xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 9cbf1de7e34a6fced041388fad5d9180cb7705fe)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81 
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93 
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 	DEVMETHOD(device_probe,		t4_probe),
107 	DEVMETHOD(device_attach,	t4_attach),
108 	DEVMETHOD(device_detach,	t4_detach),
109 	DEVMETHOD(device_suspend,	t4_suspend),
110 	DEVMETHOD(device_resume,	t4_resume),
111 
112 	DEVMETHOD(bus_child_location,	t4_child_location),
113 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
114 	DEVMETHOD(bus_reset_post,	t4_reset_post),
115 
116 	DEVMETHOD(t4_is_main_ready,	t4_ready),
117 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
118 
119 	DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 	"t4nex",
123 	t4_methods,
124 	sizeof(struct adapter)
125 };
126 
127 
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 	DEVMETHOD(device_probe,		cxgbe_probe),
134 	DEVMETHOD(device_attach,	cxgbe_attach),
135 	DEVMETHOD(device_detach,	cxgbe_detach),
136 	{ 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 	"cxgbe",
140 	cxgbe_methods,
141 	sizeof(struct port_info)
142 };
143 
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 	DEVMETHOD(device_probe,		vcxgbe_probe),
150 	DEVMETHOD(device_attach,	vcxgbe_attach),
151 	DEVMETHOD(device_detach,	vcxgbe_detach),
152 	{ 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 	"vcxgbe",
156 	vcxgbe_methods,
157 	sizeof(struct vi_info)
158 };
159 
160 static d_ioctl_t t4_ioctl;
161 
162 static struct cdevsw t4_cdevsw = {
163        .d_version = D_VERSION,
164        .d_ioctl = t4_ioctl,
165        .d_name = "t4nex",
166 };
167 
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 	DEVMETHOD(device_probe,		t5_probe),
172 	DEVMETHOD(device_attach,	t4_attach),
173 	DEVMETHOD(device_detach,	t4_detach),
174 	DEVMETHOD(device_suspend,	t4_suspend),
175 	DEVMETHOD(device_resume,	t4_resume),
176 
177 	DEVMETHOD(bus_child_location,	t4_child_location),
178 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
179 	DEVMETHOD(bus_reset_post,	t4_reset_post),
180 
181 	DEVMETHOD(t4_is_main_ready,	t4_ready),
182 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
183 
184 	DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 	"t5nex",
188 	t5_methods,
189 	sizeof(struct adapter)
190 };
191 
192 
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 	"cxl",
196 	cxgbe_methods,
197 	sizeof(struct port_info)
198 };
199 
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 	"vcxl",
203 	vcxgbe_methods,
204 	sizeof(struct vi_info)
205 };
206 
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 	DEVMETHOD(device_probe,		t6_probe),
211 	DEVMETHOD(device_attach,	t4_attach),
212 	DEVMETHOD(device_detach,	t4_detach),
213 	DEVMETHOD(device_suspend,	t4_suspend),
214 	DEVMETHOD(device_resume,	t4_resume),
215 
216 	DEVMETHOD(bus_child_location,	t4_child_location),
217 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
218 	DEVMETHOD(bus_reset_post,	t4_reset_post),
219 
220 	DEVMETHOD(t4_is_main_ready,	t4_ready),
221 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
222 
223 	DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 	"t6nex",
227 	t6_methods,
228 	sizeof(struct adapter)
229 };
230 
231 
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 	"cc",
235 	cxgbe_methods,
236 	sizeof(struct port_info)
237 };
238 
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 	"vcc",
242 	vcxgbe_methods,
243 	sizeof(struct vi_info)
244 };
245 
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253     struct m_snd_tag **);
254 #endif
255 
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257 
258 /*
259  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260  * then ADAPTER_LOCK, then t4_uld_list_lock.
261  */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 SLIST_HEAD(, uld_info) t4_uld_list;
267 #endif
268 
269 /*
270  * Tunables.  See tweak_tunables() too.
271  *
272  * Each tunable is set to a default value here if it's known at compile-time.
273  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274  * provide a reasonable default (upto n) when the driver is loaded.
275  *
276  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
277  * T5 are under hw.cxl.
278  */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) TOE parameters");
285 
286 /*
287  * Number of queues for tx and rx, NIC and offload.
288  */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292     "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
294 
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298     "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
300 
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304     "Number of TX queues per VI");
305 
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309     "Number of RX queues per VI");
310 
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313     0, "Reserve TX queue 0 of each VI for non-flowid packets");
314 
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319     "Number of offload TX queues per port");
320 
321 #define NOFLDRXQ 2
322 static int t4_nofldrxq = -NOFLDRXQ;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
324     "Number of offload RX queues per port");
325 
326 #define NOFLDTXQ_VI 1
327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
329     "Number of offload TX queues per VI");
330 
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334     "Number of offload RX queues per VI");
335 
336 #define TMR_IDX_OFLD 1
337 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340 
341 #define PKTC_IDX_OFLD (-1)
342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345 
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350 
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355 
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360 
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365 
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370 
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375 
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382     "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[15], 0, "");
415 
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419 
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422     &t4_ddp_rcvbuf_cache, 0,
423     "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425 
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
428 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
432 
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436     "Number of netmap TX queues");
437 
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441     "Number of netmap RX queues");
442 
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446     "Number of netmap TX queues per VI");
447 
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451     "Number of netmap RX queues per VI");
452 #endif
453 
454 /*
455  * Holdoff parameters for ports.
456  */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460     0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
462 
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466     0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
468 
469 /*
470  * Size (# of entries) of each tx and rx queue.
471  */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474     "Number of descriptors in each TX queue");
475 
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478     "Number of descriptors in each RX queue");
479 
480 /*
481  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482  */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486 
487 /*
488  * Configuration file.  All the _CF names here are special.
489  */
490 #define DEFAULT_CF	"default"
491 #define BUILTIN_CF	"built-in"
492 #define FLASH_CF	"flash"
493 #define UWIRE_CF	"uwire"
494 #define FPGA_CF		"fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497     sizeof(t4_cfg_file), "Firmware configuration file");
498 
499 /*
500  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503  *            mark or when signalled to do so, 0 to never emit PAUSE.
504  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505  *                 negotiated settings will override rx_pause/tx_pause.
506  *                 Otherwise rx_pause/tx_pause are applied forcibly.
507  */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510     &t4_pause_settings, 0,
511     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512 
513 /*
514  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
516  *  0 to disable FEC.
517  */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521 
522 /*
523  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
525  * driver runs as if this is set to 0.
526  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
529  *    the firmware anyway (may result in l1cfg errors with old firmwares).
530  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531  *    means set all FEC bits that are valid for the speed.
532  */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535     "Controls the use of FORCE_FEC bit in L1 configuration.");
536 
537 /*
538  * Link autonegotiation.
539  * -1 to run with the firmware default.
540  *  0 to disable.
541  *  1 to enable.
542  */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545     "Link autonegotiation");
546 
547 /*
548  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549  * encouraged respectively).  '-n' is the same as 'n' except the firmware
550  * version used in the checks is read from the firmware bundled with the driver.
551  */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555 
556 /*
557  * ASIC features that will be used.  Disable the ones you don't want so that the
558  * chip resources aren't wasted on features that will not be used.
559  */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563 
564 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566     &t4_linkcaps_allowed, 0, "Default link capabilities");
567 
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569     FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571     &t4_switchcaps_allowed, 0, "Default switch capabilities");
572 
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 	FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581     &t4_niccaps_allowed, 0, "Default NIC capabilities");
582 
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586 
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590 
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594 
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598 
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602 
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605     0, "Use WC instead of UC for BAR2");
606 
607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
608 static int t4_doorbells_allowed = 0xf;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
610 	   &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
611 
612 static int t4_num_vis = 1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
614     "Number of VIs per port");
615 
616 /*
617  * PCIe Relaxed Ordering.
618  * -1: driver should figure out a good value.
619  * 0: disable RO.
620  * 1: enable RO.
621  * 2: leave RO alone.
622  */
623 static int pcie_relaxed_ordering = -1;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
625     &pcie_relaxed_ordering, 0,
626     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
627 
628 static int t4_panic_on_fatal_err = 0;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
630     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
631 
632 static int t4_reset_on_fatal_err = 0;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
634     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
635 
636 static int t4_clock_gate_on_suspend = 0;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
638     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
639 
640 static int t4_tx_vm_wr = 0;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
642     "Use VM work requests to transmit packets.");
643 
644 /*
645  * Set to non-zero to enable the attack filter.  A packet that matches any of
646  * these conditions will get dropped on ingress:
647  * 1) IP && source address == destination address.
648  * 2) TCP/IP && source address is not a unicast address.
649  * 3) TCP/IP && destination address is not a unicast address.
650  * 4) IP && source address is loopback (127.x.y.z).
651  * 5) IP && destination address is loopback (127.x.y.z).
652  * 6) IPv6 && source address == destination address.
653  * 7) IPv6 && source address is not a unicast address.
654  * 8) IPv6 && source address is loopback (::1/128).
655  * 9) IPv6 && destination address is loopback (::1/128).
656  * 10) IPv6 && source address is unspecified (::/128).
657  * 11) IPv6 && destination address is unspecified (::/128).
658  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
659  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
660  */
661 static int t4_attack_filter = 0;
662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
663     &t4_attack_filter, 0, "Drop suspicious traffic");
664 
665 static int t4_drop_ip_fragments = 0;
666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
667     &t4_drop_ip_fragments, 0, "Drop IP fragments");
668 
669 static int t4_drop_pkts_with_l2_errors = 1;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
671     &t4_drop_pkts_with_l2_errors, 0,
672     "Drop all frames with Layer 2 length or checksum errors");
673 
674 static int t4_drop_pkts_with_l3_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
676     &t4_drop_pkts_with_l3_errors, 0,
677     "Drop all frames with IP version, length, or checksum errors");
678 
679 static int t4_drop_pkts_with_l4_errors = 0;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
681     &t4_drop_pkts_with_l4_errors, 0,
682     "Drop all frames with Layer 4 length, checksum, or other errors");
683 
684 #ifdef TCP_OFFLOAD
685 /*
686  * TOE tunables.
687  */
688 static int t4_cop_managed_offloading = 0;
689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
690     &t4_cop_managed_offloading, 0,
691     "COP (Connection Offload Policy) controls all TOE offload");
692 #endif
693 
694 #ifdef KERN_TLS
695 /*
696  * This enables KERN_TLS for all adapters if set.
697  */
698 static int t4_kern_tls = 0;
699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
700     "Enable KERN_TLS mode for T6 adapters");
701 
702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
703     "cxgbe(4) KERN_TLS parameters");
704 
705 static int t4_tls_inline_keys = 0;
706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
707     &t4_tls_inline_keys, 0,
708     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
709     "in card memory.");
710 
711 static int t4_tls_combo_wrs = 0;
712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
713     0, "Attempt to combine TCB field updates with TLS record work requests.");
714 #endif
715 
716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
717 static int vi_mac_funcs[] = {
718 	FW_VI_FUNC_ETH,
719 	FW_VI_FUNC_OFLD,
720 	FW_VI_FUNC_IWARP,
721 	FW_VI_FUNC_OPENISCSI,
722 	FW_VI_FUNC_OPENFCOE,
723 	FW_VI_FUNC_FOISCSI,
724 	FW_VI_FUNC_FOFCOE,
725 };
726 
727 struct intrs_and_queues {
728 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
729 	uint16_t num_vis;	/* number of VIs for each port */
730 	uint16_t nirq;		/* Total # of vectors */
731 	uint16_t ntxq;		/* # of NIC txq's for each port */
732 	uint16_t nrxq;		/* # of NIC rxq's for each port */
733 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
734 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
735 	uint16_t nnmtxq;	/* # of netmap txq's */
736 	uint16_t nnmrxq;	/* # of netmap rxq's */
737 
738 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
739 	uint16_t ntxq_vi;	/* # of NIC txq's */
740 	uint16_t nrxq_vi;	/* # of NIC rxq's */
741 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
742 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
743 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
744 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
745 };
746 
747 static void setup_memwin(struct adapter *);
748 static void position_memwin(struct adapter *, int, uint32_t);
749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
750 static int fwmtype_to_hwmtype(int);
751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
752     uint32_t *);
753 static int fixup_devlog_params(struct adapter *);
754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
755 static int contact_firmware(struct adapter *);
756 static int partition_resources(struct adapter *);
757 static int get_params__pre_init(struct adapter *);
758 static int set_params__pre_init(struct adapter *);
759 static int get_params__post_init(struct adapter *);
760 static int set_params__post_init(struct adapter *);
761 static void t4_set_desc(struct adapter *);
762 static bool fixed_ifmedia(struct port_info *);
763 static void build_medialist(struct port_info *);
764 static void init_link_config(struct port_info *);
765 static int fixup_link_config(struct port_info *);
766 static int apply_link_config(struct port_info *);
767 static int cxgbe_init_synchronized(struct vi_info *);
768 static int cxgbe_uninit_synchronized(struct vi_info *);
769 static int adapter_full_init(struct adapter *);
770 static void adapter_full_uninit(struct adapter *);
771 static int vi_full_init(struct vi_info *);
772 static void vi_full_uninit(struct vi_info *);
773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
774 static void quiesce_txq(struct sge_txq *);
775 static void quiesce_wrq(struct sge_wrq *);
776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
777 static void quiesce_vi(struct vi_info *);
778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
779     driver_intr_t *, void *, char *);
780 static int t4_free_irq(struct adapter *, struct irq *);
781 static void t4_init_atid_table(struct adapter *);
782 static void t4_free_atid_table(struct adapter *);
783 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
784 static void vi_refresh_stats(struct vi_info *);
785 static void cxgbe_refresh_stats(struct vi_info *);
786 static void cxgbe_tick(void *);
787 static void vi_tick(void *);
788 static void cxgbe_sysctls(struct port_info *);
789 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
790 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
791 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
792 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
793 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
794 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
795 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
796 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
797 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
798 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
799 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
800 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
801 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
802 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
803 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
804 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
805 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
806 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
807 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
808 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
809 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
810 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
811 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
812 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
813 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
814 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
817 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
820 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
821 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
822 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
824 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
825 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
826 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
827 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
828 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
829 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
830 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
831 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
837 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
838 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
839 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
840 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
841 #ifdef TCP_OFFLOAD
842 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
843 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
844 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
845 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
846 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
847 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
848 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
849 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
850 #endif
851 static int get_sge_context(struct adapter *, struct t4_sge_context *);
852 static int load_fw(struct adapter *, struct t4_data *);
853 static int load_cfg(struct adapter *, struct t4_data *);
854 static int load_boot(struct adapter *, struct t4_bootrom *);
855 static int load_bootcfg(struct adapter *, struct t4_data *);
856 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
857 static void free_offload_policy(struct t4_offload_policy *);
858 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
859 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
860 static int read_i2c(struct adapter *, struct t4_i2c_data *);
861 static int clear_stats(struct adapter *, u_int);
862 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
863 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
864 #ifdef TCP_OFFLOAD
865 static int toe_capability(struct vi_info *, bool);
866 static int t4_deactivate_all_uld(struct adapter *);
867 static void t4_async_event(struct adapter *);
868 #endif
869 #ifdef KERN_TLS
870 static int ktls_capability(struct adapter *, bool);
871 #endif
872 static int mod_event(module_t, int, void *);
873 static int notify_siblings(device_t, int);
874 static uint64_t vi_get_counter(if_t, ift_counter);
875 static uint64_t cxgbe_get_counter(if_t, ift_counter);
876 static void enable_vxlan_rx(struct adapter *);
877 static void reset_adapter_task(void *, int);
878 static void fatal_error_task(void *, int);
879 static void dump_devlog(struct adapter *);
880 static void dump_cim_regs(struct adapter *);
881 static void dump_cimla(struct adapter *);
882 
883 struct {
884 	uint16_t device;
885 	char *desc;
886 } t4_pciids[] = {
887 	{0xa000, "Chelsio Terminator 4 FPGA"},
888 	{0x4400, "Chelsio T440-dbg"},
889 	{0x4401, "Chelsio T420-CR"},
890 	{0x4402, "Chelsio T422-CR"},
891 	{0x4403, "Chelsio T440-CR"},
892 	{0x4404, "Chelsio T420-BCH"},
893 	{0x4405, "Chelsio T440-BCH"},
894 	{0x4406, "Chelsio T440-CH"},
895 	{0x4407, "Chelsio T420-SO"},
896 	{0x4408, "Chelsio T420-CX"},
897 	{0x4409, "Chelsio T420-BT"},
898 	{0x440a, "Chelsio T404-BT"},
899 	{0x440e, "Chelsio T440-LP-CR"},
900 }, t5_pciids[] = {
901 	{0xb000, "Chelsio Terminator 5 FPGA"},
902 	{0x5400, "Chelsio T580-dbg"},
903 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
904 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
905 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
906 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
907 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
908 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
909 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
910 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
911 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
912 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
913 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
914 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
915 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
916 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
917 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
918 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
919 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
920 
921 	/* Custom */
922 	{0x5483, "Custom T540-CR"},
923 	{0x5484, "Custom T540-BT"},
924 }, t6_pciids[] = {
925 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
926 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
927 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
928 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
929 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
930 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
931 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
932 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
933 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
934 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
935 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
936 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
937 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
938 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
939 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
940 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
941 
942 	/* Custom */
943 	{0x6480, "Custom T6225-CR"},
944 	{0x6481, "Custom T62100-CR"},
945 	{0x6482, "Custom T6225-CR"},
946 	{0x6483, "Custom T62100-CR"},
947 	{0x6484, "Custom T64100-CR"},
948 	{0x6485, "Custom T6240-SO"},
949 	{0x6486, "Custom T6225-SO-CR"},
950 	{0x6487, "Custom T6225-CR"},
951 };
952 
953 #ifdef TCP_OFFLOAD
954 /*
955  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
956  * be exactly the same for both rxq and ofld_rxq.
957  */
958 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
959 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
960 #endif
961 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
962 
963 static int
964 t4_probe(device_t dev)
965 {
966 	int i;
967 	uint16_t v = pci_get_vendor(dev);
968 	uint16_t d = pci_get_device(dev);
969 	uint8_t f = pci_get_function(dev);
970 
971 	if (v != PCI_VENDOR_ID_CHELSIO)
972 		return (ENXIO);
973 
974 	/* Attach only to PF0 of the FPGA */
975 	if (d == 0xa000 && f != 0)
976 		return (ENXIO);
977 
978 	for (i = 0; i < nitems(t4_pciids); i++) {
979 		if (d == t4_pciids[i].device) {
980 			device_set_desc(dev, t4_pciids[i].desc);
981 			return (BUS_PROBE_DEFAULT);
982 		}
983 	}
984 
985 	return (ENXIO);
986 }
987 
988 static int
989 t5_probe(device_t dev)
990 {
991 	int i;
992 	uint16_t v = pci_get_vendor(dev);
993 	uint16_t d = pci_get_device(dev);
994 	uint8_t f = pci_get_function(dev);
995 
996 	if (v != PCI_VENDOR_ID_CHELSIO)
997 		return (ENXIO);
998 
999 	/* Attach only to PF0 of the FPGA */
1000 	if (d == 0xb000 && f != 0)
1001 		return (ENXIO);
1002 
1003 	for (i = 0; i < nitems(t5_pciids); i++) {
1004 		if (d == t5_pciids[i].device) {
1005 			device_set_desc(dev, t5_pciids[i].desc);
1006 			return (BUS_PROBE_DEFAULT);
1007 		}
1008 	}
1009 
1010 	return (ENXIO);
1011 }
1012 
1013 static int
1014 t6_probe(device_t dev)
1015 {
1016 	int i;
1017 	uint16_t v = pci_get_vendor(dev);
1018 	uint16_t d = pci_get_device(dev);
1019 
1020 	if (v != PCI_VENDOR_ID_CHELSIO)
1021 		return (ENXIO);
1022 
1023 	for (i = 0; i < nitems(t6_pciids); i++) {
1024 		if (d == t6_pciids[i].device) {
1025 			device_set_desc(dev, t6_pciids[i].desc);
1026 			return (BUS_PROBE_DEFAULT);
1027 		}
1028 	}
1029 
1030 	return (ENXIO);
1031 }
1032 
1033 static void
1034 t5_attribute_workaround(device_t dev)
1035 {
1036 	device_t root_port;
1037 	uint32_t v;
1038 
1039 	/*
1040 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1041 	 * Ordering attributes when replying to a TLP from a Root
1042 	 * Port.  As a workaround, find the parent Root Port and
1043 	 * disable No Snoop and Relaxed Ordering.  Note that this
1044 	 * affects all devices under this root port.
1045 	 */
1046 	root_port = pci_find_pcie_root_port(dev);
1047 	if (root_port == NULL) {
1048 		device_printf(dev, "Unable to find parent root port\n");
1049 		return;
1050 	}
1051 
1052 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1053 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1054 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1055 	    0)
1056 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1057 		    device_get_nameunit(root_port));
1058 }
1059 
1060 static const struct devnames devnames[] = {
1061 	{
1062 		.nexus_name = "t4nex",
1063 		.ifnet_name = "cxgbe",
1064 		.vi_ifnet_name = "vcxgbe",
1065 		.pf03_drv_name = "t4iov",
1066 		.vf_nexus_name = "t4vf",
1067 		.vf_ifnet_name = "cxgbev"
1068 	}, {
1069 		.nexus_name = "t5nex",
1070 		.ifnet_name = "cxl",
1071 		.vi_ifnet_name = "vcxl",
1072 		.pf03_drv_name = "t5iov",
1073 		.vf_nexus_name = "t5vf",
1074 		.vf_ifnet_name = "cxlv"
1075 	}, {
1076 		.nexus_name = "t6nex",
1077 		.ifnet_name = "cc",
1078 		.vi_ifnet_name = "vcc",
1079 		.pf03_drv_name = "t6iov",
1080 		.vf_nexus_name = "t6vf",
1081 		.vf_ifnet_name = "ccv"
1082 	}
1083 };
1084 
1085 void
1086 t4_init_devnames(struct adapter *sc)
1087 {
1088 	int id;
1089 
1090 	id = chip_id(sc);
1091 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1092 		sc->names = &devnames[id - CHELSIO_T4];
1093 	else {
1094 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1095 		sc->names = NULL;
1096 	}
1097 }
1098 
1099 static int
1100 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1101 {
1102 	const char *parent, *name;
1103 	long value;
1104 	int line, unit;
1105 
1106 	line = 0;
1107 	parent = device_get_nameunit(sc->dev);
1108 	name = sc->names->ifnet_name;
1109 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1110 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1111 		    value == pi->port_id)
1112 			return (unit);
1113 	}
1114 	return (-1);
1115 }
1116 
1117 static void
1118 t4_calibration(void *arg)
1119 {
1120 	struct adapter *sc;
1121 	struct clock_sync *cur, *nex;
1122 	uint64_t hw;
1123 	sbintime_t sbt;
1124 	int next_up;
1125 
1126 	sc = (struct adapter *)arg;
1127 
1128 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1129 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1130 	sbt = sbinuptime();
1131 
1132 	cur = &sc->cal_info[sc->cal_current];
1133 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1134 	nex = &sc->cal_info[next_up];
1135 	if (__predict_false(sc->cal_count == 0)) {
1136 		/* First time in, just get the values in */
1137 		cur->hw_cur = hw;
1138 		cur->sbt_cur = sbt;
1139 		sc->cal_count++;
1140 		goto done;
1141 	}
1142 
1143 	if (cur->hw_cur == hw) {
1144 		/* The clock is not advancing? */
1145 		sc->cal_count = 0;
1146 		atomic_store_rel_int(&cur->gen, 0);
1147 		goto done;
1148 	}
1149 
1150 	seqc_write_begin(&nex->gen);
1151 	nex->hw_prev = cur->hw_cur;
1152 	nex->sbt_prev = cur->sbt_cur;
1153 	nex->hw_cur = hw;
1154 	nex->sbt_cur = sbt;
1155 	seqc_write_end(&nex->gen);
1156 	sc->cal_current = next_up;
1157 done:
1158 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1159 	    sc, C_DIRECT_EXEC);
1160 }
1161 
1162 static void
1163 t4_calibration_start(struct adapter *sc)
1164 {
1165 	/*
1166 	 * Here if we have not done a calibration
1167 	 * then do so otherwise start the appropriate
1168 	 * timer.
1169 	 */
1170 	int i;
1171 
1172 	for (i = 0; i < CNT_CAL_INFO; i++) {
1173 		sc->cal_info[i].gen = 0;
1174 	}
1175 	sc->cal_current = 0;
1176 	sc->cal_count = 0;
1177 	sc->cal_gen = 0;
1178 	t4_calibration(sc);
1179 }
1180 
1181 static int
1182 t4_attach(device_t dev)
1183 {
1184 	struct adapter *sc;
1185 	int rc = 0, i, j, rqidx, tqidx, nports;
1186 	struct make_dev_args mda;
1187 	struct intrs_and_queues iaq;
1188 	struct sge *s;
1189 	uint32_t *buf;
1190 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1191 	int ofld_tqidx;
1192 #endif
1193 #ifdef TCP_OFFLOAD
1194 	int ofld_rqidx;
1195 #endif
1196 #ifdef DEV_NETMAP
1197 	int nm_rqidx, nm_tqidx;
1198 #endif
1199 	int num_vis;
1200 
1201 	sc = device_get_softc(dev);
1202 	sc->dev = dev;
1203 	sysctl_ctx_init(&sc->ctx);
1204 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1205 
1206 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1207 		t5_attribute_workaround(dev);
1208 	pci_enable_busmaster(dev);
1209 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1210 		uint32_t v;
1211 
1212 		pci_set_max_read_req(dev, 4096);
1213 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1214 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1215 		if (pcie_relaxed_ordering == 0 &&
1216 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1217 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1218 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1219 		} else if (pcie_relaxed_ordering == 1 &&
1220 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1221 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1222 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1223 		}
1224 	}
1225 
1226 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1227 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1228 	sc->traceq = -1;
1229 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1230 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1231 	    device_get_nameunit(dev));
1232 
1233 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1234 	    device_get_nameunit(dev));
1235 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1236 	t4_add_adapter(sc);
1237 
1238 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1239 	TAILQ_INIT(&sc->sfl);
1240 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1241 
1242 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1243 
1244 	sc->policy = NULL;
1245 	rw_init(&sc->policy_lock, "connection offload policy");
1246 
1247 	callout_init(&sc->ktls_tick, 1);
1248 
1249 	callout_init(&sc->cal_callout, 1);
1250 
1251 	refcount_init(&sc->vxlan_refcount, 0);
1252 
1253 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1254 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1255 
1256 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1257 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1258 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1259 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1260 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1261 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1262 
1263 	rc = t4_map_bars_0_and_4(sc);
1264 	if (rc != 0)
1265 		goto done; /* error message displayed already */
1266 
1267 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1268 
1269 	/* Prepare the adapter for operation. */
1270 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1271 	rc = -t4_prep_adapter(sc, buf);
1272 	free(buf, M_CXGBE);
1273 	if (rc != 0) {
1274 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1275 		goto done;
1276 	}
1277 
1278 	/*
1279 	 * This is the real PF# to which we're attaching.  Works from within PCI
1280 	 * passthrough environments too, where pci_get_function() could return a
1281 	 * different PF# depending on the passthrough configuration.  We need to
1282 	 * use the real PF# in all our communication with the firmware.
1283 	 */
1284 	j = t4_read_reg(sc, A_PL_WHOAMI);
1285 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1286 	sc->mbox = sc->pf;
1287 
1288 	t4_init_devnames(sc);
1289 	if (sc->names == NULL) {
1290 		rc = ENOTSUP;
1291 		goto done; /* error message displayed already */
1292 	}
1293 
1294 	/*
1295 	 * Do this really early, with the memory windows set up even before the
1296 	 * character device.  The userland tool's register i/o and mem read
1297 	 * will work even in "recovery mode".
1298 	 */
1299 	setup_memwin(sc);
1300 	if (t4_init_devlog_params(sc, 0) == 0)
1301 		fixup_devlog_params(sc);
1302 	make_dev_args_init(&mda);
1303 	mda.mda_devsw = &t4_cdevsw;
1304 	mda.mda_uid = UID_ROOT;
1305 	mda.mda_gid = GID_WHEEL;
1306 	mda.mda_mode = 0600;
1307 	mda.mda_si_drv1 = sc;
1308 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1309 	if (rc != 0)
1310 		device_printf(dev, "failed to create nexus char device: %d.\n",
1311 		    rc);
1312 
1313 	/* Go no further if recovery mode has been requested. */
1314 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1315 		device_printf(dev, "recovery mode.\n");
1316 		goto done;
1317 	}
1318 
1319 #if defined(__i386__)
1320 	if ((cpu_feature & CPUID_CX8) == 0) {
1321 		device_printf(dev, "64 bit atomics not available.\n");
1322 		rc = ENOTSUP;
1323 		goto done;
1324 	}
1325 #endif
1326 
1327 	/* Contact the firmware and try to become the master driver. */
1328 	rc = contact_firmware(sc);
1329 	if (rc != 0)
1330 		goto done; /* error message displayed already */
1331 	MPASS(sc->flags & FW_OK);
1332 
1333 	rc = get_params__pre_init(sc);
1334 	if (rc != 0)
1335 		goto done; /* error message displayed already */
1336 
1337 	if (sc->flags & MASTER_PF) {
1338 		rc = partition_resources(sc);
1339 		if (rc != 0)
1340 			goto done; /* error message displayed already */
1341 	}
1342 
1343 	rc = get_params__post_init(sc);
1344 	if (rc != 0)
1345 		goto done; /* error message displayed already */
1346 
1347 	rc = set_params__post_init(sc);
1348 	if (rc != 0)
1349 		goto done; /* error message displayed already */
1350 
1351 	rc = t4_map_bar_2(sc);
1352 	if (rc != 0)
1353 		goto done; /* error message displayed already */
1354 
1355 	rc = t4_adj_doorbells(sc);
1356 	if (rc != 0)
1357 		goto done; /* error message displayed already */
1358 
1359 	rc = t4_create_dma_tag(sc);
1360 	if (rc != 0)
1361 		goto done; /* error message displayed already */
1362 
1363 	/*
1364 	 * First pass over all the ports - allocate VIs and initialize some
1365 	 * basic parameters like mac address, port type, etc.
1366 	 */
1367 	for_each_port(sc, i) {
1368 		struct port_info *pi;
1369 
1370 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1371 		sc->port[i] = pi;
1372 
1373 		/* These must be set before t4_port_init */
1374 		pi->adapter = sc;
1375 		pi->port_id = i;
1376 		/*
1377 		 * XXX: vi[0] is special so we can't delay this allocation until
1378 		 * pi->nvi's final value is known.
1379 		 */
1380 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1381 		    M_ZERO | M_WAITOK);
1382 
1383 		/*
1384 		 * Allocate the "main" VI and initialize parameters
1385 		 * like mac addr.
1386 		 */
1387 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1388 		if (rc != 0) {
1389 			device_printf(dev, "unable to initialize port %d: %d\n",
1390 			    i, rc);
1391 			free(pi->vi, M_CXGBE);
1392 			free(pi, M_CXGBE);
1393 			sc->port[i] = NULL;
1394 			goto done;
1395 		}
1396 
1397 		if (is_bt(pi->port_type))
1398 			setbit(&sc->bt_map, pi->tx_chan);
1399 		else
1400 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1401 
1402 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1403 		    device_get_nameunit(dev), i);
1404 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1405 		sc->chan_map[pi->tx_chan] = i;
1406 
1407 		/*
1408 		 * The MPS counter for FCS errors doesn't work correctly on the
1409 		 * T6 so we use the MAC counter here.  Which MAC is in use
1410 		 * depends on the link settings which will be known when the
1411 		 * link comes up.
