1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/module.h> 46 #include <sys/malloc.h> 47 #include <sys/queue.h> 48 #include <sys/taskqueue.h> 49 #include <sys/pciio.h> 50 #include <dev/pci/pcireg.h> 51 #include <dev/pci/pcivar.h> 52 #include <dev/pci/pci_private.h> 53 #include <sys/firmware.h> 54 #include <sys/sbuf.h> 55 #include <sys/smp.h> 56 #include <sys/socket.h> 57 #include <sys/sockio.h> 58 #include <sys/sysctl.h> 59 #include <net/ethernet.h> 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_dl.h> 63 #include <net/if_vlan_var.h> 64 #ifdef RSS 65 #include <net/rss_config.h> 66 #endif 67 #include <netinet/in.h> 68 #include <netinet/ip.h> 69 #ifdef KERN_TLS 70 #include <netinet/tcp_seq.h> 71 #endif 72 #if defined(__i386__) || defined(__amd64__) 73 #include <machine/md_var.h> 74 #include <machine/cputypes.h> 75 #include <vm/vm.h> 76 #include <vm/pmap.h> 77 #endif 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #include <ddb/db_lex.h> 81 #endif 82 83 #include "common/common.h" 84 #include "common/t4_msg.h" 85 #include "common/t4_regs.h" 86 #include "common/t4_regs_values.h" 87 #include "cudbg/cudbg.h" 88 #include "t4_clip.h" 89 #include "t4_ioctl.h" 90 #include "t4_l2t.h" 91 #include "t4_mp_ring.h" 92 #include "t4_if.h" 93 #include "t4_smt.h" 94 95 /* T4 bus driver interface */ 96 static int t4_probe(device_t); 97 static int t4_attach(device_t); 98 static int t4_detach(device_t); 99 static int t4_child_location_str(device_t, device_t, char *, size_t); 100 static int t4_ready(device_t); 101 static int t4_read_port_device(device_t, int, device_t *); 102 static device_method_t t4_methods[] = { 103 DEVMETHOD(device_probe, t4_probe), 104 DEVMETHOD(device_attach, t4_attach), 105 DEVMETHOD(device_detach, t4_detach), 106 107 DEVMETHOD(bus_child_location_str, t4_child_location_str), 108 109 DEVMETHOD(t4_is_main_ready, t4_ready), 110 DEVMETHOD(t4_read_port_device, t4_read_port_device), 111 112 DEVMETHOD_END 113 }; 114 static driver_t t4_driver = { 115 "t4nex", 116 t4_methods, 117 sizeof(struct adapter) 118 }; 119 120 121 /* T4 port (cxgbe) interface */ 122 static int cxgbe_probe(device_t); 123 static int cxgbe_attach(device_t); 124 static int cxgbe_detach(device_t); 125 device_method_t cxgbe_methods[] = { 126 DEVMETHOD(device_probe, cxgbe_probe), 127 DEVMETHOD(device_attach, cxgbe_attach), 128 DEVMETHOD(device_detach, cxgbe_detach), 129 { 0, 0 } 130 }; 131 static driver_t cxgbe_driver = { 132 "cxgbe", 133 cxgbe_methods, 134 sizeof(struct port_info) 135 }; 136 137 /* T4 VI (vcxgbe) interface */ 138 static int vcxgbe_probe(device_t); 139 static int vcxgbe_attach(device_t); 140 static int vcxgbe_detach(device_t); 141 static device_method_t vcxgbe_methods[] = { 142 DEVMETHOD(device_probe, vcxgbe_probe), 143 DEVMETHOD(device_attach, vcxgbe_attach), 144 DEVMETHOD(device_detach, vcxgbe_detach), 145 { 0, 0 } 146 }; 147 static driver_t vcxgbe_driver = { 148 "vcxgbe", 149 vcxgbe_methods, 150 sizeof(struct vi_info) 151 }; 152 153 static d_ioctl_t t4_ioctl; 154 155 static struct cdevsw t4_cdevsw = { 156 .d_version = D_VERSION, 157 .d_ioctl = t4_ioctl, 158 .d_name = "t4nex", 159 }; 160 161 /* T5 bus driver interface */ 162 static int t5_probe(device_t); 163 static device_method_t t5_methods[] = { 164 DEVMETHOD(device_probe, t5_probe), 165 DEVMETHOD(device_attach, t4_attach), 166 DEVMETHOD(device_detach, t4_detach), 167 168 DEVMETHOD(bus_child_location_str, t4_child_location_str), 169 170 DEVMETHOD(t4_is_main_ready, t4_ready), 171 DEVMETHOD(t4_read_port_device, t4_read_port_device), 172 173 DEVMETHOD_END 174 }; 175 static driver_t t5_driver = { 176 "t5nex", 177 t5_methods, 178 sizeof(struct adapter) 179 }; 180 181 182 /* T5 port (cxl) interface */ 183 static driver_t cxl_driver = { 184 "cxl", 185 cxgbe_methods, 186 sizeof(struct port_info) 187 }; 188 189 /* T5 VI (vcxl) interface */ 190 static driver_t vcxl_driver = { 191 "vcxl", 192 vcxgbe_methods, 193 sizeof(struct vi_info) 194 }; 195 196 /* T6 bus driver interface */ 197 static int t6_probe(device_t); 198 static device_method_t t6_methods[] = { 199 DEVMETHOD(device_probe, t6_probe), 200 DEVMETHOD(device_attach, t4_attach), 201 DEVMETHOD(device_detach, t4_detach), 202 203 DEVMETHOD(bus_child_location_str, t4_child_location_str), 204 205 DEVMETHOD(t4_is_main_ready, t4_ready), 206 DEVMETHOD(t4_read_port_device, t4_read_port_device), 207 208 DEVMETHOD_END 209 }; 210 static driver_t t6_driver = { 211 "t6nex", 212 t6_methods, 213 sizeof(struct adapter) 214 }; 215 216 217 /* T6 port (cc) interface */ 218 static driver_t cc_driver = { 219 "cc", 220 cxgbe_methods, 221 sizeof(struct port_info) 222 }; 223 224 /* T6 VI (vcc) interface */ 225 static driver_t vcc_driver = { 226 "vcc", 227 vcxgbe_methods, 228 sizeof(struct vi_info) 229 }; 230 231 /* ifnet interface */ 232 static void cxgbe_init(void *); 233 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 234 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 235 static void cxgbe_qflush(struct ifnet *); 236 #if defined(KERN_TLS) || defined(RATELIMIT) 237 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 238 struct m_snd_tag **); 239 static int cxgbe_snd_tag_modify(struct m_snd_tag *, 240 union if_snd_tag_modify_params *); 241 static int cxgbe_snd_tag_query(struct m_snd_tag *, 242 union if_snd_tag_query_params *); 243 static void cxgbe_snd_tag_free(struct m_snd_tag *); 244 #endif 245 246 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 247 248 /* 249 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 250 * then ADAPTER_LOCK, then t4_uld_list_lock. 251 */ 252 static struct sx t4_list_lock; 253 SLIST_HEAD(, adapter) t4_list; 254 #ifdef TCP_OFFLOAD 255 static struct sx t4_uld_list_lock; 256 SLIST_HEAD(, uld_info) t4_uld_list; 257 #endif 258 259 /* 260 * Tunables. See tweak_tunables() too. 261 * 262 * Each tunable is set to a default value here if it's known at compile-time. 263 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 264 * provide a reasonable default (upto n) when the driver is loaded. 265 * 266 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 267 * T5 are under hw.cxl. 268 */ 269 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters"); 270 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters"); 271 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters"); 272 273 /* 274 * Number of queues for tx and rx, NIC and offload. 275 */ 276 #define NTXQ 16 277 int t4_ntxq = -NTXQ; 278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 279 "Number of TX queues per port"); 280 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 281 282 #define NRXQ 8 283 int t4_nrxq = -NRXQ; 284 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 285 "Number of RX queues per port"); 286 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 287 288 #define NTXQ_VI 1 289 static int t4_ntxq_vi = -NTXQ_VI; 290 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 291 "Number of TX queues per VI"); 292 293 #define NRXQ_VI 1 294 static int t4_nrxq_vi = -NRXQ_VI; 295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 296 "Number of RX queues per VI"); 297 298 static int t4_rsrv_noflowq = 0; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 300 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 301 302 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 303 #define NOFLDTXQ 8 304 static int t4_nofldtxq = -NOFLDTXQ; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 306 "Number of offload TX queues per port"); 307 308 #define NOFLDRXQ 2 309 static int t4_nofldrxq = -NOFLDRXQ; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 311 "Number of offload RX queues per port"); 312 313 #define NOFLDTXQ_VI 1 314 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 315 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 316 "Number of offload TX queues per VI"); 317 318 #define NOFLDRXQ_VI 1 319 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 321 "Number of offload RX queues per VI"); 322 323 #define TMR_IDX_OFLD 1 324 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 326 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 327 328 #define PKTC_IDX_OFLD (-1) 329 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 331 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 332 333 /* 0 means chip/fw default, non-zero number is value in microseconds */ 334 static u_long t4_toe_keepalive_idle = 0; 335 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 336 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 337 338 /* 0 means chip/fw default, non-zero number is value in microseconds */ 339 static u_long t4_toe_keepalive_interval = 0; 340 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 341 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 342 343 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 344 static int t4_toe_keepalive_count = 0; 345 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 346 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_rexmt_min = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 351 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_rexmt_max = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 356 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 359 static int t4_toe_rexmt_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 361 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 362 363 /* -1 means chip/fw default, other values are raw backoff values to use */ 364 static int t4_toe_rexmt_backoff[16] = { 365 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 366 }; 367 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0, 368 "cxgbe(4) TOE retransmit backoff values"); 369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 370 &t4_toe_rexmt_backoff[0], 0, ""); 371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 372 &t4_toe_rexmt_backoff[1], 0, ""); 373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_backoff[2], 0, ""); 375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_backoff[3], 0, ""); 377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 378 &t4_toe_rexmt_backoff[4], 0, ""); 379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 380 &t4_toe_rexmt_backoff[5], 0, ""); 381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 382 &t4_toe_rexmt_backoff[6], 0, ""); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[7], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[8], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[9], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[10], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[11], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[12], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[13], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[14], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[15], 0, ""); 401 #endif 402 403 #ifdef DEV_NETMAP 404 #define NNMTXQ_VI 2 405 static int t4_nnmtxq_vi = -NNMTXQ_VI; 406 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 407 "Number of netmap TX queues per VI"); 408 409 #define NNMRXQ_VI 2 410 static int t4_nnmrxq_vi = -NNMRXQ_VI; 411 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 412 "Number of netmap RX queues per VI"); 413 #endif 414 415 /* 416 * Holdoff parameters for ports. 417 */ 418 #define TMR_IDX 1 419 int t4_tmr_idx = TMR_IDX; 420 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 421 0, "Holdoff timer index"); 422 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 423 424 #define PKTC_IDX (-1) 425 int t4_pktc_idx = PKTC_IDX; 426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 427 0, "Holdoff packet counter index"); 428 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 429 430 /* 431 * Size (# of entries) of each tx and rx queue. 432 */ 433 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 434 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 435 "Number of descriptors in each TX queue"); 436 437 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 439 "Number of descriptors in each RX queue"); 440 441 /* 442 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 443 */ 444 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 446 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 447 448 /* 449 * Configuration file. All the _CF names here are special. 450 */ 451 #define DEFAULT_CF "default" 452 #define BUILTIN_CF "built-in" 453 #define FLASH_CF "flash" 454 #define UWIRE_CF "uwire" 455 #define FPGA_CF "fpga" 456 static char t4_cfg_file[32] = DEFAULT_CF; 457 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 458 sizeof(t4_cfg_file), "Firmware configuration file"); 459 460 /* 461 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 462 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 463 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 464 * mark or when signalled to do so, 0 to never emit PAUSE. 465 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 466 * negotiated settings will override rx_pause/tx_pause. 467 * Otherwise rx_pause/tx_pause are applied forcibly. 468 */ 469 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 470 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 471 &t4_pause_settings, 0, 472 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 473 474 /* 475 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 476 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 477 * 0 to disable FEC. 478 */ 479 static int t4_fec = -1; 480 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 481 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 482 483 /* 484 * Link autonegotiation. 485 * -1 to run with the firmware default. 486 * 0 to disable. 487 * 1 to enable. 488 */ 489 static int t4_autoneg = -1; 490 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 491 "Link autonegotiation"); 492 493 /* 494 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 495 * encouraged respectively). '-n' is the same as 'n' except the firmware 496 * version used in the checks is read from the firmware bundled with the driver. 497 */ 498 static int t4_fw_install = 1; 499 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 500 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 501 502 /* 503 * ASIC features that will be used. Disable the ones you don't want so that the 504 * chip resources aren't wasted on features that will not be used. 505 */ 506 static int t4_nbmcaps_allowed = 0; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 508 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 509 510 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 512 &t4_linkcaps_allowed, 0, "Default link capabilities"); 513 514 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 515 FW_CAPS_CONFIG_SWITCH_EGRESS; 516 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 517 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 518 519 #ifdef RATELIMIT 520 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 521 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 522 #else 523 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 524 FW_CAPS_CONFIG_NIC_HASHFILTER; 525 #endif 526 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 527 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 528 529 static int t4_toecaps_allowed = -1; 530 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 531 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 532 533 static int t4_rdmacaps_allowed = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 535 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 536 537 static int t4_cryptocaps_allowed = -1; 538 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 539 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 540 541 static int t4_iscsicaps_allowed = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 543 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 544 545 static int t4_fcoecaps_allowed = 0; 546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 547 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 548 549 static int t5_write_combine = 0; 550 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 551 0, "Use WC instead of UC for BAR2"); 552 553 static int t4_num_vis = 1; 554 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 555 "Number of VIs per port"); 556 557 /* 558 * PCIe Relaxed Ordering. 559 * -1: driver should figure out a good value. 560 * 0: disable RO. 561 * 1: enable RO. 562 * 2: leave RO alone. 563 */ 564 static int pcie_relaxed_ordering = -1; 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 566 &pcie_relaxed_ordering, 0, 567 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 568 569 static int t4_panic_on_fatal_err = 0; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN, 571 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 572 573 #ifdef TCP_OFFLOAD 574 /* 575 * TOE tunables. 576 */ 577 static int t4_cop_managed_offloading = 0; 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 579 &t4_cop_managed_offloading, 0, 580 "COP (Connection Offload Policy) controls all TOE offload"); 581 #endif 582 583 #ifdef KERN_TLS 584 /* 585 * This enables KERN_TLS for all adapters if set. 586 */ 587 static int t4_kern_tls = 0; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 589 "Enable KERN_TLS mode for all supported adapters"); 590 591 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD, 0, 592 "cxgbe(4) KERN_TLS parameters"); 593 594 static int t4_tls_inline_keys = 0; 595 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 596 &t4_tls_inline_keys, 0, 597 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 598 "in card memory."); 599 600 static int t4_tls_combo_wrs = 0; 601 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 602 0, "Attempt to combine TCB field updates with TLS record work requests."); 603 #endif 604 605 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 606 static int vi_mac_funcs[] = { 607 FW_VI_FUNC_ETH, 608 FW_VI_FUNC_OFLD, 609 FW_VI_FUNC_IWARP, 610 FW_VI_FUNC_OPENISCSI, 611 FW_VI_FUNC_OPENFCOE, 612 FW_VI_FUNC_FOISCSI, 613 FW_VI_FUNC_FOFCOE, 614 }; 615 616 struct intrs_and_queues { 617 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 618 uint16_t num_vis; /* number of VIs for each port */ 619 uint16_t nirq; /* Total # of vectors */ 620 uint16_t ntxq; /* # of NIC txq's for each port */ 621 uint16_t nrxq; /* # of NIC rxq's for each port */ 622 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 623 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 624 625 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 626 uint16_t ntxq_vi; /* # of NIC txq's */ 627 uint16_t nrxq_vi; /* # of NIC rxq's */ 628 uint16_t nofldtxq_vi; /* # of TOE txq's */ 629 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 630 uint16_t nnmtxq_vi; /* # of netmap txq's */ 631 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 632 }; 633 634 static void setup_memwin(struct adapter *); 635 static void position_memwin(struct adapter *, int, uint32_t); 636 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 637 static int fwmtype_to_hwmtype(int); 638 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 639 uint32_t *); 640 static int fixup_devlog_params(struct adapter *); 641 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 642 static int contact_firmware(struct adapter *); 643 static int partition_resources(struct adapter *); 644 static int get_params__pre_init(struct adapter *); 645 static int set_params__pre_init(struct adapter *); 646 static int get_params__post_init(struct adapter *); 647 static int set_params__post_init(struct adapter *); 648 static void t4_set_desc(struct adapter *); 649 static bool fixed_ifmedia(struct port_info *); 650 static void build_medialist(struct port_info *); 651 static void init_link_config(struct port_info *); 652 static int fixup_link_config(struct port_info *); 653 static int apply_link_config(struct port_info *); 654 static int cxgbe_init_synchronized(struct vi_info *); 655 static int cxgbe_uninit_synchronized(struct vi_info *); 656 static void quiesce_txq(struct adapter *, struct sge_txq *); 657 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 658 static void quiesce_iq(struct adapter *, struct sge_iq *); 659 static void quiesce_fl(struct adapter *, struct sge_fl *); 660 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 661 driver_intr_t *, void *, char *); 662 static int t4_free_irq(struct adapter *, struct irq *); 663 static void t4_init_atid_table(struct adapter *); 664 static void t4_free_atid_table(struct adapter *); 665 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 666 static void vi_refresh_stats(struct adapter *, struct vi_info *); 667 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 668 static void cxgbe_tick(void *); 669 static void cxgbe_sysctls(struct port_info *); 670 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 671 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 672 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 673 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 674 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 675 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 676 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 677 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 678 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 679 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 680 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 681 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 682 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 683 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 684 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 685 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 686 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 687 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 688 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 689 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 690 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 691 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 692 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 693 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 694 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 695 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 696 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 697 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 698 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 699 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 700 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 701 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 702 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 703 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 704 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 705 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 706 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 707 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 708 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 709 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 710 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 711 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 712 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 713 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 714 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 715 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 716 #ifdef TCP_OFFLOAD 717 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 718 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 719 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 720 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 721 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 722 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 723 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 724 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 725 #endif 726 static int get_sge_context(struct adapter *, struct t4_sge_context *); 727 static int load_fw(struct adapter *, struct t4_data *); 728 static int load_cfg(struct adapter *, struct t4_data *); 729 static int load_boot(struct adapter *, struct t4_bootrom *); 730 static int load_bootcfg(struct adapter *, struct t4_data *); 731 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 732 static void free_offload_policy(struct t4_offload_policy *); 733 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 734 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 735 static int read_i2c(struct adapter *, struct t4_i2c_data *); 736 static int clear_stats(struct adapter *, u_int); 737 #ifdef TCP_OFFLOAD 738 static int toe_capability(struct vi_info *, int); 739 #endif 740 static int mod_event(module_t, int, void *); 741 static int notify_siblings(device_t, int); 742 743 struct { 744 uint16_t device; 745 char *desc; 746 } t4_pciids[] = { 747 {0xa000, "Chelsio Terminator 4 FPGA"}, 748 {0x4400, "Chelsio T440-dbg"}, 749 {0x4401, "Chelsio T420-CR"}, 750 {0x4402, "Chelsio T422-CR"}, 751 {0x4403, "Chelsio T440-CR"}, 752 {0x4404, "Chelsio T420-BCH"}, 753 {0x4405, "Chelsio T440-BCH"}, 754 {0x4406, "Chelsio T440-CH"}, 755 {0x4407, "Chelsio T420-SO"}, 756 {0x4408, "Chelsio T420-CX"}, 757 {0x4409, "Chelsio T420-BT"}, 758 {0x440a, "Chelsio T404-BT"}, 759 {0x440e, "Chelsio T440-LP-CR"}, 760 }, t5_pciids[] = { 761 {0xb000, "Chelsio Terminator 5 FPGA"}, 762 {0x5400, "Chelsio T580-dbg"}, 763 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 764 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 765 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 766 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 767 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 768 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 769 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 770 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 771 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 772 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 773 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 774 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 775 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 776 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 777 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 778 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 779 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 780 781 /* Custom */ 782 {0x5483, "Custom T540-CR"}, 783 {0x5484, "Custom T540-BT"}, 784 }, t6_pciids[] = { 785 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 786 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 787 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 788 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 789 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 790 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 791 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 792 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 793 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 794 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 795 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 796 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 797 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 798 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 799 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 800 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 801 802 /* Custom */ 803 {0x6480, "Custom T6225-CR"}, 804 {0x6481, "Custom T62100-CR"}, 805 {0x6482, "Custom T6225-CR"}, 806 {0x6483, "Custom T62100-CR"}, 807 {0x6484, "Custom T64100-CR"}, 808 {0x6485, "Custom T6240-SO"}, 809 {0x6486, "Custom T6225-SO-CR"}, 810 {0x6487, "Custom T6225-CR"}, 811 }; 812 813 #ifdef TCP_OFFLOAD 814 /* 815 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 816 * be exactly the same for both rxq and ofld_rxq. 817 */ 818 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 819 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 820 #endif 821 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 822 823 static int 824 t4_probe(device_t dev) 825 { 826 int i; 827 uint16_t v = pci_get_vendor(dev); 828 uint16_t d = pci_get_device(dev); 829 uint8_t f = pci_get_function(dev); 830 831 if (v != PCI_VENDOR_ID_CHELSIO) 832 return (ENXIO); 833 834 /* Attach only to PF0 of the FPGA */ 835 if (d == 0xa000 && f != 0) 836 return (ENXIO); 837 838 for (i = 0; i < nitems(t4_pciids); i++) { 839 if (d == t4_pciids[i].device) { 840 device_set_desc(dev, t4_pciids[i].desc); 841 return (BUS_PROBE_DEFAULT); 842 } 843 } 844 845 return (ENXIO); 846 } 847 848 static int 849 t5_probe(device_t dev) 850 { 851 int i; 852 uint16_t v = pci_get_vendor(dev); 853 uint16_t d = pci_get_device(dev); 854 uint8_t f = pci_get_function(dev); 855 856 if (v != PCI_VENDOR_ID_CHELSIO) 857 return (ENXIO); 858 859 /* Attach only to PF0 of the FPGA */ 860 if (d == 0xb000 && f != 0) 861 return (ENXIO); 862 863 for (i = 0; i < nitems(t5_pciids); i++) { 864 if (d == t5_pciids[i].device) { 865 device_set_desc(dev, t5_pciids[i].desc); 866 return (BUS_PROBE_DEFAULT); 867 } 868 } 869 870 return (ENXIO); 871 } 872 873 static int 874 t6_probe(device_t dev) 875 { 876 int i; 877 uint16_t v = pci_get_vendor(dev); 878 uint16_t d = pci_get_device(dev); 879 880 if (v != PCI_VENDOR_ID_CHELSIO) 881 return (ENXIO); 882 883 for (i = 0; i < nitems(t6_pciids); i++) { 884 if (d == t6_pciids[i].device) { 885 device_set_desc(dev, t6_pciids[i].desc); 886 return (BUS_PROBE_DEFAULT); 887 } 888 } 889 890 return (ENXIO); 891 } 892 893 static void 894 t5_attribute_workaround(device_t dev) 895 { 896 device_t root_port; 897 uint32_t v; 898 899 /* 900 * The T5 chips do not properly echo the No Snoop and Relaxed 901 * Ordering attributes when replying to a TLP from a Root 902 * Port. As a workaround, find the parent Root Port and 903 * disable No Snoop and Relaxed Ordering. Note that this 904 * affects all devices under this root port. 905 */ 906 root_port = pci_find_pcie_root_port(dev); 907 if (root_port == NULL) { 908 device_printf(dev, "Unable to find parent root port\n"); 909 return; 910 } 911 912 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 913 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 914 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 915 0) 916 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 917 device_get_nameunit(root_port)); 918 } 919 920 static const struct devnames devnames[] = { 921 { 922 .nexus_name = "t4nex", 923 .ifnet_name = "cxgbe", 924 .vi_ifnet_name = "vcxgbe", 925 .pf03_drv_name = "t4iov", 926 .vf_nexus_name = "t4vf", 927 .vf_ifnet_name = "cxgbev" 928 }, { 929 .nexus_name = "t5nex", 930 .ifnet_name = "cxl", 931 .vi_ifnet_name = "vcxl", 932 .pf03_drv_name = "t5iov", 933 .vf_nexus_name = "t5vf", 934 .vf_ifnet_name = "cxlv" 935 }, { 936 .nexus_name = "t6nex", 937 .ifnet_name = "cc", 938 .vi_ifnet_name = "vcc", 939 .pf03_drv_name = "t6iov", 940 .vf_nexus_name = "t6vf", 941 .vf_ifnet_name = "ccv" 942 } 943 }; 944 945 void 946 t4_init_devnames(struct adapter *sc) 947 { 948 int id; 949 950 id = chip_id(sc); 951 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 952 sc->names = &devnames[id - CHELSIO_T4]; 953 else { 954 device_printf(sc->dev, "chip id %d is not supported.\n", id); 955 sc->names = NULL; 956 } 957 } 958 959 static int 960 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 961 { 962 const char *parent, *name; 963 long value; 964 int line, unit; 965 966 line = 0; 967 parent = device_get_nameunit(sc->dev); 968 name = sc->names->ifnet_name; 969 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 970 if (resource_long_value(name, unit, "port", &value) == 0 && 971 value == pi->port_id) 972 return (unit); 973 } 974 return (-1); 975 } 976 977 static int 978 t4_attach(device_t dev) 979 { 980 struct adapter *sc; 981 int rc = 0, i, j, rqidx, tqidx, nports; 982 struct make_dev_args mda; 983 struct intrs_and_queues iaq; 984 struct sge *s; 985 uint32_t *buf; 986 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 987 int ofld_tqidx; 988 #endif 989 #ifdef TCP_OFFLOAD 990 int ofld_rqidx; 991 #endif 992 #ifdef DEV_NETMAP 993 int nm_rqidx, nm_tqidx; 994 #endif 995 int num_vis; 996 997 sc = device_get_softc(dev); 998 sc->dev = dev; 999 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1000 1001 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1002 t5_attribute_workaround(dev); 1003 pci_enable_busmaster(dev); 1004 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1005 uint32_t v; 1006 1007 pci_set_max_read_req(dev, 4096); 1008 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1009 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1010 if (pcie_relaxed_ordering == 0 && 1011 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1012 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1013 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1014 } else if (pcie_relaxed_ordering == 1 && 1015 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1016 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1017 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1018 } 1019 } 1020 1021 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1022 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1023 sc->traceq = -1; 1024 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1025 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1026 device_get_nameunit(dev)); 1027 1028 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1029 device_get_nameunit(dev)); 1030 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1031 t4_add_adapter(sc); 1032 1033 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1034 TAILQ_INIT(&sc->sfl); 1035 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1036 1037 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1038 1039 sc->policy = NULL; 1040 rw_init(&sc->policy_lock, "connection offload policy"); 1041 1042 callout_init(&sc->ktls_tick, 1); 1043 1044 rc = t4_map_bars_0_and_4(sc); 1045 if (rc != 0) 1046 goto done; /* error message displayed already */ 1047 1048 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1049 1050 /* Prepare the adapter for operation. */ 1051 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1052 rc = -t4_prep_adapter(sc, buf); 1053 free(buf, M_CXGBE); 1054 if (rc != 0) { 1055 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1056 goto done; 1057 } 1058 1059 /* 1060 * This is the real PF# to which we're attaching. Works from within PCI 1061 * passthrough environments too, where pci_get_function() could return a 1062 * different PF# depending on the passthrough configuration. We need to 1063 * use the real PF# in all our communication with the firmware. 1064 */ 1065 j = t4_read_reg(sc, A_PL_WHOAMI); 1066 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1067 sc->mbox = sc->pf; 1068 1069 t4_init_devnames(sc); 1070 if (sc->names == NULL) { 1071 rc = ENOTSUP; 1072 goto done; /* error message displayed already */ 1073 } 1074 1075 /* 1076 * Do this really early, with the memory windows set up even before the 1077 * character device. The userland tool's register i/o and mem read 1078 * will work even in "recovery mode". 1079 */ 1080 setup_memwin(sc); 1081 if (t4_init_devlog_params(sc, 0) == 0) 1082 fixup_devlog_params(sc); 1083 make_dev_args_init(&mda); 1084 mda.mda_devsw = &t4_cdevsw; 1085 mda.mda_uid = UID_ROOT; 1086 mda.mda_gid = GID_WHEEL; 1087 mda.mda_mode = 0600; 1088 mda.mda_si_drv1 = sc; 1089 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1090 if (rc != 0) 1091 device_printf(dev, "failed to create nexus char device: %d.\n", 1092 rc); 1093 1094 /* Go no further if recovery mode has been requested. */ 1095 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1096 device_printf(dev, "recovery mode.\n"); 1097 goto done; 1098 } 1099 1100 #if defined(__i386__) 1101 if ((cpu_feature & CPUID_CX8) == 0) { 1102 device_printf(dev, "64 bit atomics not available.\n"); 1103 rc = ENOTSUP; 1104 goto done; 1105 } 1106 #endif 1107 1108 /* Contact the firmware and try to become the master driver. */ 1109 rc = contact_firmware(sc); 1110 if (rc != 0) 1111 goto done; /* error message displayed already */ 1112 MPASS(sc->flags & FW_OK); 1113 1114 rc = get_params__pre_init(sc); 1115 if (rc != 0) 1116 goto done; /* error message displayed already */ 1117 1118 if (sc->flags & MASTER_PF) { 1119 rc = partition_resources(sc); 1120 if (rc != 0) 1121 goto done; /* error message displayed already */ 1122 t4_intr_clear(sc); 1123 } 1124 1125 rc = get_params__post_init(sc); 1126 if (rc != 0) 1127 goto done; /* error message displayed already */ 1128 1129 rc = set_params__post_init(sc); 1130 if (rc != 0) 1131 goto done; /* error message displayed already */ 1132 1133 rc = t4_map_bar_2(sc); 1134 if (rc != 0) 1135 goto done; /* error message displayed already */ 1136 1137 rc = t4_create_dma_tag(sc); 1138 if (rc != 0) 1139 goto done; /* error message displayed already */ 1140 1141 /* 1142 * First pass over all the ports - allocate VIs and initialize some 1143 * basic parameters like mac address, port type, etc. 1144 */ 1145 for_each_port(sc, i) { 1146 struct port_info *pi; 1147 1148 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1149 sc->port[i] = pi; 1150 1151 /* These must be set before t4_port_init */ 1152 pi->adapter = sc; 1153 pi->port_id = i; 1154 /* 1155 * XXX: vi[0] is special so we can't delay this allocation until 1156 * pi->nvi's final value is known. 1157 */ 1158 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1159 M_ZERO | M_WAITOK); 1160 1161 /* 1162 * Allocate the "main" VI and initialize parameters 1163 * like mac addr. 1164 */ 1165 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1166 if (rc != 0) { 1167 device_printf(dev, "unable to initialize port %d: %d\n", 1168 i, rc); 1169 free(pi->vi, M_CXGBE); 1170 free(pi, M_CXGBE); 1171 sc->port[i] = NULL; 1172 goto done; 1173 } 1174 1175 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1176 device_get_nameunit(dev), i); 1177 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1178 sc->chan_map[pi->tx_chan] = i; 1179 1180 /* All VIs on this port share this media. */ 1181 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1182 cxgbe_media_status); 1183 1184 PORT_LOCK(pi); 1185 init_link_config(pi); 1186 fixup_link_config(pi); 1187 build_medialist(pi); 1188 if (fixed_ifmedia(pi)) 1189 pi->flags |= FIXED_IFMEDIA; 1190 PORT_UNLOCK(pi); 1191 1192 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1193 t4_ifnet_unit(sc, pi)); 1194 if (pi->dev == NULL) { 1195 device_printf(dev, 1196 "failed to add device for port %d.\n", i); 1197 rc = ENXIO; 1198 goto done; 1199 } 1200 pi->vi[0].dev = pi->dev; 1201 device_set_softc(pi->dev, pi); 1202 } 1203 1204 /* 1205 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1206 */ 1207 nports = sc->params.nports; 1208 rc = cfg_itype_and_nqueues(sc, &iaq); 1209 if (rc != 0) 1210 goto done; /* error message displayed already */ 1211 1212 num_vis = iaq.num_vis; 1213 sc->intr_type = iaq.intr_type; 1214 sc->intr_count = iaq.nirq; 1215 1216 s = &sc->sge; 1217 s->nrxq = nports * iaq.nrxq; 1218 s->ntxq = nports * iaq.ntxq; 1219 if (num_vis > 1) { 1220 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1221 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1222 } 1223 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1224 s->neq += nports; /* ctrl queues: 1 per port */ 1225 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1226 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1227 if (is_offload(sc) || is_ethoffload(sc)) { 1228 s->nofldtxq = nports * iaq.nofldtxq; 1229 if (num_vis > 1) 1230 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1231 s->neq += s->nofldtxq; 1232 1233 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 1234 M_CXGBE, M_ZERO | M_WAITOK); 1235 } 1236 #endif 1237 #ifdef TCP_OFFLOAD 1238 if (is_offload(sc)) { 1239 s->nofldrxq = nports * iaq.nofldrxq; 1240 if (num_vis > 1) 1241 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1242 s->neq += s->nofldrxq; /* free list */ 1243 s->niq += s->nofldrxq; 1244 1245 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1246 M_CXGBE, M_ZERO | M_WAITOK); 1247 } 1248 #endif 1249 #ifdef DEV_NETMAP 1250 if (num_vis > 1) { 1251 s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi; 1252 s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi; 1253 } 1254 s->neq += s->nnmtxq + s->nnmrxq; 1255 s->niq += s->nnmrxq; 1256 1257 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1258 M_CXGBE, M_ZERO | M_WAITOK); 1259 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1260 M_CXGBE, M_ZERO | M_WAITOK); 1261 #endif 1262 1263 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1264 M_ZERO | M_WAITOK); 1265 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1266 M_ZERO | M_WAITOK); 1267 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1268 M_ZERO | M_WAITOK); 1269 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 1270 M_ZERO | M_WAITOK); 1271 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 1272 M_ZERO | M_WAITOK); 1273 1274 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1275 M_ZERO | M_WAITOK); 1276 1277 t4_init_l2t(sc, M_WAITOK); 1278 t4_init_smt(sc, M_WAITOK); 1279 t4_init_tx_sched(sc); 1280 t4_init_atid_table(sc); 1281 #ifdef RATELIMIT 1282 t4_init_etid_table(sc); 1283 #endif 1284 #ifdef INET6 1285 t4_init_clip_table(sc); 1286 #endif 1287 if (sc->vres.key.size != 0) 1288 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1289 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1290 1291 /* 1292 * Second pass over the ports. This time we know the number of rx and 1293 * tx queues that each port should get. 1294 */ 1295 rqidx = tqidx = 0; 1296 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1297 ofld_tqidx = 0; 1298 #endif 1299 #ifdef TCP_OFFLOAD 1300 ofld_rqidx = 0; 1301 #endif 1302 #ifdef DEV_NETMAP 1303 nm_rqidx = nm_tqidx = 0; 1304 #endif 1305 for_each_port(sc, i) { 1306 struct port_info *pi = sc->port[i]; 1307 struct vi_info *vi; 1308 1309 if (pi == NULL) 1310 continue; 1311 1312 pi->nvi = num_vis; 1313 for_each_vi(pi, j, vi) { 1314 vi->pi = pi; 1315 vi->qsize_rxq = t4_qsize_rxq; 1316 vi->qsize_txq = t4_qsize_txq; 1317 1318 vi->first_rxq = rqidx; 1319 vi->first_txq = tqidx; 1320 vi->tmr_idx = t4_tmr_idx; 1321 vi->pktc_idx = t4_pktc_idx; 1322 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1323 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1324 1325 rqidx += vi->nrxq; 1326 tqidx += vi->ntxq; 1327 1328 if (j == 0 && vi->ntxq > 1) 1329 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1330 else 1331 vi->rsrv_noflowq = 0; 1332 1333 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1334 vi->first_ofld_txq = ofld_tqidx; 1335 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1336 ofld_tqidx += vi->nofldtxq; 1337 #endif 1338 #ifdef TCP_OFFLOAD 1339 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1340 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1341 vi->first_ofld_rxq = ofld_rqidx; 1342 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1343 1344 ofld_rqidx += vi->nofldrxq; 1345 #endif 1346 #ifdef DEV_NETMAP 1347 if (j > 0) { 1348 vi->first_nm_rxq = nm_rqidx; 1349 vi->first_nm_txq = nm_tqidx; 1350 vi->nnmrxq = iaq.nnmrxq_vi; 1351 vi->nnmtxq = iaq.nnmtxq_vi; 1352 nm_rqidx += vi->nnmrxq; 1353 nm_tqidx += vi->nnmtxq; 1354 } 1355 #endif 1356 } 1357 } 1358 1359 rc = t4_setup_intr_handlers(sc); 1360 if (rc != 0) { 1361 device_printf(dev, 1362 "failed to setup interrupt handlers: %d\n", rc); 1363 goto done; 1364 } 1365 1366 rc = bus_generic_probe(dev); 1367 if (rc != 0) { 1368 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1369 goto done; 1370 } 1371 1372 /* 1373 * Ensure thread-safe mailbox access (in debug builds). 