xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision b196276c20b577b364372f1aa1a646b9ce34bf5c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81 
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93 
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 	DEVMETHOD(device_probe,		t4_probe),
107 	DEVMETHOD(device_attach,	t4_attach),
108 	DEVMETHOD(device_detach,	t4_detach),
109 	DEVMETHOD(device_suspend,	t4_suspend),
110 	DEVMETHOD(device_resume,	t4_resume),
111 
112 	DEVMETHOD(bus_child_location,	t4_child_location),
113 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
114 	DEVMETHOD(bus_reset_post,	t4_reset_post),
115 
116 	DEVMETHOD(t4_is_main_ready,	t4_ready),
117 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
118 
119 	DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 	"t4nex",
123 	t4_methods,
124 	sizeof(struct adapter)
125 };
126 
127 
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 	DEVMETHOD(device_probe,		cxgbe_probe),
134 	DEVMETHOD(device_attach,	cxgbe_attach),
135 	DEVMETHOD(device_detach,	cxgbe_detach),
136 	{ 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 	"cxgbe",
140 	cxgbe_methods,
141 	sizeof(struct port_info)
142 };
143 
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 	DEVMETHOD(device_probe,		vcxgbe_probe),
150 	DEVMETHOD(device_attach,	vcxgbe_attach),
151 	DEVMETHOD(device_detach,	vcxgbe_detach),
152 	{ 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 	"vcxgbe",
156 	vcxgbe_methods,
157 	sizeof(struct vi_info)
158 };
159 
160 static d_ioctl_t t4_ioctl;
161 
162 static struct cdevsw t4_cdevsw = {
163        .d_version = D_VERSION,
164        .d_ioctl = t4_ioctl,
165        .d_name = "t4nex",
166 };
167 
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 	DEVMETHOD(device_probe,		t5_probe),
172 	DEVMETHOD(device_attach,	t4_attach),
173 	DEVMETHOD(device_detach,	t4_detach),
174 	DEVMETHOD(device_suspend,	t4_suspend),
175 	DEVMETHOD(device_resume,	t4_resume),
176 
177 	DEVMETHOD(bus_child_location,	t4_child_location),
178 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
179 	DEVMETHOD(bus_reset_post,	t4_reset_post),
180 
181 	DEVMETHOD(t4_is_main_ready,	t4_ready),
182 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
183 
184 	DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 	"t5nex",
188 	t5_methods,
189 	sizeof(struct adapter)
190 };
191 
192 
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 	"cxl",
196 	cxgbe_methods,
197 	sizeof(struct port_info)
198 };
199 
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 	"vcxl",
203 	vcxgbe_methods,
204 	sizeof(struct vi_info)
205 };
206 
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 	DEVMETHOD(device_probe,		t6_probe),
211 	DEVMETHOD(device_attach,	t4_attach),
212 	DEVMETHOD(device_detach,	t4_detach),
213 	DEVMETHOD(device_suspend,	t4_suspend),
214 	DEVMETHOD(device_resume,	t4_resume),
215 
216 	DEVMETHOD(bus_child_location,	t4_child_location),
217 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
218 	DEVMETHOD(bus_reset_post,	t4_reset_post),
219 
220 	DEVMETHOD(t4_is_main_ready,	t4_ready),
221 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
222 
223 	DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 	"t6nex",
227 	t6_methods,
228 	sizeof(struct adapter)
229 };
230 
231 
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 	"cc",
235 	cxgbe_methods,
236 	sizeof(struct port_info)
237 };
238 
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 	"vcc",
242 	vcxgbe_methods,
243 	sizeof(struct vi_info)
244 };
245 
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253     struct m_snd_tag **);
254 #endif
255 
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257 
258 /*
259  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260  * then ADAPTER_LOCK, then t4_uld_list_lock.
261  */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 struct uld_info *t4_uld_list[ULD_MAX + 1];
267 #endif
268 
269 /*
270  * Tunables.  See tweak_tunables() too.
271  *
272  * Each tunable is set to a default value here if it's known at compile-time.
273  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274  * provide a reasonable default (upto n) when the driver is loaded.
275  *
276  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
277  * T5 are under hw.cxl.
278  */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) TOE parameters");
285 
286 /*
287  * Number of queues for tx and rx, NIC and offload.
288  */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292     "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
294 
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298     "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
300 
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304     "Number of TX queues per VI");
305 
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309     "Number of RX queues per VI");
310 
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313     0, "Reserve TX queue 0 of each VI for non-flowid packets");
314 
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319     "Number of offload TX queues per port");
320 
321 #define NOFLDTXQ_VI 1
322 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
324     "Number of offload TX queues per VI");
325 #endif
326 
327 #if defined(TCP_OFFLOAD)
328 #define NOFLDRXQ 2
329 static int t4_nofldrxq = -NOFLDRXQ;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
331     "Number of offload RX queues per port");
332 
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336     "Number of offload RX queues per VI");
337 
338 #define TMR_IDX_OFLD 1
339 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342 
343 #define PKTC_IDX_OFLD (-1)
344 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347 
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352 
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357 
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362 
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367 
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372 
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377 
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384     "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416     &t4_toe_rexmt_backoff[15], 0, "");
417 
418 int t4_ddp_rcvbuf_len = 256 * 1024;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
420     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
421 
422 unsigned int t4_ddp_rcvbuf_cache = 4;
423 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
424     &t4_ddp_rcvbuf_cache, 0,
425     "maximum number of free DDP RX buffers to cache per connection");
426 #endif
427 
428 #ifdef DEV_NETMAP
429 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
430 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
431 static int t4_native_netmap = NN_EXTRA_VI;
432 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
433     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
434 
435 #define NNMTXQ 8
436 static int t4_nnmtxq = -NNMTXQ;
437 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
438     "Number of netmap TX queues");
439 
440 #define NNMRXQ 8
441 static int t4_nnmrxq = -NNMRXQ;
442 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
443     "Number of netmap RX queues");
444 
445 #define NNMTXQ_VI 2
446 static int t4_nnmtxq_vi = -NNMTXQ_VI;
447 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
448     "Number of netmap TX queues per VI");
449 
450 #define NNMRXQ_VI 2
451 static int t4_nnmrxq_vi = -NNMRXQ_VI;
452 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
453     "Number of netmap RX queues per VI");
454 #endif
455 
456 /*
457  * Holdoff parameters for ports.
458  */
459 #define TMR_IDX 1
460 int t4_tmr_idx = TMR_IDX;
461 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
462     0, "Holdoff timer index");
463 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
464 
465 #define PKTC_IDX (-1)
466 int t4_pktc_idx = PKTC_IDX;
467 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
468     0, "Holdoff packet counter index");
469 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
470 
471 /*
472  * Size (# of entries) of each tx and rx queue.
473  */
474 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
476     "Number of descriptors in each TX queue");
477 
478 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
479 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
480     "Number of descriptors in each RX queue");
481 
482 /*
483  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
484  */
485 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
487     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
488 
489 /*
490  * Configuration file.  All the _CF names here are special.
491  */
492 #define DEFAULT_CF	"default"
493 #define BUILTIN_CF	"built-in"
494 #define FLASH_CF	"flash"
495 #define UWIRE_CF	"uwire"
496 #define FPGA_CF		"fpga"
497 static char t4_cfg_file[32] = DEFAULT_CF;
498 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
499     sizeof(t4_cfg_file), "Firmware configuration file");
500 
501 /*
502  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
503  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
504  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
505  *            mark or when signalled to do so, 0 to never emit PAUSE.
506  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
507  *                 negotiated settings will override rx_pause/tx_pause.
508  *                 Otherwise rx_pause/tx_pause are applied forcibly.
509  */
510 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
512     &t4_pause_settings, 0,
513     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
514 
515 /*
516  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
517  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
518  *  0 to disable FEC.
519  */
520 static int t4_fec = -1;
521 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
522     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
523 
524 /*
525  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
526  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
527  * driver runs as if this is set to 0.
528  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
529  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
530  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
531  *    the firmware anyway (may result in l1cfg errors with old firmwares).
532  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
533  *    means set all FEC bits that are valid for the speed.
534  */
535 static int t4_force_fec = -1;
536 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
537     "Controls the use of FORCE_FEC bit in L1 configuration.");
538 
539 /*
540  * Link autonegotiation.
541  * -1 to run with the firmware default.
542  *  0 to disable.
543  *  1 to enable.
544  */
545 static int t4_autoneg = -1;
546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
547     "Link autonegotiation");
548 
549 /*
550  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
551  * encouraged respectively).  '-n' is the same as 'n' except the firmware
552  * version used in the checks is read from the firmware bundled with the driver.
553  */
554 static int t4_fw_install = 1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
556     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
557 
558 /*
559  * ASIC features that will be used.  Disable the ones you don't want so that the
560  * chip resources aren't wasted on features that will not be used.
561  */
562 static int t4_nbmcaps_allowed = 0;
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
564     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
565 
566 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
567 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
568     &t4_linkcaps_allowed, 0, "Default link capabilities");
569 
570 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
571     FW_CAPS_CONFIG_SWITCH_EGRESS;
572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
573     &t4_switchcaps_allowed, 0, "Default switch capabilities");
574 
575 #ifdef RATELIMIT
576 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
577 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
578 #else
579 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
580 	FW_CAPS_CONFIG_NIC_HASHFILTER;
581 #endif
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
583     &t4_niccaps_allowed, 0, "Default NIC capabilities");
584 
585 static int t4_toecaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
587     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
588 
589 static int t4_rdmacaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
591     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
592 
593 static int t4_cryptocaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
595     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
596 
597 static int t4_iscsicaps_allowed = -1;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
599     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
600 
601 static int t4_fcoecaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
603     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
604 
605 static int t5_write_combine = 0;
606 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
607     0, "Use WC instead of UC for BAR2");
608 
609 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
610 static int t4_doorbells_allowed = 0xf;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
612 	   &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
613 
614 static int t4_num_vis = 1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
616     "Number of VIs per port");
617 
618 /*
619  * PCIe Relaxed Ordering.
620  * -1: driver should figure out a good value.
621  * 0: disable RO.
622  * 1: enable RO.
623  * 2: leave RO alone.
624  */
625 static int pcie_relaxed_ordering = -1;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
627     &pcie_relaxed_ordering, 0,
628     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
629 
630 static int t4_panic_on_fatal_err = 0;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
632     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
633 
634 static int t4_reset_on_fatal_err = 0;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
636     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
637 
638 static int t4_clock_gate_on_suspend = 0;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
640     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
641 
642 static int t4_tx_vm_wr = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
644     "Use VM work requests to transmit packets.");
645 
646 /*
647  * Set to non-zero to enable the attack filter.  A packet that matches any of
648  * these conditions will get dropped on ingress:
649  * 1) IP && source address == destination address.
650  * 2) TCP/IP && source address is not a unicast address.
651  * 3) TCP/IP && destination address is not a unicast address.
652  * 4) IP && source address is loopback (127.x.y.z).
653  * 5) IP && destination address is loopback (127.x.y.z).
654  * 6) IPv6 && source address == destination address.
655  * 7) IPv6 && source address is not a unicast address.
656  * 8) IPv6 && source address is loopback (::1/128).
657  * 9) IPv6 && destination address is loopback (::1/128).
658  * 10) IPv6 && source address is unspecified (::/128).
659  * 11) IPv6 && destination address is unspecified (::/128).
660  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
661  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
662  */
663 static int t4_attack_filter = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
665     &t4_attack_filter, 0, "Drop suspicious traffic");
666 
667 static int t4_drop_ip_fragments = 0;
668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
669     &t4_drop_ip_fragments, 0, "Drop IP fragments");
670 
671 static int t4_drop_pkts_with_l2_errors = 1;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
673     &t4_drop_pkts_with_l2_errors, 0,
674     "Drop all frames with Layer 2 length or checksum errors");
675 
676 static int t4_drop_pkts_with_l3_errors = 0;
677 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
678     &t4_drop_pkts_with_l3_errors, 0,
679     "Drop all frames with IP version, length, or checksum errors");
680 
681 static int t4_drop_pkts_with_l4_errors = 0;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
683     &t4_drop_pkts_with_l4_errors, 0,
684     "Drop all frames with Layer 4 length, checksum, or other errors");
685 
686 #ifdef TCP_OFFLOAD
687 /*
688  * TOE tunables.
689  */
690 static int t4_cop_managed_offloading = 0;
691 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
692     &t4_cop_managed_offloading, 0,
693     "COP (Connection Offload Policy) controls all TOE offload");
694 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
695 #endif
696 
697 #ifdef KERN_TLS
698 /*
699  * This enables KERN_TLS for all adapters if set.
700  */
701 static int t4_kern_tls = 0;
702 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
703     "Enable KERN_TLS mode for T6 adapters");
704 
705 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
706     "cxgbe(4) KERN_TLS parameters");
707 
708 static int t4_tls_inline_keys = 0;
709 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
710     &t4_tls_inline_keys, 0,
711     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
712     "in card memory.");
713 
714 static int t4_tls_combo_wrs = 0;
715 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
716     0, "Attempt to combine TCB field updates with TLS record work requests.");
717 #endif
718 
719 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
720 static int vi_mac_funcs[] = {
721 	FW_VI_FUNC_ETH,
722 	FW_VI_FUNC_OFLD,
723 	FW_VI_FUNC_IWARP,
724 	FW_VI_FUNC_OPENISCSI,
725 	FW_VI_FUNC_OPENFCOE,
726 	FW_VI_FUNC_FOISCSI,
727 	FW_VI_FUNC_FOFCOE,
728 };
729 
730 struct intrs_and_queues {
731 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
732 	uint16_t num_vis;	/* number of VIs for each port */
733 	uint16_t nirq;		/* Total # of vectors */
734 	uint16_t ntxq;		/* # of NIC txq's for each port */
735 	uint16_t nrxq;		/* # of NIC rxq's for each port */
736 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
737 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
738 	uint16_t nnmtxq;	/* # of netmap txq's */
739 	uint16_t nnmrxq;	/* # of netmap rxq's */
740 
741 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
742 	uint16_t ntxq_vi;	/* # of NIC txq's */
743 	uint16_t nrxq_vi;	/* # of NIC rxq's */
744 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
745 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
746 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
747 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
748 };
749 
750 static void setup_memwin(struct adapter *);
751 static void position_memwin(struct adapter *, int, uint32_t);
752 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
753 static int fwmtype_to_hwmtype(int);
754 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
755     uint32_t *);
756 static int fixup_devlog_params(struct adapter *);
757 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
758 static int contact_firmware(struct adapter *);
759 static int partition_resources(struct adapter *);
760 static int get_params__pre_init(struct adapter *);
761 static int set_params__pre_init(struct adapter *);
762 static int get_params__post_init(struct adapter *);
763 static int set_params__post_init(struct adapter *);
764 static void t4_set_desc(struct adapter *);
765 static bool fixed_ifmedia(struct port_info *);
766 static void build_medialist(struct port_info *);
767 static void init_link_config(struct port_info *);
768 static int fixup_link_config(struct port_info *);
769 static int apply_link_config(struct port_info *);
770 static int cxgbe_init_synchronized(struct vi_info *);
771 static int cxgbe_uninit_synchronized(struct vi_info *);
772 static int adapter_full_init(struct adapter *);
773 static void adapter_full_uninit(struct adapter *);
774 static int vi_full_init(struct vi_info *);
775 static void vi_full_uninit(struct vi_info *);
776 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
777 static void quiesce_txq(struct sge_txq *);
778 static void quiesce_wrq(struct sge_wrq *);
779 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
780 static void quiesce_vi(struct vi_info *);
781 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
782     driver_intr_t *, void *, char *);
783 static int t4_free_irq(struct adapter *, struct irq *);
784 static void t4_init_atid_table(struct adapter *);
785 static void t4_free_atid_table(struct adapter *);
786 static void stop_atid_allocator(struct adapter *);
787 static void restart_atid_allocator(struct adapter *);
788 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
789 static void vi_refresh_stats(struct vi_info *);
790 static void cxgbe_refresh_stats(struct vi_info *);
791 static void cxgbe_tick(void *);
792 static void vi_tick(void *);
793 static void cxgbe_sysctls(struct port_info *);
794 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
795 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
796 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
797 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
798 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
799 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
800 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
801 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
802 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
803 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
804 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
805 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
806 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
807 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
808 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
809 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
810 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
811 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
812 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
813 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
814 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
819 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
820 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
821 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
825 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
827 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
829 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
830 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
831 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
832 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
833 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
842 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
843 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
844 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
845 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
846 #ifdef TCP_OFFLOAD
847 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
850 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
851 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
855 #endif
856 static int get_sge_context(struct adapter *, struct t4_sge_context *);
857 static int load_fw(struct adapter *, struct t4_data *);
858 static int load_cfg(struct adapter *, struct t4_data *);
859 static int load_boot(struct adapter *, struct t4_bootrom *);
860 static int load_bootcfg(struct adapter *, struct t4_data *);
861 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
862 static void free_offload_policy(struct t4_offload_policy *);
863 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
864 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
865 static int read_i2c(struct adapter *, struct t4_i2c_data *);
866 static int clear_stats(struct adapter *, u_int);
867 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
868 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
869 static inline int stop_adapter(struct adapter *);
870 static inline void set_adapter_hwstatus(struct adapter *, const bool);
871 static int stop_lld(struct adapter *);
872 static inline int restart_adapter(struct adapter *);
873 static int restart_lld(struct adapter *);
874 #ifdef TCP_OFFLOAD
875 static int deactivate_all_uld(struct adapter *);
876 static void stop_all_uld(struct adapter *);
877 static void restart_all_uld(struct adapter *);
878 #endif
879 #ifdef KERN_TLS
880 static int ktls_capability(struct adapter *, bool);
881 #endif
882 static int mod_event(module_t, int, void *);
883 static int notify_siblings(device_t, int);
884 static uint64_t vi_get_counter(if_t, ift_counter);
885 static uint64_t cxgbe_get_counter(if_t, ift_counter);
886 static void enable_vxlan_rx(struct adapter *);
887 static void reset_adapter_task(void *, int);
888 static void fatal_error_task(void *, int);
889 static void dump_devlog(struct adapter *);
890 static void dump_cim_regs(struct adapter *);
891 static void dump_cimla(struct adapter *);
892 
893 struct {
894 	uint16_t device;
895 	char *desc;
896 } t4_pciids[] = {
897 	{0xa000, "Chelsio Terminator 4 FPGA"},
898 	{0x4400, "Chelsio T440-dbg"},
899 	{0x4401, "Chelsio T420-CR"},
900 	{0x4402, "Chelsio T422-CR"},
901 	{0x4403, "Chelsio T440-CR"},
902 	{0x4404, "Chelsio T420-BCH"},
903 	{0x4405, "Chelsio T440-BCH"},
904 	{0x4406, "Chelsio T440-CH"},
905 	{0x4407, "Chelsio T420-SO"},
906 	{0x4408, "Chelsio T420-CX"},
907 	{0x4409, "Chelsio T420-BT"},
908 	{0x440a, "Chelsio T404-BT"},
909 	{0x440e, "Chelsio T440-LP-CR"},
910 }, t5_pciids[] = {
911 	{0xb000, "Chelsio Terminator 5 FPGA"},
912 	{0x5400, "Chelsio T580-dbg"},
913 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
914 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
915 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
916 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
917 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
918 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
919 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
920 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
921 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
922 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
923 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
924 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
925 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
926 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
927 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
928 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
929 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
930 
931 	/* Custom */
932 	{0x5483, "Custom T540-CR"},
933 	{0x5484, "Custom T540-BT"},
934 }, t6_pciids[] = {
935 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
936 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
937 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
938 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
939 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
940 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
941 	{0x6405, "Chelsio T6225-SO-OCP3"},	/* 2 x 10/25G, nomem */
942 	{0x6406, "Chelsio T6225-OCP3"},		/* 2 x 10/25G */
943 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
944 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
945 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
946 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
947 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
948 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
949 	{0x6414, "Chelsio T62100-SO-OCP3"},	/* 2 x 40/50/100G, nomem */
950 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
951 
952 	/* Custom */
953 	{0x6480, "Custom T6225-CR"},
954 	{0x6481, "Custom T62100-CR"},
955 	{0x6482, "Custom T6225-CR"},
956 	{0x6483, "Custom T62100-CR"},
957 	{0x6484, "Custom T64100-CR"},
958 	{0x6485, "Custom T6240-SO"},
959 	{0x6486, "Custom T6225-SO-CR"},
960 	{0x6487, "Custom T6225-CR"},
961 };
962 
963 #ifdef TCP_OFFLOAD
964 /*
965  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
966  * be exactly the same for both rxq and ofld_rxq.
967  */
968 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
969 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
970 #endif
971 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
972 
973 static int
974 t4_probe(device_t dev)
975 {
976 	int i;
977 	uint16_t v = pci_get_vendor(dev);
978 	uint16_t d = pci_get_device(dev);
979 	uint8_t f = pci_get_function(dev);
980 
981 	if (v != PCI_VENDOR_ID_CHELSIO)
982 		return (ENXIO);
983 
984 	/* Attach only to PF0 of the FPGA */
985 	if (d == 0xa000 && f != 0)
986 		return (ENXIO);
987 
988 	for (i = 0; i < nitems(t4_pciids); i++) {
989 		if (d == t4_pciids[i].device) {
990 			device_set_desc(dev, t4_pciids[i].desc);
991 			return (BUS_PROBE_DEFAULT);
992 		}
993 	}
994 
995 	return (ENXIO);
996 }
997 
998 static int
999 t5_probe(device_t dev)
1000 {
1001 	int i;
1002 	uint16_t v = pci_get_vendor(dev);
1003 	uint16_t d = pci_get_device(dev);
1004 	uint8_t f = pci_get_function(dev);
1005 
1006 	if (v != PCI_VENDOR_ID_CHELSIO)
1007 		return (ENXIO);
1008 
1009 	/* Attach only to PF0 of the FPGA */
1010 	if (d == 0xb000 && f != 0)
1011 		return (ENXIO);
1012 
1013 	for (i = 0; i < nitems(t5_pciids); i++) {
1014 		if (d == t5_pciids[i].device) {
1015 			device_set_desc(dev, t5_pciids[i].desc);
1016 			return (BUS_PROBE_DEFAULT);
1017 		}
1018 	}
1019 
1020 	return (ENXIO);
1021 }
1022 
1023 static int
1024 t6_probe(device_t dev)
1025 {
1026 	int i;
1027 	uint16_t v = pci_get_vendor(dev);
1028 	uint16_t d = pci_get_device(dev);
1029 
1030 	if (v != PCI_VENDOR_ID_CHELSIO)
1031 		return (ENXIO);
1032 
1033 	for (i = 0; i < nitems(t6_pciids); i++) {
1034 		if (d == t6_pciids[i].device) {
1035 			device_set_desc(dev, t6_pciids[i].desc);
1036 			return (BUS_PROBE_DEFAULT);
1037 		}
1038 	}
1039 
1040 	return (ENXIO);
1041 }
1042 
1043 static void
1044 t5_attribute_workaround(device_t dev)
1045 {
1046 	device_t root_port;
1047 	uint32_t v;
1048 
1049 	/*
1050 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1051 	 * Ordering attributes when replying to a TLP from a Root
1052 	 * Port.  As a workaround, find the parent Root Port and
1053 	 * disable No Snoop and Relaxed Ordering.  Note that this
1054 	 * affects all devices under this root port.
1055 	 */
1056 	root_port = pci_find_pcie_root_port(dev);
1057 	if (root_port == NULL) {
1058 		device_printf(dev, "Unable to find parent root port\n");
1059 		return;
1060 	}
1061 
1062 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1063 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1064 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1065 	    0)
1066 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1067 		    device_get_nameunit(root_port));
1068 }
1069 
1070 static const struct devnames devnames[] = {
1071 	{
1072 		.nexus_name = "t4nex",
1073 		.ifnet_name = "cxgbe",
1074 		.vi_ifnet_name = "vcxgbe",
1075 		.pf03_drv_name = "t4iov",
1076 		.vf_nexus_name = "t4vf",
1077 		.vf_ifnet_name = "cxgbev"
1078 	}, {
1079 		.nexus_name = "t5nex",
1080 		.ifnet_name = "cxl",
1081 		.vi_ifnet_name = "vcxl",
1082 		.pf03_drv_name = "t5iov",
1083 		.vf_nexus_name = "t5vf",
1084 		.vf_ifnet_name = "cxlv"
1085 	}, {
1086 		.nexus_name = "t6nex",
1087 		.ifnet_name = "cc",
1088 		.vi_ifnet_name = "vcc",
1089 		.pf03_drv_name = "t6iov",
1090 		.vf_nexus_name = "t6vf",
1091 		.vf_ifnet_name = "ccv"
1092 	}
1093 };
1094 
1095 void
1096 t4_init_devnames(struct adapter *sc)
1097 {
1098 	int id;
1099 
1100 	id = chip_id(sc);
1101 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1102 		sc->names = &devnames[id - CHELSIO_T4];
1103 	else {
1104 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1105 		sc->names = NULL;
1106 	}
1107 }
1108 
1109 static int
1110 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1111 {
1112 	const char *parent, *name;
1113 	long value;
1114 	int line, unit;
1115 
1116 	line = 0;
1117 	parent = device_get_nameunit(sc->dev);
1118 	name = sc->names->ifnet_name;
1119 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1120 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1121 		    value == pi->port_id)
1122 			return (unit);
1123 	}
1124 	return (-1);
1125 }
1126 
1127 static void
1128 t4_calibration(void *arg)
1129 {
1130 	struct adapter *sc;
1131 	struct clock_sync *cur, *nex;
1132 	uint64_t hw;
1133 	sbintime_t sbt;
1134 	int next_up;
1135 
1136 	sc = (struct adapter *)arg;
1137 
1138 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1139 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1140 	sbt = sbinuptime();
1141 
1142 	cur = &sc->cal_info[sc->cal_current];
1143 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1144 	nex = &sc->cal_info[next_up];
1145 	if (__predict_false(sc->cal_count == 0)) {
1146 		/* First time in, just get the values in */
1147 		cur->hw_cur = hw;
1148 		cur->sbt_cur = sbt;
1149 		sc->cal_count++;
1150 		goto done;
1151 	}
1152 
1153 	if (cur->hw_cur == hw) {
1154 		/* The clock is not advancing? */
1155 		sc->cal_count = 0;
1156 		atomic_store_rel_int(&cur->gen, 0);
1157 		goto done;
1158 	}
1159 
1160 	seqc_write_begin(&nex->gen);
1161 	nex->hw_prev = cur->hw_cur;
1162 	nex->sbt_prev = cur->sbt_cur;
1163 	nex->hw_cur = hw;
1164 	nex->sbt_cur = sbt;
1165 	seqc_write_end(&nex->gen);
1166 	sc->cal_current = next_up;
1167 done:
1168 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1169 	    sc, C_DIRECT_EXEC);
1170 }
1171 
1172 static void
1173 t4_calibration_start(struct adapter *sc)
1174 {
1175 	/*
1176 	 * Here if we have not done a calibration
1177 	 * then do so otherwise start the appropriate
1178 	 * timer.
1179 	 */
1180 	int i;
1181 
1182 	for (i = 0; i < CNT_CAL_INFO; i++) {
1183 		sc->cal_info[i].gen = 0;
1184 	}
1185 	sc->cal_current = 0;
1186 	sc->cal_count = 0;
1187 	sc->cal_gen = 0;
1188 	t4_calibration(sc);
1189 }
1190 
1191 static int
1192 t4_attach(device_t dev)
1193 {
1194 	struct adapter *sc;
1195 	int rc = 0, i, j, rqidx, tqidx, nports;
1196 	struct make_dev_args mda;
1197 	struct intrs_and_queues iaq;
1198 	struct sge *s;
1199 	uint32_t *buf;
1200 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1201 	int ofld_tqidx;
1202 #endif
1203 #ifdef TCP_OFFLOAD
1204 	int ofld_rqidx;
1205 #endif
1206 #ifdef DEV_NETMAP
1207 	int nm_rqidx, nm_tqidx;
1208 #endif
1209 	int num_vis;
1210 
1211 	sc = device_get_softc(dev);
1212 	sc->dev = dev;
1213 	sysctl_ctx_init(&sc->ctx);
1214 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1215 
1216 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1217 		t5_attribute_workaround(dev);
1218 	pci_enable_busmaster(dev);
1219 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1220 		uint32_t v;
1221 
1222 		pci_set_max_read_req(dev, 4096);
1223 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1224 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1225 		if (pcie_relaxed_ordering == 0 &&
1226 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1227 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1228 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1229 		} else if (pcie_relaxed_ordering == 1 &&
1230 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1231 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1232 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1233 		}
1234 	}
1235 
1236 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1237 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1238 	sc->traceq = -1;
1239 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1240 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1241 	    device_get_nameunit(dev));
1242 
1243 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1244 	    device_get_nameunit(dev));
1245 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1246 	t4_add_adapter(sc);
1247 
1248 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1249 	TAILQ_INIT(&sc->sfl);
1250 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1251 
1252 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1253 
1254 	sc->policy = NULL;
1255 	rw_init(&sc->policy_lock, "connection offload policy");
1256 
1257 	callout_init(&sc->ktls_tick, 1);
1258 
1259 	callout_init(&sc->cal_callout, 1);
1260 
1261 	refcount_init(&sc->vxlan_refcount, 0);
1262 
1263 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1264 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1265 
1266 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1267 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1268 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1269 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1270 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1271 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1272 
1273 	rc = t4_map_bars_0_and_4(sc);
1274 	if (rc != 0)
1275 		goto done; /* error message displayed already */
1276 
1277 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1278 
1279 	/* Prepare the adapter for operation. */
1280 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1281 	rc = -t4_prep_adapter(sc, buf);
1282 	free(buf, M_CXGBE);
1283 	if (rc != 0) {
1284 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1285 		goto done;
1286 	}
1287 
1288 	/*
1289 	 * This is the real PF# to which we're attaching.  Works from within PCI
1290 	 * passthrough environments too, where pci_get_function() could return a
1291 	 * different PF# depending on the passthrough configuration.  We need to
1292 	 * use the real PF# in all our communication with the firmware.
1293 	 */
1294 	j = t4_read_reg(sc, A_PL_WHOAMI);
1295 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1296 	sc->mbox = sc->pf;
1297 
1298 	t4_init_devnames(sc);
1299 	if (sc->names == NULL) {
1300 		rc = ENOTSUP;
1301 		goto done; /* error message displayed already */
1302 	}
1303 
1304 	/*
1305 	 * Do this really early, with the memory windows set up even before the
1306 	 * character device.  The userland tool's register i/o and mem read
1307 	 * will work even in "recovery mode".
1308 	 */
1309 	setup_memwin(sc);
1310 	if (t4_init_devlog_params(sc, 0) == 0)
1311 		fixup_devlog_params(sc);
1312 	make_dev_args_init(&mda);
1313 	mda.mda_devsw = &t4_cdevsw;
1314 	mda.mda_uid = UID_ROOT;
1315 	mda.mda_gid = GID_WHEEL;
1316 	mda.mda_mode = 0600;
1317 	mda.mda_si_drv1 = sc;
1318 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1319 	if (rc != 0)
1320 		device_printf(dev, "failed to create nexus char device: %d.\n",
1321 		    rc);
1322 
1323 	/* Go no further if recovery mode has been requested. */
1324 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1325 		device_printf(dev, "recovery mode.\n");
1326 		goto done;
1327 	}
1328 
1329 #if defined(__i386__)
1330 	if ((cpu_feature & CPUID_CX8) == 0) {
1331 		device_printf(dev, "64 bit atomics not available.\n");
1332 		rc = ENOTSUP;
1333 		goto done;
1334 	}
1335 #endif
1336 
1337 	/* Contact the firmware and try to become the master driver. */
1338 	rc = contact_firmware(sc);
1339 	if (rc != 0)
1340 		goto done; /* error message displayed already */
1341 	MPASS(sc->flags & FW_OK);
1342 
1343 	rc = get_params__pre_init(sc);
1344 	if (rc != 0)
1345 		goto done; /* error message displayed already */
1346 
1347 	if (sc->flags & MASTER_PF) {
1348 		rc = partition_resources(sc);
1349 		if (rc != 0)
1350 			goto done; /* error message displayed already */
1351 	}
1352 
1353 	rc = get_params__post_init(sc);
1354 	if (rc != 0)
1355 		goto done; /* error message displayed already */
1356 
1357 	rc = set_params__post_init(sc);
1358 	if (rc != 0)
1359 		goto done; /* error message displayed already */
1360 
1361 	rc = t4_map_bar_2(sc);
1362 	if (rc != 0)
1363 		goto done; /* error message displayed already */
1364 
1365 	rc = t4_adj_doorbells(sc);
1366 	if (rc != 0)
1367 		goto done; /* error message displayed already */
1368 
1369 	rc = t4_create_dma_tag(sc);
1370 	if (rc != 0)
1371 		goto done; /* error message displayed already */
1372 
1373 	/*
1374 	 * First pass over all the ports - allocate VIs and initialize some
1375 	 * basic parameters like mac address, port type, etc.
1376 	 */
1377 	for_each_port(sc, i) {
1378 		struct port_info *pi;
1379 
1380 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1381 		sc->port[i] = pi;
1382 
1383 		/* These must be set before t4_port_init */
1384 		pi->adapter = sc;
1385 		pi->port_id = i;
1386 		/*
1387 		 * XXX: vi[0] is special so we can't delay this allocation until
1388 		 * pi->nvi's final value is known.
1389 		 */
1390 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1391 		    M_ZERO | M_WAITOK);
1392 
1393 		/*
1394 		 * Allocate the "main" VI and initialize parameters
1395 		 * like mac addr.
1396 		 */
1397 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1398 		if (rc != 0) {
1399 			device_printf(dev, "unable to initialize port %d: %d\n",
1400 			    i, rc);
1401 			free(pi->vi, M_CXGBE);
1402 			free(pi, M_CXGBE);
1403 			sc->port[i] = NULL;
1404 			goto done;
1405 		}
1406 
1407 		if (is_bt(pi->port_type))
1408 			setbit(&sc->bt_map, pi->tx_chan);
1409 		else
1410 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1411 
1412 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1413 		    device_get_nameunit(dev), i);
1414 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1415 		sc->chan_map[pi->tx_chan] = i;
1416 
1417 		/*
1418 		 * The MPS counter for FCS errors doesn't work correctly on the
1419 		 * T6 so we use the MAC counter here.  Which MAC is in use
1420 		 * depends on the link settings which will be known when the
1421 		 * link comes up.
1422 		 */
1423 		if (is_t6(sc))
1424 			pi->fcs_reg = -1;
1425 		else {
1426 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1427 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1428 		}
1429 		pi->fcs_base = 0;
1430 
1431 		/* All VIs on this port share this media. */
1432 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1433 		    cxgbe_media_status);
1434 
1435 		PORT_LOCK(pi);
1436 		init_link_config(pi);
1437 		fixup_link_config(pi);
1438 		build_medialist(pi);
1439 		if (fixed_ifmedia(pi))
1440 			pi->flags |= FIXED_IFMEDIA;
1441 		PORT_UNLOCK(pi);
1442 
1443 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1444 		    t4_ifnet_unit(sc, pi));
1445 		if (pi->dev == NULL) {
1446 			device_printf(dev,
1447 			    "failed to add device for port %d.\n", i);
1448 			rc = ENXIO;
1449 			goto done;
1450 		}
1451 		pi->vi[0].dev = pi->dev;
1452 		device_set_softc(pi->dev, pi);
1453 	}
1454 
1455 	/*
1456 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1457 	 */
1458 	nports = sc->params.nports;
1459 	rc = cfg_itype_and_nqueues(sc, &iaq);
1460 	if (rc != 0)
1461 		goto done; /* error message displayed already */
1462 
1463 	num_vis = iaq.num_vis;
1464 	sc->intr_type = iaq.intr_type;
1465 	sc->intr_count = iaq.nirq;
1466 
1467 	s = &sc->sge;
1468 	s->nrxq = nports * iaq.nrxq;
1469 	s->ntxq = nports * iaq.ntxq;
1470 	if (num_vis > 1) {
1471 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1472 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1473 	}
1474 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1475 	s->neq += nports;		/* ctrl queues: 1 per port */
1476 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1477 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1478 	if (is_offload(sc) || is_ethoffload(sc)) {
1479 		s->nofldtxq = nports * iaq.nofldtxq;
1480 		if (num_vis > 1)
1481 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1482 		s->neq += s->nofldtxq;
1483 
1484 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1485 		    M_CXGBE, M_ZERO | M_WAITOK);
1486 	}
1487 #endif
1488 #ifdef TCP_OFFLOAD
1489 	if (is_offload(sc)) {
1490 		s->nofldrxq = nports * iaq.nofldrxq;
1491 		if (num_vis > 1)
1492 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1493 		s->neq += s->nofldrxq;	/* free list */
1494 		s->niq += s->nofldrxq;
1495 
1496 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1497 		    M_CXGBE, M_ZERO | M_WAITOK);
1498 	}
1499 #endif
1500 #ifdef DEV_NETMAP
1501 	s->nnmrxq = 0;
1502 	s->nnmtxq = 0;
1503 	if (t4_native_netmap & NN_MAIN_VI) {
1504 		s->nnmrxq += nports * iaq.nnmrxq;
1505 		s->nnmtxq += nports * iaq.nnmtxq;
1506 	}
1507 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1508 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1509 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1510 	}
1511 	s->neq += s->nnmtxq + s->nnmrxq;
1512 	s->niq += s->nnmrxq;
1513 
1514 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1515 	    M_CXGBE, M_ZERO | M_WAITOK);
1516 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1517 	    M_CXGBE, M_ZERO | M_WAITOK);
1518 #endif
1519 	MPASS(s->niq <= s->iqmap_sz);
1520 	MPASS(s->neq <= s->eqmap_sz);
1521 
1522 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1523 	    M_ZERO | M_WAITOK);
1524 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1525 	    M_ZERO | M_WAITOK);
1526 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1527 	    M_ZERO | M_WAITOK);
1528 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1529 	    M_ZERO | M_WAITOK);
1530 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1531 	    M_ZERO | M_WAITOK);
1532 
1533 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1534 	    M_ZERO | M_WAITOK);
1535 
1536 	t4_init_l2t(sc, M_WAITOK);
1537 	t4_init_smt(sc, M_WAITOK);
1538 	t4_init_tx_sched(sc);
1539 	t4_init_atid_table(sc);
1540 #ifdef RATELIMIT
1541 	t4_init_etid_table(sc);
1542 #endif
1543 #ifdef INET6
1544 	t4_init_clip_table(sc);
1545 #endif
1546 	if (sc->vres.key.size != 0)
1547 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1548 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1549 
1550 	/*
1551 	 * Second pass over the ports.  This time we know the number of rx and
1552 	 * tx queues that each port should get.
1553 	 */
1554 	rqidx = tqidx = 0;
1555 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1556 	ofld_tqidx = 0;
1557 #endif
1558 #ifdef TCP_OFFLOAD
1559 	ofld_rqidx = 0;
1560 #endif
1561 #ifdef DEV_NETMAP
1562 	nm_rqidx = nm_tqidx = 0;
1563 #endif
1564 	for_each_port(sc, i) {
1565 		struct port_info *pi = sc->port[i];
1566 		struct vi_info *vi;
1567 
1568 		if (pi == NULL)
1569 			continue;
1570 
1571 		pi->nvi = num_vis;
1572 		for_each_vi(pi, j, vi) {
1573 			vi->pi = pi;
1574 			vi->adapter = sc;
1575 			vi->first_intr = -1;
1576 			vi->qsize_rxq = t4_qsize_rxq;
1577 			vi->qsize_txq = t4_qsize_txq;
1578 
1579 			vi->first_rxq = rqidx;
1580 			vi->first_txq = tqidx;
1581 			vi->tmr_idx = t4_tmr_idx;
1582 			vi->pktc_idx = t4_pktc_idx;
1583 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1584 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1585 
1586 			rqidx += vi->nrxq;
1587 			tqidx += vi->ntxq;
1588 
1589 			if (j == 0 && vi->ntxq > 1)
1590 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1591 			else
1592 				vi->rsrv_noflowq = 0;
1593 
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 			vi->first_ofld_txq = ofld_tqidx;
1596 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1597 			ofld_tqidx += vi->nofldtxq;
1598 #endif
1599 #ifdef TCP_OFFLOAD
1600 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1601 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1602 			vi->first_ofld_rxq = ofld_rqidx;
1603 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1604 
1605 			ofld_rqidx += vi->nofldrxq;
1606 #endif
1607 #ifdef DEV_NETMAP
1608 			vi->first_nm_rxq = nm_rqidx;
1609 			vi->first_nm_txq = nm_tqidx;
1610 			if (j == 0) {
1611 				vi->nnmrxq = iaq.nnmrxq;
1612 				vi->nnmtxq = iaq.nnmtxq;
1613 			} else {
1614 				vi->nnmrxq = iaq.nnmrxq_vi;
1615 				vi->nnmtxq = iaq.nnmtxq_vi;
1616 			}
1617 			nm_rqidx += vi->nnmrxq;
1618 			nm_tqidx += vi->nnmtxq;
1619 #endif
1620 		}
1621 	}
1622 
1623 	rc = t4_setup_intr_handlers(sc);
1624 	if (rc != 0) {
1625 		device_printf(dev,
1626 		    "failed to setup interrupt handlers: %d\n", rc);
1627 		goto done;
1628 	}
1629 
1630 	bus_identify_children(dev);
1631 
1632 	/*
1633 	 * Ensure thread-safe mailbox access (in debug builds).
1634 	 *
1635 	 * So far this was the only thread accessing the mailbox but various
1636 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1637 	 * will access the mailbox from different threads.
1638 	 */
1639 	sc->flags |= CHK_MBOX_ACCESS;
1640 
1641 	bus_attach_children(dev);
1642 	t4_calibration_start(sc);
1643 
1644 	device_printf(dev,
1645 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1646 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1647 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1648 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1649 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1650 
1651 	t4_set_desc(sc);
1652 
1653 	notify_siblings(dev, 0);
1654 
1655 done:
1656 	if (rc != 0 && sc->cdev) {
1657 		/* cdev was created and so cxgbetool works; recover that way. */
1658 		device_printf(dev,
1659 		    "error during attach, adapter is now in recovery mode.\n");
1660 		rc = 0;
1661 	}
1662 
1663 	if (rc != 0)
1664 		t4_detach_common(dev);
1665 	else
1666 		t4_sysctls(sc);
1667 
1668 	return (rc);
1669 }
1670 
1671 static int
1672 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1673 {
1674 	struct adapter *sc;
1675 	struct port_info *pi;
1676 	int i;
1677 
1678 	sc = device_get_softc(bus);
1679 	for_each_port(sc, i) {
1680 		pi = sc->port[i];
1681 		if (pi != NULL && pi->dev == dev) {
1682 			sbuf_printf(sb, "port=%d", pi->port_id);
1683 			break;
1684 		}
1685 	}
1686 	return (0);
1687 }
1688 
1689 static int
1690 t4_ready(device_t dev)
1691 {
1692 	struct adapter *sc;
1693 
1694 	sc = device_get_softc(dev);
1695 	if (sc->flags & FW_OK)
1696 		return (0);
1697 	return (ENXIO);
1698 }
1699 
1700 static int
1701 t4_read_port_device(device_t dev, int port, device_t *child)
1702 {
1703 	struct adapter *sc;
1704 	struct port_info *pi;
1705 
1706 	sc = device_get_softc(dev);
1707 	if (port < 0 || port >= MAX_NPORTS)
1708 		return (EINVAL);
1709 	pi = sc->port[port];
1710 	if (pi == NULL || pi->dev == NULL)
1711 		return (ENXIO);
1712 	*child = pi->dev;
1713 	return (0);
1714 }
1715 
1716 static int
1717 notify_siblings(device_t dev, int detaching)
1718 {
1719 	device_t sibling;
1720 	int error, i;
1721 
1722 	error = 0;
1723 	for (i = 0; i < PCI_FUNCMAX; i++) {
1724 		if (i == pci_get_function(dev))
1725 			continue;
1726 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1727 		    pci_get_slot(dev), i);
1728 		if (sibling == NULL || !device_is_attached(sibling))
1729 			continue;
1730 		if (detaching)
1731 			error = T4_DETACH_CHILD(sibling);
1732 		else
1733 			(void)T4_ATTACH_CHILD(sibling);
1734 		if (error)
1735 			break;
1736 	}
1737 	return (error);
1738 }
1739 
1740 /*
1741  * Idempotent
1742  */
1743 static int
1744 t4_detach(device_t dev)
1745 {
1746 	int rc;
1747 
1748 	rc = notify_siblings(dev, 1);
1749 	if (rc) {
1750 		device_printf(dev,
1751 		    "failed to detach sibling devices: %d\n", rc);
1752 		return (rc);
1753 	}
1754 
1755 	return (t4_detach_common(dev));
1756 }
1757 
1758 int
1759 t4_detach_common(device_t dev)
1760 {
1761 	struct adapter *sc;
1762 	struct port_info *pi;
1763 	int i, rc;
1764 
1765 	sc = device_get_softc(dev);
1766 
1767 #ifdef TCP_OFFLOAD
1768 	rc = deactivate_all_uld(sc);
1769 	if (rc) {
1770 		device_printf(dev,
1771 		    "failed to detach upper layer drivers: %d\n", rc);
1772 		return (rc);
1773 	}
1774 #endif
1775 
1776 	if (sc->cdev) {
1777 		destroy_dev(sc->cdev);
1778 		sc->cdev = NULL;
1779 	}
1780 
1781 	sx_xlock(&t4_list_lock);
1782 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1783 	sx_xunlock(&t4_list_lock);
1784 
1785 	sc->flags &= ~CHK_MBOX_ACCESS;
1786 	if (sc->flags & FULL_INIT_DONE) {
1787 		if (!(sc->flags & IS_VF))
1788 			t4_intr_disable(sc);
1789 	}
1790 
1791 	if (device_is_attached(dev)) {
1792 		rc = bus_detach_children(dev);
1793 		if (rc) {
1794 			device_printf(dev,
1795 			    "failed to detach child devices: %d\n", rc);
1796 			return (rc);
1797 		}
1798 	}
1799 
1800 	for (i = 0; i < sc->intr_count; i++)
1801 		t4_free_irq(sc, &sc->irq[i]);
1802 
1803 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1804 		t4_free_tx_sched(sc);
1805 
1806 	for (i = 0; i < MAX_NPORTS; i++) {
1807 		pi = sc->port[i];
1808 		if (pi) {
1809 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1810 
1811 			mtx_destroy(&pi->pi_lock);
1812 			free(pi->vi, M_CXGBE);
1813 			free(pi, M_CXGBE);
1814 		}
1815 	}
1816 	callout_stop(&sc->cal_callout);
1817 	callout_drain(&sc->cal_callout);
1818 	device_delete_children(dev);
1819 	sysctl_ctx_free(&sc->ctx);
1820 	adapter_full_uninit(sc);
1821 
1822 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1823 		t4_fw_bye(sc, sc->mbox);
1824 
1825 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1826 		pci_release_msi(dev);
1827 
1828 	if (sc->regs_res)
1829 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1830 		    sc->regs_res);
1831 
1832 	if (sc->udbs_res)
1833 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1834 		    sc->udbs_res);
1835 
1836 	if (sc->msix_res)
1837 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1838 		    sc->msix_res);
1839 
1840 	if (sc->l2t)
1841 		t4_free_l2t(sc);
1842 	if (sc->smt)
1843 		t4_free_smt(sc->smt);
1844 	t4_free_atid_table(sc);
1845 #ifdef RATELIMIT
1846 	t4_free_etid_table(sc);
1847 #endif
1848 	if (sc->key_map)
1849 		vmem_destroy(sc->key_map);
1850 #ifdef INET6
1851 	t4_destroy_clip_table(sc);
1852 #endif
1853 
1854 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1855 	free(sc->sge.ofld_txq, M_CXGBE);
1856 #endif
1857 #ifdef TCP_OFFLOAD
1858 	free(sc->sge.ofld_rxq, M_CXGBE);
1859 #endif
1860 #ifdef DEV_NETMAP
1861 	free(sc->sge.nm_rxq, M_CXGBE);
1862 	free(sc->sge.nm_txq, M_CXGBE);
1863 #endif
1864 	free(sc->irq, M_CXGBE);
1865 	free(sc->sge.rxq, M_CXGBE);
1866 	free(sc->sge.txq, M_CXGBE);
1867 	free(sc->sge.ctrlq, M_CXGBE);
1868 	free(sc->sge.iqmap, M_CXGBE);
1869 	free(sc->sge.eqmap, M_CXGBE);
1870 	free(sc->tids.ftid_tab, M_CXGBE);
1871 	free(sc->tids.hpftid_tab, M_CXGBE);
1872 	free_hftid_hash(&sc->tids);
1873 	free(sc->tids.tid_tab, M_CXGBE);
1874 	t4_destroy_dma_tag(sc);
1875 
1876 	callout_drain(&sc->ktls_tick);
1877 	callout_drain(&sc->sfl_callout);
1878 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1879 		mtx_destroy(&sc->tids.ftid_lock);
1880 		cv_destroy(&sc->tids.ftid_cv);
1881 	}
1882 	if (mtx_initialized(&sc->tids.atid_lock))
1883 		mtx_destroy(&sc->tids.atid_lock);
1884 	if (mtx_initialized(&sc->ifp_lock))
1885 		mtx_destroy(&sc->ifp_lock);
1886 
1887 	if (rw_initialized(&sc->policy_lock)) {
1888 		rw_destroy(&sc->policy_lock);
1889 #ifdef TCP_OFFLOAD
1890 		if (sc->policy != NULL)
1891 			free_offload_policy(sc->policy);
1892 #endif
1893 	}
1894 
1895 	for (i = 0; i < NUM_MEMWIN; i++) {
1896 		struct memwin *mw = &sc->memwin[i];
1897 
1898 		if (rw_initialized(&mw->mw_lock))
1899 			rw_destroy(&mw->mw_lock);
1900 	}
1901 
1902 	mtx_destroy(&sc->sfl_lock);
1903 	mtx_destroy(&sc->reg_lock);
1904 	mtx_destroy(&sc->sc_lock);
1905 
1906 	bzero(sc, sizeof(*sc));
1907 
1908 	return (0);
1909 }
1910 
1911 static inline int
1912 stop_adapter(struct adapter *sc)
1913 {
1914 	struct port_info *pi;
1915 	int i;
1916 
1917 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1918 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1919 			 __func__, curthread, sc->flags, sc->error_flags);
1920 		return (EALREADY);
1921 	}
1922 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1923 		 sc->flags, sc->error_flags);
1924 	t4_shutdown_adapter(sc);
1925 	for_each_port(sc, i) {
1926 		pi = sc->port[i];
1927 		PORT_LOCK(pi);
1928 		if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1929 			/*
1930 			 * t4_shutdown_adapter has already shut down all the
1931 			 * PHYs but it also disables interrupts and DMA so there
1932 			 * won't be a link interrupt.  Update the state manually
1933 			 * if the link was up previously and inform the kernel.
