1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 SLIST_HEAD(, uld_info) t4_uld_list; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 static int t4_num_vis = 1; 608 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 609 "Number of VIs per port"); 610 611 /* 612 * PCIe Relaxed Ordering. 613 * -1: driver should figure out a good value. 614 * 0: disable RO. 615 * 1: enable RO. 616 * 2: leave RO alone. 617 */ 618 static int pcie_relaxed_ordering = -1; 619 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 620 &pcie_relaxed_ordering, 0, 621 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 622 623 static int t4_panic_on_fatal_err = 0; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 625 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 626 627 static int t4_reset_on_fatal_err = 0; 628 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 629 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 630 631 static int t4_clock_gate_on_suspend = 0; 632 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 633 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 634 635 static int t4_tx_vm_wr = 0; 636 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 637 "Use VM work requests to transmit packets."); 638 639 /* 640 * Set to non-zero to enable the attack filter. A packet that matches any of 641 * these conditions will get dropped on ingress: 642 * 1) IP && source address == destination address. 643 * 2) TCP/IP && source address is not a unicast address. 644 * 3) TCP/IP && destination address is not a unicast address. 645 * 4) IP && source address is loopback (127.x.y.z). 646 * 5) IP && destination address is loopback (127.x.y.z). 647 * 6) IPv6 && source address == destination address. 648 * 7) IPv6 && source address is not a unicast address. 649 * 8) IPv6 && source address is loopback (::1/128). 650 * 9) IPv6 && destination address is loopback (::1/128). 651 * 10) IPv6 && source address is unspecified (::/128). 652 * 11) IPv6 && destination address is unspecified (::/128). 653 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 654 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 655 */ 656 static int t4_attack_filter = 0; 657 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 658 &t4_attack_filter, 0, "Drop suspicious traffic"); 659 660 static int t4_drop_ip_fragments = 0; 661 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 662 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 663 664 static int t4_drop_pkts_with_l2_errors = 1; 665 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 666 &t4_drop_pkts_with_l2_errors, 0, 667 "Drop all frames with Layer 2 length or checksum errors"); 668 669 static int t4_drop_pkts_with_l3_errors = 0; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l3_errors, 0, 672 "Drop all frames with IP version, length, or checksum errors"); 673 674 static int t4_drop_pkts_with_l4_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l4_errors, 0, 677 "Drop all frames with Layer 4 length, checksum, or other errors"); 678 679 #ifdef TCP_OFFLOAD 680 /* 681 * TOE tunables. 682 */ 683 static int t4_cop_managed_offloading = 0; 684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 685 &t4_cop_managed_offloading, 0, 686 "COP (Connection Offload Policy) controls all TOE offload"); 687 #endif 688 689 #ifdef KERN_TLS 690 /* 691 * This enables KERN_TLS for all adapters if set. 692 */ 693 static int t4_kern_tls = 0; 694 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 695 "Enable KERN_TLS mode for T6 adapters"); 696 697 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 698 "cxgbe(4) KERN_TLS parameters"); 699 700 static int t4_tls_inline_keys = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 702 &t4_tls_inline_keys, 0, 703 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 704 "in card memory."); 705 706 static int t4_tls_combo_wrs = 0; 707 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 708 0, "Attempt to combine TCB field updates with TLS record work requests."); 709 #endif 710 711 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 712 static int vi_mac_funcs[] = { 713 FW_VI_FUNC_ETH, 714 FW_VI_FUNC_OFLD, 715 FW_VI_FUNC_IWARP, 716 FW_VI_FUNC_OPENISCSI, 717 FW_VI_FUNC_OPENFCOE, 718 FW_VI_FUNC_FOISCSI, 719 FW_VI_FUNC_FOFCOE, 720 }; 721 722 struct intrs_and_queues { 723 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 724 uint16_t num_vis; /* number of VIs for each port */ 725 uint16_t nirq; /* Total # of vectors */ 726 uint16_t ntxq; /* # of NIC txq's for each port */ 727 uint16_t nrxq; /* # of NIC rxq's for each port */ 728 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 729 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 730 uint16_t nnmtxq; /* # of netmap txq's */ 731 uint16_t nnmrxq; /* # of netmap rxq's */ 732 733 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 734 uint16_t ntxq_vi; /* # of NIC txq's */ 735 uint16_t nrxq_vi; /* # of NIC rxq's */ 736 uint16_t nofldtxq_vi; /* # of TOE txq's */ 737 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 738 uint16_t nnmtxq_vi; /* # of netmap txq's */ 739 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 740 }; 741 742 static void setup_memwin(struct adapter *); 743 static void position_memwin(struct adapter *, int, uint32_t); 744 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 745 static int fwmtype_to_hwmtype(int); 746 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 747 uint32_t *); 748 static int fixup_devlog_params(struct adapter *); 749 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 750 static int contact_firmware(struct adapter *); 751 static int partition_resources(struct adapter *); 752 static int get_params__pre_init(struct adapter *); 753 static int set_params__pre_init(struct adapter *); 754 static int get_params__post_init(struct adapter *); 755 static int set_params__post_init(struct adapter *); 756 static void t4_set_desc(struct adapter *); 757 static bool fixed_ifmedia(struct port_info *); 758 static void build_medialist(struct port_info *); 759 static void init_link_config(struct port_info *); 760 static int fixup_link_config(struct port_info *); 761 static int apply_link_config(struct port_info *); 762 static int cxgbe_init_synchronized(struct vi_info *); 763 static int cxgbe_uninit_synchronized(struct vi_info *); 764 static int adapter_full_init(struct adapter *); 765 static void adapter_full_uninit(struct adapter *); 766 static int vi_full_init(struct vi_info *); 767 static void vi_full_uninit(struct vi_info *); 768 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 769 static void quiesce_txq(struct sge_txq *); 770 static void quiesce_wrq(struct sge_wrq *); 771 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 772 static void quiesce_vi(struct vi_info *); 773 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 774 driver_intr_t *, void *, char *); 775 static int t4_free_irq(struct adapter *, struct irq *); 776 static void t4_init_atid_table(struct adapter *); 777 static void t4_free_atid_table(struct adapter *); 778 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 779 static void vi_refresh_stats(struct vi_info *); 780 static void cxgbe_refresh_stats(struct vi_info *); 781 static void cxgbe_tick(void *); 782 static void vi_tick(void *); 783 static void cxgbe_sysctls(struct port_info *); 784 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 785 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 786 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 787 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 788 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 789 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 790 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 791 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 792 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 793 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 794 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 795 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 796 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 797 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 798 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 800 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 801 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 802 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 803 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 804 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 806 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 807 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 808 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 809 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 810 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 811 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 813 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 814 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 815 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 817 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 819 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 820 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 821 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 822 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 823 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 827 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 829 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 830 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 831 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 832 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 833 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 834 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 835 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 836 #ifdef TCP_OFFLOAD 837 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 842 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 843 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 844 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 845 #endif 846 static int get_sge_context(struct adapter *, struct t4_sge_context *); 847 static int load_fw(struct adapter *, struct t4_data *); 848 static int load_cfg(struct adapter *, struct t4_data *); 849 static int load_boot(struct adapter *, struct t4_bootrom *); 850 static int load_bootcfg(struct adapter *, struct t4_data *); 851 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 852 static void free_offload_policy(struct t4_offload_policy *); 853 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 854 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 855 static int read_i2c(struct adapter *, struct t4_i2c_data *); 856 static int clear_stats(struct adapter *, u_int); 857 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 858 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 859 #ifdef TCP_OFFLOAD 860 static int toe_capability(struct vi_info *, bool); 861 static int t4_deactivate_all_uld(struct adapter *); 862 static void t4_async_event(struct adapter *); 863 #endif 864 #ifdef KERN_TLS 865 static int ktls_capability(struct adapter *, bool); 866 #endif 867 static int mod_event(module_t, int, void *); 868 static int notify_siblings(device_t, int); 869 static uint64_t vi_get_counter(if_t, ift_counter); 870 static uint64_t cxgbe_get_counter(if_t, ift_counter); 871 static void enable_vxlan_rx(struct adapter *); 872 static void reset_adapter_task(void *, int); 873 static void fatal_error_task(void *, int); 874 static void dump_devlog(struct adapter *); 875 static void dump_cim_regs(struct adapter *); 876 static void dump_cimla(struct adapter *); 877 878 struct { 879 uint16_t device; 880 char *desc; 881 } t4_pciids[] = { 882 {0xa000, "Chelsio Terminator 4 FPGA"}, 883 {0x4400, "Chelsio T440-dbg"}, 884 {0x4401, "Chelsio T420-CR"}, 885 {0x4402, "Chelsio T422-CR"}, 886 {0x4403, "Chelsio T440-CR"}, 887 {0x4404, "Chelsio T420-BCH"}, 888 {0x4405, "Chelsio T440-BCH"}, 889 {0x4406, "Chelsio T440-CH"}, 890 {0x4407, "Chelsio T420-SO"}, 891 {0x4408, "Chelsio T420-CX"}, 892 {0x4409, "Chelsio T420-BT"}, 893 {0x440a, "Chelsio T404-BT"}, 894 {0x440e, "Chelsio T440-LP-CR"}, 895 }, t5_pciids[] = { 896 {0xb000, "Chelsio Terminator 5 FPGA"}, 897 {0x5400, "Chelsio T580-dbg"}, 898 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 899 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 900 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 901 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 902 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 903 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 904 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 905 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 906 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 907 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 908 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 909 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 910 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 911 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 912 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 913 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 914 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 915 916 /* Custom */ 917 {0x5483, "Custom T540-CR"}, 918 {0x5484, "Custom T540-BT"}, 919 }, t6_pciids[] = { 920 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 921 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 922 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 923 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 924 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 925 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 926 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 927 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 928 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 929 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 930 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 931 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 932 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 933 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 934 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 935 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 936 937 /* Custom */ 938 {0x6480, "Custom T6225-CR"}, 939 {0x6481, "Custom T62100-CR"}, 940 {0x6482, "Custom T6225-CR"}, 941 {0x6483, "Custom T62100-CR"}, 942 {0x6484, "Custom T64100-CR"}, 943 {0x6485, "Custom T6240-SO"}, 944 {0x6486, "Custom T6225-SO-CR"}, 945 {0x6487, "Custom T6225-CR"}, 946 }; 947 948 #ifdef TCP_OFFLOAD 949 /* 950 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 951 * be exactly the same for both rxq and ofld_rxq. 952 */ 953 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 954 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 955 #endif 956 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 957 958 static int 959 t4_probe(device_t dev) 960 { 961 int i; 962 uint16_t v = pci_get_vendor(dev); 963 uint16_t d = pci_get_device(dev); 964 uint8_t f = pci_get_function(dev); 965 966 if (v != PCI_VENDOR_ID_CHELSIO) 967 return (ENXIO); 968 969 /* Attach only to PF0 of the FPGA */ 970 if (d == 0xa000 && f != 0) 971 return (ENXIO); 972 973 for (i = 0; i < nitems(t4_pciids); i++) { 974 if (d == t4_pciids[i].device) { 975 device_set_desc(dev, t4_pciids[i].desc); 976 return (BUS_PROBE_DEFAULT); 977 } 978 } 979 980 return (ENXIO); 981 } 982 983 static int 984 t5_probe(device_t dev) 985 { 986 int i; 987 uint16_t v = pci_get_vendor(dev); 988 uint16_t d = pci_get_device(dev); 989 uint8_t f = pci_get_function(dev); 990 991 if (v != PCI_VENDOR_ID_CHELSIO) 992 return (ENXIO); 993 994 /* Attach only to PF0 of the FPGA */ 995 if (d == 0xb000 && f != 0) 996 return (ENXIO); 997 998 for (i = 0; i < nitems(t5_pciids); i++) { 999 if (d == t5_pciids[i].device) { 1000 device_set_desc(dev, t5_pciids[i].desc); 1001 return (BUS_PROBE_DEFAULT); 1002 } 1003 } 1004 1005 return (ENXIO); 1006 } 1007 1008 static int 1009 t6_probe(device_t dev) 1010 { 1011 int i; 1012 uint16_t v = pci_get_vendor(dev); 1013 uint16_t d = pci_get_device(dev); 1014 1015 if (v != PCI_VENDOR_ID_CHELSIO) 1016 return (ENXIO); 1017 1018 for (i = 0; i < nitems(t6_pciids); i++) { 1019 if (d == t6_pciids[i].device) { 1020 device_set_desc(dev, t6_pciids[i].desc); 1021 return (BUS_PROBE_DEFAULT); 1022 } 1023 } 1024 1025 return (ENXIO); 1026 } 1027 1028 static void 1029 t5_attribute_workaround(device_t dev) 1030 { 1031 device_t root_port; 1032 uint32_t v; 1033 1034 /* 1035 * The T5 chips do not properly echo the No Snoop and Relaxed 1036 * Ordering attributes when replying to a TLP from a Root 1037 * Port. As a workaround, find the parent Root Port and 1038 * disable No Snoop and Relaxed Ordering. Note that this 1039 * affects all devices under this root port. 1040 */ 1041 root_port = pci_find_pcie_root_port(dev); 1042 if (root_port == NULL) { 1043 device_printf(dev, "Unable to find parent root port\n"); 1044 return; 1045 } 1046 1047 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1048 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1049 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1050 0) 1051 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1052 device_get_nameunit(root_port)); 1053 } 1054 1055 static const struct devnames devnames[] = { 1056 { 1057 .nexus_name = "t4nex", 1058 .ifnet_name = "cxgbe", 1059 .vi_ifnet_name = "vcxgbe", 1060 .pf03_drv_name = "t4iov", 1061 .vf_nexus_name = "t4vf", 1062 .vf_ifnet_name = "cxgbev" 1063 }, { 1064 .nexus_name = "t5nex", 1065 .ifnet_name = "cxl", 1066 .vi_ifnet_name = "vcxl", 1067 .pf03_drv_name = "t5iov", 1068 .vf_nexus_name = "t5vf", 1069 .vf_ifnet_name = "cxlv" 1070 }, { 1071 .nexus_name = "t6nex", 1072 .ifnet_name = "cc", 1073 .vi_ifnet_name = "vcc", 1074 .pf03_drv_name = "t6iov", 1075 .vf_nexus_name = "t6vf", 1076 .vf_ifnet_name = "ccv" 1077 } 1078 }; 1079 1080 void 1081 t4_init_devnames(struct adapter *sc) 1082 { 1083 int id; 1084 1085 id = chip_id(sc); 1086 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1087 sc->names = &devnames[id - CHELSIO_T4]; 1088 else { 1089 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1090 sc->names = NULL; 1091 } 1092 } 1093 1094 static int 1095 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1096 { 1097 const char *parent, *name; 1098 long value; 1099 int line, unit; 1100 1101 line = 0; 1102 parent = device_get_nameunit(sc->dev); 1103 name = sc->names->ifnet_name; 1104 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1105 if (resource_long_value(name, unit, "port", &value) == 0 && 1106 value == pi->port_id) 1107 return (unit); 1108 } 1109 return (-1); 1110 } 1111 1112 static void 1113 t4_calibration(void *arg) 1114 { 1115 struct adapter *sc; 1116 struct clock_sync *cur, *nex; 1117 uint64_t hw; 1118 sbintime_t sbt; 1119 int next_up; 1120 1121 sc = (struct adapter *)arg; 1122 1123 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1124 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1125 sbt = sbinuptime(); 1126 1127 cur = &sc->cal_info[sc->cal_current]; 1128 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1129 nex = &sc->cal_info[next_up]; 1130 if (__predict_false(sc->cal_count == 0)) { 1131 /* First time in, just get the values in */ 1132 cur->hw_cur = hw; 1133 cur->sbt_cur = sbt; 1134 sc->cal_count++; 1135 goto done; 1136 } 1137 1138 if (cur->hw_cur == hw) { 1139 /* The clock is not advancing? */ 1140 sc->cal_count = 0; 1141 atomic_store_rel_int(&cur->gen, 0); 1142 goto done; 1143 } 1144 1145 seqc_write_begin(&nex->gen); 1146 nex->hw_prev = cur->hw_cur; 1147 nex->sbt_prev = cur->sbt_cur; 1148 nex->hw_cur = hw; 1149 nex->sbt_cur = sbt; 1150 seqc_write_end(&nex->gen); 1151 sc->cal_current = next_up; 1152 done: 1153 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1154 sc, C_DIRECT_EXEC); 1155 } 1156 1157 static void 1158 t4_calibration_start(struct adapter *sc) 1159 { 1160 /* 1161 * Here if we have not done a calibration 1162 * then do so otherwise start the appropriate 1163 * timer. 1164 */ 1165 int i; 1166 1167 for (i = 0; i < CNT_CAL_INFO; i++) { 1168 sc->cal_info[i].gen = 0; 1169 } 1170 sc->cal_current = 0; 1171 sc->cal_count = 0; 1172 sc->cal_gen = 0; 1173 t4_calibration(sc); 1174 } 1175 1176 static int 1177 t4_attach(device_t dev) 1178 { 1179 struct adapter *sc; 1180 int rc = 0, i, j, rqidx, tqidx, nports; 1181 struct make_dev_args mda; 1182 struct intrs_and_queues iaq; 1183 struct sge *s; 1184 uint32_t *buf; 1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1186 int ofld_tqidx; 1187 #endif 1188 #ifdef TCP_OFFLOAD 1189 int ofld_rqidx; 1190 #endif 1191 #ifdef DEV_NETMAP 1192 int nm_rqidx, nm_tqidx; 1193 #endif 1194 int num_vis; 1195 1196 sc = device_get_softc(dev); 1197 sc->dev = dev; 1198 sysctl_ctx_init(&sc->ctx); 1199 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1200 1201 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1202 t5_attribute_workaround(dev); 1203 pci_enable_busmaster(dev); 1204 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1205 uint32_t v; 1206 1207 pci_set_max_read_req(dev, 4096); 1208 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1209 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1210 if (pcie_relaxed_ordering == 0 && 1211 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1212 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1213 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1214 } else if (pcie_relaxed_ordering == 1 && 1215 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1216 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1217 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1218 } 1219 } 1220 1221 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1222 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1223 sc->traceq = -1; 1224 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1225 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1226 device_get_nameunit(dev)); 1227 1228 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1229 device_get_nameunit(dev)); 1230 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1231 t4_add_adapter(sc); 1232 1233 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1234 TAILQ_INIT(&sc->sfl); 1235 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1236 1237 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1238 1239 sc->policy = NULL; 1240 rw_init(&sc->policy_lock, "connection offload policy"); 1241 1242 callout_init(&sc->ktls_tick, 1); 1243 1244 callout_init(&sc->cal_callout, 1); 1245 1246 refcount_init(&sc->vxlan_refcount, 0); 1247 1248 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1249 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1250 1251 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1252 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1253 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1254 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1255 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1256 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1257 1258 rc = t4_map_bars_0_and_4(sc); 1259 if (rc != 0) 1260 goto done; /* error message displayed already */ 1261 1262 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1263 1264 /* Prepare the adapter for operation. */ 1265 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1266 rc = -t4_prep_adapter(sc, buf); 1267 free(buf, M_CXGBE); 1268 if (rc != 0) { 1269 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1270 goto done; 1271 } 1272 1273 /* 1274 * This is the real PF# to which we're attaching. Works from within PCI 1275 * passthrough environments too, where pci_get_function() could return a 1276 * different PF# depending on the passthrough configuration. We need to 1277 * use the real PF# in all our communication with the firmware. 1278 */ 1279 j = t4_read_reg(sc, A_PL_WHOAMI); 1280 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1281 sc->mbox = sc->pf; 1282 1283 t4_init_devnames(sc); 1284 if (sc->names == NULL) { 1285 rc = ENOTSUP; 1286 goto done; /* error message displayed already */ 1287 } 1288 1289 /* 1290 * Do this really early, with the memory windows set up even before the 1291 * character device. The userland tool's register i/o and mem read 1292 * will work even in "recovery mode". 1293 */ 1294 setup_memwin(sc); 1295 if (t4_init_devlog_params(sc, 0) == 0) 1296 fixup_devlog_params(sc); 1297 make_dev_args_init(&mda); 1298 mda.mda_devsw = &t4_cdevsw; 1299 mda.mda_uid = UID_ROOT; 1300 mda.mda_gid = GID_WHEEL; 1301 mda.mda_mode = 0600; 1302 mda.mda_si_drv1 = sc; 1303 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1304 if (rc != 0) 1305 device_printf(dev, "failed to create nexus char device: %d.\n", 1306 rc); 1307 1308 /* Go no further if recovery mode has been requested. */ 1309 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1310 device_printf(dev, "recovery mode.\n"); 1311 goto done; 1312 } 1313 1314 #if defined(__i386__) 1315 if ((cpu_feature & CPUID_CX8) == 0) { 1316 device_printf(dev, "64 bit atomics not available.\n"); 1317 rc = ENOTSUP; 1318 goto done; 1319 } 1320 #endif 1321 1322 /* Contact the firmware and try to become the master driver. */ 1323 rc = contact_firmware(sc); 1324 if (rc != 0) 1325 goto done; /* error message displayed already */ 1326 MPASS(sc->flags & FW_OK); 1327 1328 rc = get_params__pre_init(sc); 1329 if (rc != 0) 1330 goto done; /* error message displayed already */ 1331 1332 if (sc->flags & MASTER_PF) { 1333 rc = partition_resources(sc); 1334 if (rc != 0) 1335 goto done; /* error message displayed already */ 1336 } 1337 1338 rc = get_params__post_init(sc); 1339 if (rc != 0) 1340 goto done; /* error message displayed already */ 1341 1342 rc = set_params__post_init(sc); 1343 if (rc != 0) 1344 goto done; /* error message displayed already */ 1345 1346 rc = t4_map_bar_2(sc); 1347 if (rc != 0) 1348 goto done; /* error message displayed already */ 1349 1350 rc = t4_create_dma_tag(sc); 1351 if (rc != 0) 1352 goto done; /* error message displayed already */ 1353 1354 /* 1355 * First pass over all the ports - allocate VIs and initialize some 1356 * basic parameters like mac address, port type, etc. 1357 */ 1358 for_each_port(sc, i) { 1359 struct port_info *pi; 1360 1361 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1362 sc->port[i] = pi; 1363 1364 /* These must be set before t4_port_init */ 1365 pi->adapter = sc; 1366 pi->port_id = i; 1367 /* 1368 * XXX: vi[0] is special so we can't delay this allocation until 1369 * pi->nvi's final value is known. 1370 */ 1371 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1372 M_ZERO | M_WAITOK); 1373 1374 /* 1375 * Allocate the "main" VI and initialize parameters 1376 * like mac addr. 1377 */ 1378 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1379 if (rc != 0) { 1380 device_printf(dev, "unable to initialize port %d: %d\n", 1381 i, rc); 1382 free(pi->vi, M_CXGBE); 1383 free(pi, M_CXGBE); 1384 sc->port[i] = NULL; 1385 goto done; 1386 } 1387 1388 if (is_bt(pi->port_type)) 1389 setbit(&sc->bt_map, pi->tx_chan); 1390 else 1391 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1392 1393 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1394 device_get_nameunit(dev), i); 1395 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1396 sc->chan_map[pi->tx_chan] = i; 1397 1398 /* 1399 * The MPS counter for FCS errors doesn't work correctly on the 1400 * T6 so we use the MAC counter here. Which MAC is in use 1401 * depends on the link settings which will be known when the 1402 * link comes up. 1403 */ 1404 if (is_t6(sc)) 1405 pi->fcs_reg = -1; 1406 else { 1407 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1408 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1409 } 1410 pi->fcs_base = 0; 1411 1412 /* All VIs on this port share this media. */ 1413 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1414 cxgbe_media_status); 1415 1416 PORT_LOCK(pi); 1417 init_link_config(pi); 1418 fixup_link_config(pi); 1419 build_medialist(pi); 1420 if (fixed_ifmedia(pi)) 1421 pi->flags |= FIXED_IFMEDIA; 1422 PORT_UNLOCK(pi); 1423 1424 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1425 t4_ifnet_unit(sc, pi)); 1426 if (pi->dev == NULL) { 1427 device_printf(dev, 1428 "failed to add device for port %d.\n", i); 1429 rc = ENXIO; 1430 goto done; 1431 } 1432 pi->vi[0].dev = pi->dev; 1433 device_set_softc(pi->dev, pi); 1434 } 1435 1436 /* 1437 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1438 */ 1439 nports = sc->params.nports; 1440 rc = cfg_itype_and_nqueues(sc, &iaq); 1441 if (rc != 0) 1442 goto done; /* error message displayed already */ 1443 1444 num_vis = iaq.num_vis; 1445 sc->intr_type = iaq.intr_type; 1446 sc->intr_count = iaq.nirq; 1447 1448 s = &sc->sge; 1449 s->nrxq = nports * iaq.nrxq; 1450 s->ntxq = nports * iaq.ntxq; 1451 if (num_vis > 1) { 1452 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1453 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1454 } 1455 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1456 s->neq += nports; /* ctrl queues: 1 per port */ 1457 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1459 if (is_offload(sc) || is_ethoffload(sc)) { 1460 s->nofldtxq = nports * iaq.nofldtxq; 1461 if (num_vis > 1) 1462 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1463 s->neq += s->nofldtxq; 1464 1465 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1466 M_CXGBE, M_ZERO | M_WAITOK); 1467 } 1468 #endif 1469 #ifdef TCP_OFFLOAD 1470 if (is_offload(sc)) { 1471 s->nofldrxq = nports * iaq.nofldrxq; 1472 if (num_vis > 1) 1473 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1474 s->neq += s->nofldrxq; /* free list */ 1475 s->niq += s->nofldrxq; 1476 1477 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1478 M_CXGBE, M_ZERO | M_WAITOK); 1479 } 1480 #endif 1481 #ifdef DEV_NETMAP 1482 s->nnmrxq = 0; 1483 s->nnmtxq = 0; 1484 if (t4_native_netmap & NN_MAIN_VI) { 1485 s->nnmrxq += nports * iaq.nnmrxq; 1486 s->nnmtxq += nports * iaq.nnmtxq; 1487 } 1488 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1489 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1490 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1491 } 1492 s->neq += s->nnmtxq + s->nnmrxq; 1493 s->niq += s->nnmrxq; 1494 1495 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1496 M_CXGBE, M_ZERO | M_WAITOK); 1497 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1498 M_CXGBE, M_ZERO | M_WAITOK); 1499 #endif 1500 MPASS(s->niq <= s->iqmap_sz); 1501 MPASS(s->neq <= s->eqmap_sz); 1502 1503 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1504 M_ZERO | M_WAITOK); 1505 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1506 M_ZERO | M_WAITOK); 1507 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1508 M_ZERO | M_WAITOK); 1509 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1510 M_ZERO | M_WAITOK); 1511 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1512 M_ZERO | M_WAITOK); 1513 1514 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1515 M_ZERO | M_WAITOK); 1516 1517 t4_init_l2t(sc, M_WAITOK); 1518 t4_init_smt(sc, M_WAITOK); 1519 t4_init_tx_sched(sc); 1520 t4_init_atid_table(sc); 1521 #ifdef RATELIMIT 1522 t4_init_etid_table(sc); 1523 #endif 1524 #ifdef INET6 1525 t4_init_clip_table(sc); 1526 #endif 1527 if (sc->vres.key.size != 0) 1528 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1529 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1530 1531 /* 1532 * Second pass over the ports. This time we know the number of rx and 1533 * tx queues that each port should get. 1534 */ 1535 rqidx = tqidx = 0; 1536 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1537 ofld_tqidx = 0; 1538 #endif 1539 #ifdef TCP_OFFLOAD 1540 ofld_rqidx = 0; 1541 #endif 1542 #ifdef DEV_NETMAP 1543 nm_rqidx = nm_tqidx = 0; 1544 #endif 1545 for_each_port(sc, i) { 1546 struct port_info *pi = sc->port[i]; 1547 struct vi_info *vi; 1548 1549 if (pi == NULL) 1550 continue; 1551 1552 pi->nvi = num_vis; 1553 for_each_vi(pi, j, vi) { 1554 vi->pi = pi; 1555 vi->adapter = sc; 1556 vi->first_intr = -1; 1557 vi->qsize_rxq = t4_qsize_rxq; 1558 vi->qsize_txq = t4_qsize_txq; 1559 1560 vi->first_rxq = rqidx; 1561 vi->first_txq = tqidx; 1562 vi->tmr_idx = t4_tmr_idx; 1563 vi->pktc_idx = t4_pktc_idx; 1564 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1565 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1566 1567 rqidx += vi->nrxq; 1568 tqidx += vi->ntxq; 1569 1570 if (j == 0 && vi->ntxq > 1) 1571 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1572 else 1573 vi->rsrv_noflowq = 0; 1574 1575 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1576 vi->first_ofld_txq = ofld_tqidx; 1577 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1578 ofld_tqidx += vi->nofldtxq; 1579 #endif 1580 #ifdef TCP_OFFLOAD 1581 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1582 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1583 vi->first_ofld_rxq = ofld_rqidx; 1584 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1585 1586 ofld_rqidx += vi->nofldrxq; 1587 #endif 1588 #ifdef DEV_NETMAP 1589 vi->first_nm_rxq = nm_rqidx; 1590 vi->first_nm_txq = nm_tqidx; 1591 if (j == 0) { 1592 vi->nnmrxq = iaq.nnmrxq; 1593 vi->nnmtxq = iaq.nnmtxq; 1594 } else { 1595 vi->nnmrxq = iaq.nnmrxq_vi; 1596 vi->nnmtxq = iaq.nnmtxq_vi; 1597 } 1598 nm_rqidx += vi->nnmrxq; 1599 nm_tqidx += vi->nnmtxq; 1600 #endif 1601 } 1602 } 1603 1604 rc = t4_setup_intr_handlers(sc); 1605 if (rc != 0) { 1606 device_printf(dev, 1607 "failed to setup interrupt handlers: %d\n", rc); 1608 goto done; 1609 } 1610 1611 rc = bus_generic_probe(dev); 1612 if (rc != 0) { 1613 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1614 goto done; 1615 } 1616 1617 /* 1618 * Ensure thread-safe mailbox access (in debug builds). 1619 * 1620 * So far this was the only thread accessing the mailbox but various 1621 * ifnets and sysctls are about to be created and their handlers/ioctls 1622 * will access the mailbox from different threads. 1623 */ 1624 sc->flags |= CHK_MBOX_ACCESS; 1625 1626 rc = bus_generic_attach(dev); 1627 if (rc != 0) { 1628 device_printf(dev, 1629 "failed to attach all child ports: %d\n", rc); 1630 goto done; 1631 } 1632 t4_calibration_start(sc); 1633 1634 device_printf(dev, 1635 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1636 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1637 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1638 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1639 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1640 1641 t4_set_desc(sc); 1642 1643 notify_siblings(dev, 0); 1644 1645 done: 1646 if (rc != 0 && sc->cdev) { 1647 /* cdev was created and so cxgbetool works; recover that way. */ 1648 device_printf(dev, 1649 "error during attach, adapter is now in recovery mode.\n"); 1650 rc = 0; 1651 } 1652 1653 if (rc != 0) 1654 t4_detach_common(dev); 1655 else 1656 t4_sysctls(sc); 1657 1658 return (rc); 1659 } 1660 1661 static int 1662 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1663 { 1664 struct adapter *sc; 1665 struct port_info *pi; 1666 int i; 1667 1668 sc = device_get_softc(bus); 1669 for_each_port(sc, i) { 1670 pi = sc->port[i]; 1671 if (pi != NULL && pi->dev == dev) { 1672 sbuf_printf(sb, "port=%d", pi->port_id); 1673 break; 1674 } 1675 } 1676 return (0); 1677 } 1678 1679 static int 1680 t4_ready(device_t dev) 1681 { 1682 struct adapter *sc; 1683 1684 sc = device_get_softc(dev); 1685 if (sc->flags & FW_OK) 1686 return (0); 1687 return (ENXIO); 1688 } 1689 1690 static int 1691 t4_read_port_device(device_t dev, int port, device_t *child) 1692 { 1693 struct adapter *sc; 1694 struct port_info *pi; 1695 1696 sc = device_get_softc(dev); 1697 if (port < 0 || port >= MAX_NPORTS) 1698 return (EINVAL); 1699 pi = sc->port[port]; 1700 if (pi == NULL || pi->dev == NULL) 1701 return (ENXIO); 1702 *child = pi->dev; 1703 return (0); 1704 } 1705 1706 static int 1707 notify_siblings(device_t dev, int detaching) 1708 { 1709 device_t sibling; 1710 int error, i; 1711 1712 error = 0; 1713 for (i = 0; i < PCI_FUNCMAX; i++) { 1714 if (i == pci_get_function(dev)) 1715 continue; 1716 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1717 pci_get_slot(dev), i); 1718 if (sibling == NULL || !device_is_attached(sibling)) 1719 continue; 1720 if (detaching) 1721 error = T4_DETACH_CHILD(sibling); 1722 else 1723 (void)T4_ATTACH_CHILD(sibling); 1724 if (error) 1725 break; 1726 } 1727 return (error); 1728 } 1729 1730 /* 1731 * Idempotent 1732 */ 1733 static int 1734 t4_detach(device_t dev) 1735 { 1736 int rc; 1737 1738 rc = notify_siblings(dev, 1); 1739 if (rc) { 1740 device_printf(dev, 1741 "failed to detach sibling devices: %d\n", rc); 1742 return (rc); 1743 } 1744 1745 return (t4_detach_common(dev)); 1746 } 1747 1748 int 1749 t4_detach_common(device_t dev) 1750 { 1751 struct adapter *sc; 1752 struct port_info *pi; 1753 int i, rc; 1754 1755 sc = device_get_softc(dev); 1756 1757 #ifdef TCP_OFFLOAD 1758 rc = t4_deactivate_all_uld(sc); 1759 if (rc) { 1760 device_printf(dev, 1761 "failed to detach upper layer drivers: %d\n", rc); 1762 return (rc); 1763 } 1764 #endif 1765 1766 if (sc->cdev) { 1767 destroy_dev(sc->cdev); 1768 sc->cdev = NULL; 1769 } 1770 1771 sx_xlock(&t4_list_lock); 1772 SLIST_REMOVE(&t4_list, sc, adapter, link); 1773 sx_xunlock(&t4_list_lock); 1774 1775 sc->flags &= ~CHK_MBOX_ACCESS; 1776 if (sc->flags & FULL_INIT_DONE) { 1777 if (!(sc->flags & IS_VF)) 1778 t4_intr_disable(sc); 1779 } 1780 1781 if (device_is_attached(dev)) { 1782 rc = bus_generic_detach(dev); 1783 if (rc) { 1784 device_printf(dev, 1785 "failed to detach child devices: %d\n", rc); 1786 return (rc); 1787 } 1788 } 1789 1790 for (i = 0; i < sc->intr_count; i++) 1791 t4_free_irq(sc, &sc->irq[i]); 1792 1793 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1794 t4_free_tx_sched(sc); 1795 1796 for (i = 0; i < MAX_NPORTS; i++) { 1797 pi = sc->port[i]; 1798 if (pi) { 1799 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1800 if (pi->dev) 1801 device_delete_child(dev, pi->dev); 1802 1803 mtx_destroy(&pi->pi_lock); 1804 free(pi->vi, M_CXGBE); 1805 free(pi, M_CXGBE); 1806 } 1807 } 1808 callout_stop(&sc->cal_callout); 1809 callout_drain(&sc->cal_callout); 1810 device_delete_children(dev); 1811 sysctl_ctx_free(&sc->ctx); 1812 adapter_full_uninit(sc); 1813 1814 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1815 t4_fw_bye(sc, sc->mbox); 1816 1817 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1818 pci_release_msi(dev); 1819 1820 if (sc->regs_res) 1821 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1822 sc->regs_res); 1823 1824 if (sc->udbs_res) 1825 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1826 sc->udbs_res); 1827 1828 if (sc->msix_res) 1829 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1830 sc->msix_res); 1831 1832 if (sc->l2t) 1833 t4_free_l2t(sc->l2t); 1834 if (sc->smt) 1835 t4_free_smt(sc->smt); 1836 t4_free_atid_table(sc); 1837 #ifdef RATELIMIT 1838 t4_free_etid_table(sc); 1839 #endif 1840 if (sc->key_map) 1841 vmem_destroy(sc->key_map); 1842 #ifdef INET6 1843 t4_destroy_clip_table(sc); 1844 #endif 1845 1846 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1847 free(sc->sge.ofld_txq, M_CXGBE); 1848 #endif 1849 #ifdef TCP_OFFLOAD 1850 free(sc->sge.ofld_rxq, M_CXGBE); 1851 #endif 1852 #ifdef DEV_NETMAP 1853 free(sc->sge.nm_rxq, M_CXGBE); 1854 free(sc->sge.nm_txq, M_CXGBE); 1855 #endif 1856 free(sc->irq, M_CXGBE); 1857 free(sc->sge.rxq, M_CXGBE); 1858 free(sc->sge.txq, M_CXGBE); 1859 free(sc->sge.ctrlq, M_CXGBE); 1860 free(sc->sge.iqmap, M_CXGBE); 1861 free(sc->sge.eqmap, M_CXGBE); 1862 free(sc->tids.ftid_tab, M_CXGBE); 1863 free(sc->tids.hpftid_tab, M_CXGBE); 1864 free_hftid_hash(&sc->tids); 1865 free(sc->tids.tid_tab, M_CXGBE); 1866 t4_destroy_dma_tag(sc); 1867 1868 callout_drain(&sc->ktls_tick); 1869 callout_drain(&sc->sfl_callout); 1870 if (mtx_initialized(&sc->tids.ftid_lock)) { 1871 mtx_destroy(&sc->tids.ftid_lock); 1872 cv_destroy(&sc->tids.ftid_cv); 1873 } 1874 if (mtx_initialized(&sc->tids.atid_lock)) 1875 mtx_destroy(&sc->tids.atid_lock); 1876 if (mtx_initialized(&sc->ifp_lock)) 1877 mtx_destroy(&sc->ifp_lock); 1878 1879 if (rw_initialized(&sc->policy_lock)) { 1880 rw_destroy(&sc->policy_lock); 1881 #ifdef TCP_OFFLOAD 1882 if (sc->policy != NULL) 1883 free_offload_policy(sc->policy); 1884 #endif 1885 } 1886 1887 for (i = 0; i < NUM_MEMWIN; i++) { 1888 struct memwin *mw = &sc->memwin[i]; 1889 1890 if (rw_initialized(&mw->mw_lock)) 1891 rw_destroy(&mw->mw_lock); 1892 } 1893 1894 mtx_destroy(&sc->sfl_lock); 1895 mtx_destroy(&sc->reg_lock); 1896 mtx_destroy(&sc->sc_lock); 1897 1898 bzero(sc, sizeof(*sc)); 1899 1900 return (0); 1901 } 1902 1903 static inline bool 1904 ok_to_reset(struct adapter *sc) 1905 { 1906 struct tid_info *t = &sc->tids; 1907 struct port_info *pi; 1908 struct vi_info *vi; 1909 int i, j; 1910 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1911 1912 if (is_t6(sc)) 1913 caps |= IFCAP_TXTLS; 1914 1915 ASSERT_SYNCHRONIZED_OP(sc); 1916 MPASS(!(sc->flags & IS_VF)); 1917 1918 for_each_port(sc, i) { 1919 pi = sc->port[i]; 1920 for_each_vi(pi, j, vi) { 1921 if (if_getcapenable(vi->ifp) & caps) 1922 return (false); 1923 } 1924 } 1925 1926 if (atomic_load_int(&t->tids_in_use) > 0) 1927 return (false); 1928 if (atomic_load_int(&t->stids_in_use) > 0) 1929 return (false); 1930 if (atomic_load_int(&t->atids_in_use) > 0) 1931 return (false); 1932 if (atomic_load_int(&t->ftids_in_use) > 0) 1933 return (false); 1934 if (atomic_load_int(&t->hpftids_in_use) > 0) 1935 return (false); 1936 if (atomic_load_int(&t->etids_in_use) > 0) 1937 return (false); 1938 1939 return (true); 1940 } 1941 1942 static inline int 1943 stop_adapter(struct adapter *sc) 1944 { 1945 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1946 return (1); /* Already stopped. */ 1947 return (t4_shutdown_adapter(sc)); 1948 } 1949 1950 static int 1951 t4_suspend(device_t dev) 1952 { 1953 struct adapter *sc = device_get_softc(dev); 1954 struct port_info *pi; 1955 struct vi_info *vi; 1956 if_t ifp; 1957 struct sge_rxq *rxq; 1958 struct sge_txq *txq; 1959 struct sge_wrq *wrq; 1960 #ifdef TCP_OFFLOAD 1961 struct sge_ofld_rxq *ofld_rxq; 1962 #endif 1963 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1964 struct sge_ofld_txq *ofld_txq; 1965 #endif 1966 int rc, i, j, k; 1967 1968 CH_ALERT(sc, "suspend requested\n"); 1969 1970 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1971 if (rc != 0) 1972 return (ENXIO); 1973 1974 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1975 MPASS(!hw_off_limits(sc)); 1976 1977 if (!ok_to_reset(sc)) { 1978 /* XXX: should list what resource is preventing suspend. */ 1979 CH_ERR(sc, "not safe to suspend.\n"); 1980 rc = EBUSY; 1981 goto done; 1982 } 1983 1984 /* No more DMA or interrupts. */ 1985 stop_adapter(sc); 1986 1987 /* Quiesce all activity. */ 1988 for_each_port(sc, i) { 1989 pi = sc->port[i]; 1990 pi->vxlan_tcam_entry = false; 1991 1992 PORT_LOCK(pi); 1993 if (pi->up_vis > 0) { 1994 /* 1995 * t4_shutdown_adapter has already shut down all the 1996 * PHYs but it also disables interrupts and DMA so there 1997 * won't be a link interrupt. So we update the state 1998 * manually and inform the kernel. 1999 */ 2000 pi->link_cfg.link_ok = false; 2001 t4_os_link_changed(pi); 2002 } 2003 PORT_UNLOCK(pi); 2004 2005 for_each_vi(pi, j, vi) { 2006 vi->xact_addr_filt = -1; 2007 mtx_lock(&vi->tick_mtx); 2008 vi->flags |= VI_SKIP_STATS; 2009 mtx_unlock(&vi->tick_mtx); 2010 if (!(vi->flags & VI_INIT_DONE)) 2011 continue; 2012 2013 ifp = vi->ifp; 2014 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2015 mtx_lock(&vi->tick_mtx); 2016 callout_stop(&vi->tick); 2017 mtx_unlock(&vi->tick_mtx); 2018 callout_drain(&vi->tick); 2019 } 2020 2021 /* 2022 * Note that the HW is not available. 2023 */ 2024 for_each_txq(vi, k, txq) { 2025 TXQ_LOCK(txq); 2026 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2027 TXQ_UNLOCK(txq); 2028 } 2029 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2030 for_each_ofld_txq(vi, k, ofld_txq) { 2031 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2032 } 2033 #endif 2034 for_each_rxq(vi, k, rxq) { 2035 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2036 } 2037 #if defined(TCP_OFFLOAD) 2038 for_each_ofld_rxq(vi, k, ofld_rxq) { 2039 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2040 } 2041 #endif 2042 2043 quiesce_vi(vi); 2044 } 2045 2046 if (sc->flags & FULL_INIT_DONE) { 2047 /* Control queue */ 2048 wrq = &sc->sge.ctrlq[i]; 2049 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2050 quiesce_wrq(wrq); 2051 } 2052 } 2053 if (sc->flags & FULL_INIT_DONE) { 2054 /* Firmware event queue */ 2055 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2056 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2057 } 2058 2059 /* Stop calibration */ 2060 callout_stop(&sc->cal_callout); 2061 callout_drain(&sc->cal_callout); 2062 2063 /* Mark the adapter totally off limits. */ 2064 mtx_lock(&sc->reg_lock); 2065 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2066 sc->flags &= ~(FW_OK | MASTER_PF); 2067 sc->reset_thread = NULL; 2068 mtx_unlock(&sc->reg_lock); 2069 2070 if (t4_clock_gate_on_suspend) { 2071 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2072 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2073 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2074 } 2075 2076 CH_ALERT(sc, "suspend completed.