				rc = -rc;
6070 				for (j = 0; j < ctx.i; j++) {
6071 					if_printf(ifp,
6072 					    "failed to add mcast address"
6073 					    " %02x:%02x:%02x:"
6074 					    "%02x:%02x:%02x rc=%d\n",
6075 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6076 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6077 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6078 					    rc);
6079 				}
6080 				return (rc);
6081 			}
6082 			ctx.del = 0;
6083 		} else
6084 			NET_EPOCH_EXIT(et);
6085 
6086 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6087 		if (rc != 0)
6088 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6089 			    rc);
6090 		if (ctx.del == 0) {
6091 			/* We clobbered the VXLAN entry if there was one. */
6092 			pi->vxlan_tcam_entry = false;
6093 		}
6094 	}
6095 
6096 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6097 	    pi->vxlan_tcam_entry == false) {
6098 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6099 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6100 		    true);
6101 		if (rc < 0) {
6102 			rc = -rc;
6103 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6104 			    rc);
6105 		} else {
6106 			MPASS(rc == sc->rawf_base + pi->port_id);
6107 			rc = 0;
6108 			pi->vxlan_tcam_entry = true;
6109 		}
6110 	}
6111 
6112 	return (rc);
6113 }
6114 
6115 /*
6116  * {begin|end}_synchronized_op must be called from the same thread.
6117  */
6118 int
6119 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6120     char *wmesg)
6121 {
6122 	int rc, pri;
6123 
6124 #ifdef WITNESS
6125 	/* the caller thinks it's ok to sleep, but is it really? */
6126 	if (flags & SLEEP_OK)
6127 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6128 		    "begin_synchronized_op");
6129 #endif
6130 
6131 	if (INTR_OK)
6132 		pri = PCATCH;
6133 	else
6134 		pri = 0;
6135 
6136 	ADAPTER_LOCK(sc);
6137 	for (;;) {
6138 
6139 		if (vi && IS_DOOMED(vi)) {
6140 			rc = ENXIO;
6141 			goto done;
6142 		}
6143 
6144 		if (!IS_BUSY(sc)) {
6145 			rc = 0;
6146 			break;
6147 		}
6148 
6149 		if (!(flags & SLEEP_OK)) {
6150 			rc = EBUSY;
6151 			goto done;
6152 		}
6153 
6154 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6155 			rc = EINTR;
6156 			goto done;
6157 		}
6158 	}
6159 
6160 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6161 	SET_BUSY(sc);
6162 #ifdef INVARIANTS
6163 	sc->last_op = wmesg;
6164 	sc->last_op_thr = curthread;
6165 	sc->last_op_flags = flags;
6166 #endif
6167 
6168 done:
6169 	if (!(flags & HOLD_LOCK) || rc)
6170 		ADAPTER_UNLOCK(sc);
6171 
6172 	return (rc);
6173 }
6174 
6175 /*
6176  * Tell if_ioctl and if_init that the VI is going away.  This is
6177  * special variant of begin_synchronized_op and must be paired with a
6178  * call to end_synchronized_op.
6179  */
6180 void
6181 doom_vi(struct adapter *sc, struct vi_info *vi)
6182 {
6183 
6184 	ADAPTER_LOCK(sc);
6185 	SET_DOOMED(vi);
6186 	wakeup(&sc->flags);
6187 	while (IS_BUSY(sc))
6188 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6189 	SET_BUSY(sc);
6190 #ifdef INVARIANTS
6191 	sc->last_op = "t4detach";
6192 	sc->last_op_thr = curthread;
6193 	sc->last_op_flags = 0;
6194 #endif
6195 	ADAPTER_UNLOCK(sc);
6196 }
6197 
6198 /*
6199  * {begin|end}_synchronized_op must be called from the same thread.
6200  */
6201 void
6202 end_synchronized_op(struct adapter *sc, int flags)
6203 {
6204 
6205 	if (flags & LOCK_HELD)
6206 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6207 	else
6208 		ADAPTER_LOCK(sc);
6209 
6210 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6211 	CLR_BUSY(sc);
6212 	wakeup(&sc->flags);
6213 	ADAPTER_UNLOCK(sc);
6214 }
6215 
6216 static int
6217 cxgbe_init_synchronized(struct vi_info *vi)
6218 {
6219 	struct port_info *pi = vi->pi;
6220 	struct adapter *sc = pi->adapter;
6221 	struct ifnet *ifp = vi->ifp;
6222 	int rc = 0, i;
6223 	struct sge_txq *txq;
6224 
6225 	ASSERT_SYNCHRONIZED_OP(sc);
6226 
6227 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6228 		return (0);	/* already running */
6229 
6230 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6231 		return (rc);	/* error message displayed already */
6232 
6233 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6234 		return (rc); /* error message displayed already */
6235 
6236 	rc = update_mac_settings(ifp, XGMAC_ALL);
6237 	if (rc)
6238 		goto done;	/* error message displayed already */
6239 
6240 	PORT_LOCK(pi);
6241 	if (pi->up_vis == 0) {
6242 		t4_update_port_info(pi);
6243 		fixup_link_config(pi);
6244 		build_medialist(pi);
6245 		apply_link_config(pi);
6246 	}
6247 
6248 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6249 	if (rc != 0) {
6250 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6251 		PORT_UNLOCK(pi);
6252 		goto done;
6253 	}
6254 
6255 	/*
6256 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6257 	 * if this changes.
6258 	 */
6259 
6260 	for_each_txq(vi, i, txq) {
6261 		TXQ_LOCK(txq);
6262 		txq->eq.flags |= EQ_ENABLED;
6263 		TXQ_UNLOCK(txq);
6264 	}
6265 
6266 	/*
6267 	 * The first iq of the first port to come up is used for tracing.
6268 	 */
6269 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6270 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6271 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6272 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6273 		    V_QUEUENUMBER(sc->traceq));
6274 		pi->flags |= HAS_TRACEQ;
6275 	}
6276 
6277 	/* all ok */
6278 	pi->up_vis++;
6279 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6280 	if (pi->link_cfg.link_ok)
6281 		t4_os_link_changed(pi);
6282 	PORT_UNLOCK(pi);
6283 
6284 	mtx_lock(&vi->tick_mtx);
6285 	if (ifp->if_get_counter == vi_get_counter)
6286 		callout_reset(&vi->tick, hz, vi_tick, vi);
6287 	else
6288 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6289 	mtx_unlock(&vi->tick_mtx);
6290 done:
6291 	if (rc != 0)
6292 		cxgbe_uninit_synchronized(vi);
6293 
6294 	return (rc);
6295 }
6296 
6297 /*
6298  * Idempotent.
6299  */
6300 static int
6301 cxgbe_uninit_synchronized(struct vi_info *vi)
6302 {
6303 	struct port_info *pi = vi->pi;
6304 	struct adapter *sc = pi->adapter;
6305 	struct ifnet *ifp = vi->ifp;
6306 	int rc, i;
6307 	struct sge_txq *txq;
6308 
6309 	ASSERT_SYNCHRONIZED_OP(sc);
6310 
6311 	if (!(vi->flags & VI_INIT_DONE)) {
6312 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6313 			KASSERT(0, ("uninited VI is running"));
6314 			if_printf(ifp, "uninited VI with running ifnet.  "
6315 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6316 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
6317 			    ifp->if_drv_flags);
6318 		}
6319 		return (0);
6320 	}
6321 
6322 	/*
6323 	 * Disable the VI so that all its data in either direction is discarded
6324 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6325 	 * tick) intact as the TP can deliver negative advice or data that it's
6326 	 * holding in its RAM (for an offloaded connection) even after the VI is
6327 	 * disabled.
6328 	 */
6329 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6330 	if (rc) {
6331 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6332 		return (rc);
6333 	}
6334 
6335 	for_each_txq(vi, i, txq) {
6336 		TXQ_LOCK(txq);
6337 		txq->eq.flags &= ~EQ_ENABLED;
6338 		TXQ_UNLOCK(txq);
6339 	}
6340 
6341 	mtx_lock(&vi->tick_mtx);
6342 	callout_stop(&vi->tick);
6343 	mtx_unlock(&vi->tick_mtx);
6344 
6345 	PORT_LOCK(pi);
6346 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6347 		PORT_UNLOCK(pi);
6348 		return (0);
6349 	}
6350 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6351 	pi->up_vis--;
6352 	if (pi->up_vis > 0) {
6353 		PORT_UNLOCK(pi);
6354 		return (0);
6355 	}
6356 
6357 	pi->link_cfg.link_ok = false;
6358 	pi->link_cfg.speed = 0;
6359 	pi->link_cfg.link_down_rc = 255;
6360 	t4_os_link_changed(pi);
6361 	PORT_UNLOCK(pi);
6362 
6363 	return (0);
6364 }
6365 
6366 /*
6367  * It is ok for this function to fail midway and return right away.  t4_detach
6368  * will walk the entire sc->irq list and clean up whatever is valid.
6369  */
6370 int
6371 t4_setup_intr_handlers(struct adapter *sc)
6372 {
6373 	int rc, rid, p, q, v;
6374 	char s[8];
6375 	struct irq *irq;
6376 	struct port_info *pi;
6377 	struct vi_info *vi;
6378 	struct sge *sge = &sc->sge;
6379 	struct sge_rxq *rxq;
6380 #ifdef TCP_OFFLOAD
6381 	struct sge_ofld_rxq *ofld_rxq;
6382 #endif
6383 #ifdef DEV_NETMAP
6384 	struct sge_nm_rxq *nm_rxq;
6385 #endif
6386 #ifdef RSS
6387 	int nbuckets = rss_getnumbuckets();
6388 #endif
6389 
6390 	/*
6391 	 * Setup interrupts.
6392 	 */
6393 	irq = &sc->irq[0];
6394 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6395 	if (forwarding_intr_to_fwq(sc))
6396 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6397 
6398 	/* Multiple interrupts. */
6399 	if (sc->flags & IS_VF)
6400 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6401 		    ("%s: too few intr.", __func__));
6402 	else
6403 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6404 		    ("%s: too few intr.", __func__));
6405 
6406 	/* The first one is always error intr on PFs */
6407 	if (!(sc->flags & IS_VF)) {
6408 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6409 		if (rc != 0)
6410 			return (rc);
6411 		irq++;
6412 		rid++;
6413 	}
6414 
6415 	/* The second one is always the firmware event queue (first on VFs) */
6416 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6417 	if (rc != 0)
6418 		return (rc);
6419 	irq++;
6420 	rid++;
6421 
6422 	for_each_port(sc, p) {
6423 		pi = sc->port[p];
6424 		for_each_vi(pi, v, vi) {
6425 			vi->first_intr = rid - 1;
6426 
6427 			if (vi->nnmrxq > 0) {
6428 				int n = max(vi->nrxq, vi->nnmrxq);
6429 
6430 				rxq = &sge->rxq[vi->first_rxq];
6431 #ifdef DEV_NETMAP
6432 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6433 #endif
6434 				for (q = 0; q < n; q++) {
6435 					snprintf(s, sizeof(s), "%x%c%x", p,
6436 					    'a' + v, q);
6437 					if (q < vi->nrxq)
6438 						irq->rxq = rxq++;
6439 #ifdef DEV_NETMAP
6440 					if (q < vi->nnmrxq)
6441 						irq->nm_rxq = nm_rxq++;
6442 
6443 					if (irq->nm_rxq != NULL &&
6444 					    irq->rxq == NULL) {
6445 						/* Netmap rx only */
6446 						rc = t4_alloc_irq(sc, irq, rid,
6447 						    t4_nm_intr, irq->nm_rxq, s);
6448 					}
6449 					if (irq->nm_rxq != NULL &&
6450 					    irq->rxq != NULL) {
6451 						/* NIC and Netmap rx */
6452 						rc = t4_alloc_irq(sc, irq, rid,
6453 						    t4_vi_intr, irq, s);
6454 					}
6455 #endif
6456 					if (irq->rxq != NULL &&
6457 					    irq->nm_rxq == NULL) {
6458 						/* NIC rx only */
6459 						rc = t4_alloc_irq(sc, irq, rid,
6460 						    t4_intr, irq->rxq, s);
6461 					}
6462 					if (rc != 0)
6463 						return (rc);
6464 #ifdef RSS
6465 					if (q < vi->nrxq) {
6466 						bus_bind_intr(sc->dev, irq->res,
6467 						    rss_getcpu(q % nbuckets));
6468 					}
6469 #endif
6470 					irq++;
6471 					rid++;
6472 					vi->nintr++;
6473 				}
6474 			} else {
6475 				for_each_rxq(vi, q, rxq) {
6476 					snprintf(s, sizeof(s), "%x%c%x", p,
6477 					    'a' + v, q);
6478 					rc = t4_alloc_irq(sc, irq, rid,
6479 					    t4_intr, rxq, s);
6480 					if (rc != 0)
6481 						return (rc);
6482 #ifdef RSS
6483 					bus_bind_intr(sc->dev, irq->res,
6484 					    rss_getcpu(q % nbuckets));
6485 #endif
6486 					irq++;
6487 					rid++;
6488 					vi->nintr++;
6489 				}
6490 			}
6491 #ifdef TCP_OFFLOAD
6492 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6493 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6494 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6495 				    ofld_rxq, s);
6496 				if (rc != 0)
6497 					return (rc);
6498 				irq++;
6499 				rid++;
6500 				vi->nintr++;
6501 			}
6502 #endif
6503 		}
6504 	}
6505 	MPASS(irq == &sc->irq[sc->intr_count]);
6506 
6507 	return (0);
6508 }
6509 
6510 static void
6511 write_global_rss_key(struct adapter *sc)
6512 {
6513 #ifdef RSS
6514 	int i;
6515 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6516 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6517 
6518 	CTASSERT(RSS_KEYSIZE == 40);
6519 
6520 	rss_getkey((void *)&raw_rss_key[0]);
6521 	for (i = 0; i < nitems(rss_key); i++) {
6522 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6523 	}
6524 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6525 #endif
6526 }
6527 
6528 /*
6529  * Idempotent.
6530  */
6531 static int
6532 adapter_full_init(struct adapter *sc)
6533 {
6534 	int rc, i;
6535 
6536 	ASSERT_SYNCHRONIZED_OP(sc);
6537 
6538 	/*
6539 	 * queues that belong to the adapter (not any particular port).
6540 	 */
6541 	rc = t4_setup_adapter_queues(sc);
6542 	if (rc != 0)
6543 		return (rc);
6544 
6545 	for (i = 0; i < nitems(sc->tq); i++) {
6546 		if (sc->tq[i] != NULL)
6547 			continue;
6548 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6549 		    taskqueue_thread_enqueue, &sc->tq[i]);
6550 		if (sc->tq[i] == NULL) {
6551 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6552 			return (ENOMEM);
6553 		}
6554 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6555 		    device_get_nameunit(sc->dev), i);
6556 	}
6557 
6558 	if (!(sc->flags & IS_VF)) {
6559 		write_global_rss_key(sc);
6560 		t4_intr_enable(sc);
6561 	}
6562 	return (0);
6563 }
6564 
6565 int
6566 adapter_init(struct adapter *sc)
6567 {
6568 	int rc;
6569 
6570 	ASSERT_SYNCHRONIZED_OP(sc);
6571 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6572 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6573 	    ("%s: FULL_INIT_DONE already", __func__));
6574 
6575 	rc = adapter_full_init(sc);
6576 	if (rc != 0)
6577 		adapter_full_uninit(sc);
6578 	else
6579 		sc->flags |= FULL_INIT_DONE;
6580 
6581 	return (rc);
6582 }
6583 
6584 /*
6585  * Idempotent.
6586  */
6587 static void
6588 adapter_full_uninit(struct adapter *sc)
6589 {
6590 	int i;
6591 
6592 	t4_teardown_adapter_queues(sc);
6593 
6594 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
6595 		taskqueue_free(sc->tq[i]);
6596 		sc->tq[i] = NULL;
6597 	}
6598 
6599 	sc->flags &= ~FULL_INIT_DONE;
6600 }
6601 
6602 #ifdef RSS
6603 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6604     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6605     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6606     RSS_HASHTYPE_RSS_UDP_IPV6)
6607 
6608 /* Translates kernel hash types to hardware. */
6609 static int
6610 hashconfig_to_hashen(int hashconfig)
6611 {
6612 	int hashen = 0;
6613 
6614 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6615 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6616 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6617 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6618 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6619 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6620 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6621 	}
6622 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6623 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6624 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6625 	}
6626 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6627 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6628 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6629 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6630 
6631 	return (hashen);
6632 }
6633 
6634 /* Translates hardware hash types to kernel. */
6635 static int
6636 hashen_to_hashconfig(int hashen)
6637 {
6638 	int hashconfig = 0;
6639 
6640 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6641 		/*
6642 		 * If UDP hashing was enabled it must have been enabled for
6643 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6644 		 * enabling any 4-tuple hash is nonsense configuration.
6645 		 */
6646 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6647 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6648 
6649 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6650 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6651 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6652 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6653 	}
6654 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6655 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6656 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6657 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6658 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6659 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6660 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6661 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6662 
6663 	return (hashconfig);
6664 }
6665 #endif
6666 
6667 /*
6668  * Idempotent.
6669  */
6670 static int
6671 vi_full_init(struct vi_info *vi)
6672 {
6673 	struct adapter *sc = vi->adapter;
6674 	struct sge_rxq *rxq;
6675 	int rc, i, j;
6676 #ifdef RSS
6677 	int nbuckets = rss_getnumbuckets();
6678 	int hashconfig = rss_gethashconfig();
6679 	int extra;
6680 #endif
6681 
6682 	ASSERT_SYNCHRONIZED_OP(sc);
6683 
6684 	/*
6685 	 * Allocate tx/rx/fl queues for this VI.
6686 	 */
6687 	rc = t4_setup_vi_queues(vi);
6688 	if (rc != 0)
6689 		return (rc);
6690 
6691 	/*
6692 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6693 	 */
6694 	if (vi->nrxq > vi->rss_size) {
6695 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6696 		    "some queues will never receive traffic.\n", vi->nrxq,
6697 		    vi->rss_size);
6698 	} else if (vi->rss_size % vi->nrxq) {
6699 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6700 		    "expect uneven traffic distribution.\n", vi->nrxq,
6701 		    vi->rss_size);
6702 	}
6703 #ifdef RSS
6704 	if (vi->nrxq != nbuckets) {
6705 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6706 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6707 	}
6708 #endif
6709 	if (vi->rss == NULL)
6710 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6711 		    M_ZERO | M_WAITOK);
6712 	for (i = 0; i < vi->rss_size;) {
6713 #ifdef RSS
6714 		j = rss_get_indirection_to_bucket(i);
6715 		j %= vi->nrxq;
6716 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6717 		vi->rss[i++] = rxq->iq.abs_id;
6718 #else
6719 		for_each_rxq(vi, j, rxq) {
6720 			vi->rss[i++] = rxq->iq.abs_id;
6721 			if (i == vi->rss_size)
6722 				break;
6723 		}
6724 #endif
6725 	}
6726 
6727 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6728 	    vi->rss, vi->rss_size);
6729 	if (rc != 0) {
6730 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6731 		return (rc);
6732 	}
6733 
6734 #ifdef RSS
6735 	vi->hashen = hashconfig_to_hashen(hashconfig);
6736 
6737 	/*
6738 	 * We may have had to enable some hashes even though the global config
6739 	 * wants them disabled.  This is a potential problem that must be
6740 	 * reported to the user.
6741 	 */
6742 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6743 
6744 	/*
6745 	 * If we consider only the supported hash types, then the enabled hashes
6746 	 * are a superset of the requested hashes.  In other words, there cannot
6747 	 * be any supported hash that was requested but not enabled, but there
6748 	 * can be hashes that were not requested but had to be enabled.
6749 	 */
6750 	extra &= SUPPORTED_RSS_HASHTYPES;
6751 	MPASS((extra & hashconfig) == 0);
6752 
6753 	if (extra) {
6754 		CH_ALERT(vi,
6755 		    "global RSS config (0x%x) cannot be accommodated.\n",
6756 		    hashconfig);
6757 	}
6758 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6759 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6760 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6761 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6762 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6763 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6764 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6765 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6766 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6767 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6768 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6769 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6770 #else
6771 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6772 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6773 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6774 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6775 #endif
6776 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6777 	    0, 0);
6778 	if (rc != 0) {
6779 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6780 		return (rc);
6781 	}
6782 
6783 	return (0);
6784 }
6785 
6786 int
6787 vi_init(struct vi_info *vi)
6788 {
6789 	int rc;
6790 
6791 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6792 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6793 	    ("%s: VI_INIT_DONE already", __func__));
6794 
6795 	rc = vi_full_init(vi);
6796 	if (rc != 0)
6797 		vi_full_uninit(vi);
6798 	else
6799 		vi->flags |= VI_INIT_DONE;
6800 
6801 	return (rc);
6802 }
6803 
6804 /*
6805  * Idempotent.
6806  */
6807 static void
6808 vi_full_uninit(struct vi_info *vi)
6809 {
6810 
6811 	if (vi->flags & VI_INIT_DONE) {
6812 		quiesce_vi(vi);
6813 		free(vi->rss, M_CXGBE);
6814 		free(vi->nm_rss, M_CXGBE);
6815 	}
6816 
6817 	t4_teardown_vi_queues(vi);
6818 	vi->flags &= ~VI_INIT_DONE;
6819 }
6820 
6821 static void
6822 quiesce_txq(struct sge_txq *txq)
6823 {
6824 	struct sge_eq *eq = &txq->eq;
6825 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6826 
6827 	MPASS(eq->flags & EQ_SW_ALLOCATED);
6828 	MPASS(!(eq->flags & EQ_ENABLED));
6829 
6830 	/* Wait for the mp_ring to empty. */
6831 	while (!mp_ring_is_idle(txq->r)) {
6832 		mp_ring_check_drainage(txq->r, 4096);
6833 		pause("rquiesce", 1);
6834 	}
6835 	MPASS(txq->txp.npkt == 0);
6836 
6837 	if (eq->flags & EQ_HW_ALLOCATED) {
6838 		/*
6839 		 * Hardware is alive and working normally.  Wait for it to
6840 		 * finish and then wait for the driver to catch up and reclaim
6841 		 * all descriptors.
6842 		 */
6843 		while (spg->cidx != htobe16(eq->pidx))
6844 			pause("equiesce", 1);
6845 		while (eq->cidx != eq->pidx)
6846 			pause("dquiesce", 1);
6847 	} else {
6848 		/*
6849 		 * Hardware is unavailable.  Discard all pending tx and reclaim
6850 		 * descriptors directly.
6851 		 */
6852 		TXQ_LOCK(txq);
6853 		while (eq->cidx != eq->pidx) {
6854 			struct mbuf *m, *nextpkt;
6855 			struct tx_sdesc *txsd;
6856 
6857 			txsd = &txq->sdesc[eq->cidx];
6858 			for (m = txsd->m; m != NULL; m = nextpkt) {
6859 				nextpkt = m->m_nextpkt;
6860 				m->m_nextpkt = NULL;
6861 				m_freem(m);
6862 			}
6863 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
6864 		}
6865 		spg->pidx = spg->cidx = htobe16(eq->cidx);
6866 		TXQ_UNLOCK(txq);
6867 	}
6868 }
6869 
6870 static void
6871 quiesce_wrq(struct sge_wrq *wrq)
6872 {
6873 
6874 	/* XXXTX */
6875 }
6876 
6877 static void
6878 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
6879 {
6880 	/* Synchronize with the interrupt handler */
6881 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
6882 		pause("iqfree", 1);
6883 
6884 	if (fl != NULL) {
6885 		MPASS(iq->flags & IQ_HAS_FL);
6886 
6887 		mtx_lock(&sc->sfl_lock);
6888 		FL_LOCK(fl);
6889 		fl->flags |= FL_DOOMED;
6890 		FL_UNLOCK(fl);
6891 		callout_stop(&sc->sfl_callout);
6892 		mtx_unlock(&sc->sfl_lock);
6893 
6894 		KASSERT((fl->flags & FL_STARVING) == 0,
6895 		    ("%s: still starving", __func__));
6896 
6897 		/* Release all buffers if hardware is no longer available. */
6898 		if (!(iq->flags & IQ_HW_ALLOCATED))
6899 			free_fl_buffers(sc, fl);
6900 	}
6901 }
6902 
6903 /*
6904  * Wait for all activity on all the queues of the VI to complete.  It is assumed
6905  * that no new work is being enqueued by the hardware or the driver.  That part
6906  * should be arranged before calling this function.