1934 			 */
1935 			pi->link_cfg.link_ok = false;
1936 			t4_os_link_changed(pi);
1937 		}
1938 		PORT_UNLOCK(pi);
1939 	}
1940 
1941 	return (0);
1942 }
1943 
1944 static inline int
1945 restart_adapter(struct adapter *sc)
1946 {
1947 	uint32_t val;
1948 
1949 	if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1950 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1951 			 __func__, curthread, sc->flags, sc->error_flags);
1952 		return (EALREADY);
1953 	}
1954 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1955 		 sc->flags, sc->error_flags);
1956 
1957 	MPASS(hw_off_limits(sc));
1958 	MPASS((sc->flags & FW_OK) == 0);
1959 	MPASS((sc->flags & MASTER_PF) == 0);
1960 	MPASS(sc->reset_thread == NULL);
1961 
1962 	/*
1963 	 * The adapter is supposed to be back on PCIE with its config space and
1964 	 * BARs restored to their state before reset.  Register access via
1965 	 * t4_read_reg BAR0 should just work.
1966 	 */
1967 	sc->reset_thread = curthread;
1968 	val = t4_read_reg(sc, A_PL_WHOAMI);
1969 	if (val == 0xffffffff || val == 0xeeeeeeee) {
1970 		CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1971 		sc->reset_thread = NULL;
1972 		atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1973 		return (ENXIO);
1974 	}
1975 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1976 	atomic_add_int(&sc->incarnation, 1);
1977 	atomic_add_int(&sc->num_resets, 1);
1978 
1979 	return (0);
1980 }
1981 
1982 static inline void
1983 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1984 {
1985 	if (usable) {
1986 		/* Must be marked reusable by the designated thread. */
1987 		ASSERT_SYNCHRONIZED_OP(sc);
1988 		MPASS(sc->reset_thread == curthread);
1989 		mtx_lock(&sc->reg_lock);
1990 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1991 		mtx_unlock(&sc->reg_lock);
1992 	} else {
1993 		/* Mark the adapter totally off limits. */
1994 		begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
1995 		mtx_lock(&sc->reg_lock);
1996 		atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1997 		mtx_unlock(&sc->reg_lock);
1998 		sc->flags &= ~(FW_OK | MASTER_PF);
1999 		sc->reset_thread = NULL;
2000 		end_synchronized_op(sc, 0);
2001 	}
2002 }
2003 
2004 static int
2005 stop_lld(struct adapter *sc)
2006 {
2007 	struct port_info *pi;
2008 	struct vi_info *vi;
2009 	if_t ifp;
2010 	struct sge_rxq *rxq;
2011 	struct sge_txq *txq;
2012 	struct sge_wrq *wrq;
2013 #ifdef TCP_OFFLOAD
2014 	struct sge_ofld_rxq *ofld_rxq;
2015 #endif
2016 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2017 	struct sge_ofld_txq *ofld_txq;
2018 #endif
2019 	int rc, i, j, k;
2020 
2021 	/*
2022 	 * XXX: Can there be a synch_op in progress that will hang because
2023 	 * hardware has been stopped?  We'll hang too and the solution will be
2024 	 * to use a version of begin_synch_op that wakes up existing synch_op
2025 	 * with errors.  Maybe stop_adapter should do this wakeup?
2026 	 *
2027 	 * I don't think any synch_op could get stranded waiting for DMA or
2028 	 * interrupt so I think we're okay here.  Remove this comment block
2029 	 * after testing.
2030 	 */
2031 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2032 	if (rc != 0)
2033 		return (ENXIO);
2034 
2035 	/* Quiesce all activity. */
2036 	for_each_port(sc, i) {
2037 		pi = sc->port[i];
2038 		pi->vxlan_tcam_entry = false;
2039 		for_each_vi(pi, j, vi) {
2040 			vi->xact_addr_filt = -1;
2041 			mtx_lock(&vi->tick_mtx);
2042 			vi->flags |= VI_SKIP_STATS;
2043 			mtx_unlock(&vi->tick_mtx);
2044 			if (!(vi->flags & VI_INIT_DONE))
2045 				continue;
2046 
2047 			ifp = vi->ifp;
2048 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2049 				mtx_lock(&vi->tick_mtx);
2050 				callout_stop(&vi->tick);
2051 				mtx_unlock(&vi->tick_mtx);
2052 				callout_drain(&vi->tick);
2053 			}
2054 
2055 			/*
2056 			 * Note that the HW is not available.
2057 			 */
2058 			for_each_txq(vi, k, txq) {
2059 				TXQ_LOCK(txq);
2060 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2061 				TXQ_UNLOCK(txq);
2062 			}
2063 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2064 			for_each_ofld_txq(vi, k, ofld_txq) {
2065 				TXQ_LOCK(&ofld_txq->wrq);
2066 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2067 				TXQ_UNLOCK(&ofld_txq->wrq);
2068 			}
2069 #endif
2070 			for_each_rxq(vi, k, rxq) {
2071 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2072 			}
2073 #if defined(TCP_OFFLOAD)
2074 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2075 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2076 			}
2077 #endif
2078 
2079 			quiesce_vi(vi);
2080 		}
2081 
2082 		if (sc->flags & FULL_INIT_DONE) {
2083 			/* Control queue */
2084 			wrq = &sc->sge.ctrlq[i];
2085 			TXQ_LOCK(wrq);
2086 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2087 			TXQ_UNLOCK(wrq);
2088 			quiesce_wrq(wrq);
2089 		}
2090 
2091 		if (pi->flags & HAS_TRACEQ) {
2092 			pi->flags &= ~HAS_TRACEQ;
2093 			sc->traceq = -1;
2094 			sc->tracer_valid = 0;
2095 			sc->tracer_enabled = 0;
2096 		}
2097 	}
2098 	if (sc->flags & FULL_INIT_DONE) {
2099 		/* Firmware event queue */
2100 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2101 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2102 	}
2103 
2104 	/* Stop calibration */
2105 	callout_stop(&sc->cal_callout);
2106 	callout_drain(&sc->cal_callout);
2107 
2108 	if (t4_clock_gate_on_suspend) {
2109 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2110 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2111 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2112 	}
2113 
2114 	end_synchronized_op(sc, 0);
2115 
2116 	stop_atid_allocator(sc);
2117 	t4_stop_l2t(sc);
2118 
2119 	return (rc);
2120 }
2121 
2122 int
2123 suspend_adapter(struct adapter *sc)
2124 {
2125 	stop_adapter(sc);
2126 	stop_lld(sc);
2127 #ifdef TCP_OFFLOAD
2128 	stop_all_uld(sc);
2129 #endif
2130 	set_adapter_hwstatus(sc, false);
2131 
2132 	return (0);
2133 }
2134 
2135 static int
2136 t4_suspend(device_t dev)
2137 {
2138 	struct adapter *sc = device_get_softc(dev);
2139 	int rc;
2140 
2141 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2142 	rc = suspend_adapter(sc);
2143 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2144 
2145 	return (rc);
2146 }
2147 
2148 struct adapter_pre_reset_state {
2149 	u_int flags;
2150 	uint16_t nbmcaps;
2151 	uint16_t linkcaps;
2152 	uint16_t switchcaps;
2153 	uint16_t niccaps;
2154 	uint16_t toecaps;
2155 	uint16_t rdmacaps;
2156 	uint16_t cryptocaps;
2157 	uint16_t iscsicaps;
2158 	uint16_t fcoecaps;
2159 
2160 	u_int cfcsum;
2161 	char cfg_file[32];
2162 
2163 	struct adapter_params params;
2164 	struct t4_virt_res vres;
2165 	struct tid_info tids;
2166 	struct sge sge;
2167 
2168 	int rawf_base;
2169 	int nrawf;
2170 
2171 };
2172 
2173 static void
2174 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2175 {
2176 
2177 	ASSERT_SYNCHRONIZED_OP(sc);
2178 
2179 	o->flags = sc->flags;
2180 
2181 	o->nbmcaps =  sc->nbmcaps;
2182 	o->linkcaps = sc->linkcaps;
2183 	o->switchcaps = sc->switchcaps;
2184 	o->niccaps = sc->niccaps;
2185 	o->toecaps = sc->toecaps;
2186 	o->rdmacaps = sc->rdmacaps;
2187 	o->cryptocaps = sc->cryptocaps;
2188 	o->iscsicaps = sc->iscsicaps;
2189 	o->fcoecaps = sc->fcoecaps;
2190 
2191 	o->cfcsum = sc->cfcsum;
2192 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2193 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2194 
2195 	o->params = sc->params;
2196 	o->vres = sc->vres;
2197 	o->tids = sc->tids;
2198 	o->sge = sc->sge;
2199 
2200 	o->rawf_base = sc->rawf_base;
2201 	o->nrawf = sc->nrawf;
2202 }
2203 
2204 static int
2205 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2206 {
2207 	int rc = 0;
2208 
2209 	ASSERT_SYNCHRONIZED_OP(sc);
2210 
2211 	/* Capabilities */
2212 #define COMPARE_CAPS(c) do { \
2213 	if (o->c##caps != sc->c##caps) { \
2214 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2215 		    sc->c##caps); \
2216 		rc = EINVAL; \
2217 	} \
2218 } while (0)
2219 	COMPARE_CAPS(nbm);
2220 	COMPARE_CAPS(link);
2221 	COMPARE_CAPS(switch);
2222 	COMPARE_CAPS(nic);
2223 	COMPARE_CAPS(toe);
2224 	COMPARE_CAPS(rdma);
2225 	COMPARE_CAPS(crypto);
2226 	COMPARE_CAPS(iscsi);
2227 	COMPARE_CAPS(fcoe);
2228 #undef COMPARE_CAPS
2229 
2230 	/* Firmware config file */
2231 	if (o->cfcsum != sc->cfcsum) {
2232 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2233 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2234 		rc = EINVAL;
2235 	}
2236 
2237 #define COMPARE_PARAM(p, name) do { \
2238 	if (o->p != sc->p) { \
2239 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2240 		rc = EINVAL; \
2241 	} \
2242 } while (0)
2243 	COMPARE_PARAM(sge.iq_start, iq_start);
2244 	COMPARE_PARAM(sge.eq_start, eq_start);
2245 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2246 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2247 	COMPARE_PARAM(tids.nftids, nftids);
2248 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2249 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2250 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2251 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2252 	COMPARE_PARAM(tids.tid_base, tid_base);
2253 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2254 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2255 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2256 	COMPARE_PARAM(rawf_base, rawf_base);
2257 	COMPARE_PARAM(nrawf, nrawf);
2258 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2259 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2260 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2261 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2262 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2263 	COMPARE_PARAM(tids.ntids, ntids);
2264 	COMPARE_PARAM(tids.etid_base, etid_base);
2265 	COMPARE_PARAM(tids.etid_end, etid_end);
2266 	COMPARE_PARAM(tids.netids, netids);
2267 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2268 	COMPARE_PARAM(params.ethoffload, ethoffload);
2269 	COMPARE_PARAM(tids.natids, natids);
2270 	COMPARE_PARAM(tids.stid_base, stid_base);
2271 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2272 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2273 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2274 	COMPARE_PARAM(vres.stag.start, stag_start);
2275 	COMPARE_PARAM(vres.stag.size, stag_size);
2276 	COMPARE_PARAM(vres.rq.start, rq_start);
2277 	COMPARE_PARAM(vres.rq.size, rq_size);
2278 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2279 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2280 	COMPARE_PARAM(vres.qp.start, qp_start);
2281 	COMPARE_PARAM(vres.qp.size, qp_size);
2282 	COMPARE_PARAM(vres.cq.start, cq_start);
2283 	COMPARE_PARAM(vres.cq.size, cq_size);
2284 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2285 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2286 	COMPARE_PARAM(vres.srq.start, srq_start);
2287 	COMPARE_PARAM(vres.srq.size, srq_size);
2288 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2289 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2290 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2291 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2292 	COMPARE_PARAM(vres.key.start, key_start);
2293 	COMPARE_PARAM(vres.key.size, key_size);
2294 #undef COMPARE_PARAM
2295 
2296 	return (rc);
2297 }
2298 
2299 static int
2300 restart_lld(struct adapter *sc)
2301 {
2302 	struct adapter_pre_reset_state *old_state = NULL;
2303 	struct port_info *pi;
2304 	struct vi_info *vi;
2305 	if_t ifp;
2306 	struct sge_txq *txq;
2307 	int rc, i, j, k;
2308 
2309 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2310 	if (rc != 0)
2311 		return (ENXIO);
2312 
2313 	/* Restore memory window. */
2314 	setup_memwin(sc);
2315 
2316 	/* Go no further if recovery mode has been requested. */
2317 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2318 		CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2319 		rc = 0;
2320 		set_adapter_hwstatus(sc, true);
2321 		goto done;
2322 	}
2323 
2324 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2325 	save_caps_and_params(sc, old_state);
2326 
2327 	/* Reestablish contact with firmware and become the primary PF. */
2328 	rc = contact_firmware(sc);
2329 	if (rc != 0)
2330 		goto done; /* error message displayed already */
2331 	MPASS(sc->flags & FW_OK);
2332 
2333 	if (sc->flags & MASTER_PF) {
2334 		rc = partition_resources(sc);
2335 		if (rc != 0)
2336 			goto done; /* error message displayed already */
2337 	}
2338 
2339 	rc = get_params__post_init(sc);
2340 	if (rc != 0)
2341 		goto done; /* error message displayed already */
2342 
2343 	rc = set_params__post_init(sc);
2344 	if (rc != 0)
2345 		goto done; /* error message displayed already */
2346 
2347 	rc = compare_caps_and_params(sc, old_state);
2348 	if (rc != 0)
2349 		goto done; /* error message displayed already */
2350 
2351 	for_each_port(sc, i) {
2352 		pi = sc->port[i];
2353 		MPASS(pi != NULL);
2354 		MPASS(pi->vi != NULL);
2355 		MPASS(pi->vi[0].dev == pi->dev);
2356 
2357 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2358 		if (rc != 0) {
2359 			CH_ERR(sc,
2360 			    "failed to re-initialize port %d: %d\n", i, rc);
2361 			goto done;
2362 		}
2363 		MPASS(sc->chan_map[pi->tx_chan] == i);
2364 
2365 		PORT_LOCK(pi);
2366 		fixup_link_config(pi);
2367 		build_medialist(pi);
2368 		PORT_UNLOCK(pi);
2369 		for_each_vi(pi, j, vi) {
2370 			if (IS_MAIN_VI(vi))
2371 				continue;
2372 			rc = alloc_extra_vi(sc, pi, vi);
2373 			if (rc != 0) {
2374 				CH_ERR(vi,
2375 				    "failed to re-allocate extra VI: %d\n", rc);
2376 				goto done;
2377 			}
2378 		}
2379 	}
2380 
2381 	/*
2382 	 * Interrupts and queues are about to be enabled and other threads will
2383 	 * want to access the hardware too.  It is safe to do so.  Note that
2384 	 * this thread is still in the middle of a synchronized_op.
2385 	 */
2386 	set_adapter_hwstatus(sc, true);
2387 
2388 	if (sc->flags & FULL_INIT_DONE) {
2389 		rc = adapter_full_init(sc);
2390 		if (rc != 0) {
2391 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2392 			goto done;
2393 		}
2394 
2395 		if (sc->vxlan_refcount > 0)
2396 			enable_vxlan_rx(sc);
2397 
2398 		for_each_port(sc, i) {
2399 			pi = sc->port[i];
2400 			for_each_vi(pi, j, vi) {
2401 				mtx_lock(&vi->tick_mtx);
2402 				vi->flags &= ~VI_SKIP_STATS;
2403 				mtx_unlock(&vi->tick_mtx);
2404 				if (!(vi->flags & VI_INIT_DONE))
2405 					continue;
2406 				rc = vi_full_init(vi);
2407 				if (rc != 0) {
2408 					CH_ERR(vi, "failed to re-initialize "
2409 					    "interface: %d\n", rc);
2410 					goto done;
2411 				}
2412 				if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2413 					sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2414 					t4_write_reg(sc, is_t4(sc) ?
2415 					    A_MPS_TRC_RSS_CONTROL :
2416 					    A_MPS_T5_TRC_RSS_CONTROL,
2417 					    V_RSSCONTROL(pi->tx_chan) |
2418 					    V_QUEUENUMBER(sc->traceq));
2419 					pi->flags |= HAS_TRACEQ;
2420 				}
2421 
2422 				ifp = vi->ifp;
2423 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2424 					continue;
2425 				/*
2426 				 * Note that we do not setup multicast addresses
2427 				 * in the first pass.  This ensures that the
2428 				 * unicast DMACs for all VIs on all ports get an
2429 				 * MPS TCAM entry.
2430 				 */
2431 				rc = update_mac_settings(ifp, XGMAC_ALL &
2432 				    ~XGMAC_MCADDRS);
2433 				if (rc != 0) {
2434 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2435 					goto done;
2436 				}
2437 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2438 				    true);
2439 				if (rc != 0) {
2440 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2441 					goto done;
2442 				}
2443 				for_each_txq(vi, k, txq) {
2444 					TXQ_LOCK(txq);
2445 					txq->eq.flags |= EQ_ENABLED;
2446 					TXQ_UNLOCK(txq);
2447 				}
2448 				mtx_lock(&vi->tick_mtx);
2449 				callout_schedule(&vi->tick, hz);
2450 				mtx_unlock(&vi->tick_mtx);
2451 			}
2452 			PORT_LOCK(pi);
2453 			if (pi->up_vis > 0) {
2454 				t4_update_port_info(pi);
2455 				fixup_link_config(pi);
2456 				build_medialist(pi);
2457 				apply_link_config(pi);
2458 				if (pi->link_cfg.link_ok)
2459 					t4_os_link_changed(pi);
2460 			}
2461 			PORT_UNLOCK(pi);
2462 		}
2463 
2464 		/* Now reprogram the L2 multicast addresses. */
2465 		for_each_port(sc, i) {
2466 			pi = sc->port[i];
2467 			for_each_vi(pi, j, vi) {
2468 				if (!(vi->flags & VI_INIT_DONE))
2469 					continue;
2470 				ifp = vi->ifp;
2471 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2472 					continue;
2473 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2474 				if (rc != 0) {
2475 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2476 					rc = 0;	/* carry on */
2477 				}
2478 			}
2479 		}
2480 	}
2481 
2482 	/* Reset all calibration */
2483 	t4_calibration_start(sc);
2484 done:
2485 	end_synchronized_op(sc, 0);
2486 	free(old_state, M_CXGBE);
2487 
2488 	restart_atid_allocator(sc);
2489 	t4_restart_l2t(sc);
2490 
2491 	return (rc);
2492 }
2493 
2494 int
2495 resume_adapter(struct adapter *sc)
2496 {
2497 	restart_adapter(sc);
2498 	restart_lld(sc);
2499 #ifdef TCP_OFFLOAD
2500 	restart_all_uld(sc);
2501 #endif
2502 	return (0);
2503 }
2504 
2505 static int
2506 t4_resume(device_t dev)
2507 {
2508 	struct adapter *sc = device_get_softc(dev);
2509 	int rc;
2510 
2511 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2512 	rc = resume_adapter(sc);
2513 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2514 
2515 	return (rc);
2516 }
2517 
2518 static int
2519 t4_reset_prepare(device_t dev, device_t child)
2520 {
2521 	struct adapter *sc = device_get_softc(dev);
2522 
2523 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2524 	return (0);
2525 }
2526 
2527 static int
2528 t4_reset_post(device_t dev, device_t child)
2529 {
2530 	struct adapter *sc = device_get_softc(dev);
2531 
2532 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2533 	return (0);
2534 }
2535 
2536 static int
2537 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2538 {
2539 	int rc;
2540 
2541 	mtx_lock(&Giant);
2542 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2543 	mtx_unlock(&Giant);
2544 	return (rc);
2545 }
2546 
2547 static int
2548 reset_adapter_with_pl_rst(struct adapter *sc)
2549 {
2550 	suspend_adapter(sc);
2551 
2552 	/* This is a t4_write_reg without the hw_off_limits check. */
2553 	MPASS(sc->error_flags & HW_OFF_LIMITS);
2554 	bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2555 			  F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2556 	pause("pl_rst", 1 * hz);		/* Wait 1s for reset */
2557 
2558 	resume_adapter(sc);
2559 
2560 	return (0);
2561 }
2562 
2563 static inline int
2564 reset_adapter(struct adapter *sc)
2565 {
2566 	if (vm_guest == 0)
2567 		return (reset_adapter_with_pci_bus_reset(sc));
2568 	else
2569 		return (reset_adapter_with_pl_rst(sc));
2570 }
2571 
2572 static void
2573 reset_adapter_task(void *arg, int pending)
2574 {
2575 	struct adapter *sc = arg;
2576 	const int flags = sc->flags;
2577 	const int eflags = sc->error_flags;
2578 	int rc;
2579 
2580 	if (pending > 1)
2581 		CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2582 	rc = reset_adapter(sc);
2583 	if (rc != 0) {
2584 		CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2585 		       "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2586 		       rc, flags, sc->flags, eflags, sc->error_flags);
2587 	}
2588 }
2589 
2590 static int
2591 cxgbe_probe(device_t dev)
2592 {
2593 	struct port_info *pi = device_get_softc(dev);
2594 
2595 	device_set_descf(dev, "port %d", pi->port_id);
2596 
2597 	return (BUS_PROBE_DEFAULT);
2598 }
2599 
2600 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2601     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2602     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2603     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2604 #define T4_CAP_ENABLE (T4_CAP)
2605 
2606 static void
2607 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2608 {
2609 	if_t ifp;
2610 	struct sbuf *sb;
2611 	struct sysctl_ctx_list *ctx = &vi->ctx;
2612 	struct sysctl_oid_list *children;
2613 	struct pfil_head_args pa;
2614 	struct adapter *sc = vi->adapter;
2615 
2616 	sysctl_ctx_init(ctx);
2617 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2618 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2619 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2620 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2621 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2622 #ifdef DEV_NETMAP
2623 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2624 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2625 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2626 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2627 #endif
2628 #ifdef TCP_OFFLOAD
2629 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2630 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2631 #endif
2632 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2633 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2634 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2635 #endif
2636 
2637 	vi->xact_addr_filt = -1;
2638 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2639 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2640 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2641 		vi->flags |= TX_USES_VM_WR;
2642 
2643 	/* Allocate an ifnet and set it up */
2644 	ifp = if_alloc_dev(IFT_ETHER, dev);
2645 	vi->ifp = ifp;
2646 	if_setsoftc(ifp, vi);
2647 
2648 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2649 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2650 
2651 	if_setinitfn(ifp, cxgbe_init);
2652 	if_setioctlfn(ifp, cxgbe_ioctl);
2653 	if_settransmitfn(ifp, cxgbe_transmit);
2654 	if_setqflushfn(ifp, cxgbe_qflush);
2655 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2656 		if_setgetcounterfn(ifp, vi_get_counter);
2657 	else
2658 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2659 #if defined(KERN_TLS) || defined(RATELIMIT)
2660 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2661 #endif
2662 #ifdef RATELIMIT
2663 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2664 #endif
2665 
2666 	if_setcapabilities(ifp, T4_CAP);
2667 	if_setcapenable(ifp, T4_CAP_ENABLE);
2668 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2669 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2670 	if (chip_id(sc) >= CHELSIO_T6) {
2671 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2672 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2673 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2674 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2675 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2676 	}
2677 
2678 #ifdef TCP_OFFLOAD
2679 	if (vi->nofldrxq != 0)
2680 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2681 #endif
2682 #ifdef RATELIMIT
2683 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2684 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2685 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2686 	}
2687 #endif
2688 
2689 	if_sethwtsomax(ifp, IP_MAXPACKET);
2690 	if (vi->flags & TX_USES_VM_WR)
2691 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2692 	else
2693 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2694 #ifdef RATELIMIT
2695 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2696 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2697 #endif
2698 	if_sethwtsomaxsegsize(ifp, 65536);
2699 #ifdef KERN_TLS
2700 	if (is_ktls(sc)) {
2701 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2702 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2703 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2704 	}
2705 #endif
2706 
2707 	ether_ifattach(ifp, vi->hw_addr);
2708 #ifdef DEV_NETMAP
2709 	if (vi->nnmrxq != 0)
2710 		cxgbe_nm_attach(vi);
2711 #endif
2712 	sb = sbuf_new_auto();
2713 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2715 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2716 	case IFCAP_TOE:
2717 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2718 		break;
2719 	case IFCAP_TOE | IFCAP_TXRTLMT:
2720 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2721 		break;
2722 	case IFCAP_TXRTLMT:
2723 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2724 		break;
2725 	}
2726 #endif
2727 #ifdef TCP_OFFLOAD
2728 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2729 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2730 #endif
2731 #ifdef DEV_NETMAP
2732 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2733 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2734 		    vi->nnmtxq, vi->nnmrxq);
2735 #endif
2736 	sbuf_finish(sb);
2737 	device_printf(dev, "%s\n", sbuf_data(sb));
2738 	sbuf_delete(sb);
2739 
2740 	vi_sysctls(vi);
2741 
2742 	pa.pa_version = PFIL_VERSION;
2743 	pa.pa_flags = PFIL_IN;
2744 	pa.pa_type = PFIL_TYPE_ETHERNET;
2745 	pa.pa_headname = if_name(ifp);
2746 	vi->pfil = pfil_head_register(&pa);
2747 }
2748 
2749 static int
2750 cxgbe_attach(device_t dev)
2751 {
2752 	struct port_info *pi = device_get_softc(dev);
2753 	struct adapter *sc = pi->adapter;
2754 	struct vi_info *vi;
2755 	int i;
2756 
2757 	sysctl_ctx_init(&pi->ctx);
2758 
2759 	cxgbe_vi_attach(dev, &pi->vi[0]);
2760 
2761 	for_each_vi(pi, i, vi) {
2762 		if (i == 0)
2763 			continue;
2764 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2765 		if (vi->dev == NULL) {
2766 			device_printf(dev, "failed to add VI %d\n", i);
2767 			continue;
2768 		}
2769 		device_set_softc(vi->dev, vi);
2770 	}
2771 
2772 	cxgbe_sysctls(pi);
2773 
2774 	bus_attach_children(dev);
2775 
2776 	return (0);
2777 }
2778 
2779 static void
2780 cxgbe_vi_detach(struct vi_info *vi)
2781 {
2782 	if_t ifp = vi->ifp;
2783 
2784 	if (vi->pfil != NULL) {
2785 		pfil_head_unregister(vi->pfil);
2786 		vi->pfil = NULL;
2787 	}
2788 
2789 	ether_ifdetach(ifp);
2790 
2791 	/* Let detach proceed even if these fail. */
2792 #ifdef DEV_NETMAP
2793 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2794 		cxgbe_nm_detach(vi);
2795 #endif
2796 	cxgbe_uninit_synchronized(vi);
2797 	callout_drain(&vi->tick);
2798 	mtx_destroy(&vi->tick_mtx);
2799 	sysctl_ctx_free(&vi->ctx);
2800 	vi_full_uninit(vi);
2801 
2802 	if_free(vi->ifp);
2803 	vi->ifp = NULL;
2804 }
2805 
2806 static int
2807 cxgbe_detach(device_t dev)
2808 {
2809 	struct port_info *pi = device_get_softc(dev);
2810 	struct adapter *sc = pi->adapter;
2811 	int rc;
2812 
2813 	/* Detach the extra VIs first. */
2814 	rc = bus_generic_detach(dev);
2815 	if (rc)
2816 		return (rc);
2817 	device_delete_children(dev);
2818 
2819 	sysctl_ctx_free(&pi->ctx);
2820 	begin_vi_detach(sc, &pi->vi[0]);
2821 	if (pi->flags & HAS_TRACEQ) {
2822 		sc->traceq = -1;	/* cloner should not create ifnet */
2823 		t4_tracer_port_detach(sc);
2824 	}
2825 	cxgbe_vi_detach(&pi->vi[0]);
2826 	ifmedia_removeall(&pi->media);
2827 	end_vi_detach(sc, &pi->vi[0]);
2828 
2829 	return (0);
2830 }
2831 
2832 static void
2833 cxgbe_init(void *arg)
2834 {
2835 	struct vi_info *vi = arg;
2836 	struct adapter *sc = vi->adapter;
2837 
2838 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2839 		return;
2840 	cxgbe_init_synchronized(vi);
2841 	end_synchronized_op(sc, 0);
2842 }
2843 
2844 static int
2845 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2846 {
2847 	int rc = 0, mtu, flags;
2848 	struct vi_info *vi = if_getsoftc(ifp);
2849 	struct port_info *pi = vi->pi;
2850 	struct adapter *sc = pi->adapter;
2851 	struct ifreq *ifr = (struct ifreq *)data;
2852 	uint32_t mask;
2853 
2854 	switch (cmd) {
2855 	case SIOCSIFMTU:
2856 		mtu = ifr->ifr_mtu;
2857 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2858 			return (EINVAL);
2859 
2860 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2861 		if (rc)
2862 			return (rc);
2863 		if_setmtu(ifp, mtu);
2864 		if (vi->flags & VI_INIT_DONE) {
2865 			t4_update_fl_bufsize(ifp);
2866 			if (!hw_off_limits(sc) &&
2867 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2868 				rc = update_mac_settings(ifp, XGMAC_MTU);
2869 		}
2870 		end_synchronized_op(sc, 0);
2871 		break;
2872 
2873 	case SIOCSIFFLAGS:
2874 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2875 		if (rc)
2876 			return (rc);
2877 
2878 		if (hw_off_limits(sc)) {
2879 			rc = ENXIO;
2880 			goto fail;
2881 		}
2882 
2883 		if (if_getflags(ifp) & IFF_UP) {
2884 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2885 				flags = vi->if_flags;
2886 				if ((if_getflags(ifp) ^ flags) &
2887 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2888 					rc = update_mac_settings(ifp,
2889 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2890 				}
2891 			} else {
2892 				rc = cxgbe_init_synchronized(vi);
2893 			}
2894 			vi->if_flags = if_getflags(ifp);
2895 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2896 			rc = cxgbe_uninit_synchronized(vi);
2897 		}
2898 		end_synchronized_op(sc, 0);
2899 		break;
2900 
2901 	case SIOCADDMULTI:
2902 	case SIOCDELMULTI:
2903 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2904 		if (rc)
2905 			return (rc);
2906 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2907 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2908 		end_synchronized_op(sc, 0);
2909 		break;
2910 
2911 	case SIOCSIFCAP:
2912 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2913 		if (rc)
2914 			return (rc);
2915 
2916 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2917 		if (mask & IFCAP_TXCSUM) {
2918 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2919 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2920 
2921 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2922 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2923 				mask &= ~IFCAP_TSO4;
2924 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2925 				if_printf(ifp,
2926 				    "tso4 disabled due to -txcsum.\n");
2927 			}
2928 		}
2929 		if (mask & IFCAP_TXCSUM_IPV6) {
2930 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2931 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2932 
2933 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2934 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2935 				mask &= ~IFCAP_TSO6;
2936 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2937 				if_printf(ifp,
2938 				    "tso6 disabled due to -txcsum6.\n");
2939 			}
2940 		}
2941 		if (mask & IFCAP_RXCSUM)
2942 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2943 		if (mask & IFCAP_RXCSUM_IPV6)
2944 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2945 
2946 		/*
2947 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2948 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2949 		 * sending a TSO request our way, so it's sufficient to toggle
2950 		 * IFCAP_TSOx only.
2951 		 */
2952 		if (mask & IFCAP_TSO4) {
2953 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2954 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2955 				if_printf(ifp, "enable txcsum first.\n");
2956 				rc = EAGAIN;
2957 				goto fail;
2958 			}
2959 			if_togglecapenable(ifp, IFCAP_TSO4);
2960 		}
2961 		if (mask & IFCAP_TSO6) {
2962 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2963 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2964 				if_printf(ifp, "enable txcsum6 first.\n");
2965 				rc = EAGAIN;
2966 				goto fail;
2967 			}
2968 			if_togglecapenable(ifp, IFCAP_TSO6);
2969 		}
2970 		if (mask & IFCAP_LRO) {
2971 #if defined(INET) || defined(INET6)
2972 			int i;
2973 			struct sge_rxq *rxq;
2974 
2975 			if_togglecapenable(ifp, IFCAP_LRO);
2976 			for_each_rxq(vi, i, rxq) {
2977 				if (if_getcapenable(ifp) & IFCAP_LRO)
2978 					rxq->iq.flags |= IQ_LRO_ENABLED;
2979 				else
2980 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2981 			}
2982 #endif
2983 		}
2984 #ifdef TCP_OFFLOAD
2985 		if (mask & IFCAP_TOE) {
2986 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2987 
2988 			rc = toe_capability(vi, enable);
2989 			if (rc != 0)
2990 				goto fail;
2991 
2992 			if_togglecapenable(ifp, mask);
2993 		}
2994 #endif
2995 		if (mask & IFCAP_VLAN_HWTAGGING) {
2996 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2997 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2998 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2999 		}
3000 		if (mask & IFCAP_VLAN_MTU) {
3001 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3002 
3003 			/* Need to find out how to disable auto-mtu-inflation */
3004 		}
3005 		if (mask & IFCAP_VLAN_HWTSO)
3006 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3007 		if (mask & IFCAP_VLAN_HWCSUM)
3008 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3009 #ifdef RATELIMIT
3010 		if (mask & IFCAP_TXRTLMT)
3011 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
3012 #endif
3013 		if (mask & IFCAP_HWRXTSTMP) {
3014 			int i;
3015 			struct sge_rxq *rxq;
3016 
3017 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3018 			for_each_rxq(vi, i, rxq) {
3019 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3020 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
3021 				else
3022 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3023 			}
3024 		}
3025 		if (mask & IFCAP_MEXTPG)
3026 			if_togglecapenable(ifp, IFCAP_MEXTPG);
3027 
3028 #ifdef KERN_TLS
3029 		if (mask & IFCAP_TXTLS) {
3030 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3031 
3032 			rc = ktls_capability(sc, enable);
3033 			if (rc != 0)
3034 				goto fail;
3035 
3036 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3037 		}
3038 #endif
3039 		if (mask & IFCAP_VXLAN_HWCSUM) {
3040 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3041 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3042 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3043 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3044 		}
3045 		if (mask & IFCAP_VXLAN_HWTSO) {
3046 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3047 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3048 			    CSUM_INNER_IP_TSO);
3049 		}
3050 
3051 #ifdef VLAN_CAPABILITIES
3052 		VLAN_CAPABILITIES(ifp);
3053 #endif
3054 fail:
3055 		end_synchronized_op(sc, 0);
3056 		break;
3057 
3058 	case SIOCSIFMEDIA:
3059 	case SIOCGIFMEDIA:
3060 	case SIOCGIFXMEDIA:
3061 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3062 		break;
3063 
3064 	case SIOCGI2C: {
3065 		struct ifi2creq i2c;
3066 
3067 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3068 		if (rc != 0)
3069 			break;
3070 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3071 			rc = EPERM;
3072 			break;
3073 		}
3074 		if (i2c.len > sizeof(i2c.data)) {
3075 			rc = EINVAL;
3076 			break;
3077 		}
3078 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3079 		if (rc)
3080 			return (rc);
3081 		if (hw_off_limits(sc))
3082 			rc = ENXIO;
3083 		else
3084 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3085 			    i2c.offset, i2c.len, &i2c.data[0]);
3086 		end_synchronized_op(sc, 0);
3087 		if (rc == 0)
3088 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3089 		break;
3090 	}
3091 
3092 	default:
3093 		rc = ether_ioctl(ifp, cmd, data);
3094 	}
3095 
3096 	return (rc);
3097 }
3098 
3099 static int
3100 cxgbe_transmit(if_t ifp, struct mbuf *m)
3101 {
3102 	struct vi_info *vi = if_getsoftc(ifp);
3103 	struct port_info *pi = vi->pi;
3104 	struct adapter *sc;
3105 	struct sge_txq *txq;
3106 	void *items[1];
3107 	int rc;
3108 
3109 	M_ASSERTPKTHDR(m);
3110 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3111 #if defined(KERN_TLS) || defined(RATELIMIT)
3112 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3113 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3114 #endif
3115 
3116 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3117 		m_freem(m);
3118 		return (ENETDOWN);
3119 	}
3120 
3121 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3122 	if (__predict_false(rc != 0)) {
3123 		if (__predict_true(rc == EINPROGRESS)) {
3124 			/* queued by parse_pkt */
3125 			MPASS(m != NULL);
3126 			return (0);
3127 		}
3128 
3129 		MPASS(m == NULL);			/* was freed already */
3130 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3131 		return (rc);
3132 	}
3133 
3134 	/* Select a txq. */
3135 	sc = vi->adapter;
3136 	txq = &sc->sge.txq[vi->first_txq];
3137 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3138 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3139 		    vi->rsrv_noflowq);
3140 
3141 	items[0] = m;
3142 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3143 	if (__predict_false(rc != 0))
3144 		m_freem(m);
3145 
3146 	return (rc);
3147 }
3148 
3149 static void
3150 cxgbe_qflush(if_t ifp)
3151 {
3152 	struct vi_info *vi = if_getsoftc(ifp);
3153 	struct sge_txq *txq;
3154 	int i;
3155 
3156 	/* queues do not exist if !VI_INIT_DONE. */
3157 	if (vi->flags & VI_INIT_DONE) {
3158 		for_each_txq(vi, i, txq) {
3159 			TXQ_LOCK(txq);
3160 			txq->eq.flags |= EQ_QFLUSH;
3161 			TXQ_UNLOCK(txq);
3162 			while (!mp_ring_is_idle(txq->r)) {
3163 				mp_ring_check_drainage(txq->r, 4096);
3164 				pause("qflush", 1);
3165 			}
3166 			TXQ_LOCK(txq);
3167 			txq->eq.flags &= ~EQ_QFLUSH;
3168 			TXQ_UNLOCK(txq);
3169 		}
3170 	}
3171 	if_qflush(ifp);
3172 }
3173 
3174 static uint64_t
3175 vi_get_counter(if_t ifp, ift_counter c)
3176 {
3177 	struct vi_info *vi = if_getsoftc(ifp);
3178 	struct fw_vi_stats_vf *s = &vi->stats;
3179 
3180 	mtx_lock(&vi->tick_mtx);
3181 	vi_refresh_stats(vi);
3182 	mtx_unlock(&vi->tick_mtx);
3183 
3184 	switch (c) {
3185 	case IFCOUNTER_IPACKETS:
3186 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3187 		    s->rx_ucast_frames);
3188 	case IFCOUNTER_IERRORS:
3189 		return (s->rx_err_frames);
3190 	case IFCOUNTER_OPACKETS:
3191 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3192 		    s->tx_ucast_frames + s->tx_offload_frames);
3193 	case IFCOUNTER_OERRORS:
3194 		return (s->tx_drop_frames);
3195 	case IFCOUNTER_IBYTES:
3196 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3197 		    s->rx_ucast_bytes);
3198 	case IFCOUNTER_OBYTES:
3199 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3200 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3201 	case IFCOUNTER_IMCASTS:
3202 		return (s->rx_mcast_frames);
3203 	case IFCOUNTER_OMCASTS:
3204 		return (s->tx_mcast_frames);
3205 	case IFCOUNTER_OQDROPS: {
3206 		uint64_t drops;
3207 
3208 		drops = 0;
3209 		if (vi->flags & VI_INIT_DONE) {
3210 			int i;
3211 			struct sge_txq *txq;
3212 
3213 			for_each_txq(vi, i, txq)
3214 				drops += counter_u64_fetch(txq->r->dropped);
3215 		}
3216 
3217 		return (drops);
3218 
3219 	}
3220 
3221 	default:
3222 		return (if_get_counter_default(ifp, c));
3223 	}
3224 }
3225 
3226 static uint64_t
3227 cxgbe_get_counter(if_t ifp, ift_counter c)
3228 {
3229 	struct vi_info *vi = if_getsoftc(ifp);
3230 	struct port_info *pi = vi->pi;
3231 	struct port_stats *s = &pi->stats;
3232 
3233 	mtx_lock(&vi->tick_mtx);
3234 	cxgbe_refresh_stats(vi);
3235 	mtx_unlock(&vi->tick_mtx);
3236 
3237 	switch (c) {
3238 	case IFCOUNTER_IPACKETS:
3239 		return (s->rx_frames);
3240 
3241 	case IFCOUNTER_IERRORS:
3242 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3243 		    s->rx_fcs_err + s->rx_len_err);
3244 
3245 	case IFCOUNTER_OPACKETS:
3246 		return (s->tx_frames);
3247 
3248 	case IFCOUNTER_OERRORS:
3249 		return (s->tx_error_frames);
3250 
3251 	case IFCOUNTER_IBYTES:
3252 		return (s->rx_octets);
3253 
3254 	case IFCOUNTER_OBYTES:
3255 		return (s->tx_octets);
3256 
3257 	case IFCOUNTER_IMCASTS:
3258 		return (s->rx_mcast_frames);
3259 
3260 	case IFCOUNTER_OMCASTS:
3261 		return (s->tx_mcast_frames);
3262 
3263 	case IFCOUNTER_IQDROPS:
3264 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3265 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3266 		    s->rx_trunc3 + pi->tnl_cong_drops);
3267 
3268 	case IFCOUNTER_OQDROPS: {
3269 		uint64_t drops;
3270 
3271 		drops = s->tx_drop;
3272 		if (vi->flags & VI_INIT_DONE) {
3273 			int i;
3274 			struct sge_txq *txq;
3275 
3276 			for_each_txq(vi, i, txq)
3277 				drops += counter_u64_fetch(txq->r->dropped);
3278 		}
3279 
3280 		return (drops);
3281 
3282 	}
3283 
3284 	default:
3285 		return (if_get_counter_default(ifp, c));
3286 	}
3287 }
3288 
3289 #if defined(KERN_TLS) || defined(RATELIMIT)
3290 static int
3291 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3292     struct m_snd_tag **pt)
3293 {
3294 	int error;
3295 
3296 	switch (params->hdr.type) {
3297 #ifdef RATELIMIT
3298 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3299 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3300 		break;
3301 #endif
3302 #ifdef KERN_TLS
3303 	case IF_SND_TAG_TYPE_TLS:
3304 	{
3305 		struct vi_info *vi = if_getsoftc(ifp);
3306 
3307 		if (is_t6(vi->pi->adapter))
3308 			error = t6_tls_tag_alloc(ifp, params, pt);
3309 		else
3310 			error = EOPNOTSUPP;
3311 		break;
3312 	}
3313 #endif
3314 	default:
3315 		error = EOPNOTSUPP;
3316 	}
3317 	return (error);
3318 }
3319 #endif
3320 
3321 /*
3322  * The kernel picks a media from the list we had provided but we still validate
3323  * the requeste.