1412 		 */
1413 		if (is_t6(sc))
1414 			pi->fcs_reg = -1;
1415 		else {
1416 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1417 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1418 		}
1419 		pi->fcs_base = 0;
1420 
1421 		/* All VIs on this port share this media. */
1422 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1423 		    cxgbe_media_status);
1424 
1425 		PORT_LOCK(pi);
1426 		init_link_config(pi);
1427 		fixup_link_config(pi);
1428 		build_medialist(pi);
1429 		if (fixed_ifmedia(pi))
1430 			pi->flags |= FIXED_IFMEDIA;
1431 		PORT_UNLOCK(pi);
1432 
1433 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1434 		    t4_ifnet_unit(sc, pi));
1435 		if (pi->dev == NULL) {
1436 			device_printf(dev,
1437 			    "failed to add device for port %d.\n", i);
1438 			rc = ENXIO;
1439 			goto done;
1440 		}
1441 		pi->vi[0].dev = pi->dev;
1442 		device_set_softc(pi->dev, pi);
1443 	}
1444 
1445 	/*
1446 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1447 	 */
1448 	nports = sc->params.nports;
1449 	rc = cfg_itype_and_nqueues(sc, &iaq);
1450 	if (rc != 0)
1451 		goto done; /* error message displayed already */
1452 
1453 	num_vis = iaq.num_vis;
1454 	sc->intr_type = iaq.intr_type;
1455 	sc->intr_count = iaq.nirq;
1456 
1457 	s = &sc->sge;
1458 	s->nrxq = nports * iaq.nrxq;
1459 	s->ntxq = nports * iaq.ntxq;
1460 	if (num_vis > 1) {
1461 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1462 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1463 	}
1464 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1465 	s->neq += nports;		/* ctrl queues: 1 per port */
1466 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1467 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1468 	if (is_offload(sc) || is_ethoffload(sc)) {
1469 		s->nofldtxq = nports * iaq.nofldtxq;
1470 		if (num_vis > 1)
1471 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1472 		s->neq += s->nofldtxq;
1473 
1474 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1475 		    M_CXGBE, M_ZERO | M_WAITOK);
1476 	}
1477 #endif
1478 #ifdef TCP_OFFLOAD
1479 	if (is_offload(sc)) {
1480 		s->nofldrxq = nports * iaq.nofldrxq;
1481 		if (num_vis > 1)
1482 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1483 		s->neq += s->nofldrxq;	/* free list */
1484 		s->niq += s->nofldrxq;
1485 
1486 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1487 		    M_CXGBE, M_ZERO | M_WAITOK);
1488 	}
1489 #endif
1490 #ifdef DEV_NETMAP
1491 	s->nnmrxq = 0;
1492 	s->nnmtxq = 0;
1493 	if (t4_native_netmap & NN_MAIN_VI) {
1494 		s->nnmrxq += nports * iaq.nnmrxq;
1495 		s->nnmtxq += nports * iaq.nnmtxq;
1496 	}
1497 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1498 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1499 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1500 	}
1501 	s->neq += s->nnmtxq + s->nnmrxq;
1502 	s->niq += s->nnmrxq;
1503 
1504 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1505 	    M_CXGBE, M_ZERO | M_WAITOK);
1506 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1507 	    M_CXGBE, M_ZERO | M_WAITOK);
1508 #endif
1509 	MPASS(s->niq <= s->iqmap_sz);
1510 	MPASS(s->neq <= s->eqmap_sz);
1511 
1512 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1513 	    M_ZERO | M_WAITOK);
1514 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1515 	    M_ZERO | M_WAITOK);
1516 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1517 	    M_ZERO | M_WAITOK);
1518 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1519 	    M_ZERO | M_WAITOK);
1520 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1521 	    M_ZERO | M_WAITOK);
1522 
1523 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1524 	    M_ZERO | M_WAITOK);
1525 
1526 	t4_init_l2t(sc, M_WAITOK);
1527 	t4_init_smt(sc, M_WAITOK);
1528 	t4_init_tx_sched(sc);
1529 	t4_init_atid_table(sc);
1530 #ifdef RATELIMIT
1531 	t4_init_etid_table(sc);
1532 #endif
1533 #ifdef INET6
1534 	t4_init_clip_table(sc);
1535 #endif
1536 	if (sc->vres.key.size != 0)
1537 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1538 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1539 
1540 	/*
1541 	 * Second pass over the ports.  This time we know the number of rx and
1542 	 * tx queues that each port should get.
1543 	 */
1544 	rqidx = tqidx = 0;
1545 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1546 	ofld_tqidx = 0;
1547 #endif
1548 #ifdef TCP_OFFLOAD
1549 	ofld_rqidx = 0;
1550 #endif
1551 #ifdef DEV_NETMAP
1552 	nm_rqidx = nm_tqidx = 0;
1553 #endif
1554 	for_each_port(sc, i) {
1555 		struct port_info *pi = sc->port[i];
1556 		struct vi_info *vi;
1557 
1558 		if (pi == NULL)
1559 			continue;
1560 
1561 		pi->nvi = num_vis;
1562 		for_each_vi(pi, j, vi) {
1563 			vi->pi = pi;
1564 			vi->adapter = sc;
1565 			vi->first_intr = -1;
1566 			vi->qsize_rxq = t4_qsize_rxq;
1567 			vi->qsize_txq = t4_qsize_txq;
1568 
1569 			vi->first_rxq = rqidx;
1570 			vi->first_txq = tqidx;
1571 			vi->tmr_idx = t4_tmr_idx;
1572 			vi->pktc_idx = t4_pktc_idx;
1573 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1574 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1575 
1576 			rqidx += vi->nrxq;
1577 			tqidx += vi->ntxq;
1578 
1579 			if (j == 0 && vi->ntxq > 1)
1580 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1581 			else
1582 				vi->rsrv_noflowq = 0;
1583 
1584 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1585 			vi->first_ofld_txq = ofld_tqidx;
1586 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1587 			ofld_tqidx += vi->nofldtxq;
1588 #endif
1589 #ifdef TCP_OFFLOAD
1590 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1591 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1592 			vi->first_ofld_rxq = ofld_rqidx;
1593 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1594 
1595 			ofld_rqidx += vi->nofldrxq;
1596 #endif
1597 #ifdef DEV_NETMAP
1598 			vi->first_nm_rxq = nm_rqidx;
1599 			vi->first_nm_txq = nm_tqidx;
1600 			if (j == 0) {
1601 				vi->nnmrxq = iaq.nnmrxq;
1602 				vi->nnmtxq = iaq.nnmtxq;
1603 			} else {
1604 				vi->nnmrxq = iaq.nnmrxq_vi;
1605 				vi->nnmtxq = iaq.nnmtxq_vi;
1606 			}
1607 			nm_rqidx += vi->nnmrxq;
1608 			nm_tqidx += vi->nnmtxq;
1609 #endif
1610 		}
1611 	}
1612 
1613 	rc = t4_setup_intr_handlers(sc);
1614 	if (rc != 0) {
1615 		device_printf(dev,
1616 		    "failed to setup interrupt handlers: %d\n", rc);
1617 		goto done;
1618 	}
1619 
1620 	rc = bus_generic_probe(dev);
1621 	if (rc != 0) {
1622 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1623 		goto done;
1624 	}
1625 
1626 	/*
1627 	 * Ensure thread-safe mailbox access (in debug builds).
1628 	 *
1629 	 * So far this was the only thread accessing the mailbox but various
1630 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1631 	 * will access the mailbox from different threads.
1632 	 */
1633 	sc->flags |= CHK_MBOX_ACCESS;
1634 
1635 	rc = bus_generic_attach(dev);
1636 	if (rc != 0) {
1637 		device_printf(dev,
1638 		    "failed to attach all child ports: %d\n", rc);
1639 		goto done;
1640 	}
1641 	t4_calibration_start(sc);
1642 
1643 	device_printf(dev,
1644 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1645 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1646 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1647 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1648 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1649 
1650 	t4_set_desc(sc);
1651 
1652 	notify_siblings(dev, 0);
1653 
1654 done:
1655 	if (rc != 0 && sc->cdev) {
1656 		/* cdev was created and so cxgbetool works; recover that way. */
1657 		device_printf(dev,
1658 		    "error during attach, adapter is now in recovery mode.\n");
1659 		rc = 0;
1660 	}
1661 
1662 	if (rc != 0)
1663 		t4_detach_common(dev);
1664 	else
1665 		t4_sysctls(sc);
1666 
1667 	return (rc);
1668 }
1669 
1670 static int
1671 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1672 {
1673 	struct adapter *sc;
1674 	struct port_info *pi;
1675 	int i;
1676 
1677 	sc = device_get_softc(bus);
1678 	for_each_port(sc, i) {
1679 		pi = sc->port[i];
1680 		if (pi != NULL && pi->dev == dev) {
1681 			sbuf_printf(sb, "port=%d", pi->port_id);
1682 			break;
1683 		}
1684 	}
1685 	return (0);
1686 }
1687 
1688 static int
1689 t4_ready(device_t dev)
1690 {
1691 	struct adapter *sc;
1692 
1693 	sc = device_get_softc(dev);
1694 	if (sc->flags & FW_OK)
1695 		return (0);
1696 	return (ENXIO);
1697 }
1698 
1699 static int
1700 t4_read_port_device(device_t dev, int port, device_t *child)
1701 {
1702 	struct adapter *sc;
1703 	struct port_info *pi;
1704 
1705 	sc = device_get_softc(dev);
1706 	if (port < 0 || port >= MAX_NPORTS)
1707 		return (EINVAL);
1708 	pi = sc->port[port];
1709 	if (pi == NULL || pi->dev == NULL)
1710 		return (ENXIO);
1711 	*child = pi->dev;
1712 	return (0);
1713 }
1714 
1715 static int
1716 notify_siblings(device_t dev, int detaching)
1717 {
1718 	device_t sibling;
1719 	int error, i;
1720 
1721 	error = 0;
1722 	for (i = 0; i < PCI_FUNCMAX; i++) {
1723 		if (i == pci_get_function(dev))
1724 			continue;
1725 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1726 		    pci_get_slot(dev), i);
1727 		if (sibling == NULL || !device_is_attached(sibling))
1728 			continue;
1729 		if (detaching)
1730 			error = T4_DETACH_CHILD(sibling);
1731 		else
1732 			(void)T4_ATTACH_CHILD(sibling);
1733 		if (error)
1734 			break;
1735 	}
1736 	return (error);
1737 }
1738 
1739 /*
1740  * Idempotent
1741  */
1742 static int
1743 t4_detach(device_t dev)
1744 {
1745 	int rc;
1746 
1747 	rc = notify_siblings(dev, 1);
1748 	if (rc) {
1749 		device_printf(dev,
1750 		    "failed to detach sibling devices: %d\n", rc);
1751 		return (rc);
1752 	}
1753 
1754 	return (t4_detach_common(dev));
1755 }
1756 
1757 int
1758 t4_detach_common(device_t dev)
1759 {
1760 	struct adapter *sc;
1761 	struct port_info *pi;
1762 	int i, rc;
1763 
1764 	sc = device_get_softc(dev);
1765 
1766 #ifdef TCP_OFFLOAD
1767 	rc = t4_deactivate_all_uld(sc);
1768 	if (rc) {
1769 		device_printf(dev,
1770 		    "failed to detach upper layer drivers: %d\n", rc);
1771 		return (rc);
1772 	}
1773 #endif
1774 
1775 	if (sc->cdev) {
1776 		destroy_dev(sc->cdev);
1777 		sc->cdev = NULL;
1778 	}
1779 
1780 	sx_xlock(&t4_list_lock);
1781 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1782 	sx_xunlock(&t4_list_lock);
1783 
1784 	sc->flags &= ~CHK_MBOX_ACCESS;
1785 	if (sc->flags & FULL_INIT_DONE) {
1786 		if (!(sc->flags & IS_VF))
1787 			t4_intr_disable(sc);
1788 	}
1789 
1790 	if (device_is_attached(dev)) {
1791 		rc = bus_generic_detach(dev);
1792 		if (rc) {
1793 			device_printf(dev,
1794 			    "failed to detach child devices: %d\n", rc);
1795 			return (rc);
1796 		}
1797 	}
1798 
1799 	for (i = 0; i < sc->intr_count; i++)
1800 		t4_free_irq(sc, &sc->irq[i]);
1801 
1802 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1803 		t4_free_tx_sched(sc);
1804 
1805 	for (i = 0; i < MAX_NPORTS; i++) {
1806 		pi = sc->port[i];
1807 		if (pi) {
1808 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1809 			if (pi->dev)
1810 				device_delete_child(dev, pi->dev);
1811 
1812 			mtx_destroy(&pi->pi_lock);
1813 			free(pi->vi, M_CXGBE);
1814 			free(pi, M_CXGBE);
1815 		}
1816 	}
1817 	callout_stop(&sc->cal_callout);
1818 	callout_drain(&sc->cal_callout);
1819 	device_delete_children(dev);
1820 	sysctl_ctx_free(&sc->ctx);
1821 	adapter_full_uninit(sc);
1822 
1823 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1824 		t4_fw_bye(sc, sc->mbox);
1825 
1826 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1827 		pci_release_msi(dev);
1828 
1829 	if (sc->regs_res)
1830 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1831 		    sc->regs_res);
1832 
1833 	if (sc->udbs_res)
1834 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1835 		    sc->udbs_res);
1836 
1837 	if (sc->msix_res)
1838 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1839 		    sc->msix_res);
1840 
1841 	if (sc->l2t)
1842 		t4_free_l2t(sc->l2t);
1843 	if (sc->smt)
1844 		t4_free_smt(sc->smt);
1845 	t4_free_atid_table(sc);
1846 #ifdef RATELIMIT
1847 	t4_free_etid_table(sc);
1848 #endif
1849 	if (sc->key_map)
1850 		vmem_destroy(sc->key_map);
1851 #ifdef INET6
1852 	t4_destroy_clip_table(sc);
1853 #endif
1854 
1855 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1856 	free(sc->sge.ofld_txq, M_CXGBE);
1857 #endif
1858 #ifdef TCP_OFFLOAD
1859 	free(sc->sge.ofld_rxq, M_CXGBE);
1860 #endif
1861 #ifdef DEV_NETMAP
1862 	free(sc->sge.nm_rxq, M_CXGBE);
1863 	free(sc->sge.nm_txq, M_CXGBE);
1864 #endif
1865 	free(sc->irq, M_CXGBE);
1866 	free(sc->sge.rxq, M_CXGBE);
1867 	free(sc->sge.txq, M_CXGBE);
1868 	free(sc->sge.ctrlq, M_CXGBE);
1869 	free(sc->sge.iqmap, M_CXGBE);
1870 	free(sc->sge.eqmap, M_CXGBE);
1871 	free(sc->tids.ftid_tab, M_CXGBE);
1872 	free(sc->tids.hpftid_tab, M_CXGBE);
1873 	free_hftid_hash(&sc->tids);
1874 	free(sc->tids.tid_tab, M_CXGBE);
1875 	t4_destroy_dma_tag(sc);
1876 
1877 	callout_drain(&sc->ktls_tick);
1878 	callout_drain(&sc->sfl_callout);
1879 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1880 		mtx_destroy(&sc->tids.ftid_lock);
1881 		cv_destroy(&sc->tids.ftid_cv);
1882 	}
1883 	if (mtx_initialized(&sc->tids.atid_lock))
1884 		mtx_destroy(&sc->tids.atid_lock);
1885 	if (mtx_initialized(&sc->ifp_lock))
1886 		mtx_destroy(&sc->ifp_lock);
1887 
1888 	if (rw_initialized(&sc->policy_lock)) {
1889 		rw_destroy(&sc->policy_lock);
1890 #ifdef TCP_OFFLOAD
1891 		if (sc->policy != NULL)
1892 			free_offload_policy(sc->policy);
1893 #endif
1894 	}
1895 
1896 	for (i = 0; i < NUM_MEMWIN; i++) {
1897 		struct memwin *mw = &sc->memwin[i];
1898 
1899 		if (rw_initialized(&mw->mw_lock))
1900 			rw_destroy(&mw->mw_lock);
1901 	}
1902 
1903 	mtx_destroy(&sc->sfl_lock);
1904 	mtx_destroy(&sc->reg_lock);
1905 	mtx_destroy(&sc->sc_lock);
1906 
1907 	bzero(sc, sizeof(*sc));
1908 
1909 	return (0);
1910 }
1911 
1912 static inline bool
1913 ok_to_reset(struct adapter *sc)
1914 {
1915 	struct tid_info *t = &sc->tids;
1916 	struct port_info *pi;
1917 	struct vi_info *vi;
1918 	int i, j;
1919 	int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT;
1920 
1921 	if (is_t6(sc))
1922 		caps |= IFCAP_TXTLS;
1923 
1924 	ASSERT_SYNCHRONIZED_OP(sc);
1925 	MPASS(!(sc->flags & IS_VF));
1926 
1927 	for_each_port(sc, i) {
1928 		pi = sc->port[i];
1929 		for_each_vi(pi, j, vi) {
1930 			if (if_getcapenable(vi->ifp) & caps)
1931 				return (false);
1932 		}
1933 	}
1934 
1935 	if (atomic_load_int(&t->tids_in_use) > 0)
1936 		return (false);
1937 	if (atomic_load_int(&t->stids_in_use) > 0)
1938 		return (false);
1939 	if (atomic_load_int(&t->atids_in_use) > 0)
1940 		return (false);
1941 	if (atomic_load_int(&t->ftids_in_use) > 0)
1942 		return (false);
1943 	if (atomic_load_int(&t->hpftids_in_use) > 0)
1944 		return (false);
1945 	if (atomic_load_int(&t->etids_in_use) > 0)
1946 		return (false);
1947 
1948 	return (true);
1949 }
1950 
1951 static inline int
1952 stop_adapter(struct adapter *sc)
1953 {
1954 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED)))
1955 		return (1);		/* Already stopped. */
1956 	return (t4_shutdown_adapter(sc));
1957 }
1958 
1959 static int
1960 t4_suspend(device_t dev)
1961 {
1962 	struct adapter *sc = device_get_softc(dev);
1963 	struct port_info *pi;
1964 	struct vi_info *vi;
1965 	if_t ifp;
1966 	struct sge_rxq *rxq;
1967 	struct sge_txq *txq;
1968 	struct sge_wrq *wrq;
1969 #ifdef TCP_OFFLOAD
1970 	struct sge_ofld_rxq *ofld_rxq;
1971 #endif
1972 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1973 	struct sge_ofld_txq *ofld_txq;
1974 #endif
1975 	int rc, i, j, k;
1976 
1977 	CH_ALERT(sc, "suspend requested\n");
1978 
1979 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1980 	if (rc != 0)
1981 		return (ENXIO);
1982 
1983 	/* XXX: Can the kernel call suspend repeatedly without resume? */
1984 	MPASS(!hw_off_limits(sc));
1985 
1986 	if (!ok_to_reset(sc)) {
1987 		/* XXX: should list what resource is preventing suspend. */
1988 		CH_ERR(sc, "not safe to suspend.\n");
1989 		rc = EBUSY;
1990 		goto done;
1991 	}
1992 
1993 	/* No more DMA or interrupts. */
1994 	stop_adapter(sc);
1995 
1996 	/* Quiesce all activity. */
1997 	for_each_port(sc, i) {
1998 		pi = sc->port[i];
1999 		pi->vxlan_tcam_entry = false;
2000 
2001 		PORT_LOCK(pi);
2002 		if (pi->up_vis > 0) {
2003 			/*
2004 			 * t4_shutdown_adapter has already shut down all the
2005 			 * PHYs but it also disables interrupts and DMA so there
2006 			 * won't be a link interrupt.  So we update the state
2007 			 * manually and inform the kernel.
2008 			 */
2009 			pi->link_cfg.link_ok = false;
2010 			t4_os_link_changed(pi);
2011 		}
2012 		PORT_UNLOCK(pi);
2013 
2014 		for_each_vi(pi, j, vi) {
2015 			vi->xact_addr_filt = -1;
2016 			mtx_lock(&vi->tick_mtx);
2017 			vi->flags |= VI_SKIP_STATS;
2018 			mtx_unlock(&vi->tick_mtx);
2019 			if (!(vi->flags & VI_INIT_DONE))
2020 				continue;
2021 
2022 			ifp = vi->ifp;
2023 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2024 				mtx_lock(&vi->tick_mtx);
2025 				callout_stop(&vi->tick);
2026 				mtx_unlock(&vi->tick_mtx);
2027 				callout_drain(&vi->tick);
2028 			}
2029 
2030 			/*
2031 			 * Note that the HW is not available.
2032 			 */
2033 			for_each_txq(vi, k, txq) {
2034 				TXQ_LOCK(txq);
2035 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2036 				TXQ_UNLOCK(txq);
2037 			}
2038 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2039 			for_each_ofld_txq(vi, k, ofld_txq) {
2040 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2041 			}
2042 #endif
2043 			for_each_rxq(vi, k, rxq) {
2044 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2045 			}
2046 #if defined(TCP_OFFLOAD)
2047 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2048 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2049 			}
2050 #endif
2051 
2052 			quiesce_vi(vi);
2053 		}
2054 
2055 		if (sc->flags & FULL_INIT_DONE) {
2056 			/* Control queue */
2057 			wrq = &sc->sge.ctrlq[i];
2058 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2059 			quiesce_wrq(wrq);
2060 		}
2061 	}
2062 	if (sc->flags & FULL_INIT_DONE) {
2063 		/* Firmware event queue */
2064 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2065 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2066 	}
2067 
2068 	/* Stop calibration */
2069 	callout_stop(&sc->cal_callout);
2070 	callout_drain(&sc->cal_callout);
2071 
2072 	/* Mark the adapter totally off limits. */
2073 	mtx_lock(&sc->reg_lock);
2074 	atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2075 	sc->flags &= ~(FW_OK | MASTER_PF);
2076 	sc->reset_thread = NULL;
2077 	mtx_unlock(&sc->reg_lock);
2078 
2079 	if (t4_clock_gate_on_suspend) {
2080 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2081 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2082 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2083 	}
2084 
2085 	CH_ALERT(sc, "suspend completed.\n");
2086 done:
2087 	end_synchronized_op(sc, 0);
2088 	return (rc);
2089 }
2090 
2091 struct adapter_pre_reset_state {
2092 	u_int flags;
2093 	uint16_t nbmcaps;
2094 	uint16_t linkcaps;
2095 	uint16_t switchcaps;
2096 	uint16_t niccaps;
2097 	uint16_t toecaps;
2098 	uint16_t rdmacaps;
2099 	uint16_t cryptocaps;
2100 	uint16_t iscsicaps;
2101 	uint16_t fcoecaps;
2102 
2103 	u_int cfcsum;
2104 	char cfg_file[32];
2105 
2106 	struct adapter_params params;
2107 	struct t4_virt_res vres;
2108 	struct tid_info tids;
2109 	struct sge sge;
2110 
2111 	int rawf_base;
2112 	int nrawf;
2113 
2114 };
2115 
2116 static void
2117 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2118 {
2119 
2120 	ASSERT_SYNCHRONIZED_OP(sc);
2121 
2122 	o->flags = sc->flags;
2123 
2124 	o->nbmcaps =  sc->nbmcaps;
2125 	o->linkcaps = sc->linkcaps;
2126 	o->switchcaps = sc->switchcaps;
2127 	o->niccaps = sc->niccaps;
2128 	o->toecaps = sc->toecaps;
2129 	o->rdmacaps = sc->rdmacaps;
2130 	o->cryptocaps = sc->cryptocaps;
2131 	o->iscsicaps = sc->iscsicaps;
2132 	o->fcoecaps = sc->fcoecaps;
2133 
2134 	o->cfcsum = sc->cfcsum;
2135 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2136 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2137 
2138 	o->params = sc->params;
2139 	o->vres = sc->vres;
2140 	o->tids = sc->tids;
2141 	o->sge = sc->sge;
2142 
2143 	o->rawf_base = sc->rawf_base;
2144 	o->nrawf = sc->nrawf;
2145 }
2146 
2147 static int
2148 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2149 {
2150 	int rc = 0;
2151 
2152 	ASSERT_SYNCHRONIZED_OP(sc);
2153 
2154 	/* Capabilities */
2155 #define COMPARE_CAPS(c) do { \
2156 	if (o->c##caps != sc->c##caps) { \
2157 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2158 		    sc->c##caps); \
2159 		rc = EINVAL; \
2160 	} \
2161 } while (0)
2162 	COMPARE_CAPS(nbm);
2163 	COMPARE_CAPS(link);
2164 	COMPARE_CAPS(switch);
2165 	COMPARE_CAPS(nic);
2166 	COMPARE_CAPS(toe);
2167 	COMPARE_CAPS(rdma);
2168 	COMPARE_CAPS(crypto);
2169 	COMPARE_CAPS(iscsi);
2170 	COMPARE_CAPS(fcoe);
2171 #undef COMPARE_CAPS
2172 
2173 	/* Firmware config file */
2174 	if (o->cfcsum != sc->cfcsum) {
2175 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2176 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2177 		rc = EINVAL;
2178 	}
2179 
2180 #define COMPARE_PARAM(p, name) do { \
2181 	if (o->p != sc->p) { \
2182 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2183 		rc = EINVAL; \
2184 	} \
2185 } while (0)
2186 	COMPARE_PARAM(sge.iq_start, iq_start);
2187 	COMPARE_PARAM(sge.eq_start, eq_start);
2188 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2189 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2190 	COMPARE_PARAM(tids.nftids, nftids);
2191 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2192 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2193 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2194 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2195 	COMPARE_PARAM(tids.tid_base, tid_base);
2196 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2197 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2198 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2199 	COMPARE_PARAM(rawf_base, rawf_base);
2200 	COMPARE_PARAM(nrawf, nrawf);
2201 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2202 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2203 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2204 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2205 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2206 	COMPARE_PARAM(tids.ntids, ntids);
2207 	COMPARE_PARAM(tids.etid_base, etid_base);
2208 	COMPARE_PARAM(tids.etid_end, etid_end);
2209 	COMPARE_PARAM(tids.netids, netids);
2210 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2211 	COMPARE_PARAM(params.ethoffload, ethoffload);
2212 	COMPARE_PARAM(tids.natids, natids);
2213 	COMPARE_PARAM(tids.stid_base, stid_base);
2214 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2215 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2216 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2217 	COMPARE_PARAM(vres.stag.start, stag_start);
2218 	COMPARE_PARAM(vres.stag.size, stag_size);
2219 	COMPARE_PARAM(vres.rq.start, rq_start);
2220 	COMPARE_PARAM(vres.rq.size, rq_size);
2221 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2222 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2223 	COMPARE_PARAM(vres.qp.start, qp_start);
2224 	COMPARE_PARAM(vres.qp.size, qp_size);
2225 	COMPARE_PARAM(vres.cq.start, cq_start);
2226 	COMPARE_PARAM(vres.cq.size, cq_size);
2227 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2228 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2229 	COMPARE_PARAM(vres.srq.start, srq_start);
2230 	COMPARE_PARAM(vres.srq.size, srq_size);
2231 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2232 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2233 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2234 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2235 	COMPARE_PARAM(vres.key.start, key_start);
2236 	COMPARE_PARAM(vres.key.size, key_size);
2237 #undef COMPARE_PARAM
2238 
2239 	return (rc);
2240 }
2241 
2242 static int
2243 t4_resume(device_t dev)
2244 {
2245 	struct adapter *sc = device_get_softc(dev);
2246 	struct adapter_pre_reset_state *old_state = NULL;
2247 	struct port_info *pi;
2248 	struct vi_info *vi;
2249 	if_t ifp;
2250 	struct sge_txq *txq;
2251 	int rc, i, j, k;
2252 
2253 	CH_ALERT(sc, "resume requested.\n");
2254 
2255 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2256 	if (rc != 0)
2257 		return (ENXIO);
2258 	MPASS(hw_off_limits(sc));
2259 	MPASS((sc->flags & FW_OK) == 0);
2260 	MPASS((sc->flags & MASTER_PF) == 0);
2261 	MPASS(sc->reset_thread == NULL);
2262 	sc->reset_thread = curthread;
2263 
2264 	/* Register access is expected to work by the time we're here. */
2265 	if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2266 		CH_ERR(sc, "%s: can't read device registers\n", __func__);
2267 		rc = ENXIO;
2268 		goto done;
2269 	}
2270 
2271 	/* Note that HW_OFF_LIMITS is cleared a bit later. */
2272 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED);
2273 
2274 	/* Restore memory window. */
2275 	setup_memwin(sc);
2276 
2277 	/* Go no further if recovery mode has been requested. */
2278 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2279 		CH_ALERT(sc, "recovery mode on resume.\n");
2280 		rc = 0;
2281 		mtx_lock(&sc->reg_lock);
2282 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2283 		mtx_unlock(&sc->reg_lock);
2284 		goto done;
2285 	}
2286 
2287 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2288 	save_caps_and_params(sc, old_state);
2289 
2290 	/* Reestablish contact with firmware and become the primary PF. */
2291 	rc = contact_firmware(sc);
2292 	if (rc != 0)
2293 		goto done; /* error message displayed already */
2294 	MPASS(sc->flags & FW_OK);
2295 
2296 	if (sc->flags & MASTER_PF) {
2297 		rc = partition_resources(sc);
2298 		if (rc != 0)
2299 			goto done; /* error message displayed already */
2300 	}
2301 
2302 	rc = get_params__post_init(sc);
2303 	if (rc != 0)
2304 		goto done; /* error message displayed already */
2305 
2306 	rc = set_params__post_init(sc);
2307 	if (rc != 0)
2308 		goto done; /* error message displayed already */
2309 
2310 	rc = compare_caps_and_params(sc, old_state);
2311 	if (rc != 0)
2312 		goto done; /* error message displayed already */
2313 
2314 	for_each_port(sc, i) {
2315 		pi = sc->port[i];
2316 		MPASS(pi != NULL);
2317 		MPASS(pi->vi != NULL);
2318 		MPASS(pi->vi[0].dev == pi->dev);
2319 
2320 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2321 		if (rc != 0) {
2322 			CH_ERR(sc,
2323 			    "failed to re-initialize port %d: %d\n", i, rc);
2324 			goto done;
2325 		}
2326 		MPASS(sc->chan_map[pi->tx_chan] == i);
2327 
2328 		PORT_LOCK(pi);
2329 		fixup_link_config(pi);
2330 		build_medialist(pi);
2331 		PORT_UNLOCK(pi);
2332 		for_each_vi(pi, j, vi) {
2333 			if (IS_MAIN_VI(vi))
2334 				continue;
2335 			rc = alloc_extra_vi(sc, pi, vi);
2336 			if (rc != 0) {
2337 				CH_ERR(vi,
2338 				    "failed to re-allocate extra VI: %d\n", rc);
2339 				goto done;
2340 			}
2341 		}
2342 	}
2343 
2344 	/*
2345 	 * Interrupts and queues are about to be enabled and other threads will
2346 	 * want to access the hardware too.  It is safe to do so.  Note that
2347 	 * this thread is still in the middle of a synchronized_op.
2348 	 */
2349 	mtx_lock(&sc->reg_lock);
2350 	atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2351 	mtx_unlock(&sc->reg_lock);
2352 
2353 	if (sc->flags & FULL_INIT_DONE) {
2354 		rc = adapter_full_init(sc);
2355 		if (rc != 0) {
2356 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2357 			goto done;
2358 		}
2359 
2360 		if (sc->vxlan_refcount > 0)
2361 			enable_vxlan_rx(sc);
2362 
2363 		for_each_port(sc, i) {
2364 			pi = sc->port[i];
2365 			for_each_vi(pi, j, vi) {
2366 				mtx_lock(&vi->tick_mtx);
2367 				vi->flags &= ~VI_SKIP_STATS;
2368 				mtx_unlock(&vi->tick_mtx);
2369 				if (!(vi->flags & VI_INIT_DONE))
2370 					continue;
2371 				rc = vi_full_init(vi);
2372 				if (rc != 0) {
2373 					CH_ERR(vi, "failed to re-initialize "
2374 					    "interface: %d\n", rc);
2375 					goto done;
2376 				}
2377 
2378 				ifp = vi->ifp;
2379 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2380 					continue;
2381 				/*
2382 				 * Note that we do not setup multicast addresses
2383 				 * in the first pass.  This ensures that the
2384 				 * unicast DMACs for all VIs on all ports get an
2385 				 * MPS TCAM entry.