6907  */
6908 static void
6909 quiesce_vi(struct vi_info *vi)
6910 {
6911 	int i;
6912 	struct adapter *sc = vi->adapter;
6913 	struct sge_rxq *rxq;
6914 	struct sge_txq *txq;
6915 #ifdef TCP_OFFLOAD
6916 	struct sge_ofld_rxq *ofld_rxq;
6917 #endif
6918 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6919 	struct sge_ofld_txq *ofld_txq;
6920 #endif
6921 
6922 	if (!(vi->flags & VI_INIT_DONE))
6923 		return;
6924 
6925 	for_each_txq(vi, i, txq) {
6926 		quiesce_txq(txq);
6927 	}
6928 
6929 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6930 	for_each_ofld_txq(vi, i, ofld_txq) {
6931 		quiesce_wrq(&ofld_txq->wrq);
6932 	}
6933 #endif
6934 
6935 	for_each_rxq(vi, i, rxq) {
6936 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
6937 	}
6938 
6939 #ifdef TCP_OFFLOAD
6940 	for_each_ofld_rxq(vi, i, ofld_rxq) {
6941 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
6942 	}
6943 #endif
6944 }
6945 
6946 static int
6947 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
6948     driver_intr_t *handler, void *arg, char *name)
6949 {
6950 	int rc;
6951 
6952 	irq->rid = rid;
6953 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
6954 	    RF_SHAREABLE | RF_ACTIVE);
6955 	if (irq->res == NULL) {
6956 		device_printf(sc->dev,
6957 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
6958 		return (ENOMEM);
6959 	}
6960 
6961 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
6962 	    NULL, handler, arg, &irq->tag);
6963 	if (rc != 0) {
6964 		device_printf(sc->dev,
6965 		    "failed to setup interrupt for rid %d, name %s: %d\n",
6966 		    rid, name, rc);
6967 	} else if (name)
6968 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
6969 
6970 	return (rc);
6971 }
6972 
6973 static int
6974 t4_free_irq(struct adapter *sc, struct irq *irq)
6975 {
6976 	if (irq->tag)
6977 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
6978 	if (irq->res)
6979 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
6980 
6981 	bzero(irq, sizeof(*irq));
6982 
6983 	return (0);
6984 }
6985 
6986 static void
6987 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
6988 {
6989 
6990 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
6991 	t4_get_regs(sc, buf, regs->len);
6992 }
6993 
6994 #define	A_PL_INDIR_CMD	0x1f8
6995 
6996 #define	S_PL_AUTOINC	31
6997 #define	M_PL_AUTOINC	0x1U
6998 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
6999 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7000 
7001 #define	S_PL_VFID	20
7002 #define	M_PL_VFID	0xffU
7003 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7004 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7005 
7006 #define	S_PL_ADDR	0
7007 #define	M_PL_ADDR	0xfffffU
7008 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7009 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7010 
7011 #define	A_PL_INDIR_DATA	0x1fc
7012 
7013 static uint64_t
7014 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7015 {
7016 	u32 stats[2];
7017 
7018 	if (sc->flags & IS_VF) {
7019 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7020 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7021 	} else {
7022 		mtx_assert(&sc->reg_lock, MA_OWNED);
7023 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7024 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7025 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7026 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7027 	}
7028 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7029 }
7030 
7031 static void
7032 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7033 {
7034 
7035 #define GET_STAT(name) \
7036 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7037 
7038 	if (!(sc->flags & IS_VF))
7039 		mtx_lock(&sc->reg_lock);
7040 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7041 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7042 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7043 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7044 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7045 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7046 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7047 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7048 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7049 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7050 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7051 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7052 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7053 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7054 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7055 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7056 	if (!(sc->flags & IS_VF))
7057 		mtx_unlock(&sc->reg_lock);
7058 
7059 #undef GET_STAT
7060 }
7061 
7062 static void
7063 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7064 {
7065 	int reg;
7066 
7067 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7068 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7069 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7070 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7071 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7072 }
7073 
7074 static void
7075 vi_refresh_stats(struct vi_info *vi)
7076 {
7077 	struct timeval tv;
7078 	const struct timeval interval = {0, 250000};	/* 250ms */
7079 
7080 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7081 
7082 	if (vi->flags & VI_SKIP_STATS)
7083 		return;
7084 
7085 	getmicrotime(&tv);
7086 	timevalsub(&tv, &interval);
7087 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7088 		return;
7089 
7090 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7091 	getmicrotime(&vi->last_refreshed);
7092 }
7093 
7094 static void
7095 cxgbe_refresh_stats(struct vi_info *vi)
7096 {
7097 	u_int i, v, tnl_cong_drops, chan_map;
7098 	struct timeval tv;
7099 	const struct timeval interval = {0, 250000};	/* 250ms */
7100 	struct port_info *pi;
7101 	struct adapter *sc;
7102 
7103 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7104 
7105 	if (vi->flags & VI_SKIP_STATS)
7106 		return;
7107 
7108 	getmicrotime(&tv);
7109 	timevalsub(&tv, &interval);
7110 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7111 		return;
7112 
7113 	pi = vi->pi;
7114 	sc = vi->adapter;
7115 	tnl_cong_drops = 0;
7116 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7117 	chan_map = pi->rx_e_chan_map;
7118 	while (chan_map) {
7119 		i = ffs(chan_map) - 1;
7120 		mtx_lock(&sc->reg_lock);
7121 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7122 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7123 		mtx_unlock(&sc->reg_lock);
7124 		tnl_cong_drops += v;
7125 		chan_map &= ~(1 << i);
7126 	}
7127 	pi->tnl_cong_drops = tnl_cong_drops;
7128 	getmicrotime(&vi->last_refreshed);
7129 }
7130 
7131 static void
7132 cxgbe_tick(void *arg)
7133 {
7134 	struct vi_info *vi = arg;
7135 
7136 	MPASS(IS_MAIN_VI(vi));
7137 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7138 
7139 	cxgbe_refresh_stats(vi);
7140 	callout_schedule(&vi->tick, hz);
7141 }
7142 
7143 static void
7144 vi_tick(void *arg)
7145 {
7146 	struct vi_info *vi = arg;
7147 
7148 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7149 
7150 	vi_refresh_stats(vi);
7151 	callout_schedule(&vi->tick, hz);
7152 }
7153 
7154 /*
7155  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7156  */
7157 static char *caps_decoder[] = {
7158 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7159 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7160 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7161 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7162 	    "\006HASHFILTER\007ETHOFLD",
7163 	"\20\001TOE",					/* 4: TOE */
7164 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7165 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7166 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7167 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7168 	    "\007T10DIF"
7169 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7170 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7171 	    "\004TLS_HW",
7172 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7173 		    "\004PO_INITIATOR\005PO_TARGET",
7174 };
7175 
7176 void
7177 t4_sysctls(struct adapter *sc)
7178 {
7179 	struct sysctl_ctx_list *ctx = &sc->ctx;
7180 	struct sysctl_oid *oid;
7181 	struct sysctl_oid_list *children, *c0;
7182 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7183 
7184 	/*
7185 	 * dev.t4nex.X.
7186 	 */
7187 	oid = device_get_sysctl_tree(sc->dev);
7188 	c0 = children = SYSCTL_CHILDREN(oid);
7189 
7190 	sc->sc_do_rxcopy = 1;
7191 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7192 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7193 
7194 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7195 	    sc->params.nports, "# of ports");
7196 
7197 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7198 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7199 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7200 	    "available doorbells");
7201 
7202 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7203 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7204 
7205 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7206 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7207 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7208 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7209 
7210 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7211 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7212 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7213 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7214 
7215 	t4_sge_sysctls(sc, ctx, children);
7216 
7217 	sc->lro_timeout = 100;
7218 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7219 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7220 
7221 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7222 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7223 
7224 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7225 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7226 
7227 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7228 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7229 
7230 	if (sc->flags & IS_VF)
7231 		return;
7232 
7233 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7234 	    NULL, chip_rev(sc), "chip hardware revision");
7235 
7236 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7237 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7238 
7239 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7240 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7241 
7242 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7243 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7244 
7245 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7246 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7247 
7248 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7249 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7250 
7251 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7252 	    sc->er_version, 0, "expansion ROM version");
7253 
7254 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7255 	    sc->bs_version, 0, "bootstrap firmware version");
7256 
7257 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7258 	    NULL, sc->params.scfg_vers, "serial config version");
7259 
7260 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7261 	    NULL, sc->params.vpd_vers, "VPD version");
7262 
7263 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7264 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7265 
7266 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7267 	    sc->cfcsum, "config file checksum");
7268 
7269 #define SYSCTL_CAP(name, n, text) \
7270 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7271 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7272 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7273 	    "available " text " capabilities")
7274 
7275 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7276 	SYSCTL_CAP(linkcaps, 1, "link");
7277 	SYSCTL_CAP(switchcaps, 2, "switch");
7278 	SYSCTL_CAP(niccaps, 3, "NIC");
7279 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7280 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7281 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7282 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7283 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7284 #undef SYSCTL_CAP
7285 
7286 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7287 	    NULL, sc->tids.nftids, "number of filters");
7288 
7289 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7290 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7291 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7292 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7293 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7294 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7295 
7296 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7297 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7298 	    sysctl_loadavg, "A",
7299 	    "microprocessor load averages (debug firmwares only)");
7300 
7301 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7302 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7303 	    "I", "core Vdd (in mV)");
7304 
7305 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7306 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7307 	    sysctl_cpus, "A", "local CPUs");
7308 
7309 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7310 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7311 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7312 
7313 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7314 	    &sc->swintr, 0, "software triggered interrupts");
7315 
7316 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7317 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7318 	    "1 = reset adapter, 0 = zero reset counter");
7319 
7320 	/*
7321 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7322 	 */
7323 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7324 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7325 	    "logs and miscellaneous information");
7326 	children = SYSCTL_CHILDREN(oid);
7327 
7328 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7329 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7330 	    sysctl_cctrl, "A", "congestion control");
7331 
7332 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7333 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7334 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7335 
7336 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7337 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7338 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7339 
7340 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7341 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7342 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7343 
7344 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7345 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7346 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7347 
7348 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7349 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7350 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7351 
7352 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7353 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7354 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7355 
7356 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7357 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7358 	    sysctl_cim_la, "A", "CIM logic analyzer");
7359 
7360 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7361 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7362 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7363 
7364 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7365 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7366 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7367 
7368 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7369 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7370 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7371 
7372 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7373 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7374 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7375 
7376 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7377 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7378 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7379 
7380 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7381 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7382 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7383 
7384 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7385 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7386 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7387 
7388 	if (chip_id(sc) > CHELSIO_T4) {
7389 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7390 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7391 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7392 		    "CIM OBQ 6 (SGE0-RX)");
7393 
7394 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7395 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7396 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7397 		    "CIM OBQ 7 (SGE1-RX)");
7398 	}
7399 
7400 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7401 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7402 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7403 
7404 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7405 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7406 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7407 
7408 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7409 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7410 	    sysctl_cpl_stats, "A", "CPL statistics");
7411 
7412 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7413 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7414 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7415 
7416 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7417 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7418 	    sysctl_tid_stats, "A", "tid stats");
7419 
7420 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7421 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7422 	    sysctl_devlog, "A", "firmware's device log");
7423 
7424 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7425 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7426 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7427 
7428 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7429 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7430 	    sysctl_hw_sched, "A", "hardware scheduler ");
7431 
7432 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7433 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7434 	    sysctl_l2t, "A", "hardware L2 table");
7435 
7436 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7437 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7438 	    sysctl_smt, "A", "hardware source MAC table");
7439 
7440 #ifdef INET6
7441 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7442 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7443 	    sysctl_clip, "A", "active CLIP table entries");
7444 #endif
7445 
7446 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7447 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7448 	    sysctl_lb_stats, "A", "loopback statistics");
7449 
7450 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7451 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7452 	    sysctl_meminfo, "A", "memory regions");
7453 
7454 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7455 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7456 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7457 	    "A", "MPS TCAM entries");
7458 
7459 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7460 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7461 	    sysctl_path_mtus, "A", "path MTUs");
7462 
7463 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7464 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7465 	    sysctl_pm_stats, "A", "PM statistics");
7466 
7467 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7468 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7469 	    sysctl_rdma_stats, "A", "RDMA statistics");
7470 
7471 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7472 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7473 	    sysctl_tcp_stats, "A", "TCP statistics");
7474 
7475 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7476 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7477 	    sysctl_tids, "A", "TID information");
7478 
7479 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7480 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7481 	    sysctl_tp_err_stats, "A", "TP error statistics");
7482 
7483 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7484 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7485 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7486 
7487 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7488 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7489 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7490 
7491 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7492 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7493 	    sysctl_tp_la, "A", "TP logic analyzer");
7494 
7495 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7496 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7497 	    sysctl_tx_rate, "A", "Tx rate");
7498 
7499 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7500 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7501 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7502 
7503 	if (chip_id(sc) >= CHELSIO_T5) {
7504 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7505 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7506 		    sysctl_wcwr_stats, "A", "write combined work requests");
7507 	}
7508 
7509 #ifdef KERN_TLS
7510 	if (is_ktls(sc)) {
7511 		/*
7512 		 * dev.t4nex.0.tls.
7513 		 */
7514 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7515 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7516 		children = SYSCTL_CHILDREN(oid);
7517 
7518 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7519 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7520 		    "keys in work requests (1) or attempt to store TLS keys "
7521 		    "in card memory.");
7522 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7523 		    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine "
7524 		    "TCB field updates with TLS record work requests.");
7525 	}
7526 #endif
7527 
7528 #ifdef TCP_OFFLOAD
7529 	if (is_offload(sc)) {
7530 		int i;
7531 		char s[4];
7532 
7533 		/*
7534 		 * dev.t4nex.X.toe.
7535 		 */
7536 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7537 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7538 		children = SYSCTL_CHILDREN(oid);
7539 
7540 		sc->tt.cong_algorithm = -1;
7541 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7542 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7543 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7544 		    "3 = highspeed)");
7545 
7546 		sc->tt.sndbuf = -1;
7547 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7548 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7549 
7550 		sc->tt.ddp = 0;
7551 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7552 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7553 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7554 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7555 
7556 		sc->tt.rx_coalesce = -1;
7557 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7558 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7559 
7560 		sc->tt.tls = 0;
7561 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7562 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7563 		    "Inline TLS allowed");
7564 
7565 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
7566 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7567 		    sysctl_tls_rx_ports, "I",
7568 		    "TCP ports that use inline TLS+TOE RX");
7569 
7570 		sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout;
7571 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout",
7572 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7573 		    sysctl_tls_rx_timeout, "I",
7574 		    "Timeout in seconds to downgrade TLS sockets to plain TOE");
7575 
7576 		sc->tt.tx_align = -1;
7577 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7578 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7579 
7580 		sc->tt.tx_zcopy = 0;
7581 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7582 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7583 		    "Enable zero-copy aio_write(2)");
7584 
7585 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7586 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7587 		    "cop_managed_offloading", CTLFLAG_RW,
7588 		    &sc->tt.cop_managed_offloading, 0,
7589 		    "COP (Connection Offload Policy) controls all TOE offload");
7590 
7591 		sc->tt.autorcvbuf_inc = 16 * 1024;
7592 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7593 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7594 		    "autorcvbuf increment");
7595 
7596 		sc->tt.update_hc_on_pmtu_change = 1;
7597 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7598 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7599 		    &sc->tt.update_hc_on_pmtu_change, 0,
7600 		    "Update hostcache entry if the PMTU changes");
7601 
7602 		sc->tt.iso = 1;
7603 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7604 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7605 
7606 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7607 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7608 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7609 
7610 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7611 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7612 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7613 
7614 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7615 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7616 		    sysctl_tp_tick, "A", "DACK tick (us)");
7617 
7618 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7619 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7620 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7621 
7622 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7623 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7624 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7625 		    "Minimum retransmit interval (us)");
7626 
7627 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7628 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7629 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7630 		    "Maximum retransmit interval (us)");
7631 
7632 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7633 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7634 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7635 		    "Persist timer min (us)");
7636 
7637 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7638 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7639 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7640 		    "Persist timer max (us)");
7641 
7642 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7643 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7644 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7645 		    "Keepalive idle timer (us)");
7646 
7647 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7648 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7649 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7650 		    "Keepalive interval timer (us)");
7651 
7652 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7653 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7654 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7655 
7656 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7657 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7658 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7659 		    "FINWAIT2 timer (us)");
7660 
7661 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7662 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7663 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7664 		    "Number of SYN retransmissions before abort");
7665 
7666 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7667 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7668 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7669 		    "Number of retransmissions before abort");
7670 
7671 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7672 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7673 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7674 		    "Number of keepalive probes before abort");
7675 
7676 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7677 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7678 		    "TOE retransmit backoffs");
7679 		children = SYSCTL_CHILDREN(oid);
7680 		for (i = 0; i < 16; i++) {
7681 			snprintf(s, sizeof(s), "%u", i);
7682 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7683 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7684 			    i, sysctl_tp_backoff, "IU",
7685 			    "TOE retransmit backoff");
7686 		}
7687 	}
7688 #endif
7689 }
7690 
7691 void
7692 vi_sysctls(struct vi_info *vi)
7693 {
7694 	struct sysctl_ctx_list *ctx = &vi->ctx;
7695 	struct sysctl_oid *oid;
7696 	struct sysctl_oid_list *children;
7697 
7698 	/*
7699 	 * dev.v?(cxgbe|cxl).X.
7700 	 */
7701 	oid = device_get_sysctl_tree(vi->dev);
7702 	children = SYSCTL_CHILDREN(oid);
7703 
7704 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7705 	    vi->viid, "VI identifer");
7706 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7707 	    &vi->nrxq, 0, "# of rx queues");
7708 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7709 	    &vi->ntxq, 0, "# of tx queues");
7710 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7711 	    &vi->first_rxq, 0, "index of first rx queue");
7712 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7713 	    &vi->first_txq, 0, "index of first tx queue");
7714 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7715 	    vi->rss_base, "start of RSS indirection table");
7716 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7717 	    vi->rss_size, "size of RSS indirection table");
7718 
7719 	if (IS_MAIN_VI(vi)) {
7720 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7721 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7722 		    sysctl_noflowq, "IU",
7723 		    "Reserve queue 0 for non-flowid packets");
7724 	}
7725 
7726 	if (vi->adapter->flags & IS_VF) {
7727 		MPASS(vi->flags & TX_USES_VM_WR);
7728 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7729 		    NULL, 1, "use VM work requests for transmit");
7730 	} else {
7731 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7732 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7733 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7734 	}
7735 
7736 #ifdef TCP_OFFLOAD
7737 	if (vi->nofldrxq != 0) {
7738 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7739 		    &vi->nofldrxq, 0,
7740 		    "# of rx queues for offloaded TCP connections");
7741 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7742 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7743 		    "index of first TOE rx queue");
7744 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7745 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7746 		    sysctl_holdoff_tmr_idx_ofld, "I",
7747 		    "holdoff timer index for TOE queues");
7748 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7749 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7750 		    sysctl_holdoff_pktc_idx_ofld, "I",
7751 		    "holdoff packet counter index for TOE queues");
7752 	}
7753 #endif
7754 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7755 	if (vi->nofldtxq != 0) {
7756 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7757 		    &vi->nofldtxq, 0,
7758 		    "# of tx queues for TOE/ETHOFLD");
7759 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7760 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7761 		    "index of first TOE/ETHOFLD tx queue");
7762 	}
7763 #endif
7764 #ifdef DEV_NETMAP
7765 	if (vi->nnmrxq != 0) {
7766 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7767 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7768 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7769 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7770 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7771 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7772 		    "index of first netmap rx queue");
7773 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7774 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7775 		    "index of first netmap tx queue");
7776 	}
7777 #endif
7778 
7779 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7780 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7781 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7782 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7783 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7784 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7785 
7786 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7787 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7788 	    sysctl_qsize_rxq, "I", "rx queue size");
7789 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7790 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7791 	    sysctl_qsize_txq, "I", "tx queue size");
7792 }
7793 
7794 static void
7795 cxgbe_sysctls(struct port_info *pi)
7796 {
7797 	struct sysctl_ctx_list *ctx = &pi->ctx;
7798 	struct sysctl_oid *oid;
7799 	struct sysctl_oid_list *children, *children2;
7800 	struct adapter *sc = pi->adapter;
7801 	int i;
7802 	char name[16];
7803 	static char *tc_flags = {"\20\1USER"};
7804 
7805 	/*
7806 	 * dev.cxgbe.X.
7807 	 */
7808 	oid = device_get_sysctl_tree(pi->dev);
7809 	children = SYSCTL_CHILDREN(oid);
7810 
7811 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7812 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7813 	    sysctl_linkdnrc, "A", "reason why link is down");
7814 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7815 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7816 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7817 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
7818 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7819 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7820 		    sysctl_btphy, "I", "PHY firmware version");
7821 	}
7822 
7823 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7824 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7825 	    sysctl_pause_settings, "A",
7826 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7827 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7828 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7829 	    "FEC in use on the link");
7830 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7831 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7832 	    sysctl_requested_fec, "A",
7833 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7834 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7835 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7836 	    "FEC recommended by the cable/transceiver");
7837 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7838 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7839 	    sysctl_autoneg, "I",
7840 	    "autonegotiation (-1 = not supported)");
7841 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7842 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7843 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7844 
7845 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7846 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7847 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7848 	    &pi->link_cfg.pcaps, 0, "port capabilities");
7849 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7850 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
7851 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7852 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7853 
7854 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7855 	    port_top_speed(pi), "max speed (in Gbps)");
7856 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7857 	    pi->mps_bg_map, "MPS buffer group map");
7858 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7859 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7860 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL,
7861 	    pi->rx_c_chan, "TP rx c-channel");
7862 
7863 	if (sc->flags & IS_VF)
7864 		return;
7865 
7866 	/*
7867 	 * dev.(cxgbe|cxl).X.tc.
7868 	 */
7869 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
7870 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7871 	    "Tx scheduler traffic classes (cl_rl)");
7872 	children2 = SYSCTL_CHILDREN(oid);
7873 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
7874 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
7875 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
7876 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
7877 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
7878 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
7879 	for (i = 0; i < sc->params.nsched_cls; i++) {
7880 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
7881 
7882 		snprintf(name, sizeof(name), "%d", i);
7883 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
7884 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
7885 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
7886 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
7887 		    CTLFLAG_RD, &tc->state, 0, "current state");
7888 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
7889 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
7890 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
7891 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
7892 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
7893 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
7894 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7895 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
7896 		    "traffic class parameters");
7897 	}
7898 
7899 	/*
7900 	 * dev.cxgbe.X.stats.
