xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision ae1a0648b05acf798816e7b83b3c10856de5c8e5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81 
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93 
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 	DEVMETHOD(device_probe,		t4_probe),
107 	DEVMETHOD(device_attach,	t4_attach),
108 	DEVMETHOD(device_detach,	t4_detach),
109 	DEVMETHOD(device_suspend,	t4_suspend),
110 	DEVMETHOD(device_resume,	t4_resume),
111 
112 	DEVMETHOD(bus_child_location,	t4_child_location),
113 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
114 	DEVMETHOD(bus_reset_post,	t4_reset_post),
115 
116 	DEVMETHOD(t4_is_main_ready,	t4_ready),
117 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
118 
119 	DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 	"t4nex",
123 	t4_methods,
124 	sizeof(struct adapter)
125 };
126 
127 
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 	DEVMETHOD(device_probe,		cxgbe_probe),
134 	DEVMETHOD(device_attach,	cxgbe_attach),
135 	DEVMETHOD(device_detach,	cxgbe_detach),
136 	{ 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 	"cxgbe",
140 	cxgbe_methods,
141 	sizeof(struct port_info)
142 };
143 
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 	DEVMETHOD(device_probe,		vcxgbe_probe),
150 	DEVMETHOD(device_attach,	vcxgbe_attach),
151 	DEVMETHOD(device_detach,	vcxgbe_detach),
152 	{ 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 	"vcxgbe",
156 	vcxgbe_methods,
157 	sizeof(struct vi_info)
158 };
159 
160 static d_ioctl_t t4_ioctl;
161 
162 static struct cdevsw t4_cdevsw = {
163        .d_version = D_VERSION,
164        .d_ioctl = t4_ioctl,
165        .d_name = "t4nex",
166 };
167 
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 	DEVMETHOD(device_probe,		t5_probe),
172 	DEVMETHOD(device_attach,	t4_attach),
173 	DEVMETHOD(device_detach,	t4_detach),
174 	DEVMETHOD(device_suspend,	t4_suspend),
175 	DEVMETHOD(device_resume,	t4_resume),
176 
177 	DEVMETHOD(bus_child_location,	t4_child_location),
178 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
179 	DEVMETHOD(bus_reset_post,	t4_reset_post),
180 
181 	DEVMETHOD(t4_is_main_ready,	t4_ready),
182 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
183 
184 	DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 	"t5nex",
188 	t5_methods,
189 	sizeof(struct adapter)
190 };
191 
192 
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 	"cxl",
196 	cxgbe_methods,
197 	sizeof(struct port_info)
198 };
199 
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 	"vcxl",
203 	vcxgbe_methods,
204 	sizeof(struct vi_info)
205 };
206 
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 	DEVMETHOD(device_probe,		t6_probe),
211 	DEVMETHOD(device_attach,	t4_attach),
212 	DEVMETHOD(device_detach,	t4_detach),
213 	DEVMETHOD(device_suspend,	t4_suspend),
214 	DEVMETHOD(device_resume,	t4_resume),
215 
216 	DEVMETHOD(bus_child_location,	t4_child_location),
217 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
218 	DEVMETHOD(bus_reset_post,	t4_reset_post),
219 
220 	DEVMETHOD(t4_is_main_ready,	t4_ready),
221 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
222 
223 	DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 	"t6nex",
227 	t6_methods,
228 	sizeof(struct adapter)
229 };
230 
231 
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 	"cc",
235 	cxgbe_methods,
236 	sizeof(struct port_info)
237 };
238 
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 	"vcc",
242 	vcxgbe_methods,
243 	sizeof(struct vi_info)
244 };
245 
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253     struct m_snd_tag **);
254 #endif
255 
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257 
258 /*
259  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260  * then ADAPTER_LOCK, then t4_uld_list_lock.
261  */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 struct uld_info *t4_uld_list[ULD_MAX + 1];
267 #endif
268 
269 /*
270  * Tunables.  See tweak_tunables() too.
271  *
272  * Each tunable is set to a default value here if it's known at compile-time.
273  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274  * provide a reasonable default (upto n) when the driver is loaded.
275  *
276  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
277  * T5 are under hw.cxl.
278  */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) TOE parameters");
285 
286 /*
287  * Number of queues for tx and rx, NIC and offload.
288  */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292     "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
294 
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298     "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
300 
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304     "Number of TX queues per VI");
305 
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309     "Number of RX queues per VI");
310 
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313     0, "Reserve TX queue 0 of each VI for non-flowid packets");
314 
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319     "Number of offload TX queues per port");
320 
321 #define NOFLDRXQ 2
322 static int t4_nofldrxq = -NOFLDRXQ;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
324     "Number of offload RX queues per port");
325 
326 #define NOFLDTXQ_VI 1
327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
329     "Number of offload TX queues per VI");
330 
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334     "Number of offload RX queues per VI");
335 
336 #define TMR_IDX_OFLD 1
337 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340 
341 #define PKTC_IDX_OFLD (-1)
342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345 
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350 
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355 
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360 
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365 
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370 
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375 
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382     "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[15], 0, "");
415 
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419 
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422     &t4_ddp_rcvbuf_cache, 0,
423     "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425 
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
428 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
432 
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436     "Number of netmap TX queues");
437 
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441     "Number of netmap RX queues");
442 
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446     "Number of netmap TX queues per VI");
447 
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451     "Number of netmap RX queues per VI");
452 #endif
453 
454 /*
455  * Holdoff parameters for ports.
456  */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460     0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
462 
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466     0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
468 
469 /*
470  * Size (# of entries) of each tx and rx queue.
471  */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474     "Number of descriptors in each TX queue");
475 
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478     "Number of descriptors in each RX queue");
479 
480 /*
481  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482  */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486 
487 /*
488  * Configuration file.  All the _CF names here are special.
489  */
490 #define DEFAULT_CF	"default"
491 #define BUILTIN_CF	"built-in"
492 #define FLASH_CF	"flash"
493 #define UWIRE_CF	"uwire"
494 #define FPGA_CF		"fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497     sizeof(t4_cfg_file), "Firmware configuration file");
498 
499 /*
500  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503  *            mark or when signalled to do so, 0 to never emit PAUSE.
504  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505  *                 negotiated settings will override rx_pause/tx_pause.
506  *                 Otherwise rx_pause/tx_pause are applied forcibly.
507  */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510     &t4_pause_settings, 0,
511     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512 
513 /*
514  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
516  *  0 to disable FEC.
517  */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521 
522 /*
523  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
525  * driver runs as if this is set to 0.
526  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
529  *    the firmware anyway (may result in l1cfg errors with old firmwares).
530  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531  *    means set all FEC bits that are valid for the speed.
532  */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535     "Controls the use of FORCE_FEC bit in L1 configuration.");
536 
537 /*
538  * Link autonegotiation.
539  * -1 to run with the firmware default.
540  *  0 to disable.
541  *  1 to enable.
542  */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545     "Link autonegotiation");
546 
547 /*
548  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549  * encouraged respectively).  '-n' is the same as 'n' except the firmware
550  * version used in the checks is read from the firmware bundled with the driver.
551  */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555 
556 /*
557  * ASIC features that will be used.  Disable the ones you don't want so that the
558  * chip resources aren't wasted on features that will not be used.
559  */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563 
564 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566     &t4_linkcaps_allowed, 0, "Default link capabilities");
567 
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569     FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571     &t4_switchcaps_allowed, 0, "Default switch capabilities");
572 
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 	FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581     &t4_niccaps_allowed, 0, "Default NIC capabilities");
582 
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586 
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590 
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594 
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598 
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602 
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605     0, "Use WC instead of UC for BAR2");
606 
607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
608 static int t4_doorbells_allowed = 0xf;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
610 	   &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
611 
612 static int t4_num_vis = 1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
614     "Number of VIs per port");
615 
616 /*
617  * PCIe Relaxed Ordering.
618  * -1: driver should figure out a good value.
619  * 0: disable RO.
620  * 1: enable RO.
621  * 2: leave RO alone.
622  */
623 static int pcie_relaxed_ordering = -1;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
625     &pcie_relaxed_ordering, 0,
626     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
627 
628 static int t4_panic_on_fatal_err = 0;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
630     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
631 
632 static int t4_reset_on_fatal_err = 0;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
634     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
635 
636 static int t4_clock_gate_on_suspend = 0;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
638     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
639 
640 static int t4_tx_vm_wr = 0;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
642     "Use VM work requests to transmit packets.");
643 
644 /*
645  * Set to non-zero to enable the attack filter.  A packet that matches any of
646  * these conditions will get dropped on ingress:
647  * 1) IP && source address == destination address.
648  * 2) TCP/IP && source address is not a unicast address.
649  * 3) TCP/IP && destination address is not a unicast address.
650  * 4) IP && source address is loopback (127.x.y.z).
651  * 5) IP && destination address is loopback (127.x.y.z).
652  * 6) IPv6 && source address == destination address.
653  * 7) IPv6 && source address is not a unicast address.
654  * 8) IPv6 && source address is loopback (::1/128).
655  * 9) IPv6 && destination address is loopback (::1/128).
656  * 10) IPv6 && source address is unspecified (::/128).
657  * 11) IPv6 && destination address is unspecified (::/128).
658  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
659  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
660  */
661 static int t4_attack_filter = 0;
662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
663     &t4_attack_filter, 0, "Drop suspicious traffic");
664 
665 static int t4_drop_ip_fragments = 0;
666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
667     &t4_drop_ip_fragments, 0, "Drop IP fragments");
668 
669 static int t4_drop_pkts_with_l2_errors = 1;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
671     &t4_drop_pkts_with_l2_errors, 0,
672     "Drop all frames with Layer 2 length or checksum errors");
673 
674 static int t4_drop_pkts_with_l3_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
676     &t4_drop_pkts_with_l3_errors, 0,
677     "Drop all frames with IP version, length, or checksum errors");
678 
679 static int t4_drop_pkts_with_l4_errors = 0;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
681     &t4_drop_pkts_with_l4_errors, 0,
682     "Drop all frames with Layer 4 length, checksum, or other errors");
683 
684 #ifdef TCP_OFFLOAD
685 /*
686  * TOE tunables.
687  */
688 static int t4_cop_managed_offloading = 0;
689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
690     &t4_cop_managed_offloading, 0,
691     "COP (Connection Offload Policy) controls all TOE offload");
692 #endif
693 
694 #ifdef KERN_TLS
695 /*
696  * This enables KERN_TLS for all adapters if set.
697  */
698 static int t4_kern_tls = 0;
699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
700     "Enable KERN_TLS mode for T6 adapters");
701 
702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
703     "cxgbe(4) KERN_TLS parameters");
704 
705 static int t4_tls_inline_keys = 0;
706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
707     &t4_tls_inline_keys, 0,
708     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
709     "in card memory.");
710 
711 static int t4_tls_combo_wrs = 0;
712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
713     0, "Attempt to combine TCB field updates with TLS record work requests.");
714 #endif
715 
716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
717 static int vi_mac_funcs[] = {
718 	FW_VI_FUNC_ETH,
719 	FW_VI_FUNC_OFLD,
720 	FW_VI_FUNC_IWARP,
721 	FW_VI_FUNC_OPENISCSI,
722 	FW_VI_FUNC_OPENFCOE,
723 	FW_VI_FUNC_FOISCSI,
724 	FW_VI_FUNC_FOFCOE,
725 };
726 
727 struct intrs_and_queues {
728 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
729 	uint16_t num_vis;	/* number of VIs for each port */
730 	uint16_t nirq;		/* Total # of vectors */
731 	uint16_t ntxq;		/* # of NIC txq's for each port */
732 	uint16_t nrxq;		/* # of NIC rxq's for each port */
733 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
734 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
735 	uint16_t nnmtxq;	/* # of netmap txq's */
736 	uint16_t nnmrxq;	/* # of netmap rxq's */
737 
738 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
739 	uint16_t ntxq_vi;	/* # of NIC txq's */
740 	uint16_t nrxq_vi;	/* # of NIC rxq's */
741 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
742 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
743 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
744 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
745 };
746 
747 static void setup_memwin(struct adapter *);
748 static void position_memwin(struct adapter *, int, uint32_t);
749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
750 static int fwmtype_to_hwmtype(int);
751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
752     uint32_t *);
753 static int fixup_devlog_params(struct adapter *);
754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
755 static int contact_firmware(struct adapter *);
756 static int partition_resources(struct adapter *);
757 static int get_params__pre_init(struct adapter *);
758 static int set_params__pre_init(struct adapter *);
759 static int get_params__post_init(struct adapter *);
760 static int set_params__post_init(struct adapter *);
761 static void t4_set_desc(struct adapter *);
762 static bool fixed_ifmedia(struct port_info *);
763 static void build_medialist(struct port_info *);
764 static void init_link_config(struct port_info *);
765 static int fixup_link_config(struct port_info *);
766 static int apply_link_config(struct port_info *);
767 static int cxgbe_init_synchronized(struct vi_info *);
768 static int cxgbe_uninit_synchronized(struct vi_info *);
769 static int adapter_full_init(struct adapter *);
770 static void adapter_full_uninit(struct adapter *);
771 static int vi_full_init(struct vi_info *);
772 static void vi_full_uninit(struct vi_info *);
773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
774 static void quiesce_txq(struct sge_txq *);
775 static void quiesce_wrq(struct sge_wrq *);
776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
777 static void quiesce_vi(struct vi_info *);
778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
779     driver_intr_t *, void *, char *);
780 static int t4_free_irq(struct adapter *, struct irq *);
781 static void t4_init_atid_table(struct adapter *);
782 static void t4_free_atid_table(struct adapter *);
783 static void stop_atid_allocator(struct adapter *);
784 static void restart_atid_allocator(struct adapter *);
785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
786 static void vi_refresh_stats(struct vi_info *);
787 static void cxgbe_refresh_stats(struct vi_info *);
788 static void cxgbe_tick(void *);
789 static void vi_tick(void *);
790 static void cxgbe_sysctls(struct port_info *);
791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
842 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
843 #ifdef TCP_OFFLOAD
844 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
852 #endif
853 static int get_sge_context(struct adapter *, struct t4_sge_context *);
854 static int load_fw(struct adapter *, struct t4_data *);
855 static int load_cfg(struct adapter *, struct t4_data *);
856 static int load_boot(struct adapter *, struct t4_bootrom *);
857 static int load_bootcfg(struct adapter *, struct t4_data *);
858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
859 static void free_offload_policy(struct t4_offload_policy *);
860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
862 static int read_i2c(struct adapter *, struct t4_i2c_data *);
863 static int clear_stats(struct adapter *, u_int);
864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
866 static inline int stop_adapter(struct adapter *);
867 static inline void set_adapter_hwstatus(struct adapter *, const bool);
868 static int stop_lld(struct adapter *);
869 static inline int restart_adapter(struct adapter *);
870 static int restart_lld(struct adapter *);
871 #ifdef TCP_OFFLOAD
872 static int toe_capability(struct vi_info *, bool);
873 static int deactivate_all_uld(struct adapter *);
874 static void stop_all_uld(struct adapter *);
875 static void restart_all_uld(struct adapter *);
876 #endif
877 #ifdef KERN_TLS
878 static int ktls_capability(struct adapter *, bool);
879 #endif
880 static int mod_event(module_t, int, void *);
881 static int notify_siblings(device_t, int);
882 static uint64_t vi_get_counter(if_t, ift_counter);
883 static uint64_t cxgbe_get_counter(if_t, ift_counter);
884 static void enable_vxlan_rx(struct adapter *);
885 static void reset_adapter_task(void *, int);
886 static void fatal_error_task(void *, int);
887 static void dump_devlog(struct adapter *);
888 static void dump_cim_regs(struct adapter *);
889 static void dump_cimla(struct adapter *);
890 
891 struct {
892 	uint16_t device;
893 	char *desc;
894 } t4_pciids[] = {
895 	{0xa000, "Chelsio Terminator 4 FPGA"},
896 	{0x4400, "Chelsio T440-dbg"},
897 	{0x4401, "Chelsio T420-CR"},
898 	{0x4402, "Chelsio T422-CR"},
899 	{0x4403, "Chelsio T440-CR"},
900 	{0x4404, "Chelsio T420-BCH"},
901 	{0x4405, "Chelsio T440-BCH"},
902 	{0x4406, "Chelsio T440-CH"},
903 	{0x4407, "Chelsio T420-SO"},
904 	{0x4408, "Chelsio T420-CX"},
905 	{0x4409, "Chelsio T420-BT"},
906 	{0x440a, "Chelsio T404-BT"},
907 	{0x440e, "Chelsio T440-LP-CR"},
908 }, t5_pciids[] = {
909 	{0xb000, "Chelsio Terminator 5 FPGA"},
910 	{0x5400, "Chelsio T580-dbg"},
911 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
912 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
913 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
914 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
915 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
916 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
917 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
918 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
919 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
920 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
921 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
922 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
923 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
924 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
925 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
926 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
927 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
928 
929 	/* Custom */
930 	{0x5483, "Custom T540-CR"},
931 	{0x5484, "Custom T540-BT"},
932 }, t6_pciids[] = {
933 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
934 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
935 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
936 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
937 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
938 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
939 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
940 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
941 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
942 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
943 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
944 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
945 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
946 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
947 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
948 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
949 
950 	/* Custom */
951 	{0x6480, "Custom T6225-CR"},
952 	{0x6481, "Custom T62100-CR"},
953 	{0x6482, "Custom T6225-CR"},
954 	{0x6483, "Custom T62100-CR"},
955 	{0x6484, "Custom T64100-CR"},
956 	{0x6485, "Custom T6240-SO"},
957 	{0x6486, "Custom T6225-SO-CR"},
958 	{0x6487, "Custom T6225-CR"},
959 };
960 
961 #ifdef TCP_OFFLOAD
962 /*
963  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
964  * be exactly the same for both rxq and ofld_rxq.
965  */
966 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
967 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
968 #endif
969 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
970 
971 static int
972 t4_probe(device_t dev)
973 {
974 	int i;
975 	uint16_t v = pci_get_vendor(dev);
976 	uint16_t d = pci_get_device(dev);
977 	uint8_t f = pci_get_function(dev);
978 
979 	if (v != PCI_VENDOR_ID_CHELSIO)
980 		return (ENXIO);
981 
982 	/* Attach only to PF0 of the FPGA */
983 	if (d == 0xa000 && f != 0)
984 		return (ENXIO);
985 
986 	for (i = 0; i < nitems(t4_pciids); i++) {
987 		if (d == t4_pciids[i].device) {
988 			device_set_desc(dev, t4_pciids[i].desc);
989 			return (BUS_PROBE_DEFAULT);
990 		}
991 	}
992 
993 	return (ENXIO);
994 }
995 
996 static int
997 t5_probe(device_t dev)
998 {
999 	int i;
1000 	uint16_t v = pci_get_vendor(dev);
1001 	uint16_t d = pci_get_device(dev);
1002 	uint8_t f = pci_get_function(dev);
1003 
1004 	if (v != PCI_VENDOR_ID_CHELSIO)
1005 		return (ENXIO);
1006 
1007 	/* Attach only to PF0 of the FPGA */
1008 	if (d == 0xb000 && f != 0)
1009 		return (ENXIO);
1010 
1011 	for (i = 0; i < nitems(t5_pciids); i++) {
1012 		if (d == t5_pciids[i].device) {
1013 			device_set_desc(dev, t5_pciids[i].desc);
1014 			return (BUS_PROBE_DEFAULT);
1015 		}
1016 	}
1017 
1018 	return (ENXIO);
1019 }
1020 
1021 static int
1022 t6_probe(device_t dev)
1023 {
1024 	int i;
1025 	uint16_t v = pci_get_vendor(dev);
1026 	uint16_t d = pci_get_device(dev);
1027 
1028 	if (v != PCI_VENDOR_ID_CHELSIO)
1029 		return (ENXIO);
1030 
1031 	for (i = 0; i < nitems(t6_pciids); i++) {
1032 		if (d == t6_pciids[i].device) {
1033 			device_set_desc(dev, t6_pciids[i].desc);
1034 			return (BUS_PROBE_DEFAULT);
1035 		}
1036 	}
1037 
1038 	return (ENXIO);
1039 }
1040 
1041 static void
1042 t5_attribute_workaround(device_t dev)
1043 {
1044 	device_t root_port;
1045 	uint32_t v;
1046 
1047 	/*
1048 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1049 	 * Ordering attributes when replying to a TLP from a Root
1050 	 * Port.  As a workaround, find the parent Root Port and
1051 	 * disable No Snoop and Relaxed Ordering.  Note that this
1052 	 * affects all devices under this root port.
1053 	 */
1054 	root_port = pci_find_pcie_root_port(dev);
1055 	if (root_port == NULL) {
1056 		device_printf(dev, "Unable to find parent root port\n");
1057 		return;
1058 	}
1059 
1060 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1061 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1062 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1063 	    0)
1064 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1065 		    device_get_nameunit(root_port));
1066 }
1067 
1068 static const struct devnames devnames[] = {
1069 	{
1070 		.nexus_name = "t4nex",
1071 		.ifnet_name = "cxgbe",
1072 		.vi_ifnet_name = "vcxgbe",
1073 		.pf03_drv_name = "t4iov",
1074 		.vf_nexus_name = "t4vf",
1075 		.vf_ifnet_name = "cxgbev"
1076 	}, {
1077 		.nexus_name = "t5nex",
1078 		.ifnet_name = "cxl",
1079 		.vi_ifnet_name = "vcxl",
1080 		.pf03_drv_name = "t5iov",
1081 		.vf_nexus_name = "t5vf",
1082 		.vf_ifnet_name = "cxlv"
1083 	}, {
1084 		.nexus_name = "t6nex",
1085 		.ifnet_name = "cc",
1086 		.vi_ifnet_name = "vcc",
1087 		.pf03_drv_name = "t6iov",
1088 		.vf_nexus_name = "t6vf",
1089 		.vf_ifnet_name = "ccv"
1090 	}
1091 };
1092 
1093 void
1094 t4_init_devnames(struct adapter *sc)
1095 {
1096 	int id;
1097 
1098 	id = chip_id(sc);
1099 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1100 		sc->names = &devnames[id - CHELSIO_T4];
1101 	else {
1102 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1103 		sc->names = NULL;
1104 	}
1105 }
1106 
1107 static int
1108 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1109 {
1110 	const char *parent, *name;
1111 	long value;
1112 	int line, unit;
1113 
1114 	line = 0;
1115 	parent = device_get_nameunit(sc->dev);
1116 	name = sc->names->ifnet_name;
1117 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1118 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1119 		    value == pi->port_id)
1120 			return (unit);
1121 	}
1122 	return (-1);
1123 }
1124 
1125 static void
1126 t4_calibration(void *arg)
1127 {
1128 	struct adapter *sc;
1129 	struct clock_sync *cur, *nex;
1130 	uint64_t hw;
1131 	sbintime_t sbt;
1132 	int next_up;
1133 
1134 	sc = (struct adapter *)arg;
1135 
1136 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1137 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1138 	sbt = sbinuptime();
1139 
1140 	cur = &sc->cal_info[sc->cal_current];
1141 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1142 	nex = &sc->cal_info[next_up];
1143 	if (__predict_false(sc->cal_count == 0)) {
1144 		/* First time in, just get the values in */
1145 		cur->hw_cur = hw;
1146 		cur->sbt_cur = sbt;
1147 		sc->cal_count++;
1148 		goto done;
1149 	}
1150 
1151 	if (cur->hw_cur == hw) {
1152 		/* The clock is not advancing? */
1153 		sc->cal_count = 0;
1154 		atomic_store_rel_int(&cur->gen, 0);
1155 		goto done;
1156 	}
1157 
1158 	seqc_write_begin(&nex->gen);
1159 	nex->hw_prev = cur->hw_cur;
1160 	nex->sbt_prev = cur->sbt_cur;
1161 	nex->hw_cur = hw;
1162 	nex->sbt_cur = sbt;
1163 	seqc_write_end(&nex->gen);
1164 	sc->cal_current = next_up;
1165 done:
1166 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1167 	    sc, C_DIRECT_EXEC);
1168 }
1169 
1170 static void
1171 t4_calibration_start(struct adapter *sc)
1172 {
1173 	/*
1174 	 * Here if we have not done a calibration
1175 	 * then do so otherwise start the appropriate
1176 	 * timer.
1177 	 */
1178 	int i;
1179 
1180 	for (i = 0; i < CNT_CAL_INFO; i++) {
1181 		sc->cal_info[i].gen = 0;
1182 	}
1183 	sc->cal_current = 0;
1184 	sc->cal_count = 0;
1185 	sc->cal_gen = 0;
1186 	t4_calibration(sc);
1187 }
1188 
1189 static int
1190 t4_attach(device_t dev)
1191 {
1192 	struct adapter *sc;
1193 	int rc = 0, i, j, rqidx, tqidx, nports;
1194 	struct make_dev_args mda;
1195 	struct intrs_and_queues iaq;
1196 	struct sge *s;
1197 	uint32_t *buf;
1198 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1199 	int ofld_tqidx;
1200 #endif
1201 #ifdef TCP_OFFLOAD
1202 	int ofld_rqidx;
1203 #endif
1204 #ifdef DEV_NETMAP
1205 	int nm_rqidx, nm_tqidx;
1206 #endif
1207 	int num_vis;
1208 
1209 	sc = device_get_softc(dev);
1210 	sc->dev = dev;
1211 	sysctl_ctx_init(&sc->ctx);
1212 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1213 
1214 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1215 		t5_attribute_workaround(dev);
1216 	pci_enable_busmaster(dev);
1217 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1218 		uint32_t v;
1219 
1220 		pci_set_max_read_req(dev, 4096);
1221 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1222 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1223 		if (pcie_relaxed_ordering == 0 &&
1224 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1225 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1226 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1227 		} else if (pcie_relaxed_ordering == 1 &&
1228 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1229 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1230 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1231 		}
1232 	}
1233 
1234 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1235 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1236 	sc->traceq = -1;
1237 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1238 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1239 	    device_get_nameunit(dev));
1240 
1241 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1242 	    device_get_nameunit(dev));
1243 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1244 	t4_add_adapter(sc);
1245 
1246 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1247 	TAILQ_INIT(&sc->sfl);
1248 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1249 
1250 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1251 
1252 	sc->policy = NULL;
1253 	rw_init(&sc->policy_lock, "connection offload policy");
1254 
1255 	callout_init(&sc->ktls_tick, 1);
1256 
1257 	callout_init(&sc->cal_callout, 1);
1258 
1259 	refcount_init(&sc->vxlan_refcount, 0);
1260 
1261 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1262 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1263 
1264 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1265 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1266 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1267 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1268 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1269 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1270 
1271 	rc = t4_map_bars_0_and_4(sc);
1272 	if (rc != 0)
1273 		goto done; /* error message displayed already */
1274 
1275 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1276 
1277 	/* Prepare the adapter for operation. */
1278 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1279 	rc = -t4_prep_adapter(sc, buf);
1280 	free(buf, M_CXGBE);
1281 	if (rc != 0) {
1282 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1283 		goto done;
1284 	}
1285 
1286 	/*
1287 	 * This is the real PF# to which we're attaching.  Works from within PCI
1288 	 * passthrough environments too, where pci_get_function() could return a
1289 	 * different PF# depending on the passthrough configuration.  We need to
1290 	 * use the real PF# in all our communication with the firmware.
1291 	 */
1292 	j = t4_read_reg(sc, A_PL_WHOAMI);
1293 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1294 	sc->mbox = sc->pf;
1295 
1296 	t4_init_devnames(sc);
1297 	if (sc->names == NULL) {
1298 		rc = ENOTSUP;
1299 		goto done; /* error message displayed already */
1300 	}
1301 
1302 	/*
1303 	 * Do this really early, with the memory windows set up even before the
1304 	 * character device.  The userland tool's register i/o and mem read
1305 	 * will work even in "recovery mode".
1306 	 */
1307 	setup_memwin(sc);
1308 	if (t4_init_devlog_params(sc, 0) == 0)
1309 		fixup_devlog_params(sc);
1310 	make_dev_args_init(&mda);
1311 	mda.mda_devsw = &t4_cdevsw;
1312 	mda.mda_uid = UID_ROOT;
1313 	mda.mda_gid = GID_WHEEL;
1314 	mda.mda_mode = 0600;
1315 	mda.mda_si_drv1 = sc;
1316 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1317 	if (rc != 0)
1318 		device_printf(dev, "failed to create nexus char device: %d.\n",
1319 		    rc);
1320 
1321 	/* Go no further if recovery mode has been requested. */
1322 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1323 		device_printf(dev, "recovery mode.\n");
1324 		goto done;
1325 	}
1326 
1327 #if defined(__i386__)
1328 	if ((cpu_feature & CPUID_CX8) == 0) {
1329 		device_printf(dev, "64 bit atomics not available.\n");
1330 		rc = ENOTSUP;
1331 		goto done;
1332 	}
1333 #endif
1334 
1335 	/* Contact the firmware and try to become the master driver. */
1336 	rc = contact_firmware(sc);
1337 	if (rc != 0)
1338 		goto done; /* error message displayed already */
1339 	MPASS(sc->flags & FW_OK);
1340 
1341 	rc = get_params__pre_init(sc);
1342 	if (rc != 0)
1343 		goto done; /* error message displayed already */
1344 
1345 	if (sc->flags & MASTER_PF) {
1346 		rc = partition_resources(sc);
1347 		if (rc != 0)
1348 			goto done; /* error message displayed already */
1349 	}
1350 
1351 	rc = get_params__post_init(sc);
1352 	if (rc != 0)
1353 		goto done; /* error message displayed already */
1354 
1355 	rc = set_params__post_init(sc);
1356 	if (rc != 0)
1357 		goto done; /* error message displayed already */
1358 
1359 	rc = t4_map_bar_2(sc);
1360 	if (rc != 0)
1361 		goto done; /* error message displayed already */
1362 
1363 	rc = t4_adj_doorbells(sc);
1364 	if (rc != 0)
1365 		goto done; /* error message displayed already */
1366 
1367 	rc = t4_create_dma_tag(sc);
1368 	if (rc != 0)
1369 		goto done; /* error message displayed already */
1370 
1371 	/*
1372 	 * First pass over all the ports - allocate VIs and initialize some
1373 	 * basic parameters like mac address, port type, etc.
1374 	 */
1375 	for_each_port(sc, i) {
1376 		struct port_info *pi;
1377 
1378 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1379 		sc->port[i] = pi;
1380 
1381 		/* These must be set before t4_port_init */
1382 		pi->adapter = sc;
1383 		pi->port_id = i;
1384 		/*
1385 		 * XXX: vi[0] is special so we can't delay this allocation until
1386 		 * pi->nvi's final value is known.
1387 		 */
1388 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1389 		    M_ZERO | M_WAITOK);
1390 
1391 		/*
1392 		 * Allocate the "main" VI and initialize parameters
1393 		 * like mac addr.
1394 		 */
1395 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1396 		if (rc != 0) {
1397 			device_printf(dev, "unable to initialize port %d: %d\n",
1398 			    i, rc);
1399 			free(pi->vi, M_CXGBE);
1400 			free(pi, M_CXGBE);
1401 			sc->port[i] = NULL;
1402 			goto done;
1403 		}
1404 
1405 		if (is_bt(pi->port_type))
1406 			setbit(&sc->bt_map, pi->tx_chan);
1407 		else
1408 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1409 
1410 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1411 		    device_get_nameunit(dev), i);
1412 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1413 		sc->chan_map[pi->tx_chan] = i;
1414 
1415 		/*
1416 		 * The MPS counter for FCS errors doesn't work correctly on the
1417 		 * T6 so we use the MAC counter here.  Which MAC is in use
1418 		 * depends on the link settings which will be known when the
1419 		 * link comes up.
1420 		 */
1421 		if (is_t6(sc))
1422 			pi->fcs_reg = -1;
1423 		else {
1424 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1425 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1426 		}
1427 		pi->fcs_base = 0;
1428 
1429 		/* All VIs on this port share this media. */
1430 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1431 		    cxgbe_media_status);
1432 
1433 		PORT_LOCK(pi);
1434 		init_link_config(pi);
1435 		fixup_link_config(pi);
1436 		build_medialist(pi);
1437 		if (fixed_ifmedia(pi))
1438 			pi->flags |= FIXED_IFMEDIA;
1439 		PORT_UNLOCK(pi);
1440 
1441 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1442 		    t4_ifnet_unit(sc, pi));
1443 		if (pi->dev == NULL) {
1444 			device_printf(dev,
1445 			    "failed to add device for port %d.\n", i);
1446 			rc = ENXIO;
1447 			goto done;
1448 		}
1449 		pi->vi[0].dev = pi->dev;
1450 		device_set_softc(pi->dev, pi);
1451 	}
1452 
1453 	/*
1454 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1455 	 */
1456 	nports = sc->params.nports;
1457 	rc = cfg_itype_and_nqueues(sc, &iaq);
1458 	if (rc != 0)
1459 		goto done; /* error message displayed already */
1460 
1461 	num_vis = iaq.num_vis;
1462 	sc->intr_type = iaq.intr_type;
1463 	sc->intr_count = iaq.nirq;
1464 
1465 	s = &sc->sge;
1466 	s->nrxq = nports * iaq.nrxq;
1467 	s->ntxq = nports * iaq.ntxq;
1468 	if (num_vis > 1) {
1469 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1470 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1471 	}
1472 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1473 	s->neq += nports;		/* ctrl queues: 1 per port */
1474 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1475 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1476 	if (is_offload(sc) || is_ethoffload(sc)) {
1477 		s->nofldtxq = nports * iaq.nofldtxq;
1478 		if (num_vis > 1)
1479 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1480 		s->neq += s->nofldtxq;
1481 
1482 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1483 		    M_CXGBE, M_ZERO | M_WAITOK);
1484 	}
1485 #endif
1486 #ifdef TCP_OFFLOAD
1487 	if (is_offload(sc)) {
1488 		s->nofldrxq = nports * iaq.nofldrxq;
1489 		if (num_vis > 1)
1490 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1491 		s->neq += s->nofldrxq;	/* free list */
1492 		s->niq += s->nofldrxq;
1493 
1494 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1495 		    M_CXGBE, M_ZERO | M_WAITOK);
1496 	}
1497 #endif
1498 #ifdef DEV_NETMAP
1499 	s->nnmrxq = 0;
1500 	s->nnmtxq = 0;
1501 	if (t4_native_netmap & NN_MAIN_VI) {
1502 		s->nnmrxq += nports * iaq.nnmrxq;
1503 		s->nnmtxq += nports * iaq.nnmtxq;
1504 	}
1505 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1506 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1507 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1508 	}
1509 	s->neq += s->nnmtxq + s->nnmrxq;
1510 	s->niq += s->nnmrxq;
1511 
1512 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1513 	    M_CXGBE, M_ZERO | M_WAITOK);
1514 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1515 	    M_CXGBE, M_ZERO | M_WAITOK);
1516 #endif
1517 	MPASS(s->niq <= s->iqmap_sz);
1518 	MPASS(s->neq <= s->eqmap_sz);
1519 
1520 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1521 	    M_ZERO | M_WAITOK);
1522 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1523 	    M_ZERO | M_WAITOK);
1524 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1525 	    M_ZERO | M_WAITOK);
1526 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1527 	    M_ZERO | M_WAITOK);
1528 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1529 	    M_ZERO | M_WAITOK);
1530 
1531 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1532 	    M_ZERO | M_WAITOK);
1533 
1534 	t4_init_l2t(sc, M_WAITOK);
1535 	t4_init_smt(sc, M_WAITOK);
1536 	t4_init_tx_sched(sc);
1537 	t4_init_atid_table(sc);
1538 #ifdef RATELIMIT
1539 	t4_init_etid_table(sc);
1540 #endif
1541 #ifdef INET6
1542 	t4_init_clip_table(sc);
1543 #endif
1544 	if (sc->vres.key.size != 0)
1545 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1546 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1547 
1548 	/*
1549 	 * Second pass over the ports.  This time we know the number of rx and
1550 	 * tx queues that each port should get.
1551 	 */
1552 	rqidx = tqidx = 0;
1553 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1554 	ofld_tqidx = 0;
1555 #endif
1556 #ifdef TCP_OFFLOAD
1557 	ofld_rqidx = 0;
1558 #endif
1559 #ifdef DEV_NETMAP
1560 	nm_rqidx = nm_tqidx = 0;
1561 #endif
1562 	for_each_port(sc, i) {
1563 		struct port_info *pi = sc->port[i];
1564 		struct vi_info *vi;
1565 
1566 		if (pi == NULL)
1567 			continue;
1568 
1569 		pi->nvi = num_vis;
1570 		for_each_vi(pi, j, vi) {
1571 			vi->pi = pi;
1572 			vi->adapter = sc;
1573 			vi->first_intr = -1;
1574 			vi->qsize_rxq = t4_qsize_rxq;
1575 			vi->qsize_txq = t4_qsize_txq;
1576 
1577 			vi->first_rxq = rqidx;
1578 			vi->first_txq = tqidx;
1579 			vi->tmr_idx = t4_tmr_idx;
1580 			vi->pktc_idx = t4_pktc_idx;
1581 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1582 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1583 
1584 			rqidx += vi->nrxq;
1585 			tqidx += vi->ntxq;
1586 
1587 			if (j == 0 && vi->ntxq > 1)
1588 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1589 			else
1590 				vi->rsrv_noflowq = 0;
1591 
1592 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1593 			vi->first_ofld_txq = ofld_tqidx;
1594 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1595 			ofld_tqidx += vi->nofldtxq;
1596 #endif
1597 #ifdef TCP_OFFLOAD
1598 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1599 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1600 			vi->first_ofld_rxq = ofld_rqidx;
1601 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1602 
1603 			ofld_rqidx += vi->nofldrxq;
1604 #endif
1605 #ifdef DEV_NETMAP
1606 			vi->first_nm_rxq = nm_rqidx;
1607 			vi->first_nm_txq = nm_tqidx;
1608 			if (j == 0) {
1609 				vi->nnmrxq = iaq.nnmrxq;
1610 				vi->nnmtxq = iaq.nnmtxq;
1611 			} else {
1612 				vi->nnmrxq = iaq.nnmrxq_vi;
1613 				vi->nnmtxq = iaq.nnmtxq_vi;
1614 			}
1615 			nm_rqidx += vi->nnmrxq;
1616 			nm_tqidx += vi->nnmtxq;
1617 #endif
1618 		}
1619 	}
1620 
1621 	rc = t4_setup_intr_handlers(sc);
1622 	if (rc != 0) {
1623 		device_printf(dev,
1624 		    "failed to setup interrupt handlers: %d\n", rc);
1625 		goto done;
1626 	}
1627 
1628 	rc = bus_generic_probe(dev);
1629 	if (rc != 0) {
1630 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1631 		goto done;
1632 	}
1633 
1634 	/*
1635 	 * Ensure thread-safe mailbox access (in debug builds).
1636 	 *
1637 	 * So far this was the only thread accessing the mailbox but various
1638 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1639 	 * will access the mailbox from different threads.
1640 	 */
1641 	sc->flags |= CHK_MBOX_ACCESS;
1642 
1643 	rc = bus_generic_attach(dev);
1644 	if (rc != 0) {
1645 		device_printf(dev,
1646 		    "failed to attach all child ports: %d\n", rc);
1647 		goto done;
1648 	}
1649 	t4_calibration_start(sc);
1650 
1651 	device_printf(dev,
1652 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1653 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1654 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1655 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1656 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1657 
1658 	t4_set_desc(sc);
1659 
1660 	notify_siblings(dev, 0);
1661 
1662 done:
1663 	if (rc != 0 && sc->cdev) {
1664 		/* cdev was created and so cxgbetool works; recover that way. */
1665 		device_printf(dev,
1666 		    "error during attach, adapter is now in recovery mode.\n");
1667 		rc = 0;
1668 	}
1669 
1670 	if (rc != 0)
1671 		t4_detach_common(dev);
1672 	else
1673 		t4_sysctls(sc);
1674 
1675 	return (rc);
1676 }
1677 
1678 static int
1679 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1680 {
1681 	struct adapter *sc;
1682 	struct port_info *pi;
1683 	int i;
1684 
1685 	sc = device_get_softc(bus);
1686 	for_each_port(sc, i) {
1687 		pi = sc->port[i];
1688 		if (pi != NULL && pi->dev == dev) {
1689 			sbuf_printf(sb, "port=%d", pi->port_id);
1690 			break;
1691 		}
1692 	}
1693 	return (0);
1694 }
1695 
1696 static int
1697 t4_ready(device_t dev)
1698 {
1699 	struct adapter *sc;
1700 
1701 	sc = device_get_softc(dev);
1702 	if (sc->flags & FW_OK)
1703 		return (0);
1704 	return (ENXIO);
1705 }
1706 
1707 static int
1708 t4_read_port_device(device_t dev, int port, device_t *child)
1709 {
1710 	struct adapter *sc;
1711 	struct port_info *pi;
1712 
1713 	sc = device_get_softc(dev);
1714 	if (port < 0 || port >= MAX_NPORTS)
1715 		return (EINVAL);
1716 	pi = sc->port[port];
1717 	if (pi == NULL || pi->dev == NULL)
1718 		return (ENXIO);
1719 	*child = pi->dev;
1720 	return (0);
1721 }
1722 
1723 static int
1724 notify_siblings(device_t dev, int detaching)
1725 {
1726 	device_t sibling;
1727 	int error, i;
1728 
1729 	error = 0;
1730 	for (i = 0; i < PCI_FUNCMAX; i++) {
1731 		if (i == pci_get_function(dev))
1732 			continue;
1733 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1734 		    pci_get_slot(dev), i);
1735 		if (sibling == NULL || !device_is_attached(sibling))
1736 			continue;
1737 		if (detaching)
1738 			error = T4_DETACH_CHILD(sibling);
1739 		else
1740 			(void)T4_ATTACH_CHILD(sibling);
1741 		if (error)
1742 			break;
1743 	}
1744 	return (error);
1745 }
1746 
1747 /*
1748  * Idempotent
1749  */
1750 static int
1751 t4_detach(device_t dev)
1752 {
1753 	int rc;
1754 
1755 	rc = notify_siblings(dev, 1);
1756 	if (rc) {
1757 		device_printf(dev,
1758 		    "failed to detach sibling devices: %d\n", rc);
1759 		return (rc);
1760 	}
1761 
1762 	return (t4_detach_common(dev));
1763 }
1764 
1765 int
1766 t4_detach_common(device_t dev)
1767 {
1768 	struct adapter *sc;
1769 	struct port_info *pi;
1770 	int i, rc;
1771 
1772 	sc = device_get_softc(dev);
1773 
1774 #ifdef TCP_OFFLOAD
1775 	rc = deactivate_all_uld(sc);
1776 	if (rc) {
1777 		device_printf(dev,
1778 		    "failed to detach upper layer drivers: %d\n", rc);
1779 		return (rc);
1780 	}
1781 #endif
1782 
1783 	if (sc->cdev) {
1784 		destroy_dev(sc->cdev);
1785 		sc->cdev = NULL;
1786 	}
1787 
1788 	sx_xlock(&t4_list_lock);
1789 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1790 	sx_xunlock(&t4_list_lock);
1791 
1792 	sc->flags &= ~CHK_MBOX_ACCESS;
1793 	if (sc->flags & FULL_INIT_DONE) {
1794 		if (!(sc->flags & IS_VF))
1795 			t4_intr_disable(sc);
1796 	}
1797 
1798 	if (device_is_attached(dev)) {
1799 		rc = bus_generic_detach(dev);
1800 		if (rc) {
1801 			device_printf(dev,
1802 			    "failed to detach child devices: %d\n", rc);
1803 			return (rc);
1804 		}
1805 	}
1806 
1807 	for (i = 0; i < sc->intr_count; i++)
1808 		t4_free_irq(sc, &sc->irq[i]);
1809 
1810 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1811 		t4_free_tx_sched(sc);
1812 
1813 	for (i = 0; i < MAX_NPORTS; i++) {
1814 		pi = sc->port[i];
1815 		if (pi) {
1816 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1817 			if (pi->dev)
1818 				device_delete_child(dev, pi->dev);
1819 
1820 			mtx_destroy(&pi->pi_lock);
1821 			free(pi->vi, M_CXGBE);
1822 			free(pi, M_CXGBE);
1823 		}
1824 	}
1825 	callout_stop(&sc->cal_callout);
1826 	callout_drain(&sc->cal_callout);
1827 	device_delete_children(dev);
1828 	sysctl_ctx_free(&sc->ctx);
1829 	adapter_full_uninit(sc);
1830 
1831 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1832 		t4_fw_bye(sc, sc->mbox);
1833 
1834 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1835 		pci_release_msi(dev);
1836 
1837 	if (sc->regs_res)
1838 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1839 		    sc->regs_res);
1840 
1841 	if (sc->udbs_res)
1842 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1843 		    sc->udbs_res);
1844 
1845 	if (sc->msix_res)
1846 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1847 		    sc->msix_res);
1848 
1849 	if (sc->l2t)
1850 		t4_free_l2t(sc);
1851 	if (sc->smt)
1852 		t4_free_smt(sc->smt);
1853 	t4_free_atid_table(sc);
1854 #ifdef RATELIMIT
1855 	t4_free_etid_table(sc);
1856 #endif
1857 	if (sc->key_map)
1858 		vmem_destroy(sc->key_map);
1859 #ifdef INET6
1860 	t4_destroy_clip_table(sc);
1861 #endif
1862 
1863 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1864 	free(sc->sge.ofld_txq, M_CXGBE);
1865 #endif
1866 #ifdef TCP_OFFLOAD
1867 	free(sc->sge.ofld_rxq, M_CXGBE);
1868 #endif
1869 #ifdef DEV_NETMAP
1870 	free(sc->sge.nm_rxq, M_CXGBE);
1871 	free(sc->sge.nm_txq, M_CXGBE);
1872 #endif
1873 	free(sc->irq, M_CXGBE);
1874 	free(sc->sge.rxq, M_CXGBE);
1875 	free(sc->sge.txq, M_CXGBE);
1876 	free(sc->sge.ctrlq, M_CXGBE);
1877 	free(sc->sge.iqmap, M_CXGBE);
1878 	free(sc->sge.eqmap, M_CXGBE);
1879 	free(sc->tids.ftid_tab, M_CXGBE);
1880 	free(sc->tids.hpftid_tab, M_CXGBE);
1881 	free_hftid_hash(&sc->tids);
1882 	free(sc->tids.tid_tab, M_CXGBE);
1883 	t4_destroy_dma_tag(sc);
1884 
1885 	callout_drain(&sc->ktls_tick);
1886 	callout_drain(&sc->sfl_callout);
1887 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1888 		mtx_destroy(&sc->tids.ftid_lock);
1889 		cv_destroy(&sc->tids.ftid_cv);
1890 	}
1891 	if (mtx_initialized(&sc->tids.atid_lock))
1892 		mtx_destroy(&sc->tids.atid_lock);
1893 	if (mtx_initialized(&sc->ifp_lock))
1894 		mtx_destroy(&sc->ifp_lock);
1895 
1896 	if (rw_initialized(&sc->policy_lock)) {
1897 		rw_destroy(&sc->policy_lock);
1898 #ifdef TCP_OFFLOAD
1899 		if (sc->policy != NULL)
1900 			free_offload_policy(sc->policy);
1901 #endif
1902 	}
1903 
1904 	for (i = 0; i < NUM_MEMWIN; i++) {
1905 		struct memwin *mw = &sc->memwin[i];
1906 
1907 		if (rw_initialized(&mw->mw_lock))
1908 			rw_destroy(&mw->mw_lock);
1909 	}
1910 
1911 	mtx_destroy(&sc->sfl_lock);
1912 	mtx_destroy(&sc->reg_lock);
1913 	mtx_destroy(&sc->sc_lock);
1914 
1915 	bzero(sc, sizeof(*sc));
1916 
1917 	return (0);
1918 }
1919 
1920 static inline int
1921 stop_adapter(struct adapter *sc)
1922 {
1923 	struct port_info *pi;
1924 	int i;
1925 
1926 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1927 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1928 			 __func__, curthread, sc->flags, sc->error_flags);
1929 		return (EALREADY);
1930 	}
1931 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1932 		 sc->flags, sc->error_flags);
1933 	t4_shutdown_adapter(sc);
1934 	for_each_port(sc, i) {
1935 		pi = sc->port[i];
1936 		PORT_LOCK(pi);
1937 		if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1938 			/*
1939 			 * t4_shutdown_adapter has already shut down all the
1940 			 * PHYs but it also disables interrupts and DMA so there
1941 			 * won't be a link interrupt.  Update the state manually
1942 			 * if the link was up previously and inform the kernel.