2386 				 */
2387 				rc = update_mac_settings(ifp, XGMAC_ALL &
2388 				    ~XGMAC_MCADDRS);
2389 				if (rc != 0) {
2390 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2391 					goto done;
2392 				}
2393 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2394 				    true);
2395 				if (rc != 0) {
2396 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2397 					goto done;
2398 				}
2399 				for_each_txq(vi, k, txq) {
2400 					TXQ_LOCK(txq);
2401 					txq->eq.flags |= EQ_ENABLED;
2402 					TXQ_UNLOCK(txq);
2403 				}
2404 				mtx_lock(&vi->tick_mtx);
2405 				callout_schedule(&vi->tick, hz);
2406 				mtx_unlock(&vi->tick_mtx);
2407 			}
2408 			PORT_LOCK(pi);
2409 			if (pi->up_vis > 0) {
2410 				t4_update_port_info(pi);
2411 				fixup_link_config(pi);
2412 				build_medialist(pi);
2413 				apply_link_config(pi);
2414 				if (pi->link_cfg.link_ok)
2415 					t4_os_link_changed(pi);
2416 			}
2417 			PORT_UNLOCK(pi);
2418 		}
2419 
2420 		/* Now reprogram the L2 multicast addresses. */
2421 		for_each_port(sc, i) {
2422 			pi = sc->port[i];
2423 			for_each_vi(pi, j, vi) {
2424 				if (!(vi->flags & VI_INIT_DONE))
2425 					continue;
2426 				ifp = vi->ifp;
2427 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2428 					continue;
2429 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2430 				if (rc != 0) {
2431 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2432 					rc = 0;	/* carry on */
2433 				}
2434 			}
2435 		}
2436 	}
2437 
2438 	/* Reset all calibration */
2439 	t4_calibration_start(sc);
2440 
2441 done:
2442 	if (rc == 0) {
2443 		sc->incarnation++;
2444 		CH_ALERT(sc, "resume completed.\n");
2445 	}
2446 	end_synchronized_op(sc, 0);
2447 	free(old_state, M_CXGBE);
2448 	return (rc);
2449 }
2450 
2451 static int
2452 t4_reset_prepare(device_t dev, device_t child)
2453 {
2454 	struct adapter *sc = device_get_softc(dev);
2455 
2456 	CH_ALERT(sc, "reset_prepare.\n");
2457 	return (0);
2458 }
2459 
2460 static int
2461 t4_reset_post(device_t dev, device_t child)
2462 {
2463 	struct adapter *sc = device_get_softc(dev);
2464 
2465 	CH_ALERT(sc, "reset_post.\n");
2466 	return (0);
2467 }
2468 
2469 static int
2470 reset_adapter(struct adapter *sc)
2471 {
2472 	int rc, oldinc, error_flags;
2473 
2474 	CH_ALERT(sc, "reset requested.\n");
2475 
2476 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2477 	if (rc != 0)
2478 		return (EBUSY);
2479 
2480 	if (hw_off_limits(sc)) {
2481 		CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2482 		rc = ENXIO;
2483 		goto done;
2484 	}
2485 
2486 	if (!ok_to_reset(sc)) {
2487 		/* XXX: should list what resource is preventing reset. */
2488 		CH_ERR(sc, "not safe to reset.\n");
2489 		rc = EBUSY;
2490 		goto done;
2491 	}
2492 
2493 done:
2494 	oldinc = sc->incarnation;
2495 	end_synchronized_op(sc, 0);
2496 	if (rc != 0)
2497 		return (rc);	/* Error logged already. */
2498 
2499 	atomic_add_int(&sc->num_resets, 1);
2500 	mtx_lock(&Giant);
2501 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2502 	mtx_unlock(&Giant);
2503 	if (rc != 0)
2504 		CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2505 	else {
2506 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2");
2507 		if (rc != 0)
2508 			return (EBUSY);
2509 		error_flags = atomic_load_int(&sc->error_flags);
2510 		if (sc->incarnation > oldinc && error_flags == 0) {
2511 			CH_ALERT(sc, "bus_reset_child succeeded.\n");
2512 		} else {
2513 			CH_ERR(sc, "adapter did not reset properly, flags "
2514 			    "0x%08x, error_flags 0x%08x.\n", sc->flags,
2515 			    error_flags);
2516 			rc = ENXIO;
2517 		}
2518 		end_synchronized_op(sc, 0);
2519 	}
2520 
2521 	return (rc);
2522 }
2523 
2524 static void
2525 reset_adapter_task(void *arg, int pending)
2526 {
2527 	/* XXX: t4_async_event here? */
2528 	reset_adapter(arg);
2529 }
2530 
2531 static int
2532 cxgbe_probe(device_t dev)
2533 {
2534 	struct port_info *pi = device_get_softc(dev);
2535 
2536 	device_set_descf(dev, "port %d", pi->port_id);
2537 
2538 	return (BUS_PROBE_DEFAULT);
2539 }
2540 
2541 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2542     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2543     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2544     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2545 #define T4_CAP_ENABLE (T4_CAP)
2546 
2547 static int
2548 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2549 {
2550 	if_t ifp;
2551 	struct sbuf *sb;
2552 	struct sysctl_ctx_list *ctx = &vi->ctx;
2553 	struct sysctl_oid_list *children;
2554 	struct pfil_head_args pa;
2555 	struct adapter *sc = vi->adapter;
2556 
2557 	sysctl_ctx_init(ctx);
2558 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2559 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2560 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2561 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2562 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2563 #ifdef DEV_NETMAP
2564 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2565 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2566 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2567 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2568 #endif
2569 #ifdef TCP_OFFLOAD
2570 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2571 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2572 #endif
2573 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2574 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2575 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2576 #endif
2577 
2578 	vi->xact_addr_filt = -1;
2579 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2580 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2581 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2582 		vi->flags |= TX_USES_VM_WR;
2583 
2584 	/* Allocate an ifnet and set it up */
2585 	ifp = if_alloc_dev(IFT_ETHER, dev);
2586 	if (ifp == NULL) {
2587 		device_printf(dev, "Cannot allocate ifnet\n");
2588 		return (ENOMEM);
2589 	}
2590 	vi->ifp = ifp;
2591 	if_setsoftc(ifp, vi);
2592 
2593 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2594 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2595 
2596 	if_setinitfn(ifp, cxgbe_init);
2597 	if_setioctlfn(ifp, cxgbe_ioctl);
2598 	if_settransmitfn(ifp, cxgbe_transmit);
2599 	if_setqflushfn(ifp, cxgbe_qflush);
2600 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2601 		if_setgetcounterfn(ifp, vi_get_counter);
2602 	else
2603 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2604 #if defined(KERN_TLS) || defined(RATELIMIT)
2605 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2606 #endif
2607 #ifdef RATELIMIT
2608 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2609 #endif
2610 
2611 	if_setcapabilities(ifp, T4_CAP);
2612 	if_setcapenable(ifp, T4_CAP_ENABLE);
2613 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2614 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2615 	if (chip_id(sc) >= CHELSIO_T6) {
2616 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2617 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2618 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2619 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2620 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2621 	}
2622 
2623 #ifdef TCP_OFFLOAD
2624 	if (vi->nofldrxq != 0)
2625 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2626 #endif
2627 #ifdef RATELIMIT
2628 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2629 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2630 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2631 	}
2632 #endif
2633 
2634 	if_sethwtsomax(ifp, IP_MAXPACKET);
2635 	if (vi->flags & TX_USES_VM_WR)
2636 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2637 	else
2638 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2639 #ifdef RATELIMIT
2640 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2641 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2642 #endif
2643 	if_sethwtsomaxsegsize(ifp, 65536);
2644 #ifdef KERN_TLS
2645 	if (is_ktls(sc)) {
2646 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2647 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2648 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2649 	}
2650 #endif
2651 
2652 	ether_ifattach(ifp, vi->hw_addr);
2653 #ifdef DEV_NETMAP
2654 	if (vi->nnmrxq != 0)
2655 		cxgbe_nm_attach(vi);
2656 #endif
2657 	sb = sbuf_new_auto();
2658 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2659 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2660 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2661 	case IFCAP_TOE:
2662 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2663 		break;
2664 	case IFCAP_TOE | IFCAP_TXRTLMT:
2665 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2666 		break;
2667 	case IFCAP_TXRTLMT:
2668 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2669 		break;
2670 	}
2671 #endif
2672 #ifdef TCP_OFFLOAD
2673 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2674 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2675 #endif
2676 #ifdef DEV_NETMAP
2677 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2678 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2679 		    vi->nnmtxq, vi->nnmrxq);
2680 #endif
2681 	sbuf_finish(sb);
2682 	device_printf(dev, "%s\n", sbuf_data(sb));
2683 	sbuf_delete(sb);
2684 
2685 	vi_sysctls(vi);
2686 
2687 	pa.pa_version = PFIL_VERSION;
2688 	pa.pa_flags = PFIL_IN;
2689 	pa.pa_type = PFIL_TYPE_ETHERNET;
2690 	pa.pa_headname = if_name(ifp);
2691 	vi->pfil = pfil_head_register(&pa);
2692 
2693 	return (0);
2694 }
2695 
2696 static int
2697 cxgbe_attach(device_t dev)
2698 {
2699 	struct port_info *pi = device_get_softc(dev);
2700 	struct adapter *sc = pi->adapter;
2701 	struct vi_info *vi;
2702 	int i, rc;
2703 
2704 	sysctl_ctx_init(&pi->ctx);
2705 
2706 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2707 	if (rc)
2708 		return (rc);
2709 
2710 	for_each_vi(pi, i, vi) {
2711 		if (i == 0)
2712 			continue;
2713 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2714 		if (vi->dev == NULL) {
2715 			device_printf(dev, "failed to add VI %d\n", i);
2716 			continue;
2717 		}
2718 		device_set_softc(vi->dev, vi);
2719 	}
2720 
2721 	cxgbe_sysctls(pi);
2722 
2723 	bus_generic_attach(dev);
2724 
2725 	return (0);
2726 }
2727 
2728 static void
2729 cxgbe_vi_detach(struct vi_info *vi)
2730 {
2731 	if_t ifp = vi->ifp;
2732 
2733 	if (vi->pfil != NULL) {
2734 		pfil_head_unregister(vi->pfil);
2735 		vi->pfil = NULL;
2736 	}
2737 
2738 	ether_ifdetach(ifp);
2739 
2740 	/* Let detach proceed even if these fail. */
2741 #ifdef DEV_NETMAP
2742 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2743 		cxgbe_nm_detach(vi);
2744 #endif
2745 	cxgbe_uninit_synchronized(vi);
2746 	callout_drain(&vi->tick);
2747 	mtx_destroy(&vi->tick_mtx);
2748 	sysctl_ctx_free(&vi->ctx);
2749 	vi_full_uninit(vi);
2750 
2751 	if_free(vi->ifp);
2752 	vi->ifp = NULL;
2753 }
2754 
2755 static int
2756 cxgbe_detach(device_t dev)
2757 {
2758 	struct port_info *pi = device_get_softc(dev);
2759 	struct adapter *sc = pi->adapter;
2760 	int rc;
2761 
2762 	/* Detach the extra VIs first. */
2763 	rc = bus_generic_detach(dev);
2764 	if (rc)
2765 		return (rc);
2766 	device_delete_children(dev);
2767 
2768 	sysctl_ctx_free(&pi->ctx);
2769 	begin_vi_detach(sc, &pi->vi[0]);
2770 	if (pi->flags & HAS_TRACEQ) {
2771 		sc->traceq = -1;	/* cloner should not create ifnet */
2772 		t4_tracer_port_detach(sc);
2773 	}
2774 	cxgbe_vi_detach(&pi->vi[0]);
2775 	ifmedia_removeall(&pi->media);
2776 	end_vi_detach(sc, &pi->vi[0]);
2777 
2778 	return (0);
2779 }
2780 
2781 static void
2782 cxgbe_init(void *arg)
2783 {
2784 	struct vi_info *vi = arg;
2785 	struct adapter *sc = vi->adapter;
2786 
2787 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2788 		return;
2789 	cxgbe_init_synchronized(vi);
2790 	end_synchronized_op(sc, 0);
2791 }
2792 
2793 static int
2794 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2795 {
2796 	int rc = 0, mtu, flags;
2797 	struct vi_info *vi = if_getsoftc(ifp);
2798 	struct port_info *pi = vi->pi;
2799 	struct adapter *sc = pi->adapter;
2800 	struct ifreq *ifr = (struct ifreq *)data;
2801 	uint32_t mask;
2802 
2803 	switch (cmd) {
2804 	case SIOCSIFMTU:
2805 		mtu = ifr->ifr_mtu;
2806 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2807 			return (EINVAL);
2808 
2809 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2810 		if (rc)
2811 			return (rc);
2812 		if_setmtu(ifp, mtu);
2813 		if (vi->flags & VI_INIT_DONE) {
2814 			t4_update_fl_bufsize(ifp);
2815 			if (!hw_off_limits(sc) &&
2816 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2817 				rc = update_mac_settings(ifp, XGMAC_MTU);
2818 		}
2819 		end_synchronized_op(sc, 0);
2820 		break;
2821 
2822 	case SIOCSIFFLAGS:
2823 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2824 		if (rc)
2825 			return (rc);
2826 
2827 		if (hw_off_limits(sc)) {
2828 			rc = ENXIO;
2829 			goto fail;
2830 		}
2831 
2832 		if (if_getflags(ifp) & IFF_UP) {
2833 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2834 				flags = vi->if_flags;
2835 				if ((if_getflags(ifp) ^ flags) &
2836 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2837 					rc = update_mac_settings(ifp,
2838 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2839 				}
2840 			} else {
2841 				rc = cxgbe_init_synchronized(vi);
2842 			}
2843 			vi->if_flags = if_getflags(ifp);
2844 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2845 			rc = cxgbe_uninit_synchronized(vi);
2846 		}
2847 		end_synchronized_op(sc, 0);
2848 		break;
2849 
2850 	case SIOCADDMULTI:
2851 	case SIOCDELMULTI:
2852 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2853 		if (rc)
2854 			return (rc);
2855 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2856 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2857 		end_synchronized_op(sc, 0);
2858 		break;
2859 
2860 	case SIOCSIFCAP:
2861 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2862 		if (rc)
2863 			return (rc);
2864 
2865 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2866 		if (mask & IFCAP_TXCSUM) {
2867 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2868 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2869 
2870 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2871 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2872 				mask &= ~IFCAP_TSO4;
2873 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2874 				if_printf(ifp,
2875 				    "tso4 disabled due to -txcsum.\n");
2876 			}
2877 		}
2878 		if (mask & IFCAP_TXCSUM_IPV6) {
2879 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2880 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2881 
2882 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2883 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2884 				mask &= ~IFCAP_TSO6;
2885 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2886 				if_printf(ifp,
2887 				    "tso6 disabled due to -txcsum6.\n");
2888 			}
2889 		}
2890 		if (mask & IFCAP_RXCSUM)
2891 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2892 		if (mask & IFCAP_RXCSUM_IPV6)
2893 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2894 
2895 		/*
2896 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2897 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2898 		 * sending a TSO request our way, so it's sufficient to toggle
2899 		 * IFCAP_TSOx only.
2900 		 */
2901 		if (mask & IFCAP_TSO4) {
2902 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2903 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2904 				if_printf(ifp, "enable txcsum first.\n");
2905 				rc = EAGAIN;
2906 				goto fail;
2907 			}
2908 			if_togglecapenable(ifp, IFCAP_TSO4);
2909 		}
2910 		if (mask & IFCAP_TSO6) {
2911 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2912 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2913 				if_printf(ifp, "enable txcsum6 first.\n");
2914 				rc = EAGAIN;
2915 				goto fail;
2916 			}
2917 			if_togglecapenable(ifp, IFCAP_TSO6);
2918 		}
2919 		if (mask & IFCAP_LRO) {
2920 #if defined(INET) || defined(INET6)
2921 			int i;
2922 			struct sge_rxq *rxq;
2923 
2924 			if_togglecapenable(ifp, IFCAP_LRO);
2925 			for_each_rxq(vi, i, rxq) {
2926 				if (if_getcapenable(ifp) & IFCAP_LRO)
2927 					rxq->iq.flags |= IQ_LRO_ENABLED;
2928 				else
2929 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2930 			}
2931 #endif
2932 		}
2933 #ifdef TCP_OFFLOAD
2934 		if (mask & IFCAP_TOE) {
2935 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2936 
2937 			rc = toe_capability(vi, enable);
2938 			if (rc != 0)
2939 				goto fail;
2940 
2941 			if_togglecapenable(ifp, mask);
2942 		}
2943 #endif
2944 		if (mask & IFCAP_VLAN_HWTAGGING) {
2945 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2946 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2947 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2948 		}
2949 		if (mask & IFCAP_VLAN_MTU) {
2950 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2951 
2952 			/* Need to find out how to disable auto-mtu-inflation */
2953 		}
2954 		if (mask & IFCAP_VLAN_HWTSO)
2955 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2956 		if (mask & IFCAP_VLAN_HWCSUM)
2957 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2958 #ifdef RATELIMIT
2959 		if (mask & IFCAP_TXRTLMT)
2960 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
2961 #endif
2962 		if (mask & IFCAP_HWRXTSTMP) {
2963 			int i;
2964 			struct sge_rxq *rxq;
2965 
2966 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
2967 			for_each_rxq(vi, i, rxq) {
2968 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
2969 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2970 				else
2971 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2972 			}
2973 		}
2974 		if (mask & IFCAP_MEXTPG)
2975 			if_togglecapenable(ifp, IFCAP_MEXTPG);
2976 
2977 #ifdef KERN_TLS
2978 		if (mask & IFCAP_TXTLS) {
2979 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
2980 
2981 			rc = ktls_capability(sc, enable);
2982 			if (rc != 0)
2983 				goto fail;
2984 
2985 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
2986 		}
2987 #endif
2988 		if (mask & IFCAP_VXLAN_HWCSUM) {
2989 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
2990 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
2991 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2992 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
2993 		}
2994 		if (mask & IFCAP_VXLAN_HWTSO) {
2995 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
2996 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
2997 			    CSUM_INNER_IP_TSO);
2998 		}
2999 
3000 #ifdef VLAN_CAPABILITIES
3001 		VLAN_CAPABILITIES(ifp);
3002 #endif
3003 fail:
3004 		end_synchronized_op(sc, 0);
3005 		break;
3006 
3007 	case SIOCSIFMEDIA:
3008 	case SIOCGIFMEDIA:
3009 	case SIOCGIFXMEDIA:
3010 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3011 		break;
3012 
3013 	case SIOCGI2C: {
3014 		struct ifi2creq i2c;
3015 
3016 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3017 		if (rc != 0)
3018 			break;
3019 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3020 			rc = EPERM;
3021 			break;
3022 		}
3023 		if (i2c.len > sizeof(i2c.data)) {
3024 			rc = EINVAL;
3025 			break;
3026 		}
3027 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3028 		if (rc)
3029 			return (rc);
3030 		if (hw_off_limits(sc))
3031 			rc = ENXIO;
3032 		else
3033 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3034 			    i2c.offset, i2c.len, &i2c.data[0]);
3035 		end_synchronized_op(sc, 0);
3036 		if (rc == 0)
3037 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3038 		break;
3039 	}
3040 
3041 	default:
3042 		rc = ether_ioctl(ifp, cmd, data);
3043 	}
3044 
3045 	return (rc);
3046 }
3047 
3048 static int
3049 cxgbe_transmit(if_t ifp, struct mbuf *m)
3050 {
3051 	struct vi_info *vi = if_getsoftc(ifp);
3052 	struct port_info *pi = vi->pi;
3053 	struct adapter *sc;
3054 	struct sge_txq *txq;
3055 	void *items[1];
3056 	int rc;
3057 
3058 	M_ASSERTPKTHDR(m);
3059 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3060 #if defined(KERN_TLS) || defined(RATELIMIT)
3061 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3062 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3063 #endif
3064 
3065 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3066 		m_freem(m);
3067 		return (ENETDOWN);
3068 	}
3069 
3070 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3071 	if (__predict_false(rc != 0)) {
3072 		if (__predict_true(rc == EINPROGRESS)) {
3073 			/* queued by parse_pkt */
3074 			MPASS(m != NULL);
3075 			return (0);
3076 		}
3077 
3078 		MPASS(m == NULL);			/* was freed already */
3079 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3080 		return (rc);
3081 	}
3082 
3083 	/* Select a txq. */
3084 	sc = vi->adapter;
3085 	txq = &sc->sge.txq[vi->first_txq];
3086 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3087 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3088 		    vi->rsrv_noflowq);
3089 
3090 	items[0] = m;
3091 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3092 	if (__predict_false(rc != 0))
3093 		m_freem(m);
3094 
3095 	return (rc);
3096 }
3097 
3098 static void
3099 cxgbe_qflush(if_t ifp)
3100 {
3101 	struct vi_info *vi = if_getsoftc(ifp);
3102 	struct sge_txq *txq;
3103 	int i;
3104 
3105 	/* queues do not exist if !VI_INIT_DONE. */
3106 	if (vi->flags & VI_INIT_DONE) {
3107 		for_each_txq(vi, i, txq) {
3108 			TXQ_LOCK(txq);
3109 			txq->eq.flags |= EQ_QFLUSH;
3110 			TXQ_UNLOCK(txq);
3111 			while (!mp_ring_is_idle(txq->r)) {
3112 				mp_ring_check_drainage(txq->r, 4096);
3113 				pause("qflush", 1);
3114 			}
3115 			TXQ_LOCK(txq);
3116 			txq->eq.flags &= ~EQ_QFLUSH;
3117 			TXQ_UNLOCK(txq);
3118 		}
3119 	}
3120 	if_qflush(ifp);
3121 }
3122 
3123 static uint64_t
3124 vi_get_counter(if_t ifp, ift_counter c)
3125 {
3126 	struct vi_info *vi = if_getsoftc(ifp);
3127 	struct fw_vi_stats_vf *s = &vi->stats;
3128 
3129 	mtx_lock(&vi->tick_mtx);
3130 	vi_refresh_stats(vi);
3131 	mtx_unlock(&vi->tick_mtx);
3132 
3133 	switch (c) {
3134 	case IFCOUNTER_IPACKETS:
3135 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3136 		    s->rx_ucast_frames);
3137 	case IFCOUNTER_IERRORS:
3138 		return (s->rx_err_frames);
3139 	case IFCOUNTER_OPACKETS:
3140 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3141 		    s->tx_ucast_frames + s->tx_offload_frames);
3142 	case IFCOUNTER_OERRORS:
3143 		return (s->tx_drop_frames);
3144 	case IFCOUNTER_IBYTES:
3145 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3146 		    s->rx_ucast_bytes);
3147 	case IFCOUNTER_OBYTES:
3148 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3149 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3150 	case IFCOUNTER_IMCASTS:
3151 		return (s->rx_mcast_frames);
3152 	case IFCOUNTER_OMCASTS:
3153 		return (s->tx_mcast_frames);
3154 	case IFCOUNTER_OQDROPS: {
3155 		uint64_t drops;
3156 
3157 		drops = 0;
3158 		if (vi->flags & VI_INIT_DONE) {
3159 			int i;
3160 			struct sge_txq *txq;
3161 
3162 			for_each_txq(vi, i, txq)
3163 				drops += counter_u64_fetch(txq->r->dropped);
3164 		}
3165 
3166 		return (drops);
3167 
3168 	}
3169 
3170 	default:
3171 		return (if_get_counter_default(ifp, c));
3172 	}
3173 }
3174 
3175 static uint64_t
3176 cxgbe_get_counter(if_t ifp, ift_counter c)
3177 {
3178 	struct vi_info *vi = if_getsoftc(ifp);
3179 	struct port_info *pi = vi->pi;
3180 	struct port_stats *s = &pi->stats;
3181 
3182 	mtx_lock(&vi->tick_mtx);
3183 	cxgbe_refresh_stats(vi);
3184 	mtx_unlock(&vi->tick_mtx);
3185 
3186 	switch (c) {
3187 	case IFCOUNTER_IPACKETS:
3188 		return (s->rx_frames);
3189 
3190 	case IFCOUNTER_IERRORS:
3191 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3192 		    s->rx_fcs_err + s->rx_len_err);
3193 
3194 	case IFCOUNTER_OPACKETS:
3195 		return (s->tx_frames);
3196 
3197 	case IFCOUNTER_OERRORS:
3198 		return (s->tx_error_frames);
3199 
3200 	case IFCOUNTER_IBYTES:
3201 		return (s->rx_octets);
3202 
3203 	case IFCOUNTER_OBYTES:
3204 		return (s->tx_octets);
3205 
3206 	case IFCOUNTER_IMCASTS:
3207 		return (s->rx_mcast_frames);
3208 
3209 	case IFCOUNTER_OMCASTS:
3210 		return (s->tx_mcast_frames);
3211 
3212 	case IFCOUNTER_IQDROPS:
3213 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3214 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3215 		    s->rx_trunc3 + pi->tnl_cong_drops);
3216 
3217 	case IFCOUNTER_OQDROPS: {
3218 		uint64_t drops;
3219 
3220 		drops = s->tx_drop;
3221 		if (vi->flags & VI_INIT_DONE) {
3222 			int i;
3223 			struct sge_txq *txq;
3224 
3225 			for_each_txq(vi, i, txq)
3226 				drops += counter_u64_fetch(txq->r->dropped);
3227 		}
3228 
3229 		return (drops);
3230 
3231 	}
3232 
3233 	default:
3234 		return (if_get_counter_default(ifp, c));
3235 	}
3236 }
3237 
3238 #if defined(KERN_TLS) || defined(RATELIMIT)
3239 static int
3240 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3241     struct m_snd_tag **pt)
3242 {
3243 	int error;
3244 
3245 	switch (params->hdr.type) {
3246 #ifdef RATELIMIT
3247 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3248 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3249 		break;
3250 #endif
3251 #ifdef KERN_TLS
3252 	case IF_SND_TAG_TYPE_TLS:
3253 	{
3254 		struct vi_info *vi = if_getsoftc(ifp);
3255 
3256 		if (is_t6(vi->pi->adapter))
3257 			error = t6_tls_tag_alloc(ifp, params, pt);
3258 		else
3259 			error = EOPNOTSUPP;
3260 		break;
3261 	}
3262 #endif
3263 	default:
3264 		error = EOPNOTSUPP;
3265 	}
3266 	return (error);
3267 }
3268 #endif
3269 
3270 /*
3271  * The kernel picks a media from the list we had provided but we still validate
3272  * the requeste.
3273  */
3274 int
3275 cxgbe_media_change(if_t ifp)
3276 {
3277 	struct vi_info *vi = if_getsoftc(ifp);
3278 	struct port_info *pi = vi->pi;
3279 	struct ifmedia *ifm = &pi->media;
3280 	struct link_config *lc = &pi->link_cfg;
3281 	struct adapter *sc = pi->adapter;
3282 	int rc;
3283 
3284 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3285 	if (rc != 0)
3286 		return (rc);
3287 	PORT_LOCK(pi);
3288 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3289 		/* ifconfig .. media autoselect */
3290 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3291 			rc = ENOTSUP; /* AN not supported by transceiver */
3292 			goto done;
3293 		}
3294 		lc->requested_aneg = AUTONEG_ENABLE;
3295 		lc->requested_speed = 0;
3296 		lc->requested_fc |= PAUSE_AUTONEG;
3297 	} else {
3298 		lc->requested_aneg = AUTONEG_DISABLE;
3299 		lc->requested_speed =
3300 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3301 		lc->requested_fc = 0;
3302 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3303 			lc->requested_fc |= PAUSE_RX;
3304 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3305 			lc->requested_fc |= PAUSE_TX;
3306 	}
3307 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3308 		fixup_link_config(pi);
3309 		rc = apply_link_config(pi);
3310 	}
3311 done:
3312 	PORT_UNLOCK(pi);
3313 	end_synchronized_op(sc, 0);
3314 	return (rc);
3315 }
3316 
3317 /*
3318  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3319  * given speed.
3320  */
3321 static int
3322 port_mword(struct port_info *pi, uint32_t speed)
3323 {
3324 
3325 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3326 	MPASS(powerof2(speed));
3327 
3328 	switch(pi->port_type) {
3329 	case FW_PORT_TYPE_BT_SGMII:
3330 	case FW_PORT_TYPE_BT_XFI:
3331 	case FW_PORT_TYPE_BT_XAUI:
3332 		/* BaseT */
3333 		switch (speed) {
3334 		case FW_PORT_CAP32_SPEED_100M:
3335 			return (IFM_100_T);
3336 		case FW_PORT_CAP32_SPEED_1G:
3337 			return (IFM_1000_T);
3338 		case FW_PORT_CAP32_SPEED_10G:
3339 			return (IFM_10G_T);
3340 		}
3341 		break;
3342 	case FW_PORT_TYPE_KX4:
3343 		if (speed == FW_PORT_CAP32_SPEED_10G)
3344 			return (IFM_10G_KX4);
3345 		break;
3346 	case FW_PORT_TYPE_CX4:
3347 		if (speed == FW_PORT_CAP32_SPEED_10G)
3348 			return (IFM_10G_CX4);
3349 		break;
3350 	case FW_PORT_TYPE_KX:
3351 		if (speed == FW_PORT_CAP32_SPEED_1G)
3352 			return (IFM_1000_KX);
3353 		break;
3354 	case FW_PORT_TYPE_KR:
3355 	case FW_PORT_TYPE_BP_AP:
3356 	case FW_PORT_TYPE_BP4_AP:
3357 	case FW_PORT_TYPE_BP40_BA:
3358 	case FW_PORT_TYPE_KR4_100G:
3359 	case FW_PORT_TYPE_KR_SFP28:
3360 	case FW_PORT_TYPE_KR_XLAUI:
3361 		switch (speed) {
3362 		case FW_PORT_CAP32_SPEED_1G:
3363 			return (IFM_1000_KX);
3364 		case FW_PORT_CAP32_SPEED_10G:
3365 			return (IFM_10G_KR);
3366 		case FW_PORT_CAP32_SPEED_25G:
3367 			return (IFM_25G_KR);
3368 		case FW_PORT_CAP32_SPEED_40G:
3369 			return (IFM_40G_KR4);
3370 		case FW_PORT_CAP32_SPEED_50G:
3371 			return (IFM_50G_KR2);
3372 		case FW_PORT_CAP32_SPEED_100G:
3373 			return (IFM_100G_KR4);
3374 		}
3375 		break;
3376 	case FW_PORT_TYPE_FIBER_XFI:
3377 	case FW_PORT_TYPE_FIBER_XAUI:
3378 	case FW_PORT_TYPE_SFP:
3379 	case FW_PORT_TYPE_QSFP_10G:
3380 	case FW_PORT_TYPE_QSA:
3381 	case FW_PORT_TYPE_QSFP:
3382 	case FW_PORT_TYPE_CR4_QSFP:
3383 	case FW_PORT_TYPE_CR_QSFP:
3384 	case FW_PORT_TYPE_CR2_QSFP:
3385 	case FW_PORT_TYPE_SFP28:
3386 		/* Pluggable transceiver */
3387 		switch (pi->mod_type) {
3388 		case FW_PORT_MOD_TYPE_LR:
3389 			switch (speed) {
3390 			case FW_PORT_CAP32_SPEED_1G:
3391 				return (IFM_1000_LX);
3392 			case FW_PORT_CAP32_SPEED_10G:
3393 				return (IFM_10G_LR);
3394 			case FW_PORT_CAP32_SPEED_25G:
3395 				return (IFM_25G_LR);
3396 			case FW_PORT_CAP32_SPEED_40G:
3397 				return (IFM_40G_LR4);
3398 			case FW_PORT_CAP32_SPEED_50G:
3399 				return (IFM_50G_LR2);
3400 			case FW_PORT_CAP32_SPEED_100G:
3401 				return (IFM_100G_LR4);
3402 			}
3403 			break;
3404 		case FW_PORT_MOD_TYPE_SR:
3405 			switch (speed) {
3406 			case FW_PORT_CAP32_SPEED_1G:
3407 				return (IFM_1000_SX);
3408 			case FW_PORT_CAP32_SPEED_10G:
3409 				return (IFM_10G_SR);
3410 			case FW_PORT_CAP32_SPEED_25G:
3411 				return (IFM_25G_SR);
3412 			case FW_PORT_CAP32_SPEED_40G:
3413 				return (IFM_40G_SR4);
3414 			case FW_PORT_CAP32_SPEED_50G:
3415 				return (IFM_50G_SR2);
3416 			case FW_PORT_CAP32_SPEED_100G:
3417 				return (IFM_100G_SR4);
3418 			}
3419 			break;
3420 		case FW_PORT_MOD_TYPE_ER:
3421 			if (speed == FW_PORT_CAP32_SPEED_10G)
3422 				return (IFM_10G_ER);
3423 			break;
3424 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3425 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3426 			switch (speed) {
3427 			case FW_PORT_CAP32_SPEED_1G:
3428 				return (IFM_1000_CX);
3429 			case FW_PORT_CAP32_SPEED_10G:
3430 				return (IFM_10G_TWINAX);
3431 			case FW_PORT_CAP32_SPEED_25G:
3432 				return (IFM_25G_CR);
3433 			case FW_PORT_CAP32_SPEED_40G:
3434 				return (IFM_40G_CR4);
3435 			case FW_PORT_CAP32_SPEED_50G:
3436 				return (IFM_50G_CR2);
3437 			case FW_PORT_CAP32_SPEED_100G:
3438 				return (IFM_100G_CR4);
3439 			}
3440 			break;
3441 		case FW_PORT_MOD_TYPE_LRM:
3442 			if (speed == FW_PORT_CAP32_SPEED_10G)
3443 				return (IFM_10G_LRM);
3444 			break;
3445 		case FW_PORT_MOD_TYPE_NA:
3446 			MPASS(0);	/* Not pluggable? */
3447 			/* fall throough */
3448 		case FW_PORT_MOD_TYPE_ERROR:
3449 		case FW_PORT_MOD_TYPE_UNKNOWN:
3450 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3451 			break;
3452 		case FW_PORT_MOD_TYPE_NONE:
3453 			return (IFM_NONE);
3454 		}
3455 		break;
3456 	case FW_PORT_TYPE_NONE:
3457 		return (IFM_NONE);
3458 	}
3459 
3460 	return (IFM_UNKNOWN);
3461 }
3462 
3463 void
3464 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3465 {
3466 	struct vi_info *vi = if_getsoftc(ifp);
3467 	struct port_info *pi = vi->pi;
3468 	struct adapter *sc = pi->adapter;
3469 	struct link_config *lc = &pi->link_cfg;
3470 
3471 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3472 		return;
3473 	PORT_LOCK(pi);
3474 
3475 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3476 		/*
3477 		 * If all the interfaces are administratively down the firmware
3478 		 * does not report transceiver changes.  Refresh port info here
3479 		 * so that ifconfig displays accurate ifmedia at all times.