1374 * 1375 * So far this was the only thread accessing the mailbox but various 1376 * ifnets and sysctls are about to be created and their handlers/ioctls 1377 * will access the mailbox from different threads. 1378 */ 1379 sc->flags |= CHK_MBOX_ACCESS; 1380 1381 rc = bus_generic_attach(dev); 1382 if (rc != 0) { 1383 device_printf(dev, 1384 "failed to attach all child ports: %d\n", rc); 1385 goto done; 1386 } 1387 1388 device_printf(dev, 1389 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1390 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1391 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1392 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1393 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1394 1395 t4_set_desc(sc); 1396 1397 notify_siblings(dev, 0); 1398 1399 done: 1400 if (rc != 0 && sc->cdev) { 1401 /* cdev was created and so cxgbetool works; recover that way. */ 1402 device_printf(dev, 1403 "error during attach, adapter is now in recovery mode.\n"); 1404 rc = 0; 1405 } 1406 1407 if (rc != 0) 1408 t4_detach_common(dev); 1409 else 1410 t4_sysctls(sc); 1411 1412 return (rc); 1413 } 1414 1415 static int 1416 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) 1417 { 1418 struct adapter *sc; 1419 struct port_info *pi; 1420 int i; 1421 1422 sc = device_get_softc(bus); 1423 buf[0] = '\0'; 1424 for_each_port(sc, i) { 1425 pi = sc->port[i]; 1426 if (pi != NULL && pi->dev == dev) { 1427 snprintf(buf, buflen, "port=%d", pi->port_id); 1428 break; 1429 } 1430 } 1431 return (0); 1432 } 1433 1434 static int 1435 t4_ready(device_t dev) 1436 { 1437 struct adapter *sc; 1438 1439 sc = device_get_softc(dev); 1440 if (sc->flags & FW_OK) 1441 return (0); 1442 return (ENXIO); 1443 } 1444 1445 static int 1446 t4_read_port_device(device_t dev, int port, device_t *child) 1447 { 1448 struct adapter *sc; 1449 struct port_info *pi; 1450 1451 sc = device_get_softc(dev); 1452 if (port < 0 || port >= MAX_NPORTS) 1453 return (EINVAL); 1454 pi = sc->port[port]; 1455 if (pi == NULL || pi->dev == NULL) 1456 return (ENXIO); 1457 *child = pi->dev; 1458 return (0); 1459 } 1460 1461 static int 1462 notify_siblings(device_t dev, int detaching) 1463 { 1464 device_t sibling; 1465 int error, i; 1466 1467 error = 0; 1468 for (i = 0; i < PCI_FUNCMAX; i++) { 1469 if (i == pci_get_function(dev)) 1470 continue; 1471 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1472 pci_get_slot(dev), i); 1473 if (sibling == NULL || !device_is_attached(sibling)) 1474 continue; 1475 if (detaching) 1476 error = T4_DETACH_CHILD(sibling); 1477 else 1478 (void)T4_ATTACH_CHILD(sibling); 1479 if (error) 1480 break; 1481 } 1482 return (error); 1483 } 1484 1485 /* 1486 * Idempotent 1487 */ 1488 static int 1489 t4_detach(device_t dev) 1490 { 1491 struct adapter *sc; 1492 int rc; 1493 1494 sc = device_get_softc(dev); 1495 1496 rc = notify_siblings(dev, 1); 1497 if (rc) { 1498 device_printf(dev, 1499 "failed to detach sibling devices: %d\n", rc); 1500 return (rc); 1501 } 1502 1503 return (t4_detach_common(dev)); 1504 } 1505 1506 int 1507 t4_detach_common(device_t dev) 1508 { 1509 struct adapter *sc; 1510 struct port_info *pi; 1511 int i, rc; 1512 1513 sc = device_get_softc(dev); 1514 1515 if (sc->cdev) { 1516 destroy_dev(sc->cdev); 1517 sc->cdev = NULL; 1518 } 1519 1520 sx_xlock(&t4_list_lock); 1521 SLIST_REMOVE(&t4_list, sc, adapter, link); 1522 sx_xunlock(&t4_list_lock); 1523 1524 sc->flags &= ~CHK_MBOX_ACCESS; 1525 if (sc->flags & FULL_INIT_DONE) { 1526 if (!(sc->flags & IS_VF)) 1527 t4_intr_disable(sc); 1528 } 1529 1530 if (device_is_attached(dev)) { 1531 rc = bus_generic_detach(dev); 1532 if (rc) { 1533 device_printf(dev, 1534 "failed to detach child devices: %d\n", rc); 1535 return (rc); 1536 } 1537 } 1538 1539 for (i = 0; i < sc->intr_count; i++) 1540 t4_free_irq(sc, &sc->irq[i]); 1541 1542 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1543 t4_free_tx_sched(sc); 1544 1545 for (i = 0; i < MAX_NPORTS; i++) { 1546 pi = sc->port[i]; 1547 if (pi) { 1548 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1549 if (pi->dev) 1550 device_delete_child(dev, pi->dev); 1551 1552 mtx_destroy(&pi->pi_lock); 1553 free(pi->vi, M_CXGBE); 1554 free(pi, M_CXGBE); 1555 } 1556 } 1557 1558 device_delete_children(dev); 1559 1560 if (sc->flags & FULL_INIT_DONE) 1561 adapter_full_uninit(sc); 1562 1563 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1564 t4_fw_bye(sc, sc->mbox); 1565 1566 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1567 pci_release_msi(dev); 1568 1569 if (sc->regs_res) 1570 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1571 sc->regs_res); 1572 1573 if (sc->udbs_res) 1574 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1575 sc->udbs_res); 1576 1577 if (sc->msix_res) 1578 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1579 sc->msix_res); 1580 1581 if (sc->l2t) 1582 t4_free_l2t(sc->l2t); 1583 if (sc->smt) 1584 t4_free_smt(sc->smt); 1585 t4_free_atid_table(sc); 1586 #ifdef RATELIMIT 1587 t4_free_etid_table(sc); 1588 #endif 1589 if (sc->key_map) 1590 vmem_destroy(sc->key_map); 1591 #ifdef INET6 1592 t4_destroy_clip_table(sc); 1593 #endif 1594 1595 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1596 free(sc->sge.ofld_txq, M_CXGBE); 1597 #endif 1598 #ifdef TCP_OFFLOAD 1599 free(sc->sge.ofld_rxq, M_CXGBE); 1600 #endif 1601 #ifdef DEV_NETMAP 1602 free(sc->sge.nm_rxq, M_CXGBE); 1603 free(sc->sge.nm_txq, M_CXGBE); 1604 #endif 1605 free(sc->irq, M_CXGBE); 1606 free(sc->sge.rxq, M_CXGBE); 1607 free(sc->sge.txq, M_CXGBE); 1608 free(sc->sge.ctrlq, M_CXGBE); 1609 free(sc->sge.iqmap, M_CXGBE); 1610 free(sc->sge.eqmap, M_CXGBE); 1611 free(sc->tids.ftid_tab, M_CXGBE); 1612 free(sc->tids.hpftid_tab, M_CXGBE); 1613 free_hftid_hash(&sc->tids); 1614 free(sc->tids.tid_tab, M_CXGBE); 1615 free(sc->tt.tls_rx_ports, M_CXGBE); 1616 t4_destroy_dma_tag(sc); 1617 1618 callout_drain(&sc->ktls_tick); 1619 callout_drain(&sc->sfl_callout); 1620 if (mtx_initialized(&sc->tids.ftid_lock)) { 1621 mtx_destroy(&sc->tids.ftid_lock); 1622 cv_destroy(&sc->tids.ftid_cv); 1623 } 1624 if (mtx_initialized(&sc->tids.atid_lock)) 1625 mtx_destroy(&sc->tids.atid_lock); 1626 if (mtx_initialized(&sc->ifp_lock)) 1627 mtx_destroy(&sc->ifp_lock); 1628 1629 if (rw_initialized(&sc->policy_lock)) { 1630 rw_destroy(&sc->policy_lock); 1631 #ifdef TCP_OFFLOAD 1632 if (sc->policy != NULL) 1633 free_offload_policy(sc->policy); 1634 #endif 1635 } 1636 1637 for (i = 0; i < NUM_MEMWIN; i++) { 1638 struct memwin *mw = &sc->memwin[i]; 1639 1640 if (rw_initialized(&mw->mw_lock)) 1641 rw_destroy(&mw->mw_lock); 1642 } 1643 1644 mtx_destroy(&sc->sfl_lock); 1645 mtx_destroy(&sc->reg_lock); 1646 mtx_destroy(&sc->sc_lock); 1647 1648 bzero(sc, sizeof(*sc)); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 cxgbe_probe(device_t dev) 1655 { 1656 char buf[128]; 1657 struct port_info *pi = device_get_softc(dev); 1658 1659 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1660 device_set_desc_copy(dev, buf); 1661 1662 return (BUS_PROBE_DEFAULT); 1663 } 1664 1665 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1666 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1667 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 1668 IFCAP_HWRXTSTMP | IFCAP_NOMAP) 1669 #define T4_CAP_ENABLE (T4_CAP) 1670 1671 static int 1672 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1673 { 1674 struct ifnet *ifp; 1675 struct sbuf *sb; 1676 1677 vi->xact_addr_filt = -1; 1678 callout_init(&vi->tick, 1); 1679 1680 /* Allocate an ifnet and set it up */ 1681 ifp = if_alloc_dev(IFT_ETHER, dev); 1682 if (ifp == NULL) { 1683 device_printf(dev, "Cannot allocate ifnet\n"); 1684 return (ENOMEM); 1685 } 1686 vi->ifp = ifp; 1687 ifp->if_softc = vi; 1688 1689 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1690 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1691 1692 ifp->if_init = cxgbe_init; 1693 ifp->if_ioctl = cxgbe_ioctl; 1694 ifp->if_transmit = cxgbe_transmit; 1695 ifp->if_qflush = cxgbe_qflush; 1696 ifp->if_get_counter = cxgbe_get_counter; 1697 #if defined(KERN_TLS) || defined(RATELIMIT) 1698 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 1699 ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; 1700 ifp->if_snd_tag_query = cxgbe_snd_tag_query; 1701 ifp->if_snd_tag_free = cxgbe_snd_tag_free; 1702 #endif 1703 #ifdef RATELIMIT 1704 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 1705 #endif 1706 1707 ifp->if_capabilities = T4_CAP; 1708 ifp->if_capenable = T4_CAP_ENABLE; 1709 #ifdef TCP_OFFLOAD 1710 if (vi->nofldrxq != 0 && (vi->pi->adapter->flags & KERN_TLS_OK) == 0) 1711 ifp->if_capabilities |= IFCAP_TOE; 1712 #endif 1713 #ifdef RATELIMIT 1714 if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) { 1715 ifp->if_capabilities |= IFCAP_TXRTLMT; 1716 ifp->if_capenable |= IFCAP_TXRTLMT; 1717 } 1718 #endif 1719 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1720 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1721 1722 ifp->if_hw_tsomax = IP_MAXPACKET; 1723 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 1724 #ifdef RATELIMIT 1725 if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) 1726 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 1727 #endif 1728 ifp->if_hw_tsomaxsegsize = 65536; 1729 #ifdef KERN_TLS 1730 if (vi->pi->adapter->flags & KERN_TLS_OK) { 1731 ifp->if_capabilities |= IFCAP_TXTLS; 1732 ifp->if_capenable |= IFCAP_TXTLS; 1733 } 1734 #endif 1735 1736 ether_ifattach(ifp, vi->hw_addr); 1737 #ifdef DEV_NETMAP 1738 if (vi->nnmrxq != 0) 1739 cxgbe_nm_attach(vi); 1740 #endif 1741 sb = sbuf_new_auto(); 1742 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1743 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1744 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 1745 case IFCAP_TOE: 1746 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 1747 break; 1748 case IFCAP_TOE | IFCAP_TXRTLMT: 1749 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 1750 break; 1751 case IFCAP_TXRTLMT: 1752 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 1753 break; 1754 } 1755 #endif 1756 #ifdef TCP_OFFLOAD 1757 if (ifp->if_capabilities & IFCAP_TOE) 1758 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 1759 #endif 1760 #ifdef DEV_NETMAP 1761 if (ifp->if_capabilities & IFCAP_NETMAP) 1762 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 1763 vi->nnmtxq, vi->nnmrxq); 1764 #endif 1765 sbuf_finish(sb); 1766 device_printf(dev, "%s\n", sbuf_data(sb)); 1767 sbuf_delete(sb); 1768 1769 vi_sysctls(vi); 1770 1771 return (0); 1772 } 1773 1774 static int 1775 cxgbe_attach(device_t dev) 1776 { 1777 struct port_info *pi = device_get_softc(dev); 1778 struct adapter *sc = pi->adapter; 1779 struct vi_info *vi; 1780 int i, rc; 1781 1782 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1783 1784 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1785 if (rc) 1786 return (rc); 1787 1788 for_each_vi(pi, i, vi) { 1789 if (i == 0) 1790 continue; 1791 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 1792 if (vi->dev == NULL) { 1793 device_printf(dev, "failed to add VI %d\n", i); 1794 continue; 1795 } 1796 device_set_softc(vi->dev, vi); 1797 } 1798 1799 cxgbe_sysctls(pi); 1800 1801 bus_generic_attach(dev); 1802 1803 return (0); 1804 } 1805 1806 static void 1807 cxgbe_vi_detach(struct vi_info *vi) 1808 { 1809 struct ifnet *ifp = vi->ifp; 1810 1811 ether_ifdetach(ifp); 1812 1813 /* Let detach proceed even if these fail. */ 1814 #ifdef DEV_NETMAP 1815 if (ifp->if_capabilities & IFCAP_NETMAP) 1816 cxgbe_nm_detach(vi); 1817 #endif 1818 cxgbe_uninit_synchronized(vi); 1819 callout_drain(&vi->tick); 1820 vi_full_uninit(vi); 1821 1822 if_free(vi->ifp); 1823 vi->ifp = NULL; 1824 } 1825 1826 static int 1827 cxgbe_detach(device_t dev) 1828 { 1829 struct port_info *pi = device_get_softc(dev); 1830 struct adapter *sc = pi->adapter; 1831 int rc; 1832 1833 /* Detach the extra VIs first. */ 1834 rc = bus_generic_detach(dev); 1835 if (rc) 1836 return (rc); 1837 device_delete_children(dev); 1838 1839 doom_vi(sc, &pi->vi[0]); 1840 1841 if (pi->flags & HAS_TRACEQ) { 1842 sc->traceq = -1; /* cloner should not create ifnet */ 1843 t4_tracer_port_detach(sc); 1844 } 1845 1846 cxgbe_vi_detach(&pi->vi[0]); 1847 callout_drain(&pi->tick); 1848 ifmedia_removeall(&pi->media); 1849 1850 end_synchronized_op(sc, 0); 1851 1852 return (0); 1853 } 1854 1855 static void 1856 cxgbe_init(void *arg) 1857 { 1858 struct vi_info *vi = arg; 1859 struct adapter *sc = vi->pi->adapter; 1860 1861 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1862 return; 1863 cxgbe_init_synchronized(vi); 1864 end_synchronized_op(sc, 0); 1865 } 1866 1867 static int 1868 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1869 { 1870 int rc = 0, mtu, flags; 1871 struct vi_info *vi = ifp->if_softc; 1872 struct port_info *pi = vi->pi; 1873 struct adapter *sc = pi->adapter; 1874 struct ifreq *ifr = (struct ifreq *)data; 1875 uint32_t mask; 1876 1877 switch (cmd) { 1878 case SIOCSIFMTU: 1879 mtu = ifr->ifr_mtu; 1880 if (mtu < ETHERMIN || mtu > MAX_MTU) 1881 return (EINVAL); 1882 1883 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 1884 if (rc) 1885 return (rc); 1886 ifp->if_mtu = mtu; 1887 if (vi->flags & VI_INIT_DONE) { 1888 t4_update_fl_bufsize(ifp); 1889 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1890 rc = update_mac_settings(ifp, XGMAC_MTU); 1891 } 1892 end_synchronized_op(sc, 0); 1893 break; 1894 1895 case SIOCSIFFLAGS: 1896 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 1897 if (rc) 1898 return (rc); 1899 1900 if (ifp->if_flags & IFF_UP) { 1901 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1902 flags = vi->if_flags; 1903 if ((ifp->if_flags ^ flags) & 1904 (IFF_PROMISC | IFF_ALLMULTI)) { 1905 rc = update_mac_settings(ifp, 1906 XGMAC_PROMISC | XGMAC_ALLMULTI); 1907 } 1908 } else { 1909 rc = cxgbe_init_synchronized(vi); 1910 } 1911 vi->if_flags = ifp->if_flags; 1912 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1913 rc = cxgbe_uninit_synchronized(vi); 1914 } 1915 end_synchronized_op(sc, 0); 1916 break; 1917 1918 case SIOCADDMULTI: 1919 case SIOCDELMULTI: 1920 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 1921 if (rc) 1922 return (rc); 1923 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1924 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 1925 end_synchronized_op(sc, 0); 1926 break; 1927 1928 case SIOCSIFCAP: 1929 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 1930 if (rc) 1931 return (rc); 1932 1933 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1934 if (mask & IFCAP_TXCSUM) { 1935 ifp->if_capenable ^= IFCAP_TXCSUM; 1936 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1937 1938 if (IFCAP_TSO4 & ifp->if_capenable && 1939 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1940 ifp->if_capenable &= ~IFCAP_TSO4; 1941 if_printf(ifp, 1942 "tso4 disabled due to -txcsum.\n"); 1943 } 1944 } 1945 if (mask & IFCAP_TXCSUM_IPV6) { 1946 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1947 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1948 1949 if (IFCAP_TSO6 & ifp->if_capenable && 1950 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1951 ifp->if_capenable &= ~IFCAP_TSO6; 1952 if_printf(ifp, 1953 "tso6 disabled due to -txcsum6.\n"); 1954 } 1955 } 1956 if (mask & IFCAP_RXCSUM) 1957 ifp->if_capenable ^= IFCAP_RXCSUM; 1958 if (mask & IFCAP_RXCSUM_IPV6) 1959 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1960 1961 /* 1962 * Note that we leave CSUM_TSO alone (it is always set). The 1963 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 1964 * sending a TSO request our way, so it's sufficient to toggle 1965 * IFCAP_TSOx only. 1966 */ 1967 if (mask & IFCAP_TSO4) { 1968 if (!(IFCAP_TSO4 & ifp->if_capenable) && 1969 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1970 if_printf(ifp, "enable txcsum first.\n"); 1971 rc = EAGAIN; 1972 goto fail; 1973 } 1974 ifp->if_capenable ^= IFCAP_TSO4; 1975 } 1976 if (mask & IFCAP_TSO6) { 1977 if (!(IFCAP_TSO6 & ifp->if_capenable) && 1978 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1979 if_printf(ifp, "enable txcsum6 first.\n"); 1980 rc = EAGAIN; 1981 goto fail; 1982 } 1983 ifp->if_capenable ^= IFCAP_TSO6; 1984 } 1985 if (mask & IFCAP_LRO) { 1986 #if defined(INET) || defined(INET6) 1987 int i; 1988 struct sge_rxq *rxq; 1989 1990 ifp->if_capenable ^= IFCAP_LRO; 1991 for_each_rxq(vi, i, rxq) { 1992 if (ifp->if_capenable & IFCAP_LRO) 1993 rxq->iq.flags |= IQ_LRO_ENABLED; 1994 else 1995 rxq->iq.flags &= ~IQ_LRO_ENABLED; 1996 } 1997 #endif 1998 } 1999 #ifdef TCP_OFFLOAD 2000 if (mask & IFCAP_TOE) { 2001 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2002 2003 rc = toe_capability(vi, enable); 2004 if (rc != 0) 2005 goto fail; 2006 2007 ifp->if_capenable ^= mask; 2008 } 2009 #endif 2010 if (mask & IFCAP_VLAN_HWTAGGING) { 2011 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2012 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2013 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2014 } 2015 if (mask & IFCAP_VLAN_MTU) { 2016 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2017 2018 /* Need to find out how to disable auto-mtu-inflation */ 2019 } 2020 if (mask & IFCAP_VLAN_HWTSO) 2021 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2022 if (mask & IFCAP_VLAN_HWCSUM) 2023 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2024 #ifdef RATELIMIT 2025 if (mask & IFCAP_TXRTLMT) 2026 ifp->if_capenable ^= IFCAP_TXRTLMT; 2027 #endif 2028 if (mask & IFCAP_HWRXTSTMP) { 2029 int i; 2030 struct sge_rxq *rxq; 2031 2032 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2033 for_each_rxq(vi, i, rxq) { 2034 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2035 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2036 else 2037 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2038 } 2039 } 2040 if (mask & IFCAP_NOMAP) 2041 ifp->if_capenable ^= IFCAP_NOMAP; 2042 2043 #ifdef KERN_TLS 2044 if (mask & IFCAP_TXTLS) 2045 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2046 #endif 2047 2048 #ifdef VLAN_CAPABILITIES 2049 VLAN_CAPABILITIES(ifp); 2050 #endif 2051 fail: 2052 end_synchronized_op(sc, 0); 2053 break; 2054 2055 case SIOCSIFMEDIA: 2056 case SIOCGIFMEDIA: 2057 case SIOCGIFXMEDIA: 2058 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2059 break; 2060 2061 case SIOCGI2C: { 2062 struct ifi2creq i2c; 2063 2064 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2065 if (rc != 0) 2066 break; 2067 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2068 rc = EPERM; 2069 break; 2070 } 2071 if (i2c.len > sizeof(i2c.data)) { 2072 rc = EINVAL; 2073 break; 2074 } 2075 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2076 if (rc) 2077 return (rc); 2078 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2079 i2c.offset, i2c.len, &i2c.data[0]); 2080 end_synchronized_op(sc, 0); 2081 if (rc == 0) 2082 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2083 break; 2084 } 2085 2086 default: 2087 rc = ether_ioctl(ifp, cmd, data); 2088 } 2089 2090 return (rc); 2091 } 2092 2093 static int 2094 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2095 { 2096 struct vi_info *vi = ifp->if_softc; 2097 struct port_info *pi = vi->pi; 2098 struct adapter *sc = pi->adapter; 2099 struct sge_txq *txq; 2100 #ifdef RATELIMIT 2101 struct cxgbe_snd_tag *cst; 2102 #endif 2103 void *items[1]; 2104 int rc; 2105 2106 M_ASSERTPKTHDR(m); 2107 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2108 #if defined(KERN_TLS) || defined(RATELIMIT) 2109 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2110 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2111 #endif 2112 2113 if (__predict_false(pi->link_cfg.link_ok == false)) { 2114 m_freem(m); 2115 return (ENETDOWN); 2116 } 2117 2118 rc = parse_pkt(sc, &m); 2119 if (__predict_false(rc != 0)) { 2120 MPASS(m == NULL); /* was freed already */ 2121 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2122 return (rc); 2123 } 2124 #ifdef RATELIMIT 2125 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2126 cst = mst_to_cst(m->m_pkthdr.snd_tag); 2127 if (cst->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2128 return (ethofld_transmit(ifp, m)); 2129 } 2130 #endif 2131 2132 /* Select a txq. */ 2133 txq = &sc->sge.txq[vi->first_txq]; 2134 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2135 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2136 vi->rsrv_noflowq); 2137 2138 items[0] = m; 2139 rc = mp_ring_enqueue(txq->r, items, 1, 4096); 2140 if (__predict_false(rc != 0)) 2141 m_freem(m); 2142 2143 return (rc); 2144 } 2145 2146 static void 2147 cxgbe_qflush(struct ifnet *ifp) 2148 { 2149 struct vi_info *vi = ifp->if_softc; 2150 struct sge_txq *txq; 2151 int i; 2152 2153 /* queues do not exist if !VI_INIT_DONE. */ 2154 if (vi->flags & VI_INIT_DONE) { 2155 for_each_txq(vi, i, txq) { 2156 TXQ_LOCK(txq); 2157 txq->eq.flags |= EQ_QFLUSH; 2158 TXQ_UNLOCK(txq); 2159 while (!mp_ring_is_idle(txq->r)) { 2160 mp_ring_check_drainage(txq->r, 0); 2161 pause("qflush", 1); 2162 } 2163 TXQ_LOCK(txq); 2164 txq->eq.flags &= ~EQ_QFLUSH; 2165 TXQ_UNLOCK(txq); 2166 } 2167 } 2168 if_qflush(ifp); 2169 } 2170 2171 static uint64_t 2172 vi_get_counter(struct ifnet *ifp, ift_counter c) 2173 { 2174 struct vi_info *vi = ifp->if_softc; 2175 struct fw_vi_stats_vf *s = &vi->stats; 2176 2177 vi_refresh_stats(vi->pi->adapter, vi); 2178 2179 switch (c) { 2180 case IFCOUNTER_IPACKETS: 2181 return (s->rx_bcast_frames + s->rx_mcast_frames + 2182 s->rx_ucast_frames); 2183 case IFCOUNTER_IERRORS: 2184 return (s->rx_err_frames); 2185 case IFCOUNTER_OPACKETS: 2186 return (s->tx_bcast_frames + s->tx_mcast_frames + 2187 s->tx_ucast_frames + s->tx_offload_frames); 2188 case IFCOUNTER_OERRORS: 2189 return (s->tx_drop_frames); 2190 case IFCOUNTER_IBYTES: 2191 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 2192 s->rx_ucast_bytes); 2193 case IFCOUNTER_OBYTES: 2194 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 2195 s->tx_ucast_bytes + s->tx_offload_bytes); 2196 case IFCOUNTER_IMCASTS: 2197 return (s->rx_mcast_frames); 2198 case IFCOUNTER_OMCASTS: 2199 return (s->tx_mcast_frames); 2200 case IFCOUNTER_OQDROPS: { 2201 uint64_t drops; 2202 2203 drops = 0; 2204 if (vi->flags & VI_INIT_DONE) { 2205 int i; 2206 struct sge_txq *txq; 2207 2208 for_each_txq(vi, i, txq) 2209 drops += counter_u64_fetch(txq->r->drops); 2210 } 2211 2212 return (drops); 2213 2214 } 2215 2216 default: 2217 return (if_get_counter_default(ifp, c)); 2218 } 2219 } 2220 2221 uint64_t 2222 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 2223 { 2224 struct vi_info *vi = ifp->if_softc; 2225 struct port_info *pi = vi->pi; 2226 struct adapter *sc = pi->adapter; 2227 struct port_stats *s = &pi->stats; 2228 2229 if (pi->nvi > 1 || sc->flags & IS_VF) 2230 return (vi_get_counter(ifp, c)); 2231 2232 cxgbe_refresh_stats(sc, pi); 2233 2234 switch (c) { 2235 case IFCOUNTER_IPACKETS: 2236 return (s->rx_frames); 2237 2238 case IFCOUNTER_IERRORS: 2239 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 2240 s->rx_fcs_err + s->rx_len_err); 2241 2242 case IFCOUNTER_OPACKETS: 2243 return (s->tx_frames); 2244 2245 case IFCOUNTER_OERRORS: 2246 return (s->tx_error_frames); 2247 2248 case IFCOUNTER_IBYTES: 2249 return (s->rx_octets); 2250 2251 case IFCOUNTER_OBYTES: 2252 return (s->tx_octets); 2253 2254 case IFCOUNTER_IMCASTS: 2255 return (s->rx_mcast_frames); 2256 2257 case IFCOUNTER_OMCASTS: 2258 return (s->tx_mcast_frames); 2259 2260 case IFCOUNTER_IQDROPS: 2261 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 2262 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 2263 s->rx_trunc3 + pi->tnl_cong_drops); 2264 2265 case IFCOUNTER_OQDROPS: { 2266 uint64_t drops; 2267 2268 drops = s->tx_drop; 2269 if (vi->flags & VI_INIT_DONE) { 2270 int i; 2271 struct sge_txq *txq; 2272 2273 for_each_txq(vi, i, txq) 2274 drops += counter_u64_fetch(txq->r->drops); 2275 } 2276 2277 return (drops); 2278 2279 } 2280 2281 default: 2282 return (if_get_counter_default(ifp, c)); 2283 } 2284 } 2285 2286 #if defined(KERN_TLS) || defined(RATELIMIT) 2287 void 2288 cxgbe_snd_tag_init(struct cxgbe_snd_tag *cst, struct ifnet *ifp, int type) 2289 { 2290 2291 m_snd_tag_init(&cst->com, ifp); 2292 cst->type = type; 2293 } 2294 2295 static int 2296 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 2297 struct m_snd_tag **pt) 2298 { 2299 int error; 2300 2301 switch (params->hdr.type) { 2302 #ifdef RATELIMIT 2303 case IF_SND_TAG_TYPE_RATE_LIMIT: 2304 error = cxgbe_rate_tag_alloc(ifp, params, pt); 2305 break; 2306 #endif 2307 #ifdef KERN_TLS 2308 case IF_SND_TAG_TYPE_TLS: 2309 error = cxgbe_tls_tag_alloc(ifp, params, pt); 2310 break; 2311 #endif 2312 default: 2313 error = EOPNOTSUPP; 2314 } 2315 if (error == 0) 2316 MPASS(mst_to_cst(*pt)->type == params->hdr.type); 2317 return (error); 2318 } 2319 2320 static int 2321 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 2322 union if_snd_tag_modify_params *params) 2323 { 2324 struct cxgbe_snd_tag *cst; 2325 2326 cst = mst_to_cst(mst); 2327 switch (cst->type) { 2328 #ifdef RATELIMIT 2329 case IF_SND_TAG_TYPE_RATE_LIMIT: 2330 return (cxgbe_rate_tag_modify(mst, params)); 2331 #endif 2332 default: 2333 return (EOPNOTSUPP); 2334 } 2335 } 2336 2337 static int 2338 cxgbe_snd_tag_query(struct m_snd_tag *mst, 2339 union if_snd_tag_query_params *params) 2340 { 2341 struct cxgbe_snd_tag *cst; 2342 2343 cst = mst_to_cst(mst); 2344 switch (cst->type) { 2345 #ifdef RATELIMIT 2346 case IF_SND_TAG_TYPE_RATE_LIMIT: 2347 return (cxgbe_rate_tag_query(mst, params)); 2348 #endif 2349 default: 2350 return (EOPNOTSUPP); 2351 } 2352 } 2353 2354 static void 2355 cxgbe_snd_tag_free(struct m_snd_tag *mst) 2356 { 2357 struct cxgbe_snd_tag *cst; 2358 2359 cst = mst_to_cst(mst); 2360 switch (cst->type) { 2361 #ifdef RATELIMIT 2362 case IF_SND_TAG_TYPE_RATE_LIMIT: 2363 cxgbe_rate_tag_free(mst); 2364 return; 2365 #endif 2366 #ifdef KERN_TLS 2367 case IF_SND_TAG_TYPE_TLS: 2368 cxgbe_tls_tag_free(mst); 2369 return; 2370 #endif 2371 default: 2372 panic("shouldn't get here"); 2373 } 2374 } 2375 #endif 2376 2377 /* 2378 * The kernel picks a media from the list we had provided but we still validate 2379 * the requeste. 2380 */ 2381 int 2382 cxgbe_media_change(struct ifnet *ifp) 2383 { 2384 struct vi_info *vi = ifp->if_softc; 2385 struct port_info *pi = vi->pi; 2386 struct ifmedia *ifm = &pi->media; 2387 struct link_config *lc = &pi->link_cfg; 2388 struct adapter *sc = pi->adapter; 2389 int rc; 2390 2391 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 2392 if (rc != 0) 2393 return (rc); 2394 PORT_LOCK(pi); 2395 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 2396 /* ifconfig .. media autoselect */ 2397 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 2398 rc = ENOTSUP; /* AN not supported by transceiver */ 2399 goto done; 2400 } 2401 lc->requested_aneg = AUTONEG_ENABLE; 2402 lc->requested_speed = 0; 2403 lc->requested_fc |= PAUSE_AUTONEG; 2404 } else { 2405 lc->requested_aneg = AUTONEG_DISABLE; 2406 lc->requested_speed = 2407 ifmedia_baudrate(ifm->ifm_media) / 1000000; 2408 lc->requested_fc = 0; 2409 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 2410 lc->requested_fc |= PAUSE_RX; 2411 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 2412 lc->requested_fc |= PAUSE_TX; 2413 } 2414 if (pi->up_vis > 0) { 2415 fixup_link_config(pi); 2416 rc = apply_link_config(pi); 2417 } 2418 done: 2419 PORT_UNLOCK(pi); 2420 end_synchronized_op(sc, 0); 2421 return (rc); 2422 } 2423 2424 /* 2425 * Base media word (without ETHER, pause, link active, etc.) for the port at the 2426 * given speed. 2427 */ 2428 static int 2429 port_mword(struct port_info *pi, uint32_t speed) 2430 { 2431 2432 MPASS(speed & M_FW_PORT_CAP32_SPEED); 2433 MPASS(powerof2(speed)); 2434 2435 switch(pi->port_type) { 2436 case FW_PORT_TYPE_BT_SGMII: 2437 case FW_PORT_TYPE_BT_XFI: 2438 case FW_PORT_TYPE_BT_XAUI: 2439 /* BaseT */ 2440 switch (speed) { 2441 case FW_PORT_CAP32_SPEED_100M: 2442 return (IFM_100_T); 2443 case FW_PORT_CAP32_SPEED_1G: 2444 return (IFM_1000_T); 2445 case FW_PORT_CAP32_SPEED_10G: 2446 return (IFM_10G_T); 2447 } 2448 break; 2449 case FW_PORT_TYPE_KX4: 2450 if (speed == FW_PORT_CAP32_SPEED_10G) 2451 return (IFM_10G_KX4); 2452 break; 2453 case FW_PORT_TYPE_CX4: 2454 if (speed == FW_PORT_CAP32_SPEED_10G) 2455 return (IFM_10G_CX4); 2456 break; 2457 case FW_PORT_TYPE_KX: 2458 if (speed == FW_PORT_CAP32_SPEED_1G) 2459 return (IFM_1000_KX); 2460 break; 2461 case FW_PORT_TYPE_KR: 2462 case FW_PORT_TYPE_BP_AP: 2463 case FW_PORT_TYPE_BP4_AP: 2464 case FW_PORT_TYPE_BP40_BA: 2465 case FW_PORT_TYPE_KR4_100G: 2466 case FW_PORT_TYPE_KR_SFP28: 2467 case FW_PORT_TYPE_KR_XLAUI: 2468 switch (speed) { 2469 case FW_PORT_CAP32_SPEED_1G: 2470 return (IFM_1000_KX); 2471 case FW_PORT_CAP32_SPEED_10G: 2472 return (IFM_10G_KR); 2473 case FW_PORT_CAP32_SPEED_25G: 2474 return (IFM_25G_KR); 2475 case FW_PORT_CAP32_SPEED_40G: 2476 return (IFM_40G_KR4); 2477 case FW_PORT_CAP32_SPEED_50G: 2478 return (IFM_50G_KR2); 2479 case FW_PORT_CAP32_SPEED_100G: 2480 return (IFM_100G_KR4); 2481 } 2482 break; 2483 case FW_PORT_TYPE_FIBER_XFI: 2484 case FW_PORT_TYPE_FIBER_XAUI: 2485 case FW_PORT_TYPE_SFP: 2486 case FW_PORT_TYPE_QSFP_10G: 2487 case FW_PORT_TYPE_QSA: 2488 case FW_PORT_TYPE_QSFP: 2489 case FW_PORT_TYPE_CR4_QSFP: 2490 case FW_PORT_TYPE_CR_QSFP: 2491 case FW_PORT_TYPE_CR2_QSFP: 2492 case FW_PORT_TYPE_SFP28: 2493 /* Pluggable transceiver */ 2494 switch (pi->mod_type) { 2495 case FW_PORT_MOD_TYPE_LR: 2496 switch (speed) { 2497 case FW_PORT_CAP32_SPEED_1G: 2498 return (IFM_1000_LX); 2499 case FW_PORT_CAP32_SPEED_10G: 2500 return (IFM_10G_LR); 2501 case FW_PORT_CAP32_SPEED_25G: 2502 return (IFM_25G_LR); 2503 case FW_PORT_CAP32_SPEED_40G: 2504 return (IFM_40G_LR4); 2505 case FW_PORT_CAP32_SPEED_50G: 2506 return (IFM_50G_LR2); 2507 case FW_PORT_CAP32_SPEED_100G: 2508 return (IFM_100G_LR4); 2509 } 2510 break; 2511 case FW_PORT_MOD_TYPE_SR: 2512 switch (speed) { 2513 case FW_PORT_CAP32_SPEED_1G: 2514 return (IFM_1000_SX); 2515 case FW_PORT_CAP32_SPEED_10G: 2516 return (IFM_10G_SR); 2517 case FW_PORT_CAP32_SPEED_25G: 2518 return (IFM_25G_SR); 2519 case FW_PORT_CAP32_SPEED_40G: 2520 return (IFM_40G_SR4); 2521 case FW_PORT_CAP32_SPEED_50G: 2522 return (IFM_50G_SR2); 2523 case FW_PORT_CAP32_SPEED_100G: 2524 return (IFM_100G_SR4); 2525 } 2526 break; 2527 case FW_PORT_MOD_TYPE_ER: 2528 if (speed == FW_PORT_CAP32_SPEED_10G) 2529 return (IFM_10G_ER); 2530 break; 2531 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 2532 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 2533 switch (speed) { 2534 case FW_PORT_CAP32_SPEED_1G: 2535 return (IFM_1000_CX); 2536 case FW_PORT_CAP32_SPEED_10G: 2537 return (IFM_10G_TWINAX); 2538 case FW_PORT_CAP32_SPEED_25G: 2539 return (IFM_25G_CR); 2540 case FW_PORT_CAP32_SPEED_40G: 2541 return (IFM_40G_CR4); 2542 case FW_PORT_CAP32_SPEED_50G: 2543 return (IFM_50G_CR2); 2544 case FW_PORT_CAP32_SPEED_100G: 2545 return (IFM_100G_CR4); 2546 } 2547 break; 2548 case FW_PORT_MOD_TYPE_LRM: 2549 if (speed == FW_PORT_CAP32_SPEED_10G) 2550 return (IFM_10G_LRM); 2551 break; 2552 case FW_PORT_MOD_TYPE_NA: 2553 MPASS(0); /* Not pluggable? */ 2554 /* fall throough */ 2555 case FW_PORT_MOD_TYPE_ERROR: 2556 case FW_PORT_MOD_TYPE_UNKNOWN: 2557 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 2558 break; 2559 case FW_PORT_MOD_TYPE_NONE: 2560 return (IFM_NONE); 2561 } 2562 break; 2563 case FW_PORT_TYPE_NONE: 2564 return (IFM_NONE); 2565 } 2566 2567 return (IFM_UNKNOWN); 2568 } 2569 2570 void 2571 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 2572 { 2573 struct vi_info *vi = ifp->if_softc; 2574 struct port_info *pi = vi->pi; 2575 struct adapter *sc = pi->adapter; 2576 struct link_config *lc = &pi->link_cfg; 2577 2578 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 2579 return; 2580 PORT_LOCK(pi); 2581 2582 if (pi->up_vis == 0) { 2583 /* 2584 * If all the interfaces are administratively down the firmware 2585 * does not report transceiver changes. Refresh port info here 2586 * so that ifconfig displays accurate ifmedia at all times. 2587 * This is the only reason we have a synchronized op in this 2588 * function. Just PORT_LOCK would have been enough otherwise. 2589 */ 2590 t4_update_port_info(pi); 2591 build_medialist(pi); 2592 } 2593 2594 /* ifm_status */ 2595 ifmr->ifm_status = IFM_AVALID; 2596 if (lc->link_ok == false) 2597 goto done; 2598 ifmr->ifm_status |= IFM_ACTIVE; 2599 2600 /* ifm_active */ 2601 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 2602 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 2603 if (lc->fc & PAUSE_RX) 2604 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2605 if (lc->fc & PAUSE_TX) 2606 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2607 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 2608 done: 2609 PORT_UNLOCK(pi); 2610 end_synchronized_op(sc, 0); 2611 } 2612 2613 static int 2614 vcxgbe_probe(device_t dev) 2615 { 2616 char buf[128]; 2617 struct vi_info *vi = device_get_softc(dev); 2618 2619 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 2620 vi - vi->pi->vi); 2621 device_set_desc_copy(dev, buf); 2622 2623 return (BUS_PROBE_DEFAULT); 2624 } 2625 2626 static int 2627 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 2628 { 2629 int func, index, rc; 2630 uint32_t param, val; 2631 2632 ASSERT_SYNCHRONIZED_OP(sc); 2633 2634 index = vi - pi->vi; 2635 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 2636 KASSERT(index < nitems(vi_mac_funcs), 2637 ("%s: VI %s doesn't have a MAC func", __func__, 2638 device_get_nameunit(vi->dev))); 2639 func = vi_mac_funcs[index]; 2640 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 2641 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 2642 if (rc < 0) { 2643 device_printf(vi->dev, "failed to allocate virtual interface %d" 2644 "for port %d: %d\n", index, pi->port_id, -rc); 2645 return (-rc); 2646 } 2647 vi->viid = rc; 2648 2649 if (vi->rss_size == 1) { 2650 /* 2651 * This VI didn't get a slice of the RSS table. Reduce the 2652 * number of VIs being created (hw.cxgbe.num_vis) or modify the 2653 * configuration file (nvi, rssnvi for this PF) if this is a 2654 * problem. 2655 */ 2656 device_printf(vi->dev, "RSS table not available.\n"); 2657 vi->rss_base = 0xffff; 2658 2659 return (0); 2660 } 2661 2662 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 2663 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 2664 V_FW_PARAMS_PARAM_YZ(vi->viid); 2665 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2666 if (rc) 2667 vi->rss_base = 0xffff; 2668 else { 2669 MPASS((val >> 16) == vi->rss_size); 2670 vi->rss_base = val & 0xffff; 2671 } 2672 2673 return (0); 2674 } 2675 2676 static int 2677 vcxgbe_attach(device_t dev) 2678 { 2679 struct vi_info *vi; 2680 struct port_info *pi; 2681 struct adapter *sc; 2682 int rc; 2683 2684 vi = device_get_softc(dev); 2685 pi = vi->pi; 2686 sc = pi->adapter; 2687 2688 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 2689 if (rc) 2690 return (rc); 2691 rc = alloc_extra_vi(sc, pi, vi); 2692 end_synchronized_op(sc, 0); 2693 if (rc) 2694 return (rc); 2695 2696 rc = cxgbe_vi_attach(dev, vi); 2697 if (rc) { 2698 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2699 return (rc); 2700 } 2701 return (0); 2702 } 2703 2704 static int 2705 vcxgbe_detach(device_t dev) 2706 { 2707 struct vi_info *vi; 2708 struct adapter *sc; 2709 2710 vi = device_get_softc(dev); 2711 sc = vi->pi->adapter; 2712 2713 doom_vi(sc, vi); 2714 2715 cxgbe_vi_detach(vi); 2716 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2717 2718 end_synchronized_op(sc, 0); 2719 2720 return (0); 2721 } 2722 2723 static struct callout fatal_callout; 2724 2725 static void 2726 delayed_panic(void *arg) 2727 { 2728 struct adapter *sc = arg; 2729 2730 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 2731 } 2732 2733 void 2734 t4_fatal_err(struct adapter *sc, bool fw_error) 2735 { 2736 2737 t4_shutdown_adapter(sc); 2738 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 2739 device_get_nameunit(sc->dev)); 2740 if (fw_error) { 2741 ASSERT_SYNCHRONIZED_OP(sc); 2742 sc->flags |= ADAP_ERR; 2743 } else { 2744 ADAPTER_LOCK(sc); 2745 sc->flags |= ADAP_ERR; 2746 ADAPTER_UNLOCK(sc); 2747 } 2748 2749 if (t4_panic_on_fatal_err) { 2750 log(LOG_ALERT, "%s: panic on fatal error after 30s", 2751 device_get_nameunit(sc->dev)); 2752 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 2753 } 2754 } 2755 2756 void 2757 t4_add_adapter(struct adapter *sc) 2758 { 2759 sx_xlock(&t4_list_lock); 2760 SLIST_INSERT_HEAD(&t4_list, sc, link); 2761 sx_xunlock(&t4_list_lock); 2762 } 2763 2764 int 2765 t4_map_bars_0_and_4(struct adapter *sc) 2766 { 2767 sc->regs_rid = PCIR_BAR(0); 2768 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2769 &sc->regs_rid, RF_ACTIVE); 2770 if (sc->regs_res == NULL) { 2771 device_printf(sc->dev, "cannot map registers.\n"); 2772 return (ENXIO); 2773 } 2774 sc->bt = rman_get_bustag(sc->regs_res); 2775 sc->bh = rman_get_bushandle(sc->regs_res); 2776 sc->mmio_len = rman_get_size(sc->regs_res); 2777 setbit(&sc->doorbells, DOORBELL_KDB); 2778 2779 sc->msix_rid = PCIR_BAR(4); 2780 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2781 &sc->msix_rid, RF_ACTIVE); 2782 if (sc->msix_res == NULL) { 2783 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 2784 return (ENXIO); 2785 } 2786 2787 return (0); 2788 } 2789 2790 int 2791 t4_map_bar_2(struct adapter *sc) 2792 { 2793 2794 /* 2795 * T4: only iWARP driver uses the userspace doorbells. There is no need 2796 * to map it if RDMA is disabled. 2797 */ 2798 if (is_t4(sc) && sc->rdmacaps == 0) 2799 return (0); 2800 2801 sc->udbs_rid = PCIR_BAR(2); 2802 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2803 &sc->udbs_rid, RF_ACTIVE); 2804 if (sc->udbs_res == NULL) { 2805 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 2806 return (ENXIO); 2807 } 2808 sc->udbs_base = rman_get_virtual(sc->udbs_res); 2809 2810 if (chip_id(sc) >= CHELSIO_T5) { 2811 setbit(&sc->doorbells, DOORBELL_UDB); 2812 #if defined(__i386__) || defined(__amd64__) 2813 if (t5_write_combine) { 2814 int rc, mode; 2815 2816 /* 2817 * Enable write combining on BAR2. This is the 2818 * userspace doorbell BAR and is split into 128B 2819 * (UDBS_SEG_SIZE) doorbell regions, each associated 2820 * with an egress queue. The first 64B has the doorbell 2821 * and the second 64B can be used to submit a tx work 2822 * request with an implicit doorbell. 