\n"); 2077 done: 2078 end_synchronized_op(sc, 0); 2079 return (rc); 2080 } 2081 2082 struct adapter_pre_reset_state { 2083 u_int flags; 2084 uint16_t nbmcaps; 2085 uint16_t linkcaps; 2086 uint16_t switchcaps; 2087 uint16_t niccaps; 2088 uint16_t toecaps; 2089 uint16_t rdmacaps; 2090 uint16_t cryptocaps; 2091 uint16_t iscsicaps; 2092 uint16_t fcoecaps; 2093 2094 u_int cfcsum; 2095 char cfg_file[32]; 2096 2097 struct adapter_params params; 2098 struct t4_virt_res vres; 2099 struct tid_info tids; 2100 struct sge sge; 2101 2102 int rawf_base; 2103 int nrawf; 2104 2105 }; 2106 2107 static void 2108 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2109 { 2110 2111 ASSERT_SYNCHRONIZED_OP(sc); 2112 2113 o->flags = sc->flags; 2114 2115 o->nbmcaps = sc->nbmcaps; 2116 o->linkcaps = sc->linkcaps; 2117 o->switchcaps = sc->switchcaps; 2118 o->niccaps = sc->niccaps; 2119 o->toecaps = sc->toecaps; 2120 o->rdmacaps = sc->rdmacaps; 2121 o->cryptocaps = sc->cryptocaps; 2122 o->iscsicaps = sc->iscsicaps; 2123 o->fcoecaps = sc->fcoecaps; 2124 2125 o->cfcsum = sc->cfcsum; 2126 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2127 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2128 2129 o->params = sc->params; 2130 o->vres = sc->vres; 2131 o->tids = sc->tids; 2132 o->sge = sc->sge; 2133 2134 o->rawf_base = sc->rawf_base; 2135 o->nrawf = sc->nrawf; 2136 } 2137 2138 static int 2139 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2140 { 2141 int rc = 0; 2142 2143 ASSERT_SYNCHRONIZED_OP(sc); 2144 2145 /* Capabilities */ 2146 #define COMPARE_CAPS(c) do { \ 2147 if (o->c##caps != sc->c##caps) { \ 2148 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2149 sc->c##caps); \ 2150 rc = EINVAL; \ 2151 } \ 2152 } while (0) 2153 COMPARE_CAPS(nbm); 2154 COMPARE_CAPS(link); 2155 COMPARE_CAPS(switch); 2156 COMPARE_CAPS(nic); 2157 COMPARE_CAPS(toe); 2158 COMPARE_CAPS(rdma); 2159 COMPARE_CAPS(crypto); 2160 COMPARE_CAPS(iscsi); 2161 COMPARE_CAPS(fcoe); 2162 #undef COMPARE_CAPS 2163 2164 /* Firmware config file */ 2165 if (o->cfcsum != sc->cfcsum) { 2166 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2167 o->cfcsum, sc->cfg_file, sc->cfcsum); 2168 rc = EINVAL; 2169 } 2170 2171 #define COMPARE_PARAM(p, name) do { \ 2172 if (o->p != sc->p) { \ 2173 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2174 rc = EINVAL; \ 2175 } \ 2176 } while (0) 2177 COMPARE_PARAM(sge.iq_start, iq_start); 2178 COMPARE_PARAM(sge.eq_start, eq_start); 2179 COMPARE_PARAM(tids.ftid_base, ftid_base); 2180 COMPARE_PARAM(tids.ftid_end, ftid_end); 2181 COMPARE_PARAM(tids.nftids, nftids); 2182 COMPARE_PARAM(vres.l2t.start, l2t_start); 2183 COMPARE_PARAM(vres.l2t.size, l2t_size); 2184 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2185 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2186 COMPARE_PARAM(tids.tid_base, tid_base); 2187 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2188 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2189 COMPARE_PARAM(tids.nhpftids, nhpftids); 2190 COMPARE_PARAM(rawf_base, rawf_base); 2191 COMPARE_PARAM(nrawf, nrawf); 2192 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2193 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2194 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2195 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2196 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2197 COMPARE_PARAM(tids.ntids, ntids); 2198 COMPARE_PARAM(tids.etid_base, etid_base); 2199 COMPARE_PARAM(tids.etid_end, etid_end); 2200 COMPARE_PARAM(tids.netids, netids); 2201 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2202 COMPARE_PARAM(params.ethoffload, ethoffload); 2203 COMPARE_PARAM(tids.natids, natids); 2204 COMPARE_PARAM(tids.stid_base, stid_base); 2205 COMPARE_PARAM(vres.ddp.start, ddp_start); 2206 COMPARE_PARAM(vres.ddp.size, ddp_size); 2207 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2208 COMPARE_PARAM(vres.stag.start, stag_start); 2209 COMPARE_PARAM(vres.stag.size, stag_size); 2210 COMPARE_PARAM(vres.rq.start, rq_start); 2211 COMPARE_PARAM(vres.rq.size, rq_size); 2212 COMPARE_PARAM(vres.pbl.start, pbl_start); 2213 COMPARE_PARAM(vres.pbl.size, pbl_size); 2214 COMPARE_PARAM(vres.qp.start, qp_start); 2215 COMPARE_PARAM(vres.qp.size, qp_size); 2216 COMPARE_PARAM(vres.cq.start, cq_start); 2217 COMPARE_PARAM(vres.cq.size, cq_size); 2218 COMPARE_PARAM(vres.ocq.start, ocq_start); 2219 COMPARE_PARAM(vres.ocq.size, ocq_size); 2220 COMPARE_PARAM(vres.srq.start, srq_start); 2221 COMPARE_PARAM(vres.srq.size, srq_size); 2222 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2223 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2224 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2225 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2226 COMPARE_PARAM(vres.key.start, key_start); 2227 COMPARE_PARAM(vres.key.size, key_size); 2228 #undef COMPARE_PARAM 2229 2230 return (rc); 2231 } 2232 2233 static int 2234 t4_resume(device_t dev) 2235 { 2236 struct adapter *sc = device_get_softc(dev); 2237 struct adapter_pre_reset_state *old_state = NULL; 2238 struct port_info *pi; 2239 struct vi_info *vi; 2240 if_t ifp; 2241 struct sge_txq *txq; 2242 int rc, i, j, k; 2243 2244 CH_ALERT(sc, "resume requested.\n"); 2245 2246 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2247 if (rc != 0) 2248 return (ENXIO); 2249 MPASS(hw_off_limits(sc)); 2250 MPASS((sc->flags & FW_OK) == 0); 2251 MPASS((sc->flags & MASTER_PF) == 0); 2252 MPASS(sc->reset_thread == NULL); 2253 sc->reset_thread = curthread; 2254 2255 /* Register access is expected to work by the time we're here. */ 2256 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2257 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2258 rc = ENXIO; 2259 goto done; 2260 } 2261 2262 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2263 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2264 2265 /* Restore memory window. */ 2266 setup_memwin(sc); 2267 2268 /* Go no further if recovery mode has been requested. */ 2269 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2270 CH_ALERT(sc, "recovery mode on resume.\n"); 2271 rc = 0; 2272 mtx_lock(&sc->reg_lock); 2273 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2274 mtx_unlock(&sc->reg_lock); 2275 goto done; 2276 } 2277 2278 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2279 save_caps_and_params(sc, old_state); 2280 2281 /* Reestablish contact with firmware and become the primary PF. */ 2282 rc = contact_firmware(sc); 2283 if (rc != 0) 2284 goto done; /* error message displayed already */ 2285 MPASS(sc->flags & FW_OK); 2286 2287 if (sc->flags & MASTER_PF) { 2288 rc = partition_resources(sc); 2289 if (rc != 0) 2290 goto done; /* error message displayed already */ 2291 } 2292 2293 rc = get_params__post_init(sc); 2294 if (rc != 0) 2295 goto done; /* error message displayed already */ 2296 2297 rc = set_params__post_init(sc); 2298 if (rc != 0) 2299 goto done; /* error message displayed already */ 2300 2301 rc = compare_caps_and_params(sc, old_state); 2302 if (rc != 0) 2303 goto done; /* error message displayed already */ 2304 2305 for_each_port(sc, i) { 2306 pi = sc->port[i]; 2307 MPASS(pi != NULL); 2308 MPASS(pi->vi != NULL); 2309 MPASS(pi->vi[0].dev == pi->dev); 2310 2311 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2312 if (rc != 0) { 2313 CH_ERR(sc, 2314 "failed to re-initialize port %d: %d\n", i, rc); 2315 goto done; 2316 } 2317 MPASS(sc->chan_map[pi->tx_chan] == i); 2318 2319 PORT_LOCK(pi); 2320 fixup_link_config(pi); 2321 build_medialist(pi); 2322 PORT_UNLOCK(pi); 2323 for_each_vi(pi, j, vi) { 2324 if (IS_MAIN_VI(vi)) 2325 continue; 2326 rc = alloc_extra_vi(sc, pi, vi); 2327 if (rc != 0) { 2328 CH_ERR(vi, 2329 "failed to re-allocate extra VI: %d\n", rc); 2330 goto done; 2331 } 2332 } 2333 } 2334 2335 /* 2336 * Interrupts and queues are about to be enabled and other threads will 2337 * want to access the hardware too. It is safe to do so. Note that 2338 * this thread is still in the middle of a synchronized_op. 2339 */ 2340 mtx_lock(&sc->reg_lock); 2341 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2342 mtx_unlock(&sc->reg_lock); 2343 2344 if (sc->flags & FULL_INIT_DONE) { 2345 rc = adapter_full_init(sc); 2346 if (rc != 0) { 2347 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2348 goto done; 2349 } 2350 2351 if (sc->vxlan_refcount > 0) 2352 enable_vxlan_rx(sc); 2353 2354 for_each_port(sc, i) { 2355 pi = sc->port[i]; 2356 for_each_vi(pi, j, vi) { 2357 mtx_lock(&vi->tick_mtx); 2358 vi->flags &= ~VI_SKIP_STATS; 2359 mtx_unlock(&vi->tick_mtx); 2360 if (!(vi->flags & VI_INIT_DONE)) 2361 continue; 2362 rc = vi_full_init(vi); 2363 if (rc != 0) { 2364 CH_ERR(vi, "failed to re-initialize " 2365 "interface: %d\n", rc); 2366 goto done; 2367 } 2368 2369 ifp = vi->ifp; 2370 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2371 continue; 2372 /* 2373 * Note that we do not setup multicast addresses 2374 * in the first pass. This ensures that the 2375 * unicast DMACs for all VIs on all ports get an 2376 * MPS TCAM entry. 2377 */ 2378 rc = update_mac_settings(ifp, XGMAC_ALL & 2379 ~XGMAC_MCADDRS); 2380 if (rc != 0) { 2381 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2382 goto done; 2383 } 2384 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2385 true); 2386 if (rc != 0) { 2387 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2388 goto done; 2389 } 2390 for_each_txq(vi, k, txq) { 2391 TXQ_LOCK(txq); 2392 txq->eq.flags |= EQ_ENABLED; 2393 TXQ_UNLOCK(txq); 2394 } 2395 mtx_lock(&vi->tick_mtx); 2396 callout_schedule(&vi->tick, hz); 2397 mtx_unlock(&vi->tick_mtx); 2398 } 2399 PORT_LOCK(pi); 2400 if (pi->up_vis > 0) { 2401 t4_update_port_info(pi); 2402 fixup_link_config(pi); 2403 build_medialist(pi); 2404 apply_link_config(pi); 2405 if (pi->link_cfg.link_ok) 2406 t4_os_link_changed(pi); 2407 } 2408 PORT_UNLOCK(pi); 2409 } 2410 2411 /* Now reprogram the L2 multicast addresses. */ 2412 for_each_port(sc, i) { 2413 pi = sc->port[i]; 2414 for_each_vi(pi, j, vi) { 2415 if (!(vi->flags & VI_INIT_DONE)) 2416 continue; 2417 ifp = vi->ifp; 2418 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2419 continue; 2420 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2421 if (rc != 0) { 2422 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2423 rc = 0; /* carry on */ 2424 } 2425 } 2426 } 2427 } 2428 2429 /* Reset all calibration */ 2430 t4_calibration_start(sc); 2431 2432 done: 2433 if (rc == 0) { 2434 sc->incarnation++; 2435 CH_ALERT(sc, "resume completed.\n"); 2436 } 2437 end_synchronized_op(sc, 0); 2438 free(old_state, M_CXGBE); 2439 return (rc); 2440 } 2441 2442 static int 2443 t4_reset_prepare(device_t dev, device_t child) 2444 { 2445 struct adapter *sc = device_get_softc(dev); 2446 2447 CH_ALERT(sc, "reset_prepare.\n"); 2448 return (0); 2449 } 2450 2451 static int 2452 t4_reset_post(device_t dev, device_t child) 2453 { 2454 struct adapter *sc = device_get_softc(dev); 2455 2456 CH_ALERT(sc, "reset_post.\n"); 2457 return (0); 2458 } 2459 2460 static int 2461 reset_adapter(struct adapter *sc) 2462 { 2463 int rc, oldinc, error_flags; 2464 2465 CH_ALERT(sc, "reset requested.\n"); 2466 2467 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2468 if (rc != 0) 2469 return (EBUSY); 2470 2471 if (hw_off_limits(sc)) { 2472 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2473 rc = ENXIO; 2474 goto done; 2475 } 2476 2477 if (!ok_to_reset(sc)) { 2478 /* XXX: should list what resource is preventing reset. */ 2479 CH_ERR(sc, "not safe to reset.\n"); 2480 rc = EBUSY; 2481 goto done; 2482 } 2483 2484 done: 2485 oldinc = sc->incarnation; 2486 end_synchronized_op(sc, 0); 2487 if (rc != 0) 2488 return (rc); /* Error logged already. */ 2489 2490 atomic_add_int(&sc->num_resets, 1); 2491 mtx_lock(&Giant); 2492 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2493 mtx_unlock(&Giant); 2494 if (rc != 0) 2495 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2496 else { 2497 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2498 if (rc != 0) 2499 return (EBUSY); 2500 error_flags = atomic_load_int(&sc->error_flags); 2501 if (sc->incarnation > oldinc && error_flags == 0) { 2502 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2503 } else { 2504 CH_ERR(sc, "adapter did not reset properly, flags " 2505 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2506 error_flags); 2507 rc = ENXIO; 2508 } 2509 end_synchronized_op(sc, 0); 2510 } 2511 2512 return (rc); 2513 } 2514 2515 static void 2516 reset_adapter_task(void *arg, int pending) 2517 { 2518 /* XXX: t4_async_event here? */ 2519 reset_adapter(arg); 2520 } 2521 2522 static int 2523 cxgbe_probe(device_t dev) 2524 { 2525 struct port_info *pi = device_get_softc(dev); 2526 2527 device_set_descf(dev, "port %d", pi->port_id); 2528 2529 return (BUS_PROBE_DEFAULT); 2530 } 2531 2532 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2533 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2534 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2535 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2536 #define T4_CAP_ENABLE (T4_CAP) 2537 2538 static int 2539 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2540 { 2541 if_t ifp; 2542 struct sbuf *sb; 2543 struct sysctl_ctx_list *ctx = &vi->ctx; 2544 struct sysctl_oid_list *children; 2545 struct pfil_head_args pa; 2546 struct adapter *sc = vi->adapter; 2547 2548 sysctl_ctx_init(ctx); 2549 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2550 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2551 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2552 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2553 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2554 #ifdef DEV_NETMAP 2555 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2556 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2557 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2558 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2559 #endif 2560 #ifdef TCP_OFFLOAD 2561 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2562 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2563 #endif 2564 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2565 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2566 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2567 #endif 2568 2569 vi->xact_addr_filt = -1; 2570 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2571 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2572 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2573 vi->flags |= TX_USES_VM_WR; 2574 2575 /* Allocate an ifnet and set it up */ 2576 ifp = if_alloc_dev(IFT_ETHER, dev); 2577 if (ifp == NULL) { 2578 device_printf(dev, "Cannot allocate ifnet\n"); 2579 return (ENOMEM); 2580 } 2581 vi->ifp = ifp; 2582 if_setsoftc(ifp, vi); 2583 2584 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2585 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2586 2587 if_setinitfn(ifp, cxgbe_init); 2588 if_setioctlfn(ifp, cxgbe_ioctl); 2589 if_settransmitfn(ifp, cxgbe_transmit); 2590 if_setqflushfn(ifp, cxgbe_qflush); 2591 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2592 if_setgetcounterfn(ifp, vi_get_counter); 2593 else 2594 if_setgetcounterfn(ifp, cxgbe_get_counter); 2595 #if defined(KERN_TLS) || defined(RATELIMIT) 2596 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2597 #endif 2598 #ifdef RATELIMIT 2599 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2600 #endif 2601 2602 if_setcapabilities(ifp, T4_CAP); 2603 if_setcapenable(ifp, T4_CAP_ENABLE); 2604 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2605 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2606 if (chip_id(sc) >= CHELSIO_T6) { 2607 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2608 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2609 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2610 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2611 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2612 } 2613 2614 #ifdef TCP_OFFLOAD 2615 if (vi->nofldrxq != 0) 2616 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2617 #endif 2618 #ifdef RATELIMIT 2619 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2620 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2621 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2622 } 2623 #endif 2624 2625 if_sethwtsomax(ifp, IP_MAXPACKET); 2626 if (vi->flags & TX_USES_VM_WR) 2627 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2628 else 2629 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2630 #ifdef RATELIMIT 2631 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2632 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2633 #endif 2634 if_sethwtsomaxsegsize(ifp, 65536); 2635 #ifdef KERN_TLS 2636 if (is_ktls(sc)) { 2637 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2638 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2639 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2640 } 2641 #endif 2642 2643 ether_ifattach(ifp, vi->hw_addr); 2644 #ifdef DEV_NETMAP 2645 if (vi->nnmrxq != 0) 2646 cxgbe_nm_attach(vi); 2647 #endif 2648 sb = sbuf_new_auto(); 2649 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2650 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2651 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2652 case IFCAP_TOE: 2653 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2654 break; 2655 case IFCAP_TOE | IFCAP_TXRTLMT: 2656 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2657 break; 2658 case IFCAP_TXRTLMT: 2659 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2660 break; 2661 } 2662 #endif 2663 #ifdef TCP_OFFLOAD 2664 if (if_getcapabilities(ifp) & IFCAP_TOE) 2665 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2666 #endif 2667 #ifdef DEV_NETMAP 2668 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2669 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2670 vi->nnmtxq, vi->nnmrxq); 2671 #endif 2672 sbuf_finish(sb); 2673 device_printf(dev, "%s\n", sbuf_data(sb)); 2674 sbuf_delete(sb); 2675 2676 vi_sysctls(vi); 2677 2678 pa.pa_version = PFIL_VERSION; 2679 pa.pa_flags = PFIL_IN; 2680 pa.pa_type = PFIL_TYPE_ETHERNET; 2681 pa.pa_headname = if_name(ifp); 2682 vi->pfil = pfil_head_register(&pa); 2683 2684 return (0); 2685 } 2686 2687 static int 2688 cxgbe_attach(device_t dev) 2689 { 2690 struct port_info *pi = device_get_softc(dev); 2691 struct adapter *sc = pi->adapter; 2692 struct vi_info *vi; 2693 int i, rc; 2694 2695 sysctl_ctx_init(&pi->ctx); 2696 2697 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2698 if (rc) 2699 return (rc); 2700 2701 for_each_vi(pi, i, vi) { 2702 if (i == 0) 2703 continue; 2704 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2705 if (vi->dev == NULL) { 2706 device_printf(dev, "failed to add VI %d\n", i); 2707 continue; 2708 } 2709 device_set_softc(vi->dev, vi); 2710 } 2711 2712 cxgbe_sysctls(pi); 2713 2714 bus_generic_attach(dev); 2715 2716 return (0); 2717 } 2718 2719 static void 2720 cxgbe_vi_detach(struct vi_info *vi) 2721 { 2722 if_t ifp = vi->ifp; 2723 2724 if (vi->pfil != NULL) { 2725 pfil_head_unregister(vi->pfil); 2726 vi->pfil = NULL; 2727 } 2728 2729 ether_ifdetach(ifp); 2730 2731 /* Let detach proceed even if these fail. */ 2732 #ifdef DEV_NETMAP 2733 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2734 cxgbe_nm_detach(vi); 2735 #endif 2736 cxgbe_uninit_synchronized(vi); 2737 callout_drain(&vi->tick); 2738 mtx_destroy(&vi->tick_mtx); 2739 sysctl_ctx_free(&vi->ctx); 2740 vi_full_uninit(vi); 2741 2742 if_free(vi->ifp); 2743 vi->ifp = NULL; 2744 } 2745 2746 static int 2747 cxgbe_detach(device_t dev) 2748 { 2749 struct port_info *pi = device_get_softc(dev); 2750 struct adapter *sc = pi->adapter; 2751 int rc; 2752 2753 /* Detach the extra VIs first. */ 2754 rc = bus_generic_detach(dev); 2755 if (rc) 2756 return (rc); 2757 device_delete_children(dev); 2758 2759 sysctl_ctx_free(&pi->ctx); 2760 begin_vi_detach(sc, &pi->vi[0]); 2761 if (pi->flags & HAS_TRACEQ) { 2762 sc->traceq = -1; /* cloner should not create ifnet */ 2763 t4_tracer_port_detach(sc); 2764 } 2765 cxgbe_vi_detach(&pi->vi[0]); 2766 ifmedia_removeall(&pi->media); 2767 end_vi_detach(sc, &pi->vi[0]); 2768 2769 return (0); 2770 } 2771 2772 static void 2773 cxgbe_init(void *arg) 2774 { 2775 struct vi_info *vi = arg; 2776 struct adapter *sc = vi->adapter; 2777 2778 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2779 return; 2780 cxgbe_init_synchronized(vi); 2781 end_synchronized_op(sc, 0); 2782 } 2783 2784 static int 2785 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2786 { 2787 int rc = 0, mtu, flags; 2788 struct vi_info *vi = if_getsoftc(ifp); 2789 struct port_info *pi = vi->pi; 2790 struct adapter *sc = pi->adapter; 2791 struct ifreq *ifr = (struct ifreq *)data; 2792 uint32_t mask; 2793 2794 switch (cmd) { 2795 case SIOCSIFMTU: 2796 mtu = ifr->ifr_mtu; 2797 if (mtu < ETHERMIN || mtu > MAX_MTU) 2798 return (EINVAL); 2799 2800 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2801 if (rc) 2802 return (rc); 2803 if_setmtu(ifp, mtu); 2804 if (vi->flags & VI_INIT_DONE) { 2805 t4_update_fl_bufsize(ifp); 2806 if (!hw_off_limits(sc) && 2807 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2808 rc = update_mac_settings(ifp, XGMAC_MTU); 2809 } 2810 end_synchronized_op(sc, 0); 2811 break; 2812 2813 case SIOCSIFFLAGS: 2814 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2815 if (rc) 2816 return (rc); 2817 2818 if (hw_off_limits(sc)) { 2819 rc = ENXIO; 2820 goto fail; 2821 } 2822 2823 if (if_getflags(ifp) & IFF_UP) { 2824 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2825 flags = vi->if_flags; 2826 if ((if_getflags(ifp) ^ flags) & 2827 (IFF_PROMISC | IFF_ALLMULTI)) { 2828 rc = update_mac_settings(ifp, 2829 XGMAC_PROMISC | XGMAC_ALLMULTI); 2830 } 2831 } else { 2832 rc = cxgbe_init_synchronized(vi); 2833 } 2834 vi->if_flags = if_getflags(ifp); 2835 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2836 rc = cxgbe_uninit_synchronized(vi); 2837 } 2838 end_synchronized_op(sc, 0); 2839 break; 2840 2841 case SIOCADDMULTI: 2842 case SIOCDELMULTI: 2843 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2844 if (rc) 2845 return (rc); 2846 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2847 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2848 end_synchronized_op(sc, 0); 2849 break; 2850 2851 case SIOCSIFCAP: 2852 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2853 if (rc) 2854 return (rc); 2855 2856 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2857 if (mask & IFCAP_TXCSUM) { 2858 if_togglecapenable(ifp, IFCAP_TXCSUM); 2859 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2860 2861 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2862 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2863 mask &= ~IFCAP_TSO4; 2864 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2865 if_printf(ifp, 2866 "tso4 disabled due to -txcsum.\n"); 2867 } 2868 } 2869 if (mask & IFCAP_TXCSUM_IPV6) { 2870 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2871 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2872 2873 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2874 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2875 mask &= ~IFCAP_TSO6; 2876 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2877 if_printf(ifp, 2878 "tso6 disabled due to -txcsum6.\n"); 2879 } 2880 } 2881 if (mask & IFCAP_RXCSUM) 2882 if_togglecapenable(ifp, IFCAP_RXCSUM); 2883 if (mask & IFCAP_RXCSUM_IPV6) 2884 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2885 2886 /* 2887 * Note that we leave CSUM_TSO alone (it is always set). The 2888 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2889 * sending a TSO request our way, so it's sufficient to toggle 2890 * IFCAP_TSOx only. 2891 */ 2892 if (mask & IFCAP_TSO4) { 2893 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2894 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2895 if_printf(ifp, "enable txcsum first.\n"); 2896 rc = EAGAIN; 2897 goto fail; 2898 } 2899 if_togglecapenable(ifp, IFCAP_TSO4); 2900 } 2901 if (mask & IFCAP_TSO6) { 2902 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2903 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2904 if_printf(ifp, "enable txcsum6 first.\n"); 2905 rc = EAGAIN; 2906 goto fail; 2907 } 2908 if_togglecapenable(ifp, IFCAP_TSO6); 2909 } 2910 if (mask & IFCAP_LRO) { 2911 #if defined(INET) || defined(INET6) 2912 int i; 2913 struct sge_rxq *rxq; 2914 2915 if_togglecapenable(ifp, IFCAP_LRO); 2916 for_each_rxq(vi, i, rxq) { 2917 if (if_getcapenable(ifp) & IFCAP_LRO) 2918 rxq->iq.flags |= IQ_LRO_ENABLED; 2919 else 2920 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2921 } 2922 #endif 2923 } 2924 #ifdef TCP_OFFLOAD 2925 if (mask & IFCAP_TOE) { 2926 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2927 2928 rc = toe_capability(vi, enable); 2929 if (rc != 0) 2930 goto fail; 2931 2932 if_togglecapenable(ifp, mask); 2933 } 2934 #endif 2935 if (mask & IFCAP_VLAN_HWTAGGING) { 2936 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2937 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2938 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2939 } 2940 if (mask & IFCAP_VLAN_MTU) { 2941 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2942 2943 /* Need to find out how to disable auto-mtu-inflation */ 2944 } 2945 if (mask & IFCAP_VLAN_HWTSO) 2946 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2947 if (mask & IFCAP_VLAN_HWCSUM) 2948 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2949 #ifdef RATELIMIT 2950 if (mask & IFCAP_TXRTLMT) 2951 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2952 #endif 2953 if (mask & IFCAP_HWRXTSTMP) { 2954 int i; 2955 struct sge_rxq *rxq; 2956 2957 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 2958 for_each_rxq(vi, i, rxq) { 2959 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 2960 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2961 else 2962 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2963 } 2964 } 2965 if (mask & IFCAP_MEXTPG) 2966 if_togglecapenable(ifp, IFCAP_MEXTPG); 2967 2968 #ifdef KERN_TLS 2969 if (mask & IFCAP_TXTLS) { 2970 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 2971 2972 rc = ktls_capability(sc, enable); 2973 if (rc != 0) 2974 goto fail; 2975 2976 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 2977 } 2978 #endif 2979 if (mask & IFCAP_VXLAN_HWCSUM) { 2980 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 2981 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 2982 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2983 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 2984 } 2985 if (mask & IFCAP_VXLAN_HWTSO) { 2986 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 2987 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 2988 CSUM_INNER_IP_TSO); 2989 } 2990 2991 #ifdef VLAN_CAPABILITIES 2992 VLAN_CAPABILITIES(ifp); 2993 #endif 2994 fail: 2995 end_synchronized_op(sc, 0); 2996 break; 2997 2998 case SIOCSIFMEDIA: 2999 case SIOCGIFMEDIA: 3000 case SIOCGIFXMEDIA: 3001 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3002 break; 3003 3004 case SIOCGI2C: { 3005 struct ifi2creq i2c; 3006 3007 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3008 if (rc != 0) 3009 break; 3010 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3011 rc = EPERM; 3012 break; 3013 } 3014 if (i2c.len > sizeof(i2c.data)) { 3015 rc = EINVAL; 3016 break; 3017 } 3018 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3019 if (rc) 3020 return (rc); 3021 if (hw_off_limits(sc)) 3022 rc = ENXIO; 3023 else 3024 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3025 i2c.offset, i2c.len, &i2c.data[0]); 3026 end_synchronized_op(sc, 0); 3027 if (rc == 0) 3028 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3029 break; 3030 } 3031 3032 default: 3033 rc = ether_ioctl(ifp, cmd, data); 3034 } 3035 3036 return (rc); 3037 } 3038 3039 static int 3040 cxgbe_transmit(if_t ifp, struct mbuf *m) 3041 { 3042 struct vi_info *vi = if_getsoftc(ifp); 3043 struct port_info *pi = vi->pi; 3044 struct adapter *sc; 3045 struct sge_txq *txq; 3046 void *items[1]; 3047 int rc; 3048 3049 M_ASSERTPKTHDR(m); 3050 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3051 #if defined(KERN_TLS) || defined(RATELIMIT) 3052 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3053 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3054 #endif 3055 3056 if (__predict_false(pi->link_cfg.link_ok == false)) { 3057 m_freem(m); 3058 return (ENETDOWN); 3059 } 3060 3061 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3062 if (__predict_false(rc != 0)) { 3063 if (__predict_true(rc == EINPROGRESS)) { 3064 /* queued by parse_pkt */ 3065 MPASS(m != NULL); 3066 return (0); 3067 } 3068 3069 MPASS(m == NULL); /* was freed already */ 3070 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3071 return (rc); 3072 } 3073 3074 /* Select a txq. */ 3075 sc = vi->adapter; 3076 txq = &sc->sge.txq[vi->first_txq]; 3077 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3078 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3079 vi->rsrv_noflowq); 3080 3081 items[0] = m; 3082 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3083 if (__predict_false(rc != 0)) 3084 m_freem(m); 3085 3086 return (rc); 3087 } 3088 3089 static void 3090 cxgbe_qflush(if_t ifp) 3091 { 3092 struct vi_info *vi = if_getsoftc(ifp); 3093 struct sge_txq *txq; 3094 int i; 3095 3096 /* queues do not exist if !VI_INIT_DONE. */ 3097 if (vi->flags & VI_INIT_DONE) { 3098 for_each_txq(vi, i, txq) { 3099 TXQ_LOCK(txq); 3100 txq->eq.flags |= EQ_QFLUSH; 3101 TXQ_UNLOCK(txq); 3102 while (!mp_ring_is_idle(txq->r)) { 3103 mp_ring_check_drainage(txq->r, 4096); 3104 pause("qflush", 1); 3105 } 3106 TXQ_LOCK(txq); 3107 txq->eq.flags &= ~EQ_QFLUSH; 3108 TXQ_UNLOCK(txq); 3109 } 3110 } 3111 if_qflush(ifp); 3112 } 3113 3114 static uint64_t 3115 vi_get_counter(if_t ifp, ift_counter c) 3116 { 3117 struct vi_info *vi = if_getsoftc(ifp); 3118 struct fw_vi_stats_vf *s = &vi->stats; 3119 3120 mtx_lock(&vi->tick_mtx); 3121 vi_refresh_stats(vi); 3122 mtx_unlock(&vi->tick_mtx); 3123 3124 switch (c) { 3125 case IFCOUNTER_IPACKETS: 3126 return (s->rx_bcast_frames + s->rx_mcast_frames + 3127 s->rx_ucast_frames); 3128 case IFCOUNTER_IERRORS: 3129 return (s->rx_err_frames); 3130 case IFCOUNTER_OPACKETS: 3131 return (s->tx_bcast_frames + s->tx_mcast_frames + 3132 s->tx_ucast_frames + s->tx_offload_frames); 3133 case IFCOUNTER_OERRORS: 3134 return (s->tx_drop_frames); 3135 case IFCOUNTER_IBYTES: 3136 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3137 s->rx_ucast_bytes); 3138 case IFCOUNTER_OBYTES: 3139 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3140 s->tx_ucast_bytes + s->tx_offload_bytes); 3141 case IFCOUNTER_IMCASTS: 3142 return (s->rx_mcast_frames); 3143 case IFCOUNTER_OMCASTS: 3144 return (s->tx_mcast_frames); 3145 case IFCOUNTER_OQDROPS: { 3146 uint64_t drops; 3147 3148 drops = 0; 3149 if (vi->flags & VI_INIT_DONE) { 3150 int i; 3151 struct sge_txq *txq; 3152 3153 for_each_txq(vi, i, txq) 3154 drops += counter_u64_fetch(txq->r->dropped); 3155 } 3156 3157 return (drops); 3158 3159 } 3160 3161 default: 3162 return (if_get_counter_default(ifp, c)); 3163 } 3164 } 3165 3166 static uint64_t 3167 cxgbe_get_counter(if_t ifp, ift_counter c) 3168 { 3169 struct vi_info *vi = if_getsoftc(ifp); 3170 struct port_info *pi = vi->pi; 3171 struct port_stats *s = &pi->stats; 3172 3173 mtx_lock(&vi->tick_mtx); 3174 cxgbe_refresh_stats(vi); 3175 mtx_unlock(&vi->tick_mtx); 3176 3177 switch (c) { 3178 case IFCOUNTER_IPACKETS: 3179 return (s->rx_frames); 3180 3181 case IFCOUNTER_IERRORS: 3182 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3183 s->rx_fcs_err + s->rx_len_err); 3184 3185 case IFCOUNTER_OPACKETS: 3186 return (s->tx_frames); 3187 3188 case IFCOUNTER_OERRORS: 3189 return (s->tx_error_frames); 3190 3191 case IFCOUNTER_IBYTES: 3192 return (s->rx_octets); 3193 3194 case IFCOUNTER_OBYTES: 3195 return (s->tx_octets); 3196 3197 case IFCOUNTER_IMCASTS: 3198 return (s->rx_mcast_frames); 3199 3200 case IFCOUNTER_OMCASTS: 3201 return (s->tx_mcast_frames); 3202 3203 case IFCOUNTER_IQDROPS: 3204 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3205 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3206 s->rx_trunc3 + pi->tnl_cong_drops); 3207 3208 case IFCOUNTER_OQDROPS: { 3209 uint64_t drops; 3210 3211 drops = s->tx_drop; 3212 if (vi->flags & VI_INIT_DONE) { 3213 int i; 3214 struct sge_txq *txq; 3215 3216 for_each_txq(vi, i, txq) 3217 drops += counter_u64_fetch(txq->r->dropped); 3218 } 3219 3220 return (drops); 3221 3222 } 3223 3224 default: 3225 return (if_get_counter_default(ifp, c)); 3226 } 3227 } 3228 3229 #if defined(KERN_TLS) || defined(RATELIMIT) 3230 static int 3231 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3232 struct m_snd_tag **pt) 3233 { 3234 int error; 3235 3236 switch (params->hdr.type) { 3237 #ifdef RATELIMIT 3238 case IF_SND_TAG_TYPE_RATE_LIMIT: 3239 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3240 break; 3241 #endif 3242 #ifdef KERN_TLS 3243 case IF_SND_TAG_TYPE_TLS: 3244 { 3245 struct vi_info *vi = if_getsoftc(ifp); 3246 3247 if (is_t6(vi->pi->adapter)) 3248 error = t6_tls_tag_alloc(ifp, params, pt); 3249 else 3250 error = EOPNOTSUPP; 3251 break; 3252 } 3253 #endif 3254 default: 3255 error = EOPNOTSUPP; 3256 } 3257 return (error); 3258 } 3259 #endif 3260 3261 /* 3262 * The kernel picks a media from the list we had provided but we still validate 3263 * the requeste. 3264 */ 3265 int 3266 cxgbe_media_change(if_t ifp) 3267 { 3268 struct vi_info *vi = if_getsoftc(ifp); 3269 struct port_info *pi = vi->pi; 3270 struct ifmedia *ifm = &pi->media; 3271 struct link_config *lc = &pi->link_cfg; 3272 struct adapter *sc = pi->adapter; 3273 int rc; 3274 3275 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3276 if (rc != 0) 3277 return (rc); 3278 PORT_LOCK(pi); 3279 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3280 /* ifconfig .. media autoselect */ 3281 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3282 rc = ENOTSUP; /* AN not supported by transceiver */ 3283 goto done; 3284 } 3285 lc->requested_aneg = AUTONEG_ENABLE; 3286 lc->requested_speed = 0; 3287 lc->requested_fc |= PAUSE_AUTONEG; 3288 } else { 3289 lc->requested_aneg = AUTONEG_DISABLE; 3290 lc->requested_speed = 3291 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3292 lc->requested_fc = 0; 3293 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3294 lc->requested_fc |= PAUSE_RX; 3295 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3296 lc->requested_fc |= PAUSE_TX; 3297 } 3298 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3299 fixup_link_config(pi); 3300 rc = apply_link_config(pi); 3301 } 3302 done: 3303 PORT_UNLOCK(pi); 3304 end_synchronized_op(sc, 0); 3305 return (rc); 3306 } 3307 3308 /* 3309 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3310 * given speed. 3311 */ 3312 static int 3313 port_mword(struct port_info *pi, uint32_t speed) 3314 { 3315 3316 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3317 MPASS(powerof2(speed)); 3318 3319 switch(pi->port_type) { 3320 case FW_PORT_TYPE_BT_SGMII: 3321 case FW_PORT_TYPE_BT_XFI: 3322 case FW_PORT_TYPE_BT_XAUI: 3323 /* BaseT */ 3324 switch (speed) { 3325 case FW_PORT_CAP32_SPEED_100M: 3326 return (IFM_100_T); 3327 case FW_PORT_CAP32_SPEED_1G: 3328 return (IFM_1000_T); 3329 case FW_PORT_CAP32_SPEED_10G: 3330 return (IFM_10G_T); 3331 } 3332 break; 3333 case FW_PORT_TYPE_KX4: 3334 if (speed == FW_PORT_CAP32_SPEED_10G) 3335 return (IFM_10G_KX4); 3336 break; 3337 case FW_PORT_TYPE_CX4: 3338 if (speed == FW_PORT_CAP32_SPEED_10G) 3339 return (IFM_10G_CX4); 3340 break; 3341 case FW_PORT_TYPE_KX: 3342 if (speed == FW_PORT_CAP32_SPEED_1G) 3343 return (IFM_1000_KX); 3344 break; 3345 case FW_PORT_TYPE_KR: 3346 case FW_PORT_TYPE_BP_AP: 3347 case FW_PORT_TYPE_BP4_AP: 3348 case FW_PORT_TYPE_BP40_BA: 3349 case FW_PORT_TYPE_KR4_100G: 3350 case FW_PORT_TYPE_KR_SFP28: 3351 case FW_PORT_TYPE_KR_XLAUI: 3352 switch (speed) { 3353 case FW_PORT_CAP32_SPEED_1G: 3354 return (IFM_1000_KX); 3355 case FW_PORT_CAP32_SPEED_10G: 3356 return (IFM_10G_KR); 3357 case FW_PORT_CAP32_SPEED_25G: 3358 return (IFM_25G_KR); 3359 case FW_PORT_CAP32_SPEED_40G: 3360 return (IFM_40G_KR4); 3361 case FW_PORT_CAP32_SPEED_50G: 3362 return (IFM_50G_KR2); 3363 case FW_PORT_CAP32_SPEED_100G: 3364 return (IFM_100G_KR4); 3365 } 3366 break; 3367 case FW_PORT_TYPE_FIBER_XFI: 3368 case FW_PORT_TYPE_FIBER_XAUI: 3369 case FW_PORT_TYPE_SFP: 3370 case FW_PORT_TYPE_QSFP_10G: 3371 case FW_PORT_TYPE_QSA: 3372 case FW_PORT_TYPE_QSFP: 3373 case FW_PORT_TYPE_CR4_QSFP: 3374 case FW_PORT_TYPE_CR_QSFP: 3375 case FW_PORT_TYPE_CR2_QSFP: 3376 case FW_PORT_TYPE_SFP28: 3377 /* Pluggable transceiver */ 3378 switch (pi->mod_type) { 3379 case FW_PORT_MOD_TYPE_LR: 3380 switch (speed) { 3381 case FW_PORT_CAP32_SPEED_1G: 3382 return (IFM_1000_LX); 3383 case FW_PORT_CAP32_SPEED_10G: 3384 return (IFM_10G_LR); 3385 case FW_PORT_CAP32_SPEED_25G: 3386 return (IFM_25G_LR); 3387 case FW_PORT_CAP32_SPEED_40G: 3388 return (IFM_40G_LR4); 3389 case FW_PORT_CAP32_SPEED_50G: 3390 return (IFM_50G_LR2); 3391 case FW_PORT_CAP32_SPEED_100G: 3392 return (IFM_100G_LR4); 3393 } 3394 break; 3395 case FW_PORT_MOD_TYPE_SR: 3396 switch (speed) { 3397 case FW_PORT_CAP32_SPEED_1G: 3398 return (IFM_1000_SX); 3399 case FW_PORT_CAP32_SPEED_10G: 3400 return (IFM_10G_SR); 3401 case FW_PORT_CAP32_SPEED_25G: 3402 return (IFM_25G_SR); 3403 case FW_PORT_CAP32_SPEED_40G: 3404 return (IFM_40G_SR4); 3405 case FW_PORT_CAP32_SPEED_50G: 3406 return (IFM_50G_SR2); 3407 case FW_PORT_CAP32_SPEED_100G: 3408 return (IFM_100G_SR4); 3409 } 3410 break; 3411 case FW_PORT_MOD_TYPE_ER: 3412 if (speed == FW_PORT_CAP32_SPEED_10G) 3413 return (IFM_10G_ER); 3414 break; 3415 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3416 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3417 switch (speed) { 3418 case FW_PORT_CAP32_SPEED_1G: 3419 return (IFM_1000_CX); 3420 case FW_PORT_CAP32_SPEED_10G: 3421 return (IFM_10G_TWINAX); 3422 case FW_PORT_CAP32_SPEED_25G: 3423 return (IFM_25G_CR); 3424 case FW_PORT_CAP32_SPEED_40G: 3425 return (IFM_40G_CR4); 3426 case FW_PORT_CAP32_SPEED_50G: 3427 return (IFM_50G_CR2); 3428 case FW_PORT_CAP32_SPEED_100G: 3429 return (IFM_100G_CR4); 3430 } 3431 break; 3432 case FW_PORT_MOD_TYPE_LRM: 3433 if (speed == FW_PORT_CAP32_SPEED_10G) 3434 return (IFM_10G_LRM); 3435 break; 3436 case FW_PORT_MOD_TYPE_NA: 3437 MPASS(0); /* Not pluggable? */ 3438 /* fall throough */ 3439 case FW_PORT_MOD_TYPE_ERROR: 3440 case FW_PORT_MOD_TYPE_UNKNOWN: 3441 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3442 break; 3443 case FW_PORT_MOD_TYPE_NONE: 3444 return (IFM_NONE); 3445 } 3446 break; 3447 case FW_PORT_TYPE_NONE: 3448 return (IFM_NONE); 3449 } 3450 3451 return (IFM_UNKNOWN); 3452 } 3453 3454 void 3455 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3456 { 3457 struct vi_info *vi = if_getsoftc(ifp); 3458 struct port_info *pi = vi->pi; 3459 struct adapter *sc = pi->adapter; 3460 struct link_config *lc = &pi->link_cfg; 3461 3462 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3463 return; 3464 PORT_LOCK(pi); 3465 3466 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3467 /* 3468 * If all the interfaces are administratively down the firmware 3469 * does not report transceiver changes. Refresh port info here 3470 * so that ifconfig displays accurate ifmedia at all times. 3471 * This is the only reason we have a synchronized op in this 3472 * function. Just PORT_LOCK would have been enough otherwise. 3473 */ 3474 t4_update_port_info(pi); 3475 build_medialist(pi); 3476 } 3477 3478 /* ifm_status */ 3479 ifmr->ifm_status = IFM_AVALID; 3480 if (lc->link_ok == false) 3481 goto done; 3482 ifmr->ifm_status |= IFM_ACTIVE; 3483 3484 /* ifm_active */ 3485 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3486 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3487 if (lc->fc & PAUSE_RX) 3488 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3489 if (lc->fc & PAUSE_TX) 3490 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3491 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3492 done: 3493 PORT_UNLOCK(pi); 3494 end_synchronized_op(sc, 0); 3495 } 3496 3497 static int 3498 vcxgbe_probe(device_t dev) 3499 { 3500 struct vi_info *vi = device_get_softc(dev); 3501 3502 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3503 vi - vi->pi->vi); 3504 3505 return (BUS_PROBE_DEFAULT); 3506 } 3507 3508 static int 3509 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3510 { 3511 int func, index, rc; 3512 uint32_t param, val; 3513 3514 ASSERT_SYNCHRONIZED_OP(sc); 3515 3516 index = vi - pi->vi; 3517 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3518 KASSERT(index < nitems(vi_mac_funcs), 3519 ("%s: VI %s doesn't have a MAC func", __func__, 3520 device_get_nameunit(vi->dev))); 3521 func = vi_mac_funcs[index]; 3522 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3523 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3524 if (rc < 0) { 3525 CH_ERR(vi, "failed to allocate virtual interface %d" 3526 "for port %d: %d\n", index, pi->port_id, -rc); 3527 return (-rc); 3528 } 3529 vi->viid = rc; 3530 3531 if (vi->rss_size == 1) { 3532 /* 3533 * This VI didn't get a slice of the RSS table. Reduce the 3534 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3535 * configuration file (nvi, rssnvi for this PF) if this is a 3536 * problem. 3537 */ 3538 device_printf(vi->dev, "RSS table not available.\n"); 3539 vi->rss_base = 0xffff; 3540 3541 return (0); 3542 } 3543 3544 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3545 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3546 V_FW_PARAMS_PARAM_YZ(vi->viid); 3547 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3548 if (rc) 3549 vi->rss_base = 0xffff; 3550 else { 3551 MPASS((val >> 16) == vi->rss_size); 3552 vi->rss_base = val & 0xffff; 3553 } 3554 3555 return (0); 3556 } 3557 3558 static int 3559 vcxgbe_attach(device_t dev) 3560 { 3561 struct vi_info *vi; 3562 struct port_info *pi; 3563 struct adapter *sc; 3564 int rc; 3565 3566 vi = device_get_softc(dev); 3567 pi = vi->pi; 3568 sc = pi->adapter; 3569 3570 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3571 if (rc) 3572 return (rc); 3573 rc = alloc_extra_vi(sc, pi, vi); 3574 end_synchronized_op(sc, 0); 3575 if (rc) 3576 return (rc); 3577 3578 rc = cxgbe_vi_attach(dev, vi); 3579 if (rc) { 3580 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3581 return (rc); 3582 } 3583 return (0); 3584 } 3585 3586 static int 3587 vcxgbe_detach(device_t dev) 3588 { 3589 struct vi_info *vi; 3590 struct adapter *sc; 3591 3592 vi = device_get_softc(dev); 3593 sc = vi->adapter; 3594 3595 begin_vi_detach(sc, vi); 3596 cxgbe_vi_detach(vi); 3597 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3598 end_vi_detach(sc, vi); 3599 3600 return (0); 3601 } 3602 3603 static struct callout fatal_callout; 3604 static struct taskqueue *reset_tq; 3605 3606 static void 3607 delayed_panic(void *arg) 3608 { 3609 struct adapter *sc = arg; 3610 3611 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3612 } 3613 3614 static void 3615 fatal_error_task(void *arg, int pending) 3616 { 3617 struct adapter *sc = arg; 3618 int rc; 3619 3620 #ifdef TCP_OFFLOAD 3621 t4_async_event(sc); 3622 #endif 3623 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3624 dump_cim_regs(sc); 3625 dump_cimla(sc); 3626 dump_devlog(sc); 3627 } 3628 3629 if (t4_reset_on_fatal_err) { 3630 CH_ALERT(sc, "resetting on fatal error.\n"); 3631 rc = reset_adapter(sc); 3632 if (rc == 0 && t4_panic_on_fatal_err) { 3633 CH_ALERT(sc, "reset was successful, " 3634 "system will NOT panic.\n"); 3635 return; 3636 } 3637 } 3638 3639 if (t4_panic_on_fatal_err) { 3640 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3641 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3642 } 3643 } 3644 3645 void 3646 t4_fatal_err(struct adapter *sc, bool fw_error) 3647 { 3648 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3649 3650 stop_adapter(sc); 3651 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3652 return; 3653 if (fw_error) { 3654 /* 3655 * We are here because of a firmware error/timeout and not 3656 * because of a hardware interrupt. It is possible (although 3657 * not very likely) that an error interrupt was also raised but 3658 * this thread ran first and inhibited t4_intr_err. We walk the 3659 * main INT_CAUSE registers here to make sure we haven't missed 3660 * anything interesting. 3661 */ 3662 t4_slow_intr_handler(sc, verbose); 3663 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3664 } 3665 t4_report_fw_error(sc); 3666 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3667 device_get_nameunit(sc->dev), fw_error); 3668 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3669 } 3670 3671 void 3672 t4_add_adapter(struct adapter *sc) 3673 { 3674 sx_xlock(&t4_list_lock); 3675 SLIST_INSERT_HEAD(&t4_list, sc, link); 3676 sx_xunlock(&t4_list_lock); 3677 } 3678 3679 int 3680 t4_map_bars_0_and_4(struct adapter *sc) 3681 { 3682 sc->regs_rid = PCIR_BAR(0); 3683 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3684 &sc->regs_rid, RF_ACTIVE); 3685 if (sc->regs_res == NULL) { 3686 device_printf(sc->dev, "cannot map registers.\n"); 3687 return (ENXIO); 3688 } 3689 sc->bt = rman_get_bustag(sc->regs_res); 3690 sc->bh = rman_get_bushandle(sc->regs_res); 3691 sc->mmio_len = rman_get_size(sc->regs_res); 3692 setbit(&sc->doorbells, DOORBELL_KDB); 3693 3694 sc->msix_rid = PCIR_BAR(4); 3695 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3696 &sc->msix_rid, RF_ACTIVE); 3697 if (sc->msix_res == NULL) { 3698 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3699 return (ENXIO); 3700 } 3701 3702 return (0); 3703 } 3704 3705 int 3706 t4_map_bar_2(struct adapter *sc) 3707 { 3708 3709 /* 3710 * T4: only iWARP driver uses the userspace doorbells. There is no need 3711 * to map it if RDMA is disabled. 3712 */ 3713 if (is_t4(sc) && sc->rdmacaps == 0) 3714 return (0); 3715 3716 sc->udbs_rid = PCIR_BAR(2); 3717 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3718 &sc->udbs_rid, RF_ACTIVE); 3719 if (sc->udbs_res == NULL) { 3720 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3721 return (ENXIO); 3722 } 3723 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3724 3725 if (chip_id(sc) >= CHELSIO_T5) { 3726 setbit(&sc->doorbells, DOORBELL_UDB); 3727 #if defined(__i386__) || defined(__amd64__) 3728 if (t5_write_combine) { 3729 int rc, mode; 3730 3731 /* 3732 * Enable write combining on BAR2. This is the 3733 * userspace doorbell BAR and is split into 128B 3734 * (UDBS_SEG_SIZE) doorbell regions, each associated 3735 * with an egress queue. The first 64B has the doorbell 3736 * and the second 64B can be used to submit a tx work 3737 * request with an implicit doorbell. 