1943 			 */
1944 			pi->link_cfg.link_ok = false;
1945 			t4_os_link_changed(pi);
1946 		}
1947 		PORT_UNLOCK(pi);
1948 	}
1949 
1950 	return (0);
1951 }
1952 
1953 static inline int
1954 restart_adapter(struct adapter *sc)
1955 {
1956 	uint32_t val;
1957 
1958 	if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1959 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1960 			 __func__, curthread, sc->flags, sc->error_flags);
1961 		return (EALREADY);
1962 	}
1963 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1964 		 sc->flags, sc->error_flags);
1965 
1966 	MPASS(hw_off_limits(sc));
1967 	MPASS((sc->flags & FW_OK) == 0);
1968 	MPASS((sc->flags & MASTER_PF) == 0);
1969 	MPASS(sc->reset_thread == NULL);
1970 
1971 	/*
1972 	 * The adapter is supposed to be back on PCIE with its config space and
1973 	 * BARs restored to their state before reset.  Register access via
1974 	 * t4_read_reg BAR0 should just work.
1975 	 */
1976 	sc->reset_thread = curthread;
1977 	val = t4_read_reg(sc, A_PL_WHOAMI);
1978 	if (val == 0xffffffff || val == 0xeeeeeeee) {
1979 		CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1980 		sc->reset_thread = NULL;
1981 		atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1982 		return (ENXIO);
1983 	}
1984 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1985 	atomic_add_int(&sc->incarnation, 1);
1986 	atomic_add_int(&sc->num_resets, 1);
1987 
1988 	return (0);
1989 }
1990 
1991 static inline void
1992 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1993 {
1994 	mtx_lock(&sc->reg_lock);
1995 	if (usable) {
1996 		/* Must be marked reusable by the designated thread. */
1997 		MPASS(sc->reset_thread == curthread);
1998 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1999 	} else {
2000 		/* Mark the adapter totally off limits. */
2001 		atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2002 		sc->flags &= ~(FW_OK | MASTER_PF);
2003 		sc->reset_thread = NULL;
2004 	}
2005 	mtx_unlock(&sc->reg_lock);
2006 }
2007 
2008 static int
2009 stop_lld(struct adapter *sc)
2010 {
2011 	struct port_info *pi;
2012 	struct vi_info *vi;
2013 	if_t ifp;
2014 	struct sge_rxq *rxq;
2015 	struct sge_txq *txq;
2016 	struct sge_wrq *wrq;
2017 #ifdef TCP_OFFLOAD
2018 	struct sge_ofld_rxq *ofld_rxq;
2019 #endif
2020 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2021 	struct sge_ofld_txq *ofld_txq;
2022 #endif
2023 	int rc, i, j, k;
2024 
2025 	/*
2026 	 * XXX: Can there be a synch_op in progress that will hang because
2027 	 * hardware has been stopped?  We'll hang too and the solution will be
2028 	 * to use a version of begin_synch_op that wakes up existing synch_op
2029 	 * with errors.  Maybe stop_adapter should do this wakeup?
2030 	 *
2031 	 * I don't think any synch_op could get stranded waiting for DMA or
2032 	 * interrupt so I think we're okay here.  Remove this comment block
2033 	 * after testing.
2034 	 */
2035 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2036 	if (rc != 0)
2037 		return (ENXIO);
2038 
2039 	/* Quiesce all activity. */
2040 	for_each_port(sc, i) {
2041 		pi = sc->port[i];
2042 		pi->vxlan_tcam_entry = false;
2043 		for_each_vi(pi, j, vi) {
2044 			vi->xact_addr_filt = -1;
2045 			mtx_lock(&vi->tick_mtx);
2046 			vi->flags |= VI_SKIP_STATS;
2047 			mtx_unlock(&vi->tick_mtx);
2048 			if (!(vi->flags & VI_INIT_DONE))
2049 				continue;
2050 
2051 			ifp = vi->ifp;
2052 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2053 				mtx_lock(&vi->tick_mtx);
2054 				callout_stop(&vi->tick);
2055 				mtx_unlock(&vi->tick_mtx);
2056 				callout_drain(&vi->tick);
2057 			}
2058 
2059 			/*
2060 			 * Note that the HW is not available.
2061 			 */
2062 			for_each_txq(vi, k, txq) {
2063 				TXQ_LOCK(txq);
2064 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2065 				TXQ_UNLOCK(txq);
2066 			}
2067 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2068 			for_each_ofld_txq(vi, k, ofld_txq) {
2069 				TXQ_LOCK(&ofld_txq->wrq);
2070 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2071 				TXQ_UNLOCK(&ofld_txq->wrq);
2072 			}
2073 #endif
2074 			for_each_rxq(vi, k, rxq) {
2075 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2076 			}
2077 #if defined(TCP_OFFLOAD)
2078 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2079 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2080 			}
2081 #endif
2082 
2083 			quiesce_vi(vi);
2084 		}
2085 
2086 		if (sc->flags & FULL_INIT_DONE) {
2087 			/* Control queue */
2088 			wrq = &sc->sge.ctrlq[i];
2089 			TXQ_LOCK(wrq);
2090 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2091 			TXQ_UNLOCK(wrq);
2092 			quiesce_wrq(wrq);
2093 		}
2094 
2095 		if (pi->flags & HAS_TRACEQ) {
2096 			pi->flags &= ~HAS_TRACEQ;
2097 			sc->traceq = -1;
2098 		}
2099 	}
2100 	if (sc->flags & FULL_INIT_DONE) {
2101 		/* Firmware event queue */
2102 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2103 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2104 	}
2105 
2106 	/* Stop calibration */
2107 	callout_stop(&sc->cal_callout);
2108 	callout_drain(&sc->cal_callout);
2109 
2110 	if (t4_clock_gate_on_suspend) {
2111 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2112 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2113 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2114 	}
2115 
2116 	end_synchronized_op(sc, 0);
2117 
2118 	stop_atid_allocator(sc);
2119 	t4_stop_l2t(sc);
2120 
2121 	return (rc);
2122 }
2123 
2124 int
2125 suspend_adapter(struct adapter *sc)
2126 {
2127 	stop_adapter(sc);
2128 	stop_lld(sc);
2129 #ifdef TCP_OFFLOAD
2130 	stop_all_uld(sc);
2131 #endif
2132 	set_adapter_hwstatus(sc, false);
2133 
2134 	return (0);
2135 }
2136 
2137 static int
2138 t4_suspend(device_t dev)
2139 {
2140 	struct adapter *sc = device_get_softc(dev);
2141 	int rc;
2142 
2143 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2144 	rc = suspend_adapter(sc);
2145 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2146 
2147 	return (rc);
2148 }
2149 
2150 struct adapter_pre_reset_state {
2151 	u_int flags;
2152 	uint16_t nbmcaps;
2153 	uint16_t linkcaps;
2154 	uint16_t switchcaps;
2155 	uint16_t niccaps;
2156 	uint16_t toecaps;
2157 	uint16_t rdmacaps;
2158 	uint16_t cryptocaps;
2159 	uint16_t iscsicaps;
2160 	uint16_t fcoecaps;
2161 
2162 	u_int cfcsum;
2163 	char cfg_file[32];
2164 
2165 	struct adapter_params params;
2166 	struct t4_virt_res vres;
2167 	struct tid_info tids;
2168 	struct sge sge;
2169 
2170 	int rawf_base;
2171 	int nrawf;
2172 
2173 };
2174 
2175 static void
2176 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2177 {
2178 
2179 	ASSERT_SYNCHRONIZED_OP(sc);
2180 
2181 	o->flags = sc->flags;
2182 
2183 	o->nbmcaps =  sc->nbmcaps;
2184 	o->linkcaps = sc->linkcaps;
2185 	o->switchcaps = sc->switchcaps;
2186 	o->niccaps = sc->niccaps;
2187 	o->toecaps = sc->toecaps;
2188 	o->rdmacaps = sc->rdmacaps;
2189 	o->cryptocaps = sc->cryptocaps;
2190 	o->iscsicaps = sc->iscsicaps;
2191 	o->fcoecaps = sc->fcoecaps;
2192 
2193 	o->cfcsum = sc->cfcsum;
2194 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2195 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2196 
2197 	o->params = sc->params;
2198 	o->vres = sc->vres;
2199 	o->tids = sc->tids;
2200 	o->sge = sc->sge;
2201 
2202 	o->rawf_base = sc->rawf_base;
2203 	o->nrawf = sc->nrawf;
2204 }
2205 
2206 static int
2207 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2208 {
2209 	int rc = 0;
2210 
2211 	ASSERT_SYNCHRONIZED_OP(sc);
2212 
2213 	/* Capabilities */
2214 #define COMPARE_CAPS(c) do { \
2215 	if (o->c##caps != sc->c##caps) { \
2216 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2217 		    sc->c##caps); \
2218 		rc = EINVAL; \
2219 	} \
2220 } while (0)
2221 	COMPARE_CAPS(nbm);
2222 	COMPARE_CAPS(link);
2223 	COMPARE_CAPS(switch);
2224 	COMPARE_CAPS(nic);
2225 	COMPARE_CAPS(toe);
2226 	COMPARE_CAPS(rdma);
2227 	COMPARE_CAPS(crypto);
2228 	COMPARE_CAPS(iscsi);
2229 	COMPARE_CAPS(fcoe);
2230 #undef COMPARE_CAPS
2231 
2232 	/* Firmware config file */
2233 	if (o->cfcsum != sc->cfcsum) {
2234 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2235 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2236 		rc = EINVAL;
2237 	}
2238 
2239 #define COMPARE_PARAM(p, name) do { \
2240 	if (o->p != sc->p) { \
2241 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2242 		rc = EINVAL; \
2243 	} \
2244 } while (0)
2245 	COMPARE_PARAM(sge.iq_start, iq_start);
2246 	COMPARE_PARAM(sge.eq_start, eq_start);
2247 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2248 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2249 	COMPARE_PARAM(tids.nftids, nftids);
2250 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2251 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2252 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2253 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2254 	COMPARE_PARAM(tids.tid_base, tid_base);
2255 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2256 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2257 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2258 	COMPARE_PARAM(rawf_base, rawf_base);
2259 	COMPARE_PARAM(nrawf, nrawf);
2260 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2261 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2262 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2263 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2264 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2265 	COMPARE_PARAM(tids.ntids, ntids);
2266 	COMPARE_PARAM(tids.etid_base, etid_base);
2267 	COMPARE_PARAM(tids.etid_end, etid_end);
2268 	COMPARE_PARAM(tids.netids, netids);
2269 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2270 	COMPARE_PARAM(params.ethoffload, ethoffload);
2271 	COMPARE_PARAM(tids.natids, natids);
2272 	COMPARE_PARAM(tids.stid_base, stid_base);
2273 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2274 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2275 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2276 	COMPARE_PARAM(vres.stag.start, stag_start);
2277 	COMPARE_PARAM(vres.stag.size, stag_size);
2278 	COMPARE_PARAM(vres.rq.start, rq_start);
2279 	COMPARE_PARAM(vres.rq.size, rq_size);
2280 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2281 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2282 	COMPARE_PARAM(vres.qp.start, qp_start);
2283 	COMPARE_PARAM(vres.qp.size, qp_size);
2284 	COMPARE_PARAM(vres.cq.start, cq_start);
2285 	COMPARE_PARAM(vres.cq.size, cq_size);
2286 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2287 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2288 	COMPARE_PARAM(vres.srq.start, srq_start);
2289 	COMPARE_PARAM(vres.srq.size, srq_size);
2290 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2291 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2292 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2293 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2294 	COMPARE_PARAM(vres.key.start, key_start);
2295 	COMPARE_PARAM(vres.key.size, key_size);
2296 #undef COMPARE_PARAM
2297 
2298 	return (rc);
2299 }
2300 
2301 static int
2302 restart_lld(struct adapter *sc)
2303 {
2304 	struct adapter_pre_reset_state *old_state = NULL;
2305 	struct port_info *pi;
2306 	struct vi_info *vi;
2307 	if_t ifp;
2308 	struct sge_txq *txq;
2309 	int rc, i, j, k;
2310 
2311 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2312 	if (rc != 0)
2313 		return (ENXIO);
2314 
2315 	/* Restore memory window. */
2316 	setup_memwin(sc);
2317 
2318 	/* Go no further if recovery mode has been requested. */
2319 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2320 		CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2321 		rc = 0;
2322 		set_adapter_hwstatus(sc, true);
2323 		goto done;
2324 	}
2325 
2326 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2327 	save_caps_and_params(sc, old_state);
2328 
2329 	/* Reestablish contact with firmware and become the primary PF. */
2330 	rc = contact_firmware(sc);
2331 	if (rc != 0)
2332 		goto done; /* error message displayed already */
2333 	MPASS(sc->flags & FW_OK);
2334 
2335 	if (sc->flags & MASTER_PF) {
2336 		rc = partition_resources(sc);
2337 		if (rc != 0)
2338 			goto done; /* error message displayed already */
2339 	}
2340 
2341 	rc = get_params__post_init(sc);
2342 	if (rc != 0)
2343 		goto done; /* error message displayed already */
2344 
2345 	rc = set_params__post_init(sc);
2346 	if (rc != 0)
2347 		goto done; /* error message displayed already */
2348 
2349 	rc = compare_caps_and_params(sc, old_state);
2350 	if (rc != 0)
2351 		goto done; /* error message displayed already */
2352 
2353 	for_each_port(sc, i) {
2354 		pi = sc->port[i];
2355 		MPASS(pi != NULL);
2356 		MPASS(pi->vi != NULL);
2357 		MPASS(pi->vi[0].dev == pi->dev);
2358 
2359 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2360 		if (rc != 0) {
2361 			CH_ERR(sc,
2362 			    "failed to re-initialize port %d: %d\n", i, rc);
2363 			goto done;
2364 		}
2365 		MPASS(sc->chan_map[pi->tx_chan] == i);
2366 
2367 		PORT_LOCK(pi);
2368 		fixup_link_config(pi);
2369 		build_medialist(pi);
2370 		PORT_UNLOCK(pi);
2371 		for_each_vi(pi, j, vi) {
2372 			if (IS_MAIN_VI(vi))
2373 				continue;
2374 			rc = alloc_extra_vi(sc, pi, vi);
2375 			if (rc != 0) {
2376 				CH_ERR(vi,
2377 				    "failed to re-allocate extra VI: %d\n", rc);
2378 				goto done;
2379 			}
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Interrupts and queues are about to be enabled and other threads will
2385 	 * want to access the hardware too.  It is safe to do so.  Note that
2386 	 * this thread is still in the middle of a synchronized_op.
2387 	 */
2388 	set_adapter_hwstatus(sc, true);
2389 
2390 	if (sc->flags & FULL_INIT_DONE) {
2391 		rc = adapter_full_init(sc);
2392 		if (rc != 0) {
2393 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2394 			goto done;
2395 		}
2396 
2397 		if (sc->vxlan_refcount > 0)
2398 			enable_vxlan_rx(sc);
2399 
2400 		for_each_port(sc, i) {
2401 			pi = sc->port[i];
2402 			for_each_vi(pi, j, vi) {
2403 				mtx_lock(&vi->tick_mtx);
2404 				vi->flags &= ~VI_SKIP_STATS;
2405 				mtx_unlock(&vi->tick_mtx);
2406 				if (!(vi->flags & VI_INIT_DONE))
2407 					continue;
2408 				rc = vi_full_init(vi);
2409 				if (rc != 0) {
2410 					CH_ERR(vi, "failed to re-initialize "
2411 					    "interface: %d\n", rc);
2412 					goto done;
2413 				}
2414 
2415 				ifp = vi->ifp;
2416 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2417 					continue;
2418 				/*
2419 				 * Note that we do not setup multicast addresses
2420 				 * in the first pass.  This ensures that the
2421 				 * unicast DMACs for all VIs on all ports get an
2422 				 * MPS TCAM entry.
2423 				 */
2424 				rc = update_mac_settings(ifp, XGMAC_ALL &
2425 				    ~XGMAC_MCADDRS);
2426 				if (rc != 0) {
2427 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2428 					goto done;
2429 				}
2430 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2431 				    true);
2432 				if (rc != 0) {
2433 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2434 					goto done;
2435 				}
2436 				for_each_txq(vi, k, txq) {
2437 					TXQ_LOCK(txq);
2438 					txq->eq.flags |= EQ_ENABLED;
2439 					TXQ_UNLOCK(txq);
2440 				}
2441 				mtx_lock(&vi->tick_mtx);
2442 				callout_schedule(&vi->tick, hz);
2443 				mtx_unlock(&vi->tick_mtx);
2444 			}
2445 			PORT_LOCK(pi);
2446 			if (pi->up_vis > 0) {
2447 				t4_update_port_info(pi);
2448 				fixup_link_config(pi);
2449 				build_medialist(pi);
2450 				apply_link_config(pi);
2451 				if (pi->link_cfg.link_ok)
2452 					t4_os_link_changed(pi);
2453 			}
2454 			PORT_UNLOCK(pi);
2455 		}
2456 
2457 		/* Now reprogram the L2 multicast addresses. */
2458 		for_each_port(sc, i) {
2459 			pi = sc->port[i];
2460 			for_each_vi(pi, j, vi) {
2461 				if (!(vi->flags & VI_INIT_DONE))
2462 					continue;
2463 				ifp = vi->ifp;
2464 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2465 					continue;
2466 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2467 				if (rc != 0) {
2468 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2469 					rc = 0;	/* carry on */
2470 				}
2471 			}
2472 		}
2473 	}
2474 
2475 	/* Reset all calibration */
2476 	t4_calibration_start(sc);
2477 done:
2478 	end_synchronized_op(sc, 0);
2479 	free(old_state, M_CXGBE);
2480 
2481 	restart_atid_allocator(sc);
2482 	t4_restart_l2t(sc);
2483 
2484 	return (rc);
2485 }
2486 
2487 int
2488 resume_adapter(struct adapter *sc)
2489 {
2490 	restart_adapter(sc);
2491 	restart_lld(sc);
2492 #ifdef TCP_OFFLOAD
2493 	restart_all_uld(sc);
2494 #endif
2495 	return (0);
2496 }
2497 
2498 static int
2499 t4_resume(device_t dev)
2500 {
2501 	struct adapter *sc = device_get_softc(dev);
2502 	int rc;
2503 
2504 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2505 	rc = resume_adapter(sc);
2506 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2507 
2508 	return (rc);
2509 }
2510 
2511 static int
2512 t4_reset_prepare(device_t dev, device_t child)
2513 {
2514 	struct adapter *sc = device_get_softc(dev);
2515 
2516 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2517 	return (0);
2518 }
2519 
2520 static int
2521 t4_reset_post(device_t dev, device_t child)
2522 {
2523 	struct adapter *sc = device_get_softc(dev);
2524 
2525 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2526 	return (0);
2527 }
2528 
2529 static int
2530 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2531 {
2532 	int rc;
2533 
2534 	mtx_lock(&Giant);
2535 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2536 	mtx_unlock(&Giant);
2537 	return (rc);
2538 }
2539 
2540 static int
2541 reset_adapter_with_pl_rst(struct adapter *sc)
2542 {
2543 	suspend_adapter(sc);
2544 
2545 	/* This is a t4_write_reg without the hw_off_limits check. */
2546 	MPASS(sc->error_flags & HW_OFF_LIMITS);
2547 	bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2548 			  F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2549 	pause("pl_rst", 1 * hz);		/* Wait 1s for reset */
2550 
2551 	resume_adapter(sc);
2552 
2553 	return (0);
2554 }
2555 
2556 static inline int
2557 reset_adapter(struct adapter *sc)
2558 {
2559 	if (vm_guest == 0)
2560 		return (reset_adapter_with_pci_bus_reset(sc));
2561 	else
2562 		return (reset_adapter_with_pl_rst(sc));
2563 }
2564 
2565 static void
2566 reset_adapter_task(void *arg, int pending)
2567 {
2568 	struct adapter *sc = arg;
2569 	const int flags = sc->flags;
2570 	const int eflags = sc->error_flags;
2571 	int rc;
2572 
2573 	if (pending > 1)
2574 		CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2575 	rc = reset_adapter(sc);
2576 	if (rc != 0) {
2577 		CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2578 		       "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2579 		       rc, flags, sc->flags, eflags, sc->error_flags);
2580 	}
2581 }
2582 
2583 static int
2584 cxgbe_probe(device_t dev)
2585 {
2586 	struct port_info *pi = device_get_softc(dev);
2587 
2588 	device_set_descf(dev, "port %d", pi->port_id);
2589 
2590 	return (BUS_PROBE_DEFAULT);
2591 }
2592 
2593 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2594     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2595     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2596     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2597 #define T4_CAP_ENABLE (T4_CAP)
2598 
2599 static void
2600 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2601 {
2602 	if_t ifp;
2603 	struct sbuf *sb;
2604 	struct sysctl_ctx_list *ctx = &vi->ctx;
2605 	struct sysctl_oid_list *children;
2606 	struct pfil_head_args pa;
2607 	struct adapter *sc = vi->adapter;
2608 
2609 	sysctl_ctx_init(ctx);
2610 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2611 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2612 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2613 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2614 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2615 #ifdef DEV_NETMAP
2616 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2617 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2618 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2619 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2620 #endif
2621 #ifdef TCP_OFFLOAD
2622 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2623 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2624 #endif
2625 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2626 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2627 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2628 #endif
2629 
2630 	vi->xact_addr_filt = -1;
2631 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2632 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2633 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2634 		vi->flags |= TX_USES_VM_WR;
2635 
2636 	/* Allocate an ifnet and set it up */
2637 	ifp = if_alloc_dev(IFT_ETHER, dev);
2638 	vi->ifp = ifp;
2639 	if_setsoftc(ifp, vi);
2640 
2641 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2642 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2643 
2644 	if_setinitfn(ifp, cxgbe_init);
2645 	if_setioctlfn(ifp, cxgbe_ioctl);
2646 	if_settransmitfn(ifp, cxgbe_transmit);
2647 	if_setqflushfn(ifp, cxgbe_qflush);
2648 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2649 		if_setgetcounterfn(ifp, vi_get_counter);
2650 	else
2651 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2652 #if defined(KERN_TLS) || defined(RATELIMIT)
2653 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2654 #endif
2655 #ifdef RATELIMIT
2656 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2657 #endif
2658 
2659 	if_setcapabilities(ifp, T4_CAP);
2660 	if_setcapenable(ifp, T4_CAP_ENABLE);
2661 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2662 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2663 	if (chip_id(sc) >= CHELSIO_T6) {
2664 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2665 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2666 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2667 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2668 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2669 	}
2670 
2671 #ifdef TCP_OFFLOAD
2672 	if (vi->nofldrxq != 0)
2673 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2674 #endif
2675 #ifdef RATELIMIT
2676 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2677 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2678 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2679 	}
2680 #endif
2681 
2682 	if_sethwtsomax(ifp, IP_MAXPACKET);
2683 	if (vi->flags & TX_USES_VM_WR)
2684 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2685 	else
2686 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2687 #ifdef RATELIMIT
2688 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2689 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2690 #endif
2691 	if_sethwtsomaxsegsize(ifp, 65536);
2692 #ifdef KERN_TLS
2693 	if (is_ktls(sc)) {
2694 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2695 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2696 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2697 	}
2698 #endif
2699 
2700 	ether_ifattach(ifp, vi->hw_addr);
2701 #ifdef DEV_NETMAP
2702 	if (vi->nnmrxq != 0)
2703 		cxgbe_nm_attach(vi);
2704 #endif
2705 	sb = sbuf_new_auto();
2706 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2707 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2708 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2709 	case IFCAP_TOE:
2710 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2711 		break;
2712 	case IFCAP_TOE | IFCAP_TXRTLMT:
2713 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2714 		break;
2715 	case IFCAP_TXRTLMT:
2716 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2717 		break;
2718 	}
2719 #endif
2720 #ifdef TCP_OFFLOAD
2721 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2722 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2723 #endif
2724 #ifdef DEV_NETMAP
2725 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2726 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2727 		    vi->nnmtxq, vi->nnmrxq);
2728 #endif
2729 	sbuf_finish(sb);
2730 	device_printf(dev, "%s\n", sbuf_data(sb));
2731 	sbuf_delete(sb);
2732 
2733 	vi_sysctls(vi);
2734 
2735 	pa.pa_version = PFIL_VERSION;
2736 	pa.pa_flags = PFIL_IN;
2737 	pa.pa_type = PFIL_TYPE_ETHERNET;
2738 	pa.pa_headname = if_name(ifp);
2739 	vi->pfil = pfil_head_register(&pa);
2740 }
2741 
2742 static int
2743 cxgbe_attach(device_t dev)
2744 {
2745 	struct port_info *pi = device_get_softc(dev);
2746 	struct adapter *sc = pi->adapter;
2747 	struct vi_info *vi;
2748 	int i;
2749 
2750 	sysctl_ctx_init(&pi->ctx);
2751 
2752 	cxgbe_vi_attach(dev, &pi->vi[0]);
2753 
2754 	for_each_vi(pi, i, vi) {
2755 		if (i == 0)
2756 			continue;
2757 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2758 		if (vi->dev == NULL) {
2759 			device_printf(dev, "failed to add VI %d\n", i);
2760 			continue;
2761 		}
2762 		device_set_softc(vi->dev, vi);
2763 	}
2764 
2765 	cxgbe_sysctls(pi);
2766 
2767 	bus_generic_attach(dev);
2768 
2769 	return (0);
2770 }
2771 
2772 static void
2773 cxgbe_vi_detach(struct vi_info *vi)
2774 {
2775 	if_t ifp = vi->ifp;
2776 
2777 	if (vi->pfil != NULL) {
2778 		pfil_head_unregister(vi->pfil);
2779 		vi->pfil = NULL;
2780 	}
2781 
2782 	ether_ifdetach(ifp);
2783 
2784 	/* Let detach proceed even if these fail. */
2785 #ifdef DEV_NETMAP
2786 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2787 		cxgbe_nm_detach(vi);
2788 #endif
2789 	cxgbe_uninit_synchronized(vi);
2790 	callout_drain(&vi->tick);
2791 	mtx_destroy(&vi->tick_mtx);
2792 	sysctl_ctx_free(&vi->ctx);
2793 	vi_full_uninit(vi);
2794 
2795 	if_free(vi->ifp);
2796 	vi->ifp = NULL;
2797 }
2798 
2799 static int
2800 cxgbe_detach(device_t dev)
2801 {
2802 	struct port_info *pi = device_get_softc(dev);
2803 	struct adapter *sc = pi->adapter;
2804 	int rc;
2805 
2806 	/* Detach the extra VIs first. */
2807 	rc = bus_generic_detach(dev);
2808 	if (rc)
2809 		return (rc);
2810 	device_delete_children(dev);
2811 
2812 	sysctl_ctx_free(&pi->ctx);
2813 	begin_vi_detach(sc, &pi->vi[0]);
2814 	if (pi->flags & HAS_TRACEQ) {
2815 		sc->traceq = -1;	/* cloner should not create ifnet */
2816 		t4_tracer_port_detach(sc);
2817 	}
2818 	cxgbe_vi_detach(&pi->vi[0]);
2819 	ifmedia_removeall(&pi->media);
2820 	end_vi_detach(sc, &pi->vi[0]);
2821 
2822 	return (0);
2823 }
2824 
2825 static void
2826 cxgbe_init(void *arg)
2827 {
2828 	struct vi_info *vi = arg;
2829 	struct adapter *sc = vi->adapter;
2830 
2831 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2832 		return;
2833 	cxgbe_init_synchronized(vi);
2834 	end_synchronized_op(sc, 0);
2835 }
2836 
2837 static int
2838 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2839 {
2840 	int rc = 0, mtu, flags;
2841 	struct vi_info *vi = if_getsoftc(ifp);
2842 	struct port_info *pi = vi->pi;
2843 	struct adapter *sc = pi->adapter;
2844 	struct ifreq *ifr = (struct ifreq *)data;
2845 	uint32_t mask;
2846 
2847 	switch (cmd) {
2848 	case SIOCSIFMTU:
2849 		mtu = ifr->ifr_mtu;
2850 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2851 			return (EINVAL);
2852 
2853 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2854 		if (rc)
2855 			return (rc);
2856 		if_setmtu(ifp, mtu);
2857 		if (vi->flags & VI_INIT_DONE) {
2858 			t4_update_fl_bufsize(ifp);
2859 			if (!hw_off_limits(sc) &&
2860 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2861 				rc = update_mac_settings(ifp, XGMAC_MTU);
2862 		}
2863 		end_synchronized_op(sc, 0);
2864 		break;
2865 
2866 	case SIOCSIFFLAGS:
2867 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2868 		if (rc)
2869 			return (rc);
2870 
2871 		if (hw_off_limits(sc)) {
2872 			rc = ENXIO;
2873 			goto fail;
2874 		}
2875 
2876 		if (if_getflags(ifp) & IFF_UP) {
2877 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2878 				flags = vi->if_flags;
2879 				if ((if_getflags(ifp) ^ flags) &
2880 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2881 					rc = update_mac_settings(ifp,
2882 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2883 				}
2884 			} else {
2885 				rc = cxgbe_init_synchronized(vi);
2886 			}
2887 			vi->if_flags = if_getflags(ifp);
2888 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2889 			rc = cxgbe_uninit_synchronized(vi);
2890 		}
2891 		end_synchronized_op(sc, 0);
2892 		break;
2893 
2894 	case SIOCADDMULTI:
2895 	case SIOCDELMULTI:
2896 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2897 		if (rc)
2898 			return (rc);
2899 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2900 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2901 		end_synchronized_op(sc, 0);
2902 		break;
2903 
2904 	case SIOCSIFCAP:
2905 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2906 		if (rc)
2907 			return (rc);
2908 
2909 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2910 		if (mask & IFCAP_TXCSUM) {
2911 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2912 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2913 
2914 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2915 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2916 				mask &= ~IFCAP_TSO4;
2917 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2918 				if_printf(ifp,
2919 				    "tso4 disabled due to -txcsum.\n");
2920 			}
2921 		}
2922 		if (mask & IFCAP_TXCSUM_IPV6) {
2923 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2924 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2925 
2926 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2927 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2928 				mask &= ~IFCAP_TSO6;
2929 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2930 				if_printf(ifp,
2931 				    "tso6 disabled due to -txcsum6.\n");
2932 			}
2933 		}
2934 		if (mask & IFCAP_RXCSUM)
2935 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2936 		if (mask & IFCAP_RXCSUM_IPV6)
2937 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2938 
2939 		/*
2940 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2941 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2942 		 * sending a TSO request our way, so it's sufficient to toggle
2943 		 * IFCAP_TSOx only.
2944 		 */
2945 		if (mask & IFCAP_TSO4) {
2946 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2947 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2948 				if_printf(ifp, "enable txcsum first.\n");
2949 				rc = EAGAIN;
2950 				goto fail;
2951 			}
2952 			if_togglecapenable(ifp, IFCAP_TSO4);
2953 		}
2954 		if (mask & IFCAP_TSO6) {
2955 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2956 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2957 				if_printf(ifp, "enable txcsum6 first.\n");
2958 				rc = EAGAIN;
2959 				goto fail;
2960 			}
2961 			if_togglecapenable(ifp, IFCAP_TSO6);
2962 		}
2963 		if (mask & IFCAP_LRO) {
2964 #if defined(INET) || defined(INET6)
2965 			int i;
2966 			struct sge_rxq *rxq;
2967 
2968 			if_togglecapenable(ifp, IFCAP_LRO);
2969 			for_each_rxq(vi, i, rxq) {
2970 				if (if_getcapenable(ifp) & IFCAP_LRO)
2971 					rxq->iq.flags |= IQ_LRO_ENABLED;
2972 				else
2973 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2974 			}
2975 #endif
2976 		}
2977 #ifdef TCP_OFFLOAD
2978 		if (mask & IFCAP_TOE) {
2979 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2980 
2981 			rc = toe_capability(vi, enable);
2982 			if (rc != 0)
2983 				goto fail;
2984 
2985 			if_togglecapenable(ifp, mask);
2986 		}
2987 #endif
2988 		if (mask & IFCAP_VLAN_HWTAGGING) {
2989 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2990 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2991 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2992 		}
2993 		if (mask & IFCAP_VLAN_MTU) {
2994 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2995 
2996 			/* Need to find out how to disable auto-mtu-inflation */
2997 		}
2998 		if (mask & IFCAP_VLAN_HWTSO)
2999 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3000 		if (mask & IFCAP_VLAN_HWCSUM)
3001 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3002 #ifdef RATELIMIT
3003 		if (mask & IFCAP_TXRTLMT)
3004 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
3005 #endif
3006 		if (mask & IFCAP_HWRXTSTMP) {
3007 			int i;
3008 			struct sge_rxq *rxq;
3009 
3010 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3011 			for_each_rxq(vi, i, rxq) {
3012 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3013 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
3014 				else
3015 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3016 			}
3017 		}
3018 		if (mask & IFCAP_MEXTPG)
3019 			if_togglecapenable(ifp, IFCAP_MEXTPG);
3020 
3021 #ifdef KERN_TLS
3022 		if (mask & IFCAP_TXTLS) {
3023 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3024 
3025 			rc = ktls_capability(sc, enable);
3026 			if (rc != 0)
3027 				goto fail;
3028 
3029 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3030 		}
3031 #endif
3032 		if (mask & IFCAP_VXLAN_HWCSUM) {
3033 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3034 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3035 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3036 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3037 		}
3038 		if (mask & IFCAP_VXLAN_HWTSO) {
3039 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3040 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3041 			    CSUM_INNER_IP_TSO);
3042 		}
3043 
3044 #ifdef VLAN_CAPABILITIES
3045 		VLAN_CAPABILITIES(ifp);
3046 #endif
3047 fail:
3048 		end_synchronized_op(sc, 0);
3049 		break;
3050 
3051 	case SIOCSIFMEDIA:
3052 	case SIOCGIFMEDIA:
3053 	case SIOCGIFXMEDIA:
3054 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3055 		break;
3056 
3057 	case SIOCGI2C: {
3058 		struct ifi2creq i2c;
3059 
3060 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3061 		if (rc != 0)
3062 			break;
3063 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3064 			rc = EPERM;
3065 			break;
3066 		}
3067 		if (i2c.len > sizeof(i2c.data)) {
3068 			rc = EINVAL;
3069 			break;
3070 		}
3071 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3072 		if (rc)
3073 			return (rc);
3074 		if (hw_off_limits(sc))
3075 			rc = ENXIO;
3076 		else
3077 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3078 			    i2c.offset, i2c.len, &i2c.data[0]);
3079 		end_synchronized_op(sc, 0);
3080 		if (rc == 0)
3081 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3082 		break;
3083 	}
3084 
3085 	default:
3086 		rc = ether_ioctl(ifp, cmd, data);
3087 	}
3088 
3089 	return (rc);
3090 }
3091 
3092 static int
3093 cxgbe_transmit(if_t ifp, struct mbuf *m)
3094 {
3095 	struct vi_info *vi = if_getsoftc(ifp);
3096 	struct port_info *pi = vi->pi;
3097 	struct adapter *sc;
3098 	struct sge_txq *txq;
3099 	void *items[1];
3100 	int rc;
3101 
3102 	M_ASSERTPKTHDR(m);
3103 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3104 #if defined(KERN_TLS) || defined(RATELIMIT)
3105 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3106 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3107 #endif
3108 
3109 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3110 		m_freem(m);
3111 		return (ENETDOWN);
3112 	}
3113 
3114 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3115 	if (__predict_false(rc != 0)) {
3116 		if (__predict_true(rc == EINPROGRESS)) {
3117 			/* queued by parse_pkt */
3118 			MPASS(m != NULL);
3119 			return (0);
3120 		}
3121 
3122 		MPASS(m == NULL);			/* was freed already */
3123 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3124 		return (rc);
3125 	}
3126 
3127 	/* Select a txq. */
3128 	sc = vi->adapter;
3129 	txq = &sc->sge.txq[vi->first_txq];
3130 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3131 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3132 		    vi->rsrv_noflowq);
3133 
3134 	items[0] = m;
3135 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3136 	if (__predict_false(rc != 0))
3137 		m_freem(m);
3138 
3139 	return (rc);
3140 }
3141 
3142 static void
3143 cxgbe_qflush(if_t ifp)
3144 {
3145 	struct vi_info *vi = if_getsoftc(ifp);
3146 	struct sge_txq *txq;
3147 	int i;
3148 
3149 	/* queues do not exist if !VI_INIT_DONE. */
3150 	if (vi->flags & VI_INIT_DONE) {
3151 		for_each_txq(vi, i, txq) {
3152 			TXQ_LOCK(txq);
3153 			txq->eq.flags |= EQ_QFLUSH;
3154 			TXQ_UNLOCK(txq);
3155 			while (!mp_ring_is_idle(txq->r)) {
3156 				mp_ring_check_drainage(txq->r, 4096);
3157 				pause("qflush", 1);
3158 			}
3159 			TXQ_LOCK(txq);
3160 			txq->eq.flags &= ~EQ_QFLUSH;
3161 			TXQ_UNLOCK(txq);
3162 		}
3163 	}
3164 	if_qflush(ifp);
3165 }
3166 
3167 static uint64_t
3168 vi_get_counter(if_t ifp, ift_counter c)
3169 {
3170 	struct vi_info *vi = if_getsoftc(ifp);
3171 	struct fw_vi_stats_vf *s = &vi->stats;
3172 
3173 	mtx_lock(&vi->tick_mtx);
3174 	vi_refresh_stats(vi);
3175 	mtx_unlock(&vi->tick_mtx);
3176 
3177 	switch (c) {
3178 	case IFCOUNTER_IPACKETS:
3179 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3180 		    s->rx_ucast_frames);
3181 	case IFCOUNTER_IERRORS:
3182 		return (s->rx_err_frames);
3183 	case IFCOUNTER_OPACKETS:
3184 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3185 		    s->tx_ucast_frames + s->tx_offload_frames);
3186 	case IFCOUNTER_OERRORS:
3187 		return (s->tx_drop_frames);
3188 	case IFCOUNTER_IBYTES:
3189 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3190 		    s->rx_ucast_bytes);
3191 	case IFCOUNTER_OBYTES:
3192 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3193 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3194 	case IFCOUNTER_IMCASTS:
3195 		return (s->rx_mcast_frames);
3196 	case IFCOUNTER_OMCASTS:
3197 		return (s->tx_mcast_frames);
3198 	case IFCOUNTER_OQDROPS: {
3199 		uint64_t drops;
3200 
3201 		drops = 0;
3202 		if (vi->flags & VI_INIT_DONE) {
3203 			int i;
3204 			struct sge_txq *txq;
3205 
3206 			for_each_txq(vi, i, txq)
3207 				drops += counter_u64_fetch(txq->r->dropped);
3208 		}
3209 
3210 		return (drops);
3211 
3212 	}
3213 
3214 	default:
3215 		return (if_get_counter_default(ifp, c));
3216 	}
3217 }
3218 
3219 static uint64_t
3220 cxgbe_get_counter(if_t ifp, ift_counter c)
3221 {
3222 	struct vi_info *vi = if_getsoftc(ifp);
3223 	struct port_info *pi = vi->pi;
3224 	struct port_stats *s = &pi->stats;
3225 
3226 	mtx_lock(&vi->tick_mtx);
3227 	cxgbe_refresh_stats(vi);
3228 	mtx_unlock(&vi->tick_mtx);
3229 
3230 	switch (c) {
3231 	case IFCOUNTER_IPACKETS:
3232 		return (s->rx_frames);
3233 
3234 	case IFCOUNTER_IERRORS:
3235 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3236 		    s->rx_fcs_err + s->rx_len_err);
3237 
3238 	case IFCOUNTER_OPACKETS:
3239 		return (s->tx_frames);
3240 
3241 	case IFCOUNTER_OERRORS:
3242 		return (s->tx_error_frames);
3243 
3244 	case IFCOUNTER_IBYTES:
3245 		return (s->rx_octets);
3246 
3247 	case IFCOUNTER_OBYTES:
3248 		return (s->tx_octets);
3249 
3250 	case IFCOUNTER_IMCASTS:
3251 		return (s->rx_mcast_frames);
3252 
3253 	case IFCOUNTER_OMCASTS:
3254 		return (s->tx_mcast_frames);
3255 
3256 	case IFCOUNTER_IQDROPS:
3257 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3258 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3259 		    s->rx_trunc3 + pi->tnl_cong_drops);
3260 
3261 	case IFCOUNTER_OQDROPS: {
3262 		uint64_t drops;
3263 
3264 		drops = s->tx_drop;
3265 		if (vi->flags & VI_INIT_DONE) {
3266 			int i;
3267 			struct sge_txq *txq;
3268 
3269 			for_each_txq(vi, i, txq)
3270 				drops += counter_u64_fetch(txq->r->dropped);
3271 		}
3272 
3273 		return (drops);
3274 
3275 	}
3276 
3277 	default:
3278 		return (if_get_counter_default(ifp, c));
3279 	}
3280 }
3281 
3282 #if defined(KERN_TLS) || defined(RATELIMIT)
3283 static int
3284 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3285     struct m_snd_tag **pt)
3286 {
3287 	int error;
3288 
3289 	switch (params->hdr.type) {
3290 #ifdef RATELIMIT
3291 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3292 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3293 		break;
3294 #endif
3295 #ifdef KERN_TLS
3296 	case IF_SND_TAG_TYPE_TLS:
3297 	{
3298 		struct vi_info *vi = if_getsoftc(ifp);
3299 
3300 		if (is_t6(vi->pi->adapter))
3301 			error = t6_tls_tag_alloc(ifp, params, pt);
3302 		else
3303 			error = EOPNOTSUPP;
3304 		break;
3305 	}
3306 #endif
3307 	default:
3308 		error = EOPNOTSUPP;
3309 	}
3310 	return (error);
3311 }
3312 #endif
3313 
3314 /*
3315  * The kernel picks a media from the list we had provided but we still validate
3316  * the requeste.
3317  */
3318 int
3319 cxgbe_media_change(if_t ifp)
3320 {
3321 	struct vi_info *vi = if_getsoftc(ifp);
3322 	struct port_info *pi = vi->pi;
3323 	struct ifmedia *ifm = &pi->media;
3324 	struct link_config *lc = &pi->link_cfg;
3325 	struct adapter *sc = pi->adapter;
3326 	int rc;
3327 
3328 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3329 	if (rc != 0)
3330 		return (rc);
3331 	PORT_LOCK(pi);
3332 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3333 		/* ifconfig .. media autoselect */
3334 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3335 			rc = ENOTSUP; /* AN not supported by transceiver */
3336 			goto done;
3337 		}
3338 		lc->requested_aneg = AUTONEG_ENABLE;
3339 		lc->requested_speed = 0;
3340 		lc->requested_fc |= PAUSE_AUTONEG;
3341 	} else {
3342 		lc->requested_aneg = AUTONEG_DISABLE;
3343 		lc->requested_speed =
3344 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3345 		lc->requested_fc = 0;
3346 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3347 			lc->requested_fc |= PAUSE_RX;
3348 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3349 			lc->requested_fc |= PAUSE_TX;
3350 	}
3351 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3352 		fixup_link_config(pi);
3353 		rc = apply_link_config(pi);
3354 	}
3355 done:
3356 	PORT_UNLOCK(pi);
3357 	end_synchronized_op(sc, 0);
3358 	return (rc);
3359 }
3360 
3361 /*
3362  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3363  * given speed.