2823 */ 2824 2825 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 2826 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 2827 if (rc == 0) { 2828 clrbit(&sc->doorbells, DOORBELL_UDB); 2829 setbit(&sc->doorbells, DOORBELL_WCWR); 2830 setbit(&sc->doorbells, DOORBELL_UDBWC); 2831 } else { 2832 device_printf(sc->dev, 2833 "couldn't enable write combining: %d\n", 2834 rc); 2835 } 2836 2837 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 2838 t4_write_reg(sc, A_SGE_STAT_CFG, 2839 V_STATSOURCE_T5(7) | mode); 2840 } 2841 #endif 2842 } 2843 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 2844 2845 return (0); 2846 } 2847 2848 struct memwin_init { 2849 uint32_t base; 2850 uint32_t aperture; 2851 }; 2852 2853 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2854 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2855 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2856 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2857 }; 2858 2859 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2860 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2861 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2862 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2863 }; 2864 2865 static void 2866 setup_memwin(struct adapter *sc) 2867 { 2868 const struct memwin_init *mw_init; 2869 struct memwin *mw; 2870 int i; 2871 uint32_t bar0; 2872 2873 if (is_t4(sc)) { 2874 /* 2875 * Read low 32b of bar0 indirectly via the hardware backdoor 2876 * mechanism. Works from within PCI passthrough environments 2877 * too, where rman_get_start() can return a different value. We 2878 * need to program the T4 memory window decoders with the actual 2879 * addresses that will be coming across the PCIe link. 2880 */ 2881 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 2882 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 2883 2884 mw_init = &t4_memwin[0]; 2885 } else { 2886 /* T5+ use the relative offset inside the PCIe BAR */ 2887 bar0 = 0; 2888 2889 mw_init = &t5_memwin[0]; 2890 } 2891 2892 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 2893 rw_init(&mw->mw_lock, "memory window access"); 2894 mw->mw_base = mw_init->base; 2895 mw->mw_aperture = mw_init->aperture; 2896 mw->mw_curpos = 0; 2897 t4_write_reg(sc, 2898 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 2899 (mw->mw_base + bar0) | V_BIR(0) | 2900 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 2901 rw_wlock(&mw->mw_lock); 2902 position_memwin(sc, i, 0); 2903 rw_wunlock(&mw->mw_lock); 2904 } 2905 2906 /* flush */ 2907 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 2908 } 2909 2910 /* 2911 * Positions the memory window at the given address in the card's address space. 2912 * There are some alignment requirements and the actual position may be at an 2913 * address prior to the requested address. mw->mw_curpos always has the actual 2914 * position of the window. 2915 */ 2916 static void 2917 position_memwin(struct adapter *sc, int idx, uint32_t addr) 2918 { 2919 struct memwin *mw; 2920 uint32_t pf; 2921 uint32_t reg; 2922 2923 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2924 mw = &sc->memwin[idx]; 2925 rw_assert(&mw->mw_lock, RA_WLOCKED); 2926 2927 if (is_t4(sc)) { 2928 pf = 0; 2929 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 2930 } else { 2931 pf = V_PFNUM(sc->pf); 2932 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 2933 } 2934 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 2935 t4_write_reg(sc, reg, mw->mw_curpos | pf); 2936 t4_read_reg(sc, reg); /* flush */ 2937 } 2938 2939 int 2940 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2941 int len, int rw) 2942 { 2943 struct memwin *mw; 2944 uint32_t mw_end, v; 2945 2946 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2947 2948 /* Memory can only be accessed in naturally aligned 4 byte units */ 2949 if (addr & 3 || len & 3 || len <= 0) 2950 return (EINVAL); 2951 2952 mw = &sc->memwin[idx]; 2953 while (len > 0) { 2954 rw_rlock(&mw->mw_lock); 2955 mw_end = mw->mw_curpos + mw->mw_aperture; 2956 if (addr >= mw_end || addr < mw->mw_curpos) { 2957 /* Will need to reposition the window */ 2958 if (!rw_try_upgrade(&mw->mw_lock)) { 2959 rw_runlock(&mw->mw_lock); 2960 rw_wlock(&mw->mw_lock); 2961 } 2962 rw_assert(&mw->mw_lock, RA_WLOCKED); 2963 position_memwin(sc, idx, addr); 2964 rw_downgrade(&mw->mw_lock); 2965 mw_end = mw->mw_curpos + mw->mw_aperture; 2966 } 2967 rw_assert(&mw->mw_lock, RA_RLOCKED); 2968 while (addr < mw_end && len > 0) { 2969 if (rw == 0) { 2970 v = t4_read_reg(sc, mw->mw_base + addr - 2971 mw->mw_curpos); 2972 *val++ = le32toh(v); 2973 } else { 2974 v = *val++; 2975 t4_write_reg(sc, mw->mw_base + addr - 2976 mw->mw_curpos, htole32(v)); 2977 } 2978 addr += 4; 2979 len -= 4; 2980 } 2981 rw_runlock(&mw->mw_lock); 2982 } 2983 2984 return (0); 2985 } 2986 2987 static void 2988 t4_init_atid_table(struct adapter *sc) 2989 { 2990 struct tid_info *t; 2991 int i; 2992 2993 t = &sc->tids; 2994 if (t->natids == 0) 2995 return; 2996 2997 MPASS(t->atid_tab == NULL); 2998 2999 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3000 M_ZERO | M_WAITOK); 3001 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3002 t->afree = t->atid_tab; 3003 t->atids_in_use = 0; 3004 for (i = 1; i < t->natids; i++) 3005 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3006 t->atid_tab[t->natids - 1].next = NULL; 3007 } 3008 3009 static void 3010 t4_free_atid_table(struct adapter *sc) 3011 { 3012 struct tid_info *t; 3013 3014 t = &sc->tids; 3015 3016 KASSERT(t->atids_in_use == 0, 3017 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3018 3019 if (mtx_initialized(&t->atid_lock)) 3020 mtx_destroy(&t->atid_lock); 3021 free(t->atid_tab, M_CXGBE); 3022 t->atid_tab = NULL; 3023 } 3024 3025 int 3026 alloc_atid(struct adapter *sc, void *ctx) 3027 { 3028 struct tid_info *t = &sc->tids; 3029 int atid = -1; 3030 3031 mtx_lock(&t->atid_lock); 3032 if (t->afree) { 3033 union aopen_entry *p = t->afree; 3034 3035 atid = p - t->atid_tab; 3036 MPASS(atid <= M_TID_TID); 3037 t->afree = p->next; 3038 p->data = ctx; 3039 t->atids_in_use++; 3040 } 3041 mtx_unlock(&t->atid_lock); 3042 return (atid); 3043 } 3044 3045 void * 3046 lookup_atid(struct adapter *sc, int atid) 3047 { 3048 struct tid_info *t = &sc->tids; 3049 3050 return (t->atid_tab[atid].data); 3051 } 3052 3053 void 3054 free_atid(struct adapter *sc, int atid) 3055 { 3056 struct tid_info *t = &sc->tids; 3057 union aopen_entry *p = &t->atid_tab[atid]; 3058 3059 mtx_lock(&t->atid_lock); 3060 p->next = t->afree; 3061 t->afree = p; 3062 t->atids_in_use--; 3063 mtx_unlock(&t->atid_lock); 3064 } 3065 3066 static void 3067 queue_tid_release(struct adapter *sc, int tid) 3068 { 3069 3070 CXGBE_UNIMPLEMENTED("deferred tid release"); 3071 } 3072 3073 void 3074 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3075 { 3076 struct wrqe *wr; 3077 struct cpl_tid_release *req; 3078 3079 wr = alloc_wrqe(sizeof(*req), ctrlq); 3080 if (wr == NULL) { 3081 queue_tid_release(sc, tid); /* defer */ 3082 return; 3083 } 3084 req = wrtod(wr); 3085 3086 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3087 3088 t4_wrq_tx(sc, wr); 3089 } 3090 3091 static int 3092 t4_range_cmp(const void *a, const void *b) 3093 { 3094 return ((const struct t4_range *)a)->start - 3095 ((const struct t4_range *)b)->start; 3096 } 3097 3098 /* 3099 * Verify that the memory range specified by the addr/len pair is valid within 3100 * the card's address space. 3101 */ 3102 static int 3103 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3104 { 3105 struct t4_range mem_ranges[4], *r, *next; 3106 uint32_t em, addr_len; 3107 int i, n, remaining; 3108 3109 /* Memory can only be accessed in naturally aligned 4 byte units */ 3110 if (addr & 3 || len & 3 || len == 0) 3111 return (EINVAL); 3112 3113 /* Enabled memories */ 3114 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3115 3116 r = &mem_ranges[0]; 3117 n = 0; 3118 bzero(r, sizeof(mem_ranges)); 3119 if (em & F_EDRAM0_ENABLE) { 3120 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3121 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3122 if (r->size > 0) { 3123 r->start = G_EDRAM0_BASE(addr_len) << 20; 3124 if (addr >= r->start && 3125 addr + len <= r->start + r->size) 3126 return (0); 3127 r++; 3128 n++; 3129 } 3130 } 3131 if (em & F_EDRAM1_ENABLE) { 3132 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3133 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3134 if (r->size > 0) { 3135 r->start = G_EDRAM1_BASE(addr_len) << 20; 3136 if (addr >= r->start && 3137 addr + len <= r->start + r->size) 3138 return (0); 3139 r++; 3140 n++; 3141 } 3142 } 3143 if (em & F_EXT_MEM_ENABLE) { 3144 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3145 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3146 if (r->size > 0) { 3147 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3148 if (addr >= r->start && 3149 addr + len <= r->start + r->size) 3150 return (0); 3151 r++; 3152 n++; 3153 } 3154 } 3155 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3156 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3157 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3158 if (r->size > 0) { 3159 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3160 if (addr >= r->start && 3161 addr + len <= r->start + r->size) 3162 return (0); 3163 r++; 3164 n++; 3165 } 3166 } 3167 MPASS(n <= nitems(mem_ranges)); 3168 3169 if (n > 1) { 3170 /* Sort and merge the ranges. */ 3171 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3172 3173 /* Start from index 0 and examine the next n - 1 entries. */ 3174 r = &mem_ranges[0]; 3175 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3176 3177 MPASS(r->size > 0); /* r is a valid entry. */ 3178 next = r + 1; 3179 MPASS(next->size > 0); /* and so is the next one. */ 3180 3181 while (r->start + r->size >= next->start) { 3182 /* Merge the next one into the current entry. */ 3183 r->size = max(r->start + r->size, 3184 next->start + next->size) - r->start; 3185 n--; /* One fewer entry in total. */ 3186 if (--remaining == 0) 3187 goto done; /* short circuit */ 3188 next++; 3189 } 3190 if (next != r + 1) { 3191 /* 3192 * Some entries were merged into r and next 3193 * points to the first valid entry that couldn't 3194 * be merged. 3195 */ 3196 MPASS(next->size > 0); /* must be valid */ 3197 memcpy(r + 1, next, remaining * sizeof(*r)); 3198 #ifdef INVARIANTS 3199 /* 3200 * This so that the foo->size assertion in the 3201 * next iteration of the loop do the right 3202 * thing for entries that were pulled up and are 3203 * no longer valid. 3204 */ 3205 MPASS(n < nitems(mem_ranges)); 3206 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 3207 sizeof(struct t4_range)); 3208 #endif 3209 } 3210 } 3211 done: 3212 /* Done merging the ranges. */ 3213 MPASS(n > 0); 3214 r = &mem_ranges[0]; 3215 for (i = 0; i < n; i++, r++) { 3216 if (addr >= r->start && 3217 addr + len <= r->start + r->size) 3218 return (0); 3219 } 3220 } 3221 3222 return (EFAULT); 3223 } 3224 3225 static int 3226 fwmtype_to_hwmtype(int mtype) 3227 { 3228 3229 switch (mtype) { 3230 case FW_MEMTYPE_EDC0: 3231 return (MEM_EDC0); 3232 case FW_MEMTYPE_EDC1: 3233 return (MEM_EDC1); 3234 case FW_MEMTYPE_EXTMEM: 3235 return (MEM_MC0); 3236 case FW_MEMTYPE_EXTMEM1: 3237 return (MEM_MC1); 3238 default: 3239 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 3240 } 3241 } 3242 3243 /* 3244 * Verify that the memory range specified by the memtype/offset/len pair is 3245 * valid and lies entirely within the memtype specified. The global address of 3246 * the start of the range is returned in addr. 3247 */ 3248 static int 3249 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 3250 uint32_t *addr) 3251 { 3252 uint32_t em, addr_len, maddr; 3253 3254 /* Memory can only be accessed in naturally aligned 4 byte units */ 3255 if (off & 3 || len & 3 || len == 0) 3256 return (EINVAL); 3257 3258 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3259 switch (fwmtype_to_hwmtype(mtype)) { 3260 case MEM_EDC0: 3261 if (!(em & F_EDRAM0_ENABLE)) 3262 return (EINVAL); 3263 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3264 maddr = G_EDRAM0_BASE(addr_len) << 20; 3265 break; 3266 case MEM_EDC1: 3267 if (!(em & F_EDRAM1_ENABLE)) 3268 return (EINVAL); 3269 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3270 maddr = G_EDRAM1_BASE(addr_len) << 20; 3271 break; 3272 case MEM_MC: 3273 if (!(em & F_EXT_MEM_ENABLE)) 3274 return (EINVAL); 3275 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3276 maddr = G_EXT_MEM_BASE(addr_len) << 20; 3277 break; 3278 case MEM_MC1: 3279 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 3280 return (EINVAL); 3281 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3282 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 3283 break; 3284 default: 3285 return (EINVAL); 3286 } 3287 3288 *addr = maddr + off; /* global address */ 3289 return (validate_mem_range(sc, *addr, len)); 3290 } 3291 3292 static int 3293 fixup_devlog_params(struct adapter *sc) 3294 { 3295 struct devlog_params *dparams = &sc->params.devlog; 3296 int rc; 3297 3298 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 3299 dparams->size, &dparams->addr); 3300 3301 return (rc); 3302 } 3303 3304 static void 3305 update_nirq(struct intrs_and_queues *iaq, int nports) 3306 { 3307 int extra = T4_EXTRA_INTR; 3308 3309 iaq->nirq = extra; 3310 iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq); 3311 iaq->nirq += nports * (iaq->num_vis - 1) * 3312 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 3313 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 3314 } 3315 3316 /* 3317 * Adjust requirements to fit the number of interrupts available. 3318 */ 3319 static void 3320 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 3321 int navail) 3322 { 3323 int old_nirq; 3324 const int nports = sc->params.nports; 3325 3326 MPASS(nports > 0); 3327 MPASS(navail > 0); 3328 3329 bzero(iaq, sizeof(*iaq)); 3330 iaq->intr_type = itype; 3331 iaq->num_vis = t4_num_vis; 3332 iaq->ntxq = t4_ntxq; 3333 iaq->ntxq_vi = t4_ntxq_vi; 3334 iaq->nrxq = t4_nrxq; 3335 iaq->nrxq_vi = t4_nrxq_vi; 3336 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3337 if (is_offload(sc) || is_ethoffload(sc)) { 3338 iaq->nofldtxq = t4_nofldtxq; 3339 iaq->nofldtxq_vi = t4_nofldtxq_vi; 3340 } 3341 #endif 3342 #ifdef TCP_OFFLOAD 3343 if (is_offload(sc)) { 3344 iaq->nofldrxq = t4_nofldrxq; 3345 iaq->nofldrxq_vi = t4_nofldrxq_vi; 3346 } 3347 #endif 3348 #ifdef DEV_NETMAP 3349 iaq->nnmtxq_vi = t4_nnmtxq_vi; 3350 iaq->nnmrxq_vi = t4_nnmrxq_vi; 3351 #endif 3352 3353 update_nirq(iaq, nports); 3354 if (iaq->nirq <= navail && 3355 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3356 /* 3357 * This is the normal case -- there are enough interrupts for 3358 * everything. 3359 */ 3360 goto done; 3361 } 3362 3363 /* 3364 * If extra VIs have been configured try reducing their count and see if 3365 * that works. 3366 */ 3367 while (iaq->num_vis > 1) { 3368 iaq->num_vis--; 3369 update_nirq(iaq, nports); 3370 if (iaq->nirq <= navail && 3371 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3372 device_printf(sc->dev, "virtual interfaces per port " 3373 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 3374 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 3375 "itype %d, navail %u, nirq %d.\n", 3376 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 3377 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 3378 itype, navail, iaq->nirq); 3379 goto done; 3380 } 3381 } 3382 3383 /* 3384 * Extra VIs will not be created. Log a message if they were requested. 3385 */ 3386 MPASS(iaq->num_vis == 1); 3387 iaq->ntxq_vi = iaq->nrxq_vi = 0; 3388 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 3389 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 3390 if (iaq->num_vis != t4_num_vis) { 3391 device_printf(sc->dev, "extra virtual interfaces disabled. " 3392 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 3393 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 3394 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 3395 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 3396 } 3397 3398 /* 3399 * Keep reducing the number of NIC rx queues to the next lower power of 3400 * 2 (for even RSS distribution) and halving the TOE rx queues and see 3401 * if that works. 3402 */ 3403 do { 3404 if (iaq->nrxq > 1) { 3405 do { 3406 iaq->nrxq--; 3407 } while (!powerof2(iaq->nrxq)); 3408 } 3409 if (iaq->nofldrxq > 1) 3410 iaq->nofldrxq >>= 1; 3411 3412 old_nirq = iaq->nirq; 3413 update_nirq(iaq, nports); 3414 if (iaq->nirq <= navail && 3415 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3416 device_printf(sc->dev, "running with reduced number of " 3417 "rx queues because of shortage of interrupts. " 3418 "nrxq=%u, nofldrxq=%u. " 3419 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 3420 iaq->nofldrxq, itype, navail, iaq->nirq); 3421 goto done; 3422 } 3423 } while (old_nirq != iaq->nirq); 3424 3425 /* One interrupt for everything. Ugh. */ 3426 device_printf(sc->dev, "running with minimal number of queues. " 3427 "itype %d, navail %u.\n", itype, navail); 3428 iaq->nirq = 1; 3429 MPASS(iaq->nrxq == 1); 3430 iaq->ntxq = 1; 3431 if (iaq->nofldrxq > 1) 3432 iaq->nofldtxq = 1; 3433 done: 3434 MPASS(iaq->num_vis > 0); 3435 if (iaq->num_vis > 1) { 3436 MPASS(iaq->nrxq_vi > 0); 3437 MPASS(iaq->ntxq_vi > 0); 3438 } 3439 MPASS(iaq->nirq > 0); 3440 MPASS(iaq->nrxq > 0); 3441 MPASS(iaq->ntxq > 0); 3442 if (itype == INTR_MSI) { 3443 MPASS(powerof2(iaq->nirq)); 3444 } 3445 } 3446 3447 static int 3448 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 3449 { 3450 int rc, itype, navail, nalloc; 3451 3452 for (itype = INTR_MSIX; itype; itype >>= 1) { 3453 3454 if ((itype & t4_intr_types) == 0) 3455 continue; /* not allowed */ 3456 3457 if (itype == INTR_MSIX) 3458 navail = pci_msix_count(sc->dev); 3459 else if (itype == INTR_MSI) 3460 navail = pci_msi_count(sc->dev); 3461 else 3462 navail = 1; 3463 restart: 3464 if (navail == 0) 3465 continue; 3466 3467 calculate_iaq(sc, iaq, itype, navail); 3468 nalloc = iaq->nirq; 3469 rc = 0; 3470 if (itype == INTR_MSIX) 3471 rc = pci_alloc_msix(sc->dev, &nalloc); 3472 else if (itype == INTR_MSI) 3473 rc = pci_alloc_msi(sc->dev, &nalloc); 3474 3475 if (rc == 0 && nalloc > 0) { 3476 if (nalloc == iaq->nirq) 3477 return (0); 3478 3479 /* 3480 * Didn't get the number requested. Use whatever number 3481 * the kernel is willing to allocate. 3482 */ 3483 device_printf(sc->dev, "fewer vectors than requested, " 3484 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 3485 itype, iaq->nirq, nalloc); 3486 pci_release_msi(sc->dev); 3487 navail = nalloc; 3488 goto restart; 3489 } 3490 3491 device_printf(sc->dev, 3492 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 3493 itype, rc, iaq->nirq, nalloc); 3494 } 3495 3496 device_printf(sc->dev, 3497 "failed to find a usable interrupt type. " 3498 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 3499 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 3500 3501 return (ENXIO); 3502 } 3503 3504 #define FW_VERSION(chip) ( \ 3505 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 3506 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 3507 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 3508 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 3509 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 3510 3511 /* Just enough of fw_hdr to cover all version info. */ 3512 struct fw_h { 3513 __u8 ver; 3514 __u8 chip; 3515 __be16 len512; 3516 __be32 fw_ver; 3517 __be32 tp_microcode_ver; 3518 __u8 intfver_nic; 3519 __u8 intfver_vnic; 3520 __u8 intfver_ofld; 3521 __u8 intfver_ri; 3522 __u8 intfver_iscsipdu; 3523 __u8 intfver_iscsi; 3524 __u8 intfver_fcoepdu; 3525 __u8 intfver_fcoe; 3526 }; 3527 /* Spot check a couple of fields. */ 3528 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 3529 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 3530 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 3531 3532 struct fw_info { 3533 uint8_t chip; 3534 char *kld_name; 3535 char *fw_mod_name; 3536 struct fw_h fw_h; 3537 } fw_info[] = { 3538 { 3539 .chip = CHELSIO_T4, 3540 .kld_name = "t4fw_cfg", 3541 .fw_mod_name = "t4fw", 3542 .fw_h = { 3543 .chip = FW_HDR_CHIP_T4, 3544 .fw_ver = htobe32(FW_VERSION(T4)), 3545 .intfver_nic = FW_INTFVER(T4, NIC), 3546 .intfver_vnic = FW_INTFVER(T4, VNIC), 3547 .intfver_ofld = FW_INTFVER(T4, OFLD), 3548 .intfver_ri = FW_INTFVER(T4, RI), 3549 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 3550 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3551 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 3552 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3553 }, 3554 }, { 3555 .chip = CHELSIO_T5, 3556 .kld_name = "t5fw_cfg", 3557 .fw_mod_name = "t5fw", 3558 .fw_h = { 3559 .chip = FW_HDR_CHIP_T5, 3560 .fw_ver = htobe32(FW_VERSION(T5)), 3561 .intfver_nic = FW_INTFVER(T5, NIC), 3562 .intfver_vnic = FW_INTFVER(T5, VNIC), 3563 .intfver_ofld = FW_INTFVER(T5, OFLD), 3564 .intfver_ri = FW_INTFVER(T5, RI), 3565 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 3566 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3567 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 3568 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3569 }, 3570 }, { 3571 .chip = CHELSIO_T6, 3572 .kld_name = "t6fw_cfg", 3573 .fw_mod_name = "t6fw", 3574 .fw_h = { 3575 .chip = FW_HDR_CHIP_T6, 3576 .fw_ver = htobe32(FW_VERSION(T6)), 3577 .intfver_nic = FW_INTFVER(T6, NIC), 3578 .intfver_vnic = FW_INTFVER(T6, VNIC), 3579 .intfver_ofld = FW_INTFVER(T6, OFLD), 3580 .intfver_ri = FW_INTFVER(T6, RI), 3581 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3582 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3583 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3584 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3585 }, 3586 } 3587 }; 3588 3589 static struct fw_info * 3590 find_fw_info(int chip) 3591 { 3592 int i; 3593 3594 for (i = 0; i < nitems(fw_info); i++) { 3595 if (fw_info[i].chip == chip) 3596 return (&fw_info[i]); 3597 } 3598 return (NULL); 3599 } 3600 3601 /* 3602 * Is the given firmware API compatible with the one the driver was compiled 3603 * with? 3604 */ 3605 static int 3606 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 3607 { 3608 3609 /* short circuit if it's the exact same firmware version */ 3610 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3611 return (1); 3612 3613 /* 3614 * XXX: Is this too conservative? Perhaps I should limit this to the 3615 * features that are supported in the driver. 3616 */ 3617 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3618 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3619 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 3620 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 3621 return (1); 3622 #undef SAME_INTF 3623 3624 return (0); 3625 } 3626 3627 static int 3628 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 3629 const struct firmware **fw) 3630 { 3631 struct fw_info *fw_info; 3632 3633 *dcfg = NULL; 3634 if (fw != NULL) 3635 *fw = NULL; 3636 3637 fw_info = find_fw_info(chip_id(sc)); 3638 if (fw_info == NULL) { 3639 device_printf(sc->dev, 3640 "unable to look up firmware information for chip %d.\n", 3641 chip_id(sc)); 3642 return (EINVAL); 3643 } 3644 3645 *dcfg = firmware_get(fw_info->kld_name); 3646 if (*dcfg != NULL) { 3647 if (fw != NULL) 3648 *fw = firmware_get(fw_info->fw_mod_name); 3649 return (0); 3650 } 3651 3652 return (ENOENT); 3653 } 3654 3655 static void 3656 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 3657 const struct firmware *fw) 3658 { 3659 3660 if (fw != NULL) 3661 firmware_put(fw, FIRMWARE_UNLOAD); 3662 if (dcfg != NULL) 3663 firmware_put(dcfg, FIRMWARE_UNLOAD); 3664 } 3665 3666 /* 3667 * Return values: 3668 * 0 means no firmware install attempted. 3669 * ERESTART means a firmware install was attempted and was successful. 3670 * +ve errno means a firmware install was attempted but failed. 3671 */ 3672 static int 3673 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 3674 const struct fw_h *drv_fw, const char *reason, int *already) 3675 { 3676 const struct firmware *cfg, *fw; 3677 const uint32_t c = be32toh(card_fw->fw_ver); 3678 uint32_t d, k; 3679 int rc, fw_install; 3680 struct fw_h bundled_fw; 3681 bool load_attempted; 3682 3683 cfg = fw = NULL; 3684 load_attempted = false; 3685 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 3686 3687 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 3688 if (t4_fw_install < 0) { 3689 rc = load_fw_module(sc, &cfg, &fw); 3690 if (rc != 0 || fw == NULL) { 3691 device_printf(sc->dev, 3692 "failed to load firmware module: %d. cfg %p, fw %p;" 3693 " will use compiled-in firmware version for" 3694 "hw.cxgbe.fw_install checks.\n", 3695 rc, cfg, fw); 3696 } else { 3697 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 3698 } 3699 load_attempted = true; 3700 } 3701 d = be32toh(bundled_fw.fw_ver); 3702 3703 if (reason != NULL) 3704 goto install; 3705 3706 if ((sc->flags & FW_OK) == 0) { 3707 3708 if (c == 0xffffffff) { 3709 reason = "missing"; 3710 goto install; 3711 } 3712 3713 rc = 0; 3714 goto done; 3715 } 3716 3717 if (!fw_compatible(card_fw, &bundled_fw)) { 3718 reason = "incompatible or unusable"; 3719 goto install; 3720 } 3721 3722 if (d > c) { 3723 reason = "older than the version bundled with this driver"; 3724 goto install; 3725 } 3726 3727 if (fw_install == 2 && d != c) { 3728 reason = "different than the version bundled with this driver"; 3729 goto install; 3730 } 3731 3732 /* No reason to do anything to the firmware already on the card. */ 3733 rc = 0; 3734 goto done; 3735 3736 install: 3737 rc = 0; 3738 if ((*already)++) 3739 goto done; 3740 3741 if (fw_install == 0) { 3742 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3743 "but the driver is prohibited from installing a firmware " 3744 "on the card.\n", 3745 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3746 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3747 3748 goto done; 3749 } 3750 3751 /* 3752 * We'll attempt to install a firmware. Load the module first (if it 3753 * hasn't been loaded already). 3754 */ 3755 if (!load_attempted) { 3756 rc = load_fw_module(sc, &cfg, &fw); 3757 if (rc != 0 || fw == NULL) { 3758 device_printf(sc->dev, 3759 "failed to load firmware module: %d. cfg %p, fw %p\n", 3760 rc, cfg, fw); 3761 /* carry on */ 3762 } 3763 } 3764 if (fw == NULL) { 3765 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3766 "but the driver cannot take corrective action because it " 3767 "is unable to load the firmware module.\n", 3768 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3769 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3770 rc = sc->flags & FW_OK ? 0 : ENOENT; 3771 goto done; 3772 } 3773 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 3774 if (k != d) { 3775 MPASS(t4_fw_install > 0); 3776 device_printf(sc->dev, 3777 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 3778 "expecting (%u.%u.%u.%u) and will not be used.\n", 3779 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3780 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 3781 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3782 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3783 rc = sc->flags & FW_OK ? 0 : EINVAL; 3784 goto done; 3785 } 3786 3787 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3788 "installing firmware %u.%u.%u.%u on card.\n", 3789 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3790 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 3791 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3792 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3793 3794 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 3795 if (rc != 0) { 3796 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 3797 } else { 3798 /* Installed successfully, update the cached header too. */ 3799 rc = ERESTART; 3800 memcpy(card_fw, fw->data, sizeof(*card_fw)); 3801 } 3802 done: 3803 unload_fw_module(sc, cfg, fw); 3804 3805 return (rc); 3806 } 3807 3808 /* 3809 * Establish contact with the firmware and attempt to become the master driver. 3810 * 3811 * A firmware will be installed to the card if needed (if the driver is allowed 3812 * to do so). 3813 */ 3814 static int 3815 contact_firmware(struct adapter *sc) 3816 { 3817 int rc, already = 0; 3818 enum dev_state state; 3819 struct fw_info *fw_info; 3820 struct fw_hdr *card_fw; /* fw on the card */ 3821 const struct fw_h *drv_fw; 3822 3823 fw_info = find_fw_info(chip_id(sc)); 3824 if (fw_info == NULL) { 3825 device_printf(sc->dev, 3826 "unable to look up firmware information for chip %d.\n", 3827 chip_id(sc)); 3828 return (EINVAL); 3829 } 3830 drv_fw = &fw_info->fw_h; 3831 3832 /* Read the header of the firmware on the card */ 3833 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 3834 restart: 3835 rc = -t4_get_fw_hdr(sc, card_fw); 3836 if (rc != 0) { 3837 device_printf(sc->dev, 3838 "unable to read firmware header from card's flash: %d\n", 3839 rc); 3840 goto done; 3841 } 3842 3843 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 3844 &already); 3845 if (rc == ERESTART) 3846 goto restart; 3847 if (rc != 0) 3848 goto done; 3849 3850 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 3851 if (rc < 0 || state == DEV_STATE_ERR) { 3852 rc = -rc; 3853 device_printf(sc->dev, 3854 "failed to connect to the firmware: %d, %d. " 3855 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3856 #if 0 3857 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 3858 "not responding properly to HELLO", &already) == ERESTART) 3859 goto restart; 3860 #endif 3861 goto done; 3862 } 3863 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 3864 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 3865 3866 if (rc == sc->pf) { 3867 sc->flags |= MASTER_PF; 3868 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 3869 NULL, &already); 3870 if (rc == ERESTART) 3871 rc = 0; 3872 else if (rc != 0) 3873 goto done; 3874 } else if (state == DEV_STATE_UNINIT) { 3875 /* 3876 * We didn't get to be the master so we definitely won't be 3877 * configuring the chip. It's a bug if someone else hasn't 3878 * configured it already. 3879 */ 3880 device_printf(sc->dev, "couldn't be master(%d), " 3881 "device not already initialized either(%d). " 3882 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3883 rc = EPROTO; 3884 goto done; 3885 } else { 3886 /* 3887 * Some other PF is the master and has configured the chip. 3888 * This is allowed but untested. 3889 */ 3890 device_printf(sc->dev, "PF%d is master, device state %d. " 3891 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3892 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 3893 sc->cfcsum = 0; 3894 rc = 0; 3895 } 3896 done: 3897 if (rc != 0 && sc->flags & FW_OK) { 3898 t4_fw_bye(sc, sc->mbox); 3899 sc->flags &= ~FW_OK; 3900 } 3901 free(card_fw, M_CXGBE); 3902 return (rc); 3903 } 3904 3905 static int 3906 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 3907 uint32_t mtype, uint32_t moff) 3908 { 3909 struct fw_info *fw_info; 3910 const struct firmware *dcfg, *rcfg = NULL; 3911 const uint32_t *cfdata; 3912 uint32_t cflen, addr; 3913 int rc; 3914 3915 load_fw_module(sc, &dcfg, NULL); 3916 3917 /* Card specific interpretation of "default". */ 3918 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3919 if (pci_get_device(sc->dev) == 0x440a) 3920 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 3921 if (is_fpga(sc)) 3922 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 3923 } 3924 3925 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3926 if (dcfg == NULL) { 3927 device_printf(sc->dev, 3928 "KLD with default config is not available.\n"); 3929 rc = ENOENT; 3930 goto done; 3931 } 3932 cfdata = dcfg->data; 3933 cflen = dcfg->datasize & ~3; 3934 } else { 3935 char s[32]; 3936 3937 fw_info = find_fw_info(chip_id(sc)); 3938 if (fw_info == NULL) { 3939 device_printf(sc->dev, 3940 "unable to look up firmware information for chip %d.\n", 3941 chip_id(sc)); 3942 rc = EINVAL; 3943 goto done; 3944 } 3945 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 3946 3947 rcfg = firmware_get(s); 3948 if (rcfg == NULL) { 3949 device_printf(sc->dev, 3950 "unable to load module \"%s\" for configuration " 3951 "profile \"%s\".\n", s, cfg_file); 3952 rc = ENOENT; 3953 goto done; 3954 } 3955 cfdata = rcfg->data; 3956 cflen = rcfg->datasize & ~3; 3957 } 3958 3959 if (cflen > FLASH_CFG_MAX_SIZE) { 3960 device_printf(sc->dev, 3961 "config file too long (%d, max allowed is %d).\n", 3962 cflen, FLASH_CFG_MAX_SIZE); 3963 rc = EINVAL; 3964 goto done; 3965 } 3966 3967 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 3968 if (rc != 0) { 3969 device_printf(sc->dev, 3970 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 3971 __func__, mtype, moff, cflen, rc); 3972 rc = EINVAL; 3973 goto done; 3974 } 3975 write_via_memwin(sc, 2, addr, cfdata, cflen); 3976 done: 3977 if (rcfg != NULL) 3978 firmware_put(rcfg, FIRMWARE_UNLOAD); 3979 unload_fw_module(sc, dcfg, NULL); 3980 return (rc); 3981 } 3982 3983 struct caps_allowed { 3984 uint16_t nbmcaps; 3985 uint16_t linkcaps; 3986 uint16_t switchcaps; 3987 uint16_t niccaps; 3988 uint16_t toecaps; 3989 uint16_t rdmacaps; 3990 uint16_t cryptocaps; 3991 uint16_t iscsicaps; 3992 uint16_t fcoecaps; 3993 }; 3994 3995 #define FW_PARAM_DEV(param) \ 3996 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 3997 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 3998 #define FW_PARAM_PFVF(param) \ 3999 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4000 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4001 4002 /* 4003 * Provide a configuration profile to the firmware and have it initialize the 4004 * chip accordingly. This may involve uploading a configuration file to the 4005 * card. 4006 */ 4007 static int 4008 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4009 const struct caps_allowed *caps_allowed) 4010 { 4011 int rc; 4012 struct fw_caps_config_cmd caps; 4013 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4014 4015 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4016 if (rc != 0) { 4017 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4018 return (rc); 4019 } 4020 4021 bzero(&caps, sizeof(caps)); 4022 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4023 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4024 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4025 mtype = 0; 4026 moff = 0; 4027 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4028 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4029 mtype = FW_MEMTYPE_FLASH; 4030 moff = t4_flash_cfg_addr(sc); 4031 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4032 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4033 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4034 FW_LEN16(caps)); 4035 } else { 4036 /* 4037 * Ask the firmware where it wants us to upload the config file. 4038 */ 4039 param = FW_PARAM_DEV(CF); 4040 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4041 if (rc != 0) { 4042 /* No support for config file? Shouldn't happen. */ 4043 device_printf(sc->dev, 4044 "failed to query config file location: %d.\n", rc); 4045 goto done; 4046 } 4047 mtype = G_FW_PARAMS_PARAM_Y(val); 4048 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4049 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4050 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4051 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4052 FW_LEN16(caps)); 4053 4054 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4055 if (rc != 0) { 4056 device_printf(sc->dev, 4057 "failed to upload config file to card: %d.\n", rc); 4058 goto done; 4059 } 4060 } 4061 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4062 if (rc != 0) { 4063 device_printf(sc->dev, "failed to pre-process config file: %d " 4064 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4065 goto done; 4066 } 4067 4068 finicsum = be32toh(caps.finicsum); 4069 cfcsum = be32toh(caps.cfcsum); /* actual */ 4070 if (finicsum != cfcsum) { 4071 device_printf(sc->dev, 4072 "WARNING: config file checksum mismatch: %08x %08x\n", 4073 finicsum, cfcsum); 4074 } 4075 sc->cfcsum = cfcsum; 4076 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4077 4078 /* 4079 * Let the firmware know what features will (not) be used so it can tune 4080 * things accordingly. 4081 */ 4082 #define LIMIT_CAPS(x) do { \ 4083 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4084 } while (0) 4085 LIMIT_CAPS(nbm); 4086 LIMIT_CAPS(link); 4087 LIMIT_CAPS(switch); 4088 LIMIT_CAPS(nic); 4089 LIMIT_CAPS(toe); 4090 LIMIT_CAPS(rdma); 4091 LIMIT_CAPS(crypto); 4092 LIMIT_CAPS(iscsi); 4093 LIMIT_CAPS(fcoe); 4094 #undef LIMIT_CAPS 4095 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4096 /* 4097 * TOE and hashfilters are mutually exclusive. It is a config 4098 * file or firmware bug if both are reported as available. Try 4099 * to cope with the situation in non-debug builds by disabling 4100 * TOE. 4101 */ 4102 MPASS(caps.toecaps == 0); 4103 4104 caps.toecaps = 0; 4105 caps.rdmacaps = 0; 4106 caps.iscsicaps = 0; 4107 } 4108 4109 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4110 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4111 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4112 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4113 if (rc != 0) { 4114 device_printf(sc->dev, 4115 "failed to process config file: %d.\n", rc); 4116 goto done; 4117 } 4118 4119 t4_tweak_chip_settings(sc); 4120 set_params__pre_init(sc); 4121 4122 /* get basic stuff going */ 4123 rc = -t4_fw_initialize(sc, sc->mbox); 4124 if (rc != 0) { 4125 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4126 goto done; 4127 } 4128 done: 4129 return (rc); 4130 } 4131 4132 /* 4133 * Partition chip resources for use between various PFs, VFs, etc. 4134 */ 4135 static int 4136 partition_resources(struct adapter *sc) 4137 { 4138 char cfg_file[sizeof(t4_cfg_file)]; 4139 struct caps_allowed caps_allowed; 4140 int rc; 4141 bool fallback; 4142 4143 /* Only the master driver gets to configure the chip resources. */ 4144 MPASS(sc->flags & MASTER_PF); 4145 4146 #define COPY_CAPS(x) do { \ 4147 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4148 } while (0) 4149 bzero(&caps_allowed, sizeof(caps_allowed)); 4150 COPY_CAPS(nbm); 4151 COPY_CAPS(link); 4152 COPY_CAPS(switch); 4153 COPY_CAPS(nic); 4154 COPY_CAPS(toe); 4155 COPY_CAPS(rdma); 4156 COPY_CAPS(crypto); 4157 COPY_CAPS(iscsi); 4158 COPY_CAPS(fcoe); 4159 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4160 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4161 retry: 4162 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4163 if (rc != 0 && fallback) { 4164 device_printf(sc->dev, 4165 "failed (%d) to configure card with \"%s\" profile, " 4166 "will fall back to a basic configuration and retry.\n", 4167 rc, cfg_file); 4168 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4169 bzero(&caps_allowed, sizeof(caps_allowed)); 4170 COPY_CAPS(switch); 4171 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4172 fallback = false; 4173 goto retry; 4174 } 4175 #undef COPY_CAPS 4176 return (rc); 4177 } 4178 4179 /* 4180 * Retrieve parameters that are needed (or nice to have) very early. 4181 */ 4182 static int 4183 get_params__pre_init(struct adapter *sc) 4184 { 4185 int rc; 4186 uint32_t param[2], val[2]; 4187 4188 t4_get_version_info(sc); 4189 4190 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4191 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 4192 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 4193 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 4194 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 4195 4196 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 4197 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 4198 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 4199 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 4200 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 4201 4202 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 4203 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 4204 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 4205 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 4206 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 4207 4208 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 4209 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 4210 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 4211 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 4212 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 4213 4214 param[0] = FW_PARAM_DEV(PORTVEC); 4215 param[1] = FW_PARAM_DEV(CCLK); 4216 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4217 if (rc != 0) { 4218 device_printf(sc->dev, 4219 "failed to query parameters (pre_init): %d.\n", rc); 4220 return (rc); 4221 } 4222 4223 sc->params.portvec = val[0]; 4224 sc->params.nports = bitcount32(val[0]); 4225 sc->params.vpd.cclk = val[1]; 4226 4227 /* Read device log parameters. */ 4228 rc = -t4_init_devlog_params(sc, 1); 4229 if (rc == 0) 4230 fixup_devlog_params(sc); 4231 else { 4232 device_printf(sc->dev, 4233 "failed to get devlog parameters: %d.\n", rc); 4234 rc = 0; /* devlog isn't critical for device operation */ 4235 } 4236 4237 return (rc); 4238 } 4239 4240 /* 4241 * Any params that need to be set before FW_INITIALIZE. 4242 */ 4243 static int 4244 set_params__pre_init(struct adapter *sc) 4245 { 4246 int rc = 0; 4247 uint32_t param, val; 4248 4249 if (chip_id(sc) >= CHELSIO_T6) { 4250 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 4251 val = 1; 4252 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4253 /* firmwares < 1.20.1.0 do not have this param. */ 4254 if (rc == FW_EINVAL && sc->params.fw_vers < 4255 (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | 4256 V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) { 4257 rc = 0; 4258 } 4259 if (rc != 0) { 4260 device_printf(sc->dev, 4261 "failed to enable high priority filters :%d.\n", 4262 rc); 4263 } 4264 } 4265 4266 /* Enable opaque VIIDs with firmwares that support it. */ 4267 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4268 val = 1; 4269 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4270 if (rc == 0 && val == 1) 4271 sc->params.viid_smt_extn_support = true; 4272 else 4273 sc->params.viid_smt_extn_support = false; 4274 4275 return (rc); 4276 } 4277 4278 /* 4279 * Retrieve various parameters that are of interest to the driver. The device 4280 * has been initialized by the firmware at this point. 