3738 */ 3739 3740 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3741 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3742 if (rc == 0) { 3743 clrbit(&sc->doorbells, DOORBELL_UDB); 3744 setbit(&sc->doorbells, DOORBELL_WCWR); 3745 setbit(&sc->doorbells, DOORBELL_UDBWC); 3746 } else { 3747 device_printf(sc->dev, 3748 "couldn't enable write combining: %d\n", 3749 rc); 3750 } 3751 3752 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3753 t4_write_reg(sc, A_SGE_STAT_CFG, 3754 V_STATSOURCE_T5(7) | mode); 3755 } 3756 #endif 3757 } 3758 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3759 3760 return (0); 3761 } 3762 3763 struct memwin_init { 3764 uint32_t base; 3765 uint32_t aperture; 3766 }; 3767 3768 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3769 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3770 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3771 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3772 }; 3773 3774 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3775 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3776 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3777 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3778 }; 3779 3780 static void 3781 setup_memwin(struct adapter *sc) 3782 { 3783 const struct memwin_init *mw_init; 3784 struct memwin *mw; 3785 int i; 3786 uint32_t bar0; 3787 3788 if (is_t4(sc)) { 3789 /* 3790 * Read low 32b of bar0 indirectly via the hardware backdoor 3791 * mechanism. Works from within PCI passthrough environments 3792 * too, where rman_get_start() can return a different value. We 3793 * need to program the T4 memory window decoders with the actual 3794 * addresses that will be coming across the PCIe link. 3795 */ 3796 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3797 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3798 3799 mw_init = &t4_memwin[0]; 3800 } else { 3801 /* T5+ use the relative offset inside the PCIe BAR */ 3802 bar0 = 0; 3803 3804 mw_init = &t5_memwin[0]; 3805 } 3806 3807 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3808 if (!rw_initialized(&mw->mw_lock)) { 3809 rw_init(&mw->mw_lock, "memory window access"); 3810 mw->mw_base = mw_init->base; 3811 mw->mw_aperture = mw_init->aperture; 3812 mw->mw_curpos = 0; 3813 } 3814 t4_write_reg(sc, 3815 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3816 (mw->mw_base + bar0) | V_BIR(0) | 3817 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3818 rw_wlock(&mw->mw_lock); 3819 position_memwin(sc, i, mw->mw_curpos); 3820 rw_wunlock(&mw->mw_lock); 3821 } 3822 3823 /* flush */ 3824 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3825 } 3826 3827 /* 3828 * Positions the memory window at the given address in the card's address space. 3829 * There are some alignment requirements and the actual position may be at an 3830 * address prior to the requested address. mw->mw_curpos always has the actual 3831 * position of the window. 3832 */ 3833 static void 3834 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3835 { 3836 struct memwin *mw; 3837 uint32_t pf; 3838 uint32_t reg; 3839 3840 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3841 mw = &sc->memwin[idx]; 3842 rw_assert(&mw->mw_lock, RA_WLOCKED); 3843 3844 if (is_t4(sc)) { 3845 pf = 0; 3846 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3847 } else { 3848 pf = V_PFNUM(sc->pf); 3849 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3850 } 3851 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3852 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3853 t4_read_reg(sc, reg); /* flush */ 3854 } 3855 3856 int 3857 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3858 int len, int rw) 3859 { 3860 struct memwin *mw; 3861 uint32_t mw_end, v; 3862 3863 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3864 3865 /* Memory can only be accessed in naturally aligned 4 byte units */ 3866 if (addr & 3 || len & 3 || len <= 0) 3867 return (EINVAL); 3868 3869 mw = &sc->memwin[idx]; 3870 while (len > 0) { 3871 rw_rlock(&mw->mw_lock); 3872 mw_end = mw->mw_curpos + mw->mw_aperture; 3873 if (addr >= mw_end || addr < mw->mw_curpos) { 3874 /* Will need to reposition the window */ 3875 if (!rw_try_upgrade(&mw->mw_lock)) { 3876 rw_runlock(&mw->mw_lock); 3877 rw_wlock(&mw->mw_lock); 3878 } 3879 rw_assert(&mw->mw_lock, RA_WLOCKED); 3880 position_memwin(sc, idx, addr); 3881 rw_downgrade(&mw->mw_lock); 3882 mw_end = mw->mw_curpos + mw->mw_aperture; 3883 } 3884 rw_assert(&mw->mw_lock, RA_RLOCKED); 3885 while (addr < mw_end && len > 0) { 3886 if (rw == 0) { 3887 v = t4_read_reg(sc, mw->mw_base + addr - 3888 mw->mw_curpos); 3889 *val++ = le32toh(v); 3890 } else { 3891 v = *val++; 3892 t4_write_reg(sc, mw->mw_base + addr - 3893 mw->mw_curpos, htole32(v)); 3894 } 3895 addr += 4; 3896 len -= 4; 3897 } 3898 rw_runlock(&mw->mw_lock); 3899 } 3900 3901 return (0); 3902 } 3903 3904 CTASSERT(M_TID_COOKIE == M_COOKIE); 3905 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3906 3907 static void 3908 t4_init_atid_table(struct adapter *sc) 3909 { 3910 struct tid_info *t; 3911 int i; 3912 3913 t = &sc->tids; 3914 if (t->natids == 0) 3915 return; 3916 3917 MPASS(t->atid_tab == NULL); 3918 3919 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3920 M_ZERO | M_WAITOK); 3921 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3922 t->afree = t->atid_tab; 3923 t->atids_in_use = 0; 3924 for (i = 1; i < t->natids; i++) 3925 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3926 t->atid_tab[t->natids - 1].next = NULL; 3927 } 3928 3929 static void 3930 t4_free_atid_table(struct adapter *sc) 3931 { 3932 struct tid_info *t; 3933 3934 t = &sc->tids; 3935 3936 KASSERT(t->atids_in_use == 0, 3937 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3938 3939 if (mtx_initialized(&t->atid_lock)) 3940 mtx_destroy(&t->atid_lock); 3941 free(t->atid_tab, M_CXGBE); 3942 t->atid_tab = NULL; 3943 } 3944 3945 int 3946 alloc_atid(struct adapter *sc, void *ctx) 3947 { 3948 struct tid_info *t = &sc->tids; 3949 int atid = -1; 3950 3951 mtx_lock(&t->atid_lock); 3952 if (t->afree) { 3953 union aopen_entry *p = t->afree; 3954 3955 atid = p - t->atid_tab; 3956 MPASS(atid <= M_TID_TID); 3957 t->afree = p->next; 3958 p->data = ctx; 3959 t->atids_in_use++; 3960 } 3961 mtx_unlock(&t->atid_lock); 3962 return (atid); 3963 } 3964 3965 void * 3966 lookup_atid(struct adapter *sc, int atid) 3967 { 3968 struct tid_info *t = &sc->tids; 3969 3970 return (t->atid_tab[atid].data); 3971 } 3972 3973 void 3974 free_atid(struct adapter *sc, int atid) 3975 { 3976 struct tid_info *t = &sc->tids; 3977 union aopen_entry *p = &t->atid_tab[atid]; 3978 3979 mtx_lock(&t->atid_lock); 3980 p->next = t->afree; 3981 t->afree = p; 3982 t->atids_in_use--; 3983 mtx_unlock(&t->atid_lock); 3984 } 3985 3986 static void 3987 queue_tid_release(struct adapter *sc, int tid) 3988 { 3989 3990 CXGBE_UNIMPLEMENTED("deferred tid release"); 3991 } 3992 3993 void 3994 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3995 { 3996 struct wrqe *wr; 3997 struct cpl_tid_release *req; 3998 3999 wr = alloc_wrqe(sizeof(*req), ctrlq); 4000 if (wr == NULL) { 4001 queue_tid_release(sc, tid); /* defer */ 4002 return; 4003 } 4004 req = wrtod(wr); 4005 4006 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4007 4008 t4_wrq_tx(sc, wr); 4009 } 4010 4011 static int 4012 t4_range_cmp(const void *a, const void *b) 4013 { 4014 return ((const struct t4_range *)a)->start - 4015 ((const struct t4_range *)b)->start; 4016 } 4017 4018 /* 4019 * Verify that the memory range specified by the addr/len pair is valid within 4020 * the card's address space. 4021 */ 4022 static int 4023 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4024 { 4025 struct t4_range mem_ranges[4], *r, *next; 4026 uint32_t em, addr_len; 4027 int i, n, remaining; 4028 4029 /* Memory can only be accessed in naturally aligned 4 byte units */ 4030 if (addr & 3 || len & 3 || len == 0) 4031 return (EINVAL); 4032 4033 /* Enabled memories */ 4034 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4035 4036 r = &mem_ranges[0]; 4037 n = 0; 4038 bzero(r, sizeof(mem_ranges)); 4039 if (em & F_EDRAM0_ENABLE) { 4040 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4041 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4042 if (r->size > 0) { 4043 r->start = G_EDRAM0_BASE(addr_len) << 20; 4044 if (addr >= r->start && 4045 addr + len <= r->start + r->size) 4046 return (0); 4047 r++; 4048 n++; 4049 } 4050 } 4051 if (em & F_EDRAM1_ENABLE) { 4052 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4053 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4054 if (r->size > 0) { 4055 r->start = G_EDRAM1_BASE(addr_len) << 20; 4056 if (addr >= r->start && 4057 addr + len <= r->start + r->size) 4058 return (0); 4059 r++; 4060 n++; 4061 } 4062 } 4063 if (em & F_EXT_MEM_ENABLE) { 4064 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4065 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4066 if (r->size > 0) { 4067 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4068 if (addr >= r->start && 4069 addr + len <= r->start + r->size) 4070 return (0); 4071 r++; 4072 n++; 4073 } 4074 } 4075 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4076 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4077 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4078 if (r->size > 0) { 4079 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4080 if (addr >= r->start && 4081 addr + len <= r->start + r->size) 4082 return (0); 4083 r++; 4084 n++; 4085 } 4086 } 4087 MPASS(n <= nitems(mem_ranges)); 4088 4089 if (n > 1) { 4090 /* Sort and merge the ranges. */ 4091 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4092 4093 /* Start from index 0 and examine the next n - 1 entries. */ 4094 r = &mem_ranges[0]; 4095 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4096 4097 MPASS(r->size > 0); /* r is a valid entry. */ 4098 next = r + 1; 4099 MPASS(next->size > 0); /* and so is the next one. */ 4100 4101 while (r->start + r->size >= next->start) { 4102 /* Merge the next one into the current entry. */ 4103 r->size = max(r->start + r->size, 4104 next->start + next->size) - r->start; 4105 n--; /* One fewer entry in total. */ 4106 if (--remaining == 0) 4107 goto done; /* short circuit */ 4108 next++; 4109 } 4110 if (next != r + 1) { 4111 /* 4112 * Some entries were merged into r and next 4113 * points to the first valid entry that couldn't 4114 * be merged. 4115 */ 4116 MPASS(next->size > 0); /* must be valid */ 4117 memcpy(r + 1, next, remaining * sizeof(*r)); 4118 #ifdef INVARIANTS 4119 /* 4120 * This so that the foo->size assertion in the 4121 * next iteration of the loop do the right 4122 * thing for entries that were pulled up and are 4123 * no longer valid. 4124 */ 4125 MPASS(n < nitems(mem_ranges)); 4126 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4127 sizeof(struct t4_range)); 4128 #endif 4129 } 4130 } 4131 done: 4132 /* Done merging the ranges. */ 4133 MPASS(n > 0); 4134 r = &mem_ranges[0]; 4135 for (i = 0; i < n; i++, r++) { 4136 if (addr >= r->start && 4137 addr + len <= r->start + r->size) 4138 return (0); 4139 } 4140 } 4141 4142 return (EFAULT); 4143 } 4144 4145 static int 4146 fwmtype_to_hwmtype(int mtype) 4147 { 4148 4149 switch (mtype) { 4150 case FW_MEMTYPE_EDC0: 4151 return (MEM_EDC0); 4152 case FW_MEMTYPE_EDC1: 4153 return (MEM_EDC1); 4154 case FW_MEMTYPE_EXTMEM: 4155 return (MEM_MC0); 4156 case FW_MEMTYPE_EXTMEM1: 4157 return (MEM_MC1); 4158 default: 4159 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4160 } 4161 } 4162 4163 /* 4164 * Verify that the memory range specified by the memtype/offset/len pair is 4165 * valid and lies entirely within the memtype specified. The global address of 4166 * the start of the range is returned in addr. 4167 */ 4168 static int 4169 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4170 uint32_t *addr) 4171 { 4172 uint32_t em, addr_len, maddr; 4173 4174 /* Memory can only be accessed in naturally aligned 4 byte units */ 4175 if (off & 3 || len & 3 || len == 0) 4176 return (EINVAL); 4177 4178 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4179 switch (fwmtype_to_hwmtype(mtype)) { 4180 case MEM_EDC0: 4181 if (!(em & F_EDRAM0_ENABLE)) 4182 return (EINVAL); 4183 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4184 maddr = G_EDRAM0_BASE(addr_len) << 20; 4185 break; 4186 case MEM_EDC1: 4187 if (!(em & F_EDRAM1_ENABLE)) 4188 return (EINVAL); 4189 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4190 maddr = G_EDRAM1_BASE(addr_len) << 20; 4191 break; 4192 case MEM_MC: 4193 if (!(em & F_EXT_MEM_ENABLE)) 4194 return (EINVAL); 4195 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4196 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4197 break; 4198 case MEM_MC1: 4199 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4200 return (EINVAL); 4201 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4202 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4203 break; 4204 default: 4205 return (EINVAL); 4206 } 4207 4208 *addr = maddr + off; /* global address */ 4209 return (validate_mem_range(sc, *addr, len)); 4210 } 4211 4212 static int 4213 fixup_devlog_params(struct adapter *sc) 4214 { 4215 struct devlog_params *dparams = &sc->params.devlog; 4216 int rc; 4217 4218 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4219 dparams->size, &dparams->addr); 4220 4221 return (rc); 4222 } 4223 4224 static void 4225 update_nirq(struct intrs_and_queues *iaq, int nports) 4226 { 4227 4228 iaq->nirq = T4_EXTRA_INTR; 4229 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4230 iaq->nirq += nports * iaq->nofldrxq; 4231 iaq->nirq += nports * (iaq->num_vis - 1) * 4232 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4233 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4234 } 4235 4236 /* 4237 * Adjust requirements to fit the number of interrupts available. 4238 */ 4239 static void 4240 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4241 int navail) 4242 { 4243 int old_nirq; 4244 const int nports = sc->params.nports; 4245 4246 MPASS(nports > 0); 4247 MPASS(navail > 0); 4248 4249 bzero(iaq, sizeof(*iaq)); 4250 iaq->intr_type = itype; 4251 iaq->num_vis = t4_num_vis; 4252 iaq->ntxq = t4_ntxq; 4253 iaq->ntxq_vi = t4_ntxq_vi; 4254 iaq->nrxq = t4_nrxq; 4255 iaq->nrxq_vi = t4_nrxq_vi; 4256 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4257 if (is_offload(sc) || is_ethoffload(sc)) { 4258 iaq->nofldtxq = t4_nofldtxq; 4259 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4260 } 4261 #endif 4262 #ifdef TCP_OFFLOAD 4263 if (is_offload(sc)) { 4264 iaq->nofldrxq = t4_nofldrxq; 4265 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4266 } 4267 #endif 4268 #ifdef DEV_NETMAP 4269 if (t4_native_netmap & NN_MAIN_VI) { 4270 iaq->nnmtxq = t4_nnmtxq; 4271 iaq->nnmrxq = t4_nnmrxq; 4272 } 4273 if (t4_native_netmap & NN_EXTRA_VI) { 4274 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4275 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4276 } 4277 #endif 4278 4279 update_nirq(iaq, nports); 4280 if (iaq->nirq <= navail && 4281 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4282 /* 4283 * This is the normal case -- there are enough interrupts for 4284 * everything. 4285 */ 4286 goto done; 4287 } 4288 4289 /* 4290 * If extra VIs have been configured try reducing their count and see if 4291 * that works. 4292 */ 4293 while (iaq->num_vis > 1) { 4294 iaq->num_vis--; 4295 update_nirq(iaq, nports); 4296 if (iaq->nirq <= navail && 4297 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4298 device_printf(sc->dev, "virtual interfaces per port " 4299 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4300 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4301 "itype %d, navail %u, nirq %d.\n", 4302 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4303 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4304 itype, navail, iaq->nirq); 4305 goto done; 4306 } 4307 } 4308 4309 /* 4310 * Extra VIs will not be created. Log a message if they were requested. 4311 */ 4312 MPASS(iaq->num_vis == 1); 4313 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4314 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4315 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4316 if (iaq->num_vis != t4_num_vis) { 4317 device_printf(sc->dev, "extra virtual interfaces disabled. " 4318 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4319 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4320 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4321 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4322 } 4323 4324 /* 4325 * Keep reducing the number of NIC rx queues to the next lower power of 4326 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4327 * if that works. 4328 */ 4329 do { 4330 if (iaq->nrxq > 1) { 4331 do { 4332 iaq->nrxq--; 4333 } while (!powerof2(iaq->nrxq)); 4334 if (iaq->nnmrxq > iaq->nrxq) 4335 iaq->nnmrxq = iaq->nrxq; 4336 } 4337 if (iaq->nofldrxq > 1) 4338 iaq->nofldrxq >>= 1; 4339 4340 old_nirq = iaq->nirq; 4341 update_nirq(iaq, nports); 4342 if (iaq->nirq <= navail && 4343 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4344 device_printf(sc->dev, "running with reduced number of " 4345 "rx queues because of shortage of interrupts. " 4346 "nrxq=%u, nofldrxq=%u. " 4347 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4348 iaq->nofldrxq, itype, navail, iaq->nirq); 4349 goto done; 4350 } 4351 } while (old_nirq != iaq->nirq); 4352 4353 /* One interrupt for everything. Ugh. */ 4354 device_printf(sc->dev, "running with minimal number of queues. " 4355 "itype %d, navail %u.\n", itype, navail); 4356 iaq->nirq = 1; 4357 iaq->nrxq = 1; 4358 iaq->ntxq = 1; 4359 if (iaq->nofldrxq > 0) { 4360 iaq->nofldrxq = 1; 4361 iaq->nofldtxq = 1; 4362 } 4363 iaq->nnmtxq = 0; 4364 iaq->nnmrxq = 0; 4365 done: 4366 MPASS(iaq->num_vis > 0); 4367 if (iaq->num_vis > 1) { 4368 MPASS(iaq->nrxq_vi > 0); 4369 MPASS(iaq->ntxq_vi > 0); 4370 } 4371 MPASS(iaq->nirq > 0); 4372 MPASS(iaq->nrxq > 0); 4373 MPASS(iaq->ntxq > 0); 4374 if (itype == INTR_MSI) { 4375 MPASS(powerof2(iaq->nirq)); 4376 } 4377 } 4378 4379 static int 4380 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4381 { 4382 int rc, itype, navail, nalloc; 4383 4384 for (itype = INTR_MSIX; itype; itype >>= 1) { 4385 4386 if ((itype & t4_intr_types) == 0) 4387 continue; /* not allowed */ 4388 4389 if (itype == INTR_MSIX) 4390 navail = pci_msix_count(sc->dev); 4391 else if (itype == INTR_MSI) 4392 navail = pci_msi_count(sc->dev); 4393 else 4394 navail = 1; 4395 restart: 4396 if (navail == 0) 4397 continue; 4398 4399 calculate_iaq(sc, iaq, itype, navail); 4400 nalloc = iaq->nirq; 4401 rc = 0; 4402 if (itype == INTR_MSIX) 4403 rc = pci_alloc_msix(sc->dev, &nalloc); 4404 else if (itype == INTR_MSI) 4405 rc = pci_alloc_msi(sc->dev, &nalloc); 4406 4407 if (rc == 0 && nalloc > 0) { 4408 if (nalloc == iaq->nirq) 4409 return (0); 4410 4411 /* 4412 * Didn't get the number requested. Use whatever number 4413 * the kernel is willing to allocate. 4414 */ 4415 device_printf(sc->dev, "fewer vectors than requested, " 4416 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4417 itype, iaq->nirq, nalloc); 4418 pci_release_msi(sc->dev); 4419 navail = nalloc; 4420 goto restart; 4421 } 4422 4423 device_printf(sc->dev, 4424 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4425 itype, rc, iaq->nirq, nalloc); 4426 } 4427 4428 device_printf(sc->dev, 4429 "failed to find a usable interrupt type. " 4430 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4431 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4432 4433 return (ENXIO); 4434 } 4435 4436 #define FW_VERSION(chip) ( \ 4437 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4438 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4439 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4440 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4441 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4442 4443 /* Just enough of fw_hdr to cover all version info. */ 4444 struct fw_h { 4445 __u8 ver; 4446 __u8 chip; 4447 __be16 len512; 4448 __be32 fw_ver; 4449 __be32 tp_microcode_ver; 4450 __u8 intfver_nic; 4451 __u8 intfver_vnic; 4452 __u8 intfver_ofld; 4453 __u8 intfver_ri; 4454 __u8 intfver_iscsipdu; 4455 __u8 intfver_iscsi; 4456 __u8 intfver_fcoepdu; 4457 __u8 intfver_fcoe; 4458 }; 4459 /* Spot check a couple of fields. */ 4460 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4461 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4462 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4463 4464 struct fw_info { 4465 uint8_t chip; 4466 char *kld_name; 4467 char *fw_mod_name; 4468 struct fw_h fw_h; 4469 } fw_info[] = { 4470 { 4471 .chip = CHELSIO_T4, 4472 .kld_name = "t4fw_cfg", 4473 .fw_mod_name = "t4fw", 4474 .fw_h = { 4475 .chip = FW_HDR_CHIP_T4, 4476 .fw_ver = htobe32(FW_VERSION(T4)), 4477 .intfver_nic = FW_INTFVER(T4, NIC), 4478 .intfver_vnic = FW_INTFVER(T4, VNIC), 4479 .intfver_ofld = FW_INTFVER(T4, OFLD), 4480 .intfver_ri = FW_INTFVER(T4, RI), 4481 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4482 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4483 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4484 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4485 }, 4486 }, { 4487 .chip = CHELSIO_T5, 4488 .kld_name = "t5fw_cfg", 4489 .fw_mod_name = "t5fw", 4490 .fw_h = { 4491 .chip = FW_HDR_CHIP_T5, 4492 .fw_ver = htobe32(FW_VERSION(T5)), 4493 .intfver_nic = FW_INTFVER(T5, NIC), 4494 .intfver_vnic = FW_INTFVER(T5, VNIC), 4495 .intfver_ofld = FW_INTFVER(T5, OFLD), 4496 .intfver_ri = FW_INTFVER(T5, RI), 4497 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4498 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4499 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4500 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4501 }, 4502 }, { 4503 .chip = CHELSIO_T6, 4504 .kld_name = "t6fw_cfg", 4505 .fw_mod_name = "t6fw", 4506 .fw_h = { 4507 .chip = FW_HDR_CHIP_T6, 4508 .fw_ver = htobe32(FW_VERSION(T6)), 4509 .intfver_nic = FW_INTFVER(T6, NIC), 4510 .intfver_vnic = FW_INTFVER(T6, VNIC), 4511 .intfver_ofld = FW_INTFVER(T6, OFLD), 4512 .intfver_ri = FW_INTFVER(T6, RI), 4513 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4514 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4515 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4516 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4517 }, 4518 } 4519 }; 4520 4521 static struct fw_info * 4522 find_fw_info(int chip) 4523 { 4524 int i; 4525 4526 for (i = 0; i < nitems(fw_info); i++) { 4527 if (fw_info[i].chip == chip) 4528 return (&fw_info[i]); 4529 } 4530 return (NULL); 4531 } 4532 4533 /* 4534 * Is the given firmware API compatible with the one the driver was compiled 4535 * with? 4536 */ 4537 static int 4538 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4539 { 4540 4541 /* short circuit if it's the exact same firmware version */ 4542 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4543 return (1); 4544 4545 /* 4546 * XXX: Is this too conservative? Perhaps I should limit this to the 4547 * features that are supported in the driver. 4548 */ 4549 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4550 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4551 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4552 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4553 return (1); 4554 #undef SAME_INTF 4555 4556 return (0); 4557 } 4558 4559 static int 4560 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4561 const struct firmware **fw) 4562 { 4563 struct fw_info *fw_info; 4564 4565 *dcfg = NULL; 4566 if (fw != NULL) 4567 *fw = NULL; 4568 4569 fw_info = find_fw_info(chip_id(sc)); 4570 if (fw_info == NULL) { 4571 device_printf(sc->dev, 4572 "unable to look up firmware information for chip %d.\n", 4573 chip_id(sc)); 4574 return (EINVAL); 4575 } 4576 4577 *dcfg = firmware_get(fw_info->kld_name); 4578 if (*dcfg != NULL) { 4579 if (fw != NULL) 4580 *fw = firmware_get(fw_info->fw_mod_name); 4581 return (0); 4582 } 4583 4584 return (ENOENT); 4585 } 4586 4587 static void 4588 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4589 const struct firmware *fw) 4590 { 4591 4592 if (fw != NULL) 4593 firmware_put(fw, FIRMWARE_UNLOAD); 4594 if (dcfg != NULL) 4595 firmware_put(dcfg, FIRMWARE_UNLOAD); 4596 } 4597 4598 /* 4599 * Return values: 4600 * 0 means no firmware install attempted. 4601 * ERESTART means a firmware install was attempted and was successful. 4602 * +ve errno means a firmware install was attempted but failed. 4603 */ 4604 static int 4605 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4606 const struct fw_h *drv_fw, const char *reason, int *already) 4607 { 4608 const struct firmware *cfg, *fw; 4609 const uint32_t c = be32toh(card_fw->fw_ver); 4610 uint32_t d, k; 4611 int rc, fw_install; 4612 struct fw_h bundled_fw; 4613 bool load_attempted; 4614 4615 cfg = fw = NULL; 4616 load_attempted = false; 4617 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4618 4619 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4620 if (t4_fw_install < 0) { 4621 rc = load_fw_module(sc, &cfg, &fw); 4622 if (rc != 0 || fw == NULL) { 4623 device_printf(sc->dev, 4624 "failed to load firmware module: %d. cfg %p, fw %p;" 4625 " will use compiled-in firmware version for" 4626 "hw.cxgbe.fw_install checks.\n", 4627 rc, cfg, fw); 4628 } else { 4629 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4630 } 4631 load_attempted = true; 4632 } 4633 d = be32toh(bundled_fw.fw_ver); 4634 4635 if (reason != NULL) 4636 goto install; 4637 4638 if ((sc->flags & FW_OK) == 0) { 4639 4640 if (c == 0xffffffff) { 4641 reason = "missing"; 4642 goto install; 4643 } 4644 4645 rc = 0; 4646 goto done; 4647 } 4648 4649 if (!fw_compatible(card_fw, &bundled_fw)) { 4650 reason = "incompatible or unusable"; 4651 goto install; 4652 } 4653 4654 if (d > c) { 4655 reason = "older than the version bundled with this driver"; 4656 goto install; 4657 } 4658 4659 if (fw_install == 2 && d != c) { 4660 reason = "different than the version bundled with this driver"; 4661 goto install; 4662 } 4663 4664 /* No reason to do anything to the firmware already on the card. */ 4665 rc = 0; 4666 goto done; 4667 4668 install: 4669 rc = 0; 4670 if ((*already)++) 4671 goto done; 4672 4673 if (fw_install == 0) { 4674 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4675 "but the driver is prohibited from installing a firmware " 4676 "on the card.\n", 4677 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4678 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4679 4680 goto done; 4681 } 4682 4683 /* 4684 * We'll attempt to install a firmware. Load the module first (if it 4685 * hasn't been loaded already). 4686 */ 4687 if (!load_attempted) { 4688 rc = load_fw_module(sc, &cfg, &fw); 4689 if (rc != 0 || fw == NULL) { 4690 device_printf(sc->dev, 4691 "failed to load firmware module: %d. cfg %p, fw %p\n", 4692 rc, cfg, fw); 4693 /* carry on */ 4694 } 4695 } 4696 if (fw == NULL) { 4697 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4698 "but the driver cannot take corrective action because it " 4699 "is unable to load the firmware module.\n", 4700 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4701 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4702 rc = sc->flags & FW_OK ? 0 : ENOENT; 4703 goto done; 4704 } 4705 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4706 if (k != d) { 4707 MPASS(t4_fw_install > 0); 4708 device_printf(sc->dev, 4709 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4710 "expecting (%u.%u.%u.%u) and will not be used.\n", 4711 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4712 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4713 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4714 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4715 rc = sc->flags & FW_OK ? 0 : EINVAL; 4716 goto done; 4717 } 4718 4719 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4720 "installing firmware %u.%u.%u.%u on card.\n", 4721 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4722 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4723 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4724 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4725 4726 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4727 if (rc != 0) { 4728 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4729 } else { 4730 /* Installed successfully, update the cached header too. */ 4731 rc = ERESTART; 4732 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4733 } 4734 done: 4735 unload_fw_module(sc, cfg, fw); 4736 4737 return (rc); 4738 } 4739 4740 /* 4741 * Establish contact with the firmware and attempt to become the master driver. 4742 * 4743 * A firmware will be installed to the card if needed (if the driver is allowed 4744 * to do so). 4745 */ 4746 static int 4747 contact_firmware(struct adapter *sc) 4748 { 4749 int rc, already = 0; 4750 enum dev_state state; 4751 struct fw_info *fw_info; 4752 struct fw_hdr *card_fw; /* fw on the card */ 4753 const struct fw_h *drv_fw; 4754 4755 fw_info = find_fw_info(chip_id(sc)); 4756 if (fw_info == NULL) { 4757 device_printf(sc->dev, 4758 "unable to look up firmware information for chip %d.\n", 4759 chip_id(sc)); 4760 return (EINVAL); 4761 } 4762 drv_fw = &fw_info->fw_h; 4763 4764 /* Read the header of the firmware on the card */ 4765 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4766 restart: 4767 rc = -t4_get_fw_hdr(sc, card_fw); 4768 if (rc != 0) { 4769 device_printf(sc->dev, 4770 "unable to read firmware header from card's flash: %d\n", 4771 rc); 4772 goto done; 4773 } 4774 4775 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4776 &already); 4777 if (rc == ERESTART) 4778 goto restart; 4779 if (rc != 0) 4780 goto done; 4781 4782 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4783 if (rc < 0 || state == DEV_STATE_ERR) { 4784 rc = -rc; 4785 device_printf(sc->dev, 4786 "failed to connect to the firmware: %d, %d. " 4787 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4788 #if 0 4789 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4790 "not responding properly to HELLO", &already) == ERESTART) 4791 goto restart; 4792 #endif 4793 goto done; 4794 } 4795 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4796 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4797 4798 if (rc == sc->pf) { 4799 sc->flags |= MASTER_PF; 4800 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4801 NULL, &already); 4802 if (rc == ERESTART) 4803 rc = 0; 4804 else if (rc != 0) 4805 goto done; 4806 } else if (state == DEV_STATE_UNINIT) { 4807 /* 4808 * We didn't get to be the master so we definitely won't be 4809 * configuring the chip. It's a bug if someone else hasn't 4810 * configured it already. 4811 */ 4812 device_printf(sc->dev, "couldn't be master(%d), " 4813 "device not already initialized either(%d). " 4814 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4815 rc = EPROTO; 4816 goto done; 4817 } else { 4818 /* 4819 * Some other PF is the master and has configured the chip. 4820 * This is allowed but untested. 4821 */ 4822 device_printf(sc->dev, "PF%d is master, device state %d. " 4823 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4824 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4825 sc->cfcsum = 0; 4826 rc = 0; 4827 } 4828 done: 4829 if (rc != 0 && sc->flags & FW_OK) { 4830 t4_fw_bye(sc, sc->mbox); 4831 sc->flags &= ~FW_OK; 4832 } 4833 free(card_fw, M_CXGBE); 4834 return (rc); 4835 } 4836 4837 static int 4838 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4839 uint32_t mtype, uint32_t moff) 4840 { 4841 struct fw_info *fw_info; 4842 const struct firmware *dcfg, *rcfg = NULL; 4843 const uint32_t *cfdata; 4844 uint32_t cflen, addr; 4845 int rc; 4846 4847 load_fw_module(sc, &dcfg, NULL); 4848 4849 /* Card specific interpretation of "default". */ 4850 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4851 if (pci_get_device(sc->dev) == 0x440a) 4852 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4853 if (is_fpga(sc)) 4854 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4855 } 4856 4857 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4858 if (dcfg == NULL) { 4859 device_printf(sc->dev, 4860 "KLD with default config is not available.\n"); 4861 rc = ENOENT; 4862 goto done; 4863 } 4864 cfdata = dcfg->data; 4865 cflen = dcfg->datasize & ~3; 4866 } else { 4867 char s[32]; 4868 4869 fw_info = find_fw_info(chip_id(sc)); 4870 if (fw_info == NULL) { 4871 device_printf(sc->dev, 4872 "unable to look up firmware information for chip %d.\n", 4873 chip_id(sc)); 4874 rc = EINVAL; 4875 goto done; 4876 } 4877 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4878 4879 rcfg = firmware_get(s); 4880 if (rcfg == NULL) { 4881 device_printf(sc->dev, 4882 "unable to load module \"%s\" for configuration " 4883 "profile \"%s\".\n", s, cfg_file); 4884 rc = ENOENT; 4885 goto done; 4886 } 4887 cfdata = rcfg->data; 4888 cflen = rcfg->datasize & ~3; 4889 } 4890 4891 if (cflen > FLASH_CFG_MAX_SIZE) { 4892 device_printf(sc->dev, 4893 "config file too long (%d, max allowed is %d).\n", 4894 cflen, FLASH_CFG_MAX_SIZE); 4895 rc = EINVAL; 4896 goto done; 4897 } 4898 4899 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4900 if (rc != 0) { 4901 device_printf(sc->dev, 4902 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4903 __func__, mtype, moff, cflen, rc); 4904 rc = EINVAL; 4905 goto done; 4906 } 4907 write_via_memwin(sc, 2, addr, cfdata, cflen); 4908 done: 4909 if (rcfg != NULL) 4910 firmware_put(rcfg, FIRMWARE_UNLOAD); 4911 unload_fw_module(sc, dcfg, NULL); 4912 return (rc); 4913 } 4914 4915 struct caps_allowed { 4916 uint16_t nbmcaps; 4917 uint16_t linkcaps; 4918 uint16_t switchcaps; 4919 uint16_t niccaps; 4920 uint16_t toecaps; 4921 uint16_t rdmacaps; 4922 uint16_t cryptocaps; 4923 uint16_t iscsicaps; 4924 uint16_t fcoecaps; 4925 }; 4926 4927 #define FW_PARAM_DEV(param) \ 4928 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4929 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4930 #define FW_PARAM_PFVF(param) \ 4931 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4932 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4933 4934 /* 4935 * Provide a configuration profile to the firmware and have it initialize the 4936 * chip accordingly. This may involve uploading a configuration file to the 4937 * card. 4938 */ 4939 static int 4940 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4941 const struct caps_allowed *caps_allowed) 4942 { 4943 int rc; 4944 struct fw_caps_config_cmd caps; 4945 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4946 4947 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4948 if (rc != 0) { 4949 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4950 return (rc); 4951 } 4952 4953 bzero(&caps, sizeof(caps)); 4954 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4955 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4956 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4957 mtype = 0; 4958 moff = 0; 4959 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4960 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4961 mtype = FW_MEMTYPE_FLASH; 4962 moff = t4_flash_cfg_addr(sc); 4963 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4964 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4965 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4966 FW_LEN16(caps)); 4967 } else { 4968 /* 4969 * Ask the firmware where it wants us to upload the config file. 4970 */ 4971 param = FW_PARAM_DEV(CF); 4972 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4973 if (rc != 0) { 4974 /* No support for config file? Shouldn't happen. */ 4975 device_printf(sc->dev, 4976 "failed to query config file location: %d.\n", rc); 4977 goto done; 4978 } 4979 mtype = G_FW_PARAMS_PARAM_Y(val); 4980 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4981 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4982 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4983 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4984 FW_LEN16(caps)); 4985 4986 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4987 if (rc != 0) { 4988 device_printf(sc->dev, 4989 "failed to upload config file to card: %d.\n", rc); 4990 goto done; 4991 } 4992 } 4993 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4994 if (rc != 0) { 4995 device_printf(sc->dev, "failed to pre-process config file: %d " 4996 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4997 goto done; 4998 } 4999 5000 finicsum = be32toh(caps.finicsum); 5001 cfcsum = be32toh(caps.cfcsum); /* actual */ 5002 if (finicsum != cfcsum) { 5003 device_printf(sc->dev, 5004 "WARNING: config file checksum mismatch: %08x %08x\n", 5005 finicsum, cfcsum); 5006 } 5007 sc->cfcsum = cfcsum; 5008 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5009 5010 /* 5011 * Let the firmware know what features will (not) be used so it can tune 5012 * things accordingly. 5013 */ 5014 #define LIMIT_CAPS(x) do { \ 5015 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5016 } while (0) 5017 LIMIT_CAPS(nbm); 5018 LIMIT_CAPS(link); 5019 LIMIT_CAPS(switch); 5020 LIMIT_CAPS(nic); 5021 LIMIT_CAPS(toe); 5022 LIMIT_CAPS(rdma); 5023 LIMIT_CAPS(crypto); 5024 LIMIT_CAPS(iscsi); 5025 LIMIT_CAPS(fcoe); 5026 #undef LIMIT_CAPS 5027 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5028 /* 5029 * TOE and hashfilters are mutually exclusive. It is a config 5030 * file or firmware bug if both are reported as available. Try 5031 * to cope with the situation in non-debug builds by disabling 5032 * TOE. 5033 */ 5034 MPASS(caps.toecaps == 0); 5035 5036 caps.toecaps = 0; 5037 caps.rdmacaps = 0; 5038 caps.iscsicaps = 0; 5039 } 5040 5041 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5042 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5043 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5044 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5045 if (rc != 0) { 5046 device_printf(sc->dev, 5047 "failed to process config file: %d.\n", rc); 5048 goto done; 5049 } 5050 5051 t4_tweak_chip_settings(sc); 5052 set_params__pre_init(sc); 5053 5054 /* get basic stuff going */ 5055 rc = -t4_fw_initialize(sc, sc->mbox); 5056 if (rc != 0) { 5057 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5058 goto done; 5059 } 5060 done: 5061 return (rc); 5062 } 5063 5064 /* 5065 * Partition chip resources for use between various PFs, VFs, etc. 5066 */ 5067 static int 5068 partition_resources(struct adapter *sc) 5069 { 5070 char cfg_file[sizeof(t4_cfg_file)]; 5071 struct caps_allowed caps_allowed; 5072 int rc; 5073 bool fallback; 5074 5075 /* Only the master driver gets to configure the chip resources. */ 5076 MPASS(sc->flags & MASTER_PF); 5077 5078 #define COPY_CAPS(x) do { \ 5079 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5080 } while (0) 5081 bzero(&caps_allowed, sizeof(caps_allowed)); 5082 COPY_CAPS(nbm); 5083 COPY_CAPS(link); 5084 COPY_CAPS(switch); 5085 COPY_CAPS(nic); 5086 COPY_CAPS(toe); 5087 COPY_CAPS(rdma); 5088 COPY_CAPS(crypto); 5089 COPY_CAPS(iscsi); 5090 COPY_CAPS(fcoe); 5091 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5092 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5093 retry: 5094 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5095 if (rc != 0 && fallback) { 5096 dump_devlog(sc); 5097 device_printf(sc->dev, 5098 "failed (%d) to configure card with \"%s\" profile, " 5099 "will fall back to a basic configuration and retry.\n", 5100 rc, cfg_file); 5101 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5102 bzero(&caps_allowed, sizeof(caps_allowed)); 5103 COPY_CAPS(switch); 5104 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5105 fallback = false; 5106 goto retry; 5107 } 5108 #undef COPY_CAPS 5109 return (rc); 5110 } 5111 5112 /* 5113 * Retrieve parameters that are needed (or nice to have) very early. 5114 */ 5115 static int 5116 get_params__pre_init(struct adapter *sc) 5117 { 5118 int rc; 5119 uint32_t param[2], val[2]; 5120 5121 t4_get_version_info(sc); 5122 5123 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5124 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5125 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5126 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5127 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5128 5129 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5130 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5131 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5132 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5133 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5134 5135 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5136 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5137 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5138 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5139 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5140 5141 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5142 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5143 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5144 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5145 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5146 5147 param[0] = FW_PARAM_DEV(PORTVEC); 5148 param[1] = FW_PARAM_DEV(CCLK); 5149 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5150 if (rc != 0) { 5151 device_printf(sc->dev, 5152 "failed to query parameters (pre_init): %d.\n", rc); 5153 return (rc); 5154 } 5155 5156 sc->params.portvec = val[0]; 5157 sc->params.nports = bitcount32(val[0]); 5158 sc->params.vpd.cclk = val[1]; 5159 5160 /* Read device log parameters. */ 5161 rc = -t4_init_devlog_params(sc, 1); 5162 if (rc == 0) 5163 fixup_devlog_params(sc); 5164 else { 5165 device_printf(sc->dev, 5166 "failed to get devlog parameters: %d.\n", rc); 5167 rc = 0; /* devlog isn't critical for device operation */ 5168 } 5169 5170 return (rc); 5171 } 5172 5173 /* 5174 * Any params that need to be set before FW_INITIALIZE. 5175 */ 5176 static int 5177 set_params__pre_init(struct adapter *sc) 5178 { 5179 int rc = 0; 5180 uint32_t param, val; 5181 5182 if (chip_id(sc) >= CHELSIO_T6) { 5183 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5184 val = 1; 5185 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5186 /* firmwares < 1.20.1.0 do not have this param. */ 5187 if (rc == FW_EINVAL && 5188 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5189 rc = 0; 5190 } 5191 if (rc != 0) { 5192 device_printf(sc->dev, 5193 "failed to enable high priority filters :%d.\n", 5194 rc); 5195 } 5196 5197 param = FW_PARAM_DEV(PPOD_EDRAM); 5198 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5199 if (rc == 0 && val == 1) { 5200 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5201 &val); 5202 if (rc != 0) { 5203 device_printf(sc->dev, 5204 "failed to set PPOD_EDRAM: %d.\n", rc); 5205 } 5206 } 5207 } 5208 5209 /* Enable opaque VIIDs with firmwares that support it. */ 5210 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5211 val = 1; 5212 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5213 if (rc == 0 && val == 1) 5214 sc->params.viid_smt_extn_support = true; 5215 else 5216 sc->params.viid_smt_extn_support = false; 5217 5218 return (rc); 5219 } 5220 5221 /* 5222 * Retrieve various parameters that are of interest to the driver. The device 5223 * has been initialized by the firmware at this point. 5224 */ 5225 static int 5226 get_params__post_init(struct adapter *sc) 5227 { 5228 int rc; 5229 uint32_t param[7], val[7]; 5230 struct fw_caps_config_cmd caps; 5231 5232 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5233 param[1] = FW_PARAM_PFVF(EQ_START); 5234 param[2] = FW_PARAM_PFVF(FILTER_START); 5235 param[3] = FW_PARAM_PFVF(FILTER_END); 5236 param[4] = FW_PARAM_PFVF(L2T_START); 5237 param[5] = FW_PARAM_PFVF(L2T_END); 5238 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5239 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5240 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5241 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5242 if (rc != 0) { 5243 device_printf(sc->dev, 5244 "failed to query parameters (post_init): %d.\n", rc); 5245 return (rc); 5246 } 5247 5248 sc->sge.iq_start = val[0]; 5249 sc->sge.eq_start = val[1]; 5250 if ((int)val[3] > (int)val[2]) { 5251 sc->tids.ftid_base = val[2]; 5252 sc->tids.ftid_end = val[3]; 5253 sc->tids.nftids = val[3] - val[2] + 1; 5254 } 5255 sc->vres.l2t.start = val[4]; 5256 sc->vres.l2t.size = val[5] - val[4] + 1; 5257 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5258 ("%s: L2 table size (%u) larger than expected (%u)", 5259 __func__, sc->vres.l2t.size, L2T_SIZE)); 5260 sc->params.core_vdd = val[6]; 5261 5262 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5263 param[1] = FW_PARAM_PFVF(EQ_END); 5264 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5265 if (rc != 0) { 5266 device_printf(sc->dev, 5267 "failed to query parameters (post_init2): %d.\n", rc); 5268 return (rc); 5269 } 5270 MPASS((int)val[0] >= sc->sge.iq_start); 5271 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5272 MPASS((int)val[1] >= sc->sge.eq_start); 5273 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5274 5275 if (chip_id(sc) >= CHELSIO_T6) { 5276 5277 sc->tids.tid_base = t4_read_reg(sc, 5278 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5279 5280 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5281 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5282 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5283 if (rc != 0) { 5284 device_printf(sc->dev, 5285 "failed to query hpfilter parameters: %d.\n", rc); 5286 return (rc); 5287 } 5288 if ((int)val[1] > (int)val[0]) { 5289 sc->tids.hpftid_base = val[0]; 5290 sc->tids.hpftid_end = val[1]; 5291 sc->tids.nhpftids = val[1] - val[0] + 1; 5292 5293 /* 5294 * These should go off if the layout changes and the 5295 * driver needs to catch up. 5296 */ 5297 MPASS(sc->tids.hpftid_base == 0); 5298 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5299 } 5300 5301 param[0] = FW_PARAM_PFVF(RAWF_START); 5302 param[1] = FW_PARAM_PFVF(RAWF_END); 5303 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5304 if (rc != 0) { 5305 device_printf(sc->dev, 5306 "failed to query rawf parameters: %d.\n", rc); 5307 return (rc); 5308 } 5309 if ((int)val[1] > (int)val[0]) { 5310 sc->rawf_base = val[0]; 5311 sc->nrawf = val[1] - val[0] + 1; 5312 } 5313 } 5314 5315 /* 5316 * The parameters that follow may not be available on all firmwares. We 5317 * query them individually rather than in a compound query because old 5318 * firmwares fail the entire query if an unknown parameter is queried. 5319 */ 5320 5321 /* 5322 * MPS buffer group configuration. 5323 */ 5324 param[0] = FW_PARAM_DEV(MPSBGMAP); 5325 val[0] = 0; 5326 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5327 if (rc == 0) 5328 sc->params.mps_bg_map = val[0]; 5329 else 5330 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5331 5332 param[0] = FW_PARAM_DEV(TPCHMAP); 5333 val[0] = 0; 5334 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5335 if (rc == 0) 5336 sc->params.tp_ch_map = val[0]; 5337 else 5338 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5339 5340 /* 5341 * Determine whether the firmware supports the filter2 work request. 