7901 	 */
7902 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
7903 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
7904 	children = SYSCTL_CHILDREN(oid);
7905 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
7906 	    &pi->tx_parse_error, 0,
7907 	    "# of tx packets with invalid length or # of segments");
7908 
7909 #define T4_REGSTAT(name, stat, desc) \
7910     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
7911         CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
7912 	(is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \
7913 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \
7914         sysctl_handle_t4_reg64, "QU", desc)
7915 
7916 /* We get these from port_stats and they may be stale by up to 1s */
7917 #define T4_PORTSTAT(name, desc) \
7918 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
7919 	    &pi->stats.name, desc)
7920 
7921 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
7922 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
7923 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
7924 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
7925 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
7926 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
7927 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
7928 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
7929 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
7930 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
7931 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
7932 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
7933 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
7934 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
7935 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
7936 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
7937 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
7938 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
7939 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
7940 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
7941 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
7942 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
7943 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
7944 
7945 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
7946 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
7947 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
7948 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
7949 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
7950 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
7951 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
7952 	if (is_t6(sc)) {
7953 		T4_PORTSTAT(rx_fcs_err,
7954 		    "# of frames received with bad FCS since last link up");
7955 	} else {
7956 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
7957 		    "# of frames received with bad FCS");
7958 	}
7959 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
7960 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
7961 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
7962 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
7963 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
7964 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
7965 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
7966 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
7967 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
7968 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
7969 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
7970 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
7971 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
7972 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
7973 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
7974 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
7975 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
7976 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
7977 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
7978 
7979 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
7980 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
7981 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
7982 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
7983 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
7984 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
7985 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
7986 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
7987 
7988 #undef T4_REGSTAT
7989 #undef T4_PORTSTAT
7990 }
7991 
7992 static int
7993 sysctl_int_array(SYSCTL_HANDLER_ARGS)
7994 {
7995 	int rc, *i, space = 0;
7996 	struct sbuf sb;
7997 
7998 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
7999 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8000 		if (space)
8001 			sbuf_printf(&sb, " ");
8002 		sbuf_printf(&sb, "%d", *i);
8003 		space = 1;
8004 	}
8005 	rc = sbuf_finish(&sb);
8006 	sbuf_delete(&sb);
8007 	return (rc);
8008 }
8009 
8010 static int
8011 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8012 {
8013 	int rc;
8014 	struct sbuf *sb;
8015 
8016 	rc = sysctl_wire_old_buffer(req, 0);
8017 	if (rc != 0)
8018 		return(rc);
8019 
8020 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8021 	if (sb == NULL)
8022 		return (ENOMEM);
8023 
8024 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8025 	rc = sbuf_finish(sb);
8026 	sbuf_delete(sb);
8027 
8028 	return (rc);
8029 }
8030 
8031 static int
8032 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8033 {
8034 	int rc;
8035 	struct sbuf *sb;
8036 
8037 	rc = sysctl_wire_old_buffer(req, 0);
8038 	if (rc != 0)
8039 		return(rc);
8040 
8041 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8042 	if (sb == NULL)
8043 		return (ENOMEM);
8044 
8045 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8046 	rc = sbuf_finish(sb);
8047 	sbuf_delete(sb);
8048 
8049 	return (rc);
8050 }
8051 
8052 static int
8053 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8054 {
8055 	struct port_info *pi = arg1;
8056 	int op = arg2;
8057 	struct adapter *sc = pi->adapter;
8058 	u_int v;
8059 	int rc;
8060 
8061 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8062 	if (rc)
8063 		return (rc);
8064 	if (hw_off_limits(sc))
8065 		rc = ENXIO;
8066 	else {
8067 		/* XXX: magic numbers */
8068 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8069 		    op ? 0x20 : 0xc820, &v);
8070 	}
8071 	end_synchronized_op(sc, 0);
8072 	if (rc)
8073 		return (rc);
8074 	if (op == 0)
8075 		v /= 256;
8076 
8077 	rc = sysctl_handle_int(oidp, &v, 0, req);
8078 	return (rc);
8079 }
8080 
8081 static int
8082 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8083 {
8084 	struct vi_info *vi = arg1;
8085 	int rc, val;
8086 
8087 	val = vi->rsrv_noflowq;
8088 	rc = sysctl_handle_int(oidp, &val, 0, req);
8089 	if (rc != 0 || req->newptr == NULL)
8090 		return (rc);
8091 
8092 	if ((val >= 1) && (vi->ntxq > 1))
8093 		vi->rsrv_noflowq = 1;
8094 	else
8095 		vi->rsrv_noflowq = 0;
8096 
8097 	return (rc);
8098 }
8099 
8100 static int
8101 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8102 {
8103 	struct vi_info *vi = arg1;
8104 	struct adapter *sc = vi->adapter;
8105 	int rc, val, i;
8106 
8107 	MPASS(!(sc->flags & IS_VF));
8108 
8109 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8110 	rc = sysctl_handle_int(oidp, &val, 0, req);
8111 	if (rc != 0 || req->newptr == NULL)
8112 		return (rc);
8113 
8114 	if (val != 0 && val != 1)
8115 		return (EINVAL);
8116 
8117 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8118 	    "t4txvm");
8119 	if (rc)
8120 		return (rc);
8121 	if (hw_off_limits(sc))
8122 		rc = ENXIO;
8123 	else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) {
8124 		/*
8125 		 * We don't want parse_pkt to run with one setting (VF or PF)
8126 		 * and then eth_tx to see a different setting but still use
8127 		 * stale information calculated by parse_pkt.
8128 		 */
8129 		rc = EBUSY;
8130 	} else {
8131 		struct port_info *pi = vi->pi;
8132 		struct sge_txq *txq;
8133 		uint32_t ctrl0;
8134 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8135 
8136 		if (val) {
8137 			vi->flags |= TX_USES_VM_WR;
8138 			vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
8139 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8140 			    V_TXPKT_INTF(pi->tx_chan));
8141 			if (!(sc->flags & IS_VF))
8142 				npkt--;
8143 		} else {
8144 			vi->flags &= ~TX_USES_VM_WR;
8145 			vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
8146 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8147 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8148 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8149 		}
8150 		for_each_txq(vi, i, txq) {
8151 			txq->cpl_ctrl0 = ctrl0;
8152 			txq->txp.max_npkt = npkt;
8153 		}
8154 	}
8155 	end_synchronized_op(sc, LOCK_HELD);
8156 	return (rc);
8157 }
8158 
8159 static int
8160 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8161 {
8162 	struct vi_info *vi = arg1;
8163 	struct adapter *sc = vi->adapter;
8164 	int idx, rc, i;
8165 	struct sge_rxq *rxq;
8166 	uint8_t v;
8167 
8168 	idx = vi->tmr_idx;
8169 
8170 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8171 	if (rc != 0 || req->newptr == NULL)
8172 		return (rc);
8173 
8174 	if (idx < 0 || idx >= SGE_NTIMERS)
8175 		return (EINVAL);
8176 
8177 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8178 	    "t4tmr");
8179 	if (rc)
8180 		return (rc);
8181 
8182 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8183 	for_each_rxq(vi, i, rxq) {
8184 #ifdef atomic_store_rel_8
8185 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8186 #else
8187 		rxq->iq.intr_params = v;
8188 #endif
8189 	}
8190 	vi->tmr_idx = idx;
8191 
8192 	end_synchronized_op(sc, LOCK_HELD);
8193 	return (0);
8194 }
8195 
8196 static int
8197 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8198 {
8199 	struct vi_info *vi = arg1;
8200 	struct adapter *sc = vi->adapter;
8201 	int idx, rc;
8202 
8203 	idx = vi->pktc_idx;
8204 
8205 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8206 	if (rc != 0 || req->newptr == NULL)
8207 		return (rc);
8208 
8209 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8210 		return (EINVAL);
8211 
8212 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8213 	    "t4pktc");
8214 	if (rc)
8215 		return (rc);
8216 
8217 	if (vi->flags & VI_INIT_DONE)
8218 		rc = EBUSY; /* cannot be changed once the queues are created */
8219 	else
8220 		vi->pktc_idx = idx;
8221 
8222 	end_synchronized_op(sc, LOCK_HELD);
8223 	return (rc);
8224 }
8225 
8226 static int
8227 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8228 {
8229 	struct vi_info *vi = arg1;
8230 	struct adapter *sc = vi->adapter;
8231 	int qsize, rc;
8232 
8233 	qsize = vi->qsize_rxq;
8234 
8235 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8236 	if (rc != 0 || req->newptr == NULL)
8237 		return (rc);
8238 
8239 	if (qsize < 128 || (qsize & 7))
8240 		return (EINVAL);
8241 
8242 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8243 	    "t4rxqs");
8244 	if (rc)
8245 		return (rc);
8246 
8247 	if (vi->flags & VI_INIT_DONE)
8248 		rc = EBUSY; /* cannot be changed once the queues are created */
8249 	else
8250 		vi->qsize_rxq = qsize;
8251 
8252 	end_synchronized_op(sc, LOCK_HELD);
8253 	return (rc);
8254 }
8255 
8256 static int
8257 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8258 {
8259 	struct vi_info *vi = arg1;
8260 	struct adapter *sc = vi->adapter;
8261 	int qsize, rc;
8262 
8263 	qsize = vi->qsize_txq;
8264 
8265 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8266 	if (rc != 0 || req->newptr == NULL)
8267 		return (rc);
8268 
8269 	if (qsize < 128 || qsize > 65536)
8270 		return (EINVAL);
8271 
8272 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8273 	    "t4txqs");
8274 	if (rc)
8275 		return (rc);
8276 
8277 	if (vi->flags & VI_INIT_DONE)
8278 		rc = EBUSY; /* cannot be changed once the queues are created */
8279 	else
8280 		vi->qsize_txq = qsize;
8281 
8282 	end_synchronized_op(sc, LOCK_HELD);
8283 	return (rc);
8284 }
8285 
8286 static int
8287 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8288 {
8289 	struct port_info *pi = arg1;
8290 	struct adapter *sc = pi->adapter;
8291 	struct link_config *lc = &pi->link_cfg;
8292 	int rc;
8293 
8294 	if (req->newptr == NULL) {
8295 		struct sbuf *sb;
8296 		static char *bits = "\20\1RX\2TX\3AUTO";
8297 
8298 		rc = sysctl_wire_old_buffer(req, 0);
8299 		if (rc != 0)
8300 			return(rc);
8301 
8302 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8303 		if (sb == NULL)
8304 			return (ENOMEM);
8305 
8306 		if (lc->link_ok) {
8307 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8308 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8309 		} else {
8310 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8311 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8312 		}
8313 		rc = sbuf_finish(sb);
8314 		sbuf_delete(sb);
8315 	} else {
8316 		char s[2];
8317 		int n;
8318 
8319 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8320 		    PAUSE_AUTONEG));
8321 		s[1] = 0;
8322 
8323 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8324 		if (rc != 0)
8325 			return(rc);
8326 
8327 		if (s[1] != 0)
8328 			return (EINVAL);
8329 		if (s[0] < '0' || s[0] > '9')
8330 			return (EINVAL);	/* not a number */
8331 		n = s[0] - '0';
8332 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8333 			return (EINVAL);	/* some other bit is set too */
8334 
8335 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8336 		    "t4PAUSE");
8337 		if (rc)
8338 			return (rc);
8339 		if (!hw_off_limits(sc)) {
8340 			PORT_LOCK(pi);
8341 			lc->requested_fc = n;
8342 			fixup_link_config(pi);
8343 			if (pi->up_vis > 0)
8344 				rc = apply_link_config(pi);
8345 			set_current_media(pi);
8346 			PORT_UNLOCK(pi);
8347 		}
8348 		end_synchronized_op(sc, 0);
8349 	}
8350 
8351 	return (rc);
8352 }
8353 
8354 static int
8355 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8356 {
8357 	struct port_info *pi = arg1;
8358 	struct link_config *lc = &pi->link_cfg;
8359 	int rc;
8360 	struct sbuf *sb;
8361 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8362 
8363 	rc = sysctl_wire_old_buffer(req, 0);
8364 	if (rc != 0)
8365 		return(rc);
8366 
8367 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8368 	if (sb == NULL)
8369 		return (ENOMEM);
8370 	if (lc->link_ok)
8371 		sbuf_printf(sb, "%b", lc->fec, bits);
8372 	else
8373 		sbuf_printf(sb, "no link");
8374 	rc = sbuf_finish(sb);
8375 	sbuf_delete(sb);
8376 
8377 	return (rc);
8378 }
8379 
8380 static int
8381 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8382 {
8383 	struct port_info *pi = arg1;
8384 	struct adapter *sc = pi->adapter;
8385 	struct link_config *lc = &pi->link_cfg;
8386 	int rc;
8387 	int8_t old;
8388 
8389 	if (req->newptr == NULL) {
8390 		struct sbuf *sb;
8391 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8392 		    "\5RSVD3\6auto\7module";
8393 
8394 		rc = sysctl_wire_old_buffer(req, 0);
8395 		if (rc != 0)
8396 			return(rc);
8397 
8398 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8399 		if (sb == NULL)
8400 			return (ENOMEM);
8401 
8402 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8403 		rc = sbuf_finish(sb);
8404 		sbuf_delete(sb);
8405 	} else {
8406 		char s[8];
8407 		int n;
8408 
8409 		snprintf(s, sizeof(s), "%d",
8410 		    lc->requested_fec == FEC_AUTO ? -1 :
8411 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8412 
8413 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8414 		if (rc != 0)
8415 			return(rc);
8416 
8417 		n = strtol(&s[0], NULL, 0);
8418 		if (n < 0 || n & FEC_AUTO)
8419 			n = FEC_AUTO;
8420 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8421 			return (EINVAL);/* some other bit is set too */
8422 
8423 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8424 		    "t4reqf");
8425 		if (rc)
8426 			return (rc);
8427 		PORT_LOCK(pi);
8428 		old = lc->requested_fec;
8429 		if (n == FEC_AUTO)
8430 			lc->requested_fec = FEC_AUTO;
8431 		else if (n == 0 || n == FEC_NONE)
8432 			lc->requested_fec = FEC_NONE;
8433 		else {
8434 			if ((lc->pcaps |
8435 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8436 			    lc->pcaps) {
8437 				rc = ENOTSUP;
8438 				goto done;
8439 			}
8440 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8441 			    FEC_MODULE);
8442 		}
8443 		if (!hw_off_limits(sc)) {
8444 			fixup_link_config(pi);
8445 			if (pi->up_vis > 0) {
8446 				rc = apply_link_config(pi);
8447 				if (rc != 0) {
8448 					lc->requested_fec = old;
8449 					if (rc == FW_EPROTO)
8450 						rc = ENOTSUP;
8451 				}
8452 			}
8453 		}
8454 done:
8455 		PORT_UNLOCK(pi);
8456 		end_synchronized_op(sc, 0);
8457 	}
8458 
8459 	return (rc);
8460 }
8461 
8462 static int
8463 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8464 {
8465 	struct port_info *pi = arg1;
8466 	struct adapter *sc = pi->adapter;
8467 	struct link_config *lc = &pi->link_cfg;
8468 	int rc;
8469 	int8_t fec;
8470 	struct sbuf *sb;
8471 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8472 
8473 	rc = sysctl_wire_old_buffer(req, 0);
8474 	if (rc != 0)
8475 		return (rc);
8476 
8477 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8478 	if (sb == NULL)
8479 		return (ENOMEM);
8480 
8481 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8482 		rc = EBUSY;
8483 		goto done;
8484 	}
8485 	if (hw_off_limits(sc)) {
8486 		rc = ENXIO;
8487 		goto done;
8488 	}
8489 	PORT_LOCK(pi);
8490 	if (pi->up_vis == 0) {
8491 		/*
8492 		 * If all the interfaces are administratively down the firmware
8493 		 * does not report transceiver changes.  Refresh port info here.
8494 		 * This is the only reason we have a synchronized op in this
8495 		 * function.  Just PORT_LOCK would have been enough otherwise.
8496 		 */
8497 		t4_update_port_info(pi);
8498 	}
8499 
8500 	fec = lc->fec_hint;
8501 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8502 	    !fec_supported(lc->pcaps)) {
8503 		sbuf_printf(sb, "n/a");
8504 	} else {
8505 		if (fec == 0)
8506 			fec = FEC_NONE;
8507 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8508 	}
8509 	rc = sbuf_finish(sb);
8510 	PORT_UNLOCK(pi);
8511 done:
8512 	sbuf_delete(sb);
8513 	end_synchronized_op(sc, 0);
8514 
8515 	return (rc);
8516 }
8517 
8518 static int
8519 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8520 {
8521 	struct port_info *pi = arg1;
8522 	struct adapter *sc = pi->adapter;
8523 	struct link_config *lc = &pi->link_cfg;
8524 	int rc, val;
8525 
8526 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8527 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8528 	else
8529 		val = -1;
8530 	rc = sysctl_handle_int(oidp, &val, 0, req);
8531 	if (rc != 0 || req->newptr == NULL)
8532 		return (rc);
8533 	if (val == 0)
8534 		val = AUTONEG_DISABLE;
8535 	else if (val == 1)
8536 		val = AUTONEG_ENABLE;
8537 	else
8538 		val = AUTONEG_AUTO;
8539 
8540 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8541 	    "t4aneg");
8542 	if (rc)
8543 		return (rc);
8544 	PORT_LOCK(pi);
8545 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8546 		rc = ENOTSUP;
8547 		goto done;
8548 	}
8549 	lc->requested_aneg = val;
8550 	if (!hw_off_limits(sc)) {
8551 		fixup_link_config(pi);
8552 		if (pi->up_vis > 0)
8553 			rc = apply_link_config(pi);
8554 		set_current_media(pi);
8555 	}
8556 done:
8557 	PORT_UNLOCK(pi);
8558 	end_synchronized_op(sc, 0);
8559 	return (rc);
8560 }
8561 
8562 static int
8563 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8564 {
8565 	struct port_info *pi = arg1;
8566 	struct adapter *sc = pi->adapter;
8567 	struct link_config *lc = &pi->link_cfg;
8568 	int rc, val;
8569 
8570 	val = lc->force_fec;
8571 	MPASS(val >= -1 && val <= 1);
8572 	rc = sysctl_handle_int(oidp, &val, 0, req);
8573 	if (rc != 0 || req->newptr == NULL)
8574 		return (rc);
8575 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8576 		return (ENOTSUP);
8577 	if (val < -1 || val > 1)
8578 		return (EINVAL);
8579 
8580 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8581 	if (rc)
8582 		return (rc);
8583 	PORT_LOCK(pi);
8584 	lc->force_fec = val;
8585 	if (!hw_off_limits(sc)) {
8586 		fixup_link_config(pi);
8587 		if (pi->up_vis > 0)
8588 			rc = apply_link_config(pi);
8589 	}
8590 	PORT_UNLOCK(pi);
8591 	end_synchronized_op(sc, 0);
8592 	return (rc);
8593 }
8594 
8595 static int
8596 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8597 {
8598 	struct adapter *sc = arg1;
8599 	int rc, reg = arg2;
8600 	uint64_t val;
8601 
8602 	mtx_lock(&sc->reg_lock);
8603 	if (hw_off_limits(sc))
8604 		rc = ENXIO;
8605 	else {
8606 		rc = 0;
8607 		val = t4_read_reg64(sc, reg);
8608 	}
8609 	mtx_unlock(&sc->reg_lock);
8610 	if (rc == 0)
8611 		rc = sysctl_handle_64(oidp, &val, 0, req);
8612 	return (rc);
8613 }
8614 
8615 static int
8616 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8617 {
8618 	struct adapter *sc = arg1;
8619 	int rc, t;
8620 	uint32_t param, val;
8621 
8622 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8623 	if (rc)
8624 		return (rc);
8625 	if (hw_off_limits(sc))
8626 		rc = ENXIO;
8627 	else {
8628 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8629 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8630 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8631 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8632 	}
8633 	end_synchronized_op(sc, 0);
8634 	if (rc)
8635 		return (rc);
8636 
8637 	/* unknown is returned as 0 but we display -1 in that case */
8638 	t = val == 0 ? -1 : val;
8639 
8640 	rc = sysctl_handle_int(oidp, &t, 0, req);
8641 	return (rc);
8642 }
8643 
8644 static int
8645 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8646 {
8647 	struct adapter *sc = arg1;
8648 	int rc;
8649 	uint32_t param, val;
8650 
8651 	if (sc->params.core_vdd == 0) {
8652 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8653 		    "t4vdd");
8654 		if (rc)
8655 			return (rc);
8656 		if (hw_off_limits(sc))
8657 			rc = ENXIO;
8658 		else {
8659 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8660 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8661 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8662 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8663 			    &param, &val);
8664 		}
8665 		end_synchronized_op(sc, 0);
8666 		if (rc)
8667 			return (rc);
8668 		sc->params.core_vdd = val;
8669 	}
8670 
8671 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8672 }
8673 
8674 static int
8675 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8676 {
8677 	struct adapter *sc = arg1;
8678 	int rc, v;
8679 	uint32_t param, val;
8680 
8681 	v = sc->sensor_resets;
8682 	rc = sysctl_handle_int(oidp, &v, 0, req);
8683 	if (rc != 0 || req->newptr == NULL || v <= 0)
8684 		return (rc);
8685 
8686 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8687 	    chip_id(sc) < CHELSIO_T5)
8688 		return (ENOTSUP);
8689 
8690 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8691 	if (rc)
8692 		return (rc);
8693 	if (hw_off_limits(sc))
8694 		rc = ENXIO;
8695 	else {
8696 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8697 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8698 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8699 		val = 1;
8700 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8701 	}
8702 	end_synchronized_op(sc, 0);
8703 	if (rc == 0)
8704 		sc->sensor_resets++;
8705 	return (rc);
8706 }
8707 
8708 static int
8709 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8710 {
8711 	struct adapter *sc = arg1;
8712 	struct sbuf *sb;
8713 	int rc;
8714 	uint32_t param, val;
8715 
8716 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8717 	if (rc)
8718 		return (rc);
8719 	if (hw_off_limits(sc))
8720 		rc = ENXIO;
8721 	else {
8722 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8723 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8724 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8725 	}
8726 	end_synchronized_op(sc, 0);
8727 	if (rc)
8728 		return (rc);
8729 
8730 	rc = sysctl_wire_old_buffer(req, 0);
8731 	if (rc != 0)
8732 		return (rc);
8733 
8734 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8735 	if (sb == NULL)
8736 		return (ENOMEM);
8737 
8738 	if (val == 0xffffffff) {
8739 		/* Only debug and custom firmwares report load averages. */
8740 		sbuf_printf(sb, "not available");
8741 	} else {
8742 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8743 		    (val >> 16) & 0xff);
8744 	}
8745 	rc = sbuf_finish(sb);
8746 	sbuf_delete(sb);
8747 
8748 	return (rc);
8749 }
8750 
8751 static int
8752 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8753 {
8754 	struct adapter *sc = arg1;
8755 	struct sbuf *sb;
8756 	int rc, i;
8757 	uint16_t incr[NMTUS][NCCTRL_WIN];
8758 	static const char *dec_fac[] = {
8759 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8760 		"0.9375"
8761 	};
8762 
8763 	rc = sysctl_wire_old_buffer(req, 0);
8764 	if (rc != 0)
8765 		return (rc);
8766 
8767 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8768 	if (sb == NULL)
8769 		return (ENOMEM);
8770 
8771 	mtx_lock(&sc->reg_lock);
8772 	if (hw_off_limits(sc))
8773 		rc = ENXIO;
8774 	else
8775 		t4_read_cong_tbl(sc, incr);
8776 	mtx_unlock(&sc->reg_lock);
8777 	if (rc)
8778 		goto done;
8779 
8780 	for (i = 0; i < NCCTRL_WIN; ++i) {
8781 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8782 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8783 		    incr[5][i], incr[6][i], incr[7][i]);
8784 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8785 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8786 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8787 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8788 	}
8789 
8790 	rc = sbuf_finish(sb);
8791 done:
8792 	sbuf_delete(sb);
8793 	return (rc);
8794 }
8795 
8796 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8797 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8798 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8799 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8800 };
8801 
8802 static int
8803 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8804 {
8805 	struct adapter *sc = arg1;
8806 	struct sbuf *sb;
8807 	int rc, i, n, qid = arg2;
8808 	uint32_t *buf, *p;
8809 	char *qtype;
8810 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8811 
8812 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8813 	    ("%s: bad qid %d\n", __func__, qid));
8814 
8815 	if (qid < CIM_NUM_IBQ) {
8816 		/* inbound queue */
8817 		qtype = "IBQ";
8818 		n = 4 * CIM_IBQ_SIZE;
8819 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8820 		mtx_lock(&sc->reg_lock);
8821 		if (hw_off_limits(sc))
8822 			rc = -ENXIO;
8823 		else
8824 			rc = t4_read_cim_ibq(sc, qid, buf, n);
8825 		mtx_unlock(&sc->reg_lock);
8826 	} else {
8827 		/* outbound queue */
8828 		qtype = "OBQ";
8829 		qid -= CIM_NUM_IBQ;