3324  */
3325 int
3326 cxgbe_media_change(if_t ifp)
3327 {
3328 	struct vi_info *vi = if_getsoftc(ifp);
3329 	struct port_info *pi = vi->pi;
3330 	struct ifmedia *ifm = &pi->media;
3331 	struct link_config *lc = &pi->link_cfg;
3332 	struct adapter *sc = pi->adapter;
3333 	int rc;
3334 
3335 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3336 	if (rc != 0)
3337 		return (rc);
3338 	PORT_LOCK(pi);
3339 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3340 		/* ifconfig .. media autoselect */
3341 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3342 			rc = ENOTSUP; /* AN not supported by transceiver */
3343 			goto done;
3344 		}
3345 		lc->requested_aneg = AUTONEG_ENABLE;
3346 		lc->requested_speed = 0;
3347 		lc->requested_fc |= PAUSE_AUTONEG;
3348 	} else {
3349 		lc->requested_aneg = AUTONEG_DISABLE;
3350 		lc->requested_speed =
3351 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3352 		lc->requested_fc = 0;
3353 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3354 			lc->requested_fc |= PAUSE_RX;
3355 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3356 			lc->requested_fc |= PAUSE_TX;
3357 	}
3358 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3359 		fixup_link_config(pi);
3360 		rc = apply_link_config(pi);
3361 	}
3362 done:
3363 	PORT_UNLOCK(pi);
3364 	end_synchronized_op(sc, 0);
3365 	return (rc);
3366 }
3367 
3368 /*
3369  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3370  * given speed.
3371  */
3372 static int
3373 port_mword(struct port_info *pi, uint32_t speed)
3374 {
3375 
3376 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3377 	MPASS(powerof2(speed));
3378 
3379 	switch(pi->port_type) {
3380 	case FW_PORT_TYPE_BT_SGMII:
3381 	case FW_PORT_TYPE_BT_XFI:
3382 	case FW_PORT_TYPE_BT_XAUI:
3383 		/* BaseT */
3384 		switch (speed) {
3385 		case FW_PORT_CAP32_SPEED_100M:
3386 			return (IFM_100_T);
3387 		case FW_PORT_CAP32_SPEED_1G:
3388 			return (IFM_1000_T);
3389 		case FW_PORT_CAP32_SPEED_10G:
3390 			return (IFM_10G_T);
3391 		}
3392 		break;
3393 	case FW_PORT_TYPE_KX4:
3394 		if (speed == FW_PORT_CAP32_SPEED_10G)
3395 			return (IFM_10G_KX4);
3396 		break;
3397 	case FW_PORT_TYPE_CX4:
3398 		if (speed == FW_PORT_CAP32_SPEED_10G)
3399 			return (IFM_10G_CX4);
3400 		break;
3401 	case FW_PORT_TYPE_KX:
3402 		if (speed == FW_PORT_CAP32_SPEED_1G)
3403 			return (IFM_1000_KX);
3404 		break;
3405 	case FW_PORT_TYPE_KR:
3406 	case FW_PORT_TYPE_BP_AP:
3407 	case FW_PORT_TYPE_BP4_AP:
3408 	case FW_PORT_TYPE_BP40_BA:
3409 	case FW_PORT_TYPE_KR4_100G:
3410 	case FW_PORT_TYPE_KR_SFP28:
3411 	case FW_PORT_TYPE_KR_XLAUI:
3412 		switch (speed) {
3413 		case FW_PORT_CAP32_SPEED_1G:
3414 			return (IFM_1000_KX);
3415 		case FW_PORT_CAP32_SPEED_10G:
3416 			return (IFM_10G_KR);
3417 		case FW_PORT_CAP32_SPEED_25G:
3418 			return (IFM_25G_KR);
3419 		case FW_PORT_CAP32_SPEED_40G:
3420 			return (IFM_40G_KR4);
3421 		case FW_PORT_CAP32_SPEED_50G:
3422 			return (IFM_50G_KR2);
3423 		case FW_PORT_CAP32_SPEED_100G:
3424 			return (IFM_100G_KR4);
3425 		}
3426 		break;
3427 	case FW_PORT_TYPE_FIBER_XFI:
3428 	case FW_PORT_TYPE_FIBER_XAUI:
3429 	case FW_PORT_TYPE_SFP:
3430 	case FW_PORT_TYPE_QSFP_10G:
3431 	case FW_PORT_TYPE_QSA:
3432 	case FW_PORT_TYPE_QSFP:
3433 	case FW_PORT_TYPE_CR4_QSFP:
3434 	case FW_PORT_TYPE_CR_QSFP:
3435 	case FW_PORT_TYPE_CR2_QSFP:
3436 	case FW_PORT_TYPE_SFP28:
3437 		/* Pluggable transceiver */
3438 		switch (pi->mod_type) {
3439 		case FW_PORT_MOD_TYPE_LR:
3440 			switch (speed) {
3441 			case FW_PORT_CAP32_SPEED_1G:
3442 				return (IFM_1000_LX);
3443 			case FW_PORT_CAP32_SPEED_10G:
3444 				return (IFM_10G_LR);
3445 			case FW_PORT_CAP32_SPEED_25G:
3446 				return (IFM_25G_LR);
3447 			case FW_PORT_CAP32_SPEED_40G:
3448 				return (IFM_40G_LR4);
3449 			case FW_PORT_CAP32_SPEED_50G:
3450 				return (IFM_50G_LR2);
3451 			case FW_PORT_CAP32_SPEED_100G:
3452 				return (IFM_100G_LR4);
3453 			}
3454 			break;
3455 		case FW_PORT_MOD_TYPE_SR:
3456 			switch (speed) {
3457 			case FW_PORT_CAP32_SPEED_1G:
3458 				return (IFM_1000_SX);
3459 			case FW_PORT_CAP32_SPEED_10G:
3460 				return (IFM_10G_SR);
3461 			case FW_PORT_CAP32_SPEED_25G:
3462 				return (IFM_25G_SR);
3463 			case FW_PORT_CAP32_SPEED_40G:
3464 				return (IFM_40G_SR4);
3465 			case FW_PORT_CAP32_SPEED_50G:
3466 				return (IFM_50G_SR2);
3467 			case FW_PORT_CAP32_SPEED_100G:
3468 				return (IFM_100G_SR4);
3469 			}
3470 			break;
3471 		case FW_PORT_MOD_TYPE_ER:
3472 			if (speed == FW_PORT_CAP32_SPEED_10G)
3473 				return (IFM_10G_ER);
3474 			break;
3475 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3476 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3477 			switch (speed) {
3478 			case FW_PORT_CAP32_SPEED_1G:
3479 				return (IFM_1000_CX);
3480 			case FW_PORT_CAP32_SPEED_10G:
3481 				return (IFM_10G_TWINAX);
3482 			case FW_PORT_CAP32_SPEED_25G:
3483 				return (IFM_25G_CR);
3484 			case FW_PORT_CAP32_SPEED_40G:
3485 				return (IFM_40G_CR4);
3486 			case FW_PORT_CAP32_SPEED_50G:
3487 				return (IFM_50G_CR2);
3488 			case FW_PORT_CAP32_SPEED_100G:
3489 				return (IFM_100G_CR4);
3490 			}
3491 			break;
3492 		case FW_PORT_MOD_TYPE_LRM:
3493 			if (speed == FW_PORT_CAP32_SPEED_10G)
3494 				return (IFM_10G_LRM);
3495 			break;
3496 		case FW_PORT_MOD_TYPE_NA:
3497 			MPASS(0);	/* Not pluggable? */
3498 			/* fall throough */
3499 		case FW_PORT_MOD_TYPE_ERROR:
3500 		case FW_PORT_MOD_TYPE_UNKNOWN:
3501 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3502 			break;
3503 		case FW_PORT_MOD_TYPE_NONE:
3504 			return (IFM_NONE);
3505 		}
3506 		break;
3507 	case FW_PORT_TYPE_NONE:
3508 		return (IFM_NONE);
3509 	}
3510 
3511 	return (IFM_UNKNOWN);
3512 }
3513 
3514 void
3515 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3516 {
3517 	struct vi_info *vi = if_getsoftc(ifp);
3518 	struct port_info *pi = vi->pi;
3519 	struct adapter *sc = pi->adapter;
3520 	struct link_config *lc = &pi->link_cfg;
3521 
3522 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3523 		return;
3524 	PORT_LOCK(pi);
3525 
3526 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3527 		/*
3528 		 * If all the interfaces are administratively down the firmware
3529 		 * does not report transceiver changes.  Refresh port info here
3530 		 * so that ifconfig displays accurate ifmedia at all times.
3531 		 * This is the only reason we have a synchronized op in this
3532 		 * function.  Just PORT_LOCK would have been enough otherwise.
3533 		 */
3534 		t4_update_port_info(pi);
3535 		build_medialist(pi);
3536 	}
3537 
3538 	/* ifm_status */
3539 	ifmr->ifm_status = IFM_AVALID;
3540 	if (lc->link_ok == false)
3541 		goto done;
3542 	ifmr->ifm_status |= IFM_ACTIVE;
3543 
3544 	/* ifm_active */
3545 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3546 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3547 	if (lc->fc & PAUSE_RX)
3548 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3549 	if (lc->fc & PAUSE_TX)
3550 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3551 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3552 done:
3553 	PORT_UNLOCK(pi);
3554 	end_synchronized_op(sc, 0);
3555 }
3556 
3557 static int
3558 vcxgbe_probe(device_t dev)
3559 {
3560 	struct vi_info *vi = device_get_softc(dev);
3561 
3562 	device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3563 	    vi - vi->pi->vi);
3564 
3565 	return (BUS_PROBE_DEFAULT);
3566 }
3567 
3568 static int
3569 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3570 {
3571 	int func, index, rc;
3572 	uint32_t param, val;
3573 
3574 	ASSERT_SYNCHRONIZED_OP(sc);
3575 
3576 	index = vi - pi->vi;
3577 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3578 	KASSERT(index < nitems(vi_mac_funcs),
3579 	    ("%s: VI %s doesn't have a MAC func", __func__,
3580 	    device_get_nameunit(vi->dev)));
3581 	func = vi_mac_funcs[index];
3582 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3583 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3584 	if (rc < 0) {
3585 		CH_ERR(vi, "failed to allocate virtual interface %d"
3586 		    "for port %d: %d\n", index, pi->port_id, -rc);
3587 		return (-rc);
3588 	}
3589 	vi->viid = rc;
3590 
3591 	if (vi->rss_size == 1) {
3592 		/*
3593 		 * This VI didn't get a slice of the RSS table.  Reduce the
3594 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3595 		 * configuration file (nvi, rssnvi for this PF) if this is a
3596 		 * problem.
3597 		 */
3598 		device_printf(vi->dev, "RSS table not available.\n");
3599 		vi->rss_base = 0xffff;
3600 
3601 		return (0);
3602 	}
3603 
3604 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3605 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3606 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3607 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3608 	if (rc)
3609 		vi->rss_base = 0xffff;
3610 	else {
3611 		MPASS((val >> 16) == vi->rss_size);
3612 		vi->rss_base = val & 0xffff;
3613 	}
3614 
3615 	return (0);
3616 }
3617 
3618 static int
3619 vcxgbe_attach(device_t dev)
3620 {
3621 	struct vi_info *vi;
3622 	struct port_info *pi;
3623 	struct adapter *sc;
3624 	int rc;
3625 
3626 	vi = device_get_softc(dev);
3627 	pi = vi->pi;
3628 	sc = pi->adapter;
3629 
3630 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3631 	if (rc)
3632 		return (rc);
3633 	rc = alloc_extra_vi(sc, pi, vi);
3634 	end_synchronized_op(sc, 0);
3635 	if (rc)
3636 		return (rc);
3637 
3638 	cxgbe_vi_attach(dev, vi);
3639 
3640 	return (0);
3641 }
3642 
3643 static int
3644 vcxgbe_detach(device_t dev)
3645 {
3646 	struct vi_info *vi;
3647 	struct adapter *sc;
3648 
3649 	vi = device_get_softc(dev);
3650 	sc = vi->adapter;
3651 
3652 	begin_vi_detach(sc, vi);
3653 	cxgbe_vi_detach(vi);
3654 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3655 	end_vi_detach(sc, vi);
3656 
3657 	return (0);
3658 }
3659 
3660 static struct callout fatal_callout;
3661 static struct taskqueue *reset_tq;
3662 
3663 static void
3664 delayed_panic(void *arg)
3665 {
3666 	struct adapter *sc = arg;
3667 
3668 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3669 }
3670 
3671 static void
3672 fatal_error_task(void *arg, int pending)
3673 {
3674 	struct adapter *sc = arg;
3675 	int rc;
3676 
3677 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3678 		dump_cim_regs(sc);
3679 		dump_cimla(sc);
3680 		dump_devlog(sc);
3681 	}
3682 
3683 	if (t4_reset_on_fatal_err) {
3684 		CH_ALERT(sc, "resetting adapter after fatal error.\n");
3685 		rc = reset_adapter(sc);
3686 		if (rc == 0 && t4_panic_on_fatal_err) {
3687 			CH_ALERT(sc, "reset was successful, "
3688 			    "system will NOT panic.\n");
3689 			return;
3690 		}
3691 	}
3692 
3693 	if (t4_panic_on_fatal_err) {
3694 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3695 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3696 	}
3697 }
3698 
3699 void
3700 t4_fatal_err(struct adapter *sc, bool fw_error)
3701 {
3702 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3703 
3704 	stop_adapter(sc);
3705 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3706 		return;
3707 	if (fw_error) {
3708 		/*
3709 		 * We are here because of a firmware error/timeout and not
3710 		 * because of a hardware interrupt.  It is possible (although
3711 		 * not very likely) that an error interrupt was also raised but
3712 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3713 		 * main INT_CAUSE registers here to make sure we haven't missed
3714 		 * anything interesting.
3715 		 */
3716 		t4_slow_intr_handler(sc, verbose);
3717 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3718 	}
3719 	t4_report_fw_error(sc);
3720 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3721 	    device_get_nameunit(sc->dev), fw_error);
3722 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3723 }
3724 
3725 void
3726 t4_add_adapter(struct adapter *sc)
3727 {
3728 	sx_xlock(&t4_list_lock);
3729 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3730 	sx_xunlock(&t4_list_lock);
3731 }
3732 
3733 int
3734 t4_map_bars_0_and_4(struct adapter *sc)
3735 {
3736 	sc->regs_rid = PCIR_BAR(0);
3737 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3738 	    &sc->regs_rid, RF_ACTIVE);
3739 	if (sc->regs_res == NULL) {
3740 		device_printf(sc->dev, "cannot map registers.\n");
3741 		return (ENXIO);
3742 	}
3743 	sc->bt = rman_get_bustag(sc->regs_res);
3744 	sc->bh = rman_get_bushandle(sc->regs_res);
3745 	sc->mmio_len = rman_get_size(sc->regs_res);
3746 	setbit(&sc->doorbells, DOORBELL_KDB);
3747 
3748 	sc->msix_rid = PCIR_BAR(4);
3749 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3750 	    &sc->msix_rid, RF_ACTIVE);
3751 	if (sc->msix_res == NULL) {
3752 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3753 		return (ENXIO);
3754 	}
3755 
3756 	return (0);
3757 }
3758 
3759 int
3760 t4_map_bar_2(struct adapter *sc)
3761 {
3762 
3763 	/*
3764 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3765 	 * to map it if RDMA is disabled.
3766 	 */
3767 	if (is_t4(sc) && sc->rdmacaps == 0)
3768 		return (0);
3769 
3770 	sc->udbs_rid = PCIR_BAR(2);
3771 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3772 	    &sc->udbs_rid, RF_ACTIVE);
3773 	if (sc->udbs_res == NULL) {
3774 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3775 		return (ENXIO);
3776 	}
3777 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3778 
3779 	if (chip_id(sc) >= CHELSIO_T5) {
3780 		setbit(&sc->doorbells, DOORBELL_UDB);
3781 #if defined(__i386__) || defined(__amd64__)
3782 		if (t5_write_combine) {
3783 			int rc, mode;
3784 
3785 			/*
3786 			 * Enable write combining on BAR2.  This is the
3787 			 * userspace doorbell BAR and is split into 128B
3788 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3789 			 * with an egress queue.  The first 64B has the doorbell
3790 			 * and the second 64B can be used to submit a tx work
3791 			 * request with an implicit doorbell.
3792 			 */
3793 
3794 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3795 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3796 			if (rc == 0) {
3797 				clrbit(&sc->doorbells, DOORBELL_UDB);
3798 				setbit(&sc->doorbells, DOORBELL_WCWR);
3799 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3800 			} else {
3801 				device_printf(sc->dev,
3802 				    "couldn't enable write combining: %d\n",
3803 				    rc);
3804 			}
3805 
3806 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3807 			t4_write_reg(sc, A_SGE_STAT_CFG,
3808 			    V_STATSOURCE_T5(7) | mode);
3809 		}
3810 #endif
3811 	}
3812 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3813 
3814 	return (0);
3815 }
3816 
3817 int
3818 t4_adj_doorbells(struct adapter *sc)
3819 {
3820 	if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3821 		sc->doorbells &= t4_doorbells_allowed;
3822 		return (0);
3823 	}
3824 	CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3825 	       sc->doorbells, t4_doorbells_allowed);
3826 	return (EINVAL);
3827 }
3828 
3829 struct memwin_init {
3830 	uint32_t base;
3831 	uint32_t aperture;
3832 };
3833 
3834 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3835 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3836 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3837 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3838 };
3839 
3840 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3841 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3842 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3843 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3844 };
3845 
3846 static void
3847 setup_memwin(struct adapter *sc)
3848 {
3849 	const struct memwin_init *mw_init;
3850 	struct memwin *mw;
3851 	int i;
3852 	uint32_t bar0;
3853 
3854 	if (is_t4(sc)) {
3855 		/*
3856 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3857 		 * mechanism.  Works from within PCI passthrough environments
3858 		 * too, where rman_get_start() can return a different value.  We
3859 		 * need to program the T4 memory window decoders with the actual
3860 		 * addresses that will be coming across the PCIe link.
3861 		 */
3862 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3863 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3864 
3865 		mw_init = &t4_memwin[0];
3866 	} else {
3867 		/* T5+ use the relative offset inside the PCIe BAR */
3868 		bar0 = 0;
3869 
3870 		mw_init = &t5_memwin[0];
3871 	}
3872 
3873 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3874 		if (!rw_initialized(&mw->mw_lock)) {
3875 			rw_init(&mw->mw_lock, "memory window access");
3876 			mw->mw_base = mw_init->base;
3877 			mw->mw_aperture = mw_init->aperture;
3878 			mw->mw_curpos = 0;
3879 		}
3880 		t4_write_reg(sc,
3881 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3882 		    (mw->mw_base + bar0) | V_BIR(0) |
3883 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3884 		rw_wlock(&mw->mw_lock);
3885 		position_memwin(sc, i, mw->mw_curpos);
3886 		rw_wunlock(&mw->mw_lock);
3887 	}
3888 
3889 	/* flush */
3890 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3891 }
3892 
3893 /*
3894  * Positions the memory window at the given address in the card's address space.
3895  * There are some alignment requirements and the actual position may be at an
3896  * address prior to the requested address.  mw->mw_curpos always has the actual
3897  * position of the window.
3898  */
3899 static void
3900 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3901 {
3902 	struct memwin *mw;
3903 	uint32_t pf;
3904 	uint32_t reg;
3905 
3906 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3907 	mw = &sc->memwin[idx];
3908 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3909 
3910 	if (is_t4(sc)) {
3911 		pf = 0;
3912 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3913 	} else {
3914 		pf = V_PFNUM(sc->pf);
3915 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3916 	}
3917 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3918 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3919 	t4_read_reg(sc, reg);	/* flush */
3920 }
3921 
3922 int
3923 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3924     int len, int rw)
3925 {
3926 	struct memwin *mw;
3927 	uint32_t mw_end, v;
3928 
3929 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3930 
3931 	/* Memory can only be accessed in naturally aligned 4 byte units */
3932 	if (addr & 3 || len & 3 || len <= 0)
3933 		return (EINVAL);
3934 
3935 	mw = &sc->memwin[idx];
3936 	while (len > 0) {
3937 		rw_rlock(&mw->mw_lock);
3938 		mw_end = mw->mw_curpos + mw->mw_aperture;
3939 		if (addr >= mw_end || addr < mw->mw_curpos) {
3940 			/* Will need to reposition the window */
3941 			if (!rw_try_upgrade(&mw->mw_lock)) {
3942 				rw_runlock(&mw->mw_lock);
3943 				rw_wlock(&mw->mw_lock);
3944 			}
3945 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3946 			position_memwin(sc, idx, addr);
3947 			rw_downgrade(&mw->mw_lock);
3948 			mw_end = mw->mw_curpos + mw->mw_aperture;
3949 		}
3950 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3951 		while (addr < mw_end && len > 0) {
3952 			if (rw == 0) {
3953 				v = t4_read_reg(sc, mw->mw_base + addr -
3954 				    mw->mw_curpos);
3955 				*val++ = le32toh(v);
3956 			} else {
3957 				v = *val++;
3958 				t4_write_reg(sc, mw->mw_base + addr -
3959 				    mw->mw_curpos, htole32(v));
3960 			}
3961 			addr += 4;
3962 			len -= 4;
3963 		}
3964 		rw_runlock(&mw->mw_lock);
3965 	}
3966 
3967 	return (0);
3968 }
3969 
3970 CTASSERT(M_TID_COOKIE == M_COOKIE);
3971 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3972 
3973 static void
3974 t4_init_atid_table(struct adapter *sc)
3975 {
3976 	struct tid_info *t;
3977 	int i;
3978 
3979 	t = &sc->tids;
3980 	if (t->natids == 0)
3981 		return;
3982 
3983 	MPASS(t->atid_tab == NULL);
3984 
3985 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3986 	    M_ZERO | M_WAITOK);
3987 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3988 	t->afree = t->atid_tab;
3989 	t->atids_in_use = 0;
3990 	t->atid_alloc_stopped = false;
3991 	for (i = 1; i < t->natids; i++)
3992 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3993 	t->atid_tab[t->natids - 1].next = NULL;
3994 }
3995 
3996 static void
3997 t4_free_atid_table(struct adapter *sc)
3998 {
3999 	struct tid_info *t;
4000 
4001 	t = &sc->tids;
4002 
4003 	KASSERT(t->atids_in_use == 0,
4004 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
4005 
4006 	if (mtx_initialized(&t->atid_lock))
4007 		mtx_destroy(&t->atid_lock);
4008 	free(t->atid_tab, M_CXGBE);
4009 	t->atid_tab = NULL;
4010 }
4011 
4012 static void
4013 stop_atid_allocator(struct adapter *sc)
4014 {
4015 	struct tid_info *t = &sc->tids;
4016 
4017 	mtx_lock(&t->atid_lock);
4018 	t->atid_alloc_stopped = true;
4019 	mtx_unlock(&t->atid_lock);
4020 }
4021 
4022 static void
4023 restart_atid_allocator(struct adapter *sc)
4024 {
4025 	struct tid_info *t = &sc->tids;
4026 
4027 	mtx_lock(&t->atid_lock);
4028 	KASSERT(t->atids_in_use == 0,
4029 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
4030 	t->atid_alloc_stopped = false;
4031 	mtx_unlock(&t->atid_lock);
4032 }
4033 
4034 int
4035 alloc_atid(struct adapter *sc, void *ctx)
4036 {
4037 	struct tid_info *t = &sc->tids;
4038 	int atid = -1;
4039 
4040 	mtx_lock(&t->atid_lock);
4041 	if (t->afree && !t->atid_alloc_stopped) {
4042 		union aopen_entry *p = t->afree;
4043 
4044 		atid = p - t->atid_tab;
4045 		MPASS(atid <= M_TID_TID);
4046 		t->afree = p->next;
4047 		p->data = ctx;
4048 		t->atids_in_use++;
4049 	}
4050 	mtx_unlock(&t->atid_lock);
4051 	return (atid);
4052 }
4053 
4054 void *
4055 lookup_atid(struct adapter *sc, int atid)
4056 {
4057 	struct tid_info *t = &sc->tids;
4058 
4059 	return (t->atid_tab[atid].data);
4060 }
4061 
4062 void
4063 free_atid(struct adapter *sc, int atid)
4064 {
4065 	struct tid_info *t = &sc->tids;
4066 	union aopen_entry *p = &t->atid_tab[atid];
4067 
4068 	mtx_lock(&t->atid_lock);
4069 	p->next = t->afree;
4070 	t->afree = p;
4071 	t->atids_in_use--;
4072 	mtx_unlock(&t->atid_lock);
4073 }
4074 
4075 static void
4076 queue_tid_release(struct adapter *sc, int tid)
4077 {
4078 
4079 	CXGBE_UNIMPLEMENTED("deferred tid release");
4080 }
4081 
4082 void
4083 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4084 {
4085 	struct wrqe *wr;
4086 	struct cpl_tid_release *req;
4087 
4088 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4089 	if (wr == NULL) {
4090 		queue_tid_release(sc, tid);	/* defer */
4091 		return;
4092 	}
4093 	req = wrtod(wr);
4094 
4095 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4096 
4097 	t4_wrq_tx(sc, wr);
4098 }
4099 
4100 static int
4101 t4_range_cmp(const void *a, const void *b)
4102 {
4103 	return ((const struct t4_range *)a)->start -
4104 	       ((const struct t4_range *)b)->start;
4105 }
4106 
4107 /*
4108  * Verify that the memory range specified by the addr/len pair is valid within
4109  * the card's address space.
4110  */
4111 static int
4112 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4113 {
4114 	struct t4_range mem_ranges[4], *r, *next;
4115 	uint32_t em, addr_len;
4116 	int i, n, remaining;
4117 
4118 	/* Memory can only be accessed in naturally aligned 4 byte units */
4119 	if (addr & 3 || len & 3 || len == 0)
4120 		return (EINVAL);
4121 
4122 	/* Enabled memories */
4123 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4124 
4125 	r = &mem_ranges[0];
4126 	n = 0;
4127 	bzero(r, sizeof(mem_ranges));
4128 	if (em & F_EDRAM0_ENABLE) {
4129 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4130 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4131 		if (r->size > 0) {
4132 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4133 			if (addr >= r->start &&
4134 			    addr + len <= r->start + r->size)
4135 				return (0);
4136 			r++;
4137 			n++;
4138 		}
4139 	}
4140 	if (em & F_EDRAM1_ENABLE) {
4141 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4142 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4143 		if (r->size > 0) {
4144 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4145 			if (addr >= r->start &&
4146 			    addr + len <= r->start + r->size)
4147 				return (0);
4148 			r++;
4149 			n++;
4150 		}
4151 	}
4152 	if (em & F_EXT_MEM_ENABLE) {
4153 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4154 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4155 		if (r->size > 0) {
4156 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4157 			if (addr >= r->start &&
4158 			    addr + len <= r->start + r->size)
4159 				return (0);
4160 			r++;
4161 			n++;
4162 		}
4163 	}
4164 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4165 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4166 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4167 		if (r->size > 0) {
4168 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4169 			if (addr >= r->start &&
4170 			    addr + len <= r->start + r->size)
4171 				return (0);
4172 			r++;
4173 			n++;
4174 		}
4175 	}
4176 	MPASS(n <= nitems(mem_ranges));
4177 
4178 	if (n > 1) {
4179 		/* Sort and merge the ranges. */
4180 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4181 
4182 		/* Start from index 0 and examine the next n - 1 entries. */
4183 		r = &mem_ranges[0];
4184 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4185 
4186 			MPASS(r->size > 0);	/* r is a valid entry. */
4187 			next = r + 1;
4188 			MPASS(next->size > 0);	/* and so is the next one. */
4189 
4190 			while (r->start + r->size >= next->start) {
4191 				/* Merge the next one into the current entry. */
4192 				r->size = max(r->start + r->size,
4193 				    next->start + next->size) - r->start;
4194 				n--;	/* One fewer entry in total. */
4195 				if (--remaining == 0)
4196 					goto done;	/* short circuit */
4197 				next++;
4198 			}
4199 			if (next != r + 1) {
4200 				/*
4201 				 * Some entries were merged into r and next
4202 				 * points to the first valid entry that couldn't
4203 				 * be merged.
4204 				 */
4205 				MPASS(next->size > 0);	/* must be valid */
4206 				memcpy(r + 1, next, remaining * sizeof(*r));
4207 #ifdef INVARIANTS
4208 				/*
4209 				 * This so that the foo->size assertion in the
4210 				 * next iteration of the loop do the right
4211 				 * thing for entries that were pulled up and are
4212 				 * no longer valid.
4213 				 */
4214 				MPASS(n < nitems(mem_ranges));
4215 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4216 				    sizeof(struct t4_range));
4217 #endif
4218 			}
4219 		}
4220 done:
4221 		/* Done merging the ranges. */
4222 		MPASS(n > 0);
4223 		r = &mem_ranges[0];
4224 		for (i = 0; i < n; i++, r++) {
4225 			if (addr >= r->start &&
4226 			    addr + len <= r->start + r->size)
4227 				return (0);
4228 		}
4229 	}
4230 
4231 	return (EFAULT);
4232 }
4233 
4234 static int
4235 fwmtype_to_hwmtype(int mtype)
4236 {
4237 
4238 	switch (mtype) {
4239 	case FW_MEMTYPE_EDC0:
4240 		return (MEM_EDC0);
4241 	case FW_MEMTYPE_EDC1:
4242 		return (MEM_EDC1);
4243 	case FW_MEMTYPE_EXTMEM:
4244 		return (MEM_MC0);
4245 	case FW_MEMTYPE_EXTMEM1:
4246 		return (MEM_MC1);
4247 	default:
4248 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4249 	}
4250 }
4251 
4252 /*
4253  * Verify that the memory range specified by the memtype/offset/len pair is
4254  * valid and lies entirely within the memtype specified.  The global address of
4255  * the start of the range is returned in addr.
4256  */
4257 static int
4258 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4259     uint32_t *addr)
4260 {
4261 	uint32_t em, addr_len, maddr;
4262 
4263 	/* Memory can only be accessed in naturally aligned 4 byte units */
4264 	if (off & 3 || len & 3 || len == 0)
4265 		return (EINVAL);
4266 
4267 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4268 	switch (fwmtype_to_hwmtype(mtype)) {
4269 	case MEM_EDC0:
4270 		if (!(em & F_EDRAM0_ENABLE))
4271 			return (EINVAL);
4272 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4273 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4274 		break;
4275 	case MEM_EDC1:
4276 		if (!(em & F_EDRAM1_ENABLE))
4277 			return (EINVAL);
4278 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4279 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4280 		break;
4281 	case MEM_MC:
4282 		if (!(em & F_EXT_MEM_ENABLE))
4283 			return (EINVAL);
4284 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4285 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4286 		break;
4287 	case MEM_MC1:
4288 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4289 			return (EINVAL);
4290 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4291 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4292 		break;
4293 	default:
4294 		return (EINVAL);
4295 	}
4296 
4297 	*addr = maddr + off;	/* global address */
4298 	return (validate_mem_range(sc, *addr, len));
4299 }
4300 
4301 static int
4302 fixup_devlog_params(struct adapter *sc)
4303 {
4304 	struct devlog_params *dparams = &sc->params.devlog;
4305 	int rc;
4306 
4307 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4308 	    dparams->size, &dparams->addr);
4309 
4310 	return (rc);
4311 }
4312 
4313 static void
4314 update_nirq(struct intrs_and_queues *iaq, int nports)
4315 {
4316 
4317 	iaq->nirq = T4_EXTRA_INTR;
4318 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4319 	iaq->nirq += nports * iaq->nofldrxq;
4320 	iaq->nirq += nports * (iaq->num_vis - 1) *
4321 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4322 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4323 }
4324 
4325 /*
4326  * Adjust requirements to fit the number of interrupts available.
4327  */
4328 static void
4329 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4330     int navail)
4331 {
4332 	int old_nirq;
4333 	const int nports = sc->params.nports;
4334 
4335 	MPASS(nports > 0);
4336 	MPASS(navail > 0);
4337 
4338 	bzero(iaq, sizeof(*iaq));
4339 	iaq->intr_type = itype;
4340 	iaq->num_vis = t4_num_vis;
4341 	iaq->ntxq = t4_ntxq;
4342 	iaq->ntxq_vi = t4_ntxq_vi;
4343 	iaq->nrxq = t4_nrxq;
4344 	iaq->nrxq_vi = t4_nrxq_vi;
4345 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4346 	if (is_offload(sc) || is_ethoffload(sc)) {
4347 		iaq->nofldtxq = t4_nofldtxq;
4348 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4349 	}
4350 #endif
4351 #ifdef TCP_OFFLOAD
4352 	if (is_offload(sc)) {
4353 		iaq->nofldrxq = t4_nofldrxq;
4354 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4355 	}
4356 #endif
4357 #ifdef DEV_NETMAP
4358 	if (t4_native_netmap & NN_MAIN_VI) {
4359 		iaq->nnmtxq = t4_nnmtxq;
4360 		iaq->nnmrxq = t4_nnmrxq;
4361 	}
4362 	if (t4_native_netmap & NN_EXTRA_VI) {
4363 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4364 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4365 	}
4366 #endif
4367 
4368 	update_nirq(iaq, nports);
4369 	if (iaq->nirq <= navail &&
4370 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4371 		/*
4372 		 * This is the normal case -- there are enough interrupts for
4373 		 * everything.
4374 		 */
4375 		goto done;
4376 	}
4377 
4378 	/*
4379 	 * If extra VIs have been configured try reducing their count and see if
4380 	 * that works.
4381 	 */
4382 	while (iaq->num_vis > 1) {
4383 		iaq->num_vis--;
4384 		update_nirq(iaq, nports);
4385 		if (iaq->nirq <= navail &&
4386 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4387 			device_printf(sc->dev, "virtual interfaces per port "
4388 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4389 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4390 			    "itype %d, navail %u, nirq %d.\n",
4391 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4392 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4393 			    itype, navail, iaq->nirq);
4394 			goto done;
4395 		}
4396 	}
4397 
4398 	/*
4399 	 * Extra VIs will not be created.  Log a message if they were requested.
4400 	 */
4401 	MPASS(iaq->num_vis == 1);
4402 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4403 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4404 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4405 	if (iaq->num_vis != t4_num_vis) {
4406 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4407 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4408 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4409 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4410 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4411 	}
4412 
4413 	/*
4414 	 * Keep reducing the number of NIC rx queues to the next lower power of
4415 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4416 	 * if that works.
4417 	 */
4418 	do {
4419 		if (iaq->nrxq > 1) {
4420 			iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4421 			if (iaq->nnmrxq > iaq->nrxq)
4422 				iaq->nnmrxq = iaq->nrxq;
4423 		}
4424 		if (iaq->nofldrxq > 1)
4425 			iaq->nofldrxq >>= 1;
4426 
4427 		old_nirq = iaq->nirq;
4428 		update_nirq(iaq, nports);
4429 		if (iaq->nirq <= navail &&
4430 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4431 			device_printf(sc->dev, "running with reduced number of "
4432 			    "rx queues because of shortage of interrupts.  "
4433 			    "nrxq=%u, nofldrxq=%u.  "
4434 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4435 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4436 			goto done;
4437 		}
4438 	} while (old_nirq != iaq->nirq);
4439 
4440 	/* One interrupt for everything.  Ugh. */
4441 	device_printf(sc->dev, "running with minimal number of queues.  "
4442 	    "itype %d, navail %u.\n", itype, navail);
4443 	iaq->nirq = 1;
4444 	iaq->nrxq = 1;
4445 	iaq->ntxq = 1;
4446 	if (iaq->nofldrxq > 0) {
4447 		iaq->nofldrxq = 1;
4448 		iaq->nofldtxq = 1;
4449 	}
4450 	iaq->nnmtxq = 0;
4451 	iaq->nnmrxq = 0;
4452 done:
4453 	MPASS(iaq->num_vis > 0);
4454 	if (iaq->num_vis > 1) {
4455 		MPASS(iaq->nrxq_vi > 0);
4456 		MPASS(iaq->ntxq_vi > 0);
4457 	}
4458 	MPASS(iaq->nirq > 0);
4459 	MPASS(iaq->nrxq > 0);
4460 	MPASS(iaq->ntxq > 0);
4461 	if (itype == INTR_MSI) {
4462 		MPASS(powerof2(iaq->nirq));
4463 	}
4464 }
4465 
4466 static int
4467 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4468 {
4469 	int rc, itype, navail, nalloc;
4470 
4471 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4472 
4473 		if ((itype & t4_intr_types) == 0)
4474 			continue;	/* not allowed */
4475 
4476 		if (itype == INTR_MSIX)
4477 			navail = pci_msix_count(sc->dev);
4478 		else if (itype == INTR_MSI)
4479 			navail = pci_msi_count(sc->dev);
4480 		else
4481 			navail = 1;
4482 restart:
4483 		if (navail == 0)
4484 			continue;
4485 
4486 		calculate_iaq(sc, iaq, itype, navail);
4487 		nalloc = iaq->nirq;
4488 		rc = 0;
4489 		if (itype == INTR_MSIX)
4490 			rc = pci_alloc_msix(sc->dev, &nalloc);
4491 		else if (itype == INTR_MSI)
4492 			rc = pci_alloc_msi(sc->dev, &nalloc);
4493 
4494 		if (rc == 0 && nalloc > 0) {
4495 			if (nalloc == iaq->nirq)
4496 				return (0);
4497 
4498 			/*
4499 			 * Didn't get the number requested.  Use whatever number
4500 			 * the kernel is willing to allocate.
4501 			 */
4502 			device_printf(sc->dev, "fewer vectors than requested, "
4503 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4504 			    itype, iaq->nirq, nalloc);
4505 			pci_release_msi(sc->dev);
4506 			navail = nalloc;
4507 			goto restart;
4508 		}
4509 
4510 		device_printf(sc->dev,
4511 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4512 		    itype, rc, iaq->nirq, nalloc);
4513 	}
4514 
4515 	device_printf(sc->dev,
4516 	    "failed to find a usable interrupt type.  "
4517 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4518 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4519 
4520 	return (ENXIO);
4521 }
4522 
4523 #define FW_VERSION(chip) ( \
4524     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4525     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4526     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4527     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4528 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4529 
4530 /* Just enough of fw_hdr to cover all version info. */
4531 struct fw_h {
4532 	__u8	ver;
4533 	__u8	chip;
4534 	__be16	len512;
4535 	__be32	fw_ver;
4536 	__be32	tp_microcode_ver;
4537 	__u8	intfver_nic;
4538 	__u8	intfver_vnic;
4539 	__u8	intfver_ofld;
4540 	__u8	intfver_ri;
4541 	__u8	intfver_iscsipdu;
4542 	__u8	intfver_iscsi;
4543 	__u8	intfver_fcoepdu;
4544 	__u8	intfver_fcoe;
4545 };
4546 /* Spot check a couple of fields. */
4547 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4548 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4549 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4550 
4551 struct fw_info {
4552 	uint8_t chip;
4553 	char *kld_name;
4554 	char *fw_mod_name;
4555 	struct fw_h fw_h;
4556 } fw_info[] = {
4557 	{
4558 		.chip = CHELSIO_T4,
4559 		.kld_name = "t4fw_cfg",
4560 		.fw_mod_name = "t4fw",
4561 		.fw_h = {
4562 			.chip = FW_HDR_CHIP_T4,
4563 			.fw_ver = htobe32(FW_VERSION(T4)),
4564 			.intfver_nic = FW_INTFVER(T4, NIC),
4565 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4566 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4567 			.intfver_ri = FW_INTFVER(T4, RI),
4568 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4569 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4570 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4571 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4572 		},
4573 	}, {
4574 		.chip = CHELSIO_T5,
4575 		.kld_name = "t5fw_cfg",
4576 		.fw_mod_name = "t5fw",
4577 		.fw_h = {
4578 			.chip = FW_HDR_CHIP_T5,
4579 			.fw_ver = htobe32(FW_VERSION(T5)),
4580 			.intfver_nic = FW_INTFVER(T5, NIC),
4581 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4582 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4583 			.intfver_ri = FW_INTFVER(T5, RI),
4584 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4585 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4586 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4587 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4588 		},
4589 	}, {
4590 		.chip = CHELSIO_T6,
4591 		.kld_name = "t6fw_cfg",
4592 		.fw_mod_name = "t6fw",
4593 		.fw_h = {
4594 			.chip = FW_HDR_CHIP_T6,
4595 			.fw_ver = htobe32(FW_VERSION(T6)),
4596 			.intfver_nic = FW_INTFVER(T6, NIC),
4597 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4598 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4599 			.intfver_ri = FW_INTFVER(T6, RI),
4600 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4601 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4602 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4603 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4604 		},
4605 	}
4606 };
4607 
4608 static struct fw_info *
4609 find_fw_info(int chip)
4610 {
4611 	int i;
4612 
4613 	for (i = 0; i < nitems(fw_info); i++) {
4614 		if (fw_info[i].chip == chip)
4615 			return (&fw_info[i]);
4616 	}
4617 	return (NULL);
4618 }
4619 
4620 /*
4621  * Is the given firmware API compatible with the one the driver was compiled
4622  * with?
4623  */
4624 static int
4625 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4626 {
4627 
4628 	/* short circuit if it's the exact same firmware version */
4629 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4630 		return (1);
4631 
4632 	/*
4633 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4634 	 * features that are supported in the driver.
4635 	 */
4636 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4637 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4638 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4639 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4640 		return (1);
4641 #undef SAME_INTF
4642 
4643 	return (0);
4644 }
4645 
4646 static int
4647 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4648     const struct firmware **fw)
4649 {
4650 	struct fw_info *fw_info;
4651 
4652 	*dcfg = NULL;
4653 	if (fw != NULL)
4654 		*fw = NULL;
4655 
4656 	fw_info = find_fw_info(chip_id(sc));
4657 	if (fw_info == NULL) {
4658 		device_printf(sc->dev,
4659 		    "unable to look up firmware information for chip %d.\n",
4660 		    chip_id(sc));
4661 		return (EINVAL);
4662 	}
4663 
4664 	*dcfg = firmware_get(fw_info->kld_name);
4665 	if (*dcfg != NULL) {
4666 		if (fw != NULL)
4667 			*fw = firmware_get(fw_info->fw_mod_name);
4668 		return (0);
4669 	}
4670 
4671 	return (ENOENT);
4672 }
4673 
4674 static void
4675 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4676     const struct firmware *fw)
4677 {
4678 
4679 	if (fw != NULL)
4680 		firmware_put(fw, FIRMWARE_UNLOAD);
4681 	if (dcfg != NULL)
4682 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4683 }
4684 
4685 /*
4686  * Return values:
4687  * 0 means no firmware install attempted.
4688  * ERESTART means a firmware install was attempted and was successful.
4689  * +ve errno means a firmware install was attempted but failed.
4690  */
4691 static int
4692 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4693     const struct fw_h *drv_fw, const char *reason, int *already)
4694 {
4695 	const struct firmware *cfg, *fw;
4696 	const uint32_t c = be32toh(card_fw->fw_ver);
4697 	uint32_t d, k;
4698 	int rc, fw_install;
4699 	struct fw_h bundled_fw;
4700 	bool load_attempted;
4701 
4702 	cfg = fw = NULL;
4703 	load_attempted = false;
4704 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4705 
4706 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4707 	if (t4_fw_install < 0) {
4708 		rc = load_fw_module(sc, &cfg, &fw);
4709 		if (rc != 0 || fw == NULL) {
4710 			device_printf(sc->dev,
4711 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4712 			    " will use compiled-in firmware version for"
4713 			    "hw.cxgbe.fw_install checks.\n",
4714 			    rc, cfg, fw);
4715 		} else {
4716 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4717 		}
4718 		load_attempted = true;
4719 	}
4720 	d = be32toh(bundled_fw.fw_ver);
4721 
4722 	if (reason != NULL)
4723 		goto install;
4724 
4725 	if ((sc->flags & FW_OK) == 0) {
4726 
4727 		if (c == 0xffffffff) {
4728 			reason = "missing";
4729 			goto install;
4730 		}
4731 
4732 		rc = 0;
4733 		goto done;
4734 	}
4735 
4736 	if (!fw_compatible(card_fw, &bundled_fw)) {
4737 		reason = "incompatible or unusable";
4738 		goto install;
4739 	}
4740 
4741 	if (d > c) {
4742 		reason = "older than the version bundled with this driver";
4743 		goto install;
4744 	}
4745 
4746 	if (fw_install == 2 && d != c) {
4747 		reason = "different than the version bundled with this driver";
4748 		goto install;
4749 	}
4750 
4751 	/* No reason to do anything to the firmware already on the card. */
4752 	rc = 0;
4753 	goto done;
4754 
4755 install:
4756 	rc = 0;
4757 	if ((*already)++)
4758 		goto done;
4759 
4760 	if (fw_install == 0) {
4761 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4762 		    "but the driver is prohibited from installing a firmware "
4763 		    "on the card.\n",
4764 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4765 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4766 
4767 		goto done;
4768 	}
4769 
4770 	/*
4771 	 * We'll attempt to install a firmware.  Load the module first (if it
4772 	 * hasn't been loaded already).
4773 	 */
4774 	if (!load_attempted) {
4775 		rc = load_fw_module(sc, &cfg, &fw);
4776 		if (rc != 0 || fw == NULL) {
4777 			device_printf(sc->dev,
4778 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4779 			    rc, cfg, fw);
4780 			/* carry on */
4781 		}
4782 	}
4783 	if (fw == NULL) {
4784 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4785 		    "but the driver cannot take corrective action because it "
4786 		    "is unable to load the firmware module.\n",
4787 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4788 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4789 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4790 		goto done;
4791 	}
4792 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4793 	if (k != d) {
4794 		MPASS(t4_fw_install > 0);
4795 		device_printf(sc->dev,
4796 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4797 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4798 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4799 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4800 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4801 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4802 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4803 		goto done;
4804 	}
4805 
4806 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4807 	    "installing firmware %u.%u.%u.%u on card.\n",
4808 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4809 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4810 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4811 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4812 
4813 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4814 	if (rc != 0) {
4815 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4816 	} else {
4817 		/* Installed successfully, update the cached header too. */
4818 		rc = ERESTART;
4819 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4820 	}
4821 done:
4822 	unload_fw_module(sc, cfg, fw);
4823 
4824 	return (rc);
4825 }
4826 
4827 /*
4828  * Establish contact with the firmware and attempt to become the master driver.
4829  *
4830  * A firmware will be installed to the card if needed (if the driver is allowed
4831  * to do so).
4832  */
4833 static int
4834 contact_firmware(struct adapter *sc)
4835 {
4836 	int rc, already = 0;
4837 	enum dev_state state;
4838 	struct fw_info *fw_info;
4839 	struct fw_hdr *card_fw;		/* fw on the card */
4840 	const struct fw_h *drv_fw;
4841 
4842 	fw_info = find_fw_info(chip_id(sc));
4843 	if (fw_info == NULL) {
4844 		device_printf(sc->dev,
4845 		    "unable to look up firmware information for chip %d.\n",
4846 		    chip_id(sc));
4847 		return (EINVAL);
4848 	}
4849 	drv_fw = &fw_info->fw_h;
4850 
4851 	/* Read the header of the firmware on the card */
4852 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4853 restart:
4854 	rc = -t4_get_fw_hdr(sc, card_fw);
4855 	if (rc != 0) {
4856 		device_printf(sc->dev,
4857 		    "unable to read firmware header from card's flash: %d\n",
4858 		    rc);
4859 		goto done;
4860 	}
4861 
4862 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4863 	    &already);
4864 	if (rc == ERESTART)
4865 		goto restart;
4866 	if (rc != 0)
4867 		goto done;
4868 
4869 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4870 	if (rc < 0 || state == DEV_STATE_ERR) {
4871 		rc = -rc;
4872 		device_printf(sc->dev,
4873 		    "failed to connect to the firmware: %d, %d.  "
4874 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4875 #if 0
4876 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4877 		    "not responding properly to HELLO", &already) == ERESTART)
4878 			goto restart;
4879 #endif
4880 		goto done;
4881 	}
4882 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4883 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4884 
4885 	if (rc == sc->pf) {
4886 		sc->flags |= MASTER_PF;
4887 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4888 		    NULL, &already);
4889 		if (rc == ERESTART)
4890 			rc = 0;
4891 		else if (rc != 0)
4892 			goto done;
4893 	} else if (state == DEV_STATE_UNINIT) {
4894 		/*
4895 		 * We didn't get to be the master so we definitely won't be
4896 		 * configuring the chip.  It's a bug if someone else hasn't
4897 		 * configured it already.