5342 */ 5343 param[0] = FW_PARAM_DEV(FILTER2_WR); 5344 val[0] = 0; 5345 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5346 if (rc == 0) 5347 sc->params.filter2_wr_support = val[0] != 0; 5348 else 5349 sc->params.filter2_wr_support = 0; 5350 5351 /* 5352 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5353 */ 5354 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5355 val[0] = 0; 5356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5357 if (rc == 0) 5358 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5359 else 5360 sc->params.ulptx_memwrite_dsgl = false; 5361 5362 /* FW_RI_FR_NSMR_TPTE_WR support */ 5363 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5364 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5365 if (rc == 0) 5366 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5367 else 5368 sc->params.fr_nsmr_tpte_wr_support = false; 5369 5370 /* Support for 512 SGL entries per FR MR. */ 5371 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5372 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5373 if (rc == 0) 5374 sc->params.dev_512sgl_mr = val[0] != 0; 5375 else 5376 sc->params.dev_512sgl_mr = false; 5377 5378 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5379 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5380 if (rc == 0) 5381 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5382 else 5383 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5384 5385 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5386 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5387 if (rc == 0) { 5388 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5389 sc->params.nsched_cls = val[0]; 5390 } else 5391 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5392 5393 /* get capabilites */ 5394 bzero(&caps, sizeof(caps)); 5395 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5396 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5397 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5398 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5399 if (rc != 0) { 5400 device_printf(sc->dev, 5401 "failed to get card capabilities: %d.\n", rc); 5402 return (rc); 5403 } 5404 5405 #define READ_CAPS(x) do { \ 5406 sc->x = htobe16(caps.x); \ 5407 } while (0) 5408 READ_CAPS(nbmcaps); 5409 READ_CAPS(linkcaps); 5410 READ_CAPS(switchcaps); 5411 READ_CAPS(niccaps); 5412 READ_CAPS(toecaps); 5413 READ_CAPS(rdmacaps); 5414 READ_CAPS(cryptocaps); 5415 READ_CAPS(iscsicaps); 5416 READ_CAPS(fcoecaps); 5417 5418 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5419 MPASS(chip_id(sc) > CHELSIO_T4); 5420 MPASS(sc->toecaps == 0); 5421 sc->toecaps = 0; 5422 5423 param[0] = FW_PARAM_DEV(NTID); 5424 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5425 if (rc != 0) { 5426 device_printf(sc->dev, 5427 "failed to query HASHFILTER parameters: %d.\n", rc); 5428 return (rc); 5429 } 5430 sc->tids.ntids = val[0]; 5431 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5432 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5433 sc->tids.ntids -= sc->tids.nhpftids; 5434 } 5435 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5436 sc->params.hash_filter = 1; 5437 } 5438 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5439 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5440 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5441 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5442 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5443 if (rc != 0) { 5444 device_printf(sc->dev, 5445 "failed to query NIC parameters: %d.\n", rc); 5446 return (rc); 5447 } 5448 if ((int)val[1] > (int)val[0]) { 5449 sc->tids.etid_base = val[0]; 5450 sc->tids.etid_end = val[1]; 5451 sc->tids.netids = val[1] - val[0] + 1; 5452 sc->params.eo_wr_cred = val[2]; 5453 sc->params.ethoffload = 1; 5454 } 5455 } 5456 if (sc->toecaps) { 5457 /* query offload-related parameters */ 5458 param[0] = FW_PARAM_DEV(NTID); 5459 param[1] = FW_PARAM_PFVF(SERVER_START); 5460 param[2] = FW_PARAM_PFVF(SERVER_END); 5461 param[3] = FW_PARAM_PFVF(TDDP_START); 5462 param[4] = FW_PARAM_PFVF(TDDP_END); 5463 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5464 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5465 if (rc != 0) { 5466 device_printf(sc->dev, 5467 "failed to query TOE parameters: %d.\n", rc); 5468 return (rc); 5469 } 5470 sc->tids.ntids = val[0]; 5471 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5472 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5473 sc->tids.ntids -= sc->tids.nhpftids; 5474 } 5475 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5476 if ((int)val[2] > (int)val[1]) { 5477 sc->tids.stid_base = val[1]; 5478 sc->tids.nstids = val[2] - val[1] + 1; 5479 } 5480 sc->vres.ddp.start = val[3]; 5481 sc->vres.ddp.size = val[4] - val[3] + 1; 5482 sc->params.ofldq_wr_cred = val[5]; 5483 sc->params.offload = 1; 5484 } else { 5485 /* 5486 * The firmware attempts memfree TOE configuration for -SO cards 5487 * and will report toecaps=0 if it runs out of resources (this 5488 * depends on the config file). It may not report 0 for other 5489 * capabilities dependent on the TOE in this case. Set them to 5490 * 0 here so that the driver doesn't bother tracking resources 5491 * that will never be used. 5492 */ 5493 sc->iscsicaps = 0; 5494 sc->rdmacaps = 0; 5495 } 5496 if (sc->rdmacaps) { 5497 param[0] = FW_PARAM_PFVF(STAG_START); 5498 param[1] = FW_PARAM_PFVF(STAG_END); 5499 param[2] = FW_PARAM_PFVF(RQ_START); 5500 param[3] = FW_PARAM_PFVF(RQ_END); 5501 param[4] = FW_PARAM_PFVF(PBL_START); 5502 param[5] = FW_PARAM_PFVF(PBL_END); 5503 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5504 if (rc != 0) { 5505 device_printf(sc->dev, 5506 "failed to query RDMA parameters(1): %d.\n", rc); 5507 return (rc); 5508 } 5509 sc->vres.stag.start = val[0]; 5510 sc->vres.stag.size = val[1] - val[0] + 1; 5511 sc->vres.rq.start = val[2]; 5512 sc->vres.rq.size = val[3] - val[2] + 1; 5513 sc->vres.pbl.start = val[4]; 5514 sc->vres.pbl.size = val[5] - val[4] + 1; 5515 5516 param[0] = FW_PARAM_PFVF(SQRQ_START); 5517 param[1] = FW_PARAM_PFVF(SQRQ_END); 5518 param[2] = FW_PARAM_PFVF(CQ_START); 5519 param[3] = FW_PARAM_PFVF(CQ_END); 5520 param[4] = FW_PARAM_PFVF(OCQ_START); 5521 param[5] = FW_PARAM_PFVF(OCQ_END); 5522 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5523 if (rc != 0) { 5524 device_printf(sc->dev, 5525 "failed to query RDMA parameters(2): %d.\n", rc); 5526 return (rc); 5527 } 5528 sc->vres.qp.start = val[0]; 5529 sc->vres.qp.size = val[1] - val[0] + 1; 5530 sc->vres.cq.start = val[2]; 5531 sc->vres.cq.size = val[3] - val[2] + 1; 5532 sc->vres.ocq.start = val[4]; 5533 sc->vres.ocq.size = val[5] - val[4] + 1; 5534 5535 param[0] = FW_PARAM_PFVF(SRQ_START); 5536 param[1] = FW_PARAM_PFVF(SRQ_END); 5537 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5538 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5539 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5540 if (rc != 0) { 5541 device_printf(sc->dev, 5542 "failed to query RDMA parameters(3): %d.\n", rc); 5543 return (rc); 5544 } 5545 sc->vres.srq.start = val[0]; 5546 sc->vres.srq.size = val[1] - val[0] + 1; 5547 sc->params.max_ordird_qp = val[2]; 5548 sc->params.max_ird_adapter = val[3]; 5549 } 5550 if (sc->iscsicaps) { 5551 param[0] = FW_PARAM_PFVF(ISCSI_START); 5552 param[1] = FW_PARAM_PFVF(ISCSI_END); 5553 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5554 if (rc != 0) { 5555 device_printf(sc->dev, 5556 "failed to query iSCSI parameters: %d.\n", rc); 5557 return (rc); 5558 } 5559 sc->vres.iscsi.start = val[0]; 5560 sc->vres.iscsi.size = val[1] - val[0] + 1; 5561 } 5562 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5563 param[0] = FW_PARAM_PFVF(TLS_START); 5564 param[1] = FW_PARAM_PFVF(TLS_END); 5565 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5566 if (rc != 0) { 5567 device_printf(sc->dev, 5568 "failed to query TLS parameters: %d.\n", rc); 5569 return (rc); 5570 } 5571 sc->vres.key.start = val[0]; 5572 sc->vres.key.size = val[1] - val[0] + 1; 5573 } 5574 5575 /* 5576 * We've got the params we wanted to query directly from the firmware. 5577 * Grab some others via other means. 5578 */ 5579 t4_init_sge_params(sc); 5580 t4_init_tp_params(sc); 5581 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5582 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5583 5584 rc = t4_verify_chip_settings(sc); 5585 if (rc != 0) 5586 return (rc); 5587 t4_init_rx_buf_info(sc); 5588 5589 return (rc); 5590 } 5591 5592 #ifdef KERN_TLS 5593 static void 5594 ktls_tick(void *arg) 5595 { 5596 struct adapter *sc; 5597 uint32_t tstamp; 5598 5599 sc = arg; 5600 tstamp = tcp_ts_getticks(); 5601 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5602 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5603 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5604 } 5605 5606 static int 5607 t6_config_kern_tls(struct adapter *sc, bool enable) 5608 { 5609 int rc; 5610 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5611 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5612 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5613 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5614 5615 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5616 if (rc != 0) { 5617 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5618 enable ? "enable" : "disable", rc); 5619 return (rc); 5620 } 5621 5622 if (enable) { 5623 sc->flags |= KERN_TLS_ON; 5624 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5625 C_HARDCLOCK); 5626 } else { 5627 sc->flags &= ~KERN_TLS_ON; 5628 callout_stop(&sc->ktls_tick); 5629 } 5630 5631 return (rc); 5632 } 5633 #endif 5634 5635 static int 5636 set_params__post_init(struct adapter *sc) 5637 { 5638 uint32_t mask, param, val; 5639 #ifdef TCP_OFFLOAD 5640 int i, v, shift; 5641 #endif 5642 5643 /* ask for encapsulated CPLs */ 5644 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5645 val = 1; 5646 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5647 5648 /* Enable 32b port caps if the firmware supports it. */ 5649 param = FW_PARAM_PFVF(PORT_CAPS32); 5650 val = 1; 5651 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5652 sc->params.port_caps32 = 1; 5653 5654 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5655 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5656 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5657 V_MASKFILTER(val - 1)); 5658 5659 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5660 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5661 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5662 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5663 val = 0; 5664 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5665 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5666 F_ATTACKFILTERENABLE); 5667 val |= F_DROPERRORATTACK; 5668 } 5669 if (t4_drop_ip_fragments != 0) { 5670 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5671 F_FRAGMENTDROP); 5672 val |= F_DROPERRORFRAG; 5673 } 5674 if (t4_drop_pkts_with_l2_errors != 0) 5675 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5676 if (t4_drop_pkts_with_l3_errors != 0) { 5677 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5678 F_DROPERRORCSUMIP; 5679 } 5680 if (t4_drop_pkts_with_l4_errors != 0) { 5681 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5682 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5683 } 5684 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5685 5686 #ifdef TCP_OFFLOAD 5687 /* 5688 * Override the TOE timers with user provided tunables. This is not the 5689 * recommended way to change the timers (the firmware config file is) so 5690 * these tunables are not documented. 5691 * 5692 * All the timer tunables are in microseconds. 5693 */ 5694 if (t4_toe_keepalive_idle != 0) { 5695 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5696 v &= M_KEEPALIVEIDLE; 5697 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5698 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5699 } 5700 if (t4_toe_keepalive_interval != 0) { 5701 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5702 v &= M_KEEPALIVEINTVL; 5703 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5704 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5705 } 5706 if (t4_toe_keepalive_count != 0) { 5707 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5708 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5709 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5710 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5711 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5712 } 5713 if (t4_toe_rexmt_min != 0) { 5714 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5715 v &= M_RXTMIN; 5716 t4_set_reg_field(sc, A_TP_RXT_MIN, 5717 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5718 } 5719 if (t4_toe_rexmt_max != 0) { 5720 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5721 v &= M_RXTMAX; 5722 t4_set_reg_field(sc, A_TP_RXT_MAX, 5723 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5724 } 5725 if (t4_toe_rexmt_count != 0) { 5726 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5727 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5728 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5729 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5730 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5731 } 5732 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5733 if (t4_toe_rexmt_backoff[i] != -1) { 5734 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5735 shift = (i & 3) << 3; 5736 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5737 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5738 } 5739 } 5740 #endif 5741 5742 /* 5743 * Limit TOE connections to 2 reassembly "islands". This is 5744 * required to permit migrating TOE connections to either 5745 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5746 */ 5747 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5748 V_PASSMODE(2)); 5749 5750 #ifdef KERN_TLS 5751 if (is_ktls(sc)) { 5752 sc->tlst.inline_keys = t4_tls_inline_keys; 5753 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5754 if (t4_kern_tls != 0 && is_t6(sc)) 5755 t6_config_kern_tls(sc, true); 5756 } 5757 #endif 5758 return (0); 5759 } 5760 5761 #undef FW_PARAM_PFVF 5762 #undef FW_PARAM_DEV 5763 5764 static void 5765 t4_set_desc(struct adapter *sc) 5766 { 5767 struct adapter_params *p = &sc->params; 5768 5769 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5770 } 5771 5772 static inline void 5773 ifmedia_add4(struct ifmedia *ifm, int m) 5774 { 5775 5776 ifmedia_add(ifm, m, 0, NULL); 5777 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5778 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5779 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5780 } 5781 5782 /* 5783 * This is the selected media, which is not quite the same as the active media. 5784 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5785 * and active are not the same, and "media: Ethernet selected" otherwise. 5786 */ 5787 static void 5788 set_current_media(struct port_info *pi) 5789 { 5790 struct link_config *lc; 5791 struct ifmedia *ifm; 5792 int mword; 5793 u_int speed; 5794 5795 PORT_LOCK_ASSERT_OWNED(pi); 5796 5797 /* Leave current media alone if it's already set to IFM_NONE. */ 5798 ifm = &pi->media; 5799 if (ifm->ifm_cur != NULL && 5800 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5801 return; 5802 5803 lc = &pi->link_cfg; 5804 if (lc->requested_aneg != AUTONEG_DISABLE && 5805 lc->pcaps & FW_PORT_CAP32_ANEG) { 5806 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5807 return; 5808 } 5809 mword = IFM_ETHER | IFM_FDX; 5810 if (lc->requested_fc & PAUSE_TX) 5811 mword |= IFM_ETH_TXPAUSE; 5812 if (lc->requested_fc & PAUSE_RX) 5813 mword |= IFM_ETH_RXPAUSE; 5814 if (lc->requested_speed == 0) 5815 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5816 else 5817 speed = lc->requested_speed; 5818 mword |= port_mword(pi, speed_to_fwcap(speed)); 5819 ifmedia_set(ifm, mword); 5820 } 5821 5822 /* 5823 * Returns true if the ifmedia list for the port cannot change. 5824 */ 5825 static bool 5826 fixed_ifmedia(struct port_info *pi) 5827 { 5828 5829 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5830 pi->port_type == FW_PORT_TYPE_BT_XFI || 5831 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5832 pi->port_type == FW_PORT_TYPE_KX4 || 5833 pi->port_type == FW_PORT_TYPE_KX || 5834 pi->port_type == FW_PORT_TYPE_KR || 5835 pi->port_type == FW_PORT_TYPE_BP_AP || 5836 pi->port_type == FW_PORT_TYPE_BP4_AP || 5837 pi->port_type == FW_PORT_TYPE_BP40_BA || 5838 pi->port_type == FW_PORT_TYPE_KR4_100G || 5839 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5840 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5841 } 5842 5843 static void 5844 build_medialist(struct port_info *pi) 5845 { 5846 uint32_t ss, speed; 5847 int unknown, mword, bit; 5848 struct link_config *lc; 5849 struct ifmedia *ifm; 5850 5851 PORT_LOCK_ASSERT_OWNED(pi); 5852 5853 if (pi->flags & FIXED_IFMEDIA) 5854 return; 5855 5856 /* 5857 * Rebuild the ifmedia list. 5858 */ 5859 ifm = &pi->media; 5860 ifmedia_removeall(ifm); 5861 lc = &pi->link_cfg; 5862 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5863 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5864 MPASS(ss != 0); 5865 no_media: 5866 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5867 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5868 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5869 return; 5870 } 5871 5872 unknown = 0; 5873 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5874 speed = 1 << bit; 5875 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5876 if (ss & speed) { 5877 mword = port_mword(pi, speed); 5878 if (mword == IFM_NONE) { 5879 goto no_media; 5880 } else if (mword == IFM_UNKNOWN) 5881 unknown++; 5882 else 5883 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5884 } 5885 } 5886 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5887 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5888 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5889 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5890 5891 set_current_media(pi); 5892 } 5893 5894 /* 5895 * Initialize the requested fields in the link config based on driver tunables. 5896 */ 5897 static void 5898 init_link_config(struct port_info *pi) 5899 { 5900 struct link_config *lc = &pi->link_cfg; 5901 5902 PORT_LOCK_ASSERT_OWNED(pi); 5903 5904 lc->requested_caps = 0; 5905 lc->requested_speed = 0; 5906 5907 if (t4_autoneg == 0) 5908 lc->requested_aneg = AUTONEG_DISABLE; 5909 else if (t4_autoneg == 1) 5910 lc->requested_aneg = AUTONEG_ENABLE; 5911 else 5912 lc->requested_aneg = AUTONEG_AUTO; 5913 5914 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5915 PAUSE_AUTONEG); 5916 5917 if (t4_fec & FEC_AUTO) 5918 lc->requested_fec = FEC_AUTO; 5919 else if (t4_fec == 0) 5920 lc->requested_fec = FEC_NONE; 5921 else { 5922 /* -1 is handled by the FEC_AUTO block above and not here. */ 5923 lc->requested_fec = t4_fec & 5924 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5925 if (lc->requested_fec == 0) 5926 lc->requested_fec = FEC_AUTO; 5927 } 5928 if (t4_force_fec < 0) 5929 lc->force_fec = -1; 5930 else if (t4_force_fec > 0) 5931 lc->force_fec = 1; 5932 else 5933 lc->force_fec = 0; 5934 } 5935 5936 /* 5937 * Makes sure that all requested settings comply with what's supported by the 5938 * port. Returns the number of settings that were invalid and had to be fixed. 5939 */ 5940 static int 5941 fixup_link_config(struct port_info *pi) 5942 { 5943 int n = 0; 5944 struct link_config *lc = &pi->link_cfg; 5945 uint32_t fwspeed; 5946 5947 PORT_LOCK_ASSERT_OWNED(pi); 5948 5949 /* Speed (when not autonegotiating) */ 5950 if (lc->requested_speed != 0) { 5951 fwspeed = speed_to_fwcap(lc->requested_speed); 5952 if ((fwspeed & lc->pcaps) == 0) { 5953 n++; 5954 lc->requested_speed = 0; 5955 } 5956 } 5957 5958 /* Link autonegotiation */ 5959 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5960 lc->requested_aneg == AUTONEG_DISABLE || 5961 lc->requested_aneg == AUTONEG_AUTO); 5962 if (lc->requested_aneg == AUTONEG_ENABLE && 5963 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5964 n++; 5965 lc->requested_aneg = AUTONEG_AUTO; 5966 } 5967 5968 /* Flow control */ 5969 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5970 if (lc->requested_fc & PAUSE_TX && 5971 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5972 n++; 5973 lc->requested_fc &= ~PAUSE_TX; 5974 } 5975 if (lc->requested_fc & PAUSE_RX && 5976 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5977 n++; 5978 lc->requested_fc &= ~PAUSE_RX; 5979 } 5980 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5981 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5982 n++; 5983 lc->requested_fc |= PAUSE_AUTONEG; 5984 } 5985 5986 /* FEC */ 5987 if ((lc->requested_fec & FEC_RS && 5988 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5989 (lc->requested_fec & FEC_BASER_RS && 5990 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5991 n++; 5992 lc->requested_fec = FEC_AUTO; 5993 } 5994 5995 return (n); 5996 } 5997 5998 /* 5999 * Apply the requested L1 settings, which are expected to be valid, to the 6000 * hardware. 6001 */ 6002 static int 6003 apply_link_config(struct port_info *pi) 6004 { 6005 struct adapter *sc = pi->adapter; 6006 struct link_config *lc = &pi->link_cfg; 6007 int rc; 6008 6009 #ifdef INVARIANTS 6010 ASSERT_SYNCHRONIZED_OP(sc); 6011 PORT_LOCK_ASSERT_OWNED(pi); 6012 6013 if (lc->requested_aneg == AUTONEG_ENABLE) 6014 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6015 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6016 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6017 if (lc->requested_fc & PAUSE_TX) 6018 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6019 if (lc->requested_fc & PAUSE_RX) 6020 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6021 if (lc->requested_fec & FEC_RS) 6022 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6023 if (lc->requested_fec & FEC_BASER_RS) 6024 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6025 #endif 6026 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6027 if (rc != 0) { 6028 /* Don't complain if the VF driver gets back an EPERM. */ 6029 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 6030 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6031 } else { 6032 /* 6033 * An L1_CFG will almost always result in a link-change event if 6034 * the link is up, and the driver will refresh the actual 6035 * fec/fc/etc. when the notification is processed. If the link 6036 * is down then the actual settings are meaningless. 6037 * 6038 * This takes care of the case where a change in the L1 settings 6039 * may not result in a notification. 6040 */ 6041 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6042 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6043 } 6044 return (rc); 6045 } 6046 6047 #define FW_MAC_EXACT_CHUNK 7 6048 struct mcaddr_ctx { 6049 if_t ifp; 6050 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6051 uint64_t hash; 6052 int i; 6053 int del; 6054 int rc; 6055 }; 6056 6057 static u_int 6058 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6059 { 6060 struct mcaddr_ctx *ctx = arg; 6061 struct vi_info *vi = if_getsoftc(ctx->ifp); 6062 struct port_info *pi = vi->pi; 6063 struct adapter *sc = pi->adapter; 6064 6065 if (ctx->rc < 0) 6066 return (0); 6067 6068 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6069 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6070 ctx->i++; 6071 6072 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6073 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6074 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6075 if (ctx->rc < 0) { 6076 int j; 6077 6078 for (j = 0; j < ctx->i; j++) { 6079 if_printf(ctx->ifp, 6080 "failed to add mc address" 6081 " %02x:%02x:%02x:" 6082 "%02x:%02x:%02x rc=%d\n", 6083 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6084 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6085 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6086 -ctx->rc); 6087 } 6088 return (0); 6089 } 6090 ctx->del = 0; 6091 ctx->i = 0; 6092 } 6093 6094 return (1); 6095 } 6096 6097 /* 6098 * Program the port's XGMAC based on parameters in ifnet. The caller also 6099 * indicates which parameters should be programmed (the rest are left alone). 6100 */ 6101 int 6102 update_mac_settings(if_t ifp, int flags) 6103 { 6104 int rc = 0; 6105 struct vi_info *vi = if_getsoftc(ifp); 6106 struct port_info *pi = vi->pi; 6107 struct adapter *sc = pi->adapter; 6108 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6109 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6110 6111 ASSERT_SYNCHRONIZED_OP(sc); 6112 KASSERT(flags, ("%s: not told what to update.", __func__)); 6113 6114 if (flags & XGMAC_MTU) 6115 mtu = if_getmtu(ifp); 6116 6117 if (flags & XGMAC_PROMISC) 6118 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6119 6120 if (flags & XGMAC_ALLMULTI) 6121 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6122 6123 if (flags & XGMAC_VLANEX) 6124 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6125 6126 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6127 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6128 allmulti, 1, vlanex, false); 6129 if (rc) { 6130 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6131 rc); 6132 return (rc); 6133 } 6134 } 6135 6136 if (flags & XGMAC_UCADDR) { 6137 uint8_t ucaddr[ETHER_ADDR_LEN]; 6138 6139 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6140 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6141 ucaddr, true, &vi->smt_idx); 6142 if (rc < 0) { 6143 rc = -rc; 6144 if_printf(ifp, "change_mac failed: %d\n", rc); 6145 return (rc); 6146 } else { 6147 vi->xact_addr_filt = rc; 6148 rc = 0; 6149 } 6150 } 6151 6152 if (flags & XGMAC_MCADDRS) { 6153 struct epoch_tracker et; 6154 struct mcaddr_ctx ctx; 6155 int j; 6156 6157 ctx.ifp = ifp; 6158 ctx.hash = 0; 6159 ctx.i = 0; 6160 ctx.del = 1; 6161 ctx.rc = 0; 6162 /* 6163 * Unlike other drivers, we accumulate list of pointers into 6164 * interface address lists and we need to keep it safe even 6165 * after if_foreach_llmaddr() returns, thus we must enter the 6166 * network epoch. 6167 */ 6168 NET_EPOCH_ENTER(et); 6169 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6170 if (ctx.rc < 0) { 6171 NET_EPOCH_EXIT(et); 6172 rc = -ctx.rc; 6173 return (rc); 6174 } 6175 if (ctx.i > 0) { 6176 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6177 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6178 NET_EPOCH_EXIT(et); 6179 if (rc < 0) { 6180 rc = -rc; 6181 for (j = 0; j < ctx.i; j++) { 6182 if_printf(ifp, 6183 "failed to add mcast address" 6184 " %02x:%02x:%02x:" 6185 "%02x:%02x:%02x rc=%d\n", 6186 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6187 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6188 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6189 rc); 6190 } 6191 return (rc); 6192 } 6193 ctx.del = 0; 6194 } else 6195 NET_EPOCH_EXIT(et); 6196 6197 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6198 if (rc != 0) 6199 if_printf(ifp, "failed to set mcast address hash: %d\n", 6200 rc); 6201 if (ctx.del == 0) { 6202 /* We clobbered the VXLAN entry if there was one. */ 6203 pi->vxlan_tcam_entry = false; 6204 } 6205 } 6206 6207 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6208 pi->vxlan_tcam_entry == false) { 6209 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6210 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6211 true); 6212 if (rc < 0) { 6213 rc = -rc; 6214 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6215 rc); 6216 } else { 6217 MPASS(rc == sc->rawf_base + pi->port_id); 6218 rc = 0; 6219 pi->vxlan_tcam_entry = true; 6220 } 6221 } 6222 6223 return (rc); 6224 } 6225 6226 /* 6227 * {begin|end}_synchronized_op must be called from the same thread. 6228 */ 6229 int 6230 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6231 char *wmesg) 6232 { 6233 int rc, pri; 6234 6235 #ifdef WITNESS 6236 /* the caller thinks it's ok to sleep, but is it really? */ 6237 if (flags & SLEEP_OK) 6238 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6239 "begin_synchronized_op"); 6240 #endif 6241 6242 if (INTR_OK) 6243 pri = PCATCH; 6244 else 6245 pri = 0; 6246 6247 ADAPTER_LOCK(sc); 6248 for (;;) { 6249 6250 if (vi && IS_DETACHING(vi)) { 6251 rc = ENXIO; 6252 goto done; 6253 } 6254 6255 if (!IS_BUSY(sc)) { 6256 rc = 0; 6257 break; 6258 } 6259 6260 if (!(flags & SLEEP_OK)) { 6261 rc = EBUSY; 6262 goto done; 6263 } 6264 6265 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6266 rc = EINTR; 6267 goto done; 6268 } 6269 } 6270 6271 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6272 SET_BUSY(sc); 6273 #ifdef INVARIANTS 6274 sc->last_op = wmesg; 6275 sc->last_op_thr = curthread; 6276 sc->last_op_flags = flags; 6277 #endif 6278 6279 done: 6280 if (!(flags & HOLD_LOCK) || rc) 6281 ADAPTER_UNLOCK(sc); 6282 6283 return (rc); 6284 } 6285 6286 /* 6287 * Tell if_ioctl and if_init that the VI is going away. This is 6288 * special variant of begin_synchronized_op and must be paired with a 6289 * call to end_vi_detach. 6290 */ 6291 void 6292 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6293 { 6294 ADAPTER_LOCK(sc); 6295 SET_DETACHING(vi); 6296 wakeup(&sc->flags); 6297 while (IS_BUSY(sc)) 6298 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6299 SET_BUSY(sc); 6300 #ifdef INVARIANTS 6301 sc->last_op = "t4detach"; 6302 sc->last_op_thr = curthread; 6303 sc->last_op_flags = 0; 6304 #endif 6305 ADAPTER_UNLOCK(sc); 6306 } 6307 6308 void 6309 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6310 { 6311 ADAPTER_LOCK(sc); 6312 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6313 CLR_BUSY(sc); 6314 CLR_DETACHING(vi); 6315 wakeup(&sc->flags); 6316 ADAPTER_UNLOCK(sc); 6317 } 6318 6319 /* 6320 * {begin|end}_synchronized_op must be called from the same thread. 6321 */ 6322 void 6323 end_synchronized_op(struct adapter *sc, int flags) 6324 { 6325 6326 if (flags & LOCK_HELD) 6327 ADAPTER_LOCK_ASSERT_OWNED(sc); 6328 else 6329 ADAPTER_LOCK(sc); 6330 6331 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6332 CLR_BUSY(sc); 6333 wakeup(&sc->flags); 6334 ADAPTER_UNLOCK(sc); 6335 } 6336 6337 static int 6338 cxgbe_init_synchronized(struct vi_info *vi) 6339 { 6340 struct port_info *pi = vi->pi; 6341 struct adapter *sc = pi->adapter; 6342 if_t ifp = vi->ifp; 6343 int rc = 0, i; 6344 struct sge_txq *txq; 6345 6346 ASSERT_SYNCHRONIZED_OP(sc); 6347 6348 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6349 return (0); /* already running */ 6350 6351 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6352 return (rc); /* error message displayed already */ 6353 6354 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6355 return (rc); /* error message displayed already */ 6356 6357 rc = update_mac_settings(ifp, XGMAC_ALL); 6358 if (rc) 6359 goto done; /* error message displayed already */ 6360 6361 PORT_LOCK(pi); 6362 if (pi->up_vis == 0) { 6363 t4_update_port_info(pi); 6364 fixup_link_config(pi); 6365 build_medialist(pi); 6366 apply_link_config(pi); 6367 } 6368 6369 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6370 if (rc != 0) { 6371 if_printf(ifp, "enable_vi failed: %d\n", rc); 6372 PORT_UNLOCK(pi); 6373 goto done; 6374 } 6375 6376 /* 6377 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6378 * if this changes. 6379 */ 6380 6381 for_each_txq(vi, i, txq) { 6382 TXQ_LOCK(txq); 6383 txq->eq.flags |= EQ_ENABLED; 6384 TXQ_UNLOCK(txq); 6385 } 6386 6387 /* 6388 * The first iq of the first port to come up is used for tracing. 6389 */ 6390 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6391 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6392 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6393 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6394 V_QUEUENUMBER(sc->traceq)); 6395 pi->flags |= HAS_TRACEQ; 6396 } 6397 6398 /* all ok */ 6399 pi->up_vis++; 6400 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6401 if (pi->link_cfg.link_ok) 6402 t4_os_link_changed(pi); 6403 PORT_UNLOCK(pi); 6404 6405 mtx_lock(&vi->tick_mtx); 6406 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6407 callout_reset(&vi->tick, hz, vi_tick, vi); 6408 else 6409 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6410 mtx_unlock(&vi->tick_mtx); 6411 done: 6412 if (rc != 0) 6413 cxgbe_uninit_synchronized(vi); 6414 6415 return (rc); 6416 } 6417 6418 /* 6419 * Idempotent. 6420 */ 6421 static int 6422 cxgbe_uninit_synchronized(struct vi_info *vi) 6423 { 6424 struct port_info *pi = vi->pi; 6425 struct adapter *sc = pi->adapter; 6426 if_t ifp = vi->ifp; 6427 int rc, i; 6428 struct sge_txq *txq; 6429 6430 ASSERT_SYNCHRONIZED_OP(sc); 6431 6432 if (!(vi->flags & VI_INIT_DONE)) { 6433 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6434 KASSERT(0, ("uninited VI is running")); 6435 if_printf(ifp, "uninited VI with running ifnet. " 6436 "vi->flags 0x%016lx, if_flags 0x%08x, " 6437 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6438 if_getdrvflags(ifp)); 6439 } 6440 return (0); 6441 } 6442 6443 /* 6444 * Disable the VI so that all its data in either direction is discarded 6445 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6446 * tick) intact as the TP can deliver negative advice or data that it's 6447 * holding in its RAM (for an offloaded connection) even after the VI is 6448 * disabled. 6449 */ 6450 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6451 if (rc) { 6452 if_printf(ifp, "disable_vi failed: %d\n", rc); 6453 return (rc); 6454 } 6455 6456 for_each_txq(vi, i, txq) { 6457 TXQ_LOCK(txq); 6458 txq->eq.flags &= ~EQ_ENABLED; 6459 TXQ_UNLOCK(txq); 6460 } 6461 6462 mtx_lock(&vi->tick_mtx); 6463 callout_stop(&vi->tick); 6464 mtx_unlock(&vi->tick_mtx); 6465 6466 PORT_LOCK(pi); 6467 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6468 PORT_UNLOCK(pi); 6469 return (0); 6470 } 6471 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6472 pi->up_vis--; 6473 if (pi->up_vis > 0) { 6474 PORT_UNLOCK(pi); 6475 return (0); 6476 } 6477 6478 pi->link_cfg.link_ok = false; 6479 pi->link_cfg.speed = 0; 6480 pi->link_cfg.link_down_rc = 255; 6481 t4_os_link_changed(pi); 6482 PORT_UNLOCK(pi); 6483 6484 return (0); 6485 } 6486 6487 /* 6488 * It is ok for this function to fail midway and return right away. t4_detach 6489 * will walk the entire sc->irq list and clean up whatever is valid. 6490 */ 6491 int 6492 t4_setup_intr_handlers(struct adapter *sc) 6493 { 6494 int rc, rid, p, q, v; 6495 char s[8]; 6496 struct irq *irq; 6497 struct port_info *pi; 6498 struct vi_info *vi; 6499 struct sge *sge = &sc->sge; 6500 struct sge_rxq *rxq; 6501 #ifdef TCP_OFFLOAD 6502 struct sge_ofld_rxq *ofld_rxq; 6503 #endif 6504 #ifdef DEV_NETMAP 6505 struct sge_nm_rxq *nm_rxq; 6506 #endif 6507 #ifdef RSS 6508 int nbuckets = rss_getnumbuckets(); 6509 #endif 6510 6511 /* 6512 * Setup interrupts. 6513 */ 6514 irq = &sc->irq[0]; 6515 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6516 if (forwarding_intr_to_fwq(sc)) 6517 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6518 6519 /* Multiple interrupts. */ 6520 if (sc->flags & IS_VF) 6521 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6522 ("%s: too few intr.", __func__)); 6523 else 6524 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6525 ("%s: too few intr.", __func__)); 6526 6527 /* The first one is always error intr on PFs */ 6528 if (!(sc->flags & IS_VF)) { 6529 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6530 if (rc != 0) 6531 return (rc); 6532 irq++; 6533 rid++; 6534 } 6535 6536 /* The second one is always the firmware event queue (first on VFs) */ 6537 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6538 if (rc != 0) 6539 return (rc); 6540 irq++; 6541 rid++; 6542 6543 for_each_port(sc, p) { 6544 pi = sc->port[p]; 6545 for_each_vi(pi, v, vi) { 6546 vi->first_intr = rid - 1; 6547 6548 if (vi->nnmrxq > 0) { 6549 int n = max(vi->nrxq, vi->nnmrxq); 6550 6551 rxq = &sge->rxq[vi->first_rxq]; 6552 #ifdef DEV_NETMAP 6553 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6554 #endif 6555 for (q = 0; q < n; q++) { 6556 snprintf(s, sizeof(s), "%x%c%x", p, 6557 'a' + v, q); 6558 if (q < vi->nrxq) 6559 irq->rxq = rxq++; 6560 #ifdef DEV_NETMAP 6561 if (q < vi->nnmrxq) 6562 irq->nm_rxq = nm_rxq++; 6563 6564 if (irq->nm_rxq != NULL && 6565 irq->rxq == NULL) { 6566 /* Netmap rx only */ 6567 rc = t4_alloc_irq(sc, irq, rid, 6568 t4_nm_intr, irq->nm_rxq, s); 6569 } 6570 if (irq->nm_rxq != NULL && 6571 irq->rxq != NULL) { 6572 /* NIC and Netmap rx */ 6573 rc = t4_alloc_irq(sc, irq, rid, 6574 t4_vi_intr, irq, s); 6575 } 6576 #endif 6577 if (irq->rxq != NULL && 6578 irq->nm_rxq == NULL) { 6579 /* NIC rx only */ 6580 rc = t4_alloc_irq(sc, irq, rid, 6581 t4_intr, irq->rxq, s); 6582 } 6583 if (rc != 0) 6584 return (rc); 6585 #ifdef RSS 6586 if (q < vi->nrxq) { 6587 bus_bind_intr(sc->dev, irq->res, 6588 rss_getcpu(q % nbuckets)); 6589 } 6590 #endif 6591 irq++; 6592 rid++; 6593 vi->nintr++; 6594 } 6595 } else { 6596 for_each_rxq(vi, q, rxq) { 6597 snprintf(s, sizeof(s), "%x%c%x", p, 6598 'a' + v, q); 6599 rc = t4_alloc_irq(sc, irq, rid, 6600 t4_intr, rxq, s); 6601 if (rc != 0) 6602 return (rc); 6603 #ifdef RSS 6604 bus_bind_intr(sc->dev, irq->res, 6605 rss_getcpu(q % nbuckets)); 6606 #endif 6607 irq++; 6608 rid++; 6609 vi->nintr++; 6610 } 6611 } 6612 #ifdef TCP_OFFLOAD 6613 for_each_ofld_rxq(vi, q, ofld_rxq) { 6614 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6615 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6616 ofld_rxq, s); 6617 if (rc != 0) 6618 return (rc); 6619 irq++; 6620 rid++; 6621 vi->nintr++; 6622 } 6623 #endif 6624 } 6625 } 6626 MPASS(irq == &sc->irq[sc->intr_count]); 6627 6628 return (0); 6629 } 6630 6631 static void 6632 write_global_rss_key(struct adapter *sc) 6633 { 6634 #ifdef RSS 6635 int i; 6636 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6637 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6638 6639 CTASSERT(RSS_KEYSIZE == 40); 6640 6641 rss_getkey((void *)&raw_rss_key[0]); 6642 for (i = 0; i < nitems(rss_key); i++) { 6643 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6644 } 6645 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6646 #endif 6647 } 6648 6649 /* 6650 * Idempotent. 6651 */ 6652 static int 6653 adapter_full_init(struct adapter *sc) 6654 { 6655 int rc, i; 6656 6657 ASSERT_SYNCHRONIZED_OP(sc); 6658 6659 /* 6660 * queues that belong to the adapter (not any particular port). 6661 */ 6662 rc = t4_setup_adapter_queues(sc); 6663 if (rc != 0) 6664 return (rc); 6665 6666 MPASS(sc->params.nports <= nitems(sc->tq)); 6667 for (i = 0; i < sc->params.nports; i++) { 6668 if (sc->tq[i] != NULL) 6669 continue; 6670 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6671 taskqueue_thread_enqueue, &sc->tq[i]); 6672 if (sc->tq[i] == NULL) { 6673 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6674 return (ENOMEM); 6675 } 6676 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6677 device_get_nameunit(sc->dev), i); 6678 } 6679 6680 if (!(sc->flags & IS_VF)) { 6681 write_global_rss_key(sc); 6682 t4_intr_enable(sc); 6683 } 6684 return (0); 6685 } 6686 6687 int 6688 adapter_init(struct adapter *sc) 6689 { 6690 int rc; 6691 6692 ASSERT_SYNCHRONIZED_OP(sc); 6693 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6694 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6695 ("%s: FULL_INIT_DONE already", __func__)); 6696 6697 rc = adapter_full_init(sc); 6698 if (rc != 0) 6699 adapter_full_uninit(sc); 6700 else 6701 sc->flags |= FULL_INIT_DONE; 6702 6703 return (rc); 6704 } 6705 6706 /* 6707 * Idempotent. 6708 */ 6709 static void 6710 adapter_full_uninit(struct adapter *sc) 6711 { 6712 int i; 6713 6714 t4_teardown_adapter_queues(sc); 6715 6716 for (i = 0; i < nitems(sc->tq); i++) { 6717 if (sc->tq[i] == NULL) 6718 continue; 6719 taskqueue_free(sc->tq[i]); 6720 sc->tq[i] = NULL; 6721 } 6722 6723 sc->flags &= ~FULL_INIT_DONE; 6724 } 6725 6726 #ifdef RSS 6727 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6728 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6729 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6730 RSS_HASHTYPE_RSS_UDP_IPV6) 6731 6732 /* Translates kernel hash types to hardware. */ 6733 static int 6734 hashconfig_to_hashen(int hashconfig) 6735 { 6736 int hashen = 0; 6737 6738 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6739 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6740 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6741 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6742 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6743 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6744 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6745 } 6746 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6747 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6748 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6749 } 6750 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6751 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6752 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6753 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6754 6755 return (hashen); 6756 } 6757 6758 /* Translates hardware hash types to kernel. */ 6759 static int 6760 hashen_to_hashconfig(int hashen) 6761 { 6762 int hashconfig = 0; 6763 6764 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6765 /* 6766 * If UDP hashing was enabled it must have been enabled for 6767 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6768 * enabling any 4-tuple hash is nonsense configuration. 6769 */ 6770 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6771 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6772 6773 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6774 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6775 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6776 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6777 } 6778 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6779 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6780 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6781 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6782 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6783 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6784 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6785 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6786 6787 return (hashconfig); 6788 } 6789 #endif 6790 6791 /* 6792 * Idempotent. 6793 */ 6794 static int 6795 vi_full_init(struct vi_info *vi) 6796 { 6797 struct adapter *sc = vi->adapter; 6798 struct sge_rxq *rxq; 6799 int rc, i, j; 6800 #ifdef RSS 6801 int nbuckets = rss_getnumbuckets(); 6802 int hashconfig = rss_gethashconfig(); 6803 int extra; 6804 #endif 6805 6806 ASSERT_SYNCHRONIZED_OP(sc); 6807 6808 /* 6809 * Allocate tx/rx/fl queues for this VI. 6810 */ 6811 rc = t4_setup_vi_queues(vi); 6812 if (rc != 0) 6813 return (rc); 6814 6815 /* 6816 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6817 */ 6818 if (vi->nrxq > vi->rss_size) { 6819 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6820 "some queues will never receive traffic.\n", vi->nrxq, 6821 vi->rss_size); 6822 } else if (vi->rss_size % vi->nrxq) { 6823 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6824 "expect uneven traffic distribution.\n", vi->nrxq, 6825 vi->rss_size); 6826 } 6827 #ifdef RSS 6828 if (vi->nrxq != nbuckets) { 6829 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6830 "performance will be impacted.\n", vi->nrxq, nbuckets); 6831 } 6832 #endif 6833 if (vi->rss == NULL) 6834 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6835 M_ZERO | M_WAITOK); 6836 for (i = 0; i < vi->rss_size;) { 6837 #ifdef RSS 6838 j = rss_get_indirection_to_bucket(i); 6839 j %= vi->nrxq; 6840 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6841 vi->rss[i++] = rxq->iq.abs_id; 6842 #else 6843 for_each_rxq(vi, j, rxq) { 6844 vi->rss[i++] = rxq->iq.abs_id; 6845 if (i == vi->rss_size) 6846 break; 6847 } 6848 #endif 6849 } 6850 6851 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6852 vi->rss, vi->rss_size); 6853 if (rc != 0) { 6854 CH_ERR(vi, "rss_config failed: %d\n", rc); 6855 return (rc); 6856 } 6857 6858 #ifdef RSS 6859 vi->hashen = hashconfig_to_hashen(hashconfig); 6860 6861 /* 6862 * We may have had to enable some hashes even though the global config 6863 * wants them disabled. This is a potential problem that must be 6864 * reported to the user. 6865 */ 6866 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6867 6868 /* 6869 * If we consider only the supported hash types, then the enabled hashes 6870 * are a superset of the requested hashes. In other words, there cannot 6871 * be any supported hash that was requested but not enabled, but there 6872 * can be hashes that were not requested but had to be enabled. 6873 */ 6874 extra &= SUPPORTED_RSS_HASHTYPES; 6875 MPASS((extra & hashconfig) == 0); 6876 6877 if (extra) { 6878 CH_ALERT(vi, 6879 "global RSS config (0x%x) cannot be accommodated.\n", 6880 hashconfig); 6881 } 6882 if (extra & RSS_HASHTYPE_RSS_IPV4) 6883 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6884 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6885 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6886 if (extra & RSS_HASHTYPE_RSS_IPV6) 6887 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6888 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6889 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6890 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6891 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6892 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6893 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6894 #else 6895 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6896 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6897 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6898 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6899 #endif 6900 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6901 0, 0); 6902 if (rc != 0) { 6903 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6904 return (rc); 6905 } 6906 6907 return (0); 6908 } 6909 6910 int 6911 vi_init(struct vi_info *vi) 6912 { 6913 int rc; 6914 6915 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6916 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6917 ("%s: VI_INIT_DONE already", __func__)); 6918 6919 rc = vi_full_init(vi); 6920 if (rc != 0) 6921 vi_full_uninit(vi); 6922 else 6923 vi->flags |= VI_INIT_DONE; 6924 6925 return (rc); 6926 } 6927 6928 /* 6929 * Idempotent. 