3364  */
3365 static int
3366 port_mword(struct port_info *pi, uint32_t speed)
3367 {
3368 
3369 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3370 	MPASS(powerof2(speed));
3371 
3372 	switch(pi->port_type) {
3373 	case FW_PORT_TYPE_BT_SGMII:
3374 	case FW_PORT_TYPE_BT_XFI:
3375 	case FW_PORT_TYPE_BT_XAUI:
3376 		/* BaseT */
3377 		switch (speed) {
3378 		case FW_PORT_CAP32_SPEED_100M:
3379 			return (IFM_100_T);
3380 		case FW_PORT_CAP32_SPEED_1G:
3381 			return (IFM_1000_T);
3382 		case FW_PORT_CAP32_SPEED_10G:
3383 			return (IFM_10G_T);
3384 		}
3385 		break;
3386 	case FW_PORT_TYPE_KX4:
3387 		if (speed == FW_PORT_CAP32_SPEED_10G)
3388 			return (IFM_10G_KX4);
3389 		break;
3390 	case FW_PORT_TYPE_CX4:
3391 		if (speed == FW_PORT_CAP32_SPEED_10G)
3392 			return (IFM_10G_CX4);
3393 		break;
3394 	case FW_PORT_TYPE_KX:
3395 		if (speed == FW_PORT_CAP32_SPEED_1G)
3396 			return (IFM_1000_KX);
3397 		break;
3398 	case FW_PORT_TYPE_KR:
3399 	case FW_PORT_TYPE_BP_AP:
3400 	case FW_PORT_TYPE_BP4_AP:
3401 	case FW_PORT_TYPE_BP40_BA:
3402 	case FW_PORT_TYPE_KR4_100G:
3403 	case FW_PORT_TYPE_KR_SFP28:
3404 	case FW_PORT_TYPE_KR_XLAUI:
3405 		switch (speed) {
3406 		case FW_PORT_CAP32_SPEED_1G:
3407 			return (IFM_1000_KX);
3408 		case FW_PORT_CAP32_SPEED_10G:
3409 			return (IFM_10G_KR);
3410 		case FW_PORT_CAP32_SPEED_25G:
3411 			return (IFM_25G_KR);
3412 		case FW_PORT_CAP32_SPEED_40G:
3413 			return (IFM_40G_KR4);
3414 		case FW_PORT_CAP32_SPEED_50G:
3415 			return (IFM_50G_KR2);
3416 		case FW_PORT_CAP32_SPEED_100G:
3417 			return (IFM_100G_KR4);
3418 		}
3419 		break;
3420 	case FW_PORT_TYPE_FIBER_XFI:
3421 	case FW_PORT_TYPE_FIBER_XAUI:
3422 	case FW_PORT_TYPE_SFP:
3423 	case FW_PORT_TYPE_QSFP_10G:
3424 	case FW_PORT_TYPE_QSA:
3425 	case FW_PORT_TYPE_QSFP:
3426 	case FW_PORT_TYPE_CR4_QSFP:
3427 	case FW_PORT_TYPE_CR_QSFP:
3428 	case FW_PORT_TYPE_CR2_QSFP:
3429 	case FW_PORT_TYPE_SFP28:
3430 		/* Pluggable transceiver */
3431 		switch (pi->mod_type) {
3432 		case FW_PORT_MOD_TYPE_LR:
3433 			switch (speed) {
3434 			case FW_PORT_CAP32_SPEED_1G:
3435 				return (IFM_1000_LX);
3436 			case FW_PORT_CAP32_SPEED_10G:
3437 				return (IFM_10G_LR);
3438 			case FW_PORT_CAP32_SPEED_25G:
3439 				return (IFM_25G_LR);
3440 			case FW_PORT_CAP32_SPEED_40G:
3441 				return (IFM_40G_LR4);
3442 			case FW_PORT_CAP32_SPEED_50G:
3443 				return (IFM_50G_LR2);
3444 			case FW_PORT_CAP32_SPEED_100G:
3445 				return (IFM_100G_LR4);
3446 			}
3447 			break;
3448 		case FW_PORT_MOD_TYPE_SR:
3449 			switch (speed) {
3450 			case FW_PORT_CAP32_SPEED_1G:
3451 				return (IFM_1000_SX);
3452 			case FW_PORT_CAP32_SPEED_10G:
3453 				return (IFM_10G_SR);
3454 			case FW_PORT_CAP32_SPEED_25G:
3455 				return (IFM_25G_SR);
3456 			case FW_PORT_CAP32_SPEED_40G:
3457 				return (IFM_40G_SR4);
3458 			case FW_PORT_CAP32_SPEED_50G:
3459 				return (IFM_50G_SR2);
3460 			case FW_PORT_CAP32_SPEED_100G:
3461 				return (IFM_100G_SR4);
3462 			}
3463 			break;
3464 		case FW_PORT_MOD_TYPE_ER:
3465 			if (speed == FW_PORT_CAP32_SPEED_10G)
3466 				return (IFM_10G_ER);
3467 			break;
3468 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3469 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3470 			switch (speed) {
3471 			case FW_PORT_CAP32_SPEED_1G:
3472 				return (IFM_1000_CX);
3473 			case FW_PORT_CAP32_SPEED_10G:
3474 				return (IFM_10G_TWINAX);
3475 			case FW_PORT_CAP32_SPEED_25G:
3476 				return (IFM_25G_CR);
3477 			case FW_PORT_CAP32_SPEED_40G:
3478 				return (IFM_40G_CR4);
3479 			case FW_PORT_CAP32_SPEED_50G:
3480 				return (IFM_50G_CR2);
3481 			case FW_PORT_CAP32_SPEED_100G:
3482 				return (IFM_100G_CR4);
3483 			}
3484 			break;
3485 		case FW_PORT_MOD_TYPE_LRM:
3486 			if (speed == FW_PORT_CAP32_SPEED_10G)
3487 				return (IFM_10G_LRM);
3488 			break;
3489 		case FW_PORT_MOD_TYPE_NA:
3490 			MPASS(0);	/* Not pluggable? */
3491 			/* fall throough */
3492 		case FW_PORT_MOD_TYPE_ERROR:
3493 		case FW_PORT_MOD_TYPE_UNKNOWN:
3494 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3495 			break;
3496 		case FW_PORT_MOD_TYPE_NONE:
3497 			return (IFM_NONE);
3498 		}
3499 		break;
3500 	case FW_PORT_TYPE_NONE:
3501 		return (IFM_NONE);
3502 	}
3503 
3504 	return (IFM_UNKNOWN);
3505 }
3506 
3507 void
3508 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3509 {
3510 	struct vi_info *vi = if_getsoftc(ifp);
3511 	struct port_info *pi = vi->pi;
3512 	struct adapter *sc = pi->adapter;
3513 	struct link_config *lc = &pi->link_cfg;
3514 
3515 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3516 		return;
3517 	PORT_LOCK(pi);
3518 
3519 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3520 		/*
3521 		 * If all the interfaces are administratively down the firmware
3522 		 * does not report transceiver changes.  Refresh port info here
3523 		 * so that ifconfig displays accurate ifmedia at all times.
3524 		 * This is the only reason we have a synchronized op in this
3525 		 * function.  Just PORT_LOCK would have been enough otherwise.
3526 		 */
3527 		t4_update_port_info(pi);
3528 		build_medialist(pi);
3529 	}
3530 
3531 	/* ifm_status */
3532 	ifmr->ifm_status = IFM_AVALID;
3533 	if (lc->link_ok == false)
3534 		goto done;
3535 	ifmr->ifm_status |= IFM_ACTIVE;
3536 
3537 	/* ifm_active */
3538 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3539 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3540 	if (lc->fc & PAUSE_RX)
3541 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3542 	if (lc->fc & PAUSE_TX)
3543 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3544 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3545 done:
3546 	PORT_UNLOCK(pi);
3547 	end_synchronized_op(sc, 0);
3548 }
3549 
3550 static int
3551 vcxgbe_probe(device_t dev)
3552 {
3553 	struct vi_info *vi = device_get_softc(dev);
3554 
3555 	device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3556 	    vi - vi->pi->vi);
3557 
3558 	return (BUS_PROBE_DEFAULT);
3559 }
3560 
3561 static int
3562 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3563 {
3564 	int func, index, rc;
3565 	uint32_t param, val;
3566 
3567 	ASSERT_SYNCHRONIZED_OP(sc);
3568 
3569 	index = vi - pi->vi;
3570 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3571 	KASSERT(index < nitems(vi_mac_funcs),
3572 	    ("%s: VI %s doesn't have a MAC func", __func__,
3573 	    device_get_nameunit(vi->dev)));
3574 	func = vi_mac_funcs[index];
3575 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3576 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3577 	if (rc < 0) {
3578 		CH_ERR(vi, "failed to allocate virtual interface %d"
3579 		    "for port %d: %d\n", index, pi->port_id, -rc);
3580 		return (-rc);
3581 	}
3582 	vi->viid = rc;
3583 
3584 	if (vi->rss_size == 1) {
3585 		/*
3586 		 * This VI didn't get a slice of the RSS table.  Reduce the
3587 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3588 		 * configuration file (nvi, rssnvi for this PF) if this is a
3589 		 * problem.
3590 		 */
3591 		device_printf(vi->dev, "RSS table not available.\n");
3592 		vi->rss_base = 0xffff;
3593 
3594 		return (0);
3595 	}
3596 
3597 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3598 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3599 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3600 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3601 	if (rc)
3602 		vi->rss_base = 0xffff;
3603 	else {
3604 		MPASS((val >> 16) == vi->rss_size);
3605 		vi->rss_base = val & 0xffff;
3606 	}
3607 
3608 	return (0);
3609 }
3610 
3611 static int
3612 vcxgbe_attach(device_t dev)
3613 {
3614 	struct vi_info *vi;
3615 	struct port_info *pi;
3616 	struct adapter *sc;
3617 	int rc;
3618 
3619 	vi = device_get_softc(dev);
3620 	pi = vi->pi;
3621 	sc = pi->adapter;
3622 
3623 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3624 	if (rc)
3625 		return (rc);
3626 	rc = alloc_extra_vi(sc, pi, vi);
3627 	end_synchronized_op(sc, 0);
3628 	if (rc)
3629 		return (rc);
3630 
3631 	cxgbe_vi_attach(dev, vi);
3632 
3633 	return (0);
3634 }
3635 
3636 static int
3637 vcxgbe_detach(device_t dev)
3638 {
3639 	struct vi_info *vi;
3640 	struct adapter *sc;
3641 
3642 	vi = device_get_softc(dev);
3643 	sc = vi->adapter;
3644 
3645 	begin_vi_detach(sc, vi);
3646 	cxgbe_vi_detach(vi);
3647 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3648 	end_vi_detach(sc, vi);
3649 
3650 	return (0);
3651 }
3652 
3653 static struct callout fatal_callout;
3654 static struct taskqueue *reset_tq;
3655 
3656 static void
3657 delayed_panic(void *arg)
3658 {
3659 	struct adapter *sc = arg;
3660 
3661 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3662 }
3663 
3664 static void
3665 fatal_error_task(void *arg, int pending)
3666 {
3667 	struct adapter *sc = arg;
3668 	int rc;
3669 
3670 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3671 		dump_cim_regs(sc);
3672 		dump_cimla(sc);
3673 		dump_devlog(sc);
3674 	}
3675 
3676 	if (t4_reset_on_fatal_err) {
3677 		CH_ALERT(sc, "resetting adapter after fatal error.\n");
3678 		rc = reset_adapter(sc);
3679 		if (rc == 0 && t4_panic_on_fatal_err) {
3680 			CH_ALERT(sc, "reset was successful, "
3681 			    "system will NOT panic.\n");
3682 			return;
3683 		}
3684 	}
3685 
3686 	if (t4_panic_on_fatal_err) {
3687 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3688 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3689 	}
3690 }
3691 
3692 void
3693 t4_fatal_err(struct adapter *sc, bool fw_error)
3694 {
3695 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3696 
3697 	stop_adapter(sc);
3698 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3699 		return;
3700 	if (fw_error) {
3701 		/*
3702 		 * We are here because of a firmware error/timeout and not
3703 		 * because of a hardware interrupt.  It is possible (although
3704 		 * not very likely) that an error interrupt was also raised but
3705 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3706 		 * main INT_CAUSE registers here to make sure we haven't missed
3707 		 * anything interesting.
3708 		 */
3709 		t4_slow_intr_handler(sc, verbose);
3710 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3711 	}
3712 	t4_report_fw_error(sc);
3713 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3714 	    device_get_nameunit(sc->dev), fw_error);
3715 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3716 }
3717 
3718 void
3719 t4_add_adapter(struct adapter *sc)
3720 {
3721 	sx_xlock(&t4_list_lock);
3722 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3723 	sx_xunlock(&t4_list_lock);
3724 }
3725 
3726 int
3727 t4_map_bars_0_and_4(struct adapter *sc)
3728 {
3729 	sc->regs_rid = PCIR_BAR(0);
3730 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3731 	    &sc->regs_rid, RF_ACTIVE);
3732 	if (sc->regs_res == NULL) {
3733 		device_printf(sc->dev, "cannot map registers.\n");
3734 		return (ENXIO);
3735 	}
3736 	sc->bt = rman_get_bustag(sc->regs_res);
3737 	sc->bh = rman_get_bushandle(sc->regs_res);
3738 	sc->mmio_len = rman_get_size(sc->regs_res);
3739 	setbit(&sc->doorbells, DOORBELL_KDB);
3740 
3741 	sc->msix_rid = PCIR_BAR(4);
3742 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3743 	    &sc->msix_rid, RF_ACTIVE);
3744 	if (sc->msix_res == NULL) {
3745 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3746 		return (ENXIO);
3747 	}
3748 
3749 	return (0);
3750 }
3751 
3752 int
3753 t4_map_bar_2(struct adapter *sc)
3754 {
3755 
3756 	/*
3757 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3758 	 * to map it if RDMA is disabled.
3759 	 */
3760 	if (is_t4(sc) && sc->rdmacaps == 0)
3761 		return (0);
3762 
3763 	sc->udbs_rid = PCIR_BAR(2);
3764 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3765 	    &sc->udbs_rid, RF_ACTIVE);
3766 	if (sc->udbs_res == NULL) {
3767 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3768 		return (ENXIO);
3769 	}
3770 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3771 
3772 	if (chip_id(sc) >= CHELSIO_T5) {
3773 		setbit(&sc->doorbells, DOORBELL_UDB);
3774 #if defined(__i386__) || defined(__amd64__)
3775 		if (t5_write_combine) {
3776 			int rc, mode;
3777 
3778 			/*
3779 			 * Enable write combining on BAR2.  This is the
3780 			 * userspace doorbell BAR and is split into 128B
3781 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3782 			 * with an egress queue.  The first 64B has the doorbell
3783 			 * and the second 64B can be used to submit a tx work
3784 			 * request with an implicit doorbell.
3785 			 */
3786 
3787 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3788 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3789 			if (rc == 0) {
3790 				clrbit(&sc->doorbells, DOORBELL_UDB);
3791 				setbit(&sc->doorbells, DOORBELL_WCWR);
3792 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3793 			} else {
3794 				device_printf(sc->dev,
3795 				    "couldn't enable write combining: %d\n",
3796 				    rc);
3797 			}
3798 
3799 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3800 			t4_write_reg(sc, A_SGE_STAT_CFG,
3801 			    V_STATSOURCE_T5(7) | mode);
3802 		}
3803 #endif
3804 	}
3805 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3806 
3807 	return (0);
3808 }
3809 
3810 int
3811 t4_adj_doorbells(struct adapter *sc)
3812 {
3813 	if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3814 		sc->doorbells &= t4_doorbells_allowed;
3815 		return (0);
3816 	}
3817 	CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3818 	       sc->doorbells, t4_doorbells_allowed);
3819 	return (EINVAL);
3820 }
3821 
3822 struct memwin_init {
3823 	uint32_t base;
3824 	uint32_t aperture;
3825 };
3826 
3827 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3828 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3829 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3830 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3831 };
3832 
3833 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3834 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3835 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3836 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3837 };
3838 
3839 static void
3840 setup_memwin(struct adapter *sc)
3841 {
3842 	const struct memwin_init *mw_init;
3843 	struct memwin *mw;
3844 	int i;
3845 	uint32_t bar0;
3846 
3847 	if (is_t4(sc)) {
3848 		/*
3849 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3850 		 * mechanism.  Works from within PCI passthrough environments
3851 		 * too, where rman_get_start() can return a different value.  We
3852 		 * need to program the T4 memory window decoders with the actual
3853 		 * addresses that will be coming across the PCIe link.
3854 		 */
3855 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3856 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3857 
3858 		mw_init = &t4_memwin[0];
3859 	} else {
3860 		/* T5+ use the relative offset inside the PCIe BAR */
3861 		bar0 = 0;
3862 
3863 		mw_init = &t5_memwin[0];
3864 	}
3865 
3866 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3867 		if (!rw_initialized(&mw->mw_lock)) {
3868 			rw_init(&mw->mw_lock, "memory window access");
3869 			mw->mw_base = mw_init->base;
3870 			mw->mw_aperture = mw_init->aperture;
3871 			mw->mw_curpos = 0;
3872 		}
3873 		t4_write_reg(sc,
3874 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3875 		    (mw->mw_base + bar0) | V_BIR(0) |
3876 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3877 		rw_wlock(&mw->mw_lock);
3878 		position_memwin(sc, i, mw->mw_curpos);
3879 		rw_wunlock(&mw->mw_lock);
3880 	}
3881 
3882 	/* flush */
3883 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3884 }
3885 
3886 /*
3887  * Positions the memory window at the given address in the card's address space.
3888  * There are some alignment requirements and the actual position may be at an
3889  * address prior to the requested address.  mw->mw_curpos always has the actual
3890  * position of the window.
3891  */
3892 static void
3893 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3894 {
3895 	struct memwin *mw;
3896 	uint32_t pf;
3897 	uint32_t reg;
3898 
3899 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3900 	mw = &sc->memwin[idx];
3901 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3902 
3903 	if (is_t4(sc)) {
3904 		pf = 0;
3905 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3906 	} else {
3907 		pf = V_PFNUM(sc->pf);
3908 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3909 	}
3910 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3911 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3912 	t4_read_reg(sc, reg);	/* flush */
3913 }
3914 
3915 int
3916 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3917     int len, int rw)
3918 {
3919 	struct memwin *mw;
3920 	uint32_t mw_end, v;
3921 
3922 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3923 
3924 	/* Memory can only be accessed in naturally aligned 4 byte units */
3925 	if (addr & 3 || len & 3 || len <= 0)
3926 		return (EINVAL);
3927 
3928 	mw = &sc->memwin[idx];
3929 	while (len > 0) {
3930 		rw_rlock(&mw->mw_lock);
3931 		mw_end = mw->mw_curpos + mw->mw_aperture;
3932 		if (addr >= mw_end || addr < mw->mw_curpos) {
3933 			/* Will need to reposition the window */
3934 			if (!rw_try_upgrade(&mw->mw_lock)) {
3935 				rw_runlock(&mw->mw_lock);
3936 				rw_wlock(&mw->mw_lock);
3937 			}
3938 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3939 			position_memwin(sc, idx, addr);
3940 			rw_downgrade(&mw->mw_lock);
3941 			mw_end = mw->mw_curpos + mw->mw_aperture;
3942 		}
3943 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3944 		while (addr < mw_end && len > 0) {
3945 			if (rw == 0) {
3946 				v = t4_read_reg(sc, mw->mw_base + addr -
3947 				    mw->mw_curpos);
3948 				*val++ = le32toh(v);
3949 			} else {
3950 				v = *val++;
3951 				t4_write_reg(sc, mw->mw_base + addr -
3952 				    mw->mw_curpos, htole32(v));
3953 			}
3954 			addr += 4;
3955 			len -= 4;
3956 		}
3957 		rw_runlock(&mw->mw_lock);
3958 	}
3959 
3960 	return (0);
3961 }
3962 
3963 CTASSERT(M_TID_COOKIE == M_COOKIE);
3964 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3965 
3966 static void
3967 t4_init_atid_table(struct adapter *sc)
3968 {
3969 	struct tid_info *t;
3970 	int i;
3971 
3972 	t = &sc->tids;
3973 	if (t->natids == 0)
3974 		return;
3975 
3976 	MPASS(t->atid_tab == NULL);
3977 
3978 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3979 	    M_ZERO | M_WAITOK);
3980 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3981 	t->afree = t->atid_tab;
3982 	t->atids_in_use = 0;
3983 	t->atid_alloc_stopped = false;
3984 	for (i = 1; i < t->natids; i++)
3985 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3986 	t->atid_tab[t->natids - 1].next = NULL;
3987 }
3988 
3989 static void
3990 t4_free_atid_table(struct adapter *sc)
3991 {
3992 	struct tid_info *t;
3993 
3994 	t = &sc->tids;
3995 
3996 	KASSERT(t->atids_in_use == 0,
3997 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3998 
3999 	if (mtx_initialized(&t->atid_lock))
4000 		mtx_destroy(&t->atid_lock);
4001 	free(t->atid_tab, M_CXGBE);
4002 	t->atid_tab = NULL;
4003 }
4004 
4005 static void
4006 stop_atid_allocator(struct adapter *sc)
4007 {
4008 	struct tid_info *t = &sc->tids;
4009 
4010 	mtx_lock(&t->atid_lock);
4011 	t->atid_alloc_stopped = true;
4012 	mtx_unlock(&t->atid_lock);
4013 }
4014 
4015 static void
4016 restart_atid_allocator(struct adapter *sc)
4017 {
4018 	struct tid_info *t = &sc->tids;
4019 
4020 	mtx_lock(&t->atid_lock);
4021 	KASSERT(t->atids_in_use == 0,
4022 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
4023 	t->atid_alloc_stopped = false;
4024 	mtx_unlock(&t->atid_lock);
4025 }
4026 
4027 int
4028 alloc_atid(struct adapter *sc, void *ctx)
4029 {
4030 	struct tid_info *t = &sc->tids;
4031 	int atid = -1;
4032 
4033 	mtx_lock(&t->atid_lock);
4034 	if (t->afree && !t->atid_alloc_stopped) {
4035 		union aopen_entry *p = t->afree;
4036 
4037 		atid = p - t->atid_tab;
4038 		MPASS(atid <= M_TID_TID);
4039 		t->afree = p->next;
4040 		p->data = ctx;
4041 		t->atids_in_use++;
4042 	}
4043 	mtx_unlock(&t->atid_lock);
4044 	return (atid);
4045 }
4046 
4047 void *
4048 lookup_atid(struct adapter *sc, int atid)
4049 {
4050 	struct tid_info *t = &sc->tids;
4051 
4052 	return (t->atid_tab[atid].data);
4053 }
4054 
4055 void
4056 free_atid(struct adapter *sc, int atid)
4057 {
4058 	struct tid_info *t = &sc->tids;
4059 	union aopen_entry *p = &t->atid_tab[atid];
4060 
4061 	mtx_lock(&t->atid_lock);
4062 	p->next = t->afree;
4063 	t->afree = p;
4064 	t->atids_in_use--;
4065 	mtx_unlock(&t->atid_lock);
4066 }
4067 
4068 static void
4069 queue_tid_release(struct adapter *sc, int tid)
4070 {
4071 
4072 	CXGBE_UNIMPLEMENTED("deferred tid release");
4073 }
4074 
4075 void
4076 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4077 {
4078 	struct wrqe *wr;
4079 	struct cpl_tid_release *req;
4080 
4081 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4082 	if (wr == NULL) {
4083 		queue_tid_release(sc, tid);	/* defer */
4084 		return;
4085 	}
4086 	req = wrtod(wr);
4087 
4088 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4089 
4090 	t4_wrq_tx(sc, wr);
4091 }
4092 
4093 static int
4094 t4_range_cmp(const void *a, const void *b)
4095 {
4096 	return ((const struct t4_range *)a)->start -
4097 	       ((const struct t4_range *)b)->start;
4098 }
4099 
4100 /*
4101  * Verify that the memory range specified by the addr/len pair is valid within
4102  * the card's address space.
4103  */
4104 static int
4105 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4106 {
4107 	struct t4_range mem_ranges[4], *r, *next;
4108 	uint32_t em, addr_len;
4109 	int i, n, remaining;
4110 
4111 	/* Memory can only be accessed in naturally aligned 4 byte units */
4112 	if (addr & 3 || len & 3 || len == 0)
4113 		return (EINVAL);
4114 
4115 	/* Enabled memories */
4116 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4117 
4118 	r = &mem_ranges[0];
4119 	n = 0;
4120 	bzero(r, sizeof(mem_ranges));
4121 	if (em & F_EDRAM0_ENABLE) {
4122 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4123 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4124 		if (r->size > 0) {
4125 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4126 			if (addr >= r->start &&
4127 			    addr + len <= r->start + r->size)
4128 				return (0);
4129 			r++;
4130 			n++;
4131 		}
4132 	}
4133 	if (em & F_EDRAM1_ENABLE) {
4134 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4135 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4136 		if (r->size > 0) {
4137 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4138 			if (addr >= r->start &&
4139 			    addr + len <= r->start + r->size)
4140 				return (0);
4141 			r++;
4142 			n++;
4143 		}
4144 	}
4145 	if (em & F_EXT_MEM_ENABLE) {
4146 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4147 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4148 		if (r->size > 0) {
4149 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4150 			if (addr >= r->start &&
4151 			    addr + len <= r->start + r->size)
4152 				return (0);
4153 			r++;
4154 			n++;
4155 		}
4156 	}
4157 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4158 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4159 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4160 		if (r->size > 0) {
4161 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4162 			if (addr >= r->start &&
4163 			    addr + len <= r->start + r->size)
4164 				return (0);
4165 			r++;
4166 			n++;
4167 		}
4168 	}
4169 	MPASS(n <= nitems(mem_ranges));
4170 
4171 	if (n > 1) {
4172 		/* Sort and merge the ranges. */
4173 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4174 
4175 		/* Start from index 0 and examine the next n - 1 entries. */
4176 		r = &mem_ranges[0];
4177 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4178 
4179 			MPASS(r->size > 0);	/* r is a valid entry. */
4180 			next = r + 1;
4181 			MPASS(next->size > 0);	/* and so is the next one. */
4182 
4183 			while (r->start + r->size >= next->start) {
4184 				/* Merge the next one into the current entry. */
4185 				r->size = max(r->start + r->size,
4186 				    next->start + next->size) - r->start;
4187 				n--;	/* One fewer entry in total. */
4188 				if (--remaining == 0)
4189 					goto done;	/* short circuit */
4190 				next++;
4191 			}
4192 			if (next != r + 1) {
4193 				/*
4194 				 * Some entries were merged into r and next
4195 				 * points to the first valid entry that couldn't
4196 				 * be merged.
4197 				 */
4198 				MPASS(next->size > 0);	/* must be valid */
4199 				memcpy(r + 1, next, remaining * sizeof(*r));
4200 #ifdef INVARIANTS
4201 				/*
4202 				 * This so that the foo->size assertion in the
4203 				 * next iteration of the loop do the right
4204 				 * thing for entries that were pulled up and are
4205 				 * no longer valid.
4206 				 */
4207 				MPASS(n < nitems(mem_ranges));
4208 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4209 				    sizeof(struct t4_range));
4210 #endif
4211 			}
4212 		}
4213 done:
4214 		/* Done merging the ranges. */
4215 		MPASS(n > 0);
4216 		r = &mem_ranges[0];
4217 		for (i = 0; i < n; i++, r++) {
4218 			if (addr >= r->start &&
4219 			    addr + len <= r->start + r->size)
4220 				return (0);
4221 		}
4222 	}
4223 
4224 	return (EFAULT);
4225 }
4226 
4227 static int
4228 fwmtype_to_hwmtype(int mtype)
4229 {
4230 
4231 	switch (mtype) {
4232 	case FW_MEMTYPE_EDC0:
4233 		return (MEM_EDC0);
4234 	case FW_MEMTYPE_EDC1:
4235 		return (MEM_EDC1);
4236 	case FW_MEMTYPE_EXTMEM:
4237 		return (MEM_MC0);
4238 	case FW_MEMTYPE_EXTMEM1:
4239 		return (MEM_MC1);
4240 	default:
4241 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4242 	}
4243 }
4244 
4245 /*
4246  * Verify that the memory range specified by the memtype/offset/len pair is
4247  * valid and lies entirely within the memtype specified.  The global address of
4248  * the start of the range is returned in addr.
4249  */
4250 static int
4251 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4252     uint32_t *addr)
4253 {
4254 	uint32_t em, addr_len, maddr;
4255 
4256 	/* Memory can only be accessed in naturally aligned 4 byte units */
4257 	if (off & 3 || len & 3 || len == 0)
4258 		return (EINVAL);
4259 
4260 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4261 	switch (fwmtype_to_hwmtype(mtype)) {
4262 	case MEM_EDC0:
4263 		if (!(em & F_EDRAM0_ENABLE))
4264 			return (EINVAL);
4265 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4266 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4267 		break;
4268 	case MEM_EDC1:
4269 		if (!(em & F_EDRAM1_ENABLE))
4270 			return (EINVAL);
4271 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4272 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4273 		break;
4274 	case MEM_MC:
4275 		if (!(em & F_EXT_MEM_ENABLE))
4276 			return (EINVAL);
4277 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4278 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4279 		break;
4280 	case MEM_MC1:
4281 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4282 			return (EINVAL);
4283 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4284 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4285 		break;
4286 	default:
4287 		return (EINVAL);
4288 	}
4289 
4290 	*addr = maddr + off;	/* global address */
4291 	return (validate_mem_range(sc, *addr, len));
4292 }
4293 
4294 static int
4295 fixup_devlog_params(struct adapter *sc)
4296 {
4297 	struct devlog_params *dparams = &sc->params.devlog;
4298 	int rc;
4299 
4300 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4301 	    dparams->size, &dparams->addr);
4302 
4303 	return (rc);
4304 }
4305 
4306 static void
4307 update_nirq(struct intrs_and_queues *iaq, int nports)
4308 {
4309 
4310 	iaq->nirq = T4_EXTRA_INTR;
4311 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4312 	iaq->nirq += nports * iaq->nofldrxq;
4313 	iaq->nirq += nports * (iaq->num_vis - 1) *
4314 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4315 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4316 }
4317 
4318 /*
4319  * Adjust requirements to fit the number of interrupts available.
4320  */
4321 static void
4322 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4323     int navail)
4324 {
4325 	int old_nirq;
4326 	const int nports = sc->params.nports;
4327 
4328 	MPASS(nports > 0);
4329 	MPASS(navail > 0);
4330 
4331 	bzero(iaq, sizeof(*iaq));
4332 	iaq->intr_type = itype;
4333 	iaq->num_vis = t4_num_vis;
4334 	iaq->ntxq = t4_ntxq;
4335 	iaq->ntxq_vi = t4_ntxq_vi;
4336 	iaq->nrxq = t4_nrxq;
4337 	iaq->nrxq_vi = t4_nrxq_vi;
4338 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4339 	if (is_offload(sc) || is_ethoffload(sc)) {
4340 		iaq->nofldtxq = t4_nofldtxq;
4341 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4342 	}
4343 #endif
4344 #ifdef TCP_OFFLOAD
4345 	if (is_offload(sc)) {
4346 		iaq->nofldrxq = t4_nofldrxq;
4347 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4348 	}
4349 #endif
4350 #ifdef DEV_NETMAP
4351 	if (t4_native_netmap & NN_MAIN_VI) {
4352 		iaq->nnmtxq = t4_nnmtxq;
4353 		iaq->nnmrxq = t4_nnmrxq;
4354 	}
4355 	if (t4_native_netmap & NN_EXTRA_VI) {
4356 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4357 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4358 	}
4359 #endif
4360 
4361 	update_nirq(iaq, nports);
4362 	if (iaq->nirq <= navail &&
4363 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4364 		/*
4365 		 * This is the normal case -- there are enough interrupts for
4366 		 * everything.
4367 		 */
4368 		goto done;
4369 	}
4370 
4371 	/*
4372 	 * If extra VIs have been configured try reducing their count and see if
4373 	 * that works.
4374 	 */
4375 	while (iaq->num_vis > 1) {
4376 		iaq->num_vis--;
4377 		update_nirq(iaq, nports);
4378 		if (iaq->nirq <= navail &&
4379 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4380 			device_printf(sc->dev, "virtual interfaces per port "
4381 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4382 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4383 			    "itype %d, navail %u, nirq %d.\n",
4384 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4385 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4386 			    itype, navail, iaq->nirq);
4387 			goto done;
4388 		}
4389 	}
4390 
4391 	/*
4392 	 * Extra VIs will not be created.  Log a message if they were requested.
4393 	 */
4394 	MPASS(iaq->num_vis == 1);
4395 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4396 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4397 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4398 	if (iaq->num_vis != t4_num_vis) {
4399 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4400 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4401 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4402 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4403 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4404 	}
4405 
4406 	/*
4407 	 * Keep reducing the number of NIC rx queues to the next lower power of
4408 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4409 	 * if that works.
4410 	 */
4411 	do {
4412 		if (iaq->nrxq > 1) {
4413 			iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4414 			if (iaq->nnmrxq > iaq->nrxq)
4415 				iaq->nnmrxq = iaq->nrxq;
4416 		}
4417 		if (iaq->nofldrxq > 1)
4418 			iaq->nofldrxq >>= 1;
4419 
4420 		old_nirq = iaq->nirq;
4421 		update_nirq(iaq, nports);
4422 		if (iaq->nirq <= navail &&
4423 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4424 			device_printf(sc->dev, "running with reduced number of "
4425 			    "rx queues because of shortage of interrupts.  "
4426 			    "nrxq=%u, nofldrxq=%u.  "
4427 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4428 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4429 			goto done;
4430 		}
4431 	} while (old_nirq != iaq->nirq);
4432 
4433 	/* One interrupt for everything.  Ugh. */
4434 	device_printf(sc->dev, "running with minimal number of queues.  "
4435 	    "itype %d, navail %u.\n", itype, navail);
4436 	iaq->nirq = 1;
4437 	iaq->nrxq = 1;
4438 	iaq->ntxq = 1;
4439 	if (iaq->nofldrxq > 0) {
4440 		iaq->nofldrxq = 1;
4441 		iaq->nofldtxq = 1;
4442 	}
4443 	iaq->nnmtxq = 0;
4444 	iaq->nnmrxq = 0;
4445 done:
4446 	MPASS(iaq->num_vis > 0);
4447 	if (iaq->num_vis > 1) {
4448 		MPASS(iaq->nrxq_vi > 0);
4449 		MPASS(iaq->ntxq_vi > 0);
4450 	}
4451 	MPASS(iaq->nirq > 0);
4452 	MPASS(iaq->nrxq > 0);
4453 	MPASS(iaq->ntxq > 0);
4454 	if (itype == INTR_MSI) {
4455 		MPASS(powerof2(iaq->nirq));
4456 	}
4457 }
4458 
4459 static int
4460 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4461 {
4462 	int rc, itype, navail, nalloc;
4463 
4464 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4465 
4466 		if ((itype & t4_intr_types) == 0)
4467 			continue;	/* not allowed */
4468 
4469 		if (itype == INTR_MSIX)
4470 			navail = pci_msix_count(sc->dev);
4471 		else if (itype == INTR_MSI)
4472 			navail = pci_msi_count(sc->dev);
4473 		else
4474 			navail = 1;
4475 restart:
4476 		if (navail == 0)
4477 			continue;
4478 
4479 		calculate_iaq(sc, iaq, itype, navail);
4480 		nalloc = iaq->nirq;
4481 		rc = 0;
4482 		if (itype == INTR_MSIX)
4483 			rc = pci_alloc_msix(sc->dev, &nalloc);
4484 		else if (itype == INTR_MSI)
4485 			rc = pci_alloc_msi(sc->dev, &nalloc);
4486 
4487 		if (rc == 0 && nalloc > 0) {
4488 			if (nalloc == iaq->nirq)
4489 				return (0);
4490 
4491 			/*
4492 			 * Didn't get the number requested.  Use whatever number
4493 			 * the kernel is willing to allocate.
4494 			 */
4495 			device_printf(sc->dev, "fewer vectors than requested, "
4496 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4497 			    itype, iaq->nirq, nalloc);
4498 			pci_release_msi(sc->dev);
4499 			navail = nalloc;
4500 			goto restart;
4501 		}
4502 
4503 		device_printf(sc->dev,
4504 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4505 		    itype, rc, iaq->nirq, nalloc);
4506 	}
4507 
4508 	device_printf(sc->dev,
4509 	    "failed to find a usable interrupt type.  "
4510 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4511 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4512 
4513 	return (ENXIO);
4514 }
4515 
4516 #define FW_VERSION(chip) ( \
4517     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4518     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4519     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4520     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4521 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4522 
4523 /* Just enough of fw_hdr to cover all version info. */
4524 struct fw_h {
4525 	__u8	ver;
4526 	__u8	chip;
4527 	__be16	len512;
4528 	__be32	fw_ver;
4529 	__be32	tp_microcode_ver;
4530 	__u8	intfver_nic;
4531 	__u8	intfver_vnic;
4532 	__u8	intfver_ofld;
4533 	__u8	intfver_ri;
4534 	__u8	intfver_iscsipdu;
4535 	__u8	intfver_iscsi;
4536 	__u8	intfver_fcoepdu;
4537 	__u8	intfver_fcoe;
4538 };
4539 /* Spot check a couple of fields. */
4540 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4541 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4542 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4543 
4544 struct fw_info {
4545 	uint8_t chip;
4546 	char *kld_name;
4547 	char *fw_mod_name;
4548 	struct fw_h fw_h;
4549 } fw_info[] = {
4550 	{
4551 		.chip = CHELSIO_T4,
4552 		.kld_name = "t4fw_cfg",
4553 		.fw_mod_name = "t4fw",
4554 		.fw_h = {
4555 			.chip = FW_HDR_CHIP_T4,
4556 			.fw_ver = htobe32(FW_VERSION(T4)),
4557 			.intfver_nic = FW_INTFVER(T4, NIC),
4558 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4559 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4560 			.intfver_ri = FW_INTFVER(T4, RI),
4561 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4562 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4563 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4564 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4565 		},
4566 	}, {
4567 		.chip = CHELSIO_T5,
4568 		.kld_name = "t5fw_cfg",
4569 		.fw_mod_name = "t5fw",
4570 		.fw_h = {
4571 			.chip = FW_HDR_CHIP_T5,
4572 			.fw_ver = htobe32(FW_VERSION(T5)),
4573 			.intfver_nic = FW_INTFVER(T5, NIC),
4574 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4575 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4576 			.intfver_ri = FW_INTFVER(T5, RI),
4577 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4578 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4579 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4580 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4581 		},
4582 	}, {
4583 		.chip = CHELSIO_T6,
4584 		.kld_name = "t6fw_cfg",
4585 		.fw_mod_name = "t6fw",
4586 		.fw_h = {
4587 			.chip = FW_HDR_CHIP_T6,
4588 			.fw_ver = htobe32(FW_VERSION(T6)),
4589 			.intfver_nic = FW_INTFVER(T6, NIC),
4590 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4591 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4592 			.intfver_ri = FW_INTFVER(T6, RI),
4593 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4594 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4595 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4596 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4597 		},
4598 	}
4599 };
4600 
4601 static struct fw_info *
4602 find_fw_info(int chip)
4603 {
4604 	int i;
4605 
4606 	for (i = 0; i < nitems(fw_info); i++) {
4607 		if (fw_info[i].chip == chip)
4608 			return (&fw_info[i]);
4609 	}
4610 	return (NULL);
4611 }
4612 
4613 /*
4614  * Is the given firmware API compatible with the one the driver was compiled
4615  * with?
4616  */
4617 static int
4618 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4619 {
4620 
4621 	/* short circuit if it's the exact same firmware version */
4622 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4623 		return (1);
4624 
4625 	/*
4626 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4627 	 * features that are supported in the driver.
4628 	 */
4629 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4630 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4631 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4632 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4633 		return (1);
4634 #undef SAME_INTF
4635 
4636 	return (0);
4637 }
4638 
4639 static int
4640 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4641     const struct firmware **fw)
4642 {
4643 	struct fw_info *fw_info;
4644 
4645 	*dcfg = NULL;
4646 	if (fw != NULL)
4647 		*fw = NULL;
4648 
4649 	fw_info = find_fw_info(chip_id(sc));
4650 	if (fw_info == NULL) {
4651 		device_printf(sc->dev,
4652 		    "unable to look up firmware information for chip %d.\n",
4653 		    chip_id(sc));
4654 		return (EINVAL);
4655 	}
4656 
4657 	*dcfg = firmware_get(fw_info->kld_name);
4658 	if (*dcfg != NULL) {
4659 		if (fw != NULL)
4660 			*fw = firmware_get(fw_info->fw_mod_name);
4661 		return (0);
4662 	}
4663 
4664 	return (ENOENT);
4665 }
4666 
4667 static void
4668 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4669     const struct firmware *fw)
4670 {
4671 
4672 	if (fw != NULL)
4673 		firmware_put(fw, FIRMWARE_UNLOAD);
4674 	if (dcfg != NULL)
4675 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4676 }
4677 
4678 /*
4679  * Return values:
4680  * 0 means no firmware install attempted.
4681  * ERESTART means a firmware install was attempted and was successful.
4682  * +ve errno means a firmware install was attempted but failed.
4683  */
4684 static int
4685 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4686     const struct fw_h *drv_fw, const char *reason, int *already)
4687 {
4688 	const struct firmware *cfg, *fw;
4689 	const uint32_t c = be32toh(card_fw->fw_ver);
4690 	uint32_t d, k;
4691 	int rc, fw_install;
4692 	struct fw_h bundled_fw;
4693 	bool load_attempted;
4694 
4695 	cfg = fw = NULL;
4696 	load_attempted = false;
4697 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4698 
4699 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4700 	if (t4_fw_install < 0) {
4701 		rc = load_fw_module(sc, &cfg, &fw);
4702 		if (rc != 0 || fw == NULL) {
4703 			device_printf(sc->dev,
4704 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4705 			    " will use compiled-in firmware version for"
4706 			    "hw.cxgbe.fw_install checks.\n",
4707 			    rc, cfg, fw);
4708 		} else {
4709 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4710 		}
4711 		load_attempted = true;
4712 	}
4713 	d = be32toh(bundled_fw.fw_ver);
4714 
4715 	if (reason != NULL)
4716 		goto install;
4717 
4718 	if ((sc->flags & FW_OK) == 0) {
4719 
4720 		if (c == 0xffffffff) {
4721 			reason = "missing";
4722 			goto install;
4723 		}
4724 
4725 		rc = 0;
4726 		goto done;
4727 	}
4728 
4729 	if (!fw_compatible(card_fw, &bundled_fw)) {
4730 		reason = "incompatible or unusable";
4731 		goto install;
4732 	}
4733 
4734 	if (d > c) {
4735 		reason = "older than the version bundled with this driver";
4736 		goto install;
4737 	}
4738 
4739 	if (fw_install == 2 && d != c) {
4740 		reason = "different than the version bundled with this driver";
4741 		goto install;
4742 	}
4743 
4744 	/* No reason to do anything to the firmware already on the card. */
4745 	rc = 0;
4746 	goto done;
4747 
4748 install:
4749 	rc = 0;
4750 	if ((*already)++)
4751 		goto done;
4752 
4753 	if (fw_install == 0) {
4754 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4755 		    "but the driver is prohibited from installing a firmware "
4756 		    "on the card.\n",
4757 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4758 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4759 
4760 		goto done;
4761 	}
4762 
4763 	/*
4764 	 * We'll attempt to install a firmware.  Load the module first (if it
4765 	 * hasn't been loaded already).
4766 	 */
4767 	if (!load_attempted) {
4768 		rc = load_fw_module(sc, &cfg, &fw);
4769 		if (rc != 0 || fw == NULL) {
4770 			device_printf(sc->dev,
4771 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4772 			    rc, cfg, fw);
4773 			/* carry on */
4774 		}
4775 	}
4776 	if (fw == NULL) {
4777 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4778 		    "but the driver cannot take corrective action because it "
4779 		    "is unable to load the firmware module.\n",
4780 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4781 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4782 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4783 		goto done;
4784 	}
4785 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4786 	if (k != d) {
4787 		MPASS(t4_fw_install > 0);
4788 		device_printf(sc->dev,
4789 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4790 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4791 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4792 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4793 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4794 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4795 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4796 		goto done;
4797 	}
4798 
4799 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4800 	    "installing firmware %u.%u.%u.%u on card.\n",
4801 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4802 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4803 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4804 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4805 
4806 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4807 	if (rc != 0) {
4808 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4809 	} else {
4810 		/* Installed successfully, update the cached header too. */
4811 		rc = ERESTART;
4812 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4813 	}
4814 done:
4815 	unload_fw_module(sc, cfg, fw);
4816 
4817 	return (rc);
4818 }
4819 
4820 /*
4821  * Establish contact with the firmware and attempt to become the master driver.
4822  *
4823  * A firmware will be installed to the card if needed (if the driver is allowed
4824  * to do so).
4825  */
4826 static int
4827 contact_firmware(struct adapter *sc)
4828 {
4829 	int rc, already = 0;
4830 	enum dev_state state;
4831 	struct fw_info *fw_info;
4832 	struct fw_hdr *card_fw;		/* fw on the card */
4833 	const struct fw_h *drv_fw;
4834 
4835 	fw_info = find_fw_info(chip_id(sc));
4836 	if (fw_info == NULL) {
4837 		device_printf(sc->dev,
4838 		    "unable to look up firmware information for chip %d.\n",
4839 		    chip_id(sc));
4840 		return (EINVAL);
4841 	}
4842 	drv_fw = &fw_info->fw_h;
4843 
4844 	/* Read the header of the firmware on the card */
4845 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4846 restart:
4847 	rc = -t4_get_fw_hdr(sc, card_fw);
4848 	if (rc != 0) {
4849 		device_printf(sc->dev,
4850 		    "unable to read firmware header from card's flash: %d\n",
4851 		    rc);
4852 		goto done;
4853 	}
4854 
4855 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4856 	    &already);
4857 	if (rc == ERESTART)
4858 		goto restart;
4859 	if (rc != 0)
4860 		goto done;
4861 
4862 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4863 	if (rc < 0 || state == DEV_STATE_ERR) {
4864 		rc = -rc;
4865 		device_printf(sc->dev,
4866 		    "failed to connect to the firmware: %d, %d.  "
4867 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4868 #if 0
4869 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4870 		    "not responding properly to HELLO", &already) == ERESTART)
4871 			goto restart;
4872 #endif
4873 		goto done;
4874 	}
4875 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4876 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4877 
4878 	if (rc == sc->pf) {
4879 		sc->flags |= MASTER_PF;
4880 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4881 		    NULL, &already);
4882 		if (rc == ERESTART)
4883 			rc = 0;
4884 		else if (rc != 0)
4885 			goto done;
4886 	} else if (state == DEV_STATE_UNINIT) {
4887 		/*
4888 		 * We didn't get to be the master so we definitely won't be
4889 		 * configuring the chip.  It's a bug if someone else hasn't
4890 		 * configured it already.
4891 		 */
4892 		device_printf(sc->dev, "couldn't be master(%d), "
4893 		    "device not already initialized either(%d).  "
4894 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4895 		rc = EPROTO;
4896 		goto done;
4897 	} else {
4898 		/*
4899 		 * Some other PF is the master and has configured the chip.
4900 		 * This is allowed but untested.