3480 		 * This is the only reason we have a synchronized op in this
3481 		 * function.  Just PORT_LOCK would have been enough otherwise.
3482 		 */
3483 		t4_update_port_info(pi);
3484 		build_medialist(pi);
3485 	}
3486 
3487 	/* ifm_status */
3488 	ifmr->ifm_status = IFM_AVALID;
3489 	if (lc->link_ok == false)
3490 		goto done;
3491 	ifmr->ifm_status |= IFM_ACTIVE;
3492 
3493 	/* ifm_active */
3494 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3495 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3496 	if (lc->fc & PAUSE_RX)
3497 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3498 	if (lc->fc & PAUSE_TX)
3499 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3500 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3501 done:
3502 	PORT_UNLOCK(pi);
3503 	end_synchronized_op(sc, 0);
3504 }
3505 
3506 static int
3507 vcxgbe_probe(device_t dev)
3508 {
3509 	struct vi_info *vi = device_get_softc(dev);
3510 
3511 	device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3512 	    vi - vi->pi->vi);
3513 
3514 	return (BUS_PROBE_DEFAULT);
3515 }
3516 
3517 static int
3518 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3519 {
3520 	int func, index, rc;
3521 	uint32_t param, val;
3522 
3523 	ASSERT_SYNCHRONIZED_OP(sc);
3524 
3525 	index = vi - pi->vi;
3526 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3527 	KASSERT(index < nitems(vi_mac_funcs),
3528 	    ("%s: VI %s doesn't have a MAC func", __func__,
3529 	    device_get_nameunit(vi->dev)));
3530 	func = vi_mac_funcs[index];
3531 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3532 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3533 	if (rc < 0) {
3534 		CH_ERR(vi, "failed to allocate virtual interface %d"
3535 		    "for port %d: %d\n", index, pi->port_id, -rc);
3536 		return (-rc);
3537 	}
3538 	vi->viid = rc;
3539 
3540 	if (vi->rss_size == 1) {
3541 		/*
3542 		 * This VI didn't get a slice of the RSS table.  Reduce the
3543 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3544 		 * configuration file (nvi, rssnvi for this PF) if this is a
3545 		 * problem.
3546 		 */
3547 		device_printf(vi->dev, "RSS table not available.\n");
3548 		vi->rss_base = 0xffff;
3549 
3550 		return (0);
3551 	}
3552 
3553 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3554 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3555 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3556 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3557 	if (rc)
3558 		vi->rss_base = 0xffff;
3559 	else {
3560 		MPASS((val >> 16) == vi->rss_size);
3561 		vi->rss_base = val & 0xffff;
3562 	}
3563 
3564 	return (0);
3565 }
3566 
3567 static int
3568 vcxgbe_attach(device_t dev)
3569 {
3570 	struct vi_info *vi;
3571 	struct port_info *pi;
3572 	struct adapter *sc;
3573 	int rc;
3574 
3575 	vi = device_get_softc(dev);
3576 	pi = vi->pi;
3577 	sc = pi->adapter;
3578 
3579 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3580 	if (rc)
3581 		return (rc);
3582 	rc = alloc_extra_vi(sc, pi, vi);
3583 	end_synchronized_op(sc, 0);
3584 	if (rc)
3585 		return (rc);
3586 
3587 	rc = cxgbe_vi_attach(dev, vi);
3588 	if (rc) {
3589 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3590 		return (rc);
3591 	}
3592 	return (0);
3593 }
3594 
3595 static int
3596 vcxgbe_detach(device_t dev)
3597 {
3598 	struct vi_info *vi;
3599 	struct adapter *sc;
3600 
3601 	vi = device_get_softc(dev);
3602 	sc = vi->adapter;
3603 
3604 	begin_vi_detach(sc, vi);
3605 	cxgbe_vi_detach(vi);
3606 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3607 	end_vi_detach(sc, vi);
3608 
3609 	return (0);
3610 }
3611 
3612 static struct callout fatal_callout;
3613 static struct taskqueue *reset_tq;
3614 
3615 static void
3616 delayed_panic(void *arg)
3617 {
3618 	struct adapter *sc = arg;
3619 
3620 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3621 }
3622 
3623 static void
3624 fatal_error_task(void *arg, int pending)
3625 {
3626 	struct adapter *sc = arg;
3627 	int rc;
3628 
3629 #ifdef TCP_OFFLOAD
3630 	t4_async_event(sc);
3631 #endif
3632 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3633 		dump_cim_regs(sc);
3634 		dump_cimla(sc);
3635 		dump_devlog(sc);
3636 	}
3637 
3638 	if (t4_reset_on_fatal_err) {
3639 		CH_ALERT(sc, "resetting on fatal error.\n");
3640 		rc = reset_adapter(sc);
3641 		if (rc == 0 && t4_panic_on_fatal_err) {
3642 			CH_ALERT(sc, "reset was successful, "
3643 			    "system will NOT panic.\n");
3644 			return;
3645 		}
3646 	}
3647 
3648 	if (t4_panic_on_fatal_err) {
3649 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3650 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3651 	}
3652 }
3653 
3654 void
3655 t4_fatal_err(struct adapter *sc, bool fw_error)
3656 {
3657 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3658 
3659 	stop_adapter(sc);
3660 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3661 		return;
3662 	if (fw_error) {
3663 		/*
3664 		 * We are here because of a firmware error/timeout and not
3665 		 * because of a hardware interrupt.  It is possible (although
3666 		 * not very likely) that an error interrupt was also raised but
3667 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3668 		 * main INT_CAUSE registers here to make sure we haven't missed
3669 		 * anything interesting.
3670 		 */
3671 		t4_slow_intr_handler(sc, verbose);
3672 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3673 	}
3674 	t4_report_fw_error(sc);
3675 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3676 	    device_get_nameunit(sc->dev), fw_error);
3677 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3678 }
3679 
3680 void
3681 t4_add_adapter(struct adapter *sc)
3682 {
3683 	sx_xlock(&t4_list_lock);
3684 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3685 	sx_xunlock(&t4_list_lock);
3686 }
3687 
3688 int
3689 t4_map_bars_0_and_4(struct adapter *sc)
3690 {
3691 	sc->regs_rid = PCIR_BAR(0);
3692 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3693 	    &sc->regs_rid, RF_ACTIVE);
3694 	if (sc->regs_res == NULL) {
3695 		device_printf(sc->dev, "cannot map registers.\n");
3696 		return (ENXIO);
3697 	}
3698 	sc->bt = rman_get_bustag(sc->regs_res);
3699 	sc->bh = rman_get_bushandle(sc->regs_res);
3700 	sc->mmio_len = rman_get_size(sc->regs_res);
3701 	setbit(&sc->doorbells, DOORBELL_KDB);
3702 
3703 	sc->msix_rid = PCIR_BAR(4);
3704 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3705 	    &sc->msix_rid, RF_ACTIVE);
3706 	if (sc->msix_res == NULL) {
3707 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3708 		return (ENXIO);
3709 	}
3710 
3711 	return (0);
3712 }
3713 
3714 int
3715 t4_map_bar_2(struct adapter *sc)
3716 {
3717 
3718 	/*
3719 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3720 	 * to map it if RDMA is disabled.
3721 	 */
3722 	if (is_t4(sc) && sc->rdmacaps == 0)
3723 		return (0);
3724 
3725 	sc->udbs_rid = PCIR_BAR(2);
3726 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3727 	    &sc->udbs_rid, RF_ACTIVE);
3728 	if (sc->udbs_res == NULL) {
3729 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3730 		return (ENXIO);
3731 	}
3732 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3733 
3734 	if (chip_id(sc) >= CHELSIO_T5) {
3735 		setbit(&sc->doorbells, DOORBELL_UDB);
3736 #if defined(__i386__) || defined(__amd64__)
3737 		if (t5_write_combine) {
3738 			int rc, mode;
3739 
3740 			/*
3741 			 * Enable write combining on BAR2.  This is the
3742 			 * userspace doorbell BAR and is split into 128B
3743 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3744 			 * with an egress queue.  The first 64B has the doorbell
3745 			 * and the second 64B can be used to submit a tx work
3746 			 * request with an implicit doorbell.
3747 			 */
3748 
3749 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3750 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3751 			if (rc == 0) {
3752 				clrbit(&sc->doorbells, DOORBELL_UDB);
3753 				setbit(&sc->doorbells, DOORBELL_WCWR);
3754 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3755 			} else {
3756 				device_printf(sc->dev,
3757 				    "couldn't enable write combining: %d\n",
3758 				    rc);
3759 			}
3760 
3761 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3762 			t4_write_reg(sc, A_SGE_STAT_CFG,
3763 			    V_STATSOURCE_T5(7) | mode);
3764 		}
3765 #endif
3766 	}
3767 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3768 
3769 	return (0);
3770 }
3771 
3772 int
3773 t4_adj_doorbells(struct adapter *sc)
3774 {
3775 	if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3776 		sc->doorbells &= t4_doorbells_allowed;
3777 		return (0);
3778 	}
3779 	CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3780 	       sc->doorbells, t4_doorbells_allowed);
3781 	return (EINVAL);
3782 }
3783 
3784 struct memwin_init {
3785 	uint32_t base;
3786 	uint32_t aperture;
3787 };
3788 
3789 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3790 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3791 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3792 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3793 };
3794 
3795 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3796 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3797 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3798 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3799 };
3800 
3801 static void
3802 setup_memwin(struct adapter *sc)
3803 {
3804 	const struct memwin_init *mw_init;
3805 	struct memwin *mw;
3806 	int i;
3807 	uint32_t bar0;
3808 
3809 	if (is_t4(sc)) {
3810 		/*
3811 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3812 		 * mechanism.  Works from within PCI passthrough environments
3813 		 * too, where rman_get_start() can return a different value.  We
3814 		 * need to program the T4 memory window decoders with the actual
3815 		 * addresses that will be coming across the PCIe link.
3816 		 */
3817 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3818 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3819 
3820 		mw_init = &t4_memwin[0];
3821 	} else {
3822 		/* T5+ use the relative offset inside the PCIe BAR */
3823 		bar0 = 0;
3824 
3825 		mw_init = &t5_memwin[0];
3826 	}
3827 
3828 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3829 		if (!rw_initialized(&mw->mw_lock)) {
3830 			rw_init(&mw->mw_lock, "memory window access");
3831 			mw->mw_base = mw_init->base;
3832 			mw->mw_aperture = mw_init->aperture;
3833 			mw->mw_curpos = 0;
3834 		}
3835 		t4_write_reg(sc,
3836 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3837 		    (mw->mw_base + bar0) | V_BIR(0) |
3838 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3839 		rw_wlock(&mw->mw_lock);
3840 		position_memwin(sc, i, mw->mw_curpos);
3841 		rw_wunlock(&mw->mw_lock);
3842 	}
3843 
3844 	/* flush */
3845 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3846 }
3847 
3848 /*
3849  * Positions the memory window at the given address in the card's address space.
3850  * There are some alignment requirements and the actual position may be at an
3851  * address prior to the requested address.  mw->mw_curpos always has the actual
3852  * position of the window.
3853  */
3854 static void
3855 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3856 {
3857 	struct memwin *mw;
3858 	uint32_t pf;
3859 	uint32_t reg;
3860 
3861 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3862 	mw = &sc->memwin[idx];
3863 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3864 
3865 	if (is_t4(sc)) {
3866 		pf = 0;
3867 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3868 	} else {
3869 		pf = V_PFNUM(sc->pf);
3870 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3871 	}
3872 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3873 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3874 	t4_read_reg(sc, reg);	/* flush */
3875 }
3876 
3877 int
3878 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3879     int len, int rw)
3880 {
3881 	struct memwin *mw;
3882 	uint32_t mw_end, v;
3883 
3884 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3885 
3886 	/* Memory can only be accessed in naturally aligned 4 byte units */
3887 	if (addr & 3 || len & 3 || len <= 0)
3888 		return (EINVAL);
3889 
3890 	mw = &sc->memwin[idx];
3891 	while (len > 0) {
3892 		rw_rlock(&mw->mw_lock);
3893 		mw_end = mw->mw_curpos + mw->mw_aperture;
3894 		if (addr >= mw_end || addr < mw->mw_curpos) {
3895 			/* Will need to reposition the window */
3896 			if (!rw_try_upgrade(&mw->mw_lock)) {
3897 				rw_runlock(&mw->mw_lock);
3898 				rw_wlock(&mw->mw_lock);
3899 			}
3900 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3901 			position_memwin(sc, idx, addr);
3902 			rw_downgrade(&mw->mw_lock);
3903 			mw_end = mw->mw_curpos + mw->mw_aperture;
3904 		}
3905 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3906 		while (addr < mw_end && len > 0) {
3907 			if (rw == 0) {
3908 				v = t4_read_reg(sc, mw->mw_base + addr -
3909 				    mw->mw_curpos);
3910 				*val++ = le32toh(v);
3911 			} else {
3912 				v = *val++;
3913 				t4_write_reg(sc, mw->mw_base + addr -
3914 				    mw->mw_curpos, htole32(v));
3915 			}
3916 			addr += 4;
3917 			len -= 4;
3918 		}
3919 		rw_runlock(&mw->mw_lock);
3920 	}
3921 
3922 	return (0);
3923 }
3924 
3925 CTASSERT(M_TID_COOKIE == M_COOKIE);
3926 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3927 
3928 static void
3929 t4_init_atid_table(struct adapter *sc)
3930 {
3931 	struct tid_info *t;
3932 	int i;
3933 
3934 	t = &sc->tids;
3935 	if (t->natids == 0)
3936 		return;
3937 
3938 	MPASS(t->atid_tab == NULL);
3939 
3940 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3941 	    M_ZERO | M_WAITOK);
3942 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3943 	t->afree = t->atid_tab;
3944 	t->atids_in_use = 0;
3945 	for (i = 1; i < t->natids; i++)
3946 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3947 	t->atid_tab[t->natids - 1].next = NULL;
3948 }
3949 
3950 static void
3951 t4_free_atid_table(struct adapter *sc)
3952 {
3953 	struct tid_info *t;
3954 
3955 	t = &sc->tids;
3956 
3957 	KASSERT(t->atids_in_use == 0,
3958 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3959 
3960 	if (mtx_initialized(&t->atid_lock))
3961 		mtx_destroy(&t->atid_lock);
3962 	free(t->atid_tab, M_CXGBE);
3963 	t->atid_tab = NULL;
3964 }
3965 
3966 int
3967 alloc_atid(struct adapter *sc, void *ctx)
3968 {
3969 	struct tid_info *t = &sc->tids;
3970 	int atid = -1;
3971 
3972 	mtx_lock(&t->atid_lock);
3973 	if (t->afree) {
3974 		union aopen_entry *p = t->afree;
3975 
3976 		atid = p - t->atid_tab;
3977 		MPASS(atid <= M_TID_TID);
3978 		t->afree = p->next;
3979 		p->data = ctx;
3980 		t->atids_in_use++;
3981 	}
3982 	mtx_unlock(&t->atid_lock);
3983 	return (atid);
3984 }
3985 
3986 void *
3987 lookup_atid(struct adapter *sc, int atid)
3988 {
3989 	struct tid_info *t = &sc->tids;
3990 
3991 	return (t->atid_tab[atid].data);
3992 }
3993 
3994 void
3995 free_atid(struct adapter *sc, int atid)
3996 {
3997 	struct tid_info *t = &sc->tids;
3998 	union aopen_entry *p = &t->atid_tab[atid];
3999 
4000 	mtx_lock(&t->atid_lock);
4001 	p->next = t->afree;
4002 	t->afree = p;
4003 	t->atids_in_use--;
4004 	mtx_unlock(&t->atid_lock);
4005 }
4006 
4007 static void
4008 queue_tid_release(struct adapter *sc, int tid)
4009 {
4010 
4011 	CXGBE_UNIMPLEMENTED("deferred tid release");
4012 }
4013 
4014 void
4015 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4016 {
4017 	struct wrqe *wr;
4018 	struct cpl_tid_release *req;
4019 
4020 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4021 	if (wr == NULL) {
4022 		queue_tid_release(sc, tid);	/* defer */
4023 		return;
4024 	}
4025 	req = wrtod(wr);
4026 
4027 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4028 
4029 	t4_wrq_tx(sc, wr);
4030 }
4031 
4032 static int
4033 t4_range_cmp(const void *a, const void *b)
4034 {
4035 	return ((const struct t4_range *)a)->start -
4036 	       ((const struct t4_range *)b)->start;
4037 }
4038 
4039 /*
4040  * Verify that the memory range specified by the addr/len pair is valid within
4041  * the card's address space.
4042  */
4043 static int
4044 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4045 {
4046 	struct t4_range mem_ranges[4], *r, *next;
4047 	uint32_t em, addr_len;
4048 	int i, n, remaining;
4049 
4050 	/* Memory can only be accessed in naturally aligned 4 byte units */
4051 	if (addr & 3 || len & 3 || len == 0)
4052 		return (EINVAL);
4053 
4054 	/* Enabled memories */
4055 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4056 
4057 	r = &mem_ranges[0];
4058 	n = 0;
4059 	bzero(r, sizeof(mem_ranges));
4060 	if (em & F_EDRAM0_ENABLE) {
4061 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4062 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4063 		if (r->size > 0) {
4064 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4065 			if (addr >= r->start &&
4066 			    addr + len <= r->start + r->size)
4067 				return (0);
4068 			r++;
4069 			n++;
4070 		}
4071 	}
4072 	if (em & F_EDRAM1_ENABLE) {
4073 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4074 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4075 		if (r->size > 0) {
4076 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4077 			if (addr >= r->start &&
4078 			    addr + len <= r->start + r->size)
4079 				return (0);
4080 			r++;
4081 			n++;
4082 		}
4083 	}
4084 	if (em & F_EXT_MEM_ENABLE) {
4085 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4086 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4087 		if (r->size > 0) {
4088 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4089 			if (addr >= r->start &&
4090 			    addr + len <= r->start + r->size)
4091 				return (0);
4092 			r++;
4093 			n++;
4094 		}
4095 	}
4096 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4097 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4098 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4099 		if (r->size > 0) {
4100 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4101 			if (addr >= r->start &&
4102 			    addr + len <= r->start + r->size)
4103 				return (0);
4104 			r++;
4105 			n++;
4106 		}
4107 	}
4108 	MPASS(n <= nitems(mem_ranges));
4109 
4110 	if (n > 1) {
4111 		/* Sort and merge the ranges. */
4112 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4113 
4114 		/* Start from index 0 and examine the next n - 1 entries. */
4115 		r = &mem_ranges[0];
4116 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4117 
4118 			MPASS(r->size > 0);	/* r is a valid entry. */
4119 			next = r + 1;
4120 			MPASS(next->size > 0);	/* and so is the next one. */
4121 
4122 			while (r->start + r->size >= next->start) {
4123 				/* Merge the next one into the current entry. */
4124 				r->size = max(r->start + r->size,
4125 				    next->start + next->size) - r->start;
4126 				n--;	/* One fewer entry in total. */
4127 				if (--remaining == 0)
4128 					goto done;	/* short circuit */
4129 				next++;
4130 			}
4131 			if (next != r + 1) {
4132 				/*
4133 				 * Some entries were merged into r and next
4134 				 * points to the first valid entry that couldn't
4135 				 * be merged.
4136 				 */
4137 				MPASS(next->size > 0);	/* must be valid */
4138 				memcpy(r + 1, next, remaining * sizeof(*r));
4139 #ifdef INVARIANTS
4140 				/*
4141 				 * This so that the foo->size assertion in the
4142 				 * next iteration of the loop do the right
4143 				 * thing for entries that were pulled up and are
4144 				 * no longer valid.
4145 				 */
4146 				MPASS(n < nitems(mem_ranges));
4147 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4148 				    sizeof(struct t4_range));
4149 #endif
4150 			}
4151 		}
4152 done:
4153 		/* Done merging the ranges. */
4154 		MPASS(n > 0);
4155 		r = &mem_ranges[0];
4156 		for (i = 0; i < n; i++, r++) {
4157 			if (addr >= r->start &&
4158 			    addr + len <= r->start + r->size)
4159 				return (0);
4160 		}
4161 	}
4162 
4163 	return (EFAULT);
4164 }
4165 
4166 static int
4167 fwmtype_to_hwmtype(int mtype)
4168 {
4169 
4170 	switch (mtype) {
4171 	case FW_MEMTYPE_EDC0:
4172 		return (MEM_EDC0);
4173 	case FW_MEMTYPE_EDC1:
4174 		return (MEM_EDC1);
4175 	case FW_MEMTYPE_EXTMEM:
4176 		return (MEM_MC0);
4177 	case FW_MEMTYPE_EXTMEM1:
4178 		return (MEM_MC1);
4179 	default:
4180 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4181 	}
4182 }
4183 
4184 /*
4185  * Verify that the memory range specified by the memtype/offset/len pair is
4186  * valid and lies entirely within the memtype specified.  The global address of
4187  * the start of the range is returned in addr.
4188  */
4189 static int
4190 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4191     uint32_t *addr)
4192 {
4193 	uint32_t em, addr_len, maddr;
4194 
4195 	/* Memory can only be accessed in naturally aligned 4 byte units */
4196 	if (off & 3 || len & 3 || len == 0)
4197 		return (EINVAL);
4198 
4199 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4200 	switch (fwmtype_to_hwmtype(mtype)) {
4201 	case MEM_EDC0:
4202 		if (!(em & F_EDRAM0_ENABLE))
4203 			return (EINVAL);
4204 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4205 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4206 		break;
4207 	case MEM_EDC1:
4208 		if (!(em & F_EDRAM1_ENABLE))
4209 			return (EINVAL);
4210 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4211 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4212 		break;
4213 	case MEM_MC:
4214 		if (!(em & F_EXT_MEM_ENABLE))
4215 			return (EINVAL);
4216 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4217 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4218 		break;
4219 	case MEM_MC1:
4220 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4221 			return (EINVAL);
4222 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4223 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4224 		break;
4225 	default:
4226 		return (EINVAL);
4227 	}
4228 
4229 	*addr = maddr + off;	/* global address */
4230 	return (validate_mem_range(sc, *addr, len));
4231 }
4232 
4233 static int
4234 fixup_devlog_params(struct adapter *sc)
4235 {
4236 	struct devlog_params *dparams = &sc->params.devlog;
4237 	int rc;
4238 
4239 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4240 	    dparams->size, &dparams->addr);
4241 
4242 	return (rc);
4243 }
4244 
4245 static void
4246 update_nirq(struct intrs_and_queues *iaq, int nports)
4247 {
4248 
4249 	iaq->nirq = T4_EXTRA_INTR;
4250 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4251 	iaq->nirq += nports * iaq->nofldrxq;
4252 	iaq->nirq += nports * (iaq->num_vis - 1) *
4253 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4254 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4255 }
4256 
4257 /*
4258  * Adjust requirements to fit the number of interrupts available.
4259  */
4260 static void
4261 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4262     int navail)
4263 {
4264 	int old_nirq;
4265 	const int nports = sc->params.nports;
4266 
4267 	MPASS(nports > 0);
4268 	MPASS(navail > 0);
4269 
4270 	bzero(iaq, sizeof(*iaq));
4271 	iaq->intr_type = itype;
4272 	iaq->num_vis = t4_num_vis;
4273 	iaq->ntxq = t4_ntxq;
4274 	iaq->ntxq_vi = t4_ntxq_vi;
4275 	iaq->nrxq = t4_nrxq;
4276 	iaq->nrxq_vi = t4_nrxq_vi;
4277 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4278 	if (is_offload(sc) || is_ethoffload(sc)) {
4279 		iaq->nofldtxq = t4_nofldtxq;
4280 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4281 	}
4282 #endif
4283 #ifdef TCP_OFFLOAD
4284 	if (is_offload(sc)) {
4285 		iaq->nofldrxq = t4_nofldrxq;
4286 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4287 	}
4288 #endif
4289 #ifdef DEV_NETMAP
4290 	if (t4_native_netmap & NN_MAIN_VI) {
4291 		iaq->nnmtxq = t4_nnmtxq;
4292 		iaq->nnmrxq = t4_nnmrxq;
4293 	}
4294 	if (t4_native_netmap & NN_EXTRA_VI) {
4295 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4296 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4297 	}
4298 #endif
4299 
4300 	update_nirq(iaq, nports);
4301 	if (iaq->nirq <= navail &&
4302 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4303 		/*
4304 		 * This is the normal case -- there are enough interrupts for
4305 		 * everything.
4306 		 */
4307 		goto done;
4308 	}
4309 
4310 	/*
4311 	 * If extra VIs have been configured try reducing their count and see if
4312 	 * that works.
4313 	 */
4314 	while (iaq->num_vis > 1) {
4315 		iaq->num_vis--;
4316 		update_nirq(iaq, nports);
4317 		if (iaq->nirq <= navail &&
4318 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4319 			device_printf(sc->dev, "virtual interfaces per port "
4320 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4321 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4322 			    "itype %d, navail %u, nirq %d.\n",
4323 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4324 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4325 			    itype, navail, iaq->nirq);
4326 			goto done;
4327 		}
4328 	}
4329 
4330 	/*
4331 	 * Extra VIs will not be created.  Log a message if they were requested.
4332 	 */
4333 	MPASS(iaq->num_vis == 1);
4334 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4335 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4336 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4337 	if (iaq->num_vis != t4_num_vis) {
4338 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4339 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4340 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4341 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4342 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4343 	}
4344 
4345 	/*
4346 	 * Keep reducing the number of NIC rx queues to the next lower power of
4347 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4348 	 * if that works.
4349 	 */
4350 	do {
4351 		if (iaq->nrxq > 1) {
4352 			do {
4353 				iaq->nrxq--;
4354 			} while (!powerof2(iaq->nrxq));
4355 			if (iaq->nnmrxq > iaq->nrxq)
4356 				iaq->nnmrxq = iaq->nrxq;
4357 		}
4358 		if (iaq->nofldrxq > 1)
4359 			iaq->nofldrxq >>= 1;
4360 
4361 		old_nirq = iaq->nirq;
4362 		update_nirq(iaq, nports);
4363 		if (iaq->nirq <= navail &&
4364 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4365 			device_printf(sc->dev, "running with reduced number of "
4366 			    "rx queues because of shortage of interrupts.  "
4367 			    "nrxq=%u, nofldrxq=%u.  "
4368 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4369 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4370 			goto done;
4371 		}
4372 	} while (old_nirq != iaq->nirq);
4373 
4374 	/* One interrupt for everything.  Ugh. */
4375 	device_printf(sc->dev, "running with minimal number of queues.  "
4376 	    "itype %d, navail %u.\n", itype, navail);
4377 	iaq->nirq = 1;
4378 	iaq->nrxq = 1;
4379 	iaq->ntxq = 1;
4380 	if (iaq->nofldrxq > 0) {
4381 		iaq->nofldrxq = 1;
4382 		iaq->nofldtxq = 1;
4383 	}
4384 	iaq->nnmtxq = 0;
4385 	iaq->nnmrxq = 0;
4386 done:
4387 	MPASS(iaq->num_vis > 0);
4388 	if (iaq->num_vis > 1) {
4389 		MPASS(iaq->nrxq_vi > 0);
4390 		MPASS(iaq->ntxq_vi > 0);
4391 	}
4392 	MPASS(iaq->nirq > 0);
4393 	MPASS(iaq->nrxq > 0);
4394 	MPASS(iaq->ntxq > 0);
4395 	if (itype == INTR_MSI) {
4396 		MPASS(powerof2(iaq->nirq));
4397 	}
4398 }
4399 
4400 static int
4401 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4402 {
4403 	int rc, itype, navail, nalloc;
4404 
4405 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4406 
4407 		if ((itype & t4_intr_types) == 0)
4408 			continue;	/* not allowed */
4409 
4410 		if (itype == INTR_MSIX)
4411 			navail = pci_msix_count(sc->dev);
4412 		else if (itype == INTR_MSI)
4413 			navail = pci_msi_count(sc->dev);
4414 		else
4415 			navail = 1;
4416 restart:
4417 		if (navail == 0)
4418 			continue;
4419 
4420 		calculate_iaq(sc, iaq, itype, navail);
4421 		nalloc = iaq->nirq;
4422 		rc = 0;
4423 		if (itype == INTR_MSIX)
4424 			rc = pci_alloc_msix(sc->dev, &nalloc);
4425 		else if (itype == INTR_MSI)
4426 			rc = pci_alloc_msi(sc->dev, &nalloc);
4427 
4428 		if (rc == 0 && nalloc > 0) {
4429 			if (nalloc == iaq->nirq)
4430 				return (0);
4431 
4432 			/*
4433 			 * Didn't get the number requested.  Use whatever number
4434 			 * the kernel is willing to allocate.
4435 			 */
4436 			device_printf(sc->dev, "fewer vectors than requested, "
4437 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4438 			    itype, iaq->nirq, nalloc);
4439 			pci_release_msi(sc->dev);
4440 			navail = nalloc;
4441 			goto restart;
4442 		}
4443 
4444 		device_printf(sc->dev,
4445 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4446 		    itype, rc, iaq->nirq, nalloc);
4447 	}
4448 
4449 	device_printf(sc->dev,
4450 	    "failed to find a usable interrupt type.  "
4451 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4452 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4453 
4454 	return (ENXIO);
4455 }
4456 
4457 #define FW_VERSION(chip) ( \
4458     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4459     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4460     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4461     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4462 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4463 
4464 /* Just enough of fw_hdr to cover all version info. */
4465 struct fw_h {
4466 	__u8	ver;
4467 	__u8	chip;
4468 	__be16	len512;
4469 	__be32	fw_ver;
4470 	__be32	tp_microcode_ver;
4471 	__u8	intfver_nic;
4472 	__u8	intfver_vnic;
4473 	__u8	intfver_ofld;
4474 	__u8	intfver_ri;
4475 	__u8	intfver_iscsipdu;
4476 	__u8	intfver_iscsi;
4477 	__u8	intfver_fcoepdu;
4478 	__u8	intfver_fcoe;
4479 };
4480 /* Spot check a couple of fields. */
4481 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4482 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4483 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4484 
4485 struct fw_info {
4486 	uint8_t chip;
4487 	char *kld_name;
4488 	char *fw_mod_name;
4489 	struct fw_h fw_h;
4490 } fw_info[] = {
4491 	{
4492 		.chip = CHELSIO_T4,
4493 		.kld_name = "t4fw_cfg",
4494 		.fw_mod_name = "t4fw",
4495 		.fw_h = {
4496 			.chip = FW_HDR_CHIP_T4,
4497 			.fw_ver = htobe32(FW_VERSION(T4)),
4498 			.intfver_nic = FW_INTFVER(T4, NIC),
4499 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4500 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4501 			.intfver_ri = FW_INTFVER(T4, RI),
4502 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4503 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4504 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4505 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4506 		},
4507 	}, {
4508 		.chip = CHELSIO_T5,
4509 		.kld_name = "t5fw_cfg",
4510 		.fw_mod_name = "t5fw",
4511 		.fw_h = {
4512 			.chip = FW_HDR_CHIP_T5,
4513 			.fw_ver = htobe32(FW_VERSION(T5)),
4514 			.intfver_nic = FW_INTFVER(T5, NIC),
4515 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4516 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4517 			.intfver_ri = FW_INTFVER(T5, RI),
4518 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4519 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4520 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4521 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4522 		},
4523 	}, {
4524 		.chip = CHELSIO_T6,
4525 		.kld_name = "t6fw_cfg",
4526 		.fw_mod_name = "t6fw",
4527 		.fw_h = {
4528 			.chip = FW_HDR_CHIP_T6,
4529 			.fw_ver = htobe32(FW_VERSION(T6)),
4530 			.intfver_nic = FW_INTFVER(T6, NIC),
4531 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4532 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4533 			.intfver_ri = FW_INTFVER(T6, RI),
4534 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4535 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4536 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4537 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4538 		},
4539 	}
4540 };
4541 
4542 static struct fw_info *
4543 find_fw_info(int chip)
4544 {
4545 	int i;
4546 
4547 	for (i = 0; i < nitems(fw_info); i++) {
4548 		if (fw_info[i].chip == chip)
4549 			return (&fw_info[i]);
4550 	}
4551 	return (NULL);
4552 }
4553 
4554 /*
4555  * Is the given firmware API compatible with the one the driver was compiled
4556  * with?