6930 */ 6931 static void 6932 vi_full_uninit(struct vi_info *vi) 6933 { 6934 6935 if (vi->flags & VI_INIT_DONE) { 6936 quiesce_vi(vi); 6937 free(vi->rss, M_CXGBE); 6938 free(vi->nm_rss, M_CXGBE); 6939 } 6940 6941 t4_teardown_vi_queues(vi); 6942 vi->flags &= ~VI_INIT_DONE; 6943 } 6944 6945 static void 6946 quiesce_txq(struct sge_txq *txq) 6947 { 6948 struct sge_eq *eq = &txq->eq; 6949 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6950 6951 MPASS(eq->flags & EQ_SW_ALLOCATED); 6952 MPASS(!(eq->flags & EQ_ENABLED)); 6953 6954 /* Wait for the mp_ring to empty. */ 6955 while (!mp_ring_is_idle(txq->r)) { 6956 mp_ring_check_drainage(txq->r, 4096); 6957 pause("rquiesce", 1); 6958 } 6959 MPASS(txq->txp.npkt == 0); 6960 6961 if (eq->flags & EQ_HW_ALLOCATED) { 6962 /* 6963 * Hardware is alive and working normally. Wait for it to 6964 * finish and then wait for the driver to catch up and reclaim 6965 * all descriptors. 6966 */ 6967 while (spg->cidx != htobe16(eq->pidx)) 6968 pause("equiesce", 1); 6969 while (eq->cidx != eq->pidx) 6970 pause("dquiesce", 1); 6971 } else { 6972 /* 6973 * Hardware is unavailable. Discard all pending tx and reclaim 6974 * descriptors directly. 6975 */ 6976 TXQ_LOCK(txq); 6977 while (eq->cidx != eq->pidx) { 6978 struct mbuf *m, *nextpkt; 6979 struct tx_sdesc *txsd; 6980 6981 txsd = &txq->sdesc[eq->cidx]; 6982 for (m = txsd->m; m != NULL; m = nextpkt) { 6983 nextpkt = m->m_nextpkt; 6984 m->m_nextpkt = NULL; 6985 m_freem(m); 6986 } 6987 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6988 } 6989 spg->pidx = spg->cidx = htobe16(eq->cidx); 6990 TXQ_UNLOCK(txq); 6991 } 6992 } 6993 6994 static void 6995 quiesce_wrq(struct sge_wrq *wrq) 6996 { 6997 6998 /* XXXTX */ 6999 } 7000 7001 static void 7002 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7003 { 7004 /* Synchronize with the interrupt handler */ 7005 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7006 pause("iqfree", 1); 7007 7008 if (fl != NULL) { 7009 MPASS(iq->flags & IQ_HAS_FL); 7010 7011 mtx_lock(&sc->sfl_lock); 7012 FL_LOCK(fl); 7013 fl->flags |= FL_DOOMED; 7014 FL_UNLOCK(fl); 7015 callout_stop(&sc->sfl_callout); 7016 mtx_unlock(&sc->sfl_lock); 7017 7018 KASSERT((fl->flags & FL_STARVING) == 0, 7019 ("%s: still starving", __func__)); 7020 7021 /* Release all buffers if hardware is no longer available. */ 7022 if (!(iq->flags & IQ_HW_ALLOCATED)) 7023 free_fl_buffers(sc, fl); 7024 } 7025 } 7026 7027 /* 7028 * Wait for all activity on all the queues of the VI to complete. It is assumed 7029 * that no new work is being enqueued by the hardware or the driver. That part 7030 * should be arranged before calling this function. 7031 */ 7032 static void 7033 quiesce_vi(struct vi_info *vi) 7034 { 7035 int i; 7036 struct adapter *sc = vi->adapter; 7037 struct sge_rxq *rxq; 7038 struct sge_txq *txq; 7039 #ifdef TCP_OFFLOAD 7040 struct sge_ofld_rxq *ofld_rxq; 7041 #endif 7042 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7043 struct sge_ofld_txq *ofld_txq; 7044 #endif 7045 7046 if (!(vi->flags & VI_INIT_DONE)) 7047 return; 7048 7049 for_each_txq(vi, i, txq) { 7050 quiesce_txq(txq); 7051 } 7052 7053 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7054 for_each_ofld_txq(vi, i, ofld_txq) { 7055 quiesce_wrq(&ofld_txq->wrq); 7056 } 7057 #endif 7058 7059 for_each_rxq(vi, i, rxq) { 7060 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7061 } 7062 7063 #ifdef TCP_OFFLOAD 7064 for_each_ofld_rxq(vi, i, ofld_rxq) { 7065 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7066 } 7067 #endif 7068 } 7069 7070 static int 7071 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7072 driver_intr_t *handler, void *arg, char *name) 7073 { 7074 int rc; 7075 7076 irq->rid = rid; 7077 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7078 RF_SHAREABLE | RF_ACTIVE); 7079 if (irq->res == NULL) { 7080 device_printf(sc->dev, 7081 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7082 return (ENOMEM); 7083 } 7084 7085 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7086 NULL, handler, arg, &irq->tag); 7087 if (rc != 0) { 7088 device_printf(sc->dev, 7089 "failed to setup interrupt for rid %d, name %s: %d\n", 7090 rid, name, rc); 7091 } else if (name) 7092 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7093 7094 return (rc); 7095 } 7096 7097 static int 7098 t4_free_irq(struct adapter *sc, struct irq *irq) 7099 { 7100 if (irq->tag) 7101 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7102 if (irq->res) 7103 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7104 7105 bzero(irq, sizeof(*irq)); 7106 7107 return (0); 7108 } 7109 7110 static void 7111 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7112 { 7113 7114 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7115 t4_get_regs(sc, buf, regs->len); 7116 } 7117 7118 #define A_PL_INDIR_CMD 0x1f8 7119 7120 #define S_PL_AUTOINC 31 7121 #define M_PL_AUTOINC 0x1U 7122 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7123 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7124 7125 #define S_PL_VFID 20 7126 #define M_PL_VFID 0xffU 7127 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7128 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7129 7130 #define S_PL_ADDR 0 7131 #define M_PL_ADDR 0xfffffU 7132 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7133 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7134 7135 #define A_PL_INDIR_DATA 0x1fc 7136 7137 static uint64_t 7138 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7139 { 7140 u32 stats[2]; 7141 7142 if (sc->flags & IS_VF) { 7143 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7144 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7145 } else { 7146 mtx_assert(&sc->reg_lock, MA_OWNED); 7147 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7148 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7149 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7150 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7151 } 7152 return (((uint64_t)stats[1]) << 32 | stats[0]); 7153 } 7154 7155 static void 7156 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7157 { 7158 7159 #define GET_STAT(name) \ 7160 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7161 7162 if (!(sc->flags & IS_VF)) 7163 mtx_lock(&sc->reg_lock); 7164 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7165 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7166 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7167 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7168 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7169 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7170 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7171 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7172 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7173 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7174 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7175 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7176 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7177 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7178 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7179 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7180 if (!(sc->flags & IS_VF)) 7181 mtx_unlock(&sc->reg_lock); 7182 7183 #undef GET_STAT 7184 } 7185 7186 static void 7187 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7188 { 7189 int reg; 7190 7191 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7192 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7193 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7194 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7195 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7196 } 7197 7198 static void 7199 vi_refresh_stats(struct vi_info *vi) 7200 { 7201 struct timeval tv; 7202 const struct timeval interval = {0, 250000}; /* 250ms */ 7203 7204 mtx_assert(&vi->tick_mtx, MA_OWNED); 7205 7206 if (vi->flags & VI_SKIP_STATS) 7207 return; 7208 7209 getmicrotime(&tv); 7210 timevalsub(&tv, &interval); 7211 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7212 return; 7213 7214 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7215 getmicrotime(&vi->last_refreshed); 7216 } 7217 7218 static void 7219 cxgbe_refresh_stats(struct vi_info *vi) 7220 { 7221 u_int i, v, tnl_cong_drops, chan_map; 7222 struct timeval tv; 7223 const struct timeval interval = {0, 250000}; /* 250ms */ 7224 struct port_info *pi; 7225 struct adapter *sc; 7226 7227 mtx_assert(&vi->tick_mtx, MA_OWNED); 7228 7229 if (vi->flags & VI_SKIP_STATS) 7230 return; 7231 7232 getmicrotime(&tv); 7233 timevalsub(&tv, &interval); 7234 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7235 return; 7236 7237 pi = vi->pi; 7238 sc = vi->adapter; 7239 tnl_cong_drops = 0; 7240 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7241 chan_map = pi->rx_e_chan_map; 7242 while (chan_map) { 7243 i = ffs(chan_map) - 1; 7244 mtx_lock(&sc->reg_lock); 7245 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7246 A_TP_MIB_TNL_CNG_DROP_0 + i); 7247 mtx_unlock(&sc->reg_lock); 7248 tnl_cong_drops += v; 7249 chan_map &= ~(1 << i); 7250 } 7251 pi->tnl_cong_drops = tnl_cong_drops; 7252 getmicrotime(&vi->last_refreshed); 7253 } 7254 7255 static void 7256 cxgbe_tick(void *arg) 7257 { 7258 struct vi_info *vi = arg; 7259 7260 MPASS(IS_MAIN_VI(vi)); 7261 mtx_assert(&vi->tick_mtx, MA_OWNED); 7262 7263 cxgbe_refresh_stats(vi); 7264 callout_schedule(&vi->tick, hz); 7265 } 7266 7267 static void 7268 vi_tick(void *arg) 7269 { 7270 struct vi_info *vi = arg; 7271 7272 mtx_assert(&vi->tick_mtx, MA_OWNED); 7273 7274 vi_refresh_stats(vi); 7275 callout_schedule(&vi->tick, hz); 7276 } 7277 7278 /* 7279 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7280 */ 7281 static char *caps_decoder[] = { 7282 "\20\001IPMI\002NCSI", /* 0: NBM */ 7283 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7284 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7285 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7286 "\006HASHFILTER\007ETHOFLD", 7287 "\20\001TOE", /* 4: TOE */ 7288 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7289 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7290 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7291 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7292 "\007T10DIF" 7293 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7294 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7295 "\004TLS_HW", 7296 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7297 "\004PO_INITIATOR\005PO_TARGET", 7298 }; 7299 7300 void 7301 t4_sysctls(struct adapter *sc) 7302 { 7303 struct sysctl_ctx_list *ctx = &sc->ctx; 7304 struct sysctl_oid *oid; 7305 struct sysctl_oid_list *children, *c0; 7306 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7307 7308 /* 7309 * dev.t4nex.X. 7310 */ 7311 oid = device_get_sysctl_tree(sc->dev); 7312 c0 = children = SYSCTL_CHILDREN(oid); 7313 7314 sc->sc_do_rxcopy = 1; 7315 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7316 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7317 7318 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7319 sc->params.nports, "# of ports"); 7320 7321 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7322 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7323 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7324 "available doorbells"); 7325 7326 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7327 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7328 7329 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7330 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7331 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7332 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7333 7334 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7335 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7336 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7337 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7338 7339 t4_sge_sysctls(sc, ctx, children); 7340 7341 sc->lro_timeout = 100; 7342 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7343 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7344 7345 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7346 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7347 7348 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7349 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7350 7351 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7352 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7353 7354 if (sc->flags & IS_VF) 7355 return; 7356 7357 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7358 NULL, chip_rev(sc), "chip hardware revision"); 7359 7360 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7361 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7362 7363 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7364 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7365 7366 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7367 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7368 7369 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7370 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7371 7372 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7373 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7374 7375 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7376 sc->er_version, 0, "expansion ROM version"); 7377 7378 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7379 sc->bs_version, 0, "bootstrap firmware version"); 7380 7381 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7382 NULL, sc->params.scfg_vers, "serial config version"); 7383 7384 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7385 NULL, sc->params.vpd_vers, "VPD version"); 7386 7387 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7388 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7389 7390 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7391 sc->cfcsum, "config file checksum"); 7392 7393 #define SYSCTL_CAP(name, n, text) \ 7394 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7395 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7396 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7397 "available " text " capabilities") 7398 7399 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7400 SYSCTL_CAP(linkcaps, 1, "link"); 7401 SYSCTL_CAP(switchcaps, 2, "switch"); 7402 SYSCTL_CAP(niccaps, 3, "NIC"); 7403 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7404 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7405 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7406 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7407 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7408 #undef SYSCTL_CAP 7409 7410 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7411 NULL, sc->tids.nftids, "number of filters"); 7412 7413 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7414 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7415 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7417 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7418 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7419 7420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7421 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7422 sysctl_loadavg, "A", 7423 "microprocessor load averages (debug firmwares only)"); 7424 7425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7426 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7427 "I", "core Vdd (in mV)"); 7428 7429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7430 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7431 sysctl_cpus, "A", "local CPUs"); 7432 7433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7434 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7435 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7436 7437 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7438 &sc->swintr, 0, "software triggered interrupts"); 7439 7440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7441 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7442 "1 = reset adapter, 0 = zero reset counter"); 7443 7444 /* 7445 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7446 */ 7447 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7448 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7449 "logs and miscellaneous information"); 7450 children = SYSCTL_CHILDREN(oid); 7451 7452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7453 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7454 sysctl_cctrl, "A", "congestion control"); 7455 7456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7457 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7458 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7459 7460 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7461 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7462 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7463 7464 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7465 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7466 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7467 7468 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7469 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7470 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7471 7472 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7473 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7474 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7475 7476 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7477 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7478 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7479 7480 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7481 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7482 sysctl_cim_la, "A", "CIM logic analyzer"); 7483 7484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7485 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7486 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7487 7488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7489 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7490 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7491 7492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7494 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7495 7496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7497 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7498 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7499 7500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7501 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7502 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7503 7504 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7505 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7506 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7507 7508 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7509 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7510 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7511 7512 if (chip_id(sc) > CHELSIO_T4) { 7513 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7514 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7515 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7516 "CIM OBQ 6 (SGE0-RX)"); 7517 7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7519 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7520 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7521 "CIM OBQ 7 (SGE1-RX)"); 7522 } 7523 7524 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7525 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7526 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7527 7528 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7529 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7530 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7531 7532 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7533 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7534 sysctl_cpl_stats, "A", "CPL statistics"); 7535 7536 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7537 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7538 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7539 7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7542 sysctl_tid_stats, "A", "tid stats"); 7543 7544 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7545 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7546 sysctl_devlog, "A", "firmware's device log"); 7547 7548 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7549 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7550 sysctl_fcoe_stats, "A", "FCoE statistics"); 7551 7552 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7553 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7554 sysctl_hw_sched, "A", "hardware scheduler "); 7555 7556 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7557 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7558 sysctl_l2t, "A", "hardware L2 table"); 7559 7560 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7561 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7562 sysctl_smt, "A", "hardware source MAC table"); 7563 7564 #ifdef INET6 7565 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7566 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7567 sysctl_clip, "A", "active CLIP table entries"); 7568 #endif 7569 7570 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7571 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7572 sysctl_lb_stats, "A", "loopback statistics"); 7573 7574 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7575 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7576 sysctl_meminfo, "A", "memory regions"); 7577 7578 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7579 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7580 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7581 "A", "MPS TCAM entries"); 7582 7583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7585 sysctl_path_mtus, "A", "path MTUs"); 7586 7587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7588 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7589 sysctl_pm_stats, "A", "PM statistics"); 7590 7591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7592 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7593 sysctl_rdma_stats, "A", "RDMA statistics"); 7594 7595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7596 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7597 sysctl_tcp_stats, "A", "TCP statistics"); 7598 7599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7600 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7601 sysctl_tids, "A", "TID information"); 7602 7603 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7604 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7605 sysctl_tp_err_stats, "A", "TP error statistics"); 7606 7607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7608 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7609 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7610 7611 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7612 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7613 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7614 7615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7616 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7617 sysctl_tp_la, "A", "TP logic analyzer"); 7618 7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7620 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7621 sysctl_tx_rate, "A", "Tx rate"); 7622 7623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7624 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7625 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7626 7627 if (chip_id(sc) >= CHELSIO_T5) { 7628 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7629 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7630 sysctl_wcwr_stats, "A", "write combined work requests"); 7631 } 7632 7633 #ifdef KERN_TLS 7634 if (is_ktls(sc)) { 7635 /* 7636 * dev.t4nex.0.tls. 7637 */ 7638 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7639 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7640 children = SYSCTL_CHILDREN(oid); 7641 7642 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7643 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7644 "keys in work requests (1) or attempt to store TLS keys " 7645 "in card memory."); 7646 7647 if (is_t6(sc)) 7648 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7649 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7650 "combine TCB field updates with TLS record work " 7651 "requests."); 7652 } 7653 #endif 7654 7655 #ifdef TCP_OFFLOAD 7656 if (is_offload(sc)) { 7657 int i; 7658 char s[4]; 7659 7660 /* 7661 * dev.t4nex.X.toe. 7662 */ 7663 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7664 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7665 children = SYSCTL_CHILDREN(oid); 7666 7667 sc->tt.cong_algorithm = -1; 7668 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7669 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7670 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7671 "3 = highspeed)"); 7672 7673 sc->tt.sndbuf = -1; 7674 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7675 &sc->tt.sndbuf, 0, "hardware send buffer"); 7676 7677 sc->tt.ddp = 0; 7678 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7679 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7680 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7681 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7682 7683 sc->tt.rx_coalesce = -1; 7684 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7685 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7686 7687 sc->tt.tls = 0; 7688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7689 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7690 "Inline TLS allowed"); 7691 7692 sc->tt.tx_align = -1; 7693 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7694 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7695 7696 sc->tt.tx_zcopy = 0; 7697 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7698 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7699 "Enable zero-copy aio_write(2)"); 7700 7701 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7702 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7703 "cop_managed_offloading", CTLFLAG_RW, 7704 &sc->tt.cop_managed_offloading, 0, 7705 "COP (Connection Offload Policy) controls all TOE offload"); 7706 7707 sc->tt.autorcvbuf_inc = 16 * 1024; 7708 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7709 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7710 "autorcvbuf increment"); 7711 7712 sc->tt.update_hc_on_pmtu_change = 1; 7713 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7714 "update_hc_on_pmtu_change", CTLFLAG_RW, 7715 &sc->tt.update_hc_on_pmtu_change, 0, 7716 "Update hostcache entry if the PMTU changes"); 7717 7718 sc->tt.iso = 1; 7719 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7720 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7721 7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7723 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7724 sysctl_tp_tick, "A", "TP timer tick (us)"); 7725 7726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7727 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7728 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7729 7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7732 sysctl_tp_tick, "A", "DACK tick (us)"); 7733 7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7735 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7736 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7737 7738 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7739 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7740 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7741 "Minimum retransmit interval (us)"); 7742 7743 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7744 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7745 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7746 "Maximum retransmit interval (us)"); 7747 7748 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7749 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7750 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7751 "Persist timer min (us)"); 7752 7753 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7754 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7755 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7756 "Persist timer max (us)"); 7757 7758 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7759 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7760 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7761 "Keepalive idle timer (us)"); 7762 7763 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7764 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7765 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7766 "Keepalive interval timer (us)"); 7767 7768 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7769 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7770 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7771 7772 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7773 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7774 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7775 "FINWAIT2 timer (us)"); 7776 7777 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7778 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7779 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7780 "Number of SYN retransmissions before abort"); 7781 7782 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7783 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7784 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7785 "Number of retransmissions before abort"); 7786 7787 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7788 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7789 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7790 "Number of keepalive probes before abort"); 7791 7792 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7793 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7794 "TOE retransmit backoffs"); 7795 children = SYSCTL_CHILDREN(oid); 7796 for (i = 0; i < 16; i++) { 7797 snprintf(s, sizeof(s), "%u", i); 7798 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7799 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7800 i, sysctl_tp_backoff, "IU", 7801 "TOE retransmit backoff"); 7802 } 7803 } 7804 #endif 7805 } 7806 7807 void 7808 vi_sysctls(struct vi_info *vi) 7809 { 7810 struct sysctl_ctx_list *ctx = &vi->ctx; 7811 struct sysctl_oid *oid; 7812 struct sysctl_oid_list *children; 7813 7814 /* 7815 * dev.v?(cxgbe|cxl).X. 7816 */ 7817 oid = device_get_sysctl_tree(vi->dev); 7818 children = SYSCTL_CHILDREN(oid); 7819 7820 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7821 vi->viid, "VI identifer"); 7822 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7823 &vi->nrxq, 0, "# of rx queues"); 7824 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7825 &vi->ntxq, 0, "# of tx queues"); 7826 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7827 &vi->first_rxq, 0, "index of first rx queue"); 7828 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7829 &vi->first_txq, 0, "index of first tx queue"); 7830 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7831 vi->rss_base, "start of RSS indirection table"); 7832 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7833 vi->rss_size, "size of RSS indirection table"); 7834 7835 if (IS_MAIN_VI(vi)) { 7836 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7837 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7838 sysctl_noflowq, "IU", 7839 "Reserve queue 0 for non-flowid packets"); 7840 } 7841 7842 if (vi->adapter->flags & IS_VF) { 7843 MPASS(vi->flags & TX_USES_VM_WR); 7844 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7845 NULL, 1, "use VM work requests for transmit"); 7846 } else { 7847 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7848 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7849 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7850 } 7851 7852 #ifdef TCP_OFFLOAD 7853 if (vi->nofldrxq != 0) { 7854 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7855 &vi->nofldrxq, 0, 7856 "# of rx queues for offloaded TCP connections"); 7857 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7858 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7859 "index of first TOE rx queue"); 7860 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7861 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7862 sysctl_holdoff_tmr_idx_ofld, "I", 7863 "holdoff timer index for TOE queues"); 7864 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7865 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7866 sysctl_holdoff_pktc_idx_ofld, "I", 7867 "holdoff packet counter index for TOE queues"); 7868 } 7869 #endif 7870 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7871 if (vi->nofldtxq != 0) { 7872 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7873 &vi->nofldtxq, 0, 7874 "# of tx queues for TOE/ETHOFLD"); 7875 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7876 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7877 "index of first TOE/ETHOFLD tx queue"); 7878 } 7879 #endif 7880 #ifdef DEV_NETMAP 7881 if (vi->nnmrxq != 0) { 7882 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7883 &vi->nnmrxq, 0, "# of netmap rx queues"); 7884 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7885 &vi->nnmtxq, 0, "# of netmap tx queues"); 7886 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7887 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7888 "index of first netmap rx queue"); 7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7890 CTLFLAG_RD, &vi->first_nm_txq, 0, 7891 "index of first netmap tx queue"); 7892 } 7893 #endif 7894 7895 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7896 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7897 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7898 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7899 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7900 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7901 7902 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7903 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7904 sysctl_qsize_rxq, "I", "rx queue size"); 7905 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7906 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7907 sysctl_qsize_txq, "I", "tx queue size"); 7908 } 7909 7910 static void 7911 cxgbe_sysctls(struct port_info *pi) 7912 { 7913 struct sysctl_ctx_list *ctx = &pi->ctx; 7914 struct sysctl_oid *oid; 7915 struct sysctl_oid_list *children, *children2; 7916 struct adapter *sc = pi->adapter; 7917 int i; 7918 char name[16]; 7919 static char *tc_flags = {"\20\1USER"}; 7920 7921 /* 7922 * dev.cxgbe.X. 7923 */ 7924 oid = device_get_sysctl_tree(pi->dev); 7925 children = SYSCTL_CHILDREN(oid); 7926 7927 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7928 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7929 sysctl_linkdnrc, "A", "reason why link is down"); 7930 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7931 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7932 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7933 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7934 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7935 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7936 sysctl_btphy, "I", "PHY firmware version"); 7937 } 7938 7939 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7940 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7941 sysctl_pause_settings, "A", 7942 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7943 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7944 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7945 "FEC in use on the link"); 7946 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7947 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7948 sysctl_requested_fec, "A", 7949 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7950 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7951 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7952 "FEC recommended by the cable/transceiver"); 7953 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7954 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7955 sysctl_autoneg, "I", 7956 "autonegotiation (-1 = not supported)"); 7957 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7958 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7959 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7960 7961 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7962 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7963 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7964 &pi->link_cfg.pcaps, 0, "port capabilities"); 7965 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7966 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7967 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7968 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7969 7970 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7971 port_top_speed(pi), "max speed (in Gbps)"); 7972 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7973 pi->mps_bg_map, "MPS buffer group map"); 7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7975 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7976 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 7977 pi->tx_chan, "TP tx c-channel"); 7978 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 7979 pi->rx_chan, "TP rx c-channel"); 7980 7981 if (sc->flags & IS_VF) 7982 return; 7983 7984 /* 7985 * dev.(cxgbe|cxl).X.tc. 7986 */ 7987 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7988 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7989 "Tx scheduler traffic classes (cl_rl)"); 7990 children2 = SYSCTL_CHILDREN(oid); 7991 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7992 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7993 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7994 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7995 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7996 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7997 for (i = 0; i < sc->params.nsched_cls; i++) { 7998 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7999 8000 snprintf(name, sizeof(name), "%d", i); 8001 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8002 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8003 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8004 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8005 CTLFLAG_RD, &tc->state, 0, "current state"); 8006 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8007 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8008 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8009 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8010 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8011 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8012 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8013 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8014 "traffic class parameters"); 8015 } 8016 8017 /* 8018 * dev.cxgbe.X.stats. 8019 */ 8020 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8021 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8022 children = SYSCTL_CHILDREN(oid); 8023 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8024 &pi->tx_parse_error, 0, 8025 "# of tx packets with invalid length or # of segments"); 8026 8027 #define T4_REGSTAT(name, stat, desc) \ 8028 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8029 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8030 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8031 sysctl_handle_t4_reg64, "QU", desc) 8032 8033 /* We get these from port_stats and they may be stale by up to 1s */ 8034 #define T4_PORTSTAT(name, desc) \ 8035 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8036 &pi->stats.name, desc) 8037 8038 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8039 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8040 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8041 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8042 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8043 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8044 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8045 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8046 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8047 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8048 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8049 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8050 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8051 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8052 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8053 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8054 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8055 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8056 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8057 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8058 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8059 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8060 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8061 8062 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8063 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8064 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8065 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8066 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8067 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8068 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8069 if (is_t6(sc)) { 8070 T4_PORTSTAT(rx_fcs_err, 8071 "# of frames received with bad FCS since last link up"); 8072 } else { 8073 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8074 "# of frames received with bad FCS"); 8075 } 8076 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8077 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8078 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8079 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8080 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8081 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8082 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8083 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8084 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8085 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8086 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8087 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8088 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8089 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8090 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8091 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8092 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8093 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8094 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8095 8096 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8097 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8098 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8099 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8100 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8101 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8102 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8103 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8104 8105 #undef T4_REGSTAT 8106 #undef T4_PORTSTAT 8107 } 8108 8109 static int 8110 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8111 { 8112 int rc, *i, space = 0; 8113 struct sbuf sb; 8114 8115 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8116 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8117 if (space) 8118 sbuf_printf(&sb, " "); 8119 sbuf_printf(&sb, "%d", *i); 8120 space = 1; 8121 } 8122 rc = sbuf_finish(&sb); 8123 sbuf_delete(&sb); 8124 return (rc); 8125 } 8126 8127 static int 8128 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8129 { 8130 int rc; 8131 struct sbuf *sb; 8132 8133 rc = sysctl_wire_old_buffer(req, 0); 8134 if (rc != 0) 8135 return(rc); 8136 8137 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8138 if (sb == NULL) 8139 return (ENOMEM); 8140 8141 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8142 rc = sbuf_finish(sb); 8143 sbuf_delete(sb); 8144 8145 return (rc); 8146 } 8147 8148 static int 8149 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8150 { 8151 int rc; 8152 struct sbuf *sb; 8153 8154 rc = sysctl_wire_old_buffer(req, 0); 8155 if (rc != 0) 8156 return(rc); 8157 8158 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8159 if (sb == NULL) 8160 return (ENOMEM); 8161 8162 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8163 rc = sbuf_finish(sb); 8164 sbuf_delete(sb); 8165 8166 return (rc); 8167 } 8168 8169 static int 8170 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8171 { 8172 struct port_info *pi = arg1; 8173 int op = arg2; 8174 struct adapter *sc = pi->adapter; 8175 u_int v; 8176 int rc; 8177 8178 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8179 if (rc) 8180 return (rc); 8181 if (hw_off_limits(sc)) 8182 rc = ENXIO; 8183 else { 8184 /* XXX: magic numbers */ 8185 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8186 op ? 0x20 : 0xc820, &v); 8187 } 8188 end_synchronized_op(sc, 0); 8189 if (rc) 8190 return (rc); 8191 if (op == 0) 8192 v /= 256; 8193 8194 rc = sysctl_handle_int(oidp, &v, 0, req); 8195 return (rc); 8196 } 8197 8198 static int 8199 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8200 { 8201 struct vi_info *vi = arg1; 8202 int rc, val; 8203 8204 val = vi->rsrv_noflowq; 8205 rc = sysctl_handle_int(oidp, &val, 0, req); 8206 if (rc != 0 || req->newptr == NULL) 8207 return (rc); 8208 8209 if ((val >= 1) && (vi->ntxq > 1)) 8210 vi->rsrv_noflowq = 1; 8211 else 8212 vi->rsrv_noflowq = 0; 8213 8214 return (rc); 8215 } 8216 8217 static int 8218 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8219 { 8220 struct vi_info *vi = arg1; 8221 struct adapter *sc = vi->adapter; 8222 int rc, val, i; 8223 8224 MPASS(!