4281 */ 4282 static int 4283 get_params__post_init(struct adapter *sc) 4284 { 4285 int rc; 4286 uint32_t param[7], val[7]; 4287 struct fw_caps_config_cmd caps; 4288 4289 param[0] = FW_PARAM_PFVF(IQFLINT_START); 4290 param[1] = FW_PARAM_PFVF(EQ_START); 4291 param[2] = FW_PARAM_PFVF(FILTER_START); 4292 param[3] = FW_PARAM_PFVF(FILTER_END); 4293 param[4] = FW_PARAM_PFVF(L2T_START); 4294 param[5] = FW_PARAM_PFVF(L2T_END); 4295 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4296 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 4297 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 4298 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 4299 if (rc != 0) { 4300 device_printf(sc->dev, 4301 "failed to query parameters (post_init): %d.\n", rc); 4302 return (rc); 4303 } 4304 4305 sc->sge.iq_start = val[0]; 4306 sc->sge.eq_start = val[1]; 4307 if ((int)val[3] > (int)val[2]) { 4308 sc->tids.ftid_base = val[2]; 4309 sc->tids.ftid_end = val[3]; 4310 sc->tids.nftids = val[3] - val[2] + 1; 4311 } 4312 sc->vres.l2t.start = val[4]; 4313 sc->vres.l2t.size = val[5] - val[4] + 1; 4314 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 4315 ("%s: L2 table size (%u) larger than expected (%u)", 4316 __func__, sc->vres.l2t.size, L2T_SIZE)); 4317 sc->params.core_vdd = val[6]; 4318 4319 if (chip_id(sc) >= CHELSIO_T6) { 4320 4321 sc->tids.tid_base = t4_read_reg(sc, 4322 A_LE_DB_ACTIVE_TABLE_START_INDEX); 4323 4324 param[0] = FW_PARAM_PFVF(HPFILTER_START); 4325 param[1] = FW_PARAM_PFVF(HPFILTER_END); 4326 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4327 if (rc != 0) { 4328 device_printf(sc->dev, 4329 "failed to query hpfilter parameters: %d.\n", rc); 4330 return (rc); 4331 } 4332 if ((int)val[1] > (int)val[0]) { 4333 sc->tids.hpftid_base = val[0]; 4334 sc->tids.hpftid_end = val[1]; 4335 sc->tids.nhpftids = val[1] - val[0] + 1; 4336 4337 /* 4338 * These should go off if the layout changes and the 4339 * driver needs to catch up. 4340 */ 4341 MPASS(sc->tids.hpftid_base == 0); 4342 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 4343 } 4344 } 4345 4346 /* 4347 * MPSBGMAP is queried separately because only recent firmwares support 4348 * it as a parameter and we don't want the compound query above to fail 4349 * on older firmwares. 4350 */ 4351 param[0] = FW_PARAM_DEV(MPSBGMAP); 4352 val[0] = 0; 4353 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4354 if (rc == 0) 4355 sc->params.mps_bg_map = val[0]; 4356 else 4357 sc->params.mps_bg_map = 0; 4358 4359 /* 4360 * Determine whether the firmware supports the filter2 work request. 4361 * This is queried separately for the same reason as MPSBGMAP above. 4362 */ 4363 param[0] = FW_PARAM_DEV(FILTER2_WR); 4364 val[0] = 0; 4365 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4366 if (rc == 0) 4367 sc->params.filter2_wr_support = val[0] != 0; 4368 else 4369 sc->params.filter2_wr_support = 0; 4370 4371 /* 4372 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 4373 * This is queried separately for the same reason as other params above. 4374 */ 4375 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4376 val[0] = 0; 4377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4378 if (rc == 0) 4379 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 4380 else 4381 sc->params.ulptx_memwrite_dsgl = false; 4382 4383 /* get capabilites */ 4384 bzero(&caps, sizeof(caps)); 4385 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4386 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4387 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4388 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4389 if (rc != 0) { 4390 device_printf(sc->dev, 4391 "failed to get card capabilities: %d.\n", rc); 4392 return (rc); 4393 } 4394 4395 #define READ_CAPS(x) do { \ 4396 sc->x = htobe16(caps.x); \ 4397 } while (0) 4398 READ_CAPS(nbmcaps); 4399 READ_CAPS(linkcaps); 4400 READ_CAPS(switchcaps); 4401 READ_CAPS(niccaps); 4402 READ_CAPS(toecaps); 4403 READ_CAPS(rdmacaps); 4404 READ_CAPS(cryptocaps); 4405 READ_CAPS(iscsicaps); 4406 READ_CAPS(fcoecaps); 4407 4408 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 4409 MPASS(chip_id(sc) > CHELSIO_T4); 4410 MPASS(sc->toecaps == 0); 4411 sc->toecaps = 0; 4412 4413 param[0] = FW_PARAM_DEV(NTID); 4414 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4415 if (rc != 0) { 4416 device_printf(sc->dev, 4417 "failed to query HASHFILTER parameters: %d.\n", rc); 4418 return (rc); 4419 } 4420 sc->tids.ntids = val[0]; 4421 if (sc->params.fw_vers < 4422 (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | 4423 V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { 4424 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4425 sc->tids.ntids -= sc->tids.nhpftids; 4426 } 4427 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4428 sc->params.hash_filter = 1; 4429 } 4430 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 4431 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 4432 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 4433 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4434 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 4435 if (rc != 0) { 4436 device_printf(sc->dev, 4437 "failed to query NIC parameters: %d.\n", rc); 4438 return (rc); 4439 } 4440 if ((int)val[1] > (int)val[0]) { 4441 sc->tids.etid_base = val[0]; 4442 sc->tids.etid_end = val[1]; 4443 sc->tids.netids = val[1] - val[0] + 1; 4444 sc->params.eo_wr_cred = val[2]; 4445 sc->params.ethoffload = 1; 4446 } 4447 } 4448 if (sc->toecaps) { 4449 /* query offload-related parameters */ 4450 param[0] = FW_PARAM_DEV(NTID); 4451 param[1] = FW_PARAM_PFVF(SERVER_START); 4452 param[2] = FW_PARAM_PFVF(SERVER_END); 4453 param[3] = FW_PARAM_PFVF(TDDP_START); 4454 param[4] = FW_PARAM_PFVF(TDDP_END); 4455 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4456 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4457 if (rc != 0) { 4458 device_printf(sc->dev, 4459 "failed to query TOE parameters: %d.\n", rc); 4460 return (rc); 4461 } 4462 sc->tids.ntids = val[0]; 4463 if (sc->params.fw_vers < 4464 (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) | 4465 V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) { 4466 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4467 sc->tids.ntids -= sc->tids.nhpftids; 4468 } 4469 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4470 if ((int)val[2] > (int)val[1]) { 4471 sc->tids.stid_base = val[1]; 4472 sc->tids.nstids = val[2] - val[1] + 1; 4473 } 4474 sc->vres.ddp.start = val[3]; 4475 sc->vres.ddp.size = val[4] - val[3] + 1; 4476 sc->params.ofldq_wr_cred = val[5]; 4477 sc->params.offload = 1; 4478 } else { 4479 /* 4480 * The firmware attempts memfree TOE configuration for -SO cards 4481 * and will report toecaps=0 if it runs out of resources (this 4482 * depends on the config file). It may not report 0 for other 4483 * capabilities dependent on the TOE in this case. Set them to 4484 * 0 here so that the driver doesn't bother tracking resources 4485 * that will never be used. 4486 */ 4487 sc->iscsicaps = 0; 4488 sc->rdmacaps = 0; 4489 } 4490 if (sc->rdmacaps) { 4491 param[0] = FW_PARAM_PFVF(STAG_START); 4492 param[1] = FW_PARAM_PFVF(STAG_END); 4493 param[2] = FW_PARAM_PFVF(RQ_START); 4494 param[3] = FW_PARAM_PFVF(RQ_END); 4495 param[4] = FW_PARAM_PFVF(PBL_START); 4496 param[5] = FW_PARAM_PFVF(PBL_END); 4497 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4498 if (rc != 0) { 4499 device_printf(sc->dev, 4500 "failed to query RDMA parameters(1): %d.\n", rc); 4501 return (rc); 4502 } 4503 sc->vres.stag.start = val[0]; 4504 sc->vres.stag.size = val[1] - val[0] + 1; 4505 sc->vres.rq.start = val[2]; 4506 sc->vres.rq.size = val[3] - val[2] + 1; 4507 sc->vres.pbl.start = val[4]; 4508 sc->vres.pbl.size = val[5] - val[4] + 1; 4509 4510 param[0] = FW_PARAM_PFVF(SQRQ_START); 4511 param[1] = FW_PARAM_PFVF(SQRQ_END); 4512 param[2] = FW_PARAM_PFVF(CQ_START); 4513 param[3] = FW_PARAM_PFVF(CQ_END); 4514 param[4] = FW_PARAM_PFVF(OCQ_START); 4515 param[5] = FW_PARAM_PFVF(OCQ_END); 4516 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4517 if (rc != 0) { 4518 device_printf(sc->dev, 4519 "failed to query RDMA parameters(2): %d.\n", rc); 4520 return (rc); 4521 } 4522 sc->vres.qp.start = val[0]; 4523 sc->vres.qp.size = val[1] - val[0] + 1; 4524 sc->vres.cq.start = val[2]; 4525 sc->vres.cq.size = val[3] - val[2] + 1; 4526 sc->vres.ocq.start = val[4]; 4527 sc->vres.ocq.size = val[5] - val[4] + 1; 4528 4529 param[0] = FW_PARAM_PFVF(SRQ_START); 4530 param[1] = FW_PARAM_PFVF(SRQ_END); 4531 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 4532 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4533 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 4534 if (rc != 0) { 4535 device_printf(sc->dev, 4536 "failed to query RDMA parameters(3): %d.\n", rc); 4537 return (rc); 4538 } 4539 sc->vres.srq.start = val[0]; 4540 sc->vres.srq.size = val[1] - val[0] + 1; 4541 sc->params.max_ordird_qp = val[2]; 4542 sc->params.max_ird_adapter = val[3]; 4543 } 4544 if (sc->iscsicaps) { 4545 param[0] = FW_PARAM_PFVF(ISCSI_START); 4546 param[1] = FW_PARAM_PFVF(ISCSI_END); 4547 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4548 if (rc != 0) { 4549 device_printf(sc->dev, 4550 "failed to query iSCSI parameters: %d.\n", rc); 4551 return (rc); 4552 } 4553 sc->vres.iscsi.start = val[0]; 4554 sc->vres.iscsi.size = val[1] - val[0] + 1; 4555 } 4556 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 4557 param[0] = FW_PARAM_PFVF(TLS_START); 4558 param[1] = FW_PARAM_PFVF(TLS_END); 4559 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4560 if (rc != 0) { 4561 device_printf(sc->dev, 4562 "failed to query TLS parameters: %d.\n", rc); 4563 return (rc); 4564 } 4565 sc->vres.key.start = val[0]; 4566 sc->vres.key.size = val[1] - val[0] + 1; 4567 } 4568 4569 t4_init_sge_params(sc); 4570 4571 /* 4572 * We've got the params we wanted to query via the firmware. Now grab 4573 * some others directly from the chip. 4574 */ 4575 rc = t4_read_chip_settings(sc); 4576 4577 return (rc); 4578 } 4579 4580 #ifdef KERN_TLS 4581 static void 4582 ktls_tick(void *arg) 4583 { 4584 struct adapter *sc; 4585 uint32_t tstamp; 4586 4587 sc = arg; 4588 4589 tstamp = tcp_ts_getticks(); 4590 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 4591 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 4592 4593 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 4594 } 4595 4596 static void 4597 t4_enable_kern_tls(struct adapter *sc) 4598 { 4599 uint32_t m, v; 4600 4601 m = F_ENABLECBYP; 4602 v = F_ENABLECBYP; 4603 t4_set_reg_field(sc, A_TP_PARA_REG6, m, v); 4604 4605 m = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4606 v = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4607 t4_set_reg_field(sc, A_ULP_TX_CONFIG, m, v); 4608 4609 m = F_NICMODE; 4610 v = F_NICMODE; 4611 t4_set_reg_field(sc, A_TP_IN_CONFIG, m, v); 4612 4613 m = F_LOOKUPEVERYPKT; 4614 v = 0; 4615 t4_set_reg_field(sc, A_TP_INGRESS_CONFIG, m, v); 4616 4617 m = F_TXDEFERENABLE | F_DISABLEWINDOWPSH | F_DISABLESEPPSHFLAG; 4618 v = F_DISABLEWINDOWPSH; 4619 t4_set_reg_field(sc, A_TP_PC_CONFIG, m, v); 4620 4621 m = V_TIMESTAMPRESOLUTION(M_TIMESTAMPRESOLUTION); 4622 v = V_TIMESTAMPRESOLUTION(0x1f); 4623 t4_set_reg_field(sc, A_TP_TIMER_RESOLUTION, m, v); 4624 4625 sc->flags |= KERN_TLS_OK; 4626 4627 sc->tlst.inline_keys = t4_tls_inline_keys; 4628 sc->tlst.combo_wrs = t4_tls_combo_wrs; 4629 } 4630 #endif 4631 4632 static int 4633 set_params__post_init(struct adapter *sc) 4634 { 4635 uint32_t param, val; 4636 #ifdef TCP_OFFLOAD 4637 int i, v, shift; 4638 #endif 4639 4640 /* ask for encapsulated CPLs */ 4641 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4642 val = 1; 4643 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4644 4645 /* Enable 32b port caps if the firmware supports it. */ 4646 param = FW_PARAM_PFVF(PORT_CAPS32); 4647 val = 1; 4648 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 4649 sc->params.port_caps32 = 1; 4650 4651 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 4652 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 4653 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 4654 V_MASKFILTER(val - 1)); 4655 4656 #ifdef TCP_OFFLOAD 4657 /* 4658 * Override the TOE timers with user provided tunables. This is not the 4659 * recommended way to change the timers (the firmware config file is) so 4660 * these tunables are not documented. 4661 * 4662 * All the timer tunables are in microseconds. 4663 */ 4664 if (t4_toe_keepalive_idle != 0) { 4665 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 4666 v &= M_KEEPALIVEIDLE; 4667 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 4668 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 4669 } 4670 if (t4_toe_keepalive_interval != 0) { 4671 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 4672 v &= M_KEEPALIVEINTVL; 4673 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 4674 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 4675 } 4676 if (t4_toe_keepalive_count != 0) { 4677 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 4678 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4679 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 4680 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 4681 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 4682 } 4683 if (t4_toe_rexmt_min != 0) { 4684 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 4685 v &= M_RXTMIN; 4686 t4_set_reg_field(sc, A_TP_RXT_MIN, 4687 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 4688 } 4689 if (t4_toe_rexmt_max != 0) { 4690 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 4691 v &= M_RXTMAX; 4692 t4_set_reg_field(sc, A_TP_RXT_MAX, 4693 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 4694 } 4695 if (t4_toe_rexmt_count != 0) { 4696 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 4697 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4698 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 4699 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 4700 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 4701 } 4702 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 4703 if (t4_toe_rexmt_backoff[i] != -1) { 4704 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 4705 shift = (i & 3) << 3; 4706 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 4707 M_TIMERBACKOFFINDEX0 << shift, v << shift); 4708 } 4709 } 4710 #endif 4711 4712 #ifdef KERN_TLS 4713 if (t4_kern_tls != 0 && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 4714 sc->toecaps & FW_CAPS_CONFIG_TOE) 4715 t4_enable_kern_tls(sc); 4716 #endif 4717 return (0); 4718 } 4719 4720 #undef FW_PARAM_PFVF 4721 #undef FW_PARAM_DEV 4722 4723 static void 4724 t4_set_desc(struct adapter *sc) 4725 { 4726 char buf[128]; 4727 struct adapter_params *p = &sc->params; 4728 4729 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 4730 4731 device_set_desc_copy(sc->dev, buf); 4732 } 4733 4734 static inline void 4735 ifmedia_add4(struct ifmedia *ifm, int m) 4736 { 4737 4738 ifmedia_add(ifm, m, 0, NULL); 4739 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 4740 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 4741 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 4742 } 4743 4744 /* 4745 * This is the selected media, which is not quite the same as the active media. 4746 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 4747 * and active are not the same, and "media: Ethernet selected" otherwise. 4748 */ 4749 static void 4750 set_current_media(struct port_info *pi) 4751 { 4752 struct link_config *lc; 4753 struct ifmedia *ifm; 4754 int mword; 4755 u_int speed; 4756 4757 PORT_LOCK_ASSERT_OWNED(pi); 4758 4759 /* Leave current media alone if it's already set to IFM_NONE. */ 4760 ifm = &pi->media; 4761 if (ifm->ifm_cur != NULL && 4762 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 4763 return; 4764 4765 lc = &pi->link_cfg; 4766 if (lc->requested_aneg != AUTONEG_DISABLE && 4767 lc->pcaps & FW_PORT_CAP32_ANEG) { 4768 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 4769 return; 4770 } 4771 mword = IFM_ETHER | IFM_FDX; 4772 if (lc->requested_fc & PAUSE_TX) 4773 mword |= IFM_ETH_TXPAUSE; 4774 if (lc->requested_fc & PAUSE_RX) 4775 mword |= IFM_ETH_RXPAUSE; 4776 if (lc->requested_speed == 0) 4777 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 4778 else 4779 speed = lc->requested_speed; 4780 mword |= port_mword(pi, speed_to_fwcap(speed)); 4781 ifmedia_set(ifm, mword); 4782 } 4783 4784 /* 4785 * Returns true if the ifmedia list for the port cannot change. 4786 */ 4787 static bool 4788 fixed_ifmedia(struct port_info *pi) 4789 { 4790 4791 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 4792 pi->port_type == FW_PORT_TYPE_BT_XFI || 4793 pi->port_type == FW_PORT_TYPE_BT_XAUI || 4794 pi->port_type == FW_PORT_TYPE_KX4 || 4795 pi->port_type == FW_PORT_TYPE_KX || 4796 pi->port_type == FW_PORT_TYPE_KR || 4797 pi->port_type == FW_PORT_TYPE_BP_AP || 4798 pi->port_type == FW_PORT_TYPE_BP4_AP || 4799 pi->port_type == FW_PORT_TYPE_BP40_BA || 4800 pi->port_type == FW_PORT_TYPE_KR4_100G || 4801 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 4802 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 4803 } 4804 4805 static void 4806 build_medialist(struct port_info *pi) 4807 { 4808 uint32_t ss, speed; 4809 int unknown, mword, bit; 4810 struct link_config *lc; 4811 struct ifmedia *ifm; 4812 4813 PORT_LOCK_ASSERT_OWNED(pi); 4814 4815 if (pi->flags & FIXED_IFMEDIA) 4816 return; 4817 4818 /* 4819 * Rebuild the ifmedia list. 4820 */ 4821 ifm = &pi->media; 4822 ifmedia_removeall(ifm); 4823 lc = &pi->link_cfg; 4824 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 4825 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 4826 MPASS(ss != 0); 4827 no_media: 4828 MPASS(LIST_EMPTY(&ifm->ifm_list)); 4829 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 4830 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 4831 return; 4832 } 4833 4834 unknown = 0; 4835 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 4836 speed = 1 << bit; 4837 MPASS(speed & M_FW_PORT_CAP32_SPEED); 4838 if (ss & speed) { 4839 mword = port_mword(pi, speed); 4840 if (mword == IFM_NONE) { 4841 goto no_media; 4842 } else if (mword == IFM_UNKNOWN) 4843 unknown++; 4844 else 4845 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 4846 } 4847 } 4848 if (unknown > 0) /* Add one unknown for all unknown media types. */ 4849 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 4850 if (lc->pcaps & FW_PORT_CAP32_ANEG) 4851 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 4852 4853 set_current_media(pi); 4854 } 4855 4856 /* 4857 * Initialize the requested fields in the link config based on driver tunables. 4858 */ 4859 static void 4860 init_link_config(struct port_info *pi) 4861 { 4862 struct link_config *lc = &pi->link_cfg; 4863 4864 PORT_LOCK_ASSERT_OWNED(pi); 4865 4866 lc->requested_speed = 0; 4867 4868 if (t4_autoneg == 0) 4869 lc->requested_aneg = AUTONEG_DISABLE; 4870 else if (t4_autoneg == 1) 4871 lc->requested_aneg = AUTONEG_ENABLE; 4872 else 4873 lc->requested_aneg = AUTONEG_AUTO; 4874 4875 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 4876 PAUSE_AUTONEG); 4877 4878 if (t4_fec & FEC_AUTO) 4879 lc->requested_fec = FEC_AUTO; 4880 else if (t4_fec == 0) 4881 lc->requested_fec = FEC_NONE; 4882 else { 4883 /* -1 is handled by the FEC_AUTO block above and not here. */ 4884 lc->requested_fec = t4_fec & 4885 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 4886 if (lc->requested_fec == 0) 4887 lc->requested_fec = FEC_AUTO; 4888 } 4889 } 4890 4891 /* 4892 * Makes sure that all requested settings comply with what's supported by the 4893 * port. Returns the number of settings that were invalid and had to be fixed. 4894 */ 4895 static int 4896 fixup_link_config(struct port_info *pi) 4897 { 4898 int n = 0; 4899 struct link_config *lc = &pi->link_cfg; 4900 uint32_t fwspeed; 4901 4902 PORT_LOCK_ASSERT_OWNED(pi); 4903 4904 /* Speed (when not autonegotiating) */ 4905 if (lc->requested_speed != 0) { 4906 fwspeed = speed_to_fwcap(lc->requested_speed); 4907 if ((fwspeed & lc->pcaps) == 0) { 4908 n++; 4909 lc->requested_speed = 0; 4910 } 4911 } 4912 4913 /* Link autonegotiation */ 4914 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 4915 lc->requested_aneg == AUTONEG_DISABLE || 4916 lc->requested_aneg == AUTONEG_AUTO); 4917 if (lc->requested_aneg == AUTONEG_ENABLE && 4918 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4919 n++; 4920 lc->requested_aneg = AUTONEG_AUTO; 4921 } 4922 4923 /* Flow control */ 4924 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 4925 if (lc->requested_fc & PAUSE_TX && 4926 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 4927 n++; 4928 lc->requested_fc &= ~PAUSE_TX; 4929 } 4930 if (lc->requested_fc & PAUSE_RX && 4931 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 4932 n++; 4933 lc->requested_fc &= ~PAUSE_RX; 4934 } 4935 if (!(lc->requested_fc & PAUSE_AUTONEG) && 4936 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 4937 n++; 4938 lc->requested_fc |= PAUSE_AUTONEG; 4939 } 4940 4941 /* FEC */ 4942 if ((lc->requested_fec & FEC_RS && 4943 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 4944 (lc->requested_fec & FEC_BASER_RS && 4945 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 4946 n++; 4947 lc->requested_fec = FEC_AUTO; 4948 } 4949 4950 return (n); 4951 } 4952 4953 /* 4954 * Apply the requested L1 settings, which are expected to be valid, to the 4955 * hardware. 4956 */ 4957 static int 4958 apply_link_config(struct port_info *pi) 4959 { 4960 struct adapter *sc = pi->adapter; 4961 struct link_config *lc = &pi->link_cfg; 4962 int rc; 4963 4964 #ifdef INVARIANTS 4965 ASSERT_SYNCHRONIZED_OP(sc); 4966 PORT_LOCK_ASSERT_OWNED(pi); 4967 4968 if (lc->requested_aneg == AUTONEG_ENABLE) 4969 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 4970 if (!(lc->requested_fc & PAUSE_AUTONEG)) 4971 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 4972 if (lc->requested_fc & PAUSE_TX) 4973 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 4974 if (lc->requested_fc & PAUSE_RX) 4975 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 4976 if (lc->requested_fec & FEC_RS) 4977 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 4978 if (lc->requested_fec & FEC_BASER_RS) 4979 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 4980 #endif 4981 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 4982 if (rc != 0) { 4983 /* Don't complain if the VF driver gets back an EPERM. */ 4984 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 4985 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 4986 } else { 4987 /* 4988 * An L1_CFG will almost always result in a link-change event if 4989 * the link is up, and the driver will refresh the actual 4990 * fec/fc/etc. when the notification is processed. If the link 4991 * is down then the actual settings are meaningless. 4992 * 4993 * This takes care of the case where a change in the L1 settings 4994 * may not result in a notification. 4995 */ 4996 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 4997 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 4998 } 4999 return (rc); 5000 } 5001 5002 #define FW_MAC_EXACT_CHUNK 7 5003 struct mcaddr_ctx { 5004 struct ifnet *ifp; 5005 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5006 uint64_t hash; 5007 int i; 5008 int del; 5009 int rc; 5010 }; 5011 5012 static u_int 5013 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5014 { 5015 struct mcaddr_ctx *ctx = arg; 5016 struct vi_info *vi = ctx->ifp->if_softc; 5017 struct port_info *pi = vi->pi; 5018 struct adapter *sc = pi->adapter; 5019 5020 if (ctx->rc < 0) 5021 return (0); 5022 5023 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5024 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5025 ctx->i++; 5026 5027 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5028 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5029 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5030 if (ctx->rc < 0) { 5031 int j; 5032 5033 for (j = 0; j < ctx->i; j++) { 5034 if_printf(ctx->ifp, 5035 "failed to add mc address" 5036 " %02x:%02x:%02x:" 5037 "%02x:%02x:%02x rc=%d\n", 5038 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5039 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5040 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5041 -ctx->rc); 5042 } 5043 return (0); 5044 } 5045 ctx->del = 0; 5046 ctx->i = 0; 5047 } 5048 5049 return (1); 5050 } 5051 5052 /* 5053 * Program the port's XGMAC based on parameters in ifnet. The caller also 5054 * indicates which parameters should be programmed (the rest are left alone). 5055 */ 5056 int 5057 update_mac_settings(struct ifnet *ifp, int flags) 5058 { 5059 int rc = 0; 5060 struct vi_info *vi = ifp->if_softc; 5061 struct port_info *pi = vi->pi; 5062 struct adapter *sc = pi->adapter; 5063 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5064 5065 ASSERT_SYNCHRONIZED_OP(sc); 5066 KASSERT(flags, ("%s: not told what to update.", __func__)); 5067 5068 if (flags & XGMAC_MTU) 5069 mtu = ifp->if_mtu; 5070 5071 if (flags & XGMAC_PROMISC) 5072 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5073 5074 if (flags & XGMAC_ALLMULTI) 5075 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5076 5077 if (flags & XGMAC_VLANEX) 5078 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5079 5080 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5081 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5082 allmulti, 1, vlanex, false); 5083 if (rc) { 5084 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5085 rc); 5086 return (rc); 5087 } 5088 } 5089 5090 if (flags & XGMAC_UCADDR) { 5091 uint8_t ucaddr[ETHER_ADDR_LEN]; 5092 5093 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5094 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5095 ucaddr, true, &vi->smt_idx); 5096 if (rc < 0) { 5097 rc = -rc; 5098 if_printf(ifp, "change_mac failed: %d\n", rc); 5099 return (rc); 5100 } else { 5101 vi->xact_addr_filt = rc; 5102 rc = 0; 5103 } 5104 } 5105 5106 if (flags & XGMAC_MCADDRS) { 5107 struct epoch_tracker et; 5108 struct mcaddr_ctx ctx; 5109 int j; 5110 5111 ctx.ifp = ifp; 5112 ctx.hash = 0; 5113 ctx.i = 0; 5114 ctx.del = 1; 5115 ctx.rc = 0; 5116 /* 5117 * Unlike other drivers, we accumulate list of pointers into 5118 * interface address lists and we need to keep it safe even 5119 * after if_foreach_llmaddr() returns, thus we must enter the 5120 * network epoch. 5121 */ 5122 NET_EPOCH_ENTER(et); 5123 if_foreach_llmaddr(ifp, add_maddr, &ctx); 5124 if (ctx.rc < 0) { 5125 NET_EPOCH_EXIT(et); 5126 rc = -ctx.rc; 5127 return (rc); 5128 } 5129 if (ctx.i > 0) { 5130 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 5131 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 5132 NET_EPOCH_EXIT(et); 5133 if (rc < 0) { 5134 rc = -rc; 5135 for (j = 0; j < ctx.i; j++) { 5136 if_printf(ifp, 5137 "failed to add mc address" 5138 " %02x:%02x:%02x:" 5139 "%02x:%02x:%02x rc=%d\n", 5140 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 5141 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 5142 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 5143 rc); 5144 } 5145 return (rc); 5146 } 5147 } else 5148 NET_EPOCH_EXIT(et); 5149 5150 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 5151 if (rc != 0) 5152 if_printf(ifp, "failed to set mc address hash: %d", rc); 5153 } 5154 5155 return (rc); 5156 } 5157 5158 /* 5159 * {begin|end}_synchronized_op must be called from the same thread. 5160 */ 5161 int 5162 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 5163 char *wmesg) 5164 { 5165 int rc, pri; 5166 5167 #ifdef WITNESS 5168 /* the caller thinks it's ok to sleep, but is it really? */ 5169 if (flags & SLEEP_OK) 5170 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 5171 "begin_synchronized_op"); 5172 #endif 5173 5174 if (INTR_OK) 5175 pri = PCATCH; 5176 else 5177 pri = 0; 5178 5179 ADAPTER_LOCK(sc); 5180 for (;;) { 5181 5182 if (vi && IS_DOOMED(vi)) { 5183 rc = ENXIO; 5184 goto done; 5185 } 5186 5187 if (!IS_BUSY(sc)) { 5188 rc = 0; 5189 break; 5190 } 5191 5192 if (!(flags & SLEEP_OK)) { 5193 rc = EBUSY; 5194 goto done; 5195 } 5196 5197 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 5198 rc = EINTR; 5199 goto done; 5200 } 5201 } 5202 5203 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 5204 SET_BUSY(sc); 5205 #ifdef INVARIANTS 5206 sc->last_op = wmesg; 5207 sc->last_op_thr = curthread; 5208 sc->last_op_flags = flags; 5209 #endif 5210 5211 done: 5212 if (!(flags & HOLD_LOCK) || rc) 5213 ADAPTER_UNLOCK(sc); 5214 5215 return (rc); 5216 } 5217 5218 /* 5219 * Tell if_ioctl and if_init that the VI is going away. This is 5220 * special variant of begin_synchronized_op and must be paired with a 5221 * call to end_synchronized_op. 5222 */ 5223 void 5224 doom_vi(struct adapter *sc, struct vi_info *vi) 5225 { 5226 5227 ADAPTER_LOCK(sc); 5228 SET_DOOMED(vi); 5229 wakeup(&sc->flags); 5230 while (IS_BUSY(sc)) 5231 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 5232 SET_BUSY(sc); 5233 #ifdef INVARIANTS 5234 sc->last_op = "t4detach"; 5235 sc->last_op_thr = curthread; 5236 sc->last_op_flags = 0; 5237 #endif 5238 ADAPTER_UNLOCK(sc); 5239 } 5240 5241 /* 5242 * {begin|end}_synchronized_op must be called from the same thread. 5243 */ 5244 void 5245 end_synchronized_op(struct adapter *sc, int flags) 5246 { 5247 5248 if (flags & LOCK_HELD) 5249 ADAPTER_LOCK_ASSERT_OWNED(sc); 5250 else 5251 ADAPTER_LOCK(sc); 5252 5253 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 5254 CLR_BUSY(sc); 5255 wakeup(&sc->flags); 5256 ADAPTER_UNLOCK(sc); 5257 } 5258 5259 static int 5260 cxgbe_init_synchronized(struct vi_info *vi) 5261 { 5262 struct port_info *pi = vi->pi; 5263 struct adapter *sc = pi->adapter; 5264 struct ifnet *ifp = vi->ifp; 5265 int rc = 0, i; 5266 struct sge_txq *txq; 5267 5268 ASSERT_SYNCHRONIZED_OP(sc); 5269 5270 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5271 return (0); /* already running */ 5272 5273 if (!(sc->flags & FULL_INIT_DONE) && 5274 ((rc = adapter_full_init(sc)) != 0)) 5275 return (rc); /* error message displayed already */ 5276 5277 if (!(vi->flags & VI_INIT_DONE) && 5278 ((rc = vi_full_init(vi)) != 0)) 5279 return (rc); /* error message displayed already */ 5280 5281 rc = update_mac_settings(ifp, XGMAC_ALL); 5282 if (rc) 5283 goto done; /* error message displayed already */ 5284 5285 PORT_LOCK(pi); 5286 if (pi->up_vis == 0) { 5287 t4_update_port_info(pi); 5288 fixup_link_config(pi); 5289 build_medialist(pi); 5290 apply_link_config(pi); 5291 } 5292 5293 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 5294 if (rc != 0) { 5295 if_printf(ifp, "enable_vi failed: %d\n", rc); 5296 PORT_UNLOCK(pi); 5297 goto done; 5298 } 5299 5300 /* 5301 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 5302 * if this changes. 5303 */ 5304 5305 for_each_txq(vi, i, txq) { 5306 TXQ_LOCK(txq); 5307 txq->eq.flags |= EQ_ENABLED; 5308 TXQ_UNLOCK(txq); 5309 } 5310 5311 /* 5312 * The first iq of the first port to come up is used for tracing. 5313 */ 5314 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 5315 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 5316 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 5317 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 5318 V_QUEUENUMBER(sc->traceq)); 5319 pi->flags |= HAS_TRACEQ; 5320 } 5321 5322 /* all ok */ 5323 pi->up_vis++; 5324 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5325 5326 if (pi->nvi > 1 || sc->flags & IS_VF) 5327 callout_reset(&vi->tick, hz, vi_tick, vi); 5328 else 5329 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 5330 if (pi->link_cfg.link_ok) 5331 t4_os_link_changed(pi); 5332 PORT_UNLOCK(pi); 5333 done: 5334 if (rc != 0) 5335 cxgbe_uninit_synchronized(vi); 5336 5337 return (rc); 5338 } 5339 5340 /* 5341 * Idempotent. 5342 */ 5343 static int 5344 cxgbe_uninit_synchronized(struct vi_info *vi) 5345 { 5346 struct port_info *pi = vi->pi; 5347 struct adapter *sc = pi->adapter; 5348 struct ifnet *ifp = vi->ifp; 5349 int rc, i; 5350 struct sge_txq *txq; 5351 5352 ASSERT_SYNCHRONIZED_OP(sc); 5353 5354 if (!(vi->flags & VI_INIT_DONE)) { 5355 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5356 KASSERT(0, ("uninited VI is running")); 5357 if_printf(ifp, "uninited VI with running ifnet. " 5358 "vi->flags 0x%016lx, if_flags 0x%08x, " 5359 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 5360 ifp->if_drv_flags); 5361 } 5362 return (0); 5363 } 5364 5365 /* 5366 * Disable the VI so that all its data in either direction is discarded 5367 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 5368 * tick) intact as the TP can deliver negative advice or data that it's 5369 * holding in its RAM (for an offloaded connection) even after the VI is 5370 * disabled. 5371 */ 5372 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 5373 if (rc) { 5374 if_printf(ifp, "disable_vi failed: %d\n", rc); 5375 return (rc); 5376 } 5377 5378 for_each_txq(vi, i, txq) { 5379 TXQ_LOCK(txq); 5380 txq->eq.flags &= ~EQ_ENABLED; 5381 TXQ_UNLOCK(txq); 5382 } 5383 5384 PORT_LOCK(pi); 5385 if (pi->nvi > 1 || sc->flags & IS_VF) 5386 callout_stop(&vi->tick); 5387 else 5388 callout_stop(&pi->tick); 5389 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5390 PORT_UNLOCK(pi); 5391 return (0); 5392 } 5393 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5394 pi->up_vis--; 5395 if (pi->up_vis > 0) { 5396 PORT_UNLOCK(pi); 5397 return (0); 5398 } 5399 5400 pi->link_cfg.link_ok = false; 5401 pi->link_cfg.speed = 0; 5402 pi->link_cfg.link_down_rc = 255; 5403 t4_os_link_changed(pi); 5404 PORT_UNLOCK(pi); 5405 5406 return (0); 5407 } 5408 5409 /* 5410 * It is ok for this function to fail midway and return right away. t4_detach 5411 * will walk the entire sc->irq list and clean up whatever is valid. 5412 */ 5413 int 5414 t4_setup_intr_handlers(struct adapter *sc) 5415 { 5416 int rc, rid, p, q, v; 5417 char s[8]; 5418 struct irq *irq; 5419 struct port_info *pi; 5420 struct vi_info *vi; 5421 struct sge *sge = &sc->sge; 5422 struct sge_rxq *rxq; 5423 #ifdef TCP_OFFLOAD 5424 struct sge_ofld_rxq *ofld_rxq; 5425 #endif 5426 #ifdef DEV_NETMAP 5427 struct sge_nm_rxq *nm_rxq; 5428 #endif 5429 #ifdef RSS 5430 int nbuckets = rss_getnumbuckets(); 5431 #endif 5432 5433 /* 5434 * Setup interrupts. 5435 */ 5436 irq = &sc->irq[0]; 5437 rid = sc->intr_type == INTR_INTX ? 0 : 1; 5438 if (forwarding_intr_to_fwq(sc)) 5439 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 5440 5441 /* Multiple interrupts. */ 5442 if (sc->flags & IS_VF) 5443 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 5444 ("%s: too few intr.", __func__)); 5445 else 5446 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 5447 ("%s: too few intr.", __func__)); 5448 5449 /* The first one is always error intr on PFs */ 5450 if (!(sc->flags & IS_VF)) { 5451 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 5452 if (rc != 0) 5453 return (rc); 5454 irq++; 5455 rid++; 5456 } 5457 5458 /* The second one is always the firmware event queue (first on VFs) */ 5459 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 5460 if (rc != 0) 5461 return (rc); 5462 irq++; 5463 rid++; 5464 5465 for_each_port(sc, p) { 5466 pi = sc->port[p]; 5467 for_each_vi(pi, v, vi) { 5468 vi->first_intr = rid - 1; 5469 5470 if (vi->nnmrxq > 0) { 5471 int n = max(vi->nrxq, vi->nnmrxq); 5472 5473 rxq = &sge->rxq[vi->first_rxq]; 5474 #ifdef DEV_NETMAP 5475 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 5476 #endif 5477 for (q = 0; q < n; q++) { 5478 snprintf(s, sizeof(s), "%x%c%x", p, 5479 'a' + v, q); 5480 if (q < vi->nrxq) 5481 irq->rxq = rxq++; 5482 #ifdef DEV_NETMAP 5483 if (q < vi->nnmrxq) 5484 irq->nm_rxq = nm_rxq++; 5485 5486 if (irq->nm_rxq != NULL && 5487 irq->rxq == NULL) { 5488 /* Netmap rx only */ 5489 rc = t4_alloc_irq(sc, irq, rid, 5490 t4_nm_intr, irq->nm_rxq, s); 5491 } 5492 if (irq->nm_rxq != NULL && 5493 irq->rxq != NULL) { 5494 /* NIC and Netmap rx */ 5495 rc = t4_alloc_irq(sc, irq, rid, 5496 t4_vi_intr, irq, s); 5497 } 5498 #endif 5499 if (irq->rxq != NULL && 5500 irq->nm_rxq == NULL) { 5501 /* NIC rx only */ 5502 rc = t4_alloc_irq(sc, irq, rid, 5503 t4_intr, irq->rxq, s); 5504 } 5505 if (rc != 0) 5506 return (rc); 5507 #ifdef RSS 5508 if (q < vi->nrxq) { 5509 bus_bind_intr(sc->dev, irq->res, 5510 rss_getcpu(q % nbuckets)); 5511 } 5512 #endif 5513 irq++; 5514 rid++; 5515 vi->nintr++; 5516 } 5517 } else { 5518 for_each_rxq(vi, q, rxq) { 5519 snprintf(s, sizeof(s), "%x%c%x", p, 5520 'a' + v, q); 5521 rc = t4_alloc_irq(sc, irq, rid, 5522 t4_intr, rxq, s); 5523 if (rc != 0) 5524 return (rc); 5525 #ifdef RSS 5526 bus_bind_intr(sc->dev, irq->res, 5527 rss_getcpu(q % nbuckets)); 5528 #endif 5529 irq++; 5530 rid++; 5531 vi->nintr++; 5532 } 5533 } 5534 #ifdef TCP_OFFLOAD 5535 for_each_ofld_rxq(vi, q, ofld_rxq) { 5536 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 5537 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 5538 ofld_rxq, s); 5539 if (rc != 0) 5540 return (rc); 5541 irq++; 5542 rid++; 5543 vi->nintr++; 5544 } 5545 #endif 5546 } 5547 } 5548 MPASS(irq == &sc->irq[sc->intr_count]); 5549 5550 return (0); 5551 } 5552 5553 int 5554 adapter_full_init(struct adapter *sc) 5555 { 5556 int rc, i; 5557 #ifdef RSS 5558 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5559 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5560 #endif 5561 5562 ASSERT_SYNCHRONIZED_OP(sc); 5563 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5564 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 5565 ("%s: FULL_INIT_DONE already", __func__)); 5566 5567 /* 5568 * queues that belong to the adapter (not any particular port). 5569 */ 5570 rc = t4_setup_adapter_queues(sc); 5571 if (rc != 0) 5572 goto done; 5573 5574 for (i = 0; i < nitems(sc->tq); i++) { 5575 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 5576 taskqueue_thread_enqueue, &sc->tq[i]); 5577 if (sc->tq[i] == NULL) { 5578 device_printf(sc->dev, 5579 "failed to allocate task queue %d\n", i); 5580 rc = ENOMEM; 5581 goto done; 5582 } 5583 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 5584 device_get_nameunit(sc->dev), i); 5585 } 5586 #ifdef RSS 5587 MPASS(RSS_KEYSIZE == 40); 5588 rss_getkey((void *)&raw_rss_key[0]); 5589 for (i = 0; i < nitems(rss_key); i++) { 5590 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 5591 } 5592 t4_write_rss_key(sc, &rss_key[0], -1, 1); 5593 #endif 5594 5595 if (!(sc->flags & IS_VF)) 5596 t4_intr_enable(sc); 5597 #ifdef KERN_TLS 5598 if (sc->flags & KERN_TLS_OK) 5599 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5600 C_HARDCLOCK); 5601 #endif 5602 sc->flags |= FULL_INIT_DONE; 5603 done: 5604 if (rc != 0) 5605 adapter_full_uninit(sc); 5606 5607 return (rc); 5608 } 5609 5610 int 5611 adapter_full_uninit(struct adapter *sc) 5612 { 5613 int i; 5614 5615 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5616 5617 t4_teardown_adapter_queues(sc); 5618 5619 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 5620 taskqueue_free(sc->tq[i]); 5621 sc->tq[i] = NULL; 5622 } 5623 5624 sc->flags &= ~FULL_INIT_DONE; 5625 5626 return (0); 5627 } 5628 5629 #ifdef RSS 5630 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 5631 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 5632 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 5633 RSS_HASHTYPE_RSS_UDP_IPV6) 5634 5635 /* Translates kernel hash types to hardware. */ 5636 static int 5637 hashconfig_to_hashen(int hashconfig) 5638 { 5639 int hashen = 0; 5640 5641 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 5642 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 5643 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 5644 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 5645 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 5646 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5647 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5648 } 5649 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 5650 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5651 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5652 } 5653 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 5654 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5655 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 5656 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5657 5658 return (hashen); 5659 } 5660 5661 /* Translates hardware hash types to kernel. */ 5662 static int 5663 hashen_to_hashconfig(int hashen) 5664 { 5665 int hashconfig = 0; 5666 5667 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 5668 /* 5669 * If UDP hashing was enabled it must have been enabled for 5670 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 5671 * enabling any 4-tuple hash is nonsense configuration. 