8830 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8831 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8832 		mtx_lock(&sc->reg_lock);
8833 		if (hw_off_limits(sc))
8834 			rc = -ENXIO;
8835 		else
8836 			rc = t4_read_cim_obq(sc, qid, buf, n);
8837 		mtx_unlock(&sc->reg_lock);
8838 	}
8839 
8840 	if (rc < 0) {
8841 		rc = -rc;
8842 		goto done;
8843 	}
8844 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
8845 
8846 	rc = sysctl_wire_old_buffer(req, 0);
8847 	if (rc != 0)
8848 		goto done;
8849 
8850 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8851 	if (sb == NULL) {
8852 		rc = ENOMEM;
8853 		goto done;
8854 	}
8855 
8856 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8857 	for (i = 0, p = buf; i < n; i += 16, p += 4)
8858 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8859 		    p[2], p[3]);
8860 
8861 	rc = sbuf_finish(sb);
8862 	sbuf_delete(sb);
8863 done:
8864 	free(buf, M_CXGBE);
8865 	return (rc);
8866 }
8867 
8868 static void
8869 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8870 {
8871 	uint32_t *p;
8872 
8873 	sbuf_printf(sb, "Status   Data      PC%s",
8874 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8875 	    "     LS0Stat  LS0Addr             LS0Data");
8876 
8877 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
8878 		if (cfg & F_UPDBGLACAPTPCONLY) {
8879 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
8880 			    p[6], p[7]);
8881 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
8882 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
8883 			    p[4] & 0xff, p[5] >> 8);
8884 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
8885 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8886 			    p[1] & 0xf, p[2] >> 4);
8887 		} else {
8888 			sbuf_printf(sb,
8889 			    "\n  %02x   %x%07x %x%07x %08x %08x "
8890 			    "%08x%08x%08x%08x",
8891 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8892 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
8893 			    p[6], p[7]);
8894 		}
8895 	}
8896 }
8897 
8898 static void
8899 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8900 {
8901 	uint32_t *p;
8902 
8903 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
8904 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8905 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
8906 
8907 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
8908 		if (cfg & F_UPDBGLACAPTPCONLY) {
8909 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
8910 			    p[3] & 0xff, p[2], p[1], p[0]);
8911 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
8912 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
8913 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
8914 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
8915 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
8916 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
8917 			    p[6] >> 16);
8918 		} else {
8919 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
8920 			    "%08x %08x %08x %08x %08x %08x",
8921 			    (p[9] >> 16) & 0xff,
8922 			    p[9] & 0xffff, p[8] >> 16,
8923 			    p[8] & 0xffff, p[7] >> 16,
8924 			    p[7] & 0xffff, p[6] >> 16,
8925 			    p[2], p[1], p[0], p[5], p[4], p[3]);
8926 		}
8927 	}
8928 }
8929 
8930 static int
8931 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
8932 {
8933 	uint32_t cfg, *buf;
8934 	int rc;
8935 
8936 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
8937 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
8938 	    M_ZERO | flags);
8939 	if (buf == NULL)
8940 		return (ENOMEM);
8941 
8942 	mtx_lock(&sc->reg_lock);
8943 	if (hw_off_limits(sc))
8944 		rc = ENXIO;
8945 	else {
8946 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8947 		if (rc == 0)
8948 			rc = -t4_cim_read_la(sc, buf, NULL);
8949 	}
8950 	mtx_unlock(&sc->reg_lock);
8951 	if (rc == 0) {
8952 		if (chip_id(sc) < CHELSIO_T6)
8953 			sbuf_cim_la4(sc, sb, buf, cfg);
8954 		else
8955 			sbuf_cim_la6(sc, sb, buf, cfg);
8956 	}
8957 	free(buf, M_CXGBE);
8958 	return (rc);
8959 }
8960 
8961 static int
8962 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
8963 {
8964 	struct adapter *sc = arg1;
8965 	struct sbuf *sb;
8966 	int rc;
8967 
8968 	rc = sysctl_wire_old_buffer(req, 0);
8969 	if (rc != 0)
8970 		return (rc);
8971 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8972 	if (sb == NULL)
8973 		return (ENOMEM);
8974 
8975 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
8976 	if (rc == 0)
8977 		rc = sbuf_finish(sb);
8978 	sbuf_delete(sb);
8979 	return (rc);
8980 }
8981 
8982 static void
8983 dump_cim_regs(struct adapter *sc)
8984 {
8985 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
8986 	    device_get_nameunit(sc->dev),
8987 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
8988 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
8989 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
8990 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
8991 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
8992 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
8993 	    device_get_nameunit(sc->dev),
8994 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
8995 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
8996 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
8997 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
8998 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
8999 }
9000 
9001 static void
9002 dump_cimla(struct adapter *sc)
9003 {
9004 	struct sbuf sb;
9005 	int rc;
9006 
9007 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9008 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9009 		    device_get_nameunit(sc->dev));
9010 		return;
9011 	}
9012 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9013 	if (rc == 0) {
9014 		rc = sbuf_finish(&sb);
9015 		if (rc == 0) {
9016 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9017 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
9018 		}
9019 	}
9020 	sbuf_delete(&sb);
9021 }
9022 
9023 void
9024 t4_os_cim_err(struct adapter *sc)
9025 {
9026 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9027 }
9028 
9029 static int
9030 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9031 {
9032 	struct adapter *sc = arg1;
9033 	u_int i;
9034 	struct sbuf *sb;
9035 	uint32_t *buf, *p;
9036 	int rc;
9037 
9038 	rc = sysctl_wire_old_buffer(req, 0);
9039 	if (rc != 0)
9040 		return (rc);
9041 
9042 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9043 	if (sb == NULL)
9044 		return (ENOMEM);
9045 
9046 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9047 	    M_ZERO | M_WAITOK);
9048 
9049 	mtx_lock(&sc->reg_lock);
9050 	if (hw_off_limits(sc))
9051 		rc = ENXIO;
9052 	else
9053 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9054 	mtx_unlock(&sc->reg_lock);
9055 	if (rc)
9056 		goto done;
9057 
9058 	p = buf;
9059 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9060 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9061 		    p[1], p[0]);
9062 	}
9063 
9064 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9065 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9066 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9067 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9068 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9069 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9070 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9071 		    p[0] & 1);
9072 	}
9073 	rc = sbuf_finish(sb);
9074 done:
9075 	sbuf_delete(sb);
9076 	free(buf, M_CXGBE);
9077 	return (rc);
9078 }
9079 
9080 static int
9081 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9082 {
9083 	struct adapter *sc = arg1;
9084 	u_int i;
9085 	struct sbuf *sb;
9086 	uint32_t *buf, *p;
9087 	int rc;
9088 
9089 	rc = sysctl_wire_old_buffer(req, 0);
9090 	if (rc != 0)
9091 		return (rc);
9092 
9093 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9094 	if (sb == NULL)
9095 		return (ENOMEM);
9096 
9097 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9098 	    M_ZERO | M_WAITOK);
9099 
9100 	mtx_lock(&sc->reg_lock);
9101 	if (hw_off_limits(sc))
9102 		rc = ENXIO;
9103 	else
9104 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9105 	mtx_unlock(&sc->reg_lock);
9106 	if (rc)
9107 		goto done;
9108 
9109 	p = buf;
9110 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9111 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9112 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9113 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9114 		    p[4], p[3], p[2], p[1], p[0]);
9115 	}
9116 
9117 	sbuf_printf(sb, "\n\nCntl ID               Data");
9118 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9119 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9120 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9121 	}
9122 
9123 	rc = sbuf_finish(sb);
9124 done:
9125 	sbuf_delete(sb);
9126 	free(buf, M_CXGBE);
9127 	return (rc);
9128 }
9129 
9130 static int
9131 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9132 {
9133 	struct adapter *sc = arg1;
9134 	struct sbuf *sb;
9135 	int rc, i;
9136 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9137 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9138 	uint16_t thres[CIM_NUM_IBQ];
9139 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9140 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9141 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9142 
9143 	cim_num_obq = sc->chip_params->cim_num_obq;
9144 	if (is_t4(sc)) {
9145 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9146 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9147 	} else {
9148 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9149 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9150 	}
9151 	nq = CIM_NUM_IBQ + cim_num_obq;
9152 
9153 	mtx_lock(&sc->reg_lock);
9154 	if (hw_off_limits(sc))
9155 		rc = ENXIO;
9156 	else {
9157 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9158 		if (rc == 0) {
9159 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9160 			    obq_wr);
9161 			if (rc == 0)
9162 				t4_read_cimq_cfg(sc, base, size, thres);
9163 		}
9164 	}
9165 	mtx_unlock(&sc->reg_lock);
9166 	if (rc)
9167 		return (rc);
9168 
9169 	rc = sysctl_wire_old_buffer(req, 0);
9170 	if (rc != 0)
9171 		return (rc);
9172 
9173 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9174 	if (sb == NULL)
9175 		return (ENOMEM);
9176 
9177 	sbuf_printf(sb,
9178 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9179 
9180 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9181 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9182 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9183 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9184 		    G_QUEREMFLITS(p[2]) * 16);
9185 	for ( ; i < nq; i++, p += 4, wr += 2)
9186 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9187 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9188 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9189 		    G_QUEREMFLITS(p[2]) * 16);
9190 
9191 	rc = sbuf_finish(sb);
9192 	sbuf_delete(sb);
9193 
9194 	return (rc);
9195 }
9196 
9197 static int
9198 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9199 {
9200 	struct adapter *sc = arg1;
9201 	struct sbuf *sb;
9202 	int rc;
9203 	struct tp_cpl_stats stats;
9204 
9205 	rc = sysctl_wire_old_buffer(req, 0);
9206 	if (rc != 0)
9207 		return (rc);
9208 
9209 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9210 	if (sb == NULL)
9211 		return (ENOMEM);
9212 
9213 	mtx_lock(&sc->reg_lock);
9214 	if (hw_off_limits(sc))
9215 		rc = ENXIO;
9216 	else
9217 		t4_tp_get_cpl_stats(sc, &stats, 0);
9218 	mtx_unlock(&sc->reg_lock);
9219 	if (rc)
9220 		goto done;
9221 
9222 	if (sc->chip_params->nchan > 2) {
9223 		sbuf_printf(sb, "                 channel 0  channel 1"
9224 		    "  channel 2  channel 3");
9225 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9226 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9227 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9228 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9229 	} else {
9230 		sbuf_printf(sb, "                 channel 0  channel 1");
9231 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9232 		    stats.req[0], stats.req[1]);
9233 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9234 		    stats.rsp[0], stats.rsp[1]);
9235 	}
9236 
9237 	rc = sbuf_finish(sb);
9238 done:
9239 	sbuf_delete(sb);
9240 	return (rc);
9241 }
9242 
9243 static int
9244 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9245 {
9246 	struct adapter *sc = arg1;
9247 	struct sbuf *sb;
9248 	int rc;
9249 	struct tp_usm_stats stats;
9250 
9251 	rc = sysctl_wire_old_buffer(req, 0);
9252 	if (rc != 0)
9253 		return(rc);
9254 
9255 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9256 	if (sb == NULL)
9257 		return (ENOMEM);
9258 
9259 	mtx_lock(&sc->reg_lock);
9260 	if (hw_off_limits(sc))
9261 		rc = ENXIO;
9262 	else
9263 		t4_get_usm_stats(sc, &stats, 1);
9264 	mtx_unlock(&sc->reg_lock);
9265 	if (rc == 0) {
9266 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9267 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9268 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9269 		rc = sbuf_finish(sb);
9270 	}
9271 	sbuf_delete(sb);
9272 
9273 	return (rc);
9274 }
9275 
9276 static int
9277 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9278 {
9279 	struct adapter *sc = arg1;
9280 	struct sbuf *sb;
9281 	int rc;
9282 	struct tp_tid_stats stats;
9283 
9284 	rc = sysctl_wire_old_buffer(req, 0);
9285 	if (rc != 0)
9286 		return(rc);
9287 
9288 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9289 	if (sb == NULL)
9290 		return (ENOMEM);
9291 
9292 	mtx_lock(&sc->reg_lock);
9293 	if (hw_off_limits(sc))
9294 		rc = ENXIO;
9295 	else
9296 		t4_tp_get_tid_stats(sc, &stats, 1);
9297 	mtx_unlock(&sc->reg_lock);
9298 	if (rc == 0) {
9299 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9300 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9301 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9302 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9303 		rc = sbuf_finish(sb);
9304 	}
9305 	sbuf_delete(sb);
9306 
9307 	return (rc);
9308 }
9309 
9310 static const char * const devlog_level_strings[] = {
9311 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9312 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9313 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9314 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9315 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9316 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9317 };
9318 
9319 static const char * const devlog_facility_strings[] = {
9320 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9321 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9322 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9323 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9324 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9325 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9326 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9327 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9328 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9329 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9330 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9331 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9332 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9333 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9334 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9335 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9336 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9337 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9338 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9339 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9340 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9341 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9342 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9343 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9344 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9345 };
9346 
9347 static int
9348 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9349 {
9350 	int i, j, rc, nentries, first = 0;
9351 	struct devlog_params *dparams = &sc->params.devlog;
9352 	struct fw_devlog_e *buf, *e;
9353 	uint64_t ftstamp = UINT64_MAX;
9354 
9355 	if (dparams->addr == 0)
9356 		return (ENXIO);
9357 
9358 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9359 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9360 	if (buf == NULL)
9361 		return (ENOMEM);
9362 
9363 	mtx_lock(&sc->reg_lock);
9364 	if (hw_off_limits(sc))
9365 		rc = ENXIO;
9366 	else
9367 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9368 		    dparams->size);
9369 	mtx_unlock(&sc->reg_lock);
9370 	if (rc != 0)
9371 		goto done;
9372 
9373 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9374 	for (i = 0; i < nentries; i++) {
9375 		e = &buf[i];
9376 
9377 		if (e->timestamp == 0)
9378 			break;	/* end */
9379 
9380 		e->timestamp = be64toh(e->timestamp);
9381 		e->seqno = be32toh(e->seqno);
9382 		for (j = 0; j < 8; j++)
9383 			e->params[j] = be32toh(e->params[j]);
9384 
9385 		if (e->timestamp < ftstamp) {
9386 			ftstamp = e->timestamp;
9387 			first = i;
9388 		}
9389 	}
9390 
9391 	if (buf[first].timestamp == 0)
9392 		goto done;	/* nothing in the log */
9393 
9394 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9395 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9396 
9397 	i = first;
9398 	do {
9399 		e = &buf[i];
9400 		if (e->timestamp == 0)
9401 			break;	/* end */
9402 
9403 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9404 		    e->seqno, e->timestamp,
9405 		    (e->level < nitems(devlog_level_strings) ?
9406 			devlog_level_strings[e->level] : "UNKNOWN"),
9407 		    (e->facility < nitems(devlog_facility_strings) ?
9408 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9409 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9410 		    e->params[2], e->params[3], e->params[4],
9411 		    e->params[5], e->params[6], e->params[7]);
9412 
9413 		if (++i == nentries)
9414 			i = 0;
9415 	} while (i != first);
9416 done:
9417 	free(buf, M_CXGBE);
9418 	return (rc);
9419 }
9420 
9421 static int
9422 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9423 {
9424 	struct adapter *sc = arg1;
9425 	int rc;
9426 	struct sbuf *sb;
9427 
9428 	rc = sysctl_wire_old_buffer(req, 0);
9429 	if (rc != 0)
9430 		return (rc);
9431 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9432 	if (sb == NULL)
9433 		return (ENOMEM);
9434 
9435 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9436 	if (rc == 0)
9437 		rc = sbuf_finish(sb);
9438 	sbuf_delete(sb);
9439 	return (rc);
9440 }
9441 
9442 static void
9443 dump_devlog(struct adapter *sc)
9444 {
9445 	int rc;
9446 	struct sbuf sb;
9447 
9448 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9449 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9450 		    device_get_nameunit(sc->dev));
9451 		return;
9452 	}
9453 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9454 	if (rc == 0) {
9455 		rc = sbuf_finish(&sb);
9456 		if (rc == 0) {
9457 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9458 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
9459 		}
9460 	}
9461 	sbuf_delete(&sb);
9462 }
9463 
9464 static int
9465 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9466 {
9467 	struct adapter *sc = arg1;
9468 	struct sbuf *sb;
9469 	int rc;
9470 	struct tp_fcoe_stats stats[MAX_NCHAN];
9471 	int i, nchan = sc->chip_params->nchan;
9472 
9473 	rc = sysctl_wire_old_buffer(req, 0);
9474 	if (rc != 0)
9475 		return (rc);
9476 
9477 	mtx_lock(&sc->reg_lock);
9478 	if (hw_off_limits(sc))
9479 		rc = ENXIO;
9480 	else {
9481 		for (i = 0; i < nchan; i++)
9482 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9483 	}
9484 	mtx_unlock(&sc->reg_lock);
9485 	if (rc != 0)
9486 		return (rc);
9487 
9488 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9489 	if (sb == NULL)
9490 		return (ENOMEM);
9491 
9492 	if (nchan > 2) {
9493 		sbuf_printf(sb, "                   channel 0        channel 1"
9494 		    "        channel 2        channel 3");
9495 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9496 		    stats[0].octets_ddp, stats[1].octets_ddp,
9497 		    stats[2].octets_ddp, stats[3].octets_ddp);
9498 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9499 		    stats[0].frames_ddp, stats[1].frames_ddp,
9500 		    stats[2].frames_ddp, stats[3].frames_ddp);
9501 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9502 		    stats[0].frames_drop, stats[1].frames_drop,
9503 		    stats[2].frames_drop, stats[3].frames_drop);
9504 	} else {
9505 		sbuf_printf(sb, "                   channel 0        channel 1");
9506 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9507 		    stats[0].octets_ddp, stats[1].octets_ddp);
9508 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9509 		    stats[0].frames_ddp, stats[1].frames_ddp);
9510 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9511 		    stats[0].frames_drop, stats[1].frames_drop);
9512 	}
9513 
9514 	rc = sbuf_finish(sb);
9515 	sbuf_delete(sb);
9516 
9517 	return (rc);
9518 }
9519 
9520 static int
9521 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9522 {
9523 	struct adapter *sc = arg1;
9524 	struct sbuf *sb;
9525 	int rc, i;
9526 	unsigned int map, kbps, ipg, mode;
9527 	unsigned int pace_tab[NTX_SCHED];
9528 
9529 	rc = sysctl_wire_old_buffer(req, 0);
9530 	if (rc != 0)
9531 		return (rc);
9532 
9533 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9534 	if (sb == NULL)
9535 		return (ENOMEM);
9536 
9537 	mtx_lock(&sc->reg_lock);
9538 	if (hw_off_limits(sc)) {
9539 		rc = ENXIO;
9540 		goto done;
9541 	}
9542 
9543 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9544 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9545 	t4_read_pace_tbl(sc, pace_tab);
9546 
9547 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9548 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9549 
9550 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9551 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9552 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9553 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9554 		if (kbps)
9555 			sbuf_printf(sb, "%9u     ", kbps);
9556 		else
9557 			sbuf_printf(sb, " disabled     ");
9558 
9559 		if (ipg)
9560 			sbuf_printf(sb, "%13u        ", ipg);
9561 		else
9562 			sbuf_printf(sb, "     disabled        ");
9563 
9564 		if (pace_tab[i])
9565 			sbuf_printf(sb, "%10u", pace_tab[i]);
9566 		else
9567 			sbuf_printf(sb, "  disabled");
9568 	}
9569 	rc = sbuf_finish(sb);
9570 done:
9571 	mtx_unlock(&sc->reg_lock);
9572 	sbuf_delete(sb);
9573 	return (rc);
9574 }
9575 
9576 static int
9577 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9578 {
9579 	struct adapter *sc = arg1;
9580 	struct sbuf *sb;
9581 	int rc, i, j;
9582 	uint64_t *p0, *p1;
9583 	struct lb_port_stats s[2];
9584 	static const char *stat_name[] = {
9585 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9586 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9587 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9588 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9589 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9590 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9591 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9592 	};
9593 
9594 	rc = sysctl_wire_old_buffer(req, 0);
9595 	if (rc != 0)
9596 		return (rc);
9597 
9598 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9599 	if (sb == NULL)
9600 		return (ENOMEM);
9601 
9602 	memset(s, 0, sizeof(s));
9603 
9604 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9605 		mtx_lock(&sc->reg_lock);
9606 		if (hw_off_limits(sc))
9607 			rc = ENXIO;
9608 		else {
9609 			t4_get_lb_stats(sc, i, &s[0]);
9610 			t4_get_lb_stats(sc, i + 1, &s[1]);
9611 		}
9612 		mtx_unlock(&sc->reg_lock);
9613 		if (rc != 0)
9614 			break;
9615 
9616 		p0 = &s[0].octets;
9617 		p1 = &s[1].octets;
9618 		sbuf_printf(sb, "%s                       Loopback %u"
9619 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9620 
9621 		for (j = 0; j < nitems(stat_name); j++)
9622 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9623 				   *p0++, *p1++);
9624 	}
9625 
9626 	rc = sbuf_finish(sb);
9627 	sbuf_delete(sb);
9628 
9629 	return (rc);
9630 }
9631 
9632 static int
9633 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9634 {
9635 	int rc = 0;
9636 	struct port_info *pi = arg1;
9637 	struct link_config *lc = &pi->link_cfg;
9638 	struct sbuf *sb;
9639 
9640 	rc = sysctl_wire_old_buffer(req, 0);
9641 	if (rc != 0)
9642 		return(rc);
9643 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9644 	if (sb == NULL)
9645 		return (ENOMEM);
9646 
9647 	if (lc->link_ok || lc->link_down_rc == 255)
9648 		sbuf_printf(sb, "n/a");
9649 	else
9650 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9651 
9652 	rc = sbuf_finish(sb);
9653 	sbuf_delete(sb);
9654 
9655 	return (rc);
9656 }
9657 
9658 struct mem_desc {
9659 	unsigned int base;
9660 	unsigned int limit;
9661 	unsigned int idx;
9662 };
9663 
9664 static int
9665 mem_desc_cmp(const void *a, const void *b)
9666 {
9667 	return ((const struct mem_desc *)a)->base -
9668 	       ((const struct mem_desc *)b)->base;
9669 }
9670 
9671 static void
9672 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9673     unsigned int to)
9674 {
9675 	unsigned int size;
9676 
9677 	if (from == to)
9678 		return;
9679 
9680 	size = to - from + 1;
9681 	if (size == 0)
9682 		return;
9683 
9684 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9685 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9686 }
9687 
9688 static int
9689 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9690 {
9691 	struct adapter *sc = arg1;
9692 	struct sbuf *sb;
9693 	int rc, i, n;
9694 	uint32_t lo, hi, used, alloc;
9695 	static const char *memory[] = {
9696 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9697 	};
9698 	static const char *region[] = {
9699 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9700 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9701 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9702 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9703 		"RQUDP region:", "PBL region:", "TXPBL region:",
9704 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
9705 		"On-chip queues:", "TLS keys:",
9706 	};
9707 	struct mem_desc avail[4];
9708 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9709 	struct mem_desc *md = mem;
9710 
9711 	rc = sysctl_wire_old_buffer(req, 0);
9712 	if (rc != 0)
9713 		return (rc);
9714 
9715 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9716 	if (sb == NULL)
9717 		return (ENOMEM);
9718 
9719 	for (i = 0; i < nitems(mem); i++) {
9720 		mem[i].limit = 0;
9721 		mem[i].idx = i;
9722 	}
9723 
9724 	mtx_lock(&sc->reg_lock);