(sc->flags & IS_VF)); 8225 8226 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8227 rc = sysctl_handle_int(oidp, &val, 0, req); 8228 if (rc != 0 || req->newptr == NULL) 8229 return (rc); 8230 8231 if (val != 0 && val != 1) 8232 return (EINVAL); 8233 8234 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8235 "t4txvm"); 8236 if (rc) 8237 return (rc); 8238 if (hw_off_limits(sc)) 8239 rc = ENXIO; 8240 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8241 /* 8242 * We don't want parse_pkt to run with one setting (VF or PF) 8243 * and then eth_tx to see a different setting but still use 8244 * stale information calculated by parse_pkt. 8245 */ 8246 rc = EBUSY; 8247 } else { 8248 struct port_info *pi = vi->pi; 8249 struct sge_txq *txq; 8250 uint32_t ctrl0; 8251 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8252 8253 if (val) { 8254 vi->flags |= TX_USES_VM_WR; 8255 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8256 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8257 V_TXPKT_INTF(pi->tx_chan)); 8258 if (!(sc->flags & IS_VF)) 8259 npkt--; 8260 } else { 8261 vi->flags &= ~TX_USES_VM_WR; 8262 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8263 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8264 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8265 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8266 } 8267 for_each_txq(vi, i, txq) { 8268 txq->cpl_ctrl0 = ctrl0; 8269 txq->txp.max_npkt = npkt; 8270 } 8271 } 8272 end_synchronized_op(sc, LOCK_HELD); 8273 return (rc); 8274 } 8275 8276 static int 8277 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8278 { 8279 struct vi_info *vi = arg1; 8280 struct adapter *sc = vi->adapter; 8281 int idx, rc, i; 8282 struct sge_rxq *rxq; 8283 uint8_t v; 8284 8285 idx = vi->tmr_idx; 8286 8287 rc = sysctl_handle_int(oidp, &idx, 0, req); 8288 if (rc != 0 || req->newptr == NULL) 8289 return (rc); 8290 8291 if (idx < 0 || idx >= SGE_NTIMERS) 8292 return (EINVAL); 8293 8294 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8295 "t4tmr"); 8296 if (rc) 8297 return (rc); 8298 8299 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8300 for_each_rxq(vi, i, rxq) { 8301 #ifdef atomic_store_rel_8 8302 atomic_store_rel_8(&rxq->iq.intr_params, v); 8303 #else 8304 rxq->iq.intr_params = v; 8305 #endif 8306 } 8307 vi->tmr_idx = idx; 8308 8309 end_synchronized_op(sc, LOCK_HELD); 8310 return (0); 8311 } 8312 8313 static int 8314 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8315 { 8316 struct vi_info *vi = arg1; 8317 struct adapter *sc = vi->adapter; 8318 int idx, rc; 8319 8320 idx = vi->pktc_idx; 8321 8322 rc = sysctl_handle_int(oidp, &idx, 0, req); 8323 if (rc != 0 || req->newptr == NULL) 8324 return (rc); 8325 8326 if (idx < -1 || idx >= SGE_NCOUNTERS) 8327 return (EINVAL); 8328 8329 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8330 "t4pktc"); 8331 if (rc) 8332 return (rc); 8333 8334 if (vi->flags & VI_INIT_DONE) 8335 rc = EBUSY; /* cannot be changed once the queues are created */ 8336 else 8337 vi->pktc_idx = idx; 8338 8339 end_synchronized_op(sc, LOCK_HELD); 8340 return (rc); 8341 } 8342 8343 static int 8344 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8345 { 8346 struct vi_info *vi = arg1; 8347 struct adapter *sc = vi->adapter; 8348 int qsize, rc; 8349 8350 qsize = vi->qsize_rxq; 8351 8352 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8353 if (rc != 0 || req->newptr == NULL) 8354 return (rc); 8355 8356 if (qsize < 128 || (qsize & 7)) 8357 return (EINVAL); 8358 8359 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8360 "t4rxqs"); 8361 if (rc) 8362 return (rc); 8363 8364 if (vi->flags & VI_INIT_DONE) 8365 rc = EBUSY; /* cannot be changed once the queues are created */ 8366 else 8367 vi->qsize_rxq = qsize; 8368 8369 end_synchronized_op(sc, LOCK_HELD); 8370 return (rc); 8371 } 8372 8373 static int 8374 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8375 { 8376 struct vi_info *vi = arg1; 8377 struct adapter *sc = vi->adapter; 8378 int qsize, rc; 8379 8380 qsize = vi->qsize_txq; 8381 8382 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8383 if (rc != 0 || req->newptr == NULL) 8384 return (rc); 8385 8386 if (qsize < 128 || qsize > 65536) 8387 return (EINVAL); 8388 8389 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8390 "t4txqs"); 8391 if (rc) 8392 return (rc); 8393 8394 if (vi->flags & VI_INIT_DONE) 8395 rc = EBUSY; /* cannot be changed once the queues are created */ 8396 else 8397 vi->qsize_txq = qsize; 8398 8399 end_synchronized_op(sc, LOCK_HELD); 8400 return (rc); 8401 } 8402 8403 static int 8404 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8405 { 8406 struct port_info *pi = arg1; 8407 struct adapter *sc = pi->adapter; 8408 struct link_config *lc = &pi->link_cfg; 8409 int rc; 8410 8411 if (req->newptr == NULL) { 8412 struct sbuf *sb; 8413 static char *bits = "\20\1RX\2TX\3AUTO"; 8414 8415 rc = sysctl_wire_old_buffer(req, 0); 8416 if (rc != 0) 8417 return(rc); 8418 8419 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8420 if (sb == NULL) 8421 return (ENOMEM); 8422 8423 if (lc->link_ok) { 8424 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8425 (lc->requested_fc & PAUSE_AUTONEG), bits); 8426 } else { 8427 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8428 PAUSE_RX | PAUSE_AUTONEG), bits); 8429 } 8430 rc = sbuf_finish(sb); 8431 sbuf_delete(sb); 8432 } else { 8433 char s[2]; 8434 int n; 8435 8436 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8437 PAUSE_AUTONEG)); 8438 s[1] = 0; 8439 8440 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8441 if (rc != 0) 8442 return(rc); 8443 8444 if (s[1] != 0) 8445 return (EINVAL); 8446 if (s[0] < '0' || s[0] > '9') 8447 return (EINVAL); /* not a number */ 8448 n = s[0] - '0'; 8449 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8450 return (EINVAL); /* some other bit is set too */ 8451 8452 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8453 "t4PAUSE"); 8454 if (rc) 8455 return (rc); 8456 if (!hw_off_limits(sc)) { 8457 PORT_LOCK(pi); 8458 lc->requested_fc = n; 8459 fixup_link_config(pi); 8460 if (pi->up_vis > 0) 8461 rc = apply_link_config(pi); 8462 set_current_media(pi); 8463 PORT_UNLOCK(pi); 8464 } 8465 end_synchronized_op(sc, 0); 8466 } 8467 8468 return (rc); 8469 } 8470 8471 static int 8472 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8473 { 8474 struct port_info *pi = arg1; 8475 struct link_config *lc = &pi->link_cfg; 8476 int rc; 8477 struct sbuf *sb; 8478 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8479 8480 rc = sysctl_wire_old_buffer(req, 0); 8481 if (rc != 0) 8482 return(rc); 8483 8484 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8485 if (sb == NULL) 8486 return (ENOMEM); 8487 if (lc->link_ok) 8488 sbuf_printf(sb, "%b", lc->fec, bits); 8489 else 8490 sbuf_printf(sb, "no link"); 8491 rc = sbuf_finish(sb); 8492 sbuf_delete(sb); 8493 8494 return (rc); 8495 } 8496 8497 static int 8498 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8499 { 8500 struct port_info *pi = arg1; 8501 struct adapter *sc = pi->adapter; 8502 struct link_config *lc = &pi->link_cfg; 8503 int rc; 8504 int8_t old; 8505 8506 if (req->newptr == NULL) { 8507 struct sbuf *sb; 8508 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8509 "\5RSVD3\6auto\7module"; 8510 8511 rc = sysctl_wire_old_buffer(req, 0); 8512 if (rc != 0) 8513 return(rc); 8514 8515 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8516 if (sb == NULL) 8517 return (ENOMEM); 8518 8519 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8520 rc = sbuf_finish(sb); 8521 sbuf_delete(sb); 8522 } else { 8523 char s[8]; 8524 int n; 8525 8526 snprintf(s, sizeof(s), "%d", 8527 lc->requested_fec == FEC_AUTO ? -1 : 8528 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8529 8530 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8531 if (rc != 0) 8532 return(rc); 8533 8534 n = strtol(&s[0], NULL, 0); 8535 if (n < 0 || n & FEC_AUTO) 8536 n = FEC_AUTO; 8537 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8538 return (EINVAL);/* some other bit is set too */ 8539 8540 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8541 "t4reqf"); 8542 if (rc) 8543 return (rc); 8544 PORT_LOCK(pi); 8545 old = lc->requested_fec; 8546 if (n == FEC_AUTO) 8547 lc->requested_fec = FEC_AUTO; 8548 else if (n == 0 || n == FEC_NONE) 8549 lc->requested_fec = FEC_NONE; 8550 else { 8551 if ((lc->pcaps | 8552 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8553 lc->pcaps) { 8554 rc = ENOTSUP; 8555 goto done; 8556 } 8557 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8558 FEC_MODULE); 8559 } 8560 if (!hw_off_limits(sc)) { 8561 fixup_link_config(pi); 8562 if (pi->up_vis > 0) { 8563 rc = apply_link_config(pi); 8564 if (rc != 0) { 8565 lc->requested_fec = old; 8566 if (rc == FW_EPROTO) 8567 rc = ENOTSUP; 8568 } 8569 } 8570 } 8571 done: 8572 PORT_UNLOCK(pi); 8573 end_synchronized_op(sc, 0); 8574 } 8575 8576 return (rc); 8577 } 8578 8579 static int 8580 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8581 { 8582 struct port_info *pi = arg1; 8583 struct adapter *sc = pi->adapter; 8584 struct link_config *lc = &pi->link_cfg; 8585 int rc; 8586 int8_t fec; 8587 struct sbuf *sb; 8588 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8589 8590 rc = sysctl_wire_old_buffer(req, 0); 8591 if (rc != 0) 8592 return (rc); 8593 8594 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8595 if (sb == NULL) 8596 return (ENOMEM); 8597 8598 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8599 rc = EBUSY; 8600 goto done; 8601 } 8602 if (hw_off_limits(sc)) { 8603 rc = ENXIO; 8604 goto done; 8605 } 8606 PORT_LOCK(pi); 8607 if (pi->up_vis == 0) { 8608 /* 8609 * If all the interfaces are administratively down the firmware 8610 * does not report transceiver changes. Refresh port info here. 8611 * This is the only reason we have a synchronized op in this 8612 * function. Just PORT_LOCK would have been enough otherwise. 8613 */ 8614 t4_update_port_info(pi); 8615 } 8616 8617 fec = lc->fec_hint; 8618 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8619 !fec_supported(lc->pcaps)) { 8620 sbuf_printf(sb, "n/a"); 8621 } else { 8622 if (fec == 0) 8623 fec = FEC_NONE; 8624 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8625 } 8626 rc = sbuf_finish(sb); 8627 PORT_UNLOCK(pi); 8628 done: 8629 sbuf_delete(sb); 8630 end_synchronized_op(sc, 0); 8631 8632 return (rc); 8633 } 8634 8635 static int 8636 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8637 { 8638 struct port_info *pi = arg1; 8639 struct adapter *sc = pi->adapter; 8640 struct link_config *lc = &pi->link_cfg; 8641 int rc, val; 8642 8643 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8644 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8645 else 8646 val = -1; 8647 rc = sysctl_handle_int(oidp, &val, 0, req); 8648 if (rc != 0 || req->newptr == NULL) 8649 return (rc); 8650 if (val == 0) 8651 val = AUTONEG_DISABLE; 8652 else if (val == 1) 8653 val = AUTONEG_ENABLE; 8654 else 8655 val = AUTONEG_AUTO; 8656 8657 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8658 "t4aneg"); 8659 if (rc) 8660 return (rc); 8661 PORT_LOCK(pi); 8662 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8663 rc = ENOTSUP; 8664 goto done; 8665 } 8666 lc->requested_aneg = val; 8667 if (!hw_off_limits(sc)) { 8668 fixup_link_config(pi); 8669 if (pi->up_vis > 0) 8670 rc = apply_link_config(pi); 8671 set_current_media(pi); 8672 } 8673 done: 8674 PORT_UNLOCK(pi); 8675 end_synchronized_op(sc, 0); 8676 return (rc); 8677 } 8678 8679 static int 8680 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8681 { 8682 struct port_info *pi = arg1; 8683 struct adapter *sc = pi->adapter; 8684 struct link_config *lc = &pi->link_cfg; 8685 int rc, val; 8686 8687 val = lc->force_fec; 8688 MPASS(val >= -1 && val <= 1); 8689 rc = sysctl_handle_int(oidp, &val, 0, req); 8690 if (rc != 0 || req->newptr == NULL) 8691 return (rc); 8692 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8693 return (ENOTSUP); 8694 if (val < -1 || val > 1) 8695 return (EINVAL); 8696 8697 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8698 if (rc) 8699 return (rc); 8700 PORT_LOCK(pi); 8701 lc->force_fec = val; 8702 if (!hw_off_limits(sc)) { 8703 fixup_link_config(pi); 8704 if (pi->up_vis > 0) 8705 rc = apply_link_config(pi); 8706 } 8707 PORT_UNLOCK(pi); 8708 end_synchronized_op(sc, 0); 8709 return (rc); 8710 } 8711 8712 static int 8713 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8714 { 8715 struct adapter *sc = arg1; 8716 int rc, reg = arg2; 8717 uint64_t val; 8718 8719 mtx_lock(&sc->reg_lock); 8720 if (hw_off_limits(sc)) 8721 rc = ENXIO; 8722 else { 8723 rc = 0; 8724 val = t4_read_reg64(sc, reg); 8725 } 8726 mtx_unlock(&sc->reg_lock); 8727 if (rc == 0) 8728 rc = sysctl_handle_64(oidp, &val, 0, req); 8729 return (rc); 8730 } 8731 8732 static int 8733 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8734 { 8735 struct adapter *sc = arg1; 8736 int rc, t; 8737 uint32_t param, val; 8738 8739 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8740 if (rc) 8741 return (rc); 8742 if (hw_off_limits(sc)) 8743 rc = ENXIO; 8744 else { 8745 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8746 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8747 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8748 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8749 } 8750 end_synchronized_op(sc, 0); 8751 if (rc) 8752 return (rc); 8753 8754 /* unknown is returned as 0 but we display -1 in that case */ 8755 t = val == 0 ? -1 : val; 8756 8757 rc = sysctl_handle_int(oidp, &t, 0, req); 8758 return (rc); 8759 } 8760 8761 static int 8762 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8763 { 8764 struct adapter *sc = arg1; 8765 int rc; 8766 uint32_t param, val; 8767 8768 if (sc->params.core_vdd == 0) { 8769 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8770 "t4vdd"); 8771 if (rc) 8772 return (rc); 8773 if (hw_off_limits(sc)) 8774 rc = ENXIO; 8775 else { 8776 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8777 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8778 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8779 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8780 ¶m, &val); 8781 } 8782 end_synchronized_op(sc, 0); 8783 if (rc) 8784 return (rc); 8785 sc->params.core_vdd = val; 8786 } 8787 8788 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8789 } 8790 8791 static int 8792 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8793 { 8794 struct adapter *sc = arg1; 8795 int rc, v; 8796 uint32_t param, val; 8797 8798 v = sc->sensor_resets; 8799 rc = sysctl_handle_int(oidp, &v, 0, req); 8800 if (rc != 0 || req->newptr == NULL || v <= 0) 8801 return (rc); 8802 8803 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8804 chip_id(sc) < CHELSIO_T5) 8805 return (ENOTSUP); 8806 8807 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8808 if (rc) 8809 return (rc); 8810 if (hw_off_limits(sc)) 8811 rc = ENXIO; 8812 else { 8813 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8814 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8815 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8816 val = 1; 8817 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8818 } 8819 end_synchronized_op(sc, 0); 8820 if (rc == 0) 8821 sc->sensor_resets++; 8822 return (rc); 8823 } 8824 8825 static int 8826 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8827 { 8828 struct adapter *sc = arg1; 8829 struct sbuf *sb; 8830 int rc; 8831 uint32_t param, val; 8832 8833 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8834 if (rc) 8835 return (rc); 8836 if (hw_off_limits(sc)) 8837 rc = ENXIO; 8838 else { 8839 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8840 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8841 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8842 } 8843 end_synchronized_op(sc, 0); 8844 if (rc) 8845 return (rc); 8846 8847 rc = sysctl_wire_old_buffer(req, 0); 8848 if (rc != 0) 8849 return (rc); 8850 8851 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8852 if (sb == NULL) 8853 return (ENOMEM); 8854 8855 if (val == 0xffffffff) { 8856 /* Only debug and custom firmwares report load averages. */ 8857 sbuf_printf(sb, "not available"); 8858 } else { 8859 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8860 (val >> 16) & 0xff); 8861 } 8862 rc = sbuf_finish(sb); 8863 sbuf_delete(sb); 8864 8865 return (rc); 8866 } 8867 8868 static int 8869 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8870 { 8871 struct adapter *sc = arg1; 8872 struct sbuf *sb; 8873 int rc, i; 8874 uint16_t incr[NMTUS][NCCTRL_WIN]; 8875 static const char *dec_fac[] = { 8876 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8877 "0.9375" 8878 }; 8879 8880 rc = sysctl_wire_old_buffer(req, 0); 8881 if (rc != 0) 8882 return (rc); 8883 8884 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8885 if (sb == NULL) 8886 return (ENOMEM); 8887 8888 mtx_lock(&sc->reg_lock); 8889 if (hw_off_limits(sc)) 8890 rc = ENXIO; 8891 else 8892 t4_read_cong_tbl(sc, incr); 8893 mtx_unlock(&sc->reg_lock); 8894 if (rc) 8895 goto done; 8896 8897 for (i = 0; i < NCCTRL_WIN; ++i) { 8898 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8899 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8900 incr[5][i], incr[6][i], incr[7][i]); 8901 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8902 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8903 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8904 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8905 } 8906 8907 rc = sbuf_finish(sb); 8908 done: 8909 sbuf_delete(sb); 8910 return (rc); 8911 } 8912 8913 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8914 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8915 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8916 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8917 }; 8918 8919 static int 8920 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8921 { 8922 struct adapter *sc = arg1; 8923 struct sbuf *sb; 8924 int rc, i, n, qid = arg2; 8925 uint32_t *buf, *p; 8926 char *qtype; 8927 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8928 8929 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8930 ("%s: bad qid %d\n", __func__, qid)); 8931 8932 if (qid < CIM_NUM_IBQ) { 8933 /* inbound queue */ 8934 qtype = "IBQ"; 8935 n = 4 * CIM_IBQ_SIZE; 8936 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8937 mtx_lock(&sc->reg_lock); 8938 if (hw_off_limits(sc)) 8939 rc = -ENXIO; 8940 else 8941 rc = t4_read_cim_ibq(sc, qid, buf, n); 8942 mtx_unlock(&sc->reg_lock); 8943 } else { 8944 /* outbound queue */ 8945 qtype = "OBQ"; 8946 qid -= CIM_NUM_IBQ; 8947 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8948 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8949 mtx_lock(&sc->reg_lock); 8950 if (hw_off_limits(sc)) 8951 rc = -ENXIO; 8952 else 8953 rc = t4_read_cim_obq(sc, qid, buf, n); 8954 mtx_unlock(&sc->reg_lock); 8955 } 8956 8957 if (rc < 0) { 8958 rc = -rc; 8959 goto done; 8960 } 8961 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8962 8963 rc = sysctl_wire_old_buffer(req, 0); 8964 if (rc != 0) 8965 goto done; 8966 8967 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8968 if (sb == NULL) { 8969 rc = ENOMEM; 8970 goto done; 8971 } 8972 8973 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8974 for (i = 0, p = buf; i < n; i += 16, p += 4) 8975 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8976 p[2], p[3]); 8977 8978 rc = sbuf_finish(sb); 8979 sbuf_delete(sb); 8980 done: 8981 free(buf, M_CXGBE); 8982 return (rc); 8983 } 8984 8985 static void 8986 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8987 { 8988 uint32_t *p; 8989 8990 sbuf_printf(sb, "Status Data PC%s", 8991 cfg & F_UPDBGLACAPTPCONLY ? "" : 8992 " LS0Stat LS0Addr LS0Data"); 8993 8994 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8995 if (cfg & F_UPDBGLACAPTPCONLY) { 8996 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8997 p[6], p[7]); 8998 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8999 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9000 p[4] & 0xff, p[5] >> 8); 9001 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9002 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9003 p[1] & 0xf, p[2] >> 4); 9004 } else { 9005 sbuf_printf(sb, 9006 "\n %02x %x%07x %x%07x %08x %08x " 9007 "%08x%08x%08x%08x", 9008 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9009 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9010 p[6], p[7]); 9011 } 9012 } 9013 } 9014 9015 static void 9016 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9017 { 9018 uint32_t *p; 9019 9020 sbuf_printf(sb, "Status Inst Data PC%s", 9021 cfg & F_UPDBGLACAPTPCONLY ? "" : 9022 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9023 9024 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9025 if (cfg & F_UPDBGLACAPTPCONLY) { 9026 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9027 p[3] & 0xff, p[2], p[1], p[0]); 9028 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9029 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9030 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9031 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9032 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9033 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9034 p[6] >> 16); 9035 } else { 9036 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9037 "%08x %08x %08x %08x %08x %08x", 9038 (p[9] >> 16) & 0xff, 9039 p[9] & 0xffff, p[8] >> 16, 9040 p[8] & 0xffff, p[7] >> 16, 9041 p[7] & 0xffff, p[6] >> 16, 9042 p[2], p[1], p[0], p[5], p[4], p[3]); 9043 } 9044 } 9045 } 9046 9047 static int 9048 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9049 { 9050 uint32_t cfg, *buf; 9051 int rc; 9052 9053 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9054 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9055 M_ZERO | flags); 9056 if (buf == NULL) 9057 return (ENOMEM); 9058 9059 mtx_lock(&sc->reg_lock); 9060 if (hw_off_limits(sc)) 9061 rc = ENXIO; 9062 else { 9063 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9064 if (rc == 0) 9065 rc = -t4_cim_read_la(sc, buf, NULL); 9066 } 9067 mtx_unlock(&sc->reg_lock); 9068 if (rc == 0) { 9069 if (chip_id(sc) < CHELSIO_T6) 9070 sbuf_cim_la4(sc, sb, buf, cfg); 9071 else 9072 sbuf_cim_la6(sc, sb, buf, cfg); 9073 } 9074 free(buf, M_CXGBE); 9075 return (rc); 9076 } 9077 9078 static int 9079 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9080 { 9081 struct adapter *sc = arg1; 9082 struct sbuf *sb; 9083 int rc; 9084 9085 rc = sysctl_wire_old_buffer(req, 0); 9086 if (rc != 0) 9087 return (rc); 9088 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9089 if (sb == NULL) 9090 return (ENOMEM); 9091 9092 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9093 if (rc == 0) 9094 rc = sbuf_finish(sb); 9095 sbuf_delete(sb); 9096 return (rc); 9097 } 9098 9099 static void 9100 dump_cim_regs(struct adapter *sc) 9101 { 9102 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9103 device_get_nameunit(sc->dev), 9104 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9105 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9106 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9107 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9108 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9109 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9110 device_get_nameunit(sc->dev), 9111 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9112 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9113 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9114 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9115 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9116 } 9117 9118 static void 9119 dump_cimla(struct adapter *sc) 9120 { 9121 struct sbuf sb; 9122 int rc; 9123 9124 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9125 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9126 device_get_nameunit(sc->dev)); 9127 return; 9128 } 9129 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9130 if (rc == 0) { 9131 rc = sbuf_finish(&sb); 9132 if (rc == 0) { 9133 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9134 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9135 } 9136 } 9137 sbuf_delete(&sb); 9138 } 9139 9140 void 9141 t4_os_cim_err(struct adapter *sc) 9142 { 9143 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9144 } 9145 9146 static int 9147 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9148 { 9149 struct adapter *sc = arg1; 9150 u_int i; 9151 struct sbuf *sb; 9152 uint32_t *buf, *p; 9153 int rc; 9154 9155 rc = sysctl_wire_old_buffer(req, 0); 9156 if (rc != 0) 9157 return (rc); 9158 9159 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9160 if (sb == NULL) 9161 return (ENOMEM); 9162 9163 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9164 M_ZERO | M_WAITOK); 9165 9166 mtx_lock(&sc->reg_lock); 9167 if (hw_off_limits(sc)) 9168 rc = ENXIO; 9169 else 9170 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9171 mtx_unlock(&sc->reg_lock); 9172 if (rc) 9173 goto done; 9174 9175 p = buf; 9176 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9177 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9178 p[1], p[0]); 9179 } 9180 9181 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9182 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9183 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9184 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9185 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9186 (p[1] >> 2) | ((p[2] & 3) << 30), 9187 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9188 p[0] & 1); 9189 } 9190 rc = sbuf_finish(sb); 9191 done: 9192 sbuf_delete(sb); 9193 free(buf, M_CXGBE); 9194 return (rc); 9195 } 9196 9197 static int 9198 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9199 { 9200 struct adapter *sc = arg1; 9201 u_int i; 9202 struct sbuf *sb; 9203 uint32_t *buf, *p; 9204 int rc; 9205 9206 rc = sysctl_wire_old_buffer(req, 0); 9207 if (rc != 0) 9208 return (rc); 9209 9210 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9211 if (sb == NULL) 9212 return (ENOMEM); 9213 9214 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9215 M_ZERO | M_WAITOK); 9216 9217 mtx_lock(&sc->reg_lock); 9218 if (hw_off_limits(sc)) 9219 rc = ENXIO; 9220 else 9221 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9222 mtx_unlock(&sc->reg_lock); 9223 if (rc) 9224 goto done; 9225 9226 p = buf; 9227 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9228 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9229 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9230 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9231 p[4], p[3], p[2], p[1], p[0]); 9232 } 9233 9234 sbuf_printf(sb, "\n\nCntl ID Data"); 9235 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9236 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9237 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9238 } 9239 9240 rc = sbuf_finish(sb); 9241 done: 9242 sbuf_delete(sb); 9243 free(buf, M_CXGBE); 9244 return (rc); 9245 } 9246 9247 static int 9248 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9249 { 9250 struct adapter *sc = arg1; 9251 struct sbuf *sb; 9252 int rc, i; 9253 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9254 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9255 uint16_t thres[CIM_NUM_IBQ]; 9256 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9257 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9258 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9259 9260 cim_num_obq = sc->chip_params->cim_num_obq; 9261 if (is_t4(sc)) { 9262 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9263 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9264 } else { 9265 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9266 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9267 } 9268 nq = CIM_NUM_IBQ + cim_num_obq; 9269 9270 mtx_lock(&sc->reg_lock); 9271 if (hw_off_limits(sc)) 9272 rc = ENXIO; 9273 else { 9274 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9275 if (rc == 0) { 9276 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9277 obq_wr); 9278 if (rc == 0) 9279 t4_read_cimq_cfg(sc, base, size, thres); 9280 } 9281 } 9282 mtx_unlock(&sc->reg_lock); 9283 if (rc) 9284 return (rc); 9285 9286 rc = sysctl_wire_old_buffer(req, 0); 9287 if (rc != 0) 9288 return (rc); 9289 9290 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9291 if (sb == NULL) 9292 return (ENOMEM); 9293 9294 sbuf_printf(sb, 9295 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9296 9297 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9298 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9299 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9300 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9301 G_QUEREMFLITS(p[2]) * 16); 9302 for ( ; i < nq; i++, p += 4, wr += 2) 9303 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9304 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9305 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9306 G_QUEREMFLITS(p[2]) * 16); 9307 9308 rc = sbuf_finish(sb); 9309 sbuf_delete(sb); 9310 9311 return (rc); 9312 } 9313 9314 static int 9315 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9316 { 9317 struct adapter *sc = arg1; 9318 struct sbuf *sb; 9319 int rc; 9320 struct tp_cpl_stats stats; 9321 9322 rc = sysctl_wire_old_buffer(req, 0); 9323 if (rc != 0) 9324 return (rc); 9325 9326 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9327 if (sb == NULL) 9328 return (ENOMEM); 9329 9330 mtx_lock(&sc->reg_lock); 9331 if (hw_off_limits(sc)) 9332 rc = ENXIO; 9333 else 9334 t4_tp_get_cpl_stats(sc, &stats, 0); 9335 mtx_unlock(&sc->reg_lock); 9336 if (rc) 9337 goto done; 9338 9339 if (sc->chip_params->nchan > 2) { 9340 sbuf_printf(sb, " channel 0 channel 1" 9341 " channel 2 channel 3"); 9342 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9343 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9344 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9345 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9346 } else { 9347 sbuf_printf(sb, " channel 0 channel 1"); 9348 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9349 stats.req[0], stats.req[1]); 9350 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9351 stats.rsp[0], stats.rsp[1]); 9352 } 9353 9354 rc = sbuf_finish(sb); 9355 done: 9356 sbuf_delete(sb); 9357 return (rc); 9358 } 9359 9360 static int 9361 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9362 { 9363 struct adapter *sc = arg1; 9364 struct sbuf *sb; 9365 int rc; 9366 struct tp_usm_stats stats; 9367 9368 rc = sysctl_wire_old_buffer(req, 0); 9369 if (rc != 0) 9370 return(rc); 9371 9372 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9373 if (sb == NULL) 9374 return (ENOMEM); 9375 9376 mtx_lock(&sc->reg_lock); 9377 if (hw_off_limits(sc)) 9378 rc = ENXIO; 9379 else 9380 t4_get_usm_stats(sc, &stats, 1); 9381 mtx_unlock(&sc->reg_lock); 9382 if (rc == 0) { 9383 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9384 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9385 sbuf_printf(sb, "Drops: %u", stats.drops); 9386 rc = sbuf_finish(sb); 9387 } 9388 sbuf_delete(sb); 9389 9390 return (rc); 9391 } 9392 9393 static int 9394 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9395 { 9396 struct adapter *sc = arg1; 9397 struct sbuf *sb; 9398 int rc; 9399 struct tp_tid_stats stats; 9400 9401 rc = sysctl_wire_old_buffer(req, 0); 9402 if (rc != 0) 9403 return(rc); 9404 9405 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9406 if (sb == NULL) 9407 return (ENOMEM); 9408 9409 mtx_lock(&sc->reg_lock); 9410 if (hw_off_limits(sc)) 9411 rc = ENXIO; 9412 else 9413 t4_tp_get_tid_stats(sc, &stats, 1); 9414 mtx_unlock(&sc->reg_lock); 9415 if (rc == 0) { 9416 sbuf_printf(sb, "Delete: %u\n", stats.del); 9417 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9418 sbuf_printf(sb, "Active: %u\n", stats.act); 9419 sbuf_printf(sb, "Passive: %u", stats.pas); 9420 rc = sbuf_finish(sb); 9421 } 9422 sbuf_delete(sb); 9423 9424 return (rc); 9425 } 9426 9427 static const char * const devlog_level_strings[] = { 9428 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9429 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9430 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9431 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9432 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9433 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9434 }; 9435 9436 static const char * const devlog_facility_strings[] = { 9437 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9438 [FW_DEVLOG_FACILITY_CF] = "CF", 9439 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9440 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9441 [FW_DEVLOG_FACILITY_RES] = "RES", 9442 [FW_DEVLOG_FACILITY_HW] = "HW", 9443 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9444 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9445 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9446 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9447 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9448 [FW_DEVLOG_FACILITY_VI] = "VI", 9449 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9450 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9451 [FW_DEVLOG_FACILITY_TM] = "TM", 9452 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9453 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9454 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9455 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9456 [FW_DEVLOG_FACILITY_RI] = "RI", 9457 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9458 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9459 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9460 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9461 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9462 }; 9463 9464 static int 9465 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9466 { 9467 int i, j, rc, nentries, first = 0; 9468 struct devlog_params *dparams = &sc->params.devlog; 9469 struct fw_devlog_e *buf, *e; 9470 uint64_t ftstamp = UINT64_MAX; 9471 9472 if (dparams->addr == 0) 9473 return (ENXIO); 9474 9475 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9476 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9477 if (buf == NULL) 9478 return (ENOMEM); 9479 9480 mtx_lock(&sc->reg_lock); 9481 if (hw_off_limits(sc)) 9482 rc = ENXIO; 9483 else 9484 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9485 dparams->size); 9486 mtx_unlock(&sc->reg_lock); 9487 if (rc != 0) 9488 goto done; 9489 9490 nentries = dparams->size / sizeof(struct fw_devlog_e); 9491 for (i = 0; i < nentries; i++) { 9492 e = &buf[i]; 9493 9494 if (e->timestamp == 0) 9495 break; /* end */ 9496 9497 e->timestamp = be64toh(e->timestamp); 9498 e->seqno = be32toh(e->seqno); 9499 for (j = 0; j < 8; j++) 9500 e->params[j] = be32toh(e->params[j]); 9501 9502 if (e->timestamp < ftstamp) { 9503 ftstamp = e->timestamp; 9504 first = i; 9505 } 9506 } 9507 9508 if (buf[first].timestamp == 0) 9509 goto done; /* nothing in the log */ 9510 9511 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9512 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9513 9514 i = first; 9515 do { 9516 e = &buf[i]; 9517 if (e->timestamp == 0) 9518 break; /* end */ 9519 9520 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9521 e->seqno, e->timestamp, 9522 (e->level < nitems(devlog_level_strings) ? 9523 devlog_level_strings[e->level] : "UNKNOWN"), 9524 (e->facility < nitems(devlog_facility_strings) ? 9525 devlog_facility_strings[e->facility] : "UNKNOWN")); 9526 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9527 e->params[2], e->params[3], e->params[4], 9528 e->params[5], e->params[6], e->params[7]); 9529 9530 if (++i == nentries) 9531 i = 0; 9532 } while (i != first); 9533 done: 9534 free(buf, M_CXGBE); 9535 return (rc); 9536 } 9537 9538 static int 9539 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9540 { 9541 struct adapter *sc = arg1; 9542 int rc; 9543 struct sbuf *sb; 9544 9545 rc = sysctl_wire_old_buffer(req, 0); 9546 if (rc != 0) 9547 return (rc); 9548 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9549 if (sb == NULL) 9550 return (ENOMEM); 9551 9552 rc = sbuf_devlog(sc, sb, M_WAITOK); 9553 if (rc == 0) 9554 rc = sbuf_finish(sb); 9555 sbuf_delete(sb); 9556 return (rc); 9557 } 9558 9559 static void 9560 dump_devlog(struct adapter *sc) 9561 { 9562 int rc; 9563 struct sbuf sb; 9564 9565 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9566 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9567 device_get_nameunit(sc->dev)); 9568 return; 9569 } 9570 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9571 if (rc == 0) { 9572 rc = sbuf_finish(&sb); 9573 if (rc == 0) { 9574 log(LOG_DEBUG, "%s: device log follows.\n%s", 9575 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9576 } 9577 } 9578 sbuf_delete(&sb); 9579 } 9580 9581 static int 9582 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9583 { 9584 struct adapter *sc = arg1; 9585 struct sbuf *sb; 9586 int rc; 9587 struct tp_fcoe_stats stats[MAX_NCHAN]; 9588 int i, nchan = sc->chip_params->nchan; 9589 9590 rc = sysctl_wire_old_buffer(req, 0); 9591 if (rc != 0) 9592 return (rc); 9593 9594 mtx_lock(&sc->reg_lock); 9595 if (hw_off_limits(sc)) 9596 rc = ENXIO; 9597 else { 9598 for (i = 0; i < nchan; i++) 9599 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9600 } 9601 mtx_unlock(&sc->reg_lock); 9602 if (rc != 0) 9603 return (rc); 9604 9605 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9606 if (sb == NULL) 9607 return (ENOMEM); 9608 9609 if (nchan > 2) { 9610 sbuf_printf(sb, " channel 0 channel 1" 9611 " channel 2 channel 3"); 9612 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9613 stats[0].octets_ddp, stats[1].octets_ddp, 9614 stats[2].octets_ddp, stats[3].octets_ddp); 9615 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9616 stats[0].frames_ddp, stats[1].frames_ddp, 9617 stats[2].frames_ddp, stats[3].frames_ddp); 9618 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9619 stats[0].frames_drop, stats[1].frames_drop, 9620 stats[2].frames_drop, stats[3].frames_drop); 9621 } else { 9622 sbuf_printf(sb, " channel 0 channel 1"); 9623 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9624 stats[0].octets_ddp, stats[1].octets_ddp); 9625 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9626 stats[0].frames_ddp, stats[1].frames_ddp); 9627 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9628 stats[0].frames_drop, stats[1].frames_drop); 9629 } 9630 9631 rc = sbuf_finish(sb); 9632 sbuf_delete(sb); 9633 9634 return (rc); 9635 } 9636 9637 static int 9638 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9639 { 9640 struct adapter *sc = arg1; 9641 struct sbuf *sb; 9642 int rc, i; 9643 unsigned int map, kbps, ipg, mode; 9644 unsigned int pace_tab[NTX_SCHED]; 9645 9646 rc = sysctl_wire_old_buffer(req, 0); 9647 if (rc != 0) 9648 return (rc); 9649 9650 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9651 if (sb == NULL) 9652 return (ENOMEM); 9653 9654 mtx_lock(&sc->reg_lock); 9655 if (hw_off_limits(sc)) { 9656 rc = ENXIO; 9657 goto done; 9658 } 9659 9660 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9661 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9662 t4_read_pace_tbl(sc, pace_tab); 9663 9664 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9665 "Class IPG (0.1 ns) Flow IPG (us)"); 9666 9667 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9668 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9669 sbuf_printf(sb, "\n %u %-5s %u ", i, 9670 (mode & (1 << i)) ? "flow" : "class", map & 3); 9671 if (kbps) 9672 sbuf_printf(sb, "%9u ", kbps); 9673 else 9674 sbuf_printf(sb, " disabled "); 9675 9676 if (ipg) 9677 sbuf_printf(sb, "%13u ", ipg); 9678 else 9679 sbuf_printf(sb, " disabled "); 9680 9681 if (pace_tab[i]) 9682 sbuf_printf(sb, "%10u", pace_tab[i]); 9683 else 9684 sbuf_printf(sb, " disabled"); 9685 } 9686 rc = sbuf_finish(sb); 9687 done: 9688 mtx_unlock(&sc->reg_lock); 9689 sbuf_delete(sb); 9690 return (rc); 9691 } 9692 9693 static int 9694 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9695 { 9696 struct adapter *sc = arg1; 9697 struct sbuf *sb; 9698 int rc, i, j; 9699 uint64_t *p0, *p1; 9700 struct lb_port_stats s[2]; 9701 static const char *stat_name[] = { 9702 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9703 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9704 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9705 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9706 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9707 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9708 "BG2FramesTrunc:", "BG3FramesTrunc:" 9709 }; 9710 9711 rc = sysctl_wire_old_buffer(req, 0); 9712 if (rc != 0) 9713 return (rc); 9714 9715 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9716 if (sb == NULL) 9717 return (ENOMEM); 9718 9719 memset(s, 0, sizeof(s)); 9720 9721 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9722 mtx_lock(&sc->reg_lock); 9723 if (hw_off_limits(sc)) 9724 rc = ENXIO; 9725 else { 9726 t4_get_lb_stats(sc, i, &s[0]); 9727 t4_get_lb_stats(sc, i + 1, &s[1]); 9728 } 9729 mtx_unlock(&sc->reg_lock); 9730 if (rc != 0) 9731 break; 9732 9733 p0 = &s[0].octets; 9734 p1 = &s[1].octets; 9735 sbuf_printf(sb, "%s Loopback %u" 9736 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9737 9738 for (j = 0; j < nitems(stat_name); j++) 9739 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9740 *p0++, *p1++); 9741 } 9742 9743 rc = sbuf_finish(sb); 9744 sbuf_delete(sb); 9745 9746 return (rc); 9747 } 9748 9749 static int 9750 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9751 { 9752 int rc = 0; 9753 struct port_info *pi = arg1; 9754 struct link_config *lc = &pi->link_cfg; 9755 struct sbuf *sb; 9756 9757 rc = sysctl_wire_old_buffer(req, 0); 9758 if (rc != 0) 9759 return(rc); 9760 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9761 if (sb == NULL) 9762 return (ENOMEM); 9763 9764 if (lc->link_ok || lc->link_down_rc == 255) 9765 sbuf_printf(sb, "n/a"); 9766 else 9767 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9768 9769 rc = sbuf_finish(sb); 9770 sbuf_delete(sb); 9771 9772 return (rc); 9773 } 9774 9775 struct mem_desc { 9776 u_int base; 9777 u_int limit; 9778 u_int idx; 9779 }; 9780 9781 static int 9782 mem_desc_cmp(const void *a, const void *b) 9783 { 9784 const u_int v1 = ((const struct mem_desc *)a)->base; 9785 const u_int v2 = ((const struct mem_desc *)b)->base; 9786 9787 if (v1 < v2) 9788 return (-1); 9789 else if (v1 > v2) 9790 return (1); 9791 9792 return (0); 9793 } 9794 9795 static void 9796 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9797 unsigned int to) 9798 { 9799 unsigned int size; 9800 9801 if (from == to) 9802 return; 9803 9804 size = to - from + 1; 9805 if (size == 0) 9806 return; 9807 9808 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9809 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9810 } 9811 9812 static int 9813 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9814 { 9815 struct adapter *sc = arg1; 9816 struct sbuf *sb; 9817 int rc, i, n; 9818 uint32_t lo, hi, used, free, alloc; 9819 static const char *memory[] = { 9820 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9821 }; 9822 static const char *region[] = { 9823 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9824 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9825 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9826 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9827 "RQUDP region:", "PBL region:", "TXPBL region:", 9828 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9829 "ULPTX state:", "On-chip queues:", 9830 }; 9831 struct mem_desc avail[4]; 9832 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9833 struct mem_desc *md = mem; 9834 9835 rc = sysctl_wire_old_buffer(req, 0); 9836 if (rc != 0) 9837 return (rc); 9838 9839 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9840 if (sb == NULL) 9841 return (ENOMEM); 9842 9843 for (i = 0; i < nitems(mem); i++) { 9844 mem[i].limit = 0; 9845 mem[i].idx = i; 9846 } 9847 9848 mtx_lock(&sc->reg_lock); 9849 if (hw_off_limits(sc)) { 9850 rc = ENXIO; 9851 goto done; 9852 } 9853 9854 /* Find and sort the populated memory ranges */ 9855 i = 0; 9856 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9857 if (lo & F_EDRAM0_ENABLE) { 9858 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9859 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9860 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9861 avail[i].idx = 0; 9862 i++; 9863 } 9864 if (lo & F_EDRAM1_ENABLE) { 9865 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9866 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9867 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9868 avail[i].idx = 1; 9869 i++; 9870 } 9871 if (lo & F_EXT_MEM_ENABLE) { 9872 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9873 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9874 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9875 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9876 i++; 9877 } 9878 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9879 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9880 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9881 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9882 avail[i].idx = 4; 9883 i++; 9884 } 9885 if (is_t6(sc) && lo & F_HMA_MUX) { 9886 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9887 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9888 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9889 avail[i].idx = 5; 9890 i++; 9891 } 9892 MPASS(i <= nitems(avail)); 9893 if (!i) /* no memory available */ 9894 goto done; 9895 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9896 9897 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9898 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9899 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9900 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9901 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9902 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9903 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9904 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9905 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9906 9907 /* the next few have explicit upper bounds */ 9908 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9909 md->limit = md->base - 1 + 9910 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9911 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9912 md++; 9913 9914 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9915 md->limit = md->base - 1 + 9916 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9917 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9918 md++; 9919 9920 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9921 if (chip_id(sc) <= CHELSIO_T5) 9922 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9923 else 9924 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9925 md->limit = 0; 9926 } else { 9927 md->base = 0; 9928 md->idx = nitems(region); /* hide it */ 9929 } 9930 md++; 9931 9932 #define ulp_region(reg) \ 9933 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9934 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9935 9936 ulp_region(RX_ISCSI); 9937 ulp_region(RX_TDDP); 9938 ulp_region(TX_TPT); 9939 ulp_region(RX_STAG); 9940 ulp_region(RX_RQ); 9941 ulp_region(RX_RQUDP); 9942 ulp_region(RX_PBL); 9943 ulp_region(TX_PBL); 9944 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9945 ulp_region(RX_TLS_KEY); 9946 } 9947 #undef ulp_region 9948 9949 md->base = 0; 9950 if (is_t4(sc)) 9951 md->idx = nitems(region); 9952 else { 9953 uint32_t size = 0; 9954 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9955 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9956 9957 if (is_t5(sc)) { 9958 if (sge_ctrl & F_VFIFO_ENABLE) 9959 size = fifo_size << 2; 9960 } else 9961 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9962 9963 if (size) { 9964 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9965 md->limit = md->base + size - 1; 9966 } else 9967 md->idx = nitems(region); 9968 } 9969 md++; 9970 9971 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9972 md->limit = 0; 9973 md++; 9974 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9975 md->limit = 0; 9976 md++; 9977 9978 md->base = sc->vres.ocq.start; 9979 if (sc->vres.ocq.size) 9980 md->limit = md->base + sc->vres.ocq.size - 1; 9981 else 9982 md->idx = nitems(region); /* hide it */ 9983 md++; 9984 9985 /* add any address-space holes, there can be up to 3 */ 9986 for (n = 0; n < i - 1; n++) 9987 if (avail[n].limit < avail[n + 1].base) 9988 (md++)->base = avail[n].limit; 9989 if (avail[n].limit) 9990 (md++)->base = avail[n].limit; 9991 9992 n = md - mem; 9993 MPASS(n <= nitems(mem)); 9994 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9995 9996 for (lo = 0; lo < i; lo++) 9997 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9998 avail[lo].limit - 1); 9999 10000 sbuf_printf(sb, "\n"); 10001 for (i = 0; i < n; i++) { 10002 if (mem[i].idx >= nitems(region)) 10003 continue; /* skip holes */ 10004 if (!mem[i].limit) 10005 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10006 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10007 mem[i].limit); 10008 } 10009 10010 sbuf_printf(sb, "\n"); 10011 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10012 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10013 mem_region_show(sb, "uP RAM:", lo, hi); 10014 10015 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10016 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10017 mem_region_show(sb, "uP Extmem2:", lo, hi); 10018 10019 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10020 for (i = 0, free = 0; i < 2; i++) 10021 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10022 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10023 G_PMRXMAXPAGE(lo), free, 10024 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10025 (lo & F_PMRXNUMCHN) ? 