5672 */ 5673 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 5674 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 5675 5676 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5677 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 5678 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5679 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 5680 } 5681 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5682 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 5683 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5684 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 5685 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 5686 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 5687 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 5688 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 5689 5690 return (hashconfig); 5691 } 5692 #endif 5693 5694 int 5695 vi_full_init(struct vi_info *vi) 5696 { 5697 struct adapter *sc = vi->pi->adapter; 5698 struct ifnet *ifp = vi->ifp; 5699 uint16_t *rss; 5700 struct sge_rxq *rxq; 5701 int rc, i, j; 5702 #ifdef RSS 5703 int nbuckets = rss_getnumbuckets(); 5704 int hashconfig = rss_gethashconfig(); 5705 int extra; 5706 #endif 5707 5708 ASSERT_SYNCHRONIZED_OP(sc); 5709 KASSERT((vi->flags & VI_INIT_DONE) == 0, 5710 ("%s: VI_INIT_DONE already", __func__)); 5711 5712 sysctl_ctx_init(&vi->ctx); 5713 vi->flags |= VI_SYSCTL_CTX; 5714 5715 /* 5716 * Allocate tx/rx/fl queues for this VI. 5717 */ 5718 rc = t4_setup_vi_queues(vi); 5719 if (rc != 0) 5720 goto done; /* error message displayed already */ 5721 5722 /* 5723 * Setup RSS for this VI. Save a copy of the RSS table for later use. 5724 */ 5725 if (vi->nrxq > vi->rss_size) { 5726 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 5727 "some queues will never receive traffic.\n", vi->nrxq, 5728 vi->rss_size); 5729 } else if (vi->rss_size % vi->nrxq) { 5730 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 5731 "expect uneven traffic distribution.\n", vi->nrxq, 5732 vi->rss_size); 5733 } 5734 #ifdef RSS 5735 if (vi->nrxq != nbuckets) { 5736 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 5737 "performance will be impacted.\n", vi->nrxq, nbuckets); 5738 } 5739 #endif 5740 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 5741 for (i = 0; i < vi->rss_size;) { 5742 #ifdef RSS 5743 j = rss_get_indirection_to_bucket(i); 5744 j %= vi->nrxq; 5745 rxq = &sc->sge.rxq[vi->first_rxq + j]; 5746 rss[i++] = rxq->iq.abs_id; 5747 #else 5748 for_each_rxq(vi, j, rxq) { 5749 rss[i++] = rxq->iq.abs_id; 5750 if (i == vi->rss_size) 5751 break; 5752 } 5753 #endif 5754 } 5755 5756 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 5757 vi->rss_size); 5758 if (rc != 0) { 5759 free(rss, M_CXGBE); 5760 if_printf(ifp, "rss_config failed: %d\n", rc); 5761 goto done; 5762 } 5763 5764 #ifdef RSS 5765 vi->hashen = hashconfig_to_hashen(hashconfig); 5766 5767 /* 5768 * We may have had to enable some hashes even though the global config 5769 * wants them disabled. This is a potential problem that must be 5770 * reported to the user. 5771 */ 5772 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 5773 5774 /* 5775 * If we consider only the supported hash types, then the enabled hashes 5776 * are a superset of the requested hashes. In other words, there cannot 5777 * be any supported hash that was requested but not enabled, but there 5778 * can be hashes that were not requested but had to be enabled. 5779 */ 5780 extra &= SUPPORTED_RSS_HASHTYPES; 5781 MPASS((extra & hashconfig) == 0); 5782 5783 if (extra) { 5784 if_printf(ifp, 5785 "global RSS config (0x%x) cannot be accommodated.\n", 5786 hashconfig); 5787 } 5788 if (extra & RSS_HASHTYPE_RSS_IPV4) 5789 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 5790 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 5791 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 5792 if (extra & RSS_HASHTYPE_RSS_IPV6) 5793 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 5794 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 5795 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 5796 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 5797 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 5798 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 5799 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 5800 #else 5801 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 5802 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 5803 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 5804 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 5805 #endif 5806 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0); 5807 if (rc != 0) { 5808 free(rss, M_CXGBE); 5809 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 5810 goto done; 5811 } 5812 5813 vi->rss = rss; 5814 vi->flags |= VI_INIT_DONE; 5815 done: 5816 if (rc != 0) 5817 vi_full_uninit(vi); 5818 5819 return (rc); 5820 } 5821 5822 /* 5823 * Idempotent. 5824 */ 5825 int 5826 vi_full_uninit(struct vi_info *vi) 5827 { 5828 struct port_info *pi = vi->pi; 5829 struct adapter *sc = pi->adapter; 5830 int i; 5831 struct sge_rxq *rxq; 5832 struct sge_txq *txq; 5833 #ifdef TCP_OFFLOAD 5834 struct sge_ofld_rxq *ofld_rxq; 5835 #endif 5836 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 5837 struct sge_wrq *ofld_txq; 5838 #endif 5839 5840 if (vi->flags & VI_INIT_DONE) { 5841 5842 /* Need to quiesce queues. */ 5843 5844 /* XXX: Only for the first VI? */ 5845 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 5846 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 5847 5848 for_each_txq(vi, i, txq) { 5849 quiesce_txq(sc, txq); 5850 } 5851 5852 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 5853 for_each_ofld_txq(vi, i, ofld_txq) { 5854 quiesce_wrq(sc, ofld_txq); 5855 } 5856 #endif 5857 5858 for_each_rxq(vi, i, rxq) { 5859 quiesce_iq(sc, &rxq->iq); 5860 quiesce_fl(sc, &rxq->fl); 5861 } 5862 5863 #ifdef TCP_OFFLOAD 5864 for_each_ofld_rxq(vi, i, ofld_rxq) { 5865 quiesce_iq(sc, &ofld_rxq->iq); 5866 quiesce_fl(sc, &ofld_rxq->fl); 5867 } 5868 #endif 5869 free(vi->rss, M_CXGBE); 5870 free(vi->nm_rss, M_CXGBE); 5871 } 5872 5873 t4_teardown_vi_queues(vi); 5874 vi->flags &= ~VI_INIT_DONE; 5875 5876 return (0); 5877 } 5878 5879 static void 5880 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 5881 { 5882 struct sge_eq *eq = &txq->eq; 5883 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 5884 5885 (void) sc; /* unused */ 5886 5887 #ifdef INVARIANTS 5888 TXQ_LOCK(txq); 5889 MPASS((eq->flags & EQ_ENABLED) == 0); 5890 TXQ_UNLOCK(txq); 5891 #endif 5892 5893 /* Wait for the mp_ring to empty. */ 5894 while (!mp_ring_is_idle(txq->r)) { 5895 mp_ring_check_drainage(txq->r, 0); 5896 pause("rquiesce", 1); 5897 } 5898 5899 /* Then wait for the hardware to finish. */ 5900 while (spg->cidx != htobe16(eq->pidx)) 5901 pause("equiesce", 1); 5902 5903 /* Finally, wait for the driver to reclaim all descriptors. */ 5904 while (eq->cidx != eq->pidx) 5905 pause("dquiesce", 1); 5906 } 5907 5908 static void 5909 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 5910 { 5911 5912 /* XXXTX */ 5913 } 5914 5915 static void 5916 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 5917 { 5918 (void) sc; /* unused */ 5919 5920 /* Synchronize with the interrupt handler */ 5921 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 5922 pause("iqfree", 1); 5923 } 5924 5925 static void 5926 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 5927 { 5928 mtx_lock(&sc->sfl_lock); 5929 FL_LOCK(fl); 5930 fl->flags |= FL_DOOMED; 5931 FL_UNLOCK(fl); 5932 callout_stop(&sc->sfl_callout); 5933 mtx_unlock(&sc->sfl_lock); 5934 5935 KASSERT((fl->flags & FL_STARVING) == 0, 5936 ("%s: still starving", __func__)); 5937 } 5938 5939 static int 5940 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 5941 driver_intr_t *handler, void *arg, char *name) 5942 { 5943 int rc; 5944 5945 irq->rid = rid; 5946 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 5947 RF_SHAREABLE | RF_ACTIVE); 5948 if (irq->res == NULL) { 5949 device_printf(sc->dev, 5950 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 5951 return (ENOMEM); 5952 } 5953 5954 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 5955 NULL, handler, arg, &irq->tag); 5956 if (rc != 0) { 5957 device_printf(sc->dev, 5958 "failed to setup interrupt for rid %d, name %s: %d\n", 5959 rid, name, rc); 5960 } else if (name) 5961 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 5962 5963 return (rc); 5964 } 5965 5966 static int 5967 t4_free_irq(struct adapter *sc, struct irq *irq) 5968 { 5969 if (irq->tag) 5970 bus_teardown_intr(sc->dev, irq->res, irq->tag); 5971 if (irq->res) 5972 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 5973 5974 bzero(irq, sizeof(*irq)); 5975 5976 return (0); 5977 } 5978 5979 static void 5980 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 5981 { 5982 5983 regs->version = chip_id(sc) | chip_rev(sc) << 10; 5984 t4_get_regs(sc, buf, regs->len); 5985 } 5986 5987 #define A_PL_INDIR_CMD 0x1f8 5988 5989 #define S_PL_AUTOINC 31 5990 #define M_PL_AUTOINC 0x1U 5991 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 5992 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 5993 5994 #define S_PL_VFID 20 5995 #define M_PL_VFID 0xffU 5996 #define V_PL_VFID(x) ((x) << S_PL_VFID) 5997 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 5998 5999 #define S_PL_ADDR 0 6000 #define M_PL_ADDR 0xfffffU 6001 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6002 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6003 6004 #define A_PL_INDIR_DATA 0x1fc 6005 6006 static uint64_t 6007 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6008 { 6009 u32 stats[2]; 6010 6011 mtx_assert(&sc->reg_lock, MA_OWNED); 6012 if (sc->flags & IS_VF) { 6013 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 6014 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 6015 } else { 6016 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 6017 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 6018 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 6019 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 6020 } 6021 return (((uint64_t)stats[1]) << 32 | stats[0]); 6022 } 6023 6024 static void 6025 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 6026 { 6027 6028 #define GET_STAT(name) \ 6029 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 6030 6031 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 6032 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 6033 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 6034 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 6035 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 6036 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 6037 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 6038 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 6039 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 6040 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 6041 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 6042 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 6043 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 6044 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 6045 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 6046 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 6047 6048 #undef GET_STAT 6049 } 6050 6051 static void 6052 t4_clr_vi_stats(struct adapter *sc, u_int vin) 6053 { 6054 int reg; 6055 6056 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 6057 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 6058 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 6059 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 6060 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 6061 } 6062 6063 static void 6064 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 6065 { 6066 struct timeval tv; 6067 const struct timeval interval = {0, 250000}; /* 250ms */ 6068 6069 if (!(vi->flags & VI_INIT_DONE)) 6070 return; 6071 6072 getmicrotime(&tv); 6073 timevalsub(&tv, &interval); 6074 if (timevalcmp(&tv, &vi->last_refreshed, <)) 6075 return; 6076 6077 mtx_lock(&sc->reg_lock); 6078 t4_get_vi_stats(sc, vi->vin, &vi->stats); 6079 getmicrotime(&vi->last_refreshed); 6080 mtx_unlock(&sc->reg_lock); 6081 } 6082 6083 static void 6084 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 6085 { 6086 u_int i, v, tnl_cong_drops, bg_map; 6087 struct timeval tv; 6088 const struct timeval interval = {0, 250000}; /* 250ms */ 6089 6090 getmicrotime(&tv); 6091 timevalsub(&tv, &interval); 6092 if (timevalcmp(&tv, &pi->last_refreshed, <)) 6093 return; 6094 6095 tnl_cong_drops = 0; 6096 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 6097 bg_map = pi->mps_bg_map; 6098 while (bg_map) { 6099 i = ffs(bg_map) - 1; 6100 mtx_lock(&sc->reg_lock); 6101 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 6102 A_TP_MIB_TNL_CNG_DROP_0 + i); 6103 mtx_unlock(&sc->reg_lock); 6104 tnl_cong_drops += v; 6105 bg_map &= ~(1 << i); 6106 } 6107 pi->tnl_cong_drops = tnl_cong_drops; 6108 getmicrotime(&pi->last_refreshed); 6109 } 6110 6111 static void 6112 cxgbe_tick(void *arg) 6113 { 6114 struct port_info *pi = arg; 6115 struct adapter *sc = pi->adapter; 6116 6117 PORT_LOCK_ASSERT_OWNED(pi); 6118 cxgbe_refresh_stats(sc, pi); 6119 6120 callout_schedule(&pi->tick, hz); 6121 } 6122 6123 void 6124 vi_tick(void *arg) 6125 { 6126 struct vi_info *vi = arg; 6127 struct adapter *sc = vi->pi->adapter; 6128 6129 vi_refresh_stats(sc, vi); 6130 6131 callout_schedule(&vi->tick, hz); 6132 } 6133 6134 /* 6135 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 6136 */ 6137 static char *caps_decoder[] = { 6138 "\20\001IPMI\002NCSI", /* 0: NBM */ 6139 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 6140 "\20\001INGRESS\002EGRESS", /* 2: switch */ 6141 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 6142 "\006HASHFILTER\007ETHOFLD", 6143 "\20\001TOE", /* 4: TOE */ 6144 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 6145 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 6146 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 6147 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 6148 "\007T10DIF" 6149 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 6150 "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ 6151 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 6152 "\004PO_INITIATOR\005PO_TARGET", 6153 }; 6154 6155 void 6156 t4_sysctls(struct adapter *sc) 6157 { 6158 struct sysctl_ctx_list *ctx; 6159 struct sysctl_oid *oid; 6160 struct sysctl_oid_list *children, *c0; 6161 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 6162 6163 ctx = device_get_sysctl_ctx(sc->dev); 6164 6165 /* 6166 * dev.t4nex.X. 6167 */ 6168 oid = device_get_sysctl_tree(sc->dev); 6169 c0 = children = SYSCTL_CHILDREN(oid); 6170 6171 sc->sc_do_rxcopy = 1; 6172 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 6173 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 6174 6175 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 6176 sc->params.nports, "# of ports"); 6177 6178 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 6179 CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells, 6180 sysctl_bitfield_8b, "A", "available doorbells"); 6181 6182 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 6183 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 6184 6185 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 6186 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, 6187 sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", 6188 "interrupt holdoff timer values (us)"); 6189 6190 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 6191 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, 6192 sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", 6193 "interrupt holdoff packet counter values"); 6194 6195 t4_sge_sysctls(sc, ctx, children); 6196 6197 sc->lro_timeout = 100; 6198 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 6199 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 6200 6201 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 6202 &sc->debug_flags, 0, "flags to enable runtime debugging"); 6203 6204 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 6205 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 6206 6207 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 6208 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 6209 6210 if (sc->flags & IS_VF) 6211 return; 6212 6213 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 6214 NULL, chip_rev(sc), "chip hardware revision"); 6215 6216 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 6217 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 6218 6219 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 6220 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 6221 6222 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 6223 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 6224 6225 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 6226 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 6227 6228 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 6229 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 6230 6231 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 6232 sc->er_version, 0, "expansion ROM version"); 6233 6234 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 6235 sc->bs_version, 0, "bootstrap firmware version"); 6236 6237 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 6238 NULL, sc->params.scfg_vers, "serial config version"); 6239 6240 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 6241 NULL, sc->params.vpd_vers, "VPD version"); 6242 6243 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 6244 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 6245 6246 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 6247 sc->cfcsum, "config file checksum"); 6248 6249 #define SYSCTL_CAP(name, n, text) \ 6250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 6251 CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \ 6252 sysctl_bitfield_16b, "A", "available " text " capabilities") 6253 6254 SYSCTL_CAP(nbmcaps, 0, "NBM"); 6255 SYSCTL_CAP(linkcaps, 1, "link"); 6256 SYSCTL_CAP(switchcaps, 2, "switch"); 6257 SYSCTL_CAP(niccaps, 3, "NIC"); 6258 SYSCTL_CAP(toecaps, 4, "TCP offload"); 6259 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 6260 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 6261 SYSCTL_CAP(cryptocaps, 7, "crypto"); 6262 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 6263 #undef SYSCTL_CAP 6264 6265 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 6266 NULL, sc->tids.nftids, "number of filters"); 6267 6268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 6269 CTLFLAG_RD, sc, 0, sysctl_temperature, "I", 6270 "chip temperature (in Celsius)"); 6271 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", CTLTYPE_INT | 6272 CTLFLAG_RW, sc, 0, sysctl_reset_sensor, "I", 6273 "reset the chip's temperature sensor."); 6274 6275 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING | 6276 CTLFLAG_RD, sc, 0, sysctl_loadavg, "A", 6277 "microprocessor load averages (debug firmwares only)"); 6278 6279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", CTLTYPE_INT | 6280 CTLFLAG_RD, sc, 0, sysctl_vdd, "I", "core Vdd (in mV)"); 6281 6282 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 6283 CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS, 6284 sysctl_cpus, "A", "local CPUs"); 6285 6286 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 6287 CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS, 6288 sysctl_cpus, "A", "preferred CPUs for interrupts"); 6289 6290 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 6291 &sc->swintr, 0, "software triggered interrupts"); 6292 6293 /* 6294 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 6295 */ 6296 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 6297 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 6298 "logs and miscellaneous information"); 6299 children = SYSCTL_CHILDREN(oid); 6300 6301 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 6302 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6303 sysctl_cctrl, "A", "congestion control"); 6304 6305 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 6306 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6307 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 6308 6309 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 6310 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 6311 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 6312 6313 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 6314 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 6315 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 6316 6317 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 6318 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 6319 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 6320 6321 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 6322 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 6323 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 6324 6325 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 6326 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 6327 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 6328 6329 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 6330 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la, 6331 "A", "CIM logic analyzer"); 6332 6333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 6334 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6335 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 6336 6337 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 6338 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 6339 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 6340 6341 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 6342 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 6343 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 6344 6345 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 6346 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 6347 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 6348 6349 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 6350 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 6351 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 6352 6353 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 6354 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 6355 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 6356 6357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 6358 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 6359 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 6360 6361 if (chip_id(sc) > CHELSIO_T4) { 6362 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 6363 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 6364 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 6365 6366 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 6367 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 6368 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 6369 } 6370 6371 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 6372 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6373 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 6374 6375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 6376 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6377 sysctl_cim_qcfg, "A", "CIM queue configuration"); 6378 6379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 6380 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6381 sysctl_cpl_stats, "A", "CPL statistics"); 6382 6383 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 6384 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6385 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 6386 6387 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 6388 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6389 sysctl_devlog, "A", "firmware's device log"); 6390 6391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 6392 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6393 sysctl_fcoe_stats, "A", "FCoE statistics"); 6394 6395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 6396 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6397 sysctl_hw_sched, "A", "hardware scheduler "); 6398 6399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 6400 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6401 sysctl_l2t, "A", "hardware L2 table"); 6402 6403 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 6404 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6405 sysctl_smt, "A", "hardware source MAC table"); 6406 6407 #ifdef INET6 6408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 6409 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6410 sysctl_clip, "A", "active CLIP table entries"); 6411 #endif 6412 6413 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 6414 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6415 sysctl_lb_stats, "A", "loopback statistics"); 6416 6417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 6418 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6419 sysctl_meminfo, "A", "memory regions"); 6420 6421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 6422 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6423 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 6424 "A", "MPS TCAM entries"); 6425 6426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 6427 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6428 sysctl_path_mtus, "A", "path MTUs"); 6429 6430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 6431 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6432 sysctl_pm_stats, "A", "PM statistics"); 6433 6434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 6435 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6436 sysctl_rdma_stats, "A", "RDMA statistics"); 6437 6438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 6439 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6440 sysctl_tcp_stats, "A", "TCP statistics"); 6441 6442 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 6443 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6444 sysctl_tids, "A", "TID information"); 6445 6446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 6447 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6448 sysctl_tp_err_stats, "A", "TP error statistics"); 6449 6450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 6451 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", 6452 "TP logic analyzer event capture mask"); 6453 6454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 6455 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6456 sysctl_tp_la, "A", "TP logic analyzer"); 6457 6458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 6459 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6460 sysctl_tx_rate, "A", "Tx rate"); 6461 6462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 6463 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6464 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 6465 6466 if (chip_id(sc) >= CHELSIO_T5) { 6467 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 6468 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6469 sysctl_wcwr_stats, "A", "write combined work requests"); 6470 } 6471 6472 #ifdef KERN_TLS 6473 if (sc->flags & KERN_TLS_OK) { 6474 /* 6475 * dev.t4nex.0.tls. 6476 */ 6477 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", CTLFLAG_RD, 6478 NULL, "KERN_TLS parameters"); 6479 children = SYSCTL_CHILDREN(oid); 6480 6481 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 6482 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 6483 "keys in work requests (1) or attempt to store TLS keys " 6484 "in card memory."); 6485 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 6486 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 6487 "TCB field updates with TLS record work requests."); 6488 } 6489 #endif 6490 6491 #ifdef TCP_OFFLOAD 6492 if (is_offload(sc)) { 6493 int i; 6494 char s[4]; 6495 6496 /* 6497 * dev.t4nex.X.toe. 6498 */ 6499 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 6500 NULL, "TOE parameters"); 6501 children = SYSCTL_CHILDREN(oid); 6502 6503 sc->tt.cong_algorithm = -1; 6504 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 6505 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 6506 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 6507 "3 = highspeed)"); 6508 6509 sc->tt.sndbuf = -1; 6510 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 6511 &sc->tt.sndbuf, 0, "hardware send buffer"); 6512 6513 sc->tt.ddp = 0; 6514 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 6515 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 6516 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 6517 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 6518 6519 sc->tt.rx_coalesce = -1; 6520 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 6521 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 6522 6523 sc->tt.tls = 0; 6524 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW, 6525 &sc->tt.tls, 0, "Inline TLS allowed"); 6526 6527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 6528 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports, 6529 "I", "TCP ports that use inline TLS+TOE RX"); 6530 6531 sc->tt.tx_align = -1; 6532 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 6533 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 6534 6535 sc->tt.tx_zcopy = 0; 6536 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 6537 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 6538 "Enable zero-copy aio_write(2)"); 6539 6540 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 6541 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6542 "cop_managed_offloading", CTLFLAG_RW, 6543 &sc->tt.cop_managed_offloading, 0, 6544 "COP (Connection Offload Policy) controls all TOE offload"); 6545 6546 sc->tt.autorcvbuf_inc = 16 * 1024; 6547 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 6548 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 6549 "autorcvbuf increment"); 6550 6551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 6552 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", 6553 "TP timer tick (us)"); 6554 6555 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 6556 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", 6557 "TCP timestamp tick (us)"); 6558 6559 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 6560 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", 6561 "DACK tick (us)"); 6562 6563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 6564 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, 6565 "IU", "DACK timer (us)"); 6566 6567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 6568 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, 6569 sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); 6570 6571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 6572 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, 6573 sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); 6574 6575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 6576 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, 6577 sysctl_tp_timer, "LU", "Persist timer min (us)"); 6578 6579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 6580 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, 6581 sysctl_tp_timer, "LU", "Persist timer max (us)"); 6582 6583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 6584 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, 6585 sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); 6586 6587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 6588 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, 6589 sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); 6590 6591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 6592 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, 6593 sysctl_tp_timer, "LU", "Initial SRTT (us)"); 6594 6595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 6596 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, 6597 sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); 6598 6599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 6600 CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, 6601 sysctl_tp_shift_cnt, "IU", 6602 "Number of SYN retransmissions before abort"); 6603 6604 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 6605 CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, 6606 sysctl_tp_shift_cnt, "IU", 6607 "Number of retransmissions before abort"); 6608 6609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 6610 CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, 6611 sysctl_tp_shift_cnt, "IU", 6612 "Number of keepalive probes before abort"); 6613 6614 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 6615 CTLFLAG_RD, NULL, "TOE retransmit backoffs"); 6616 children = SYSCTL_CHILDREN(oid); 6617 for (i = 0; i < 16; i++) { 6618 snprintf(s, sizeof(s), "%u", i); 6619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 6620 CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, 6621 "IU", "TOE retransmit backoff"); 6622 } 6623 } 6624 #endif 6625 } 6626 6627 void 6628 vi_sysctls(struct vi_info *vi) 6629 { 6630 struct sysctl_ctx_list *ctx; 6631 struct sysctl_oid *oid; 6632 struct sysctl_oid_list *children; 6633 6634 ctx = device_get_sysctl_ctx(vi->dev); 6635 6636 /* 6637 * dev.v?(cxgbe|cxl).X. 6638 */ 6639 oid = device_get_sysctl_tree(vi->dev); 6640 children = SYSCTL_CHILDREN(oid); 6641 6642 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 6643 vi->viid, "VI identifer"); 6644 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 6645 &vi->nrxq, 0, "# of rx queues"); 6646 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 6647 &vi->ntxq, 0, "# of tx queues"); 6648 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 6649 &vi->first_rxq, 0, "index of first rx queue"); 6650 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 6651 &vi->first_txq, 0, "index of first tx queue"); 6652 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 6653 vi->rss_base, "start of RSS indirection table"); 6654 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 6655 vi->rss_size, "size of RSS indirection table"); 6656 6657 if (IS_MAIN_VI(vi)) { 6658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 6659 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", 6660 "Reserve queue 0 for non-flowid packets"); 6661 } 6662 6663 #ifdef TCP_OFFLOAD 6664 if (vi->nofldrxq != 0) { 6665 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 6666 &vi->nofldrxq, 0, 6667 "# of rx queues for offloaded TCP connections"); 6668 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 6669 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 6670 "index of first TOE rx queue"); 6671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 6672 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 6673 sysctl_holdoff_tmr_idx_ofld, "I", 6674 "holdoff timer index for TOE queues"); 6675 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 6676 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 6677 sysctl_holdoff_pktc_idx_ofld, "I", 6678 "holdoff packet counter index for TOE queues"); 6679 } 6680 #endif 6681 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6682 if (vi->nofldtxq != 0) { 6683 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 6684 &vi->nofldtxq, 0, 6685 "# of tx queues for TOE/ETHOFLD"); 6686 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 6687 CTLFLAG_RD, &vi->first_ofld_txq, 0, 6688 "index of first TOE/ETHOFLD tx queue"); 6689 } 6690 #endif 6691 #ifdef DEV_NETMAP 6692 if (vi->nnmrxq != 0) { 6693 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 6694 &vi->nnmrxq, 0, "# of netmap rx queues"); 6695 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 6696 &vi->nnmtxq, 0, "# of netmap tx queues"); 6697 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 6698 CTLFLAG_RD, &vi->first_nm_rxq, 0, 6699 "index of first netmap rx queue"); 6700 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 6701 CTLFLAG_RD, &vi->first_nm_txq, 0, 6702 "index of first netmap tx queue"); 6703 } 6704 #endif 6705 6706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 6707 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", 6708 "holdoff timer index"); 6709 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 6710 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", 6711 "holdoff packet counter index"); 6712 6713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 6714 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", 6715 "rx queue size"); 6716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 6717 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", 6718 "tx queue size"); 6719 } 6720 6721 static void 6722 cxgbe_sysctls(struct port_info *pi) 6723 { 6724 struct sysctl_ctx_list *ctx; 6725 struct sysctl_oid *oid; 6726 struct sysctl_oid_list *children, *children2; 6727 struct adapter *sc = pi->adapter; 6728 int i; 6729 char name[16]; 6730 static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; 6731 6732 ctx = device_get_sysctl_ctx(pi->dev); 6733 6734 /* 6735 * dev.cxgbe.X. 6736 */ 6737 oid = device_get_sysctl_tree(pi->dev); 6738 children = SYSCTL_CHILDREN(oid); 6739 6740 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 6741 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 6742 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 6743 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 6744 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 6745 "PHY temperature (in Celsius)"); 6746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 6747 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 6748 "PHY firmware version"); 6749 } 6750 6751 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 6752 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", 6753 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 6754 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 6755 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", 6756 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 6757 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 6758 CTLTYPE_STRING, pi, 0, sysctl_module_fec, "A", 6759 "FEC recommended by the cable/transceiver"); 6760 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 6761 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", 6762 "autonegotiation (-1 = not supported)"); 6763 6764 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 6765 &pi->link_cfg.pcaps, 0, "port capabilities"); 6766 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 6767 &pi->link_cfg.acaps, 0, "advertised capabilities"); 6768 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 6769 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 6770 6771 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 6772 port_top_speed(pi), "max speed (in Gbps)"); 6773 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 6774 pi->mps_bg_map, "MPS buffer group map"); 6775 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 6776 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 6777 6778 if (sc->flags & IS_VF) 6779 return; 6780 6781 /* 6782 * dev.(cxgbe|cxl).X.tc. 6783 */ 6784 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, 6785 "Tx scheduler traffic classes (cl_rl)"); 6786 children2 = SYSCTL_CHILDREN(oid); 6787 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 6788 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 6789 "pktsize for per-flow cl-rl (0 means up to the driver )"); 6790 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 6791 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 6792 "burstsize for per-flow cl-rl (0 means up to the driver)"); 6793 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 6794 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 6795 6796 snprintf(name, sizeof(name), "%d", i); 6797 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 6798 SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, 6799 "traffic class")); 6800 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 6801 CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags, 6802 sysctl_bitfield_8b, "A", "flags"); 6803 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 6804 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 6805 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 6806 CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, 6807 sysctl_tc_params, "A", "traffic class parameters"); 6808 } 6809 6810 /* 6811 * dev.cxgbe.X.stats. 