4898 		 */
4899 		device_printf(sc->dev, "couldn't be master(%d), "
4900 		    "device not already initialized either(%d).  "
4901 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4902 		rc = EPROTO;
4903 		goto done;
4904 	} else {
4905 		/*
4906 		 * Some other PF is the master and has configured the chip.
4907 		 * This is allowed but untested.
4908 		 */
4909 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4910 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4911 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4912 		sc->cfcsum = 0;
4913 		rc = 0;
4914 	}
4915 done:
4916 	if (rc != 0 && sc->flags & FW_OK) {
4917 		t4_fw_bye(sc, sc->mbox);
4918 		sc->flags &= ~FW_OK;
4919 	}
4920 	free(card_fw, M_CXGBE);
4921 	return (rc);
4922 }
4923 
4924 static int
4925 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4926     uint32_t mtype, uint32_t moff)
4927 {
4928 	struct fw_info *fw_info;
4929 	const struct firmware *dcfg, *rcfg = NULL;
4930 	const uint32_t *cfdata;
4931 	uint32_t cflen, addr;
4932 	int rc;
4933 
4934 	load_fw_module(sc, &dcfg, NULL);
4935 
4936 	/* Card specific interpretation of "default". */
4937 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4938 		if (pci_get_device(sc->dev) == 0x440a)
4939 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4940 		if (is_fpga(sc))
4941 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4942 	}
4943 
4944 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4945 		if (dcfg == NULL) {
4946 			device_printf(sc->dev,
4947 			    "KLD with default config is not available.\n");
4948 			rc = ENOENT;
4949 			goto done;
4950 		}
4951 		cfdata = dcfg->data;
4952 		cflen = dcfg->datasize & ~3;
4953 	} else {
4954 		char s[32];
4955 
4956 		fw_info = find_fw_info(chip_id(sc));
4957 		if (fw_info == NULL) {
4958 			device_printf(sc->dev,
4959 			    "unable to look up firmware information for chip %d.\n",
4960 			    chip_id(sc));
4961 			rc = EINVAL;
4962 			goto done;
4963 		}
4964 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4965 
4966 		rcfg = firmware_get(s);
4967 		if (rcfg == NULL) {
4968 			device_printf(sc->dev,
4969 			    "unable to load module \"%s\" for configuration "
4970 			    "profile \"%s\".\n", s, cfg_file);
4971 			rc = ENOENT;
4972 			goto done;
4973 		}
4974 		cfdata = rcfg->data;
4975 		cflen = rcfg->datasize & ~3;
4976 	}
4977 
4978 	if (cflen > FLASH_CFG_MAX_SIZE) {
4979 		device_printf(sc->dev,
4980 		    "config file too long (%d, max allowed is %d).\n",
4981 		    cflen, FLASH_CFG_MAX_SIZE);
4982 		rc = EINVAL;
4983 		goto done;
4984 	}
4985 
4986 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4987 	if (rc != 0) {
4988 		device_printf(sc->dev,
4989 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4990 		    __func__, mtype, moff, cflen, rc);
4991 		rc = EINVAL;
4992 		goto done;
4993 	}
4994 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4995 done:
4996 	if (rcfg != NULL)
4997 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4998 	unload_fw_module(sc, dcfg, NULL);
4999 	return (rc);
5000 }
5001 
5002 struct caps_allowed {
5003 	uint16_t nbmcaps;
5004 	uint16_t linkcaps;
5005 	uint16_t switchcaps;
5006 	uint16_t niccaps;
5007 	uint16_t toecaps;
5008 	uint16_t rdmacaps;
5009 	uint16_t cryptocaps;
5010 	uint16_t iscsicaps;
5011 	uint16_t fcoecaps;
5012 };
5013 
5014 #define FW_PARAM_DEV(param) \
5015 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5016 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5017 #define FW_PARAM_PFVF(param) \
5018 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5019 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5020 
5021 /*
5022  * Provide a configuration profile to the firmware and have it initialize the
5023  * chip accordingly.  This may involve uploading a configuration file to the
5024  * card.
5025  */
5026 static int
5027 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5028     const struct caps_allowed *caps_allowed)
5029 {
5030 	int rc;
5031 	struct fw_caps_config_cmd caps;
5032 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
5033 
5034 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5035 	if (rc != 0) {
5036 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5037 		return (rc);
5038 	}
5039 
5040 	bzero(&caps, sizeof(caps));
5041 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5042 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5043 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5044 		mtype = 0;
5045 		moff = 0;
5046 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5047 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5048 		mtype = FW_MEMTYPE_FLASH;
5049 		moff = t4_flash_cfg_addr(sc);
5050 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5051 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5052 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5053 		    FW_LEN16(caps));
5054 	} else {
5055 		/*
5056 		 * Ask the firmware where it wants us to upload the config file.
5057 		 */
5058 		param = FW_PARAM_DEV(CF);
5059 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5060 		if (rc != 0) {
5061 			/* No support for config file?  Shouldn't happen. */
5062 			device_printf(sc->dev,
5063 			    "failed to query config file location: %d.\n", rc);
5064 			goto done;
5065 		}
5066 		mtype = G_FW_PARAMS_PARAM_Y(val);
5067 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5068 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5069 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5070 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5071 		    FW_LEN16(caps));
5072 
5073 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5074 		if (rc != 0) {
5075 			device_printf(sc->dev,
5076 			    "failed to upload config file to card: %d.\n", rc);
5077 			goto done;
5078 		}
5079 	}
5080 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5081 	if (rc != 0) {
5082 		device_printf(sc->dev, "failed to pre-process config file: %d "
5083 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5084 		goto done;
5085 	}
5086 
5087 	finicsum = be32toh(caps.finicsum);
5088 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5089 	if (finicsum != cfcsum) {
5090 		device_printf(sc->dev,
5091 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5092 		    finicsum, cfcsum);
5093 	}
5094 	sc->cfcsum = cfcsum;
5095 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5096 
5097 	/*
5098 	 * Let the firmware know what features will (not) be used so it can tune
5099 	 * things accordingly.
5100 	 */
5101 #define LIMIT_CAPS(x) do { \
5102 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5103 } while (0)
5104 	LIMIT_CAPS(nbm);
5105 	LIMIT_CAPS(link);
5106 	LIMIT_CAPS(switch);
5107 	LIMIT_CAPS(nic);
5108 	LIMIT_CAPS(toe);
5109 	LIMIT_CAPS(rdma);
5110 	LIMIT_CAPS(crypto);
5111 	LIMIT_CAPS(iscsi);
5112 	LIMIT_CAPS(fcoe);
5113 #undef LIMIT_CAPS
5114 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5115 		/*
5116 		 * TOE and hashfilters are mutually exclusive.  It is a config
5117 		 * file or firmware bug if both are reported as available.  Try
5118 		 * to cope with the situation in non-debug builds by disabling
5119 		 * TOE.
5120 		 */
5121 		MPASS(caps.toecaps == 0);
5122 
5123 		caps.toecaps = 0;
5124 		caps.rdmacaps = 0;
5125 		caps.iscsicaps = 0;
5126 	}
5127 
5128 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5129 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5130 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5131 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5132 	if (rc != 0) {
5133 		device_printf(sc->dev,
5134 		    "failed to process config file: %d.\n", rc);
5135 		goto done;
5136 	}
5137 
5138 	t4_tweak_chip_settings(sc);
5139 	set_params__pre_init(sc);
5140 
5141 	/* get basic stuff going */
5142 	rc = -t4_fw_initialize(sc, sc->mbox);
5143 	if (rc != 0) {
5144 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5145 		goto done;
5146 	}
5147 done:
5148 	return (rc);
5149 }
5150 
5151 /*
5152  * Partition chip resources for use between various PFs, VFs, etc.
5153  */
5154 static int
5155 partition_resources(struct adapter *sc)
5156 {
5157 	char cfg_file[sizeof(t4_cfg_file)];
5158 	struct caps_allowed caps_allowed;
5159 	int rc;
5160 	bool fallback;
5161 
5162 	/* Only the master driver gets to configure the chip resources. */
5163 	MPASS(sc->flags & MASTER_PF);
5164 
5165 #define COPY_CAPS(x) do { \
5166 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5167 } while (0)
5168 	bzero(&caps_allowed, sizeof(caps_allowed));
5169 	COPY_CAPS(nbm);
5170 	COPY_CAPS(link);
5171 	COPY_CAPS(switch);
5172 	COPY_CAPS(nic);
5173 	COPY_CAPS(toe);
5174 	COPY_CAPS(rdma);
5175 	COPY_CAPS(crypto);
5176 	COPY_CAPS(iscsi);
5177 	COPY_CAPS(fcoe);
5178 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5179 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5180 retry:
5181 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5182 	if (rc != 0 && fallback) {
5183 		dump_devlog(sc);
5184 		device_printf(sc->dev,
5185 		    "failed (%d) to configure card with \"%s\" profile, "
5186 		    "will fall back to a basic configuration and retry.\n",
5187 		    rc, cfg_file);
5188 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5189 		bzero(&caps_allowed, sizeof(caps_allowed));
5190 		COPY_CAPS(switch);
5191 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5192 		fallback = false;
5193 		goto retry;
5194 	}
5195 #undef COPY_CAPS
5196 	return (rc);
5197 }
5198 
5199 /*
5200  * Retrieve parameters that are needed (or nice to have) very early.
5201  */
5202 static int
5203 get_params__pre_init(struct adapter *sc)
5204 {
5205 	int rc;
5206 	uint32_t param[2], val[2];
5207 
5208 	t4_get_version_info(sc);
5209 
5210 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5211 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5212 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5213 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5214 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5215 
5216 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5217 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5218 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5219 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5220 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5221 
5222 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5223 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5224 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5225 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5226 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5227 
5228 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5229 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5230 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5231 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5232 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5233 
5234 	param[0] = FW_PARAM_DEV(PORTVEC);
5235 	param[1] = FW_PARAM_DEV(CCLK);
5236 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5237 	if (rc != 0) {
5238 		device_printf(sc->dev,
5239 		    "failed to query parameters (pre_init): %d.\n", rc);
5240 		return (rc);
5241 	}
5242 
5243 	sc->params.portvec = val[0];
5244 	sc->params.nports = bitcount32(val[0]);
5245 	sc->params.vpd.cclk = val[1];
5246 
5247 	/* Read device log parameters. */
5248 	rc = -t4_init_devlog_params(sc, 1);
5249 	if (rc == 0)
5250 		fixup_devlog_params(sc);
5251 	else {
5252 		device_printf(sc->dev,
5253 		    "failed to get devlog parameters: %d.\n", rc);
5254 		rc = 0;	/* devlog isn't critical for device operation */
5255 	}
5256 
5257 	return (rc);
5258 }
5259 
5260 /*
5261  * Any params that need to be set before FW_INITIALIZE.
5262  */
5263 static int
5264 set_params__pre_init(struct adapter *sc)
5265 {
5266 	int rc = 0;
5267 	uint32_t param, val;
5268 
5269 	if (chip_id(sc) >= CHELSIO_T6) {
5270 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5271 		val = 1;
5272 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5273 		/* firmwares < 1.20.1.0 do not have this param. */
5274 		if (rc == FW_EINVAL &&
5275 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5276 			rc = 0;
5277 		}
5278 		if (rc != 0) {
5279 			device_printf(sc->dev,
5280 			    "failed to enable high priority filters :%d.\n",
5281 			    rc);
5282 		}
5283 
5284 		param = FW_PARAM_DEV(PPOD_EDRAM);
5285 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5286 		if (rc == 0 && val == 1) {
5287 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5288 			    &val);
5289 			if (rc != 0) {
5290 				device_printf(sc->dev,
5291 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5292 			}
5293 		}
5294 	}
5295 
5296 	/* Enable opaque VIIDs with firmwares that support it. */
5297 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5298 	val = 1;
5299 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5300 	if (rc == 0 && val == 1)
5301 		sc->params.viid_smt_extn_support = true;
5302 	else
5303 		sc->params.viid_smt_extn_support = false;
5304 
5305 	return (rc);
5306 }
5307 
5308 /*
5309  * Retrieve various parameters that are of interest to the driver.  The device
5310  * has been initialized by the firmware at this point.
5311  */
5312 static int
5313 get_params__post_init(struct adapter *sc)
5314 {
5315 	int rc;
5316 	uint32_t param[7], val[7];
5317 	struct fw_caps_config_cmd caps;
5318 
5319 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5320 	param[1] = FW_PARAM_PFVF(EQ_START);
5321 	param[2] = FW_PARAM_PFVF(FILTER_START);
5322 	param[3] = FW_PARAM_PFVF(FILTER_END);
5323 	param[4] = FW_PARAM_PFVF(L2T_START);
5324 	param[5] = FW_PARAM_PFVF(L2T_END);
5325 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5326 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5327 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5328 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5329 	if (rc != 0) {
5330 		device_printf(sc->dev,
5331 		    "failed to query parameters (post_init): %d.\n", rc);
5332 		return (rc);
5333 	}
5334 
5335 	sc->sge.iq_start = val[0];
5336 	sc->sge.eq_start = val[1];
5337 	if ((int)val[3] > (int)val[2]) {
5338 		sc->tids.ftid_base = val[2];
5339 		sc->tids.ftid_end = val[3];
5340 		sc->tids.nftids = val[3] - val[2] + 1;
5341 	}
5342 	sc->vres.l2t.start = val[4];
5343 	sc->vres.l2t.size = val[5] - val[4] + 1;
5344 	/* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5345 	if (sc->vres.l2t.size > 0)
5346 		MPASS(fls(val[5]) <= S_SYNC_WR);
5347 	sc->params.core_vdd = val[6];
5348 
5349 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5350 	param[1] = FW_PARAM_PFVF(EQ_END);
5351 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5352 	if (rc != 0) {
5353 		device_printf(sc->dev,
5354 		    "failed to query parameters (post_init2): %d.\n", rc);
5355 		return (rc);
5356 	}
5357 	MPASS((int)val[0] >= sc->sge.iq_start);
5358 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5359 	MPASS((int)val[1] >= sc->sge.eq_start);
5360 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5361 
5362 	if (chip_id(sc) >= CHELSIO_T6) {
5363 
5364 		sc->tids.tid_base = t4_read_reg(sc,
5365 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5366 
5367 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5368 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5369 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5370 		if (rc != 0) {
5371 			device_printf(sc->dev,
5372 			   "failed to query hpfilter parameters: %d.\n", rc);
5373 			return (rc);
5374 		}
5375 		if ((int)val[1] > (int)val[0]) {
5376 			sc->tids.hpftid_base = val[0];
5377 			sc->tids.hpftid_end = val[1];
5378 			sc->tids.nhpftids = val[1] - val[0] + 1;
5379 
5380 			/*
5381 			 * These should go off if the layout changes and the
5382 			 * driver needs to catch up.
5383 			 */
5384 			MPASS(sc->tids.hpftid_base == 0);
5385 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5386 		}
5387 
5388 		param[0] = FW_PARAM_PFVF(RAWF_START);
5389 		param[1] = FW_PARAM_PFVF(RAWF_END);
5390 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5391 		if (rc != 0) {
5392 			device_printf(sc->dev,
5393 			   "failed to query rawf parameters: %d.\n", rc);
5394 			return (rc);
5395 		}
5396 		if ((int)val[1] > (int)val[0]) {
5397 			sc->rawf_base = val[0];
5398 			sc->nrawf = val[1] - val[0] + 1;
5399 		}
5400 	}
5401 
5402 	/*
5403 	 * The parameters that follow may not be available on all firmwares.  We
5404 	 * query them individually rather than in a compound query because old
5405 	 * firmwares fail the entire query if an unknown parameter is queried.
5406 	 */
5407 
5408 	/*
5409 	 * MPS buffer group configuration.
5410 	 */
5411 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5412 	val[0] = 0;
5413 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5414 	if (rc == 0)
5415 		sc->params.mps_bg_map = val[0];
5416 	else
5417 		sc->params.mps_bg_map = UINT32_MAX;	/* Not a legal value. */
5418 
5419 	param[0] = FW_PARAM_DEV(TPCHMAP);
5420 	val[0] = 0;
5421 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5422 	if (rc == 0)
5423 		sc->params.tp_ch_map = val[0];
5424 	else
5425 		sc->params.tp_ch_map = UINT32_MAX;	/* Not a legal value. */
5426 
5427 	/*
5428 	 * Determine whether the firmware supports the filter2 work request.
5429 	 */
5430 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5431 	val[0] = 0;
5432 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5433 	if (rc == 0)
5434 		sc->params.filter2_wr_support = val[0] != 0;
5435 	else
5436 		sc->params.filter2_wr_support = 0;
5437 
5438 	/*
5439 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5440 	 */
5441 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5442 	val[0] = 0;
5443 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5444 	if (rc == 0)
5445 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5446 	else
5447 		sc->params.ulptx_memwrite_dsgl = false;
5448 
5449 	/* FW_RI_FR_NSMR_TPTE_WR support */
5450 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5451 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5452 	if (rc == 0)
5453 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5454 	else
5455 		sc->params.fr_nsmr_tpte_wr_support = false;
5456 
5457 	/* Support for 512 SGL entries per FR MR. */
5458 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5459 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5460 	if (rc == 0)
5461 		sc->params.dev_512sgl_mr = val[0] != 0;
5462 	else
5463 		sc->params.dev_512sgl_mr = false;
5464 
5465 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5466 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5467 	if (rc == 0)
5468 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5469 	else
5470 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5471 
5472 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5473 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5474 	if (rc == 0) {
5475 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5476 		sc->params.nsched_cls = val[0];
5477 	} else
5478 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5479 
5480 	/* get capabilites */
5481 	bzero(&caps, sizeof(caps));
5482 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5483 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5484 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5485 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5486 	if (rc != 0) {
5487 		device_printf(sc->dev,
5488 		    "failed to get card capabilities: %d.\n", rc);
5489 		return (rc);
5490 	}
5491 
5492 #define READ_CAPS(x) do { \
5493 	sc->x = htobe16(caps.x); \
5494 } while (0)
5495 	READ_CAPS(nbmcaps);
5496 	READ_CAPS(linkcaps);
5497 	READ_CAPS(switchcaps);
5498 	READ_CAPS(niccaps);
5499 	READ_CAPS(toecaps);
5500 	READ_CAPS(rdmacaps);
5501 	READ_CAPS(cryptocaps);
5502 	READ_CAPS(iscsicaps);
5503 	READ_CAPS(fcoecaps);
5504 
5505 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5506 		MPASS(chip_id(sc) > CHELSIO_T4);
5507 		MPASS(sc->toecaps == 0);
5508 		sc->toecaps = 0;
5509 
5510 		param[0] = FW_PARAM_DEV(NTID);
5511 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5512 		if (rc != 0) {
5513 			device_printf(sc->dev,
5514 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5515 			return (rc);
5516 		}
5517 		sc->tids.ntids = val[0];
5518 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5519 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5520 			sc->tids.ntids -= sc->tids.nhpftids;
5521 		}
5522 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5523 		sc->params.hash_filter = 1;
5524 	}
5525 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5526 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5527 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5528 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5529 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5530 		if (rc != 0) {
5531 			device_printf(sc->dev,
5532 			    "failed to query NIC parameters: %d.\n", rc);
5533 			return (rc);
5534 		}
5535 		if ((int)val[1] > (int)val[0]) {
5536 			sc->tids.etid_base = val[0];
5537 			sc->tids.etid_end = val[1];
5538 			sc->tids.netids = val[1] - val[0] + 1;
5539 			sc->params.eo_wr_cred = val[2];
5540 			sc->params.ethoffload = 1;
5541 		}
5542 	}
5543 	if (sc->toecaps) {
5544 		/* query offload-related parameters */
5545 		param[0] = FW_PARAM_DEV(NTID);
5546 		param[1] = FW_PARAM_PFVF(SERVER_START);
5547 		param[2] = FW_PARAM_PFVF(SERVER_END);
5548 		param[3] = FW_PARAM_PFVF(TDDP_START);
5549 		param[4] = FW_PARAM_PFVF(TDDP_END);
5550 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5551 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5552 		if (rc != 0) {
5553 			device_printf(sc->dev,
5554 			    "failed to query TOE parameters: %d.\n", rc);
5555 			return (rc);
5556 		}
5557 		sc->tids.ntids = val[0];
5558 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5559 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5560 			sc->tids.ntids -= sc->tids.nhpftids;
5561 		}
5562 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5563 		if ((int)val[2] > (int)val[1]) {
5564 			sc->tids.stid_base = val[1];
5565 			sc->tids.nstids = val[2] - val[1] + 1;
5566 		}
5567 		sc->vres.ddp.start = val[3];
5568 		sc->vres.ddp.size = val[4] - val[3] + 1;
5569 		sc->params.ofldq_wr_cred = val[5];
5570 		sc->params.offload = 1;
5571 	} else {
5572 		/*
5573 		 * The firmware attempts memfree TOE configuration for -SO cards
5574 		 * and will report toecaps=0 if it runs out of resources (this
5575 		 * depends on the config file).  It may not report 0 for other
5576 		 * capabilities dependent on the TOE in this case.  Set them to
5577 		 * 0 here so that the driver doesn't bother tracking resources
5578 		 * that will never be used.
5579 		 */
5580 		sc->iscsicaps = 0;
5581 		sc->rdmacaps = 0;
5582 	}
5583 	if (sc->rdmacaps) {
5584 		param[0] = FW_PARAM_PFVF(STAG_START);
5585 		param[1] = FW_PARAM_PFVF(STAG_END);
5586 		param[2] = FW_PARAM_PFVF(RQ_START);
5587 		param[3] = FW_PARAM_PFVF(RQ_END);
5588 		param[4] = FW_PARAM_PFVF(PBL_START);
5589 		param[5] = FW_PARAM_PFVF(PBL_END);
5590 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5591 		if (rc != 0) {
5592 			device_printf(sc->dev,
5593 			    "failed to query RDMA parameters(1): %d.\n", rc);
5594 			return (rc);
5595 		}
5596 		sc->vres.stag.start = val[0];
5597 		sc->vres.stag.size = val[1] - val[0] + 1;
5598 		sc->vres.rq.start = val[2];
5599 		sc->vres.rq.size = val[3] - val[2] + 1;
5600 		sc->vres.pbl.start = val[4];
5601 		sc->vres.pbl.size = val[5] - val[4] + 1;
5602 
5603 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5604 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5605 		param[2] = FW_PARAM_PFVF(CQ_START);
5606 		param[3] = FW_PARAM_PFVF(CQ_END);
5607 		param[4] = FW_PARAM_PFVF(OCQ_START);
5608 		param[5] = FW_PARAM_PFVF(OCQ_END);
5609 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5610 		if (rc != 0) {
5611 			device_printf(sc->dev,
5612 			    "failed to query RDMA parameters(2): %d.\n", rc);
5613 			return (rc);
5614 		}
5615 		sc->vres.qp.start = val[0];
5616 		sc->vres.qp.size = val[1] - val[0] + 1;
5617 		sc->vres.cq.start = val[2];
5618 		sc->vres.cq.size = val[3] - val[2] + 1;
5619 		sc->vres.ocq.start = val[4];
5620 		sc->vres.ocq.size = val[5] - val[4] + 1;
5621 
5622 		param[0] = FW_PARAM_PFVF(SRQ_START);
5623 		param[1] = FW_PARAM_PFVF(SRQ_END);
5624 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5625 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5626 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5627 		if (rc != 0) {
5628 			device_printf(sc->dev,
5629 			    "failed to query RDMA parameters(3): %d.\n", rc);
5630 			return (rc);
5631 		}
5632 		sc->vres.srq.start = val[0];
5633 		sc->vres.srq.size = val[1] - val[0] + 1;
5634 		sc->params.max_ordird_qp = val[2];
5635 		sc->params.max_ird_adapter = val[3];
5636 	}
5637 	if (sc->iscsicaps) {
5638 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5639 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5640 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5641 		if (rc != 0) {
5642 			device_printf(sc->dev,
5643 			    "failed to query iSCSI parameters: %d.\n", rc);
5644 			return (rc);
5645 		}
5646 		sc->vres.iscsi.start = val[0];
5647 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5648 	}
5649 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5650 		param[0] = FW_PARAM_PFVF(TLS_START);
5651 		param[1] = FW_PARAM_PFVF(TLS_END);
5652 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5653 		if (rc != 0) {
5654 			device_printf(sc->dev,
5655 			    "failed to query TLS parameters: %d.\n", rc);
5656 			return (rc);
5657 		}
5658 		sc->vres.key.start = val[0];
5659 		sc->vres.key.size = val[1] - val[0] + 1;
5660 	}
5661 
5662 	/*
5663 	 * We've got the params we wanted to query directly from the firmware.
5664 	 * Grab some others via other means.
5665 	 */
5666 	t4_init_sge_params(sc);
5667 	t4_init_tp_params(sc);
5668 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5669 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5670 
5671 	rc = t4_verify_chip_settings(sc);
5672 	if (rc != 0)
5673 		return (rc);
5674 	t4_init_rx_buf_info(sc);
5675 
5676 	return (rc);
5677 }
5678 
5679 #ifdef KERN_TLS
5680 static void
5681 ktls_tick(void *arg)
5682 {
5683 	struct adapter *sc;
5684 	uint32_t tstamp;
5685 
5686 	sc = arg;
5687 	tstamp = tcp_ts_getticks();
5688 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5689 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5690 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5691 }
5692 
5693 static int
5694 t6_config_kern_tls(struct adapter *sc, bool enable)
5695 {
5696 	int rc;
5697 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5698 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5699 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5700 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5701 
5702 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5703 	if (rc != 0) {
5704 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5705 		    enable ?  "enable" : "disable", rc);
5706 		return (rc);
5707 	}
5708 
5709 	if (enable) {
5710 		sc->flags |= KERN_TLS_ON;
5711 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5712 		    C_HARDCLOCK);
5713 	} else {
5714 		sc->flags &= ~KERN_TLS_ON;
5715 		callout_stop(&sc->ktls_tick);
5716 	}
5717 
5718 	return (rc);
5719 }
5720 #endif
5721 
5722 static int
5723 set_params__post_init(struct adapter *sc)
5724 {
5725 	uint32_t mask, param, val;
5726 #ifdef TCP_OFFLOAD
5727 	int i, v, shift;
5728 #endif
5729 
5730 	/* ask for encapsulated CPLs */
5731 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5732 	val = 1;
5733 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5734 
5735 	/* Enable 32b port caps if the firmware supports it. */
5736 	param = FW_PARAM_PFVF(PORT_CAPS32);
5737 	val = 1;
5738 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5739 		sc->params.port_caps32 = 1;
5740 
5741 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5742 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5743 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5744 	    V_MASKFILTER(val - 1));
5745 
5746 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5747 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5748 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5749 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5750 	val = 0;
5751 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5752 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5753 		    F_ATTACKFILTERENABLE);
5754 		val |= F_DROPERRORATTACK;
5755 	}
5756 	if (t4_drop_ip_fragments != 0) {
5757 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5758 		    F_FRAGMENTDROP);
5759 		val |= F_DROPERRORFRAG;
5760 	}
5761 	if (t4_drop_pkts_with_l2_errors != 0)
5762 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5763 	if (t4_drop_pkts_with_l3_errors != 0) {
5764 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5765 		    F_DROPERRORCSUMIP;
5766 	}
5767 	if (t4_drop_pkts_with_l4_errors != 0) {
5768 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5769 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5770 	}
5771 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5772 
5773 #ifdef TCP_OFFLOAD
5774 	/*
5775 	 * Override the TOE timers with user provided tunables.  This is not the
5776 	 * recommended way to change the timers (the firmware config file is) so
5777 	 * these tunables are not documented.
5778 	 *
5779 	 * All the timer tunables are in microseconds.
5780 	 */
5781 	if (t4_toe_keepalive_idle != 0) {
5782 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5783 		v &= M_KEEPALIVEIDLE;
5784 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5785 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5786 	}
5787 	if (t4_toe_keepalive_interval != 0) {
5788 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5789 		v &= M_KEEPALIVEINTVL;
5790 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5791 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5792 	}
5793 	if (t4_toe_keepalive_count != 0) {
5794 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5795 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5796 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5797 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5798 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5799 	}
5800 	if (t4_toe_rexmt_min != 0) {
5801 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5802 		v &= M_RXTMIN;
5803 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5804 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5805 	}
5806 	if (t4_toe_rexmt_max != 0) {
5807 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5808 		v &= M_RXTMAX;
5809 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5810 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5811 	}
5812 	if (t4_toe_rexmt_count != 0) {
5813 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5814 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5815 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5816 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5817 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5818 	}
5819 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5820 		if (t4_toe_rexmt_backoff[i] != -1) {
5821 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5822 			shift = (i & 3) << 3;
5823 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5824 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5825 		}
5826 	}
5827 #endif
5828 
5829 	/*
5830 	 * Limit TOE connections to 2 reassembly "islands".  This is
5831 	 * required to permit migrating TOE connections to either
5832 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5833 	 */
5834 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5835 	    V_PASSMODE(2));
5836 
5837 #ifdef KERN_TLS
5838 	if (is_ktls(sc)) {
5839 		sc->tlst.inline_keys = t4_tls_inline_keys;
5840 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5841 		if (t4_kern_tls != 0 && is_t6(sc))
5842 			t6_config_kern_tls(sc, true);
5843 	}
5844 #endif
5845 	return (0);
5846 }
5847 
5848 #undef FW_PARAM_PFVF
5849 #undef FW_PARAM_DEV
5850 
5851 static void
5852 t4_set_desc(struct adapter *sc)
5853 {
5854 	struct adapter_params *p = &sc->params;
5855 
5856 	device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5857 }
5858 
5859 static inline void
5860 ifmedia_add4(struct ifmedia *ifm, int m)
5861 {
5862 
5863 	ifmedia_add(ifm, m, 0, NULL);
5864 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5865 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5866 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5867 }
5868 
5869 /*
5870  * This is the selected media, which is not quite the same as the active media.
5871  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5872  * and active are not the same, and "media: Ethernet selected" otherwise.
5873  */
5874 static void
5875 set_current_media(struct port_info *pi)
5876 {
5877 	struct link_config *lc;
5878 	struct ifmedia *ifm;
5879 	int mword;
5880 	u_int speed;
5881 
5882 	PORT_LOCK_ASSERT_OWNED(pi);
5883 
5884 	/* Leave current media alone if it's already set to IFM_NONE. */
5885 	ifm = &pi->media;
5886 	if (ifm->ifm_cur != NULL &&
5887 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5888 		return;
5889 
5890 	lc = &pi->link_cfg;
5891 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5892 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5893 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5894 		return;
5895 	}
5896 	mword = IFM_ETHER | IFM_FDX;
5897 	if (lc->requested_fc & PAUSE_TX)
5898 		mword |= IFM_ETH_TXPAUSE;
5899 	if (lc->requested_fc & PAUSE_RX)
5900 		mword |= IFM_ETH_RXPAUSE;
5901 	if (lc->requested_speed == 0)
5902 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5903 	else
5904 		speed = lc->requested_speed;
5905 	mword |= port_mword(pi, speed_to_fwcap(speed));
5906 	ifmedia_set(ifm, mword);
5907 }
5908 
5909 /*
5910  * Returns true if the ifmedia list for the port cannot change.
5911  */
5912 static bool
5913 fixed_ifmedia(struct port_info *pi)
5914 {
5915 
5916 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5917 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5918 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5919 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5920 	    pi->port_type == FW_PORT_TYPE_KX ||
5921 	    pi->port_type == FW_PORT_TYPE_KR ||
5922 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5923 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5924 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5925 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5926 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5927 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5928 }
5929 
5930 static void
5931 build_medialist(struct port_info *pi)
5932 {
5933 	uint32_t ss, speed;
5934 	int unknown, mword, bit;
5935 	struct link_config *lc;
5936 	struct ifmedia *ifm;
5937 
5938 	PORT_LOCK_ASSERT_OWNED(pi);
5939 
5940 	if (pi->flags & FIXED_IFMEDIA)
5941 		return;
5942 
5943 	/*
5944 	 * Rebuild the ifmedia list.
5945 	 */
5946 	ifm = &pi->media;
5947 	ifmedia_removeall(ifm);
5948 	lc = &pi->link_cfg;
5949 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5950 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5951 		MPASS(ss != 0);
5952 no_media:
5953 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5954 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5955 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5956 		return;
5957 	}
5958 
5959 	unknown = 0;
5960 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5961 		speed = 1 << bit;
5962 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5963 		if (ss & speed) {
5964 			mword = port_mword(pi, speed);
5965 			if (mword == IFM_NONE) {
5966 				goto no_media;
5967 			} else if (mword == IFM_UNKNOWN)
5968 				unknown++;
5969 			else
5970 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5971 		}
5972 	}
5973 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5974 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5975 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5976 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5977 
5978 	set_current_media(pi);
5979 }
5980 
5981 /*
5982  * Initialize the requested fields in the link config based on driver tunables.
5983  */
5984 static void
5985 init_link_config(struct port_info *pi)
5986 {
5987 	struct link_config *lc = &pi->link_cfg;
5988 
5989 	PORT_LOCK_ASSERT_OWNED(pi);
5990 
5991 	lc->requested_caps = 0;
5992 	lc->requested_speed = 0;
5993 
5994 	if (t4_autoneg == 0)
5995 		lc->requested_aneg = AUTONEG_DISABLE;
5996 	else if (t4_autoneg == 1)
5997 		lc->requested_aneg = AUTONEG_ENABLE;
5998 	else
5999 		lc->requested_aneg = AUTONEG_AUTO;
6000 
6001 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6002 	    PAUSE_AUTONEG);
6003 
6004 	if (t4_fec & FEC_AUTO)
6005 		lc->requested_fec = FEC_AUTO;
6006 	else if (t4_fec == 0)
6007 		lc->requested_fec = FEC_NONE;
6008 	else {
6009 		/* -1 is handled by the FEC_AUTO block above and not here. */
6010 		lc->requested_fec = t4_fec &
6011 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6012 		if (lc->requested_fec == 0)
6013 			lc->requested_fec = FEC_AUTO;
6014 	}
6015 	if (t4_force_fec < 0)
6016 		lc->force_fec = -1;
6017 	else if (t4_force_fec > 0)
6018 		lc->force_fec = 1;
6019 	else
6020 		lc->force_fec = 0;
6021 }
6022 
6023 /*
6024  * Makes sure that all requested settings comply with what's supported by the
6025  * port.  Returns the number of settings that were invalid and had to be fixed.
6026  */
6027 static int
6028 fixup_link_config(struct port_info *pi)
6029 {
6030 	int n = 0;
6031 	struct link_config *lc = &pi->link_cfg;
6032 	uint32_t fwspeed;
6033 
6034 	PORT_LOCK_ASSERT_OWNED(pi);
6035 
6036 	/* Speed (when not autonegotiating) */
6037 	if (lc->requested_speed != 0) {
6038 		fwspeed = speed_to_fwcap(lc->requested_speed);
6039 		if ((fwspeed & lc->pcaps) == 0) {
6040 			n++;
6041 			lc->requested_speed = 0;
6042 		}
6043 	}
6044 
6045 	/* Link autonegotiation */
6046 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6047 	    lc->requested_aneg == AUTONEG_DISABLE ||
6048 	    lc->requested_aneg == AUTONEG_AUTO);
6049 	if (lc->requested_aneg == AUTONEG_ENABLE &&
6050 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6051 		n++;
6052 		lc->requested_aneg = AUTONEG_AUTO;
6053 	}
6054 
6055 	/* Flow control */
6056 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6057 	if (lc->requested_fc & PAUSE_TX &&
6058 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6059 		n++;
6060 		lc->requested_fc &= ~PAUSE_TX;
6061 	}
6062 	if (lc->requested_fc & PAUSE_RX &&
6063 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6064 		n++;
6065 		lc->requested_fc &= ~PAUSE_RX;
6066 	}
6067 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6068 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6069 		n++;
6070 		lc->requested_fc |= PAUSE_AUTONEG;
6071 	}
6072 
6073 	/* FEC */
6074 	if ((lc->requested_fec & FEC_RS &&
6075 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6076 	    (lc->requested_fec & FEC_BASER_RS &&
6077 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6078 		n++;
6079 		lc->requested_fec = FEC_AUTO;
6080 	}
6081 
6082 	return (n);
6083 }
6084 
6085 /*
6086  * Apply the requested L1 settings, which are expected to be valid, to the
6087  * hardware.
6088  */
6089 static int
6090 apply_link_config(struct port_info *pi)
6091 {
6092 	struct adapter *sc = pi->adapter;
6093 	struct link_config *lc = &pi->link_cfg;
6094 	int rc;
6095 
6096 #ifdef INVARIANTS
6097 	ASSERT_SYNCHRONIZED_OP(sc);
6098 	PORT_LOCK_ASSERT_OWNED(pi);
6099 
6100 	if (lc->requested_aneg == AUTONEG_ENABLE)
6101 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6102 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6103 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6104 	if (lc->requested_fc & PAUSE_TX)
6105 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6106 	if (lc->requested_fc & PAUSE_RX)
6107 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6108 	if (lc->requested_fec & FEC_RS)
6109 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6110 	if (lc->requested_fec & FEC_BASER_RS)
6111 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6112 #endif
6113 	if (!(sc->flags & IS_VF)) {
6114 		rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6115 		if (rc != 0) {
6116 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6117 			return (rc);
6118 		}
6119 	}
6120 
6121 	/*
6122 	 * An L1_CFG will almost always result in a link-change event if the
6123 	 * link is up, and the driver will refresh the actual fec/fc/etc. when
6124 	 * the notification is processed.  If the link is down then the actual
6125 	 * settings are meaningless.
6126 	 *
6127 	 * This takes care of the case where a change in the L1 settings may not
6128 	 * result in a notification.
6129 	 */
6130 	if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6131 		lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6132 
6133 	return (0);
6134 }
6135 
6136 #define FW_MAC_EXACT_CHUNK	7
6137 struct mcaddr_ctx {
6138 	if_t ifp;
6139 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6140 	uint64_t hash;
6141 	int i;
6142 	int del;
6143 	int rc;
6144 };
6145 
6146 static u_int
6147 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6148 {
6149 	struct mcaddr_ctx *ctx = arg;
6150 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6151 	struct port_info *pi = vi->pi;
6152 	struct adapter *sc = pi->adapter;
6153 
6154 	if (ctx->rc < 0)
6155 		return (0);
6156 
6157 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6158 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6159 	ctx->i++;
6160 
6161 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6162 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6163 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6164 		if (ctx->rc < 0) {
6165 			int j;
6166 
6167 			for (j = 0; j < ctx->i; j++) {
6168 				if_printf(ctx->ifp,
6169 				    "failed to add mc address"
6170 				    " %02x:%02x:%02x:"
6171 				    "%02x:%02x:%02x rc=%d\n",
6172 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6173 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6174 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6175 				    -ctx->rc);
6176 			}
6177 			return (0);
6178 		}
6179 		ctx->del = 0;
6180 		ctx->i = 0;
6181 	}
6182 
6183 	return (1);
6184 }
6185 
6186 /*
6187  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6188  * indicates which parameters should be programmed (the rest are left alone).
6189  */
6190 int
6191 update_mac_settings(if_t ifp, int flags)
6192 {
6193 	int rc = 0;
6194 	struct vi_info *vi = if_getsoftc(ifp);
6195 	struct port_info *pi = vi->pi;
6196 	struct adapter *sc = pi->adapter;
6197 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6198 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6199 
6200 	ASSERT_SYNCHRONIZED_OP(sc);
6201 	KASSERT(flags, ("%s: not told what to update.", __func__));
6202 
6203 	if (flags & XGMAC_MTU)
6204 		mtu = if_getmtu(ifp);
6205 
6206 	if (flags & XGMAC_PROMISC)
6207 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6208 
6209 	if (flags & XGMAC_ALLMULTI)
6210 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6211 
6212 	if (flags & XGMAC_VLANEX)
6213 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6214 
6215 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6216 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6217 		    allmulti, 1, vlanex, false);
6218 		if (rc) {
6219 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6220 			    rc);
6221 			return (rc);
6222 		}
6223 	}
6224 
6225 	if (flags & XGMAC_UCADDR) {
6226 		uint8_t ucaddr[ETHER_ADDR_LEN];
6227 
6228 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6229 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6230 		    ucaddr, true, &vi->smt_idx);
6231 		if (rc < 0) {
6232 			rc = -rc;
6233 			if_printf(ifp, "change_mac failed: %d\n", rc);
6234 			return (rc);
6235 		} else {
6236 			vi->xact_addr_filt = rc;
6237 			rc = 0;
6238 		}
6239 	}
6240 
6241 	if (flags & XGMAC_MCADDRS) {
6242 		struct epoch_tracker et;
6243 		struct mcaddr_ctx ctx;
6244 		int j;
6245 
6246 		ctx.ifp = ifp;
6247 		ctx.hash = 0;
6248 		ctx.i = 0;
6249 		ctx.del = 1;
6250 		ctx.rc = 0;
6251 		/*
6252 		 * Unlike other drivers, we accumulate list of pointers into
6253 		 * interface address lists and we need to keep it safe even
6254 		 * after if_foreach_llmaddr() returns, thus we must enter the
6255 		 * network epoch.
6256 		 */
6257 		NET_EPOCH_ENTER(et);
6258 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6259 		if (ctx.rc < 0) {
6260 			NET_EPOCH_EXIT(et);
6261 			rc = -ctx.rc;
6262 			return (rc);
6263 		}
6264 		if (ctx.i > 0) {
6265 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6266 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6267 			NET_EPOCH_EXIT(et);
6268 			if (rc < 0) {
6269 				rc = -rc;
6270 				for (j = 0; j < ctx.i; j++) {
6271 					if_printf(ifp,
6272 					    "failed to add mcast address"
6273 					    " %02x:%02x:%02x:"
6274 					    "%02x:%02x:%02x rc=%d\n",
6275 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6276 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6277 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6278 					    rc);
6279 				}
6280 				return (rc);
6281 			}
6282 			ctx.del = 0;
6283 		} else
6284 			NET_EPOCH_EXIT(et);
6285 
6286 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6287 		if (rc != 0)
6288 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6289 			    rc);
6290 		if (ctx.del == 0) {
6291 			/* We clobbered the VXLAN entry if there was one. */
6292 			pi->vxlan_tcam_entry = false;
6293 		}
6294 	}
6295 
6296 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6297 	    pi->vxlan_tcam_entry == false) {
6298 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6299 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6300 		    true);
6301 		if (rc < 0) {
6302 			rc = -rc;
6303 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6304 			    rc);
6305 		} else {
6306 			MPASS(rc == sc->rawf_base + pi->port_id);
6307 			rc = 0;
6308 			pi->vxlan_tcam_entry = true;
6309 		}
6310 	}
6311 
6312 	return (rc);
6313 }
6314 
6315 /*
6316  * {begin|end}_synchronized_op must be called from the same thread.
6317  */
6318 int
6319 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6320     char *wmesg)
6321 {
6322 	int rc, pri;
6323 
6324 #ifdef WITNESS
6325 	/* the caller thinks it's ok to sleep, but is it really? */
6326 	if (flags & SLEEP_OK)
6327 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6328 		    "begin_synchronized_op");
6329 #endif
6330 
6331 	if (INTR_OK)
6332 		pri = PCATCH;
6333 	else
6334 		pri = 0;
6335 
6336 	ADAPTER_LOCK(sc);
6337 	for (;;) {
6338 
6339 		if (vi && IS_DETACHING(vi)) {
6340 			rc = ENXIO;
6341 			goto done;
6342 		}
6343 
6344 		if (!IS_BUSY(sc)) {
6345 			rc = 0;
6346 			break;
6347 		}
6348 
6349 		if (!(flags & SLEEP_OK)) {
6350 			rc = EBUSY;
6351 			goto done;
6352 		}
6353 
6354 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6355 			rc = EINTR;
6356 			goto done;
6357 		}
6358 	}
6359 
6360 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6361 	SET_BUSY(sc);
6362 #ifdef INVARIANTS
6363 	sc->last_op = wmesg;
6364 	sc->last_op_thr = curthread;
6365 	sc->last_op_flags = flags;
6366 #endif
6367 
6368 done:
6369 	if (!(flags & HOLD_LOCK) || rc)
6370 		ADAPTER_UNLOCK(sc);
6371 
6372 	return (rc);
6373 }
6374 
6375 /*
6376  * Tell if_ioctl and if_init that the VI is going away.  This is
6377  * special variant of begin_synchronized_op and must be paired with a
6378  * call to end_vi_detach.
6379  */
6380 void
6381 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6382 {
6383 	ADAPTER_LOCK(sc);
6384 	SET_DETACHING(vi);
6385 	wakeup(&sc->flags);
6386 	while (IS_BUSY(sc))
6387 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6388 	SET_BUSY(sc);
6389 #ifdef INVARIANTS
6390 	sc->last_op = "t4detach";
6391 	sc->last_op_thr = curthread;
6392 	sc->last_op_flags = 0;
6393 #endif
6394 	ADAPTER_UNLOCK(sc);
6395 }
6396 
6397 void
6398 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6399 {
6400 	ADAPTER_LOCK(sc);
6401 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6402 	CLR_BUSY(sc);
6403 	CLR_DETACHING(vi);
6404 	wakeup(&sc->flags);
6405 	ADAPTER_UNLOCK(sc);
6406 }
6407 
6408 /*
6409  * {begin|end}_synchronized_op must be called from the same thread.
6410  */
6411 void
6412 end_synchronized_op(struct adapter *sc, int flags)
6413 {
6414 
6415 	if (flags & LOCK_HELD)
6416 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6417 	else
6418 		ADAPTER_LOCK(sc);
6419 
6420 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6421 	CLR_BUSY(sc);
6422 	wakeup(&sc->flags);
6423 	ADAPTER_UNLOCK(sc);
6424 }
6425 
6426 static int
6427 cxgbe_init_synchronized(struct vi_info *vi)
6428 {
6429 	struct port_info *pi = vi->pi;
6430 	struct adapter *sc = pi->adapter;
6431 	if_t ifp = vi->ifp;
6432 	int rc = 0, i;
6433 	struct sge_txq *txq;
6434 
6435 	ASSERT_SYNCHRONIZED_OP(sc);
6436 
6437 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6438 		return (0);	/* already running */
6439 
6440 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6441 		return (rc);	/* error message displayed already */
6442 
6443 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6444 		return (rc); /* error message displayed already */
6445 
6446 	rc = update_mac_settings(ifp, XGMAC_ALL);
6447 	if (rc)
6448 		goto done;	/* error message displayed already */
6449 
6450 	PORT_LOCK(pi);
6451 	if (pi->up_vis == 0) {
6452 		t4_update_port_info(pi);
6453 		fixup_link_config(pi);
6454 		build_medialist(pi);
6455 		apply_link_config(pi);
6456 	}
6457 
6458 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6459 	if (rc != 0) {
6460 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6461 		PORT_UNLOCK(pi);
6462 		goto done;
6463 	}
6464 
6465 	/*
6466 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6467 	 * if this changes.