2 : 1); 10026 10027 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10028 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10029 for (i = 0, free = 0; i < 4; i++) 10030 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10031 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10032 G_PMTXMAXPAGE(lo), free, 10033 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10034 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10035 sbuf_printf(sb, "%u p-structs (%u free)\n", 10036 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10037 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10038 10039 for (i = 0; i < 4; i++) { 10040 if (chip_id(sc) > CHELSIO_T5) 10041 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10042 else 10043 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10044 if (is_t5(sc)) { 10045 used = G_T5_USED(lo); 10046 alloc = G_T5_ALLOC(lo); 10047 } else { 10048 used = G_USED(lo); 10049 alloc = G_ALLOC(lo); 10050 } 10051 /* For T6 these are MAC buffer groups */ 10052 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10053 i, used, alloc); 10054 } 10055 for (i = 0; i < sc->chip_params->nchan; i++) { 10056 if (chip_id(sc) > CHELSIO_T5) 10057 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10058 else 10059 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10060 if (is_t5(sc)) { 10061 used = G_T5_USED(lo); 10062 alloc = G_T5_ALLOC(lo); 10063 } else { 10064 used = G_USED(lo); 10065 alloc = G_ALLOC(lo); 10066 } 10067 /* For T6 these are MAC buffer groups */ 10068 sbuf_printf(sb, 10069 "\nLoopback %d using %u pages out of %u allocated", 10070 i, used, alloc); 10071 } 10072 done: 10073 mtx_unlock(&sc->reg_lock); 10074 if (rc == 0) 10075 rc = sbuf_finish(sb); 10076 sbuf_delete(sb); 10077 return (rc); 10078 } 10079 10080 static inline void 10081 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10082 { 10083 *mask = x | y; 10084 y = htobe64(y); 10085 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10086 } 10087 10088 static int 10089 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10090 { 10091 struct adapter *sc = arg1; 10092 struct sbuf *sb; 10093 int rc, i; 10094 10095 MPASS(chip_id(sc) <= CHELSIO_T5); 10096 10097 rc = sysctl_wire_old_buffer(req, 0); 10098 if (rc != 0) 10099 return (rc); 10100 10101 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10102 if (sb == NULL) 10103 return (ENOMEM); 10104 10105 sbuf_printf(sb, 10106 "Idx Ethernet address Mask Vld Ports PF" 10107 " VF Replication P0 P1 P2 P3 ML"); 10108 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10109 uint64_t tcamx, tcamy, mask; 10110 uint32_t cls_lo, cls_hi; 10111 uint8_t addr[ETHER_ADDR_LEN]; 10112 10113 mtx_lock(&sc->reg_lock); 10114 if (hw_off_limits(sc)) 10115 rc = ENXIO; 10116 else { 10117 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10118 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10119 } 10120 mtx_unlock(&sc->reg_lock); 10121 if (rc != 0) 10122 break; 10123 if (tcamx & tcamy) 10124 continue; 10125 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10126 mtx_lock(&sc->reg_lock); 10127 if (hw_off_limits(sc)) 10128 rc = ENXIO; 10129 else { 10130 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10131 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10132 } 10133 mtx_unlock(&sc->reg_lock); 10134 if (rc != 0) 10135 break; 10136 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10137 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10138 addr[3], addr[4], addr[5], (uintmax_t)mask, 10139 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10140 G_PORTMAP(cls_hi), G_PF(cls_lo), 10141 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10142 10143 if (cls_lo & F_REPLICATE) { 10144 struct fw_ldst_cmd ldst_cmd; 10145 10146 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10147 ldst_cmd.op_to_addrspace = 10148 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10149 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10150 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10151 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10152 ldst_cmd.u.mps.rplc.fid_idx = 10153 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10154 V_FW_LDST_CMD_IDX(i)); 10155 10156 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10157 "t4mps"); 10158 if (rc) 10159 break; 10160 if (hw_off_limits(sc)) 10161 rc = ENXIO; 10162 else 10163 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10164 sizeof(ldst_cmd), &ldst_cmd); 10165 end_synchronized_op(sc, 0); 10166 if (rc != 0) 10167 break; 10168 else { 10169 sbuf_printf(sb, " %08x %08x %08x %08x", 10170 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10171 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10172 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10173 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10174 } 10175 } else 10176 sbuf_printf(sb, "%36s", ""); 10177 10178 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10179 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10180 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10181 } 10182 10183 if (rc) 10184 (void) sbuf_finish(sb); 10185 else 10186 rc = sbuf_finish(sb); 10187 sbuf_delete(sb); 10188 10189 return (rc); 10190 } 10191 10192 static int 10193 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10194 { 10195 struct adapter *sc = arg1; 10196 struct sbuf *sb; 10197 int rc, i; 10198 10199 MPASS(chip_id(sc) > CHELSIO_T5); 10200 10201 rc = sysctl_wire_old_buffer(req, 0); 10202 if (rc != 0) 10203 return (rc); 10204 10205 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10206 if (sb == NULL) 10207 return (ENOMEM); 10208 10209 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10210 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10211 " Replication" 10212 " P0 P1 P2 P3 ML\n"); 10213 10214 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10215 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10216 uint16_t ivlan; 10217 uint64_t tcamx, tcamy, val, mask; 10218 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10219 uint8_t addr[ETHER_ADDR_LEN]; 10220 10221 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10222 if (i < 256) 10223 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10224 else 10225 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10226 mtx_lock(&sc->reg_lock); 10227 if (hw_off_limits(sc)) 10228 rc = ENXIO; 10229 else { 10230 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10231 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10232 tcamy = G_DMACH(val) << 32; 10233 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10234 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10235 } 10236 mtx_unlock(&sc->reg_lock); 10237 if (rc != 0) 10238 break; 10239 10240 lookup_type = G_DATALKPTYPE(data2); 10241 port_num = G_DATAPORTNUM(data2); 10242 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10243 /* Inner header VNI */ 10244 vniy = ((data2 & F_DATAVIDH2) << 23) | 10245 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10246 dip_hit = data2 & F_DATADIPHIT; 10247 vlan_vld = 0; 10248 } else { 10249 vniy = 0; 10250 dip_hit = 0; 10251 vlan_vld = data2 & F_DATAVIDH2; 10252 ivlan = G_VIDL(val); 10253 } 10254 10255 ctl |= V_CTLXYBITSEL(1); 10256 mtx_lock(&sc->reg_lock); 10257 if (hw_off_limits(sc)) 10258 rc = ENXIO; 10259 else { 10260 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10261 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10262 tcamx = G_DMACH(val) << 32; 10263 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10264 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10265 } 10266 mtx_unlock(&sc->reg_lock); 10267 if (rc != 0) 10268 break; 10269 10270 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10271 /* Inner header VNI mask */ 10272 vnix = ((data2 & F_DATAVIDH2) << 23) | 10273 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10274 } else 10275 vnix = 0; 10276 10277 if (tcamx & tcamy) 10278 continue; 10279 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10280 10281 mtx_lock(&sc->reg_lock); 10282 if (hw_off_limits(sc)) 10283 rc = ENXIO; 10284 else { 10285 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10286 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10287 } 10288 mtx_unlock(&sc->reg_lock); 10289 if (rc != 0) 10290 break; 10291 10292 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10293 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10294 "%012jx %06x %06x - - %3c" 10295 " I %4x %3c %#x%4u%4d", i, addr[0], 10296 addr[1], addr[2], addr[3], addr[4], addr[5], 10297 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10298 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10299 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10300 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10301 } else { 10302 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10303 "%012jx - - ", i, addr[0], addr[1], 10304 addr[2], addr[3], addr[4], addr[5], 10305 (uintmax_t)mask); 10306 10307 if (vlan_vld) 10308 sbuf_printf(sb, "%4u Y ", ivlan); 10309 else 10310 sbuf_printf(sb, " - N "); 10311 10312 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10313 lookup_type ? 'I' : 'O', port_num, 10314 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10315 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10316 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10317 } 10318 10319 10320 if (cls_lo & F_T6_REPLICATE) { 10321 struct fw_ldst_cmd ldst_cmd; 10322 10323 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10324 ldst_cmd.op_to_addrspace = 10325 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10326 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10327 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10328 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10329 ldst_cmd.u.mps.rplc.fid_idx = 10330 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10331 V_FW_LDST_CMD_IDX(i)); 10332 10333 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10334 "t6mps"); 10335 if (rc) 10336 break; 10337 if (hw_off_limits(sc)) 10338 rc = ENXIO; 10339 else 10340 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10341 sizeof(ldst_cmd), &ldst_cmd); 10342 end_synchronized_op(sc, 0); 10343 if (rc != 0) 10344 break; 10345 else { 10346 sbuf_printf(sb, " %08x %08x %08x %08x" 10347 " %08x %08x %08x %08x", 10348 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10349 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10350 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10351 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10352 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10353 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10354 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10355 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10356 } 10357 } else 10358 sbuf_printf(sb, "%72s", ""); 10359 10360 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10361 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10362 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10363 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10364 } 10365 10366 if (rc) 10367 (void) sbuf_finish(sb); 10368 else 10369 rc = sbuf_finish(sb); 10370 sbuf_delete(sb); 10371 10372 return (rc); 10373 } 10374 10375 static int 10376 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10377 { 10378 struct adapter *sc = arg1; 10379 struct sbuf *sb; 10380 int rc; 10381 uint16_t mtus[NMTUS]; 10382 10383 rc = sysctl_wire_old_buffer(req, 0); 10384 if (rc != 0) 10385 return (rc); 10386 10387 mtx_lock(&sc->reg_lock); 10388 if (hw_off_limits(sc)) 10389 rc = ENXIO; 10390 else 10391 t4_read_mtu_tbl(sc, mtus, NULL); 10392 mtx_unlock(&sc->reg_lock); 10393 if (rc != 0) 10394 return (rc); 10395 10396 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10397 if (sb == NULL) 10398 return (ENOMEM); 10399 10400 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10401 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10402 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10403 mtus[14], mtus[15]); 10404 10405 rc = sbuf_finish(sb); 10406 sbuf_delete(sb); 10407 10408 return (rc); 10409 } 10410 10411 static int 10412 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10413 { 10414 struct adapter *sc = arg1; 10415 struct sbuf *sb; 10416 int rc, i; 10417 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10418 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10419 static const char *tx_stats[MAX_PM_NSTATS] = { 10420 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10421 "Tx FIFO wait", NULL, "Tx latency" 10422 }; 10423 static const char *rx_stats[MAX_PM_NSTATS] = { 10424 "Read:", "Write bypass:", "Write mem:", "Flush:", 10425 "Rx FIFO wait", NULL, "Rx latency" 10426 }; 10427 10428 rc = sysctl_wire_old_buffer(req, 0); 10429 if (rc != 0) 10430 return (rc); 10431 10432 mtx_lock(&sc->reg_lock); 10433 if (hw_off_limits(sc)) 10434 rc = ENXIO; 10435 else { 10436 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10437 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10438 } 10439 mtx_unlock(&sc->reg_lock); 10440 if (rc != 0) 10441 return (rc); 10442 10443 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10444 if (sb == NULL) 10445 return (ENOMEM); 10446 10447 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10448 for (i = 0; i < 4; i++) { 10449 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10450 tx_cyc[i]); 10451 } 10452 10453 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10454 for (i = 0; i < 4; i++) { 10455 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10456 rx_cyc[i]); 10457 } 10458 10459 if (chip_id(sc) > CHELSIO_T5) { 10460 sbuf_printf(sb, 10461 "\n Total wait Total occupancy"); 10462 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10463 tx_cyc[i]); 10464 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10465 rx_cyc[i]); 10466 10467 i += 2; 10468 MPASS(i < nitems(tx_stats)); 10469 10470 sbuf_printf(sb, 10471 "\n Reads Total wait"); 10472 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10473 tx_cyc[i]); 10474 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10475 rx_cyc[i]); 10476 } 10477 10478 rc = sbuf_finish(sb); 10479 sbuf_delete(sb); 10480 10481 return (rc); 10482 } 10483 10484 static int 10485 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10486 { 10487 struct adapter *sc = arg1; 10488 struct sbuf *sb; 10489 int rc; 10490 struct tp_rdma_stats stats; 10491 10492 rc = sysctl_wire_old_buffer(req, 0); 10493 if (rc != 0) 10494 return (rc); 10495 10496 mtx_lock(&sc->reg_lock); 10497 if (hw_off_limits(sc)) 10498 rc = ENXIO; 10499 else 10500 t4_tp_get_rdma_stats(sc, &stats, 0); 10501 mtx_unlock(&sc->reg_lock); 10502 if (rc != 0) 10503 return (rc); 10504 10505 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10506 if (sb == NULL) 10507 return (ENOMEM); 10508 10509 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10510 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10511 10512 rc = sbuf_finish(sb); 10513 sbuf_delete(sb); 10514 10515 return (rc); 10516 } 10517 10518 static int 10519 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10520 { 10521 struct adapter *sc = arg1; 10522 struct sbuf *sb; 10523 int rc; 10524 struct tp_tcp_stats v4, v6; 10525 10526 rc = sysctl_wire_old_buffer(req, 0); 10527 if (rc != 0) 10528 return (rc); 10529 10530 mtx_lock(&sc->reg_lock); 10531 if (hw_off_limits(sc)) 10532 rc = ENXIO; 10533 else 10534 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10535 mtx_unlock(&sc->reg_lock); 10536 if (rc != 0) 10537 return (rc); 10538 10539 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10540 if (sb == NULL) 10541 return (ENOMEM); 10542 10543 sbuf_printf(sb, 10544 " IP IPv6\n"); 10545 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10546 v4.tcp_out_rsts, v6.tcp_out_rsts); 10547 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10548 v4.tcp_in_segs, v6.tcp_in_segs); 10549 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10550 v4.tcp_out_segs, v6.tcp_out_segs); 10551 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10552 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10553 10554 rc = sbuf_finish(sb); 10555 sbuf_delete(sb); 10556 10557 return (rc); 10558 } 10559 10560 static int 10561 sysctl_tids(SYSCTL_HANDLER_ARGS) 10562 { 10563 struct adapter *sc = arg1; 10564 struct sbuf *sb; 10565 int rc; 10566 uint32_t x, y; 10567 struct tid_info *t = &sc->tids; 10568 10569 rc = sysctl_wire_old_buffer(req, 0); 10570 if (rc != 0) 10571 return (rc); 10572 10573 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10574 if (sb == NULL) 10575 return (ENOMEM); 10576 10577 if (t->natids) { 10578 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10579 t->atids_in_use); 10580 } 10581 10582 if (t->nhpftids) { 10583 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10584 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10585 } 10586 10587 if (t->ntids) { 10588 bool hashen = false; 10589 10590 mtx_lock(&sc->reg_lock); 10591 if (hw_off_limits(sc)) 10592 rc = ENXIO; 10593 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10594 hashen = true; 10595 if (chip_id(sc) <= CHELSIO_T5) { 10596 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10597 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10598 } else { 10599 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10600 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10601 } 10602 } 10603 mtx_unlock(&sc->reg_lock); 10604 if (rc != 0) 10605 goto done; 10606 10607 sbuf_printf(sb, "TID range: "); 10608 if (hashen) { 10609 if (x) 10610 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10611 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10612 } else { 10613 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10614 t->ntids - 1); 10615 } 10616 sbuf_printf(sb, ", in use: %u\n", 10617 atomic_load_acq_int(&t->tids_in_use)); 10618 } 10619 10620 if (t->nstids) { 10621 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10622 t->stid_base + t->nstids - 1, t->stids_in_use); 10623 } 10624 10625 if (t->nftids) { 10626 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10627 t->ftid_end, t->ftids_in_use); 10628 } 10629 10630 if (t->netids) { 10631 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10632 t->etid_base + t->netids - 1, t->etids_in_use); 10633 } 10634 10635 mtx_lock(&sc->reg_lock); 10636 if (hw_off_limits(sc)) 10637 rc = ENXIO; 10638 else { 10639 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10640 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10641 } 10642 mtx_unlock(&sc->reg_lock); 10643 if (rc != 0) 10644 goto done; 10645 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10646 done: 10647 if (rc == 0) 10648 rc = sbuf_finish(sb); 10649 else 10650 (void)sbuf_finish(sb); 10651 sbuf_delete(sb); 10652 10653 return (rc); 10654 } 10655 10656 static int 10657 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10658 { 10659 struct adapter *sc = arg1; 10660 struct sbuf *sb; 10661 int rc; 10662 struct tp_err_stats stats; 10663 10664 rc = sysctl_wire_old_buffer(req, 0); 10665 if (rc != 0) 10666 return (rc); 10667 10668 mtx_lock(&sc->reg_lock); 10669 if (hw_off_limits(sc)) 10670 rc = ENXIO; 10671 else 10672 t4_tp_get_err_stats(sc, &stats, 0); 10673 mtx_unlock(&sc->reg_lock); 10674 if (rc != 0) 10675 return (rc); 10676 10677 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10678 if (sb == NULL) 10679 return (ENOMEM); 10680 10681 if (sc->chip_params->nchan > 2) { 10682 sbuf_printf(sb, " channel 0 channel 1" 10683 " channel 2 channel 3\n"); 10684 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10685 stats.mac_in_errs[0], stats.mac_in_errs[1], 10686 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10687 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10688 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10689 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10690 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10691 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10692 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10693 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10694 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10695 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10696 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10697 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10698 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10699 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10700 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10701 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10702 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10703 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10704 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10705 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10706 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10707 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10708 } else { 10709 sbuf_printf(sb, " channel 0 channel 1\n"); 10710 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10711 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10712 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10713 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10714 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10715 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10716 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10717 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10718 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10719 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10720 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10721 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10722 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10723 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10724 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10725 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10726 } 10727 10728 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10729 stats.ofld_no_neigh, stats.ofld_cong_defer); 10730 10731 rc = sbuf_finish(sb); 10732 sbuf_delete(sb); 10733 10734 return (rc); 10735 } 10736 10737 static int 10738 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10739 { 10740 struct adapter *sc = arg1; 10741 struct sbuf *sb; 10742 int rc; 10743 struct tp_tnl_stats stats; 10744 10745 rc = sysctl_wire_old_buffer(req, 0); 10746 if (rc != 0) 10747 return(rc); 10748 10749 mtx_lock(&sc->reg_lock); 10750 if (hw_off_limits(sc)) 10751 rc = ENXIO; 10752 else 10753 t4_tp_get_tnl_stats(sc, &stats, 1); 10754 mtx_unlock(&sc->reg_lock); 10755 if (rc != 0) 10756 return (rc); 10757 10758 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10759 if (sb == NULL) 10760 return (ENOMEM); 10761 10762 if (sc->chip_params->nchan > 2) { 10763 sbuf_printf(sb, " channel 0 channel 1" 10764 " channel 2 channel 3\n"); 10765 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10766 stats.out_pkt[0], stats.out_pkt[1], 10767 stats.out_pkt[2], stats.out_pkt[3]); 10768 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10769 stats.in_pkt[0], stats.in_pkt[1], 10770 stats.in_pkt[2], stats.in_pkt[3]); 10771 } else { 10772 sbuf_printf(sb, " channel 0 channel 1\n"); 10773 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10774 stats.out_pkt[0], stats.out_pkt[1]); 10775 sbuf_printf(sb, "InPkts: %10u %10u", 10776 stats.in_pkt[0], stats.in_pkt[1]); 10777 } 10778 10779 rc = sbuf_finish(sb); 10780 sbuf_delete(sb); 10781 10782 return (rc); 10783 } 10784 10785 static int 10786 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10787 { 10788 struct adapter *sc = arg1; 10789 struct tp_params *tpp = &sc->params.tp; 10790 u_int mask; 10791 int rc; 10792 10793 mask = tpp->la_mask >> 16; 10794 rc = sysctl_handle_int(oidp, &mask, 0, req); 10795 if (rc != 0 || req->newptr == NULL) 10796 return (rc); 10797 if (mask > 0xffff) 10798 return (EINVAL); 10799 mtx_lock(&sc->reg_lock); 10800 if (hw_off_limits(sc)) 10801 rc = ENXIO; 10802 else { 10803 tpp->la_mask = mask << 16; 10804 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10805 tpp->la_mask); 10806 } 10807 mtx_unlock(&sc->reg_lock); 10808 10809 return (rc); 10810 } 10811 10812 struct field_desc { 10813 const char *name; 10814 u_int start; 10815 u_int width; 10816 }; 10817 10818 static void 10819 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10820 { 10821 char buf[32]; 10822 int line_size = 0; 10823 10824 while (f->name) { 10825 uint64_t mask = (1ULL << f->width) - 1; 10826 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10827 ((uintmax_t)v >> f->start) & mask); 10828 10829 if (line_size + len >= 79) { 10830 line_size = 8; 10831 sbuf_printf(sb, "\n "); 10832 } 10833 sbuf_printf(sb, "%s ", buf); 10834 line_size += len + 1; 10835 f++; 10836 } 10837 sbuf_printf(sb, "\n"); 10838 } 10839 10840 static const struct field_desc tp_la0[] = { 10841 { "RcfOpCodeOut", 60, 4 }, 10842 { "State", 56, 4 }, 10843 { "WcfState", 52, 4 }, 10844 { "RcfOpcSrcOut", 50, 2 }, 10845 { "CRxError", 49, 1 }, 10846 { "ERxError", 48, 1 }, 10847 { "SanityFailed", 47, 1 }, 10848 { "SpuriousMsg", 46, 1 }, 10849 { "FlushInputMsg", 45, 1 }, 10850 { "FlushInputCpl", 44, 1 }, 10851 { "RssUpBit", 43, 1 }, 10852 { "RssFilterHit", 42, 1 }, 10853 { "Tid", 32, 10 }, 10854 { "InitTcb", 31, 1 }, 10855 { "LineNumber", 24, 7 }, 10856 { "Emsg", 23, 1 }, 10857 { "EdataOut", 22, 1 }, 10858 { "Cmsg", 21, 1 }, 10859 { "CdataOut", 20, 1 }, 10860 { "EreadPdu", 19, 1 }, 10861 { "CreadPdu", 18, 1 }, 10862 { "TunnelPkt", 17, 1 }, 10863 { "RcfPeerFin", 16, 1 }, 10864 { "RcfReasonOut", 12, 4 }, 10865 { "TxCchannel", 10, 2 }, 10866 { "RcfTxChannel", 8, 2 }, 10867 { "RxEchannel", 6, 2 }, 10868 { "RcfRxChannel", 5, 1 }, 10869 { "RcfDataOutSrdy", 4, 1 }, 10870 { "RxDvld", 3, 1 }, 10871 { "RxOoDvld", 2, 1 }, 10872 { "RxCongestion", 1, 1 }, 10873 { "TxCongestion", 0, 1 }, 10874 { NULL } 10875 }; 10876 10877 static const struct field_desc tp_la1[] = { 10878 { "CplCmdIn", 56, 8 }, 10879 { "CplCmdOut", 48, 8 }, 10880 { "ESynOut", 47, 1 }, 10881 { "EAckOut", 46, 1 }, 10882 { "EFinOut", 45, 1 }, 10883 { "ERstOut", 44, 1 }, 10884 { "SynIn", 43, 1 }, 10885 { "AckIn", 42, 1 }, 10886 { "FinIn", 41, 1 }, 10887 { "RstIn", 40, 1 }, 10888 { "DataIn", 39, 1 }, 10889 { "DataInVld", 38, 1 }, 10890 { "PadIn", 37, 1 }, 10891 { "RxBufEmpty", 36, 1 }, 10892 { "RxDdp", 35, 1 }, 10893 { "RxFbCongestion", 34, 1 }, 10894 { "TxFbCongestion", 33, 1 }, 10895 { "TxPktSumSrdy", 32, 1 }, 10896 { "RcfUlpType", 28, 4 }, 10897 { "Eread", 27, 1 }, 10898 { "Ebypass", 26, 1 }, 10899 { "Esave", 25, 1 }, 10900 { "Static0", 24, 1 }, 10901 { "Cread", 23, 1 }, 10902 { "Cbypass", 22, 1 }, 10903 { "Csave", 21, 1 }, 10904 { "CPktOut", 20, 1 }, 10905 { "RxPagePoolFull", 18, 2 }, 10906 { "RxLpbkPkt", 17, 1 }, 10907 { "TxLpbkPkt", 16, 1 }, 10908 { "RxVfValid", 15, 1 }, 10909 { "SynLearned", 14, 1 }, 10910 { "SetDelEntry", 13, 1 }, 10911 { "SetInvEntry", 12, 1 }, 10912 { "CpcmdDvld", 11, 1 }, 10913 { "CpcmdSave", 10, 1 }, 10914 { "RxPstructsFull", 8, 2 }, 10915 { "EpcmdDvld", 7, 1 }, 10916 { "EpcmdFlush", 6, 1 }, 10917 { "EpcmdTrimPrefix", 5, 1 }, 10918 { "EpcmdTrimPostfix", 4, 1 }, 10919 { "ERssIp4Pkt", 3, 1 }, 10920 { "ERssIp6Pkt", 2, 1 }, 10921 { "ERssTcpUdpPkt", 1, 1 }, 10922 { "ERssFceFipPkt", 0, 1 }, 10923 { NULL } 10924 }; 10925 10926 static const struct field_desc tp_la2[] = { 10927 { "CplCmdIn", 56, 8 }, 10928 { "MpsVfVld", 55, 1 }, 10929 { "MpsPf", 52, 3 }, 10930 { "MpsVf", 44, 8 }, 10931 { "SynIn", 43, 1 }, 10932 { "AckIn", 42, 1 }, 10933 { "FinIn", 41, 1 }, 10934 { "RstIn", 40, 1 }, 10935 { "DataIn", 39, 1 }, 10936 { "DataInVld", 38, 1 }, 10937 { "PadIn", 37, 1 }, 10938 { "RxBufEmpty", 36, 1 }, 10939 { "RxDdp", 35, 1 }, 10940 { "RxFbCongestion", 34, 1 }, 10941 { "TxFbCongestion", 33, 1 }, 10942 { "TxPktSumSrdy", 32, 1 }, 10943 { "RcfUlpType", 28, 4 }, 10944 { "Eread", 27, 1 }, 10945 { "Ebypass", 26, 1 }, 10946 { "Esave", 25, 1 }, 10947 { "Static0", 24, 1 }, 10948 { "Cread", 23, 1 }, 10949 { "Cbypass", 22, 1 }, 10950 { "Csave", 21, 1 }, 10951 { "CPktOut", 20, 1 }, 10952 { "RxPagePoolFull", 18, 2 }, 10953 { "RxLpbkPkt", 17, 1 }, 10954 { "TxLpbkPkt", 16, 1 }, 10955 { "RxVfValid", 15, 1 }, 10956 { "SynLearned", 14, 1 }, 10957 { "SetDelEntry", 13, 1 }, 10958 { "SetInvEntry", 12, 1 }, 10959 { "CpcmdDvld", 11, 1 }, 10960 { "CpcmdSave", 10, 1 }, 10961 { "RxPstructsFull", 8, 2 }, 10962 { "EpcmdDvld", 7, 1 }, 10963 { "EpcmdFlush", 6, 1 }, 10964 { "EpcmdTrimPrefix", 5, 1 }, 10965 { "EpcmdTrimPostfix", 4, 1 }, 10966 { "ERssIp4Pkt", 3, 1 }, 10967 { "ERssIp6Pkt", 2, 1 }, 10968 { "ERssTcpUdpPkt", 1, 1 }, 10969 { "ERssFceFipPkt", 0, 1 }, 10970 { NULL } 10971 }; 10972 10973 static void 10974 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10975 { 10976 10977 field_desc_show(sb, *p, tp_la0); 10978 } 10979 10980 static void 10981 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10982 { 10983 10984 if (idx) 10985 sbuf_printf(sb, "\n"); 10986 field_desc_show(sb, p[0], tp_la0); 10987 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10988 field_desc_show(sb, p[1], tp_la0); 10989 } 10990 10991 static void 10992 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10993 { 10994 10995 if (idx) 10996 sbuf_printf(sb, "\n"); 10997 field_desc_show(sb, p[0], tp_la0); 10998 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10999 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11000 } 11001 11002 static int 11003 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11004 { 11005 struct adapter *sc = arg1; 11006 struct sbuf *sb; 11007 uint64_t *buf, *p; 11008 int rc; 11009 u_int i, inc; 11010 void (*show_func)(struct sbuf *, uint64_t *, int); 11011 11012 rc = sysctl_wire_old_buffer(req, 0); 11013 if (rc != 0) 11014 return (rc); 11015 11016 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11017 if (sb == NULL) 11018 return (ENOMEM); 11019 11020 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11021 11022 mtx_lock(&sc->reg_lock); 11023 if (hw_off_limits(sc)) 11024 rc = ENXIO; 11025 else { 11026 t4_tp_read_la(sc, buf, NULL); 11027 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11028 case 2: 11029 inc = 2; 11030 show_func = tp_la_show2; 11031 break; 11032 case 3: 11033 inc = 2; 11034 show_func = tp_la_show3; 11035 break; 11036 default: 11037 inc = 1; 11038 show_func = tp_la_show; 11039 } 11040 } 11041 mtx_unlock(&sc->reg_lock); 11042 if (rc != 0) 11043 goto done; 11044 11045 p = buf; 11046 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11047 (*show_func)(sb, p, i); 11048 rc = sbuf_finish(sb); 11049 done: 11050 sbuf_delete(sb); 11051 free(buf, M_CXGBE); 11052 return (rc); 11053 } 11054 11055 static int 11056 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11057 { 11058 struct adapter *sc = arg1; 11059 struct sbuf *sb; 11060 int rc; 11061 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11062 11063 rc = sysctl_wire_old_buffer(req, 0); 11064 if (rc != 0) 11065 return (rc); 11066 11067 mtx_lock(&sc->reg_lock); 11068 if (hw_off_limits(sc)) 11069 rc = ENXIO; 11070 else 11071 t4_get_chan_txrate(sc, nrate, orate); 11072 mtx_unlock(&sc->reg_lock); 11073 if (rc != 0) 11074 return (rc); 11075 11076 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11077 if (sb == NULL) 11078 return (ENOMEM); 11079 11080 if (sc->chip_params->nchan > 2) { 11081 sbuf_printf(sb, " channel 0 channel 1" 11082 " channel 2 channel 3\n"); 11083 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11084 nrate[0], nrate[1], nrate[2], nrate[3]); 11085 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11086 orate[0], orate[1], orate[2], orate[3]); 11087 } else { 11088 sbuf_printf(sb, " channel 0 channel 1\n"); 11089 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11090 nrate[0], nrate[1]); 11091 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11092 orate[0], orate[1]); 11093 } 11094 11095 rc = sbuf_finish(sb); 11096 sbuf_delete(sb); 11097 11098 return (rc); 11099 } 11100 11101 static int 11102 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11103 { 11104 struct adapter *sc = arg1; 11105 struct sbuf *sb; 11106 uint32_t *buf, *p; 11107 int rc, i; 11108 11109 rc = sysctl_wire_old_buffer(req, 0); 11110 if (rc != 0) 11111 return (rc); 11112 11113 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11114 if (sb == NULL) 11115 return (ENOMEM); 11116 11117 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11118 M_ZERO | M_WAITOK); 11119 11120 mtx_lock(&sc->reg_lock); 11121 if (hw_off_limits(sc)) 11122 rc = ENXIO; 11123 else 11124 t4_ulprx_read_la(sc, buf); 11125 mtx_unlock(&sc->reg_lock); 11126 if (rc != 0) 11127 goto done; 11128 11129 p = buf; 11130 sbuf_printf(sb, " Pcmd Type Message" 11131 " Data"); 11132 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11133 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11134 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11135 } 11136 rc = sbuf_finish(sb); 11137 done: 11138 sbuf_delete(sb); 11139 free(buf, M_CXGBE); 11140 return (rc); 11141 } 11142 11143 static int 11144 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11145 { 11146 struct adapter *sc = arg1; 11147 struct sbuf *sb; 11148 int rc; 11149 uint32_t cfg, s1, s2; 11150 11151 MPASS(chip_id(sc) >= CHELSIO_T5); 11152 11153 rc = sysctl_wire_old_buffer(req, 0); 11154 if (rc != 0) 11155 return (rc); 11156 11157 mtx_lock(&sc->reg_lock); 11158 if (hw_off_limits(sc)) 11159 rc = ENXIO; 11160 else { 11161 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11162 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11163 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11164 } 11165 mtx_unlock(&sc->reg_lock); 11166 if (rc != 0) 11167 return (rc); 11168 11169 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11170 if (sb == NULL) 11171 return (ENOMEM); 11172 11173 if (G_STATSOURCE_T5(cfg) == 7) { 11174 int mode; 11175 11176 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11177 if (mode == 0) 11178 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11179 else if (mode == 1) 11180 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11181 else 11182 sbuf_printf(sb, "unknown mode %d", mode); 11183 } 11184 rc = sbuf_finish(sb); 11185 sbuf_delete(sb); 11186 11187 return (rc); 11188 } 11189 11190 static int 11191 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11192 { 11193 struct adapter *sc = arg1; 11194 enum cpu_sets op = arg2; 11195 cpuset_t cpuset; 11196 struct sbuf *sb; 11197 int i, rc; 11198 11199 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11200 11201 CPU_ZERO(&cpuset); 11202 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11203 if (rc != 0) 11204 return (rc); 11205 11206 rc = sysctl_wire_old_buffer(req, 0); 11207 if (rc != 0) 11208 return (rc); 11209 11210 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11211 if (sb == NULL) 11212 return (ENOMEM); 11213 11214 CPU_FOREACH(i) 11215 sbuf_printf(sb, "%d ", i); 11216 rc = sbuf_finish(sb); 11217 sbuf_delete(sb); 11218 11219 return (rc); 11220 } 11221 11222 static int 11223 sysctl_reset(SYSCTL_HANDLER_ARGS) 11224 { 11225 struct adapter *sc = arg1; 11226 u_int val; 11227 int rc; 11228 11229 val = atomic_load_int(&sc->num_resets); 11230 rc = sysctl_handle_int(oidp, &val, 0, req); 11231 if (rc != 0 || req->newptr == NULL) 11232 return (rc); 11233 11234 if (val == 0) { 11235 /* Zero out the counter that tracks reset. */ 11236 atomic_store_int(&sc->num_resets, 0); 11237 return (0); 11238 } 11239 11240 if (val != 1) 11241 return (EINVAL); /* 0 or 1 are the only legal values */ 11242 11243 if (hw_off_limits(sc)) /* harmless race */ 11244 return (EALREADY); 11245 11246 taskqueue_enqueue(reset_tq, &sc->reset_task); 11247 return (0); 11248 } 11249 11250 #ifdef TCP_OFFLOAD 11251 static int 11252 sysctl_tls(SYSCTL_HANDLER_ARGS) 11253 { 11254 struct adapter *sc = arg1; 11255 int i, j, v, rc; 11256 struct vi_info *vi; 11257 11258 v = sc->tt.tls; 11259 rc = sysctl_handle_int(oidp, &v, 0, req); 11260 if (rc != 0 || req->newptr == NULL) 11261 return (rc); 11262 11263 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11264 return (ENOTSUP); 11265 11266 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11267 if (rc) 11268 return (rc); 11269 if (hw_off_limits(sc)) 11270 rc = ENXIO; 11271 else { 11272 sc->tt.tls = !!v; 11273 for_each_port(sc, i) { 11274 for_each_vi(sc->port[i], j, vi) { 11275 if (vi->flags & VI_INIT_DONE) 11276 t4_update_fl_bufsize(vi->ifp); 11277 } 11278 } 11279 } 11280 end_synchronized_op(sc, 0); 11281 11282 return (rc); 11283 11284 } 11285 11286 static void 11287 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11288 { 11289 u_int rem = val % factor; 11290 11291 if (rem == 0) 11292 snprintf(buf, len, "%u", val / factor); 11293 else { 11294 while (rem % 10 == 0) 11295 rem /= 10; 11296 snprintf(buf, len, "%u.%u", val / factor, rem); 11297 } 11298 } 11299 11300 static int 11301 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11302 { 11303 struct adapter *sc = arg1; 11304 char buf[16]; 11305 u_int res, re; 11306 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11307 11308 mtx_lock(&sc->reg_lock); 11309 if (hw_off_limits(sc)) 11310 res = (u_int)-1; 11311 else 11312 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11313 mtx_unlock(&sc->reg_lock); 11314 if (res == (u_int)-1) 11315 return (ENXIO); 11316 11317 switch (arg2) { 11318 case 0: 11319 /* timer_tick */ 11320 re = G_TIMERRESOLUTION(res); 11321 break; 11322 case 1: 11323 /* TCP timestamp tick */ 11324 re = G_TIMESTAMPRESOLUTION(res); 11325 break; 11326 case 2: 11327 /* DACK tick */ 11328 re = G_DELAYEDACKRESOLUTION(res); 11329 break; 11330 default: 11331 return (EDOOFUS); 11332 } 11333 11334 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11335 11336 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11337 } 11338 11339 static int 11340 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11341 { 11342 struct adapter *sc = arg1; 11343 int rc; 11344 u_int dack_tmr, dack_re, v; 11345 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11346 11347 mtx_lock(&sc->reg_lock); 11348 if (hw_off_limits(sc)) 11349 rc = ENXIO; 11350 else { 11351 rc = 0; 11352 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11353 A_TP_TIMER_RESOLUTION)); 11354 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11355 } 11356 mtx_unlock(&sc->reg_lock); 11357 if (rc != 0) 11358 return (rc); 11359 11360 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11361 11362 return (sysctl_handle_int(oidp, &v, 0, req)); 11363 } 11364 11365 static int 11366 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11367 { 11368 struct adapter *sc = arg1; 11369 int rc, reg = arg2; 11370 u_int tre; 11371 u_long tp_tick_us, v; 11372 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11373 11374 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11375 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11376 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11377 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11378 11379 mtx_lock(&sc->reg_lock); 11380 if (hw_off_limits(sc)) 11381 rc = ENXIO; 11382 else { 11383 rc = 0; 11384 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11385 tp_tick_us = (cclk_ps << tre) / 1000000; 11386 if (reg == A_TP_INIT_SRTT) 11387 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11388 else 11389 v = tp_tick_us * t4_read_reg(sc, reg); 11390 } 11391 mtx_unlock(&sc->reg_lock); 11392 if (rc != 0) 11393 return (rc); 11394 else 11395 return (sysctl_handle_long(oidp, &v, 0, req)); 11396 } 11397 11398 /* 11399 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11400 * passed to this function. 11401 */ 11402 static int 11403 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11404 { 11405 struct adapter *sc = arg1; 11406 int rc, idx = arg2; 11407 u_int v; 11408 11409 MPASS(idx >= 0 && idx <= 24); 11410 11411 mtx_lock(&sc->reg_lock); 11412 if (hw_off_limits(sc)) 11413 rc = ENXIO; 11414 else { 11415 rc = 0; 11416 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11417 } 11418 mtx_unlock(&sc->reg_lock); 11419 if (rc != 0) 11420 return (rc); 11421 else 11422 return (sysctl_handle_int(oidp, &v, 0, req)); 11423 } 11424 11425 static int 11426 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11427 { 11428 struct adapter *sc = arg1; 11429 int rc, idx = arg2; 11430 u_int shift, v, r; 11431 11432 MPASS(idx >= 0 && idx < 16); 11433 11434 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11435 shift = (idx & 3) << 3; 11436 mtx_lock(&sc->reg_lock); 11437 if (hw_off_limits(sc)) 11438 rc = ENXIO; 11439 else { 11440 rc = 0; 11441 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11442 } 11443 mtx_unlock(&sc->reg_lock); 11444 if (rc != 0) 11445 return (rc); 11446 else 11447 return (sysctl_handle_int(oidp, &v, 0, req)); 11448 } 11449 11450 static int 11451 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11452 { 11453 struct vi_info *vi = arg1; 11454 struct adapter *sc = vi->adapter; 11455 int idx, rc, i; 11456 struct sge_ofld_rxq *ofld_rxq; 11457 uint8_t v; 11458 11459 idx = vi->ofld_tmr_idx; 11460 11461 rc = sysctl_handle_int(oidp, &idx, 0, req); 11462 if (rc != 0 || req->newptr == NULL) 11463 return (rc); 11464 11465 if (idx < 0 || idx >= SGE_NTIMERS) 11466 return (EINVAL); 11467 11468 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11469 "t4otmr"); 11470 if (rc) 11471 return (rc); 11472 11473 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11474 for_each_ofld_rxq(vi, i, ofld_rxq) { 11475 #ifdef atomic_store_rel_8 11476 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11477 #else 11478 ofld_rxq->iq.intr_params = v; 11479 #endif 11480 } 11481 vi->ofld_tmr_idx = idx; 11482 11483 end_synchronized_op(sc, LOCK_HELD); 11484 return (0); 11485 } 11486 11487 static int 11488 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11489 { 11490 struct vi_info *vi = arg1; 11491 struct adapter *sc = vi->adapter; 11492 int idx, rc; 11493 11494 idx = vi->ofld_pktc_idx; 11495 11496 rc = sysctl_handle_int(oidp, &idx, 0, req); 11497 if (rc != 0 || req->newptr == NULL) 11498 return (rc); 11499 11500 if (idx < -1 || idx >= SGE_NCOUNTERS) 11501 return (EINVAL); 11502 11503 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11504 "t4opktc"); 11505 if (rc) 11506 return (rc); 11507 11508 if (vi->flags & VI_INIT_DONE) 11509 rc = EBUSY; /* cannot be changed once the queues are created */ 11510 else 11511 vi->ofld_pktc_idx = idx; 11512 11513 end_synchronized_op(sc, LOCK_HELD); 11514 return (rc); 11515 } 11516 #endif 11517 11518 static int 11519 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11520 { 11521 int rc; 11522 11523 if (cntxt->cid > M_CTXTQID) 11524 return (EINVAL); 11525 11526 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11527 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11528 return (EINVAL); 11529 11530 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11531 if (rc) 11532 return (rc); 11533 11534 if (hw_off_limits(sc)) { 11535 rc = ENXIO; 11536 goto done; 11537 } 11538 11539 if (sc->flags & FW_OK) { 11540 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11541 &cntxt->data[0]); 11542 if (rc == 0) 11543 goto done; 11544 } 11545 11546 /* 11547 * Read via firmware failed or wasn't even attempted. Read directly via 11548 * the backdoor. 