6812 */ 6813 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 6814 NULL, "port statistics"); 6815 children = SYSCTL_CHILDREN(oid); 6816 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 6817 &pi->tx_parse_error, 0, 6818 "# of tx packets with invalid length or # of segments"); 6819 6820 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 6821 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 6822 CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ 6823 sysctl_handle_t4_reg64, "QU", desc) 6824 6825 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 6826 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 6827 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 6828 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 6829 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 6830 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 6831 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 6832 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 6833 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 6834 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 6835 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 6836 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 6837 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 6838 "# of tx frames in this range", 6839 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 6840 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 6841 "# of tx frames in this range", 6842 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 6843 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 6844 "# of tx frames in this range", 6845 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 6846 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 6847 "# of tx frames in this range", 6848 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 6849 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 6850 "# of tx frames in this range", 6851 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 6852 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 6853 "# of tx frames in this range", 6854 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 6855 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 6856 "# of tx frames in this range", 6857 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 6858 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 6859 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 6860 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 6861 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 6862 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 6863 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 6864 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 6865 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 6866 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 6867 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 6868 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 6869 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 6870 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 6871 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 6872 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 6873 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 6874 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 6875 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 6876 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 6877 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 6878 6879 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 6880 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 6881 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 6882 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 6883 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 6884 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 6885 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 6886 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 6887 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 6888 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 6889 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 6890 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 6891 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 6892 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 6893 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 6894 "# of frames received with bad FCS", 6895 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 6896 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 6897 "# of frames received with length error", 6898 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 6899 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 6900 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 6901 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 6902 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 6903 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 6904 "# of rx frames in this range", 6905 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 6906 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 6907 "# of rx frames in this range", 6908 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 6909 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 6910 "# of rx frames in this range", 6911 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 6912 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 6913 "# of rx frames in this range", 6914 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 6915 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 6916 "# of rx frames in this range", 6917 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 6918 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 6919 "# of rx frames in this range", 6920 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 6921 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 6922 "# of rx frames in this range", 6923 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 6924 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 6925 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 6926 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 6927 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 6928 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 6929 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 6930 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 6931 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 6932 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 6933 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 6934 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 6935 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 6936 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 6937 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 6938 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 6939 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 6940 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 6941 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 6942 6943 #undef SYSCTL_ADD_T4_REG64 6944 6945 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 6946 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 6947 &pi->stats.name, desc) 6948 6949 /* We get these from port_stats and they may be stale by up to 1s */ 6950 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 6951 "# drops due to buffer-group 0 overflows"); 6952 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 6953 "# drops due to buffer-group 1 overflows"); 6954 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 6955 "# drops due to buffer-group 2 overflows"); 6956 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 6957 "# drops due to buffer-group 3 overflows"); 6958 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 6959 "# of buffer-group 0 truncated packets"); 6960 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 6961 "# of buffer-group 1 truncated packets"); 6962 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 6963 "# of buffer-group 2 truncated packets"); 6964 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 6965 "# of buffer-group 3 truncated packets"); 6966 6967 #undef SYSCTL_ADD_T4_PORTSTAT 6968 6969 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records", 6970 CTLFLAG_RD, &pi->tx_tls_records, 6971 "# of TOE TLS records transmitted"); 6972 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets", 6973 CTLFLAG_RD, &pi->tx_tls_octets, 6974 "# of payload octets in transmitted TOE TLS records"); 6975 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records", 6976 CTLFLAG_RD, &pi->rx_tls_records, 6977 "# of TOE TLS records received"); 6978 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets", 6979 CTLFLAG_RD, &pi->rx_tls_octets, 6980 "# of payload octets in received TOE TLS records"); 6981 } 6982 6983 static int 6984 sysctl_int_array(SYSCTL_HANDLER_ARGS) 6985 { 6986 int rc, *i, space = 0; 6987 struct sbuf sb; 6988 6989 sbuf_new_for_sysctl(&sb, NULL, 64, req); 6990 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 6991 if (space) 6992 sbuf_printf(&sb, " "); 6993 sbuf_printf(&sb, "%d", *i); 6994 space = 1; 6995 } 6996 rc = sbuf_finish(&sb); 6997 sbuf_delete(&sb); 6998 return (rc); 6999 } 7000 7001 static int 7002 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7003 { 7004 int rc; 7005 struct sbuf *sb; 7006 7007 rc = sysctl_wire_old_buffer(req, 0); 7008 if (rc != 0) 7009 return(rc); 7010 7011 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7012 if (sb == NULL) 7013 return (ENOMEM); 7014 7015 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7016 rc = sbuf_finish(sb); 7017 sbuf_delete(sb); 7018 7019 return (rc); 7020 } 7021 7022 static int 7023 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 7024 { 7025 int rc; 7026 struct sbuf *sb; 7027 7028 rc = sysctl_wire_old_buffer(req, 0); 7029 if (rc != 0) 7030 return(rc); 7031 7032 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7033 if (sb == NULL) 7034 return (ENOMEM); 7035 7036 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 7037 rc = sbuf_finish(sb); 7038 sbuf_delete(sb); 7039 7040 return (rc); 7041 } 7042 7043 static int 7044 sysctl_btphy(SYSCTL_HANDLER_ARGS) 7045 { 7046 struct port_info *pi = arg1; 7047 int op = arg2; 7048 struct adapter *sc = pi->adapter; 7049 u_int v; 7050 int rc; 7051 7052 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 7053 if (rc) 7054 return (rc); 7055 /* XXX: magic numbers */ 7056 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 7057 &v); 7058 end_synchronized_op(sc, 0); 7059 if (rc) 7060 return (rc); 7061 if (op == 0) 7062 v /= 256; 7063 7064 rc = sysctl_handle_int(oidp, &v, 0, req); 7065 return (rc); 7066 } 7067 7068 static int 7069 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 7070 { 7071 struct vi_info *vi = arg1; 7072 int rc, val; 7073 7074 val = vi->rsrv_noflowq; 7075 rc = sysctl_handle_int(oidp, &val, 0, req); 7076 if (rc != 0 || req->newptr == NULL) 7077 return (rc); 7078 7079 if ((val >= 1) && (vi->ntxq > 1)) 7080 vi->rsrv_noflowq = 1; 7081 else 7082 vi->rsrv_noflowq = 0; 7083 7084 return (rc); 7085 } 7086 7087 static int 7088 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 7089 { 7090 struct vi_info *vi = arg1; 7091 struct adapter *sc = vi->pi->adapter; 7092 int idx, rc, i; 7093 struct sge_rxq *rxq; 7094 uint8_t v; 7095 7096 idx = vi->tmr_idx; 7097 7098 rc = sysctl_handle_int(oidp, &idx, 0, req); 7099 if (rc != 0 || req->newptr == NULL) 7100 return (rc); 7101 7102 if (idx < 0 || idx >= SGE_NTIMERS) 7103 return (EINVAL); 7104 7105 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7106 "t4tmr"); 7107 if (rc) 7108 return (rc); 7109 7110 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 7111 for_each_rxq(vi, i, rxq) { 7112 #ifdef atomic_store_rel_8 7113 atomic_store_rel_8(&rxq->iq.intr_params, v); 7114 #else 7115 rxq->iq.intr_params = v; 7116 #endif 7117 } 7118 vi->tmr_idx = idx; 7119 7120 end_synchronized_op(sc, LOCK_HELD); 7121 return (0); 7122 } 7123 7124 static int 7125 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 7126 { 7127 struct vi_info *vi = arg1; 7128 struct adapter *sc = vi->pi->adapter; 7129 int idx, rc; 7130 7131 idx = vi->pktc_idx; 7132 7133 rc = sysctl_handle_int(oidp, &idx, 0, req); 7134 if (rc != 0 || req->newptr == NULL) 7135 return (rc); 7136 7137 if (idx < -1 || idx >= SGE_NCOUNTERS) 7138 return (EINVAL); 7139 7140 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7141 "t4pktc"); 7142 if (rc) 7143 return (rc); 7144 7145 if (vi->flags & VI_INIT_DONE) 7146 rc = EBUSY; /* cannot be changed once the queues are created */ 7147 else 7148 vi->pktc_idx = idx; 7149 7150 end_synchronized_op(sc, LOCK_HELD); 7151 return (rc); 7152 } 7153 7154 static int 7155 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 7156 { 7157 struct vi_info *vi = arg1; 7158 struct adapter *sc = vi->pi->adapter; 7159 int qsize, rc; 7160 7161 qsize = vi->qsize_rxq; 7162 7163 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7164 if (rc != 0 || req->newptr == NULL) 7165 return (rc); 7166 7167 if (qsize < 128 || (qsize & 7)) 7168 return (EINVAL); 7169 7170 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7171 "t4rxqs"); 7172 if (rc) 7173 return (rc); 7174 7175 if (vi->flags & VI_INIT_DONE) 7176 rc = EBUSY; /* cannot be changed once the queues are created */ 7177 else 7178 vi->qsize_rxq = qsize; 7179 7180 end_synchronized_op(sc, LOCK_HELD); 7181 return (rc); 7182 } 7183 7184 static int 7185 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 7186 { 7187 struct vi_info *vi = arg1; 7188 struct adapter *sc = vi->pi->adapter; 7189 int qsize, rc; 7190 7191 qsize = vi->qsize_txq; 7192 7193 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7194 if (rc != 0 || req->newptr == NULL) 7195 return (rc); 7196 7197 if (qsize < 128 || qsize > 65536) 7198 return (EINVAL); 7199 7200 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7201 "t4txqs"); 7202 if (rc) 7203 return (rc); 7204 7205 if (vi->flags & VI_INIT_DONE) 7206 rc = EBUSY; /* cannot be changed once the queues are created */ 7207 else 7208 vi->qsize_txq = qsize; 7209 7210 end_synchronized_op(sc, LOCK_HELD); 7211 return (rc); 7212 } 7213 7214 static int 7215 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 7216 { 7217 struct port_info *pi = arg1; 7218 struct adapter *sc = pi->adapter; 7219 struct link_config *lc = &pi->link_cfg; 7220 int rc; 7221 7222 if (req->newptr == NULL) { 7223 struct sbuf *sb; 7224 static char *bits = "\20\1RX\2TX\3AUTO"; 7225 7226 rc = sysctl_wire_old_buffer(req, 0); 7227 if (rc != 0) 7228 return(rc); 7229 7230 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7231 if (sb == NULL) 7232 return (ENOMEM); 7233 7234 if (lc->link_ok) { 7235 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 7236 (lc->requested_fc & PAUSE_AUTONEG), bits); 7237 } else { 7238 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 7239 PAUSE_RX | PAUSE_AUTONEG), bits); 7240 } 7241 rc = sbuf_finish(sb); 7242 sbuf_delete(sb); 7243 } else { 7244 char s[2]; 7245 int n; 7246 7247 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 7248 PAUSE_AUTONEG)); 7249 s[1] = 0; 7250 7251 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7252 if (rc != 0) 7253 return(rc); 7254 7255 if (s[1] != 0) 7256 return (EINVAL); 7257 if (s[0] < '0' || s[0] > '9') 7258 return (EINVAL); /* not a number */ 7259 n = s[0] - '0'; 7260 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 7261 return (EINVAL); /* some other bit is set too */ 7262 7263 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7264 "t4PAUSE"); 7265 if (rc) 7266 return (rc); 7267 PORT_LOCK(pi); 7268 lc->requested_fc = n; 7269 fixup_link_config(pi); 7270 if (pi->up_vis > 0) 7271 rc = apply_link_config(pi); 7272 set_current_media(pi); 7273 PORT_UNLOCK(pi); 7274 end_synchronized_op(sc, 0); 7275 } 7276 7277 return (rc); 7278 } 7279 7280 static int 7281 sysctl_fec(SYSCTL_HANDLER_ARGS) 7282 { 7283 struct port_info *pi = arg1; 7284 struct adapter *sc = pi->adapter; 7285 struct link_config *lc = &pi->link_cfg; 7286 int rc; 7287 int8_t old; 7288 7289 if (req->newptr == NULL) { 7290 struct sbuf *sb; 7291 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 7292 "\5RSVD3\6auto\7module"; 7293 7294 rc = sysctl_wire_old_buffer(req, 0); 7295 if (rc != 0) 7296 return(rc); 7297 7298 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7299 if (sb == NULL) 7300 return (ENOMEM); 7301 7302 /* 7303 * Display the requested_fec when the link is down -- the actual 7304 * FEC makes sense only when the link is up. 7305 */ 7306 if (lc->link_ok) { 7307 sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | 7308 (lc->requested_fec & (FEC_AUTO | FEC_MODULE)), 7309 bits); 7310 } else { 7311 sbuf_printf(sb, "%b", lc->requested_fec, bits); 7312 } 7313 rc = sbuf_finish(sb); 7314 sbuf_delete(sb); 7315 } else { 7316 char s[8]; 7317 int n; 7318 7319 snprintf(s, sizeof(s), "%d", 7320 lc->requested_fec == FEC_AUTO ? -1 : 7321 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 7322 7323 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7324 if (rc != 0) 7325 return(rc); 7326 7327 n = strtol(&s[0], NULL, 0); 7328 if (n < 0 || n & FEC_AUTO) 7329 n = FEC_AUTO; 7330 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 7331 return (EINVAL);/* some other bit is set too */ 7332 7333 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7334 "t4fec"); 7335 if (rc) 7336 return (rc); 7337 PORT_LOCK(pi); 7338 old = lc->requested_fec; 7339 if (n == FEC_AUTO) 7340 lc->requested_fec = FEC_AUTO; 7341 else if (n == 0 || n == FEC_NONE) 7342 lc->requested_fec = FEC_NONE; 7343 else { 7344 if ((lc->pcaps | 7345 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 7346 lc->pcaps) { 7347 rc = ENOTSUP; 7348 goto done; 7349 } 7350 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 7351 FEC_MODULE); 7352 } 7353 fixup_link_config(pi); 7354 if (pi->up_vis > 0) { 7355 rc = apply_link_config(pi); 7356 if (rc != 0) { 7357 lc->requested_fec = old; 7358 if (rc == FW_EPROTO) 7359 rc = ENOTSUP; 7360 } 7361 } 7362 done: 7363 PORT_UNLOCK(pi); 7364 end_synchronized_op(sc, 0); 7365 } 7366 7367 return (rc); 7368 } 7369 7370 static int 7371 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 7372 { 7373 struct port_info *pi = arg1; 7374 struct adapter *sc = pi->adapter; 7375 struct link_config *lc = &pi->link_cfg; 7376 int rc; 7377 int8_t fec; 7378 struct sbuf *sb; 7379 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 7380 7381 rc = sysctl_wire_old_buffer(req, 0); 7382 if (rc != 0) 7383 return (rc); 7384 7385 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7386 if (sb == NULL) 7387 return (ENOMEM); 7388 7389 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) 7390 return (EBUSY); 7391 PORT_LOCK(pi); 7392 if (pi->up_vis == 0) { 7393 /* 7394 * If all the interfaces are administratively down the firmware 7395 * does not report transceiver changes. Refresh port info here. 7396 * This is the only reason we have a synchronized op in this 7397 * function. Just PORT_LOCK would have been enough otherwise. 7398 */ 7399 t4_update_port_info(pi); 7400 } 7401 7402 fec = lc->fec_hint; 7403 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 7404 !fec_supported(lc->pcaps)) { 7405 sbuf_printf(sb, "n/a"); 7406 } else { 7407 if (fec == 0) 7408 fec = FEC_NONE; 7409 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 7410 } 7411 rc = sbuf_finish(sb); 7412 sbuf_delete(sb); 7413 7414 PORT_UNLOCK(pi); 7415 end_synchronized_op(sc, 0); 7416 7417 return (rc); 7418 } 7419 7420 static int 7421 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 7422 { 7423 struct port_info *pi = arg1; 7424 struct adapter *sc = pi->adapter; 7425 struct link_config *lc = &pi->link_cfg; 7426 int rc, val; 7427 7428 if (lc->pcaps & FW_PORT_CAP32_ANEG) 7429 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 7430 else 7431 val = -1; 7432 rc = sysctl_handle_int(oidp, &val, 0, req); 7433 if (rc != 0 || req->newptr == NULL) 7434 return (rc); 7435 if (val == 0) 7436 val = AUTONEG_DISABLE; 7437 else if (val == 1) 7438 val = AUTONEG_ENABLE; 7439 else 7440 val = AUTONEG_AUTO; 7441 7442 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7443 "t4aneg"); 7444 if (rc) 7445 return (rc); 7446 PORT_LOCK(pi); 7447 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 7448 rc = ENOTSUP; 7449 goto done; 7450 } 7451 lc->requested_aneg = val; 7452 fixup_link_config(pi); 7453 if (pi->up_vis > 0) 7454 rc = apply_link_config(pi); 7455 set_current_media(pi); 7456 done: 7457 PORT_UNLOCK(pi); 7458 end_synchronized_op(sc, 0); 7459 return (rc); 7460 } 7461 7462 static int 7463 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 7464 { 7465 struct adapter *sc = arg1; 7466 int reg = arg2; 7467 uint64_t val; 7468 7469 val = t4_read_reg64(sc, reg); 7470 7471 return (sysctl_handle_64(oidp, &val, 0, req)); 7472 } 7473 7474 static int 7475 sysctl_temperature(SYSCTL_HANDLER_ARGS) 7476 { 7477 struct adapter *sc = arg1; 7478 int rc, t; 7479 uint32_t param, val; 7480 7481 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 7482 if (rc) 7483 return (rc); 7484 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7485 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7486 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 7487 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7488 end_synchronized_op(sc, 0); 7489 if (rc) 7490 return (rc); 7491 7492 /* unknown is returned as 0 but we display -1 in that case */ 7493 t = val == 0 ? -1 : val; 7494 7495 rc = sysctl_handle_int(oidp, &t, 0, req); 7496 return (rc); 7497 } 7498 7499 static int 7500 sysctl_vdd(SYSCTL_HANDLER_ARGS) 7501 { 7502 struct adapter *sc = arg1; 7503 int rc; 7504 uint32_t param, val; 7505 7506 if (sc->params.core_vdd == 0) { 7507 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7508 "t4vdd"); 7509 if (rc) 7510 return (rc); 7511 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7512 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7513 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 7514 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7515 end_synchronized_op(sc, 0); 7516 if (rc) 7517 return (rc); 7518 sc->params.core_vdd = val; 7519 } 7520 7521 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 7522 } 7523 7524 static int 7525 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 7526 { 7527 struct adapter *sc = arg1; 7528 int rc, v; 7529 uint32_t param, val; 7530 7531 v = sc->sensor_resets; 7532 rc = sysctl_handle_int(oidp, &v, 0, req); 7533 if (rc != 0 || req->newptr == NULL || v <= 0) 7534 return (rc); 7535 7536 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 7537 chip_id(sc) < CHELSIO_T5) 7538 return (ENOTSUP); 7539 7540 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 7541 if (rc) 7542 return (rc); 7543 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7544 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7545 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 7546 val = 1; 7547 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7548 end_synchronized_op(sc, 0); 7549 if (rc == 0) 7550 sc->sensor_resets++; 7551 return (rc); 7552 } 7553 7554 static int 7555 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 7556 { 7557 struct adapter *sc = arg1; 7558 struct sbuf *sb; 7559 int rc; 7560 uint32_t param, val; 7561 7562 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 7563 if (rc) 7564 return (rc); 7565 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7566 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 7567 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7568 end_synchronized_op(sc, 0); 7569 if (rc) 7570 return (rc); 7571 7572 rc = sysctl_wire_old_buffer(req, 0); 7573 if (rc != 0) 7574 return (rc); 7575 7576 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7577 if (sb == NULL) 7578 return (ENOMEM); 7579 7580 if (val == 0xffffffff) { 7581 /* Only debug and custom firmwares report load averages. */ 7582 sbuf_printf(sb, "not available"); 7583 } else { 7584 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 7585 (val >> 16) & 0xff); 7586 } 7587 rc = sbuf_finish(sb); 7588 sbuf_delete(sb); 7589 7590 return (rc); 7591 } 7592 7593 static int 7594 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 7595 { 7596 struct adapter *sc = arg1; 7597 struct sbuf *sb; 7598 int rc, i; 7599 uint16_t incr[NMTUS][NCCTRL_WIN]; 7600 static const char *dec_fac[] = { 7601 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 7602 "0.9375" 7603 }; 7604 7605 rc = sysctl_wire_old_buffer(req, 0); 7606 if (rc != 0) 7607 return (rc); 7608 7609 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7610 if (sb == NULL) 7611 return (ENOMEM); 7612 7613 t4_read_cong_tbl(sc, incr); 7614 7615 for (i = 0; i < NCCTRL_WIN; ++i) { 7616 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 7617 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 7618 incr[5][i], incr[6][i], incr[7][i]); 7619 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 7620 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 7621 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 7622 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 7623 } 7624 7625 rc = sbuf_finish(sb); 7626 sbuf_delete(sb); 7627 7628 return (rc); 7629 } 7630 7631 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 7632 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 7633 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 7634 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 7635 }; 7636 7637 static int 7638 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 7639 { 7640 struct adapter *sc = arg1; 7641 struct sbuf *sb; 7642 int rc, i, n, qid = arg2; 7643 uint32_t *buf, *p; 7644 char *qtype; 7645 u_int cim_num_obq = sc->chip_params->cim_num_obq; 7646 7647 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 7648 ("%s: bad qid %d\n", __func__, qid)); 7649 7650 if (qid < CIM_NUM_IBQ) { 7651 /* inbound queue */ 7652 qtype = "IBQ"; 7653 n = 4 * CIM_IBQ_SIZE; 7654 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7655 rc = t4_read_cim_ibq(sc, qid, buf, n); 7656 } else { 7657 /* outbound queue */ 7658 qtype = "OBQ"; 7659 qid -= CIM_NUM_IBQ; 7660 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 7661 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7662 rc = t4_read_cim_obq(sc, qid, buf, n); 7663 } 7664 7665 if (rc < 0) { 7666 rc = -rc; 7667 goto done; 7668 } 7669 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 7670 7671 rc = sysctl_wire_old_buffer(req, 0); 7672 if (rc != 0) 7673 goto done; 7674 7675 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 7676 if (sb == NULL) { 7677 rc = ENOMEM; 7678 goto done; 7679 } 7680 7681 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 7682 for (i = 0, p = buf; i < n; i += 16, p += 4) 7683 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 7684 p[2], p[3]); 7685 7686 rc = sbuf_finish(sb); 7687 sbuf_delete(sb); 7688 done: 7689 free(buf, M_CXGBE); 7690 return (rc); 7691 } 7692 7693 static void 7694 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7695 { 7696 uint32_t *p; 7697 7698 sbuf_printf(sb, "Status Data PC%s", 7699 cfg & F_UPDBGLACAPTPCONLY ? "" : 7700 " LS0Stat LS0Addr LS0Data"); 7701 7702 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 7703 if (cfg & F_UPDBGLACAPTPCONLY) { 7704 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 7705 p[6], p[7]); 7706 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 7707 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 7708 p[4] & 0xff, p[5] >> 8); 7709 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 7710 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7711 p[1] & 0xf, p[2] >> 4); 7712 } else { 7713 sbuf_printf(sb, 7714 "\n %02x %x%07x %x%07x %08x %08x " 7715 "%08x%08x%08x%08x", 7716 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7717 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 7718 p[6], p[7]); 7719 } 7720 } 7721 } 7722 7723 static void 7724 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7725 { 7726 uint32_t *p; 7727 7728 sbuf_printf(sb, "Status Inst Data PC%s", 7729 cfg & F_UPDBGLACAPTPCONLY ? "" : 7730 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 7731 7732 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 7733 if (cfg & F_UPDBGLACAPTPCONLY) { 7734 sbuf_printf(sb, "\n %02x %08x %08x %08x", 7735 p[3] & 0xff, p[2], p[1], p[0]); 7736 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 7737 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 7738 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 7739 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 7740 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 7741 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 7742 p[6] >> 16); 7743 } else { 7744 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 7745 "%08x %08x %08x %08x %08x %08x", 7746 (p[9] >> 16) & 0xff, 7747 p[9] & 0xffff, p[8] >> 16, 7748 p[8] & 0xffff, p[7] >> 16, 7749 p[7] & 0xffff, p[6] >> 16, 7750 p[2], p[1], p[0], p[5], p[4], p[3]); 7751 } 7752 } 7753 } 7754 7755 static int 7756 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 7757 { 7758 uint32_t cfg, *buf; 7759 int rc; 7760 7761 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 7762 if (rc != 0) 7763 return (rc); 7764 7765 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 7766 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 7767 M_ZERO | flags); 7768 if (buf == NULL) 7769 return (ENOMEM); 7770 7771 rc = -t4_cim_read_la(sc, buf, NULL); 7772 if (rc != 0) 7773 goto done; 7774 if (chip_id(sc) < CHELSIO_T6) 7775 sbuf_cim_la4(sc, sb, buf, cfg); 7776 else 7777 sbuf_cim_la6(sc, sb, buf, cfg); 7778 7779 done: 7780 free(buf, M_CXGBE); 7781 return (rc); 7782 } 7783 7784 static int 7785 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 7786 { 7787 struct adapter *sc = arg1; 7788 struct sbuf *sb; 7789 int rc; 7790 7791 rc = sysctl_wire_old_buffer(req, 0); 7792 if (rc != 0) 7793 return (rc); 7794 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7795 if (sb == NULL) 7796 return (ENOMEM); 7797 7798 rc = sbuf_cim_la(sc, sb, M_WAITOK); 7799 if (rc == 0) 7800 rc = sbuf_finish(sb); 7801 sbuf_delete(sb); 7802 return (rc); 7803 } 7804 7805 bool 7806 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 7807 { 7808 struct sbuf sb; 7809 int rc; 7810 7811 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 7812 return (false); 7813 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 7814 if (rc == 0) { 7815 rc = sbuf_finish(&sb); 7816 if (rc == 0) { 7817 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 7818 device_get_nameunit(sc->dev), sbuf_data(&sb)); 7819 } 7820 } 7821 sbuf_delete(&sb); 7822 return (false); 7823 } 7824 7825 static int 7826 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 7827 { 7828 struct adapter *sc = arg1; 7829 u_int i; 7830 struct sbuf *sb; 7831 uint32_t *buf, *p; 7832 int rc; 7833 7834 rc = sysctl_wire_old_buffer(req, 0); 7835 if (rc != 0) 7836 return (rc); 7837 7838 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7839 if (sb == NULL) 7840 return (ENOMEM); 7841 7842 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 7843 M_ZERO | M_WAITOK); 7844 7845 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 7846 p = buf; 7847 7848 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 7849 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 7850 p[1], p[0]); 7851 } 7852 7853 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 7854 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 7855 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 7856 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 7857 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 7858 (p[1] >> 2) | ((p[2] & 3) << 30), 7859 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 7860 p[0] & 1); 7861 } 7862 7863 rc = sbuf_finish(sb); 7864 sbuf_delete(sb); 7865 free(buf, M_CXGBE); 7866 return (rc); 7867 } 7868 7869 static int 7870 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 7871 { 7872 struct adapter *sc = arg1; 7873 u_int i; 7874 struct sbuf *sb; 7875 uint32_t *buf, *p; 7876 int rc; 7877 7878 rc = sysctl_wire_old_buffer(req, 0); 7879 if (rc != 0) 7880 return (rc); 7881 7882 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7883 if (sb == NULL) 7884 return (ENOMEM); 7885 7886 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 7887 M_ZERO | M_WAITOK); 7888 7889 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 7890 p = buf; 7891 7892 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 7893 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 7894 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 7895 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 7896 p[4], p[3], p[2], p[1], p[0]); 7897 } 7898 7899 sbuf_printf(sb, "\n\nCntl ID Data"); 7900 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 7901 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 7902 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 7903 } 7904 7905 rc = sbuf_finish(sb); 7906 sbuf_delete(sb); 7907 free(buf, M_CXGBE); 7908 return (rc); 7909 } 7910 7911 static int 7912 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 7913 { 7914 struct adapter *sc = arg1; 7915 struct sbuf *sb; 7916 int rc, i; 7917 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 7918 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 7919 uint16_t thres[CIM_NUM_IBQ]; 7920 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 7921 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 7922 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 7923 7924 cim_num_obq = sc->chip_params->cim_num_obq; 7925 if (is_t4(sc)) { 7926 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 7927 obq_rdaddr = A_UP_OBQ_0_REALADDR; 7928 } else { 7929 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 7930 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 7931 } 7932 nq = CIM_NUM_IBQ + cim_num_obq; 7933 7934 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 7935 if (rc == 0) 7936 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 7937 if (rc != 0) 7938 return (rc); 7939 7940 t4_read_cimq_cfg(sc, base, size, thres); 7941 7942 rc = sysctl_wire_old_buffer(req, 0); 7943 if (rc != 0) 7944 return (rc); 7945 7946 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 7947 if (sb == NULL) 7948 return (ENOMEM); 7949 7950 sbuf_printf(sb, 7951 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 7952 7953 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 7954 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 7955 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 7956 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 7957 G_QUEREMFLITS(p[2]) * 16); 7958 for ( ; i < nq; i++, p += 4, wr += 2) 7959 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 7960 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 7961 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 7962 G_QUEREMFLITS(p[2]) * 16); 7963 7964 rc = sbuf_finish(sb); 7965 sbuf_delete(sb); 7966 7967 return (rc); 7968 } 7969 7970 static int 7971 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 7972 { 7973 struct adapter *sc = arg1; 7974 struct sbuf *sb; 7975 int rc; 7976 struct tp_cpl_stats stats; 7977 7978 rc = sysctl_wire_old_buffer(req, 0); 7979 if (rc != 0) 7980 return (rc); 7981 7982 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7983 if (sb == NULL) 7984 return (ENOMEM); 7985 7986 mtx_lock(&sc->reg_lock); 7987 t4_tp_get_cpl_stats(sc, &stats, 0); 7988 mtx_unlock(&sc->reg_lock); 7989 7990 if (sc->chip_params->nchan > 2) { 7991 sbuf_printf(sb, " channel 0 channel 1" 7992 " channel 2 channel 3"); 7993 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 7994 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 7995 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 7996 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 7997 } else { 7998 sbuf_printf(sb, " channel 0 channel 1"); 7999 sbuf_printf(sb, "\nCPL requests: %10u %10u", 8000 stats.req[0], stats.req[1]); 8001 sbuf_printf(sb, "\nCPL responses: %10u %10u", 8002 stats.rsp[0], stats.rsp[1]); 8003 } 8004 8005 rc = sbuf_finish(sb); 8006 sbuf_delete(sb); 8007 8008 return (rc); 8009 } 8010 8011 static int 8012 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 8013 { 8014 struct adapter *sc = arg1; 8015 struct sbuf *sb; 8016 int rc; 8017 struct tp_usm_stats stats; 8018 8019 rc = sysctl_wire_old_buffer(req, 0); 8020 if (rc != 0) 8021 return(rc); 8022 8023 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8024 if (sb == NULL) 8025 return (ENOMEM); 8026 8027 t4_get_usm_stats(sc, &stats, 1); 8028 8029 sbuf_printf(sb, "Frames: %u\n", stats.frames); 8030 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 8031 sbuf_printf(sb, "Drops: %u", stats.drops); 8032 8033 rc = sbuf_finish(sb); 8034 sbuf_delete(sb); 8035 8036 return (rc); 8037 } 8038 8039 static const char * const devlog_level_strings[] = { 8040 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 8041 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 8042 [FW_DEVLOG_LEVEL_ERR] = "ERR", 8043 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 8044 [FW_DEVLOG_LEVEL_INFO] = "INFO", 8045 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 8046 }; 8047 8048 static const char * const devlog_facility_strings[] = { 8049 [FW_DEVLOG_FACILITY_CORE] = "CORE", 8050 [FW_DEVLOG_FACILITY_CF] = "CF", 8051 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 8052 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 8053 [FW_DEVLOG_FACILITY_RES] = "RES", 8054 [FW_DEVLOG_FACILITY_HW] = "HW", 8055 [FW_DEVLOG_FACILITY_FLR] = "FLR", 8056 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 8057 [FW_DEVLOG_FACILITY_PHY] = "PHY", 8058 [FW_DEVLOG_FACILITY_MAC] = "MAC", 8059 [FW_DEVLOG_FACILITY_PORT] = "PORT", 8060 [FW_DEVLOG_FACILITY_VI] = "VI", 8061 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 8062 [FW_DEVLOG_FACILITY_ACL] = "ACL", 8063 [FW_DEVLOG_FACILITY_TM] = "TM", 8064 [FW_DEVLOG_FACILITY_QFC] = "QFC", 8065 [FW_DEVLOG_FACILITY_DCB] = "DCB", 8066 [FW_DEVLOG_FACILITY_ETH] = "ETH", 8067 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 8068 [FW_DEVLOG_FACILITY_RI] = "RI", 8069 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 8070 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 8071 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 8072 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 8073 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 8074 }; 8075 8076 static int 8077 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 8078 { 8079 int i, j, rc, nentries, first = 0; 8080 struct devlog_params *dparams = &sc->params.devlog; 8081 struct fw_devlog_e *buf, *e; 8082 uint64_t ftstamp = UINT64_MAX; 8083 8084 if (dparams->addr == 0) 8085 return (ENXIO); 8086 8087 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8088 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 8089 if (buf == NULL) 8090 return (ENOMEM); 8091 8092 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 8093 if (rc != 0) 8094 goto done; 8095 8096 nentries = dparams->size / sizeof(struct fw_devlog_e); 8097 for (i = 0; i < nentries; i++) { 8098 e = &buf[i]; 8099 8100 if (e->timestamp == 0) 8101 break; /* end */ 8102 8103 e->timestamp = be64toh(e->timestamp); 8104 e->seqno = be32toh(e->seqno); 8105 for (j = 0; j < 8; j++) 8106 e->params[j] = be32toh(e->params[j]); 8107 8108 if (e->timestamp < ftstamp) { 8109 ftstamp = e->timestamp; 8110 first = i; 8111 } 8112 } 8113 8114 if (buf[first].timestamp == 0) 8115 goto done; /* nothing in the log */ 8116 8117 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 8118 "Seq#", "Tstamp", "Level", "Facility", "Message"); 8119 8120 i = first; 8121 do { 8122 e = &buf[i]; 8123 if (e->timestamp == 0) 8124 break; /* end */ 8125 8126 sbuf_printf(sb, "%10d %15ju %8s %8s ", 8127 e->seqno, e->timestamp, 8128 (e->level < nitems(devlog_level_strings) ? 8129 devlog_level_strings[e->level] : "UNKNOWN"), 8130 (e->facility < nitems(devlog_facility_strings) ? 8131 devlog_facility_strings[e->facility] : "UNKNOWN")); 8132 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 8133 e->params[2], e->params[3], e->params[4], 8134 e->params[5], e->params[6], e->params[7]); 8135 8136 if (++i == nentries) 8137 i = 0; 8138 } while (i != first); 8139 done: 8140 free(buf, M_CXGBE); 8141 return (rc); 8142 } 8143 8144 static int 8145 sysctl_devlog(SYSCTL_HANDLER_ARGS) 8146 { 8147 struct adapter *sc = arg1; 8148 int rc; 8149 struct sbuf *sb; 8150 8151 rc = sysctl_wire_old_buffer(req, 0); 8152 if (rc != 0) 8153 return (rc); 8154 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8155 if (sb == NULL) 8156 return (ENOMEM); 8157 8158 rc = sbuf_devlog(sc, sb, M_WAITOK); 8159 if (rc == 0) 8160 rc = sbuf_finish(sb); 8161 sbuf_delete(sb); 8162 return (rc); 8163 } 8164 8165 void 8166 t4_os_dump_devlog(struct adapter *sc) 8167 { 8168 int rc; 8169 struct sbuf sb; 8170 8171 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8172 return; 8173 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 8174 if (rc == 0) { 8175 rc = sbuf_finish(&sb); 8176 if (rc == 0) { 8177 log(LOG_DEBUG, "%s: device log follows.