9725 	if (hw_off_limits(sc)) {
9726 		rc = ENXIO;
9727 		goto done;
9728 	}
9729 
9730 	/* Find and sort the populated memory ranges */
9731 	i = 0;
9732 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9733 	if (lo & F_EDRAM0_ENABLE) {
9734 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9735 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9736 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9737 		avail[i].idx = 0;
9738 		i++;
9739 	}
9740 	if (lo & F_EDRAM1_ENABLE) {
9741 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9742 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9743 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9744 		avail[i].idx = 1;
9745 		i++;
9746 	}
9747 	if (lo & F_EXT_MEM_ENABLE) {
9748 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9749 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9750 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9751 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9752 		i++;
9753 	}
9754 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9755 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9756 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9757 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9758 		avail[i].idx = 4;
9759 		i++;
9760 	}
9761 	if (is_t6(sc) && lo & F_HMA_MUX) {
9762 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9763 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9764 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9765 		avail[i].idx = 5;
9766 		i++;
9767 	}
9768 	MPASS(i <= nitems(avail));
9769 	if (!i)                                    /* no memory available */
9770 		goto done;
9771 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9772 
9773 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9774 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9775 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9776 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9777 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9778 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9779 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9780 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9781 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9782 
9783 	/* the next few have explicit upper bounds */
9784 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9785 	md->limit = md->base - 1 +
9786 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9787 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9788 	md++;
9789 
9790 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9791 	md->limit = md->base - 1 +
9792 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9793 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9794 	md++;
9795 
9796 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9797 		if (chip_id(sc) <= CHELSIO_T5)
9798 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9799 		else
9800 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9801 		md->limit = 0;
9802 	} else {
9803 		md->base = 0;
9804 		md->idx = nitems(region);  /* hide it */
9805 	}
9806 	md++;
9807 
9808 #define ulp_region(reg) \
9809 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9810 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9811 
9812 	ulp_region(RX_ISCSI);
9813 	ulp_region(RX_TDDP);
9814 	ulp_region(TX_TPT);
9815 	ulp_region(RX_STAG);
9816 	ulp_region(RX_RQ);
9817 	ulp_region(RX_RQUDP);
9818 	ulp_region(RX_PBL);
9819 	ulp_region(TX_PBL);
9820 #undef ulp_region
9821 
9822 	md->base = 0;
9823 	if (is_t4(sc))
9824 		md->idx = nitems(region);
9825 	else {
9826 		uint32_t size = 0;
9827 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9828 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9829 
9830 		if (is_t5(sc)) {
9831 			if (sge_ctrl & F_VFIFO_ENABLE)
9832 				size = fifo_size << 2;
9833 		} else
9834 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9835 
9836 		if (size) {
9837 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9838 			md->limit = md->base + size - 1;
9839 		} else
9840 			md->idx = nitems(region);
9841 	}
9842 	md++;
9843 
9844 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9845 	md->limit = 0;
9846 	md++;
9847 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9848 	md->limit = 0;
9849 	md++;
9850 
9851 	md->base = sc->vres.ocq.start;
9852 	if (sc->vres.ocq.size)
9853 		md->limit = md->base + sc->vres.ocq.size - 1;
9854 	else
9855 		md->idx = nitems(region);  /* hide it */
9856 	md++;
9857 
9858 	md->base = sc->vres.key.start;
9859 	if (sc->vres.key.size)
9860 		md->limit = md->base + sc->vres.key.size - 1;
9861 	else
9862 		md->idx = nitems(region);  /* hide it */
9863 	md++;
9864 
9865 	/* add any address-space holes, there can be up to 3 */
9866 	for (n = 0; n < i - 1; n++)
9867 		if (avail[n].limit < avail[n + 1].base)
9868 			(md++)->base = avail[n].limit;
9869 	if (avail[n].limit)
9870 		(md++)->base = avail[n].limit;
9871 
9872 	n = md - mem;
9873 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
9874 
9875 	for (lo = 0; lo < i; lo++)
9876 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
9877 				avail[lo].limit - 1);
9878 
9879 	sbuf_printf(sb, "\n");
9880 	for (i = 0; i < n; i++) {
9881 		if (mem[i].idx >= nitems(region))
9882 			continue;                        /* skip holes */
9883 		if (!mem[i].limit)
9884 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
9885 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
9886 				mem[i].limit);
9887 	}
9888 
9889 	sbuf_printf(sb, "\n");
9890 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
9891 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
9892 	mem_region_show(sb, "uP RAM:", lo, hi);
9893 
9894 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
9895 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
9896 	mem_region_show(sb, "uP Extmem2:", lo, hi);
9897 
9898 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
9899 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
9900 		   G_PMRXMAXPAGE(lo),
9901 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
9902 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
9903 
9904 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
9905 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
9906 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
9907 		   G_PMTXMAXPAGE(lo),
9908 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
9909 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
9910 	sbuf_printf(sb, "%u p-structs\n",
9911 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
9912 
9913 	for (i = 0; i < 4; i++) {
9914 		if (chip_id(sc) > CHELSIO_T5)
9915 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
9916 		else
9917 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
9918 		if (is_t5(sc)) {
9919 			used = G_T5_USED(lo);
9920 			alloc = G_T5_ALLOC(lo);
9921 		} else {
9922 			used = G_USED(lo);
9923 			alloc = G_ALLOC(lo);
9924 		}
9925 		/* For T6 these are MAC buffer groups */
9926 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
9927 		    i, used, alloc);
9928 	}
9929 	for (i = 0; i < sc->chip_params->nchan; i++) {
9930 		if (chip_id(sc) > CHELSIO_T5)
9931 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
9932 		else
9933 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
9934 		if (is_t5(sc)) {
9935 			used = G_T5_USED(lo);
9936 			alloc = G_T5_ALLOC(lo);
9937 		} else {
9938 			used = G_USED(lo);
9939 			alloc = G_ALLOC(lo);
9940 		}
9941 		/* For T6 these are MAC buffer groups */
9942 		sbuf_printf(sb,
9943 		    "\nLoopback %d using %u pages out of %u allocated",
9944 		    i, used, alloc);
9945 	}
9946 done:
9947 	mtx_unlock(&sc->reg_lock);
9948 	if (rc == 0)
9949 		rc = sbuf_finish(sb);
9950 	sbuf_delete(sb);
9951 	return (rc);
9952 }
9953 
9954 static inline void
9955 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
9956 {
9957 	*mask = x | y;
9958 	y = htobe64(y);
9959 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
9960 }
9961 
9962 static int
9963 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
9964 {
9965 	struct adapter *sc = arg1;
9966 	struct sbuf *sb;
9967 	int rc, i;
9968 
9969 	MPASS(chip_id(sc) <= CHELSIO_T5);
9970 
9971 	rc = sysctl_wire_old_buffer(req, 0);
9972 	if (rc != 0)
9973 		return (rc);
9974 
9975 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9976 	if (sb == NULL)
9977 		return (ENOMEM);
9978 
9979 	sbuf_printf(sb,
9980 	    "Idx  Ethernet address     Mask     Vld Ports PF"
9981 	    "  VF              Replication             P0 P1 P2 P3  ML");
9982 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
9983 		uint64_t tcamx, tcamy, mask;
9984 		uint32_t cls_lo, cls_hi;
9985 		uint8_t addr[ETHER_ADDR_LEN];
9986 
9987 		mtx_lock(&sc->reg_lock);
9988 		if (hw_off_limits(sc))
9989 			rc = ENXIO;
9990 		else {
9991 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
9992 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
9993 		}
9994 		mtx_unlock(&sc->reg_lock);
9995 		if (rc != 0)
9996 			break;
9997 		if (tcamx & tcamy)
9998 			continue;
9999 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10000 		mtx_lock(&sc->reg_lock);
10001 		if (hw_off_limits(sc))
10002 			rc = ENXIO;
10003 		else {
10004 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10005 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10006 		}
10007 		mtx_unlock(&sc->reg_lock);
10008 		if (rc != 0)
10009 			break;
10010 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10011 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10012 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10013 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10014 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10015 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10016 
10017 		if (cls_lo & F_REPLICATE) {
10018 			struct fw_ldst_cmd ldst_cmd;
10019 
10020 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10021 			ldst_cmd.op_to_addrspace =
10022 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10023 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10024 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10025 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10026 			ldst_cmd.u.mps.rplc.fid_idx =
10027 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10028 				V_FW_LDST_CMD_IDX(i));
10029 
10030 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10031 			    "t4mps");
10032 			if (rc)
10033 				break;
10034 			if (hw_off_limits(sc))
10035 				rc = ENXIO;
10036 			else
10037 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10038 				    sizeof(ldst_cmd), &ldst_cmd);
10039 			end_synchronized_op(sc, 0);
10040 			if (rc != 0)
10041 				break;
10042 			else {
10043 				sbuf_printf(sb, " %08x %08x %08x %08x",
10044 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10045 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10046 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10047 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10048 			}
10049 		} else
10050 			sbuf_printf(sb, "%36s", "");
10051 
10052 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10053 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10054 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10055 	}
10056 
10057 	if (rc)
10058 		(void) sbuf_finish(sb);
10059 	else
10060 		rc = sbuf_finish(sb);
10061 	sbuf_delete(sb);
10062 
10063 	return (rc);
10064 }
10065 
10066 static int
10067 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10068 {
10069 	struct adapter *sc = arg1;
10070 	struct sbuf *sb;
10071 	int rc, i;
10072 
10073 	MPASS(chip_id(sc) > CHELSIO_T5);
10074 
10075 	rc = sysctl_wire_old_buffer(req, 0);
10076 	if (rc != 0)
10077 		return (rc);
10078 
10079 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10080 	if (sb == NULL)
10081 		return (ENOMEM);
10082 
10083 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10084 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10085 	    "                           Replication"
10086 	    "                                    P0 P1 P2 P3  ML\n");
10087 
10088 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10089 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10090 		uint16_t ivlan;
10091 		uint64_t tcamx, tcamy, val, mask;
10092 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10093 		uint8_t addr[ETHER_ADDR_LEN];
10094 
10095 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10096 		if (i < 256)
10097 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10098 		else
10099 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10100 		mtx_lock(&sc->reg_lock);
10101 		if (hw_off_limits(sc))
10102 			rc = ENXIO;
10103 		else {
10104 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10105 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10106 			tcamy = G_DMACH(val) << 32;
10107 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10108 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10109 		}
10110 		mtx_unlock(&sc->reg_lock);
10111 		if (rc != 0)
10112 			break;
10113 
10114 		lookup_type = G_DATALKPTYPE(data2);
10115 		port_num = G_DATAPORTNUM(data2);
10116 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10117 			/* Inner header VNI */
10118 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10119 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10120 			dip_hit = data2 & F_DATADIPHIT;
10121 			vlan_vld = 0;
10122 		} else {
10123 			vniy = 0;
10124 			dip_hit = 0;
10125 			vlan_vld = data2 & F_DATAVIDH2;
10126 			ivlan = G_VIDL(val);
10127 		}
10128 
10129 		ctl |= V_CTLXYBITSEL(1);
10130 		mtx_lock(&sc->reg_lock);
10131 		if (hw_off_limits(sc))
10132 			rc = ENXIO;
10133 		else {
10134 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10135 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10136 			tcamx = G_DMACH(val) << 32;
10137 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10138 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10139 		}
10140 		mtx_unlock(&sc->reg_lock);
10141 		if (rc != 0)
10142 			break;
10143 
10144 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10145 			/* Inner header VNI mask */
10146 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10147 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10148 		} else
10149 			vnix = 0;
10150 
10151 		if (tcamx & tcamy)
10152 			continue;
10153 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10154 
10155 		mtx_lock(&sc->reg_lock);
10156 		if (hw_off_limits(sc))
10157 			rc = ENXIO;
10158 		else {
10159 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10160 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10161 		}
10162 		mtx_unlock(&sc->reg_lock);
10163 		if (rc != 0)
10164 			break;
10165 
10166 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10167 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10168 			    "%012jx %06x %06x    -    -   %3c"
10169 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10170 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10171 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10172 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10173 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10174 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10175 		} else {
10176 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10177 			    "%012jx    -       -   ", i, addr[0], addr[1],
10178 			    addr[2], addr[3], addr[4], addr[5],
10179 			    (uintmax_t)mask);
10180 
10181 			if (vlan_vld)
10182 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10183 			else
10184 				sbuf_printf(sb, "  -    N     ");
10185 
10186 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10187 			    lookup_type ? 'I' : 'O', port_num,
10188 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10189 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10190 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10191 		}
10192 
10193 
10194 		if (cls_lo & F_T6_REPLICATE) {
10195 			struct fw_ldst_cmd ldst_cmd;
10196 
10197 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10198 			ldst_cmd.op_to_addrspace =
10199 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10200 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10201 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10202 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10203 			ldst_cmd.u.mps.rplc.fid_idx =
10204 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10205 				V_FW_LDST_CMD_IDX(i));
10206 
10207 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10208 			    "t6mps");
10209 			if (rc)
10210 				break;
10211 			if (hw_off_limits(sc))
10212 				rc = ENXIO;
10213 			else
10214 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10215 				    sizeof(ldst_cmd), &ldst_cmd);
10216 			end_synchronized_op(sc, 0);
10217 			if (rc != 0)
10218 				break;
10219 			else {
10220 				sbuf_printf(sb, " %08x %08x %08x %08x"
10221 				    " %08x %08x %08x %08x",
10222 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10223 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10224 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10225 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10226 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10227 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10228 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10229 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10230 			}
10231 		} else
10232 			sbuf_printf(sb, "%72s", "");
10233 
10234 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10235 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10236 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10237 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10238 	}
10239 
10240 	if (rc)
10241 		(void) sbuf_finish(sb);
10242 	else
10243 		rc = sbuf_finish(sb);
10244 	sbuf_delete(sb);
10245 
10246 	return (rc);
10247 }
10248 
10249 static int
10250 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10251 {
10252 	struct adapter *sc = arg1;
10253 	struct sbuf *sb;
10254 	int rc;
10255 	uint16_t mtus[NMTUS];
10256 
10257 	rc = sysctl_wire_old_buffer(req, 0);
10258 	if (rc != 0)
10259 		return (rc);
10260 
10261 	mtx_lock(&sc->reg_lock);
10262 	if (hw_off_limits(sc))
10263 		rc = ENXIO;
10264 	else
10265 		t4_read_mtu_tbl(sc, mtus, NULL);
10266 	mtx_unlock(&sc->reg_lock);
10267 	if (rc != 0)
10268 		return (rc);
10269 
10270 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10271 	if (sb == NULL)
10272 		return (ENOMEM);
10273 
10274 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10275 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10276 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10277 	    mtus[14], mtus[15]);
10278 
10279 	rc = sbuf_finish(sb);
10280 	sbuf_delete(sb);
10281 
10282 	return (rc);
10283 }
10284 
10285 static int
10286 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10287 {
10288 	struct adapter *sc = arg1;
10289 	struct sbuf *sb;
10290 	int rc, i;
10291 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10292 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10293 	static const char *tx_stats[MAX_PM_NSTATS] = {
10294 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10295 		"Tx FIFO wait", NULL, "Tx latency"
10296 	};
10297 	static const char *rx_stats[MAX_PM_NSTATS] = {
10298 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10299 		"Rx FIFO wait", NULL, "Rx latency"
10300 	};
10301 
10302 	rc = sysctl_wire_old_buffer(req, 0);
10303 	if (rc != 0)
10304 		return (rc);
10305 
10306 	mtx_lock(&sc->reg_lock);
10307 	if (hw_off_limits(sc))
10308 		rc = ENXIO;
10309 	else {
10310 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10311 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10312 	}
10313 	mtx_unlock(&sc->reg_lock);
10314 	if (rc != 0)
10315 		return (rc);
10316 
10317 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10318 	if (sb == NULL)
10319 		return (ENOMEM);
10320 
10321 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10322 	for (i = 0; i < 4; i++) {
10323 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10324 		    tx_cyc[i]);
10325 	}
10326 
10327 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10328 	for (i = 0; i < 4; i++) {
10329 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10330 		    rx_cyc[i]);
10331 	}
10332 
10333 	if (chip_id(sc) > CHELSIO_T5) {
10334 		sbuf_printf(sb,
10335 		    "\n              Total wait      Total occupancy");
10336 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10337 		    tx_cyc[i]);
10338 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10339 		    rx_cyc[i]);
10340 
10341 		i += 2;
10342 		MPASS(i < nitems(tx_stats));
10343 
10344 		sbuf_printf(sb,
10345 		    "\n                   Reads           Total wait");
10346 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10347 		    tx_cyc[i]);
10348 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10349 		    rx_cyc[i]);
10350 	}
10351 
10352 	rc = sbuf_finish(sb);
10353 	sbuf_delete(sb);
10354 
10355 	return (rc);
10356 }
10357 
10358 static int
10359 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10360 {
10361 	struct adapter *sc = arg1;
10362 	struct sbuf *sb;
10363 	int rc;
10364 	struct tp_rdma_stats stats;
10365 
10366 	rc = sysctl_wire_old_buffer(req, 0);
10367 	if (rc != 0)
10368 		return (rc);
10369 
10370 	mtx_lock(&sc->reg_lock);
10371 	if (hw_off_limits(sc))
10372 		rc = ENXIO;
10373 	else
10374 		t4_tp_get_rdma_stats(sc, &stats, 0);
10375 	mtx_unlock(&sc->reg_lock);
10376 	if (rc != 0)
10377 		return (rc);
10378 
10379 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10380 	if (sb == NULL)
10381 		return (ENOMEM);
10382 
10383 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10384 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10385 
10386 	rc = sbuf_finish(sb);
10387 	sbuf_delete(sb);
10388 
10389 	return (rc);
10390 }
10391 
10392 static int
10393 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10394 {
10395 	struct adapter *sc = arg1;
10396 	struct sbuf *sb;
10397 	int rc;
10398 	struct tp_tcp_stats v4, v6;
10399 
10400 	rc = sysctl_wire_old_buffer(req, 0);
10401 	if (rc != 0)
10402 		return (rc);
10403 
10404 	mtx_lock(&sc->reg_lock);
10405 	if (hw_off_limits(sc))
10406 		rc = ENXIO;
10407 	else
10408 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10409 	mtx_unlock(&sc->reg_lock);
10410 	if (rc != 0)
10411 		return (rc);
10412 
10413 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10414 	if (sb == NULL)
10415 		return (ENOMEM);
10416 
10417 	sbuf_printf(sb,
10418 	    "                                IP                 IPv6\n");
10419 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10420 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10421 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10422 	    v4.tcp_in_segs, v6.tcp_in_segs);
10423 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10424 	    v4.tcp_out_segs, v6.tcp_out_segs);
10425 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10426 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10427 
10428 	rc = sbuf_finish(sb);
10429 	sbuf_delete(sb);
10430 
10431 	return (rc);
10432 }
10433 
10434 static int
10435 sysctl_tids(SYSCTL_HANDLER_ARGS)
10436 {
10437 	struct adapter *sc = arg1;
10438 	struct sbuf *sb;
10439 	int rc;
10440 	uint32_t x, y;
10441 	struct tid_info *t = &sc->tids;
10442 
10443 	rc = sysctl_wire_old_buffer(req, 0);
10444 	if (rc != 0)
10445 		return (rc);
10446 
10447 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10448 	if (sb == NULL)
10449 		return (ENOMEM);
10450 
10451 	if (t->natids) {
10452 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10453 		    t->atids_in_use);
10454 	}
10455 
10456 	if (t->nhpftids) {
10457 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10458 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10459 	}
10460 
10461 	if (t->ntids) {
10462 		bool hashen = false;
10463 
10464 		mtx_lock(&sc->reg_lock);
10465 		if (hw_off_limits(sc))
10466 			rc = ENXIO;
10467 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10468 			hashen = true;
10469 			if (chip_id(sc) <= CHELSIO_T5) {
10470 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10471 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10472 			} else {
10473 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10474 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10475 			}
10476 		}
10477 		mtx_unlock(&sc->reg_lock);
10478 		if (rc != 0)
10479 			goto done;
10480 
10481 		sbuf_printf(sb, "TID range: ");
10482 		if (hashen) {
10483 			if (x)
10484 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10485 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10486 		} else {
10487 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10488 			    t->ntids - 1);
10489 		}
10490 		sbuf_printf(sb, ", in use: %u\n",
10491 		    atomic_load_acq_int(&t->tids_in_use));
10492 	}
10493 
10494 	if (t->nstids) {
10495 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10496 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10497 	}
10498 
10499 	if (t->nftids) {
10500 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10501 		    t->ftid_end, t->ftids_in_use);
10502 	}
10503 
10504 	if (t->netids) {
10505 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10506 		    t->etid_base + t->netids - 1, t->etids_in_use);
10507 	}
10508 
10509 	mtx_lock(&sc->reg_lock);
10510 	if (hw_off_limits(sc))
10511 		rc = ENXIO;
10512 	else {
10513 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10514 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10515 	}
10516 	mtx_unlock(&sc->reg_lock);
10517 	if (rc != 0)
10518 		goto done;
10519 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10520 done:
10521 	if (rc == 0)
10522 		rc = sbuf_finish(sb);
10523 	else
10524 		(void)sbuf_finish(sb);
10525 	sbuf_delete(sb);
10526 
10527 	return (rc);
10528 }
10529 
10530 static int
10531 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10532 {
10533 	struct adapter *sc = arg1;
10534 	struct sbuf *sb;
10535 	int rc;
10536 	struct tp_err_stats stats;
10537 
10538 	rc = sysctl_wire_old_buffer(req, 0);
10539 	if (rc != 0)
10540 		return (rc);
10541 
10542 	mtx_lock(&sc->reg_lock);
10543 	if (hw_off_limits(sc))
10544 		rc = ENXIO;
10545 	else
10546 		t4_tp_get_err_stats(sc, &stats, 0);
10547 	mtx_unlock(&sc->reg_lock);
10548 	if (rc != 0)
10549 		return (rc);
10550 
10551 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10552 	if (sb == NULL)
10553 		return (ENOMEM);
10554 
10555 	if (sc->chip_params->nchan > 2) {
10556 		sbuf_printf(sb, "                 channel 0  channel 1"
10557 		    "  channel 2  channel 3\n");