11549 */ 11550 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11551 done: 11552 end_synchronized_op(sc, 0); 11553 return (rc); 11554 } 11555 11556 static int 11557 load_fw(struct adapter *sc, struct t4_data *fw) 11558 { 11559 int rc; 11560 uint8_t *fw_data; 11561 11562 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11563 if (rc) 11564 return (rc); 11565 11566 if (hw_off_limits(sc)) { 11567 rc = ENXIO; 11568 goto done; 11569 } 11570 11571 /* 11572 * The firmware, with the sole exception of the memory parity error 11573 * handler, runs from memory and not flash. It is almost always safe to 11574 * install a new firmware on a running system. Just set bit 1 in 11575 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11576 */ 11577 if (sc->flags & FULL_INIT_DONE && 11578 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11579 rc = EBUSY; 11580 goto done; 11581 } 11582 11583 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11584 11585 rc = copyin(fw->data, fw_data, fw->len); 11586 if (rc == 0) 11587 rc = -t4_load_fw(sc, fw_data, fw->len); 11588 11589 free(fw_data, M_CXGBE); 11590 done: 11591 end_synchronized_op(sc, 0); 11592 return (rc); 11593 } 11594 11595 static int 11596 load_cfg(struct adapter *sc, struct t4_data *cfg) 11597 { 11598 int rc; 11599 uint8_t *cfg_data = NULL; 11600 11601 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11602 if (rc) 11603 return (rc); 11604 11605 if (hw_off_limits(sc)) { 11606 rc = ENXIO; 11607 goto done; 11608 } 11609 11610 if (cfg->len == 0) { 11611 /* clear */ 11612 rc = -t4_load_cfg(sc, NULL, 0); 11613 goto done; 11614 } 11615 11616 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11617 11618 rc = copyin(cfg->data, cfg_data, cfg->len); 11619 if (rc == 0) 11620 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11621 11622 free(cfg_data, M_CXGBE); 11623 done: 11624 end_synchronized_op(sc, 0); 11625 return (rc); 11626 } 11627 11628 static int 11629 load_boot(struct adapter *sc, struct t4_bootrom *br) 11630 { 11631 int rc; 11632 uint8_t *br_data = NULL; 11633 u_int offset; 11634 11635 if (br->len > 1024 * 1024) 11636 return (EFBIG); 11637 11638 if (br->pf_offset == 0) { 11639 /* pfidx */ 11640 if (br->pfidx_addr > 7) 11641 return (EINVAL); 11642 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11643 A_PCIE_PF_EXPROM_OFST))); 11644 } else if (br->pf_offset == 1) { 11645 /* offset */ 11646 offset = G_OFFSET(br->pfidx_addr); 11647 } else { 11648 return (EINVAL); 11649 } 11650 11651 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11652 if (rc) 11653 return (rc); 11654 11655 if (hw_off_limits(sc)) { 11656 rc = ENXIO; 11657 goto done; 11658 } 11659 11660 if (br->len == 0) { 11661 /* clear */ 11662 rc = -t4_load_boot(sc, NULL, offset, 0); 11663 goto done; 11664 } 11665 11666 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11667 11668 rc = copyin(br->data, br_data, br->len); 11669 if (rc == 0) 11670 rc = -t4_load_boot(sc, br_data, offset, br->len); 11671 11672 free(br_data, M_CXGBE); 11673 done: 11674 end_synchronized_op(sc, 0); 11675 return (rc); 11676 } 11677 11678 static int 11679 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11680 { 11681 int rc; 11682 uint8_t *bc_data = NULL; 11683 11684 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11685 if (rc) 11686 return (rc); 11687 11688 if (hw_off_limits(sc)) { 11689 rc = ENXIO; 11690 goto done; 11691 } 11692 11693 if (bc->len == 0) { 11694 /* clear */ 11695 rc = -t4_load_bootcfg(sc, NULL, 0); 11696 goto done; 11697 } 11698 11699 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11700 11701 rc = copyin(bc->data, bc_data, bc->len); 11702 if (rc == 0) 11703 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11704 11705 free(bc_data, M_CXGBE); 11706 done: 11707 end_synchronized_op(sc, 0); 11708 return (rc); 11709 } 11710 11711 static int 11712 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11713 { 11714 int rc; 11715 struct cudbg_init *cudbg; 11716 void *handle, *buf; 11717 11718 /* buf is large, don't block if no memory is available */ 11719 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11720 if (buf == NULL) 11721 return (ENOMEM); 11722 11723 handle = cudbg_alloc_handle(); 11724 if (handle == NULL) { 11725 rc = ENOMEM; 11726 goto done; 11727 } 11728 11729 cudbg = cudbg_get_init(handle); 11730 cudbg->adap = sc; 11731 cudbg->print = (cudbg_print_cb)printf; 11732 11733 #ifndef notyet 11734 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11735 __func__, dump->wr_flash, dump->len, dump->data); 11736 #endif 11737 11738 if (dump->wr_flash) 11739 cudbg->use_flash = 1; 11740 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11741 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11742 11743 rc = cudbg_collect(handle, buf, &dump->len); 11744 if (rc != 0) 11745 goto done; 11746 11747 rc = copyout(buf, dump->data, dump->len); 11748 done: 11749 cudbg_free_handle(handle); 11750 free(buf, M_CXGBE); 11751 return (rc); 11752 } 11753 11754 static void 11755 free_offload_policy(struct t4_offload_policy *op) 11756 { 11757 struct offload_rule *r; 11758 int i; 11759 11760 if (op == NULL) 11761 return; 11762 11763 r = &op->rule[0]; 11764 for (i = 0; i < op->nrules; i++, r++) { 11765 free(r->bpf_prog.bf_insns, M_CXGBE); 11766 } 11767 free(op->rule, M_CXGBE); 11768 free(op, M_CXGBE); 11769 } 11770 11771 static int 11772 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11773 { 11774 int i, rc, len; 11775 struct t4_offload_policy *op, *old; 11776 struct bpf_program *bf; 11777 const struct offload_settings *s; 11778 struct offload_rule *r; 11779 void *u; 11780 11781 if (!is_offload(sc)) 11782 return (ENODEV); 11783 11784 if (uop->nrules == 0) { 11785 /* Delete installed policies. */ 11786 op = NULL; 11787 goto set_policy; 11788 } else if (uop->nrules > 256) { /* arbitrary */ 11789 return (E2BIG); 11790 } 11791 11792 /* Copy userspace offload policy to kernel */ 11793 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11794 op->nrules = uop->nrules; 11795 len = op->nrules * sizeof(struct offload_rule); 11796 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11797 rc = copyin(uop->rule, op->rule, len); 11798 if (rc) { 11799 free(op->rule, M_CXGBE); 11800 free(op, M_CXGBE); 11801 return (rc); 11802 } 11803 11804 r = &op->rule[0]; 11805 for (i = 0; i < op->nrules; i++, r++) { 11806 11807 /* Validate open_type */ 11808 if (r->open_type != OPEN_TYPE_LISTEN && 11809 r->open_type != OPEN_TYPE_ACTIVE && 11810 r->open_type != OPEN_TYPE_PASSIVE && 11811 r->open_type != OPEN_TYPE_DONTCARE) { 11812 error: 11813 /* 11814 * Rules 0 to i have malloc'd filters that need to be 11815 * freed. Rules i+1 to nrules have userspace pointers 11816 * and should be left alone. 11817 */ 11818 op->nrules = i; 11819 free_offload_policy(op); 11820 return (rc); 11821 } 11822 11823 /* Validate settings */ 11824 s = &r->settings; 11825 if ((s->offload != 0 && s->offload != 1) || 11826 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11827 s->sched_class < -1 || 11828 s->sched_class >= sc->params.nsched_cls) { 11829 rc = EINVAL; 11830 goto error; 11831 } 11832 11833 bf = &r->bpf_prog; 11834 u = bf->bf_insns; /* userspace ptr */ 11835 bf->bf_insns = NULL; 11836 if (bf->bf_len == 0) { 11837 /* legal, matches everything */ 11838 continue; 11839 } 11840 len = bf->bf_len * sizeof(*bf->bf_insns); 11841 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11842 rc = copyin(u, bf->bf_insns, len); 11843 if (rc != 0) 11844 goto error; 11845 11846 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11847 rc = EINVAL; 11848 goto error; 11849 } 11850 } 11851 set_policy: 11852 rw_wlock(&sc->policy_lock); 11853 old = sc->policy; 11854 sc->policy = op; 11855 rw_wunlock(&sc->policy_lock); 11856 free_offload_policy(old); 11857 11858 return (0); 11859 } 11860 11861 #define MAX_READ_BUF_SIZE (128 * 1024) 11862 static int 11863 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11864 { 11865 uint32_t addr, remaining, n; 11866 uint32_t *buf; 11867 int rc; 11868 uint8_t *dst; 11869 11870 mtx_lock(&sc->reg_lock); 11871 if (hw_off_limits(sc)) 11872 rc = ENXIO; 11873 else 11874 rc = validate_mem_range(sc, mr->addr, mr->len); 11875 mtx_unlock(&sc->reg_lock); 11876 if (rc != 0) 11877 return (rc); 11878 11879 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11880 addr = mr->addr; 11881 remaining = mr->len; 11882 dst = (void *)mr->data; 11883 11884 while (remaining) { 11885 n = min(remaining, MAX_READ_BUF_SIZE); 11886 mtx_lock(&sc->reg_lock); 11887 if (hw_off_limits(sc)) 11888 rc = ENXIO; 11889 else 11890 read_via_memwin(sc, 2, addr, buf, n); 11891 mtx_unlock(&sc->reg_lock); 11892 if (rc != 0) 11893 break; 11894 11895 rc = copyout(buf, dst, n); 11896 if (rc != 0) 11897 break; 11898 11899 dst += n; 11900 remaining -= n; 11901 addr += n; 11902 } 11903 11904 free(buf, M_CXGBE); 11905 return (rc); 11906 } 11907 #undef MAX_READ_BUF_SIZE 11908 11909 static int 11910 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11911 { 11912 int rc; 11913 11914 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11915 return (EINVAL); 11916 11917 if (i2cd->len > sizeof(i2cd->data)) 11918 return (EFBIG); 11919 11920 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11921 if (rc) 11922 return (rc); 11923 if (hw_off_limits(sc)) 11924 rc = ENXIO; 11925 else 11926 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11927 i2cd->offset, i2cd->len, &i2cd->data[0]); 11928 end_synchronized_op(sc, 0); 11929 11930 return (rc); 11931 } 11932 11933 static int 11934 clear_stats(struct adapter *sc, u_int port_id) 11935 { 11936 int i, v, chan_map; 11937 struct port_info *pi; 11938 struct vi_info *vi; 11939 struct sge_rxq *rxq; 11940 struct sge_txq *txq; 11941 struct sge_wrq *wrq; 11942 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11943 struct sge_ofld_txq *ofld_txq; 11944 #endif 11945 #ifdef TCP_OFFLOAD 11946 struct sge_ofld_rxq *ofld_rxq; 11947 #endif 11948 11949 if (port_id >= sc->params.nports) 11950 return (EINVAL); 11951 pi = sc->port[port_id]; 11952 if (pi == NULL) 11953 return (EIO); 11954 11955 mtx_lock(&sc->reg_lock); 11956 if (!hw_off_limits(sc)) { 11957 /* MAC stats */ 11958 t4_clr_port_stats(sc, pi->tx_chan); 11959 if (is_t6(sc)) { 11960 if (pi->fcs_reg != -1) 11961 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11962 else 11963 pi->stats.rx_fcs_err = 0; 11964 } 11965 for_each_vi(pi, v, vi) { 11966 if (vi->flags & VI_INIT_DONE) 11967 t4_clr_vi_stats(sc, vi->vin); 11968 } 11969 chan_map = pi->rx_e_chan_map; 11970 v = 0; /* reuse */ 11971 while (chan_map) { 11972 i = ffs(chan_map) - 1; 11973 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11974 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11975 chan_map &= ~(1 << i); 11976 } 11977 } 11978 mtx_unlock(&sc->reg_lock); 11979 pi->tx_parse_error = 0; 11980 pi->tnl_cong_drops = 0; 11981 11982 /* 11983 * Since this command accepts a port, clear stats for 11984 * all VIs on this port. 11985 */ 11986 for_each_vi(pi, v, vi) { 11987 if (vi->flags & VI_INIT_DONE) { 11988 11989 for_each_rxq(vi, i, rxq) { 11990 #if defined(INET) || defined(INET6) 11991 rxq->lro.lro_queued = 0; 11992 rxq->lro.lro_flushed = 0; 11993 #endif 11994 rxq->rxcsum = 0; 11995 rxq->vlan_extraction = 0; 11996 rxq->vxlan_rxcsum = 0; 11997 11998 rxq->fl.cl_allocated = 0; 11999 rxq->fl.cl_recycled = 0; 12000 rxq->fl.cl_fast_recycled = 0; 12001 } 12002 12003 for_each_txq(vi, i, txq) { 12004 txq->txcsum = 0; 12005 txq->tso_wrs = 0; 12006 txq->vlan_insertion = 0; 12007 txq->imm_wrs = 0; 12008 txq->sgl_wrs = 0; 12009 txq->txpkt_wrs = 0; 12010 txq->txpkts0_wrs = 0; 12011 txq->txpkts1_wrs = 0; 12012 txq->txpkts0_pkts = 0; 12013 txq->txpkts1_pkts = 0; 12014 txq->txpkts_flush = 0; 12015 txq->raw_wrs = 0; 12016 txq->vxlan_tso_wrs = 0; 12017 txq->vxlan_txcsum = 0; 12018 txq->kern_tls_records = 0; 12019 txq->kern_tls_short = 0; 12020 txq->kern_tls_partial = 0; 12021 txq->kern_tls_full = 0; 12022 txq->kern_tls_octets = 0; 12023 txq->kern_tls_waste = 0; 12024 txq->kern_tls_options = 0; 12025 txq->kern_tls_header = 0; 12026 txq->kern_tls_fin = 0; 12027 txq->kern_tls_fin_short = 0; 12028 txq->kern_tls_cbc = 0; 12029 txq->kern_tls_gcm = 0; 12030 mp_ring_reset_stats(txq->r); 12031 } 12032 12033 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12034 for_each_ofld_txq(vi, i, ofld_txq) { 12035 ofld_txq->wrq.tx_wrs_direct = 0; 12036 ofld_txq->wrq.tx_wrs_copied = 0; 12037 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12038 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12039 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12040 counter_u64_zero(ofld_txq->tx_aio_jobs); 12041 counter_u64_zero(ofld_txq->tx_aio_octets); 12042 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12043 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12044 } 12045 #endif 12046 #ifdef TCP_OFFLOAD 12047 for_each_ofld_rxq(vi, i, ofld_rxq) { 12048 ofld_rxq->fl.cl_allocated = 0; 12049 ofld_rxq->fl.cl_recycled = 0; 12050 ofld_rxq->fl.cl_fast_recycled = 0; 12051 counter_u64_zero( 12052 ofld_rxq->rx_iscsi_ddp_setup_ok); 12053 counter_u64_zero( 12054 ofld_rxq->rx_iscsi_ddp_setup_error); 12055 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12056 ofld_rxq->rx_iscsi_ddp_octets = 0; 12057 ofld_rxq->rx_iscsi_fl_pdus = 0; 12058 ofld_rxq->rx_iscsi_fl_octets = 0; 12059 ofld_rxq->rx_aio_ddp_jobs = 0; 12060 ofld_rxq->rx_aio_ddp_octets = 0; 12061 ofld_rxq->rx_toe_tls_records = 0; 12062 ofld_rxq->rx_toe_tls_octets = 0; 12063 ofld_rxq->rx_toe_ddp_octets = 0; 12064 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12065 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12066 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12067 } 12068 #endif 12069 12070 if (IS_MAIN_VI(vi)) { 12071 wrq = &sc->sge.ctrlq[pi->port_id]; 12072 wrq->tx_wrs_direct = 0; 12073 wrq->tx_wrs_copied = 0; 12074 } 12075 } 12076 } 12077 12078 return (0); 12079 } 12080 12081 static int 12082 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12083 { 12084 #ifdef INET6 12085 struct in6_addr in6; 12086 12087 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12088 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12089 return (0); 12090 else 12091 return (EIO); 12092 #else 12093 return (ENOTSUP); 12094 #endif 12095 } 12096 12097 static int 12098 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12099 { 12100 #ifdef INET6 12101 struct in6_addr in6; 12102 12103 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12104 return (t4_release_clip_addr(sc, &in6)); 12105 #else 12106 return (ENOTSUP); 12107 #endif 12108 } 12109 12110 int 12111 t4_os_find_pci_capability(struct adapter *sc, int cap) 12112 { 12113 int i; 12114 12115 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12116 } 12117 12118 int 12119 t4_os_pci_save_state(struct adapter *sc) 12120 { 12121 device_t dev; 12122 struct pci_devinfo *dinfo; 12123 12124 dev = sc->dev; 12125 dinfo = device_get_ivars(dev); 12126 12127 pci_cfg_save(dev, dinfo, 0); 12128 return (0); 12129 } 12130 12131 int 12132 t4_os_pci_restore_state(struct adapter *sc) 12133 { 12134 device_t dev; 12135 struct pci_devinfo *dinfo; 12136 12137 dev = sc->dev; 12138 dinfo = device_get_ivars(dev); 12139 12140 pci_cfg_restore(dev, dinfo); 12141 return (0); 12142 } 12143 12144 void 12145 t4_os_portmod_changed(struct port_info *pi) 12146 { 12147 struct adapter *sc = pi->adapter; 12148 struct vi_info *vi; 12149 if_t ifp; 12150 static const char *mod_str[] = { 12151 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12152 }; 12153 12154 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12155 ("%s: port_type %u", __func__, pi->port_type)); 12156 12157 vi = &pi->vi[0]; 12158 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12159 PORT_LOCK(pi); 12160 build_medialist(pi); 12161 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12162 fixup_link_config(pi); 12163 apply_link_config(pi); 12164 } 12165 PORT_UNLOCK(pi); 12166 end_synchronized_op(sc, LOCK_HELD); 12167 } 12168 12169 ifp = vi->ifp; 12170 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12171 if_printf(ifp, "transceiver unplugged.\n"); 12172 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12173 if_printf(ifp, "unknown transceiver inserted.\n"); 12174 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12175 if_printf(ifp, "unsupported transceiver inserted.\n"); 12176 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12177 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12178 port_top_speed(pi), mod_str[pi->mod_type]); 12179 } else { 12180 if_printf(ifp, "transceiver (type %d) inserted.\n", 12181 pi->mod_type); 12182 } 12183 } 12184 12185 void 12186 t4_os_link_changed(struct port_info *pi) 12187 { 12188 struct vi_info *vi; 12189 if_t ifp; 12190 struct link_config *lc = &pi->link_cfg; 12191 struct adapter *sc = pi->adapter; 12192 int v; 12193 12194 PORT_LOCK_ASSERT_OWNED(pi); 12195 12196 if (is_t6(sc)) { 12197 if (lc->link_ok) { 12198 if (lc->speed > 25000 || 12199 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12200 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12201 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12202 } else { 12203 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12204 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12205 } 12206 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12207 pi->stats.rx_fcs_err = 0; 12208 } else { 12209 pi->fcs_reg = -1; 12210 } 12211 } else { 12212 MPASS(pi->fcs_reg != -1); 12213 MPASS(pi->fcs_base == 0); 12214 } 12215 12216 for_each_vi(pi, v, vi) { 12217 ifp = vi->ifp; 12218 if (ifp == NULL) 12219 continue; 12220 12221 if (lc->link_ok) { 12222 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12223 if_link_state_change(ifp, LINK_STATE_UP); 12224 } else { 12225 if_link_state_change(ifp, LINK_STATE_DOWN); 12226 } 12227 } 12228 } 12229 12230 void 12231 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12232 { 12233 struct adapter *sc; 12234 12235 sx_slock(&t4_list_lock); 12236 SLIST_FOREACH(sc, &t4_list, link) { 12237 /* 12238 * func should not make any assumptions about what state sc is 12239 * in - the only guarantee is that sc->sc_lock is a valid lock. 12240 */ 12241 func(sc, arg); 12242 } 12243 sx_sunlock(&t4_list_lock); 12244 } 12245 12246 static int 12247 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12248 struct thread *td) 12249 { 12250 int rc; 12251 struct adapter *sc = dev->si_drv1; 12252 12253 rc = priv_check(td, PRIV_DRIVER); 12254 if (rc != 0) 12255 return (rc); 12256 12257 switch (cmd) { 12258 case CHELSIO_T4_GETREG: { 12259 struct t4_reg *edata = (struct t4_reg *)data; 12260 12261 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12262 return (EFAULT); 12263 12264 mtx_lock(&sc->reg_lock); 12265 if (hw_off_limits(sc)) 12266 rc = ENXIO; 12267 else if (edata->size == 4) 12268 edata->val = t4_read_reg(sc, edata->addr); 12269 else if (edata->size == 8) 12270 edata->val = t4_read_reg64(sc, edata->addr); 12271 else 12272 rc = EINVAL; 12273 mtx_unlock(&sc->reg_lock); 12274 12275 break; 12276 } 12277 case CHELSIO_T4_SETREG: { 12278 struct t4_reg *edata = (struct t4_reg *)data; 12279 12280 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12281 return (EFAULT); 12282 12283 mtx_lock(&sc->reg_lock); 12284 if (hw_off_limits(sc)) 12285 rc = ENXIO; 12286 else if (edata->size == 4) { 12287 if (edata->val & 0xffffffff00000000) 12288 rc = EINVAL; 12289 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12290 } else if (edata->size == 8) 12291 t4_write_reg64(sc, edata->addr, edata->val); 12292 else 12293 rc = EINVAL; 12294 mtx_unlock(&sc->reg_lock); 12295 12296 break; 12297 } 12298 case CHELSIO_T4_REGDUMP: { 12299 struct t4_regdump *regs = (struct t4_regdump *)data; 12300 int reglen = t4_get_regs_len(sc); 12301 uint8_t *buf; 12302 12303 if (regs->len < reglen) { 12304 regs->len = reglen; /* hint to the caller */ 12305 return (ENOBUFS); 12306 } 12307 12308 regs->len = reglen; 12309 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12310 mtx_lock(&sc->reg_lock); 12311 if (hw_off_limits(sc)) 12312 rc = ENXIO; 12313 else 12314 get_regs(sc, regs, buf); 12315 mtx_unlock(&sc->reg_lock); 12316 if (rc == 0) 12317 rc = copyout(buf, regs->data, reglen); 12318 free(buf, M_CXGBE); 12319 break; 12320 } 12321 case CHELSIO_T4_GET_FILTER_MODE: 12322 rc = get_filter_mode(sc, (uint32_t *)data); 12323 break; 12324 case CHELSIO_T4_SET_FILTER_MODE: 12325 rc = set_filter_mode(sc, *(uint32_t *)data); 12326 break; 12327 case CHELSIO_T4_SET_FILTER_MASK: 12328 rc = set_filter_mask(sc, *(uint32_t *)data); 12329 break; 12330 case CHELSIO_T4_GET_FILTER: 12331 rc = get_filter(sc, (struct t4_filter *)data); 12332 break; 12333 case CHELSIO_T4_SET_FILTER: 12334 rc = set_filter(sc, (struct t4_filter *)data); 12335 break; 12336 case CHELSIO_T4_DEL_FILTER: 12337 rc = del_filter(sc, (struct t4_filter *)data); 12338 break; 12339 case CHELSIO_T4_GET_SGE_CONTEXT: 12340 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12341 break; 12342 case CHELSIO_T4_LOAD_FW: 12343 rc = load_fw(sc, (struct t4_data *)data); 12344 break; 12345 case CHELSIO_T4_GET_MEM: 12346 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12347 break; 12348 case CHELSIO_T4_GET_I2C: 12349 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12350 break; 12351 case CHELSIO_T4_CLEAR_STATS: 12352 rc = clear_stats(sc, *(uint32_t *)data); 12353 break; 12354 case CHELSIO_T4_SCHED_CLASS: 12355 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12356 break; 12357 case CHELSIO_T4_SCHED_QUEUE: 12358 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12359 break; 12360 case CHELSIO_T4_GET_TRACER: 12361 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12362 break; 12363 case CHELSIO_T4_SET_TRACER: 12364 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12365 break; 12366 case CHELSIO_T4_LOAD_CFG: 12367 rc = load_cfg(sc, (struct t4_data *)data); 12368 break; 12369 case CHELSIO_T4_LOAD_BOOT: 12370 rc = load_boot(sc, (struct t4_bootrom *)data); 12371 break; 12372 case CHELSIO_T4_LOAD_BOOTCFG: 12373 rc = load_bootcfg(sc, (struct t4_data *)data); 12374 break; 12375 case CHELSIO_T4_CUDBG_DUMP: 12376 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12377 break; 12378 case CHELSIO_T4_SET_OFLD_POLICY: 12379 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12380 break; 12381 case CHELSIO_T4_HOLD_CLIP_ADDR: 12382 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12383 break; 12384 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12385 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12386 break; 12387 default: 12388 rc = ENOTTY; 12389 } 12390 12391 return (rc); 12392 } 12393 12394 #ifdef TCP_OFFLOAD 12395 static int 12396 toe_capability(struct vi_info *vi, bool enable) 12397 { 12398 int rc; 12399 struct port_info *pi = vi->pi; 12400 struct adapter *sc = pi->adapter; 12401 12402 ASSERT_SYNCHRONIZED_OP(sc); 12403 12404 if (!is_offload(sc)) 12405 return (ENODEV); 12406 if (hw_off_limits(sc)) 12407 return (ENXIO); 12408 12409 if (enable) { 12410 #ifdef KERN_TLS 12411 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12412 int i, j, n; 12413 struct port_info *p; 12414 struct vi_info *v; 12415 12416 /* 12417 * Reconfigure hardware for TOE if TXTLS is not enabled 12418 * on any ifnet. 12419 */ 12420 n = 0; 12421 for_each_port(sc, i) { 12422 p = sc->port[i]; 12423 for_each_vi(p, j, v) { 12424 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12425 CH_WARN(sc, 12426 "%s has NIC TLS enabled.\n", 12427 device_get_nameunit(v->dev)); 12428 n++; 12429 } 12430 } 12431 } 12432 if (n > 0) { 12433 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12434 "associated with this adapter before " 12435 "trying to enable TOE.\n"); 12436 return (EAGAIN); 12437 } 12438 rc = t6_config_kern_tls(sc, false); 12439 if (rc) 12440 return (rc); 12441 } 12442 #endif 12443 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12444 /* TOE is already enabled. */ 12445 return (0); 12446 } 12447 12448 /* 12449 * We need the port's queues around so that we're able to send 12450 * and receive CPLs to/from the TOE even if the ifnet for this 12451 * port has never been UP'd administratively. 12452 */ 12453 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12454 return (rc); 12455 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12456 ((rc = vi_init(&pi->vi[0])) != 0)) 12457 return (rc); 12458 12459 if (isset(&sc->offload_map, pi->port_id)) { 12460 /* TOE is enabled on another VI of this port. */ 12461 pi->uld_vis++; 12462 return (0); 12463 } 12464 12465 if (!uld_active(sc, ULD_TOM)) { 12466 rc = t4_activate_uld(sc, ULD_TOM); 12467 if (rc == EAGAIN) { 12468 log(LOG_WARNING, 12469 "You must kldload t4_tom.ko before trying " 12470 "to enable TOE on a cxgbe interface.\n"); 12471 } 12472 if (rc != 0) 12473 return (rc); 12474 KASSERT(sc->tom_softc != NULL, 12475 ("%s: TOM activated but softc NULL", __func__)); 12476 KASSERT(uld_active(sc, ULD_TOM), 12477 ("%s: TOM activated but flag not set", __func__)); 12478 } 12479 12480 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12481 if (!uld_active(sc, ULD_IWARP)) 12482 (void) t4_activate_uld(sc, ULD_IWARP); 12483 if (!uld_active(sc, ULD_ISCSI)) 12484 (void) t4_activate_uld(sc, ULD_ISCSI); 12485 12486 pi->uld_vis++; 12487 setbit(&sc->offload_map, pi->port_id); 12488 } else { 12489 pi->uld_vis--; 12490 12491 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12492 return (0); 12493 12494 KASSERT(uld_active(sc, ULD_TOM), 12495 ("%s: TOM never initialized?", __func__)); 12496 clrbit(&sc->offload_map, pi->port_id); 12497 } 12498 12499 return (0); 12500 } 12501 12502 /* 12503 * Add an upper layer driver to the global list. 12504 */ 12505 int 12506 t4_register_uld(struct uld_info *ui) 12507 { 12508 int rc = 0; 12509 struct uld_info *u; 12510 12511 sx_xlock(&t4_uld_list_lock); 12512 SLIST_FOREACH(u, &t4_uld_list, link) { 12513 if (u->uld_id == ui->uld_id) { 12514 rc = EEXIST; 12515 goto done; 12516 } 12517 } 12518 12519 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12520 ui->refcount = 0; 12521 done: 12522 sx_xunlock(&t4_uld_list_lock); 12523 return (rc); 12524 } 12525 12526 int 12527 t4_unregister_uld(struct uld_info *ui) 12528 { 12529 int rc = EINVAL; 12530 struct uld_info *u; 12531 12532 sx_xlock(&t4_uld_list_lock); 12533 12534 SLIST_FOREACH(u, &t4_uld_list, link) { 12535 if (u == ui) { 12536 if (ui->refcount > 0) { 12537 rc = EBUSY; 12538 goto done; 12539 } 12540 12541 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12542 rc = 0; 12543 goto done; 12544 } 12545 } 12546 done: 12547 sx_xunlock(&t4_uld_list_lock); 12548 return (rc); 12549 } 12550 12551 int 12552 t4_activate_uld(struct adapter *sc, int id) 12553 { 12554 int rc; 12555 struct uld_info *ui; 12556 12557 ASSERT_SYNCHRONIZED_OP(sc); 12558 12559 if (id < 0 || id > ULD_MAX) 12560 return (EINVAL); 12561 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12562 12563 sx_slock(&t4_uld_list_lock); 12564 12565 SLIST_FOREACH(ui, &t4_uld_list, link) { 12566 if (ui->uld_id == id) { 12567 if (!(sc->flags & FULL_INIT_DONE)) { 12568 rc = adapter_init(sc); 12569 if (rc != 0) 12570 break; 12571 } 12572 12573 rc = ui->activate(sc); 12574 if (rc == 0) { 12575 setbit(&sc->active_ulds, id); 12576 ui->refcount++; 12577 } 12578 break; 12579 } 12580 } 12581 12582 sx_sunlock(&t4_uld_list_lock); 12583 12584 return (rc); 12585 } 12586 12587 int 12588 t4_deactivate_uld(struct adapter *sc, int id) 12589 { 12590 int rc; 12591 struct uld_info *ui; 12592 12593 ASSERT_SYNCHRONIZED_OP(sc); 12594 12595 if (id < 0 || id > ULD_MAX) 12596 return (EINVAL); 12597 rc = ENXIO; 12598 12599 sx_slock(&t4_uld_list_lock); 12600 12601 SLIST_FOREACH(ui, &t4_uld_list, link) { 12602 if (ui->uld_id == id) { 12603 rc = ui->deactivate(sc); 12604 if (rc == 0) { 12605 clrbit(&sc->active_ulds, id); 12606 ui->refcount--; 12607 } 12608 break; 12609 } 12610 } 12611 12612 sx_sunlock(&t4_uld_list_lock); 12613 12614 return (rc); 12615 } 12616 12617 static int 12618 t4_deactivate_all_uld(struct adapter *sc) 12619 { 12620 int rc; 12621 struct uld_info *ui; 12622 12623 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12624 if (rc != 0) 12625 return (ENXIO); 12626 12627 sx_slock(&t4_uld_list_lock); 12628 12629 SLIST_FOREACH(ui, &t4_uld_list, link) { 12630 if (isset(&sc->active_ulds, ui->uld_id)) { 12631 rc = ui->deactivate(sc); 12632 if (rc != 0) 12633 break; 12634 clrbit(&sc->active_ulds, ui->uld_id); 12635 ui->refcount--; 12636 } 12637 } 12638 12639 sx_sunlock(&t4_uld_list_lock); 12640 end_synchronized_op(sc, 0); 12641 12642 return (rc); 12643 } 12644 12645 static void 12646 t4_async_event(struct adapter *sc) 12647 { 12648 struct uld_info *ui; 12649 12650 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12651 return; 12652 sx_slock(&t4_uld_list_lock); 12653 SLIST_FOREACH(ui, &t4_uld_list, link) { 12654 if (ui->uld_id == ULD_IWARP) { 12655 ui->async_event(sc); 12656 break; 12657 } 12658 } 12659 sx_sunlock(&t4_uld_list_lock); 12660 end_synchronized_op(sc, 0); 12661 } 12662 12663 int 12664 uld_active(struct adapter *sc, int uld_id) 12665 { 12666 12667 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12668 12669 return (isset(&sc->active_ulds, uld_id)); 12670 } 12671 #endif 12672 12673 #ifdef KERN_TLS 12674 static int 12675 ktls_capability(struct adapter *sc, bool enable) 12676 { 12677 ASSERT_SYNCHRONIZED_OP(sc); 12678 12679 if (!is_ktls(sc)) 12680 return (ENODEV); 12681 if (!is_t6(sc)) 12682 return (0); 12683 if (hw_off_limits(sc)) 12684 return (ENXIO); 12685 12686 if (enable) { 12687 if (sc->flags & KERN_TLS_ON) 12688 return (0); /* already on */ 12689 if (sc->offload_map != 0) { 12690 CH_WARN(sc, 12691 "Disable TOE on all interfaces associated with " 12692 "this adapter before trying to enable NIC TLS.\n"); 12693 return (EAGAIN); 12694 } 12695 return (t6_config_kern_tls(sc, true)); 12696 } else { 12697 /* 12698 * Nothing to do for disable. If TOE is enabled sometime later 12699 * then toe_capability will reconfigure the hardware. 12700 */ 12701 return (0); 12702 } 12703 } 12704 #endif 12705 12706 /* 12707 * t = ptr to tunable. 12708 * nc = number of CPUs. 12709 * c = compiled in default for that tunable. 12710 */ 12711 static void 12712 calculate_nqueues(int *t, int nc, const int c) 12713 { 12714 int nq; 12715 12716 if (*t > 0) 12717 return; 12718 nq = *t < 0 ? -*t : c; 12719 *t = min(nc, nq); 12720 } 12721 12722 /* 12723 * Come up with reasonable defaults for some of the tunables, provided they're 12724 * not set by the user (in which case we'll use the values as is). 12725 */ 12726 static void 12727 tweak_tunables(void) 12728 { 12729 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12730 12731 if (t4_ntxq < 1) { 12732 #ifdef RSS 12733 t4_ntxq = rss_getnumbuckets(); 12734 #else 12735 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12736 #endif 12737 } 12738 12739 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12740 12741 if (t4_nrxq < 1) { 12742 #ifdef RSS 12743 t4_nrxq = rss_getnumbuckets(); 12744 #else 12745 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12746 #endif 12747 } 12748 12749 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12750 12751 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12752 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12753 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12754 #endif 12755 #ifdef TCP_OFFLOAD 12756 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12757 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12758 #endif 12759 12760 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12761 if (t4_toecaps_allowed == -1) 12762 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12763 #else 12764 if (t4_toecaps_allowed == -1) 12765 t4_toecaps_allowed = 0; 12766 #endif 12767 12768 #ifdef TCP_OFFLOAD 12769 if (t4_rdmacaps_allowed == -1) { 12770 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12771 FW_CAPS_CONFIG_RDMA_RDMAC; 12772 } 12773 12774 if (t4_iscsicaps_allowed == -1) { 12775 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12776 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12777 FW_CAPS_CONFIG_ISCSI_T10DIF; 12778 } 12779 12780 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12781 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12782 12783 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12784 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12785 #else 12786 if (t4_rdmacaps_allowed == -1) 12787 t4_rdmacaps_allowed = 0; 12788 12789 if (t4_iscsicaps_allowed == -1) 12790 t4_iscsicaps_allowed = 0; 12791 #endif 12792 12793 #ifdef DEV_NETMAP 12794 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12795 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12796 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12797 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12798 #endif 12799 12800 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12801 t4_tmr_idx = TMR_IDX; 12802 12803 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12804 t4_pktc_idx = PKTC_IDX; 12805 12806 if (t4_qsize_txq < 128) 12807 t4_qsize_txq = 128; 12808 12809 if (t4_qsize_rxq < 128) 12810 t4_qsize_rxq = 128; 12811 while (t4_qsize_rxq & 7) 12812 t4_qsize_rxq++; 12813 12814 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12815 12816 /* 12817 * Number of VIs to create per-port. The first VI is the "main" regular 12818 * VI for the port. The rest are additional virtual interfaces on the 12819 * same physical port. Note that the main VI does not have native 12820 * netmap support but the extra VIs do. 12821 * 12822 * Limit the number of VIs per port to the number of available 12823 * MAC addresses per port. 12824 */ 12825 if (t4_num_vis < 1) 12826 t4_num_vis = 1; 12827 if (t4_num_vis > nitems(vi_mac_funcs)) { 12828 t4_num_vis = nitems(vi_mac_funcs); 12829 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12830 } 12831 12832 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12833 pcie_relaxed_ordering = 1; 12834 #if defined(__i386__) || defined(__amd64__) 12835 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12836 pcie_relaxed_ordering = 0; 12837 #endif 12838 } 12839 } 12840 12841 #ifdef DDB 12842 static void 12843 t4_dump_tcb(struct adapter *sc, int tid) 12844 { 12845 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12846 12847 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12848 save = t4_read_reg(sc, reg); 12849 base = sc->memwin[2].mw_base; 12850 12851 /* Dump TCB for the tid */ 12852 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12853 tcb_addr += tid * TCB_SIZE; 12854 12855 if (is_t4(sc)) { 12856 pf = 0; 12857 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12858 } else { 12859 pf = V_PFNUM(sc->pf); 12860 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12861 } 12862 t4_write_reg(sc, reg, win_pos | pf); 12863 t4_read_reg(sc, reg); 12864 12865 off = tcb_addr - win_pos; 12866 for (i = 0; i < 4; i++) { 12867 uint32_t buf[8]; 12868 for (j = 0; j < 8; j++, off += 4) 12869 buf[j] = htonl(t4_read_reg(sc, base + off)); 12870 12871 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12872 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12873 buf[7]); 12874 } 12875 12876 t4_write_reg(sc, reg, save); 12877 t4_read_reg(sc, reg); 12878 } 12879 12880 static void 12881 t4_dump_devlog(struct adapter *sc) 12882 { 12883 struct devlog_params *dparams = &sc->params.devlog; 12884 struct fw_devlog_e e; 12885 int i, first, j, m, nentries, rc; 12886 uint64_t ftstamp = UINT64_MAX; 12887 12888 if (dparams->start == 0) { 12889 db_printf("devlog params not valid\n"); 12890 return; 12891 } 12892 12893 nentries = dparams->size / sizeof(struct fw_devlog_e); 12894 m = fwmtype_to_hwmtype(dparams->memtype); 12895 12896 /* Find the first entry. */ 12897 first = -1; 12898 for (i = 0; i < nentries && !db_pager_quit; i++) { 12899 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12900 sizeof(e), (void *)&e); 12901 if (rc != 0) 12902 break; 12903 12904 if (e.timestamp == 0) 12905 break; 12906 12907 e.timestamp = be64toh(e.timestamp); 12908 if (e.timestamp < ftstamp) { 12909 ftstamp = e.timestamp; 12910 first = i; 12911 } 12912 } 12913 12914 if (first == -1) 12915 return; 12916 12917 i = first; 12918 do { 12919 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12920 sizeof(e), (void *)&e); 12921 if (rc != 0) 12922 return; 12923 12924 if (e.timestamp == 0) 12925 return; 12926 12927 e.timestamp = be64toh(e.timestamp); 12928 e.seqno = be32toh(e.seqno); 12929 for (j = 0; j < 8; j++) 12930 e.params[j] = be32toh(e.params[j]); 12931 12932 db_printf("%10d %15ju %8s %8s ", 12933 e.seqno, e.timestamp, 12934 (e.level < nitems(devlog_level_strings) ? 12935 devlog_level_strings[e.level] : "UNKNOWN"), 12936 (e.facility < nitems(devlog_facility_strings) ? 12937 devlog_facility_strings[e.facility] : "UNKNOWN")); 12938 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12939 e.params[3], e.params[4], e.params[5], e.params[6], 12940 e.params[7]); 12941 12942 if (++i == nentries) 12943 i = 0; 12944 } while (i != first && !db_pager_quit); 12945 } 12946 12947 static DB_DEFINE_TABLE(show, t4, show_t4); 12948 12949 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12950 { 12951 device_t dev; 12952 int t; 12953 bool valid; 12954 12955 valid = false; 12956 t = db_read_token(); 12957 if (t == tIDENT) { 12958 dev = device_lookup_by_name(db_tok_string); 12959 valid = true; 12960 } 12961 db_skip_to_eol(); 12962 if (!valid) { 12963 db_printf("usage: show t4 devlog <nexus>\n"); 12964 return; 12965 } 12966 12967 if (dev == NULL) { 12968 db_printf("device not found\n"); 12969 return; 12970 } 12971 12972 t4_dump_devlog(device_get_softc(dev)); 12973 } 12974 12975 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12976 { 12977 device_t dev; 12978 int radix, tid, t; 12979 bool valid; 12980 12981 valid = false; 12982 radix = db_radix; 12983 db_radix = 10; 12984 t = db_read_token(); 12985 if (t == tIDENT) { 12986 dev = device_lookup_by_name(db_tok_string); 12987 t = db_read_token(); 12988 if (t == tNUMBER) { 12989 tid = db_tok_number; 12990 valid = true; 12991 } 12992 } 12993 db_radix = radix; 12994 db_skip_to_eol(); 12995 if (!valid) { 12996 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12997 return; 12998 } 12999 13000 if (dev == NULL) { 13001 db_printf("device not found\n"); 13002 return; 13003 } 13004 if (tid < 0) { 13005 db_printf("invalid tid\n"); 13006 return; 13007 } 13008 13009 t4_dump_tcb(device_get_softc(dev), tid); 13010 } 13011 #endif 13012 13013 static eventhandler_tag vxlan_start_evtag; 13014 static eventhandler_tag vxlan_stop_evtag; 13015 13016 struct vxlan_evargs { 13017 if_t ifp; 13018 uint16_t port; 13019 }; 13020 13021 static void 13022 enable_vxlan_rx(struct adapter *sc) 13023 { 13024 int i, rc; 13025 struct port_info *pi; 13026 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13027 13028 ASSERT_SYNCHRONIZED_OP(sc); 13029 13030 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13031 F_VXLAN_EN); 13032 for_each_port(sc, i) { 13033 pi = sc->port[i]; 13034 if (pi->vxlan_tcam_entry == true) 13035 continue; 13036 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13037 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13038 true); 13039 if (rc < 0) { 13040 rc = -rc; 13041 CH_ERR(&pi->vi[0], 13042 "failed to add VXLAN TCAM entry: %d.\n", rc); 13043 } else { 13044 MPASS(rc == sc->rawf_base + pi->port_id); 13045 pi->vxlan_tcam_entry = true; 13046 } 13047 } 13048 } 13049 13050 static void 13051 t4_vxlan_start(struct adapter *sc, void *arg) 13052 { 13053 struct vxlan_evargs *v = arg; 13054 13055 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13056 return; 13057 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13058 return; 13059 13060 if (sc->vxlan_refcount == 0) { 13061 sc->vxlan_port = v->port; 13062 sc->vxlan_refcount = 1; 13063 if (!hw_off_limits(sc)) 13064 enable_vxlan_rx(sc); 13065 } else if (sc->vxlan_port == v->port) { 13066 sc->vxlan_refcount++; 13067 } else { 13068 CH_ERR(sc, "VXLAN already configured on port %d; " 13069 "ignoring attempt to configure it on port %d\n", 13070 sc->vxlan_port, v->port); 13071 } 13072 end_synchronized_op(sc, 0); 13073 } 13074 13075 static void 13076 t4_vxlan_stop(struct adapter *sc, void *arg) 13077 { 13078 struct vxlan_evargs *v = arg; 13079 13080 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13081 return; 13082 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13083 return; 13084 13085 /* 13086 * VXLANs may have been configured before the driver was loaded so we 13087 * may see more stops than starts. This is not handled cleanly but at 13088 * least we keep the refcount sane. 13089 */ 13090 if (sc->vxlan_port != v->port) 13091 goto done; 13092 if (sc->vxlan_refcount == 0) { 13093 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13094 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13095 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13096 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13097 done: 13098 end_synchronized_op(sc, 0); 13099 } 13100 13101 static void 13102 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13103 sa_family_t family, u_int port) 13104 { 13105 struct vxlan_evargs v; 13106 13107 MPASS(family == AF_INET || family == AF_INET6); 13108 v.ifp = ifp; 13109 v.port = port; 13110 13111 t4_iterate(t4_vxlan_start, &v); 13112 } 13113 13114 static void 13115 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13116 u_int port) 13117 { 13118 struct vxlan_evargs v; 13119 13120 MPASS(family == AF_INET || family == AF_INET6); 13121 v.ifp = ifp; 13122 v.port = port; 13123 13124 t4_iterate(t4_vxlan_stop, &v); 13125 } 13126 13127 13128 static struct sx mlu; /* mod load unload */ 13129 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13130 13131 static int 13132 mod_event(module_t mod, int cmd, void *arg) 13133 { 13134 int rc = 0; 13135 static int loaded = 0; 13136 13137 switch (cmd) { 13138 case MOD_LOAD: 13139 sx_xlock(&mlu); 13140 if (loaded++ == 0) { 13141 t4_sge_modload(); 13142 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13143 t4_filter_rpl, CPL_COOKIE_FILTER); 13144 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13145 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13146 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13147 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13148 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13149 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13150 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13151 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13152 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13153 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13154 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13155 do_smt_write_rpl); 13156 sx_init(&t4_list_lock, "T4/T5 adapters"); 13157 SLIST_INIT(&t4_list); 13158 callout_init(&fatal_callout, 1); 13159 #ifdef TCP_OFFLOAD 13160 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13161 SLIST_INIT(&t4_uld_list); 13162 #endif 13163 #ifdef INET6 13164 t4_clip_modload(); 13165 #endif 13166 #ifdef KERN_TLS 13167 t6_ktls_modload(); 13168 #endif 13169 t4_tracer_modload(); 13170 tweak_tunables(); 13171 vxlan_start_evtag = 13172 EVENTHANDLER_REGISTER(vxlan_start, 13173 t4_vxlan_start_handler, NULL, 13174 EVENTHANDLER_PRI_ANY); 13175 vxlan_stop_evtag = 13176 EVENTHANDLER_REGISTER(vxlan_stop, 13177 t4_vxlan_stop_handler, NULL, 13178 EVENTHANDLER_PRI_ANY); 13179 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13180 taskqueue_thread_enqueue, &reset_tq); 13181 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13182 "t4_rst_thr"); 13183 } 13184 sx_xunlock(&mlu); 13185 break; 13186 13187 case MOD_UNLOAD: 13188 sx_xlock(&mlu); 13189 if (--loaded == 0) { 13190 int tries; 13191 13192 taskqueue_free(reset_tq); 13193 sx_slock(&t4_list_lock); 13194 if (!SLIST_EMPTY(&t4_list)) { 13195 rc = EBUSY; 13196 sx_sunlock(&t4_list_lock); 13197 goto done_unload; 13198 } 13199 #ifdef TCP_OFFLOAD 13200 sx_slock(&t4_uld_list_lock); 13201 if (!SLIST_EMPTY(&t4_uld_list)) { 13202 rc = EBUSY; 13203 sx_sunlock(&t4_uld_list_lock); 13204 sx_sunlock(&t4_list_lock); 13205 goto done_unload; 13206 } 13207 #endif 13208 tries = 0; 13209 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13210 uprintf("%ju clusters with custom free routine " 13211 "still is use.\n", t4_sge_extfree_refs()); 13212 pause("t4unload", 2 * hz); 13213 } 13214 #ifdef TCP_OFFLOAD 13215 sx_sunlock(&t4_uld_list_lock); 13216 #endif 13217 sx_sunlock(&t4_list_lock); 13218 13219 if (t4_sge_extfree_refs() == 0) { 13220 EVENTHANDLER_DEREGISTER(vxlan_start, 13221 vxlan_start_evtag); 13222 EVENTHANDLER_DEREGISTER(vxlan_stop, 13223 vxlan_stop_evtag); 13224 t4_tracer_modunload(); 13225 #ifdef KERN_TLS 13226 t6_ktls_modunload(); 13227 #endif 13228 #ifdef INET6 13229 t4_clip_modunload(); 13230 #endif 13231 #ifdef TCP_OFFLOAD 13232 sx_destroy(&t4_uld_list_lock); 13233 #endif 13234 sx_destroy(&t4_list_lock); 13235 t4_sge_modunload(); 13236 loaded = 0; 13237 } else { 13238 rc = EBUSY; 13239 loaded++; /* undo earlier decrement */ 13240 } 13241 } 13242 done_unload: 13243 sx_xunlock(&mlu); 13244 break; 13245 } 13246 13247 return (rc); 13248 } 13249 13250 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13251 MODULE_VERSION(t4nex, 1); 13252 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13253 #ifdef DEV_NETMAP 13254 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13255 #endif /* DEV_NETMAP */ 13256 13257 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13258 MODULE_VERSION(t5nex, 1); 13259 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13260 #ifdef DEV_NETMAP 13261 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13262 #endif /* DEV_NETMAP */ 13263 13264 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13265 MODULE_VERSION(t6nex, 1); 13266 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13267 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13268 #ifdef DEV_NETMAP 13269 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13270 #endif /* DEV_NETMAP */ 13271 13272 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13273 MODULE_VERSION(cxgbe, 1); 13274 13275 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13276 MODULE_VERSION(cxl, 1); 13277 13278 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13279 MODULE_VERSION(cc, 1); 13280 13281 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13282 MODULE_VERSION(vcxgbe, 1); 13283 13284 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13285 MODULE_VERSION(vcxl, 1); 13286 13287 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13288 MODULE_VERSION(vcc, 1); 13289