\n%s", 8178 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8179 } 8180 } 8181 sbuf_delete(&sb); 8182 } 8183 8184 static int 8185 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 8186 { 8187 struct adapter *sc = arg1; 8188 struct sbuf *sb; 8189 int rc; 8190 struct tp_fcoe_stats stats[MAX_NCHAN]; 8191 int i, nchan = sc->chip_params->nchan; 8192 8193 rc = sysctl_wire_old_buffer(req, 0); 8194 if (rc != 0) 8195 return (rc); 8196 8197 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8198 if (sb == NULL) 8199 return (ENOMEM); 8200 8201 for (i = 0; i < nchan; i++) 8202 t4_get_fcoe_stats(sc, i, &stats[i], 1); 8203 8204 if (nchan > 2) { 8205 sbuf_printf(sb, " channel 0 channel 1" 8206 " channel 2 channel 3"); 8207 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 8208 stats[0].octets_ddp, stats[1].octets_ddp, 8209 stats[2].octets_ddp, stats[3].octets_ddp); 8210 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 8211 stats[0].frames_ddp, stats[1].frames_ddp, 8212 stats[2].frames_ddp, stats[3].frames_ddp); 8213 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 8214 stats[0].frames_drop, stats[1].frames_drop, 8215 stats[2].frames_drop, stats[3].frames_drop); 8216 } else { 8217 sbuf_printf(sb, " channel 0 channel 1"); 8218 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 8219 stats[0].octets_ddp, stats[1].octets_ddp); 8220 sbuf_printf(sb, "\nframesDDP: %16u %16u", 8221 stats[0].frames_ddp, stats[1].frames_ddp); 8222 sbuf_printf(sb, "\nframesDrop: %16u %16u", 8223 stats[0].frames_drop, stats[1].frames_drop); 8224 } 8225 8226 rc = sbuf_finish(sb); 8227 sbuf_delete(sb); 8228 8229 return (rc); 8230 } 8231 8232 static int 8233 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 8234 { 8235 struct adapter *sc = arg1; 8236 struct sbuf *sb; 8237 int rc, i; 8238 unsigned int map, kbps, ipg, mode; 8239 unsigned int pace_tab[NTX_SCHED]; 8240 8241 rc = sysctl_wire_old_buffer(req, 0); 8242 if (rc != 0) 8243 return (rc); 8244 8245 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8246 if (sb == NULL) 8247 return (ENOMEM); 8248 8249 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 8250 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 8251 t4_read_pace_tbl(sc, pace_tab); 8252 8253 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 8254 "Class IPG (0.1 ns) Flow IPG (us)"); 8255 8256 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 8257 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 8258 sbuf_printf(sb, "\n %u %-5s %u ", i, 8259 (mode & (1 << i)) ? "flow" : "class", map & 3); 8260 if (kbps) 8261 sbuf_printf(sb, "%9u ", kbps); 8262 else 8263 sbuf_printf(sb, " disabled "); 8264 8265 if (ipg) 8266 sbuf_printf(sb, "%13u ", ipg); 8267 else 8268 sbuf_printf(sb, " disabled "); 8269 8270 if (pace_tab[i]) 8271 sbuf_printf(sb, "%10u", pace_tab[i]); 8272 else 8273 sbuf_printf(sb, " disabled"); 8274 } 8275 8276 rc = sbuf_finish(sb); 8277 sbuf_delete(sb); 8278 8279 return (rc); 8280 } 8281 8282 static int 8283 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 8284 { 8285 struct adapter *sc = arg1; 8286 struct sbuf *sb; 8287 int rc, i, j; 8288 uint64_t *p0, *p1; 8289 struct lb_port_stats s[2]; 8290 static const char *stat_name[] = { 8291 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 8292 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 8293 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 8294 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 8295 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 8296 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 8297 "BG2FramesTrunc:", "BG3FramesTrunc:" 8298 }; 8299 8300 rc = sysctl_wire_old_buffer(req, 0); 8301 if (rc != 0) 8302 return (rc); 8303 8304 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8305 if (sb == NULL) 8306 return (ENOMEM); 8307 8308 memset(s, 0, sizeof(s)); 8309 8310 for (i = 0; i < sc->chip_params->nchan; i += 2) { 8311 t4_get_lb_stats(sc, i, &s[0]); 8312 t4_get_lb_stats(sc, i + 1, &s[1]); 8313 8314 p0 = &s[0].octets; 8315 p1 = &s[1].octets; 8316 sbuf_printf(sb, "%s Loopback %u" 8317 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 8318 8319 for (j = 0; j < nitems(stat_name); j++) 8320 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 8321 *p0++, *p1++); 8322 } 8323 8324 rc = sbuf_finish(sb); 8325 sbuf_delete(sb); 8326 8327 return (rc); 8328 } 8329 8330 static int 8331 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 8332 { 8333 int rc = 0; 8334 struct port_info *pi = arg1; 8335 struct link_config *lc = &pi->link_cfg; 8336 struct sbuf *sb; 8337 8338 rc = sysctl_wire_old_buffer(req, 0); 8339 if (rc != 0) 8340 return(rc); 8341 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 8342 if (sb == NULL) 8343 return (ENOMEM); 8344 8345 if (lc->link_ok || lc->link_down_rc == 255) 8346 sbuf_printf(sb, "n/a"); 8347 else 8348 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 8349 8350 rc = sbuf_finish(sb); 8351 sbuf_delete(sb); 8352 8353 return (rc); 8354 } 8355 8356 struct mem_desc { 8357 unsigned int base; 8358 unsigned int limit; 8359 unsigned int idx; 8360 }; 8361 8362 static int 8363 mem_desc_cmp(const void *a, const void *b) 8364 { 8365 return ((const struct mem_desc *)a)->base - 8366 ((const struct mem_desc *)b)->base; 8367 } 8368 8369 static void 8370 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 8371 unsigned int to) 8372 { 8373 unsigned int size; 8374 8375 if (from == to) 8376 return; 8377 8378 size = to - from + 1; 8379 if (size == 0) 8380 return; 8381 8382 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 8383 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 8384 } 8385 8386 static int 8387 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 8388 { 8389 struct adapter *sc = arg1; 8390 struct sbuf *sb; 8391 int rc, i, n; 8392 uint32_t lo, hi, used, alloc; 8393 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 8394 static const char *region[] = { 8395 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 8396 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 8397 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 8398 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 8399 "RQUDP region:", "PBL region:", "TXPBL region:", 8400 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 8401 "On-chip queues:", "TLS keys:", 8402 }; 8403 struct mem_desc avail[4]; 8404 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 8405 struct mem_desc *md = mem; 8406 8407 rc = sysctl_wire_old_buffer(req, 0); 8408 if (rc != 0) 8409 return (rc); 8410 8411 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8412 if (sb == NULL) 8413 return (ENOMEM); 8414 8415 for (i = 0; i < nitems(mem); i++) { 8416 mem[i].limit = 0; 8417 mem[i].idx = i; 8418 } 8419 8420 /* Find and sort the populated memory ranges */ 8421 i = 0; 8422 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 8423 if (lo & F_EDRAM0_ENABLE) { 8424 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 8425 avail[i].base = G_EDRAM0_BASE(hi) << 20; 8426 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 8427 avail[i].idx = 0; 8428 i++; 8429 } 8430 if (lo & F_EDRAM1_ENABLE) { 8431 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 8432 avail[i].base = G_EDRAM1_BASE(hi) << 20; 8433 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 8434 avail[i].idx = 1; 8435 i++; 8436 } 8437 if (lo & F_EXT_MEM_ENABLE) { 8438 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 8439 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 8440 avail[i].limit = avail[i].base + 8441 (G_EXT_MEM_SIZE(hi) << 20); 8442 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 8443 i++; 8444 } 8445 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 8446 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 8447 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 8448 avail[i].limit = avail[i].base + 8449 (G_EXT_MEM1_SIZE(hi) << 20); 8450 avail[i].idx = 4; 8451 i++; 8452 } 8453 if (!i) /* no memory available */ 8454 return 0; 8455 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 8456 8457 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 8458 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 8459 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 8460 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 8461 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 8462 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 8463 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 8464 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 8465 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 8466 8467 /* the next few have explicit upper bounds */ 8468 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 8469 md->limit = md->base - 1 + 8470 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 8471 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 8472 md++; 8473 8474 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 8475 md->limit = md->base - 1 + 8476 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 8477 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 8478 md++; 8479 8480 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 8481 if (chip_id(sc) <= CHELSIO_T5) 8482 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 8483 else 8484 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 8485 md->limit = 0; 8486 } else { 8487 md->base = 0; 8488 md->idx = nitems(region); /* hide it */ 8489 } 8490 md++; 8491 8492 #define ulp_region(reg) \ 8493 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 8494 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 8495 8496 ulp_region(RX_ISCSI); 8497 ulp_region(RX_TDDP); 8498 ulp_region(TX_TPT); 8499 ulp_region(RX_STAG); 8500 ulp_region(RX_RQ); 8501 ulp_region(RX_RQUDP); 8502 ulp_region(RX_PBL); 8503 ulp_region(TX_PBL); 8504 #undef ulp_region 8505 8506 md->base = 0; 8507 md->idx = nitems(region); 8508 if (!is_t4(sc)) { 8509 uint32_t size = 0; 8510 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 8511 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 8512 8513 if (is_t5(sc)) { 8514 if (sge_ctrl & F_VFIFO_ENABLE) 8515 size = G_DBVFIFO_SIZE(fifo_size); 8516 } else 8517 size = G_T6_DBVFIFO_SIZE(fifo_size); 8518 8519 if (size) { 8520 md->base = G_BASEADDR(t4_read_reg(sc, 8521 A_SGE_DBVFIFO_BADDR)); 8522 md->limit = md->base + (size << 2) - 1; 8523 } 8524 } 8525 md++; 8526 8527 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 8528 md->limit = 0; 8529 md++; 8530 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 8531 md->limit = 0; 8532 md++; 8533 8534 md->base = sc->vres.ocq.start; 8535 if (sc->vres.ocq.size) 8536 md->limit = md->base + sc->vres.ocq.size - 1; 8537 else 8538 md->idx = nitems(region); /* hide it */ 8539 md++; 8540 8541 md->base = sc->vres.key.start; 8542 if (sc->vres.key.size) 8543 md->limit = md->base + sc->vres.key.size - 1; 8544 else 8545 md->idx = nitems(region); /* hide it */ 8546 md++; 8547 8548 /* add any address-space holes, there can be up to 3 */ 8549 for (n = 0; n < i - 1; n++) 8550 if (avail[n].limit < avail[n + 1].base) 8551 (md++)->base = avail[n].limit; 8552 if (avail[n].limit) 8553 (md++)->base = avail[n].limit; 8554 8555 n = md - mem; 8556 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 8557 8558 for (lo = 0; lo < i; lo++) 8559 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 8560 avail[lo].limit - 1); 8561 8562 sbuf_printf(sb, "\n"); 8563 for (i = 0; i < n; i++) { 8564 if (mem[i].idx >= nitems(region)) 8565 continue; /* skip holes */ 8566 if (!mem[i].limit) 8567 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 8568 mem_region_show(sb, region[mem[i].idx], mem[i].base, 8569 mem[i].limit); 8570 } 8571 8572 sbuf_printf(sb, "\n"); 8573 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 8574 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 8575 mem_region_show(sb, "uP RAM:", lo, hi); 8576 8577 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 8578 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 8579 mem_region_show(sb, "uP Extmem2:", lo, hi); 8580 8581 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 8582 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 8583 G_PMRXMAXPAGE(lo), 8584 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 8585 (lo & F_PMRXNUMCHN) ? 2 : 1); 8586 8587 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 8588 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 8589 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 8590 G_PMTXMAXPAGE(lo), 8591 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 8592 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 8593 sbuf_printf(sb, "%u p-structs\n", 8594 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 8595 8596 for (i = 0; i < 4; i++) { 8597 if (chip_id(sc) > CHELSIO_T5) 8598 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 8599 else 8600 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 8601 if (is_t5(sc)) { 8602 used = G_T5_USED(lo); 8603 alloc = G_T5_ALLOC(lo); 8604 } else { 8605 used = G_USED(lo); 8606 alloc = G_ALLOC(lo); 8607 } 8608 /* For T6 these are MAC buffer groups */ 8609 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 8610 i, used, alloc); 8611 } 8612 for (i = 0; i < sc->chip_params->nchan; i++) { 8613 if (chip_id(sc) > CHELSIO_T5) 8614 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 8615 else 8616 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 8617 if (is_t5(sc)) { 8618 used = G_T5_USED(lo); 8619 alloc = G_T5_ALLOC(lo); 8620 } else { 8621 used = G_USED(lo); 8622 alloc = G_ALLOC(lo); 8623 } 8624 /* For T6 these are MAC buffer groups */ 8625 sbuf_printf(sb, 8626 "\nLoopback %d using %u pages out of %u allocated", 8627 i, used, alloc); 8628 } 8629 8630 rc = sbuf_finish(sb); 8631 sbuf_delete(sb); 8632 8633 return (rc); 8634 } 8635 8636 static inline void 8637 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 8638 { 8639 *mask = x | y; 8640 y = htobe64(y); 8641 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 8642 } 8643 8644 static int 8645 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 8646 { 8647 struct adapter *sc = arg1; 8648 struct sbuf *sb; 8649 int rc, i; 8650 8651 MPASS(chip_id(sc) <= CHELSIO_T5); 8652 8653 rc = sysctl_wire_old_buffer(req, 0); 8654 if (rc != 0) 8655 return (rc); 8656 8657 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8658 if (sb == NULL) 8659 return (ENOMEM); 8660 8661 sbuf_printf(sb, 8662 "Idx Ethernet address Mask Vld Ports PF" 8663 " VF Replication P0 P1 P2 P3 ML"); 8664 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 8665 uint64_t tcamx, tcamy, mask; 8666 uint32_t cls_lo, cls_hi; 8667 uint8_t addr[ETHER_ADDR_LEN]; 8668 8669 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 8670 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 8671 if (tcamx & tcamy) 8672 continue; 8673 tcamxy2valmask(tcamx, tcamy, addr, &mask); 8674 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 8675 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 8676 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 8677 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 8678 addr[3], addr[4], addr[5], (uintmax_t)mask, 8679 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 8680 G_PORTMAP(cls_hi), G_PF(cls_lo), 8681 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 8682 8683 if (cls_lo & F_REPLICATE) { 8684 struct fw_ldst_cmd ldst_cmd; 8685 8686 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 8687 ldst_cmd.op_to_addrspace = 8688 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 8689 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8690 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 8691 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 8692 ldst_cmd.u.mps.rplc.fid_idx = 8693 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 8694 V_FW_LDST_CMD_IDX(i)); 8695 8696 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8697 "t4mps"); 8698 if (rc) 8699 break; 8700 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 8701 sizeof(ldst_cmd), &ldst_cmd); 8702 end_synchronized_op(sc, 0); 8703 8704 if (rc != 0) { 8705 sbuf_printf(sb, "%36d", rc); 8706 rc = 0; 8707 } else { 8708 sbuf_printf(sb, " %08x %08x %08x %08x", 8709 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 8710 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 8711 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 8712 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 8713 } 8714 } else 8715 sbuf_printf(sb, "%36s", ""); 8716 8717 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 8718 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 8719 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 8720 } 8721 8722 if (rc) 8723 (void) sbuf_finish(sb); 8724 else 8725 rc = sbuf_finish(sb); 8726 sbuf_delete(sb); 8727 8728 return (rc); 8729 } 8730 8731 static int 8732 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 8733 { 8734 struct adapter *sc = arg1; 8735 struct sbuf *sb; 8736 int rc, i; 8737 8738 MPASS(chip_id(sc) > CHELSIO_T5); 8739 8740 rc = sysctl_wire_old_buffer(req, 0); 8741 if (rc != 0) 8742 return (rc); 8743 8744 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8745 if (sb == NULL) 8746 return (ENOMEM); 8747 8748 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 8749 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 8750 " Replication" 8751 " P0 P1 P2 P3 ML\n"); 8752 8753 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 8754 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 8755 uint16_t ivlan; 8756 uint64_t tcamx, tcamy, val, mask; 8757 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 8758 uint8_t addr[ETHER_ADDR_LEN]; 8759 8760 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 8761 if (i < 256) 8762 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 8763 else 8764 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 8765 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 8766 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 8767 tcamy = G_DMACH(val) << 32; 8768 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 8769 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 8770 lookup_type = G_DATALKPTYPE(data2); 8771 port_num = G_DATAPORTNUM(data2); 8772 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8773 /* Inner header VNI */ 8774 vniy = ((data2 & F_DATAVIDH2) << 23) | 8775 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 8776 dip_hit = data2 & F_DATADIPHIT; 8777 vlan_vld = 0; 8778 } else { 8779 vniy = 0; 8780 dip_hit = 0; 8781 vlan_vld = data2 & F_DATAVIDH2; 8782 ivlan = G_VIDL(val); 8783 } 8784 8785 ctl |= V_CTLXYBITSEL(1); 8786 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 8787 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 8788 tcamx = G_DMACH(val) << 32; 8789 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 8790 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 8791 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8792 /* Inner header VNI mask */ 8793 vnix = ((data2 & F_DATAVIDH2) << 23) | 8794 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 8795 } else 8796 vnix = 0; 8797 8798 if (tcamx & tcamy) 8799 continue; 8800 tcamxy2valmask(tcamx, tcamy, addr, &mask); 8801 8802 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 8803 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 8804 8805 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8806 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 8807 "%012jx %06x %06x - - %3c" 8808 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 8809 addr[1], addr[2], addr[3], addr[4], addr[5], 8810 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 8811 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 8812 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 8813 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 8814 } else { 8815 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 8816 "%012jx - - ", i, addr[0], addr[1], 8817 addr[2], addr[3], addr[4], addr[5], 8818 (uintmax_t)mask); 8819 8820 if (vlan_vld) 8821 sbuf_printf(sb, "%4u Y ", ivlan); 8822 else 8823 sbuf_printf(sb, " - N "); 8824 8825 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 8826 lookup_type ? 'I' : 'O', port_num, 8827 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 8828 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 8829 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 8830 } 8831 8832 8833 if (cls_lo & F_T6_REPLICATE) { 8834 struct fw_ldst_cmd ldst_cmd; 8835 8836 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 8837 ldst_cmd.op_to_addrspace = 8838 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 8839 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8840 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 8841 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 8842 ldst_cmd.u.mps.rplc.fid_idx = 8843 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 8844 V_FW_LDST_CMD_IDX(i)); 8845 8846 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8847 "t6mps"); 8848 if (rc) 8849 break; 8850 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 8851 sizeof(ldst_cmd), &ldst_cmd); 8852 end_synchronized_op(sc, 0); 8853 8854 if (rc != 0) { 8855 sbuf_printf(sb, "%72d", rc); 8856 rc = 0; 8857 } else { 8858 sbuf_printf(sb, " %08x %08x %08x %08x" 8859 " %08x %08x %08x %08x", 8860 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 8861 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 8862 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 8863 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 8864 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 8865 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 8866 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 8867 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 8868 } 8869 } else 8870 sbuf_printf(sb, "%72s", ""); 8871 8872 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 8873 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 8874 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 8875 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 8876 } 8877 8878 if (rc) 8879 (void) sbuf_finish(sb); 8880 else 8881 rc = sbuf_finish(sb); 8882 sbuf_delete(sb); 8883 8884 return (rc); 8885 } 8886 8887 static int 8888 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 8889 { 8890 struct adapter *sc = arg1; 8891 struct sbuf *sb; 8892 int rc; 8893 uint16_t mtus[NMTUS]; 8894 8895 rc = sysctl_wire_old_buffer(req, 0); 8896 if (rc != 0) 8897 return (rc); 8898 8899 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8900 if (sb == NULL) 8901 return (ENOMEM); 8902 8903 t4_read_mtu_tbl(sc, mtus, NULL); 8904 8905 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 8906 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 8907 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 8908 mtus[14], mtus[15]); 8909 8910 rc = sbuf_finish(sb); 8911 sbuf_delete(sb); 8912 8913 return (rc); 8914 } 8915 8916 static int 8917 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 8918 { 8919 struct adapter *sc = arg1; 8920 struct sbuf *sb; 8921 int rc, i; 8922 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 8923 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 8924 static const char *tx_stats[MAX_PM_NSTATS] = { 8925 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 8926 "Tx FIFO wait", NULL, "Tx latency" 8927 }; 8928 static const char *rx_stats[MAX_PM_NSTATS] = { 8929 "Read:", "Write bypass:", "Write mem:", "Flush:", 8930 "Rx FIFO wait", NULL, "Rx latency" 8931 }; 8932 8933 rc = sysctl_wire_old_buffer(req, 0); 8934 if (rc != 0) 8935 return (rc); 8936 8937 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8938 if (sb == NULL) 8939 return (ENOMEM); 8940 8941 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 8942 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 8943 8944 sbuf_printf(sb, " Tx pcmds Tx bytes"); 8945 for (i = 0; i < 4; i++) { 8946 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 8947 tx_cyc[i]); 8948 } 8949 8950 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 8951 for (i = 0; i < 4; i++) { 8952 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 8953 rx_cyc[i]); 8954 } 8955 8956 if (chip_id(sc) > CHELSIO_T5) { 8957 sbuf_printf(sb, 8958 "\n Total wait Total occupancy"); 8959 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 8960 tx_cyc[i]); 8961 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 8962 rx_cyc[i]); 8963 8964 i += 2; 8965 MPASS(i < nitems(tx_stats)); 8966 8967 sbuf_printf(sb, 8968 "\n Reads Total wait"); 8969 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 8970 tx_cyc[i]); 8971 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 8972 rx_cyc[i]); 8973 } 8974 8975 rc = sbuf_finish(sb); 8976 sbuf_delete(sb); 8977 8978 return (rc); 8979 } 8980 8981 static int 8982 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 8983 { 8984 struct adapter *sc = arg1; 8985 struct sbuf *sb; 8986 int rc; 8987 struct tp_rdma_stats stats; 8988 8989 rc = sysctl_wire_old_buffer(req, 0); 8990 if (rc != 0) 8991 return (rc); 8992 8993 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8994 if (sb == NULL) 8995 return (ENOMEM); 8996 8997 mtx_lock(&sc->reg_lock); 8998 t4_tp_get_rdma_stats(sc, &stats, 0); 8999 mtx_unlock(&sc->reg_lock); 9000 9001 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 9002 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 9003 9004 rc = sbuf_finish(sb); 9005 sbuf_delete(sb); 9006 9007 return (rc); 9008 } 9009 9010 static int 9011 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 9012 { 9013 struct adapter *sc = arg1; 9014 struct sbuf *sb; 9015 int rc; 9016 struct tp_tcp_stats v4, v6; 9017 9018 rc = sysctl_wire_old_buffer(req, 0); 9019 if (rc != 0) 9020 return (rc); 9021 9022 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9023 if (sb == NULL) 9024 return (ENOMEM); 9025 9026 mtx_lock(&sc->reg_lock); 9027 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 9028 mtx_unlock(&sc->reg_lock); 9029 9030 sbuf_printf(sb, 9031 " IP IPv6\n"); 9032 sbuf_printf(sb, "OutRsts: %20u %20u\n", 9033 v4.tcp_out_rsts, v6.tcp_out_rsts); 9034 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 9035 v4.tcp_in_segs, v6.tcp_in_segs); 9036 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 9037 v4.tcp_out_segs, v6.tcp_out_segs); 9038 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 9039 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 9040 9041 rc = sbuf_finish(sb); 9042 sbuf_delete(sb); 9043 9044 return (rc); 9045 } 9046 9047 static int 9048 sysctl_tids(SYSCTL_HANDLER_ARGS) 9049 { 9050 struct adapter *sc = arg1; 9051 struct sbuf *sb; 9052 int rc; 9053 struct tid_info *t = &sc->tids; 9054 9055 rc = sysctl_wire_old_buffer(req, 0); 9056 if (rc != 0) 9057 return (rc); 9058 9059 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9060 if (sb == NULL) 9061 return (ENOMEM); 9062 9063 if (t->natids) { 9064 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 9065 t->atids_in_use); 9066 } 9067 9068 if (t->nhpftids) { 9069 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 9070 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 9071 } 9072 9073 if (t->ntids) { 9074 sbuf_printf(sb, "TID range: "); 9075 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9076 uint32_t b, hb; 9077 9078 if (chip_id(sc) <= CHELSIO_T5) { 9079 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 9080 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 9081 } else { 9082 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 9083 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 9084 } 9085 9086 if (b) 9087 sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1); 9088 sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); 9089 } else 9090 sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1); 9091 sbuf_printf(sb, ", in use: %u\n", 9092 atomic_load_acq_int(&t->tids_in_use)); 9093 } 9094 9095 if (t->nstids) { 9096 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 9097 t->stid_base + t->nstids - 1, t->stids_in_use); 9098 } 9099 9100 if (t->nftids) { 9101 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 9102 t->ftid_end, t->ftids_in_use); 9103 } 9104 9105 if (t->netids) { 9106 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 9107 t->etid_base + t->netids - 1, t->etids_in_use); 9108 } 9109 9110 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 9111 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 9112 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 9113 9114 rc = sbuf_finish(sb); 9115 sbuf_delete(sb); 9116 9117 return (rc); 9118 } 9119 9120 static int 9121 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 9122 { 9123 struct adapter *sc = arg1; 9124 struct sbuf *sb; 9125 int rc; 9126 struct tp_err_stats stats; 9127 9128 rc = sysctl_wire_old_buffer(req, 0); 9129 if (rc != 0) 9130 return (rc); 9131 9132 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9133 if (sb == NULL) 9134 return (ENOMEM); 9135 9136 mtx_lock(&sc->reg_lock); 9137 t4_tp_get_err_stats(sc, &stats, 0); 9138 mtx_unlock(&sc->reg_lock); 9139 9140 if (sc->chip_params->nchan > 2) { 9141 sbuf_printf(sb, " channel 0 channel 1" 9142 " channel 2 channel 3\n"); 9143 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 9144 stats.mac_in_errs[0], stats.mac_in_errs[1], 9145 stats.mac_in_errs[2], stats.mac_in_errs[3]); 9146 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 9147 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 9148 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 9149 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 9150 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 9151 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 9152 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 9153 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 9154 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 9155 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 9156 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 9157 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 9158 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 9159 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 9160 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 9161 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 9162 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 9163 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 9164 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 9165 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 9166 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 9167 } else { 9168 sbuf_printf(sb, " channel 0 channel 1\n"); 9169 sbuf_printf(sb, "macInErrs: %10u %10u\n", 9170 stats.mac_in_errs[0], stats.mac_in_errs[1]); 9171 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 9172 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 9173 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 9174 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 9175 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 9176 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 9177 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 9178 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 9179 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 9180 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 9181 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 9182 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 9183 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 9184 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 9185 } 9186 9187 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 9188 stats.ofld_no_neigh, stats.ofld_cong_defer); 9189 9190 rc = sbuf_finish(sb); 9191 sbuf_delete(sb); 9192 9193 return (rc); 9194 } 9195 9196 static int 9197 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 9198 { 9199 struct adapter *sc = arg1; 9200 struct tp_params *tpp = &sc->params.tp; 9201 u_int mask; 9202 int rc; 9203 9204 mask = tpp->la_mask >> 16; 9205 rc = sysctl_handle_int(oidp, &mask, 0, req); 9206 if (rc != 0 || req->newptr == NULL) 9207 return (rc); 9208 if (mask > 0xffff) 9209 return (EINVAL); 9210 tpp->la_mask = mask << 16; 9211 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 9212 9213 return (0); 9214 } 9215 9216 struct field_desc { 9217 const char *name; 9218 u_int start; 9219 u_int width; 9220 }; 9221 9222 static void 9223 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 9224 { 9225 char buf[32]; 9226 int line_size = 0; 9227 9228 while (f->name) { 9229 uint64_t mask = (1ULL << f->width) - 1; 9230 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 9231 ((uintmax_t)v >> f->start) & mask); 9232 9233 if (line_size + len >= 79) { 9234 line_size = 8; 9235 sbuf_printf(sb, "\n "); 9236 } 9237 sbuf_printf(sb, "%s ", buf); 9238 line_size += len + 1; 9239 f++; 9240 } 9241 sbuf_printf(sb, "\n"); 9242 } 9243 9244 static const struct field_desc tp_la0[] = { 9245 { "RcfOpCodeOut", 60, 4 }, 9246 { "State", 56, 4 }, 9247 { "WcfState", 52, 4 }, 9248 { "RcfOpcSrcOut", 50, 2 }, 9249 { "CRxError", 49, 1 }, 9250 { "ERxError", 48, 1 }, 9251 { "SanityFailed", 47, 1 }, 9252 { "SpuriousMsg", 46, 1 }, 9253 { "FlushInputMsg", 45, 1 }, 9254 { "FlushInputCpl", 44, 1 }, 9255 { "RssUpBit", 43, 1 }, 9256 { "RssFilterHit", 42, 1 }, 9257 { "Tid", 32, 10 }, 9258 { "InitTcb", 31, 1 }, 9259 { "LineNumber", 24, 7 }, 9260 { "Emsg", 23, 1 }, 9261 { "EdataOut", 22, 1 }, 9262 { "Cmsg", 21, 1 }, 9263 { "CdataOut", 20, 1 }, 9264 { "EreadPdu", 19, 1 }, 9265 { "CreadPdu", 18, 1 }, 9266 { "TunnelPkt", 17, 1 }, 9267 { "RcfPeerFin", 16, 1 }, 9268 { "RcfReasonOut", 12, 4 }, 9269 { "TxCchannel", 10, 2 }, 9270 { "RcfTxChannel", 8, 2 }, 9271 { "RxEchannel", 6, 2 }, 9272 { "RcfRxChannel", 5, 1 }, 9273 { "RcfDataOutSrdy", 4, 1 }, 9274 { "RxDvld", 3, 1 }, 9275 { "RxOoDvld", 2, 1 }, 9276 { "RxCongestion", 1, 1 }, 9277 { "TxCongestion", 0, 1 }, 9278 { NULL } 9279 }; 9280 9281 static const struct field_desc tp_la1[] = { 9282 { "CplCmdIn", 56, 8 }, 9283 { "CplCmdOut", 48, 8 }, 9284 { "ESynOut", 47, 1 }, 9285 { "EAckOut", 46, 1 }, 9286 { "EFinOut", 45, 1 }, 9287 { "ERstOut", 44, 1 }, 9288 { "SynIn", 43, 1 }, 9289 { "AckIn", 42, 1 }, 9290 { "FinIn", 41, 1 }, 9291 { "RstIn", 40, 1 }, 9292 { "DataIn", 39, 1 }, 9293 { "DataInVld", 38, 1 }, 9294 { "PadIn", 37, 1 }, 9295 { "RxBufEmpty", 36, 1 }, 9296 { "RxDdp", 35, 1 }, 9297 { "RxFbCongestion", 34, 1 }, 9298 { "TxFbCongestion", 33, 1 }, 9299 { "TxPktSumSrdy", 32, 1 }, 9300 { "RcfUlpType", 28, 4 }, 9301 { "Eread", 27, 1 }, 9302 { "Ebypass", 26, 1 }, 9303 { "Esave", 25, 1 }, 9304 { "Static0", 24, 1 }, 9305 { "Cread", 23, 1 }, 9306 { "Cbypass", 22, 1 }, 9307 { "Csave", 21, 1 }, 9308 { "CPktOut", 20, 1 }, 9309 { "RxPagePoolFull", 18, 2 }, 9310 { "RxLpbkPkt", 17, 1 }, 9311 { "TxLpbkPkt", 16, 1 }, 9312 { "RxVfValid", 15, 1 }, 9313 { "SynLearned", 14, 1 }, 9314 { "SetDelEntry", 13, 1 }, 9315 { "SetInvEntry", 12, 1 }, 9316 { "CpcmdDvld", 11, 1 }, 9317 { "CpcmdSave", 10, 1 }, 9318 { "RxPstructsFull", 8, 2 }, 9319 { "EpcmdDvld", 7, 1 }, 9320 { "EpcmdFlush", 6, 1 }, 9321 { "EpcmdTrimPrefix", 5, 1 }, 9322 { "EpcmdTrimPostfix", 4, 1 }, 9323 { "ERssIp4Pkt", 3, 1 }, 9324 { "ERssIp6Pkt", 2, 1 }, 9325 { "ERssTcpUdpPkt", 1, 1 }, 9326 { "ERssFceFipPkt", 0, 1 }, 9327 { NULL } 9328 }; 9329 9330 static const struct field_desc tp_la2[] = { 9331 { "CplCmdIn", 56, 8 }, 9332 { "MpsVfVld", 55, 1 }, 9333 { "MpsPf", 52, 3 }, 9334 { "MpsVf", 44, 8 }, 9335 { "SynIn", 43, 1 }, 9336 { "AckIn", 42, 1 }, 9337 { "FinIn", 41, 1 }, 9338 { "RstIn", 40, 1 }, 9339 { "DataIn", 39, 1 }, 9340 { "DataInVld", 38, 1 }, 9341 { "PadIn", 37, 1 }, 9342 { "RxBufEmpty", 36, 1 }, 9343 { "RxDdp", 35, 1 }, 9344 { "RxFbCongestion", 34, 1 }, 9345 { "TxFbCongestion", 33, 1 }, 9346 { "TxPktSumSrdy", 32, 1 }, 9347 { "RcfUlpType", 28, 4 }, 9348 { "Eread", 27, 1 }, 9349 { "Ebypass", 26, 1 }, 9350 { "Esave", 25, 1 }, 9351 { "Static0", 24, 1 }, 9352 { "Cread", 23, 1 }, 9353 { "Cbypass", 22, 1 }, 9354 { "Csave", 21, 1 }, 9355 { "CPktOut", 20, 1 }, 9356 { "RxPagePoolFull", 18, 2 }, 9357 { "RxLpbkPkt", 17, 1 }, 9358 { "TxLpbkPkt", 16, 1 }, 9359 { "RxVfValid", 15, 1 }, 9360 { "SynLearned", 14, 1 }, 9361 { "SetDelEntry", 13, 1 }, 9362 { "SetInvEntry", 12, 1 }, 9363 { "CpcmdDvld", 11, 1 }, 9364 { "CpcmdSave", 10, 1 }, 9365 { "RxPstructsFull", 8, 2 }, 9366 { "EpcmdDvld", 7, 1 }, 9367 { "EpcmdFlush", 6, 1 }, 9368 { "EpcmdTrimPrefix", 5, 1 }, 9369 { "EpcmdTrimPostfix", 4, 1 }, 9370 { "ERssIp4Pkt", 3, 1 }, 9371 { "ERssIp6Pkt", 2, 1 }, 9372 { "ERssTcpUdpPkt", 1, 1 }, 9373 { "ERssFceFipPkt", 0, 1 }, 9374 { NULL } 9375 }; 9376 9377 static void 9378 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 9379 { 9380 9381 field_desc_show(sb, *p, tp_la0); 9382 } 9383 9384 static void 9385 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 9386 { 9387 9388 if (idx) 9389 sbuf_printf(sb, "\n"); 9390 field_desc_show(sb, p[0], tp_la0); 9391 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9392 field_desc_show(sb, p[1], tp_la0); 9393 } 9394 9395 static void 9396 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 9397 { 9398 9399 if (idx) 9400 sbuf_printf(sb, "\n"); 9401 field_desc_show(sb, p[0], tp_la0); 9402 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9403 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 9404 } 9405 9406 static int 9407 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 9408 { 9409 struct adapter *sc = arg1; 9410 struct sbuf *sb; 9411 uint64_t *buf, *p; 9412 int rc; 9413 u_int i, inc; 9414 void (*show_func)(struct sbuf *, uint64_t *, int); 9415 9416 rc = sysctl_wire_old_buffer(req, 0); 9417 if (rc != 0) 9418 return (rc); 9419 9420 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9421 if (sb == NULL) 9422 return (ENOMEM); 9423 9424 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 9425 9426 t4_tp_read_la(sc, buf, NULL); 9427 p = buf; 9428 9429 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 9430 case 2: 9431 inc = 2; 9432 show_func = tp_la_show2; 9433 break; 9434 case 3: 9435 inc = 2; 9436 show_func = tp_la_show3; 9437 break; 9438 default: 9439 inc = 1; 9440 show_func = tp_la_show; 9441 } 9442 9443 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 9444 (*show_func)(sb, p, i); 9445 9446 rc = sbuf_finish(sb); 9447 sbuf_delete(sb); 9448 free(buf, M_CXGBE); 9449 return (rc); 9450 } 9451 9452 static int 9453 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 9454 { 9455 struct adapter *sc = arg1; 9456 struct sbuf *sb; 9457 int rc; 9458 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 9459 9460 rc = sysctl_wire_old_buffer(req, 0); 9461 if (rc != 0) 9462 return (rc); 9463 9464 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9465 if (sb == NULL) 9466 return (ENOMEM); 9467 9468 t4_get_chan_txrate(sc, nrate, orate); 9469 9470 if (sc->chip_params->nchan > 2) { 9471 sbuf_printf(sb, " channel 0 channel 1" 9472 " channel 2 channel 3\n"); 9473 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 9474 nrate[0], nrate[1], nrate[2], nrate[3]); 9475 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 9476 orate[0], orate[1], orate[2], orate[3]); 9477 } else { 9478 sbuf_printf(sb, " channel 0 channel 1\n"); 9479 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 9480 nrate[0], nrate[1]); 9481 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 9482 orate[0], orate[1]); 9483 } 9484 9485 rc = sbuf_finish(sb); 9486 sbuf_delete(sb); 9487 9488 return (rc); 9489 } 9490 9491 static int 9492 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 9493 { 9494 struct adapter *sc = arg1; 9495 struct sbuf *sb; 9496 uint32_t *buf, *p; 9497 int rc, i; 9498 9499 rc = sysctl_wire_old_buffer(req, 0); 9500 if (rc != 0) 9501 return (rc); 9502 9503 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9504 if (sb == NULL) 9505 return (ENOMEM); 9506 9507 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 9508 M_ZERO | M_WAITOK); 9509 9510 t4_ulprx_read_la(sc, buf); 9511 p = buf; 9512 9513 sbuf_printf(sb, " Pcmd Type Message" 9514 " Data"); 9515 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 9516 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 9517 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 9518 } 9519 9520 rc = sbuf_finish(sb); 9521 sbuf_delete(sb); 9522 free(buf, M_CXGBE); 9523 return (rc); 9524 } 9525 9526 static int 9527 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 9528 { 9529 struct adapter *sc = arg1; 9530 struct sbuf *sb; 9531 int rc, v; 9532 9533 MPASS(chip_id(sc) >= CHELSIO_T5); 9534 9535 rc = sysctl_wire_old_buffer(req, 0); 9536 if (rc != 0) 9537 return (rc); 9538 9539 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9540 if (sb == NULL) 9541 return (ENOMEM); 9542 9543 v = t4_read_reg(sc, A_SGE_STAT_CFG); 9544 if (G_STATSOURCE_T5(v) == 7) { 9545 int mode; 9546 9547 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); 9548 if (mode == 0) { 9549 sbuf_printf(sb, "total %d, incomplete %d", 9550 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9551 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9552 } else if (mode == 1) { 9553 sbuf_printf(sb, "total %d, data overflow %d", 9554 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9555 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9556 } else { 9557 sbuf_printf(sb, "unknown mode %d", mode); 9558 } 9559 } 9560 rc = sbuf_finish(sb); 9561 sbuf_delete(sb); 9562 9563 return (rc); 9564 } 9565 9566 static int 9567 sysctl_cpus(SYSCTL_HANDLER_ARGS) 9568 { 9569 struct adapter *sc = arg1; 9570 enum cpu_sets op = arg2; 9571 cpuset_t cpuset; 9572 struct sbuf *sb; 9573 int i, rc; 9574 9575 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 9576 9577 CPU_ZERO(&cpuset); 9578 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 9579 if (rc != 0) 9580 return (rc); 9581 9582 rc = sysctl_wire_old_buffer(req, 0); 9583 if (rc != 0) 9584 return (rc); 9585 9586 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9587 if (sb == NULL) 9588 return (ENOMEM); 9589 9590 CPU_FOREACH(i) 9591 sbuf_printf(sb, "%d ", i); 9592 rc = sbuf_finish(sb); 9593 sbuf_delete(sb); 9594 9595 return (rc); 9596 } 9597 9598 #ifdef TCP_OFFLOAD 9599 static int 9600 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 9601 { 9602 struct adapter *sc = arg1; 9603 int *old_ports, *new_ports; 9604 int i, new_count, rc; 9605 9606 if (req->newptr == NULL && req->oldptr == NULL) 9607 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 9608 sizeof(sc->tt.tls_rx_ports[0]))); 9609 9610 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 9611 if (rc) 9612 return (rc); 9613 9614 if (sc->tt.num_tls_rx_ports == 0) { 9615 i = -1; 9616 rc = SYSCTL_OUT(req, &i, sizeof(i)); 9617 } else 9618 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 9619 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 9620 if (rc == 0 && req->newptr != NULL) { 9621 new_count = req->newlen / sizeof(new_ports[0]); 9622 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 9623 M_WAITOK); 9624 rc = SYSCTL_IN(req, new_ports, new_count * 9625 sizeof(new_ports[0])); 9626 if (rc) 9627 goto err; 9628 9629 /* Allow setting to a single '-1' to clear the list. */ 9630 if (new_count == 1 && new_ports[0] == -1) { 9631 ADAPTER_LOCK(sc); 9632 old_ports = sc->tt.tls_rx_ports; 9633 sc->tt.tls_rx_ports = NULL; 9634 sc->tt.num_tls_rx_ports = 0; 9635 ADAPTER_UNLOCK(sc); 9636 free(old_ports, M_CXGBE); 9637 } else { 9638 for (i = 0; i < new_count; i++) { 9639 if (new_ports[i] < 1 || 9640 new_ports[i] > IPPORT_MAX) { 9641 rc = EINVAL; 9642 goto err; 9643 } 9644 } 9645 9646 ADAPTER_LOCK(sc); 9647 old_ports = sc->tt.tls_rx_ports; 9648 sc->tt.tls_rx_ports = new_ports; 9649 sc->tt.num_tls_rx_ports = new_count; 9650 ADAPTER_UNLOCK(sc); 9651 free(old_ports, M_CXGBE); 9652 new_ports = NULL; 9653 } 9654 err: 9655 free(new_ports, M_CXGBE); 9656 } 9657 end_synchronized_op(sc, 0); 9658 return (rc); 9659 } 9660 9661 static void 9662 unit_conv(char *buf, size_t len, u_int val, u_int factor) 9663 { 9664 u_int rem = val % factor; 9665 9666 if (rem == 0) 9667 snprintf(buf, len, "%u", val / factor); 9668 else { 9669 while (rem % 10 == 0) 9670 rem /= 10; 9671 snprintf(buf, len, "%u.