6468 	 */
6469 
6470 	for_each_txq(vi, i, txq) {
6471 		TXQ_LOCK(txq);
6472 		txq->eq.flags |= EQ_ENABLED;
6473 		TXQ_UNLOCK(txq);
6474 	}
6475 
6476 	/*
6477 	 * The first iq of the first port to come up is used for tracing.
6478 	 */
6479 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6480 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6481 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6482 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6483 		    V_QUEUENUMBER(sc->traceq));
6484 		pi->flags |= HAS_TRACEQ;
6485 	}
6486 
6487 	/* all ok */
6488 	pi->up_vis++;
6489 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6490 	if (pi->link_cfg.link_ok)
6491 		t4_os_link_changed(pi);
6492 	PORT_UNLOCK(pi);
6493 
6494 	mtx_lock(&vi->tick_mtx);
6495 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6496 		callout_reset(&vi->tick, hz, vi_tick, vi);
6497 	else
6498 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6499 	mtx_unlock(&vi->tick_mtx);
6500 done:
6501 	if (rc != 0)
6502 		cxgbe_uninit_synchronized(vi);
6503 
6504 	return (rc);
6505 }
6506 
6507 /*
6508  * Idempotent.
6509  */
6510 static int
6511 cxgbe_uninit_synchronized(struct vi_info *vi)
6512 {
6513 	struct port_info *pi = vi->pi;
6514 	struct adapter *sc = pi->adapter;
6515 	if_t ifp = vi->ifp;
6516 	int rc, i;
6517 	struct sge_txq *txq;
6518 
6519 	ASSERT_SYNCHRONIZED_OP(sc);
6520 
6521 	if (!(vi->flags & VI_INIT_DONE)) {
6522 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6523 			KASSERT(0, ("uninited VI is running"));
6524 			if_printf(ifp, "uninited VI with running ifnet.  "
6525 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6526 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6527 			    if_getdrvflags(ifp));
6528 		}
6529 		return (0);
6530 	}
6531 
6532 	/*
6533 	 * Disable the VI so that all its data in either direction is discarded
6534 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6535 	 * tick) intact as the TP can deliver negative advice or data that it's
6536 	 * holding in its RAM (for an offloaded connection) even after the VI is
6537 	 * disabled.
6538 	 */
6539 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6540 	if (rc) {
6541 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6542 		return (rc);
6543 	}
6544 
6545 	for_each_txq(vi, i, txq) {
6546 		TXQ_LOCK(txq);
6547 		txq->eq.flags &= ~EQ_ENABLED;
6548 		TXQ_UNLOCK(txq);
6549 	}
6550 
6551 	mtx_lock(&vi->tick_mtx);
6552 	callout_stop(&vi->tick);
6553 	mtx_unlock(&vi->tick_mtx);
6554 
6555 	PORT_LOCK(pi);
6556 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6557 		PORT_UNLOCK(pi);
6558 		return (0);
6559 	}
6560 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6561 	pi->up_vis--;
6562 	if (pi->up_vis > 0) {
6563 		PORT_UNLOCK(pi);
6564 		return (0);
6565 	}
6566 
6567 	pi->link_cfg.link_ok = false;
6568 	pi->link_cfg.speed = 0;
6569 	pi->link_cfg.link_down_rc = 255;
6570 	t4_os_link_changed(pi);
6571 	PORT_UNLOCK(pi);
6572 
6573 	return (0);
6574 }
6575 
6576 /*
6577  * It is ok for this function to fail midway and return right away.  t4_detach
6578  * will walk the entire sc->irq list and clean up whatever is valid.
6579  */
6580 int
6581 t4_setup_intr_handlers(struct adapter *sc)
6582 {
6583 	int rc, rid, p, q, v;
6584 	char s[8];
6585 	struct irq *irq;
6586 	struct port_info *pi;
6587 	struct vi_info *vi;
6588 	struct sge *sge = &sc->sge;
6589 	struct sge_rxq *rxq;
6590 #ifdef TCP_OFFLOAD
6591 	struct sge_ofld_rxq *ofld_rxq;
6592 #endif
6593 #ifdef DEV_NETMAP
6594 	struct sge_nm_rxq *nm_rxq;
6595 #endif
6596 #ifdef RSS
6597 	int nbuckets = rss_getnumbuckets();
6598 #endif
6599 
6600 	/*
6601 	 * Setup interrupts.
6602 	 */
6603 	irq = &sc->irq[0];
6604 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6605 	if (forwarding_intr_to_fwq(sc))
6606 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6607 
6608 	/* Multiple interrupts. */
6609 	if (sc->flags & IS_VF)
6610 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6611 		    ("%s: too few intr.", __func__));
6612 	else
6613 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6614 		    ("%s: too few intr.", __func__));
6615 
6616 	/* The first one is always error intr on PFs */
6617 	if (!(sc->flags & IS_VF)) {
6618 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6619 		if (rc != 0)
6620 			return (rc);
6621 		irq++;
6622 		rid++;
6623 	}
6624 
6625 	/* The second one is always the firmware event queue (first on VFs) */
6626 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6627 	if (rc != 0)
6628 		return (rc);
6629 	irq++;
6630 	rid++;
6631 
6632 	for_each_port(sc, p) {
6633 		pi = sc->port[p];
6634 		for_each_vi(pi, v, vi) {
6635 			vi->first_intr = rid - 1;
6636 
6637 			if (vi->nnmrxq > 0) {
6638 				int n = max(vi->nrxq, vi->nnmrxq);
6639 
6640 				rxq = &sge->rxq[vi->first_rxq];
6641 #ifdef DEV_NETMAP
6642 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6643 #endif
6644 				for (q = 0; q < n; q++) {
6645 					snprintf(s, sizeof(s), "%x%c%x", p,
6646 					    'a' + v, q);
6647 					if (q < vi->nrxq)
6648 						irq->rxq = rxq++;
6649 #ifdef DEV_NETMAP
6650 					if (q < vi->nnmrxq)
6651 						irq->nm_rxq = nm_rxq++;
6652 
6653 					if (irq->nm_rxq != NULL &&
6654 					    irq->rxq == NULL) {
6655 						/* Netmap rx only */
6656 						rc = t4_alloc_irq(sc, irq, rid,
6657 						    t4_nm_intr, irq->nm_rxq, s);
6658 					}
6659 					if (irq->nm_rxq != NULL &&
6660 					    irq->rxq != NULL) {
6661 						/* NIC and Netmap rx */
6662 						rc = t4_alloc_irq(sc, irq, rid,
6663 						    t4_vi_intr, irq, s);
6664 					}
6665 #endif
6666 					if (irq->rxq != NULL &&
6667 					    irq->nm_rxq == NULL) {
6668 						/* NIC rx only */
6669 						rc = t4_alloc_irq(sc, irq, rid,
6670 						    t4_intr, irq->rxq, s);
6671 					}
6672 					if (rc != 0)
6673 						return (rc);
6674 #ifdef RSS
6675 					if (q < vi->nrxq) {
6676 						bus_bind_intr(sc->dev, irq->res,
6677 						    rss_getcpu(q % nbuckets));
6678 					}
6679 #endif
6680 					irq++;
6681 					rid++;
6682 					vi->nintr++;
6683 				}
6684 			} else {
6685 				for_each_rxq(vi, q, rxq) {
6686 					snprintf(s, sizeof(s), "%x%c%x", p,
6687 					    'a' + v, q);
6688 					rc = t4_alloc_irq(sc, irq, rid,
6689 					    t4_intr, rxq, s);
6690 					if (rc != 0)
6691 						return (rc);
6692 #ifdef RSS
6693 					bus_bind_intr(sc->dev, irq->res,
6694 					    rss_getcpu(q % nbuckets));
6695 #endif
6696 					irq++;
6697 					rid++;
6698 					vi->nintr++;
6699 				}
6700 			}
6701 #ifdef TCP_OFFLOAD
6702 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6703 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6704 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6705 				    ofld_rxq, s);
6706 				if (rc != 0)
6707 					return (rc);
6708 				irq++;
6709 				rid++;
6710 				vi->nintr++;
6711 			}
6712 #endif
6713 		}
6714 	}
6715 	MPASS(irq == &sc->irq[sc->intr_count]);
6716 
6717 	return (0);
6718 }
6719 
6720 static void
6721 write_global_rss_key(struct adapter *sc)
6722 {
6723 #ifdef RSS
6724 	int i;
6725 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6726 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6727 
6728 	CTASSERT(RSS_KEYSIZE == 40);
6729 
6730 	rss_getkey((void *)&raw_rss_key[0]);
6731 	for (i = 0; i < nitems(rss_key); i++) {
6732 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6733 	}
6734 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6735 #endif
6736 }
6737 
6738 /*
6739  * Idempotent.
6740  */
6741 static int
6742 adapter_full_init(struct adapter *sc)
6743 {
6744 	int rc, i;
6745 
6746 	ASSERT_SYNCHRONIZED_OP(sc);
6747 
6748 	/*
6749 	 * queues that belong to the adapter (not any particular port).
6750 	 */
6751 	rc = t4_setup_adapter_queues(sc);
6752 	if (rc != 0)
6753 		return (rc);
6754 
6755 	MPASS(sc->params.nports <= nitems(sc->tq));
6756 	for (i = 0; i < sc->params.nports; i++) {
6757 		if (sc->tq[i] != NULL)
6758 			continue;
6759 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6760 		    taskqueue_thread_enqueue, &sc->tq[i]);
6761 		if (sc->tq[i] == NULL) {
6762 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6763 			return (ENOMEM);
6764 		}
6765 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6766 		    device_get_nameunit(sc->dev), i);
6767 	}
6768 
6769 	if (!(sc->flags & IS_VF)) {
6770 		write_global_rss_key(sc);
6771 		t4_intr_enable(sc);
6772 	}
6773 	return (0);
6774 }
6775 
6776 int
6777 adapter_init(struct adapter *sc)
6778 {
6779 	int rc;
6780 
6781 	ASSERT_SYNCHRONIZED_OP(sc);
6782 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6783 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6784 	    ("%s: FULL_INIT_DONE already", __func__));
6785 
6786 	rc = adapter_full_init(sc);
6787 	if (rc != 0)
6788 		adapter_full_uninit(sc);
6789 	else
6790 		sc->flags |= FULL_INIT_DONE;
6791 
6792 	return (rc);
6793 }
6794 
6795 /*
6796  * Idempotent.
6797  */
6798 static void
6799 adapter_full_uninit(struct adapter *sc)
6800 {
6801 	int i;
6802 
6803 	t4_teardown_adapter_queues(sc);
6804 
6805 	for (i = 0; i < nitems(sc->tq); i++) {
6806 		if (sc->tq[i] == NULL)
6807 			continue;
6808 		taskqueue_free(sc->tq[i]);
6809 		sc->tq[i] = NULL;
6810 	}
6811 
6812 	sc->flags &= ~FULL_INIT_DONE;
6813 }
6814 
6815 #ifdef RSS
6816 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6817     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6818     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6819     RSS_HASHTYPE_RSS_UDP_IPV6)
6820 
6821 /* Translates kernel hash types to hardware. */
6822 static int
6823 hashconfig_to_hashen(int hashconfig)
6824 {
6825 	int hashen = 0;
6826 
6827 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6828 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6829 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6830 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6831 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6832 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6833 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6834 	}
6835 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6836 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6837 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6838 	}
6839 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6840 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6841 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6842 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6843 
6844 	return (hashen);
6845 }
6846 
6847 /* Translates hardware hash types to kernel. */
6848 static int
6849 hashen_to_hashconfig(int hashen)
6850 {
6851 	int hashconfig = 0;
6852 
6853 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6854 		/*
6855 		 * If UDP hashing was enabled it must have been enabled for
6856 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6857 		 * enabling any 4-tuple hash is nonsense configuration.
6858 		 */
6859 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6860 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6861 
6862 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6863 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6864 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6865 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6866 	}
6867 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6868 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6869 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6870 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6871 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6872 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6873 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6874 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6875 
6876 	return (hashconfig);
6877 }
6878 #endif
6879 
6880 /*
6881  * Idempotent.
6882  */
6883 static int
6884 vi_full_init(struct vi_info *vi)
6885 {
6886 	struct adapter *sc = vi->adapter;
6887 	struct sge_rxq *rxq;
6888 	int rc, i, j;
6889 #ifdef RSS
6890 	int nbuckets = rss_getnumbuckets();
6891 	int hashconfig = rss_gethashconfig();
6892 	int extra;
6893 #endif
6894 
6895 	ASSERT_SYNCHRONIZED_OP(sc);
6896 
6897 	/*
6898 	 * Allocate tx/rx/fl queues for this VI.
6899 	 */
6900 	rc = t4_setup_vi_queues(vi);
6901 	if (rc != 0)
6902 		return (rc);
6903 
6904 	/*
6905 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6906 	 */
6907 	if (vi->nrxq > vi->rss_size) {
6908 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6909 		    "some queues will never receive traffic.\n", vi->nrxq,
6910 		    vi->rss_size);
6911 	} else if (vi->rss_size % vi->nrxq) {
6912 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6913 		    "expect uneven traffic distribution.\n", vi->nrxq,
6914 		    vi->rss_size);
6915 	}
6916 #ifdef RSS
6917 	if (vi->nrxq != nbuckets) {
6918 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6919 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6920 	}
6921 #endif
6922 	if (vi->rss == NULL)
6923 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6924 		    M_ZERO | M_WAITOK);
6925 	for (i = 0; i < vi->rss_size;) {
6926 #ifdef RSS
6927 		j = rss_get_indirection_to_bucket(i);
6928 		j %= vi->nrxq;
6929 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6930 		vi->rss[i++] = rxq->iq.abs_id;
6931 #else
6932 		for_each_rxq(vi, j, rxq) {
6933 			vi->rss[i++] = rxq->iq.abs_id;
6934 			if (i == vi->rss_size)
6935 				break;
6936 		}
6937 #endif
6938 	}
6939 
6940 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6941 	    vi->rss, vi->rss_size);
6942 	if (rc != 0) {
6943 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6944 		return (rc);
6945 	}
6946 
6947 #ifdef RSS
6948 	vi->hashen = hashconfig_to_hashen(hashconfig);
6949 
6950 	/*
6951 	 * We may have had to enable some hashes even though the global config
6952 	 * wants them disabled.  This is a potential problem that must be
6953 	 * reported to the user.
6954 	 */
6955 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6956 
6957 	/*
6958 	 * If we consider only the supported hash types, then the enabled hashes
6959 	 * are a superset of the requested hashes.  In other words, there cannot
6960 	 * be any supported hash that was requested but not enabled, but there
6961 	 * can be hashes that were not requested but had to be enabled.
6962 	 */
6963 	extra &= SUPPORTED_RSS_HASHTYPES;
6964 	MPASS((extra & hashconfig) == 0);
6965 
6966 	if (extra) {
6967 		CH_ALERT(vi,
6968 		    "global RSS config (0x%x) cannot be accommodated.\n",
6969 		    hashconfig);
6970 	}
6971 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6972 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6973 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6974 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6975 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6976 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6977 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6978 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6979 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6980 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6981 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6982 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6983 #else
6984 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6985 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6986 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6987 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6988 #endif
6989 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6990 	    0, 0);
6991 	if (rc != 0) {
6992 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6993 		return (rc);
6994 	}
6995 
6996 	return (0);
6997 }
6998 
6999 int
7000 vi_init(struct vi_info *vi)
7001 {
7002 	int rc;
7003 
7004 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
7005 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
7006 	    ("%s: VI_INIT_DONE already", __func__));
7007 
7008 	rc = vi_full_init(vi);
7009 	if (rc != 0)
7010 		vi_full_uninit(vi);
7011 	else
7012 		vi->flags |= VI_INIT_DONE;
7013 
7014 	return (rc);
7015 }
7016 
7017 /*
7018  * Idempotent.
7019  */
7020 static void
7021 vi_full_uninit(struct vi_info *vi)
7022 {
7023 
7024 	if (vi->flags & VI_INIT_DONE) {
7025 		quiesce_vi(vi);
7026 		free(vi->rss, M_CXGBE);
7027 		free(vi->nm_rss, M_CXGBE);
7028 	}
7029 
7030 	t4_teardown_vi_queues(vi);
7031 	vi->flags &= ~VI_INIT_DONE;
7032 }
7033 
7034 static void
7035 quiesce_txq(struct sge_txq *txq)
7036 {
7037 	struct sge_eq *eq = &txq->eq;
7038 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7039 
7040 	MPASS(eq->flags & EQ_SW_ALLOCATED);
7041 	MPASS(!(eq->flags & EQ_ENABLED));
7042 
7043 	/* Wait for the mp_ring to empty. */
7044 	while (!mp_ring_is_idle(txq->r)) {
7045 		mp_ring_check_drainage(txq->r, 4096);
7046 		pause("rquiesce", 1);
7047 	}
7048 	MPASS(txq->txp.npkt == 0);
7049 
7050 	if (eq->flags & EQ_HW_ALLOCATED) {
7051 		/*
7052 		 * Hardware is alive and working normally.  Wait for it to
7053 		 * finish and then wait for the driver to catch up and reclaim
7054 		 * all descriptors.
7055 		 */
7056 		while (spg->cidx != htobe16(eq->pidx))
7057 			pause("equiesce", 1);
7058 		while (eq->cidx != eq->pidx)
7059 			pause("dquiesce", 1);
7060 	} else {
7061 		/*
7062 		 * Hardware is unavailable.  Discard all pending tx and reclaim
7063 		 * descriptors directly.
7064 		 */
7065 		TXQ_LOCK(txq);
7066 		while (eq->cidx != eq->pidx) {
7067 			struct mbuf *m, *nextpkt;
7068 			struct tx_sdesc *txsd;
7069 
7070 			txsd = &txq->sdesc[eq->cidx];
7071 			for (m = txsd->m; m != NULL; m = nextpkt) {
7072 				nextpkt = m->m_nextpkt;
7073 				m->m_nextpkt = NULL;
7074 				m_freem(m);
7075 			}
7076 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7077 		}
7078 		spg->pidx = spg->cidx = htobe16(eq->cidx);
7079 		TXQ_UNLOCK(txq);
7080 	}
7081 }
7082 
7083 static void
7084 quiesce_wrq(struct sge_wrq *wrq)
7085 {
7086 	struct wrqe *wr;
7087 
7088 	TXQ_LOCK(wrq);
7089 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7090 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7091 #ifdef INVARIANTS
7092 		wrq->nwr_pending--;
7093 		wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7094 #endif
7095 		free(wr, M_CXGBE);
7096 	}
7097 	MPASS(wrq->nwr_pending == 0);
7098 	MPASS(wrq->ndesc_needed == 0);
7099 	wrq->nwr_pending = 0;
7100 	wrq->ndesc_needed = 0;
7101 	TXQ_UNLOCK(wrq);
7102 }
7103 
7104 static void
7105 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7106 {
7107 	/* Synchronize with the interrupt handler */
7108 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7109 		pause("iqfree", 1);
7110 
7111 	if (fl != NULL) {
7112 		MPASS(iq->flags & IQ_HAS_FL);
7113 
7114 		mtx_lock(&sc->sfl_lock);
7115 		FL_LOCK(fl);
7116 		fl->flags |= FL_DOOMED;
7117 		FL_UNLOCK(fl);
7118 		callout_stop(&sc->sfl_callout);
7119 		mtx_unlock(&sc->sfl_lock);
7120 
7121 		KASSERT((fl->flags & FL_STARVING) == 0,
7122 		    ("%s: still starving", __func__));
7123 
7124 		/* Release all buffers if hardware is no longer available. */
7125 		if (!(iq->flags & IQ_HW_ALLOCATED))
7126 			free_fl_buffers(sc, fl);
7127 	}
7128 }
7129 
7130 /*
7131  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7132  * that no new work is being enqueued by the hardware or the driver.  That part
7133  * should be arranged before calling this function.
7134  */
7135 static void
7136 quiesce_vi(struct vi_info *vi)
7137 {
7138 	int i;
7139 	struct adapter *sc = vi->adapter;
7140 	struct sge_rxq *rxq;
7141 	struct sge_txq *txq;
7142 #ifdef TCP_OFFLOAD
7143 	struct sge_ofld_rxq *ofld_rxq;
7144 #endif
7145 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7146 	struct sge_ofld_txq *ofld_txq;
7147 #endif
7148 
7149 	if (!(vi->flags & VI_INIT_DONE))
7150 		return;
7151 
7152 	for_each_txq(vi, i, txq) {
7153 		quiesce_txq(txq);
7154 	}
7155 
7156 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7157 	for_each_ofld_txq(vi, i, ofld_txq) {
7158 		quiesce_wrq(&ofld_txq->wrq);
7159 	}
7160 #endif
7161 
7162 	for_each_rxq(vi, i, rxq) {
7163 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7164 	}
7165 
7166 #ifdef TCP_OFFLOAD
7167 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7168 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7169 	}
7170 #endif
7171 }
7172 
7173 static int
7174 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7175     driver_intr_t *handler, void *arg, char *name)
7176 {
7177 	int rc;
7178 
7179 	irq->rid = rid;
7180 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7181 	    RF_SHAREABLE | RF_ACTIVE);
7182 	if (irq->res == NULL) {
7183 		device_printf(sc->dev,
7184 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7185 		return (ENOMEM);
7186 	}
7187 
7188 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7189 	    NULL, handler, arg, &irq->tag);
7190 	if (rc != 0) {
7191 		device_printf(sc->dev,
7192 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7193 		    rid, name, rc);
7194 	} else if (name)
7195 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7196 
7197 	return (rc);
7198 }
7199 
7200 static int
7201 t4_free_irq(struct adapter *sc, struct irq *irq)
7202 {
7203 	if (irq->tag)
7204 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7205 	if (irq->res)
7206 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7207 
7208 	bzero(irq, sizeof(*irq));
7209 
7210 	return (0);
7211 }
7212 
7213 static void
7214 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7215 {
7216 
7217 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7218 	t4_get_regs(sc, buf, regs->len);
7219 }
7220 
7221 #define	A_PL_INDIR_CMD	0x1f8
7222 
7223 #define	S_PL_AUTOINC	31
7224 #define	M_PL_AUTOINC	0x1U
7225 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7226 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7227 
7228 #define	S_PL_VFID	20
7229 #define	M_PL_VFID	0xffU
7230 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7231 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7232 
7233 #define	S_PL_ADDR	0
7234 #define	M_PL_ADDR	0xfffffU
7235 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7236 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7237 
7238 #define	A_PL_INDIR_DATA	0x1fc
7239 
7240 static uint64_t
7241 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7242 {
7243 	u32 stats[2];
7244 
7245 	if (sc->flags & IS_VF) {
7246 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7247 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7248 	} else {
7249 		mtx_assert(&sc->reg_lock, MA_OWNED);
7250 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7251 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7252 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7253 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7254 	}
7255 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7256 }
7257 
7258 static void
7259 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7260 {
7261 
7262 #define GET_STAT(name) \
7263 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7264 
7265 	if (!(sc->flags & IS_VF))
7266 		mtx_lock(&sc->reg_lock);
7267 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7268 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7269 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7270 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7271 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7272 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7273 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7274 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7275 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7276 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7277 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7278 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7279 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7280 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7281 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7282 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7283 	if (!(sc->flags & IS_VF))
7284 		mtx_unlock(&sc->reg_lock);
7285 
7286 #undef GET_STAT
7287 }
7288 
7289 static void
7290 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7291 {
7292 	int reg;
7293 
7294 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7295 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7296 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7297 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7298 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7299 }
7300 
7301 static void
7302 vi_refresh_stats(struct vi_info *vi)
7303 {
7304 	struct timeval tv;
7305 	const struct timeval interval = {0, 250000};	/* 250ms */
7306 
7307 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7308 
7309 	if (vi->flags & VI_SKIP_STATS)
7310 		return;
7311 
7312 	getmicrotime(&tv);
7313 	timevalsub(&tv, &interval);
7314 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7315 		return;
7316 
7317 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7318 	getmicrotime(&vi->last_refreshed);
7319 }
7320 
7321 static void
7322 cxgbe_refresh_stats(struct vi_info *vi)
7323 {
7324 	u_int i, v, tnl_cong_drops, chan_map;
7325 	struct timeval tv;
7326 	const struct timeval interval = {0, 250000};	/* 250ms */
7327 	struct port_info *pi;
7328 	struct adapter *sc;
7329 
7330 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7331 
7332 	if (vi->flags & VI_SKIP_STATS)
7333 		return;
7334 
7335 	getmicrotime(&tv);
7336 	timevalsub(&tv, &interval);
7337 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7338 		return;
7339 
7340 	pi = vi->pi;
7341 	sc = vi->adapter;
7342 	tnl_cong_drops = 0;
7343 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7344 	chan_map = pi->rx_e_chan_map;
7345 	while (chan_map) {
7346 		i = ffs(chan_map) - 1;
7347 		mtx_lock(&sc->reg_lock);
7348 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7349 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7350 		mtx_unlock(&sc->reg_lock);
7351 		tnl_cong_drops += v;
7352 		chan_map &= ~(1 << i);
7353 	}
7354 	pi->tnl_cong_drops = tnl_cong_drops;
7355 	getmicrotime(&vi->last_refreshed);
7356 }
7357 
7358 static void
7359 cxgbe_tick(void *arg)
7360 {
7361 	struct vi_info *vi = arg;
7362 
7363 	MPASS(IS_MAIN_VI(vi));
7364 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7365 
7366 	cxgbe_refresh_stats(vi);
7367 	callout_schedule(&vi->tick, hz);
7368 }
7369 
7370 static void
7371 vi_tick(void *arg)
7372 {
7373 	struct vi_info *vi = arg;
7374 
7375 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7376 
7377 	vi_refresh_stats(vi);
7378 	callout_schedule(&vi->tick, hz);
7379 }
7380 
7381 /*
7382  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7383  */
7384 static char *caps_decoder[] = {
7385 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7386 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7387 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7388 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7389 	    "\006HASHFILTER\007ETHOFLD",
7390 	"\20\001TOE",					/* 4: TOE */
7391 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7392 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7393 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7394 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7395 	    "\007T10DIF"
7396 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7397 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7398 	    "\004TLS_HW",
7399 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7400 		    "\004PO_INITIATOR\005PO_TARGET",
7401 };
7402 
7403 void
7404 t4_sysctls(struct adapter *sc)
7405 {
7406 	struct sysctl_ctx_list *ctx = &sc->ctx;
7407 	struct sysctl_oid *oid;
7408 	struct sysctl_oid_list *children, *c0;
7409 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7410 
7411 	/*
7412 	 * dev.t4nex.X.
7413 	 */
7414 	oid = device_get_sysctl_tree(sc->dev);
7415 	c0 = children = SYSCTL_CHILDREN(oid);
7416 
7417 	sc->sc_do_rxcopy = 1;
7418 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7419 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7420 
7421 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7422 	    sc->params.nports, "# of ports");
7423 
7424 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7425 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7426 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7427 	    "available doorbells");
7428 
7429 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7430 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7431 
7432 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7433 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7434 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7435 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7436 
7437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7438 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7439 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7440 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7441 
7442 	t4_sge_sysctls(sc, ctx, children);
7443 
7444 	sc->lro_timeout = 100;
7445 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7446 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7447 
7448 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7449 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7450 
7451 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7452 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7453 
7454 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7455 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7456 
7457 	if (sc->flags & IS_VF)
7458 		return;
7459 
7460 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7461 	    NULL, chip_rev(sc), "chip hardware revision");
7462 
7463 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7464 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7465 
7466 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7467 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7468 
7469 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7470 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7471 
7472 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7473 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7474 
7475 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7476 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7477 
7478 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7479 	    sc->er_version, 0, "expansion ROM version");
7480 
7481 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7482 	    sc->bs_version, 0, "bootstrap firmware version");
7483 
7484 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7485 	    NULL, sc->params.scfg_vers, "serial config version");
7486 
7487 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7488 	    NULL, sc->params.vpd_vers, "VPD version");
7489 
7490 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7491 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7492 
7493 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7494 	    sc->cfcsum, "config file checksum");
7495 
7496 #define SYSCTL_CAP(name, n, text) \
7497 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7498 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7499 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7500 	    "available " text " capabilities")
7501 
7502 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7503 	SYSCTL_CAP(linkcaps, 1, "link");
7504 	SYSCTL_CAP(switchcaps, 2, "switch");
7505 	SYSCTL_CAP(niccaps, 3, "NIC");
7506 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7507 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7508 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7509 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7510 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7511 #undef SYSCTL_CAP
7512 
7513 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7514 	    NULL, sc->tids.nftids, "number of filters");
7515 
7516 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7517 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7518 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7519 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7520 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7521 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7522 
7523 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7524 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7525 	    sysctl_loadavg, "A",
7526 	    "microprocessor load averages (debug firmwares only)");
7527 
7528 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7529 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7530 	    "I", "core Vdd (in mV)");
7531 
7532 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7533 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7534 	    sysctl_cpus, "A", "local CPUs");
7535 
7536 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7537 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7538 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7539 
7540 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7541 	    &sc->swintr, 0, "software triggered interrupts");
7542 
7543 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7544 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7545 	    "1 = reset adapter, 0 = zero reset counter");
7546 
7547 	/*
7548 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7549 	 */
7550 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7551 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7552 	    "logs and miscellaneous information");
7553 	children = SYSCTL_CHILDREN(oid);
7554 
7555 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7556 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7557 	    sysctl_cctrl, "A", "congestion control");
7558 
7559 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7560 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7561 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7562 
7563 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7564 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7565 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7566 
7567 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7568 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7569 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7570 
7571 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7572 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7573 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7574 
7575 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7576 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7577 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7578 
7579 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7580 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7581 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7582 
7583 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7584 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7585 	    sysctl_cim_la, "A", "CIM logic analyzer");
7586 
7587 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7588 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7589 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7590 
7591 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7592 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7593 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7594 
7595 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7596 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7597 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7598 
7599 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7600 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7601 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7602 
7603 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7604 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7605 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7606 
7607 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7608 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7609 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7610 
7611 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7612 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7613 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7614 
7615 	if (chip_id(sc) > CHELSIO_T4) {
7616 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7617 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7618 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7619 		    "CIM OBQ 6 (SGE0-RX)");
7620 
7621 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7622 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7623 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7624 		    "CIM OBQ 7 (SGE1-RX)");
7625 	}
7626 
7627 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7628 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7629 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7630 
7631 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7632 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7633 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7634 
7635 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7636 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7637 	    sysctl_cpl_stats, "A", "CPL statistics");
7638 
7639 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7640 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7641 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7642 
7643 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7644 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7645 	    sysctl_tid_stats, "A", "tid stats");
7646 
7647 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7648 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7649 	    sysctl_devlog, "A", "firmware's device log");
7650 
7651 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7652 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7653 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7654 
7655 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7656 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7657 	    sysctl_hw_sched, "A", "hardware scheduler ");
7658 
7659 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7660 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7661 	    sysctl_l2t, "A", "hardware L2 table");
7662 
7663 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7664 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7665 	    sysctl_smt, "A", "hardware source MAC table");
7666 
7667 #ifdef INET6
7668 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7669 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7670 	    sysctl_clip, "A", "active CLIP table entries");
7671 #endif
7672 
7673 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7674 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7675 	    sysctl_lb_stats, "A", "loopback statistics");
7676 
7677 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7678 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7679 	    sysctl_meminfo, "A", "memory regions");
7680 
7681 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7682 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7683 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7684 	    "A", "MPS TCAM entries");
7685 
7686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7687 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7688 	    sysctl_path_mtus, "A", "path MTUs");
7689 
7690 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7691 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7692 	    sysctl_pm_stats, "A", "PM statistics");
7693 
7694 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7695 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7696 	    sysctl_rdma_stats, "A", "RDMA statistics");
7697 
7698 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7699 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7700 	    sysctl_tcp_stats, "A", "TCP statistics");
7701 
7702 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7703 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7704 	    sysctl_tids, "A", "TID information");
7705 
7706 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7707 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7708 	    sysctl_tp_err_stats, "A", "TP error statistics");
7709 
7710 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7711 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7712 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7713 
7714 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7715 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7716 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7717 
7718 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7719 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7720 	    sysctl_tp_la, "A", "TP logic analyzer");
7721 
7722 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7723 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7724 	    sysctl_tx_rate, "A", "Tx rate");
7725 
7726 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7727 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7728 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7729 
7730 	if (chip_id(sc) >= CHELSIO_T5) {
7731 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7732 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7733 		    sysctl_wcwr_stats, "A", "write combined work requests");
7734 	}
7735 
7736 #ifdef KERN_TLS
7737 	if (is_ktls(sc)) {
7738 		/*
7739 		 * dev.t4nex.0.tls.
7740 		 */
7741 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7742 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7743 		children = SYSCTL_CHILDREN(oid);
7744 
7745 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7746 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7747 		    "keys in work requests (1) or attempt to store TLS keys "
7748 		    "in card memory.");
7749 
7750 		if (is_t6(sc))
7751 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7752 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7753 			    "combine TCB field updates with TLS record work "
7754 			    "requests.");
7755 	}
7756 #endif
7757 
7758 #ifdef TCP_OFFLOAD
7759 	if (is_offload(sc)) {
7760 		int i;
7761 		char s[4];
7762 
7763 		/*
7764 		 * dev.t4nex.X.toe.
7765 		 */
7766 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7767 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7768 		children = SYSCTL_CHILDREN(oid);
7769 
7770 		sc->tt.cong_algorithm = -1;
7771 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7772 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7773 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7774 		    "3 = highspeed)");
7775 
7776 		sc->tt.sndbuf = -1;
7777 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7778 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7779 
7780 		sc->tt.ddp = 0;
7781 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7782 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7783 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7784 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7785 
7786 		sc->tt.rx_coalesce = -1;
7787 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7788 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7789 
7790 		sc->tt.tls = 1;
7791 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7792 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7793 		    "Inline TLS allowed");
7794 
7795 		sc->tt.tx_align = -1;
7796 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7797 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7798 
7799 		sc->tt.tx_zcopy = 0;
7800 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7801 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7802 		    "Enable zero-copy aio_write(2)");
7803 
7804 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7805 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7806 		    "cop_managed_offloading", CTLFLAG_RW,
7807 		    &sc->tt.cop_managed_offloading, 0,
7808 		    "COP (Connection Offload Policy) controls all TOE offload");
7809 
7810 		sc->tt.autorcvbuf_inc = 16 * 1024;
7811 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7812 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7813 		    "autorcvbuf increment");
7814 
7815 		sc->tt.update_hc_on_pmtu_change = 1;
7816 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7817 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7818 		    &sc->tt.update_hc_on_pmtu_change, 0,
7819 		    "Update hostcache entry if the PMTU changes");
7820 
7821 		sc->tt.iso = 1;
7822 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7823 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7824 
7825 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7826 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7827 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7828 
7829 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7830 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7831 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7832 
7833 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7834 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7835 		    sysctl_tp_tick, "A", "DACK tick (us)");
7836 
7837 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7838 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7839 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7840 
7841 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7842 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7843 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7844 		    "Minimum retransmit interval (us)");
7845 
7846 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7847 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7848 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7849 		    "Maximum retransmit interval (us)");
7850 
7851 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7852 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7853 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7854 		    "Persist timer min (us)");
7855 
7856 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7857 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7858 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7859 		    "Persist timer max (us)");
7860 
7861 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7862 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7863 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7864 		    "Keepalive idle timer (us)");
7865 
7866 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7867 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7868 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7869 		    "Keepalive interval timer (us)");
7870 
7871 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7872 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7873 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7874 
7875 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7876 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7877 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7878 		    "FINWAIT2 timer (us)");
7879 
7880 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7881 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7882 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7883 		    "Number of SYN retransmissions before abort");
7884 
7885 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7886 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7887 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7888 		    "Number of retransmissions before abort");
7889 
7890 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7891 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7892 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7893 		    "Number of keepalive probes before abort");
7894 
7895 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7896 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7897 		    "TOE retransmit backoffs");
7898 		children = SYSCTL_CHILDREN(oid);
7899 		for (i = 0; i < 16; i++) {
7900 			snprintf(s, sizeof(s), "%u", i);
7901 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7902 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7903 			    i, sysctl_tp_backoff, "IU",
7904 			    "TOE retransmit backoff");
7905 		}
7906 	}
7907 #endif
7908 }
7909 
7910 void
7911 vi_sysctls(struct vi_info *vi)
7912 {
7913 	struct sysctl_ctx_list *ctx = &vi->ctx;
7914 	struct sysctl_oid *oid;
7915 	struct sysctl_oid_list *children;
7916 
7917 	/*
7918 	 * dev.v?(cxgbe|cxl).X.
7919 	 */
7920 	oid = device_get_sysctl_tree(vi->dev);
7921 	children = SYSCTL_CHILDREN(oid);
7922 
7923 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7924 	    vi->viid, "VI identifer");
7925 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7926 	    &vi->nrxq, 0, "# of rx queues");
7927 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7928 	    &vi->ntxq, 0, "# of tx queues");
7929 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7930 	    &vi->first_rxq, 0, "index of first rx queue");
7931 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7932 	    &vi->first_txq, 0, "index of first tx queue");
7933 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7934 	    vi->rss_base, "start of RSS indirection table");
7935 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7936 	    vi->rss_size, "size of RSS indirection table");
7937 
7938 	if (IS_MAIN_VI(vi)) {
7939 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7940 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7941 		    sysctl_noflowq, "IU",
7942 		    "Reserve queue 0 for non-flowid packets");
7943 	}
7944 
7945 	if (vi->adapter->flags & IS_VF) {
7946 		MPASS(vi->flags & TX_USES_VM_WR);
7947 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7948 		    NULL, 1, "use VM work requests for transmit");
7949 	} else {
7950 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7951 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7952 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7953 	}
7954 
7955 #ifdef TCP_OFFLOAD
7956 	if (vi->nofldrxq != 0) {
7957 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7958 		    &vi->nofldrxq, 0,
7959 		    "# of rx queues for offloaded TCP connections");
7960 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7961 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7962 		    "index of first TOE rx queue");
7963 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7964 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7965 		    sysctl_holdoff_tmr_idx_ofld, "I",
7966 		    "holdoff timer index for TOE queues");
7967 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7968 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7969 		    sysctl_holdoff_pktc_idx_ofld, "I",
7970 		    "holdoff packet counter index for TOE queues");
7971 	}
7972 #endif
7973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7974 	if (vi->nofldtxq != 0) {
7975 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7976 		    &vi->nofldtxq, 0,
7977 		    "# of tx queues for TOE/ETHOFLD");
7978 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7979 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7980 		    "index of first TOE/ETHOFLD tx queue");
7981 	}
7982 #endif
7983 #ifdef DEV_NETMAP
7984 	if (vi->nnmrxq != 0) {
7985 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7986 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7987 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7988 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7989 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7990 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7991 		    "index of first netmap rx queue");
7992 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7993 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7994 		    "index of first netmap tx queue");
7995 	}
7996 #endif
7997 
7998 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7999 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8000 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8001 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8002 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8003 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8004 
8005 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8006 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8007 	    sysctl_qsize_rxq, "I", "rx queue size");
8008 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8009 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8010 	    sysctl_qsize_txq, "I", "tx queue size");
8011 }
8012 
8013 static void
8014 cxgbe_sysctls(struct port_info *pi)
8015 {
8016 	struct sysctl_ctx_list *ctx = &pi->ctx;
8017 	struct sysctl_oid *oid;
8018 	struct sysctl_oid_list *children, *children2;
8019 	struct adapter *sc = pi->adapter;
8020 	int i;
8021 	char name[16];
8022 	static char *tc_flags = {"\20\1USER"};
8023 
8024 	/*
8025 	 * dev.cxgbe.X.
8026 	 */
8027 	oid = device_get_sysctl_tree(pi->dev);
8028 	children = SYSCTL_CHILDREN(oid);
8029 
8030 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8031 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8032 	    sysctl_linkdnrc, "A", "reason why link is down");
8033 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8034 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8035 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8036 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
8037 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8038 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8039 		    sysctl_btphy, "I", "PHY firmware version");
8040 	}
8041 
8042 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8043 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8044 	    sysctl_pause_settings, "A",
8045 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8046 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8047 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8048 	    "FEC in use on the link");
8049 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8050 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8051 	    sysctl_requested_fec, "A",
8052 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8053 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8054 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8055 	    "FEC recommended by the cable/transceiver");
8056 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8057 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8058 	    sysctl_autoneg, "I",
8059 	    "autonegotiation (-1 = not supported)");
8060 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8061 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8062 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8063 
8064 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8065 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8066 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8067 	    &pi->link_cfg.pcaps, 0, "port capabilities");
8068 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8069 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
8070 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8071 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8072 
8073 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8074 	    port_top_speed(pi), "max speed (in Gbps)");
8075 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8076 	    pi->mps_bg_map, "MPS buffer group map");
8077 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8078 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8079 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8080 	    pi->tx_chan, "TP tx c-channel");
8081 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8082 	    pi->rx_chan, "TP rx c-channel");
8083 
8084 	if (sc->flags & IS_VF)
8085 		return;
8086 
8087 	/*
8088 	 * dev.(cxgbe|cxl).X.tc.
8089 	 */
8090 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8091 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8092 	    "Tx scheduler traffic classes (cl_rl)");
8093 	children2 = SYSCTL_CHILDREN(oid);
8094 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8095 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8096 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
8097 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8098 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8099 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
8100 	for (i = 0; i < sc->params.nsched_cls; i++) {
8101 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8102 
8103 		snprintf(name, sizeof(name), "%d", i);
8104 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8105 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
8106 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8107 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8108 		    CTLFLAG_RD, &tc->state, 0, "current state");
8109 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8110 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8111 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8112 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8113 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8114 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8115 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8116 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8117 		    "traffic class parameters");
8118 	}
8119 
8120 	/*
8121 	 * dev.cxgbe.X.stats.
8122 	 */
8123 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8124 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8125 	children = SYSCTL_CHILDREN(oid);
8126 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8127 	    &pi->tx_parse_error, 0,
8128 	    "# of tx packets with invalid length or # of segments");
8129 
8130 #define T4_REGSTAT(name, stat, desc) \
8131     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8132 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8133 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8134         sysctl_handle_t4_reg64, "QU", desc)
8135 
8136 /* We get these from port_stats and they may be stale by up to 1s */
8137 #define T4_PORTSTAT(name, desc) \
8138 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8139 	    &pi->stats.name, desc)
8140 
8141 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8142 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8143 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8144 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8145 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8146 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8147 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8148 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8149 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8150 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8151 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8152 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8153 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8154 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8155 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8156 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8157 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8158 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8159 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8160 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8161 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8162 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8163 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8164 
8165 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8166 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8167 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8168 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8169 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8170 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8171 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8172 	if (is_t6(sc)) {
8173 		T4_PORTSTAT(rx_fcs_err,
8174 		    "# of frames received with bad FCS since last link up");
8175 	} else {
8176 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8177 		    "# of frames received with bad FCS");
8178 	}
8179 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8180 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8181 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8182 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8183 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8184 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8185 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8186 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8187 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8188 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8189 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8190 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8191 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8192 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8193 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8194 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8195 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8196 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8197 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8198 
8199 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8200 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8201 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8202 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8203 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8204 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8205 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8206 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8207 
8208 #undef T4_REGSTAT
8209 #undef T4_PORTSTAT
8210 }
8211 
8212 static int
8213 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8214 {
8215 	int rc, *i, space = 0;
8216 	struct sbuf sb;
8217 
8218 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8219 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8220 		if (space)
8221 			sbuf_printf(&sb, " ");
8222 		sbuf_printf(&sb, "%d", *i);
8223 		space = 1;
8224 	}
8225 	rc = sbuf_finish(&sb);
8226 	sbuf_delete(&sb);
8227 	return (rc);
8228 }
8229 
8230 static int
8231 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8232 {
8233 	int rc;
8234 	struct sbuf *sb;
8235 
8236 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8237 	if (sb == NULL)
8238 		return (ENOMEM);
8239 
8240 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8241 	rc = sbuf_finish(sb);
8242 	sbuf_delete(sb);
8243 
8244 	return (rc);
8245 }
8246 
8247 static int
8248 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8249 {
8250 	int rc;
8251 	struct sbuf *sb;
8252 
8253 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8254 	if (sb == NULL)
8255 		return (ENOMEM);
8256 
8257 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8258 	rc = sbuf_finish(sb);
8259 	sbuf_delete(sb);
8260 
8261 	return (rc);
8262 }
8263 
8264 static int
8265 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8266 {
8267 	struct port_info *pi = arg1;
8268 	int op = arg2;
8269 	struct adapter *sc = pi->adapter;
8270 	u_int v;
8271 	int rc;
8272 
8273 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8274 	if (rc)
8275 		return (rc);
8276 	if (hw_off_limits(sc))
8277 		rc = ENXIO;
8278 	else {
8279 		/* XXX: magic numbers */
8280 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8281 		    op ? 0x20 : 0xc820, &v);
8282 	}
8283 	end_synchronized_op(sc, 0);
8284 	if (rc)
8285 		return (rc);
8286 	if (op == 0)
8287 		v /= 256;
8288 
8289 	rc = sysctl_handle_int(oidp, &v, 0, req);
8290 	return (rc);
8291 }
8292 
8293 static int
8294 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8295 {
8296 	struct vi_info *vi = arg1;
8297 	int rc, val;
8298 
8299 	val = vi->rsrv_noflowq;
8300 	rc = sysctl_handle_int(oidp, &val, 0, req);
8301 	if (rc != 0 || req->newptr == NULL)
8302 		return (rc);
8303 
8304 	if ((val >= 1) && (vi->ntxq > 1))
8305 		vi->rsrv_noflowq = 1;
8306 	else
8307 		vi->rsrv_noflowq = 0;
8308 
8309 	return (rc);
8310 }
8311 
8312 static int
8313 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8314 {
8315 	struct vi_info *vi = arg1;
8316 	struct adapter *sc = vi->adapter;
8317 	int rc, val, i;
8318 
8319 	MPASS(!(sc->flags & IS_VF));
8320 
8321 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8322 	rc = sysctl_handle_int(oidp, &val, 0, req);
8323 	if (rc != 0 || req->newptr == NULL)
8324 		return (rc);
8325 
8326 	if (val != 0 && val != 1)
8327 		return (EINVAL);
8328 
8329 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8330 	    "t4txvm");
8331 	if (rc)
8332 		return (rc);
8333 	if (hw_off_limits(sc))
8334 		rc = ENXIO;
8335 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8336 		/*
8337 		 * We don't want parse_pkt to run with one setting (VF or PF)
8338 		 * and then eth_tx to see a different setting but still use
8339 		 * stale information calculated by parse_pkt.