10558 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10559 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10560 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10561 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10562 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10563 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10564 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10565 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10566 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10567 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10568 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10569 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10570 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10571 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10572 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10573 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10574 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10575 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10576 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10577 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10578 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10579 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10580 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10581 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10582 	} else {
10583 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10584 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10585 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10586 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10587 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10588 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10589 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10590 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10591 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10592 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10593 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10594 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10595 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10596 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10597 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10598 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10599 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10600 	}
10601 
10602 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10603 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10604 
10605 	rc = sbuf_finish(sb);
10606 	sbuf_delete(sb);
10607 
10608 	return (rc);
10609 }
10610 
10611 static int
10612 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10613 {
10614 	struct adapter *sc = arg1;
10615 	struct sbuf *sb;
10616 	int rc;
10617 	struct tp_tnl_stats stats;
10618 
10619 	rc = sysctl_wire_old_buffer(req, 0);
10620 	if (rc != 0)
10621 		return(rc);
10622 
10623 	mtx_lock(&sc->reg_lock);
10624 	if (hw_off_limits(sc))
10625 		rc = ENXIO;
10626 	else
10627 		t4_tp_get_tnl_stats(sc, &stats, 1);
10628 	mtx_unlock(&sc->reg_lock);
10629 	if (rc != 0)
10630 		return (rc);
10631 
10632 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10633 	if (sb == NULL)
10634 		return (ENOMEM);
10635 
10636 	if (sc->chip_params->nchan > 2) {
10637 		sbuf_printf(sb, "           channel 0  channel 1"
10638 		    "  channel 2  channel 3\n");
10639 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10640 		    stats.out_pkt[0], stats.out_pkt[1],
10641 		    stats.out_pkt[2], stats.out_pkt[3]);
10642 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10643 		    stats.in_pkt[0], stats.in_pkt[1],
10644 		    stats.in_pkt[2], stats.in_pkt[3]);
10645 	} else {
10646 		sbuf_printf(sb, "           channel 0  channel 1\n");
10647 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10648 		    stats.out_pkt[0], stats.out_pkt[1]);
10649 		sbuf_printf(sb, "InPkts:   %10u %10u",
10650 		    stats.in_pkt[0], stats.in_pkt[1]);
10651 	}
10652 
10653 	rc = sbuf_finish(sb);
10654 	sbuf_delete(sb);
10655 
10656 	return (rc);
10657 }
10658 
10659 static int
10660 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10661 {
10662 	struct adapter *sc = arg1;
10663 	struct tp_params *tpp = &sc->params.tp;
10664 	u_int mask;
10665 	int rc;
10666 
10667 	mask = tpp->la_mask >> 16;
10668 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10669 	if (rc != 0 || req->newptr == NULL)
10670 		return (rc);
10671 	if (mask > 0xffff)
10672 		return (EINVAL);
10673 	mtx_lock(&sc->reg_lock);
10674 	if (hw_off_limits(sc))
10675 		rc = ENXIO;
10676 	else {
10677 		tpp->la_mask = mask << 16;
10678 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10679 		    tpp->la_mask);
10680 	}
10681 	mtx_unlock(&sc->reg_lock);
10682 
10683 	return (rc);
10684 }
10685 
10686 struct field_desc {
10687 	const char *name;
10688 	u_int start;
10689 	u_int width;
10690 };
10691 
10692 static void
10693 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10694 {
10695 	char buf[32];
10696 	int line_size = 0;
10697 
10698 	while (f->name) {
10699 		uint64_t mask = (1ULL << f->width) - 1;
10700 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10701 		    ((uintmax_t)v >> f->start) & mask);
10702 
10703 		if (line_size + len >= 79) {
10704 			line_size = 8;
10705 			sbuf_printf(sb, "\n        ");
10706 		}
10707 		sbuf_printf(sb, "%s ", buf);
10708 		line_size += len + 1;
10709 		f++;
10710 	}
10711 	sbuf_printf(sb, "\n");
10712 }
10713 
10714 static const struct field_desc tp_la0[] = {
10715 	{ "RcfOpCodeOut", 60, 4 },
10716 	{ "State", 56, 4 },
10717 	{ "WcfState", 52, 4 },
10718 	{ "RcfOpcSrcOut", 50, 2 },
10719 	{ "CRxError", 49, 1 },
10720 	{ "ERxError", 48, 1 },
10721 	{ "SanityFailed", 47, 1 },
10722 	{ "SpuriousMsg", 46, 1 },
10723 	{ "FlushInputMsg", 45, 1 },
10724 	{ "FlushInputCpl", 44, 1 },
10725 	{ "RssUpBit", 43, 1 },
10726 	{ "RssFilterHit", 42, 1 },
10727 	{ "Tid", 32, 10 },
10728 	{ "InitTcb", 31, 1 },
10729 	{ "LineNumber", 24, 7 },
10730 	{ "Emsg", 23, 1 },
10731 	{ "EdataOut", 22, 1 },
10732 	{ "Cmsg", 21, 1 },
10733 	{ "CdataOut", 20, 1 },
10734 	{ "EreadPdu", 19, 1 },
10735 	{ "CreadPdu", 18, 1 },
10736 	{ "TunnelPkt", 17, 1 },
10737 	{ "RcfPeerFin", 16, 1 },
10738 	{ "RcfReasonOut", 12, 4 },
10739 	{ "TxCchannel", 10, 2 },
10740 	{ "RcfTxChannel", 8, 2 },
10741 	{ "RxEchannel", 6, 2 },
10742 	{ "RcfRxChannel", 5, 1 },
10743 	{ "RcfDataOutSrdy", 4, 1 },
10744 	{ "RxDvld", 3, 1 },
10745 	{ "RxOoDvld", 2, 1 },
10746 	{ "RxCongestion", 1, 1 },
10747 	{ "TxCongestion", 0, 1 },
10748 	{ NULL }
10749 };
10750 
10751 static const struct field_desc tp_la1[] = {
10752 	{ "CplCmdIn", 56, 8 },
10753 	{ "CplCmdOut", 48, 8 },
10754 	{ "ESynOut", 47, 1 },
10755 	{ "EAckOut", 46, 1 },
10756 	{ "EFinOut", 45, 1 },
10757 	{ "ERstOut", 44, 1 },
10758 	{ "SynIn", 43, 1 },
10759 	{ "AckIn", 42, 1 },
10760 	{ "FinIn", 41, 1 },
10761 	{ "RstIn", 40, 1 },
10762 	{ "DataIn", 39, 1 },
10763 	{ "DataInVld", 38, 1 },
10764 	{ "PadIn", 37, 1 },
10765 	{ "RxBufEmpty", 36, 1 },
10766 	{ "RxDdp", 35, 1 },
10767 	{ "RxFbCongestion", 34, 1 },
10768 	{ "TxFbCongestion", 33, 1 },
10769 	{ "TxPktSumSrdy", 32, 1 },
10770 	{ "RcfUlpType", 28, 4 },
10771 	{ "Eread", 27, 1 },
10772 	{ "Ebypass", 26, 1 },
10773 	{ "Esave", 25, 1 },
10774 	{ "Static0", 24, 1 },
10775 	{ "Cread", 23, 1 },
10776 	{ "Cbypass", 22, 1 },
10777 	{ "Csave", 21, 1 },
10778 	{ "CPktOut", 20, 1 },
10779 	{ "RxPagePoolFull", 18, 2 },
10780 	{ "RxLpbkPkt", 17, 1 },
10781 	{ "TxLpbkPkt", 16, 1 },
10782 	{ "RxVfValid", 15, 1 },
10783 	{ "SynLearned", 14, 1 },
10784 	{ "SetDelEntry", 13, 1 },
10785 	{ "SetInvEntry", 12, 1 },
10786 	{ "CpcmdDvld", 11, 1 },
10787 	{ "CpcmdSave", 10, 1 },
10788 	{ "RxPstructsFull", 8, 2 },
10789 	{ "EpcmdDvld", 7, 1 },
10790 	{ "EpcmdFlush", 6, 1 },
10791 	{ "EpcmdTrimPrefix", 5, 1 },
10792 	{ "EpcmdTrimPostfix", 4, 1 },
10793 	{ "ERssIp4Pkt", 3, 1 },
10794 	{ "ERssIp6Pkt", 2, 1 },
10795 	{ "ERssTcpUdpPkt", 1, 1 },
10796 	{ "ERssFceFipPkt", 0, 1 },
10797 	{ NULL }
10798 };
10799 
10800 static const struct field_desc tp_la2[] = {
10801 	{ "CplCmdIn", 56, 8 },
10802 	{ "MpsVfVld", 55, 1 },
10803 	{ "MpsPf", 52, 3 },
10804 	{ "MpsVf", 44, 8 },
10805 	{ "SynIn", 43, 1 },
10806 	{ "AckIn", 42, 1 },
10807 	{ "FinIn", 41, 1 },
10808 	{ "RstIn", 40, 1 },
10809 	{ "DataIn", 39, 1 },
10810 	{ "DataInVld", 38, 1 },
10811 	{ "PadIn", 37, 1 },
10812 	{ "RxBufEmpty", 36, 1 },
10813 	{ "RxDdp", 35, 1 },
10814 	{ "RxFbCongestion", 34, 1 },
10815 	{ "TxFbCongestion", 33, 1 },
10816 	{ "TxPktSumSrdy", 32, 1 },
10817 	{ "RcfUlpType", 28, 4 },
10818 	{ "Eread", 27, 1 },
10819 	{ "Ebypass", 26, 1 },
10820 	{ "Esave", 25, 1 },
10821 	{ "Static0", 24, 1 },
10822 	{ "Cread", 23, 1 },
10823 	{ "Cbypass", 22, 1 },
10824 	{ "Csave", 21, 1 },
10825 	{ "CPktOut", 20, 1 },
10826 	{ "RxPagePoolFull", 18, 2 },
10827 	{ "RxLpbkPkt", 17, 1 },
10828 	{ "TxLpbkPkt", 16, 1 },
10829 	{ "RxVfValid", 15, 1 },
10830 	{ "SynLearned", 14, 1 },
10831 	{ "SetDelEntry", 13, 1 },
10832 	{ "SetInvEntry", 12, 1 },
10833 	{ "CpcmdDvld", 11, 1 },
10834 	{ "CpcmdSave", 10, 1 },
10835 	{ "RxPstructsFull", 8, 2 },
10836 	{ "EpcmdDvld", 7, 1 },
10837 	{ "EpcmdFlush", 6, 1 },
10838 	{ "EpcmdTrimPrefix", 5, 1 },
10839 	{ "EpcmdTrimPostfix", 4, 1 },
10840 	{ "ERssIp4Pkt", 3, 1 },
10841 	{ "ERssIp6Pkt", 2, 1 },
10842 	{ "ERssTcpUdpPkt", 1, 1 },
10843 	{ "ERssFceFipPkt", 0, 1 },
10844 	{ NULL }
10845 };
10846 
10847 static void
10848 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10849 {
10850 
10851 	field_desc_show(sb, *p, tp_la0);
10852 }
10853 
10854 static void
10855 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10856 {
10857 
10858 	if (idx)
10859 		sbuf_printf(sb, "\n");
10860 	field_desc_show(sb, p[0], tp_la0);
10861 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10862 		field_desc_show(sb, p[1], tp_la0);
10863 }
10864 
10865 static void
10866 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10867 {
10868 
10869 	if (idx)
10870 		sbuf_printf(sb, "\n");
10871 	field_desc_show(sb, p[0], tp_la0);
10872 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10873 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
10874 }
10875 
10876 static int
10877 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
10878 {
10879 	struct adapter *sc = arg1;
10880 	struct sbuf *sb;
10881 	uint64_t *buf, *p;
10882 	int rc;
10883 	u_int i, inc;
10884 	void (*show_func)(struct sbuf *, uint64_t *, int);
10885 
10886 	rc = sysctl_wire_old_buffer(req, 0);
10887 	if (rc != 0)
10888 		return (rc);
10889 
10890 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10891 	if (sb == NULL)
10892 		return (ENOMEM);
10893 
10894 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
10895 
10896 	mtx_lock(&sc->reg_lock);
10897 	if (hw_off_limits(sc))
10898 		rc = ENXIO;
10899 	else {
10900 		t4_tp_read_la(sc, buf, NULL);
10901 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
10902 		case 2:
10903 			inc = 2;
10904 			show_func = tp_la_show2;
10905 			break;
10906 		case 3:
10907 			inc = 2;
10908 			show_func = tp_la_show3;
10909 			break;
10910 		default:
10911 			inc = 1;
10912 			show_func = tp_la_show;
10913 		}
10914 	}
10915 	mtx_unlock(&sc->reg_lock);
10916 	if (rc != 0)
10917 		goto done;
10918 
10919 	p = buf;
10920 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
10921 		(*show_func)(sb, p, i);
10922 	rc = sbuf_finish(sb);
10923 done:
10924 	sbuf_delete(sb);
10925 	free(buf, M_CXGBE);
10926 	return (rc);
10927 }
10928 
10929 static int
10930 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
10931 {
10932 	struct adapter *sc = arg1;
10933 	struct sbuf *sb;
10934 	int rc;
10935 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
10936 
10937 	rc = sysctl_wire_old_buffer(req, 0);
10938 	if (rc != 0)
10939 		return (rc);
10940 
10941 	mtx_lock(&sc->reg_lock);
10942 	if (hw_off_limits(sc))
10943 		rc = ENXIO;
10944 	else
10945 		t4_get_chan_txrate(sc, nrate, orate);
10946 	mtx_unlock(&sc->reg_lock);
10947 	if (rc != 0)
10948 		return (rc);
10949 
10950 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10951 	if (sb == NULL)
10952 		return (ENOMEM);
10953 
10954 	if (sc->chip_params->nchan > 2) {
10955 		sbuf_printf(sb, "              channel 0   channel 1"
10956 		    "   channel 2   channel 3\n");
10957 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
10958 		    nrate[0], nrate[1], nrate[2], nrate[3]);
10959 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
10960 		    orate[0], orate[1], orate[2], orate[3]);
10961 	} else {
10962 		sbuf_printf(sb, "              channel 0   channel 1\n");
10963 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
10964 		    nrate[0], nrate[1]);
10965 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
10966 		    orate[0], orate[1]);
10967 	}
10968 
10969 	rc = sbuf_finish(sb);
10970 	sbuf_delete(sb);
10971 
10972 	return (rc);
10973 }
10974 
10975 static int
10976 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
10977 {
10978 	struct adapter *sc = arg1;
10979 	struct sbuf *sb;
10980 	uint32_t *buf, *p;
10981 	int rc, i;
10982 
10983 	rc = sysctl_wire_old_buffer(req, 0);
10984 	if (rc != 0)
10985 		return (rc);
10986 
10987 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10988 	if (sb == NULL)
10989 		return (ENOMEM);
10990 
10991 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
10992 	    M_ZERO | M_WAITOK);
10993 
10994 	mtx_lock(&sc->reg_lock);
10995 	if (hw_off_limits(sc))
10996 		rc = ENXIO;
10997 	else
10998 		t4_ulprx_read_la(sc, buf);
10999 	mtx_unlock(&sc->reg_lock);
11000 	if (rc != 0)
11001 		goto done;
11002 
11003 	p = buf;
11004 	sbuf_printf(sb, "      Pcmd        Type   Message"
11005 	    "                Data");
11006 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11007 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11008 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11009 	}
11010 	rc = sbuf_finish(sb);
11011 done:
11012 	sbuf_delete(sb);
11013 	free(buf, M_CXGBE);
11014 	return (rc);
11015 }
11016 
11017 static int
11018 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11019 {
11020 	struct adapter *sc = arg1;
11021 	struct sbuf *sb;
11022 	int rc;
11023 	uint32_t cfg, s1, s2;
11024 
11025 	MPASS(chip_id(sc) >= CHELSIO_T5);
11026 
11027 	rc = sysctl_wire_old_buffer(req, 0);
11028 	if (rc != 0)
11029 		return (rc);
11030 
11031 	mtx_lock(&sc->reg_lock);
11032 	if (hw_off_limits(sc))
11033 		rc = ENXIO;
11034 	else {
11035 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11036 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11037 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11038 	}
11039 	mtx_unlock(&sc->reg_lock);
11040 	if (rc != 0)
11041 		return (rc);
11042 
11043 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11044 	if (sb == NULL)
11045 		return (ENOMEM);
11046 
11047 	if (G_STATSOURCE_T5(cfg) == 7) {
11048 		int mode;
11049 
11050 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11051 		if (mode == 0)
11052 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11053 		else if (mode == 1)
11054 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11055 		else
11056 			sbuf_printf(sb, "unknown mode %d", mode);
11057 	}
11058 	rc = sbuf_finish(sb);
11059 	sbuf_delete(sb);
11060 
11061 	return (rc);
11062 }
11063 
11064 static int
11065 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11066 {
11067 	struct adapter *sc = arg1;
11068 	enum cpu_sets op = arg2;
11069 	cpuset_t cpuset;
11070 	struct sbuf *sb;
11071 	int i, rc;
11072 
11073 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11074 
11075 	CPU_ZERO(&cpuset);
11076 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11077 	if (rc != 0)
11078 		return (rc);
11079 
11080 	rc = sysctl_wire_old_buffer(req, 0);
11081 	if (rc != 0)
11082 		return (rc);
11083 
11084 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11085 	if (sb == NULL)
11086 		return (ENOMEM);
11087 
11088 	CPU_FOREACH(i)
11089 		sbuf_printf(sb, "%d ", i);
11090 	rc = sbuf_finish(sb);
11091 	sbuf_delete(sb);
11092 
11093 	return (rc);
11094 }
11095 
11096 static int
11097 sysctl_reset(SYSCTL_HANDLER_ARGS)
11098 {
11099 	struct adapter *sc = arg1;
11100 	u_int val;
11101 	int rc;
11102 
11103 	val = atomic_load_int(&sc->num_resets);
11104 	rc = sysctl_handle_int(oidp, &val, 0, req);
11105 	if (rc != 0 || req->newptr == NULL)
11106 		return (rc);
11107 
11108 	if (val == 0) {
11109 		/* Zero out the counter that tracks reset. */
11110 		atomic_store_int(&sc->num_resets, 0);
11111 		return (0);
11112 	}
11113 
11114 	if (val != 1)
11115 		return (EINVAL);	/* 0 or 1 are the only legal values */
11116 
11117 	if (hw_off_limits(sc))		/* harmless race */
11118 		return (EALREADY);
11119 
11120 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11121 	return (0);
11122 }
11123 
11124 #ifdef TCP_OFFLOAD
11125 static int
11126 sysctl_tls(SYSCTL_HANDLER_ARGS)
11127 {
11128 	struct adapter *sc = arg1;
11129 	int i, j, v, rc;
11130 	struct vi_info *vi;
11131 
11132 	v = sc->tt.tls;
11133 	rc = sysctl_handle_int(oidp, &v, 0, req);
11134 	if (rc != 0 || req->newptr == NULL)
11135 		return (rc);
11136 
11137 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11138 		return (ENOTSUP);
11139 
11140 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11141 	if (rc)
11142 		return (rc);
11143 	if (hw_off_limits(sc))
11144 		rc = ENXIO;
11145 	else {
11146 		sc->tt.tls = !!v;
11147 		for_each_port(sc, i) {
11148 			for_each_vi(sc->port[i], j, vi) {
11149 				if (vi->flags & VI_INIT_DONE)
11150 					t4_update_fl_bufsize(vi->ifp);
11151 			}
11152 		}
11153 	}
11154 	end_synchronized_op(sc, 0);
11155 
11156 	return (rc);
11157 
11158 }
11159 
11160 static int
11161 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
11162 {
11163 	struct adapter *sc = arg1;
11164 	int *old_ports, *new_ports;
11165 	int i, new_count, rc;
11166 
11167 	if (req->newptr == NULL && req->oldptr == NULL)
11168 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
11169 		    sizeof(sc->tt.tls_rx_ports[0])));
11170 
11171 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
11172 	if (rc)
11173 		return (rc);
11174 
11175 	if (hw_off_limits(sc)) {
11176 		rc = ENXIO;
11177 		goto done;
11178 	}
11179 
11180 	if (sc->tt.num_tls_rx_ports == 0) {
11181 		i = -1;
11182 		rc = SYSCTL_OUT(req, &i, sizeof(i));
11183 	} else
11184 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
11185 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
11186 	if (rc == 0 && req->newptr != NULL) {
11187 		new_count = req->newlen / sizeof(new_ports[0]);
11188 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
11189 		    M_WAITOK);
11190 		rc = SYSCTL_IN(req, new_ports, new_count *
11191 		    sizeof(new_ports[0]));
11192 		if (rc)
11193 			goto err;
11194 
11195 		/* Allow setting to a single '-1' to clear the list. */
11196 		if (new_count == 1 && new_ports[0] == -1) {
11197 			ADAPTER_LOCK(sc);
11198 			old_ports = sc->tt.tls_rx_ports;
11199 			sc->tt.tls_rx_ports = NULL;
11200 			sc->tt.num_tls_rx_ports = 0;
11201 			ADAPTER_UNLOCK(sc);
11202 			free(old_ports, M_CXGBE);
11203 		} else {
11204 			for (i = 0; i < new_count; i++) {
11205 				if (new_ports[i] < 1 ||
11206 				    new_ports[i] > IPPORT_MAX) {
11207 					rc = EINVAL;
11208 					goto err;
11209 				}
11210 			}
11211 
11212 			ADAPTER_LOCK(sc);
11213 			old_ports = sc->tt.tls_rx_ports;
11214 			sc->tt.tls_rx_ports = new_ports;
11215 			sc->tt.num_tls_rx_ports = new_count;
11216 			ADAPTER_UNLOCK(sc);
11217 			free(old_ports, M_CXGBE);
11218 			new_ports = NULL;
11219 		}
11220 	err:
11221 		free(new_ports, M_CXGBE);
11222 	}
11223 done:
11224 	end_synchronized_op(sc, 0);
11225 	return (rc);
11226 }
11227 
11228 static int
11229 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS)
11230 {
11231 	struct adapter *sc = arg1;
11232 	int v, rc;
11233 
11234 	v = sc->tt.tls_rx_timeout;
11235 	rc = sysctl_handle_int(oidp, &v, 0, req);
11236 	if (rc != 0 || req->newptr == NULL)
11237 		return (rc);
11238 
11239 	if (v < 0)
11240 		return (EINVAL);
11241 
11242 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11243 		return (ENOTSUP);
11244 
11245 	sc->tt.tls_rx_timeout = v;
11246 
11247 	return (0);
11248 
11249 }
11250 
11251 static void
11252 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11253 {
11254 	u_int rem = val % factor;
11255 
11256 	if (rem == 0)
11257 		snprintf(buf, len, "%u", val / factor);
11258 	else {
11259 		while (rem % 10 == 0)
11260 			rem /= 10;
11261 		snprintf(buf, len, "%u.%u", val / factor, rem);
11262 	}
11263 }
11264 
11265 static int
11266 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11267 {
11268 	struct adapter *sc = arg1;
11269 	char buf[16];
11270 	u_int res, re;
11271 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11272 
11273 	mtx_lock(&sc->reg_lock);
11274 	if (hw_off_limits(sc))
11275 		res = (u_int)-1;
11276 	else
11277 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11278 	mtx_unlock(&sc->reg_lock);
11279 	if (res == (u_int)-1)
11280 		return (ENXIO);
11281 
11282 	switch (arg2) {
11283 	case 0:
11284 		/* timer_tick */
11285 		re = G_TIMERRESOLUTION(res);
11286 		break;
11287 	case 1:
11288 		/* TCP timestamp tick */
11289 		re = G_TIMESTAMPRESOLUTION(res);
11290 		break;
11291 	case 2:
11292 		/* DACK tick */
11293 		re = G_DELAYEDACKRESOLUTION(res);
11294 		break;
11295 	default:
11296 		return (EDOOFUS);
11297 	}
11298 
11299 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11300 
11301 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11302 }
11303 
11304 static int
11305 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11306 {
11307 	struct adapter *sc = arg1;
11308 	int rc;
11309 	u_int dack_tmr, dack_re, v;
11310 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11311 
11312 	mtx_lock(&sc->reg_lock);
11313 	if (hw_off_limits(sc))
11314 		rc = ENXIO;
11315 	else {
11316 		rc = 0;
11317 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11318 		    A_TP_TIMER_RESOLUTION));
11319 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11320 	}
11321 	mtx_unlock(&sc->reg_lock);
11322 	if (rc != 0)
11323 		return (rc);
11324 
11325 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11326 
11327 	return (sysctl_handle_int(oidp, &v, 0, req));
11328 }
11329 
11330 static int
11331 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11332 {
11333 	struct adapter *sc = arg1;
11334 	int rc, reg = arg2;
11335 	u_int tre;
11336 	u_long tp_tick_us, v;
11337 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11338 
11339 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11340 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11341 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11342 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11343 
11344 	mtx_lock(&sc->reg_lock);
11345 	if (hw_off_limits(sc))
11346 		rc = ENXIO;
11347 	else {
11348 		rc = 0;
11349 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11350 		tp_tick_us = (cclk_ps << tre) / 1000000;
11351 		if (reg == A_TP_INIT_SRTT)
11352 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11353 		else
11354 			v = tp_tick_us * t4_read_reg(sc, reg);
11355 	}
11356 	mtx_unlock(&sc->reg_lock);
11357 	if (rc != 0)
11358 		return (rc);
11359 	else
11360 		return (sysctl_handle_long(oidp, &v, 0, req));
11361 }
11362 
11363 /*
11364  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11365  * passed to this function.
11366  */
11367 static int
11368 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11369 {
11370 	struct adapter *sc = arg1;
11371 	int rc, idx = arg2;
11372 	u_int v;
11373 
11374 	MPASS(idx >= 0 && idx <= 24);
11375 
11376 	mtx_lock(&sc->reg_lock);
11377 	if (hw_off_limits(sc))
11378 		rc = ENXIO;
11379 	else {
11380 		rc = 0;
11381 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11382 	}
11383 	mtx_unlock(&sc->reg_lock);
11384 	if (rc != 0)
11385 		return (rc);
11386 	else
11387 		return (sysctl_handle_int(oidp, &v, 0, req));
11388 }
11389 
11390 static int
11391 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11392 {
11393 	struct adapter *sc = arg1;
11394 	int rc, idx = arg2;
11395 	u_int shift, v, r;
11396 
11397 	MPASS(idx >= 0 && idx < 16);
11398 
11399 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11400 	shift = (idx & 3) << 3;
11401 	mtx_lock(&sc->reg_lock);
11402 	if (hw_off_limits(sc))
11403 		rc = ENXIO;
11404 	else {
11405 		rc = 0;
11406 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11407 	}
11408 	mtx_unlock(&sc->reg_lock);
11409 	if (rc != 0)
11410 		return (rc);
11411 	else
11412 		return (sysctl_handle_int(oidp, &v, 0, req));
11413 }
11414 
11415 static int
11416 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11417 {
11418 	struct vi_info *vi = arg1;
11419 	struct adapter *sc = vi->adapter;
11420 	int idx, rc, i;
11421 	struct sge_ofld_rxq *ofld_rxq;
11422 	uint8_t v;
11423 
11424 	idx = vi->ofld_tmr_idx;
11425 
11426 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11427 	if (rc != 0 || req->newptr == NULL)
11428 		return (rc);
11429 
11430 	if (idx < 0 || idx >= SGE_NTIMERS)
11431 		return (EINVAL);
11432 
11433 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11434 	    "t4otmr");
11435 	if (rc)
11436 		return (rc);
11437 
11438 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11439 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11440 #ifdef atomic_store_rel_8
11441 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11442 #else
11443 		ofld_rxq->iq.intr_params = v;
11444 #endif
11445 	}
11446 	vi->ofld_tmr_idx = idx;
11447 
11448 	end_synchronized_op(sc, LOCK_HELD);
11449 	return (0);
11450 }
11451 
11452 static int
11453 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11454 {
11455 	struct vi_info *vi = arg1;
11456 	struct adapter *sc = vi->adapter;
11457 	int idx, rc;
11458 
11459 	idx = vi->ofld_pktc_idx;
11460 
11461 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11462 	if (rc != 0 || req->newptr == NULL)
11463 		return (rc);
11464 
11465 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11466 		return (EINVAL);
11467 
11468 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11469 	    "t4opktc");
11470 	if (rc)
11471 		return (rc);
11472 
11473 	if (vi->flags & VI_INIT_DONE)
11474 		rc = EBUSY; /* cannot be changed once the queues are created */
11475 	else
11476 		vi->ofld_pktc_idx = idx;
11477 
11478 	end_synchronized_op(sc, LOCK_HELD);
11479 	return (rc);
11480 }
11481 #endif
11482 
11483 static int
11484 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11485 {
11486 	int rc;
11487 
11488 	if (cntxt->cid > M_CTXTQID)
11489 		return (EINVAL);
11490 
11491 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11492 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11493 		return (EINVAL);
11494 
11495 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11496 	if (rc)
11497 		return (rc);
11498 
11499 	if (hw_off_limits(sc)) {
11500 		rc = ENXIO;
11501 		goto done;
11502 	}
11503 
11504 	if (sc->flags & FW_OK) {
11505 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11506 		    &cntxt->data[0]);
11507 		if (rc == 0)
11508 			goto done;
11509 	}
11510 
11511 	/*
11512 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11513 	 * the backdoor.