%u", val / factor, rem); 9672 } 9673 } 9674 9675 static int 9676 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 9677 { 9678 struct adapter *sc = arg1; 9679 char buf[16]; 9680 u_int res, re; 9681 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9682 9683 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 9684 switch (arg2) { 9685 case 0: 9686 /* timer_tick */ 9687 re = G_TIMERRESOLUTION(res); 9688 break; 9689 case 1: 9690 /* TCP timestamp tick */ 9691 re = G_TIMESTAMPRESOLUTION(res); 9692 break; 9693 case 2: 9694 /* DACK tick */ 9695 re = G_DELAYEDACKRESOLUTION(res); 9696 break; 9697 default: 9698 return (EDOOFUS); 9699 } 9700 9701 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 9702 9703 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 9704 } 9705 9706 static int 9707 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 9708 { 9709 struct adapter *sc = arg1; 9710 u_int res, dack_re, v; 9711 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9712 9713 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 9714 dack_re = G_DELAYEDACKRESOLUTION(res); 9715 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 9716 9717 return (sysctl_handle_int(oidp, &v, 0, req)); 9718 } 9719 9720 static int 9721 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 9722 { 9723 struct adapter *sc = arg1; 9724 int reg = arg2; 9725 u_int tre; 9726 u_long tp_tick_us, v; 9727 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9728 9729 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 9730 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 9731 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 9732 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 9733 9734 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 9735 tp_tick_us = (cclk_ps << tre) / 1000000; 9736 9737 if (reg == A_TP_INIT_SRTT) 9738 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 9739 else 9740 v = tp_tick_us * t4_read_reg(sc, reg); 9741 9742 return (sysctl_handle_long(oidp, &v, 0, req)); 9743 } 9744 9745 /* 9746 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 9747 * passed to this function. 9748 */ 9749 static int 9750 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 9751 { 9752 struct adapter *sc = arg1; 9753 int idx = arg2; 9754 u_int v; 9755 9756 MPASS(idx >= 0 && idx <= 24); 9757 9758 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 9759 9760 return (sysctl_handle_int(oidp, &v, 0, req)); 9761 } 9762 9763 static int 9764 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 9765 { 9766 struct adapter *sc = arg1; 9767 int idx = arg2; 9768 u_int shift, v, r; 9769 9770 MPASS(idx >= 0 && idx < 16); 9771 9772 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 9773 shift = (idx & 3) << 3; 9774 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 9775 9776 return (sysctl_handle_int(oidp, &v, 0, req)); 9777 } 9778 9779 static int 9780 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 9781 { 9782 struct vi_info *vi = arg1; 9783 struct adapter *sc = vi->pi->adapter; 9784 int idx, rc, i; 9785 struct sge_ofld_rxq *ofld_rxq; 9786 uint8_t v; 9787 9788 idx = vi->ofld_tmr_idx; 9789 9790 rc = sysctl_handle_int(oidp, &idx, 0, req); 9791 if (rc != 0 || req->newptr == NULL) 9792 return (rc); 9793 9794 if (idx < 0 || idx >= SGE_NTIMERS) 9795 return (EINVAL); 9796 9797 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 9798 "t4otmr"); 9799 if (rc) 9800 return (rc); 9801 9802 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 9803 for_each_ofld_rxq(vi, i, ofld_rxq) { 9804 #ifdef atomic_store_rel_8 9805 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 9806 #else 9807 ofld_rxq->iq.intr_params = v; 9808 #endif 9809 } 9810 vi->ofld_tmr_idx = idx; 9811 9812 end_synchronized_op(sc, LOCK_HELD); 9813 return (0); 9814 } 9815 9816 static int 9817 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 9818 { 9819 struct vi_info *vi = arg1; 9820 struct adapter *sc = vi->pi->adapter; 9821 int idx, rc; 9822 9823 idx = vi->ofld_pktc_idx; 9824 9825 rc = sysctl_handle_int(oidp, &idx, 0, req); 9826 if (rc != 0 || req->newptr == NULL) 9827 return (rc); 9828 9829 if (idx < -1 || idx >= SGE_NCOUNTERS) 9830 return (EINVAL); 9831 9832 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 9833 "t4opktc"); 9834 if (rc) 9835 return (rc); 9836 9837 if (vi->flags & VI_INIT_DONE) 9838 rc = EBUSY; /* cannot be changed once the queues are created */ 9839 else 9840 vi->ofld_pktc_idx = idx; 9841 9842 end_synchronized_op(sc, LOCK_HELD); 9843 return (rc); 9844 } 9845 #endif 9846 9847 static int 9848 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 9849 { 9850 int rc; 9851 9852 if (cntxt->cid > M_CTXTQID) 9853 return (EINVAL); 9854 9855 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 9856 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 9857 return (EINVAL); 9858 9859 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 9860 if (rc) 9861 return (rc); 9862 9863 if (sc->flags & FW_OK) { 9864 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 9865 &cntxt->data[0]); 9866 if (rc == 0) 9867 goto done; 9868 } 9869 9870 /* 9871 * Read via firmware failed or wasn't even attempted. Read directly via 9872 * the backdoor. 9873 */ 9874 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 9875 done: 9876 end_synchronized_op(sc, 0); 9877 return (rc); 9878 } 9879 9880 static int 9881 load_fw(struct adapter *sc, struct t4_data *fw) 9882 { 9883 int rc; 9884 uint8_t *fw_data; 9885 9886 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 9887 if (rc) 9888 return (rc); 9889 9890 /* 9891 * The firmware, with the sole exception of the memory parity error 9892 * handler, runs from memory and not flash. It is almost always safe to 9893 * install a new firmware on a running system. Just set bit 1 in 9894 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 9895 */ 9896 if (sc->flags & FULL_INIT_DONE && 9897 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 9898 rc = EBUSY; 9899 goto done; 9900 } 9901 9902 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 9903 if (fw_data == NULL) { 9904 rc = ENOMEM; 9905 goto done; 9906 } 9907 9908 rc = copyin(fw->data, fw_data, fw->len); 9909 if (rc == 0) 9910 rc = -t4_load_fw(sc, fw_data, fw->len); 9911 9912 free(fw_data, M_CXGBE); 9913 done: 9914 end_synchronized_op(sc, 0); 9915 return (rc); 9916 } 9917 9918 static int 9919 load_cfg(struct adapter *sc, struct t4_data *cfg) 9920 { 9921 int rc; 9922 uint8_t *cfg_data = NULL; 9923 9924 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9925 if (rc) 9926 return (rc); 9927 9928 if (cfg->len == 0) { 9929 /* clear */ 9930 rc = -t4_load_cfg(sc, NULL, 0); 9931 goto done; 9932 } 9933 9934 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 9935 if (cfg_data == NULL) { 9936 rc = ENOMEM; 9937 goto done; 9938 } 9939 9940 rc = copyin(cfg->data, cfg_data, cfg->len); 9941 if (rc == 0) 9942 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 9943 9944 free(cfg_data, M_CXGBE); 9945 done: 9946 end_synchronized_op(sc, 0); 9947 return (rc); 9948 } 9949 9950 static int 9951 load_boot(struct adapter *sc, struct t4_bootrom *br) 9952 { 9953 int rc; 9954 uint8_t *br_data = NULL; 9955 u_int offset; 9956 9957 if (br->len > 1024 * 1024) 9958 return (EFBIG); 9959 9960 if (br->pf_offset == 0) { 9961 /* pfidx */ 9962 if (br->pfidx_addr > 7) 9963 return (EINVAL); 9964 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 9965 A_PCIE_PF_EXPROM_OFST))); 9966 } else if (br->pf_offset == 1) { 9967 /* offset */ 9968 offset = G_OFFSET(br->pfidx_addr); 9969 } else { 9970 return (EINVAL); 9971 } 9972 9973 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 9974 if (rc) 9975 return (rc); 9976 9977 if (br->len == 0) { 9978 /* clear */ 9979 rc = -t4_load_boot(sc, NULL, offset, 0); 9980 goto done; 9981 } 9982 9983 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 9984 if (br_data == NULL) { 9985 rc = ENOMEM; 9986 goto done; 9987 } 9988 9989 rc = copyin(br->data, br_data, br->len); 9990 if (rc == 0) 9991 rc = -t4_load_boot(sc, br_data, offset, br->len); 9992 9993 free(br_data, M_CXGBE); 9994 done: 9995 end_synchronized_op(sc, 0); 9996 return (rc); 9997 } 9998 9999 static int 10000 load_bootcfg(struct adapter *sc, struct t4_data *bc) 10001 { 10002 int rc; 10003 uint8_t *bc_data = NULL; 10004 10005 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 10006 if (rc) 10007 return (rc); 10008 10009 if (bc->len == 0) { 10010 /* clear */ 10011 rc = -t4_load_bootcfg(sc, NULL, 0); 10012 goto done; 10013 } 10014 10015 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 10016 if (bc_data == NULL) { 10017 rc = ENOMEM; 10018 goto done; 10019 } 10020 10021 rc = copyin(bc->data, bc_data, bc->len); 10022 if (rc == 0) 10023 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 10024 10025 free(bc_data, M_CXGBE); 10026 done: 10027 end_synchronized_op(sc, 0); 10028 return (rc); 10029 } 10030 10031 static int 10032 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 10033 { 10034 int rc; 10035 struct cudbg_init *cudbg; 10036 void *handle, *buf; 10037 10038 /* buf is large, don't block if no memory is available */ 10039 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 10040 if (buf == NULL) 10041 return (ENOMEM); 10042 10043 handle = cudbg_alloc_handle(); 10044 if (handle == NULL) { 10045 rc = ENOMEM; 10046 goto done; 10047 } 10048 10049 cudbg = cudbg_get_init(handle); 10050 cudbg->adap = sc; 10051 cudbg->print = (cudbg_print_cb)printf; 10052 10053 #ifndef notyet 10054 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 10055 __func__, dump->wr_flash, dump->len, dump->data); 10056 #endif 10057 10058 if (dump->wr_flash) 10059 cudbg->use_flash = 1; 10060 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 10061 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 10062 10063 rc = cudbg_collect(handle, buf, &dump->len); 10064 if (rc != 0) 10065 goto done; 10066 10067 rc = copyout(buf, dump->data, dump->len); 10068 done: 10069 cudbg_free_handle(handle); 10070 free(buf, M_CXGBE); 10071 return (rc); 10072 } 10073 10074 static void 10075 free_offload_policy(struct t4_offload_policy *op) 10076 { 10077 struct offload_rule *r; 10078 int i; 10079 10080 if (op == NULL) 10081 return; 10082 10083 r = &op->rule[0]; 10084 for (i = 0; i < op->nrules; i++, r++) { 10085 free(r->bpf_prog.bf_insns, M_CXGBE); 10086 } 10087 free(op->rule, M_CXGBE); 10088 free(op, M_CXGBE); 10089 } 10090 10091 static int 10092 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 10093 { 10094 int i, rc, len; 10095 struct t4_offload_policy *op, *old; 10096 struct bpf_program *bf; 10097 const struct offload_settings *s; 10098 struct offload_rule *r; 10099 void *u; 10100 10101 if (!is_offload(sc)) 10102 return (ENODEV); 10103 10104 if (uop->nrules == 0) { 10105 /* Delete installed policies. */ 10106 op = NULL; 10107 goto set_policy; 10108 } else if (uop->nrules > 256) { /* arbitrary */ 10109 return (E2BIG); 10110 } 10111 10112 /* Copy userspace offload policy to kernel */ 10113 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 10114 op->nrules = uop->nrules; 10115 len = op->nrules * sizeof(struct offload_rule); 10116 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10117 rc = copyin(uop->rule, op->rule, len); 10118 if (rc) { 10119 free(op->rule, M_CXGBE); 10120 free(op, M_CXGBE); 10121 return (rc); 10122 } 10123 10124 r = &op->rule[0]; 10125 for (i = 0; i < op->nrules; i++, r++) { 10126 10127 /* Validate open_type */ 10128 if (r->open_type != OPEN_TYPE_LISTEN && 10129 r->open_type != OPEN_TYPE_ACTIVE && 10130 r->open_type != OPEN_TYPE_PASSIVE && 10131 r->open_type != OPEN_TYPE_DONTCARE) { 10132 error: 10133 /* 10134 * Rules 0 to i have malloc'd filters that need to be 10135 * freed. Rules i+1 to nrules have userspace pointers 10136 * and should be left alone. 10137 */ 10138 op->nrules = i; 10139 free_offload_policy(op); 10140 return (rc); 10141 } 10142 10143 /* Validate settings */ 10144 s = &r->settings; 10145 if ((s->offload != 0 && s->offload != 1) || 10146 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 10147 s->sched_class < -1 || 10148 s->sched_class >= sc->chip_params->nsched_cls) { 10149 rc = EINVAL; 10150 goto error; 10151 } 10152 10153 bf = &r->bpf_prog; 10154 u = bf->bf_insns; /* userspace ptr */ 10155 bf->bf_insns = NULL; 10156 if (bf->bf_len == 0) { 10157 /* legal, matches everything */ 10158 continue; 10159 } 10160 len = bf->bf_len * sizeof(*bf->bf_insns); 10161 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10162 rc = copyin(u, bf->bf_insns, len); 10163 if (rc != 0) 10164 goto error; 10165 10166 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 10167 rc = EINVAL; 10168 goto error; 10169 } 10170 } 10171 set_policy: 10172 rw_wlock(&sc->policy_lock); 10173 old = sc->policy; 10174 sc->policy = op; 10175 rw_wunlock(&sc->policy_lock); 10176 free_offload_policy(old); 10177 10178 return (0); 10179 } 10180 10181 #define MAX_READ_BUF_SIZE (128 * 1024) 10182 static int 10183 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 10184 { 10185 uint32_t addr, remaining, n; 10186 uint32_t *buf; 10187 int rc; 10188 uint8_t *dst; 10189 10190 rc = validate_mem_range(sc, mr->addr, mr->len); 10191 if (rc != 0) 10192 return (rc); 10193 10194 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 10195 addr = mr->addr; 10196 remaining = mr->len; 10197 dst = (void *)mr->data; 10198 10199 while (remaining) { 10200 n = min(remaining, MAX_READ_BUF_SIZE); 10201 read_via_memwin(sc, 2, addr, buf, n); 10202 10203 rc = copyout(buf, dst, n); 10204 if (rc != 0) 10205 break; 10206 10207 dst += n; 10208 remaining -= n; 10209 addr += n; 10210 } 10211 10212 free(buf, M_CXGBE); 10213 return (rc); 10214 } 10215 #undef MAX_READ_BUF_SIZE 10216 10217 static int 10218 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 10219 { 10220 int rc; 10221 10222 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 10223 return (EINVAL); 10224 10225 if (i2cd->len > sizeof(i2cd->data)) 10226 return (EFBIG); 10227 10228 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 10229 if (rc) 10230 return (rc); 10231 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 10232 i2cd->offset, i2cd->len, &i2cd->data[0]); 10233 end_synchronized_op(sc, 0); 10234 10235 return (rc); 10236 } 10237 10238 static int 10239 clear_stats(struct adapter *sc, u_int port_id) 10240 { 10241 int i, v, bg_map; 10242 struct port_info *pi; 10243 struct vi_info *vi; 10244 struct sge_rxq *rxq; 10245 struct sge_txq *txq; 10246 struct sge_wrq *wrq; 10247 #ifdef TCP_OFFLOAD 10248 struct sge_ofld_rxq *ofld_rxq; 10249 #endif 10250 10251 if (port_id >= sc->params.nports) 10252 return (EINVAL); 10253 pi = sc->port[port_id]; 10254 if (pi == NULL) 10255 return (EIO); 10256 10257 /* MAC stats */ 10258 t4_clr_port_stats(sc, pi->tx_chan); 10259 pi->tx_parse_error = 0; 10260 pi->tnl_cong_drops = 0; 10261 mtx_lock(&sc->reg_lock); 10262 for_each_vi(pi, v, vi) { 10263 if (vi->flags & VI_INIT_DONE) 10264 t4_clr_vi_stats(sc, vi->vin); 10265 } 10266 bg_map = pi->mps_bg_map; 10267 v = 0; /* reuse */ 10268 while (bg_map) { 10269 i = ffs(bg_map) - 1; 10270 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 10271 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 10272 bg_map &= ~(1 << i); 10273 } 10274 mtx_unlock(&sc->reg_lock); 10275 10276 /* 10277 * Since this command accepts a port, clear stats for 10278 * all VIs on this port. 10279 */ 10280 for_each_vi(pi, v, vi) { 10281 if (vi->flags & VI_INIT_DONE) { 10282 10283 for_each_rxq(vi, i, rxq) { 10284 #if defined(INET) || defined(INET6) 10285 rxq->lro.lro_queued = 0; 10286 rxq->lro.lro_flushed = 0; 10287 #endif 10288 rxq->rxcsum = 0; 10289 rxq->vlan_extraction = 0; 10290 10291 rxq->fl.mbuf_allocated = 0; 10292 rxq->fl.mbuf_inlined = 0; 10293 rxq->fl.cl_allocated = 0; 10294 rxq->fl.cl_recycled = 0; 10295 rxq->fl.cl_fast_recycled = 0; 10296 } 10297 10298 for_each_txq(vi, i, txq) { 10299 txq->txcsum = 0; 10300 txq->tso_wrs = 0; 10301 txq->vlan_insertion = 0; 10302 txq->imm_wrs = 0; 10303 txq->sgl_wrs = 0; 10304 txq->txpkt_wrs = 0; 10305 txq->txpkts0_wrs = 0; 10306 txq->txpkts1_wrs = 0; 10307 txq->txpkts0_pkts = 0; 10308 txq->txpkts1_pkts = 0; 10309 txq->raw_wrs = 0; 10310 txq->tls_wrs = 0; 10311 txq->kern_tls_records = 0; 10312 txq->kern_tls_short = 0; 10313 txq->kern_tls_partial = 0; 10314 txq->kern_tls_full = 0; 10315 txq->kern_tls_octets = 0; 10316 txq->kern_tls_waste = 0; 10317 txq->kern_tls_options = 0; 10318 txq->kern_tls_header = 0; 10319 txq->kern_tls_fin = 0; 10320 txq->kern_tls_fin_short = 0; 10321 txq->kern_tls_cbc = 0; 10322 txq->kern_tls_gcm = 0; 10323 mp_ring_reset_stats(txq->r); 10324 } 10325 10326 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 10327 for_each_ofld_txq(vi, i, wrq) { 10328 wrq->tx_wrs_direct = 0; 10329 wrq->tx_wrs_copied = 0; 10330 } 10331 #endif 10332 #ifdef TCP_OFFLOAD 10333 for_each_ofld_rxq(vi, i, ofld_rxq) { 10334 ofld_rxq->fl.mbuf_allocated = 0; 10335 ofld_rxq->fl.mbuf_inlined = 0; 10336 ofld_rxq->fl.cl_allocated = 0; 10337 ofld_rxq->fl.cl_recycled = 0; 10338 ofld_rxq->fl.cl_fast_recycled = 0; 10339 } 10340 #endif 10341 10342 if (IS_MAIN_VI(vi)) { 10343 wrq = &sc->sge.ctrlq[pi->port_id]; 10344 wrq->tx_wrs_direct = 0; 10345 wrq->tx_wrs_copied = 0; 10346 } 10347 } 10348 } 10349 10350 return (0); 10351 } 10352 10353 int 10354 t4_os_find_pci_capability(struct adapter *sc, int cap) 10355 { 10356 int i; 10357 10358 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 10359 } 10360 10361 int 10362 t4_os_pci_save_state(struct adapter *sc) 10363 { 10364 device_t dev; 10365 struct pci_devinfo *dinfo; 10366 10367 dev = sc->dev; 10368 dinfo = device_get_ivars(dev); 10369 10370 pci_cfg_save(dev, dinfo, 0); 10371 return (0); 10372 } 10373 10374 int 10375 t4_os_pci_restore_state(struct adapter *sc) 10376 { 10377 device_t dev; 10378 struct pci_devinfo *dinfo; 10379 10380 dev = sc->dev; 10381 dinfo = device_get_ivars(dev); 10382 10383 pci_cfg_restore(dev, dinfo); 10384 return (0); 10385 } 10386 10387 void 10388 t4_os_portmod_changed(struct port_info *pi) 10389 { 10390 struct adapter *sc = pi->adapter; 10391 struct vi_info *vi; 10392 struct ifnet *ifp; 10393 static const char *mod_str[] = { 10394 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 10395 }; 10396 10397 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 10398 ("%s: port_type %u", __func__, pi->port_type)); 10399 10400 vi = &pi->vi[0]; 10401 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 10402 PORT_LOCK(pi); 10403 build_medialist(pi); 10404 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 10405 fixup_link_config(pi); 10406 apply_link_config(pi); 10407 } 10408 PORT_UNLOCK(pi); 10409 end_synchronized_op(sc, LOCK_HELD); 10410 } 10411 10412 ifp = vi->ifp; 10413 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 10414 if_printf(ifp, "transceiver unplugged.\n"); 10415 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 10416 if_printf(ifp, "unknown transceiver inserted.\n"); 10417 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 10418 if_printf(ifp, "unsupported transceiver inserted.\n"); 10419 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 10420 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 10421 port_top_speed(pi), mod_str[pi->mod_type]); 10422 } else { 10423 if_printf(ifp, "transceiver (type %d) inserted.\n", 10424 pi->mod_type); 10425 } 10426 } 10427 10428 void 10429 t4_os_link_changed(struct port_info *pi) 10430 { 10431 struct vi_info *vi; 10432 struct ifnet *ifp; 10433 struct link_config *lc; 10434 int v; 10435 10436 PORT_LOCK_ASSERT_OWNED(pi); 10437 10438 for_each_vi(pi, v, vi) { 10439 ifp = vi->ifp; 10440 if (ifp == NULL) 10441 continue; 10442 10443 lc = &pi->link_cfg; 10444 if (lc->link_ok) { 10445 ifp->if_baudrate = IF_Mbps(lc->speed); 10446 if_link_state_change(ifp, LINK_STATE_UP); 10447 } else { 10448 if_link_state_change(ifp, LINK_STATE_DOWN); 10449 } 10450 } 10451 } 10452 10453 void 10454 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 10455 { 10456 struct adapter *sc; 10457 10458 sx_slock(&t4_list_lock); 10459 SLIST_FOREACH(sc, &t4_list, link) { 10460 /* 10461 * func should not make any assumptions about what state sc is 10462 * in - the only guarantee is that sc->sc_lock is a valid lock. 10463 */ 10464 func(sc, arg); 10465 } 10466 sx_sunlock(&t4_list_lock); 10467 } 10468 10469 static int 10470 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 10471 struct thread *td) 10472 { 10473 int rc; 10474 struct adapter *sc = dev->si_drv1; 10475 10476 rc = priv_check(td, PRIV_DRIVER); 10477 if (rc != 0) 10478 return (rc); 10479 10480 switch (cmd) { 10481 case CHELSIO_T4_GETREG: { 10482 struct t4_reg *edata = (struct t4_reg *)data; 10483 10484 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10485 return (EFAULT); 10486 10487 if (edata->size == 4) 10488 edata->val = t4_read_reg(sc, edata->addr); 10489 else if (edata->size == 8) 10490 edata->val = t4_read_reg64(sc, edata->addr); 10491 else 10492 return (EINVAL); 10493 10494 break; 10495 } 10496 case CHELSIO_T4_SETREG: { 10497 struct t4_reg *edata = (struct t4_reg *)data; 10498 10499 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10500 return (EFAULT); 10501 10502 if (edata->size == 4) { 10503 if (edata->val & 0xffffffff00000000) 10504 return (EINVAL); 10505 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 10506 } else if (edata->size == 8) 10507 t4_write_reg64(sc, edata->addr, edata->val); 10508 else 10509 return (EINVAL); 10510 break; 10511 } 10512 case CHELSIO_T4_REGDUMP: { 10513 struct t4_regdump *regs = (struct t4_regdump *)data; 10514 int reglen = t4_get_regs_len(sc); 10515 uint8_t *buf; 10516 10517 if (regs->len < reglen) { 10518 regs->len = reglen; /* hint to the caller */ 10519 return (ENOBUFS); 10520 } 10521 10522 regs->len = reglen; 10523 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 10524 get_regs(sc, regs, buf); 10525 rc = copyout(buf, regs->data, reglen); 10526 free(buf, M_CXGBE); 10527 break; 10528 } 10529 case CHELSIO_T4_GET_FILTER_MODE: 10530 rc = get_filter_mode(sc, (uint32_t *)data); 10531 break; 10532 case CHELSIO_T4_SET_FILTER_MODE: 10533 rc = set_filter_mode(sc, *(uint32_t *)data); 10534 break; 10535 case CHELSIO_T4_GET_FILTER: 10536 rc = get_filter(sc, (struct t4_filter *)data); 10537 break; 10538 case CHELSIO_T4_SET_FILTER: 10539 rc = set_filter(sc, (struct t4_filter *)data); 10540 break; 10541 case CHELSIO_T4_DEL_FILTER: 10542 rc = del_filter(sc, (struct t4_filter *)data); 10543 break; 10544 case CHELSIO_T4_GET_SGE_CONTEXT: 10545 rc = get_sge_context(sc, (struct t4_sge_context *)data); 10546 break; 10547 case CHELSIO_T4_LOAD_FW: 10548 rc = load_fw(sc, (struct t4_data *)data); 10549 break; 10550 case CHELSIO_T4_GET_MEM: 10551 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 10552 break; 10553 case CHELSIO_T4_GET_I2C: 10554 rc = read_i2c(sc, (struct t4_i2c_data *)data); 10555 break; 10556 case CHELSIO_T4_CLEAR_STATS: 10557 rc = clear_stats(sc, *(uint32_t *)data); 10558 break; 10559 case CHELSIO_T4_SCHED_CLASS: 10560 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 10561 break; 10562 case CHELSIO_T4_SCHED_QUEUE: 10563 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 10564 break; 10565 case CHELSIO_T4_GET_TRACER: 10566 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 10567 break; 10568 case CHELSIO_T4_SET_TRACER: 10569 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 10570 break; 10571 case CHELSIO_T4_LOAD_CFG: 10572 rc = load_cfg(sc, (struct t4_data *)data); 10573 break; 10574 case CHELSIO_T4_LOAD_BOOT: 10575 rc = load_boot(sc, (struct t4_bootrom *)data); 10576 break; 10577 case CHELSIO_T4_LOAD_BOOTCFG: 10578 rc = load_bootcfg(sc, (struct t4_data *)data); 10579 break; 10580 case CHELSIO_T4_CUDBG_DUMP: 10581 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 10582 break; 10583 case CHELSIO_T4_SET_OFLD_POLICY: 10584 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 10585 break; 10586 default: 10587 rc = ENOTTY; 10588 } 10589 10590 return (rc); 10591 } 10592 10593 #ifdef TCP_OFFLOAD 10594 static int 10595 toe_capability(struct vi_info *vi, int enable) 10596 { 10597 int rc; 10598 struct port_info *pi = vi->pi; 10599 struct adapter *sc = pi->adapter; 10600 10601 ASSERT_SYNCHRONIZED_OP(sc); 10602 10603 if (!is_offload(sc)) 10604 return (ENODEV); 10605 10606 if (enable) { 10607 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 10608 /* TOE is already enabled. */ 10609 return (0); 10610 } 10611 10612 /* 10613 * We need the port's queues around so that we're able to send 10614 * and receive CPLs to/from the TOE even if the ifnet for this 10615 * port has never been UP'd administratively. 10616 */ 10617 if (!(vi->flags & VI_INIT_DONE)) { 10618 rc = vi_full_init(vi); 10619 if (rc) 10620 return (rc); 10621 } 10622 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 10623 rc = vi_full_init(&pi->vi[0]); 10624 if (rc) 10625 return (rc); 10626 } 10627 10628 if (isset(&sc->offload_map, pi->port_id)) { 10629 /* TOE is enabled on another VI of this port. */ 10630 pi->uld_vis++; 10631 return (0); 10632 } 10633 10634 if (!uld_active(sc, ULD_TOM)) { 10635 rc = t4_activate_uld(sc, ULD_TOM); 10636 if (rc == EAGAIN) { 10637 log(LOG_WARNING, 10638 "You must kldload t4_tom.ko before trying " 10639 "to enable TOE on a cxgbe interface.\n"); 10640 } 10641 if (rc != 0) 10642 return (rc); 10643 KASSERT(sc->tom_softc != NULL, 10644 ("%s: TOM activated but softc NULL", __func__)); 10645 KASSERT(uld_active(sc, ULD_TOM), 10646 ("%s: TOM activated but flag not set", __func__)); 10647 } 10648 10649 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 10650 if (!uld_active(sc, ULD_IWARP)) 10651 (void) t4_activate_uld(sc, ULD_IWARP); 10652 if (!uld_active(sc, ULD_ISCSI)) 10653 (void) t4_activate_uld(sc, ULD_ISCSI); 10654 10655 pi->uld_vis++; 10656 setbit(&sc->offload_map, pi->port_id); 10657 } else { 10658 pi->uld_vis--; 10659 10660 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 10661 return (0); 10662 10663 KASSERT(uld_active(sc, ULD_TOM), 10664 ("%s: TOM never initialized?", __func__)); 10665 clrbit(&sc->offload_map, pi->port_id); 10666 } 10667 10668 return (0); 10669 } 10670 10671 /* 10672 * Add an upper layer driver to the global list. 10673 */ 10674 int 10675 t4_register_uld(struct uld_info *ui) 10676 { 10677 int rc = 0; 10678 struct uld_info *u; 10679 10680 sx_xlock(&t4_uld_list_lock); 10681 SLIST_FOREACH(u, &t4_uld_list, link) { 10682 if (u->uld_id == ui->uld_id) { 10683 rc = EEXIST; 10684 goto done; 10685 } 10686 } 10687 10688 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 10689 ui->refcount = 0; 10690 done: 10691 sx_xunlock(&t4_uld_list_lock); 10692 return (rc); 10693 } 10694 10695 int 10696 t4_unregister_uld(struct uld_info *ui) 10697 { 10698 int rc = EINVAL; 10699 struct uld_info *u; 10700 10701 sx_xlock(&t4_uld_list_lock); 10702 10703 SLIST_FOREACH(u, &t4_uld_list, link) { 10704 if (u == ui) { 10705 if (ui->refcount > 0) { 10706 rc = EBUSY; 10707 goto done; 10708 } 10709 10710 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 10711 rc = 0; 10712 goto done; 10713 } 10714 } 10715 done: 10716 sx_xunlock(&t4_uld_list_lock); 10717 return (rc); 10718 } 10719 10720 int 10721 t4_activate_uld(struct adapter *sc, int id) 10722 { 10723 int rc; 10724 struct uld_info *ui; 10725 10726 ASSERT_SYNCHRONIZED_OP(sc); 10727 10728 if (id < 0 || id > ULD_MAX) 10729 return (EINVAL); 10730 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 10731 10732 sx_slock(&t4_uld_list_lock); 10733 10734 SLIST_FOREACH(ui, &t4_uld_list, link) { 10735 if (ui->uld_id == id) { 10736 if (!(sc->flags & FULL_INIT_DONE)) { 10737 rc = adapter_full_init(sc); 10738 if (rc != 0) 10739 break; 10740 } 10741 10742 rc = ui->activate(sc); 10743 if (rc == 0) { 10744 setbit(&sc->active_ulds, id); 10745 ui->refcount++; 10746 } 10747 break; 10748 } 10749 } 10750 10751 sx_sunlock(&t4_uld_list_lock); 10752 10753 return (rc); 10754 } 10755 10756 int 10757 t4_deactivate_uld(struct adapter *sc, int id) 10758 { 10759 int rc; 10760 struct uld_info *ui; 10761 10762 ASSERT_SYNCHRONIZED_OP(sc); 10763 10764 if (id < 0 || id > ULD_MAX) 10765 return (EINVAL); 10766 rc = ENXIO; 10767 10768 sx_slock(&t4_uld_list_lock); 10769 10770 SLIST_FOREACH(ui, &t4_uld_list, link) { 10771 if (ui->uld_id == id) { 10772 rc = ui->deactivate(sc); 10773 if (rc == 0) { 10774 clrbit(&sc->active_ulds, id); 10775 ui->refcount--; 10776 } 10777 break; 10778 } 10779 } 10780 10781 sx_sunlock(&t4_uld_list_lock); 10782 10783 return (rc); 10784 } 10785 10786 int 10787 uld_active(struct adapter *sc, int uld_id) 10788 { 10789 10790 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 10791 10792 return (isset(&sc->active_ulds, uld_id)); 10793 } 10794 #endif 10795 10796 /* 10797 * t = ptr to tunable. 10798 * nc = number of CPUs. 10799 * c = compiled in default for that tunable. 10800 */ 10801 static void 10802 calculate_nqueues(int *t, int nc, const int c) 10803 { 10804 int nq; 10805 10806 if (*t > 0) 10807 return; 10808 nq = *t < 0 ? -*t : c; 10809 *t = min(nc, nq); 10810 } 10811 10812 /* 10813 * Come up with reasonable defaults for some of the tunables, provided they're 10814 * not set by the user (in which case we'll use the values as is). 10815 */ 10816 static void 10817 tweak_tunables(void) 10818 { 10819 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 10820 10821 if (t4_ntxq < 1) { 10822 #ifdef RSS 10823 t4_ntxq = rss_getnumbuckets(); 10824 #else 10825 calculate_nqueues(&t4_ntxq, nc, NTXQ); 10826 #endif 10827 } 10828 10829 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 10830 10831 if (t4_nrxq < 1) { 10832 #ifdef RSS 10833 t4_nrxq = rss_getnumbuckets(); 10834 #else 10835 calculate_nqueues(&t4_nrxq, nc, NRXQ); 10836 #endif 10837 } 10838 10839 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 10840 10841 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 10842 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 10843 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 10844 #endif 10845 #ifdef TCP_OFFLOAD 10846 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 10847 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 10848 #endif 10849 10850 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 10851 if (t4_toecaps_allowed == -1) 10852 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 10853 #else 10854 if (t4_toecaps_allowed == -1) 10855 t4_toecaps_allowed = 0; 10856 #endif 10857 10858 #ifdef TCP_OFFLOAD 10859 if (t4_rdmacaps_allowed == -1) { 10860 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 10861 FW_CAPS_CONFIG_RDMA_RDMAC; 10862 } 10863 10864 if (t4_iscsicaps_allowed == -1) { 10865 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 10866 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 10867 FW_CAPS_CONFIG_ISCSI_T10DIF; 10868 } 10869 10870 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 10871 t4_tmr_idx_ofld = TMR_IDX_OFLD; 10872 10873 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 10874 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 10875 #else 10876 if (t4_rdmacaps_allowed == -1) 10877 t4_rdmacaps_allowed = 0; 10878 10879 if (t4_iscsicaps_allowed == -1) 10880 t4_iscsicaps_allowed = 0; 10881 #endif 10882 10883 #ifdef DEV_NETMAP 10884 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 10885 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 10886 #endif 10887 10888 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 10889 t4_tmr_idx = TMR_IDX; 10890 10891 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 10892 t4_pktc_idx = PKTC_IDX; 10893 10894 if (t4_qsize_txq < 128) 10895 t4_qsize_txq = 128; 10896 10897 if (t4_qsize_rxq < 128) 10898 t4_qsize_rxq = 128; 10899 while (t4_qsize_rxq & 7) 10900 t4_qsize_rxq++; 10901 10902 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 10903 10904 /* 10905 * Number of VIs to create per-port. The first VI is the "main" regular 10906 * VI for the port. The rest are additional virtual interfaces on the 10907 * same physical port. Note that the main VI does not have native 10908 * netmap support but the extra VIs do. 10909 * 10910 * Limit the number of VIs per port to the number of available 10911 * MAC addresses per port. 10912 */ 10913 if (t4_num_vis < 1) 10914 t4_num_vis = 1; 10915 if (t4_num_vis > nitems(vi_mac_funcs)) { 10916 t4_num_vis = nitems(vi_mac_funcs); 10917 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 10918 } 10919 10920 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 10921 pcie_relaxed_ordering = 1; 10922 #if defined(__i386__) || defined(__amd64__) 10923 if (cpu_vendor_id == CPU_VENDOR_INTEL) 10924 pcie_relaxed_ordering = 0; 10925 #endif 10926 } 10927 } 10928 10929 #ifdef DDB 10930 static void 10931 t4_dump_tcb(struct adapter *sc, int tid) 10932 { 10933 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 10934 10935 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 10936 save = t4_read_reg(sc, reg); 10937 base = sc->memwin[2].mw_base; 10938 10939 /* Dump TCB for the tid */ 10940 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10941 tcb_addr += tid * TCB_SIZE; 10942 10943 if (is_t4(sc)) { 10944 pf = 0; 10945 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 10946 } else { 10947 pf = V_PFNUM(sc->pf); 10948 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 10949 } 10950 t4_write_reg(sc, reg, win_pos | pf); 10951 t4_read_reg(sc, reg); 10952 10953 off = tcb_addr - win_pos; 10954 for (i = 0; i < 4; i++) { 10955 uint32_t buf[8]; 10956 for (j = 0; j < 8; j++, off += 4) 10957 buf[j] = htonl(t4_read_reg(sc, base + off)); 10958 10959 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 10960 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 10961 buf[7]); 10962 } 10963 10964 t4_write_reg(sc, reg, save); 10965 t4_read_reg(sc, reg); 10966 } 10967 10968 static void 10969 t4_dump_devlog(struct adapter *sc) 10970 { 10971 struct devlog_params *dparams = &sc->params.devlog; 10972 struct fw_devlog_e e; 10973 int i, first, j, m, nentries, rc; 10974 uint64_t ftstamp = UINT64_MAX; 10975 10976 if (dparams->start == 0) { 10977 db_printf("devlog params not valid\n"); 10978 return; 10979 } 10980 10981 nentries = dparams->size / sizeof(struct fw_devlog_e); 10982 m = fwmtype_to_hwmtype(dparams->memtype); 10983 10984 /* Find the first entry. */ 10985 first = -1; 10986 for (i = 0; i < nentries && !db_pager_quit; i++) { 10987 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 10988 sizeof(e), (void *)&e); 10989 if (rc != 0) 10990 break; 10991 10992 if (e.timestamp == 0) 10993 break; 10994 10995 e.timestamp = be64toh(e.timestamp); 10996 if (e.timestamp < ftstamp) { 10997 ftstamp = e.timestamp; 10998 first = i; 10999 } 11000 } 11001 11002 if (first == -1) 11003 return; 11004 11005 i = first; 11006 do { 11007 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 11008 sizeof(e), (void *)&e); 11009 if (rc != 0) 11010 return; 11011 11012 if (e.timestamp == 0) 11013 return; 11014 11015 e.timestamp = be64toh(e.timestamp); 11016 e.seqno = be32toh(e.seqno); 11017 for (j = 0; j < 8; j++) 11018 e.params[j] = be32toh(e.params[j]); 11019 11020 db_printf("%10d %15ju %8s %8s ", 11021 e.seqno, e.timestamp, 11022 (e.level < nitems(devlog_level_strings) ? 11023 devlog_level_strings[e.level] : "UNKNOWN"), 11024 (e.facility < nitems(devlog_facility_strings) ? 11025 devlog_facility_strings[e.facility] : "UNKNOWN")); 11026 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 11027 e.params[3], e.params[4], e.params[5], e.params[6], 11028 e.params[7]); 11029 11030 if (++i == nentries) 11031 i = 0; 11032 } while (i != first && !db_pager_quit); 11033 } 11034 11035 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 11036 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 11037 11038 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 11039 { 11040 device_t dev; 11041 int t; 11042 bool valid; 11043 11044 valid = false; 11045 t = db_read_token(); 11046 if (t == tIDENT) { 11047 dev = device_lookup_by_name(db_tok_string); 11048 valid = true; 11049 } 11050 db_skip_to_eol(); 11051 if (!valid) { 11052 db_printf("usage: show t4 devlog <nexus>\n"); 11053 return; 11054 } 11055 11056 if (dev == NULL) { 11057 db_printf("device not found\n"); 11058 return; 11059 } 11060 11061 t4_dump_devlog(device_get_softc(dev)); 11062 } 11063 11064 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 11065 { 11066 device_t dev; 11067 int radix, tid, t; 11068 bool valid; 11069 11070 valid = false; 11071 radix = db_radix; 11072 db_radix = 10; 11073 t = db_read_token(); 11074 if (t == tIDENT) { 11075 dev = device_lookup_by_name(db_tok_string); 11076 t = db_read_token(); 11077 if (t == tNUMBER) { 11078 tid = db_tok_number; 11079 valid = true; 11080 } 11081 } 11082 db_radix = radix; 11083 db_skip_to_eol(); 11084 if (!valid) { 11085 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 11086 return; 11087 } 11088 11089 if (dev == NULL) { 11090 db_printf("device not found\n"); 11091 return; 11092 } 11093 if (tid < 0) { 11094 db_printf("invalid tid\n"); 11095 return; 11096 } 11097 11098 t4_dump_tcb(device_get_softc(dev), tid); 11099 } 11100 #endif 11101 11102 static struct sx mlu; /* mod load unload */ 11103 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 11104 11105 static int 11106 mod_event(module_t mod, int cmd, void *arg) 11107 { 11108 int rc = 0; 11109 static int loaded = 0; 11110 11111 switch (cmd) { 11112 case MOD_LOAD: 11113 sx_xlock(&mlu); 11114 if (loaded++ == 0) { 11115 t4_sge_modload(); 11116 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11117 t4_filter_rpl, CPL_COOKIE_FILTER); 11118 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 11119 do_l2t_write_rpl, CPL_COOKIE_FILTER); 11120 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 11121 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 11122 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11123 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 11124 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 11125 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 11126 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 11127 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 11128 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 11129 do_smt_write_rpl); 11130 sx_init(&t4_list_lock, "T4/T5 adapters"); 11131 SLIST_INIT(&t4_list); 11132 callout_init(&fatal_callout, 1); 11133 #ifdef TCP_OFFLOAD 11134 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 11135 SLIST_INIT(&t4_uld_list); 11136 #endif 11137 #ifdef INET6 11138 t4_clip_modload(); 11139 #endif 11140 #ifdef KERN_TLS 11141 t6_ktls_modload(); 11142 #endif 11143 t4_tracer_modload(); 11144 tweak_tunables(); 11145 } 11146 sx_xunlock(&mlu); 11147 break; 11148 11149 case MOD_UNLOAD: 11150 sx_xlock(&mlu); 11151 if (--loaded == 0) { 11152 int tries; 11153 11154 sx_slock(&t4_list_lock); 11155 if (!SLIST_EMPTY(&t4_list)) { 11156 rc = EBUSY; 11157 sx_sunlock(&t4_list_lock); 11158 goto done_unload; 11159 } 11160 #ifdef TCP_OFFLOAD 11161 sx_slock(&t4_uld_list_lock); 11162 if (!SLIST_EMPTY(&t4_uld_list)) { 11163 rc = EBUSY; 11164 sx_sunlock(&t4_uld_list_lock); 11165 sx_sunlock(&t4_list_lock); 11166 goto done_unload; 11167 } 11168 #endif 11169 tries = 0; 11170 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 11171 uprintf("%ju clusters with custom free routine " 11172 "still is use.\n", t4_sge_extfree_refs()); 11173 pause("t4unload", 2 * hz); 11174 } 11175 #ifdef TCP_OFFLOAD 11176 sx_sunlock(&t4_uld_list_lock); 11177 #endif 11178 sx_sunlock(&t4_list_lock); 11179 11180 if (t4_sge_extfree_refs() == 0) { 11181 t4_tracer_modunload(); 11182 #ifdef KERN_TLS 11183 t6_ktls_modunload(); 11184 #endif 11185 #ifdef INET6 11186 t4_clip_modunload(); 11187 #endif 11188 #ifdef TCP_OFFLOAD 11189 sx_destroy(&t4_uld_list_lock); 11190 #endif 11191 sx_destroy(&t4_list_lock); 11192 t4_sge_modunload(); 11193 loaded = 0; 11194 } else { 11195 rc = EBUSY; 11196 loaded++; /* undo earlier decrement */ 11197 } 11198 } 11199 done_unload: 11200 sx_xunlock(&mlu); 11201 break; 11202 } 11203 11204 return (rc); 11205 } 11206 11207 static devclass_t t4_devclass, t5_devclass, t6_devclass; 11208 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 11209 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 11210 11211 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 11212 MODULE_VERSION(t4nex, 1); 11213 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 11214 #ifdef DEV_NETMAP 11215 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 11216 #endif /* DEV_NETMAP */ 11217 11218 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 11219 MODULE_VERSION(t5nex, 1); 11220 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 11221 #ifdef DEV_NETMAP 11222 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 11223 #endif /* DEV_NETMAP */ 11224 11225 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 11226 MODULE_VERSION(t6nex, 1); 11227 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 11228 #ifdef DEV_NETMAP 11229 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 11230 #endif /* DEV_NETMAP */ 11231 11232 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 11233 MODULE_VERSION(cxgbe, 1); 11234 11235 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 11236 MODULE_VERSION(cxl, 1); 11237 11238 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 11239 MODULE_VERSION(cc, 1); 11240 11241 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 11242 MODULE_VERSION(vcxgbe, 1); 11243 11244 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 11245 MODULE_VERSION(vcxl, 1); 11246 11247 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 11248 MODULE_VERSION(vcc, 1); 11249