8340 		 */
8341 		rc = EBUSY;
8342 	} else {
8343 		struct port_info *pi = vi->pi;
8344 		struct sge_txq *txq;
8345 		uint32_t ctrl0;
8346 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8347 
8348 		if (val) {
8349 			vi->flags |= TX_USES_VM_WR;
8350 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8351 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8352 			    V_TXPKT_INTF(pi->tx_chan));
8353 			if (!(sc->flags & IS_VF))
8354 				npkt--;
8355 		} else {
8356 			vi->flags &= ~TX_USES_VM_WR;
8357 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8358 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8359 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8360 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8361 		}
8362 		for_each_txq(vi, i, txq) {
8363 			txq->cpl_ctrl0 = ctrl0;
8364 			txq->txp.max_npkt = npkt;
8365 		}
8366 	}
8367 	end_synchronized_op(sc, LOCK_HELD);
8368 	return (rc);
8369 }
8370 
8371 static int
8372 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8373 {
8374 	struct vi_info *vi = arg1;
8375 	struct adapter *sc = vi->adapter;
8376 	int idx, rc, i;
8377 	struct sge_rxq *rxq;
8378 	uint8_t v;
8379 
8380 	idx = vi->tmr_idx;
8381 
8382 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8383 	if (rc != 0 || req->newptr == NULL)
8384 		return (rc);
8385 
8386 	if (idx < 0 || idx >= SGE_NTIMERS)
8387 		return (EINVAL);
8388 
8389 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8390 	    "t4tmr");
8391 	if (rc)
8392 		return (rc);
8393 
8394 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8395 	for_each_rxq(vi, i, rxq) {
8396 #ifdef atomic_store_rel_8
8397 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8398 #else
8399 		rxq->iq.intr_params = v;
8400 #endif
8401 	}
8402 	vi->tmr_idx = idx;
8403 
8404 	end_synchronized_op(sc, LOCK_HELD);
8405 	return (0);
8406 }
8407 
8408 static int
8409 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8410 {
8411 	struct vi_info *vi = arg1;
8412 	struct adapter *sc = vi->adapter;
8413 	int idx, rc;
8414 
8415 	idx = vi->pktc_idx;
8416 
8417 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8418 	if (rc != 0 || req->newptr == NULL)
8419 		return (rc);
8420 
8421 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8422 		return (EINVAL);
8423 
8424 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8425 	    "t4pktc");
8426 	if (rc)
8427 		return (rc);
8428 
8429 	if (vi->flags & VI_INIT_DONE)
8430 		rc = EBUSY; /* cannot be changed once the queues are created */
8431 	else
8432 		vi->pktc_idx = idx;
8433 
8434 	end_synchronized_op(sc, LOCK_HELD);
8435 	return (rc);
8436 }
8437 
8438 static int
8439 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8440 {
8441 	struct vi_info *vi = arg1;
8442 	struct adapter *sc = vi->adapter;
8443 	int qsize, rc;
8444 
8445 	qsize = vi->qsize_rxq;
8446 
8447 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8448 	if (rc != 0 || req->newptr == NULL)
8449 		return (rc);
8450 
8451 	if (qsize < 128 || (qsize & 7))
8452 		return (EINVAL);
8453 
8454 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8455 	    "t4rxqs");
8456 	if (rc)
8457 		return (rc);
8458 
8459 	if (vi->flags & VI_INIT_DONE)
8460 		rc = EBUSY; /* cannot be changed once the queues are created */
8461 	else
8462 		vi->qsize_rxq = qsize;
8463 
8464 	end_synchronized_op(sc, LOCK_HELD);
8465 	return (rc);
8466 }
8467 
8468 static int
8469 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8470 {
8471 	struct vi_info *vi = arg1;
8472 	struct adapter *sc = vi->adapter;
8473 	int qsize, rc;
8474 
8475 	qsize = vi->qsize_txq;
8476 
8477 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8478 	if (rc != 0 || req->newptr == NULL)
8479 		return (rc);
8480 
8481 	if (qsize < 128 || qsize > 65536)
8482 		return (EINVAL);
8483 
8484 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8485 	    "t4txqs");
8486 	if (rc)
8487 		return (rc);
8488 
8489 	if (vi->flags & VI_INIT_DONE)
8490 		rc = EBUSY; /* cannot be changed once the queues are created */
8491 	else
8492 		vi->qsize_txq = qsize;
8493 
8494 	end_synchronized_op(sc, LOCK_HELD);
8495 	return (rc);
8496 }
8497 
8498 static int
8499 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8500 {
8501 	struct port_info *pi = arg1;
8502 	struct adapter *sc = pi->adapter;
8503 	struct link_config *lc = &pi->link_cfg;
8504 	int rc;
8505 
8506 	if (req->newptr == NULL) {
8507 		struct sbuf *sb;
8508 		static char *bits = "\20\1RX\2TX\3AUTO";
8509 
8510 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8511 		if (sb == NULL)
8512 			return (ENOMEM);
8513 
8514 		if (lc->link_ok) {
8515 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8516 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8517 		} else {
8518 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8519 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8520 		}
8521 		rc = sbuf_finish(sb);
8522 		sbuf_delete(sb);
8523 	} else {
8524 		char s[2];
8525 		int n;
8526 
8527 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8528 		    PAUSE_AUTONEG));
8529 		s[1] = 0;
8530 
8531 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8532 		if (rc != 0)
8533 			return(rc);
8534 
8535 		if (s[1] != 0)
8536 			return (EINVAL);
8537 		if (s[0] < '0' || s[0] > '9')
8538 			return (EINVAL);	/* not a number */
8539 		n = s[0] - '0';
8540 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8541 			return (EINVAL);	/* some other bit is set too */
8542 
8543 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8544 		    "t4PAUSE");
8545 		if (rc)
8546 			return (rc);
8547 		if (!hw_off_limits(sc)) {
8548 			PORT_LOCK(pi);
8549 			lc->requested_fc = n;
8550 			fixup_link_config(pi);
8551 			if (pi->up_vis > 0)
8552 				rc = apply_link_config(pi);
8553 			set_current_media(pi);
8554 			PORT_UNLOCK(pi);
8555 		}
8556 		end_synchronized_op(sc, 0);
8557 	}
8558 
8559 	return (rc);
8560 }
8561 
8562 static int
8563 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8564 {
8565 	struct port_info *pi = arg1;
8566 	struct link_config *lc = &pi->link_cfg;
8567 	int rc;
8568 	struct sbuf *sb;
8569 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8570 
8571 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8572 	if (sb == NULL)
8573 		return (ENOMEM);
8574 	if (lc->link_ok)
8575 		sbuf_printf(sb, "%b", lc->fec, bits);
8576 	else
8577 		sbuf_printf(sb, "no link");
8578 	rc = sbuf_finish(sb);
8579 	sbuf_delete(sb);
8580 
8581 	return (rc);
8582 }
8583 
8584 static int
8585 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8586 {
8587 	struct port_info *pi = arg1;
8588 	struct adapter *sc = pi->adapter;
8589 	struct link_config *lc = &pi->link_cfg;
8590 	int rc;
8591 	int8_t old;
8592 
8593 	if (req->newptr == NULL) {
8594 		struct sbuf *sb;
8595 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8596 		    "\5RSVD3\6auto\7module";
8597 
8598 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8599 		if (sb == NULL)
8600 			return (ENOMEM);
8601 
8602 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8603 		rc = sbuf_finish(sb);
8604 		sbuf_delete(sb);
8605 	} else {
8606 		char s[8];
8607 		int n;
8608 
8609 		snprintf(s, sizeof(s), "%d",
8610 		    lc->requested_fec == FEC_AUTO ? -1 :
8611 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8612 
8613 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8614 		if (rc != 0)
8615 			return(rc);
8616 
8617 		n = strtol(&s[0], NULL, 0);
8618 		if (n < 0 || n & FEC_AUTO)
8619 			n = FEC_AUTO;
8620 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8621 			return (EINVAL);/* some other bit is set too */
8622 
8623 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8624 		    "t4reqf");
8625 		if (rc)
8626 			return (rc);
8627 		PORT_LOCK(pi);
8628 		old = lc->requested_fec;
8629 		if (n == FEC_AUTO)
8630 			lc->requested_fec = FEC_AUTO;
8631 		else if (n == 0 || n == FEC_NONE)
8632 			lc->requested_fec = FEC_NONE;
8633 		else {
8634 			if ((lc->pcaps |
8635 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8636 			    lc->pcaps) {
8637 				rc = ENOTSUP;
8638 				goto done;
8639 			}
8640 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8641 			    FEC_MODULE);
8642 		}
8643 		if (!hw_off_limits(sc)) {
8644 			fixup_link_config(pi);
8645 			if (pi->up_vis > 0) {
8646 				rc = apply_link_config(pi);
8647 				if (rc != 0) {
8648 					lc->requested_fec = old;
8649 					if (rc == FW_EPROTO)
8650 						rc = ENOTSUP;
8651 				}
8652 			}
8653 		}
8654 done:
8655 		PORT_UNLOCK(pi);
8656 		end_synchronized_op(sc, 0);
8657 	}
8658 
8659 	return (rc);
8660 }
8661 
8662 static int
8663 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8664 {
8665 	struct port_info *pi = arg1;
8666 	struct adapter *sc = pi->adapter;
8667 	struct link_config *lc = &pi->link_cfg;
8668 	int rc;
8669 	int8_t fec;
8670 	struct sbuf *sb;
8671 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8672 
8673 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8674 	if (sb == NULL)
8675 		return (ENOMEM);
8676 
8677 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8678 		rc = EBUSY;
8679 		goto done;
8680 	}
8681 	if (hw_off_limits(sc)) {
8682 		rc = ENXIO;
8683 		goto done;
8684 	}
8685 	PORT_LOCK(pi);
8686 	if (pi->up_vis == 0) {
8687 		/*
8688 		 * If all the interfaces are administratively down the firmware
8689 		 * does not report transceiver changes.  Refresh port info here.
8690 		 * This is the only reason we have a synchronized op in this
8691 		 * function.  Just PORT_LOCK would have been enough otherwise.
8692 		 */
8693 		t4_update_port_info(pi);
8694 	}
8695 
8696 	fec = lc->fec_hint;
8697 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8698 	    !fec_supported(lc->pcaps)) {
8699 		PORT_UNLOCK(pi);
8700 		sbuf_printf(sb, "n/a");
8701 	} else {
8702 		if (fec == 0)
8703 			fec = FEC_NONE;
8704 		PORT_UNLOCK(pi);
8705 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8706 	}
8707 	rc = sbuf_finish(sb);
8708 done:
8709 	sbuf_delete(sb);
8710 	end_synchronized_op(sc, 0);
8711 
8712 	return (rc);
8713 }
8714 
8715 static int
8716 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8717 {
8718 	struct port_info *pi = arg1;
8719 	struct adapter *sc = pi->adapter;
8720 	struct link_config *lc = &pi->link_cfg;
8721 	int rc, val;
8722 
8723 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8724 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8725 	else
8726 		val = -1;
8727 	rc = sysctl_handle_int(oidp, &val, 0, req);
8728 	if (rc != 0 || req->newptr == NULL)
8729 		return (rc);
8730 	if (val == 0)
8731 		val = AUTONEG_DISABLE;
8732 	else if (val == 1)
8733 		val = AUTONEG_ENABLE;
8734 	else
8735 		val = AUTONEG_AUTO;
8736 
8737 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8738 	    "t4aneg");
8739 	if (rc)
8740 		return (rc);
8741 	PORT_LOCK(pi);
8742 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8743 		rc = ENOTSUP;
8744 		goto done;
8745 	}
8746 	lc->requested_aneg = val;
8747 	if (!hw_off_limits(sc)) {
8748 		fixup_link_config(pi);
8749 		if (pi->up_vis > 0)
8750 			rc = apply_link_config(pi);
8751 		set_current_media(pi);
8752 	}
8753 done:
8754 	PORT_UNLOCK(pi);
8755 	end_synchronized_op(sc, 0);
8756 	return (rc);
8757 }
8758 
8759 static int
8760 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8761 {
8762 	struct port_info *pi = arg1;
8763 	struct adapter *sc = pi->adapter;
8764 	struct link_config *lc = &pi->link_cfg;
8765 	int rc, val;
8766 
8767 	val = lc->force_fec;
8768 	MPASS(val >= -1 && val <= 1);
8769 	rc = sysctl_handle_int(oidp, &val, 0, req);
8770 	if (rc != 0 || req->newptr == NULL)
8771 		return (rc);
8772 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8773 		return (ENOTSUP);
8774 	if (val < -1 || val > 1)
8775 		return (EINVAL);
8776 
8777 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8778 	if (rc)
8779 		return (rc);
8780 	PORT_LOCK(pi);
8781 	lc->force_fec = val;
8782 	if (!hw_off_limits(sc)) {
8783 		fixup_link_config(pi);
8784 		if (pi->up_vis > 0)
8785 			rc = apply_link_config(pi);
8786 	}
8787 	PORT_UNLOCK(pi);
8788 	end_synchronized_op(sc, 0);
8789 	return (rc);
8790 }
8791 
8792 static int
8793 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8794 {
8795 	struct adapter *sc = arg1;
8796 	int rc, reg = arg2;
8797 	uint64_t val;
8798 
8799 	mtx_lock(&sc->reg_lock);
8800 	if (hw_off_limits(sc))
8801 		rc = ENXIO;
8802 	else {
8803 		rc = 0;
8804 		val = t4_read_reg64(sc, reg);
8805 	}
8806 	mtx_unlock(&sc->reg_lock);
8807 	if (rc == 0)
8808 		rc = sysctl_handle_64(oidp, &val, 0, req);
8809 	return (rc);
8810 }
8811 
8812 static int
8813 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8814 {
8815 	struct adapter *sc = arg1;
8816 	int rc, t;
8817 	uint32_t param, val;
8818 
8819 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8820 	if (rc)
8821 		return (rc);
8822 	if (hw_off_limits(sc))
8823 		rc = ENXIO;
8824 	else {
8825 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8826 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8827 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8828 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8829 	}
8830 	end_synchronized_op(sc, 0);
8831 	if (rc)
8832 		return (rc);
8833 
8834 	/* unknown is returned as 0 but we display -1 in that case */
8835 	t = val == 0 ? -1 : val;
8836 
8837 	rc = sysctl_handle_int(oidp, &t, 0, req);
8838 	return (rc);
8839 }
8840 
8841 static int
8842 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8843 {
8844 	struct adapter *sc = arg1;
8845 	int rc;
8846 	uint32_t param, val;
8847 
8848 	if (sc->params.core_vdd == 0) {
8849 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8850 		    "t4vdd");
8851 		if (rc)
8852 			return (rc);
8853 		if (hw_off_limits(sc))
8854 			rc = ENXIO;
8855 		else {
8856 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8857 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8858 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8859 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8860 			    &param, &val);
8861 		}
8862 		end_synchronized_op(sc, 0);
8863 		if (rc)
8864 			return (rc);
8865 		sc->params.core_vdd = val;
8866 	}
8867 
8868 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8869 }
8870 
8871 static int
8872 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8873 {
8874 	struct adapter *sc = arg1;
8875 	int rc, v;
8876 	uint32_t param, val;
8877 
8878 	v = sc->sensor_resets;
8879 	rc = sysctl_handle_int(oidp, &v, 0, req);
8880 	if (rc != 0 || req->newptr == NULL || v <= 0)
8881 		return (rc);
8882 
8883 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8884 	    chip_id(sc) < CHELSIO_T5)
8885 		return (ENOTSUP);
8886 
8887 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8888 	if (rc)
8889 		return (rc);
8890 	if (hw_off_limits(sc))
8891 		rc = ENXIO;
8892 	else {
8893 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8894 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8895 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8896 		val = 1;
8897 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8898 	}
8899 	end_synchronized_op(sc, 0);
8900 	if (rc == 0)
8901 		sc->sensor_resets++;
8902 	return (rc);
8903 }
8904 
8905 static int
8906 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8907 {
8908 	struct adapter *sc = arg1;
8909 	struct sbuf *sb;
8910 	int rc;
8911 	uint32_t param, val;
8912 
8913 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8914 	if (rc)
8915 		return (rc);
8916 	if (hw_off_limits(sc))
8917 		rc = ENXIO;
8918 	else {
8919 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8920 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8921 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8922 	}
8923 	end_synchronized_op(sc, 0);
8924 	if (rc)
8925 		return (rc);
8926 
8927 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8928 	if (sb == NULL)
8929 		return (ENOMEM);
8930 
8931 	if (val == 0xffffffff) {
8932 		/* Only debug and custom firmwares report load averages. */
8933 		sbuf_printf(sb, "not available");
8934 	} else {
8935 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8936 		    (val >> 16) & 0xff);
8937 	}
8938 	rc = sbuf_finish(sb);
8939 	sbuf_delete(sb);
8940 
8941 	return (rc);
8942 }
8943 
8944 static int
8945 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8946 {
8947 	struct adapter *sc = arg1;
8948 	struct sbuf *sb;
8949 	int rc, i;
8950 	uint16_t incr[NMTUS][NCCTRL_WIN];
8951 	static const char *dec_fac[] = {
8952 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8953 		"0.9375"
8954 	};
8955 
8956 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8957 	if (sb == NULL)
8958 		return (ENOMEM);
8959 
8960 	rc = 0;
8961 	mtx_lock(&sc->reg_lock);
8962 	if (hw_off_limits(sc))
8963 		rc = ENXIO;
8964 	else
8965 		t4_read_cong_tbl(sc, incr);
8966 	mtx_unlock(&sc->reg_lock);
8967 	if (rc)
8968 		goto done;
8969 
8970 	for (i = 0; i < NCCTRL_WIN; ++i) {
8971 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8972 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8973 		    incr[5][i], incr[6][i], incr[7][i]);
8974 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8975 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8976 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8977 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8978 	}
8979 
8980 	rc = sbuf_finish(sb);
8981 done:
8982 	sbuf_delete(sb);
8983 	return (rc);
8984 }
8985 
8986 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8987 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8988 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8989 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8990 };
8991 
8992 static int
8993 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8994 {
8995 	struct adapter *sc = arg1;
8996 	struct sbuf *sb;
8997 	int rc, i, n, qid = arg2;
8998 	uint32_t *buf, *p;
8999 	char *qtype;
9000 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
9001 
9002 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9003 	    ("%s: bad qid %d\n", __func__, qid));
9004 
9005 	if (qid < CIM_NUM_IBQ) {
9006 		/* inbound queue */
9007 		qtype = "IBQ";
9008 		n = 4 * CIM_IBQ_SIZE;
9009 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9010 		mtx_lock(&sc->reg_lock);
9011 		if (hw_off_limits(sc))
9012 			rc = -ENXIO;
9013 		else
9014 			rc = t4_read_cim_ibq(sc, qid, buf, n);
9015 		mtx_unlock(&sc->reg_lock);
9016 	} else {
9017 		/* outbound queue */
9018 		qtype = "OBQ";
9019 		qid -= CIM_NUM_IBQ;
9020 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9021 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9022 		mtx_lock(&sc->reg_lock);
9023 		if (hw_off_limits(sc))
9024 			rc = -ENXIO;
9025 		else
9026 			rc = t4_read_cim_obq(sc, qid, buf, n);
9027 		mtx_unlock(&sc->reg_lock);
9028 	}
9029 
9030 	if (rc < 0) {
9031 		rc = -rc;
9032 		goto done;
9033 	}
9034 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
9035 
9036 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9037 	if (sb == NULL) {
9038 		rc = ENOMEM;
9039 		goto done;
9040 	}
9041 
9042 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9043 	for (i = 0, p = buf; i < n; i += 16, p += 4)
9044 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9045 		    p[2], p[3]);
9046 
9047 	rc = sbuf_finish(sb);
9048 	sbuf_delete(sb);
9049 done:
9050 	free(buf, M_CXGBE);
9051 	return (rc);
9052 }
9053 
9054 static void
9055 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9056 {
9057 	uint32_t *p;
9058 
9059 	sbuf_printf(sb, "Status   Data      PC%s",
9060 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9061 	    "     LS0Stat  LS0Addr             LS0Data");
9062 
9063 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9064 		if (cfg & F_UPDBGLACAPTPCONLY) {
9065 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
9066 			    p[6], p[7]);
9067 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
9068 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9069 			    p[4] & 0xff, p[5] >> 8);
9070 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
9071 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9072 			    p[1] & 0xf, p[2] >> 4);
9073 		} else {
9074 			sbuf_printf(sb,
9075 			    "\n  %02x   %x%07x %x%07x %08x %08x "
9076 			    "%08x%08x%08x%08x",
9077 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9078 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9079 			    p[6], p[7]);
9080 		}
9081 	}
9082 }
9083 
9084 static void
9085 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9086 {
9087 	uint32_t *p;
9088 
9089 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9090 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9091 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9092 
9093 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9094 		if (cfg & F_UPDBGLACAPTPCONLY) {
9095 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9096 			    p[3] & 0xff, p[2], p[1], p[0]);
9097 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9098 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9099 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9100 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9101 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9102 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9103 			    p[6] >> 16);
9104 		} else {
9105 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9106 			    "%08x %08x %08x %08x %08x %08x",
9107 			    (p[9] >> 16) & 0xff,
9108 			    p[9] & 0xffff, p[8] >> 16,
9109 			    p[8] & 0xffff, p[7] >> 16,
9110 			    p[7] & 0xffff, p[6] >> 16,
9111 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9112 		}
9113 	}
9114 }
9115 
9116 static int
9117 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9118 {
9119 	uint32_t cfg, *buf;
9120 	int rc;
9121 
9122 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9123 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9124 	    M_ZERO | flags);
9125 	if (buf == NULL)
9126 		return (ENOMEM);
9127 
9128 	mtx_lock(&sc->reg_lock);
9129 	if (hw_off_limits(sc))
9130 		rc = ENXIO;
9131 	else {
9132 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9133 		if (rc == 0)
9134 			rc = -t4_cim_read_la(sc, buf, NULL);
9135 	}
9136 	mtx_unlock(&sc->reg_lock);
9137 	if (rc == 0) {
9138 		if (chip_id(sc) < CHELSIO_T6)
9139 			sbuf_cim_la4(sc, sb, buf, cfg);
9140 		else
9141 			sbuf_cim_la6(sc, sb, buf, cfg);
9142 	}
9143 	free(buf, M_CXGBE);
9144 	return (rc);
9145 }
9146 
9147 static int
9148 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9149 {
9150 	struct adapter *sc = arg1;
9151 	struct sbuf *sb;
9152 	int rc;
9153 
9154 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9155 	if (sb == NULL)
9156 		return (ENOMEM);
9157 
9158 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9159 	if (rc == 0)
9160 		rc = sbuf_finish(sb);
9161 	sbuf_delete(sb);
9162 	return (rc);
9163 }
9164 
9165 static void
9166 dump_cim_regs(struct adapter *sc)
9167 {
9168 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9169 	    device_get_nameunit(sc->dev),
9170 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9171 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9172 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9173 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9174 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9175 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9176 	    device_get_nameunit(sc->dev),
9177 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9178 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9179 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9180 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9181 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9182 }
9183 
9184 static void
9185 dump_cimla(struct adapter *sc)
9186 {
9187 	struct sbuf sb;
9188 	int rc;
9189 
9190 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9191 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9192 		    device_get_nameunit(sc->dev));
9193 		return;
9194 	}
9195 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9196 	if (rc == 0) {
9197 		rc = sbuf_finish(&sb);
9198 		if (rc == 0) {
9199 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9200 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9201 		}
9202 	}
9203 	sbuf_delete(&sb);
9204 }
9205 
9206 void
9207 t4_os_cim_err(struct adapter *sc)
9208 {
9209 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9210 }
9211 
9212 static int
9213 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9214 {
9215 	struct adapter *sc = arg1;
9216 	u_int i;
9217 	struct sbuf *sb;
9218 	uint32_t *buf, *p;
9219 	int rc;
9220 
9221 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9222 	if (sb == NULL)
9223 		return (ENOMEM);
9224 
9225 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9226 	    M_ZERO | M_WAITOK);
9227 
9228 	rc = 0;
9229 	mtx_lock(&sc->reg_lock);
9230 	if (hw_off_limits(sc))
9231 		rc = ENXIO;
9232 	else
9233 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9234 	mtx_unlock(&sc->reg_lock);
9235 	if (rc)
9236 		goto done;
9237 
9238 	p = buf;
9239 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9240 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9241 		    p[1], p[0]);
9242 	}
9243 
9244 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9245 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9246 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9247 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9248 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9249 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9250 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9251 		    p[0] & 1);
9252 	}
9253 	rc = sbuf_finish(sb);
9254 done:
9255 	sbuf_delete(sb);
9256 	free(buf, M_CXGBE);
9257 	return (rc);
9258 }
9259 
9260 static int
9261 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9262 {
9263 	struct adapter *sc = arg1;
9264 	u_int i;
9265 	struct sbuf *sb;
9266 	uint32_t *buf, *p;
9267 	int rc;
9268 
9269 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9270 	if (sb == NULL)
9271 		return (ENOMEM);
9272 
9273 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9274 	    M_ZERO | M_WAITOK);
9275 
9276 	rc = 0;
9277 	mtx_lock(&sc->reg_lock);
9278 	if (hw_off_limits(sc))
9279 		rc = ENXIO;
9280 	else
9281 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9282 	mtx_unlock(&sc->reg_lock);
9283 	if (rc)
9284 		goto done;
9285 
9286 	p = buf;
9287 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9288 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9289 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9290 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9291 		    p[4], p[3], p[2], p[1], p[0]);
9292 	}
9293 
9294 	sbuf_printf(sb, "\n\nCntl ID               Data");
9295 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9296 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9297 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9298 	}
9299 
9300 	rc = sbuf_finish(sb);
9301 done:
9302 	sbuf_delete(sb);
9303 	free(buf, M_CXGBE);
9304 	return (rc);
9305 }
9306 
9307 static int
9308 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9309 {
9310 	struct adapter *sc = arg1;
9311 	struct sbuf *sb;
9312 	int rc, i;
9313 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9314 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9315 	uint16_t thres[CIM_NUM_IBQ];
9316 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9317 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9318 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9319 
9320 	cim_num_obq = sc->chip_params->cim_num_obq;
9321 	if (is_t4(sc)) {
9322 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9323 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9324 	} else {
9325 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9326 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9327 	}
9328 	nq = CIM_NUM_IBQ + cim_num_obq;
9329 
9330 	mtx_lock(&sc->reg_lock);
9331 	if (hw_off_limits(sc))
9332 		rc = ENXIO;
9333 	else {
9334 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9335 		if (rc == 0) {
9336 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9337 			    obq_wr);
9338 			if (rc == 0)
9339 				t4_read_cimq_cfg(sc, base, size, thres);
9340 		}
9341 	}
9342 	mtx_unlock(&sc->reg_lock);
9343 	if (rc)
9344 		return (rc);
9345 
9346 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9347 	if (sb == NULL)
9348 		return (ENOMEM);
9349 
9350 	sbuf_printf(sb,
9351 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9352 
9353 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9354 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9355 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9356 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9357 		    G_QUEREMFLITS(p[2]) * 16);
9358 	for ( ; i < nq; i++, p += 4, wr += 2)
9359 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9360 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9361 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9362 		    G_QUEREMFLITS(p[2]) * 16);
9363 
9364 	rc = sbuf_finish(sb);
9365 	sbuf_delete(sb);
9366 
9367 	return (rc);
9368 }
9369 
9370 static int
9371 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9372 {
9373 	struct adapter *sc = arg1;
9374 	struct sbuf *sb;
9375 	int rc;
9376 	struct tp_cpl_stats stats;
9377 
9378 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9379 	if (sb == NULL)
9380 		return (ENOMEM);
9381 
9382 	rc = 0;
9383 	mtx_lock(&sc->reg_lock);
9384 	if (hw_off_limits(sc))
9385 		rc = ENXIO;
9386 	else
9387 		t4_tp_get_cpl_stats(sc, &stats, 0);
9388 	mtx_unlock(&sc->reg_lock);
9389 	if (rc)
9390 		goto done;
9391 
9392 	if (sc->chip_params->nchan > 2) {
9393 		sbuf_printf(sb, "                 channel 0  channel 1"
9394 		    "  channel 2  channel 3");
9395 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9396 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9397 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9398 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9399 	} else {
9400 		sbuf_printf(sb, "                 channel 0  channel 1");
9401 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9402 		    stats.req[0], stats.req[1]);
9403 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9404 		    stats.rsp[0], stats.rsp[1]);
9405 	}
9406 
9407 	rc = sbuf_finish(sb);
9408 done:
9409 	sbuf_delete(sb);
9410 	return (rc);
9411 }
9412 
9413 static int
9414 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9415 {
9416 	struct adapter *sc = arg1;
9417 	struct sbuf *sb;
9418 	int rc;
9419 	struct tp_usm_stats stats;
9420 
9421 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9422 	if (sb == NULL)
9423 		return (ENOMEM);
9424 
9425 	rc = 0;
9426 	mtx_lock(&sc->reg_lock);
9427 	if (hw_off_limits(sc))
9428 		rc = ENXIO;
9429 	else
9430 		t4_get_usm_stats(sc, &stats, 1);
9431 	mtx_unlock(&sc->reg_lock);
9432 	if (rc == 0) {
9433 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9434 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9435 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9436 		rc = sbuf_finish(sb);
9437 	}
9438 	sbuf_delete(sb);
9439 
9440 	return (rc);
9441 }
9442 
9443 static int
9444 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9445 {
9446 	struct adapter *sc = arg1;
9447 	struct sbuf *sb;
9448 	int rc;
9449 	struct tp_tid_stats stats;
9450 
9451 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9452 	if (sb == NULL)
9453 		return (ENOMEM);
9454 
9455 	rc = 0;
9456 	mtx_lock(&sc->reg_lock);
9457 	if (hw_off_limits(sc))
9458 		rc = ENXIO;
9459 	else
9460 		t4_tp_get_tid_stats(sc, &stats, 1);
9461 	mtx_unlock(&sc->reg_lock);
9462 	if (rc == 0) {
9463 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9464 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9465 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9466 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9467 		rc = sbuf_finish(sb);
9468 	}
9469 	sbuf_delete(sb);
9470 
9471 	return (rc);
9472 }
9473 
9474 static const char * const devlog_level_strings[] = {
9475 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9476 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9477 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9478 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9479 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9480 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9481 };
9482 
9483 static const char * const devlog_facility_strings[] = {
9484 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9485 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9486 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9487 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9488 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9489 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9490 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9491 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9492 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9493 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9494 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9495 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9496 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9497 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9498 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9499 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9500 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9501 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9502 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9503 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9504 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9505 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9506 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9507 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9508 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9509 };
9510 
9511 static int
9512 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9513 {
9514 	int i, j, rc, nentries, first = 0;
9515 	struct devlog_params *dparams = &sc->params.devlog;
9516 	struct fw_devlog_e *buf, *e;
9517 	uint64_t ftstamp = UINT64_MAX;
9518 
9519 	if (dparams->addr == 0)
9520 		return (ENXIO);
9521 
9522 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9523 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9524 	if (buf == NULL)
9525 		return (ENOMEM);
9526 
9527 	mtx_lock(&sc->reg_lock);
9528 	if (hw_off_limits(sc))
9529 		rc = ENXIO;
9530 	else
9531 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9532 		    dparams->size);
9533 	mtx_unlock(&sc->reg_lock);
9534 	if (rc != 0)
9535 		goto done;
9536 
9537 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9538 	for (i = 0; i < nentries; i++) {
9539 		e = &buf[i];
9540 
9541 		if (e->timestamp == 0)
9542 			break;	/* end */
9543 
9544 		e->timestamp = be64toh(e->timestamp);
9545 		e->seqno = be32toh(e->seqno);
9546 		for (j = 0; j < 8; j++)
9547 			e->params[j] = be32toh(e->params[j]);
9548 
9549 		if (e->timestamp < ftstamp) {
9550 			ftstamp = e->timestamp;
9551 			first = i;
9552 		}
9553 	}
9554 
9555 	if (buf[first].timestamp == 0)
9556 		goto done;	/* nothing in the log */
9557 
9558 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9559 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9560 
9561 	i = first;
9562 	do {
9563 		e = &buf[i];
9564 		if (e->timestamp == 0)
9565 			break;	/* end */
9566 
9567 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9568 		    e->seqno, e->timestamp,
9569 		    (e->level < nitems(devlog_level_strings) ?
9570 			devlog_level_strings[e->level] : "UNKNOWN"),
9571 		    (e->facility < nitems(devlog_facility_strings) ?
9572 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9573 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9574 		    e->params[2], e->params[3], e->params[4],
9575 		    e->params[5], e->params[6], e->params[7]);
9576 
9577 		if (++i == nentries)
9578 			i = 0;
9579 	} while (i != first);
9580 done:
9581 	free(buf, M_CXGBE);
9582 	return (rc);
9583 }
9584 
9585 static int
9586 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9587 {
9588 	struct adapter *sc = arg1;
9589 	int rc;
9590 	struct sbuf *sb;
9591 
9592 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9593 	if (sb == NULL)
9594 		return (ENOMEM);
9595 
9596 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9597 	if (rc == 0)
9598 		rc = sbuf_finish(sb);
9599 	sbuf_delete(sb);
9600 	return (rc);
9601 }
9602 
9603 static void
9604 dump_devlog(struct adapter *sc)
9605 {
9606 	int rc;
9607 	struct sbuf sb;
9608 
9609 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9610 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9611 		    device_get_nameunit(sc->dev));
9612 		return;
9613 	}
9614 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9615 	if (rc == 0) {
9616 		rc = sbuf_finish(&sb);
9617 		if (rc == 0) {
9618 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9619 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9620 		}
9621 	}
9622 	sbuf_delete(&sb);
9623 }
9624 
9625 static int
9626 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9627 {
9628 	struct adapter *sc = arg1;
9629 	struct sbuf *sb;
9630 	int rc;
9631 	struct tp_fcoe_stats stats[MAX_NCHAN];
9632 	int i, nchan = sc->chip_params->nchan;
9633 
9634 	rc = 0;
9635 	mtx_lock(&sc->reg_lock);
9636 	if (hw_off_limits(sc))
9637 		rc = ENXIO;
9638 	else {
9639 		for (i = 0; i < nchan; i++)
9640 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9641 	}
9642 	mtx_unlock(&sc->reg_lock);
9643 	if (rc != 0)
9644 		return (rc);
9645 
9646 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9647 	if (sb == NULL)
9648 		return (ENOMEM);
9649 
9650 	if (nchan > 2) {
9651 		sbuf_printf(sb, "                   channel 0        channel 1"
9652 		    "        channel 2        channel 3");
9653 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9654 		    stats[0].octets_ddp, stats[1].octets_ddp,
9655 		    stats[2].octets_ddp, stats[3].octets_ddp);
9656 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9657 		    stats[0].frames_ddp, stats[1].frames_ddp,
9658 		    stats[2].frames_ddp, stats[3].frames_ddp);
9659 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9660 		    stats[0].frames_drop, stats[1].frames_drop,
9661 		    stats[2].frames_drop, stats[3].frames_drop);
9662 	} else {
9663 		sbuf_printf(sb, "                   channel 0        channel 1");
9664 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9665 		    stats[0].octets_ddp, stats[1].octets_ddp);
9666 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9667 		    stats[0].frames_ddp, stats[1].frames_ddp);
9668 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9669 		    stats[0].frames_drop, stats[1].frames_drop);
9670 	}
9671 
9672 	rc = sbuf_finish(sb);
9673 	sbuf_delete(sb);
9674 
9675 	return (rc);
9676 }
9677 
9678 static int
9679 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9680 {
9681 	struct adapter *sc = arg1;
9682 	struct sbuf *sb;
9683 	int rc, i;
9684 	unsigned int map, kbps, ipg, mode;
9685 	unsigned int pace_tab[NTX_SCHED];
9686 
9687 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9688 	if (sb == NULL)
9689 		return (ENOMEM);
9690 
9691 	mtx_lock(&sc->reg_lock);
9692 	if (hw_off_limits(sc)) {
9693 		mtx_unlock(&sc->reg_lock);
9694 		rc = ENXIO;
9695 		goto done;
9696 	}
9697 
9698 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9699 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9700 	t4_read_pace_tbl(sc, pace_tab);
9701 	mtx_unlock(&sc->reg_lock);
9702 
9703 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9704 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9705 
9706 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9707 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9708 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9709 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9710 		if (kbps)
9711 			sbuf_printf(sb, "%9u     ", kbps);
9712 		else
9713 			sbuf_printf(sb, " disabled     ");
9714 
9715 		if (ipg)
9716 			sbuf_printf(sb, "%13u        ", ipg);
9717 		else
9718 			sbuf_printf(sb, "     disabled        ");
9719 
9720 		if (pace_tab[i])
9721 			sbuf_printf(sb, "%10u", pace_tab[i]);
9722 		else
9723 			sbuf_printf(sb, "  disabled");
9724 	}
9725 	rc = sbuf_finish(sb);
9726 done:
9727 	sbuf_delete(sb);
9728 	return (rc);
9729 }
9730 
9731 static int
9732 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9733 {
9734 	struct adapter *sc = arg1;
9735 	struct sbuf *sb;
9736 	int rc, i, j;
9737 	uint64_t *p0, *p1;
9738 	struct lb_port_stats s[2];
9739 	static const char *stat_name[] = {
9740 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9741 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9742 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9743 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9744 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9745 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9746 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9747 	};
9748 
9749 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9750 	if (sb == NULL)
9751 		return (ENOMEM);
9752 
9753 	memset(s, 0, sizeof(s));
9754 
9755 	rc = 0;
9756 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9757 		mtx_lock(&sc->reg_lock);
9758 		if (hw_off_limits(sc))
9759 			rc = ENXIO;
9760 		else {
9761 			t4_get_lb_stats(sc, i, &s[0]);
9762 			t4_get_lb_stats(sc, i + 1, &s[1]);
9763 		}
9764 		mtx_unlock(&sc->reg_lock);
9765 		if (rc != 0)
9766 			break;
9767 
9768 		p0 = &s[0].octets;
9769 		p1 = &s[1].octets;
9770 		sbuf_printf(sb, "%s                       Loopback %u"
9771 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9772 
9773 		for (j = 0; j < nitems(stat_name); j++)
9774 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9775 				   *p0++, *p1++);
9776 	}
9777 
9778 	if (rc == 0)
9779 		rc = sbuf_finish(sb);
9780 	sbuf_delete(sb);
9781 
9782 	return (rc);
9783 }
9784 
9785 static int
9786 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9787 {
9788 	int rc = 0;
9789 	struct port_info *pi = arg1;
9790 	struct link_config *lc = &pi->link_cfg;
9791 	struct sbuf *sb;
9792 
9793 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9794 	if (sb == NULL)
9795 		return (ENOMEM);
9796 
9797 	if (lc->link_ok || lc->link_down_rc == 255)
9798 		sbuf_printf(sb, "n/a");
9799 	else
9800 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9801 
9802 	rc = sbuf_finish(sb);
9803 	sbuf_delete(sb);
9804 
9805 	return (rc);
9806 }
9807 
9808 struct mem_desc {
9809 	u_int base;
9810 	u_int limit;
9811 	u_int idx;
9812 };
9813 
9814 static int
9815 mem_desc_cmp(const void *a, const void *b)
9816 {
9817 	const u_int v1 = ((const struct mem_desc *)a)->base;
9818 	const u_int v2 = ((const struct mem_desc *)b)->base;
9819 
9820 	if (v1 < v2)
9821 		return (-1);
9822 	else if (v1 > v2)
9823 		return (1);
9824 
9825 	return (0);
9826 }
9827 
9828 static void
9829 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9830     unsigned int to)
9831 {
9832 	unsigned int size;
9833 
9834 	if (from == to)
9835 		return;
9836 
9837 	size = to - from + 1;
9838 	if (size == 0)
9839 		return;
9840 
9841 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9842 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9843 }
9844 
9845 static int
9846 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9847 {
9848 	struct adapter *sc = arg1;
9849 	struct sbuf *sb;
9850 	int rc, i, n;
9851 	uint32_t lo, hi, used, free, alloc;
9852 	static const char *memory[] = {
9853 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9854 	};
9855 	static const char *region[] = {
9856 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9857 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9858 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9859 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9860 		"RQUDP region:", "PBL region:", "TXPBL region:",
9861 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9862 		"ULPTX state:", "On-chip queues:",
9863 	};
9864 	struct mem_desc avail[4];
9865 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9866 	struct mem_desc *md = mem;
9867 
9868 	rc = sysctl_wire_old_buffer(req, 0);
9869 	if (rc != 0)
9870 		return (rc);
9871 
9872 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9873 	if (sb == NULL)
9874 		return (ENOMEM);
9875 
9876 	for (i = 0; i < nitems(mem); i++) {
9877 		mem[i].limit = 0;
9878 		mem[i].idx = i;
9879 	}
9880 
9881 	mtx_lock(&sc->reg_lock);
9882 	if (hw_off_limits(sc)) {
9883 		rc = ENXIO;
9884 		goto done;
9885 	}
9886 
9887 	/* Find and sort the populated memory ranges */
9888 	i = 0;
9889 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9890 	if (lo & F_EDRAM0_ENABLE) {
9891 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9892 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9893 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9894 		avail[i].idx = 0;
9895 		i++;
9896 	}
9897 	if (lo & F_EDRAM1_ENABLE) {
9898 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9899 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9900 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9901 		avail[i].idx = 1;
9902 		i++;
9903 	}
9904 	if (lo & F_EXT_MEM_ENABLE) {
9905 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9906 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9907 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9908 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9909 		i++;
9910 	}
9911 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9912 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9913 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9914 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9915 		avail[i].idx = 4;
9916 		i++;
9917 	}
9918 	if (is_t6(sc) && lo & F_HMA_MUX) {
9919 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9920 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9921 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9922 		avail[i].idx = 5;
9923 		i++;
9924 	}
9925 	MPASS(i <= nitems(avail));
9926 	if (!i)                                    /* no memory available */
9927 		goto done;
9928 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9929 
9930 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9931 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9932 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9933 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9934 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9935 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9936 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9937 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9938 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9939 
9940 	/* the next few have explicit upper bounds */
9941 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9942 	md->limit = md->base - 1 +
9943 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9944 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9945 	md++;
9946 
9947 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9948 	md->limit = md->base - 1 +
9949 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9950 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9951 	md++;
9952 
9953 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9954 		if (chip_id(sc) <= CHELSIO_T5)
9955 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9956 		else
9957 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9958 		md->limit = 0;
9959 	} else {
9960 		md->base = 0;
9961 		md->idx = nitems(region);  /* hide it */
9962 	}
9963 	md++;
9964 
9965 #define ulp_region(reg) \
9966 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9967 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9968 
9969 	ulp_region(RX_ISCSI);
9970 	ulp_region(RX_TDDP);
9971 	ulp_region(TX_TPT);
9972 	ulp_region(RX_STAG);
9973 	ulp_region(RX_RQ);
9974 	ulp_region(RX_RQUDP);
9975 	ulp_region(RX_PBL);
9976 	ulp_region(TX_PBL);
9977 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9978 		ulp_region(RX_TLS_KEY);
9979 	}
9980 #undef ulp_region
9981 
9982 	md->base = 0;
9983 	if (is_t4(sc))
9984 		md->idx = nitems(region);
9985 	else {
9986 		uint32_t size = 0;
9987 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9988 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9989 
9990 		if (is_t5(sc)) {
9991 			if (sge_ctrl & F_VFIFO_ENABLE)
9992 				size = fifo_size << 2;
9993 		} else
9994 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9995 
9996 		if (size) {
9997 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9998 			md->limit = md->base + size - 1;
9999 		} else
10000 			md->idx = nitems(region);
10001 	}
10002 	md++;
10003 
10004 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10005 	md->limit = 0;
10006 	md++;
10007 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10008 	md->limit = 0;
10009 	md++;
10010 
10011 	md->base = sc->vres.ocq.start;
10012 	if (sc->vres.ocq.size)
10013 		md->limit = md->base + sc->vres.ocq.size - 1;
10014 	else
10015 		md->idx = nitems(region);  /* hide it */
10016 	md++;
10017 
10018 	/* add any address-space holes, there can be up to 3 */
10019 	for (n = 0; n < i - 1; n++)
10020 		if (avail[n].limit < avail[n + 1].base)
10021 			(md++)->base = avail[n].limit;
10022 	if (avail[n].limit)
10023 		(md++)->base = avail[n].limit;
10024 
10025 	n = md - mem;
10026 	MPASS(n <= nitems(mem));
10027 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10028 
10029 	for (lo = 0; lo < i; lo++)
10030 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10031 				avail[lo].limit - 1);
10032 
10033 	sbuf_printf(sb, "\n");
10034 	for (i = 0; i < n; i++) {
10035 		if (mem[i].idx >= nitems(region))
10036 			continue;                        /* skip holes */
10037 		if (!mem[i].limit)
10038 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10039 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
10040 				mem[i].limit);
10041 	}
10042 
10043 	sbuf_printf(sb, "\n");
10044 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10045 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10046 	mem_region_show(sb, "uP RAM:", lo, hi);
10047 
10048 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10049 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10050 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10051 
10052 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10053 	for (i = 0, free = 0; i < 2; i++)
10054 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10055 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10056 		   G_PMRXMAXPAGE(lo), free,
10057 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10058 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10059 
10060 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10061 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10062 	for (i = 0, free = 0; i < 4; i++)
10063 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10064 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10065 		   G_PMTXMAXPAGE(lo), free,