4557  */
4558 static int
4559 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4560 {
4561 
4562 	/* short circuit if it's the exact same firmware version */
4563 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4564 		return (1);
4565 
4566 	/*
4567 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4568 	 * features that are supported in the driver.
4569 	 */
4570 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4571 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4572 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4573 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4574 		return (1);
4575 #undef SAME_INTF
4576 
4577 	return (0);
4578 }
4579 
4580 static int
4581 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4582     const struct firmware **fw)
4583 {
4584 	struct fw_info *fw_info;
4585 
4586 	*dcfg = NULL;
4587 	if (fw != NULL)
4588 		*fw = NULL;
4589 
4590 	fw_info = find_fw_info(chip_id(sc));
4591 	if (fw_info == NULL) {
4592 		device_printf(sc->dev,
4593 		    "unable to look up firmware information for chip %d.\n",
4594 		    chip_id(sc));
4595 		return (EINVAL);
4596 	}
4597 
4598 	*dcfg = firmware_get(fw_info->kld_name);
4599 	if (*dcfg != NULL) {
4600 		if (fw != NULL)
4601 			*fw = firmware_get(fw_info->fw_mod_name);
4602 		return (0);
4603 	}
4604 
4605 	return (ENOENT);
4606 }
4607 
4608 static void
4609 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4610     const struct firmware *fw)
4611 {
4612 
4613 	if (fw != NULL)
4614 		firmware_put(fw, FIRMWARE_UNLOAD);
4615 	if (dcfg != NULL)
4616 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4617 }
4618 
4619 /*
4620  * Return values:
4621  * 0 means no firmware install attempted.
4622  * ERESTART means a firmware install was attempted and was successful.
4623  * +ve errno means a firmware install was attempted but failed.
4624  */
4625 static int
4626 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4627     const struct fw_h *drv_fw, const char *reason, int *already)
4628 {
4629 	const struct firmware *cfg, *fw;
4630 	const uint32_t c = be32toh(card_fw->fw_ver);
4631 	uint32_t d, k;
4632 	int rc, fw_install;
4633 	struct fw_h bundled_fw;
4634 	bool load_attempted;
4635 
4636 	cfg = fw = NULL;
4637 	load_attempted = false;
4638 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4639 
4640 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4641 	if (t4_fw_install < 0) {
4642 		rc = load_fw_module(sc, &cfg, &fw);
4643 		if (rc != 0 || fw == NULL) {
4644 			device_printf(sc->dev,
4645 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4646 			    " will use compiled-in firmware version for"
4647 			    "hw.cxgbe.fw_install checks.\n",
4648 			    rc, cfg, fw);
4649 		} else {
4650 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4651 		}
4652 		load_attempted = true;
4653 	}
4654 	d = be32toh(bundled_fw.fw_ver);
4655 
4656 	if (reason != NULL)
4657 		goto install;
4658 
4659 	if ((sc->flags & FW_OK) == 0) {
4660 
4661 		if (c == 0xffffffff) {
4662 			reason = "missing";
4663 			goto install;
4664 		}
4665 
4666 		rc = 0;
4667 		goto done;
4668 	}
4669 
4670 	if (!fw_compatible(card_fw, &bundled_fw)) {
4671 		reason = "incompatible or unusable";
4672 		goto install;
4673 	}
4674 
4675 	if (d > c) {
4676 		reason = "older than the version bundled with this driver";
4677 		goto install;
4678 	}
4679 
4680 	if (fw_install == 2 && d != c) {
4681 		reason = "different than the version bundled with this driver";
4682 		goto install;
4683 	}
4684 
4685 	/* No reason to do anything to the firmware already on the card. */
4686 	rc = 0;
4687 	goto done;
4688 
4689 install:
4690 	rc = 0;
4691 	if ((*already)++)
4692 		goto done;
4693 
4694 	if (fw_install == 0) {
4695 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4696 		    "but the driver is prohibited from installing a firmware "
4697 		    "on the card.\n",
4698 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4699 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4700 
4701 		goto done;
4702 	}
4703 
4704 	/*
4705 	 * We'll attempt to install a firmware.  Load the module first (if it
4706 	 * hasn't been loaded already).
4707 	 */
4708 	if (!load_attempted) {
4709 		rc = load_fw_module(sc, &cfg, &fw);
4710 		if (rc != 0 || fw == NULL) {
4711 			device_printf(sc->dev,
4712 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4713 			    rc, cfg, fw);
4714 			/* carry on */
4715 		}
4716 	}
4717 	if (fw == NULL) {
4718 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4719 		    "but the driver cannot take corrective action because it "
4720 		    "is unable to load the firmware module.\n",
4721 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4722 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4723 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4724 		goto done;
4725 	}
4726 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4727 	if (k != d) {
4728 		MPASS(t4_fw_install > 0);
4729 		device_printf(sc->dev,
4730 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4731 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4732 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4733 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4734 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4735 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4736 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4737 		goto done;
4738 	}
4739 
4740 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4741 	    "installing firmware %u.%u.%u.%u on card.\n",
4742 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4743 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4744 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4745 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4746 
4747 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4748 	if (rc != 0) {
4749 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4750 	} else {
4751 		/* Installed successfully, update the cached header too. */
4752 		rc = ERESTART;
4753 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4754 	}
4755 done:
4756 	unload_fw_module(sc, cfg, fw);
4757 
4758 	return (rc);
4759 }
4760 
4761 /*
4762  * Establish contact with the firmware and attempt to become the master driver.
4763  *
4764  * A firmware will be installed to the card if needed (if the driver is allowed
4765  * to do so).
4766  */
4767 static int
4768 contact_firmware(struct adapter *sc)
4769 {
4770 	int rc, already = 0;
4771 	enum dev_state state;
4772 	struct fw_info *fw_info;
4773 	struct fw_hdr *card_fw;		/* fw on the card */
4774 	const struct fw_h *drv_fw;
4775 
4776 	fw_info = find_fw_info(chip_id(sc));
4777 	if (fw_info == NULL) {
4778 		device_printf(sc->dev,
4779 		    "unable to look up firmware information for chip %d.\n",
4780 		    chip_id(sc));
4781 		return (EINVAL);
4782 	}
4783 	drv_fw = &fw_info->fw_h;
4784 
4785 	/* Read the header of the firmware on the card */
4786 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4787 restart:
4788 	rc = -t4_get_fw_hdr(sc, card_fw);
4789 	if (rc != 0) {
4790 		device_printf(sc->dev,
4791 		    "unable to read firmware header from card's flash: %d\n",
4792 		    rc);
4793 		goto done;
4794 	}
4795 
4796 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4797 	    &already);
4798 	if (rc == ERESTART)
4799 		goto restart;
4800 	if (rc != 0)
4801 		goto done;
4802 
4803 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4804 	if (rc < 0 || state == DEV_STATE_ERR) {
4805 		rc = -rc;
4806 		device_printf(sc->dev,
4807 		    "failed to connect to the firmware: %d, %d.  "
4808 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4809 #if 0
4810 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4811 		    "not responding properly to HELLO", &already) == ERESTART)
4812 			goto restart;
4813 #endif
4814 		goto done;
4815 	}
4816 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4817 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4818 
4819 	if (rc == sc->pf) {
4820 		sc->flags |= MASTER_PF;
4821 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4822 		    NULL, &already);
4823 		if (rc == ERESTART)
4824 			rc = 0;
4825 		else if (rc != 0)
4826 			goto done;
4827 	} else if (state == DEV_STATE_UNINIT) {
4828 		/*
4829 		 * We didn't get to be the master so we definitely won't be
4830 		 * configuring the chip.  It's a bug if someone else hasn't
4831 		 * configured it already.
4832 		 */
4833 		device_printf(sc->dev, "couldn't be master(%d), "
4834 		    "device not already initialized either(%d).  "
4835 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4836 		rc = EPROTO;
4837 		goto done;
4838 	} else {
4839 		/*
4840 		 * Some other PF is the master and has configured the chip.
4841 		 * This is allowed but untested.
4842 		 */
4843 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4844 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4845 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4846 		sc->cfcsum = 0;
4847 		rc = 0;
4848 	}
4849 done:
4850 	if (rc != 0 && sc->flags & FW_OK) {
4851 		t4_fw_bye(sc, sc->mbox);
4852 		sc->flags &= ~FW_OK;
4853 	}
4854 	free(card_fw, M_CXGBE);
4855 	return (rc);
4856 }
4857 
4858 static int
4859 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4860     uint32_t mtype, uint32_t moff)
4861 {
4862 	struct fw_info *fw_info;
4863 	const struct firmware *dcfg, *rcfg = NULL;
4864 	const uint32_t *cfdata;
4865 	uint32_t cflen, addr;
4866 	int rc;
4867 
4868 	load_fw_module(sc, &dcfg, NULL);
4869 
4870 	/* Card specific interpretation of "default". */
4871 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4872 		if (pci_get_device(sc->dev) == 0x440a)
4873 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4874 		if (is_fpga(sc))
4875 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4876 	}
4877 
4878 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4879 		if (dcfg == NULL) {
4880 			device_printf(sc->dev,
4881 			    "KLD with default config is not available.\n");
4882 			rc = ENOENT;
4883 			goto done;
4884 		}
4885 		cfdata = dcfg->data;
4886 		cflen = dcfg->datasize & ~3;
4887 	} else {
4888 		char s[32];
4889 
4890 		fw_info = find_fw_info(chip_id(sc));
4891 		if (fw_info == NULL) {
4892 			device_printf(sc->dev,
4893 			    "unable to look up firmware information for chip %d.\n",
4894 			    chip_id(sc));
4895 			rc = EINVAL;
4896 			goto done;
4897 		}
4898 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4899 
4900 		rcfg = firmware_get(s);
4901 		if (rcfg == NULL) {
4902 			device_printf(sc->dev,
4903 			    "unable to load module \"%s\" for configuration "
4904 			    "profile \"%s\".\n", s, cfg_file);
4905 			rc = ENOENT;
4906 			goto done;
4907 		}
4908 		cfdata = rcfg->data;
4909 		cflen = rcfg->datasize & ~3;
4910 	}
4911 
4912 	if (cflen > FLASH_CFG_MAX_SIZE) {
4913 		device_printf(sc->dev,
4914 		    "config file too long (%d, max allowed is %d).\n",
4915 		    cflen, FLASH_CFG_MAX_SIZE);
4916 		rc = EINVAL;
4917 		goto done;
4918 	}
4919 
4920 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4921 	if (rc != 0) {
4922 		device_printf(sc->dev,
4923 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4924 		    __func__, mtype, moff, cflen, rc);
4925 		rc = EINVAL;
4926 		goto done;
4927 	}
4928 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4929 done:
4930 	if (rcfg != NULL)
4931 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4932 	unload_fw_module(sc, dcfg, NULL);
4933 	return (rc);
4934 }
4935 
4936 struct caps_allowed {
4937 	uint16_t nbmcaps;
4938 	uint16_t linkcaps;
4939 	uint16_t switchcaps;
4940 	uint16_t niccaps;
4941 	uint16_t toecaps;
4942 	uint16_t rdmacaps;
4943 	uint16_t cryptocaps;
4944 	uint16_t iscsicaps;
4945 	uint16_t fcoecaps;
4946 };
4947 
4948 #define FW_PARAM_DEV(param) \
4949 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4950 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4951 #define FW_PARAM_PFVF(param) \
4952 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4953 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4954 
4955 /*
4956  * Provide a configuration profile to the firmware and have it initialize the
4957  * chip accordingly.  This may involve uploading a configuration file to the
4958  * card.
4959  */
4960 static int
4961 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4962     const struct caps_allowed *caps_allowed)
4963 {
4964 	int rc;
4965 	struct fw_caps_config_cmd caps;
4966 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4967 
4968 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4969 	if (rc != 0) {
4970 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4971 		return (rc);
4972 	}
4973 
4974 	bzero(&caps, sizeof(caps));
4975 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4976 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4977 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4978 		mtype = 0;
4979 		moff = 0;
4980 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4981 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4982 		mtype = FW_MEMTYPE_FLASH;
4983 		moff = t4_flash_cfg_addr(sc);
4984 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4985 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4986 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4987 		    FW_LEN16(caps));
4988 	} else {
4989 		/*
4990 		 * Ask the firmware where it wants us to upload the config file.
4991 		 */
4992 		param = FW_PARAM_DEV(CF);
4993 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4994 		if (rc != 0) {
4995 			/* No support for config file?  Shouldn't happen. */
4996 			device_printf(sc->dev,
4997 			    "failed to query config file location: %d.\n", rc);
4998 			goto done;
4999 		}
5000 		mtype = G_FW_PARAMS_PARAM_Y(val);
5001 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5002 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5003 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5004 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5005 		    FW_LEN16(caps));
5006 
5007 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5008 		if (rc != 0) {
5009 			device_printf(sc->dev,
5010 			    "failed to upload config file to card: %d.\n", rc);
5011 			goto done;
5012 		}
5013 	}
5014 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5015 	if (rc != 0) {
5016 		device_printf(sc->dev, "failed to pre-process config file: %d "
5017 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5018 		goto done;
5019 	}
5020 
5021 	finicsum = be32toh(caps.finicsum);
5022 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5023 	if (finicsum != cfcsum) {
5024 		device_printf(sc->dev,
5025 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5026 		    finicsum, cfcsum);
5027 	}
5028 	sc->cfcsum = cfcsum;
5029 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5030 
5031 	/*
5032 	 * Let the firmware know what features will (not) be used so it can tune
5033 	 * things accordingly.
5034 	 */
5035 #define LIMIT_CAPS(x) do { \
5036 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5037 } while (0)
5038 	LIMIT_CAPS(nbm);
5039 	LIMIT_CAPS(link);
5040 	LIMIT_CAPS(switch);
5041 	LIMIT_CAPS(nic);
5042 	LIMIT_CAPS(toe);
5043 	LIMIT_CAPS(rdma);
5044 	LIMIT_CAPS(crypto);
5045 	LIMIT_CAPS(iscsi);
5046 	LIMIT_CAPS(fcoe);
5047 #undef LIMIT_CAPS
5048 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5049 		/*
5050 		 * TOE and hashfilters are mutually exclusive.  It is a config
5051 		 * file or firmware bug if both are reported as available.  Try
5052 		 * to cope with the situation in non-debug builds by disabling
5053 		 * TOE.
5054 		 */
5055 		MPASS(caps.toecaps == 0);
5056 
5057 		caps.toecaps = 0;
5058 		caps.rdmacaps = 0;
5059 		caps.iscsicaps = 0;
5060 	}
5061 
5062 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5063 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5064 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5065 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5066 	if (rc != 0) {
5067 		device_printf(sc->dev,
5068 		    "failed to process config file: %d.\n", rc);
5069 		goto done;
5070 	}
5071 
5072 	t4_tweak_chip_settings(sc);
5073 	set_params__pre_init(sc);
5074 
5075 	/* get basic stuff going */
5076 	rc = -t4_fw_initialize(sc, sc->mbox);
5077 	if (rc != 0) {
5078 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5079 		goto done;
5080 	}
5081 done:
5082 	return (rc);
5083 }
5084 
5085 /*
5086  * Partition chip resources for use between various PFs, VFs, etc.
5087  */
5088 static int
5089 partition_resources(struct adapter *sc)
5090 {
5091 	char cfg_file[sizeof(t4_cfg_file)];
5092 	struct caps_allowed caps_allowed;
5093 	int rc;
5094 	bool fallback;
5095 
5096 	/* Only the master driver gets to configure the chip resources. */
5097 	MPASS(sc->flags & MASTER_PF);
5098 
5099 #define COPY_CAPS(x) do { \
5100 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5101 } while (0)
5102 	bzero(&caps_allowed, sizeof(caps_allowed));
5103 	COPY_CAPS(nbm);
5104 	COPY_CAPS(link);
5105 	COPY_CAPS(switch);
5106 	COPY_CAPS(nic);
5107 	COPY_CAPS(toe);
5108 	COPY_CAPS(rdma);
5109 	COPY_CAPS(crypto);
5110 	COPY_CAPS(iscsi);
5111 	COPY_CAPS(fcoe);
5112 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5113 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5114 retry:
5115 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5116 	if (rc != 0 && fallback) {
5117 		dump_devlog(sc);
5118 		device_printf(sc->dev,
5119 		    "failed (%d) to configure card with \"%s\" profile, "
5120 		    "will fall back to a basic configuration and retry.\n",
5121 		    rc, cfg_file);
5122 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5123 		bzero(&caps_allowed, sizeof(caps_allowed));
5124 		COPY_CAPS(switch);
5125 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5126 		fallback = false;
5127 		goto retry;
5128 	}
5129 #undef COPY_CAPS
5130 	return (rc);
5131 }
5132 
5133 /*
5134  * Retrieve parameters that are needed (or nice to have) very early.
5135  */
5136 static int
5137 get_params__pre_init(struct adapter *sc)
5138 {
5139 	int rc;
5140 	uint32_t param[2], val[2];
5141 
5142 	t4_get_version_info(sc);
5143 
5144 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5145 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5146 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5147 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5148 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5149 
5150 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5151 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5152 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5153 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5154 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5155 
5156 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5157 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5158 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5159 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5160 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5161 
5162 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5163 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5164 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5165 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5166 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5167 
5168 	param[0] = FW_PARAM_DEV(PORTVEC);
5169 	param[1] = FW_PARAM_DEV(CCLK);
5170 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5171 	if (rc != 0) {
5172 		device_printf(sc->dev,
5173 		    "failed to query parameters (pre_init): %d.\n", rc);
5174 		return (rc);
5175 	}
5176 
5177 	sc->params.portvec = val[0];
5178 	sc->params.nports = bitcount32(val[0]);
5179 	sc->params.vpd.cclk = val[1];
5180 
5181 	/* Read device log parameters. */
5182 	rc = -t4_init_devlog_params(sc, 1);
5183 	if (rc == 0)
5184 		fixup_devlog_params(sc);
5185 	else {
5186 		device_printf(sc->dev,
5187 		    "failed to get devlog parameters: %d.\n", rc);
5188 		rc = 0;	/* devlog isn't critical for device operation */
5189 	}
5190 
5191 	return (rc);
5192 }
5193 
5194 /*
5195  * Any params that need to be set before FW_INITIALIZE.
5196  */
5197 static int
5198 set_params__pre_init(struct adapter *sc)
5199 {
5200 	int rc = 0;
5201 	uint32_t param, val;
5202 
5203 	if (chip_id(sc) >= CHELSIO_T6) {
5204 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5205 		val = 1;
5206 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5207 		/* firmwares < 1.20.1.0 do not have this param. */
5208 		if (rc == FW_EINVAL &&
5209 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5210 			rc = 0;
5211 		}
5212 		if (rc != 0) {
5213 			device_printf(sc->dev,
5214 			    "failed to enable high priority filters :%d.\n",
5215 			    rc);
5216 		}
5217 
5218 		param = FW_PARAM_DEV(PPOD_EDRAM);
5219 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5220 		if (rc == 0 && val == 1) {
5221 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5222 			    &val);
5223 			if (rc != 0) {
5224 				device_printf(sc->dev,
5225 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5226 			}
5227 		}
5228 	}
5229 
5230 	/* Enable opaque VIIDs with firmwares that support it. */
5231 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5232 	val = 1;
5233 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5234 	if (rc == 0 && val == 1)
5235 		sc->params.viid_smt_extn_support = true;
5236 	else
5237 		sc->params.viid_smt_extn_support = false;
5238 
5239 	return (rc);
5240 }
5241 
5242 /*
5243  * Retrieve various parameters that are of interest to the driver.  The device
5244  * has been initialized by the firmware at this point.
5245  */
5246 static int
5247 get_params__post_init(struct adapter *sc)
5248 {
5249 	int rc;
5250 	uint32_t param[7], val[7];
5251 	struct fw_caps_config_cmd caps;
5252 
5253 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5254 	param[1] = FW_PARAM_PFVF(EQ_START);
5255 	param[2] = FW_PARAM_PFVF(FILTER_START);
5256 	param[3] = FW_PARAM_PFVF(FILTER_END);
5257 	param[4] = FW_PARAM_PFVF(L2T_START);
5258 	param[5] = FW_PARAM_PFVF(L2T_END);
5259 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5260 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5261 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5262 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5263 	if (rc != 0) {
5264 		device_printf(sc->dev,
5265 		    "failed to query parameters (post_init): %d.\n", rc);
5266 		return (rc);
5267 	}
5268 
5269 	sc->sge.iq_start = val[0];
5270 	sc->sge.eq_start = val[1];
5271 	if ((int)val[3] > (int)val[2]) {
5272 		sc->tids.ftid_base = val[2];
5273 		sc->tids.ftid_end = val[3];
5274 		sc->tids.nftids = val[3] - val[2] + 1;
5275 	}
5276 	sc->vres.l2t.start = val[4];
5277 	sc->vres.l2t.size = val[5] - val[4] + 1;
5278 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5279 	    ("%s: L2 table size (%u) larger than expected (%u)",
5280 	    __func__, sc->vres.l2t.size, L2T_SIZE));
5281 	sc->params.core_vdd = val[6];
5282 
5283 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5284 	param[1] = FW_PARAM_PFVF(EQ_END);
5285 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5286 	if (rc != 0) {
5287 		device_printf(sc->dev,
5288 		    "failed to query parameters (post_init2): %d.\n", rc);
5289 		return (rc);
5290 	}
5291 	MPASS((int)val[0] >= sc->sge.iq_start);
5292 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5293 	MPASS((int)val[1] >= sc->sge.eq_start);
5294 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5295 
5296 	if (chip_id(sc) >= CHELSIO_T6) {
5297 
5298 		sc->tids.tid_base = t4_read_reg(sc,
5299 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5300 
5301 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5302 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5303 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5304 		if (rc != 0) {
5305 			device_printf(sc->dev,
5306 			   "failed to query hpfilter parameters: %d.\n", rc);
5307 			return (rc);
5308 		}
5309 		if ((int)val[1] > (int)val[0]) {
5310 			sc->tids.hpftid_base = val[0];
5311 			sc->tids.hpftid_end = val[1];
5312 			sc->tids.nhpftids = val[1] - val[0] + 1;
5313 
5314 			/*
5315 			 * These should go off if the layout changes and the
5316 			 * driver needs to catch up.
5317 			 */
5318 			MPASS(sc->tids.hpftid_base == 0);
5319 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5320 		}
5321 
5322 		param[0] = FW_PARAM_PFVF(RAWF_START);
5323 		param[1] = FW_PARAM_PFVF(RAWF_END);
5324 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5325 		if (rc != 0) {
5326 			device_printf(sc->dev,
5327 			   "failed to query rawf parameters: %d.\n", rc);
5328 			return (rc);
5329 		}
5330 		if ((int)val[1] > (int)val[0]) {
5331 			sc->rawf_base = val[0];
5332 			sc->nrawf = val[1] - val[0] + 1;
5333 		}
5334 	}
5335 
5336 	/*
5337 	 * The parameters that follow may not be available on all firmwares.  We
5338 	 * query them individually rather than in a compound query because old
5339 	 * firmwares fail the entire query if an unknown parameter is queried.
5340 	 */
5341 
5342 	/*
5343 	 * MPS buffer group configuration.
5344 	 */
5345 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5346 	val[0] = 0;
5347 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5348 	if (rc == 0)
5349 		sc->params.mps_bg_map = val[0];
5350 	else
5351 		sc->params.mps_bg_map = UINT32_MAX;	/* Not a legal value. */
5352 
5353 	param[0] = FW_PARAM_DEV(TPCHMAP);
5354 	val[0] = 0;
5355 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5356 	if (rc == 0)
5357 		sc->params.tp_ch_map = val[0];
5358 	else
5359 		sc->params.tp_ch_map = UINT32_MAX;	/* Not a legal value. */
5360 
5361 	/*
5362 	 * Determine whether the firmware supports the filter2 work request.
5363 	 */
5364 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5365 	val[0] = 0;
5366 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5367 	if (rc == 0)
5368 		sc->params.filter2_wr_support = val[0] != 0;
5369 	else
5370 		sc->params.filter2_wr_support = 0;
5371 
5372 	/*
5373 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5374 	 */
5375 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5376 	val[0] = 0;
5377 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5378 	if (rc == 0)
5379 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5380 	else
5381 		sc->params.ulptx_memwrite_dsgl = false;
5382 
5383 	/* FW_RI_FR_NSMR_TPTE_WR support */
5384 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5385 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5386 	if (rc == 0)
5387 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5388 	else
5389 		sc->params.fr_nsmr_tpte_wr_support = false;
5390 
5391 	/* Support for 512 SGL entries per FR MR. */
5392 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5393 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5394 	if (rc == 0)
5395 		sc->params.dev_512sgl_mr = val[0] != 0;
5396 	else
5397 		sc->params.dev_512sgl_mr = false;
5398 
5399 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5400 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5401 	if (rc == 0)
5402 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5403 	else
5404 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5405 
5406 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5407 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5408 	if (rc == 0) {
5409 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5410 		sc->params.nsched_cls = val[0];
5411 	} else
5412 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5413 
5414 	/* get capabilites */
5415 	bzero(&caps, sizeof(caps));
5416 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5417 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5418 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5419 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5420 	if (rc != 0) {
5421 		device_printf(sc->dev,
5422 		    "failed to get card capabilities: %d.\n", rc);
5423 		return (rc);
5424 	}
5425 
5426 #define READ_CAPS(x) do { \
5427 	sc->x = htobe16(caps.x); \
5428 } while (0)
5429 	READ_CAPS(nbmcaps);
5430 	READ_CAPS(linkcaps);
5431 	READ_CAPS(switchcaps);
5432 	READ_CAPS(niccaps);
5433 	READ_CAPS(toecaps);
5434 	READ_CAPS(rdmacaps);
5435 	READ_CAPS(cryptocaps);
5436 	READ_CAPS(iscsicaps);
5437 	READ_CAPS(fcoecaps);
5438 
5439 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5440 		MPASS(chip_id(sc) > CHELSIO_T4);
5441 		MPASS(sc->toecaps == 0);
5442 		sc->toecaps = 0;
5443 
5444 		param[0] = FW_PARAM_DEV(NTID);
5445 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5446 		if (rc != 0) {
5447 			device_printf(sc->dev,
5448 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5449 			return (rc);
5450 		}
5451 		sc->tids.ntids = val[0];
5452 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5453 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5454 			sc->tids.ntids -= sc->tids.nhpftids;
5455 		}
5456 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5457 		sc->params.hash_filter = 1;
5458 	}
5459 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5460 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5461 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5462 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5463 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5464 		if (rc != 0) {
5465 			device_printf(sc->dev,
5466 			    "failed to query NIC parameters: %d.\n", rc);
5467 			return (rc);
5468 		}
5469 		if ((int)val[1] > (int)val[0]) {
5470 			sc->tids.etid_base = val[0];
5471 			sc->tids.etid_end = val[1];
5472 			sc->tids.netids = val[1] - val[0] + 1;
5473 			sc->params.eo_wr_cred = val[2];
5474 			sc->params.ethoffload = 1;
5475 		}
5476 	}
5477 	if (sc->toecaps) {
5478 		/* query offload-related parameters */
5479 		param[0] = FW_PARAM_DEV(NTID);
5480 		param[1] = FW_PARAM_PFVF(SERVER_START);
5481 		param[2] = FW_PARAM_PFVF(SERVER_END);
5482 		param[3] = FW_PARAM_PFVF(TDDP_START);
5483 		param[4] = FW_PARAM_PFVF(TDDP_END);
5484 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5485 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5486 		if (rc != 0) {
5487 			device_printf(sc->dev,
5488 			    "failed to query TOE parameters: %d.\n", rc);
5489 			return (rc);
5490 		}
5491 		sc->tids.ntids = val[0];
5492 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5493 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5494 			sc->tids.ntids -= sc->tids.nhpftids;
5495 		}
5496 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5497 		if ((int)val[2] > (int)val[1]) {
5498 			sc->tids.stid_base = val[1];
5499 			sc->tids.nstids = val[2] - val[1] + 1;
5500 		}
5501 		sc->vres.ddp.start = val[3];
5502 		sc->vres.ddp.size = val[4] - val[3] + 1;
5503 		sc->params.ofldq_wr_cred = val[5];
5504 		sc->params.offload = 1;
5505 	} else {
5506 		/*
5507 		 * The firmware attempts memfree TOE configuration for -SO cards
5508 		 * and will report toecaps=0 if it runs out of resources (this
5509 		 * depends on the config file).  It may not report 0 for other
5510 		 * capabilities dependent on the TOE in this case.  Set them to
5511 		 * 0 here so that the driver doesn't bother tracking resources
5512 		 * that will never be used.
5513 		 */
5514 		sc->iscsicaps = 0;
5515 		sc->rdmacaps = 0;
5516 	}
5517 	if (sc->rdmacaps) {
5518 		param[0] = FW_PARAM_PFVF(STAG_START);
5519 		param[1] = FW_PARAM_PFVF(STAG_END);
5520 		param[2] = FW_PARAM_PFVF(RQ_START);
5521 		param[3] = FW_PARAM_PFVF(RQ_END);
5522 		param[4] = FW_PARAM_PFVF(PBL_START);
5523 		param[5] = FW_PARAM_PFVF(PBL_END);
5524 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5525 		if (rc != 0) {
5526 			device_printf(sc->dev,
5527 			    "failed to query RDMA parameters(1): %d.\n", rc);
5528 			return (rc);
5529 		}
5530 		sc->vres.stag.start = val[0];
5531 		sc->vres.stag.size = val[1] - val[0] + 1;
5532 		sc->vres.rq.start = val[2];
5533 		sc->vres.rq.size = val[3] - val[2] + 1;
5534 		sc->vres.pbl.start = val[4];
5535 		sc->vres.pbl.size = val[5] - val[4] + 1;
5536 
5537 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5538 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5539 		param[2] = FW_PARAM_PFVF(CQ_START);
5540 		param[3] = FW_PARAM_PFVF(CQ_END);
5541 		param[4] = FW_PARAM_PFVF(OCQ_START);
5542 		param[5] = FW_PARAM_PFVF(OCQ_END);
5543 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5544 		if (rc != 0) {
5545 			device_printf(sc->dev,
5546 			    "failed to query RDMA parameters(2): %d.\n", rc);
5547 			return (rc);
5548 		}
5549 		sc->vres.qp.start = val[0];
5550 		sc->vres.qp.size = val[1] - val[0] + 1;
5551 		sc->vres.cq.start = val[2];
5552 		sc->vres.cq.size = val[3] - val[2] + 1;
5553 		sc->vres.ocq.start = val[4];
5554 		sc->vres.ocq.size = val[5] - val[4] + 1;
5555 
5556 		param[0] = FW_PARAM_PFVF(SRQ_START);
5557 		param[1] = FW_PARAM_PFVF(SRQ_END);
5558 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5559 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5560 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5561 		if (rc != 0) {
5562 			device_printf(sc->dev,
5563 			    "failed to query RDMA parameters(3): %d.\n", rc);
5564 			return (rc);
5565 		}
5566 		sc->vres.srq.start = val[0];
5567 		sc->vres.srq.size = val[1] - val[0] + 1;
5568 		sc->params.max_ordird_qp = val[2];
5569 		sc->params.max_ird_adapter = val[3];
5570 	}
5571 	if (sc->iscsicaps) {
5572 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5573 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5574 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5575 		if (rc != 0) {
5576 			device_printf(sc->dev,
5577 			    "failed to query iSCSI parameters: %d.\n", rc);
5578 			return (rc);
5579 		}
5580 		sc->vres.iscsi.start = val[0];
5581 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5582 	}
5583 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5584 		param[0] = FW_PARAM_PFVF(TLS_START);
5585 		param[1] = FW_PARAM_PFVF(TLS_END);
5586 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5587 		if (rc != 0) {
5588 			device_printf(sc->dev,
5589 			    "failed to query TLS parameters: %d.\n", rc);
5590 			return (rc);
5591 		}
5592 		sc->vres.key.start = val[0];
5593 		sc->vres.key.size = val[1] - val[0] + 1;
5594 	}
5595 
5596 	/*
5597 	 * We've got the params we wanted to query directly from the firmware.