11514 	 */
11515 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11516 done:
11517 	end_synchronized_op(sc, 0);
11518 	return (rc);
11519 }
11520 
11521 static int
11522 load_fw(struct adapter *sc, struct t4_data *fw)
11523 {
11524 	int rc;
11525 	uint8_t *fw_data;
11526 
11527 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11528 	if (rc)
11529 		return (rc);
11530 
11531 	if (hw_off_limits(sc)) {
11532 		rc = ENXIO;
11533 		goto done;
11534 	}
11535 
11536 	/*
11537 	 * The firmware, with the sole exception of the memory parity error
11538 	 * handler, runs from memory and not flash.  It is almost always safe to
11539 	 * install a new firmware on a running system.  Just set bit 1 in
11540 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11541 	 */
11542 	if (sc->flags & FULL_INIT_DONE &&
11543 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11544 		rc = EBUSY;
11545 		goto done;
11546 	}
11547 
11548 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11549 
11550 	rc = copyin(fw->data, fw_data, fw->len);
11551 	if (rc == 0)
11552 		rc = -t4_load_fw(sc, fw_data, fw->len);
11553 
11554 	free(fw_data, M_CXGBE);
11555 done:
11556 	end_synchronized_op(sc, 0);
11557 	return (rc);
11558 }
11559 
11560 static int
11561 load_cfg(struct adapter *sc, struct t4_data *cfg)
11562 {
11563 	int rc;
11564 	uint8_t *cfg_data = NULL;
11565 
11566 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11567 	if (rc)
11568 		return (rc);
11569 
11570 	if (hw_off_limits(sc)) {
11571 		rc = ENXIO;
11572 		goto done;
11573 	}
11574 
11575 	if (cfg->len == 0) {
11576 		/* clear */
11577 		rc = -t4_load_cfg(sc, NULL, 0);
11578 		goto done;
11579 	}
11580 
11581 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11582 
11583 	rc = copyin(cfg->data, cfg_data, cfg->len);
11584 	if (rc == 0)
11585 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11586 
11587 	free(cfg_data, M_CXGBE);
11588 done:
11589 	end_synchronized_op(sc, 0);
11590 	return (rc);
11591 }
11592 
11593 static int
11594 load_boot(struct adapter *sc, struct t4_bootrom *br)
11595 {
11596 	int rc;
11597 	uint8_t *br_data = NULL;
11598 	u_int offset;
11599 
11600 	if (br->len > 1024 * 1024)
11601 		return (EFBIG);
11602 
11603 	if (br->pf_offset == 0) {
11604 		/* pfidx */
11605 		if (br->pfidx_addr > 7)
11606 			return (EINVAL);
11607 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11608 		    A_PCIE_PF_EXPROM_OFST)));
11609 	} else if (br->pf_offset == 1) {
11610 		/* offset */
11611 		offset = G_OFFSET(br->pfidx_addr);
11612 	} else {
11613 		return (EINVAL);
11614 	}
11615 
11616 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11617 	if (rc)
11618 		return (rc);
11619 
11620 	if (hw_off_limits(sc)) {
11621 		rc = ENXIO;
11622 		goto done;
11623 	}
11624 
11625 	if (br->len == 0) {
11626 		/* clear */
11627 		rc = -t4_load_boot(sc, NULL, offset, 0);
11628 		goto done;
11629 	}
11630 
11631 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11632 
11633 	rc = copyin(br->data, br_data, br->len);
11634 	if (rc == 0)
11635 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11636 
11637 	free(br_data, M_CXGBE);
11638 done:
11639 	end_synchronized_op(sc, 0);
11640 	return (rc);
11641 }
11642 
11643 static int
11644 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11645 {
11646 	int rc;
11647 	uint8_t *bc_data = NULL;
11648 
11649 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11650 	if (rc)
11651 		return (rc);
11652 
11653 	if (hw_off_limits(sc)) {
11654 		rc = ENXIO;
11655 		goto done;
11656 	}
11657 
11658 	if (bc->len == 0) {
11659 		/* clear */
11660 		rc = -t4_load_bootcfg(sc, NULL, 0);
11661 		goto done;
11662 	}
11663 
11664 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11665 
11666 	rc = copyin(bc->data, bc_data, bc->len);
11667 	if (rc == 0)
11668 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11669 
11670 	free(bc_data, M_CXGBE);
11671 done:
11672 	end_synchronized_op(sc, 0);
11673 	return (rc);
11674 }
11675 
11676 static int
11677 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11678 {
11679 	int rc;
11680 	struct cudbg_init *cudbg;
11681 	void *handle, *buf;
11682 
11683 	/* buf is large, don't block if no memory is available */
11684 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11685 	if (buf == NULL)
11686 		return (ENOMEM);
11687 
11688 	handle = cudbg_alloc_handle();
11689 	if (handle == NULL) {
11690 		rc = ENOMEM;
11691 		goto done;
11692 	}
11693 
11694 	cudbg = cudbg_get_init(handle);
11695 	cudbg->adap = sc;
11696 	cudbg->print = (cudbg_print_cb)printf;
11697 
11698 #ifndef notyet
11699 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11700 	    __func__, dump->wr_flash, dump->len, dump->data);
11701 #endif
11702 
11703 	if (dump->wr_flash)
11704 		cudbg->use_flash = 1;
11705 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11706 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11707 
11708 	rc = cudbg_collect(handle, buf, &dump->len);
11709 	if (rc != 0)
11710 		goto done;
11711 
11712 	rc = copyout(buf, dump->data, dump->len);
11713 done:
11714 	cudbg_free_handle(handle);
11715 	free(buf, M_CXGBE);
11716 	return (rc);
11717 }
11718 
11719 static void
11720 free_offload_policy(struct t4_offload_policy *op)
11721 {
11722 	struct offload_rule *r;
11723 	int i;
11724 
11725 	if (op == NULL)
11726 		return;
11727 
11728 	r = &op->rule[0];
11729 	for (i = 0; i < op->nrules; i++, r++) {
11730 		free(r->bpf_prog.bf_insns, M_CXGBE);
11731 	}
11732 	free(op->rule, M_CXGBE);
11733 	free(op, M_CXGBE);
11734 }
11735 
11736 static int
11737 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11738 {
11739 	int i, rc, len;
11740 	struct t4_offload_policy *op, *old;
11741 	struct bpf_program *bf;
11742 	const struct offload_settings *s;
11743 	struct offload_rule *r;
11744 	void *u;
11745 
11746 	if (!is_offload(sc))
11747 		return (ENODEV);
11748 
11749 	if (uop->nrules == 0) {
11750 		/* Delete installed policies. */
11751 		op = NULL;
11752 		goto set_policy;
11753 	} else if (uop->nrules > 256) { /* arbitrary */
11754 		return (E2BIG);
11755 	}
11756 
11757 	/* Copy userspace offload policy to kernel */
11758 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11759 	op->nrules = uop->nrules;
11760 	len = op->nrules * sizeof(struct offload_rule);
11761 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11762 	rc = copyin(uop->rule, op->rule, len);
11763 	if (rc) {
11764 		free(op->rule, M_CXGBE);
11765 		free(op, M_CXGBE);
11766 		return (rc);
11767 	}
11768 
11769 	r = &op->rule[0];
11770 	for (i = 0; i < op->nrules; i++, r++) {
11771 
11772 		/* Validate open_type */
11773 		if (r->open_type != OPEN_TYPE_LISTEN &&
11774 		    r->open_type != OPEN_TYPE_ACTIVE &&
11775 		    r->open_type != OPEN_TYPE_PASSIVE &&
11776 		    r->open_type != OPEN_TYPE_DONTCARE) {
11777 error:
11778 			/*
11779 			 * Rules 0 to i have malloc'd filters that need to be
11780 			 * freed.  Rules i+1 to nrules have userspace pointers
11781 			 * and should be left alone.
11782 			 */
11783 			op->nrules = i;
11784 			free_offload_policy(op);
11785 			return (rc);
11786 		}
11787 
11788 		/* Validate settings */
11789 		s = &r->settings;
11790 		if ((s->offload != 0 && s->offload != 1) ||
11791 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11792 		    s->sched_class < -1 ||
11793 		    s->sched_class >= sc->params.nsched_cls) {
11794 			rc = EINVAL;
11795 			goto error;
11796 		}
11797 
11798 		bf = &r->bpf_prog;
11799 		u = bf->bf_insns;	/* userspace ptr */
11800 		bf->bf_insns = NULL;
11801 		if (bf->bf_len == 0) {
11802 			/* legal, matches everything */
11803 			continue;
11804 		}
11805 		len = bf->bf_len * sizeof(*bf->bf_insns);
11806 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11807 		rc = copyin(u, bf->bf_insns, len);
11808 		if (rc != 0)
11809 			goto error;
11810 
11811 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11812 			rc = EINVAL;
11813 			goto error;
11814 		}
11815 	}
11816 set_policy:
11817 	rw_wlock(&sc->policy_lock);
11818 	old = sc->policy;
11819 	sc->policy = op;
11820 	rw_wunlock(&sc->policy_lock);
11821 	free_offload_policy(old);
11822 
11823 	return (0);
11824 }
11825 
11826 #define MAX_READ_BUF_SIZE (128 * 1024)
11827 static int
11828 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11829 {
11830 	uint32_t addr, remaining, n;
11831 	uint32_t *buf;
11832 	int rc;
11833 	uint8_t *dst;
11834 
11835 	mtx_lock(&sc->reg_lock);
11836 	if (hw_off_limits(sc))
11837 		rc = ENXIO;
11838 	else
11839 		rc = validate_mem_range(sc, mr->addr, mr->len);
11840 	mtx_unlock(&sc->reg_lock);
11841 	if (rc != 0)
11842 		return (rc);
11843 
11844 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11845 	addr = mr->addr;
11846 	remaining = mr->len;
11847 	dst = (void *)mr->data;
11848 
11849 	while (remaining) {
11850 		n = min(remaining, MAX_READ_BUF_SIZE);
11851 		mtx_lock(&sc->reg_lock);
11852 		if (hw_off_limits(sc))
11853 			rc = ENXIO;
11854 		else
11855 			read_via_memwin(sc, 2, addr, buf, n);
11856 		mtx_unlock(&sc->reg_lock);
11857 		if (rc != 0)
11858 			break;
11859 
11860 		rc = copyout(buf, dst, n);
11861 		if (rc != 0)
11862 			break;
11863 
11864 		dst += n;
11865 		remaining -= n;
11866 		addr += n;
11867 	}
11868 
11869 	free(buf, M_CXGBE);
11870 	return (rc);
11871 }
11872 #undef MAX_READ_BUF_SIZE
11873 
11874 static int
11875 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11876 {
11877 	int rc;
11878 
11879 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11880 		return (EINVAL);
11881 
11882 	if (i2cd->len > sizeof(i2cd->data))
11883 		return (EFBIG);
11884 
11885 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11886 	if (rc)
11887 		return (rc);
11888 	if (hw_off_limits(sc))
11889 		rc = ENXIO;
11890 	else
11891 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11892 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11893 	end_synchronized_op(sc, 0);
11894 
11895 	return (rc);
11896 }
11897 
11898 static int
11899 clear_stats(struct adapter *sc, u_int port_id)
11900 {
11901 	int i, v, chan_map;
11902 	struct port_info *pi;
11903 	struct vi_info *vi;
11904 	struct sge_rxq *rxq;
11905 	struct sge_txq *txq;
11906 	struct sge_wrq *wrq;
11907 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11908 	struct sge_ofld_txq *ofld_txq;
11909 #endif
11910 #ifdef TCP_OFFLOAD
11911 	struct sge_ofld_rxq *ofld_rxq;
11912 #endif
11913 
11914 	if (port_id >= sc->params.nports)
11915 		return (EINVAL);
11916 	pi = sc->port[port_id];
11917 	if (pi == NULL)
11918 		return (EIO);
11919 
11920 	mtx_lock(&sc->reg_lock);
11921 	if (!hw_off_limits(sc)) {
11922 		/* MAC stats */
11923 		t4_clr_port_stats(sc, pi->tx_chan);
11924 		if (is_t6(sc)) {
11925 			if (pi->fcs_reg != -1)
11926 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11927 			else
11928 				pi->stats.rx_fcs_err = 0;
11929 		}
11930 		for_each_vi(pi, v, vi) {
11931 			if (vi->flags & VI_INIT_DONE)
11932 				t4_clr_vi_stats(sc, vi->vin);
11933 		}
11934 		chan_map = pi->rx_e_chan_map;
11935 		v = 0;	/* reuse */
11936 		while (chan_map) {
11937 			i = ffs(chan_map) - 1;
11938 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11939 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11940 			chan_map &= ~(1 << i);
11941 		}
11942 	}
11943 	mtx_unlock(&sc->reg_lock);
11944 	pi->tx_parse_error = 0;
11945 	pi->tnl_cong_drops = 0;
11946 
11947 	/*
11948 	 * Since this command accepts a port, clear stats for
11949 	 * all VIs on this port.
11950 	 */
11951 	for_each_vi(pi, v, vi) {
11952 		if (vi->flags & VI_INIT_DONE) {
11953 
11954 			for_each_rxq(vi, i, rxq) {
11955 #if defined(INET) || defined(INET6)
11956 				rxq->lro.lro_queued = 0;
11957 				rxq->lro.lro_flushed = 0;
11958 #endif
11959 				rxq->rxcsum = 0;
11960 				rxq->vlan_extraction = 0;
11961 				rxq->vxlan_rxcsum = 0;
11962 
11963 				rxq->fl.cl_allocated = 0;
11964 				rxq->fl.cl_recycled = 0;
11965 				rxq->fl.cl_fast_recycled = 0;
11966 			}
11967 
11968 			for_each_txq(vi, i, txq) {
11969 				txq->txcsum = 0;
11970 				txq->tso_wrs = 0;
11971 				txq->vlan_insertion = 0;
11972 				txq->imm_wrs = 0;
11973 				txq->sgl_wrs = 0;
11974 				txq->txpkt_wrs = 0;
11975 				txq->txpkts0_wrs = 0;
11976 				txq->txpkts1_wrs = 0;
11977 				txq->txpkts0_pkts = 0;
11978 				txq->txpkts1_pkts = 0;
11979 				txq->txpkts_flush = 0;
11980 				txq->raw_wrs = 0;
11981 				txq->vxlan_tso_wrs = 0;
11982 				txq->vxlan_txcsum = 0;
11983 				txq->kern_tls_records = 0;
11984 				txq->kern_tls_short = 0;
11985 				txq->kern_tls_partial = 0;
11986 				txq->kern_tls_full = 0;
11987 				txq->kern_tls_octets = 0;
11988 				txq->kern_tls_waste = 0;
11989 				txq->kern_tls_options = 0;
11990 				txq->kern_tls_header = 0;
11991 				txq->kern_tls_fin = 0;
11992 				txq->kern_tls_fin_short = 0;
11993 				txq->kern_tls_cbc = 0;
11994 				txq->kern_tls_gcm = 0;
11995 				mp_ring_reset_stats(txq->r);
11996 			}
11997 
11998 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11999 			for_each_ofld_txq(vi, i, ofld_txq) {
12000 				ofld_txq->wrq.tx_wrs_direct = 0;
12001 				ofld_txq->wrq.tx_wrs_copied = 0;
12002 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12003 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12004 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12005 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12006 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12007 			}
12008 #endif
12009 #ifdef TCP_OFFLOAD
12010 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12011 				ofld_rxq->fl.cl_allocated = 0;
12012 				ofld_rxq->fl.cl_recycled = 0;
12013 				ofld_rxq->fl.cl_fast_recycled = 0;
12014 				counter_u64_zero(
12015 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12016 				counter_u64_zero(
12017 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12018 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12019 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12020 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12021 				ofld_rxq->rx_iscsi_fl_octets = 0;
12022 				ofld_rxq->rx_toe_tls_records = 0;
12023 				ofld_rxq->rx_toe_tls_octets = 0;
12024 			}
12025 #endif
12026 
12027 			if (IS_MAIN_VI(vi)) {
12028 				wrq = &sc->sge.ctrlq[pi->port_id];
12029 				wrq->tx_wrs_direct = 0;
12030 				wrq->tx_wrs_copied = 0;
12031 			}
12032 		}
12033 	}
12034 
12035 	return (0);
12036 }
12037 
12038 static int
12039 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12040 {
12041 #ifdef INET6
12042 	struct in6_addr in6;
12043 
12044 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12045 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12046 		return (0);
12047 	else
12048 		return (EIO);
12049 #else
12050 	return (ENOTSUP);
12051 #endif
12052 }
12053 
12054 static int
12055 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12056 {
12057 #ifdef INET6
12058 	struct in6_addr in6;
12059 
12060 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12061 	return (t4_release_clip_addr(sc, &in6));
12062 #else
12063 	return (ENOTSUP);
12064 #endif
12065 }
12066 
12067 int
12068 t4_os_find_pci_capability(struct adapter *sc, int cap)
12069 {
12070 	int i;
12071 
12072 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12073 }
12074 
12075 int
12076 t4_os_pci_save_state(struct adapter *sc)
12077 {
12078 	device_t dev;
12079 	struct pci_devinfo *dinfo;
12080 
12081 	dev = sc->dev;
12082 	dinfo = device_get_ivars(dev);
12083 
12084 	pci_cfg_save(dev, dinfo, 0);
12085 	return (0);
12086 }
12087 
12088 int
12089 t4_os_pci_restore_state(struct adapter *sc)
12090 {
12091 	device_t dev;
12092 	struct pci_devinfo *dinfo;
12093 
12094 	dev = sc->dev;
12095 	dinfo = device_get_ivars(dev);
12096 
12097 	pci_cfg_restore(dev, dinfo);
12098 	return (0);
12099 }
12100 
12101 void
12102 t4_os_portmod_changed(struct port_info *pi)
12103 {
12104 	struct adapter *sc = pi->adapter;
12105 	struct vi_info *vi;
12106 	struct ifnet *ifp;
12107 	static const char *mod_str[] = {
12108 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12109 	};
12110 
12111 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12112 	    ("%s: port_type %u", __func__, pi->port_type));
12113 
12114 	vi = &pi->vi[0];
12115 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12116 		PORT_LOCK(pi);
12117 		build_medialist(pi);
12118 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12119 			fixup_link_config(pi);
12120 			apply_link_config(pi);
12121 		}
12122 		PORT_UNLOCK(pi);
12123 		end_synchronized_op(sc, LOCK_HELD);
12124 	}
12125 
12126 	ifp = vi->ifp;
12127 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12128 		if_printf(ifp, "transceiver unplugged.\n");
12129 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12130 		if_printf(ifp, "unknown transceiver inserted.\n");
12131 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12132 		if_printf(ifp, "unsupported transceiver inserted.\n");
12133 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12134 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12135 		    port_top_speed(pi), mod_str[pi->mod_type]);
12136 	} else {
12137 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12138 		    pi->mod_type);
12139 	}
12140 }
12141 
12142 void
12143 t4_os_link_changed(struct port_info *pi)
12144 {
12145 	struct vi_info *vi;
12146 	struct ifnet *ifp;
12147 	struct link_config *lc = &pi->link_cfg;
12148 	struct adapter *sc = pi->adapter;
12149 	int v;
12150 
12151 	PORT_LOCK_ASSERT_OWNED(pi);
12152 
12153 	if (is_t6(sc)) {
12154 		if (lc->link_ok) {
12155 			if (lc->speed > 25000 ||
12156 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12157 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12158 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12159 			} else {
12160 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12161 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12162 			}
12163 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12164 			pi->stats.rx_fcs_err = 0;
12165 		} else {
12166 			pi->fcs_reg = -1;
12167 		}
12168 	} else {
12169 		MPASS(pi->fcs_reg != -1);
12170 		MPASS(pi->fcs_base == 0);
12171 	}
12172 
12173 	for_each_vi(pi, v, vi) {
12174 		ifp = vi->ifp;
12175 		if (ifp == NULL)
12176 			continue;
12177 
12178 		if (lc->link_ok) {
12179 			ifp->if_baudrate = IF_Mbps(lc->speed);
12180 			if_link_state_change(ifp, LINK_STATE_UP);
12181 		} else {
12182 			if_link_state_change(ifp, LINK_STATE_DOWN);
12183 		}
12184 	}
12185 }
12186 
12187 void
12188 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12189 {
12190 	struct adapter *sc;
12191 
12192 	sx_slock(&t4_list_lock);
12193 	SLIST_FOREACH(sc, &t4_list, link) {
12194 		/*
12195 		 * func should not make any assumptions about what state sc is
12196 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12197 		 */
12198 		func(sc, arg);
12199 	}
12200 	sx_sunlock(&t4_list_lock);
12201 }
12202 
12203 static int
12204 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12205     struct thread *td)
12206 {
12207 	int rc;
12208 	struct adapter *sc = dev->si_drv1;
12209 
12210 	rc = priv_check(td, PRIV_DRIVER);
12211 	if (rc != 0)
12212 		return (rc);
12213 
12214 	switch (cmd) {
12215 	case CHELSIO_T4_GETREG: {
12216 		struct t4_reg *edata = (struct t4_reg *)data;
12217 
12218 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12219 			return (EFAULT);
12220 
12221 		mtx_lock(&sc->reg_lock);
12222 		if (hw_off_limits(sc))
12223 			rc = ENXIO;
12224 		else if (edata->size == 4)
12225 			edata->val = t4_read_reg(sc, edata->addr);
12226 		else if (edata->size == 8)
12227 			edata->val = t4_read_reg64(sc, edata->addr);
12228 		else
12229 			rc = EINVAL;
12230 		mtx_unlock(&sc->reg_lock);
12231 
12232 		break;
12233 	}
12234 	case CHELSIO_T4_SETREG: {
12235 		struct t4_reg *edata = (struct t4_reg *)data;
12236 
12237 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12238 			return (EFAULT);
12239 
12240 		mtx_lock(&sc->reg_lock);
12241 		if (hw_off_limits(sc))
12242 			rc = ENXIO;
12243 		else if (edata->size == 4) {
12244 			if (edata->val & 0xffffffff00000000)
12245 				rc = EINVAL;
12246 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12247 		} else if (edata->size == 8)
12248 			t4_write_reg64(sc, edata->addr, edata->val);
12249 		else
12250 			rc = EINVAL;
12251 		mtx_unlock(&sc->reg_lock);
12252 
12253 		break;
12254 	}
12255 	case CHELSIO_T4_REGDUMP: {
12256 		struct t4_regdump *regs = (struct t4_regdump *)data;
12257 		int reglen = t4_get_regs_len(sc);
12258 		uint8_t *buf;
12259 
12260 		if (regs->len < reglen) {
12261 			regs->len = reglen; /* hint to the caller */
12262 			return (ENOBUFS);
12263 		}
12264 
12265 		regs->len = reglen;
12266 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12267 		mtx_lock(&sc->reg_lock);
12268 		if (hw_off_limits(sc))
12269 			rc = ENXIO;
12270 		else
12271 			get_regs(sc, regs, buf);
12272 		mtx_unlock(&sc->reg_lock);
12273 		if (rc == 0)
12274 			rc = copyout(buf, regs->data, reglen);
12275 		free(buf, M_CXGBE);
12276 		break;
12277 	}
12278 	case CHELSIO_T4_GET_FILTER_MODE:
12279 		rc = get_filter_mode(sc, (uint32_t *)data);
12280 		break;
12281 	case CHELSIO_T4_SET_FILTER_MODE:
12282 		rc = set_filter_mode(sc, *(uint32_t *)data);
12283 		break;
12284 	case CHELSIO_T4_SET_FILTER_MASK:
12285 		rc = set_filter_mask(sc, *(uint32_t *)data);
12286 		break;
12287 	case CHELSIO_T4_GET_FILTER:
12288 		rc = get_filter(sc, (struct t4_filter *)data);
12289 		break;
12290 	case CHELSIO_T4_SET_FILTER:
12291 		rc = set_filter(sc, (struct t4_filter *)data);
12292 		break;
12293 	case CHELSIO_T4_DEL_FILTER:
12294 		rc = del_filter(sc, (struct t4_filter *)data);
12295 		break;
12296 	case CHELSIO_T4_GET_SGE_CONTEXT:
12297 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12298 		break;
12299 	case CHELSIO_T4_LOAD_FW:
12300 		rc = load_fw(sc, (struct t4_data *)data);
12301 		break;
12302 	case CHELSIO_T4_GET_MEM:
12303 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12304 		break;
12305 	case CHELSIO_T4_GET_I2C:
12306 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12307 		break;
12308 	case CHELSIO_T4_CLEAR_STATS:
12309 		rc = clear_stats(sc, *(uint32_t *)data);
12310 		break;
12311 	case CHELSIO_T4_SCHED_CLASS:
12312 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12313 		break;
12314 	case CHELSIO_T4_SCHED_QUEUE:
12315 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12316 		break;
12317 	case CHELSIO_T4_GET_TRACER:
12318 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12319 		break;
12320 	case CHELSIO_T4_SET_TRACER:
12321 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12322 		break;
12323 	case CHELSIO_T4_LOAD_CFG:
12324 		rc = load_cfg(sc, (struct t4_data *)data);
12325 		break;
12326 	case CHELSIO_T4_LOAD_BOOT:
12327 		rc = load_boot(sc, (struct t4_bootrom *)data);
12328 		break;
12329 	case CHELSIO_T4_LOAD_BOOTCFG:
12330 		rc = load_bootcfg(sc, (struct t4_data *)data);
12331 		break;
12332 	case CHELSIO_T4_CUDBG_DUMP:
12333 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12334 		break;
12335 	case CHELSIO_T4_SET_OFLD_POLICY:
12336 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12337 		break;
12338 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12339 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12340 		break;
12341 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12342 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12343 		break;
12344 	default:
12345 		rc = ENOTTY;
12346 	}
12347 
12348 	return (rc);
12349 }
12350 
12351 #ifdef TCP_OFFLOAD
12352 static int
12353 toe_capability(struct vi_info *vi, bool enable)
12354 {
12355 	int rc;
12356 	struct port_info *pi = vi->pi;
12357 	struct adapter *sc = pi->adapter;
12358 
12359 	ASSERT_SYNCHRONIZED_OP(sc);
12360 
12361 	if (!is_offload(sc))
12362 		return (ENODEV);
12363 	if (hw_off_limits(sc))
12364 		return (ENXIO);
12365 
12366 	if (enable) {
12367 #ifdef KERN_TLS
12368 		if (sc->flags & KERN_TLS_ON) {
12369 			int i, j, n;
12370 			struct port_info *p;
12371 			struct vi_info *v;
12372 
12373 			/*
12374 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12375 			 * on any ifnet.