10066 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10067 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10068 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10069 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10070 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10071 
10072 	for (i = 0; i < 4; i++) {
10073 		if (chip_id(sc) > CHELSIO_T5)
10074 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10075 		else
10076 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10077 		if (is_t5(sc)) {
10078 			used = G_T5_USED(lo);
10079 			alloc = G_T5_ALLOC(lo);
10080 		} else {
10081 			used = G_USED(lo);
10082 			alloc = G_ALLOC(lo);
10083 		}
10084 		/* For T6 these are MAC buffer groups */
10085 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10086 		    i, used, alloc);
10087 	}
10088 	for (i = 0; i < sc->chip_params->nchan; i++) {
10089 		if (chip_id(sc) > CHELSIO_T5)
10090 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10091 		else
10092 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10093 		if (is_t5(sc)) {
10094 			used = G_T5_USED(lo);
10095 			alloc = G_T5_ALLOC(lo);
10096 		} else {
10097 			used = G_USED(lo);
10098 			alloc = G_ALLOC(lo);
10099 		}
10100 		/* For T6 these are MAC buffer groups */
10101 		sbuf_printf(sb,
10102 		    "\nLoopback %d using %u pages out of %u allocated",
10103 		    i, used, alloc);
10104 	}
10105 done:
10106 	mtx_unlock(&sc->reg_lock);
10107 	if (rc == 0)
10108 		rc = sbuf_finish(sb);
10109 	sbuf_delete(sb);
10110 	return (rc);
10111 }
10112 
10113 static inline void
10114 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10115 {
10116 	*mask = x | y;
10117 	y = htobe64(y);
10118 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10119 }
10120 
10121 static int
10122 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10123 {
10124 	struct adapter *sc = arg1;
10125 	struct sbuf *sb;
10126 	int rc, i;
10127 
10128 	MPASS(chip_id(sc) <= CHELSIO_T5);
10129 
10130 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10131 	if (sb == NULL)
10132 		return (ENOMEM);
10133 
10134 	sbuf_printf(sb,
10135 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10136 	    "  VF              Replication             P0 P1 P2 P3  ML");
10137 	rc = 0;
10138 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10139 		uint64_t tcamx, tcamy, mask;
10140 		uint32_t cls_lo, cls_hi;
10141 		uint8_t addr[ETHER_ADDR_LEN];
10142 
10143 		mtx_lock(&sc->reg_lock);
10144 		if (hw_off_limits(sc))
10145 			rc = ENXIO;
10146 		else {
10147 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10148 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10149 		}
10150 		mtx_unlock(&sc->reg_lock);
10151 		if (rc != 0)
10152 			break;
10153 		if (tcamx & tcamy)
10154 			continue;
10155 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10156 		mtx_lock(&sc->reg_lock);
10157 		if (hw_off_limits(sc))
10158 			rc = ENXIO;
10159 		else {
10160 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10161 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10162 		}
10163 		mtx_unlock(&sc->reg_lock);
10164 		if (rc != 0)
10165 			break;
10166 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10167 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10168 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10169 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10170 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10171 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10172 
10173 		if (cls_lo & F_REPLICATE) {
10174 			struct fw_ldst_cmd ldst_cmd;
10175 
10176 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10177 			ldst_cmd.op_to_addrspace =
10178 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10179 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10180 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10181 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10182 			ldst_cmd.u.mps.rplc.fid_idx =
10183 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10184 				V_FW_LDST_CMD_IDX(i));
10185 
10186 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10187 			    "t4mps");
10188 			if (rc)
10189 				break;
10190 			if (hw_off_limits(sc))
10191 				rc = ENXIO;
10192 			else
10193 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10194 				    sizeof(ldst_cmd), &ldst_cmd);
10195 			end_synchronized_op(sc, 0);
10196 			if (rc != 0)
10197 				break;
10198 			else {
10199 				sbuf_printf(sb, " %08x %08x %08x %08x",
10200 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10201 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10202 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10203 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10204 			}
10205 		} else
10206 			sbuf_printf(sb, "%36s", "");
10207 
10208 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10209 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10210 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10211 	}
10212 
10213 	if (rc)
10214 		(void) sbuf_finish(sb);
10215 	else
10216 		rc = sbuf_finish(sb);
10217 	sbuf_delete(sb);
10218 
10219 	return (rc);
10220 }
10221 
10222 static int
10223 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10224 {
10225 	struct adapter *sc = arg1;
10226 	struct sbuf *sb;
10227 	int rc, i;
10228 
10229 	MPASS(chip_id(sc) > CHELSIO_T5);
10230 
10231 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10232 	if (sb == NULL)
10233 		return (ENOMEM);
10234 
10235 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10236 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10237 	    "                           Replication"
10238 	    "                                    P0 P1 P2 P3  ML\n");
10239 
10240 	rc = 0;
10241 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10242 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10243 		uint16_t ivlan;
10244 		uint64_t tcamx, tcamy, val, mask;
10245 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10246 		uint8_t addr[ETHER_ADDR_LEN];
10247 
10248 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10249 		if (i < 256)
10250 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10251 		else
10252 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10253 		mtx_lock(&sc->reg_lock);
10254 		if (hw_off_limits(sc))
10255 			rc = ENXIO;
10256 		else {
10257 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10258 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10259 			tcamy = G_DMACH(val) << 32;
10260 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10261 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10262 		}
10263 		mtx_unlock(&sc->reg_lock);
10264 		if (rc != 0)
10265 			break;
10266 
10267 		lookup_type = G_DATALKPTYPE(data2);
10268 		port_num = G_DATAPORTNUM(data2);
10269 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10270 			/* Inner header VNI */
10271 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10272 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10273 			dip_hit = data2 & F_DATADIPHIT;
10274 			vlan_vld = 0;
10275 		} else {
10276 			vniy = 0;
10277 			dip_hit = 0;
10278 			vlan_vld = data2 & F_DATAVIDH2;
10279 			ivlan = G_VIDL(val);
10280 		}
10281 
10282 		ctl |= V_CTLXYBITSEL(1);
10283 		mtx_lock(&sc->reg_lock);
10284 		if (hw_off_limits(sc))
10285 			rc = ENXIO;
10286 		else {
10287 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10288 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10289 			tcamx = G_DMACH(val) << 32;
10290 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10291 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10292 		}
10293 		mtx_unlock(&sc->reg_lock);
10294 		if (rc != 0)
10295 			break;
10296 
10297 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10298 			/* Inner header VNI mask */
10299 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10300 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10301 		} else
10302 			vnix = 0;
10303 
10304 		if (tcamx & tcamy)
10305 			continue;
10306 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10307 
10308 		mtx_lock(&sc->reg_lock);
10309 		if (hw_off_limits(sc))
10310 			rc = ENXIO;
10311 		else {
10312 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10313 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10314 		}
10315 		mtx_unlock(&sc->reg_lock);
10316 		if (rc != 0)
10317 			break;
10318 
10319 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10320 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10321 			    "%012jx %06x %06x    -    -   %3c"
10322 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10323 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10324 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10325 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10326 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10327 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10328 		} else {
10329 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10330 			    "%012jx    -       -   ", i, addr[0], addr[1],
10331 			    addr[2], addr[3], addr[4], addr[5],
10332 			    (uintmax_t)mask);
10333 
10334 			if (vlan_vld)
10335 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10336 			else
10337 				sbuf_printf(sb, "  -    N     ");
10338 
10339 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10340 			    lookup_type ? 'I' : 'O', port_num,
10341 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10342 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10343 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10344 		}
10345 
10346 
10347 		if (cls_lo & F_T6_REPLICATE) {
10348 			struct fw_ldst_cmd ldst_cmd;
10349 
10350 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10351 			ldst_cmd.op_to_addrspace =
10352 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10353 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10354 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10355 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10356 			ldst_cmd.u.mps.rplc.fid_idx =
10357 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10358 				V_FW_LDST_CMD_IDX(i));
10359 
10360 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10361 			    "t6mps");
10362 			if (rc)
10363 				break;
10364 			if (hw_off_limits(sc))
10365 				rc = ENXIO;
10366 			else
10367 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10368 				    sizeof(ldst_cmd), &ldst_cmd);
10369 			end_synchronized_op(sc, 0);
10370 			if (rc != 0)
10371 				break;
10372 			else {
10373 				sbuf_printf(sb, " %08x %08x %08x %08x"
10374 				    " %08x %08x %08x %08x",
10375 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10376 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10377 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10378 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10379 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10380 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10381 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10382 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10383 			}
10384 		} else
10385 			sbuf_printf(sb, "%72s", "");
10386 
10387 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10388 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10389 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10390 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10391 	}
10392 
10393 	if (rc)
10394 		(void) sbuf_finish(sb);
10395 	else
10396 		rc = sbuf_finish(sb);
10397 	sbuf_delete(sb);
10398 
10399 	return (rc);
10400 }
10401 
10402 static int
10403 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10404 {
10405 	struct adapter *sc = arg1;
10406 	struct sbuf *sb;
10407 	int rc;
10408 	uint16_t mtus[NMTUS];
10409 
10410 	rc = 0;
10411 	mtx_lock(&sc->reg_lock);
10412 	if (hw_off_limits(sc))
10413 		rc = ENXIO;
10414 	else
10415 		t4_read_mtu_tbl(sc, mtus, NULL);
10416 	mtx_unlock(&sc->reg_lock);
10417 	if (rc != 0)
10418 		return (rc);
10419 
10420 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10421 	if (sb == NULL)
10422 		return (ENOMEM);
10423 
10424 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10425 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10426 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10427 	    mtus[14], mtus[15]);
10428 
10429 	rc = sbuf_finish(sb);
10430 	sbuf_delete(sb);
10431 
10432 	return (rc);
10433 }
10434 
10435 static int
10436 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10437 {
10438 	struct adapter *sc = arg1;
10439 	struct sbuf *sb;
10440 	int rc, i;
10441 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10442 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10443 	static const char *tx_stats[MAX_PM_NSTATS] = {
10444 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10445 		"Tx FIFO wait", NULL, "Tx latency"
10446 	};
10447 	static const char *rx_stats[MAX_PM_NSTATS] = {
10448 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10449 		"Rx FIFO wait", NULL, "Rx latency"
10450 	};
10451 
10452 	rc = 0;
10453 	mtx_lock(&sc->reg_lock);
10454 	if (hw_off_limits(sc))
10455 		rc = ENXIO;
10456 	else {
10457 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10458 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10459 	}
10460 	mtx_unlock(&sc->reg_lock);
10461 	if (rc != 0)
10462 		return (rc);
10463 
10464 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10465 	if (sb == NULL)
10466 		return (ENOMEM);
10467 
10468 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10469 	for (i = 0; i < 4; i++) {
10470 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10471 		    tx_cyc[i]);
10472 	}
10473 
10474 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10475 	for (i = 0; i < 4; i++) {
10476 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10477 		    rx_cyc[i]);
10478 	}
10479 
10480 	if (chip_id(sc) > CHELSIO_T5) {
10481 		sbuf_printf(sb,
10482 		    "\n              Total wait      Total occupancy");
10483 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10484 		    tx_cyc[i]);
10485 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10486 		    rx_cyc[i]);
10487 
10488 		i += 2;
10489 		MPASS(i < nitems(tx_stats));
10490 
10491 		sbuf_printf(sb,
10492 		    "\n                   Reads           Total wait");
10493 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10494 		    tx_cyc[i]);
10495 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10496 		    rx_cyc[i]);
10497 	}
10498 
10499 	rc = sbuf_finish(sb);
10500 	sbuf_delete(sb);
10501 
10502 	return (rc);
10503 }
10504 
10505 static int
10506 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10507 {
10508 	struct adapter *sc = arg1;
10509 	struct sbuf *sb;
10510 	int rc;
10511 	struct tp_rdma_stats stats;
10512 
10513 	rc = 0;
10514 	mtx_lock(&sc->reg_lock);
10515 	if (hw_off_limits(sc))
10516 		rc = ENXIO;
10517 	else
10518 		t4_tp_get_rdma_stats(sc, &stats, 0);
10519 	mtx_unlock(&sc->reg_lock);
10520 	if (rc != 0)
10521 		return (rc);
10522 
10523 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10524 	if (sb == NULL)
10525 		return (ENOMEM);
10526 
10527 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10528 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10529 
10530 	rc = sbuf_finish(sb);
10531 	sbuf_delete(sb);
10532 
10533 	return (rc);
10534 }
10535 
10536 static int
10537 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10538 {
10539 	struct adapter *sc = arg1;
10540 	struct sbuf *sb;
10541 	int rc;
10542 	struct tp_tcp_stats v4, v6;
10543 
10544 	rc = 0;
10545 	mtx_lock(&sc->reg_lock);
10546 	if (hw_off_limits(sc))
10547 		rc = ENXIO;
10548 	else
10549 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10550 	mtx_unlock(&sc->reg_lock);
10551 	if (rc != 0)
10552 		return (rc);
10553 
10554 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10555 	if (sb == NULL)
10556 		return (ENOMEM);
10557 
10558 	sbuf_printf(sb,
10559 	    "                                IP                 IPv6\n");
10560 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10561 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10562 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10563 	    v4.tcp_in_segs, v6.tcp_in_segs);
10564 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10565 	    v4.tcp_out_segs, v6.tcp_out_segs);
10566 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10567 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10568 
10569 	rc = sbuf_finish(sb);
10570 	sbuf_delete(sb);
10571 
10572 	return (rc);
10573 }
10574 
10575 static int
10576 sysctl_tids(SYSCTL_HANDLER_ARGS)
10577 {
10578 	struct adapter *sc = arg1;
10579 	struct sbuf *sb;
10580 	int rc;
10581 	uint32_t x, y;
10582 	struct tid_info *t = &sc->tids;
10583 
10584 	rc = 0;
10585 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10586 	if (sb == NULL)
10587 		return (ENOMEM);
10588 
10589 	if (t->natids) {
10590 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10591 		    t->atids_in_use);
10592 	}
10593 
10594 	if (t->nhpftids) {
10595 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10596 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10597 	}
10598 
10599 	if (t->ntids) {
10600 		bool hashen = false;
10601 
10602 		mtx_lock(&sc->reg_lock);
10603 		if (hw_off_limits(sc))
10604 			rc = ENXIO;
10605 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10606 			hashen = true;
10607 			if (chip_id(sc) <= CHELSIO_T5) {
10608 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10609 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10610 			} else {
10611 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10612 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10613 			}
10614 		}
10615 		mtx_unlock(&sc->reg_lock);
10616 		if (rc != 0)
10617 			goto done;
10618 
10619 		sbuf_printf(sb, "TID range: ");
10620 		if (hashen) {
10621 			if (x)
10622 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10623 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10624 		} else {
10625 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10626 			    t->ntids - 1);
10627 		}
10628 		sbuf_printf(sb, ", in use: %u\n",
10629 		    atomic_load_acq_int(&t->tids_in_use));
10630 	}
10631 
10632 	if (t->nstids) {
10633 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10634 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10635 	}
10636 
10637 	if (t->nftids) {
10638 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10639 		    t->ftid_end, t->ftids_in_use);
10640 	}
10641 
10642 	if (t->netids) {
10643 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10644 		    t->etid_base + t->netids - 1, t->etids_in_use);
10645 	}
10646 
10647 	mtx_lock(&sc->reg_lock);
10648 	if (hw_off_limits(sc))
10649 		rc = ENXIO;
10650 	else {
10651 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10652 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10653 	}
10654 	mtx_unlock(&sc->reg_lock);
10655 	if (rc != 0)
10656 		goto done;
10657 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10658 done:
10659 	if (rc == 0)
10660 		rc = sbuf_finish(sb);
10661 	else
10662 		(void)sbuf_finish(sb);
10663 	sbuf_delete(sb);
10664 
10665 	return (rc);
10666 }
10667 
10668 static int
10669 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10670 {
10671 	struct adapter *sc = arg1;
10672 	struct sbuf *sb;
10673 	int rc;
10674 	struct tp_err_stats stats;
10675 
10676 	rc = 0;
10677 	mtx_lock(&sc->reg_lock);
10678 	if (hw_off_limits(sc))
10679 		rc = ENXIO;
10680 	else
10681 		t4_tp_get_err_stats(sc, &stats, 0);
10682 	mtx_unlock(&sc->reg_lock);
10683 	if (rc != 0)
10684 		return (rc);
10685 
10686 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10687 	if (sb == NULL)
10688 		return (ENOMEM);
10689 
10690 	if (sc->chip_params->nchan > 2) {
10691 		sbuf_printf(sb, "                 channel 0  channel 1"
10692 		    "  channel 2  channel 3\n");
10693 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10694 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10695 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10696 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10697 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10698 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10699 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10700 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10701 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10702 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10703 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10704 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10705 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10706 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10707 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10708 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10709 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10710 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10711 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10712 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10713 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10714 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10715 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10716 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10717 	} else {
10718 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10719 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10720 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10721 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10722 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10723 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10724 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10725 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10726 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10727 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10728 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10729 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10730 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10731 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10732 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10733 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10734 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10735 	}
10736 
10737 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10738 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10739 
10740 	rc = sbuf_finish(sb);
10741 	sbuf_delete(sb);
10742 
10743 	return (rc);
10744 }
10745 
10746 static int
10747 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10748 {
10749 	struct adapter *sc = arg1;
10750 	struct sbuf *sb;
10751 	int rc;
10752 	struct tp_tnl_stats stats;
10753 
10754 	rc = 0;
10755 	mtx_lock(&sc->reg_lock);
10756 	if (hw_off_limits(sc))
10757 		rc = ENXIO;
10758 	else
10759 		t4_tp_get_tnl_stats(sc, &stats, 1);
10760 	mtx_unlock(&sc->reg_lock);
10761 	if (rc != 0)
10762 		return (rc);
10763 
10764 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10765 	if (sb == NULL)
10766 		return (ENOMEM);
10767 
10768 	if (sc->chip_params->nchan > 2) {
10769 		sbuf_printf(sb, "           channel 0  channel 1"
10770 		    "  channel 2  channel 3\n");
10771 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10772 		    stats.out_pkt[0], stats.out_pkt[1],
10773 		    stats.out_pkt[2], stats.out_pkt[3]);
10774 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10775 		    stats.in_pkt[0], stats.in_pkt[1],
10776 		    stats.in_pkt[2], stats.in_pkt[3]);
10777 	} else {
10778 		sbuf_printf(sb, "           channel 0  channel 1\n");
10779 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10780 		    stats.out_pkt[0], stats.out_pkt[1]);
10781 		sbuf_printf(sb, "InPkts:   %10u %10u",
10782 		    stats.in_pkt[0], stats.in_pkt[1]);
10783 	}
10784 
10785 	rc = sbuf_finish(sb);
10786 	sbuf_delete(sb);
10787 
10788 	return (rc);
10789 }
10790 
10791 static int
10792 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10793 {
10794 	struct adapter *sc = arg1;
10795 	struct tp_params *tpp = &sc->params.tp;
10796 	u_int mask;
10797 	int rc;
10798 
10799 	mask = tpp->la_mask >> 16;
10800 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10801 	if (rc != 0 || req->newptr == NULL)
10802 		return (rc);
10803 	if (mask > 0xffff)
10804 		return (EINVAL);
10805 	mtx_lock(&sc->reg_lock);
10806 	if (hw_off_limits(sc))
10807 		rc = ENXIO;
10808 	else {
10809 		tpp->la_mask = mask << 16;
10810 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10811 		    tpp->la_mask);
10812 	}
10813 	mtx_unlock(&sc->reg_lock);
10814 
10815 	return (rc);
10816 }
10817 
10818 struct field_desc {
10819 	const char *name;
10820 	u_int start;
10821 	u_int width;
10822 };
10823 
10824 static void
10825 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10826 {
10827 	char buf[32];
10828 	int line_size = 0;
10829 
10830 	while (f->name) {
10831 		uint64_t mask = (1ULL << f->width) - 1;
10832 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10833 		    ((uintmax_t)v >> f->start) & mask);
10834 
10835 		if (line_size + len >= 79) {
10836 			line_size = 8;
10837 			sbuf_printf(sb, "\n        ");
10838 		}
10839 		sbuf_printf(sb, "%s ", buf);
10840 		line_size += len + 1;
10841 		f++;
10842 	}
10843 	sbuf_printf(sb, "\n");
10844 }
10845 
10846 static const struct field_desc tp_la0[] = {
10847 	{ "RcfOpCodeOut", 60, 4 },
10848 	{ "State", 56, 4 },
10849 	{ "WcfState", 52, 4 },
10850 	{ "RcfOpcSrcOut", 50, 2 },
10851 	{ "CRxError", 49, 1 },
10852 	{ "ERxError", 48, 1 },
10853 	{ "SanityFailed", 47, 1 },
10854 	{ "SpuriousMsg", 46, 1 },
10855 	{ "FlushInputMsg", 45, 1 },
10856 	{ "FlushInputCpl", 44, 1 },
10857 	{ "RssUpBit", 43, 1 },
10858 	{ "RssFilterHit", 42, 1 },
10859 	{ "Tid", 32, 10 },
10860 	{ "InitTcb", 31, 1 },
10861 	{ "LineNumber", 24, 7 },
10862 	{ "Emsg", 23, 1 },
10863 	{ "EdataOut", 22, 1 },
10864 	{ "Cmsg", 21, 1 },
10865 	{ "CdataOut", 20, 1 },
10866 	{ "EreadPdu", 19, 1 },
10867 	{ "CreadPdu", 18, 1 },
10868 	{ "TunnelPkt", 17, 1 },
10869 	{ "RcfPeerFin", 16, 1 },
10870 	{ "RcfReasonOut", 12, 4 },
10871 	{ "TxCchannel", 10, 2 },
10872 	{ "RcfTxChannel", 8, 2 },
10873 	{ "RxEchannel", 6, 2 },
10874 	{ "RcfRxChannel", 5, 1 },
10875 	{ "RcfDataOutSrdy", 4, 1 },
10876 	{ "RxDvld", 3, 1 },
10877 	{ "RxOoDvld", 2, 1 },
10878 	{ "RxCongestion", 1, 1 },
10879 	{ "TxCongestion", 0, 1 },
10880 	{ NULL }
10881 };
10882 
10883 static const struct field_desc tp_la1[] = {
10884 	{ "CplCmdIn", 56, 8 },
10885 	{ "CplCmdOut", 48, 8 },
10886 	{ "ESynOut", 47, 1 },
10887 	{ "EAckOut", 46, 1 },
10888 	{ "EFinOut", 45, 1 },
10889 	{ "ERstOut", 44, 1 },
10890 	{ "SynIn", 43, 1 },
10891 	{ "AckIn", 42, 1 },
10892 	{ "FinIn", 41, 1 },
10893 	{ "RstIn", 40, 1 },
10894 	{ "DataIn", 39, 1 },
10895 	{ "DataInVld", 38, 1 },
10896 	{ "PadIn", 37, 1 },
10897 	{ "RxBufEmpty", 36, 1 },
10898 	{ "RxDdp", 35, 1 },
10899 	{ "RxFbCongestion", 34, 1 },
10900 	{ "TxFbCongestion", 33, 1 },
10901 	{ "TxPktSumSrdy", 32, 1 },
10902 	{ "RcfUlpType", 28, 4 },
10903 	{ "Eread", 27, 1 },
10904 	{ "Ebypass", 26, 1 },
10905 	{ "Esave", 25, 1 },
10906 	{ "Static0", 24, 1 },
10907 	{ "Cread", 23, 1 },
10908 	{ "Cbypass", 22, 1 },
10909 	{ "Csave", 21, 1 },
10910 	{ "CPktOut", 20, 1 },
10911 	{ "RxPagePoolFull", 18, 2 },
10912 	{ "RxLpbkPkt", 17, 1 },
10913 	{ "TxLpbkPkt", 16, 1 },
10914 	{ "RxVfValid", 15, 1 },
10915 	{ "SynLearned", 14, 1 },
10916 	{ "SetDelEntry", 13, 1 },
10917 	{ "SetInvEntry", 12, 1 },
10918 	{ "CpcmdDvld", 11, 1 },
10919 	{ "CpcmdSave", 10, 1 },
10920 	{ "RxPstructsFull", 8, 2 },
10921 	{ "EpcmdDvld", 7, 1 },
10922 	{ "EpcmdFlush", 6, 1 },
10923 	{ "EpcmdTrimPrefix", 5, 1 },
10924 	{ "EpcmdTrimPostfix", 4, 1 },
10925 	{ "ERssIp4Pkt", 3, 1 },
10926 	{ "ERssIp6Pkt", 2, 1 },
10927 	{ "ERssTcpUdpPkt", 1, 1 },
10928 	{ "ERssFceFipPkt", 0, 1 },
10929 	{ NULL }
10930 };
10931 
10932 static const struct field_desc tp_la2[] = {
10933 	{ "CplCmdIn", 56, 8 },
10934 	{ "MpsVfVld", 55, 1 },
10935 	{ "MpsPf", 52, 3 },
10936 	{ "MpsVf", 44, 8 },
10937 	{ "SynIn", 43, 1 },
10938 	{ "AckIn", 42, 1 },
10939 	{ "FinIn", 41, 1 },
10940 	{ "RstIn", 40, 1 },
10941 	{ "DataIn", 39, 1 },
10942 	{ "DataInVld", 38, 1 },
10943 	{ "PadIn", 37, 1 },
10944 	{ "RxBufEmpty", 36, 1 },
10945 	{ "RxDdp", 35, 1 },
10946 	{ "RxFbCongestion", 34, 1 },
10947 	{ "TxFbCongestion", 33, 1 },
10948 	{ "TxPktSumSrdy", 32, 1 },
10949 	{ "RcfUlpType", 28, 4 },
10950 	{ "Eread", 27, 1 },
10951 	{ "Ebypass", 26, 1 },
10952 	{ "Esave", 25, 1 },
10953 	{ "Static0", 24, 1 },
10954 	{ "Cread", 23, 1 },
10955 	{ "Cbypass", 22, 1 },
10956 	{ "Csave", 21, 1 },
10957 	{ "CPktOut", 20, 1 },
10958 	{ "RxPagePoolFull", 18, 2 },
10959 	{ "RxLpbkPkt", 17, 1 },
10960 	{ "TxLpbkPkt", 16, 1 },
10961 	{ "RxVfValid", 15, 1 },
10962 	{ "SynLearned", 14, 1 },
10963 	{ "SetDelEntry", 13, 1 },
10964 	{ "SetInvEntry", 12, 1 },
10965 	{ "CpcmdDvld", 11, 1 },
10966 	{ "CpcmdSave", 10, 1 },
10967 	{ "RxPstructsFull", 8, 2 },
10968 	{ "EpcmdDvld", 7, 1 },
10969 	{ "EpcmdFlush", 6, 1 },
10970 	{ "EpcmdTrimPrefix", 5, 1 },
10971 	{ "EpcmdTrimPostfix", 4, 1 },
10972 	{ "ERssIp4Pkt", 3, 1 },
10973 	{ "ERssIp6Pkt", 2, 1 },
10974 	{ "ERssTcpUdpPkt", 1, 1 },
10975 	{ "ERssFceFipPkt", 0, 1 },
10976 	{ NULL }
10977 };
10978 
10979 static void
10980 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10981 {
10982 
10983 	field_desc_show(sb, *p, tp_la0);
10984 }
10985 
10986 static void
10987 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10988 {
10989 
10990 	if (idx)
10991 		sbuf_printf(sb, "\n");
10992 	field_desc_show(sb, p[0], tp_la0);
10993 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10994 		field_desc_show(sb, p[1], tp_la0);
10995 }
10996 
10997 static void
10998 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10999 {
11000 
11001 	if (idx)
11002 		sbuf_printf(sb, "\n");
11003 	field_desc_show(sb, p[0], tp_la0);
11004 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11005 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11006 }
11007 
11008 static int
11009 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11010 {
11011 	struct adapter *sc = arg1;
11012 	struct sbuf *sb;
11013 	uint64_t *buf, *p;
11014 	int rc;
11015 	u_int i, inc;
11016 	void (*show_func)(struct sbuf *, uint64_t *, int);
11017 
11018 	rc = 0;
11019 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11020 	if (sb == NULL)
11021 		return (ENOMEM);
11022 
11023 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11024 
11025 	mtx_lock(&sc->reg_lock);
11026 	if (hw_off_limits(sc))
11027 		rc = ENXIO;
11028 	else {
11029 		t4_tp_read_la(sc, buf, NULL);
11030 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11031 		case 2:
11032 			inc = 2;
11033 			show_func = tp_la_show2;
11034 			break;
11035 		case 3:
11036 			inc = 2;
11037 			show_func = tp_la_show3;
11038 			break;
11039 		default:
11040 			inc = 1;
11041 			show_func = tp_la_show;
11042 		}
11043 	}
11044 	mtx_unlock(&sc->reg_lock);
11045 	if (rc != 0)
11046 		goto done;
11047 
11048 	p = buf;
11049 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11050 		(*show_func)(sb, p, i);
11051 	rc = sbuf_finish(sb);
11052 done:
11053 	sbuf_delete(sb);
11054 	free(buf, M_CXGBE);
11055 	return (rc);
11056 }
11057 
11058 static int
11059 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11060 {
11061 	struct adapter *sc = arg1;
11062 	struct sbuf *sb;
11063 	int rc;
11064 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11065 
11066 	rc = 0;
11067 	mtx_lock(&sc->reg_lock);
11068 	if (hw_off_limits(sc))
11069 		rc = ENXIO;
11070 	else
11071 		t4_get_chan_txrate(sc, nrate, orate);
11072 	mtx_unlock(&sc->reg_lock);
11073 	if (rc != 0)
11074 		return (rc);
11075 
11076 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11077 	if (sb == NULL)
11078 		return (ENOMEM);
11079 
11080 	if (sc->chip_params->nchan > 2) {
11081 		sbuf_printf(sb, "              channel 0   channel 1"
11082 		    "   channel 2   channel 3\n");
11083 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11084 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11085 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11086 		    orate[0], orate[1], orate[2], orate[3]);
11087 	} else {
11088 		sbuf_printf(sb, "              channel 0   channel 1\n");
11089 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11090 		    nrate[0], nrate[1]);
11091 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11092 		    orate[0], orate[1]);
11093 	}
11094 
11095 	rc = sbuf_finish(sb);
11096 	sbuf_delete(sb);
11097 
11098 	return (rc);
11099 }
11100 
11101 static int
11102 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11103 {
11104 	struct adapter *sc = arg1;
11105 	struct sbuf *sb;
11106 	uint32_t *buf, *p;
11107 	int rc, i;
11108 
11109 	rc = 0;
11110 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11111 	if (sb == NULL)
11112 		return (ENOMEM);
11113 
11114 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11115 	    M_ZERO | M_WAITOK);
11116 
11117 	mtx_lock(&sc->reg_lock);
11118 	if (hw_off_limits(sc))
11119 		rc = ENXIO;
11120 	else
11121 		t4_ulprx_read_la(sc, buf);
11122 	mtx_unlock(&sc->reg_lock);
11123 	if (rc != 0)
11124 		goto done;
11125 
11126 	p = buf;
11127 	sbuf_printf(sb, "      Pcmd        Type   Message"
11128 	    "                Data");
11129 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11130 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11131 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11132 	}
11133 	rc = sbuf_finish(sb);
11134 done:
11135 	sbuf_delete(sb);
11136 	free(buf, M_CXGBE);
11137 	return (rc);
11138 }
11139 
11140 static int
11141 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11142 {
11143 	struct adapter *sc = arg1;
11144 	struct sbuf *sb;
11145 	int rc;
11146 	uint32_t cfg, s1, s2;
11147 
11148 	MPASS(chip_id(sc) >= CHELSIO_T5);
11149 
11150 	rc = 0;
11151 	mtx_lock(&sc->reg_lock);
11152 	if (hw_off_limits(sc))
11153 		rc = ENXIO;
11154 	else {
11155 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11156 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11157 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11158 	}
11159 	mtx_unlock(&sc->reg_lock);
11160 	if (rc != 0)
11161 		return (rc);
11162 
11163 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11164 	if (sb == NULL)
11165 		return (ENOMEM);
11166 
11167 	if (G_STATSOURCE_T5(cfg) == 7) {
11168 		int mode;
11169 
11170 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11171 		if (mode == 0)
11172 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11173 		else if (mode == 1)
11174 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11175 		else
11176 			sbuf_printf(sb, "unknown mode %d", mode);
11177 	}
11178 	rc = sbuf_finish(sb);
11179 	sbuf_delete(sb);
11180 
11181 	return (rc);
11182 }
11183 
11184 static int
11185 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11186 {
11187 	struct adapter *sc = arg1;
11188 	enum cpu_sets op = arg2;
11189 	cpuset_t cpuset;
11190 	struct sbuf *sb;
11191 	int i, rc;
11192 
11193 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11194 
11195 	CPU_ZERO(&cpuset);
11196 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11197 	if (rc != 0)
11198 		return (rc);
11199 
11200 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11201 	if (sb == NULL)
11202 		return (ENOMEM);
11203 
11204 	CPU_FOREACH(i)
11205 		sbuf_printf(sb, "%d ", i);
11206 	rc = sbuf_finish(sb);
11207 	sbuf_delete(sb);
11208 
11209 	return (rc);
11210 }
11211 
11212 static int
11213 sysctl_reset(SYSCTL_HANDLER_ARGS)
11214 {
11215 	struct adapter *sc = arg1;
11216 	u_int val;
11217 	int rc;
11218 
11219 	val = atomic_load_int(&sc->num_resets);
11220 	rc = sysctl_handle_int(oidp, &val, 0, req);
11221 	if (rc != 0 || req->newptr == NULL)
11222 		return (rc);
11223 
11224 	if (val == 0) {
11225 		/* Zero out the counter that tracks reset. */
11226 		atomic_store_int(&sc->num_resets, 0);
11227 		return (0);
11228 	}
11229 
11230 	if (val != 1)
11231 		return (EINVAL);	/* 0 or 1 are the only legal values */
11232 
11233 	if (hw_off_limits(sc))		/* harmless race */
11234 		return (EALREADY);
11235 
11236 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11237 	return (0);
11238 }
11239 
11240 #ifdef TCP_OFFLOAD
11241 static int
11242 sysctl_tls(SYSCTL_HANDLER_ARGS)
11243 {
11244 	struct adapter *sc = arg1;
11245 	int i, j, v, rc;
11246 	struct vi_info *vi;
11247 
11248 	v = sc->tt.tls;
11249 	rc = sysctl_handle_int(oidp, &v, 0, req);
11250 	if (rc != 0 || req->newptr == NULL)
11251 		return (rc);
11252 
11253 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11254 		return (ENOTSUP);
11255 
11256 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11257 	if (rc)
11258 		return (rc);
11259 	if (hw_off_limits(sc))
11260 		rc = ENXIO;
11261 	else {
11262 		sc->tt.tls = !!v;
11263 		for_each_port(sc, i) {
11264 			for_each_vi(sc->port[i], j, vi) {
11265 				if (vi->flags & VI_INIT_DONE)
11266 					t4_update_fl_bufsize(vi->ifp);
11267 			}
11268 		}
11269 	}
11270 	end_synchronized_op(sc, 0);
11271 
11272 	return (rc);
11273 
11274 }
11275 
11276 static void
11277 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11278 {
11279 	u_int rem = val % factor;
11280 
11281 	if (rem == 0)
11282 		snprintf(buf, len, "%u", val / factor);
11283 	else {
11284 		while (rem % 10 == 0)
11285 			rem /= 10;
11286 		snprintf(buf, len, "%u.%u", val / factor, rem);
11287 	}
11288 }
11289 
11290 static int
11291 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11292 {
11293 	struct adapter *sc = arg1;
11294 	char buf[16];
11295 	u_int res, re;
11296 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11297 
11298 	mtx_lock(&sc->reg_lock);
11299 	if (hw_off_limits(sc))
11300 		res = (u_int)-1;
11301 	else
11302 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11303 	mtx_unlock(&sc->reg_lock);
11304 	if (res == (u_int)-1)
11305 		return (ENXIO);
11306 
11307 	switch (arg2) {
11308 	case 0:
11309 		/* timer_tick */
11310 		re = G_TIMERRESOLUTION(res);
11311 		break;
11312 	case 1:
11313 		/* TCP timestamp tick */
11314 		re = G_TIMESTAMPRESOLUTION(res);
11315 		break;
11316 	case 2:
11317 		/* DACK tick */
11318 		re = G_DELAYEDACKRESOLUTION(res);
11319 		break;
11320 	default:
11321 		return (EDOOFUS);
11322 	}
11323 
11324 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11325 
11326 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11327 }
11328 
11329 static int
11330 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11331 {
11332 	struct adapter *sc = arg1;
11333 	int rc;
11334 	u_int dack_tmr, dack_re, v;
11335 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11336 
11337 	mtx_lock(&sc->reg_lock);
11338 	if (hw_off_limits(sc))
11339 		rc = ENXIO;
11340 	else {
11341 		rc = 0;
11342 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11343 		    A_TP_TIMER_RESOLUTION));
11344 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11345 	}
11346 	mtx_unlock(&sc->reg_lock);
11347 	if (rc != 0)
11348 		return (rc);
11349 
11350 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11351 
11352 	return (sysctl_handle_int(oidp, &v, 0, req));
11353 }
11354 
11355 static int
11356 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11357 {
11358 	struct adapter *sc = arg1;
11359 	int rc, reg = arg2;
11360 	u_int tre;
11361 	u_long tp_tick_us, v;
11362 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11363 
11364 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11365 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11366 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11367 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11368 
11369 	mtx_lock(&sc->reg_lock);
11370 	if (hw_off_limits(sc))
11371 		rc = ENXIO;
11372 	else {
11373 		rc = 0;
11374 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11375 		tp_tick_us = (cclk_ps << tre) / 1000000;
11376 		if (reg == A_TP_INIT_SRTT)
11377 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11378 		else
11379 			v = tp_tick_us * t4_read_reg(sc, reg);
11380 	}
11381 	mtx_unlock(&sc->reg_lock);
11382 	if (rc != 0)
11383 		return (rc);
11384 	else
11385 		return (sysctl_handle_long(oidp, &v, 0, req));
11386 }
11387 
11388 /*
11389  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11390  * passed to this function.
11391  */
11392 static int
11393 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11394 {
11395 	struct adapter *sc = arg1;
11396 	int rc, idx = arg2;
11397 	u_int v;
11398 
11399 	MPASS(idx >= 0 && idx <= 24);
11400 
11401 	mtx_lock(&sc->reg_lock);
11402 	if (hw_off_limits(sc))
11403 		rc = ENXIO;
11404 	else {
11405 		rc = 0;
11406 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11407 	}
11408 	mtx_unlock(&sc->reg_lock);
11409 	if (rc != 0)
11410 		return (rc);
11411 	else
11412 		return (sysctl_handle_int(oidp, &v, 0, req));
11413 }
11414 
11415 static int
11416 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11417 {
11418 	struct adapter *sc = arg1;
11419 	int rc, idx = arg2;
11420 	u_int shift, v, r;
11421 
11422 	MPASS(idx >= 0 && idx < 16);
11423 
11424 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11425 	shift = (idx & 3) << 3;
11426 	mtx_lock(&sc->reg_lock);
11427 	if (hw_off_limits(sc))
11428 		rc = ENXIO;
11429 	else {
11430 		rc = 0;
11431 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11432 	}
11433 	mtx_unlock(&sc->reg_lock);
11434 	if (rc != 0)
11435 		return (rc);
11436 	else
11437 		return (sysctl_handle_int(oidp, &v, 0, req));
11438 }
11439 
11440 static int
11441 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11442 {
11443 	struct vi_info *vi = arg1;
11444 	struct adapter *sc = vi->adapter;
11445 	int idx, rc, i;
11446 	struct sge_ofld_rxq *ofld_rxq;
11447 	uint8_t v;
11448 
11449 	idx = vi->ofld_tmr_idx;
11450 
11451 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11452 	if (rc != 0 || req->newptr == NULL)
11453 		return (rc);
11454 
11455 	if (idx < 0 || idx >= SGE_NTIMERS)
11456 		return (EINVAL);
11457 
11458 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11459 	    "t4otmr");
11460 	if (rc)
11461 		return (rc);
11462 
11463 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11464 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11465 #ifdef atomic_store_rel_8
11466 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11467 #else
11468 		ofld_rxq->iq.intr_params = v;
11469 #endif
11470 	}
11471 	vi->ofld_tmr_idx = idx;
11472 
11473 	end_synchronized_op(sc, LOCK_HELD);
11474 	return (0);
11475 }
11476 
11477 static int
11478 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11479 {
11480 	struct vi_info *vi = arg1;
11481 	struct adapter *sc = vi->adapter;
11482 	int idx, rc;
11483 
11484 	idx = vi->ofld_pktc_idx;
11485 
11486 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11487 	if (rc != 0 || req->newptr == NULL)
11488 		return (rc);
11489 
11490 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11491 		return (EINVAL);
11492 
11493 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11494 	    "t4opktc");
11495 	if (rc)
11496 		return (rc);
11497 
11498 	if (vi->flags & VI_INIT_DONE)
11499 		rc = EBUSY; /* cannot be changed once the queues are created */
11500 	else
11501 		vi->ofld_pktc_idx = idx;
11502 
11503 	end_synchronized_op(sc, LOCK_HELD);
11504 	return (rc);
11505 }
11506 #endif
11507 
11508 static int
11509 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11510 {
11511 	int rc;
11512 
11513 	if (cntxt->cid > M_CTXTQID)
11514 		return (EINVAL);
11515 
11516 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11517 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11518 		return (EINVAL);
11519 
11520 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11521 	if (rc)
11522 		return (rc);
11523 
11524 	if (hw_off_limits(sc)) {
11525 		rc = ENXIO;
11526 		goto done;
11527 	}
11528 
11529 	if (sc->flags & FW_OK) {
11530 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11531 		    &cntxt->data[0]);
11532 		if (rc == 0)
11533 			goto done;
11534 	}
11535 
11536 	/*
11537 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11538 	 * the backdoor.
11539 	 */
11540 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11541 done:
11542 	end_synchronized_op(sc, 0);
11543 	return (rc);
11544 }
11545 
11546 static int
11547 load_fw(struct adapter *sc, struct t4_data *fw)
11548 {
11549 	int rc;
11550 	uint8_t *fw_data;
11551 
11552 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11553 	if (rc)
11554 		return (rc);
11555 
11556 	if (hw_off_limits(sc)) {
11557 		rc = ENXIO;
11558 		goto done;
11559 	}
11560 
11561 	/*
11562 	 * The firmware, with the sole exception of the memory parity error
11563 	 * handler, runs from memory and not flash.  It is almost always safe to
11564 	 * install a new firmware on a running system.  Just set bit 1 in
11565 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11566 	 */
11567 	if (sc->flags & FULL_INIT_DONE &&
11568 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11569 		rc = EBUSY;
11570 		goto done;
11571 	}
11572 
11573 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11574 
11575 	rc = copyin(fw->data, fw_data, fw->len);
11576 	if (rc == 0)
11577 		rc = -t4_load_fw(sc, fw_data, fw->len);
11578 
11579 	free(fw_data, M_CXGBE);
11580 done:
11581 	end_synchronized_op(sc, 0);
11582 	return (rc);
11583 }
11584 
11585 static int
11586 load_cfg(struct adapter *sc, struct t4_data *cfg)
11587 {
11588 	int rc;
11589 	uint8_t *cfg_data = NULL;
11590 
11591 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11592 	if (rc)
11593 		return (rc);
11594 
11595 	if (hw_off_limits(sc)) {
11596 		rc = ENXIO;
11597 		goto done;
11598 	}
11599 
11600 	if (cfg->len == 0) {
11601 		/* clear */
11602 		rc = -t4_load_cfg(sc, NULL, 0);
11603 		goto done;
11604 	}
11605 
11606 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11607 
11608 	rc = copyin(cfg->data, cfg_data, cfg->len);
11609 	if (rc == 0)
11610 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11611 
11612 	free(cfg_data, M_CXGBE);
11613 done:
11614 	end_synchronized_op(sc, 0);
11615 	return (rc);
11616 }
11617 
11618 static int
11619 load_boot(struct adapter *sc, struct t4_bootrom *br)
11620 {
11621 	int rc;
11622 	uint8_t *br_data = NULL;
11623 	u_int offset;
11624 
11625 	if (br->len > 1024 * 1024)
11626 		return (EFBIG);
11627 
11628 	if (br->pf_offset == 0) {
11629 		/* pfidx */
11630 		if (br->pfidx_addr > 7)
11631 			return (EINVAL);
11632 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11633 		    A_PCIE_PF_EXPROM_OFST)));
11634 	} else if (br->pf_offset == 1) {
11635 		/* offset */
11636 		offset = G_OFFSET(br->pfidx_addr);
11637 	} else {
11638 		return (EINVAL);
11639 	}
11640 
11641 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11642 	if (rc)
11643 		return (rc);
11644 
11645 	if (hw_off_limits(sc)) {
11646 		rc = ENXIO;
11647 		goto done;
11648 	}
11649 
11650 	if (br->len == 0) {
11651 		/* clear */
11652 		rc = -t4_load_boot(sc, NULL, offset, 0);
11653 		goto done;
11654 	}
11655 
11656 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11657 
11658 	rc = copyin(br->data, br_data, br->len);
11659 	if (rc == 0)
11660 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11661 
11662 	free(br_data, M_CXGBE);
11663 done:
11664 	end_synchronized_op(sc, 0);
11665 	return (rc);
11666 }
11667 
11668 static int
11669 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11670 {
11671 	int rc;
11672 	uint8_t *bc_data = NULL;
11673 
11674 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11675 	if (rc)
11676 		return (rc);
11677 
11678 	if (hw_off_limits(sc)) {
11679 		rc = ENXIO;
11680 		goto done;
11681 	}
11682 
11683 	if (bc->len == 0) {
11684 		/* clear */
11685 		rc = -t4_load_bootcfg(sc, NULL, 0);
11686 		goto done;
11687 	}
11688 
11689 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11690 
11691 	rc = copyin(bc->data, bc_data, bc->len);
11692 	if (rc == 0)
11693 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11694 
11695 	free(bc_data, M_CXGBE);
11696 done:
11697 	end_synchronized_op(sc, 0);
11698 	return (rc);
11699 }
11700 
11701 static int
11702 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11703 {
11704 	int rc;
11705 	struct cudbg_init *cudbg;
11706 	void *handle, *buf;
11707 
11708 	/* buf is large, don't block if no memory is available */
11709 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11710 	if (buf == NULL)
11711 		return (ENOMEM);
11712 
11713 	handle = cudbg_alloc_handle();
11714 	if (handle == NULL) {
11715 		rc = ENOMEM;
11716 		goto done;
11717 	}
11718 
11719 	cudbg = cudbg_get_init(handle);
11720 	cudbg->adap = sc;
11721 	cudbg->print = (cudbg_print_cb)printf;
11722 
11723 #ifndef notyet
11724 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11725 	    __func__, dump->wr_flash, dump->len, dump->data);
11726 #endif
11727 
11728 	if (dump->wr_flash)
11729 		cudbg->use_flash = 1;
11730 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11731 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11732 
11733 	rc = cudbg_collect(handle, buf, &dump->len);
11734 	if (rc != 0)
11735 		goto done;
11736 
11737 	rc = copyout(buf, dump->data, dump->len);
11738 done:
11739 	cudbg_free_handle(handle);
11740 	free(buf, M_CXGBE);
11741 	return (rc);
11742 }
11743 
11744 static void
11745 free_offload_policy(struct t4_offload_policy *op)
11746 {
11747 	struct offload_rule *r;
11748 	int i;
11749 
11750 	if (op == NULL)
11751 		return;
11752 
11753 	r = &op->rule[0];
11754 	for (i = 0; i < op->nrules; i++, r++) {
11755 		free(r->bpf_prog.bf_insns, M_CXGBE);
11756 	}
11757 	free(op->rule, M_CXGBE);
11758 	free(op, M_CXGBE);
11759 }
11760 
11761 static int
11762 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11763 {
11764 	int i, rc, len;
11765 	struct t4_offload_policy *op, *old;
11766 	struct bpf_program *bf;
11767 	const struct offload_settings *s;
11768 	struct offload_rule *r;
11769 	void *u;
11770 
11771 	if (!is_offload(sc))
11772 		return (ENODEV);
11773 
11774 	if (uop->nrules == 0) {
11775 		/* Delete installed policies. */
11776 		op = NULL;
11777 		goto set_policy;
11778 	} else if (uop->nrules > 256) { /* arbitrary */
11779 		return (E2BIG);
11780 	}
11781 
11782 	/* Copy userspace offload policy to kernel */
11783 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11784 	op->nrules = uop->nrules;
11785 	len = op->nrules * sizeof(struct offload_rule);
11786 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11787 	rc = copyin(uop->rule, op->rule, len);
11788 	if (rc) {
11789 		free(op->rule, M_CXGBE);
11790 		free(op, M_CXGBE);
11791 		return (rc);
11792 	}
11793 
11794 	r = &op->rule[0];
11795 	for (i = 0; i < op->nrules; i++, r++) {
11796 
11797 		/* Validate open_type */
11798 		if (r->open_type != OPEN_TYPE_LISTEN &&
11799 		    r->open_type != OPEN_TYPE_ACTIVE &&
11800 		    r->open_type != OPEN_TYPE_PASSIVE &&
11801 		    r->open_type != OPEN_TYPE_DONTCARE) {
11802 error:
11803 			/*
11804 			 * Rules 0 to i have malloc'd filters that need to be
11805 			 * freed.  Rules i+1 to nrules have userspace pointers
11806 			 * and should be left alone.