5598 	 * Grab some others via other means.
5599 	 */
5600 	t4_init_sge_params(sc);
5601 	t4_init_tp_params(sc);
5602 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5603 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5604 
5605 	rc = t4_verify_chip_settings(sc);
5606 	if (rc != 0)
5607 		return (rc);
5608 	t4_init_rx_buf_info(sc);
5609 
5610 	return (rc);
5611 }
5612 
5613 #ifdef KERN_TLS
5614 static void
5615 ktls_tick(void *arg)
5616 {
5617 	struct adapter *sc;
5618 	uint32_t tstamp;
5619 
5620 	sc = arg;
5621 	tstamp = tcp_ts_getticks();
5622 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5623 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5624 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5625 }
5626 
5627 static int
5628 t6_config_kern_tls(struct adapter *sc, bool enable)
5629 {
5630 	int rc;
5631 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5632 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5633 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5634 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5635 
5636 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5637 	if (rc != 0) {
5638 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5639 		    enable ?  "enable" : "disable", rc);
5640 		return (rc);
5641 	}
5642 
5643 	if (enable) {
5644 		sc->flags |= KERN_TLS_ON;
5645 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5646 		    C_HARDCLOCK);
5647 	} else {
5648 		sc->flags &= ~KERN_TLS_ON;
5649 		callout_stop(&sc->ktls_tick);
5650 	}
5651 
5652 	return (rc);
5653 }
5654 #endif
5655 
5656 static int
5657 set_params__post_init(struct adapter *sc)
5658 {
5659 	uint32_t mask, param, val;
5660 #ifdef TCP_OFFLOAD
5661 	int i, v, shift;
5662 #endif
5663 
5664 	/* ask for encapsulated CPLs */
5665 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5666 	val = 1;
5667 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5668 
5669 	/* Enable 32b port caps if the firmware supports it. */
5670 	param = FW_PARAM_PFVF(PORT_CAPS32);
5671 	val = 1;
5672 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5673 		sc->params.port_caps32 = 1;
5674 
5675 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5676 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5677 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5678 	    V_MASKFILTER(val - 1));
5679 
5680 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5681 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5682 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5683 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5684 	val = 0;
5685 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5686 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5687 		    F_ATTACKFILTERENABLE);
5688 		val |= F_DROPERRORATTACK;
5689 	}
5690 	if (t4_drop_ip_fragments != 0) {
5691 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5692 		    F_FRAGMENTDROP);
5693 		val |= F_DROPERRORFRAG;
5694 	}
5695 	if (t4_drop_pkts_with_l2_errors != 0)
5696 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5697 	if (t4_drop_pkts_with_l3_errors != 0) {
5698 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5699 		    F_DROPERRORCSUMIP;
5700 	}
5701 	if (t4_drop_pkts_with_l4_errors != 0) {
5702 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5703 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5704 	}
5705 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5706 
5707 #ifdef TCP_OFFLOAD
5708 	/*
5709 	 * Override the TOE timers with user provided tunables.  This is not the
5710 	 * recommended way to change the timers (the firmware config file is) so
5711 	 * these tunables are not documented.
5712 	 *
5713 	 * All the timer tunables are in microseconds.
5714 	 */
5715 	if (t4_toe_keepalive_idle != 0) {
5716 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5717 		v &= M_KEEPALIVEIDLE;
5718 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5719 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5720 	}
5721 	if (t4_toe_keepalive_interval != 0) {
5722 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5723 		v &= M_KEEPALIVEINTVL;
5724 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5725 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5726 	}
5727 	if (t4_toe_keepalive_count != 0) {
5728 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5729 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5730 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5731 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5732 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5733 	}
5734 	if (t4_toe_rexmt_min != 0) {
5735 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5736 		v &= M_RXTMIN;
5737 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5738 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5739 	}
5740 	if (t4_toe_rexmt_max != 0) {
5741 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5742 		v &= M_RXTMAX;
5743 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5744 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5745 	}
5746 	if (t4_toe_rexmt_count != 0) {
5747 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5748 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5749 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5750 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5751 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5752 	}
5753 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5754 		if (t4_toe_rexmt_backoff[i] != -1) {
5755 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5756 			shift = (i & 3) << 3;
5757 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5758 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5759 		}
5760 	}
5761 #endif
5762 
5763 	/*
5764 	 * Limit TOE connections to 2 reassembly "islands".  This is
5765 	 * required to permit migrating TOE connections to either
5766 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5767 	 */
5768 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5769 	    V_PASSMODE(2));
5770 
5771 #ifdef KERN_TLS
5772 	if (is_ktls(sc)) {
5773 		sc->tlst.inline_keys = t4_tls_inline_keys;
5774 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5775 		if (t4_kern_tls != 0 && is_t6(sc))
5776 			t6_config_kern_tls(sc, true);
5777 	}
5778 #endif
5779 	return (0);
5780 }
5781 
5782 #undef FW_PARAM_PFVF
5783 #undef FW_PARAM_DEV
5784 
5785 static void
5786 t4_set_desc(struct adapter *sc)
5787 {
5788 	struct adapter_params *p = &sc->params;
5789 
5790 	device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5791 }
5792 
5793 static inline void
5794 ifmedia_add4(struct ifmedia *ifm, int m)
5795 {
5796 
5797 	ifmedia_add(ifm, m, 0, NULL);
5798 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5799 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5800 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5801 }
5802 
5803 /*
5804  * This is the selected media, which is not quite the same as the active media.
5805  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5806  * and active are not the same, and "media: Ethernet selected" otherwise.
5807  */
5808 static void
5809 set_current_media(struct port_info *pi)
5810 {
5811 	struct link_config *lc;
5812 	struct ifmedia *ifm;
5813 	int mword;
5814 	u_int speed;
5815 
5816 	PORT_LOCK_ASSERT_OWNED(pi);
5817 
5818 	/* Leave current media alone if it's already set to IFM_NONE. */
5819 	ifm = &pi->media;
5820 	if (ifm->ifm_cur != NULL &&
5821 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5822 		return;
5823 
5824 	lc = &pi->link_cfg;
5825 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5826 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5827 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5828 		return;
5829 	}
5830 	mword = IFM_ETHER | IFM_FDX;
5831 	if (lc->requested_fc & PAUSE_TX)
5832 		mword |= IFM_ETH_TXPAUSE;
5833 	if (lc->requested_fc & PAUSE_RX)
5834 		mword |= IFM_ETH_RXPAUSE;
5835 	if (lc->requested_speed == 0)
5836 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5837 	else
5838 		speed = lc->requested_speed;
5839 	mword |= port_mword(pi, speed_to_fwcap(speed));
5840 	ifmedia_set(ifm, mword);
5841 }
5842 
5843 /*
5844  * Returns true if the ifmedia list for the port cannot change.
5845  */
5846 static bool
5847 fixed_ifmedia(struct port_info *pi)
5848 {
5849 
5850 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5851 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5852 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5853 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5854 	    pi->port_type == FW_PORT_TYPE_KX ||
5855 	    pi->port_type == FW_PORT_TYPE_KR ||
5856 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5857 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5858 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5859 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5860 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5861 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5862 }
5863 
5864 static void
5865 build_medialist(struct port_info *pi)
5866 {
5867 	uint32_t ss, speed;
5868 	int unknown, mword, bit;
5869 	struct link_config *lc;
5870 	struct ifmedia *ifm;
5871 
5872 	PORT_LOCK_ASSERT_OWNED(pi);
5873 
5874 	if (pi->flags & FIXED_IFMEDIA)
5875 		return;
5876 
5877 	/*
5878 	 * Rebuild the ifmedia list.
5879 	 */
5880 	ifm = &pi->media;
5881 	ifmedia_removeall(ifm);
5882 	lc = &pi->link_cfg;
5883 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5884 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5885 		MPASS(ss != 0);
5886 no_media:
5887 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5888 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5889 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5890 		return;
5891 	}
5892 
5893 	unknown = 0;
5894 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5895 		speed = 1 << bit;
5896 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5897 		if (ss & speed) {
5898 			mword = port_mword(pi, speed);
5899 			if (mword == IFM_NONE) {
5900 				goto no_media;
5901 			} else if (mword == IFM_UNKNOWN)
5902 				unknown++;
5903 			else
5904 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5905 		}
5906 	}
5907 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5908 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5909 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5910 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5911 
5912 	set_current_media(pi);
5913 }
5914 
5915 /*
5916  * Initialize the requested fields in the link config based on driver tunables.
5917  */
5918 static void
5919 init_link_config(struct port_info *pi)
5920 {
5921 	struct link_config *lc = &pi->link_cfg;
5922 
5923 	PORT_LOCK_ASSERT_OWNED(pi);
5924 
5925 	lc->requested_caps = 0;
5926 	lc->requested_speed = 0;
5927 
5928 	if (t4_autoneg == 0)
5929 		lc->requested_aneg = AUTONEG_DISABLE;
5930 	else if (t4_autoneg == 1)
5931 		lc->requested_aneg = AUTONEG_ENABLE;
5932 	else
5933 		lc->requested_aneg = AUTONEG_AUTO;
5934 
5935 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5936 	    PAUSE_AUTONEG);
5937 
5938 	if (t4_fec & FEC_AUTO)
5939 		lc->requested_fec = FEC_AUTO;
5940 	else if (t4_fec == 0)
5941 		lc->requested_fec = FEC_NONE;
5942 	else {
5943 		/* -1 is handled by the FEC_AUTO block above and not here. */
5944 		lc->requested_fec = t4_fec &
5945 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5946 		if (lc->requested_fec == 0)
5947 			lc->requested_fec = FEC_AUTO;
5948 	}
5949 	if (t4_force_fec < 0)
5950 		lc->force_fec = -1;
5951 	else if (t4_force_fec > 0)
5952 		lc->force_fec = 1;
5953 	else
5954 		lc->force_fec = 0;
5955 }
5956 
5957 /*
5958  * Makes sure that all requested settings comply with what's supported by the
5959  * port.  Returns the number of settings that were invalid and had to be fixed.
5960  */
5961 static int
5962 fixup_link_config(struct port_info *pi)
5963 {
5964 	int n = 0;
5965 	struct link_config *lc = &pi->link_cfg;
5966 	uint32_t fwspeed;
5967 
5968 	PORT_LOCK_ASSERT_OWNED(pi);
5969 
5970 	/* Speed (when not autonegotiating) */
5971 	if (lc->requested_speed != 0) {
5972 		fwspeed = speed_to_fwcap(lc->requested_speed);
5973 		if ((fwspeed & lc->pcaps) == 0) {
5974 			n++;
5975 			lc->requested_speed = 0;
5976 		}
5977 	}
5978 
5979 	/* Link autonegotiation */
5980 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5981 	    lc->requested_aneg == AUTONEG_DISABLE ||
5982 	    lc->requested_aneg == AUTONEG_AUTO);
5983 	if (lc->requested_aneg == AUTONEG_ENABLE &&
5984 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5985 		n++;
5986 		lc->requested_aneg = AUTONEG_AUTO;
5987 	}
5988 
5989 	/* Flow control */
5990 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5991 	if (lc->requested_fc & PAUSE_TX &&
5992 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5993 		n++;
5994 		lc->requested_fc &= ~PAUSE_TX;
5995 	}
5996 	if (lc->requested_fc & PAUSE_RX &&
5997 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5998 		n++;
5999 		lc->requested_fc &= ~PAUSE_RX;
6000 	}
6001 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6002 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6003 		n++;
6004 		lc->requested_fc |= PAUSE_AUTONEG;
6005 	}
6006 
6007 	/* FEC */
6008 	if ((lc->requested_fec & FEC_RS &&
6009 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6010 	    (lc->requested_fec & FEC_BASER_RS &&
6011 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6012 		n++;
6013 		lc->requested_fec = FEC_AUTO;
6014 	}
6015 
6016 	return (n);
6017 }
6018 
6019 /*
6020  * Apply the requested L1 settings, which are expected to be valid, to the
6021  * hardware.
6022  */
6023 static int
6024 apply_link_config(struct port_info *pi)
6025 {
6026 	struct adapter *sc = pi->adapter;
6027 	struct link_config *lc = &pi->link_cfg;
6028 	int rc;
6029 
6030 #ifdef INVARIANTS
6031 	ASSERT_SYNCHRONIZED_OP(sc);
6032 	PORT_LOCK_ASSERT_OWNED(pi);
6033 
6034 	if (lc->requested_aneg == AUTONEG_ENABLE)
6035 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6036 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6037 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6038 	if (lc->requested_fc & PAUSE_TX)
6039 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6040 	if (lc->requested_fc & PAUSE_RX)
6041 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6042 	if (lc->requested_fec & FEC_RS)
6043 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6044 	if (lc->requested_fec & FEC_BASER_RS)
6045 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6046 #endif
6047 	if (!(sc->flags & IS_VF)) {
6048 		rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6049 		if (rc != 0) {
6050 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6051 			return (rc);
6052 		}
6053 	}
6054 
6055 	/*
6056 	 * An L1_CFG will almost always result in a link-change event if the
6057 	 * link is up, and the driver will refresh the actual fec/fc/etc. when
6058 	 * the notification is processed.  If the link is down then the actual
6059 	 * settings are meaningless.
6060 	 *
6061 	 * This takes care of the case where a change in the L1 settings may not
6062 	 * result in a notification.
6063 	 */
6064 	if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6065 		lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6066 
6067 	return (0);
6068 }
6069 
6070 #define FW_MAC_EXACT_CHUNK	7
6071 struct mcaddr_ctx {
6072 	if_t ifp;
6073 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6074 	uint64_t hash;
6075 	int i;
6076 	int del;
6077 	int rc;
6078 };
6079 
6080 static u_int
6081 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6082 {
6083 	struct mcaddr_ctx *ctx = arg;
6084 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6085 	struct port_info *pi = vi->pi;
6086 	struct adapter *sc = pi->adapter;
6087 
6088 	if (ctx->rc < 0)
6089 		return (0);
6090 
6091 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6092 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6093 	ctx->i++;
6094 
6095 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6096 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6097 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6098 		if (ctx->rc < 0) {
6099 			int j;
6100 
6101 			for (j = 0; j < ctx->i; j++) {
6102 				if_printf(ctx->ifp,
6103 				    "failed to add mc address"
6104 				    " %02x:%02x:%02x:"
6105 				    "%02x:%02x:%02x rc=%d\n",
6106 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6107 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6108 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6109 				    -ctx->rc);
6110 			}
6111 			return (0);
6112 		}
6113 		ctx->del = 0;
6114 		ctx->i = 0;
6115 	}
6116 
6117 	return (1);
6118 }
6119 
6120 /*
6121  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6122  * indicates which parameters should be programmed (the rest are left alone).
6123  */
6124 int
6125 update_mac_settings(if_t ifp, int flags)
6126 {
6127 	int rc = 0;
6128 	struct vi_info *vi = if_getsoftc(ifp);
6129 	struct port_info *pi = vi->pi;
6130 	struct adapter *sc = pi->adapter;
6131 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6132 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6133 
6134 	ASSERT_SYNCHRONIZED_OP(sc);
6135 	KASSERT(flags, ("%s: not told what to update.", __func__));
6136 
6137 	if (flags & XGMAC_MTU)
6138 		mtu = if_getmtu(ifp);
6139 
6140 	if (flags & XGMAC_PROMISC)
6141 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6142 
6143 	if (flags & XGMAC_ALLMULTI)
6144 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6145 
6146 	if (flags & XGMAC_VLANEX)
6147 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6148 
6149 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6150 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6151 		    allmulti, 1, vlanex, false);
6152 		if (rc) {
6153 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6154 			    rc);
6155 			return (rc);
6156 		}
6157 	}
6158 
6159 	if (flags & XGMAC_UCADDR) {
6160 		uint8_t ucaddr[ETHER_ADDR_LEN];
6161 
6162 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6163 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6164 		    ucaddr, true, &vi->smt_idx);
6165 		if (rc < 0) {
6166 			rc = -rc;
6167 			if_printf(ifp, "change_mac failed: %d\n", rc);
6168 			return (rc);
6169 		} else {
6170 			vi->xact_addr_filt = rc;
6171 			rc = 0;
6172 		}
6173 	}
6174 
6175 	if (flags & XGMAC_MCADDRS) {
6176 		struct epoch_tracker et;
6177 		struct mcaddr_ctx ctx;
6178 		int j;
6179 
6180 		ctx.ifp = ifp;
6181 		ctx.hash = 0;
6182 		ctx.i = 0;
6183 		ctx.del = 1;
6184 		ctx.rc = 0;
6185 		/*
6186 		 * Unlike other drivers, we accumulate list of pointers into
6187 		 * interface address lists and we need to keep it safe even
6188 		 * after if_foreach_llmaddr() returns, thus we must enter the
6189 		 * network epoch.
6190 		 */
6191 		NET_EPOCH_ENTER(et);
6192 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6193 		if (ctx.rc < 0) {
6194 			NET_EPOCH_EXIT(et);
6195 			rc = -ctx.rc;
6196 			return (rc);
6197 		}
6198 		if (ctx.i > 0) {
6199 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6200 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6201 			NET_EPOCH_EXIT(et);
6202 			if (rc < 0) {
6203 				rc = -rc;
6204 				for (j = 0; j < ctx.i; j++) {
6205 					if_printf(ifp,
6206 					    "failed to add mcast address"
6207 					    " %02x:%02x:%02x:"
6208 					    "%02x:%02x:%02x rc=%d\n",
6209 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6210 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6211 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6212 					    rc);
6213 				}
6214 				return (rc);
6215 			}
6216 			ctx.del = 0;
6217 		} else
6218 			NET_EPOCH_EXIT(et);
6219 
6220 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6221 		if (rc != 0)
6222 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6223 			    rc);
6224 		if (ctx.del == 0) {
6225 			/* We clobbered the VXLAN entry if there was one. */
6226 			pi->vxlan_tcam_entry = false;
6227 		}
6228 	}
6229 
6230 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6231 	    pi->vxlan_tcam_entry == false) {
6232 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6233 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6234 		    true);
6235 		if (rc < 0) {
6236 			rc = -rc;
6237 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6238 			    rc);
6239 		} else {
6240 			MPASS(rc == sc->rawf_base + pi->port_id);
6241 			rc = 0;
6242 			pi->vxlan_tcam_entry = true;
6243 		}
6244 	}
6245 
6246 	return (rc);
6247 }
6248 
6249 /*
6250  * {begin|end}_synchronized_op must be called from the same thread.
6251  */
6252 int
6253 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6254     char *wmesg)
6255 {
6256 	int rc, pri;
6257 
6258 #ifdef WITNESS
6259 	/* the caller thinks it's ok to sleep, but is it really? */
6260 	if (flags & SLEEP_OK)
6261 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6262 		    "begin_synchronized_op");
6263 #endif
6264 
6265 	if (INTR_OK)
6266 		pri = PCATCH;
6267 	else
6268 		pri = 0;
6269 
6270 	ADAPTER_LOCK(sc);
6271 	for (;;) {
6272 
6273 		if (vi && IS_DETACHING(vi)) {
6274 			rc = ENXIO;
6275 			goto done;
6276 		}
6277 
6278 		if (!IS_BUSY(sc)) {
6279 			rc = 0;
6280 			break;
6281 		}
6282 
6283 		if (!(flags & SLEEP_OK)) {
6284 			rc = EBUSY;
6285 			goto done;
6286 		}
6287 
6288 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6289 			rc = EINTR;
6290 			goto done;
6291 		}
6292 	}
6293 
6294 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6295 	SET_BUSY(sc);
6296 #ifdef INVARIANTS
6297 	sc->last_op = wmesg;
6298 	sc->last_op_thr = curthread;
6299 	sc->last_op_flags = flags;
6300 #endif
6301 
6302 done:
6303 	if (!(flags & HOLD_LOCK) || rc)
6304 		ADAPTER_UNLOCK(sc);
6305 
6306 	return (rc);
6307 }
6308 
6309 /*
6310  * Tell if_ioctl and if_init that the VI is going away.  This is
6311  * special variant of begin_synchronized_op and must be paired with a
6312  * call to end_vi_detach.
6313  */
6314 void
6315 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6316 {
6317 	ADAPTER_LOCK(sc);
6318 	SET_DETACHING(vi);
6319 	wakeup(&sc->flags);
6320 	while (IS_BUSY(sc))
6321 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6322 	SET_BUSY(sc);
6323 #ifdef INVARIANTS
6324 	sc->last_op = "t4detach";
6325 	sc->last_op_thr = curthread;
6326 	sc->last_op_flags = 0;
6327 #endif
6328 	ADAPTER_UNLOCK(sc);
6329 }
6330 
6331 void
6332 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6333 {
6334 	ADAPTER_LOCK(sc);
6335 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6336 	CLR_BUSY(sc);
6337 	CLR_DETACHING(vi);
6338 	wakeup(&sc->flags);
6339 	ADAPTER_UNLOCK(sc);
6340 }
6341 
6342 /*
6343  * {begin|end}_synchronized_op must be called from the same thread.
6344  */
6345 void
6346 end_synchronized_op(struct adapter *sc, int flags)
6347 {
6348 
6349 	if (flags & LOCK_HELD)
6350 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6351 	else
6352 		ADAPTER_LOCK(sc);
6353 
6354 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6355 	CLR_BUSY(sc);
6356 	wakeup(&sc->flags);
6357 	ADAPTER_UNLOCK(sc);
6358 }
6359 
6360 static int
6361 cxgbe_init_synchronized(struct vi_info *vi)
6362 {
6363 	struct port_info *pi = vi->pi;
6364 	struct adapter *sc = pi->adapter;
6365 	if_t ifp = vi->ifp;
6366 	int rc = 0, i;
6367 	struct sge_txq *txq;
6368 
6369 	ASSERT_SYNCHRONIZED_OP(sc);
6370 
6371 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6372 		return (0);	/* already running */
6373 
6374 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6375 		return (rc);	/* error message displayed already */
6376 
6377 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6378 		return (rc); /* error message displayed already */
6379 
6380 	rc = update_mac_settings(ifp, XGMAC_ALL);
6381 	if (rc)
6382 		goto done;	/* error message displayed already */
6383 
6384 	PORT_LOCK(pi);
6385 	if (pi->up_vis == 0) {
6386 		t4_update_port_info(pi);
6387 		fixup_link_config(pi);
6388 		build_medialist(pi);
6389 		apply_link_config(pi);
6390 	}
6391 
6392 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6393 	if (rc != 0) {
6394 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6395 		PORT_UNLOCK(pi);
6396 		goto done;
6397 	}
6398 
6399 	/*
6400 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6401 	 * if this changes.
6402 	 */
6403 
6404 	for_each_txq(vi, i, txq) {
6405 		TXQ_LOCK(txq);
6406 		txq->eq.flags |= EQ_ENABLED;
6407 		TXQ_UNLOCK(txq);
6408 	}
6409 
6410 	/*
6411 	 * The first iq of the first port to come up is used for tracing.
6412 	 */
6413 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6414 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6415 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6416 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6417 		    V_QUEUENUMBER(sc->traceq));
6418 		pi->flags |= HAS_TRACEQ;
6419 	}
6420 
6421 	/* all ok */
6422 	pi->up_vis++;
6423 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6424 	if (pi->link_cfg.link_ok)
6425 		t4_os_link_changed(pi);
6426 	PORT_UNLOCK(pi);
6427 
6428 	mtx_lock(&vi->tick_mtx);
6429 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6430 		callout_reset(&vi->tick, hz, vi_tick, vi);
6431 	else
6432 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6433 	mtx_unlock(&vi->tick_mtx);
6434 done:
6435 	if (rc != 0)
6436 		cxgbe_uninit_synchronized(vi);
6437 
6438 	return (rc);
6439 }
6440 
6441 /*
6442  * Idempotent.
6443  */
6444 static int
6445 cxgbe_uninit_synchronized(struct vi_info *vi)
6446 {
6447 	struct port_info *pi = vi->pi;
6448 	struct adapter *sc = pi->adapter;
6449 	if_t ifp = vi->ifp;
6450 	int rc, i;
6451 	struct sge_txq *txq;
6452 
6453 	ASSERT_SYNCHRONIZED_OP(sc);
6454 
6455 	if (!(vi->flags & VI_INIT_DONE)) {
6456 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6457 			KASSERT(0, ("uninited VI is running"));
6458 			if_printf(ifp, "uninited VI with running ifnet.  "
6459 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6460 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6461 			    if_getdrvflags(ifp));
6462 		}
6463 		return (0);
6464 	}
6465 
6466 	/*
6467 	 * Disable the VI so that all its data in either direction is discarded
6468 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6469 	 * tick) intact as the TP can deliver negative advice or data that it's
6470 	 * holding in its RAM (for an offloaded connection) even after the VI is
6471 	 * disabled.
6472 	 */
6473 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6474 	if (rc) {
6475 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6476 		return (rc);
6477 	}
6478 
6479 	for_each_txq(vi, i, txq) {
6480 		TXQ_LOCK(txq);
6481 		txq->eq.flags &= ~EQ_ENABLED;
6482 		TXQ_UNLOCK(txq);
6483 	}
6484 
6485 	mtx_lock(&vi->tick_mtx);
6486 	callout_stop(&vi->tick);
6487 	mtx_unlock(&vi->tick_mtx);
6488 
6489 	PORT_LOCK(pi);
6490 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6491 		PORT_UNLOCK(pi);
6492 		return (0);
6493 	}
6494 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6495 	pi->up_vis--;
6496 	if (pi->up_vis > 0) {
6497 		PORT_UNLOCK(pi);
6498 		return (0);
6499 	}
6500 
6501 	pi->link_cfg.link_ok = false;
6502 	pi->link_cfg.speed = 0;
6503 	pi->link_cfg.link_down_rc = 255;
6504 	t4_os_link_changed(pi);
6505 	PORT_UNLOCK(pi);
6506 
6507 	return (0);
6508 }
6509 
6510 /*
6511  * It is ok for this function to fail midway and return right away.  t4_detach
6512  * will walk the entire sc->irq list and clean up whatever is valid.
6513  */
6514 int
6515 t4_setup_intr_handlers(struct adapter *sc)
6516 {
6517 	int rc, rid, p, q, v;
6518 	char s[8];
6519 	struct irq *irq;
6520 	struct port_info *pi;
6521 	struct vi_info *vi;
6522 	struct sge *sge = &sc->sge;
6523 	struct sge_rxq *rxq;
6524 #ifdef TCP_OFFLOAD
6525 	struct sge_ofld_rxq *ofld_rxq;
6526 #endif
6527 #ifdef DEV_NETMAP
6528 	struct sge_nm_rxq *nm_rxq;
6529 #endif
6530 #ifdef RSS
6531 	int nbuckets = rss_getnumbuckets();
6532 #endif
6533 
6534 	/*
6535 	 * Setup interrupts.
6536 	 */
6537 	irq = &sc->irq[0];
6538 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6539 	if (forwarding_intr_to_fwq(sc))
6540 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6541 
6542 	/* Multiple interrupts. */
6543 	if (sc->flags & IS_VF)
6544 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6545 		    ("%s: too few intr.", __func__));
6546 	else
6547 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6548 		    ("%s: too few intr.", __func__));
6549 
6550 	/* The first one is always error intr on PFs */
6551 	if (!(sc->flags & IS_VF)) {
6552 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6553 		if (rc != 0)
6554 			return (rc);
6555 		irq++;
6556 		rid++;
6557 	}
6558 
6559 	/* The second one is always the firmware event queue (first on VFs) */
6560 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6561 	if (rc != 0)
6562 		return (rc);
6563 	irq++;
6564 	rid++;
6565 
6566 	for_each_port(sc, p) {
6567 		pi = sc->port[p];
6568 		for_each_vi(pi, v, vi) {
6569 			vi->first_intr = rid - 1;
6570 
6571 			if (vi->nnmrxq > 0) {
6572 				int n = max(vi->nrxq, vi->nnmrxq);
6573 
6574 				rxq = &sge->rxq[vi->first_rxq];
6575 #ifdef DEV_NETMAP
6576 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6577 #endif
6578 				for (q = 0; q < n; q++) {
6579 					snprintf(s, sizeof(s), "%x%c%x", p,
6580 					    'a' + v, q);
6581 					if (q < vi->nrxq)
6582 						irq->rxq = rxq++;
6583 #ifdef DEV_NETMAP
6584 					if (q < vi->nnmrxq)
6585 						irq->nm_rxq = nm_rxq++;
6586 
6587 					if (irq->nm_rxq != NULL &&
6588 					    irq->rxq == NULL) {
6589 						/* Netmap rx only */
6590 						rc = t4_alloc_irq(sc, irq, rid,
6591 						    t4_nm_intr, irq->nm_rxq, s);
6592 					}
6593 					if (irq->nm_rxq != NULL &&
6594 					    irq->rxq != NULL) {
6595 						/* NIC and Netmap rx */
6596 						rc = t4_alloc_irq(sc, irq, rid,
6597 						    t4_vi_intr, irq, s);
6598 					}
6599 #endif
6600 					if (irq->rxq != NULL &&
6601 					    irq->nm_rxq == NULL) {
6602 						/* NIC rx only */
6603 						rc = t4_alloc_irq(sc, irq, rid,
6604 						    t4_intr, irq->rxq, s);
6605 					}
6606 					if (rc != 0)
6607 						return (rc);
6608 #ifdef RSS
6609 					if (q < vi->nrxq) {
6610 						bus_bind_intr(sc->dev, irq->res,
6611 						    rss_getcpu(q % nbuckets));
6612 					}
6613 #endif
6614 					irq++;
6615 					rid++;
6616 					vi->nintr++;
6617 				}
6618 			} else {
6619 				for_each_rxq(vi, q, rxq) {
6620 					snprintf(s, sizeof(s), "%x%c%x", p,
6621 					    'a' + v, q);
6622 					rc = t4_alloc_irq(sc, irq, rid,
6623 					    t4_intr, rxq, s);
6624 					if (rc != 0)
6625 						return (rc);
6626 #ifdef RSS
6627 					bus_bind_intr(sc->dev, irq->res,
6628 					    rss_getcpu(q % nbuckets));
6629 #endif
6630 					irq++;
6631 					rid++;
6632 					vi->nintr++;
6633 				}
6634 			}
6635 #ifdef TCP_OFFLOAD
6636 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6637 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6638 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6639 				    ofld_rxq, s);
6640 				if (rc != 0)
6641 					return (rc);
6642 				irq++;
6643 				rid++;
6644 				vi->nintr++;
6645 			}
6646 #endif
6647 		}
6648 	}
6649 	MPASS(irq == &sc->irq[sc->intr_count]);
6650 
6651 	return (0);
6652 }
6653 
6654 static void
6655 write_global_rss_key(struct adapter *sc)
6656 {
6657 #ifdef RSS
6658 	int i;
6659 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6660 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6661 
6662 	CTASSERT(RSS_KEYSIZE == 40);
6663 
6664 	rss_getkey((void *)&raw_rss_key[0]);
6665 	for (i = 0; i < nitems(rss_key); i++) {
6666 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6667 	}
6668 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6669 #endif
6670 }
6671 
6672 /*
6673  * Idempotent.