4901 		 */
4902 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4903 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4904 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4905 		sc->cfcsum = 0;
4906 		rc = 0;
4907 	}
4908 done:
4909 	if (rc != 0 && sc->flags & FW_OK) {
4910 		t4_fw_bye(sc, sc->mbox);
4911 		sc->flags &= ~FW_OK;
4912 	}
4913 	free(card_fw, M_CXGBE);
4914 	return (rc);
4915 }
4916 
4917 static int
4918 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4919     uint32_t mtype, uint32_t moff)
4920 {
4921 	struct fw_info *fw_info;
4922 	const struct firmware *dcfg, *rcfg = NULL;
4923 	const uint32_t *cfdata;
4924 	uint32_t cflen, addr;
4925 	int rc;
4926 
4927 	load_fw_module(sc, &dcfg, NULL);
4928 
4929 	/* Card specific interpretation of "default". */
4930 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4931 		if (pci_get_device(sc->dev) == 0x440a)
4932 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4933 		if (is_fpga(sc))
4934 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4935 	}
4936 
4937 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4938 		if (dcfg == NULL) {
4939 			device_printf(sc->dev,
4940 			    "KLD with default config is not available.\n");
4941 			rc = ENOENT;
4942 			goto done;
4943 		}
4944 		cfdata = dcfg->data;
4945 		cflen = dcfg->datasize & ~3;
4946 	} else {
4947 		char s[32];
4948 
4949 		fw_info = find_fw_info(chip_id(sc));
4950 		if (fw_info == NULL) {
4951 			device_printf(sc->dev,
4952 			    "unable to look up firmware information for chip %d.\n",
4953 			    chip_id(sc));
4954 			rc = EINVAL;
4955 			goto done;
4956 		}
4957 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4958 
4959 		rcfg = firmware_get(s);
4960 		if (rcfg == NULL) {
4961 			device_printf(sc->dev,
4962 			    "unable to load module \"%s\" for configuration "
4963 			    "profile \"%s\".\n", s, cfg_file);
4964 			rc = ENOENT;
4965 			goto done;
4966 		}
4967 		cfdata = rcfg->data;
4968 		cflen = rcfg->datasize & ~3;
4969 	}
4970 
4971 	if (cflen > FLASH_CFG_MAX_SIZE) {
4972 		device_printf(sc->dev,
4973 		    "config file too long (%d, max allowed is %d).\n",
4974 		    cflen, FLASH_CFG_MAX_SIZE);
4975 		rc = EINVAL;
4976 		goto done;
4977 	}
4978 
4979 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4980 	if (rc != 0) {
4981 		device_printf(sc->dev,
4982 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4983 		    __func__, mtype, moff, cflen, rc);
4984 		rc = EINVAL;
4985 		goto done;
4986 	}
4987 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4988 done:
4989 	if (rcfg != NULL)
4990 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4991 	unload_fw_module(sc, dcfg, NULL);
4992 	return (rc);
4993 }
4994 
4995 struct caps_allowed {
4996 	uint16_t nbmcaps;
4997 	uint16_t linkcaps;
4998 	uint16_t switchcaps;
4999 	uint16_t niccaps;
5000 	uint16_t toecaps;
5001 	uint16_t rdmacaps;
5002 	uint16_t cryptocaps;
5003 	uint16_t iscsicaps;
5004 	uint16_t fcoecaps;
5005 };
5006 
5007 #define FW_PARAM_DEV(param) \
5008 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5009 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5010 #define FW_PARAM_PFVF(param) \
5011 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5012 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5013 
5014 /*
5015  * Provide a configuration profile to the firmware and have it initialize the
5016  * chip accordingly.  This may involve uploading a configuration file to the
5017  * card.
5018  */
5019 static int
5020 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5021     const struct caps_allowed *caps_allowed)
5022 {
5023 	int rc;
5024 	struct fw_caps_config_cmd caps;
5025 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
5026 
5027 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5028 	if (rc != 0) {
5029 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5030 		return (rc);
5031 	}
5032 
5033 	bzero(&caps, sizeof(caps));
5034 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5035 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5036 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5037 		mtype = 0;
5038 		moff = 0;
5039 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5040 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5041 		mtype = FW_MEMTYPE_FLASH;
5042 		moff = t4_flash_cfg_addr(sc);
5043 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5044 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5045 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5046 		    FW_LEN16(caps));
5047 	} else {
5048 		/*
5049 		 * Ask the firmware where it wants us to upload the config file.
5050 		 */
5051 		param = FW_PARAM_DEV(CF);
5052 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5053 		if (rc != 0) {
5054 			/* No support for config file?  Shouldn't happen. */
5055 			device_printf(sc->dev,
5056 			    "failed to query config file location: %d.\n", rc);
5057 			goto done;
5058 		}
5059 		mtype = G_FW_PARAMS_PARAM_Y(val);
5060 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5061 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5062 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5063 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5064 		    FW_LEN16(caps));
5065 
5066 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5067 		if (rc != 0) {
5068 			device_printf(sc->dev,
5069 			    "failed to upload config file to card: %d.\n", rc);
5070 			goto done;
5071 		}
5072 	}
5073 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5074 	if (rc != 0) {
5075 		device_printf(sc->dev, "failed to pre-process config file: %d "
5076 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5077 		goto done;
5078 	}
5079 
5080 	finicsum = be32toh(caps.finicsum);
5081 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5082 	if (finicsum != cfcsum) {
5083 		device_printf(sc->dev,
5084 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5085 		    finicsum, cfcsum);
5086 	}
5087 	sc->cfcsum = cfcsum;
5088 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5089 
5090 	/*
5091 	 * Let the firmware know what features will (not) be used so it can tune
5092 	 * things accordingly.
5093 	 */
5094 #define LIMIT_CAPS(x) do { \
5095 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5096 } while (0)
5097 	LIMIT_CAPS(nbm);
5098 	LIMIT_CAPS(link);
5099 	LIMIT_CAPS(switch);
5100 	LIMIT_CAPS(nic);
5101 	LIMIT_CAPS(toe);
5102 	LIMIT_CAPS(rdma);
5103 	LIMIT_CAPS(crypto);
5104 	LIMIT_CAPS(iscsi);
5105 	LIMIT_CAPS(fcoe);
5106 #undef LIMIT_CAPS
5107 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5108 		/*
5109 		 * TOE and hashfilters are mutually exclusive.  It is a config
5110 		 * file or firmware bug if both are reported as available.  Try
5111 		 * to cope with the situation in non-debug builds by disabling
5112 		 * TOE.
5113 		 */
5114 		MPASS(caps.toecaps == 0);
5115 
5116 		caps.toecaps = 0;
5117 		caps.rdmacaps = 0;
5118 		caps.iscsicaps = 0;
5119 	}
5120 
5121 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5122 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5123 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5124 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5125 	if (rc != 0) {
5126 		device_printf(sc->dev,
5127 		    "failed to process config file: %d.\n", rc);
5128 		goto done;
5129 	}
5130 
5131 	t4_tweak_chip_settings(sc);
5132 	set_params__pre_init(sc);
5133 
5134 	/* get basic stuff going */
5135 	rc = -t4_fw_initialize(sc, sc->mbox);
5136 	if (rc != 0) {
5137 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5138 		goto done;
5139 	}
5140 done:
5141 	return (rc);
5142 }
5143 
5144 /*
5145  * Partition chip resources for use between various PFs, VFs, etc.
5146  */
5147 static int
5148 partition_resources(struct adapter *sc)
5149 {
5150 	char cfg_file[sizeof(t4_cfg_file)];
5151 	struct caps_allowed caps_allowed;
5152 	int rc;
5153 	bool fallback;
5154 
5155 	/* Only the master driver gets to configure the chip resources. */
5156 	MPASS(sc->flags & MASTER_PF);
5157 
5158 #define COPY_CAPS(x) do { \
5159 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5160 } while (0)
5161 	bzero(&caps_allowed, sizeof(caps_allowed));
5162 	COPY_CAPS(nbm);
5163 	COPY_CAPS(link);
5164 	COPY_CAPS(switch);
5165 	COPY_CAPS(nic);
5166 	COPY_CAPS(toe);
5167 	COPY_CAPS(rdma);
5168 	COPY_CAPS(crypto);
5169 	COPY_CAPS(iscsi);
5170 	COPY_CAPS(fcoe);
5171 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5172 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5173 retry:
5174 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5175 	if (rc != 0 && fallback) {
5176 		dump_devlog(sc);
5177 		device_printf(sc->dev,
5178 		    "failed (%d) to configure card with \"%s\" profile, "
5179 		    "will fall back to a basic configuration and retry.\n",
5180 		    rc, cfg_file);
5181 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5182 		bzero(&caps_allowed, sizeof(caps_allowed));
5183 		COPY_CAPS(switch);
5184 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5185 		fallback = false;
5186 		goto retry;
5187 	}
5188 #undef COPY_CAPS
5189 	return (rc);
5190 }
5191 
5192 /*
5193  * Retrieve parameters that are needed (or nice to have) very early.
5194  */
5195 static int
5196 get_params__pre_init(struct adapter *sc)
5197 {
5198 	int rc;
5199 	uint32_t param[2], val[2];
5200 
5201 	t4_get_version_info(sc);
5202 
5203 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5204 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5205 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5206 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5207 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5208 
5209 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5210 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5211 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5212 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5213 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5214 
5215 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5216 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5217 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5218 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5219 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5220 
5221 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5222 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5223 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5224 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5225 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5226 
5227 	param[0] = FW_PARAM_DEV(PORTVEC);
5228 	param[1] = FW_PARAM_DEV(CCLK);
5229 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5230 	if (rc != 0) {
5231 		device_printf(sc->dev,
5232 		    "failed to query parameters (pre_init): %d.\n", rc);
5233 		return (rc);
5234 	}
5235 
5236 	sc->params.portvec = val[0];
5237 	sc->params.nports = bitcount32(val[0]);
5238 	sc->params.vpd.cclk = val[1];
5239 
5240 	/* Read device log parameters. */
5241 	rc = -t4_init_devlog_params(sc, 1);
5242 	if (rc == 0)
5243 		fixup_devlog_params(sc);
5244 	else {
5245 		device_printf(sc->dev,
5246 		    "failed to get devlog parameters: %d.\n", rc);
5247 		rc = 0;	/* devlog isn't critical for device operation */
5248 	}
5249 
5250 	return (rc);
5251 }
5252 
5253 /*
5254  * Any params that need to be set before FW_INITIALIZE.
5255  */
5256 static int
5257 set_params__pre_init(struct adapter *sc)
5258 {
5259 	int rc = 0;
5260 	uint32_t param, val;
5261 
5262 	if (chip_id(sc) >= CHELSIO_T6) {
5263 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5264 		val = 1;
5265 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5266 		/* firmwares < 1.20.1.0 do not have this param. */
5267 		if (rc == FW_EINVAL &&
5268 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5269 			rc = 0;
5270 		}
5271 		if (rc != 0) {
5272 			device_printf(sc->dev,
5273 			    "failed to enable high priority filters :%d.\n",
5274 			    rc);
5275 		}
5276 
5277 		param = FW_PARAM_DEV(PPOD_EDRAM);
5278 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5279 		if (rc == 0 && val == 1) {
5280 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5281 			    &val);
5282 			if (rc != 0) {
5283 				device_printf(sc->dev,
5284 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5285 			}
5286 		}
5287 	}
5288 
5289 	/* Enable opaque VIIDs with firmwares that support it. */
5290 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5291 	val = 1;
5292 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5293 	if (rc == 0 && val == 1)
5294 		sc->params.viid_smt_extn_support = true;
5295 	else
5296 		sc->params.viid_smt_extn_support = false;
5297 
5298 	return (rc);
5299 }
5300 
5301 /*
5302  * Retrieve various parameters that are of interest to the driver.  The device
5303  * has been initialized by the firmware at this point.
5304  */
5305 static int
5306 get_params__post_init(struct adapter *sc)
5307 {
5308 	int rc;
5309 	uint32_t param[7], val[7];
5310 	struct fw_caps_config_cmd caps;
5311 
5312 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5313 	param[1] = FW_PARAM_PFVF(EQ_START);
5314 	param[2] = FW_PARAM_PFVF(FILTER_START);
5315 	param[3] = FW_PARAM_PFVF(FILTER_END);
5316 	param[4] = FW_PARAM_PFVF(L2T_START);
5317 	param[5] = FW_PARAM_PFVF(L2T_END);
5318 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5319 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5320 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5321 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5322 	if (rc != 0) {
5323 		device_printf(sc->dev,
5324 		    "failed to query parameters (post_init): %d.\n", rc);
5325 		return (rc);
5326 	}
5327 
5328 	sc->sge.iq_start = val[0];
5329 	sc->sge.eq_start = val[1];
5330 	if ((int)val[3] > (int)val[2]) {
5331 		sc->tids.ftid_base = val[2];
5332 		sc->tids.ftid_end = val[3];
5333 		sc->tids.nftids = val[3] - val[2] + 1;
5334 	}
5335 	sc->vres.l2t.start = val[4];
5336 	sc->vres.l2t.size = val[5] - val[4] + 1;
5337 	/* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5338 	if (sc->vres.l2t.size > 0)
5339 		MPASS(fls(val[5]) <= S_SYNC_WR);
5340 	sc->params.core_vdd = val[6];
5341 
5342 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5343 	param[1] = FW_PARAM_PFVF(EQ_END);
5344 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5345 	if (rc != 0) {
5346 		device_printf(sc->dev,
5347 		    "failed to query parameters (post_init2): %d.\n", rc);
5348 		return (rc);
5349 	}
5350 	MPASS((int)val[0] >= sc->sge.iq_start);
5351 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5352 	MPASS((int)val[1] >= sc->sge.eq_start);
5353 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5354 
5355 	if (chip_id(sc) >= CHELSIO_T6) {
5356 
5357 		sc->tids.tid_base = t4_read_reg(sc,
5358 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5359 
5360 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5361 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5362 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5363 		if (rc != 0) {
5364 			device_printf(sc->dev,
5365 			   "failed to query hpfilter parameters: %d.\n", rc);
5366 			return (rc);
5367 		}
5368 		if ((int)val[1] > (int)val[0]) {
5369 			sc->tids.hpftid_base = val[0];
5370 			sc->tids.hpftid_end = val[1];
5371 			sc->tids.nhpftids = val[1] - val[0] + 1;
5372 
5373 			/*
5374 			 * These should go off if the layout changes and the
5375 			 * driver needs to catch up.
5376 			 */
5377 			MPASS(sc->tids.hpftid_base == 0);
5378 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5379 		}
5380 
5381 		param[0] = FW_PARAM_PFVF(RAWF_START);
5382 		param[1] = FW_PARAM_PFVF(RAWF_END);
5383 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5384 		if (rc != 0) {
5385 			device_printf(sc->dev,
5386 			   "failed to query rawf parameters: %d.\n", rc);
5387 			return (rc);
5388 		}
5389 		if ((int)val[1] > (int)val[0]) {
5390 			sc->rawf_base = val[0];
5391 			sc->nrawf = val[1] - val[0] + 1;
5392 		}
5393 	}
5394 
5395 	/*
5396 	 * The parameters that follow may not be available on all firmwares.  We
5397 	 * query them individually rather than in a compound query because old
5398 	 * firmwares fail the entire query if an unknown parameter is queried.
5399 	 */
5400 
5401 	/*
5402 	 * MPS buffer group configuration.
5403 	 */
5404 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5405 	val[0] = 0;
5406 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5407 	if (rc == 0)
5408 		sc->params.mps_bg_map = val[0];
5409 	else
5410 		sc->params.mps_bg_map = UINT32_MAX;	/* Not a legal value. */
5411 
5412 	param[0] = FW_PARAM_DEV(TPCHMAP);
5413 	val[0] = 0;
5414 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5415 	if (rc == 0)
5416 		sc->params.tp_ch_map = val[0];
5417 	else
5418 		sc->params.tp_ch_map = UINT32_MAX;	/* Not a legal value. */
5419 
5420 	/*
5421 	 * Determine whether the firmware supports the filter2 work request.
5422 	 */
5423 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5424 	val[0] = 0;
5425 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5426 	if (rc == 0)
5427 		sc->params.filter2_wr_support = val[0] != 0;
5428 	else
5429 		sc->params.filter2_wr_support = 0;
5430 
5431 	/*
5432 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5433 	 */
5434 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5435 	val[0] = 0;
5436 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5437 	if (rc == 0)
5438 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5439 	else
5440 		sc->params.ulptx_memwrite_dsgl = false;
5441 
5442 	/* FW_RI_FR_NSMR_TPTE_WR support */
5443 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5444 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5445 	if (rc == 0)
5446 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5447 	else
5448 		sc->params.fr_nsmr_tpte_wr_support = false;
5449 
5450 	/* Support for 512 SGL entries per FR MR. */
5451 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5452 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5453 	if (rc == 0)
5454 		sc->params.dev_512sgl_mr = val[0] != 0;
5455 	else
5456 		sc->params.dev_512sgl_mr = false;
5457 
5458 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5459 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5460 	if (rc == 0)
5461 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5462 	else
5463 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5464 
5465 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5466 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5467 	if (rc == 0) {
5468 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5469 		sc->params.nsched_cls = val[0];
5470 	} else
5471 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5472 
5473 	/* get capabilites */
5474 	bzero(&caps, sizeof(caps));
5475 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5476 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5477 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5478 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5479 	if (rc != 0) {
5480 		device_printf(sc->dev,
5481 		    "failed to get card capabilities: %d.\n", rc);
5482 		return (rc);
5483 	}
5484 
5485 #define READ_CAPS(x) do { \
5486 	sc->x = htobe16(caps.x); \
5487 } while (0)
5488 	READ_CAPS(nbmcaps);
5489 	READ_CAPS(linkcaps);
5490 	READ_CAPS(switchcaps);
5491 	READ_CAPS(niccaps);
5492 	READ_CAPS(toecaps);
5493 	READ_CAPS(rdmacaps);
5494 	READ_CAPS(cryptocaps);
5495 	READ_CAPS(iscsicaps);
5496 	READ_CAPS(fcoecaps);
5497 
5498 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5499 		MPASS(chip_id(sc) > CHELSIO_T4);
5500 		MPASS(sc->toecaps == 0);
5501 		sc->toecaps = 0;
5502 
5503 		param[0] = FW_PARAM_DEV(NTID);
5504 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5505 		if (rc != 0) {
5506 			device_printf(sc->dev,
5507 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5508 			return (rc);
5509 		}
5510 		sc->tids.ntids = val[0];
5511 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5512 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5513 			sc->tids.ntids -= sc->tids.nhpftids;
5514 		}
5515 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5516 		sc->params.hash_filter = 1;
5517 	}
5518 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5519 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5520 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5521 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5522 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5523 		if (rc != 0) {
5524 			device_printf(sc->dev,
5525 			    "failed to query NIC parameters: %d.\n", rc);
5526 			return (rc);
5527 		}
5528 		if ((int)val[1] > (int)val[0]) {
5529 			sc->tids.etid_base = val[0];
5530 			sc->tids.etid_end = val[1];
5531 			sc->tids.netids = val[1] - val[0] + 1;
5532 			sc->params.eo_wr_cred = val[2];
5533 			sc->params.ethoffload = 1;
5534 		}
5535 	}
5536 	if (sc->toecaps) {
5537 		/* query offload-related parameters */
5538 		param[0] = FW_PARAM_DEV(NTID);
5539 		param[1] = FW_PARAM_PFVF(SERVER_START);
5540 		param[2] = FW_PARAM_PFVF(SERVER_END);
5541 		param[3] = FW_PARAM_PFVF(TDDP_START);
5542 		param[4] = FW_PARAM_PFVF(TDDP_END);
5543 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5544 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5545 		if (rc != 0) {
5546 			device_printf(sc->dev,
5547 			    "failed to query TOE parameters: %d.\n", rc);
5548 			return (rc);
5549 		}
5550 		sc->tids.ntids = val[0];
5551 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5552 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5553 			sc->tids.ntids -= sc->tids.nhpftids;
5554 		}
5555 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5556 		if ((int)val[2] > (int)val[1]) {
5557 			sc->tids.stid_base = val[1];
5558 			sc->tids.nstids = val[2] - val[1] + 1;
5559 		}
5560 		sc->vres.ddp.start = val[3];
5561 		sc->vres.ddp.size = val[4] - val[3] + 1;
5562 		sc->params.ofldq_wr_cred = val[5];
5563 		sc->params.offload = 1;
5564 	} else {
5565 		/*
5566 		 * The firmware attempts memfree TOE configuration for -SO cards
5567 		 * and will report toecaps=0 if it runs out of resources (this
5568 		 * depends on the config file).  It may not report 0 for other
5569 		 * capabilities dependent on the TOE in this case.  Set them to
5570 		 * 0 here so that the driver doesn't bother tracking resources
5571 		 * that will never be used.
5572 		 */
5573 		sc->iscsicaps = 0;
5574 		sc->rdmacaps = 0;
5575 	}
5576 	if (sc->rdmacaps) {
5577 		param[0] = FW_PARAM_PFVF(STAG_START);
5578 		param[1] = FW_PARAM_PFVF(STAG_END);
5579 		param[2] = FW_PARAM_PFVF(RQ_START);
5580 		param[3] = FW_PARAM_PFVF(RQ_END);
5581 		param[4] = FW_PARAM_PFVF(PBL_START);
5582 		param[5] = FW_PARAM_PFVF(PBL_END);
5583 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5584 		if (rc != 0) {
5585 			device_printf(sc->dev,
5586 			    "failed to query RDMA parameters(1): %d.\n", rc);
5587 			return (rc);
5588 		}
5589 		sc->vres.stag.start = val[0];
5590 		sc->vres.stag.size = val[1] - val[0] + 1;
5591 		sc->vres.rq.start = val[2];
5592 		sc->vres.rq.size = val[3] - val[2] + 1;
5593 		sc->vres.pbl.start = val[4];
5594 		sc->vres.pbl.size = val[5] - val[4] + 1;
5595 
5596 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5597 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5598 		param[2] = FW_PARAM_PFVF(CQ_START);
5599 		param[3] = FW_PARAM_PFVF(CQ_END);
5600 		param[4] = FW_PARAM_PFVF(OCQ_START);
5601 		param[5] = FW_PARAM_PFVF(OCQ_END);
5602 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5603 		if (rc != 0) {
5604 			device_printf(sc->dev,
5605 			    "failed to query RDMA parameters(2): %d.\n", rc);
5606 			return (rc);
5607 		}
5608 		sc->vres.qp.start = val[0];
5609 		sc->vres.qp.size = val[1] - val[0] + 1;
5610 		sc->vres.cq.start = val[2];
5611 		sc->vres.cq.size = val[3] - val[2] + 1;
5612 		sc->vres.ocq.start = val[4];
5613 		sc->vres.ocq.size = val[5] - val[4] + 1;
5614 
5615 		param[0] = FW_PARAM_PFVF(SRQ_START);
5616 		param[1] = FW_PARAM_PFVF(SRQ_END);
5617 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5618 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5619 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5620 		if (rc != 0) {
5621 			device_printf(sc->dev,
5622 			    "failed to query RDMA parameters(3): %d.\n", rc);
5623 			return (rc);
5624 		}
5625 		sc->vres.srq.start = val[0];
5626 		sc->vres.srq.size = val[1] - val[0] + 1;
5627 		sc->params.max_ordird_qp = val[2];
5628 		sc->params.max_ird_adapter = val[3];
5629 	}
5630 	if (sc->iscsicaps) {
5631 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5632 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5633 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5634 		if (rc != 0) {
5635 			device_printf(sc->dev,
5636 			    "failed to query iSCSI parameters: %d.\n", rc);
5637 			return (rc);
5638 		}
5639 		sc->vres.iscsi.start = val[0];
5640 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5641 	}
5642 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5643 		param[0] = FW_PARAM_PFVF(TLS_START);
5644 		param[1] = FW_PARAM_PFVF(TLS_END);
5645 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5646 		if (rc != 0) {
5647 			device_printf(sc->dev,
5648 			    "failed to query TLS parameters: %d.\n", rc);
5649 			return (rc);
5650 		}
5651 		sc->vres.key.start = val[0];
5652 		sc->vres.key.size = val[1] - val[0] + 1;
5653 	}
5654 
5655 	/*
5656 	 * We've got the params we wanted to query directly from the firmware.
5657 	 * Grab some others via other means.
5658 	 */
5659 	t4_init_sge_params(sc);
5660 	t4_init_tp_params(sc);
5661 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5662 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5663 
5664 	rc = t4_verify_chip_settings(sc);
5665 	if (rc != 0)
5666 		return (rc);
5667 	t4_init_rx_buf_info(sc);
5668 
5669 	return (rc);
5670 }
5671 
5672 #ifdef KERN_TLS
5673 static void
5674 ktls_tick(void *arg)
5675 {
5676 	struct adapter *sc;
5677 	uint32_t tstamp;
5678 
5679 	sc = arg;
5680 	tstamp = tcp_ts_getticks();
5681 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5682 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5683 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5684 }
5685 
5686 static int
5687 t6_config_kern_tls(struct adapter *sc, bool enable)
5688 {
5689 	int rc;
5690 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5691 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5692 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5693 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5694 
5695 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5696 	if (rc != 0) {
5697 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5698 		    enable ?  "enable" : "disable", rc);
5699 		return (rc);
5700 	}
5701 
5702 	if (enable) {
5703 		sc->flags |= KERN_TLS_ON;
5704 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5705 		    C_HARDCLOCK);
5706 	} else {
5707 		sc->flags &= ~KERN_TLS_ON;
5708 		callout_stop(&sc->ktls_tick);
5709 	}
5710 
5711 	return (rc);
5712 }
5713 #endif
5714 
5715 static int
5716 set_params__post_init(struct adapter *sc)
5717 {
5718 	uint32_t mask, param, val;
5719 #ifdef TCP_OFFLOAD
5720 	int i, v, shift;
5721 #endif
5722 
5723 	/* ask for encapsulated CPLs */
5724 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5725 	val = 1;
5726 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5727 
5728 	/* Enable 32b port caps if the firmware supports it. */
5729 	param = FW_PARAM_PFVF(PORT_CAPS32);
5730 	val = 1;
5731 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5732 		sc->params.port_caps32 = 1;
5733 
5734 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5735 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5736 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5737 	    V_MASKFILTER(val - 1));
5738 
5739 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5740 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5741 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5742 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5743 	val = 0;
5744 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5745 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5746 		    F_ATTACKFILTERENABLE);
5747 		val |= F_DROPERRORATTACK;
5748 	}
5749 	if (t4_drop_ip_fragments != 0) {
5750 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5751 		    F_FRAGMENTDROP);
5752 		val |= F_DROPERRORFRAG;
5753 	}
5754 	if (t4_drop_pkts_with_l2_errors != 0)
5755 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5756 	if (t4_drop_pkts_with_l3_errors != 0) {
5757 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5758 		    F_DROPERRORCSUMIP;
5759 	}
5760 	if (t4_drop_pkts_with_l4_errors != 0) {
5761 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5762 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5763 	}
5764 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5765 
5766 #ifdef TCP_OFFLOAD
5767 	/*
5768 	 * Override the TOE timers with user provided tunables.  This is not the
5769 	 * recommended way to change the timers (the firmware config file is) so
5770 	 * these tunables are not documented.
5771 	 *
5772 	 * All the timer tunables are in microseconds.
5773 	 */
5774 	if (t4_toe_keepalive_idle != 0) {
5775 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5776 		v &= M_KEEPALIVEIDLE;
5777 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5778 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5779 	}
5780 	if (t4_toe_keepalive_interval != 0) {
5781 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5782 		v &= M_KEEPALIVEINTVL;
5783 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5784 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5785 	}
5786 	if (t4_toe_keepalive_count != 0) {
5787 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5788 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5789 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5790 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5791 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5792 	}
5793 	if (t4_toe_rexmt_min != 0) {
5794 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5795 		v &= M_RXTMIN;
5796 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5797 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5798 	}
5799 	if (t4_toe_rexmt_max != 0) {
5800 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5801 		v &= M_RXTMAX;
5802 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5803 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5804 	}
5805 	if (t4_toe_rexmt_count != 0) {
5806 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5807 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5808 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5809 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5810 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5811 	}
5812 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5813 		if (t4_toe_rexmt_backoff[i] != -1) {
5814 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5815 			shift = (i & 3) << 3;
5816 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5817 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5818 		}
5819 	}
5820 #endif
5821 
5822 	/*
5823 	 * Limit TOE connections to 2 reassembly "islands".  This is
5824 	 * required to permit migrating TOE connections to either
5825 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5826 	 */
5827 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5828 	    V_PASSMODE(2));
5829 
5830 #ifdef KERN_TLS
5831 	if (is_ktls(sc)) {
5832 		sc->tlst.inline_keys = t4_tls_inline_keys;
5833 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5834 		if (t4_kern_tls != 0 && is_t6(sc))
5835 			t6_config_kern_tls(sc, true);
5836 	}
5837 #endif
5838 	return (0);
5839 }
5840 
5841 #undef FW_PARAM_PFVF
5842 #undef FW_PARAM_DEV
5843 
5844 static void
5845 t4_set_desc(struct adapter *sc)
5846 {
5847 	struct adapter_params *p = &sc->params;
5848 
5849 	device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5850 }
5851 
5852 static inline void
5853 ifmedia_add4(struct ifmedia *ifm, int m)
5854 {
5855 
5856 	ifmedia_add(ifm, m, 0, NULL);
5857 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5858 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5859 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5860 }
5861 
5862 /*
5863  * This is the selected media, which is not quite the same as the active media.
5864  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5865  * and active are not the same, and "media: Ethernet selected" otherwise.
5866  */
5867 static void
5868 set_current_media(struct port_info *pi)
5869 {
5870 	struct link_config *lc;
5871 	struct ifmedia *ifm;
5872 	int mword;
5873 	u_int speed;
5874 
5875 	PORT_LOCK_ASSERT_OWNED(pi);
5876 
5877 	/* Leave current media alone if it's already set to IFM_NONE. */
5878 	ifm = &pi->media;
5879 	if (ifm->ifm_cur != NULL &&
5880 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5881 		return;
5882 
5883 	lc = &pi->link_cfg;
5884 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5885 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5886 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5887 		return;
5888 	}
5889 	mword = IFM_ETHER | IFM_FDX;
5890 	if (lc->requested_fc & PAUSE_TX)
5891 		mword |= IFM_ETH_TXPAUSE;
5892 	if (lc->requested_fc & PAUSE_RX)
5893 		mword |= IFM_ETH_RXPAUSE;
5894 	if (lc->requested_speed == 0)
5895 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5896 	else
5897 		speed = lc->requested_speed;
5898 	mword |= port_mword(pi, speed_to_fwcap(speed));
5899 	ifmedia_set(ifm, mword);
5900 }
5901 
5902 /*
5903  * Returns true if the ifmedia list for the port cannot change.
5904  */
5905 static bool
5906 fixed_ifmedia(struct port_info *pi)
5907 {
5908 
5909 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5910 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5911 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5912 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5913 	    pi->port_type == FW_PORT_TYPE_KX ||
5914 	    pi->port_type == FW_PORT_TYPE_KR ||
5915 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5916 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5917 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5918 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5919 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5920 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5921 }
5922 
5923 static void
5924 build_medialist(struct port_info *pi)
5925 {
5926 	uint32_t ss, speed;
5927 	int unknown, mword, bit;
5928 	struct link_config *lc;
5929 	struct ifmedia *ifm;
5930 
5931 	PORT_LOCK_ASSERT_OWNED(pi);
5932 
5933 	if (pi->flags & FIXED_IFMEDIA)
5934 		return;
5935 
5936 	/*
5937 	 * Rebuild the ifmedia list.
5938 	 */
5939 	ifm = &pi->media;
5940 	ifmedia_removeall(ifm);
5941 	lc = &pi->link_cfg;
5942 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5943 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5944 		MPASS(ss != 0);
5945 no_media:
5946 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5947 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5948 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5949 		return;
5950 	}
5951 
5952 	unknown = 0;
5953 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5954 		speed = 1 << bit;
5955 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5956 		if (ss & speed) {
5957 			mword = port_mword(pi, speed);
5958 			if (mword == IFM_NONE) {
5959 				goto no_media;
5960 			} else if (mword == IFM_UNKNOWN)
5961 				unknown++;
5962 			else
5963 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5964 		}
5965 	}
5966 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5967 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5968 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5969 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5970 
5971 	set_current_media(pi);
5972 }
5973 
5974 /*
5975  * Initialize the requested fields in the link config based on driver tunables.
5976  */
5977 static void
5978 init_link_config(struct port_info *pi)
5979 {
5980 	struct link_config *lc = &pi->link_cfg;
5981 
5982 	PORT_LOCK_ASSERT_OWNED(pi);
5983 
5984 	lc->requested_caps = 0;
5985 	lc->requested_speed = 0;
5986 
5987 	if (t4_autoneg == 0)
5988 		lc->requested_aneg = AUTONEG_DISABLE;
5989 	else if (t4_autoneg == 1)
5990 		lc->requested_aneg = AUTONEG_ENABLE;
5991 	else
5992 		lc->requested_aneg = AUTONEG_AUTO;
5993 
5994 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5995 	    PAUSE_AUTONEG);
5996 
5997 	if (t4_fec & FEC_AUTO)
5998 		lc->requested_fec = FEC_AUTO;
5999 	else if (t4_fec == 0)
6000 		lc->requested_fec = FEC_NONE;
6001 	else {
6002 		/* -1 is handled by the FEC_AUTO block above and not here. */
6003 		lc->requested_fec = t4_fec &
6004 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6005 		if (lc->requested_fec == 0)
6006 			lc->requested_fec = FEC_AUTO;
6007 	}
6008 	if (t4_force_fec < 0)
6009 		lc->force_fec = -1;
6010 	else if (t4_force_fec > 0)
6011 		lc->force_fec = 1;
6012 	else
6013 		lc->force_fec = 0;
6014 }
6015 
6016 /*
6017  * Makes sure that all requested settings comply with what's supported by the
6018  * port.  Returns the number of settings that were invalid and had to be fixed.
6019  */
6020 static int
6021 fixup_link_config(struct port_info *pi)
6022 {
6023 	int n = 0;
6024 	struct link_config *lc = &pi->link_cfg;
6025 	uint32_t fwspeed;
6026 
6027 	PORT_LOCK_ASSERT_OWNED(pi);
6028 
6029 	/* Speed (when not autonegotiating) */
6030 	if (lc->requested_speed != 0) {
6031 		fwspeed = speed_to_fwcap(lc->requested_speed);
6032 		if ((fwspeed & lc->pcaps) == 0) {
6033 			n++;
6034 			lc->requested_speed = 0;
6035 		}
6036 	}
6037 
6038 	/* Link autonegotiation */
6039 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6040 	    lc->requested_aneg == AUTONEG_DISABLE ||
6041 	    lc->requested_aneg == AUTONEG_AUTO);
6042 	if (lc->requested_aneg == AUTONEG_ENABLE &&
6043 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6044 		n++;
6045 		lc->requested_aneg = AUTONEG_AUTO;
6046 	}
6047 
6048 	/* Flow control */
6049 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6050 	if (lc->requested_fc & PAUSE_TX &&
6051 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6052 		n++;
6053 		lc->requested_fc &= ~PAUSE_TX;
6054 	}
6055 	if (lc->requested_fc & PAUSE_RX &&
6056 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6057 		n++;
6058 		lc->requested_fc &= ~PAUSE_RX;
6059 	}
6060 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6061 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6062 		n++;
6063 		lc->requested_fc |= PAUSE_AUTONEG;
6064 	}
6065 
6066 	/* FEC */
6067 	if ((lc->requested_fec & FEC_RS &&
6068 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6069 	    (lc->requested_fec & FEC_BASER_RS &&
6070 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6071 		n++;
6072 		lc->requested_fec = FEC_AUTO;
6073 	}
6074 
6075 	return (n);
6076 }
6077 
6078 /*
6079  * Apply the requested L1 settings, which are expected to be valid, to the
6080  * hardware.
6081  */
6082 static int
6083 apply_link_config(struct port_info *pi)
6084 {
6085 	struct adapter *sc = pi->adapter;
6086 	struct link_config *lc = &pi->link_cfg;
6087 	int rc;
6088 
6089 #ifdef INVARIANTS
6090 	ASSERT_SYNCHRONIZED_OP(sc);
6091 	PORT_LOCK_ASSERT_OWNED(pi);
6092 
6093 	if (lc->requested_aneg == AUTONEG_ENABLE)
6094 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6095 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6096 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6097 	if (lc->requested_fc & PAUSE_TX)
6098 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6099 	if (lc->requested_fc & PAUSE_RX)
6100 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6101 	if (lc->requested_fec & FEC_RS)
6102 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6103 	if (lc->requested_fec & FEC_BASER_RS)
6104 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6105 #endif
6106 	if (!(sc->flags & IS_VF)) {
6107 		rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6108 		if (rc != 0) {
6109 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6110 			return (rc);
6111 		}
6112 	}
6113 
6114 	/*
6115 	 * An L1_CFG will almost always result in a link-change event if the
6116 	 * link is up, and the driver will refresh the actual fec/fc/etc. when
6117 	 * the notification is processed.  If the link is down then the actual
6118 	 * settings are meaningless.
6119 	 *
6120 	 * This takes care of the case where a change in the L1 settings may not
6121 	 * result in a notification.
6122 	 */
6123 	if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6124 		lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6125 
6126 	return (0);
6127 }
6128 
6129 #define FW_MAC_EXACT_CHUNK	7
6130 struct mcaddr_ctx {
6131 	if_t ifp;
6132 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6133 	uint64_t hash;
6134 	int i;
6135 	int del;
6136 	int rc;
6137 };
6138 
6139 static u_int
6140 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6141 {
6142 	struct mcaddr_ctx *ctx = arg;
6143 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6144 	struct port_info *pi = vi->pi;
6145 	struct adapter *sc = pi->adapter;
6146 
6147 	if (ctx->rc < 0)
6148 		return (0);
6149 
6150 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6151 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6152 	ctx->i++;
6153 
6154 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6155 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6156 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6157 		if (ctx->rc < 0) {
6158 			int j;
6159 
6160 			for (j = 0; j < ctx->i; j++) {
6161 				if_printf(ctx->ifp,
6162 				    "failed to add mc address"
6163 				    " %02x:%02x:%02x:"
6164 				    "%02x:%02x:%02x rc=%d\n",
6165 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6166 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6167 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6168 				    -ctx->rc);
6169 			}
6170 			return (0);
6171 		}
6172 		ctx->del = 0;
6173 		ctx->i = 0;
6174 	}
6175 
6176 	return (1);
6177 }
6178 
6179 /*
6180  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6181  * indicates which parameters should be programmed (the rest are left alone).
6182  */
6183 int
6184 update_mac_settings(if_t ifp, int flags)
6185 {
6186 	int rc = 0;
6187 	struct vi_info *vi = if_getsoftc(ifp);
6188 	struct port_info *pi = vi->pi;
6189 	struct adapter *sc = pi->adapter;
6190 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6191 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6192 
6193 	ASSERT_SYNCHRONIZED_OP(sc);
6194 	KASSERT(flags, ("%s: not told what to update.", __func__));
6195 
6196 	if (flags & XGMAC_MTU)
6197 		mtu = if_getmtu(ifp);
6198 
6199 	if (flags & XGMAC_PROMISC)
6200 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6201 
6202 	if (flags & XGMAC_ALLMULTI)
6203 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6204 
6205 	if (flags & XGMAC_VLANEX)
6206 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6207 
6208 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6209 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6210 		    allmulti, 1, vlanex, false);
6211 		if (rc) {
6212 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6213 			    rc);
6214 			return (rc);
6215 		}
6216 	}
6217 
6218 	if (flags & XGMAC_UCADDR) {
6219 		uint8_t ucaddr[ETHER_ADDR_LEN];
6220 
6221 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6222 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6223 		    ucaddr, true, &vi->smt_idx);
6224 		if (rc < 0) {
6225 			rc = -rc;
6226 			if_printf(ifp, "change_mac failed: %d\n", rc);
6227 			return (rc);
6228 		} else {
6229 			vi->xact_addr_filt = rc;
6230 			rc = 0;
6231 		}
6232 	}
6233 
6234 	if (flags & XGMAC_MCADDRS) {
6235 		struct epoch_tracker et;
6236 		struct mcaddr_ctx ctx;
6237 		int j;
6238 
6239 		ctx.ifp = ifp;
6240 		ctx.hash = 0;
6241 		ctx.i = 0;
6242 		ctx.del = 1;
6243 		ctx.rc = 0;
6244 		/*
6245 		 * Unlike other drivers, we accumulate list of pointers into
6246 		 * interface address lists and we need to keep it safe even
6247 		 * after if_foreach_llmaddr() returns, thus we must enter the
6248 		 * network epoch.
6249 		 */
6250 		NET_EPOCH_ENTER(et);
6251 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6252 		if (ctx.rc < 0) {
6253 			NET_EPOCH_EXIT(et);
6254 			rc = -ctx.rc;
6255 			return (rc);
6256 		}
6257 		if (ctx.i > 0) {
6258 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6259 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6260 			NET_EPOCH_EXIT(et);
6261 			if (rc < 0) {
6262 				rc = -rc;
6263 				for (j = 0; j < ctx.i; j++) {
6264 					if_printf(ifp,
6265 					    "failed to add mcast address"
6266 					    " %02x:%02x:%02x:"
6267 					    "%02x:%02x:%02x rc=%d\n",
6268 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6269 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6270 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6271 					    rc);
6272 				}
6273 				return (rc);
6274 			}
6275 			ctx.del = 0;
6276 		} else
6277 			NET_EPOCH_EXIT(et);
6278 
6279 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6280 		if (rc != 0)
6281 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6282 			    rc);
6283 		if (ctx.del == 0) {
6284 			/* We clobbered the VXLAN entry if there was one. */
6285 			pi->vxlan_tcam_entry = false;
6286 		}
6287 	}
6288 
6289 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6290 	    pi->vxlan_tcam_entry == false) {
6291 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6292 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6293 		    true);
6294 		if (rc < 0) {
6295 			rc = -rc;
6296 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6297 			    rc);
6298 		} else {
6299 			MPASS(rc == sc->rawf_base + pi->port_id);
6300 			rc = 0;
6301 			pi->vxlan_tcam_entry = true;
6302 		}
6303 	}
6304 
6305 	return (rc);
6306 }
6307 
6308 /*
6309  * {begin|end}_synchronized_op must be called from the same thread.
6310  */
6311 int
6312 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6313     char *wmesg)
6314 {
6315 	int rc, pri;
6316 
6317 #ifdef WITNESS
6318 	/* the caller thinks it's ok to sleep, but is it really? */
6319 	if (flags & SLEEP_OK)
6320 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6321 		    "begin_synchronized_op");
6322 #endif
6323 
6324 	if (INTR_OK)
6325 		pri = PCATCH;
6326 	else
6327 		pri = 0;
6328 
6329 	ADAPTER_LOCK(sc);
6330 	for (;;) {
6331 
6332 		if (vi && IS_DETACHING(vi)) {
6333 			rc = ENXIO;
6334 			goto done;
6335 		}
6336 
6337 		if (!IS_BUSY(sc)) {
6338 			rc = 0;
6339 			break;
6340 		}
6341 
6342 		if (!(flags & SLEEP_OK)) {
6343 			rc = EBUSY;
6344 			goto done;
6345 		}
6346 
6347 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6348 			rc = EINTR;
6349 			goto done;
6350 		}
6351 	}
6352 
6353 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6354 	SET_BUSY(sc);
6355 #ifdef INVARIANTS
6356 	sc->last_op = wmesg;
6357 	sc->last_op_thr = curthread;
6358 	sc->last_op_flags = flags;
6359 #endif
6360 
6361 done:
6362 	if (!(flags & HOLD_LOCK) || rc)
6363 		ADAPTER_UNLOCK(sc);
6364 
6365 	return (rc);
6366 }
6367 
6368 /*
6369  * Tell if_ioctl and if_init that the VI is going away.  This is
6370  * special variant of begin_synchronized_op and must be paired with a
6371  * call to end_vi_detach.
6372  */
6373 void
6374 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6375 {
6376 	ADAPTER_LOCK(sc);
6377 	SET_DETACHING(vi);
6378 	wakeup(&sc->flags);
6379 	while (IS_BUSY(sc))
6380 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6381 	SET_BUSY(sc);
6382 #ifdef INVARIANTS
6383 	sc->last_op = "t4detach";
6384 	sc->last_op_thr = curthread;
6385 	sc->last_op_flags = 0;
6386 #endif
6387 	ADAPTER_UNLOCK(sc);
6388 }
6389 
6390 void
6391 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6392 {
6393 	ADAPTER_LOCK(sc);
6394 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6395 	CLR_BUSY(sc);
6396 	CLR_DETACHING(vi);
6397 	wakeup(&sc->flags);
6398 	ADAPTER_UNLOCK(sc);
6399 }
6400 
6401 /*
6402  * {begin|end}_synchronized_op must be called from the same thread.
6403  */
6404 void
6405 end_synchronized_op(struct adapter *sc, int flags)
6406 {
6407 
6408 	if (flags & LOCK_HELD)
6409 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6410 	else
6411 		ADAPTER_LOCK(sc);
6412 
6413 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6414 	CLR_BUSY(sc);
6415 	wakeup(&sc->flags);
6416 	ADAPTER_UNLOCK(sc);
6417 }
6418 
6419 static int
6420 cxgbe_init_synchronized(struct vi_info *vi)
6421 {
6422 	struct port_info *pi = vi->pi;
6423 	struct adapter *sc = pi->adapter;
6424 	if_t ifp = vi->ifp;
6425 	int rc = 0, i;
6426 	struct sge_txq *txq;
6427 
6428 	ASSERT_SYNCHRONIZED_OP(sc);
6429 
6430 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6431 		return (0);	/* already running */
6432 
6433 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6434 		return (rc);	/* error message displayed already */
6435 
6436 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6437 		return (rc); /* error message displayed already */
6438 
6439 	rc = update_mac_settings(ifp, XGMAC_ALL);
6440 	if (rc)
6441 		goto done;	/* error message displayed already */
6442 
6443 	PORT_LOCK(pi);
6444 	if (pi->up_vis == 0) {
6445 		t4_update_port_info(pi);
6446 		fixup_link_config(pi);
6447 		build_medialist(pi);
6448 		apply_link_config(pi);
6449 	}
6450 
6451 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6452 	if (rc != 0) {
6453 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6454 		PORT_UNLOCK(pi);
6455 		goto done;
6456 	}
6457 
6458 	/*
6459 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6460 	 * if this changes.
6461 	 */
6462 
6463 	for_each_txq(vi, i, txq) {
6464 		TXQ_LOCK(txq);
6465 		txq->eq.flags |= EQ_ENABLED;
6466 		TXQ_UNLOCK(txq);
6467 	}
6468 
6469 	/*
6470 	 * The first iq of the first port to come up is used for tracing.
6471 	 */
6472 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6473 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6474 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6475 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6476 		    V_QUEUENUMBER(sc->traceq));
6477 		pi->flags |= HAS_TRACEQ;
6478 	}
6479 
6480 	/* all ok */
6481 	pi->up_vis++;
6482 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6483 	if (pi->link_cfg.link_ok)
6484 		t4_os_link_changed(pi);
6485 	PORT_UNLOCK(pi);
6486 
6487 	mtx_lock(&vi->tick_mtx);
6488 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6489 		callout_reset(&vi->tick, hz, vi_tick, vi);
6490 	else
6491 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6492 	mtx_unlock(&vi->tick_mtx);
6493 done:
6494 	if (rc != 0)
6495 		cxgbe_uninit_synchronized(vi);
6496 
6497 	return (rc);
6498 }
6499 
6500 /*
6501  * Idempotent.