11807 			 */
11808 			op->nrules = i;
11809 			free_offload_policy(op);
11810 			return (rc);
11811 		}
11812 
11813 		/* Validate settings */
11814 		s = &r->settings;
11815 		if ((s->offload != 0 && s->offload != 1) ||
11816 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11817 		    s->sched_class < -1 ||
11818 		    s->sched_class >= sc->params.nsched_cls) {
11819 			rc = EINVAL;
11820 			goto error;
11821 		}
11822 
11823 		bf = &r->bpf_prog;
11824 		u = bf->bf_insns;	/* userspace ptr */
11825 		bf->bf_insns = NULL;
11826 		if (bf->bf_len == 0) {
11827 			/* legal, matches everything */
11828 			continue;
11829 		}
11830 		len = bf->bf_len * sizeof(*bf->bf_insns);
11831 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11832 		rc = copyin(u, bf->bf_insns, len);
11833 		if (rc != 0)
11834 			goto error;
11835 
11836 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11837 			rc = EINVAL;
11838 			goto error;
11839 		}
11840 	}
11841 set_policy:
11842 	rw_wlock(&sc->policy_lock);
11843 	old = sc->policy;
11844 	sc->policy = op;
11845 	rw_wunlock(&sc->policy_lock);
11846 	free_offload_policy(old);
11847 
11848 	return (0);
11849 }
11850 
11851 #define MAX_READ_BUF_SIZE (128 * 1024)
11852 static int
11853 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11854 {
11855 	uint32_t addr, remaining, n;
11856 	uint32_t *buf;
11857 	int rc;
11858 	uint8_t *dst;
11859 
11860 	mtx_lock(&sc->reg_lock);
11861 	if (hw_off_limits(sc))
11862 		rc = ENXIO;
11863 	else
11864 		rc = validate_mem_range(sc, mr->addr, mr->len);
11865 	mtx_unlock(&sc->reg_lock);
11866 	if (rc != 0)
11867 		return (rc);
11868 
11869 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11870 	addr = mr->addr;
11871 	remaining = mr->len;
11872 	dst = (void *)mr->data;
11873 
11874 	while (remaining) {
11875 		n = min(remaining, MAX_READ_BUF_SIZE);
11876 		mtx_lock(&sc->reg_lock);
11877 		if (hw_off_limits(sc))
11878 			rc = ENXIO;
11879 		else
11880 			read_via_memwin(sc, 2, addr, buf, n);
11881 		mtx_unlock(&sc->reg_lock);
11882 		if (rc != 0)
11883 			break;
11884 
11885 		rc = copyout(buf, dst, n);
11886 		if (rc != 0)
11887 			break;
11888 
11889 		dst += n;
11890 		remaining -= n;
11891 		addr += n;
11892 	}
11893 
11894 	free(buf, M_CXGBE);
11895 	return (rc);
11896 }
11897 #undef MAX_READ_BUF_SIZE
11898 
11899 static int
11900 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11901 {
11902 	int rc;
11903 
11904 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11905 		return (EINVAL);
11906 
11907 	if (i2cd->len > sizeof(i2cd->data))
11908 		return (EFBIG);
11909 
11910 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11911 	if (rc)
11912 		return (rc);
11913 	if (hw_off_limits(sc))
11914 		rc = ENXIO;
11915 	else
11916 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11917 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11918 	end_synchronized_op(sc, 0);
11919 
11920 	return (rc);
11921 }
11922 
11923 static int
11924 clear_stats(struct adapter *sc, u_int port_id)
11925 {
11926 	int i, v, chan_map;
11927 	struct port_info *pi;
11928 	struct vi_info *vi;
11929 	struct sge_rxq *rxq;
11930 	struct sge_txq *txq;
11931 	struct sge_wrq *wrq;
11932 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11933 	struct sge_ofld_txq *ofld_txq;
11934 #endif
11935 #ifdef TCP_OFFLOAD
11936 	struct sge_ofld_rxq *ofld_rxq;
11937 #endif
11938 
11939 	if (port_id >= sc->params.nports)
11940 		return (EINVAL);
11941 	pi = sc->port[port_id];
11942 	if (pi == NULL)
11943 		return (EIO);
11944 
11945 	mtx_lock(&sc->reg_lock);
11946 	if (!hw_off_limits(sc)) {
11947 		/* MAC stats */
11948 		t4_clr_port_stats(sc, pi->tx_chan);
11949 		if (is_t6(sc)) {
11950 			if (pi->fcs_reg != -1)
11951 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11952 			else
11953 				pi->stats.rx_fcs_err = 0;
11954 		}
11955 		for_each_vi(pi, v, vi) {
11956 			if (vi->flags & VI_INIT_DONE)
11957 				t4_clr_vi_stats(sc, vi->vin);
11958 		}
11959 		chan_map = pi->rx_e_chan_map;
11960 		v = 0;	/* reuse */
11961 		while (chan_map) {
11962 			i = ffs(chan_map) - 1;
11963 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11964 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11965 			chan_map &= ~(1 << i);
11966 		}
11967 	}
11968 	mtx_unlock(&sc->reg_lock);
11969 	pi->tx_parse_error = 0;
11970 	pi->tnl_cong_drops = 0;
11971 
11972 	/*
11973 	 * Since this command accepts a port, clear stats for
11974 	 * all VIs on this port.
11975 	 */
11976 	for_each_vi(pi, v, vi) {
11977 		if (vi->flags & VI_INIT_DONE) {
11978 
11979 			for_each_rxq(vi, i, rxq) {
11980 #if defined(INET) || defined(INET6)
11981 				rxq->lro.lro_queued = 0;
11982 				rxq->lro.lro_flushed = 0;
11983 #endif
11984 				rxq->rxcsum = 0;
11985 				rxq->vlan_extraction = 0;
11986 				rxq->vxlan_rxcsum = 0;
11987 
11988 				rxq->fl.cl_allocated = 0;
11989 				rxq->fl.cl_recycled = 0;
11990 				rxq->fl.cl_fast_recycled = 0;
11991 			}
11992 
11993 			for_each_txq(vi, i, txq) {
11994 				txq->txcsum = 0;
11995 				txq->tso_wrs = 0;
11996 				txq->vlan_insertion = 0;
11997 				txq->imm_wrs = 0;
11998 				txq->sgl_wrs = 0;
11999 				txq->txpkt_wrs = 0;
12000 				txq->txpkts0_wrs = 0;
12001 				txq->txpkts1_wrs = 0;
12002 				txq->txpkts0_pkts = 0;
12003 				txq->txpkts1_pkts = 0;
12004 				txq->txpkts_flush = 0;
12005 				txq->raw_wrs = 0;
12006 				txq->vxlan_tso_wrs = 0;
12007 				txq->vxlan_txcsum = 0;
12008 				txq->kern_tls_records = 0;
12009 				txq->kern_tls_short = 0;
12010 				txq->kern_tls_partial = 0;
12011 				txq->kern_tls_full = 0;
12012 				txq->kern_tls_octets = 0;
12013 				txq->kern_tls_waste = 0;
12014 				txq->kern_tls_options = 0;
12015 				txq->kern_tls_header = 0;
12016 				txq->kern_tls_fin = 0;
12017 				txq->kern_tls_fin_short = 0;
12018 				txq->kern_tls_cbc = 0;
12019 				txq->kern_tls_gcm = 0;
12020 				mp_ring_reset_stats(txq->r);
12021 			}
12022 
12023 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12024 			for_each_ofld_txq(vi, i, ofld_txq) {
12025 				ofld_txq->wrq.tx_wrs_direct = 0;
12026 				ofld_txq->wrq.tx_wrs_copied = 0;
12027 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12028 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12029 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12030 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12031 				counter_u64_zero(ofld_txq->tx_aio_octets);
12032 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12033 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12034 			}
12035 #endif
12036 #ifdef TCP_OFFLOAD
12037 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12038 				ofld_rxq->fl.cl_allocated = 0;
12039 				ofld_rxq->fl.cl_recycled = 0;
12040 				ofld_rxq->fl.cl_fast_recycled = 0;
12041 				counter_u64_zero(
12042 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12043 				counter_u64_zero(
12044 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12045 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12046 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12047 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12048 				ofld_rxq->rx_iscsi_fl_octets = 0;
12049 				ofld_rxq->rx_aio_ddp_jobs = 0;
12050 				ofld_rxq->rx_aio_ddp_octets = 0;
12051 				ofld_rxq->rx_toe_tls_records = 0;
12052 				ofld_rxq->rx_toe_tls_octets = 0;
12053 				ofld_rxq->rx_toe_ddp_octets = 0;
12054 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12055 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12056 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12057 			}
12058 #endif
12059 
12060 			if (IS_MAIN_VI(vi)) {
12061 				wrq = &sc->sge.ctrlq[pi->port_id];
12062 				wrq->tx_wrs_direct = 0;
12063 				wrq->tx_wrs_copied = 0;
12064 			}
12065 		}
12066 	}
12067 
12068 	return (0);
12069 }
12070 
12071 static int
12072 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12073 {
12074 #ifdef INET6
12075 	struct in6_addr in6;
12076 
12077 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12078 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12079 		return (0);
12080 	else
12081 		return (EIO);
12082 #else
12083 	return (ENOTSUP);
12084 #endif
12085 }
12086 
12087 static int
12088 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12089 {
12090 #ifdef INET6
12091 	struct in6_addr in6;
12092 
12093 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12094 	return (t4_release_clip_addr(sc, &in6));
12095 #else
12096 	return (ENOTSUP);
12097 #endif
12098 }
12099 
12100 int
12101 t4_os_find_pci_capability(struct adapter *sc, int cap)
12102 {
12103 	int i;
12104 
12105 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12106 }
12107 
12108 int
12109 t4_os_pci_save_state(struct adapter *sc)
12110 {
12111 	device_t dev;
12112 	struct pci_devinfo *dinfo;
12113 
12114 	dev = sc->dev;
12115 	dinfo = device_get_ivars(dev);
12116 
12117 	pci_cfg_save(dev, dinfo, 0);
12118 	return (0);
12119 }
12120 
12121 int
12122 t4_os_pci_restore_state(struct adapter *sc)
12123 {
12124 	device_t dev;
12125 	struct pci_devinfo *dinfo;
12126 
12127 	dev = sc->dev;
12128 	dinfo = device_get_ivars(dev);
12129 
12130 	pci_cfg_restore(dev, dinfo);
12131 	return (0);
12132 }
12133 
12134 void
12135 t4_os_portmod_changed(struct port_info *pi)
12136 {
12137 	struct adapter *sc = pi->adapter;
12138 	struct vi_info *vi;
12139 	if_t ifp;
12140 	static const char *mod_str[] = {
12141 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12142 	};
12143 
12144 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12145 	    ("%s: port_type %u", __func__, pi->port_type));
12146 
12147 	vi = &pi->vi[0];
12148 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12149 		PORT_LOCK(pi);
12150 		build_medialist(pi);
12151 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12152 			fixup_link_config(pi);
12153 			apply_link_config(pi);
12154 		}
12155 		PORT_UNLOCK(pi);
12156 		end_synchronized_op(sc, LOCK_HELD);
12157 	}
12158 
12159 	ifp = vi->ifp;
12160 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12161 		if_printf(ifp, "transceiver unplugged.\n");
12162 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12163 		if_printf(ifp, "unknown transceiver inserted.\n");
12164 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12165 		if_printf(ifp, "unsupported transceiver inserted.\n");
12166 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12167 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12168 		    port_top_speed(pi), mod_str[pi->mod_type]);
12169 	} else {
12170 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12171 		    pi->mod_type);
12172 	}
12173 }
12174 
12175 void
12176 t4_os_link_changed(struct port_info *pi)
12177 {
12178 	struct vi_info *vi;
12179 	if_t ifp;
12180 	struct link_config *lc = &pi->link_cfg;
12181 	struct adapter *sc = pi->adapter;
12182 	int v;
12183 
12184 	PORT_LOCK_ASSERT_OWNED(pi);
12185 
12186 	if (is_t6(sc)) {
12187 		if (lc->link_ok) {
12188 			if (lc->speed > 25000 ||
12189 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12190 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12191 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12192 			} else {
12193 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12194 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12195 			}
12196 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12197 			pi->stats.rx_fcs_err = 0;
12198 		} else {
12199 			pi->fcs_reg = -1;
12200 		}
12201 	} else {
12202 		MPASS(pi->fcs_reg != -1);
12203 		MPASS(pi->fcs_base == 0);
12204 	}
12205 
12206 	for_each_vi(pi, v, vi) {
12207 		ifp = vi->ifp;
12208 		if (ifp == NULL || IS_DETACHING(vi))
12209 			continue;
12210 
12211 		if (lc->link_ok) {
12212 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12213 			if_link_state_change(ifp, LINK_STATE_UP);
12214 		} else {
12215 			if_link_state_change(ifp, LINK_STATE_DOWN);
12216 		}
12217 	}
12218 }
12219 
12220 void
12221 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12222 {
12223 	struct adapter *sc;
12224 
12225 	sx_slock(&t4_list_lock);
12226 	SLIST_FOREACH(sc, &t4_list, link) {
12227 		/*
12228 		 * func should not make any assumptions about what state sc is
12229 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12230 		 */
12231 		func(sc, arg);
12232 	}
12233 	sx_sunlock(&t4_list_lock);
12234 }
12235 
12236 static int
12237 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12238     struct thread *td)
12239 {
12240 	int rc;
12241 	struct adapter *sc = dev->si_drv1;
12242 
12243 	rc = priv_check(td, PRIV_DRIVER);
12244 	if (rc != 0)
12245 		return (rc);
12246 
12247 	switch (cmd) {
12248 	case CHELSIO_T4_GETREG: {
12249 		struct t4_reg *edata = (struct t4_reg *)data;
12250 
12251 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12252 			return (EFAULT);
12253 
12254 		mtx_lock(&sc->reg_lock);
12255 		if (hw_off_limits(sc))
12256 			rc = ENXIO;
12257 		else if (edata->size == 4)
12258 			edata->val = t4_read_reg(sc, edata->addr);
12259 		else if (edata->size == 8)
12260 			edata->val = t4_read_reg64(sc, edata->addr);
12261 		else
12262 			rc = EINVAL;
12263 		mtx_unlock(&sc->reg_lock);
12264 
12265 		break;
12266 	}
12267 	case CHELSIO_T4_SETREG: {
12268 		struct t4_reg *edata = (struct t4_reg *)data;
12269 
12270 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12271 			return (EFAULT);
12272 
12273 		mtx_lock(&sc->reg_lock);
12274 		if (hw_off_limits(sc))
12275 			rc = ENXIO;
12276 		else if (edata->size == 4) {
12277 			if (edata->val & 0xffffffff00000000)
12278 				rc = EINVAL;
12279 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12280 		} else if (edata->size == 8)
12281 			t4_write_reg64(sc, edata->addr, edata->val);
12282 		else
12283 			rc = EINVAL;
12284 		mtx_unlock(&sc->reg_lock);
12285 
12286 		break;
12287 	}
12288 	case CHELSIO_T4_REGDUMP: {
12289 		struct t4_regdump *regs = (struct t4_regdump *)data;
12290 		int reglen = t4_get_regs_len(sc);
12291 		uint8_t *buf;
12292 
12293 		if (regs->len < reglen) {
12294 			regs->len = reglen; /* hint to the caller */
12295 			return (ENOBUFS);
12296 		}
12297 
12298 		regs->len = reglen;
12299 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12300 		mtx_lock(&sc->reg_lock);
12301 		if (hw_off_limits(sc))
12302 			rc = ENXIO;
12303 		else
12304 			get_regs(sc, regs, buf);
12305 		mtx_unlock(&sc->reg_lock);
12306 		if (rc == 0)
12307 			rc = copyout(buf, regs->data, reglen);
12308 		free(buf, M_CXGBE);
12309 		break;
12310 	}
12311 	case CHELSIO_T4_GET_FILTER_MODE:
12312 		rc = get_filter_mode(sc, (uint32_t *)data);
12313 		break;
12314 	case CHELSIO_T4_SET_FILTER_MODE:
12315 		rc = set_filter_mode(sc, *(uint32_t *)data);
12316 		break;
12317 	case CHELSIO_T4_SET_FILTER_MASK:
12318 		rc = set_filter_mask(sc, *(uint32_t *)data);
12319 		break;
12320 	case CHELSIO_T4_GET_FILTER:
12321 		rc = get_filter(sc, (struct t4_filter *)data);
12322 		break;
12323 	case CHELSIO_T4_SET_FILTER:
12324 		rc = set_filter(sc, (struct t4_filter *)data);
12325 		break;
12326 	case CHELSIO_T4_DEL_FILTER:
12327 		rc = del_filter(sc, (struct t4_filter *)data);
12328 		break;
12329 	case CHELSIO_T4_GET_SGE_CONTEXT:
12330 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12331 		break;
12332 	case CHELSIO_T4_LOAD_FW:
12333 		rc = load_fw(sc, (struct t4_data *)data);
12334 		break;
12335 	case CHELSIO_T4_GET_MEM:
12336 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12337 		break;
12338 	case CHELSIO_T4_GET_I2C:
12339 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12340 		break;
12341 	case CHELSIO_T4_CLEAR_STATS:
12342 		rc = clear_stats(sc, *(uint32_t *)data);
12343 		break;
12344 	case CHELSIO_T4_SCHED_CLASS:
12345 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12346 		break;
12347 	case CHELSIO_T4_SCHED_QUEUE:
12348 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12349 		break;
12350 	case CHELSIO_T4_GET_TRACER:
12351 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12352 		break;
12353 	case CHELSIO_T4_SET_TRACER:
12354 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12355 		break;
12356 	case CHELSIO_T4_LOAD_CFG:
12357 		rc = load_cfg(sc, (struct t4_data *)data);
12358 		break;
12359 	case CHELSIO_T4_LOAD_BOOT:
12360 		rc = load_boot(sc, (struct t4_bootrom *)data);
12361 		break;
12362 	case CHELSIO_T4_LOAD_BOOTCFG:
12363 		rc = load_bootcfg(sc, (struct t4_data *)data);
12364 		break;
12365 	case CHELSIO_T4_CUDBG_DUMP:
12366 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12367 		break;
12368 	case CHELSIO_T4_SET_OFLD_POLICY:
12369 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12370 		break;
12371 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12372 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12373 		break;
12374 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12375 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12376 		break;
12377 	default:
12378 		rc = ENOTTY;
12379 	}
12380 
12381 	return (rc);
12382 }
12383 
12384 #ifdef TCP_OFFLOAD
12385 int
12386 toe_capability(struct vi_info *vi, bool enable)
12387 {
12388 	int rc;
12389 	struct port_info *pi = vi->pi;
12390 	struct adapter *sc = pi->adapter;
12391 
12392 	ASSERT_SYNCHRONIZED_OP(sc);
12393 
12394 	if (!is_offload(sc))
12395 		return (ENODEV);
12396 	if (hw_off_limits(sc))
12397 		return (ENXIO);
12398 
12399 	if (enable) {
12400 #ifdef KERN_TLS
12401 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12402 			int i, j, n;
12403 			struct port_info *p;
12404 			struct vi_info *v;
12405 
12406 			/*
12407 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12408 			 * on any ifnet.
12409 			 */
12410 			n = 0;
12411 			for_each_port(sc, i) {
12412 				p = sc->port[i];
12413 				for_each_vi(p, j, v) {
12414 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12415 						CH_WARN(sc,
12416 						    "%s has NIC TLS enabled.\n",
12417 						    device_get_nameunit(v->dev));
12418 						n++;
12419 					}
12420 				}
12421 			}
12422 			if (n > 0) {
12423 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12424 				    "associated with this adapter before "
12425 				    "trying to enable TOE.\n");
12426 				return (EAGAIN);
12427 			}
12428 			rc = t6_config_kern_tls(sc, false);
12429 			if (rc)
12430 				return (rc);
12431 		}
12432 #endif
12433 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12434 			/* TOE is already enabled. */
12435 			return (0);
12436 		}
12437 
12438 		/*
12439 		 * We need the port's queues around so that we're able to send
12440 		 * and receive CPLs to/from the TOE even if the ifnet for this
12441 		 * port has never been UP'd administratively.
12442 		 */
12443 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12444 			return (rc);
12445 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12446 		    ((rc = vi_init(&pi->vi[0])) != 0))
12447 			return (rc);
12448 
12449 		if (isset(&sc->offload_map, pi->port_id)) {
12450 			/* TOE is enabled on another VI of this port. */
12451 			MPASS(pi->uld_vis > 0);
12452 			pi->uld_vis++;
12453 			return (0);
12454 		}
12455 
12456 		if (!uld_active(sc, ULD_TOM)) {
12457 			rc = t4_activate_uld(sc, ULD_TOM);
12458 			if (rc == EAGAIN) {
12459 				log(LOG_WARNING,
12460 				    "You must kldload t4_tom.ko before trying "
12461 				    "to enable TOE on a cxgbe interface.\n");
12462 			}
12463 			if (rc != 0)
12464 				return (rc);
12465 			KASSERT(sc->tom_softc != NULL,
12466 			    ("%s: TOM activated but softc NULL", __func__));
12467 			KASSERT(uld_active(sc, ULD_TOM),
12468 			    ("%s: TOM activated but flag not set", __func__));
12469 		}
12470 
12471 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12472 		if (!uld_active(sc, ULD_IWARP))
12473 			(void) t4_activate_uld(sc, ULD_IWARP);
12474 		if (!uld_active(sc, ULD_ISCSI))
12475 			(void) t4_activate_uld(sc, ULD_ISCSI);
12476 
12477 		if (pi->uld_vis++ == 0)
12478 			setbit(&sc->offload_map, pi->port_id);
12479 	} else {
12480 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12481 			/* TOE is already disabled. */
12482 			return (0);
12483 		}
12484 		MPASS(isset(&sc->offload_map, pi->port_id));
12485 		MPASS(pi->uld_vis > 0);
12486 		if (--pi->uld_vis == 0)
12487 			clrbit(&sc->offload_map, pi->port_id);
12488 	}
12489 
12490 	return (0);
12491 }
12492 
12493 /*
12494  * Add an upper layer driver to the global list.
12495  */
12496 int
12497 t4_register_uld(struct uld_info *ui, int id)
12498 {
12499 	int rc;
12500 
12501 	if (id < 0 || id > ULD_MAX)
12502 		return (EINVAL);
12503 	sx_xlock(&t4_uld_list_lock);
12504 	if (t4_uld_list[id] != NULL)
12505 		rc = EEXIST;
12506 	else {
12507 		t4_uld_list[id] = ui;
12508 		rc = 0;
12509 	}
12510 	sx_xunlock(&t4_uld_list_lock);
12511 	return (rc);
12512 }
12513 
12514 int
12515 t4_unregister_uld(struct uld_info *ui, int id)
12516 {
12517 
12518 	if (id < 0 || id > ULD_MAX)
12519 		return (EINVAL);
12520 	sx_xlock(&t4_uld_list_lock);
12521 	MPASS(t4_uld_list[id] == ui);
12522 	t4_uld_list[id] = NULL;
12523 	sx_xunlock(&t4_uld_list_lock);
12524 	return (0);
12525 }
12526 
12527 int
12528 t4_activate_uld(struct adapter *sc, int id)
12529 {
12530 	int rc;
12531 
12532 	ASSERT_SYNCHRONIZED_OP(sc);
12533 
12534 	if (id < 0 || id > ULD_MAX)
12535 		return (EINVAL);
12536 
12537 	/* Adapter needs to be initialized before any ULD can be activated. */
12538 	if (!(sc->flags & FULL_INIT_DONE)) {
12539 		rc = adapter_init(sc);
12540 		if (rc != 0)
12541 			return (rc);
12542 	}
12543 
12544 	sx_slock(&t4_uld_list_lock);
12545 	if (t4_uld_list[id] == NULL)
12546 		rc = EAGAIN;	/* load the KLD with this ULD and try again. */
12547 	else {
12548 		rc = t4_uld_list[id]->uld_activate(sc);
12549 		if (rc == 0)
12550 			setbit(&sc->active_ulds, id);
12551 	}
12552 	sx_sunlock(&t4_uld_list_lock);
12553 
12554 	return (rc);
12555 }
12556 
12557 int
12558 t4_deactivate_uld(struct adapter *sc, int id)
12559 {
12560 	int rc;
12561 
12562 	ASSERT_SYNCHRONIZED_OP(sc);
12563 
12564 	if (id < 0 || id > ULD_MAX)
12565 		return (EINVAL);
12566 
12567 	sx_slock(&t4_uld_list_lock);
12568 	if (t4_uld_list[id] == NULL)
12569 		rc = ENXIO;
12570 	else {
12571 		rc = t4_uld_list[id]->uld_deactivate(sc);
12572 		if (rc == 0)
12573 			clrbit(&sc->active_ulds, id);
12574 	}
12575 	sx_sunlock(&t4_uld_list_lock);
12576 
12577 	return (rc);
12578 }
12579 
12580 static int
12581 deactivate_all_uld(struct adapter *sc)
12582 {
12583 	int i, rc;
12584 
12585 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12586 	if (rc != 0)
12587 		return (ENXIO);
12588 	sx_slock(&t4_uld_list_lock);
12589 	for (i = 0; i <= ULD_MAX; i++) {
12590 		if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12591 			continue;
12592 		rc = t4_uld_list[i]->uld_deactivate(sc);
12593 		if (rc != 0)
12594 			break;
12595 		clrbit(&sc->active_ulds, i);
12596 	}
12597 	sx_sunlock(&t4_uld_list_lock);
12598 	end_synchronized_op(sc, 0);
12599 
12600 	return (rc);
12601 }
12602 
12603 static void
12604 stop_all_uld(struct adapter *sc)
12605 {
12606 	int i;
12607 
12608 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12609 		return;
12610 	sx_slock(&t4_uld_list_lock);
12611 	for (i = 0; i <= ULD_MAX; i++) {
12612 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12613 		    t4_uld_list[i]->uld_stop == NULL)
12614 			continue;
12615 		(void) t4_uld_list[i]->uld_stop(sc);
12616 	}
12617 	sx_sunlock(&t4_uld_list_lock);
12618 	end_synchronized_op(sc, 0);
12619 }
12620 
12621 static void
12622 restart_all_uld(struct adapter *sc)
12623 {
12624 	int i;
12625 
12626 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12627 		return;
12628 	sx_slock(&t4_uld_list_lock);
12629 	for (i = 0; i <= ULD_MAX; i++) {
12630 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12631 		    t4_uld_list[i]->uld_restart == NULL)
12632 			continue;
12633 		(void) t4_uld_list[i]->uld_restart(sc);
12634 	}
12635 	sx_sunlock(&t4_uld_list_lock);
12636 	end_synchronized_op(sc, 0);
12637 }
12638 
12639 int
12640 uld_active(struct adapter *sc, int id)
12641 {
12642 
12643 	MPASS(id >= 0 && id <= ULD_MAX);
12644 
12645 	return (isset(&sc->active_ulds, id));
12646 }
12647 #endif
12648 
12649 #ifdef KERN_TLS
12650 static int
12651 ktls_capability(struct adapter *sc, bool enable)
12652 {
12653 	ASSERT_SYNCHRONIZED_OP(sc);
12654 
12655 	if (!is_ktls(sc))
12656 		return (ENODEV);
12657 	if (!is_t6(sc))
12658 		return (0);
12659 	if (hw_off_limits(sc))
12660 		return (ENXIO);
12661 
12662 	if (enable) {
12663 		if (sc->flags & KERN_TLS_ON)
12664 			return (0);	/* already on */
12665 		if (sc->offload_map != 0) {
12666 			CH_WARN(sc,
12667 			    "Disable TOE on all interfaces associated with "
12668 			    "this adapter before trying to enable NIC TLS.\n");
12669 			return (EAGAIN);
12670 		}
12671 		return (t6_config_kern_tls(sc, true));
12672 	} else {
12673 		/*
12674 		 * Nothing to do for disable.  If TOE is enabled sometime later
12675 		 * then toe_capability will reconfigure the hardware.
12676 		 */
12677 		return (0);
12678 	}
12679 }
12680 #endif
12681 
12682 /*
12683  * t  = ptr to tunable.
12684  * nc = number of CPUs.
12685  * c  = compiled in default for that tunable.
12686  */
12687 static void
12688 calculate_nqueues(int *t, int nc, const int c)
12689 {
12690 	int nq;
12691 
12692 	if (*t > 0)
12693 		return;
12694 	nq = *t < 0 ? -*t : c;
12695 	*t = min(nc, nq);
12696 }
12697 
12698 /*
12699  * Come up with reasonable defaults for some of the tunables, provided they're
12700  * not set by the user (in which case we'll use the values as is).
12701  */
12702 static void
12703 tweak_tunables(void)
12704 {
12705 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12706 
12707 	if (t4_ntxq < 1) {
12708 #ifdef RSS
12709 		t4_ntxq = rss_getnumbuckets();
12710 #else
12711 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12712 #endif
12713 	}
12714 
12715 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12716 
12717 	if (t4_nrxq < 1) {
12718 #ifdef RSS
12719 		t4_nrxq = rss_getnumbuckets();
12720 #else
12721 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12722 #endif
12723 	}
12724 
12725 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12726 
12727 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12728 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12729 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12730 #endif
12731 #ifdef TCP_OFFLOAD
12732 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12733 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12734 #endif
12735 
12736 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12737 	if (t4_toecaps_allowed == -1)
12738 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12739 #else
12740 	if (t4_toecaps_allowed == -1)
12741 		t4_toecaps_allowed = 0;
12742 #endif
12743 
12744 #ifdef TCP_OFFLOAD
12745 	if (t4_rdmacaps_allowed == -1) {
12746 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12747 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12748 	}
12749 
12750 	if (t4_iscsicaps_allowed == -1) {
12751 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12752 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12753 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12754 	}
12755 
12756 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12757 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12758 
12759 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12760 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12761 #else
12762 	if (t4_rdmacaps_allowed == -1)
12763 		t4_rdmacaps_allowed = 0;
12764 
12765 	if (t4_iscsicaps_allowed == -1)
12766 		t4_iscsicaps_allowed = 0;
12767 #endif
12768 
12769 #ifdef DEV_NETMAP
12770 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12771 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12772 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12773 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12774 #endif
12775 
12776 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12777 		t4_tmr_idx = TMR_IDX;
12778 
12779 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12780 		t4_pktc_idx = PKTC_IDX;
12781 
12782 	if (t4_qsize_txq < 128)
12783 		t4_qsize_txq = 128;
12784 
12785 	if (t4_qsize_rxq < 128)
12786 		t4_qsize_rxq = 128;
12787 	while (t4_qsize_rxq & 7)
12788 		t4_qsize_rxq++;
12789 
12790 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12791 
12792 	/*
12793 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12794 	 * VI for the port.  The rest are additional virtual interfaces on the
12795 	 * same physical port.  Note that the main VI does not have native
12796 	 * netmap support but the extra VIs do.
12797 	 *
12798 	 * Limit the number of VIs per port to the number of available
12799 	 * MAC addresses per port.
12800 	 */
12801 	if (t4_num_vis < 1)
12802 		t4_num_vis = 1;
12803 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12804 		t4_num_vis = nitems(vi_mac_funcs);
12805 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12806 	}
12807 
12808 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12809 		pcie_relaxed_ordering = 1;
12810 #if defined(__i386__) || defined(__amd64__)
12811 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12812 			pcie_relaxed_ordering = 0;
12813 #endif
12814 	}
12815 }
12816 
12817 #ifdef DDB
12818 static void
12819 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12820 {
12821 	uint32_t base, j, off, pf, reg, save, win_pos;
12822 
12823 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12824 	save = t4_read_reg(sc, reg);
12825 	base = sc->memwin[2].mw_base;
12826 
12827 	if (is_t4(sc)) {
12828 		pf = 0;
12829 		win_pos = addr & ~0xf;	/* start must be 16B aligned */
12830 	} else {
12831 		pf = V_PFNUM(sc->pf);
12832 		win_pos = addr & ~0x7f;	/* start must be 128B aligned */
12833 	}
12834 	off = addr - win_pos;
12835 	t4_write_reg(sc, reg, win_pos | pf);
12836 	t4_read_reg(sc, reg);
12837 
12838 	while (len > 0 && !db_pager_quit) {
12839 		uint32_t buf[8];
12840 		for (j = 0; j < 8; j++, off += 4)
12841 			buf[j] = htonl(t4_read_reg(sc, base + off));
12842 
12843 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12844 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12845 		    buf[7]);
12846 		if (len <= sizeof(buf))
12847 			len = 0;
12848 		else
12849 			len -= sizeof(buf);
12850 	}
12851 
12852 	t4_write_reg(sc, reg, save);
12853 	t4_read_reg(sc, reg);
12854 }
12855 
12856 static void
12857 t4_dump_tcb(struct adapter *sc, int tid)
12858 {
12859 	uint32_t tcb_addr;
12860 
12861 	/* Dump TCB for the tid */
12862 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12863 	tcb_addr += tid * TCB_SIZE;
12864 	t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12865 }
12866 
12867 static void
12868 t4_dump_devlog(struct adapter *sc)
12869 {
12870 	struct devlog_params *dparams = &sc->params.devlog;
12871 	struct fw_devlog_e e;
12872 	int i, first, j, m, nentries, rc;
12873 	uint64_t ftstamp = UINT64_MAX;
12874 
12875 	if (dparams->start == 0) {
12876 		db_printf("devlog params not valid\n");
12877 		return;
12878 	}
12879 
12880 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12881 	m = fwmtype_to_hwmtype(dparams->memtype);
12882 
12883 	/* Find the first entry. */
12884 	first = -1;
12885 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12886 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12887 		    sizeof(e), (void *)&e);
12888 		if (rc != 0)
12889 			break;
12890 
12891 		if (e.timestamp == 0)
12892 			break;
12893 
12894 		e.timestamp = be64toh(e.timestamp);
12895 		if (e.timestamp < ftstamp) {
12896 			ftstamp = e.timestamp;
12897 			first = i;
12898 		}
12899 	}
12900 
12901 	if (first == -1)
12902 		return;
12903 
12904 	i = first;
12905 	do {
12906 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12907 		    sizeof(e), (void *)&e);
12908 		if (rc != 0)
12909 			return;
12910 
12911 		if (e.timestamp == 0)
12912 			return;
12913 
12914 		e.timestamp = be64toh(e.timestamp);
12915 		e.seqno = be32toh(e.seqno);
12916 		for (j = 0; j < 8; j++)
12917 			e.params[j] = be32toh(e.params[j]);
12918 
12919 		db_printf("%10d  %15ju  %8s  %8s  ",
12920 		    e.seqno, e.timestamp,
12921 		    (e.level < nitems(devlog_level_strings) ?
12922 			devlog_level_strings[e.level] : "UNKNOWN"),
12923 		    (e.facility < nitems(devlog_facility_strings) ?
12924 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12925 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12926 		    e.params[3], e.params[4], e.params[5], e.params[6],
12927 		    e.params[7]);
12928 
12929 		if (++i == nentries)
12930 			i = 0;
12931 	} while (i != first && !db_pager_quit);
12932 }
12933 
12934 static DB_DEFINE_TABLE(show, t4, show_t4);
12935 
12936 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12937 {
12938 	device_t dev;
12939 	int t;
12940 	bool valid;
12941 
12942 	valid = false;
12943 	t = db_read_token();
12944 	if (t == tIDENT) {
12945 		dev = device_lookup_by_name(db_tok_string);
12946 		valid = true;
12947 	}
12948 	db_skip_to_eol();
12949 	if (!valid) {
12950 		db_printf("usage: show t4 devlog <nexus>\n");
12951 		return;
12952 	}
12953 
12954 	if (dev == NULL) {
12955 		db_printf("device not found\n");
12956 		return;
12957 	}
12958 
12959 	t4_dump_devlog(device_get_softc(dev));
12960 }
12961 
12962 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12963 {
12964 	device_t dev;
12965 	int radix, tid, t;
12966 	bool valid;
12967 
12968 	valid = false;
12969 	radix = db_radix;
12970 	db_radix = 10;
12971 	t = db_read_token();
12972 	if (t == tIDENT) {
12973 		dev = device_lookup_by_name(db_tok_string);
12974 		t = db_read_token();
12975 		if (t == tNUMBER) {
12976 			tid = db_tok_number;
12977 			valid = true;
12978 		}
12979 	}
12980 	db_radix = radix;
12981 	db_skip_to_eol();
12982 	if (!valid) {
12983 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12984 		return;
12985 	}
12986 
12987 	if (dev == NULL) {
12988 		db_printf("device not found\n");
12989 		return;
12990 	}
12991 	if (tid < 0) {
12992 		db_printf("invalid tid\n");
12993 		return;
12994 	}
12995 
12996 	t4_dump_tcb(device_get_softc(dev), tid);
12997 }
12998 
12999 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13000 {
13001 	device_t dev;
13002 	int radix, t;
13003 	bool valid;
13004 
13005 	valid = false;
13006 	radix = db_radix;
13007 	db_radix = 10;
13008 	t = db_read_token();
13009 	if (t == tIDENT) {
13010 		dev = device_lookup_by_name(db_tok_string);
13011 		t = db_read_token();
13012 		if (t == tNUMBER) {
13013 			addr = db_tok_number;
13014 			t = db_read_token();
13015 			if (t == tNUMBER) {
13016 				count = db_tok_number;
13017 				valid = true;
13018 			}
13019 		}
13020 	}
13021 	db_radix = radix;
13022 	db_skip_to_eol();
13023 	if (!valid) {
13024 		db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13025 		return;
13026 	}
13027 
13028 	if (dev == NULL) {
13029 		db_printf("device not found\n");
13030 		return;
13031 	}
13032 	if (addr < 0) {
13033 		db_printf("invalid address\n");
13034 		return;
13035 	}
13036 	if (count <= 0) {
13037 		db_printf("invalid length\n");
13038 		return;
13039 	}
13040 
13041 	t4_dump_mem(device_get_softc(dev), addr, count);
13042 }
13043 #endif
13044 
13045 static eventhandler_tag vxlan_start_evtag;
13046 static eventhandler_tag vxlan_stop_evtag;
13047 
13048 struct vxlan_evargs {
13049 	if_t ifp;
13050 	uint16_t port;
13051 };
13052 
13053 static void
13054 enable_vxlan_rx(struct adapter *sc)
13055 {
13056 	int i, rc;
13057 	struct port_info *pi;
13058 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13059 
13060 	ASSERT_SYNCHRONIZED_OP(sc);
13061 
13062 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13063 	    F_VXLAN_EN);
13064 	for_each_port(sc, i) {
13065 		pi = sc->port[i];
13066 		if (pi->vxlan_tcam_entry == true)
13067 			continue;
13068 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13069 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13070 		    true);
13071 		if (rc < 0) {
13072 			rc = -rc;
13073 			CH_ERR(&pi->vi[0],
13074 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13075 		} else {
13076 			MPASS(rc == sc->rawf_base + pi->port_id);
13077 			pi->vxlan_tcam_entry = true;
13078 		}
13079 	}
13080 }
13081 
13082 static void
13083 t4_vxlan_start(struct adapter *sc, void *arg)
13084 {
13085 	struct vxlan_evargs *v = arg;
13086 
13087 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13088 		return;
13089 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13090 		return;
13091 
13092 	if (sc->vxlan_refcount == 0) {
13093 		sc->vxlan_port = v->port;
13094 		sc->vxlan_refcount = 1;
13095 		if (!hw_off_limits(sc))
13096 			enable_vxlan_rx(sc);
13097 	} else if (sc->vxlan_port == v->port) {
13098 		sc->vxlan_refcount++;
13099 	} else {
13100 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13101 		    "ignoring attempt to configure it on port %d\n",
13102 		    sc->vxlan_port, v->port);
13103 	}
13104 	end_synchronized_op(sc, 0);
13105 }
13106 
13107 static void
13108 t4_vxlan_stop(struct adapter *sc, void *arg)
13109 {
13110 	struct vxlan_evargs *v = arg;
13111 
13112 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13113 		return;
13114 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13115 		return;
13116 
13117 	/*
13118 	 * VXLANs may have been configured before the driver was loaded so we
13119 	 * may see more stops than starts.  This is not handled cleanly but at
13120 	 * least we keep the refcount sane.
13121 	 */
13122 	if (sc->vxlan_port != v->port)
13123 		goto done;
13124 	if (sc->vxlan_refcount == 0) {
13125 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13126 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13127 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13128 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13129 done:
13130 	end_synchronized_op(sc, 0);
13131 }
13132 
13133 static void
13134 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13135     sa_family_t family, u_int port)
13136 {
13137 	struct vxlan_evargs v;
13138 
13139 	MPASS(family == AF_INET || family == AF_INET6);
13140 	v.ifp = ifp;
13141 	v.port = port;
13142 
13143 	t4_iterate(t4_vxlan_start, &v);
13144 }
13145 
13146 static void
13147 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13148     u_int port)
13149 {
13150 	struct vxlan_evargs v;
13151 
13152 	MPASS(family == AF_INET || family == AF_INET6);
13153 	v.ifp = ifp;
13154 	v.port = port;
13155 
13156 	t4_iterate(t4_vxlan_stop, &v);
13157 }
13158 
13159 
13160 static struct sx mlu;	/* mod load unload */
13161 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13162 
13163 static int
13164 mod_event(module_t mod, int cmd, void *arg)
13165 {
13166 	int rc = 0;
13167 	static int loaded = 0;
13168 
13169 	switch (cmd) {
13170 	case MOD_LOAD:
13171 		sx_xlock(&mlu);
13172 		if (loaded++ == 0) {
13173 			t4_sge_modload();
13174 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13175 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13176 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13177 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13178 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13179 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13180 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13181 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13182 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13183 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13184 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13185 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13186 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13187 			    do_smt_write_rpl);
13188 			sx_init(&t4_list_lock, "T4/T5 adapters");
13189 			SLIST_INIT(&t4_list);
13190 			callout_init(&fatal_callout, 1);
13191 #ifdef TCP_OFFLOAD
13192 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13193 #endif
13194 #ifdef INET6
13195 			t4_clip_modload();
13196 #endif
13197 #ifdef KERN_TLS
13198 			t6_ktls_modload();
13199 #endif
13200 			t4_tracer_modload();
13201 			tweak_tunables();
13202 			vxlan_start_evtag =
13203 			    EVENTHANDLER_REGISTER(vxlan_start,
13204 				t4_vxlan_start_handler, NULL,
13205 				EVENTHANDLER_PRI_ANY);
13206 			vxlan_stop_evtag =
13207 			    EVENTHANDLER_REGISTER(vxlan_stop,
13208 				t4_vxlan_stop_handler, NULL,
13209 				EVENTHANDLER_PRI_ANY);
13210 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13211 			    taskqueue_thread_enqueue, &reset_tq);
13212 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13213 			    "t4_rst_thr");
13214 		}
13215 		sx_xunlock(&mlu);
13216 		break;
13217 
13218 	case MOD_UNLOAD:
13219 		sx_xlock(&mlu);
13220 		if (--loaded == 0) {
13221 #ifdef TCP_OFFLOAD
13222 			int i;
13223 #endif
13224 			int tries;
13225 
13226 			taskqueue_free(reset_tq);
13227 
13228 			tries = 0;
13229 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13230 				uprintf("%ju clusters with custom free routine "
13231 				    "still is use.\n", t4_sge_extfree_refs());
13232 				pause("t4unload", 2 * hz);
13233 			}
13234 
13235 			sx_slock(&t4_list_lock);
13236 			if (!SLIST_EMPTY(&t4_list)) {
13237 				rc = EBUSY;
13238 				sx_sunlock(&t4_list_lock);
13239 				goto done_unload;
13240 			}
13241 #ifdef TCP_OFFLOAD
13242 			sx_slock(&t4_uld_list_lock);
13243 			for (i = 0; i <= ULD_MAX; i++) {
13244 				if (t4_uld_list[i] != NULL) {
13245 					rc = EBUSY;
13246 					sx_sunlock(&t4_uld_list_lock);
13247 					sx_sunlock(&t4_list_lock);
13248 					goto done_unload;
13249 				}
13250 			}
13251 			sx_sunlock(&t4_uld_list_lock);
13252 #endif
13253 			sx_sunlock(&t4_list_lock);
13254 
13255 			if (t4_sge_extfree_refs() == 0) {
13256 				EVENTHANDLER_DEREGISTER(vxlan_start,
13257 				    vxlan_start_evtag);
13258 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13259 				    vxlan_stop_evtag);
13260 				t4_tracer_modunload();
13261 #ifdef KERN_TLS
13262 				t6_ktls_modunload();
13263 #endif
13264 #ifdef INET6
13265 				t4_clip_modunload();
13266 #endif
13267 #ifdef TCP_OFFLOAD
13268 				sx_destroy(&t4_uld_list_lock);
13269 #endif
13270 				sx_destroy(&t4_list_lock);
13271 				t4_sge_modunload();
13272 				loaded = 0;
13273 			} else {
13274 				rc = EBUSY;
13275 				loaded++;	/* undo earlier decrement */
13276 			}
13277 		}
13278 done_unload:
13279 		sx_xunlock(&mlu);
13280 		break;
13281 	}
13282 
13283 	return (rc);
13284 }
13285 
13286 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13287 MODULE_VERSION(t4nex, 1);
13288 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13289 #ifdef DEV_NETMAP
13290 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13291 #endif /* DEV_NETMAP */
13292 
13293 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13294 MODULE_VERSION(t5nex, 1);
13295 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13296 #ifdef DEV_NETMAP
13297 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13298 #endif /* DEV_NETMAP */
13299 
13300 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13301 MODULE_VERSION(t6nex, 1);
13302 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13303 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13304 #ifdef DEV_NETMAP
13305 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13306 #endif /* DEV_NETMAP */
13307 
13308 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13309 MODULE_VERSION(cxgbe, 1);
13310 
13311 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13312 MODULE_VERSION(cxl, 1);
13313 
13314 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13315 MODULE_VERSION(cc, 1);
13316 
13317 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13318 MODULE_VERSION(vcxgbe, 1);
13319 
13320 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13321 MODULE_VERSION(vcxl, 1);
13322 
13323 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13324 MODULE_VERSION(vcc, 1);
13325