6674  */
6675 static int
6676 adapter_full_init(struct adapter *sc)
6677 {
6678 	int rc, i;
6679 
6680 	ASSERT_SYNCHRONIZED_OP(sc);
6681 
6682 	/*
6683 	 * queues that belong to the adapter (not any particular port).
6684 	 */
6685 	rc = t4_setup_adapter_queues(sc);
6686 	if (rc != 0)
6687 		return (rc);
6688 
6689 	MPASS(sc->params.nports <= nitems(sc->tq));
6690 	for (i = 0; i < sc->params.nports; i++) {
6691 		if (sc->tq[i] != NULL)
6692 			continue;
6693 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6694 		    taskqueue_thread_enqueue, &sc->tq[i]);
6695 		if (sc->tq[i] == NULL) {
6696 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6697 			return (ENOMEM);
6698 		}
6699 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6700 		    device_get_nameunit(sc->dev), i);
6701 	}
6702 
6703 	if (!(sc->flags & IS_VF)) {
6704 		write_global_rss_key(sc);
6705 		t4_intr_enable(sc);
6706 	}
6707 	return (0);
6708 }
6709 
6710 int
6711 adapter_init(struct adapter *sc)
6712 {
6713 	int rc;
6714 
6715 	ASSERT_SYNCHRONIZED_OP(sc);
6716 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6717 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6718 	    ("%s: FULL_INIT_DONE already", __func__));
6719 
6720 	rc = adapter_full_init(sc);
6721 	if (rc != 0)
6722 		adapter_full_uninit(sc);
6723 	else
6724 		sc->flags |= FULL_INIT_DONE;
6725 
6726 	return (rc);
6727 }
6728 
6729 /*
6730  * Idempotent.
6731  */
6732 static void
6733 adapter_full_uninit(struct adapter *sc)
6734 {
6735 	int i;
6736 
6737 	t4_teardown_adapter_queues(sc);
6738 
6739 	for (i = 0; i < nitems(sc->tq); i++) {
6740 		if (sc->tq[i] == NULL)
6741 			continue;
6742 		taskqueue_free(sc->tq[i]);
6743 		sc->tq[i] = NULL;
6744 	}
6745 
6746 	sc->flags &= ~FULL_INIT_DONE;
6747 }
6748 
6749 #ifdef RSS
6750 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6751     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6752     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6753     RSS_HASHTYPE_RSS_UDP_IPV6)
6754 
6755 /* Translates kernel hash types to hardware. */
6756 static int
6757 hashconfig_to_hashen(int hashconfig)
6758 {
6759 	int hashen = 0;
6760 
6761 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6762 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6763 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6764 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6765 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6766 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6767 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6768 	}
6769 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6770 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6771 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6772 	}
6773 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6774 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6775 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6776 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6777 
6778 	return (hashen);
6779 }
6780 
6781 /* Translates hardware hash types to kernel. */
6782 static int
6783 hashen_to_hashconfig(int hashen)
6784 {
6785 	int hashconfig = 0;
6786 
6787 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6788 		/*
6789 		 * If UDP hashing was enabled it must have been enabled for
6790 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6791 		 * enabling any 4-tuple hash is nonsense configuration.
6792 		 */
6793 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6794 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6795 
6796 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6797 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6798 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6799 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6800 	}
6801 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6802 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6803 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6804 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6805 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6806 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6807 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6808 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6809 
6810 	return (hashconfig);
6811 }
6812 #endif
6813 
6814 /*
6815  * Idempotent.
6816  */
6817 static int
6818 vi_full_init(struct vi_info *vi)
6819 {
6820 	struct adapter *sc = vi->adapter;
6821 	struct sge_rxq *rxq;
6822 	int rc, i, j;
6823 #ifdef RSS
6824 	int nbuckets = rss_getnumbuckets();
6825 	int hashconfig = rss_gethashconfig();
6826 	int extra;
6827 #endif
6828 
6829 	ASSERT_SYNCHRONIZED_OP(sc);
6830 
6831 	/*
6832 	 * Allocate tx/rx/fl queues for this VI.
6833 	 */
6834 	rc = t4_setup_vi_queues(vi);
6835 	if (rc != 0)
6836 		return (rc);
6837 
6838 	/*
6839 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6840 	 */
6841 	if (vi->nrxq > vi->rss_size) {
6842 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6843 		    "some queues will never receive traffic.\n", vi->nrxq,
6844 		    vi->rss_size);
6845 	} else if (vi->rss_size % vi->nrxq) {
6846 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6847 		    "expect uneven traffic distribution.\n", vi->nrxq,
6848 		    vi->rss_size);
6849 	}
6850 #ifdef RSS
6851 	if (vi->nrxq != nbuckets) {
6852 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6853 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6854 	}
6855 #endif
6856 	if (vi->rss == NULL)
6857 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6858 		    M_ZERO | M_WAITOK);
6859 	for (i = 0; i < vi->rss_size;) {
6860 #ifdef RSS
6861 		j = rss_get_indirection_to_bucket(i);
6862 		j %= vi->nrxq;
6863 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6864 		vi->rss[i++] = rxq->iq.abs_id;
6865 #else
6866 		for_each_rxq(vi, j, rxq) {
6867 			vi->rss[i++] = rxq->iq.abs_id;
6868 			if (i == vi->rss_size)
6869 				break;
6870 		}
6871 #endif
6872 	}
6873 
6874 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6875 	    vi->rss, vi->rss_size);
6876 	if (rc != 0) {
6877 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6878 		return (rc);
6879 	}
6880 
6881 #ifdef RSS
6882 	vi->hashen = hashconfig_to_hashen(hashconfig);
6883 
6884 	/*
6885 	 * We may have had to enable some hashes even though the global config
6886 	 * wants them disabled.  This is a potential problem that must be
6887 	 * reported to the user.
6888 	 */
6889 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6890 
6891 	/*
6892 	 * If we consider only the supported hash types, then the enabled hashes
6893 	 * are a superset of the requested hashes.  In other words, there cannot
6894 	 * be any supported hash that was requested but not enabled, but there
6895 	 * can be hashes that were not requested but had to be enabled.
6896 	 */
6897 	extra &= SUPPORTED_RSS_HASHTYPES;
6898 	MPASS((extra & hashconfig) == 0);
6899 
6900 	if (extra) {
6901 		CH_ALERT(vi,
6902 		    "global RSS config (0x%x) cannot be accommodated.\n",
6903 		    hashconfig);
6904 	}
6905 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6906 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6907 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6908 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6909 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6910 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6911 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6912 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6913 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6914 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6915 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6916 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6917 #else
6918 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6919 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6920 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6921 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6922 #endif
6923 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6924 	    0, 0);
6925 	if (rc != 0) {
6926 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6927 		return (rc);
6928 	}
6929 
6930 	return (0);
6931 }
6932 
6933 int
6934 vi_init(struct vi_info *vi)
6935 {
6936 	int rc;
6937 
6938 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6939 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6940 	    ("%s: VI_INIT_DONE already", __func__));
6941 
6942 	rc = vi_full_init(vi);
6943 	if (rc != 0)
6944 		vi_full_uninit(vi);
6945 	else
6946 		vi->flags |= VI_INIT_DONE;
6947 
6948 	return (rc);
6949 }
6950 
6951 /*
6952  * Idempotent.
6953  */
6954 static void
6955 vi_full_uninit(struct vi_info *vi)
6956 {
6957 
6958 	if (vi->flags & VI_INIT_DONE) {
6959 		quiesce_vi(vi);
6960 		free(vi->rss, M_CXGBE);
6961 		free(vi->nm_rss, M_CXGBE);
6962 	}
6963 
6964 	t4_teardown_vi_queues(vi);
6965 	vi->flags &= ~VI_INIT_DONE;
6966 }
6967 
6968 static void
6969 quiesce_txq(struct sge_txq *txq)
6970 {
6971 	struct sge_eq *eq = &txq->eq;
6972 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6973 
6974 	MPASS(eq->flags & EQ_SW_ALLOCATED);
6975 	MPASS(!(eq->flags & EQ_ENABLED));
6976 
6977 	/* Wait for the mp_ring to empty. */
6978 	while (!mp_ring_is_idle(txq->r)) {
6979 		mp_ring_check_drainage(txq->r, 4096);
6980 		pause("rquiesce", 1);
6981 	}
6982 	MPASS(txq->txp.npkt == 0);
6983 
6984 	if (eq->flags & EQ_HW_ALLOCATED) {
6985 		/*
6986 		 * Hardware is alive and working normally.  Wait for it to
6987 		 * finish and then wait for the driver to catch up and reclaim
6988 		 * all descriptors.
6989 		 */
6990 		while (spg->cidx != htobe16(eq->pidx))
6991 			pause("equiesce", 1);
6992 		while (eq->cidx != eq->pidx)
6993 			pause("dquiesce", 1);
6994 	} else {
6995 		/*
6996 		 * Hardware is unavailable.  Discard all pending tx and reclaim
6997 		 * descriptors directly.
6998 		 */
6999 		TXQ_LOCK(txq);
7000 		while (eq->cidx != eq->pidx) {
7001 			struct mbuf *m, *nextpkt;
7002 			struct tx_sdesc *txsd;
7003 
7004 			txsd = &txq->sdesc[eq->cidx];
7005 			for (m = txsd->m; m != NULL; m = nextpkt) {
7006 				nextpkt = m->m_nextpkt;
7007 				m->m_nextpkt = NULL;
7008 				m_freem(m);
7009 			}
7010 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7011 		}
7012 		spg->pidx = spg->cidx = htobe16(eq->cidx);
7013 		TXQ_UNLOCK(txq);
7014 	}
7015 }
7016 
7017 static void
7018 quiesce_wrq(struct sge_wrq *wrq)
7019 {
7020 
7021 	/* XXXTX */
7022 }
7023 
7024 static void
7025 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7026 {
7027 	/* Synchronize with the interrupt handler */
7028 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7029 		pause("iqfree", 1);
7030 
7031 	if (fl != NULL) {
7032 		MPASS(iq->flags & IQ_HAS_FL);
7033 
7034 		mtx_lock(&sc->sfl_lock);
7035 		FL_LOCK(fl);
7036 		fl->flags |= FL_DOOMED;
7037 		FL_UNLOCK(fl);
7038 		callout_stop(&sc->sfl_callout);
7039 		mtx_unlock(&sc->sfl_lock);
7040 
7041 		KASSERT((fl->flags & FL_STARVING) == 0,
7042 		    ("%s: still starving", __func__));
7043 
7044 		/* Release all buffers if hardware is no longer available. */
7045 		if (!(iq->flags & IQ_HW_ALLOCATED))
7046 			free_fl_buffers(sc, fl);
7047 	}
7048 }
7049 
7050 /*
7051  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7052  * that no new work is being enqueued by the hardware or the driver.  That part
7053  * should be arranged before calling this function.
7054  */
7055 static void
7056 quiesce_vi(struct vi_info *vi)
7057 {
7058 	int i;
7059 	struct adapter *sc = vi->adapter;
7060 	struct sge_rxq *rxq;
7061 	struct sge_txq *txq;
7062 #ifdef TCP_OFFLOAD
7063 	struct sge_ofld_rxq *ofld_rxq;
7064 #endif
7065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7066 	struct sge_ofld_txq *ofld_txq;
7067 #endif
7068 
7069 	if (!(vi->flags & VI_INIT_DONE))
7070 		return;
7071 
7072 	for_each_txq(vi, i, txq) {
7073 		quiesce_txq(txq);
7074 	}
7075 
7076 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7077 	for_each_ofld_txq(vi, i, ofld_txq) {
7078 		quiesce_wrq(&ofld_txq->wrq);
7079 	}
7080 #endif
7081 
7082 	for_each_rxq(vi, i, rxq) {
7083 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7084 	}
7085 
7086 #ifdef TCP_OFFLOAD
7087 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7088 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7089 	}
7090 #endif
7091 }
7092 
7093 static int
7094 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7095     driver_intr_t *handler, void *arg, char *name)
7096 {
7097 	int rc;
7098 
7099 	irq->rid = rid;
7100 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7101 	    RF_SHAREABLE | RF_ACTIVE);
7102 	if (irq->res == NULL) {
7103 		device_printf(sc->dev,
7104 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7105 		return (ENOMEM);
7106 	}
7107 
7108 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7109 	    NULL, handler, arg, &irq->tag);
7110 	if (rc != 0) {
7111 		device_printf(sc->dev,
7112 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7113 		    rid, name, rc);
7114 	} else if (name)
7115 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7116 
7117 	return (rc);
7118 }
7119 
7120 static int
7121 t4_free_irq(struct adapter *sc, struct irq *irq)
7122 {
7123 	if (irq->tag)
7124 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7125 	if (irq->res)
7126 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7127 
7128 	bzero(irq, sizeof(*irq));
7129 
7130 	return (0);
7131 }
7132 
7133 static void
7134 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7135 {
7136 
7137 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7138 	t4_get_regs(sc, buf, regs->len);
7139 }
7140 
7141 #define	A_PL_INDIR_CMD	0x1f8
7142 
7143 #define	S_PL_AUTOINC	31
7144 #define	M_PL_AUTOINC	0x1U
7145 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7146 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7147 
7148 #define	S_PL_VFID	20
7149 #define	M_PL_VFID	0xffU
7150 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7151 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7152 
7153 #define	S_PL_ADDR	0
7154 #define	M_PL_ADDR	0xfffffU
7155 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7156 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7157 
7158 #define	A_PL_INDIR_DATA	0x1fc
7159 
7160 static uint64_t
7161 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7162 {
7163 	u32 stats[2];
7164 
7165 	if (sc->flags & IS_VF) {
7166 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7167 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7168 	} else {
7169 		mtx_assert(&sc->reg_lock, MA_OWNED);
7170 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7171 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7172 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7173 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7174 	}
7175 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7176 }
7177 
7178 static void
7179 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7180 {
7181 
7182 #define GET_STAT(name) \
7183 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7184 
7185 	if (!(sc->flags & IS_VF))
7186 		mtx_lock(&sc->reg_lock);
7187 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7188 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7189 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7190 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7191 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7192 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7193 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7194 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7195 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7196 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7197 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7198 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7199 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7200 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7201 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7202 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7203 	if (!(sc->flags & IS_VF))
7204 		mtx_unlock(&sc->reg_lock);
7205 
7206 #undef GET_STAT
7207 }
7208 
7209 static void
7210 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7211 {
7212 	int reg;
7213 
7214 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7215 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7216 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7217 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7218 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7219 }
7220 
7221 static void
7222 vi_refresh_stats(struct vi_info *vi)
7223 {
7224 	struct timeval tv;
7225 	const struct timeval interval = {0, 250000};	/* 250ms */
7226 
7227 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7228 
7229 	if (vi->flags & VI_SKIP_STATS)
7230 		return;
7231 
7232 	getmicrotime(&tv);
7233 	timevalsub(&tv, &interval);
7234 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7235 		return;
7236 
7237 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7238 	getmicrotime(&vi->last_refreshed);
7239 }
7240 
7241 static void
7242 cxgbe_refresh_stats(struct vi_info *vi)
7243 {
7244 	u_int i, v, tnl_cong_drops, chan_map;
7245 	struct timeval tv;
7246 	const struct timeval interval = {0, 250000};	/* 250ms */
7247 	struct port_info *pi;
7248 	struct adapter *sc;
7249 
7250 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7251 
7252 	if (vi->flags & VI_SKIP_STATS)
7253 		return;
7254 
7255 	getmicrotime(&tv);
7256 	timevalsub(&tv, &interval);
7257 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7258 		return;
7259 
7260 	pi = vi->pi;
7261 	sc = vi->adapter;
7262 	tnl_cong_drops = 0;
7263 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7264 	chan_map = pi->rx_e_chan_map;
7265 	while (chan_map) {
7266 		i = ffs(chan_map) - 1;
7267 		mtx_lock(&sc->reg_lock);
7268 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7269 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7270 		mtx_unlock(&sc->reg_lock);
7271 		tnl_cong_drops += v;
7272 		chan_map &= ~(1 << i);
7273 	}
7274 	pi->tnl_cong_drops = tnl_cong_drops;
7275 	getmicrotime(&vi->last_refreshed);
7276 }
7277 
7278 static void
7279 cxgbe_tick(void *arg)
7280 {
7281 	struct vi_info *vi = arg;
7282 
7283 	MPASS(IS_MAIN_VI(vi));
7284 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7285 
7286 	cxgbe_refresh_stats(vi);
7287 	callout_schedule(&vi->tick, hz);
7288 }
7289 
7290 static void
7291 vi_tick(void *arg)
7292 {
7293 	struct vi_info *vi = arg;
7294 
7295 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7296 
7297 	vi_refresh_stats(vi);
7298 	callout_schedule(&vi->tick, hz);
7299 }
7300 
7301 /*
7302  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7303  */
7304 static char *caps_decoder[] = {
7305 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7306 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7307 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7308 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7309 	    "\006HASHFILTER\007ETHOFLD",
7310 	"\20\001TOE",					/* 4: TOE */
7311 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7312 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7313 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7314 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7315 	    "\007T10DIF"
7316 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7317 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7318 	    "\004TLS_HW",
7319 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7320 		    "\004PO_INITIATOR\005PO_TARGET",
7321 };
7322 
7323 void
7324 t4_sysctls(struct adapter *sc)
7325 {
7326 	struct sysctl_ctx_list *ctx = &sc->ctx;
7327 	struct sysctl_oid *oid;
7328 	struct sysctl_oid_list *children, *c0;
7329 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7330 
7331 	/*
7332 	 * dev.t4nex.X.
7333 	 */
7334 	oid = device_get_sysctl_tree(sc->dev);
7335 	c0 = children = SYSCTL_CHILDREN(oid);
7336 
7337 	sc->sc_do_rxcopy = 1;
7338 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7339 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7340 
7341 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7342 	    sc->params.nports, "# of ports");
7343 
7344 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7345 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7346 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7347 	    "available doorbells");
7348 
7349 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7350 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7351 
7352 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7353 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7354 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7355 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7356 
7357 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7358 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7359 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7360 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7361 
7362 	t4_sge_sysctls(sc, ctx, children);
7363 
7364 	sc->lro_timeout = 100;
7365 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7366 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7367 
7368 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7369 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7370 
7371 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7372 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7373 
7374 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7375 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7376 
7377 	if (sc->flags & IS_VF)
7378 		return;
7379 
7380 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7381 	    NULL, chip_rev(sc), "chip hardware revision");
7382 
7383 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7384 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7385 
7386 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7387 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7388 
7389 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7390 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7391 
7392 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7393 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7394 
7395 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7396 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7397 
7398 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7399 	    sc->er_version, 0, "expansion ROM version");
7400 
7401 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7402 	    sc->bs_version, 0, "bootstrap firmware version");
7403 
7404 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7405 	    NULL, sc->params.scfg_vers, "serial config version");
7406 
7407 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7408 	    NULL, sc->params.vpd_vers, "VPD version");
7409 
7410 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7411 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7412 
7413 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7414 	    sc->cfcsum, "config file checksum");
7415 
7416 #define SYSCTL_CAP(name, n, text) \
7417 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7418 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7419 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7420 	    "available " text " capabilities")
7421 
7422 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7423 	SYSCTL_CAP(linkcaps, 1, "link");
7424 	SYSCTL_CAP(switchcaps, 2, "switch");
7425 	SYSCTL_CAP(niccaps, 3, "NIC");
7426 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7427 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7428 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7429 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7430 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7431 #undef SYSCTL_CAP
7432 
7433 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7434 	    NULL, sc->tids.nftids, "number of filters");
7435 
7436 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7437 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7438 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7439 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7440 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7441 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7442 
7443 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7444 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7445 	    sysctl_loadavg, "A",
7446 	    "microprocessor load averages (debug firmwares only)");
7447 
7448 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7449 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7450 	    "I", "core Vdd (in mV)");
7451 
7452 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7453 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7454 	    sysctl_cpus, "A", "local CPUs");
7455 
7456 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7457 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7458 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7459 
7460 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7461 	    &sc->swintr, 0, "software triggered interrupts");
7462 
7463 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7464 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7465 	    "1 = reset adapter, 0 = zero reset counter");
7466 
7467 	/*
7468 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7469 	 */
7470 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7471 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7472 	    "logs and miscellaneous information");
7473 	children = SYSCTL_CHILDREN(oid);
7474 
7475 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7476 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7477 	    sysctl_cctrl, "A", "congestion control");
7478 
7479 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7480 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7481 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7482 
7483 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7484 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7485 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7486 
7487 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7488 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7489 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7490 
7491 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7492 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7493 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7494 
7495 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7496 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7497 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7498 
7499 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7500 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7501 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7502 
7503 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7504 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7505 	    sysctl_cim_la, "A", "CIM logic analyzer");
7506 
7507 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7508 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7509 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7510 
7511 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7512 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7513 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7514 
7515 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7516 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7517 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7518 
7519 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7520 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7521 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7522 
7523 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7524 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7525 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7526 
7527 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7528 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7529 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7530 
7531 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7532 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7533 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7534 
7535 	if (chip_id(sc) > CHELSIO_T4) {
7536 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7537 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7538 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7539 		    "CIM OBQ 6 (SGE0-RX)");
7540 
7541 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7542 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7543 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7544 		    "CIM OBQ 7 (SGE1-RX)");
7545 	}
7546 
7547 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7548 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7549 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7550 
7551 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7552 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7553 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7554 
7555 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7556 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7557 	    sysctl_cpl_stats, "A", "CPL statistics");
7558 
7559 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7560 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7561 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7562 
7563 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7564 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7565 	    sysctl_tid_stats, "A", "tid stats");
7566 
7567 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7568 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7569 	    sysctl_devlog, "A", "firmware's device log");
7570 
7571 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7572 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7573 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7574 
7575 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7576 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7577 	    sysctl_hw_sched, "A", "hardware scheduler ");
7578 
7579 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7580 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7581 	    sysctl_l2t, "A", "hardware L2 table");
7582 
7583 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7584 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7585 	    sysctl_smt, "A", "hardware source MAC table");
7586 
7587 #ifdef INET6
7588 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7589 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7590 	    sysctl_clip, "A", "active CLIP table entries");
7591 #endif
7592 
7593 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7594 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7595 	    sysctl_lb_stats, "A", "loopback statistics");
7596 
7597 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7598 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7599 	    sysctl_meminfo, "A", "memory regions");
7600 
7601 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7602 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7603 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7604 	    "A", "MPS TCAM entries");
7605 
7606 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7607 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7608 	    sysctl_path_mtus, "A", "path MTUs");
7609 
7610 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7611 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7612 	    sysctl_pm_stats, "A", "PM statistics");
7613 
7614 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7615 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7616 	    sysctl_rdma_stats, "A", "RDMA statistics");
7617 
7618 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7619 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7620 	    sysctl_tcp_stats, "A", "TCP statistics");
7621 
7622 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7623 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7624 	    sysctl_tids, "A", "TID information");
7625 
7626 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7627 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7628 	    sysctl_tp_err_stats, "A", "TP error statistics");
7629 
7630 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7631 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7632 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7633 
7634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7635 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7636 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7637 
7638 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7639 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7640 	    sysctl_tp_la, "A", "TP logic analyzer");
7641 
7642 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7643 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7644 	    sysctl_tx_rate, "A", "Tx rate");
7645 
7646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7647 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7648 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7649 
7650 	if (chip_id(sc) >= CHELSIO_T5) {
7651 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7652 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7653 		    sysctl_wcwr_stats, "A", "write combined work requests");
7654 	}
7655 
7656 #ifdef KERN_TLS
7657 	if (is_ktls(sc)) {
7658 		/*
7659 		 * dev.t4nex.0.tls.
7660 		 */
7661 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7662 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7663 		children = SYSCTL_CHILDREN(oid);
7664 
7665 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7666 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7667 		    "keys in work requests (1) or attempt to store TLS keys "
7668 		    "in card memory.");
7669 
7670 		if (is_t6(sc))
7671 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7672 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7673 			    "combine TCB field updates with TLS record work "
7674 			    "requests.");
7675 	}
7676 #endif
7677 
7678 #ifdef TCP_OFFLOAD
7679 	if (is_offload(sc)) {
7680 		int i;
7681 		char s[4];
7682 
7683 		/*
7684 		 * dev.t4nex.X.toe.
7685 		 */
7686 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7687 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7688 		children = SYSCTL_CHILDREN(oid);
7689 
7690 		sc->tt.cong_algorithm = -1;
7691 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7692 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7693 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7694 		    "3 = highspeed)");
7695 
7696 		sc->tt.sndbuf = -1;
7697 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7698 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7699 
7700 		sc->tt.ddp = 0;
7701 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7702 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7703 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7704 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7705 
7706 		sc->tt.rx_coalesce = -1;
7707 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7708 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7709 
7710 		sc->tt.tls = 0;
7711 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7712 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7713 		    "Inline TLS allowed");
7714 
7715 		sc->tt.tx_align = -1;
7716 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7717 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7718 
7719 		sc->tt.tx_zcopy = 0;
7720 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7721 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7722 		    "Enable zero-copy aio_write(2)");
7723 
7724 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7725 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7726 		    "cop_managed_offloading", CTLFLAG_RW,
7727 		    &sc->tt.cop_managed_offloading, 0,
7728 		    "COP (Connection Offload Policy) controls all TOE offload");
7729 
7730 		sc->tt.autorcvbuf_inc = 16 * 1024;
7731 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7732 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7733 		    "autorcvbuf increment");
7734 
7735 		sc->tt.update_hc_on_pmtu_change = 1;
7736 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7737 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7738 		    &sc->tt.update_hc_on_pmtu_change, 0,
7739 		    "Update hostcache entry if the PMTU changes");
7740 
7741 		sc->tt.iso = 1;
7742 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7743 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7744 
7745 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7746 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7747 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7748 
7749 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7750 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7751 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7752 
7753 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7754 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7755 		    sysctl_tp_tick, "A", "DACK tick (us)");
7756 
7757 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7758 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7759 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7760 
7761 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7762 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7763 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7764 		    "Minimum retransmit interval (us)");
7765 
7766 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7767 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7768 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7769 		    "Maximum retransmit interval (us)");
7770 
7771 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7772 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7773 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7774 		    "Persist timer min (us)");
7775 
7776 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7777 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7778 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7779 		    "Persist timer max (us)");
7780 
7781 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7782 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7783 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7784 		    "Keepalive idle timer (us)");
7785 
7786 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7787 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7788 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7789 		    "Keepalive interval timer (us)");
7790 
7791 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7792 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7793 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7794 
7795 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7796 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7797 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7798 		    "FINWAIT2 timer (us)");
7799 
7800 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7801 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7802 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7803 		    "Number of SYN retransmissions before abort");
7804 
7805 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7806 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7807 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7808 		    "Number of retransmissions before abort");
7809 
7810 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7811 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7812 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7813 		    "Number of keepalive probes before abort");
7814 
7815 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7816 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7817 		    "TOE retransmit backoffs");
7818 		children = SYSCTL_CHILDREN(oid);
7819 		for (i = 0; i < 16; i++) {
7820 			snprintf(s, sizeof(s), "%u", i);
7821 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7822 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7823 			    i, sysctl_tp_backoff, "IU",
7824 			    "TOE retransmit backoff");
7825 		}
7826 	}
7827 #endif
7828 }
7829 
7830 void
7831 vi_sysctls(struct vi_info *vi)
7832 {
7833 	struct sysctl_ctx_list *ctx = &vi->ctx;
7834 	struct sysctl_oid *oid;
7835 	struct sysctl_oid_list *children;
7836 
7837 	/*
7838 	 * dev.v?(cxgbe|cxl).X.
7839 	 */
7840 	oid = device_get_sysctl_tree(vi->dev);
7841 	children = SYSCTL_CHILDREN(oid);
7842 
7843 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7844 	    vi->viid, "VI identifer");
7845 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7846 	    &vi->nrxq, 0, "# of rx queues");
7847 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7848 	    &vi->ntxq, 0, "# of tx queues");
7849 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7850 	    &vi->first_rxq, 0, "index of first rx queue");
7851 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7852 	    &vi->first_txq, 0, "index of first tx queue");
7853 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7854 	    vi->rss_base, "start of RSS indirection table");
7855 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7856 	    vi->rss_size, "size of RSS indirection table");
7857 
7858 	if (IS_MAIN_VI(vi)) {
7859 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7860 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7861 		    sysctl_noflowq, "IU",
7862 		    "Reserve queue 0 for non-flowid packets");
7863 	}
7864 
7865 	if (vi->adapter->flags & IS_VF) {
7866 		MPASS(vi->flags & TX_USES_VM_WR);
7867 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7868 		    NULL, 1, "use VM work requests for transmit");
7869 	} else {
7870 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7871 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7872 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7873 	}
7874 
7875 #ifdef TCP_OFFLOAD
7876 	if (vi->nofldrxq != 0) {
7877 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7878 		    &vi->nofldrxq, 0,
7879 		    "# of rx queues for offloaded TCP connections");
7880 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7881 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7882 		    "index of first TOE rx queue");
7883 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7884 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7885 		    sysctl_holdoff_tmr_idx_ofld, "I",
7886 		    "holdoff timer index for TOE queues");
7887 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7888 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7889 		    sysctl_holdoff_pktc_idx_ofld, "I",
7890 		    "holdoff packet counter index for TOE queues");
7891 	}
7892 #endif
7893 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7894 	if (vi->nofldtxq != 0) {
7895 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7896 		    &vi->nofldtxq, 0,
7897 		    "# of tx queues for TOE/ETHOFLD");
7898 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7899 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7900 		    "index of first TOE/ETHOFLD tx queue");
7901 	}
7902 #endif
7903 #ifdef DEV_NETMAP
7904 	if (vi->nnmrxq != 0) {
7905 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7906 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7907 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7908 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7909 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7910 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7911 		    "index of first netmap rx queue");
7912 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7913 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7914 		    "index of first netmap tx queue");
7915 	}
7916 #endif
7917 
7918 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7919 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7920 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7921 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7922 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7923 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7924 
7925 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7926 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7927 	    sysctl_qsize_rxq, "I", "rx queue size");
7928 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7929 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7930 	    sysctl_qsize_txq, "I", "tx queue size");
7931 }
7932 
7933 static void
7934 cxgbe_sysctls(struct port_info *pi)
7935 {
7936 	struct sysctl_ctx_list *ctx = &pi->ctx;
7937 	struct sysctl_oid *oid;
7938 	struct sysctl_oid_list *children, *children2;
7939 	struct adapter *sc = pi->adapter;
7940 	int i;
7941 	char name[16];
7942 	static char *tc_flags = {"\20\1USER"};
7943 
7944 	/*
7945 	 * dev.cxgbe.X.
7946 	 */
7947 	oid = device_get_sysctl_tree(pi->dev);
7948 	children = SYSCTL_CHILDREN(oid);
7949 
7950 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7951 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7952 	    sysctl_linkdnrc, "A", "reason why link is down");
7953 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7954 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7955 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7956 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
7957 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7958 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7959 		    sysctl_btphy, "I", "PHY firmware version");
7960 	}
7961 
7962 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7963 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7964 	    sysctl_pause_settings, "A",
7965 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7966 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7967 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7968 	    "FEC in use on the link");
7969 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7970 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7971 	    sysctl_requested_fec, "A",
7972 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7973 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7974 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7975 	    "FEC recommended by the cable/transceiver");
7976 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7977 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7978 	    sysctl_autoneg, "I",
7979 	    "autonegotiation (-1 = not supported)");
7980 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7981 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7982 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7983 
7984 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7985 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7986 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7987 	    &pi->link_cfg.pcaps, 0, "port capabilities");
7988 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7989 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
7990 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7991 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7992 
7993 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7994 	    port_top_speed(pi), "max speed (in Gbps)");
7995 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7996 	    pi->mps_bg_map, "MPS buffer group map");
7997 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7998 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7999 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8000 	    pi->tx_chan, "TP tx c-channel");
8001 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8002 	    pi->rx_chan, "TP rx c-channel");
8003 
8004 	if (sc->flags & IS_VF)
8005 		return;
8006 
8007 	/*
8008 	 * dev.(cxgbe|cxl).X.tc.