6502  */
6503 static int
6504 cxgbe_uninit_synchronized(struct vi_info *vi)
6505 {
6506 	struct port_info *pi = vi->pi;
6507 	struct adapter *sc = pi->adapter;
6508 	if_t ifp = vi->ifp;
6509 	int rc, i;
6510 	struct sge_txq *txq;
6511 
6512 	ASSERT_SYNCHRONIZED_OP(sc);
6513 
6514 	if (!(vi->flags & VI_INIT_DONE)) {
6515 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6516 			KASSERT(0, ("uninited VI is running"));
6517 			if_printf(ifp, "uninited VI with running ifnet.  "
6518 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6519 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6520 			    if_getdrvflags(ifp));
6521 		}
6522 		return (0);
6523 	}
6524 
6525 	/*
6526 	 * Disable the VI so that all its data in either direction is discarded
6527 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6528 	 * tick) intact as the TP can deliver negative advice or data that it's
6529 	 * holding in its RAM (for an offloaded connection) even after the VI is
6530 	 * disabled.
6531 	 */
6532 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6533 	if (rc) {
6534 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6535 		return (rc);
6536 	}
6537 
6538 	for_each_txq(vi, i, txq) {
6539 		TXQ_LOCK(txq);
6540 		txq->eq.flags &= ~EQ_ENABLED;
6541 		TXQ_UNLOCK(txq);
6542 	}
6543 
6544 	mtx_lock(&vi->tick_mtx);
6545 	callout_stop(&vi->tick);
6546 	mtx_unlock(&vi->tick_mtx);
6547 
6548 	PORT_LOCK(pi);
6549 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6550 		PORT_UNLOCK(pi);
6551 		return (0);
6552 	}
6553 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6554 	pi->up_vis--;
6555 	if (pi->up_vis > 0) {
6556 		PORT_UNLOCK(pi);
6557 		return (0);
6558 	}
6559 
6560 	pi->link_cfg.link_ok = false;
6561 	pi->link_cfg.speed = 0;
6562 	pi->link_cfg.link_down_rc = 255;
6563 	t4_os_link_changed(pi);
6564 	PORT_UNLOCK(pi);
6565 
6566 	return (0);
6567 }
6568 
6569 /*
6570  * It is ok for this function to fail midway and return right away.  t4_detach
6571  * will walk the entire sc->irq list and clean up whatever is valid.
6572  */
6573 int
6574 t4_setup_intr_handlers(struct adapter *sc)
6575 {
6576 	int rc, rid, p, q, v;
6577 	char s[8];
6578 	struct irq *irq;
6579 	struct port_info *pi;
6580 	struct vi_info *vi;
6581 	struct sge *sge = &sc->sge;
6582 	struct sge_rxq *rxq;
6583 #ifdef TCP_OFFLOAD
6584 	struct sge_ofld_rxq *ofld_rxq;
6585 #endif
6586 #ifdef DEV_NETMAP
6587 	struct sge_nm_rxq *nm_rxq;
6588 #endif
6589 #ifdef RSS
6590 	int nbuckets = rss_getnumbuckets();
6591 #endif
6592 
6593 	/*
6594 	 * Setup interrupts.
6595 	 */
6596 	irq = &sc->irq[0];
6597 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6598 	if (forwarding_intr_to_fwq(sc))
6599 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6600 
6601 	/* Multiple interrupts. */
6602 	if (sc->flags & IS_VF)
6603 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6604 		    ("%s: too few intr.", __func__));
6605 	else
6606 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6607 		    ("%s: too few intr.", __func__));
6608 
6609 	/* The first one is always error intr on PFs */
6610 	if (!(sc->flags & IS_VF)) {
6611 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6612 		if (rc != 0)
6613 			return (rc);
6614 		irq++;
6615 		rid++;
6616 	}
6617 
6618 	/* The second one is always the firmware event queue (first on VFs) */
6619 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6620 	if (rc != 0)
6621 		return (rc);
6622 	irq++;
6623 	rid++;
6624 
6625 	for_each_port(sc, p) {
6626 		pi = sc->port[p];
6627 		for_each_vi(pi, v, vi) {
6628 			vi->first_intr = rid - 1;
6629 
6630 			if (vi->nnmrxq > 0) {
6631 				int n = max(vi->nrxq, vi->nnmrxq);
6632 
6633 				rxq = &sge->rxq[vi->first_rxq];
6634 #ifdef DEV_NETMAP
6635 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6636 #endif
6637 				for (q = 0; q < n; q++) {
6638 					snprintf(s, sizeof(s), "%x%c%x", p,
6639 					    'a' + v, q);
6640 					if (q < vi->nrxq)
6641 						irq->rxq = rxq++;
6642 #ifdef DEV_NETMAP
6643 					if (q < vi->nnmrxq)
6644 						irq->nm_rxq = nm_rxq++;
6645 
6646 					if (irq->nm_rxq != NULL &&
6647 					    irq->rxq == NULL) {
6648 						/* Netmap rx only */
6649 						rc = t4_alloc_irq(sc, irq, rid,
6650 						    t4_nm_intr, irq->nm_rxq, s);
6651 					}
6652 					if (irq->nm_rxq != NULL &&
6653 					    irq->rxq != NULL) {
6654 						/* NIC and Netmap rx */
6655 						rc = t4_alloc_irq(sc, irq, rid,
6656 						    t4_vi_intr, irq, s);
6657 					}
6658 #endif
6659 					if (irq->rxq != NULL &&
6660 					    irq->nm_rxq == NULL) {
6661 						/* NIC rx only */
6662 						rc = t4_alloc_irq(sc, irq, rid,
6663 						    t4_intr, irq->rxq, s);
6664 					}
6665 					if (rc != 0)
6666 						return (rc);
6667 #ifdef RSS
6668 					if (q < vi->nrxq) {
6669 						bus_bind_intr(sc->dev, irq->res,
6670 						    rss_getcpu(q % nbuckets));
6671 					}
6672 #endif
6673 					irq++;
6674 					rid++;
6675 					vi->nintr++;
6676 				}
6677 			} else {
6678 				for_each_rxq(vi, q, rxq) {
6679 					snprintf(s, sizeof(s), "%x%c%x", p,
6680 					    'a' + v, q);
6681 					rc = t4_alloc_irq(sc, irq, rid,
6682 					    t4_intr, rxq, s);
6683 					if (rc != 0)
6684 						return (rc);
6685 #ifdef RSS
6686 					bus_bind_intr(sc->dev, irq->res,
6687 					    rss_getcpu(q % nbuckets));
6688 #endif
6689 					irq++;
6690 					rid++;
6691 					vi->nintr++;
6692 				}
6693 			}
6694 #ifdef TCP_OFFLOAD
6695 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6696 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6697 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6698 				    ofld_rxq, s);
6699 				if (rc != 0)
6700 					return (rc);
6701 				irq++;
6702 				rid++;
6703 				vi->nintr++;
6704 			}
6705 #endif
6706 		}
6707 	}
6708 	MPASS(irq == &sc->irq[sc->intr_count]);
6709 
6710 	return (0);
6711 }
6712 
6713 static void
6714 write_global_rss_key(struct adapter *sc)
6715 {
6716 #ifdef RSS
6717 	int i;
6718 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6719 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6720 
6721 	CTASSERT(RSS_KEYSIZE == 40);
6722 
6723 	rss_getkey((void *)&raw_rss_key[0]);
6724 	for (i = 0; i < nitems(rss_key); i++) {
6725 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6726 	}
6727 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6728 #endif
6729 }
6730 
6731 /*
6732  * Idempotent.
6733  */
6734 static int
6735 adapter_full_init(struct adapter *sc)
6736 {
6737 	int rc, i;
6738 
6739 	ASSERT_SYNCHRONIZED_OP(sc);
6740 
6741 	/*
6742 	 * queues that belong to the adapter (not any particular port).
6743 	 */
6744 	rc = t4_setup_adapter_queues(sc);
6745 	if (rc != 0)
6746 		return (rc);
6747 
6748 	MPASS(sc->params.nports <= nitems(sc->tq));
6749 	for (i = 0; i < sc->params.nports; i++) {
6750 		if (sc->tq[i] != NULL)
6751 			continue;
6752 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6753 		    taskqueue_thread_enqueue, &sc->tq[i]);
6754 		if (sc->tq[i] == NULL) {
6755 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6756 			return (ENOMEM);
6757 		}
6758 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6759 		    device_get_nameunit(sc->dev), i);
6760 	}
6761 
6762 	if (!(sc->flags & IS_VF)) {
6763 		write_global_rss_key(sc);
6764 		t4_intr_enable(sc);
6765 	}
6766 	return (0);
6767 }
6768 
6769 int
6770 adapter_init(struct adapter *sc)
6771 {
6772 	int rc;
6773 
6774 	ASSERT_SYNCHRONIZED_OP(sc);
6775 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6776 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6777 	    ("%s: FULL_INIT_DONE already", __func__));
6778 
6779 	rc = adapter_full_init(sc);
6780 	if (rc != 0)
6781 		adapter_full_uninit(sc);
6782 	else
6783 		sc->flags |= FULL_INIT_DONE;
6784 
6785 	return (rc);
6786 }
6787 
6788 /*
6789  * Idempotent.
6790  */
6791 static void
6792 adapter_full_uninit(struct adapter *sc)
6793 {
6794 	int i;
6795 
6796 	t4_teardown_adapter_queues(sc);
6797 
6798 	for (i = 0; i < nitems(sc->tq); i++) {
6799 		if (sc->tq[i] == NULL)
6800 			continue;
6801 		taskqueue_free(sc->tq[i]);
6802 		sc->tq[i] = NULL;
6803 	}
6804 
6805 	sc->flags &= ~FULL_INIT_DONE;
6806 }
6807 
6808 #ifdef RSS
6809 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6810     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6811     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6812     RSS_HASHTYPE_RSS_UDP_IPV6)
6813 
6814 /* Translates kernel hash types to hardware. */
6815 static int
6816 hashconfig_to_hashen(int hashconfig)
6817 {
6818 	int hashen = 0;
6819 
6820 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6821 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6822 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6823 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6824 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6825 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6826 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6827 	}
6828 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6829 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6830 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6831 	}
6832 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6833 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6834 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6835 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6836 
6837 	return (hashen);
6838 }
6839 
6840 /* Translates hardware hash types to kernel. */
6841 static int
6842 hashen_to_hashconfig(int hashen)
6843 {
6844 	int hashconfig = 0;
6845 
6846 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6847 		/*
6848 		 * If UDP hashing was enabled it must have been enabled for
6849 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6850 		 * enabling any 4-tuple hash is nonsense configuration.
6851 		 */
6852 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6853 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6854 
6855 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6856 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6857 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6858 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6859 	}
6860 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6861 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6862 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6863 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6864 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6865 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6866 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6867 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6868 
6869 	return (hashconfig);
6870 }
6871 #endif
6872 
6873 /*
6874  * Idempotent.
6875  */
6876 static int
6877 vi_full_init(struct vi_info *vi)
6878 {
6879 	struct adapter *sc = vi->adapter;
6880 	struct sge_rxq *rxq;
6881 	int rc, i, j;
6882 #ifdef RSS
6883 	int nbuckets = rss_getnumbuckets();
6884 	int hashconfig = rss_gethashconfig();
6885 	int extra;
6886 #endif
6887 
6888 	ASSERT_SYNCHRONIZED_OP(sc);
6889 
6890 	/*
6891 	 * Allocate tx/rx/fl queues for this VI.
6892 	 */
6893 	rc = t4_setup_vi_queues(vi);
6894 	if (rc != 0)
6895 		return (rc);
6896 
6897 	/*
6898 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6899 	 */
6900 	if (vi->nrxq > vi->rss_size) {
6901 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6902 		    "some queues will never receive traffic.\n", vi->nrxq,
6903 		    vi->rss_size);
6904 	} else if (vi->rss_size % vi->nrxq) {
6905 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6906 		    "expect uneven traffic distribution.\n", vi->nrxq,
6907 		    vi->rss_size);
6908 	}
6909 #ifdef RSS
6910 	if (vi->nrxq != nbuckets) {
6911 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6912 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6913 	}
6914 #endif
6915 	if (vi->rss == NULL)
6916 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6917 		    M_ZERO | M_WAITOK);
6918 	for (i = 0; i < vi->rss_size;) {
6919 #ifdef RSS
6920 		j = rss_get_indirection_to_bucket(i);
6921 		j %= vi->nrxq;
6922 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6923 		vi->rss[i++] = rxq->iq.abs_id;
6924 #else
6925 		for_each_rxq(vi, j, rxq) {
6926 			vi->rss[i++] = rxq->iq.abs_id;
6927 			if (i == vi->rss_size)
6928 				break;
6929 		}
6930 #endif
6931 	}
6932 
6933 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6934 	    vi->rss, vi->rss_size);
6935 	if (rc != 0) {
6936 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6937 		return (rc);
6938 	}
6939 
6940 #ifdef RSS
6941 	vi->hashen = hashconfig_to_hashen(hashconfig);
6942 
6943 	/*
6944 	 * We may have had to enable some hashes even though the global config
6945 	 * wants them disabled.  This is a potential problem that must be
6946 	 * reported to the user.
6947 	 */
6948 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6949 
6950 	/*
6951 	 * If we consider only the supported hash types, then the enabled hashes
6952 	 * are a superset of the requested hashes.  In other words, there cannot
6953 	 * be any supported hash that was requested but not enabled, but there
6954 	 * can be hashes that were not requested but had to be enabled.
6955 	 */
6956 	extra &= SUPPORTED_RSS_HASHTYPES;
6957 	MPASS((extra & hashconfig) == 0);
6958 
6959 	if (extra) {
6960 		CH_ALERT(vi,
6961 		    "global RSS config (0x%x) cannot be accommodated.\n",
6962 		    hashconfig);
6963 	}
6964 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6965 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6966 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6967 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6968 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6969 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6970 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6971 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6972 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6973 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6974 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6975 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6976 #else
6977 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6978 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6979 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6980 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6981 #endif
6982 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6983 	    0, 0);
6984 	if (rc != 0) {
6985 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6986 		return (rc);
6987 	}
6988 
6989 	return (0);
6990 }
6991 
6992 int
6993 vi_init(struct vi_info *vi)
6994 {
6995 	int rc;
6996 
6997 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6998 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6999 	    ("%s: VI_INIT_DONE already", __func__));
7000 
7001 	rc = vi_full_init(vi);
7002 	if (rc != 0)
7003 		vi_full_uninit(vi);
7004 	else
7005 		vi->flags |= VI_INIT_DONE;
7006 
7007 	return (rc);
7008 }
7009 
7010 /*
7011  * Idempotent.
7012  */
7013 static void
7014 vi_full_uninit(struct vi_info *vi)
7015 {
7016 
7017 	if (vi->flags & VI_INIT_DONE) {
7018 		quiesce_vi(vi);
7019 		free(vi->rss, M_CXGBE);
7020 		free(vi->nm_rss, M_CXGBE);
7021 	}
7022 
7023 	t4_teardown_vi_queues(vi);
7024 	vi->flags &= ~VI_INIT_DONE;
7025 }
7026 
7027 static void
7028 quiesce_txq(struct sge_txq *txq)
7029 {
7030 	struct sge_eq *eq = &txq->eq;
7031 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7032 
7033 	MPASS(eq->flags & EQ_SW_ALLOCATED);
7034 	MPASS(!(eq->flags & EQ_ENABLED));
7035 
7036 	/* Wait for the mp_ring to empty. */
7037 	while (!mp_ring_is_idle(txq->r)) {
7038 		mp_ring_check_drainage(txq->r, 4096);
7039 		pause("rquiesce", 1);
7040 	}
7041 	MPASS(txq->txp.npkt == 0);
7042 
7043 	if (eq->flags & EQ_HW_ALLOCATED) {
7044 		/*
7045 		 * Hardware is alive and working normally.  Wait for it to
7046 		 * finish and then wait for the driver to catch up and reclaim
7047 		 * all descriptors.
7048 		 */
7049 		while (spg->cidx != htobe16(eq->pidx))
7050 			pause("equiesce", 1);
7051 		while (eq->cidx != eq->pidx)
7052 			pause("dquiesce", 1);
7053 	} else {
7054 		/*
7055 		 * Hardware is unavailable.  Discard all pending tx and reclaim
7056 		 * descriptors directly.
7057 		 */
7058 		TXQ_LOCK(txq);
7059 		while (eq->cidx != eq->pidx) {
7060 			struct mbuf *m, *nextpkt;
7061 			struct tx_sdesc *txsd;
7062 
7063 			txsd = &txq->sdesc[eq->cidx];
7064 			for (m = txsd->m; m != NULL; m = nextpkt) {
7065 				nextpkt = m->m_nextpkt;
7066 				m->m_nextpkt = NULL;
7067 				m_freem(m);
7068 			}
7069 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7070 		}
7071 		spg->pidx = spg->cidx = htobe16(eq->cidx);
7072 		TXQ_UNLOCK(txq);
7073 	}
7074 }
7075 
7076 static void
7077 quiesce_wrq(struct sge_wrq *wrq)
7078 {
7079 	struct wrqe *wr;
7080 
7081 	TXQ_LOCK(wrq);
7082 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7083 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7084 #ifdef INVARIANTS
7085 		wrq->nwr_pending--;
7086 		wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7087 #endif
7088 		free(wr, M_CXGBE);
7089 	}
7090 	MPASS(wrq->nwr_pending == 0);
7091 	MPASS(wrq->ndesc_needed == 0);
7092 	wrq->nwr_pending = 0;
7093 	wrq->ndesc_needed = 0;
7094 	TXQ_UNLOCK(wrq);
7095 }
7096 
7097 static void
7098 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7099 {
7100 	/* Synchronize with the interrupt handler */
7101 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7102 		pause("iqfree", 1);
7103 
7104 	if (fl != NULL) {
7105 		MPASS(iq->flags & IQ_HAS_FL);
7106 
7107 		mtx_lock(&sc->sfl_lock);
7108 		FL_LOCK(fl);
7109 		fl->flags |= FL_DOOMED;
7110 		FL_UNLOCK(fl);
7111 		callout_stop(&sc->sfl_callout);
7112 		mtx_unlock(&sc->sfl_lock);
7113 
7114 		KASSERT((fl->flags & FL_STARVING) == 0,
7115 		    ("%s: still starving", __func__));
7116 
7117 		/* Release all buffers if hardware is no longer available. */
7118 		if (!(iq->flags & IQ_HW_ALLOCATED))
7119 			free_fl_buffers(sc, fl);
7120 	}
7121 }
7122 
7123 /*
7124  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7125  * that no new work is being enqueued by the hardware or the driver.  That part
7126  * should be arranged before calling this function.
7127  */
7128 static void
7129 quiesce_vi(struct vi_info *vi)
7130 {
7131 	int i;
7132 	struct adapter *sc = vi->adapter;
7133 	struct sge_rxq *rxq;
7134 	struct sge_txq *txq;
7135 #ifdef TCP_OFFLOAD
7136 	struct sge_ofld_rxq *ofld_rxq;
7137 #endif
7138 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7139 	struct sge_ofld_txq *ofld_txq;
7140 #endif
7141 
7142 	if (!(vi->flags & VI_INIT_DONE))
7143 		return;
7144 
7145 	for_each_txq(vi, i, txq) {
7146 		quiesce_txq(txq);
7147 	}
7148 
7149 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7150 	for_each_ofld_txq(vi, i, ofld_txq) {
7151 		quiesce_wrq(&ofld_txq->wrq);
7152 	}
7153 #endif
7154 
7155 	for_each_rxq(vi, i, rxq) {
7156 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7157 	}
7158 
7159 #ifdef TCP_OFFLOAD
7160 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7161 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7162 	}
7163 #endif
7164 }
7165 
7166 static int
7167 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7168     driver_intr_t *handler, void *arg, char *name)
7169 {
7170 	int rc;
7171 
7172 	irq->rid = rid;
7173 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7174 	    RF_SHAREABLE | RF_ACTIVE);
7175 	if (irq->res == NULL) {
7176 		device_printf(sc->dev,
7177 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7178 		return (ENOMEM);
7179 	}
7180 
7181 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7182 	    NULL, handler, arg, &irq->tag);
7183 	if (rc != 0) {
7184 		device_printf(sc->dev,
7185 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7186 		    rid, name, rc);
7187 	} else if (name)
7188 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7189 
7190 	return (rc);
7191 }
7192 
7193 static int
7194 t4_free_irq(struct adapter *sc, struct irq *irq)
7195 {
7196 	if (irq->tag)
7197 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7198 	if (irq->res)
7199 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7200 
7201 	bzero(irq, sizeof(*irq));
7202 
7203 	return (0);
7204 }
7205 
7206 static void
7207 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7208 {
7209 
7210 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7211 	t4_get_regs(sc, buf, regs->len);
7212 }
7213 
7214 #define	A_PL_INDIR_CMD	0x1f8
7215 
7216 #define	S_PL_AUTOINC	31
7217 #define	M_PL_AUTOINC	0x1U
7218 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7219 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7220 
7221 #define	S_PL_VFID	20
7222 #define	M_PL_VFID	0xffU
7223 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7224 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7225 
7226 #define	S_PL_ADDR	0
7227 #define	M_PL_ADDR	0xfffffU
7228 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7229 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7230 
7231 #define	A_PL_INDIR_DATA	0x1fc
7232 
7233 static uint64_t
7234 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7235 {
7236 	u32 stats[2];
7237 
7238 	if (sc->flags & IS_VF) {
7239 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7240 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7241 	} else {
7242 		mtx_assert(&sc->reg_lock, MA_OWNED);
7243 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7244 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7245 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7246 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7247 	}
7248 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7249 }
7250 
7251 static void
7252 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7253 {
7254 
7255 #define GET_STAT(name) \
7256 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7257 
7258 	if (!(sc->flags & IS_VF))
7259 		mtx_lock(&sc->reg_lock);
7260 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7261 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7262 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7263 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7264 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7265 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7266 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7267 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7268 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7269 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7270 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7271 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7272 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7273 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7274 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7275 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7276 	if (!(sc->flags & IS_VF))
7277 		mtx_unlock(&sc->reg_lock);
7278 
7279 #undef GET_STAT
7280 }
7281 
7282 static void
7283 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7284 {
7285 	int reg;
7286 
7287 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7288 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7289 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7290 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7291 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7292 }
7293 
7294 static void
7295 vi_refresh_stats(struct vi_info *vi)
7296 {
7297 	struct timeval tv;
7298 	const struct timeval interval = {0, 250000};	/* 250ms */
7299 
7300 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7301 
7302 	if (vi->flags & VI_SKIP_STATS)
7303 		return;
7304 
7305 	getmicrotime(&tv);
7306 	timevalsub(&tv, &interval);
7307 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7308 		return;
7309 
7310 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7311 	getmicrotime(&vi->last_refreshed);
7312 }
7313 
7314 static void
7315 cxgbe_refresh_stats(struct vi_info *vi)
7316 {
7317 	u_int i, v, tnl_cong_drops, chan_map;
7318 	struct timeval tv;
7319 	const struct timeval interval = {0, 250000};	/* 250ms */
7320 	struct port_info *pi;
7321 	struct adapter *sc;
7322 
7323 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7324 
7325 	if (vi->flags & VI_SKIP_STATS)
7326 		return;
7327 
7328 	getmicrotime(&tv);
7329 	timevalsub(&tv, &interval);
7330 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7331 		return;
7332 
7333 	pi = vi->pi;
7334 	sc = vi->adapter;
7335 	tnl_cong_drops = 0;
7336 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7337 	chan_map = pi->rx_e_chan_map;
7338 	while (chan_map) {
7339 		i = ffs(chan_map) - 1;
7340 		mtx_lock(&sc->reg_lock);
7341 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7342 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7343 		mtx_unlock(&sc->reg_lock);
7344 		tnl_cong_drops += v;
7345 		chan_map &= ~(1 << i);
7346 	}
7347 	pi->tnl_cong_drops = tnl_cong_drops;
7348 	getmicrotime(&vi->last_refreshed);
7349 }
7350 
7351 static void
7352 cxgbe_tick(void *arg)
7353 {
7354 	struct vi_info *vi = arg;
7355 
7356 	MPASS(IS_MAIN_VI(vi));
7357 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7358 
7359 	cxgbe_refresh_stats(vi);
7360 	callout_schedule(&vi->tick, hz);
7361 }
7362 
7363 static void
7364 vi_tick(void *arg)
7365 {
7366 	struct vi_info *vi = arg;
7367 
7368 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7369 
7370 	vi_refresh_stats(vi);
7371 	callout_schedule(&vi->tick, hz);
7372 }
7373 
7374 /*
7375  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7376  */
7377 static char *caps_decoder[] = {
7378 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7379 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7380 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7381 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7382 	    "\006HASHFILTER\007ETHOFLD",
7383 	"\20\001TOE",					/* 4: TOE */
7384 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7385 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7386 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7387 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7388 	    "\007T10DIF"
7389 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7390 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7391 	    "\004TLS_HW",
7392 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7393 		    "\004PO_INITIATOR\005PO_TARGET",
7394 };
7395 
7396 void
7397 t4_sysctls(struct adapter *sc)
7398 {
7399 	struct sysctl_ctx_list *ctx = &sc->ctx;
7400 	struct sysctl_oid *oid;
7401 	struct sysctl_oid_list *children, *c0;
7402 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7403 
7404 	/*
7405 	 * dev.t4nex.X.
7406 	 */
7407 	oid = device_get_sysctl_tree(sc->dev);
7408 	c0 = children = SYSCTL_CHILDREN(oid);
7409 
7410 	sc->sc_do_rxcopy = 1;
7411 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7412 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7413 
7414 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7415 	    sc->params.nports, "# of ports");
7416 
7417 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7418 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7419 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7420 	    "available doorbells");
7421 
7422 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7423 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7424 
7425 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7426 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7427 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7428 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7429 
7430 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7431 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7432 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7433 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7434 
7435 	t4_sge_sysctls(sc, ctx, children);
7436 
7437 	sc->lro_timeout = 100;
7438 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7439 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7440 
7441 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7442 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7443 
7444 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7445 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7446 
7447 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7448 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7449 
7450 	if (sc->flags & IS_VF)
7451 		return;
7452 
7453 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7454 	    NULL, chip_rev(sc), "chip hardware revision");
7455 
7456 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7457 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7458 
7459 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7460 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7461 
7462 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7463 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7464 
7465 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7466 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7467 
7468 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7469 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7470 
7471 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7472 	    sc->er_version, 0, "expansion ROM version");
7473 
7474 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7475 	    sc->bs_version, 0, "bootstrap firmware version");
7476 
7477 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7478 	    NULL, sc->params.scfg_vers, "serial config version");
7479 
7480 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7481 	    NULL, sc->params.vpd_vers, "VPD version");
7482 
7483 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7484 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7485 
7486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7487 	    sc->cfcsum, "config file checksum");
7488 
7489 #define SYSCTL_CAP(name, n, text) \
7490 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7491 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7492 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7493 	    "available " text " capabilities")
7494 
7495 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7496 	SYSCTL_CAP(linkcaps, 1, "link");
7497 	SYSCTL_CAP(switchcaps, 2, "switch");
7498 	SYSCTL_CAP(niccaps, 3, "NIC");
7499 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7500 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7501 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7502 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7503 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7504 #undef SYSCTL_CAP
7505 
7506 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7507 	    NULL, sc->tids.nftids, "number of filters");
7508 
7509 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7510 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7511 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7512 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7513 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7514 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7515 
7516 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7517 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7518 	    sysctl_loadavg, "A",
7519 	    "microprocessor load averages (debug firmwares only)");
7520 
7521 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7522 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7523 	    "I", "core Vdd (in mV)");
7524 
7525 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7526 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7527 	    sysctl_cpus, "A", "local CPUs");
7528 
7529 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7530 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7531 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7532 
7533 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7534 	    &sc->swintr, 0, "software triggered interrupts");
7535 
7536 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7537 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7538 	    "1 = reset adapter, 0 = zero reset counter");
7539 
7540 	/*
7541 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7542 	 */
7543 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7544 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7545 	    "logs and miscellaneous information");
7546 	children = SYSCTL_CHILDREN(oid);
7547 
7548 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7549 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7550 	    sysctl_cctrl, "A", "congestion control");
7551 
7552 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7553 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7554 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7555 
7556 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7557 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7558 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7559 
7560 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7561 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7562 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7563 
7564 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7565 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7566 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7567 
7568 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7569 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7570 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7571 
7572 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7573 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7574 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7575 
7576 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7577 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7578 	    sysctl_cim_la, "A", "CIM logic analyzer");
7579 
7580 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7581 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7582 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7583 
7584 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7585 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7586 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7587 
7588 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7589 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7590 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7591 
7592 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7593 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7594 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7595 
7596 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7597 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7598 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7599 
7600 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7601 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7602 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7603 
7604 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7605 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7606 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7607 
7608 	if (chip_id(sc) > CHELSIO_T4) {
7609 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7610 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7611 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7612 		    "CIM OBQ 6 (SGE0-RX)");
7613 
7614 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7615 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7616 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7617 		    "CIM OBQ 7 (SGE1-RX)");
7618 	}
7619 
7620 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7621 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7622 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7623 
7624 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7625 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7626 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7627 
7628 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7629 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7630 	    sysctl_cpl_stats, "A", "CPL statistics");
7631 
7632 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7633 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7634 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7635 
7636 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7637 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7638 	    sysctl_tid_stats, "A", "tid stats");
7639 
7640 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7641 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7642 	    sysctl_devlog, "A", "firmware's device log");
7643 
7644 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7645 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7646 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7647 
7648 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7649 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7650 	    sysctl_hw_sched, "A", "hardware scheduler ");
7651 
7652 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7653 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7654 	    sysctl_l2t, "A", "hardware L2 table");
7655 
7656 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7657 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7658 	    sysctl_smt, "A", "hardware source MAC table");
7659 
7660 #ifdef INET6
7661 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7662 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7663 	    sysctl_clip, "A", "active CLIP table entries");
7664 #endif
7665 
7666 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7667 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7668 	    sysctl_lb_stats, "A", "loopback statistics");
7669 
7670 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7671 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7672 	    sysctl_meminfo, "A", "memory regions");
7673 
7674 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7675 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7676 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7677 	    "A", "MPS TCAM entries");
7678 
7679 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7680 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7681 	    sysctl_path_mtus, "A", "path MTUs");
7682 
7683 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7684 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7685 	    sysctl_pm_stats, "A", "PM statistics");
7686 
7687 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7688 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7689 	    sysctl_rdma_stats, "A", "RDMA statistics");
7690 
7691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7692 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7693 	    sysctl_tcp_stats, "A", "TCP statistics");
7694 
7695 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7696 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7697 	    sysctl_tids, "A", "TID information");
7698 
7699 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7700 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7701 	    sysctl_tp_err_stats, "A", "TP error statistics");
7702 
7703 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7704 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7705 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7706 
7707 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7708 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7709 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7710 
7711 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7712 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7713 	    sysctl_tp_la, "A", "TP logic analyzer");
7714 
7715 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7716 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7717 	    sysctl_tx_rate, "A", "Tx rate");
7718 
7719 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7720 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7721 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7722 
7723 	if (chip_id(sc) >= CHELSIO_T5) {
7724 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7725 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7726 		    sysctl_wcwr_stats, "A", "write combined work requests");
7727 	}
7728 
7729 #ifdef KERN_TLS
7730 	if (is_ktls(sc)) {
7731 		/*
7732 		 * dev.t4nex.0.tls.
7733 		 */
7734 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7735 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7736 		children = SYSCTL_CHILDREN(oid);
7737 
7738 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7739 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7740 		    "keys in work requests (1) or attempt to store TLS keys "
7741 		    "in card memory.");
7742 
7743 		if (is_t6(sc))
7744 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7745 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7746 			    "combine TCB field updates with TLS record work "
7747 			    "requests.");
7748 	}
7749 #endif
7750 
7751 #ifdef TCP_OFFLOAD
7752 	if (is_offload(sc)) {
7753 		int i;
7754 		char s[4];
7755 
7756 		/*
7757 		 * dev.t4nex.X.toe.
7758 		 */
7759 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7760 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7761 		children = SYSCTL_CHILDREN(oid);
7762 
7763 		sc->tt.cong_algorithm = -1;
7764 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7765 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7766 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7767 		    "3 = highspeed)");
7768 
7769 		sc->tt.sndbuf = -1;
7770 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7771 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7772 
7773 		sc->tt.ddp = 0;
7774 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7775 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7776 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7777 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7778 
7779 		sc->tt.rx_coalesce = -1;
7780 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7781 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7782 
7783 		sc->tt.tls = 0;
7784 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7785 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7786 		    "Inline TLS allowed");
7787 
7788 		sc->tt.tx_align = -1;
7789 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7790 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7791 
7792 		sc->tt.tx_zcopy = 0;
7793 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7794 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7795 		    "Enable zero-copy aio_write(2)");
7796 
7797 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7798 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7799 		    "cop_managed_offloading", CTLFLAG_RW,
7800 		    &sc->tt.cop_managed_offloading, 0,
7801 		    "COP (Connection Offload Policy) controls all TOE offload");
7802 
7803 		sc->tt.autorcvbuf_inc = 16 * 1024;
7804 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7805 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7806 		    "autorcvbuf increment");
7807 
7808 		sc->tt.update_hc_on_pmtu_change = 1;
7809 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7810 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7811 		    &sc->tt.update_hc_on_pmtu_change, 0,
7812 		    "Update hostcache entry if the PMTU changes");
7813 
7814 		sc->tt.iso = 1;
7815 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7816 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7817 
7818 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7819 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7820 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7821 
7822 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7823 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7824 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7825 
7826 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7827 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7828 		    sysctl_tp_tick, "A", "DACK tick (us)");
7829 
7830 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7831 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7832 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7833 
7834 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7835 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7836 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7837 		    "Minimum retransmit interval (us)");
7838 
7839 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7840 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7841 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7842 		    "Maximum retransmit interval (us)");
7843 
7844 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7845 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7846 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7847 		    "Persist timer min (us)");
7848 
7849 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7850 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7851 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7852 		    "Persist timer max (us)");
7853 
7854 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7855 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7856 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7857 		    "Keepalive idle timer (us)");
7858 
7859 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7860 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7861 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7862 		    "Keepalive interval timer (us)");
7863 
7864 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7865 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7866 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7867 
7868 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7869 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7870 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7871 		    "FINWAIT2 timer (us)");
7872 
7873 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7874 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7875 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7876 		    "Number of SYN retransmissions before abort");
7877 
7878 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7879 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7880 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7881 		    "Number of retransmissions before abort");
7882 
7883 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7884 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7885 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7886 		    "Number of keepalive probes before abort");
7887 
7888 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7889 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7890 		    "TOE retransmit backoffs");
7891 		children = SYSCTL_CHILDREN(oid);
7892 		for (i = 0; i < 16; i++) {
7893 			snprintf(s, sizeof(s), "%u", i);
7894 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7895 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7896 			    i, sysctl_tp_backoff, "IU",
7897 			    "TOE retransmit backoff");
7898 		}
7899 	}
7900 #endif
7901 }
7902 
7903 void
7904 vi_sysctls(struct vi_info *vi)
7905 {
7906 	struct sysctl_ctx_list *ctx = &vi->ctx;
7907 	struct sysctl_oid *oid;
7908 	struct sysctl_oid_list *children;
7909 
7910 	/*
7911 	 * dev.v?(cxgbe|cxl).X.
7912 	 */
7913 	oid = device_get_sysctl_tree(vi->dev);
7914 	children = SYSCTL_CHILDREN(oid);
7915 
7916 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7917 	    vi->viid, "VI identifer");
7918 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7919 	    &vi->nrxq, 0, "# of rx queues");
7920 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7921 	    &vi->ntxq, 0, "# of tx queues");
7922 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7923 	    &vi->first_rxq, 0, "index of first rx queue");
7924 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7925 	    &vi->first_txq, 0, "index of first tx queue");
7926 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7927 	    vi->rss_base, "start of RSS indirection table");
7928 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7929 	    vi->rss_size, "size of RSS indirection table");
7930 
7931 	if (IS_MAIN_VI(vi)) {
7932 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7933 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7934 		    sysctl_noflowq, "IU",
7935 		    "Reserve queue 0 for non-flowid packets");
7936 	}
7937 
7938 	if (vi->adapter->flags & IS_VF) {
7939 		MPASS(vi->flags & TX_USES_VM_WR);
7940 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7941 		    NULL, 1, "use VM work requests for transmit");
7942 	} else {
7943 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7944 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7945 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7946 	}
7947 
7948 #ifdef TCP_OFFLOAD
7949 	if (vi->nofldrxq != 0) {
7950 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7951 		    &vi->nofldrxq, 0,
7952 		    "# of rx queues for offloaded TCP connections");
7953 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7954 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7955 		    "index of first TOE rx queue");
7956 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7957 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7958 		    sysctl_holdoff_tmr_idx_ofld, "I",
7959 		    "holdoff timer index for TOE queues");
7960 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7961 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7962 		    sysctl_holdoff_pktc_idx_ofld, "I",
7963 		    "holdoff packet counter index for TOE queues");
7964 	}
7965 #endif
7966 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7967 	if (vi->nofldtxq != 0) {
7968 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7969 		    &vi->nofldtxq, 0,
7970 		    "# of tx queues for TOE/ETHOFLD");
7971 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7972 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7973 		    "index of first TOE/ETHOFLD tx queue");
7974 	}
7975 #endif
7976 #ifdef DEV_NETMAP
7977 	if (vi->nnmrxq != 0) {
7978 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7979 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7980 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7981 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7982 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7983 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7984 		    "index of first netmap rx queue");
7985 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7986 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7987 		    "index of first netmap tx queue");
7988 	}
7989 #endif
7990 
7991 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7992 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7993 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7994 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7995 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7996 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7997 
7998 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7999 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8000 	    sysctl_qsize_rxq, "I", "rx queue size");
8001 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8002 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8003 	    sysctl_qsize_txq, "I", "tx queue size");
8004 }
8005 
8006 static void
8007 cxgbe_sysctls(struct port_info *pi)
8008 {
8009 	struct sysctl_ctx_list *ctx = &pi->ctx;
8010 	struct sysctl_oid *oid;
8011 	struct sysctl_oid_list *children, *children2;
8012 	struct adapter *sc = pi->adapter;
8013 	int i;
8014 	char name[16];
8015 	static char *tc_flags = {"\20\1USER"};
8016 
8017 	/*
8018 	 * dev.cxgbe.X.
8019 	 */
8020 	oid = device_get_sysctl_tree(pi->dev);
8021 	children = SYSCTL_CHILDREN(oid);
8022 
8023 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8024 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8025 	    sysctl_linkdnrc, "A", "reason why link is down");
8026 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8027 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8028 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8029 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
8030 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8031 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8032 		    sysctl_btphy, "I", "PHY firmware version");
8033 	}
8034 
8035 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8036 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8037 	    sysctl_pause_settings, "A",
8038 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8039 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8040 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8041 	    "FEC in use on the link");
8042 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8043 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8044 	    sysctl_requested_fec, "A",
8045 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8046 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8047 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8048 	    "FEC recommended by the cable/transceiver");
8049 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8050 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8051 	    sysctl_autoneg, "I",
8052 	    "autonegotiation (-1 = not supported)");
8053 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8054 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8055 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8056 
8057 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8058 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8059 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8060 	    &pi->link_cfg.pcaps, 0, "port capabilities");
8061 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8062 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
8063 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8064 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8065 
8066 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8067 	    port_top_speed(pi), "max speed (in Gbps)");
8068 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8069 	    pi->mps_bg_map, "MPS buffer group map");
8070 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8071 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8072 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8073 	    pi->tx_chan, "TP tx c-channel");
8074 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8075 	    pi->rx_chan, "TP rx c-channel");
8076 
8077 	if (sc->flags & IS_VF)
8078 		return;
8079 
8080 	/*
8081 	 * dev.(cxgbe|cxl).X.tc.
8082 	 */
8083 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8084 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8085 	    "Tx scheduler traffic classes (cl_rl)");
8086 	children2 = SYSCTL_CHILDREN(oid);
8087 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8088 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8089 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
8090 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8091 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8092 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
8093 	for (i = 0; i < sc->params.nsched_cls; i++) {
8094 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8095 
8096 		snprintf(name, sizeof(name), "%d", i);
8097 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8098 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
8099 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8100 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8101 		    CTLFLAG_RD, &tc->state, 0, "current state");
8102 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8103 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8104 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8105 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8106 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8107 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8108 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8109 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8110 		    "traffic class parameters");
8111 	}
8112 
8113 	/*
8114 	 * dev.cxgbe.X.stats.
8115 	 */
8116 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8117 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8118 	children = SYSCTL_CHILDREN(oid);
8119 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8120 	    &pi->tx_parse_error, 0,
8121 	    "# of tx packets with invalid length or # of segments");
8122 
8123 #define T4_REGSTAT(name, stat, desc) \
8124     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8125 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8126 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8127         sysctl_handle_t4_reg64, "QU", desc)
8128 
8129 /* We get these from port_stats and they may be stale by up to 1s */
8130 #define T4_PORTSTAT(name, desc) \
8131 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8132 	    &pi->stats.name, desc)
8133 
8134 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8135 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8136 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8137 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8138 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8139 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8140 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8141 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8142 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8143 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8144 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8145 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8146 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8147 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8148 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8149 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8150 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8151 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8152 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8153 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8154 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8155 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8156 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8157 
8158 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8159 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8160 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8161 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8162 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8163 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8164 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8165 	if (is_t6(sc)) {
8166 		T4_PORTSTAT(rx_fcs_err,
8167 		    "# of frames received with bad FCS since last link up");
8168 	} else {
8169 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8170 		    "# of frames received with bad FCS");
8171 	}
8172 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8173 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8174 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8175 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8176 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8177 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8178 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8179 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8180 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8181 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8182 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8183 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8184 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8185 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8186 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8187 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8188 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8189 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8190 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8191 
8192 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8193 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8194 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8195 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8196 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8197 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8198 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8199 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8200 
8201 #undef T4_REGSTAT
8202 #undef T4_PORTSTAT
8203 }
8204 
8205 static int
8206 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8207 {
8208 	int rc, *i, space = 0;
8209 	struct sbuf sb;
8210 
8211 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8212 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8213 		if (space)
8214 			sbuf_printf(&sb, " ");
8215 		sbuf_printf(&sb, "%d", *i);
8216 		space = 1;
8217 	}
8218 	rc = sbuf_finish(&sb);
8219 	sbuf_delete(&sb);
8220 	return (rc);
8221 }
8222 
8223 static int
8224 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8225 {
8226 	int rc;
8227 	struct sbuf *sb;
8228 
8229 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8230 	if (sb == NULL)
8231 		return (ENOMEM);
8232 
8233 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8234 	rc = sbuf_finish(sb);
8235 	sbuf_delete(sb);
8236 
8237 	return (rc);
8238 }
8239 
8240 static int
8241 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8242 {
8243 	int rc;
8244 	struct sbuf *sb;
8245 
8246 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8247 	if (sb == NULL)
8248 		return (ENOMEM);
8249 
8250 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8251 	rc = sbuf_finish(sb);
8252 	sbuf_delete(sb);
8253 
8254 	return (rc);
8255 }
8256 
8257 static int
8258 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8259 {
8260 	struct port_info *pi = arg1;
8261 	int op = arg2;
8262 	struct adapter *sc = pi->adapter;
8263 	u_int v;
8264 	int rc;
8265 
8266 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8267 	if (rc)
8268 		return (rc);
8269 	if (hw_off_limits(sc))
8270 		rc = ENXIO;
8271 	else {
8272 		/* XXX: magic numbers */
8273 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8274 		    op ? 0x20 : 0xc820, &v);
8275 	}
8276 	end_synchronized_op(sc, 0);
8277 	if (rc)
8278 		return (rc);
8279 	if (op == 0)
8280 		v /= 256;
8281 
8282 	rc = sysctl_handle_int(oidp, &v, 0, req);
8283 	return (rc);
8284 }
8285 
8286 static int
8287 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8288 {
8289 	struct vi_info *vi = arg1;
8290 	int rc, val;
8291 
8292 	val = vi->rsrv_noflowq;
8293 	rc = sysctl_handle_int(oidp, &val, 0, req);
8294 	if (rc != 0 || req->newptr == NULL)
8295 		return (rc);
8296 
8297 	if ((val >= 1) && (vi->ntxq > 1))
8298 		vi->rsrv_noflowq = 1;
8299 	else
8300 		vi->rsrv_noflowq = 0;
8301 
8302 	return (rc);
8303 }
8304 
8305 static int
8306 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8307 {
8308 	struct vi_info *vi = arg1;
8309 	struct adapter *sc = vi->adapter;
8310 	int rc, val, i;
8311 
8312 	MPASS(!(sc->flags & IS_VF));
8313 
8314 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8315 	rc = sysctl_handle_int(oidp, &val, 0, req);
8316 	if (rc != 0 || req->newptr == NULL)
8317 		return (rc);
8318 
8319 	if (val != 0 && val != 1)
8320 		return (EINVAL);
8321 
8322 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8323 	    "t4txvm");
8324 	if (rc)
8325 		return (rc);
8326 	if (hw_off_limits(sc))
8327 		rc = ENXIO;
8328 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8329 		/*
8330 		 * We don't want parse_pkt to run with one setting (VF or PF)
8331 		 * and then eth_tx to see a different setting but still use
8332 		 * stale information calculated by parse_pkt.