12376 			 */
12377 			n = 0;
12378 			for_each_port(sc, i) {
12379 				p = sc->port[i];
12380 				for_each_vi(p, j, v) {
12381 					if (v->ifp->if_capenable & IFCAP_TXTLS) {
12382 						CH_WARN(sc,
12383 						    "%s has NIC TLS enabled.\n",
12384 						    device_get_nameunit(v->dev));
12385 						n++;
12386 					}
12387 				}
12388 			}
12389 			if (n > 0) {
12390 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12391 				    "associated with this adapter before "
12392 				    "trying to enable TOE.\n");
12393 				return (EAGAIN);
12394 			}
12395 			rc = t4_config_kern_tls(sc, false);
12396 			if (rc)
12397 				return (rc);
12398 		}
12399 #endif
12400 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
12401 			/* TOE is already enabled. */
12402 			return (0);
12403 		}
12404 
12405 		/*
12406 		 * We need the port's queues around so that we're able to send
12407 		 * and receive CPLs to/from the TOE even if the ifnet for this
12408 		 * port has never been UP'd administratively.
12409 		 */
12410 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12411 			return (rc);
12412 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12413 		    ((rc = vi_init(&pi->vi[0])) != 0))
12414 			return (rc);
12415 
12416 		if (isset(&sc->offload_map, pi->port_id)) {
12417 			/* TOE is enabled on another VI of this port. */
12418 			pi->uld_vis++;
12419 			return (0);
12420 		}
12421 
12422 		if (!uld_active(sc, ULD_TOM)) {
12423 			rc = t4_activate_uld(sc, ULD_TOM);
12424 			if (rc == EAGAIN) {
12425 				log(LOG_WARNING,
12426 				    "You must kldload t4_tom.ko before trying "
12427 				    "to enable TOE on a cxgbe interface.\n");
12428 			}
12429 			if (rc != 0)
12430 				return (rc);
12431 			KASSERT(sc->tom_softc != NULL,
12432 			    ("%s: TOM activated but softc NULL", __func__));
12433 			KASSERT(uld_active(sc, ULD_TOM),
12434 			    ("%s: TOM activated but flag not set", __func__));
12435 		}
12436 
12437 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12438 		if (!uld_active(sc, ULD_IWARP))
12439 			(void) t4_activate_uld(sc, ULD_IWARP);
12440 		if (!uld_active(sc, ULD_ISCSI))
12441 			(void) t4_activate_uld(sc, ULD_ISCSI);
12442 
12443 		pi->uld_vis++;
12444 		setbit(&sc->offload_map, pi->port_id);
12445 	} else {
12446 		pi->uld_vis--;
12447 
12448 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12449 			return (0);
12450 
12451 		KASSERT(uld_active(sc, ULD_TOM),
12452 		    ("%s: TOM never initialized?", __func__));
12453 		clrbit(&sc->offload_map, pi->port_id);
12454 	}
12455 
12456 	return (0);
12457 }
12458 
12459 /*
12460  * Add an upper layer driver to the global list.
12461  */
12462 int
12463 t4_register_uld(struct uld_info *ui)
12464 {
12465 	int rc = 0;
12466 	struct uld_info *u;
12467 
12468 	sx_xlock(&t4_uld_list_lock);
12469 	SLIST_FOREACH(u, &t4_uld_list, link) {
12470 	    if (u->uld_id == ui->uld_id) {
12471 		    rc = EEXIST;
12472 		    goto done;
12473 	    }
12474 	}
12475 
12476 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12477 	ui->refcount = 0;
12478 done:
12479 	sx_xunlock(&t4_uld_list_lock);
12480 	return (rc);
12481 }
12482 
12483 int
12484 t4_unregister_uld(struct uld_info *ui)
12485 {
12486 	int rc = EINVAL;
12487 	struct uld_info *u;
12488 
12489 	sx_xlock(&t4_uld_list_lock);
12490 
12491 	SLIST_FOREACH(u, &t4_uld_list, link) {
12492 	    if (u == ui) {
12493 		    if (ui->refcount > 0) {
12494 			    rc = EBUSY;
12495 			    goto done;
12496 		    }
12497 
12498 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12499 		    rc = 0;
12500 		    goto done;
12501 	    }
12502 	}
12503 done:
12504 	sx_xunlock(&t4_uld_list_lock);
12505 	return (rc);
12506 }
12507 
12508 int
12509 t4_activate_uld(struct adapter *sc, int id)
12510 {
12511 	int rc;
12512 	struct uld_info *ui;
12513 
12514 	ASSERT_SYNCHRONIZED_OP(sc);
12515 
12516 	if (id < 0 || id > ULD_MAX)
12517 		return (EINVAL);
12518 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
12519 
12520 	sx_slock(&t4_uld_list_lock);
12521 
12522 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12523 		if (ui->uld_id == id) {
12524 			if (!(sc->flags & FULL_INIT_DONE)) {
12525 				rc = adapter_init(sc);
12526 				if (rc != 0)
12527 					break;
12528 			}
12529 
12530 			rc = ui->activate(sc);
12531 			if (rc == 0) {
12532 				setbit(&sc->active_ulds, id);
12533 				ui->refcount++;
12534 			}
12535 			break;
12536 		}
12537 	}
12538 
12539 	sx_sunlock(&t4_uld_list_lock);
12540 
12541 	return (rc);
12542 }
12543 
12544 int
12545 t4_deactivate_uld(struct adapter *sc, int id)
12546 {
12547 	int rc;
12548 	struct uld_info *ui;
12549 
12550 	ASSERT_SYNCHRONIZED_OP(sc);
12551 
12552 	if (id < 0 || id > ULD_MAX)
12553 		return (EINVAL);
12554 	rc = ENXIO;
12555 
12556 	sx_slock(&t4_uld_list_lock);
12557 
12558 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12559 		if (ui->uld_id == id) {
12560 			rc = ui->deactivate(sc);
12561 			if (rc == 0) {
12562 				clrbit(&sc->active_ulds, id);
12563 				ui->refcount--;
12564 			}
12565 			break;
12566 		}
12567 	}
12568 
12569 	sx_sunlock(&t4_uld_list_lock);
12570 
12571 	return (rc);
12572 }
12573 
12574 static void
12575 t4_async_event(struct adapter *sc)
12576 {
12577 	struct uld_info *ui;
12578 
12579 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12580 		return;
12581 	sx_slock(&t4_uld_list_lock);
12582 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12583 		if (ui->uld_id == ULD_IWARP) {
12584 			ui->async_event(sc);
12585 			break;
12586 		}
12587 	}
12588 	sx_sunlock(&t4_uld_list_lock);
12589 	end_synchronized_op(sc, 0);
12590 }
12591 
12592 int
12593 uld_active(struct adapter *sc, int uld_id)
12594 {
12595 
12596 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12597 
12598 	return (isset(&sc->active_ulds, uld_id));
12599 }
12600 #endif
12601 
12602 #ifdef KERN_TLS
12603 static int
12604 ktls_capability(struct adapter *sc, bool enable)
12605 {
12606 	ASSERT_SYNCHRONIZED_OP(sc);
12607 
12608 	if (!is_ktls(sc))
12609 		return (ENODEV);
12610 	if (hw_off_limits(sc))
12611 		return (ENXIO);
12612 
12613 	if (enable) {
12614 		if (sc->flags & KERN_TLS_ON)
12615 			return (0);	/* already on */
12616 		if (sc->offload_map != 0) {
12617 			CH_WARN(sc,
12618 			    "Disable TOE on all interfaces associated with "
12619 			    "this adapter before trying to enable NIC TLS.\n");
12620 			return (EAGAIN);
12621 		}
12622 		return (t4_config_kern_tls(sc, true));
12623 	} else {
12624 		/*
12625 		 * Nothing to do for disable.  If TOE is enabled sometime later
12626 		 * then toe_capability will reconfigure the hardware.
12627 		 */
12628 		return (0);
12629 	}
12630 }
12631 #endif
12632 
12633 /*
12634  * t  = ptr to tunable.
12635  * nc = number of CPUs.
12636  * c  = compiled in default for that tunable.
12637  */
12638 static void
12639 calculate_nqueues(int *t, int nc, const int c)
12640 {
12641 	int nq;
12642 
12643 	if (*t > 0)
12644 		return;
12645 	nq = *t < 0 ? -*t : c;
12646 	*t = min(nc, nq);
12647 }
12648 
12649 /*
12650  * Come up with reasonable defaults for some of the tunables, provided they're
12651  * not set by the user (in which case we'll use the values as is).
12652  */
12653 static void
12654 tweak_tunables(void)
12655 {
12656 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12657 
12658 	if (t4_ntxq < 1) {
12659 #ifdef RSS
12660 		t4_ntxq = rss_getnumbuckets();
12661 #else
12662 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12663 #endif
12664 	}
12665 
12666 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12667 
12668 	if (t4_nrxq < 1) {
12669 #ifdef RSS
12670 		t4_nrxq = rss_getnumbuckets();
12671 #else
12672 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12673 #endif
12674 	}
12675 
12676 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12677 
12678 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12679 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12680 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12681 #endif
12682 #ifdef TCP_OFFLOAD
12683 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12684 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12685 #endif
12686 
12687 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12688 	if (t4_toecaps_allowed == -1)
12689 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12690 #else
12691 	if (t4_toecaps_allowed == -1)
12692 		t4_toecaps_allowed = 0;
12693 #endif
12694 
12695 #ifdef TCP_OFFLOAD
12696 	if (t4_rdmacaps_allowed == -1) {
12697 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12698 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12699 	}
12700 
12701 	if (t4_iscsicaps_allowed == -1) {
12702 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12703 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12704 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12705 	}
12706 
12707 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12708 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12709 
12710 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12711 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12712 
12713 	if (t4_toe_tls_rx_timeout < 0)
12714 		t4_toe_tls_rx_timeout = 0;
12715 #else
12716 	if (t4_rdmacaps_allowed == -1)
12717 		t4_rdmacaps_allowed = 0;
12718 
12719 	if (t4_iscsicaps_allowed == -1)
12720 		t4_iscsicaps_allowed = 0;
12721 #endif
12722 
12723 #ifdef DEV_NETMAP
12724 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12725 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12726 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12727 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12728 #endif
12729 
12730 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12731 		t4_tmr_idx = TMR_IDX;
12732 
12733 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12734 		t4_pktc_idx = PKTC_IDX;
12735 
12736 	if (t4_qsize_txq < 128)
12737 		t4_qsize_txq = 128;
12738 
12739 	if (t4_qsize_rxq < 128)
12740 		t4_qsize_rxq = 128;
12741 	while (t4_qsize_rxq & 7)
12742 		t4_qsize_rxq++;
12743 
12744 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12745 
12746 	/*
12747 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12748 	 * VI for the port.  The rest are additional virtual interfaces on the
12749 	 * same physical port.  Note that the main VI does not have native
12750 	 * netmap support but the extra VIs do.
12751 	 *
12752 	 * Limit the number of VIs per port to the number of available
12753 	 * MAC addresses per port.
12754 	 */
12755 	if (t4_num_vis < 1)
12756 		t4_num_vis = 1;
12757 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12758 		t4_num_vis = nitems(vi_mac_funcs);
12759 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12760 	}
12761 
12762 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12763 		pcie_relaxed_ordering = 1;
12764 #if defined(__i386__) || defined(__amd64__)
12765 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12766 			pcie_relaxed_ordering = 0;
12767 #endif
12768 	}
12769 }
12770 
12771 #ifdef DDB
12772 static void
12773 t4_dump_tcb(struct adapter *sc, int tid)
12774 {
12775 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12776 
12777 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12778 	save = t4_read_reg(sc, reg);
12779 	base = sc->memwin[2].mw_base;
12780 
12781 	/* Dump TCB for the tid */
12782 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12783 	tcb_addr += tid * TCB_SIZE;
12784 
12785 	if (is_t4(sc)) {
12786 		pf = 0;
12787 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
12788 	} else {
12789 		pf = V_PFNUM(sc->pf);
12790 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
12791 	}
12792 	t4_write_reg(sc, reg, win_pos | pf);
12793 	t4_read_reg(sc, reg);
12794 
12795 	off = tcb_addr - win_pos;
12796 	for (i = 0; i < 4; i++) {
12797 		uint32_t buf[8];
12798 		for (j = 0; j < 8; j++, off += 4)
12799 			buf[j] = htonl(t4_read_reg(sc, base + off));
12800 
12801 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12802 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12803 		    buf[7]);
12804 	}
12805 
12806 	t4_write_reg(sc, reg, save);
12807 	t4_read_reg(sc, reg);
12808 }
12809 
12810 static void
12811 t4_dump_devlog(struct adapter *sc)
12812 {
12813 	struct devlog_params *dparams = &sc->params.devlog;
12814 	struct fw_devlog_e e;
12815 	int i, first, j, m, nentries, rc;
12816 	uint64_t ftstamp = UINT64_MAX;
12817 
12818 	if (dparams->start == 0) {
12819 		db_printf("devlog params not valid\n");
12820 		return;
12821 	}
12822 
12823 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12824 	m = fwmtype_to_hwmtype(dparams->memtype);
12825 
12826 	/* Find the first entry. */
12827 	first = -1;
12828 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12829 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12830 		    sizeof(e), (void *)&e);
12831 		if (rc != 0)
12832 			break;
12833 
12834 		if (e.timestamp == 0)
12835 			break;
12836 
12837 		e.timestamp = be64toh(e.timestamp);
12838 		if (e.timestamp < ftstamp) {
12839 			ftstamp = e.timestamp;
12840 			first = i;
12841 		}
12842 	}
12843 
12844 	if (first == -1)
12845 		return;
12846 
12847 	i = first;
12848 	do {
12849 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12850 		    sizeof(e), (void *)&e);
12851 		if (rc != 0)
12852 			return;
12853 
12854 		if (e.timestamp == 0)
12855 			return;
12856 
12857 		e.timestamp = be64toh(e.timestamp);
12858 		e.seqno = be32toh(e.seqno);
12859 		for (j = 0; j < 8; j++)
12860 			e.params[j] = be32toh(e.params[j]);
12861 
12862 		db_printf("%10d  %15ju  %8s  %8s  ",
12863 		    e.seqno, e.timestamp,
12864 		    (e.level < nitems(devlog_level_strings) ?
12865 			devlog_level_strings[e.level] : "UNKNOWN"),
12866 		    (e.facility < nitems(devlog_facility_strings) ?
12867 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12868 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12869 		    e.params[3], e.params[4], e.params[5], e.params[6],
12870 		    e.params[7]);
12871 
12872 		if (++i == nentries)
12873 			i = 0;
12874 	} while (i != first && !db_pager_quit);
12875 }
12876 
12877 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
12878 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
12879 
12880 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
12881 {
12882 	device_t dev;
12883 	int t;
12884 	bool valid;
12885 
12886 	valid = false;
12887 	t = db_read_token();
12888 	if (t == tIDENT) {
12889 		dev = device_lookup_by_name(db_tok_string);
12890 		valid = true;
12891 	}
12892 	db_skip_to_eol();
12893 	if (!valid) {
12894 		db_printf("usage: show t4 devlog <nexus>\n");
12895 		return;
12896 	}
12897 
12898 	if (dev == NULL) {
12899 		db_printf("device not found\n");
12900 		return;
12901 	}
12902 
12903 	t4_dump_devlog(device_get_softc(dev));
12904 }
12905 
12906 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
12907 {
12908 	device_t dev;
12909 	int radix, tid, t;
12910 	bool valid;
12911 
12912 	valid = false;
12913 	radix = db_radix;
12914 	db_radix = 10;
12915 	t = db_read_token();
12916 	if (t == tIDENT) {
12917 		dev = device_lookup_by_name(db_tok_string);
12918 		t = db_read_token();
12919 		if (t == tNUMBER) {
12920 			tid = db_tok_number;
12921 			valid = true;
12922 		}
12923 	}
12924 	db_radix = radix;
12925 	db_skip_to_eol();
12926 	if (!valid) {
12927 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12928 		return;
12929 	}
12930 
12931 	if (dev == NULL) {
12932 		db_printf("device not found\n");
12933 		return;
12934 	}
12935 	if (tid < 0) {
12936 		db_printf("invalid tid\n");
12937 		return;
12938 	}
12939 
12940 	t4_dump_tcb(device_get_softc(dev), tid);
12941 }
12942 #endif
12943 
12944 static eventhandler_tag vxlan_start_evtag;
12945 static eventhandler_tag vxlan_stop_evtag;
12946 
12947 struct vxlan_evargs {
12948 	struct ifnet *ifp;
12949 	uint16_t port;
12950 };
12951 
12952 static void
12953 enable_vxlan_rx(struct adapter *sc)
12954 {
12955 	int i, rc;
12956 	struct port_info *pi;
12957 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
12958 
12959 	ASSERT_SYNCHRONIZED_OP(sc);
12960 
12961 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
12962 	    F_VXLAN_EN);
12963 	for_each_port(sc, i) {
12964 		pi = sc->port[i];
12965 		if (pi->vxlan_tcam_entry == true)
12966 			continue;
12967 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
12968 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
12969 		    true);
12970 		if (rc < 0) {
12971 			rc = -rc;
12972 			CH_ERR(&pi->vi[0],
12973 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
12974 		} else {
12975 			MPASS(rc == sc->rawf_base + pi->port_id);
12976 			pi->vxlan_tcam_entry = true;
12977 		}
12978 	}
12979 }
12980 
12981 static void
12982 t4_vxlan_start(struct adapter *sc, void *arg)
12983 {
12984 	struct vxlan_evargs *v = arg;
12985 
12986 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
12987 		return;
12988 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
12989 		return;
12990 
12991 	if (sc->vxlan_refcount == 0) {
12992 		sc->vxlan_port = v->port;
12993 		sc->vxlan_refcount = 1;
12994 		if (!hw_off_limits(sc))
12995 			enable_vxlan_rx(sc);
12996 	} else if (sc->vxlan_port == v->port) {
12997 		sc->vxlan_refcount++;
12998 	} else {
12999 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13000 		    "ignoring attempt to configure it on port %d\n",
13001 		    sc->vxlan_port, v->port);
13002 	}
13003 	end_synchronized_op(sc, 0);
13004 }
13005 
13006 static void
13007 t4_vxlan_stop(struct adapter *sc, void *arg)
13008 {
13009 	struct vxlan_evargs *v = arg;
13010 
13011 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13012 		return;
13013 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13014 		return;
13015 
13016 	/*
13017 	 * VXLANs may have been configured before the driver was loaded so we
13018 	 * may see more stops than starts.  This is not handled cleanly but at
13019 	 * least we keep the refcount sane.
13020 	 */
13021 	if (sc->vxlan_port != v->port)
13022 		goto done;
13023 	if (sc->vxlan_refcount == 0) {
13024 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13025 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13026 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13027 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13028 done:
13029 	end_synchronized_op(sc, 0);
13030 }
13031 
13032 static void
13033 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp,
13034     sa_family_t family, u_int port)
13035 {
13036 	struct vxlan_evargs v;
13037 
13038 	MPASS(family == AF_INET || family == AF_INET6);
13039 	v.ifp = ifp;
13040 	v.port = port;
13041 
13042 	t4_iterate(t4_vxlan_start, &v);
13043 }
13044 
13045 static void
13046 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family,
13047     u_int port)
13048 {
13049 	struct vxlan_evargs v;
13050 
13051 	MPASS(family == AF_INET || family == AF_INET6);
13052 	v.ifp = ifp;
13053 	v.port = port;
13054 
13055 	t4_iterate(t4_vxlan_stop, &v);
13056 }
13057 
13058 
13059 static struct sx mlu;	/* mod load unload */
13060 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13061 
13062 static int
13063 mod_event(module_t mod, int cmd, void *arg)
13064 {
13065 	int rc = 0;
13066 	static int loaded = 0;
13067 
13068 	switch (cmd) {
13069 	case MOD_LOAD:
13070 		sx_xlock(&mlu);
13071 		if (loaded++ == 0) {
13072 			t4_sge_modload();
13073 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13074 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13075 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13076 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13077 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13078 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13079 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13080 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13081 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13082 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13083 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13084 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13085 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13086 			    do_smt_write_rpl);
13087 			sx_init(&t4_list_lock, "T4/T5 adapters");
13088 			SLIST_INIT(&t4_list);
13089 			callout_init(&fatal_callout, 1);
13090 #ifdef TCP_OFFLOAD
13091 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13092 			SLIST_INIT(&t4_uld_list);
13093 #endif
13094 #ifdef INET6
13095 			t4_clip_modload();
13096 #endif
13097 #ifdef KERN_TLS
13098 			t6_ktls_modload();
13099 #endif
13100 			t4_tracer_modload();
13101 			tweak_tunables();
13102 			vxlan_start_evtag =
13103 			    EVENTHANDLER_REGISTER(vxlan_start,
13104 				t4_vxlan_start_handler, NULL,
13105 				EVENTHANDLER_PRI_ANY);
13106 			vxlan_stop_evtag =
13107 			    EVENTHANDLER_REGISTER(vxlan_stop,
13108 				t4_vxlan_stop_handler, NULL,
13109 				EVENTHANDLER_PRI_ANY);
13110 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13111 			    taskqueue_thread_enqueue, &reset_tq);
13112 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13113 			    "t4_rst_thr");
13114 		}
13115 		sx_xunlock(&mlu);
13116 		break;
13117 
13118 	case MOD_UNLOAD:
13119 		sx_xlock(&mlu);
13120 		if (--loaded == 0) {
13121 			int tries;
13122 
13123 			taskqueue_free(reset_tq);
13124 			sx_slock(&t4_list_lock);
13125 			if (!SLIST_EMPTY(&t4_list)) {
13126 				rc = EBUSY;
13127 				sx_sunlock(&t4_list_lock);
13128 				goto done_unload;
13129 			}
13130 #ifdef TCP_OFFLOAD
13131 			sx_slock(&t4_uld_list_lock);
13132 			if (!SLIST_EMPTY(&t4_uld_list)) {
13133 				rc = EBUSY;
13134 				sx_sunlock(&t4_uld_list_lock);
13135 				sx_sunlock(&t4_list_lock);
13136 				goto done_unload;
13137 			}
13138 #endif
13139 			tries = 0;
13140 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13141 				uprintf("%ju clusters with custom free routine "
13142 				    "still is use.\n", t4_sge_extfree_refs());
13143 				pause("t4unload", 2 * hz);
13144 			}
13145 #ifdef TCP_OFFLOAD
13146 			sx_sunlock(&t4_uld_list_lock);
13147 #endif
13148 			sx_sunlock(&t4_list_lock);
13149 
13150 			if (t4_sge_extfree_refs() == 0) {
13151 				EVENTHANDLER_DEREGISTER(vxlan_start,
13152 				    vxlan_start_evtag);
13153 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13154 				    vxlan_stop_evtag);
13155 				t4_tracer_modunload();
13156 #ifdef KERN_TLS
13157 				t6_ktls_modunload();
13158 #endif
13159 #ifdef INET6
13160 				t4_clip_modunload();
13161 #endif
13162 #ifdef TCP_OFFLOAD
13163 				sx_destroy(&t4_uld_list_lock);
13164 #endif
13165 				sx_destroy(&t4_list_lock);
13166 				t4_sge_modunload();
13167 				loaded = 0;
13168 			} else {
13169 				rc = EBUSY;
13170 				loaded++;	/* undo earlier decrement */
13171 			}
13172 		}
13173 done_unload:
13174 		sx_xunlock(&mlu);
13175 		break;
13176 	}
13177 
13178 	return (rc);
13179 }
13180 
13181 static devclass_t t4_devclass, t5_devclass, t6_devclass;
13182 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
13183 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
13184 
13185 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
13186 MODULE_VERSION(t4nex, 1);
13187 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13188 #ifdef DEV_NETMAP
13189 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13190 #endif /* DEV_NETMAP */
13191 
13192 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
13193 MODULE_VERSION(t5nex, 1);
13194 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13195 #ifdef DEV_NETMAP
13196 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13197 #endif /* DEV_NETMAP */
13198 
13199 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
13200 MODULE_VERSION(t6nex, 1);
13201 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13202 #ifdef DEV_NETMAP
13203 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13204 #endif /* DEV_NETMAP */
13205 
13206 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
13207 MODULE_VERSION(cxgbe, 1);
13208 
13209 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
13210 MODULE_VERSION(cxl, 1);
13211 
13212 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
13213 MODULE_VERSION(cc, 1);
13214 
13215 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
13216 MODULE_VERSION(vcxgbe, 1);
13217 
13218 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
13219 MODULE_VERSION(vcxl, 1);
13220 
13221 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
13222 MODULE_VERSION(vcc, 1);
13223