8333 		 */
8334 		rc = EBUSY;
8335 	} else {
8336 		struct port_info *pi = vi->pi;
8337 		struct sge_txq *txq;
8338 		uint32_t ctrl0;
8339 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8340 
8341 		if (val) {
8342 			vi->flags |= TX_USES_VM_WR;
8343 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8344 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8345 			    V_TXPKT_INTF(pi->tx_chan));
8346 			if (!(sc->flags & IS_VF))
8347 				npkt--;
8348 		} else {
8349 			vi->flags &= ~TX_USES_VM_WR;
8350 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8351 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8352 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8353 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8354 		}
8355 		for_each_txq(vi, i, txq) {
8356 			txq->cpl_ctrl0 = ctrl0;
8357 			txq->txp.max_npkt = npkt;
8358 		}
8359 	}
8360 	end_synchronized_op(sc, LOCK_HELD);
8361 	return (rc);
8362 }
8363 
8364 static int
8365 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8366 {
8367 	struct vi_info *vi = arg1;
8368 	struct adapter *sc = vi->adapter;
8369 	int idx, rc, i;
8370 	struct sge_rxq *rxq;
8371 	uint8_t v;
8372 
8373 	idx = vi->tmr_idx;
8374 
8375 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8376 	if (rc != 0 || req->newptr == NULL)
8377 		return (rc);
8378 
8379 	if (idx < 0 || idx >= SGE_NTIMERS)
8380 		return (EINVAL);
8381 
8382 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8383 	    "t4tmr");
8384 	if (rc)
8385 		return (rc);
8386 
8387 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8388 	for_each_rxq(vi, i, rxq) {
8389 #ifdef atomic_store_rel_8
8390 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8391 #else
8392 		rxq->iq.intr_params = v;
8393 #endif
8394 	}
8395 	vi->tmr_idx = idx;
8396 
8397 	end_synchronized_op(sc, LOCK_HELD);
8398 	return (0);
8399 }
8400 
8401 static int
8402 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8403 {
8404 	struct vi_info *vi = arg1;
8405 	struct adapter *sc = vi->adapter;
8406 	int idx, rc;
8407 
8408 	idx = vi->pktc_idx;
8409 
8410 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8411 	if (rc != 0 || req->newptr == NULL)
8412 		return (rc);
8413 
8414 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8415 		return (EINVAL);
8416 
8417 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8418 	    "t4pktc");
8419 	if (rc)
8420 		return (rc);
8421 
8422 	if (vi->flags & VI_INIT_DONE)
8423 		rc = EBUSY; /* cannot be changed once the queues are created */
8424 	else
8425 		vi->pktc_idx = idx;
8426 
8427 	end_synchronized_op(sc, LOCK_HELD);
8428 	return (rc);
8429 }
8430 
8431 static int
8432 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8433 {
8434 	struct vi_info *vi = arg1;
8435 	struct adapter *sc = vi->adapter;
8436 	int qsize, rc;
8437 
8438 	qsize = vi->qsize_rxq;
8439 
8440 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8441 	if (rc != 0 || req->newptr == NULL)
8442 		return (rc);
8443 
8444 	if (qsize < 128 || (qsize & 7))
8445 		return (EINVAL);
8446 
8447 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8448 	    "t4rxqs");
8449 	if (rc)
8450 		return (rc);
8451 
8452 	if (vi->flags & VI_INIT_DONE)
8453 		rc = EBUSY; /* cannot be changed once the queues are created */
8454 	else
8455 		vi->qsize_rxq = qsize;
8456 
8457 	end_synchronized_op(sc, LOCK_HELD);
8458 	return (rc);
8459 }
8460 
8461 static int
8462 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8463 {
8464 	struct vi_info *vi = arg1;
8465 	struct adapter *sc = vi->adapter;
8466 	int qsize, rc;
8467 
8468 	qsize = vi->qsize_txq;
8469 
8470 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8471 	if (rc != 0 || req->newptr == NULL)
8472 		return (rc);
8473 
8474 	if (qsize < 128 || qsize > 65536)
8475 		return (EINVAL);
8476 
8477 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8478 	    "t4txqs");
8479 	if (rc)
8480 		return (rc);
8481 
8482 	if (vi->flags & VI_INIT_DONE)
8483 		rc = EBUSY; /* cannot be changed once the queues are created */
8484 	else
8485 		vi->qsize_txq = qsize;
8486 
8487 	end_synchronized_op(sc, LOCK_HELD);
8488 	return (rc);
8489 }
8490 
8491 static int
8492 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8493 {
8494 	struct port_info *pi = arg1;
8495 	struct adapter *sc = pi->adapter;
8496 	struct link_config *lc = &pi->link_cfg;
8497 	int rc;
8498 
8499 	if (req->newptr == NULL) {
8500 		struct sbuf *sb;
8501 		static char *bits = "\20\1RX\2TX\3AUTO";
8502 
8503 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8504 		if (sb == NULL)
8505 			return (ENOMEM);
8506 
8507 		if (lc->link_ok) {
8508 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8509 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8510 		} else {
8511 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8512 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8513 		}
8514 		rc = sbuf_finish(sb);
8515 		sbuf_delete(sb);
8516 	} else {
8517 		char s[2];
8518 		int n;
8519 
8520 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8521 		    PAUSE_AUTONEG));
8522 		s[1] = 0;
8523 
8524 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8525 		if (rc != 0)
8526 			return(rc);
8527 
8528 		if (s[1] != 0)
8529 			return (EINVAL);
8530 		if (s[0] < '0' || s[0] > '9')
8531 			return (EINVAL);	/* not a number */
8532 		n = s[0] - '0';
8533 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8534 			return (EINVAL);	/* some other bit is set too */
8535 
8536 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8537 		    "t4PAUSE");
8538 		if (rc)
8539 			return (rc);
8540 		if (!hw_off_limits(sc)) {
8541 			PORT_LOCK(pi);
8542 			lc->requested_fc = n;
8543 			fixup_link_config(pi);
8544 			if (pi->up_vis > 0)
8545 				rc = apply_link_config(pi);
8546 			set_current_media(pi);
8547 			PORT_UNLOCK(pi);
8548 		}
8549 		end_synchronized_op(sc, 0);
8550 	}
8551 
8552 	return (rc);
8553 }
8554 
8555 static int
8556 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8557 {
8558 	struct port_info *pi = arg1;
8559 	struct link_config *lc = &pi->link_cfg;
8560 	int rc;
8561 	struct sbuf *sb;
8562 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8563 
8564 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8565 	if (sb == NULL)
8566 		return (ENOMEM);
8567 	if (lc->link_ok)
8568 		sbuf_printf(sb, "%b", lc->fec, bits);
8569 	else
8570 		sbuf_printf(sb, "no link");
8571 	rc = sbuf_finish(sb);
8572 	sbuf_delete(sb);
8573 
8574 	return (rc);
8575 }
8576 
8577 static int
8578 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8579 {
8580 	struct port_info *pi = arg1;
8581 	struct adapter *sc = pi->adapter;
8582 	struct link_config *lc = &pi->link_cfg;
8583 	int rc;
8584 	int8_t old;
8585 
8586 	if (req->newptr == NULL) {
8587 		struct sbuf *sb;
8588 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8589 		    "\5RSVD3\6auto\7module";
8590 
8591 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8592 		if (sb == NULL)
8593 			return (ENOMEM);
8594 
8595 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8596 		rc = sbuf_finish(sb);
8597 		sbuf_delete(sb);
8598 	} else {
8599 		char s[8];
8600 		int n;
8601 
8602 		snprintf(s, sizeof(s), "%d",
8603 		    lc->requested_fec == FEC_AUTO ? -1 :
8604 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8605 
8606 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8607 		if (rc != 0)
8608 			return(rc);
8609 
8610 		n = strtol(&s[0], NULL, 0);
8611 		if (n < 0 || n & FEC_AUTO)
8612 			n = FEC_AUTO;
8613 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8614 			return (EINVAL);/* some other bit is set too */
8615 
8616 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8617 		    "t4reqf");
8618 		if (rc)
8619 			return (rc);
8620 		PORT_LOCK(pi);
8621 		old = lc->requested_fec;
8622 		if (n == FEC_AUTO)
8623 			lc->requested_fec = FEC_AUTO;
8624 		else if (n == 0 || n == FEC_NONE)
8625 			lc->requested_fec = FEC_NONE;
8626 		else {
8627 			if ((lc->pcaps |
8628 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8629 			    lc->pcaps) {
8630 				rc = ENOTSUP;
8631 				goto done;
8632 			}
8633 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8634 			    FEC_MODULE);
8635 		}
8636 		if (!hw_off_limits(sc)) {
8637 			fixup_link_config(pi);
8638 			if (pi->up_vis > 0) {
8639 				rc = apply_link_config(pi);
8640 				if (rc != 0) {
8641 					lc->requested_fec = old;
8642 					if (rc == FW_EPROTO)
8643 						rc = ENOTSUP;
8644 				}
8645 			}
8646 		}
8647 done:
8648 		PORT_UNLOCK(pi);
8649 		end_synchronized_op(sc, 0);
8650 	}
8651 
8652 	return (rc);
8653 }
8654 
8655 static int
8656 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8657 {
8658 	struct port_info *pi = arg1;
8659 	struct adapter *sc = pi->adapter;
8660 	struct link_config *lc = &pi->link_cfg;
8661 	int rc;
8662 	int8_t fec;
8663 	struct sbuf *sb;
8664 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8665 
8666 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8667 	if (sb == NULL)
8668 		return (ENOMEM);
8669 
8670 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8671 		rc = EBUSY;
8672 		goto done;
8673 	}
8674 	if (hw_off_limits(sc)) {
8675 		rc = ENXIO;
8676 		goto done;
8677 	}
8678 	PORT_LOCK(pi);
8679 	if (pi->up_vis == 0) {
8680 		/*
8681 		 * If all the interfaces are administratively down the firmware
8682 		 * does not report transceiver changes.  Refresh port info here.
8683 		 * This is the only reason we have a synchronized op in this
8684 		 * function.  Just PORT_LOCK would have been enough otherwise.
8685 		 */
8686 		t4_update_port_info(pi);
8687 	}
8688 
8689 	fec = lc->fec_hint;
8690 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8691 	    !fec_supported(lc->pcaps)) {
8692 		PORT_UNLOCK(pi);
8693 		sbuf_printf(sb, "n/a");
8694 	} else {
8695 		if (fec == 0)
8696 			fec = FEC_NONE;
8697 		PORT_UNLOCK(pi);
8698 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8699 	}
8700 	rc = sbuf_finish(sb);
8701 done:
8702 	sbuf_delete(sb);
8703 	end_synchronized_op(sc, 0);
8704 
8705 	return (rc);
8706 }
8707 
8708 static int
8709 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8710 {
8711 	struct port_info *pi = arg1;
8712 	struct adapter *sc = pi->adapter;
8713 	struct link_config *lc = &pi->link_cfg;
8714 	int rc, val;
8715 
8716 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8717 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8718 	else
8719 		val = -1;
8720 	rc = sysctl_handle_int(oidp, &val, 0, req);
8721 	if (rc != 0 || req->newptr == NULL)
8722 		return (rc);
8723 	if (val == 0)
8724 		val = AUTONEG_DISABLE;
8725 	else if (val == 1)
8726 		val = AUTONEG_ENABLE;
8727 	else
8728 		val = AUTONEG_AUTO;
8729 
8730 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8731 	    "t4aneg");
8732 	if (rc)
8733 		return (rc);
8734 	PORT_LOCK(pi);
8735 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8736 		rc = ENOTSUP;
8737 		goto done;
8738 	}
8739 	lc->requested_aneg = val;
8740 	if (!hw_off_limits(sc)) {
8741 		fixup_link_config(pi);
8742 		if (pi->up_vis > 0)
8743 			rc = apply_link_config(pi);
8744 		set_current_media(pi);
8745 	}
8746 done:
8747 	PORT_UNLOCK(pi);
8748 	end_synchronized_op(sc, 0);
8749 	return (rc);
8750 }
8751 
8752 static int
8753 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8754 {
8755 	struct port_info *pi = arg1;
8756 	struct adapter *sc = pi->adapter;
8757 	struct link_config *lc = &pi->link_cfg;
8758 	int rc, val;
8759 
8760 	val = lc->force_fec;
8761 	MPASS(val >= -1 && val <= 1);
8762 	rc = sysctl_handle_int(oidp, &val, 0, req);
8763 	if (rc != 0 || req->newptr == NULL)
8764 		return (rc);
8765 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8766 		return (ENOTSUP);
8767 	if (val < -1 || val > 1)
8768 		return (EINVAL);
8769 
8770 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8771 	if (rc)
8772 		return (rc);
8773 	PORT_LOCK(pi);
8774 	lc->force_fec = val;
8775 	if (!hw_off_limits(sc)) {
8776 		fixup_link_config(pi);
8777 		if (pi->up_vis > 0)
8778 			rc = apply_link_config(pi);
8779 	}
8780 	PORT_UNLOCK(pi);
8781 	end_synchronized_op(sc, 0);
8782 	return (rc);
8783 }
8784 
8785 static int
8786 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8787 {
8788 	struct adapter *sc = arg1;
8789 	int rc, reg = arg2;
8790 	uint64_t val;
8791 
8792 	mtx_lock(&sc->reg_lock);
8793 	if (hw_off_limits(sc))
8794 		rc = ENXIO;
8795 	else {
8796 		rc = 0;
8797 		val = t4_read_reg64(sc, reg);
8798 	}
8799 	mtx_unlock(&sc->reg_lock);
8800 	if (rc == 0)
8801 		rc = sysctl_handle_64(oidp, &val, 0, req);
8802 	return (rc);
8803 }
8804 
8805 static int
8806 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8807 {
8808 	struct adapter *sc = arg1;
8809 	int rc, t;
8810 	uint32_t param, val;
8811 
8812 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8813 	if (rc)
8814 		return (rc);
8815 	if (hw_off_limits(sc))
8816 		rc = ENXIO;
8817 	else {
8818 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8819 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8820 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8821 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8822 	}
8823 	end_synchronized_op(sc, 0);
8824 	if (rc)
8825 		return (rc);
8826 
8827 	/* unknown is returned as 0 but we display -1 in that case */
8828 	t = val == 0 ? -1 : val;
8829 
8830 	rc = sysctl_handle_int(oidp, &t, 0, req);
8831 	return (rc);
8832 }
8833 
8834 static int
8835 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8836 {
8837 	struct adapter *sc = arg1;
8838 	int rc;
8839 	uint32_t param, val;
8840 
8841 	if (sc->params.core_vdd == 0) {
8842 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8843 		    "t4vdd");
8844 		if (rc)
8845 			return (rc);
8846 		if (hw_off_limits(sc))
8847 			rc = ENXIO;
8848 		else {
8849 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8850 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8851 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8852 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8853 			    &param, &val);
8854 		}
8855 		end_synchronized_op(sc, 0);
8856 		if (rc)
8857 			return (rc);
8858 		sc->params.core_vdd = val;
8859 	}
8860 
8861 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8862 }
8863 
8864 static int
8865 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8866 {
8867 	struct adapter *sc = arg1;
8868 	int rc, v;
8869 	uint32_t param, val;
8870 
8871 	v = sc->sensor_resets;
8872 	rc = sysctl_handle_int(oidp, &v, 0, req);
8873 	if (rc != 0 || req->newptr == NULL || v <= 0)
8874 		return (rc);
8875 
8876 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8877 	    chip_id(sc) < CHELSIO_T5)
8878 		return (ENOTSUP);
8879 
8880 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8881 	if (rc)
8882 		return (rc);
8883 	if (hw_off_limits(sc))
8884 		rc = ENXIO;
8885 	else {
8886 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8887 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8888 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8889 		val = 1;
8890 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8891 	}
8892 	end_synchronized_op(sc, 0);
8893 	if (rc == 0)
8894 		sc->sensor_resets++;
8895 	return (rc);
8896 }
8897 
8898 static int
8899 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8900 {
8901 	struct adapter *sc = arg1;
8902 	struct sbuf *sb;
8903 	int rc;
8904 	uint32_t param, val;
8905 
8906 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8907 	if (rc)
8908 		return (rc);
8909 	if (hw_off_limits(sc))
8910 		rc = ENXIO;
8911 	else {
8912 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8913 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8914 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8915 	}
8916 	end_synchronized_op(sc, 0);
8917 	if (rc)
8918 		return (rc);
8919 
8920 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8921 	if (sb == NULL)
8922 		return (ENOMEM);
8923 
8924 	if (val == 0xffffffff) {
8925 		/* Only debug and custom firmwares report load averages. */
8926 		sbuf_printf(sb, "not available");
8927 	} else {
8928 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8929 		    (val >> 16) & 0xff);
8930 	}
8931 	rc = sbuf_finish(sb);
8932 	sbuf_delete(sb);
8933 
8934 	return (rc);
8935 }
8936 
8937 static int
8938 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8939 {
8940 	struct adapter *sc = arg1;
8941 	struct sbuf *sb;
8942 	int rc, i;
8943 	uint16_t incr[NMTUS][NCCTRL_WIN];
8944 	static const char *dec_fac[] = {
8945 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8946 		"0.9375"
8947 	};
8948 
8949 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8950 	if (sb == NULL)
8951 		return (ENOMEM);
8952 
8953 	rc = 0;
8954 	mtx_lock(&sc->reg_lock);
8955 	if (hw_off_limits(sc))
8956 		rc = ENXIO;
8957 	else
8958 		t4_read_cong_tbl(sc, incr);
8959 	mtx_unlock(&sc->reg_lock);
8960 	if (rc)
8961 		goto done;
8962 
8963 	for (i = 0; i < NCCTRL_WIN; ++i) {
8964 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8965 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8966 		    incr[5][i], incr[6][i], incr[7][i]);
8967 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8968 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8969 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8970 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8971 	}
8972 
8973 	rc = sbuf_finish(sb);
8974 done:
8975 	sbuf_delete(sb);
8976 	return (rc);
8977 }
8978 
8979 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8980 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8981 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8982 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8983 };
8984 
8985 static int
8986 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8987 {
8988 	struct adapter *sc = arg1;
8989 	struct sbuf *sb;
8990 	int rc, i, n, qid = arg2;
8991 	uint32_t *buf, *p;
8992 	char *qtype;
8993 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8994 
8995 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8996 	    ("%s: bad qid %d\n", __func__, qid));
8997 
8998 	if (qid < CIM_NUM_IBQ) {
8999 		/* inbound queue */
9000 		qtype = "IBQ";
9001 		n = 4 * CIM_IBQ_SIZE;
9002 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9003 		mtx_lock(&sc->reg_lock);
9004 		if (hw_off_limits(sc))
9005 			rc = -ENXIO;
9006 		else
9007 			rc = t4_read_cim_ibq(sc, qid, buf, n);
9008 		mtx_unlock(&sc->reg_lock);
9009 	} else {
9010 		/* outbound queue */
9011 		qtype = "OBQ";
9012 		qid -= CIM_NUM_IBQ;
9013 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9014 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9015 		mtx_lock(&sc->reg_lock);
9016 		if (hw_off_limits(sc))
9017 			rc = -ENXIO;
9018 		else
9019 			rc = t4_read_cim_obq(sc, qid, buf, n);
9020 		mtx_unlock(&sc->reg_lock);
9021 	}
9022 
9023 	if (rc < 0) {
9024 		rc = -rc;
9025 		goto done;
9026 	}
9027 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
9028 
9029 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9030 	if (sb == NULL) {
9031 		rc = ENOMEM;
9032 		goto done;
9033 	}
9034 
9035 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9036 	for (i = 0, p = buf; i < n; i += 16, p += 4)
9037 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9038 		    p[2], p[3]);
9039 
9040 	rc = sbuf_finish(sb);
9041 	sbuf_delete(sb);
9042 done:
9043 	free(buf, M_CXGBE);
9044 	return (rc);
9045 }
9046 
9047 static void
9048 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9049 {
9050 	uint32_t *p;
9051 
9052 	sbuf_printf(sb, "Status   Data      PC%s",
9053 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9054 	    "     LS0Stat  LS0Addr             LS0Data");
9055 
9056 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9057 		if (cfg & F_UPDBGLACAPTPCONLY) {
9058 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
9059 			    p[6], p[7]);
9060 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
9061 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9062 			    p[4] & 0xff, p[5] >> 8);
9063 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
9064 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9065 			    p[1] & 0xf, p[2] >> 4);
9066 		} else {
9067 			sbuf_printf(sb,
9068 			    "\n  %02x   %x%07x %x%07x %08x %08x "
9069 			    "%08x%08x%08x%08x",
9070 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9071 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9072 			    p[6], p[7]);
9073 		}
9074 	}
9075 }
9076 
9077 static void
9078 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9079 {
9080 	uint32_t *p;
9081 
9082 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9083 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9084 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9085 
9086 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9087 		if (cfg & F_UPDBGLACAPTPCONLY) {
9088 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9089 			    p[3] & 0xff, p[2], p[1], p[0]);
9090 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9091 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9092 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9093 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9094 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9095 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9096 			    p[6] >> 16);
9097 		} else {
9098 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9099 			    "%08x %08x %08x %08x %08x %08x",
9100 			    (p[9] >> 16) & 0xff,
9101 			    p[9] & 0xffff, p[8] >> 16,
9102 			    p[8] & 0xffff, p[7] >> 16,
9103 			    p[7] & 0xffff, p[6] >> 16,
9104 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9105 		}
9106 	}
9107 }
9108 
9109 static int
9110 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9111 {
9112 	uint32_t cfg, *buf;
9113 	int rc;
9114 
9115 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9116 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9117 	    M_ZERO | flags);
9118 	if (buf == NULL)
9119 		return (ENOMEM);
9120 
9121 	mtx_lock(&sc->reg_lock);
9122 	if (hw_off_limits(sc))
9123 		rc = ENXIO;
9124 	else {
9125 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9126 		if (rc == 0)
9127 			rc = -t4_cim_read_la(sc, buf, NULL);
9128 	}
9129 	mtx_unlock(&sc->reg_lock);
9130 	if (rc == 0) {
9131 		if (chip_id(sc) < CHELSIO_T6)
9132 			sbuf_cim_la4(sc, sb, buf, cfg);
9133 		else
9134 			sbuf_cim_la6(sc, sb, buf, cfg);
9135 	}
9136 	free(buf, M_CXGBE);
9137 	return (rc);
9138 }
9139 
9140 static int
9141 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9142 {
9143 	struct adapter *sc = arg1;
9144 	struct sbuf *sb;
9145 	int rc;
9146 
9147 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9148 	if (sb == NULL)
9149 		return (ENOMEM);
9150 
9151 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9152 	if (rc == 0)
9153 		rc = sbuf_finish(sb);
9154 	sbuf_delete(sb);
9155 	return (rc);
9156 }
9157 
9158 static void
9159 dump_cim_regs(struct adapter *sc)
9160 {
9161 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9162 	    device_get_nameunit(sc->dev),
9163 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9164 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9165 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9166 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9167 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9168 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9169 	    device_get_nameunit(sc->dev),
9170 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9171 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9172 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9173 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9174 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9175 }
9176 
9177 static void
9178 dump_cimla(struct adapter *sc)
9179 {
9180 	struct sbuf sb;
9181 	int rc;
9182 
9183 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9184 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9185 		    device_get_nameunit(sc->dev));
9186 		return;
9187 	}
9188 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9189 	if (rc == 0) {
9190 		rc = sbuf_finish(&sb);
9191 		if (rc == 0) {
9192 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9193 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9194 		}
9195 	}
9196 	sbuf_delete(&sb);
9197 }
9198 
9199 void
9200 t4_os_cim_err(struct adapter *sc)
9201 {
9202 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9203 }
9204 
9205 static int
9206 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9207 {
9208 	struct adapter *sc = arg1;
9209 	u_int i;
9210 	struct sbuf *sb;
9211 	uint32_t *buf, *p;
9212 	int rc;
9213 
9214 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9215 	if (sb == NULL)
9216 		return (ENOMEM);
9217 
9218 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9219 	    M_ZERO | M_WAITOK);
9220 
9221 	rc = 0;
9222 	mtx_lock(&sc->reg_lock);
9223 	if (hw_off_limits(sc))
9224 		rc = ENXIO;
9225 	else
9226 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9227 	mtx_unlock(&sc->reg_lock);
9228 	if (rc)
9229 		goto done;
9230 
9231 	p = buf;
9232 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9233 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9234 		    p[1], p[0]);
9235 	}
9236 
9237 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9238 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9239 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9240 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9241 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9242 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9243 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9244 		    p[0] & 1);
9245 	}
9246 	rc = sbuf_finish(sb);
9247 done:
9248 	sbuf_delete(sb);
9249 	free(buf, M_CXGBE);
9250 	return (rc);
9251 }
9252 
9253 static int
9254 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9255 {
9256 	struct adapter *sc = arg1;
9257 	u_int i;
9258 	struct sbuf *sb;
9259 	uint32_t *buf, *p;
9260 	int rc;
9261 
9262 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9263 	if (sb == NULL)
9264 		return (ENOMEM);
9265 
9266 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9267 	    M_ZERO | M_WAITOK);
9268 
9269 	rc = 0;
9270 	mtx_lock(&sc->reg_lock);
9271 	if (hw_off_limits(sc))
9272 		rc = ENXIO;
9273 	else
9274 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9275 	mtx_unlock(&sc->reg_lock);
9276 	if (rc)
9277 		goto done;
9278 
9279 	p = buf;
9280 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9281 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9282 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9283 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9284 		    p[4], p[3], p[2], p[1], p[0]);
9285 	}
9286 
9287 	sbuf_printf(sb, "\n\nCntl ID               Data");
9288 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9289 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9290 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9291 	}
9292 
9293 	rc = sbuf_finish(sb);
9294 done:
9295 	sbuf_delete(sb);
9296 	free(buf, M_CXGBE);
9297 	return (rc);
9298 }
9299 
9300 static int
9301 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9302 {
9303 	struct adapter *sc = arg1;
9304 	struct sbuf *sb;
9305 	int rc, i;
9306 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9307 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9308 	uint16_t thres[CIM_NUM_IBQ];
9309 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9310 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9311 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9312 
9313 	cim_num_obq = sc->chip_params->cim_num_obq;
9314 	if (is_t4(sc)) {
9315 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9316 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9317 	} else {
9318 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9319 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9320 	}
9321 	nq = CIM_NUM_IBQ + cim_num_obq;
9322 
9323 	mtx_lock(&sc->reg_lock);
9324 	if (hw_off_limits(sc))
9325 		rc = ENXIO;
9326 	else {
9327 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9328 		if (rc == 0) {
9329 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9330 			    obq_wr);
9331 			if (rc == 0)
9332 				t4_read_cimq_cfg(sc, base, size, thres);
9333 		}
9334 	}
9335 	mtx_unlock(&sc->reg_lock);
9336 	if (rc)
9337 		return (rc);
9338 
9339 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9340 	if (sb == NULL)
9341 		return (ENOMEM);
9342 
9343 	sbuf_printf(sb,
9344 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9345 
9346 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9347 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9348 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9349 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9350 		    G_QUEREMFLITS(p[2]) * 16);
9351 	for ( ; i < nq; i++, p += 4, wr += 2)
9352 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9353 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9354 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9355 		    G_QUEREMFLITS(p[2]) * 16);
9356 
9357 	rc = sbuf_finish(sb);
9358 	sbuf_delete(sb);
9359 
9360 	return (rc);
9361 }
9362 
9363 static int
9364 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9365 {
9366 	struct adapter *sc = arg1;
9367 	struct sbuf *sb;
9368 	int rc;
9369 	struct tp_cpl_stats stats;
9370 
9371 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9372 	if (sb == NULL)
9373 		return (ENOMEM);
9374 
9375 	rc = 0;
9376 	mtx_lock(&sc->reg_lock);
9377 	if (hw_off_limits(sc))
9378 		rc = ENXIO;
9379 	else
9380 		t4_tp_get_cpl_stats(sc, &stats, 0);
9381 	mtx_unlock(&sc->reg_lock);
9382 	if (rc)
9383 		goto done;
9384 
9385 	if (sc->chip_params->nchan > 2) {
9386 		sbuf_printf(sb, "                 channel 0  channel 1"
9387 		    "  channel 2  channel 3");
9388 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9389 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9390 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9391 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9392 	} else {
9393 		sbuf_printf(sb, "                 channel 0  channel 1");
9394 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9395 		    stats.req[0], stats.req[1]);
9396 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9397 		    stats.rsp[0], stats.rsp[1]);
9398 	}
9399 
9400 	rc = sbuf_finish(sb);
9401 done:
9402 	sbuf_delete(sb);
9403 	return (rc);
9404 }
9405 
9406 static int
9407 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9408 {
9409 	struct adapter *sc = arg1;
9410 	struct sbuf *sb;
9411 	int rc;
9412 	struct tp_usm_stats stats;
9413 
9414 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9415 	if (sb == NULL)
9416 		return (ENOMEM);
9417 
9418 	rc = 0;
9419 	mtx_lock(&sc->reg_lock);
9420 	if (hw_off_limits(sc))
9421 		rc = ENXIO;
9422 	else
9423 		t4_get_usm_stats(sc, &stats, 1);
9424 	mtx_unlock(&sc->reg_lock);
9425 	if (rc == 0) {
9426 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9427 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9428 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9429 		rc = sbuf_finish(sb);
9430 	}
9431 	sbuf_delete(sb);
9432 
9433 	return (rc);
9434 }
9435 
9436 static int
9437 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9438 {
9439 	struct adapter *sc = arg1;
9440 	struct sbuf *sb;
9441 	int rc;
9442 	struct tp_tid_stats stats;
9443 
9444 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9445 	if (sb == NULL)
9446 		return (ENOMEM);
9447 
9448 	rc = 0;
9449 	mtx_lock(&sc->reg_lock);
9450 	if (hw_off_limits(sc))
9451 		rc = ENXIO;
9452 	else
9453 		t4_tp_get_tid_stats(sc, &stats, 1);
9454 	mtx_unlock(&sc->reg_lock);
9455 	if (rc == 0) {
9456 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9457 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9458 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9459 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9460 		rc = sbuf_finish(sb);
9461 	}
9462 	sbuf_delete(sb);
9463 
9464 	return (rc);
9465 }
9466 
9467 static const char * const devlog_level_strings[] = {
9468 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9469 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9470 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9471 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9472 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9473 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9474 };
9475 
9476 static const char * const devlog_facility_strings[] = {
9477 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9478 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9479 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9480 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9481 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9482 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9483 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9484 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9485 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9486 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9487 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9488 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9489 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9490 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9491 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9492 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9493 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9494 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9495 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9496 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9497 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9498 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9499 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9500 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9501 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9502 };
9503 
9504 static int
9505 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9506 {
9507 	int i, j, rc, nentries, first = 0;
9508 	struct devlog_params *dparams = &sc->params.devlog;
9509 	struct fw_devlog_e *buf, *e;
9510 	uint64_t ftstamp = UINT64_MAX;
9511 
9512 	if (dparams->addr == 0)
9513 		return (ENXIO);
9514 
9515 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9516 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9517 	if (buf == NULL)
9518 		return (ENOMEM);
9519 
9520 	mtx_lock(&sc->reg_lock);
9521 	if (hw_off_limits(sc))
9522 		rc = ENXIO;
9523 	else
9524 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9525 		    dparams->size);
9526 	mtx_unlock(&sc->reg_lock);
9527 	if (rc != 0)
9528 		goto done;
9529 
9530 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9531 	for (i = 0; i < nentries; i++) {
9532 		e = &buf[i];
9533 
9534 		if (e->timestamp == 0)
9535 			break;	/* end */
9536 
9537 		e->timestamp = be64toh(e->timestamp);
9538 		e->seqno = be32toh(e->seqno);
9539 		for (j = 0; j < 8; j++)
9540 			e->params[j] = be32toh(e->params[j]);
9541 
9542 		if (e->timestamp < ftstamp) {
9543 			ftstamp = e->timestamp;
9544 			first = i;
9545 		}
9546 	}
9547 
9548 	if (buf[first].timestamp == 0)
9549 		goto done;	/* nothing in the log */
9550 
9551 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9552 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9553 
9554 	i = first;
9555 	do {
9556 		e = &buf[i];
9557 		if (e->timestamp == 0)
9558 			break;	/* end */
9559 
9560 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9561 		    e->seqno, e->timestamp,
9562 		    (e->level < nitems(devlog_level_strings) ?
9563 			devlog_level_strings[e->level] : "UNKNOWN"),
9564 		    (e->facility < nitems(devlog_facility_strings) ?
9565 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9566 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9567 		    e->params[2], e->params[3], e->params[4],
9568 		    e->params[5], e->params[6], e->params[7]);
9569 
9570 		if (++i == nentries)
9571 			i = 0;
9572 	} while (i != first);
9573 done:
9574 	free(buf, M_CXGBE);
9575 	return (rc);
9576 }
9577 
9578 static int
9579 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9580 {
9581 	struct adapter *sc = arg1;
9582 	int rc;
9583 	struct sbuf *sb;
9584 
9585 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9586 	if (sb == NULL)
9587 		return (ENOMEM);
9588 
9589 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9590 	if (rc == 0)
9591 		rc = sbuf_finish(sb);
9592 	sbuf_delete(sb);
9593 	return (rc);
9594 }
9595 
9596 static void
9597 dump_devlog(struct adapter *sc)
9598 {
9599 	int rc;
9600 	struct sbuf sb;
9601 
9602 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9603 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9604 		    device_get_nameunit(sc->dev));
9605 		return;
9606 	}
9607 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9608 	if (rc == 0) {
9609 		rc = sbuf_finish(&sb);
9610 		if (rc == 0) {
9611 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9612 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9613 		}
9614 	}
9615 	sbuf_delete(&sb);
9616 }
9617 
9618 static int
9619 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9620 {
9621 	struct adapter *sc = arg1;
9622 	struct sbuf *sb;
9623 	int rc;
9624 	struct tp_fcoe_stats stats[MAX_NCHAN];
9625 	int i, nchan = sc->chip_params->nchan;
9626 
9627 	rc = 0;
9628 	mtx_lock(&sc->reg_lock);
9629 	if (hw_off_limits(sc))
9630 		rc = ENXIO;
9631 	else {
9632 		for (i = 0; i < nchan; i++)
9633 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9634 	}
9635 	mtx_unlock(&sc->reg_lock);
9636 	if (rc != 0)
9637 		return (rc);
9638 
9639 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9640 	if (sb == NULL)
9641 		return (ENOMEM);
9642 
9643 	if (nchan > 2) {
9644 		sbuf_printf(sb, "                   channel 0        channel 1"
9645 		    "        channel 2        channel 3");
9646 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9647 		    stats[0].octets_ddp, stats[1].octets_ddp,
9648 		    stats[2].octets_ddp, stats[3].octets_ddp);
9649 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9650 		    stats[0].frames_ddp, stats[1].frames_ddp,
9651 		    stats[2].frames_ddp, stats[3].frames_ddp);
9652 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9653 		    stats[0].frames_drop, stats[1].frames_drop,
9654 		    stats[2].frames_drop, stats[3].frames_drop);
9655 	} else {
9656 		sbuf_printf(sb, "                   channel 0        channel 1");
9657 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9658 		    stats[0].octets_ddp, stats[1].octets_ddp);
9659 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9660 		    stats[0].frames_ddp, stats[1].frames_ddp);
9661 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9662 		    stats[0].frames_drop, stats[1].frames_drop);
9663 	}
9664 
9665 	rc = sbuf_finish(sb);
9666 	sbuf_delete(sb);
9667 
9668 	return (rc);
9669 }
9670 
9671 static int
9672 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9673 {
9674 	struct adapter *sc = arg1;
9675 	struct sbuf *sb;
9676 	int rc, i;
9677 	unsigned int map, kbps, ipg, mode;
9678 	unsigned int pace_tab[NTX_SCHED];
9679 
9680 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9681 	if (sb == NULL)
9682 		return (ENOMEM);
9683 
9684 	mtx_lock(&sc->reg_lock);
9685 	if (hw_off_limits(sc)) {
9686 		mtx_unlock(&sc->reg_lock);
9687 		rc = ENXIO;
9688 		goto done;
9689 	}
9690 
9691 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9692 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9693 	t4_read_pace_tbl(sc, pace_tab);
9694 	mtx_unlock(&sc->reg_lock);
9695 
9696 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9697 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9698 
9699 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9700 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9701 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9702 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9703 		if (kbps)
9704 			sbuf_printf(sb, "%9u     ", kbps);
9705 		else
9706 			sbuf_printf(sb, " disabled     ");
9707 
9708 		if (ipg)
9709 			sbuf_printf(sb, "%13u        ", ipg);
9710 		else
9711 			sbuf_printf(sb, "     disabled        ");
9712 
9713 		if (pace_tab[i])
9714 			sbuf_printf(sb, "%10u", pace_tab[i]);
9715 		else
9716 			sbuf_printf(sb, "  disabled");
9717 	}
9718 	rc = sbuf_finish(sb);
9719 done:
9720 	sbuf_delete(sb);
9721 	return (rc);
9722 }
9723 
9724 static int
9725 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9726 {
9727 	struct adapter *sc = arg1;
9728 	struct sbuf *sb;
9729 	int rc, i, j;
9730 	uint64_t *p0, *p1;
9731 	struct lb_port_stats s[2];
9732 	static const char *stat_name[] = {
9733 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9734 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9735 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9736 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9737 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9738 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9739 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9740 	};
9741 
9742 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9743 	if (sb == NULL)
9744 		return (ENOMEM);
9745 
9746 	memset(s, 0, sizeof(s));
9747 
9748 	rc = 0;
9749 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9750 		mtx_lock(&sc->reg_lock);
9751 		if (hw_off_limits(sc))
9752 			rc = ENXIO;
9753 		else {
9754 			t4_get_lb_stats(sc, i, &s[0]);
9755 			t4_get_lb_stats(sc, i + 1, &s[1]);
9756 		}
9757 		mtx_unlock(&sc->reg_lock);
9758 		if (rc != 0)
9759 			break;
9760 
9761 		p0 = &s[0].octets;
9762 		p1 = &s[1].octets;
9763 		sbuf_printf(sb, "%s                       Loopback %u"
9764 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9765 
9766 		for (j = 0; j < nitems(stat_name); j++)
9767 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9768 				   *p0++, *p1++);
9769 	}
9770 
9771 	if (rc == 0)
9772 		rc = sbuf_finish(sb);
9773 	sbuf_delete(sb);
9774 
9775 	return (rc);
9776 }
9777 
9778 static int
9779 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9780 {
9781 	int rc = 0;
9782 	struct port_info *pi = arg1;
9783 	struct link_config *lc = &pi->link_cfg;
9784 	struct sbuf *sb;
9785 
9786 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9787 	if (sb == NULL)
9788 		return (ENOMEM);
9789 
9790 	if (lc->link_ok || lc->link_down_rc == 255)
9791 		sbuf_printf(sb, "n/a");
9792 	else
9793 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9794 
9795 	rc = sbuf_finish(sb);
9796 	sbuf_delete(sb);
9797 
9798 	return (rc);
9799 }
9800 
9801 struct mem_desc {
9802 	u_int base;
9803 	u_int limit;
9804 	u_int idx;
9805 };
9806 
9807 static int
9808 mem_desc_cmp(const void *a, const void *b)
9809 {
9810 	const u_int v1 = ((const struct mem_desc *)a)->base;
9811 	const u_int v2 = ((const struct mem_desc *)b)->base;
9812 
9813 	if (v1 < v2)
9814 		return (-1);
9815 	else if (v1 > v2)
9816 		return (1);
9817 
9818 	return (0);
9819 }
9820 
9821 static void
9822 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9823     unsigned int to)
9824 {
9825 	unsigned int size;
9826 
9827 	if (from == to)
9828 		return;
9829 
9830 	size = to - from + 1;
9831 	if (size == 0)
9832 		return;
9833 
9834 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9835 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9836 }
9837 
9838 static int
9839 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9840 {
9841 	struct adapter *sc = arg1;
9842 	struct sbuf *sb;
9843 	int rc, i, n;
9844 	uint32_t lo, hi, used, free, alloc;
9845 	static const char *memory[] = {
9846 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9847 	};
9848 	static const char *region[] = {
9849 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9850 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9851 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9852 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9853 		"RQUDP region:", "PBL region:", "TXPBL region:",
9854 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9855 		"ULPTX state:", "On-chip queues:",
9856 	};
9857 	struct mem_desc avail[4];
9858 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9859 	struct mem_desc *md = mem;
9860 
9861 	rc = sysctl_wire_old_buffer(req, 0);
9862 	if (rc != 0)
9863 		return (rc);
9864 
9865 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9866 	if (sb == NULL)
9867 		return (ENOMEM);
9868 
9869 	for (i = 0; i < nitems(mem); i++) {
9870 		mem[i].limit = 0;
9871 		mem[i].idx = i;
9872 	}
9873 
9874 	mtx_lock(&sc->reg_lock);
9875 	if (hw_off_limits(sc)) {
9876 		rc = ENXIO;
9877 		goto done;
9878 	}
9879 
9880 	/* Find and sort the populated memory ranges */
9881 	i = 0;
9882 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9883 	if (lo & F_EDRAM0_ENABLE) {
9884 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9885 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9886 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9887 		avail[i].idx = 0;
9888 		i++;
9889 	}
9890 	if (lo & F_EDRAM1_ENABLE) {
9891 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9892 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9893 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9894 		avail[i].idx = 1;
9895 		i++;
9896 	}
9897 	if (lo & F_EXT_MEM_ENABLE) {
9898 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9899 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9900 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9901 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9902 		i++;
9903 	}
9904 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9905 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9906 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9907 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9908 		avail[i].idx = 4;
9909 		i++;
9910 	}
9911 	if (is_t6(sc) && lo & F_HMA_MUX) {
9912 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9913 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9914 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9915 		avail[i].idx = 5;
9916 		i++;
9917 	}
9918 	MPASS(i <= nitems(avail));
9919 	if (!i)                                    /* no memory available */
9920 		goto done;
9921 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9922 
9923 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9924 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9925 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9926 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9927 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9928 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9929 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9930 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9931 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9932 
9933 	/* the next few have explicit upper bounds */
9934 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9935 	md->limit = md->base - 1 +
9936 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9937 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9938 	md++;
9939 
9940 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9941 	md->limit = md->base - 1 +
9942 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9943 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9944 	md++;
9945 
9946 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9947 		if (chip_id(sc) <= CHELSIO_T5)
9948 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9949 		else
9950 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9951 		md->limit = 0;
9952 	} else {
9953 		md->base = 0;
9954 		md->idx = nitems(region);  /* hide it */
9955 	}
9956 	md++;
9957 
9958 #define ulp_region(reg) \
9959 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9960 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9961 
9962 	ulp_region(RX_ISCSI);
9963 	ulp_region(RX_TDDP);
9964 	ulp_region(TX_TPT);
9965 	ulp_region(RX_STAG);
9966 	ulp_region(RX_RQ);
9967 	ulp_region(RX_RQUDP);
9968 	ulp_region(RX_PBL);
9969 	ulp_region(TX_PBL);
9970 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9971 		ulp_region(RX_TLS_KEY);
9972 	}
9973 #undef ulp_region
9974 
9975 	md->base = 0;
9976 	if (is_t4(sc))
9977 		md->idx = nitems(region);
9978 	else {
9979 		uint32_t size = 0;
9980 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9981 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9982 
9983 		if (is_t5(sc)) {
9984 			if (sge_ctrl & F_VFIFO_ENABLE)
9985 				size = fifo_size << 2;
9986 		} else
9987 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9988 
9989 		if (size) {
9990 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9991 			md->limit = md->base + size - 1;
9992 		} else
9993 			md->idx = nitems(region);
9994 	}
9995 	md++;
9996 
9997 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9998 	md->limit = 0;
9999 	md++;
10000 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10001 	md->limit = 0;
10002 	md++;
10003 
10004 	md->base = sc->vres.ocq.start;
10005 	if (sc->vres.ocq.size)
10006 		md->limit = md->base + sc->vres.ocq.size - 1;
10007 	else
10008 		md->idx = nitems(region);  /* hide it */
10009 	md++;
10010 
10011 	/* add any address-space holes, there can be up to 3 */
10012 	for (n = 0; n < i - 1; n++)
10013 		if (avail[n].limit < avail[n + 1].base)
10014 			(md++)->base = avail[n].limit;
10015 	if (avail[n].limit)
10016 		(md++)->base = avail[n].limit;
10017 
10018 	n = md - mem;
10019 	MPASS(n <= nitems(mem));
10020 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10021 
10022 	for (lo = 0; lo < i; lo++)
10023 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10024 				avail[lo].limit - 1);
10025 
10026 	sbuf_printf(sb, "\n");
10027 	for (i = 0; i < n; i++) {
10028 		if (mem[i].idx >= nitems(region))
10029 			continue;                        /* skip holes */
10030 		if (!mem[i].limit)
10031 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10032 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
10033 				mem[i].limit);
10034 	}
10035 
10036 	sbuf_printf(sb, "\n");
10037 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10038 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10039 	mem_region_show(sb, "uP RAM:", lo, hi);
10040 
10041 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10042 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10043 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10044 
10045 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10046 	for (i = 0, free = 0; i < 2; i++)
10047 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10048 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10049 		   G_PMRXMAXPAGE(lo), free,
10050 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10051 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10052 
10053 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10054 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10055 	for (i = 0, free = 0; i < 4; i++)
10056 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10057 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10058 		   G_PMTXMAXPAGE(lo), free,
10059 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10060 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10061 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10062 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10063 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10064 
10065 	for (i = 0; i < 4; i++) {
10066 		if (chip_id(sc) > CHELSIO_T5)
10067 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10068 		else
10069 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10070 		if (is_t5(sc)) {
10071 			used = G_T5_USED(lo);
10072 			alloc = G_T5_ALLOC(lo);
10073 		} else {
10074 			used = G_USED(lo);
10075 			alloc = G_ALLOC(lo);
10076 		}
10077 		/* For T6 these are MAC buffer groups */
10078 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10079 		    i, used, alloc);
10080 	}
10081 	for (i = 0; i < sc->chip_params->nchan; i++) {
10082 		if (chip_id(sc) > CHELSIO_T5)
10083 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10084 		else
10085 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10086 		if (is_t5(sc)) {
10087 			used = G_T5_USED(lo);
10088 			alloc = G_T5_ALLOC(lo);
10089 		} else {
10090 			used = G_USED(lo);
10091 			alloc = G_ALLOC(lo);
10092 		}
10093 		/* For T6 these are MAC buffer groups */
10094 		sbuf_printf(sb,
10095 		    "\nLoopback %d using %u pages out of %u allocated",
10096 		    i, used, alloc);
10097 	}
10098 done:
10099 	mtx_unlock(&sc->reg_lock);
10100 	if (rc == 0)
10101 		rc = sbuf_finish(sb);
10102 	sbuf_delete(sb);
10103 	return (rc);
10104 }
10105 
10106 static inline void
10107 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10108 {
10109 	*mask = x | y;
10110 	y = htobe64(y);
10111 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10112 }
10113 
10114 static int
10115 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10116 {
10117 	struct adapter *sc = arg1;
10118 	struct sbuf *sb;
10119 	int rc, i;
10120 
10121 	MPASS(chip_id(sc) <= CHELSIO_T5);
10122 
10123 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10124 	if (sb == NULL)
10125 		return (ENOMEM);
10126 
10127 	sbuf_printf(sb,
10128 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10129 	    "  VF              Replication             P0 P1 P2 P3  ML");
10130 	rc = 0;
10131 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10132 		uint64_t tcamx, tcamy, mask;
10133 		uint32_t cls_lo, cls_hi;
10134 		uint8_t addr[ETHER_ADDR_LEN];
10135 
10136 		mtx_lock(&sc->reg_lock);
10137 		if (hw_off_limits(sc))
10138 			rc = ENXIO;
10139 		else {
10140 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10141 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10142 		}
10143 		mtx_unlock(&sc->reg_lock);
10144 		if (rc != 0)
10145 			break;
10146 		if (tcamx & tcamy)
10147 			continue;
10148 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10149 		mtx_lock(&sc->reg_lock);
10150 		if (hw_off_limits(sc))
10151 			rc = ENXIO;
10152 		else {
10153 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10154 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10155 		}
10156 		mtx_unlock(&sc->reg_lock);
10157 		if (rc != 0)
10158 			break;
10159 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10160 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10161 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10162 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10163 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10164 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10165 
10166 		if (cls_lo & F_REPLICATE) {
10167 			struct fw_ldst_cmd ldst_cmd;
10168 
10169 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10170 			ldst_cmd.op_to_addrspace =
10171 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10172 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10173 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10174 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10175 			ldst_cmd.u.mps.rplc.fid_idx =
10176 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10177 				V_FW_LDST_CMD_IDX(i));
10178 
10179 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10180 			    "t4mps");
10181 			if (rc)
10182 				break;
10183 			if (hw_off_limits(sc))
10184 				rc = ENXIO;
10185 			else
10186 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10187 				    sizeof(ldst_cmd), &ldst_cmd);
10188 			end_synchronized_op(sc, 0);
10189 			if (rc != 0)
10190 				break;
10191 			else {
10192 				sbuf_printf(sb, " %08x %08x %08x %08x",
10193 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10194 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10195 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10196 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10197 			}
10198 		} else
10199 			sbuf_printf(sb, "%36s", "");
10200 
10201 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10202 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10203 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10204 	}
10205 
10206 	if (rc)
10207 		(void) sbuf_finish(sb);
10208 	else
10209 		rc = sbuf_finish(sb);
10210 	sbuf_delete(sb);
10211 
10212 	return (rc);
10213 }
10214 
10215 static int
10216 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10217 {
10218 	struct adapter *sc = arg1;
10219 	struct sbuf *sb;
10220 	int rc, i;
10221 
10222 	MPASS(chip_id(sc) > CHELSIO_T5);
10223 
10224 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10225 	if (sb == NULL)
10226 		return (ENOMEM);
10227 
10228 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10229 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10230 	    "                           Replication"
10231 	    "                                    P0 P1 P2 P3  ML\n");
10232 
10233 	rc = 0;
10234 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10235 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10236 		uint16_t ivlan;
10237 		uint64_t tcamx, tcamy, val, mask;
10238 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10239 		uint8_t addr[ETHER_ADDR_LEN];
10240 
10241 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10242 		if (i < 256)
10243 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10244 		else
10245 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10246 		mtx_lock(&sc->reg_lock);
10247 		if (hw_off_limits(sc))
10248 			rc = ENXIO;
10249 		else {
10250 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10251 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10252 			tcamy = G_DMACH(val) << 32;
10253 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10254 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10255 		}
10256 		mtx_unlock(&sc->reg_lock);
10257 		if (rc != 0)
10258 			break;
10259 
10260 		lookup_type = G_DATALKPTYPE(data2);
10261 		port_num = G_DATAPORTNUM(data2);
10262 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10263 			/* Inner header VNI */
10264 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10265 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10266 			dip_hit = data2 & F_DATADIPHIT;
10267 			vlan_vld = 0;
10268 		} else {
10269 			vniy = 0;
10270 			dip_hit = 0;
10271 			vlan_vld = data2 & F_DATAVIDH2;
10272 			ivlan = G_VIDL(val);
10273 		}
10274 
10275 		ctl |= V_CTLXYBITSEL(1);
10276 		mtx_lock(&sc->reg_lock);
10277 		if (hw_off_limits(sc))
10278 			rc = ENXIO;
10279 		else {
10280 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10281 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10282 			tcamx = G_DMACH(val) << 32;
10283 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10284 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10285 		}
10286 		mtx_unlock(&sc->reg_lock);
10287 		if (rc != 0)
10288 			break;
10289 
10290 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10291 			/* Inner header VNI mask */
10292 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10293 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10294 		} else
10295 			vnix = 0;
10296 
10297 		if (tcamx & tcamy)
10298 			continue;
10299 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10300 
10301 		mtx_lock(&sc->reg_lock);
10302 		if (hw_off_limits(sc))
10303 			rc = ENXIO;
10304 		else {
10305 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10306 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10307 		}
10308 		mtx_unlock(&sc->reg_lock);
10309 		if (rc != 0)
10310 			break;
10311 
10312 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10313 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10314 			    "%012jx %06x %06x    -    -   %3c"
10315 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10316 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10317 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10318 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10319 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10320 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10321 		} else {
10322 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10323 			    "%012jx    -       -   ", i, addr[0], addr[1],
10324 			    addr[2], addr[3], addr[4], addr[5],
10325 			    (uintmax_t)mask);
10326 
10327 			if (vlan_vld)
10328 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10329 			else
10330 				sbuf_printf(sb, "  -    N     ");
10331 
10332 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10333 			    lookup_type ? 'I' : 'O', port_num,
10334 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10335 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10336 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10337 		}
10338 
10339 
10340 		if (cls_lo & F_T6_REPLICATE) {
10341 			struct fw_ldst_cmd ldst_cmd;
10342 
10343 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10344 			ldst_cmd.op_to_addrspace =
10345 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10346 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10347 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10348 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10349 			ldst_cmd.u.mps.rplc.fid_idx =
10350 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10351 				V_FW_LDST_CMD_IDX(i));
10352 
10353 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10354 			    "t6mps");
10355 			if (rc)
10356 				break;
10357 			if (hw_off_limits(sc))
10358 				rc = ENXIO;
10359 			else
10360 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10361 				    sizeof(ldst_cmd), &ldst_cmd);
10362 			end_synchronized_op(sc, 0);
10363 			if (rc != 0)
10364 				break;
10365 			else {
10366 				sbuf_printf(sb, " %08x %08x %08x %08x"
10367 				    " %08x %08x %08x %08x",
10368 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10369 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10370 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10371 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10372 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10373 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10374 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10375 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10376 			}
10377 		} else
10378 			sbuf_printf(sb, "%72s", "");
10379 
10380 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10381 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10382 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10383 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10384 	}
10385 
10386 	if (rc)
10387 		(void) sbuf_finish(sb);
10388 	else
10389 		rc = sbuf_finish(sb);
10390 	sbuf_delete(sb);
10391 
10392 	return (rc);
10393 }
10394 
10395 static int
10396 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10397 {
10398 	struct adapter *sc = arg1;
10399 	struct sbuf *sb;
10400 	int rc;
10401 	uint16_t mtus[NMTUS];
10402 
10403 	rc = 0;
10404 	mtx_lock(&sc->reg_lock);
10405 	if (hw_off_limits(sc))
10406 		rc = ENXIO;
10407 	else
10408 		t4_read_mtu_tbl(sc, mtus, NULL);
10409 	mtx_unlock(&sc->reg_lock);
10410 	if (rc != 0)
10411 		return (rc);
10412 
10413 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10414 	if (sb == NULL)
10415 		return (ENOMEM);
10416 
10417 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10418 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10419 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10420 	    mtus[14], mtus[15]);
10421 
10422 	rc = sbuf_finish(sb);
10423 	sbuf_delete(sb);
10424 
10425 	return (rc);
10426 }
10427 
10428 static int
10429 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10430 {
10431 	struct adapter *sc = arg1;
10432 	struct sbuf *sb;
10433 	int rc, i;
10434 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10435 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10436 	static const char *tx_stats[MAX_PM_NSTATS] = {
10437 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10438 		"Tx FIFO wait", NULL, "Tx latency"
10439 	};
10440 	static const char *rx_stats[MAX_PM_NSTATS] = {
10441 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10442 		"Rx FIFO wait", NULL, "Rx latency"
10443 	};
10444 
10445 	rc = 0;
10446 	mtx_lock(&sc->reg_lock);
10447 	if (hw_off_limits(sc))
10448 		rc = ENXIO;
10449 	else {
10450 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10451 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10452 	}
10453 	mtx_unlock(&sc->reg_lock);
10454 	if (rc != 0)
10455 		return (rc);
10456 
10457 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10458 	if (sb == NULL)
10459 		return (ENOMEM);
10460 
10461 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10462 	for (i = 0; i < 4; i++) {
10463 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10464 		    tx_cyc[i]);
10465 	}
10466 
10467 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10468 	for (i = 0; i < 4; i++) {
10469 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10470 		    rx_cyc[i]);
10471 	}
10472 
10473 	if (chip_id(sc) > CHELSIO_T5) {
10474 		sbuf_printf(sb,
10475 		    "\n              Total wait      Total occupancy");
10476 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10477 		    tx_cyc[i]);
10478 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10479 		    rx_cyc[i]);
10480 
10481 		i += 2;
10482 		MPASS(i < nitems(tx_stats));
10483 
10484 		sbuf_printf(sb,
10485 		    "\n                   Reads           Total wait");
10486 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10487 		    tx_cyc[i]);
10488 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10489 		    rx_cyc[i]);
10490 	}
10491 
10492 	rc = sbuf_finish(sb);
10493 	sbuf_delete(sb);
10494 
10495 	return (rc);
10496 }
10497 
10498 static int
10499 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10500 {
10501 	struct adapter *sc = arg1;
10502 	struct sbuf *sb;
10503 	int rc;
10504 	struct tp_rdma_stats stats;
10505 
10506 	rc = 0;
10507 	mtx_lock(&sc->reg_lock);
10508 	if (hw_off_limits(sc))
10509 		rc = ENXIO;
10510 	else
10511 		t4_tp_get_rdma_stats(sc, &stats, 0);
10512 	mtx_unlock(&sc->reg_lock);
10513 	if (rc != 0)
10514 		return (rc);
10515 
10516 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10517 	if (sb == NULL)
10518 		return (ENOMEM);
10519 
10520 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10521 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10522 
10523 	rc = sbuf_finish(sb);
10524 	sbuf_delete(sb);
10525 
10526 	return (rc);
10527 }
10528 
10529 static int
10530 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10531 {
10532 	struct adapter *sc = arg1;
10533 	struct sbuf *sb;
10534 	int rc;
10535 	struct tp_tcp_stats v4, v6;
10536 
10537 	rc = 0;
10538 	mtx_lock(&sc->reg_lock);
10539 	if (hw_off_limits(sc))
10540 		rc = ENXIO;
10541 	else
10542 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10543 	mtx_unlock(&sc->reg_lock);
10544 	if (rc != 0)
10545 		return (rc);
10546 
10547 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10548 	if (sb == NULL)
10549 		return (ENOMEM);
10550 
10551 	sbuf_printf(sb,
10552 	    "                                IP                 IPv6\n");
10553 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10554 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10555 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10556 	    v4.tcp_in_segs, v6.tcp_in_segs);
10557 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10558 	    v4.tcp_out_segs, v6.tcp_out_segs);
10559 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10560 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10561 
10562 	rc = sbuf_finish(sb);
10563 	sbuf_delete(sb);
10564 
10565 	return (rc);
10566 }
10567 
10568 static int
10569 sysctl_tids(SYSCTL_HANDLER_ARGS)
10570 {
10571 	struct adapter *sc = arg1;
10572 	struct sbuf *sb;
10573 	int rc;
10574 	uint32_t x, y;
10575 	struct tid_info *t = &sc->tids;
10576 
10577 	rc = 0;
10578 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10579 	if (sb == NULL)
10580 		return (ENOMEM);
10581 
10582 	if (t->natids) {
10583 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10584 		    t->atids_in_use);
10585 	}
10586 
10587 	if (t->nhpftids) {
10588 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10589 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10590 	}
10591 
10592 	if (t->ntids) {
10593 		bool hashen = false;
10594 
10595 		mtx_lock(&sc->reg_lock);
10596 		if (hw_off_limits(sc))
10597 			rc = ENXIO;
10598 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10599 			hashen = true;
10600 			if (chip_id(sc) <= CHELSIO_T5) {
10601 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10602 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10603 			} else {
10604 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10605 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10606 			}
10607 		}
10608 		mtx_unlock(&sc->reg_lock);
10609 		if (rc != 0)
10610 			goto done;
10611 
10612 		sbuf_printf(sb, "TID range: ");
10613 		if (hashen) {
10614 			if (x)
10615 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10616 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10617 		} else {
10618 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10619 			    t->ntids - 1);
10620 		}
10621 		sbuf_printf(sb, ", in use: %u\n",
10622 		    atomic_load_acq_int(&t->tids_in_use));
10623 	}
10624 
10625 	if (t->nstids) {
10626 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10627 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10628 	}
10629 
10630 	if (t->nftids) {
10631 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10632 		    t->ftid_end, t->ftids_in_use);
10633 	}
10634 
10635 	if (t->netids) {
10636 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10637 		    t->etid_base + t->netids - 1, t->etids_in_use);
10638 	}
10639 
10640 	mtx_lock(&sc->reg_lock);
10641 	if (hw_off_limits(sc))
10642 		rc = ENXIO;
10643 	else {
10644 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10645 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10646 	}
10647 	mtx_unlock(&sc->reg_lock);
10648 	if (rc != 0)
10649 		goto done;
10650 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10651 done:
10652 	if (rc == 0)
10653 		rc = sbuf_finish(sb);
10654 	else
10655 		(void)sbuf_finish(sb);
10656 	sbuf_delete(sb);
10657 
10658 	return (rc);
10659 }
10660 
10661 static int
10662 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10663 {
10664 	struct adapter *sc = arg1;
10665 	struct sbuf *sb;
10666 	int rc;
10667 	struct tp_err_stats stats;
10668 
10669 	rc = 0;
10670 	mtx_lock(&sc->reg_lock);
10671 	if (hw_off_limits(sc))
10672 		rc = ENXIO;
10673 	else
10674 		t4_tp_get_err_stats(sc, &stats, 0);
10675 	mtx_unlock(&sc->reg_lock);
10676 	if (rc != 0)
10677 		return (rc);
10678 
10679 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10680 	if (sb == NULL)
10681 		return (ENOMEM);
10682 
10683 	if (sc->chip_params->nchan > 2) {
10684 		sbuf_printf(sb, "                 channel 0  channel 1"
10685 		    "  channel 2  channel 3\n");
10686 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10687 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10688 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10689 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10690 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10691 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10692 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10693 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10694 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10695 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10696 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10697 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10698 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10699 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10700 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10701 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10702 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10703 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10704 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10705 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10706 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10707 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10708 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10709 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10710 	} else {
10711 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10712 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10713 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10714 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10715 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10716 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10717 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10718 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10719 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10720 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10721 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10722 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10723 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10724 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10725 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10726 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10727 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10728 	}
10729 
10730 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10731 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10732 
10733 	rc = sbuf_finish(sb);
10734 	sbuf_delete(sb);
10735 
10736 	return (rc);
10737 }
10738 
10739 static int
10740 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10741 {
10742 	struct adapter *sc = arg1;
10743 	struct sbuf *sb;
10744 	int rc;
10745 	struct tp_tnl_stats stats;
10746 
10747 	rc = 0;
10748 	mtx_lock(&sc->reg_lock);
10749 	if (hw_off_limits(sc))
10750 		rc = ENXIO;
10751 	else
10752 		t4_tp_get_tnl_stats(sc, &stats, 1);
10753 	mtx_unlock(&sc->reg_lock);
10754 	if (rc != 0)
10755 		return (rc);
10756 
10757 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10758 	if (sb == NULL)
10759 		return (ENOMEM);
10760 
10761 	if (sc->chip_params->nchan > 2) {
10762 		sbuf_printf(sb, "           channel 0  channel 1"
10763 		    "  channel 2  channel 3\n");
10764 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10765 		    stats.out_pkt[0], stats.out_pkt[1],
10766 		    stats.out_pkt[2], stats.out_pkt[3]);
10767 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10768 		    stats.in_pkt[0], stats.in_pkt[1],
10769 		    stats.in_pkt[2], stats.in_pkt[3]);
10770 	} else {
10771 		sbuf_printf(sb, "           channel 0  channel 1\n");
10772 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10773 		    stats.out_pkt[0], stats.out_pkt[1]);
10774 		sbuf_printf(sb, "InPkts:   %10u %10u",
10775 		    stats.in_pkt[0], stats.in_pkt[1]);
10776 	}
10777 
10778 	rc = sbuf_finish(sb);
10779 	sbuf_delete(sb);
10780 
10781 	return (rc);
10782 }
10783 
10784 static int
10785 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10786 {
10787 	struct adapter *sc = arg1;
10788 	struct tp_params *tpp = &sc->params.tp;
10789 	u_int mask;
10790 	int rc;
10791 
10792 	mask = tpp->la_mask >> 16;
10793 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10794 	if (rc != 0 || req->newptr == NULL)
10795 		return (rc);
10796 	if (mask > 0xffff)
10797 		return (EINVAL);
10798 	mtx_lock(&sc->reg_lock);
10799 	if (hw_off_limits(sc))
10800 		rc = ENXIO;
10801 	else {
10802 		tpp->la_mask = mask << 16;
10803 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10804 		    tpp->la_mask);
10805 	}
10806 	mtx_unlock(&sc->reg_lock);
10807 
10808 	return (rc);
10809 }
10810 
10811 struct field_desc {
10812 	const char *name;
10813 	u_int start;
10814 	u_int width;
10815 };
10816 
10817 static void
10818 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10819 {
10820 	char buf[32];
10821 	int line_size = 0;
10822 
10823 	while (f->name) {
10824 		uint64_t mask = (1ULL << f->width) - 1;
10825 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10826 		    ((uintmax_t)v >> f->start) & mask);
10827 
10828 		if (line_size + len >= 79) {
10829 			line_size = 8;
10830 			sbuf_printf(sb, "\n        ");
10831 		}
10832 		sbuf_printf(sb, "%s ", buf);
10833 		line_size += len + 1;
10834 		f++;
10835 	}
10836 	sbuf_printf(sb, "\n");
10837 }
10838 
10839 static const struct field_desc tp_la0[] = {
10840 	{ "RcfOpCodeOut", 60, 4 },
10841 	{ "State", 56, 4 },
10842 	{ "WcfState", 52, 4 },
10843 	{ "RcfOpcSrcOut", 50, 2 },
10844 	{ "CRxError", 49, 1 },
10845 	{ "ERxError", 48, 1 },
10846 	{ "SanityFailed", 47, 1 },
10847 	{ "SpuriousMsg", 46, 1 },
10848 	{ "FlushInputMsg", 45, 1 },
10849 	{ "FlushInputCpl", 44, 1 },
10850 	{ "RssUpBit", 43, 1 },
10851 	{ "RssFilterHit", 42, 1 },
10852 	{ "Tid", 32, 10 },
10853 	{ "InitTcb", 31, 1 },
10854 	{ "LineNumber", 24, 7 },
10855 	{ "Emsg", 23, 1 },
10856 	{ "EdataOut", 22, 1 },
10857 	{ "Cmsg", 21, 1 },
10858 	{ "CdataOut", 20, 1 },
10859 	{ "EreadPdu", 19, 1 },
10860 	{ "CreadPdu", 18, 1 },
10861 	{ "TunnelPkt", 17, 1 },
10862 	{ "RcfPeerFin", 16, 1 },
10863 	{ "RcfReasonOut", 12, 4 },
10864 	{ "TxCchannel", 10, 2 },
10865 	{ "RcfTxChannel", 8, 2 },
10866 	{ "RxEchannel", 6, 2 },
10867 	{ "RcfRxChannel", 5, 1 },
10868 	{ "RcfDataOutSrdy", 4, 1 },
10869 	{ "RxDvld", 3, 1 },
10870 	{ "RxOoDvld", 2, 1 },
10871 	{ "RxCongestion", 1, 1 },
10872 	{ "TxCongestion", 0, 1 },
10873 	{ NULL }
10874 };
10875 
10876 static const struct field_desc tp_la1[] = {
10877 	{ "CplCmdIn", 56, 8 },
10878 	{ "CplCmdOut", 48, 8 },
10879 	{ "ESynOut", 47, 1 },
10880 	{ "EAckOut", 46, 1 },
10881 	{ "EFinOut", 45, 1 },
10882 	{ "ERstOut", 44, 1 },
10883 	{ "SynIn", 43, 1 },
10884 	{ "AckIn", 42, 1 },
10885 	{ "FinIn", 41, 1 },
10886 	{ "RstIn", 40, 1 },
10887 	{ "DataIn", 39, 1 },
10888 	{ "DataInVld", 38, 1 },
10889 	{ "PadIn", 37, 1 },
10890 	{ "RxBufEmpty", 36, 1 },
10891 	{ "RxDdp", 35, 1 },
10892 	{ "RxFbCongestion", 34, 1 },
10893 	{ "TxFbCongestion", 33, 1 },
10894 	{ "TxPktSumSrdy", 32, 1 },
10895 	{ "RcfUlpType", 28, 4 },
10896 	{ "Eread", 27, 1 },
10897 	{ "Ebypass", 26, 1 },
10898 	{ "Esave", 25, 1 },
10899 	{ "Static0", 24, 1 },
10900 	{ "Cread", 23, 1 },
10901 	{ "Cbypass", 22, 1 },
10902 	{ "Csave", 21, 1 },
10903 	{ "CPktOut", 20, 1 },
10904 	{ "RxPagePoolFull", 18, 2 },
10905 	{ "RxLpbkPkt", 17, 1 },
10906 	{ "TxLpbkPkt", 16, 1 },
10907 	{ "RxVfValid", 15, 1 },
10908 	{ "SynLearned", 14, 1 },
10909 	{ "SetDelEntry", 13, 1 },
10910 	{ "SetInvEntry", 12, 1 },
10911 	{ "CpcmdDvld", 11, 1 },
10912 	{ "CpcmdSave", 10, 1 },
10913 	{ "RxPstructsFull", 8, 2 },
10914 	{ "EpcmdDvld", 7, 1 },
10915 	{ "EpcmdFlush", 6, 1 },
10916 	{ "EpcmdTrimPrefix", 5, 1 },
10917 	{ "EpcmdTrimPostfix", 4, 1 },
10918 	{ "ERssIp4Pkt", 3, 1 },
10919 	{ "ERssIp6Pkt", 2, 1 },
10920 	{ "ERssTcpUdpPkt", 1, 1 },
10921 	{ "ERssFceFipPkt", 0, 1 },
10922 	{ NULL }
10923 };
10924 
10925 static const struct field_desc tp_la2[] = {
10926 	{ "CplCmdIn", 56, 8 },
10927 	{ "MpsVfVld", 55, 1 },
10928 	{ "MpsPf", 52, 3 },
10929 	{ "MpsVf", 44, 8 },
10930 	{ "SynIn", 43, 1 },
10931 	{ "AckIn", 42, 1 },
10932 	{ "FinIn", 41, 1 },
10933 	{ "RstIn", 40, 1 },
10934 	{ "DataIn", 39, 1 },
10935 	{ "DataInVld", 38, 1 },
10936 	{ "PadIn", 37, 1 },
10937 	{ "RxBufEmpty", 36, 1 },
10938 	{ "RxDdp", 35, 1 },
10939 	{ "RxFbCongestion", 34, 1 },
10940 	{ "TxFbCongestion", 33, 1 },
10941 	{ "TxPktSumSrdy", 32, 1 },
10942 	{ "RcfUlpType", 28, 4 },
10943 	{ "Eread", 27, 1 },
10944 	{ "Ebypass", 26, 1 },
10945 	{ "Esave", 25, 1 },
10946 	{ "Static0", 24, 1 },
10947 	{ "Cread", 23, 1 },
10948 	{ "Cbypass", 22, 1 },
10949 	{ "Csave", 21, 1 },
10950 	{ "CPktOut", 20, 1 },
10951 	{ "RxPagePoolFull", 18, 2 },
10952 	{ "RxLpbkPkt", 17, 1 },
10953 	{ "TxLpbkPkt", 16, 1 },
10954 	{ "RxVfValid", 15, 1 },
10955 	{ "SynLearned", 14, 1 },
10956 	{ "SetDelEntry", 13, 1 },
10957 	{ "SetInvEntry", 12, 1 },
10958 	{ "CpcmdDvld", 11, 1 },
10959 	{ "CpcmdSave", 10, 1 },
10960 	{ "RxPstructsFull", 8, 2 },
10961 	{ "EpcmdDvld", 7, 1 },
10962 	{ "EpcmdFlush", 6, 1 },
10963 	{ "EpcmdTrimPrefix", 5, 1 },
10964 	{ "EpcmdTrimPostfix", 4, 1 },
10965 	{ "ERssIp4Pkt", 3, 1 },
10966 	{ "ERssIp6Pkt", 2, 1 },
10967 	{ "ERssTcpUdpPkt", 1, 1 },
10968 	{ "ERssFceFipPkt", 0, 1 },
10969 	{ NULL }
10970 };
10971 
10972 static void
10973 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10974 {
10975 
10976 	field_desc_show(sb, *p, tp_la0);
10977 }
10978 
10979 static void
10980 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10981 {
10982 
10983 	if (idx)
10984 		sbuf_printf(sb, "\n");
10985 	field_desc_show(sb, p[0], tp_la0);
10986 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10987 		field_desc_show(sb, p[1], tp_la0);
10988 }
10989 
10990 static void
10991 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10992 {
10993 
10994 	if (idx)
10995 		sbuf_printf(sb, "\n");
10996 	field_desc_show(sb, p[0], tp_la0);
10997 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10998 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
10999 }
11000 
11001 static int
11002 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11003 {
11004 	struct adapter *sc = arg1;
11005 	struct sbuf *sb;
11006 	uint64_t *buf, *p;
11007 	int rc;
11008 	u_int i, inc;
11009 	void (*show_func)(struct sbuf *, uint64_t *, int);
11010 
11011 	rc = 0;
11012 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11013 	if (sb == NULL)
11014 		return (ENOMEM);
11015 
11016 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11017 
11018 	mtx_lock(&sc->reg_lock);
11019 	if (hw_off_limits(sc))
11020 		rc = ENXIO;
11021 	else {
11022 		t4_tp_read_la(sc, buf, NULL);
11023 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11024 		case 2:
11025 			inc = 2;
11026 			show_func = tp_la_show2;
11027 			break;
11028 		case 3:
11029 			inc = 2;
11030 			show_func = tp_la_show3;
11031 			break;
11032 		default:
11033 			inc = 1;
11034 			show_func = tp_la_show;
11035 		}
11036 	}
11037 	mtx_unlock(&sc->reg_lock);
11038 	if (rc != 0)
11039 		goto done;
11040 
11041 	p = buf;
11042 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11043 		(*show_func)(sb, p, i);
11044 	rc = sbuf_finish(sb);
11045 done:
11046 	sbuf_delete(sb);
11047 	free(buf, M_CXGBE);
11048 	return (rc);
11049 }
11050 
11051 static int
11052 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11053 {
11054 	struct adapter *sc = arg1;
11055 	struct sbuf *sb;
11056 	int rc;
11057 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11058 
11059 	rc = 0;
11060 	mtx_lock(&sc->reg_lock);
11061 	if (hw_off_limits(sc))
11062 		rc = ENXIO;
11063 	else
11064 		t4_get_chan_txrate(sc, nrate, orate);
11065 	mtx_unlock(&sc->reg_lock);
11066 	if (rc != 0)
11067 		return (rc);
11068 
11069 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11070 	if (sb == NULL)
11071 		return (ENOMEM);
11072 
11073 	if (sc->chip_params->nchan > 2) {
11074 		sbuf_printf(sb, "              channel 0   channel 1"
11075 		    "   channel 2   channel 3\n");
11076 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11077 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11078 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11079 		    orate[0], orate[1], orate[2], orate[3]);
11080 	} else {
11081 		sbuf_printf(sb, "              channel 0   channel 1\n");
11082 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11083 		    nrate[0], nrate[1]);
11084 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11085 		    orate[0], orate[1]);
11086 	}
11087 
11088 	rc = sbuf_finish(sb);
11089 	sbuf_delete(sb);
11090 
11091 	return (rc);
11092 }
11093 
11094 static int
11095 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11096 {
11097 	struct adapter *sc = arg1;
11098 	struct sbuf *sb;
11099 	uint32_t *buf, *p;
11100 	int rc, i;
11101 
11102 	rc = 0;
11103 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11104 	if (sb == NULL)
11105 		return (ENOMEM);
11106 
11107 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11108 	    M_ZERO | M_WAITOK);
11109 
11110 	mtx_lock(&sc->reg_lock);
11111 	if (hw_off_limits(sc))
11112 		rc = ENXIO;
11113 	else
11114 		t4_ulprx_read_la(sc, buf);
11115 	mtx_unlock(&sc->reg_lock);
11116 	if (rc != 0)
11117 		goto done;
11118 
11119 	p = buf;
11120 	sbuf_printf(sb, "      Pcmd        Type   Message"
11121 	    "                Data");
11122 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11123 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11124 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11125 	}
11126 	rc = sbuf_finish(sb);
11127 done:
11128 	sbuf_delete(sb);
11129 	free(buf, M_CXGBE);
11130 	return (rc);
11131 }
11132 
11133 static int
11134 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11135 {
11136 	struct adapter *sc = arg1;
11137 	struct sbuf *sb;
11138 	int rc;
11139 	uint32_t cfg, s1, s2;
11140 
11141 	MPASS(chip_id(sc) >= CHELSIO_T5);
11142 
11143 	rc = 0;
11144 	mtx_lock(&sc->reg_lock);
11145 	if (hw_off_limits(sc))
11146 		rc = ENXIO;
11147 	else {
11148 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11149 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11150 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11151 	}
11152 	mtx_unlock(&sc->reg_lock);
11153 	if (rc != 0)
11154 		return (rc);
11155 
11156 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11157 	if (sb == NULL)
11158 		return (ENOMEM);
11159 
11160 	if (G_STATSOURCE_T5(cfg) == 7) {
11161 		int mode;
11162 
11163 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11164 		if (mode == 0)
11165 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11166 		else if (mode == 1)
11167 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11168 		else
11169 			sbuf_printf(sb, "unknown mode %d", mode);
11170 	}
11171 	rc = sbuf_finish(sb);
11172 	sbuf_delete(sb);
11173 
11174 	return (rc);
11175 }
11176 
11177 static int
11178 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11179 {
11180 	struct adapter *sc = arg1;
11181 	enum cpu_sets op = arg2;
11182 	cpuset_t cpuset;
11183 	struct sbuf *sb;
11184 	int i, rc;
11185 
11186 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11187 
11188 	CPU_ZERO(&cpuset);
11189 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11190 	if (rc != 0)
11191 		return (rc);
11192 
11193 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11194 	if (sb == NULL)
11195 		return (ENOMEM);
11196 
11197 	CPU_FOREACH(i)
11198 		sbuf_printf(sb, "%d ", i);
11199 	rc = sbuf_finish(sb);
11200 	sbuf_delete(sb);
11201 
11202 	return (rc);
11203 }
11204 
11205 static int
11206 sysctl_reset(SYSCTL_HANDLER_ARGS)
11207 {
11208 	struct adapter *sc = arg1;
11209 	u_int val;
11210 	int rc;
11211 
11212 	val = atomic_load_int(&sc->num_resets);
11213 	rc = sysctl_handle_int(oidp, &val, 0, req);
11214 	if (rc != 0 || req->newptr == NULL)
11215 		return (rc);
11216 
11217 	if (val == 0) {
11218 		/* Zero out the counter that tracks reset. */
11219 		atomic_store_int(&sc->num_resets, 0);
11220 		return (0);
11221 	}
11222 
11223 	if (val != 1)
11224 		return (EINVAL);	/* 0 or 1 are the only legal values */
11225 
11226 	if (hw_off_limits(sc))		/* harmless race */
11227 		return (EALREADY);
11228 
11229 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11230 	return (0);
11231 }
11232 
11233 #ifdef TCP_OFFLOAD
11234 static int
11235 sysctl_tls(SYSCTL_HANDLER_ARGS)
11236 {
11237 	struct adapter *sc = arg1;
11238 	int i, j, v, rc;
11239 	struct vi_info *vi;
11240 
11241 	v = sc->tt.tls;
11242 	rc = sysctl_handle_int(oidp, &v, 0, req);
11243 	if (rc != 0 || req->newptr == NULL)
11244 		return (rc);
11245 
11246 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11247 		return (ENOTSUP);
11248 
11249 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11250 	if (rc)
11251 		return (rc);
11252 	if (hw_off_limits(sc))
11253 		rc = ENXIO;
11254 	else {
11255 		sc->tt.tls = !!v;
11256 		for_each_port(sc, i) {
11257 			for_each_vi(sc->port[i], j, vi) {
11258 				if (vi->flags & VI_INIT_DONE)
11259 					t4_update_fl_bufsize(vi->ifp);
11260 			}
11261 		}
11262 	}
11263 	end_synchronized_op(sc, 0);
11264 
11265 	return (rc);
11266 
11267 }
11268 
11269 static void
11270 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11271 {
11272 	u_int rem = val % factor;
11273 
11274 	if (rem == 0)
11275 		snprintf(buf, len, "%u", val / factor);
11276 	else {
11277 		while (rem % 10 == 0)
11278 			rem /= 10;
11279 		snprintf(buf, len, "%u.%u", val / factor, rem);
11280 	}
11281 }
11282 
11283 static int
11284 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11285 {
11286 	struct adapter *sc = arg1;
11287 	char buf[16];
11288 	u_int res, re;
11289 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11290 
11291 	mtx_lock(&sc->reg_lock);
11292 	if (hw_off_limits(sc))
11293 		res = (u_int)-1;
11294 	else
11295 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11296 	mtx_unlock(&sc->reg_lock);
11297 	if (res == (u_int)-1)
11298 		return (ENXIO);
11299 
11300 	switch (arg2) {
11301 	case 0:
11302 		/* timer_tick */
11303 		re = G_TIMERRESOLUTION(res);
11304 		break;
11305 	case 1:
11306 		/* TCP timestamp tick */
11307 		re = G_TIMESTAMPRESOLUTION(res);
11308 		break;
11309 	case 2:
11310 		/* DACK tick */
11311 		re = G_DELAYEDACKRESOLUTION(res);
11312 		break;
11313 	default:
11314 		return (EDOOFUS);
11315 	}
11316 
11317 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11318 
11319 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11320 }
11321 
11322 static int
11323 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11324 {
11325 	struct adapter *sc = arg1;
11326 	int rc;
11327 	u_int dack_tmr, dack_re, v;
11328 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11329 
11330 	mtx_lock(&sc->reg_lock);
11331 	if (hw_off_limits(sc))
11332 		rc = ENXIO;
11333 	else {
11334 		rc = 0;
11335 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11336 		    A_TP_TIMER_RESOLUTION));
11337 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11338 	}
11339 	mtx_unlock(&sc->reg_lock);
11340 	if (rc != 0)
11341 		return (rc);
11342 
11343 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11344 
11345 	return (sysctl_handle_int(oidp, &v, 0, req));
11346 }
11347 
11348 static int
11349 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11350 {
11351 	struct adapter *sc = arg1;
11352 	int rc, reg = arg2;
11353 	u_int tre;
11354 	u_long tp_tick_us, v;
11355 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11356 
11357 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11358 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11359 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11360 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11361 
11362 	mtx_lock(&sc->reg_lock);
11363 	if (hw_off_limits(sc))
11364 		rc = ENXIO;
11365 	else {
11366 		rc = 0;
11367 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11368 		tp_tick_us = (cclk_ps << tre) / 1000000;
11369 		if (reg == A_TP_INIT_SRTT)
11370 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11371 		else
11372 			v = tp_tick_us * t4_read_reg(sc, reg);
11373 	}
11374 	mtx_unlock(&sc->reg_lock);
11375 	if (rc != 0)
11376 		return (rc);
11377 	else
11378 		return (sysctl_handle_long(oidp, &v, 0, req));
11379 }
11380 
11381 /*
11382  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11383  * passed to this function.
11384  */
11385 static int
11386 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11387 {
11388 	struct adapter *sc = arg1;
11389 	int rc, idx = arg2;
11390 	u_int v;
11391 
11392 	MPASS(idx >= 0 && idx <= 24);
11393 
11394 	mtx_lock(&sc->reg_lock);
11395 	if (hw_off_limits(sc))
11396 		rc = ENXIO;
11397 	else {
11398 		rc = 0;
11399 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11400 	}
11401 	mtx_unlock(&sc->reg_lock);
11402 	if (rc != 0)
11403 		return (rc);
11404 	else
11405 		return (sysctl_handle_int(oidp, &v, 0, req));
11406 }
11407 
11408 static int
11409 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11410 {
11411 	struct adapter *sc = arg1;
11412 	int rc, idx = arg2;
11413 	u_int shift, v, r;
11414 
11415 	MPASS(idx >= 0 && idx < 16);
11416 
11417 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11418 	shift = (idx & 3) << 3;
11419 	mtx_lock(&sc->reg_lock);
11420 	if (hw_off_limits(sc))
11421 		rc = ENXIO;
11422 	else {
11423 		rc = 0;
11424 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11425 	}
11426 	mtx_unlock(&sc->reg_lock);
11427 	if (rc != 0)
11428 		return (rc);
11429 	else
11430 		return (sysctl_handle_int(oidp, &v, 0, req));
11431 }
11432 
11433 static int
11434 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11435 {
11436 	struct vi_info *vi = arg1;
11437 	struct adapter *sc = vi->adapter;
11438 	int idx, rc, i;
11439 	struct sge_ofld_rxq *ofld_rxq;
11440 	uint8_t v;
11441 
11442 	idx = vi->ofld_tmr_idx;
11443 
11444 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11445 	if (rc != 0 || req->newptr == NULL)
11446 		return (rc);
11447 
11448 	if (idx < 0 || idx >= SGE_NTIMERS)
11449 		return (EINVAL);
11450 
11451 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11452 	    "t4otmr");
11453 	if (rc)
11454 		return (rc);
11455 
11456 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11457 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11458 #ifdef atomic_store_rel_8
11459 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11460 #else
11461 		ofld_rxq->iq.intr_params = v;
11462 #endif
11463 	}
11464 	vi->ofld_tmr_idx = idx;
11465 
11466 	end_synchronized_op(sc, LOCK_HELD);
11467 	return (0);
11468 }
11469 
11470 static int
11471 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11472 {
11473 	struct vi_info *vi = arg1;
11474 	struct adapter *sc = vi->adapter;
11475 	int idx, rc;
11476 
11477 	idx = vi->ofld_pktc_idx;
11478 
11479 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11480 	if (rc != 0 || req->newptr == NULL)
11481 		return (rc);
11482 
11483 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11484 		return (EINVAL);
11485 
11486 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11487 	    "t4opktc");
11488 	if (rc)
11489 		return (rc);
11490 
11491 	if (vi->flags & VI_INIT_DONE)
11492 		rc = EBUSY; /* cannot be changed once the queues are created */
11493 	else
11494 		vi->ofld_pktc_idx = idx;
11495 
11496 	end_synchronized_op(sc, LOCK_HELD);
11497 	return (rc);
11498 }
11499 #endif
11500 
11501 static int
11502 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11503 {
11504 	int rc;
11505 
11506 	if (cntxt->cid > M_CTXTQID)
11507 		return (EINVAL);
11508 
11509 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11510 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11511 		return (EINVAL);
11512 
11513 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11514 	if (rc)
11515 		return (rc);
11516 
11517 	if (hw_off_limits(sc)) {
11518 		rc = ENXIO;
11519 		goto done;
11520 	}
11521 
11522 	if (sc->flags & FW_OK) {
11523 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11524 		    &cntxt->data[0]);
11525 		if (rc == 0)
11526 			goto done;
11527 	}
11528 
11529 	/*
11530 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11531 	 * the backdoor.
11532 	 */
11533 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11534 done:
11535 	end_synchronized_op(sc, 0);
11536 	return (rc);
11537 }
11538 
11539 static int
11540 load_fw(struct adapter *sc, struct t4_data *fw)
11541 {
11542 	int rc;
11543 	uint8_t *fw_data;
11544 
11545 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11546 	if (rc)
11547 		return (rc);
11548 
11549 	if (hw_off_limits(sc)) {
11550 		rc = ENXIO;
11551 		goto done;
11552 	}
11553 
11554 	/*
11555 	 * The firmware, with the sole exception of the memory parity error
11556 	 * handler, runs from memory and not flash.  It is almost always safe to
11557 	 * install a new firmware on a running system.  Just set bit 1 in
11558 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11559 	 */
11560 	if (sc->flags & FULL_INIT_DONE &&
11561 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11562 		rc = EBUSY;
11563 		goto done;
11564 	}
11565 
11566 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11567 
11568 	rc = copyin(fw->data, fw_data, fw->len);
11569 	if (rc == 0)
11570 		rc = -t4_load_fw(sc, fw_data, fw->len);
11571 
11572 	free(fw_data, M_CXGBE);
11573 done:
11574 	end_synchronized_op(sc, 0);
11575 	return (rc);
11576 }
11577 
11578 static int
11579 load_cfg(struct adapter *sc, struct t4_data *cfg)
11580 {
11581 	int rc;
11582 	uint8_t *cfg_data = NULL;
11583 
11584 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11585 	if (rc)
11586 		return (rc);
11587 
11588 	if (hw_off_limits(sc)) {
11589 		rc = ENXIO;
11590 		goto done;
11591 	}
11592 
11593 	if (cfg->len == 0) {
11594 		/* clear */
11595 		rc = -t4_load_cfg(sc, NULL, 0);
11596 		goto done;
11597 	}
11598 
11599 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11600 
11601 	rc = copyin(cfg->data, cfg_data, cfg->len);
11602 	if (rc == 0)
11603 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11604 
11605 	free(cfg_data, M_CXGBE);
11606 done:
11607 	end_synchronized_op(sc, 0);
11608 	return (rc);
11609 }
11610 
11611 static int
11612 load_boot(struct adapter *sc, struct t4_bootrom *br)
11613 {
11614 	int rc;
11615 	uint8_t *br_data = NULL;
11616 	u_int offset;
11617 
11618 	if (br->len > 1024 * 1024)
11619 		return (EFBIG);
11620 
11621 	if (br->pf_offset == 0) {
11622 		/* pfidx */
11623 		if (br->pfidx_addr > 7)
11624 			return (EINVAL);
11625 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11626 		    A_PCIE_PF_EXPROM_OFST)));
11627 	} else if (br->pf_offset == 1) {
11628 		/* offset */
11629 		offset = G_OFFSET(br->pfidx_addr);
11630 	} else {
11631 		return (EINVAL);
11632 	}
11633 
11634 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11635 	if (rc)
11636 		return (rc);
11637 
11638 	if (hw_off_limits(sc)) {
11639 		rc = ENXIO;
11640 		goto done;
11641 	}
11642 
11643 	if (br->len == 0) {
11644 		/* clear */
11645 		rc = -t4_load_boot(sc, NULL, offset, 0);
11646 		goto done;
11647 	}
11648 
11649 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11650 
11651 	rc = copyin(br->data, br_data, br->len);
11652 	if (rc == 0)
11653 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11654 
11655 	free(br_data, M_CXGBE);
11656 done:
11657 	end_synchronized_op(sc, 0);
11658 	return (rc);
11659 }
11660 
11661 static int
11662 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11663 {
11664 	int rc;
11665 	uint8_t *bc_data = NULL;
11666 
11667 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11668 	if (rc)
11669 		return (rc);
11670 
11671 	if (hw_off_limits(sc)) {
11672 		rc = ENXIO;
11673 		goto done;
11674 	}
11675 
11676 	if (bc->len == 0) {
11677 		/* clear */
11678 		rc = -t4_load_bootcfg(sc, NULL, 0);
11679 		goto done;
11680 	}
11681 
11682 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11683 
11684 	rc = copyin(bc->data, bc_data, bc->len);
11685 	if (rc == 0)
11686 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11687 
11688 	free(bc_data, M_CXGBE);
11689 done:
11690 	end_synchronized_op(sc, 0);
11691 	return (rc);
11692 }
11693 
11694 static int
11695 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11696 {
11697 	int rc;
11698 	struct cudbg_init *cudbg;
11699 	void *handle, *buf;
11700 
11701 	/* buf is large, don't block if no memory is available */
11702 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11703 	if (buf == NULL)
11704 		return (ENOMEM);
11705 
11706 	handle = cudbg_alloc_handle();
11707 	if (handle == NULL) {
11708 		rc = ENOMEM;
11709 		goto done;
11710 	}
11711 
11712 	cudbg = cudbg_get_init(handle);
11713 	cudbg->adap = sc;
11714 	cudbg->print = (cudbg_print_cb)printf;
11715 
11716 #ifndef notyet
11717 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11718 	    __func__, dump->wr_flash, dump->len, dump->data);
11719 #endif
11720 
11721 	if (dump->wr_flash)
11722 		cudbg->use_flash = 1;
11723 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11724 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11725 
11726 	rc = cudbg_collect(handle, buf, &dump->len);
11727 	if (rc != 0)
11728 		goto done;
11729 
11730 	rc = copyout(buf, dump->data, dump->len);
11731 done:
11732 	cudbg_free_handle(handle);
11733 	free(buf, M_CXGBE);
11734 	return (rc);
11735 }
11736 
11737 static void
11738 free_offload_policy(struct t4_offload_policy *op)
11739 {
11740 	struct offload_rule *r;
11741 	int i;
11742 
11743 	if (op == NULL)
11744 		return;
11745 
11746 	r = &op->rule[0];
11747 	for (i = 0; i < op->nrules; i++, r++) {
11748 		free(r->bpf_prog.bf_insns, M_CXGBE);
11749 	}
11750 	free(op->rule, M_CXGBE);
11751 	free(op, M_CXGBE);
11752 }
11753 
11754 static int
11755 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11756 {
11757 	int i, rc, len;
11758 	struct t4_offload_policy *op, *old;
11759 	struct bpf_program *bf;
11760 	const struct offload_settings *s;
11761 	struct offload_rule *r;
11762 	void *u;
11763 
11764 	if (!is_offload(sc))
11765 		return (ENODEV);
11766 
11767 	if (uop->nrules == 0) {
11768 		/* Delete installed policies. */
11769 		op = NULL;
11770 		goto set_policy;
11771 	} else if (uop->nrules > 256) { /* arbitrary */
11772 		return (E2BIG);
11773 	}
11774 
11775 	/* Copy userspace offload policy to kernel */
11776 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11777 	op->nrules = uop->nrules;
11778 	len = op->nrules * sizeof(struct offload_rule);
11779 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11780 	rc = copyin(uop->rule, op->rule, len);
11781 	if (rc) {
11782 		free(op->rule, M_CXGBE);
11783 		free(op, M_CXGBE);
11784 		return (rc);
11785 	}
11786 
11787 	r = &op->rule[0];
11788 	for (i = 0; i < op->nrules; i++, r++) {
11789 
11790 		/* Validate open_type */
11791 		if (r->open_type != OPEN_TYPE_LISTEN &&
11792 		    r->open_type != OPEN_TYPE_ACTIVE &&
11793 		    r->open_type != OPEN_TYPE_PASSIVE &&
11794 		    r->open_type != OPEN_TYPE_DONTCARE) {
11795 error:
11796 			/*
11797 			 * Rules 0 to i have malloc'd filters that need to be
11798 			 * freed.  Rules i+1 to nrules have userspace pointers
11799 			 * and should be left alone.
11800 			 */
11801 			op->nrules = i;
11802 			free_offload_policy(op);
11803 			return (rc);
11804 		}
11805 
11806 		/* Validate settings */
11807 		s = &r->settings;
11808 		if ((s->offload != 0 && s->offload != 1) ||
11809 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11810 		    s->sched_class < -1 ||
11811 		    s->sched_class >= sc->params.nsched_cls) {
11812 			rc = EINVAL;
11813 			goto error;
11814 		}
11815 
11816 		bf = &r->bpf_prog;
11817 		u = bf->bf_insns;	/* userspace ptr */
11818 		bf->bf_insns = NULL;
11819 		if (bf->bf_len == 0) {
11820 			/* legal, matches everything */
11821 			continue;
11822 		}
11823 		len = bf->bf_len * sizeof(*bf->bf_insns);
11824 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11825 		rc = copyin(u, bf->bf_insns, len);
11826 		if (rc != 0)
11827 			goto error;
11828 
11829 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11830 			rc = EINVAL;
11831 			goto error;
11832 		}
11833 	}
11834 set_policy:
11835 	rw_wlock(&sc->policy_lock);
11836 	old = sc->policy;
11837 	sc->policy = op;
11838 	rw_wunlock(&sc->policy_lock);
11839 	free_offload_policy(old);
11840 
11841 	return (0);
11842 }
11843 
11844 #define MAX_READ_BUF_SIZE (128 * 1024)
11845 static int
11846 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11847 {
11848 	uint32_t addr, remaining, n;
11849 	uint32_t *buf;
11850 	int rc;
11851 	uint8_t *dst;
11852 
11853 	mtx_lock(&sc->reg_lock);
11854 	if (hw_off_limits(sc))
11855 		rc = ENXIO;
11856 	else
11857 		rc = validate_mem_range(sc, mr->addr, mr->len);
11858 	mtx_unlock(&sc->reg_lock);
11859 	if (rc != 0)
11860 		return (rc);
11861 
11862 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11863 	addr = mr->addr;
11864 	remaining = mr->len;
11865 	dst = (void *)mr->data;
11866 
11867 	while (remaining) {
11868 		n = min(remaining, MAX_READ_BUF_SIZE);
11869 		mtx_lock(&sc->reg_lock);
11870 		if (hw_off_limits(sc))
11871 			rc = ENXIO;
11872 		else
11873 			read_via_memwin(sc, 2, addr, buf, n);
11874 		mtx_unlock(&sc->reg_lock);
11875 		if (rc != 0)
11876 			break;
11877 
11878 		rc = copyout(buf, dst, n);
11879 		if (rc != 0)
11880 			break;
11881 
11882 		dst += n;
11883 		remaining -= n;
11884 		addr += n;
11885 	}
11886 
11887 	free(buf, M_CXGBE);
11888 	return (rc);
11889 }
11890 #undef MAX_READ_BUF_SIZE
11891 
11892 static int
11893 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11894 {
11895 	int rc;
11896 
11897 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11898 		return (EINVAL);
11899 
11900 	if (i2cd->len > sizeof(i2cd->data))
11901 		return (EFBIG);
11902 
11903 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11904 	if (rc)
11905 		return (rc);
11906 	if (hw_off_limits(sc))
11907 		rc = ENXIO;
11908 	else
11909 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11910 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11911 	end_synchronized_op(sc, 0);
11912 
11913 	return (rc);
11914 }
11915 
11916 static int
11917 clear_stats(struct adapter *sc, u_int port_id)
11918 {
11919 	int i, v, chan_map;
11920 	struct port_info *pi;
11921 	struct vi_info *vi;
11922 	struct sge_rxq *rxq;
11923 	struct sge_txq *txq;
11924 	struct sge_wrq *wrq;
11925 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11926 	struct sge_ofld_txq *ofld_txq;
11927 #endif
11928 #ifdef TCP_OFFLOAD
11929 	struct sge_ofld_rxq *ofld_rxq;
11930 #endif
11931 
11932 	if (port_id >= sc->params.nports)
11933 		return (EINVAL);
11934 	pi = sc->port[port_id];
11935 	if (pi == NULL)
11936 		return (EIO);
11937 
11938 	mtx_lock(&sc->reg_lock);
11939 	if (!hw_off_limits(sc)) {
11940 		/* MAC stats */
11941 		t4_clr_port_stats(sc, pi->tx_chan);
11942 		if (is_t6(sc)) {
11943 			if (pi->fcs_reg != -1)
11944 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11945 			else
11946 				pi->stats.rx_fcs_err = 0;
11947 		}
11948 		for_each_vi(pi, v, vi) {
11949 			if (vi->flags & VI_INIT_DONE)
11950 				t4_clr_vi_stats(sc, vi->vin);
11951 		}
11952 		chan_map = pi->rx_e_chan_map;
11953 		v = 0;	/* reuse */
11954 		while (chan_map) {
11955 			i = ffs(chan_map) - 1;
11956 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11957 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11958 			chan_map &= ~(1 << i);
11959 		}
11960 	}
11961 	mtx_unlock(&sc->reg_lock);
11962 	pi->tx_parse_error = 0;
11963 	pi->tnl_cong_drops = 0;
11964 
11965 	/*
11966 	 * Since this command accepts a port, clear stats for
11967 	 * all VIs on this port.
11968 	 */
11969 	for_each_vi(pi, v, vi) {
11970 		if (vi->flags & VI_INIT_DONE) {
11971 
11972 			for_each_rxq(vi, i, rxq) {
11973 #if defined(INET) || defined(INET6)
11974 				rxq->lro.lro_queued = 0;
11975 				rxq->lro.lro_flushed = 0;
11976 #endif
11977 				rxq->rxcsum = 0;
11978 				rxq->vlan_extraction = 0;
11979 				rxq->vxlan_rxcsum = 0;
11980 
11981 				rxq->fl.cl_allocated = 0;
11982 				rxq->fl.cl_recycled = 0;
11983 				rxq->fl.cl_fast_recycled = 0;
11984 			}
11985 
11986 			for_each_txq(vi, i, txq) {
11987 				txq->txcsum = 0;
11988 				txq->tso_wrs = 0;
11989 				txq->vlan_insertion = 0;
11990 				txq->imm_wrs = 0;
11991 				txq->sgl_wrs = 0;
11992 				txq->txpkt_wrs = 0;
11993 				txq->txpkts0_wrs = 0;
11994 				txq->txpkts1_wrs = 0;
11995 				txq->txpkts0_pkts = 0;
11996 				txq->txpkts1_pkts = 0;
11997 				txq->txpkts_flush = 0;
11998 				txq->raw_wrs = 0;
11999 				txq->vxlan_tso_wrs = 0;
12000 				txq->vxlan_txcsum = 0;
12001 				txq->kern_tls_records = 0;
12002 				txq->kern_tls_short = 0;
12003 				txq->kern_tls_partial = 0;
12004 				txq->kern_tls_full = 0;
12005 				txq->kern_tls_octets = 0;
12006 				txq->kern_tls_waste = 0;
12007 				txq->kern_tls_options = 0;
12008 				txq->kern_tls_header = 0;
12009 				txq->kern_tls_fin = 0;
12010 				txq->kern_tls_fin_short = 0;
12011 				txq->kern_tls_cbc = 0;
12012 				txq->kern_tls_gcm = 0;
12013 				mp_ring_reset_stats(txq->r);
12014 			}
12015 
12016 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12017 			for_each_ofld_txq(vi, i, ofld_txq) {
12018 				ofld_txq->wrq.tx_wrs_direct = 0;
12019 				ofld_txq->wrq.tx_wrs_copied = 0;
12020 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12021 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12022 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12023 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12024 				counter_u64_zero(ofld_txq->tx_aio_octets);
12025 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12026 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12027 			}
12028 #endif
12029 #ifdef TCP_OFFLOAD
12030 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12031 				ofld_rxq->fl.cl_allocated = 0;
12032 				ofld_rxq->fl.cl_recycled = 0;
12033 				ofld_rxq->fl.cl_fast_recycled = 0;
12034 				counter_u64_zero(
12035 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12036 				counter_u64_zero(
12037 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12038 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12039 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12040 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12041 				ofld_rxq->rx_iscsi_fl_octets = 0;
12042 				ofld_rxq->rx_aio_ddp_jobs = 0;
12043 				ofld_rxq->rx_aio_ddp_octets = 0;
12044 				ofld_rxq->rx_toe_tls_records = 0;
12045 				ofld_rxq->rx_toe_tls_octets = 0;
12046 				ofld_rxq->rx_toe_ddp_octets = 0;
12047 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12048 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12049 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12050 			}
12051 #endif
12052 
12053 			if (IS_MAIN_VI(vi)) {
12054 				wrq = &sc->sge.ctrlq[pi->port_id];
12055 				wrq->tx_wrs_direct = 0;
12056 				wrq->tx_wrs_copied = 0;
12057 			}
12058 		}
12059 	}
12060 
12061 	return (0);
12062 }
12063 
12064 static int
12065 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12066 {
12067 #ifdef INET6
12068 	struct in6_addr in6;
12069 
12070 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12071 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12072 		return (0);
12073 	else
12074 		return (EIO);
12075 #else
12076 	return (ENOTSUP);
12077 #endif
12078 }
12079 
12080 static int
12081 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12082 {
12083 #ifdef INET6
12084 	struct in6_addr in6;
12085 
12086 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12087 	return (t4_release_clip_addr(sc, &in6));
12088 #else
12089 	return (ENOTSUP);
12090 #endif
12091 }
12092 
12093 int
12094 t4_os_find_pci_capability(struct adapter *sc, int cap)
12095 {
12096 	int i;
12097 
12098 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12099 }
12100 
12101 int
12102 t4_os_pci_save_state(struct adapter *sc)
12103 {
12104 	device_t dev;
12105 	struct pci_devinfo *dinfo;
12106 
12107 	dev = sc->dev;
12108 	dinfo = device_get_ivars(dev);
12109 
12110 	pci_cfg_save(dev, dinfo, 0);
12111 	return (0);
12112 }
12113 
12114 int
12115 t4_os_pci_restore_state(struct adapter *sc)
12116 {
12117 	device_t dev;
12118 	struct pci_devinfo *dinfo;
12119 
12120 	dev = sc->dev;
12121 	dinfo = device_get_ivars(dev);
12122 
12123 	pci_cfg_restore(dev, dinfo);
12124 	return (0);
12125 }
12126 
12127 void
12128 t4_os_portmod_changed(struct port_info *pi)
12129 {
12130 	struct adapter *sc = pi->adapter;
12131 	struct vi_info *vi;
12132 	if_t ifp;
12133 	static const char *mod_str[] = {
12134 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12135 	};
12136 
12137 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12138 	    ("%s: port_type %u", __func__, pi->port_type));
12139 
12140 	vi = &pi->vi[0];
12141 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12142 		PORT_LOCK(pi);
12143 		build_medialist(pi);
12144 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12145 			fixup_link_config(pi);
12146 			apply_link_config(pi);
12147 		}
12148 		PORT_UNLOCK(pi);
12149 		end_synchronized_op(sc, LOCK_HELD);
12150 	}
12151 
12152 	ifp = vi->ifp;
12153 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12154 		if_printf(ifp, "transceiver unplugged.\n");
12155 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12156 		if_printf(ifp, "unknown transceiver inserted.\n");
12157 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12158 		if_printf(ifp, "unsupported transceiver inserted.\n");
12159 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12160 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12161 		    port_top_speed(pi), mod_str[pi->mod_type]);
12162 	} else {
12163 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12164 		    pi->mod_type);
12165 	}
12166 }
12167 
12168 void
12169 t4_os_link_changed(struct port_info *pi)
12170 {
12171 	struct vi_info *vi;
12172 	if_t ifp;
12173 	struct link_config *lc = &pi->link_cfg;
12174 	struct adapter *sc = pi->adapter;
12175 	int v;
12176 
12177 	PORT_LOCK_ASSERT_OWNED(pi);
12178 
12179 	if (is_t6(sc)) {
12180 		if (lc->link_ok) {
12181 			if (lc->speed > 25000 ||
12182 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12183 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12184 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12185 			} else {
12186 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12187 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12188 			}
12189 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12190 			pi->stats.rx_fcs_err = 0;
12191 		} else {
12192 			pi->fcs_reg = -1;
12193 		}
12194 	} else {
12195 		MPASS(pi->fcs_reg != -1);
12196 		MPASS(pi->fcs_base == 0);
12197 	}
12198 
12199 	for_each_vi(pi, v, vi) {
12200 		ifp = vi->ifp;
12201 		if (ifp == NULL || IS_DETACHING(vi))
12202 			continue;
12203 
12204 		if (lc->link_ok) {
12205 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12206 			if_link_state_change(ifp, LINK_STATE_UP);
12207 		} else {
12208 			if_link_state_change(ifp, LINK_STATE_DOWN);
12209 		}
12210 	}
12211 }
12212 
12213 void
12214 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12215 {
12216 	struct adapter *sc;
12217 
12218 	sx_slock(&t4_list_lock);
12219 	SLIST_FOREACH(sc, &t4_list, link) {
12220 		/*
12221 		 * func should not make any assumptions about what state sc is
12222 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12223 		 */
12224 		func(sc, arg);
12225 	}
12226 	sx_sunlock(&t4_list_lock);
12227 }
12228 
12229 static int
12230 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12231     struct thread *td)
12232 {
12233 	int rc;
12234 	struct adapter *sc = dev->si_drv1;
12235 
12236 	rc = priv_check(td, PRIV_DRIVER);
12237 	if (rc != 0)
12238 		return (rc);
12239 
12240 	switch (cmd) {
12241 	case CHELSIO_T4_GETREG: {
12242 		struct t4_reg *edata = (struct t4_reg *)data;
12243 
12244 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12245 			return (EFAULT);
12246 
12247 		mtx_lock(&sc->reg_lock);
12248 		if (hw_off_limits(sc))
12249 			rc = ENXIO;
12250 		else if (edata->size == 4)
12251 			edata->val = t4_read_reg(sc, edata->addr);
12252 		else if (edata->size == 8)
12253 			edata->val = t4_read_reg64(sc, edata->addr);
12254 		else
12255 			rc = EINVAL;
12256 		mtx_unlock(&sc->reg_lock);
12257 
12258 		break;
12259 	}
12260 	case CHELSIO_T4_SETREG: {
12261 		struct t4_reg *edata = (struct t4_reg *)data;
12262 
12263 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12264 			return (EFAULT);
12265 
12266 		mtx_lock(&sc->reg_lock);
12267 		if (hw_off_limits(sc))
12268 			rc = ENXIO;
12269 		else if (edata->size == 4) {
12270 			if (edata->val & 0xffffffff00000000)
12271 				rc = EINVAL;
12272 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12273 		} else if (edata->size == 8)
12274 			t4_write_reg64(sc, edata->addr, edata->val);
12275 		else
12276 			rc = EINVAL;
12277 		mtx_unlock(&sc->reg_lock);
12278 
12279 		break;
12280 	}
12281 	case CHELSIO_T4_REGDUMP: {
12282 		struct t4_regdump *regs = (struct t4_regdump *)data;
12283 		int reglen = t4_get_regs_len(sc);
12284 		uint8_t *buf;
12285 
12286 		if (regs->len < reglen) {
12287 			regs->len = reglen; /* hint to the caller */
12288 			return (ENOBUFS);
12289 		}
12290 
12291 		regs->len = reglen;
12292 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12293 		mtx_lock(&sc->reg_lock);
12294 		if (hw_off_limits(sc))
12295 			rc = ENXIO;
12296 		else
12297 			get_regs(sc, regs, buf);
12298 		mtx_unlock(&sc->reg_lock);
12299 		if (rc == 0)
12300 			rc = copyout(buf, regs->data, reglen);
12301 		free(buf, M_CXGBE);
12302 		break;
12303 	}
12304 	case CHELSIO_T4_GET_FILTER_MODE:
12305 		rc = get_filter_mode(sc, (uint32_t *)data);
12306 		break;
12307 	case CHELSIO_T4_SET_FILTER_MODE:
12308 		rc = set_filter_mode(sc, *(uint32_t *)data);
12309 		break;
12310 	case CHELSIO_T4_SET_FILTER_MASK:
12311 		rc = set_filter_mask(sc, *(uint32_t *)data);
12312 		break;
12313 	case CHELSIO_T4_GET_FILTER:
12314 		rc = get_filter(sc, (struct t4_filter *)data);
12315 		break;
12316 	case CHELSIO_T4_SET_FILTER:
12317 		rc = set_filter(sc, (struct t4_filter *)data);
12318 		break;
12319 	case CHELSIO_T4_DEL_FILTER:
12320 		rc = del_filter(sc, (struct t4_filter *)data);
12321 		break;
12322 	case CHELSIO_T4_GET_SGE_CONTEXT:
12323 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12324 		break;
12325 	case CHELSIO_T4_LOAD_FW:
12326 		rc = load_fw(sc, (struct t4_data *)data);
12327 		break;
12328 	case CHELSIO_T4_GET_MEM:
12329 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12330 		break;
12331 	case CHELSIO_T4_GET_I2C:
12332 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12333 		break;
12334 	case CHELSIO_T4_CLEAR_STATS:
12335 		rc = clear_stats(sc, *(uint32_t *)data);
12336 		break;
12337 	case CHELSIO_T4_SCHED_CLASS:
12338 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12339 		break;
12340 	case CHELSIO_T4_SCHED_QUEUE:
12341 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12342 		break;
12343 	case CHELSIO_T4_GET_TRACER:
12344 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12345 		break;
12346 	case CHELSIO_T4_SET_TRACER:
12347 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12348 		break;
12349 	case CHELSIO_T4_LOAD_CFG:
12350 		rc = load_cfg(sc, (struct t4_data *)data);
12351 		break;
12352 	case CHELSIO_T4_LOAD_BOOT:
12353 		rc = load_boot(sc, (struct t4_bootrom *)data);
12354 		break;
12355 	case CHELSIO_T4_LOAD_BOOTCFG:
12356 		rc = load_bootcfg(sc, (struct t4_data *)data);
12357 		break;
12358 	case CHELSIO_T4_CUDBG_DUMP:
12359 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12360 		break;
12361 	case CHELSIO_T4_SET_OFLD_POLICY:
12362 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12363 		break;
12364 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12365 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12366 		break;
12367 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12368 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12369 		break;
12370 	default:
12371 		rc = ENOTTY;
12372 	}
12373 
12374 	return (rc);
12375 }
12376 
12377 #ifdef TCP_OFFLOAD
12378 static int
12379 toe_capability(struct vi_info *vi, bool enable)
12380 {
12381 	int rc;
12382 	struct port_info *pi = vi->pi;
12383 	struct adapter *sc = pi->adapter;
12384 
12385 	ASSERT_SYNCHRONIZED_OP(sc);
12386 
12387 	if (!is_offload(sc))
12388 		return (ENODEV);
12389 	if (hw_off_limits(sc))
12390 		return (ENXIO);
12391 
12392 	if (enable) {
12393 #ifdef KERN_TLS
12394 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12395 			int i, j, n;
12396 			struct port_info *p;
12397 			struct vi_info *v;
12398 
12399 			/*
12400 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12401 			 * on any ifnet.
12402 			 */
12403 			n = 0;
12404 			for_each_port(sc, i) {
12405 				p = sc->port[i];
12406 				for_each_vi(p, j, v) {
12407 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12408 						CH_WARN(sc,
12409 						    "%s has NIC TLS enabled.\n",
12410 						    device_get_nameunit(v->dev));
12411 						n++;
12412 					}
12413 				}
12414 			}
12415 			if (n > 0) {
12416 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12417 				    "associated with this adapter before "
12418 				    "trying to enable TOE.\n");
12419 				return (EAGAIN);
12420 			}
12421 			rc = t6_config_kern_tls(sc, false);
12422 			if (rc)
12423 				return (rc);
12424 		}
12425 #endif
12426 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12427 			/* TOE is already enabled. */
12428 			return (0);
12429 		}
12430 
12431 		/*
12432 		 * We need the port's queues around so that we're able to send
12433 		 * and receive CPLs to/from the TOE even if the ifnet for this
12434 		 * port has never been UP'd administratively.
12435 		 */
12436 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12437 			return (rc);
12438 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12439 		    ((rc = vi_init(&pi->vi[0])) != 0))
12440 			return (rc);
12441 
12442 		if (isset(&sc->offload_map, pi->port_id)) {
12443 			/* TOE is enabled on another VI of this port. */
12444 			pi->uld_vis++;
12445 			return (0);
12446 		}
12447 
12448 		if (!uld_active(sc, ULD_TOM)) {
12449 			rc = t4_activate_uld(sc, ULD_TOM);
12450 			if (rc == EAGAIN) {
12451 				log(LOG_WARNING,
12452 				    "You must kldload t4_tom.ko before trying "
12453 				    "to enable TOE on a cxgbe interface.\n");
12454 			}
12455 			if (rc != 0)
12456 				return (rc);
12457 			KASSERT(sc->tom_softc != NULL,
12458 			    ("%s: TOM activated but softc NULL", __func__));
12459 			KASSERT(uld_active(sc, ULD_TOM),
12460 			    ("%s: TOM activated but flag not set", __func__));
12461 		}
12462 
12463 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12464 		if (!uld_active(sc, ULD_IWARP))
12465 			(void) t4_activate_uld(sc, ULD_IWARP);
12466 		if (!uld_active(sc, ULD_ISCSI))
12467 			(void) t4_activate_uld(sc, ULD_ISCSI);
12468 
12469 		pi->uld_vis++;
12470 		setbit(&sc->offload_map, pi->port_id);
12471 	} else {
12472 		pi->uld_vis--;
12473 
12474 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12475 			return (0);
12476 
12477 		KASSERT(uld_active(sc, ULD_TOM),
12478 		    ("%s: TOM never initialized?", __func__));
12479 		clrbit(&sc->offload_map, pi->port_id);
12480 	}
12481 
12482 	return (0);
12483 }
12484 
12485 /*
12486  * Add an upper layer driver to the global list.
12487  */
12488 int
12489 t4_register_uld(struct uld_info *ui, int id)
12490 {
12491 	int rc;
12492 
12493 	if (id < 0 || id > ULD_MAX)
12494 		return (EINVAL);
12495 	sx_xlock(&t4_uld_list_lock);
12496 	if (t4_uld_list[id] != NULL)
12497 		rc = EEXIST;
12498 	else {
12499 		t4_uld_list[id] = ui;
12500 		rc = 0;
12501 	}
12502 	sx_xunlock(&t4_uld_list_lock);
12503 	return (rc);
12504 }
12505 
12506 int
12507 t4_unregister_uld(struct uld_info *ui, int id)
12508 {
12509 
12510 	if (id < 0 || id > ULD_MAX)
12511 		return (EINVAL);
12512 	sx_xlock(&t4_uld_list_lock);
12513 	MPASS(t4_uld_list[id] == ui);
12514 	t4_uld_list[id] = NULL;
12515 	sx_xunlock(&t4_uld_list_lock);
12516 	return (0);
12517 }
12518 
12519 int
12520 t4_activate_uld(struct adapter *sc, int id)
12521 {
12522 	int rc;
12523 
12524 	ASSERT_SYNCHRONIZED_OP(sc);
12525 
12526 	if (id < 0 || id > ULD_MAX)
12527 		return (EINVAL);
12528 
12529 	/* Adapter needs to be initialized before any ULD can be activated. */
12530 	if (!(sc->flags & FULL_INIT_DONE)) {
12531 		rc = adapter_init(sc);
12532 		if (rc != 0)
12533 			return (rc);
12534 	}
12535 
12536 	sx_slock(&t4_uld_list_lock);
12537 	if (t4_uld_list[id] == NULL)
12538 		rc = EAGAIN;	/* load the KLD with this ULD and try again. */
12539 	else {
12540 		rc = t4_uld_list[id]->uld_activate(sc);
12541 		if (rc == 0)
12542 			setbit(&sc->active_ulds, id);
12543 	}
12544 	sx_sunlock(&t4_uld_list_lock);
12545 
12546 	return (rc);
12547 }
12548 
12549 int
12550 t4_deactivate_uld(struct adapter *sc, int id)
12551 {
12552 	int rc;
12553 
12554 	ASSERT_SYNCHRONIZED_OP(sc);
12555 
12556 	if (id < 0 || id > ULD_MAX)
12557 		return (EINVAL);
12558 
12559 	sx_slock(&t4_uld_list_lock);
12560 	if (t4_uld_list[id] == NULL)
12561 		rc = ENXIO;
12562 	else {
12563 		rc = t4_uld_list[id]->uld_deactivate(sc);
12564 		if (rc == 0)
12565 			clrbit(&sc->active_ulds, id);
12566 	}
12567 	sx_sunlock(&t4_uld_list_lock);
12568 
12569 	return (rc);
12570 }
12571 
12572 static int
12573 deactivate_all_uld(struct adapter *sc)
12574 {
12575 	int i, rc;
12576 
12577 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12578 	if (rc != 0)
12579 		return (ENXIO);
12580 	sx_slock(&t4_uld_list_lock);
12581 	for (i = 0; i <= ULD_MAX; i++) {
12582 		if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12583 			continue;
12584 		rc = t4_uld_list[i]->uld_deactivate(sc);
12585 		if (rc != 0)
12586 			break;
12587 		clrbit(&sc->active_ulds, i);
12588 	}
12589 	sx_sunlock(&t4_uld_list_lock);
12590 	end_synchronized_op(sc, 0);
12591 
12592 	return (rc);
12593 }
12594 
12595 static void
12596 stop_all_uld(struct adapter *sc)
12597 {
12598 	int i;
12599 
12600 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12601 		return;
12602 	sx_slock(&t4_uld_list_lock);
12603 	for (i = 0; i <= ULD_MAX; i++) {
12604 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12605 		    t4_uld_list[i]->uld_stop == NULL)
12606 			continue;
12607 		(void) t4_uld_list[i]->uld_stop(sc);
12608 	}
12609 	sx_sunlock(&t4_uld_list_lock);
12610 	end_synchronized_op(sc, 0);
12611 }
12612 
12613 static void
12614 restart_all_uld(struct adapter *sc)
12615 {
12616 	int i;
12617 
12618 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12619 		return;
12620 	sx_slock(&t4_uld_list_lock);
12621 	for (i = 0; i <= ULD_MAX; i++) {
12622 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12623 		    t4_uld_list[i]->uld_restart == NULL)
12624 			continue;
12625 		(void) t4_uld_list[i]->uld_restart(sc);
12626 	}
12627 	sx_sunlock(&t4_uld_list_lock);
12628 	end_synchronized_op(sc, 0);
12629 }
12630 
12631 int
12632 uld_active(struct adapter *sc, int id)
12633 {
12634 
12635 	MPASS(id >= 0 && id <= ULD_MAX);
12636 
12637 	return (isset(&sc->active_ulds, id));
12638 }
12639 #endif
12640 
12641 #ifdef KERN_TLS
12642 static int
12643 ktls_capability(struct adapter *sc, bool enable)
12644 {
12645 	ASSERT_SYNCHRONIZED_OP(sc);
12646 
12647 	if (!is_ktls(sc))
12648 		return (ENODEV);
12649 	if (!is_t6(sc))
12650 		return (0);
12651 	if (hw_off_limits(sc))
12652 		return (ENXIO);
12653 
12654 	if (enable) {
12655 		if (sc->flags & KERN_TLS_ON)
12656 			return (0);	/* already on */
12657 		if (sc->offload_map != 0) {
12658 			CH_WARN(sc,
12659 			    "Disable TOE on all interfaces associated with "
12660 			    "this adapter before trying to enable NIC TLS.\n");
12661 			return (EAGAIN);
12662 		}
12663 		return (t6_config_kern_tls(sc, true));
12664 	} else {
12665 		/*
12666 		 * Nothing to do for disable.  If TOE is enabled sometime later
12667 		 * then toe_capability will reconfigure the hardware.
12668 		 */
12669 		return (0);
12670 	}
12671 }
12672 #endif
12673 
12674 /*
12675  * t  = ptr to tunable.
12676  * nc = number of CPUs.
12677  * c  = compiled in default for that tunable.
12678  */
12679 static void
12680 calculate_nqueues(int *t, int nc, const int c)
12681 {
12682 	int nq;
12683 
12684 	if (*t > 0)
12685 		return;
12686 	nq = *t < 0 ? -*t : c;
12687 	*t = min(nc, nq);
12688 }
12689 
12690 /*
12691  * Come up with reasonable defaults for some of the tunables, provided they're
12692  * not set by the user (in which case we'll use the values as is).
12693  */
12694 static void
12695 tweak_tunables(void)
12696 {
12697 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12698 
12699 	if (t4_ntxq < 1) {
12700 #ifdef RSS
12701 		t4_ntxq = rss_getnumbuckets();
12702 #else
12703 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12704 #endif
12705 	}
12706 
12707 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12708 
12709 	if (t4_nrxq < 1) {
12710 #ifdef RSS
12711 		t4_nrxq = rss_getnumbuckets();
12712 #else
12713 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12714 #endif
12715 	}
12716 
12717 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12718 
12719 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12720 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12721 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12722 #endif
12723 #ifdef TCP_OFFLOAD
12724 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12725 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12726 #endif
12727 
12728 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12729 	if (t4_toecaps_allowed == -1)
12730 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12731 #else
12732 	if (t4_toecaps_allowed == -1)
12733 		t4_toecaps_allowed = 0;
12734 #endif
12735 
12736 #ifdef TCP_OFFLOAD
12737 	if (t4_rdmacaps_allowed == -1) {
12738 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12739 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12740 	}
12741 
12742 	if (t4_iscsicaps_allowed == -1) {
12743 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12744 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12745 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12746 	}
12747 
12748 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12749 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12750 
12751 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12752 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12753 #else
12754 	if (t4_rdmacaps_allowed == -1)
12755 		t4_rdmacaps_allowed = 0;
12756 
12757 	if (t4_iscsicaps_allowed == -1)
12758 		t4_iscsicaps_allowed = 0;
12759 #endif
12760 
12761 #ifdef DEV_NETMAP
12762 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12763 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12764 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12765 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12766 #endif
12767 
12768 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12769 		t4_tmr_idx = TMR_IDX;
12770 
12771 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12772 		t4_pktc_idx = PKTC_IDX;
12773 
12774 	if (t4_qsize_txq < 128)
12775 		t4_qsize_txq = 128;
12776 
12777 	if (t4_qsize_rxq < 128)
12778 		t4_qsize_rxq = 128;
12779 	while (t4_qsize_rxq & 7)
12780 		t4_qsize_rxq++;
12781 
12782 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12783 
12784 	/*
12785 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12786 	 * VI for the port.  The rest are additional virtual interfaces on the
12787 	 * same physical port.  Note that the main VI does not have native
12788 	 * netmap support but the extra VIs do.
12789 	 *
12790 	 * Limit the number of VIs per port to the number of available
12791 	 * MAC addresses per port.
12792 	 */
12793 	if (t4_num_vis < 1)
12794 		t4_num_vis = 1;
12795 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12796 		t4_num_vis = nitems(vi_mac_funcs);
12797 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12798 	}
12799 
12800 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12801 		pcie_relaxed_ordering = 1;
12802 #if defined(__i386__) || defined(__amd64__)
12803 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12804 			pcie_relaxed_ordering = 0;
12805 #endif
12806 	}
12807 }
12808 
12809 #ifdef DDB
12810 static void
12811 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12812 {
12813 	uint32_t base, j, off, pf, reg, save, win_pos;
12814 
12815 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12816 	save = t4_read_reg(sc, reg);
12817 	base = sc->memwin[2].mw_base;
12818 
12819 	if (is_t4(sc)) {
12820 		pf = 0;
12821 		win_pos = addr & ~0xf;	/* start must be 16B aligned */
12822 	} else {
12823 		pf = V_PFNUM(sc->pf);
12824 		win_pos = addr & ~0x7f;	/* start must be 128B aligned */
12825 	}
12826 	off = addr - win_pos;
12827 	t4_write_reg(sc, reg, win_pos | pf);
12828 	t4_read_reg(sc, reg);
12829 
12830 	while (len > 0 && !db_pager_quit) {
12831 		uint32_t buf[8];
12832 		for (j = 0; j < 8; j++, off += 4)
12833 			buf[j] = htonl(t4_read_reg(sc, base + off));
12834 
12835 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12836 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12837 		    buf[7]);
12838 		if (len <= sizeof(buf))
12839 			len = 0;
12840 		else
12841 			len -= sizeof(buf);
12842 	}
12843 
12844 	t4_write_reg(sc, reg, save);
12845 	t4_read_reg(sc, reg);
12846 }
12847 
12848 static void
12849 t4_dump_tcb(struct adapter *sc, int tid)
12850 {
12851 	uint32_t tcb_addr;
12852 
12853 	/* Dump TCB for the tid */
12854 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12855 	tcb_addr += tid * TCB_SIZE;
12856 	t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12857 }
12858 
12859 static void
12860 t4_dump_devlog(struct adapter *sc)
12861 {
12862 	struct devlog_params *dparams = &sc->params.devlog;
12863 	struct fw_devlog_e e;
12864 	int i, first, j, m, nentries, rc;
12865 	uint64_t ftstamp = UINT64_MAX;
12866 
12867 	if (dparams->start == 0) {
12868 		db_printf("devlog params not valid\n");
12869 		return;
12870 	}
12871 
12872 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12873 	m = fwmtype_to_hwmtype(dparams->memtype);
12874 
12875 	/* Find the first entry. */
12876 	first = -1;
12877 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12878 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12879 		    sizeof(e), (void *)&e);
12880 		if (rc != 0)
12881 			break;
12882 
12883 		if (e.timestamp == 0)
12884 			break;
12885 
12886 		e.timestamp = be64toh(e.timestamp);
12887 		if (e.timestamp < ftstamp) {
12888 			ftstamp = e.timestamp;
12889 			first = i;
12890 		}
12891 	}
12892 
12893 	if (first == -1)
12894 		return;
12895 
12896 	i = first;
12897 	do {
12898 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12899 		    sizeof(e), (void *)&e);
12900 		if (rc != 0)
12901 			return;
12902 
12903 		if (e.timestamp == 0)
12904 			return;
12905 
12906 		e.timestamp = be64toh(e.timestamp);
12907 		e.seqno = be32toh(e.seqno);
12908 		for (j = 0; j < 8; j++)
12909 			e.params[j] = be32toh(e.params[j]);
12910 
12911 		db_printf("%10d  %15ju  %8s  %8s  ",
12912 		    e.seqno, e.timestamp,
12913 		    (e.level < nitems(devlog_level_strings) ?
12914 			devlog_level_strings[e.level] : "UNKNOWN"),
12915 		    (e.facility < nitems(devlog_facility_strings) ?
12916 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12917 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12918 		    e.params[3], e.params[4], e.params[5], e.params[6],
12919 		    e.params[7]);
12920 
12921 		if (++i == nentries)
12922 			i = 0;
12923 	} while (i != first && !db_pager_quit);
12924 }
12925 
12926 static DB_DEFINE_TABLE(show, t4, show_t4);
12927 
12928 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12929 {
12930 	device_t dev;
12931 	int t;
12932 	bool valid;
12933 
12934 	valid = false;
12935 	t = db_read_token();
12936 	if (t == tIDENT) {
12937 		dev = device_lookup_by_name(db_tok_string);
12938 		valid = true;
12939 	}
12940 	db_skip_to_eol();
12941 	if (!valid) {
12942 		db_printf("usage: show t4 devlog <nexus>\n");
12943 		return;
12944 	}
12945 
12946 	if (dev == NULL) {
12947 		db_printf("device not found\n");
12948 		return;
12949 	}
12950 
12951 	t4_dump_devlog(device_get_softc(dev));
12952 }
12953 
12954 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12955 {
12956 	device_t dev;
12957 	int radix, tid, t;
12958 	bool valid;
12959 
12960 	valid = false;
12961 	radix = db_radix;
12962 	db_radix = 10;
12963 	t = db_read_token();
12964 	if (t == tIDENT) {
12965 		dev = device_lookup_by_name(db_tok_string);
12966 		t = db_read_token();
12967 		if (t == tNUMBER) {
12968 			tid = db_tok_number;
12969 			valid = true;
12970 		}
12971 	}
12972 	db_radix = radix;
12973 	db_skip_to_eol();
12974 	if (!valid) {
12975 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12976 		return;
12977 	}
12978 
12979 	if (dev == NULL) {
12980 		db_printf("device not found\n");
12981 		return;
12982 	}
12983 	if (tid < 0) {
12984 		db_printf("invalid tid\n");
12985 		return;
12986 	}
12987 
12988 	t4_dump_tcb(device_get_softc(dev), tid);
12989 }
12990 
12991 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
12992 {
12993 	device_t dev;
12994 	int radix, t;
12995 	bool valid;
12996 
12997 	valid = false;
12998 	radix = db_radix;
12999 	db_radix = 10;
13000 	t = db_read_token();
13001 	if (t == tIDENT) {
13002 		dev = device_lookup_by_name(db_tok_string);
13003 		t = db_read_token();
13004 		if (t == tNUMBER) {
13005 			addr = db_tok_number;
13006 			t = db_read_token();
13007 			if (t == tNUMBER) {
13008 				count = db_tok_number;
13009 				valid = true;
13010 			}
13011 		}
13012 	}
13013 	db_radix = radix;
13014 	db_skip_to_eol();
13015 	if (!valid) {
13016 		db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13017 		return;
13018 	}
13019 
13020 	if (dev == NULL) {
13021 		db_printf("device not found\n");
13022 		return;
13023 	}
13024 	if (addr < 0) {
13025 		db_printf("invalid address\n");
13026 		return;
13027 	}
13028 	if (count <= 0) {
13029 		db_printf("invalid length\n");
13030 		return;
13031 	}
13032 
13033 	t4_dump_mem(device_get_softc(dev), addr, count);
13034 }
13035 #endif
13036 
13037 static eventhandler_tag vxlan_start_evtag;
13038 static eventhandler_tag vxlan_stop_evtag;
13039 
13040 struct vxlan_evargs {
13041 	if_t ifp;
13042 	uint16_t port;
13043 };
13044 
13045 static void
13046 enable_vxlan_rx(struct adapter *sc)
13047 {
13048 	int i, rc;
13049 	struct port_info *pi;
13050 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13051 
13052 	ASSERT_SYNCHRONIZED_OP(sc);
13053 
13054 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13055 	    F_VXLAN_EN);
13056 	for_each_port(sc, i) {
13057 		pi = sc->port[i];
13058 		if (pi->vxlan_tcam_entry == true)
13059 			continue;
13060 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13061 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13062 		    true);
13063 		if (rc < 0) {
13064 			rc = -rc;
13065 			CH_ERR(&pi->vi[0],
13066 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13067 		} else {
13068 			MPASS(rc == sc->rawf_base + pi->port_id);
13069 			pi->vxlan_tcam_entry = true;
13070 		}
13071 	}
13072 }
13073 
13074 static void
13075 t4_vxlan_start(struct adapter *sc, void *arg)
13076 {
13077 	struct vxlan_evargs *v = arg;
13078 
13079 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13080 		return;
13081 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13082 		return;
13083 
13084 	if (sc->vxlan_refcount == 0) {
13085 		sc->vxlan_port = v->port;
13086 		sc->vxlan_refcount = 1;
13087 		if (!hw_off_limits(sc))
13088 			enable_vxlan_rx(sc);
13089 	} else if (sc->vxlan_port == v->port) {
13090 		sc->vxlan_refcount++;
13091 	} else {
13092 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13093 		    "ignoring attempt to configure it on port %d\n",
13094 		    sc->vxlan_port, v->port);
13095 	}
13096 	end_synchronized_op(sc, 0);
13097 }
13098 
13099 static void
13100 t4_vxlan_stop(struct adapter *sc, void *arg)
13101 {
13102 	struct vxlan_evargs *v = arg;
13103 
13104 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13105 		return;
13106 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13107 		return;
13108 
13109 	/*
13110 	 * VXLANs may have been configured before the driver was loaded so we
13111 	 * may see more stops than starts.  This is not handled cleanly but at
13112 	 * least we keep the refcount sane.
13113 	 */
13114 	if (sc->vxlan_port != v->port)
13115 		goto done;
13116 	if (sc->vxlan_refcount == 0) {
13117 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13118 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13119 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13120 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13121 done:
13122 	end_synchronized_op(sc, 0);
13123 }
13124 
13125 static void
13126 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13127     sa_family_t family, u_int port)
13128 {
13129 	struct vxlan_evargs v;
13130 
13131 	MPASS(family == AF_INET || family == AF_INET6);
13132 	v.ifp = ifp;
13133 	v.port = port;
13134 
13135 	t4_iterate(t4_vxlan_start, &v);
13136 }
13137 
13138 static void
13139 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13140     u_int port)
13141 {
13142 	struct vxlan_evargs v;
13143 
13144 	MPASS(family == AF_INET || family == AF_INET6);
13145 	v.ifp = ifp;
13146 	v.port = port;
13147 
13148 	t4_iterate(t4_vxlan_stop, &v);
13149 }
13150 
13151 
13152 static struct sx mlu;	/* mod load unload */
13153 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13154 
13155 static int
13156 mod_event(module_t mod, int cmd, void *arg)
13157 {
13158 	int rc = 0;
13159 	static int loaded = 0;
13160 
13161 	switch (cmd) {
13162 	case MOD_LOAD:
13163 		sx_xlock(&mlu);
13164 		if (loaded++ == 0) {
13165 			t4_sge_modload();
13166 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13167 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13168 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13169 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13170 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13171 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13172 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13173 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13174 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13175 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13176 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13177 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13178 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13179 			    do_smt_write_rpl);
13180 			sx_init(&t4_list_lock, "T4/T5 adapters");
13181 			SLIST_INIT(&t4_list);
13182 			callout_init(&fatal_callout, 1);
13183 #ifdef TCP_OFFLOAD
13184 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13185 #endif
13186 #ifdef INET6
13187 			t4_clip_modload();
13188 #endif
13189 #ifdef KERN_TLS
13190 			t6_ktls_modload();
13191 #endif
13192 			t4_tracer_modload();
13193 			tweak_tunables();
13194 			vxlan_start_evtag =
13195 			    EVENTHANDLER_REGISTER(vxlan_start,
13196 				t4_vxlan_start_handler, NULL,
13197 				EVENTHANDLER_PRI_ANY);
13198 			vxlan_stop_evtag =
13199 			    EVENTHANDLER_REGISTER(vxlan_stop,
13200 				t4_vxlan_stop_handler, NULL,
13201 				EVENTHANDLER_PRI_ANY);
13202 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13203 			    taskqueue_thread_enqueue, &reset_tq);
13204 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13205 			    "t4_rst_thr");
13206 		}
13207 		sx_xunlock(&mlu);
13208 		break;
13209 
13210 	case MOD_UNLOAD:
13211 		sx_xlock(&mlu);
13212 		if (--loaded == 0) {
13213 #ifdef TCP_OFFLOAD
13214 			int i;
13215 #endif
13216 			int tries;
13217 
13218 			taskqueue_free(reset_tq);
13219 
13220 			tries = 0;
13221 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13222 				uprintf("%ju clusters with custom free routine "
13223 				    "still is use.\n", t4_sge_extfree_refs());
13224 				pause("t4unload", 2 * hz);
13225 			}
13226 
13227 			sx_slock(&t4_list_lock);
13228 			if (!SLIST_EMPTY(&t4_list)) {
13229 				rc = EBUSY;
13230 				sx_sunlock(&t4_list_lock);
13231 				goto done_unload;
13232 			}
13233 #ifdef TCP_OFFLOAD
13234 			sx_slock(&t4_uld_list_lock);
13235 			for (i = 0; i <= ULD_MAX; i++) {
13236 				if (t4_uld_list[i] != NULL) {
13237 					rc = EBUSY;
13238 					sx_sunlock(&t4_uld_list_lock);
13239 					sx_sunlock(&t4_list_lock);
13240 					goto done_unload;
13241 				}
13242 			}
13243 			sx_sunlock(&t4_uld_list_lock);
13244 #endif
13245 			sx_sunlock(&t4_list_lock);
13246 
13247 			if (t4_sge_extfree_refs() == 0) {
13248 				EVENTHANDLER_DEREGISTER(vxlan_start,
13249 				    vxlan_start_evtag);
13250 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13251 				    vxlan_stop_evtag);
13252 				t4_tracer_modunload();
13253 #ifdef KERN_TLS
13254 				t6_ktls_modunload();
13255 #endif
13256 #ifdef INET6
13257 				t4_clip_modunload();
13258 #endif
13259 #ifdef TCP_OFFLOAD
13260 				sx_destroy(&t4_uld_list_lock);
13261 #endif
13262 				sx_destroy(&t4_list_lock);
13263 				t4_sge_modunload();
13264 				loaded = 0;
13265 			} else {
13266 				rc = EBUSY;
13267 				loaded++;	/* undo earlier decrement */
13268 			}
13269 		}
13270 done_unload:
13271 		sx_xunlock(&mlu);
13272 		break;
13273 	}
13274 
13275 	return (rc);
13276 }
13277 
13278 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13279 MODULE_VERSION(t4nex, 1);
13280 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13281 #ifdef DEV_NETMAP
13282 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13283 #endif /* DEV_NETMAP */
13284 
13285 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13286 MODULE_VERSION(t5nex, 1);
13287 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13288 #ifdef DEV_NETMAP
13289 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13290 #endif /* DEV_NETMAP */
13291 
13292 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13293 MODULE_VERSION(t6nex, 1);
13294 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13295 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13296 #ifdef DEV_NETMAP
13297 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13298 #endif /* DEV_NETMAP */
13299 
13300 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13301 MODULE_VERSION(cxgbe, 1);
13302 
13303 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13304 MODULE_VERSION(cxl, 1);
13305 
13306 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13307 MODULE_VERSION(cc, 1);
13308 
13309 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13310 MODULE_VERSION(vcxgbe, 1);
13311 
13312 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13313 MODULE_VERSION(vcxl, 1);
13314 
13315 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13316 MODULE_VERSION(vcc, 1);
13317