8009 	 */
8010 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8011 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8012 	    "Tx scheduler traffic classes (cl_rl)");
8013 	children2 = SYSCTL_CHILDREN(oid);
8014 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8015 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8016 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
8017 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8018 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8019 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
8020 	for (i = 0; i < sc->params.nsched_cls; i++) {
8021 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8022 
8023 		snprintf(name, sizeof(name), "%d", i);
8024 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8025 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
8026 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8027 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8028 		    CTLFLAG_RD, &tc->state, 0, "current state");
8029 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8030 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8031 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8032 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8033 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8034 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8035 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8036 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8037 		    "traffic class parameters");
8038 	}
8039 
8040 	/*
8041 	 * dev.cxgbe.X.stats.
8042 	 */
8043 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8044 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8045 	children = SYSCTL_CHILDREN(oid);
8046 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8047 	    &pi->tx_parse_error, 0,
8048 	    "# of tx packets with invalid length or # of segments");
8049 
8050 #define T4_REGSTAT(name, stat, desc) \
8051     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8052 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8053 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8054         sysctl_handle_t4_reg64, "QU", desc)
8055 
8056 /* We get these from port_stats and they may be stale by up to 1s */
8057 #define T4_PORTSTAT(name, desc) \
8058 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8059 	    &pi->stats.name, desc)
8060 
8061 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8062 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8063 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8064 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8065 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8066 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8067 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8068 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8069 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8070 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8071 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8072 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8073 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8074 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8075 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8076 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8077 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8078 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8079 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8080 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8081 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8082 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8083 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8084 
8085 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8086 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8087 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8088 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8089 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8090 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8091 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8092 	if (is_t6(sc)) {
8093 		T4_PORTSTAT(rx_fcs_err,
8094 		    "# of frames received with bad FCS since last link up");
8095 	} else {
8096 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8097 		    "# of frames received with bad FCS");
8098 	}
8099 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8100 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8101 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8102 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8103 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8104 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8105 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8106 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8107 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8108 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8109 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8110 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8111 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8112 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8113 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8114 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8115 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8116 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8117 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8118 
8119 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8120 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8121 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8122 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8123 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8124 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8125 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8126 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8127 
8128 #undef T4_REGSTAT
8129 #undef T4_PORTSTAT
8130 }
8131 
8132 static int
8133 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8134 {
8135 	int rc, *i, space = 0;
8136 	struct sbuf sb;
8137 
8138 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8139 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8140 		if (space)
8141 			sbuf_printf(&sb, " ");
8142 		sbuf_printf(&sb, "%d", *i);
8143 		space = 1;
8144 	}
8145 	rc = sbuf_finish(&sb);
8146 	sbuf_delete(&sb);
8147 	return (rc);
8148 }
8149 
8150 static int
8151 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8152 {
8153 	int rc;
8154 	struct sbuf *sb;
8155 
8156 	rc = sysctl_wire_old_buffer(req, 0);
8157 	if (rc != 0)
8158 		return(rc);
8159 
8160 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8161 	if (sb == NULL)
8162 		return (ENOMEM);
8163 
8164 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8165 	rc = sbuf_finish(sb);
8166 	sbuf_delete(sb);
8167 
8168 	return (rc);
8169 }
8170 
8171 static int
8172 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8173 {
8174 	int rc;
8175 	struct sbuf *sb;
8176 
8177 	rc = sysctl_wire_old_buffer(req, 0);
8178 	if (rc != 0)
8179 		return(rc);
8180 
8181 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8182 	if (sb == NULL)
8183 		return (ENOMEM);
8184 
8185 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8186 	rc = sbuf_finish(sb);
8187 	sbuf_delete(sb);
8188 
8189 	return (rc);
8190 }
8191 
8192 static int
8193 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8194 {
8195 	struct port_info *pi = arg1;
8196 	int op = arg2;
8197 	struct adapter *sc = pi->adapter;
8198 	u_int v;
8199 	int rc;
8200 
8201 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8202 	if (rc)
8203 		return (rc);
8204 	if (hw_off_limits(sc))
8205 		rc = ENXIO;
8206 	else {
8207 		/* XXX: magic numbers */
8208 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8209 		    op ? 0x20 : 0xc820, &v);
8210 	}
8211 	end_synchronized_op(sc, 0);
8212 	if (rc)
8213 		return (rc);
8214 	if (op == 0)
8215 		v /= 256;
8216 
8217 	rc = sysctl_handle_int(oidp, &v, 0, req);
8218 	return (rc);
8219 }
8220 
8221 static int
8222 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8223 {
8224 	struct vi_info *vi = arg1;
8225 	int rc, val;
8226 
8227 	val = vi->rsrv_noflowq;
8228 	rc = sysctl_handle_int(oidp, &val, 0, req);
8229 	if (rc != 0 || req->newptr == NULL)
8230 		return (rc);
8231 
8232 	if ((val >= 1) && (vi->ntxq > 1))
8233 		vi->rsrv_noflowq = 1;
8234 	else
8235 		vi->rsrv_noflowq = 0;
8236 
8237 	return (rc);
8238 }
8239 
8240 static int
8241 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8242 {
8243 	struct vi_info *vi = arg1;
8244 	struct adapter *sc = vi->adapter;
8245 	int rc, val, i;
8246 
8247 	MPASS(!(sc->flags & IS_VF));
8248 
8249 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8250 	rc = sysctl_handle_int(oidp, &val, 0, req);
8251 	if (rc != 0 || req->newptr == NULL)
8252 		return (rc);
8253 
8254 	if (val != 0 && val != 1)
8255 		return (EINVAL);
8256 
8257 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8258 	    "t4txvm");
8259 	if (rc)
8260 		return (rc);
8261 	if (hw_off_limits(sc))
8262 		rc = ENXIO;
8263 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8264 		/*
8265 		 * We don't want parse_pkt to run with one setting (VF or PF)
8266 		 * and then eth_tx to see a different setting but still use
8267 		 * stale information calculated by parse_pkt.
8268 		 */
8269 		rc = EBUSY;
8270 	} else {
8271 		struct port_info *pi = vi->pi;
8272 		struct sge_txq *txq;
8273 		uint32_t ctrl0;
8274 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8275 
8276 		if (val) {
8277 			vi->flags |= TX_USES_VM_WR;
8278 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8279 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8280 			    V_TXPKT_INTF(pi->tx_chan));
8281 			if (!(sc->flags & IS_VF))
8282 				npkt--;
8283 		} else {
8284 			vi->flags &= ~TX_USES_VM_WR;
8285 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8286 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8287 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8288 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8289 		}
8290 		for_each_txq(vi, i, txq) {
8291 			txq->cpl_ctrl0 = ctrl0;
8292 			txq->txp.max_npkt = npkt;
8293 		}
8294 	}
8295 	end_synchronized_op(sc, LOCK_HELD);
8296 	return (rc);
8297 }
8298 
8299 static int
8300 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8301 {
8302 	struct vi_info *vi = arg1;
8303 	struct adapter *sc = vi->adapter;
8304 	int idx, rc, i;
8305 	struct sge_rxq *rxq;
8306 	uint8_t v;
8307 
8308 	idx = vi->tmr_idx;
8309 
8310 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8311 	if (rc != 0 || req->newptr == NULL)
8312 		return (rc);
8313 
8314 	if (idx < 0 || idx >= SGE_NTIMERS)
8315 		return (EINVAL);
8316 
8317 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8318 	    "t4tmr");
8319 	if (rc)
8320 		return (rc);
8321 
8322 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8323 	for_each_rxq(vi, i, rxq) {
8324 #ifdef atomic_store_rel_8
8325 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8326 #else
8327 		rxq->iq.intr_params = v;
8328 #endif
8329 	}
8330 	vi->tmr_idx = idx;
8331 
8332 	end_synchronized_op(sc, LOCK_HELD);
8333 	return (0);
8334 }
8335 
8336 static int
8337 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8338 {
8339 	struct vi_info *vi = arg1;
8340 	struct adapter *sc = vi->adapter;
8341 	int idx, rc;
8342 
8343 	idx = vi->pktc_idx;
8344 
8345 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8346 	if (rc != 0 || req->newptr == NULL)
8347 		return (rc);
8348 
8349 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8350 		return (EINVAL);
8351 
8352 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8353 	    "t4pktc");
8354 	if (rc)
8355 		return (rc);
8356 
8357 	if (vi->flags & VI_INIT_DONE)
8358 		rc = EBUSY; /* cannot be changed once the queues are created */
8359 	else
8360 		vi->pktc_idx = idx;
8361 
8362 	end_synchronized_op(sc, LOCK_HELD);
8363 	return (rc);
8364 }
8365 
8366 static int
8367 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8368 {
8369 	struct vi_info *vi = arg1;
8370 	struct adapter *sc = vi->adapter;
8371 	int qsize, rc;
8372 
8373 	qsize = vi->qsize_rxq;
8374 
8375 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8376 	if (rc != 0 || req->newptr == NULL)
8377 		return (rc);
8378 
8379 	if (qsize < 128 || (qsize & 7))
8380 		return (EINVAL);
8381 
8382 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8383 	    "t4rxqs");
8384 	if (rc)
8385 		return (rc);
8386 
8387 	if (vi->flags & VI_INIT_DONE)
8388 		rc = EBUSY; /* cannot be changed once the queues are created */
8389 	else
8390 		vi->qsize_rxq = qsize;
8391 
8392 	end_synchronized_op(sc, LOCK_HELD);
8393 	return (rc);
8394 }
8395 
8396 static int
8397 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8398 {
8399 	struct vi_info *vi = arg1;
8400 	struct adapter *sc = vi->adapter;
8401 	int qsize, rc;
8402 
8403 	qsize = vi->qsize_txq;
8404 
8405 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8406 	if (rc != 0 || req->newptr == NULL)
8407 		return (rc);
8408 
8409 	if (qsize < 128 || qsize > 65536)
8410 		return (EINVAL);
8411 
8412 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8413 	    "t4txqs");
8414 	if (rc)
8415 		return (rc);
8416 
8417 	if (vi->flags & VI_INIT_DONE)
8418 		rc = EBUSY; /* cannot be changed once the queues are created */
8419 	else
8420 		vi->qsize_txq = qsize;
8421 
8422 	end_synchronized_op(sc, LOCK_HELD);
8423 	return (rc);
8424 }
8425 
8426 static int
8427 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8428 {
8429 	struct port_info *pi = arg1;
8430 	struct adapter *sc = pi->adapter;
8431 	struct link_config *lc = &pi->link_cfg;
8432 	int rc;
8433 
8434 	if (req->newptr == NULL) {
8435 		struct sbuf *sb;
8436 		static char *bits = "\20\1RX\2TX\3AUTO";
8437 
8438 		rc = sysctl_wire_old_buffer(req, 0);
8439 		if (rc != 0)
8440 			return(rc);
8441 
8442 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8443 		if (sb == NULL)
8444 			return (ENOMEM);
8445 
8446 		if (lc->link_ok) {
8447 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8448 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8449 		} else {
8450 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8451 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8452 		}
8453 		rc = sbuf_finish(sb);
8454 		sbuf_delete(sb);
8455 	} else {
8456 		char s[2];
8457 		int n;
8458 
8459 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8460 		    PAUSE_AUTONEG));
8461 		s[1] = 0;
8462 
8463 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8464 		if (rc != 0)
8465 			return(rc);
8466 
8467 		if (s[1] != 0)
8468 			return (EINVAL);
8469 		if (s[0] < '0' || s[0] > '9')
8470 			return (EINVAL);	/* not a number */
8471 		n = s[0] - '0';
8472 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8473 			return (EINVAL);	/* some other bit is set too */
8474 
8475 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8476 		    "t4PAUSE");
8477 		if (rc)
8478 			return (rc);
8479 		if (!hw_off_limits(sc)) {
8480 			PORT_LOCK(pi);
8481 			lc->requested_fc = n;
8482 			fixup_link_config(pi);
8483 			if (pi->up_vis > 0)
8484 				rc = apply_link_config(pi);
8485 			set_current_media(pi);
8486 			PORT_UNLOCK(pi);
8487 		}
8488 		end_synchronized_op(sc, 0);
8489 	}
8490 
8491 	return (rc);
8492 }
8493 
8494 static int
8495 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8496 {
8497 	struct port_info *pi = arg1;
8498 	struct link_config *lc = &pi->link_cfg;
8499 	int rc;
8500 	struct sbuf *sb;
8501 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8502 
8503 	rc = sysctl_wire_old_buffer(req, 0);
8504 	if (rc != 0)
8505 		return(rc);
8506 
8507 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8508 	if (sb == NULL)
8509 		return (ENOMEM);
8510 	if (lc->link_ok)
8511 		sbuf_printf(sb, "%b", lc->fec, bits);
8512 	else
8513 		sbuf_printf(sb, "no link");
8514 	rc = sbuf_finish(sb);
8515 	sbuf_delete(sb);
8516 
8517 	return (rc);
8518 }
8519 
8520 static int
8521 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8522 {
8523 	struct port_info *pi = arg1;
8524 	struct adapter *sc = pi->adapter;
8525 	struct link_config *lc = &pi->link_cfg;
8526 	int rc;
8527 	int8_t old;
8528 
8529 	if (req->newptr == NULL) {
8530 		struct sbuf *sb;
8531 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8532 		    "\5RSVD3\6auto\7module";
8533 
8534 		rc = sysctl_wire_old_buffer(req, 0);
8535 		if (rc != 0)
8536 			return(rc);
8537 
8538 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8539 		if (sb == NULL)
8540 			return (ENOMEM);
8541 
8542 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8543 		rc = sbuf_finish(sb);
8544 		sbuf_delete(sb);
8545 	} else {
8546 		char s[8];
8547 		int n;
8548 
8549 		snprintf(s, sizeof(s), "%d",
8550 		    lc->requested_fec == FEC_AUTO ? -1 :
8551 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8552 
8553 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8554 		if (rc != 0)
8555 			return(rc);
8556 
8557 		n = strtol(&s[0], NULL, 0);
8558 		if (n < 0 || n & FEC_AUTO)
8559 			n = FEC_AUTO;
8560 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8561 			return (EINVAL);/* some other bit is set too */
8562 
8563 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8564 		    "t4reqf");
8565 		if (rc)
8566 			return (rc);
8567 		PORT_LOCK(pi);
8568 		old = lc->requested_fec;
8569 		if (n == FEC_AUTO)
8570 			lc->requested_fec = FEC_AUTO;
8571 		else if (n == 0 || n == FEC_NONE)
8572 			lc->requested_fec = FEC_NONE;
8573 		else {
8574 			if ((lc->pcaps |
8575 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8576 			    lc->pcaps) {
8577 				rc = ENOTSUP;
8578 				goto done;
8579 			}
8580 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8581 			    FEC_MODULE);
8582 		}
8583 		if (!hw_off_limits(sc)) {
8584 			fixup_link_config(pi);
8585 			if (pi->up_vis > 0) {
8586 				rc = apply_link_config(pi);
8587 				if (rc != 0) {
8588 					lc->requested_fec = old;
8589 					if (rc == FW_EPROTO)
8590 						rc = ENOTSUP;
8591 				}
8592 			}
8593 		}
8594 done:
8595 		PORT_UNLOCK(pi);
8596 		end_synchronized_op(sc, 0);
8597 	}
8598 
8599 	return (rc);
8600 }
8601 
8602 static int
8603 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8604 {
8605 	struct port_info *pi = arg1;
8606 	struct adapter *sc = pi->adapter;
8607 	struct link_config *lc = &pi->link_cfg;
8608 	int rc;
8609 	int8_t fec;
8610 	struct sbuf *sb;
8611 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8612 
8613 	rc = sysctl_wire_old_buffer(req, 0);
8614 	if (rc != 0)
8615 		return (rc);
8616 
8617 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8618 	if (sb == NULL)
8619 		return (ENOMEM);
8620 
8621 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8622 		rc = EBUSY;
8623 		goto done;
8624 	}
8625 	if (hw_off_limits(sc)) {
8626 		rc = ENXIO;
8627 		goto done;
8628 	}
8629 	PORT_LOCK(pi);
8630 	if (pi->up_vis == 0) {
8631 		/*
8632 		 * If all the interfaces are administratively down the firmware
8633 		 * does not report transceiver changes.  Refresh port info here.
8634 		 * This is the only reason we have a synchronized op in this
8635 		 * function.  Just PORT_LOCK would have been enough otherwise.
8636 		 */
8637 		t4_update_port_info(pi);
8638 	}
8639 
8640 	fec = lc->fec_hint;
8641 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8642 	    !fec_supported(lc->pcaps)) {
8643 		sbuf_printf(sb, "n/a");
8644 	} else {
8645 		if (fec == 0)
8646 			fec = FEC_NONE;
8647 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8648 	}
8649 	rc = sbuf_finish(sb);
8650 	PORT_UNLOCK(pi);
8651 done:
8652 	sbuf_delete(sb);
8653 	end_synchronized_op(sc, 0);
8654 
8655 	return (rc);
8656 }
8657 
8658 static int
8659 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8660 {
8661 	struct port_info *pi = arg1;
8662 	struct adapter *sc = pi->adapter;
8663 	struct link_config *lc = &pi->link_cfg;
8664 	int rc, val;
8665 
8666 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8667 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8668 	else
8669 		val = -1;
8670 	rc = sysctl_handle_int(oidp, &val, 0, req);
8671 	if (rc != 0 || req->newptr == NULL)
8672 		return (rc);
8673 	if (val == 0)
8674 		val = AUTONEG_DISABLE;
8675 	else if (val == 1)
8676 		val = AUTONEG_ENABLE;
8677 	else
8678 		val = AUTONEG_AUTO;
8679 
8680 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8681 	    "t4aneg");
8682 	if (rc)
8683 		return (rc);
8684 	PORT_LOCK(pi);
8685 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8686 		rc = ENOTSUP;
8687 		goto done;
8688 	}
8689 	lc->requested_aneg = val;
8690 	if (!hw_off_limits(sc)) {
8691 		fixup_link_config(pi);
8692 		if (pi->up_vis > 0)
8693 			rc = apply_link_config(pi);
8694 		set_current_media(pi);
8695 	}
8696 done:
8697 	PORT_UNLOCK(pi);
8698 	end_synchronized_op(sc, 0);
8699 	return (rc);
8700 }
8701 
8702 static int
8703 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8704 {
8705 	struct port_info *pi = arg1;
8706 	struct adapter *sc = pi->adapter;
8707 	struct link_config *lc = &pi->link_cfg;
8708 	int rc, val;
8709 
8710 	val = lc->force_fec;
8711 	MPASS(val >= -1 && val <= 1);
8712 	rc = sysctl_handle_int(oidp, &val, 0, req);
8713 	if (rc != 0 || req->newptr == NULL)
8714 		return (rc);
8715 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8716 		return (ENOTSUP);
8717 	if (val < -1 || val > 1)
8718 		return (EINVAL);
8719 
8720 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8721 	if (rc)
8722 		return (rc);
8723 	PORT_LOCK(pi);
8724 	lc->force_fec = val;
8725 	if (!hw_off_limits(sc)) {
8726 		fixup_link_config(pi);
8727 		if (pi->up_vis > 0)
8728 			rc = apply_link_config(pi);
8729 	}
8730 	PORT_UNLOCK(pi);
8731 	end_synchronized_op(sc, 0);
8732 	return (rc);
8733 }
8734 
8735 static int
8736 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8737 {
8738 	struct adapter *sc = arg1;
8739 	int rc, reg = arg2;
8740 	uint64_t val;
8741 
8742 	mtx_lock(&sc->reg_lock);
8743 	if (hw_off_limits(sc))
8744 		rc = ENXIO;
8745 	else {
8746 		rc = 0;
8747 		val = t4_read_reg64(sc, reg);
8748 	}
8749 	mtx_unlock(&sc->reg_lock);
8750 	if (rc == 0)
8751 		rc = sysctl_handle_64(oidp, &val, 0, req);
8752 	return (rc);
8753 }
8754 
8755 static int
8756 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8757 {
8758 	struct adapter *sc = arg1;
8759 	int rc, t;
8760 	uint32_t param, val;
8761 
8762 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8763 	if (rc)
8764 		return (rc);
8765 	if (hw_off_limits(sc))
8766 		rc = ENXIO;
8767 	else {
8768 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8769 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8770 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8771 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8772 	}
8773 	end_synchronized_op(sc, 0);
8774 	if (rc)
8775 		return (rc);
8776 
8777 	/* unknown is returned as 0 but we display -1 in that case */
8778 	t = val == 0 ? -1 : val;
8779 
8780 	rc = sysctl_handle_int(oidp, &t, 0, req);
8781 	return (rc);
8782 }
8783 
8784 static int
8785 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8786 {
8787 	struct adapter *sc = arg1;
8788 	int rc;
8789 	uint32_t param, val;
8790 
8791 	if (sc->params.core_vdd == 0) {
8792 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8793 		    "t4vdd");
8794 		if (rc)
8795 			return (rc);
8796 		if (hw_off_limits(sc))
8797 			rc = ENXIO;
8798 		else {
8799 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8800 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8801 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8802 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8803 			    &param, &val);
8804 		}
8805 		end_synchronized_op(sc, 0);
8806 		if (rc)
8807 			return (rc);
8808 		sc->params.core_vdd = val;
8809 	}
8810 
8811 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8812 }
8813 
8814 static int
8815 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8816 {
8817 	struct adapter *sc = arg1;
8818 	int rc, v;
8819 	uint32_t param, val;
8820 
8821 	v = sc->sensor_resets;
8822 	rc = sysctl_handle_int(oidp, &v, 0, req);
8823 	if (rc != 0 || req->newptr == NULL || v <= 0)
8824 		return (rc);
8825 
8826 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8827 	    chip_id(sc) < CHELSIO_T5)
8828 		return (ENOTSUP);
8829 
8830 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8831 	if (rc)
8832 		return (rc);
8833 	if (hw_off_limits(sc))
8834 		rc = ENXIO;
8835 	else {
8836 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8837 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8838 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8839 		val = 1;
8840 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8841 	}
8842 	end_synchronized_op(sc, 0);
8843 	if (rc == 0)
8844 		sc->sensor_resets++;
8845 	return (rc);
8846 }
8847 
8848 static int
8849 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8850 {
8851 	struct adapter *sc = arg1;
8852 	struct sbuf *sb;
8853 	int rc;
8854 	uint32_t param, val;
8855 
8856 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8857 	if (rc)
8858 		return (rc);
8859 	if (hw_off_limits(sc))
8860 		rc = ENXIO;
8861 	else {
8862 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8863 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8864 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8865 	}
8866 	end_synchronized_op(sc, 0);
8867 	if (rc)
8868 		return (rc);
8869 
8870 	rc = sysctl_wire_old_buffer(req, 0);
8871 	if (rc != 0)
8872 		return (rc);
8873 
8874 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8875 	if (sb == NULL)
8876 		return (ENOMEM);
8877 
8878 	if (val == 0xffffffff) {
8879 		/* Only debug and custom firmwares report load averages. */
8880 		sbuf_printf(sb, "not available");
8881 	} else {
8882 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8883 		    (val >> 16) & 0xff);
8884 	}
8885 	rc = sbuf_finish(sb);
8886 	sbuf_delete(sb);
8887 
8888 	return (rc);
8889 }
8890 
8891 static int
8892 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8893 {
8894 	struct adapter *sc = arg1;
8895 	struct sbuf *sb;
8896 	int rc, i;
8897 	uint16_t incr[NMTUS][NCCTRL_WIN];
8898 	static const char *dec_fac[] = {
8899 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8900 		"0.9375"
8901 	};
8902 
8903 	rc = sysctl_wire_old_buffer(req, 0);
8904 	if (rc != 0)
8905 		return (rc);
8906 
8907 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8908 	if (sb == NULL)
8909 		return (ENOMEM);
8910 
8911 	mtx_lock(&sc->reg_lock);
8912 	if (hw_off_limits(sc))
8913 		rc = ENXIO;
8914 	else
8915 		t4_read_cong_tbl(sc, incr);
8916 	mtx_unlock(&sc->reg_lock);
8917 	if (rc)
8918 		goto done;
8919 
8920 	for (i = 0; i < NCCTRL_WIN; ++i) {
8921 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8922 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8923 		    incr[5][i], incr[6][i], incr[7][i]);
8924 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8925 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8926 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8927 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8928 	}
8929 
8930 	rc = sbuf_finish(sb);
8931 done:
8932 	sbuf_delete(sb);
8933 	return (rc);
8934 }
8935 
8936 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8937 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8938 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8939 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8940 };
8941 
8942 static int
8943 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8944 {
8945 	struct adapter *sc = arg1;
8946 	struct sbuf *sb;
8947 	int rc, i, n, qid = arg2;
8948 	uint32_t *buf, *p;
8949 	char *qtype;
8950 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8951 
8952 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8953 	    ("%s: bad qid %d\n", __func__, qid));
8954 
8955 	if (qid < CIM_NUM_IBQ) {
8956 		/* inbound queue */
8957 		qtype = "IBQ";
8958 		n = 4 * CIM_IBQ_SIZE;
8959 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8960 		mtx_lock(&sc->reg_lock);
8961 		if (hw_off_limits(sc))
8962 			rc = -ENXIO;
8963 		else
8964 			rc = t4_read_cim_ibq(sc, qid, buf, n);
8965 		mtx_unlock(&sc->reg_lock);
8966 	} else {
8967 		/* outbound queue */
8968 		qtype = "OBQ";
8969 		qid -= CIM_NUM_IBQ;
8970 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8971 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8972 		mtx_lock(&sc->reg_lock);
8973 		if (hw_off_limits(sc))
8974 			rc = -ENXIO;
8975 		else
8976 			rc = t4_read_cim_obq(sc, qid, buf, n);
8977 		mtx_unlock(&sc->reg_lock);
8978 	}
8979 
8980 	if (rc < 0) {
8981 		rc = -rc;
8982 		goto done;
8983 	}
8984 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
8985 
8986 	rc = sysctl_wire_old_buffer(req, 0);
8987 	if (rc != 0)
8988 		goto done;
8989 
8990 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8991 	if (sb == NULL) {
8992 		rc = ENOMEM;
8993 		goto done;
8994 	}
8995 
8996 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8997 	for (i = 0, p = buf; i < n; i += 16, p += 4)
8998 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8999 		    p[2], p[3]);
9000 
9001 	rc = sbuf_finish(sb);
9002 	sbuf_delete(sb);
9003 done:
9004 	free(buf, M_CXGBE);
9005 	return (rc);
9006 }
9007 
9008 static void
9009 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9010 {
9011 	uint32_t *p;
9012 
9013 	sbuf_printf(sb, "Status   Data      PC%s",
9014 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9015 	    "     LS0Stat  LS0Addr             LS0Data");
9016 
9017 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9018 		if (cfg & F_UPDBGLACAPTPCONLY) {
9019 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
9020 			    p[6], p[7]);
9021 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
9022 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9023 			    p[4] & 0xff, p[5] >> 8);
9024 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
9025 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9026 			    p[1] & 0xf, p[2] >> 4);
9027 		} else {
9028 			sbuf_printf(sb,
9029 			    "\n  %02x   %x%07x %x%07x %08x %08x "
9030 			    "%08x%08x%08x%08x",
9031 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9032 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9033 			    p[6], p[7]);
9034 		}
9035 	}
9036 }
9037 
9038 static void
9039 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9040 {
9041 	uint32_t *p;
9042 
9043 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9044 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9045 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9046 
9047 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9048 		if (cfg & F_UPDBGLACAPTPCONLY) {
9049 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9050 			    p[3] & 0xff, p[2], p[1], p[0]);
9051 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9052 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9053 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9054 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9055 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9056 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9057 			    p[6] >> 16);
9058 		} else {
9059 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9060 			    "%08x %08x %08x %08x %08x %08x",
9061 			    (p[9] >> 16) & 0xff,
9062 			    p[9] & 0xffff, p[8] >> 16,
9063 			    p[8] & 0xffff, p[7] >> 16,
9064 			    p[7] & 0xffff, p[6] >> 16,
9065 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9066 		}
9067 	}
9068 }
9069 
9070 static int
9071 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9072 {
9073 	uint32_t cfg, *buf;
9074 	int rc;
9075 
9076 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9077 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9078 	    M_ZERO | flags);
9079 	if (buf == NULL)
9080 		return (ENOMEM);
9081 
9082 	mtx_lock(&sc->reg_lock);
9083 	if (hw_off_limits(sc))
9084 		rc = ENXIO;
9085 	else {
9086 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9087 		if (rc == 0)
9088 			rc = -t4_cim_read_la(sc, buf, NULL);
9089 	}
9090 	mtx_unlock(&sc->reg_lock);
9091 	if (rc == 0) {
9092 		if (chip_id(sc) < CHELSIO_T6)
9093 			sbuf_cim_la4(sc, sb, buf, cfg);
9094 		else
9095 			sbuf_cim_la6(sc, sb, buf, cfg);
9096 	}
9097 	free(buf, M_CXGBE);
9098 	return (rc);
9099 }
9100 
9101 static int
9102 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9103 {
9104 	struct adapter *sc = arg1;
9105 	struct sbuf *sb;
9106 	int rc;
9107 
9108 	rc = sysctl_wire_old_buffer(req, 0);
9109 	if (rc != 0)
9110 		return (rc);
9111 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9112 	if (sb == NULL)
9113 		return (ENOMEM);
9114 
9115 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9116 	if (rc == 0)
9117 		rc = sbuf_finish(sb);
9118 	sbuf_delete(sb);
9119 	return (rc);
9120 }
9121 
9122 static void
9123 dump_cim_regs(struct adapter *sc)
9124 {
9125 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9126 	    device_get_nameunit(sc->dev),
9127 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9128 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9129 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9130 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9131 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9132 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9133 	    device_get_nameunit(sc->dev),
9134 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9135 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9136 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9137 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9138 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9139 }
9140 
9141 static void
9142 dump_cimla(struct adapter *sc)
9143 {
9144 	struct sbuf sb;
9145 	int rc;
9146 
9147 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9148 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9149 		    device_get_nameunit(sc->dev));
9150 		return;
9151 	}
9152 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9153 	if (rc == 0) {
9154 		rc = sbuf_finish(&sb);
9155 		if (rc == 0) {
9156 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9157 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9158 		}
9159 	}
9160 	sbuf_delete(&sb);
9161 }
9162 
9163 void
9164 t4_os_cim_err(struct adapter *sc)
9165 {
9166 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9167 }
9168 
9169 static int
9170 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9171 {
9172 	struct adapter *sc = arg1;
9173 	u_int i;
9174 	struct sbuf *sb;
9175 	uint32_t *buf, *p;
9176 	int rc;
9177 
9178 	rc = sysctl_wire_old_buffer(req, 0);
9179 	if (rc != 0)
9180 		return (rc);
9181 
9182 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9183 	if (sb == NULL)
9184 		return (ENOMEM);
9185 
9186 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9187 	    M_ZERO | M_WAITOK);
9188 
9189 	mtx_lock(&sc->reg_lock);
9190 	if (hw_off_limits(sc))
9191 		rc = ENXIO;
9192 	else
9193 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9194 	mtx_unlock(&sc->reg_lock);
9195 	if (rc)
9196 		goto done;
9197 
9198 	p = buf;
9199 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9200 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9201 		    p[1], p[0]);
9202 	}
9203 
9204 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9205 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9206 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9207 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9208 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9209 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9210 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9211 		    p[0] & 1);
9212 	}
9213 	rc = sbuf_finish(sb);
9214 done:
9215 	sbuf_delete(sb);
9216 	free(buf, M_CXGBE);
9217 	return (rc);
9218 }
9219 
9220 static int
9221 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9222 {
9223 	struct adapter *sc = arg1;
9224 	u_int i;
9225 	struct sbuf *sb;
9226 	uint32_t *buf, *p;
9227 	int rc;
9228 
9229 	rc = sysctl_wire_old_buffer(req, 0);
9230 	if (rc != 0)
9231 		return (rc);
9232 
9233 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9234 	if (sb == NULL)
9235 		return (ENOMEM);
9236 
9237 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9238 	    M_ZERO | M_WAITOK);
9239 
9240 	mtx_lock(&sc->reg_lock);
9241 	if (hw_off_limits(sc))
9242 		rc = ENXIO;
9243 	else
9244 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9245 	mtx_unlock(&sc->reg_lock);
9246 	if (rc)
9247 		goto done;
9248 
9249 	p = buf;
9250 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9251 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9252 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9253 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9254 		    p[4], p[3], p[2], p[1], p[0]);
9255 	}
9256 
9257 	sbuf_printf(sb, "\n\nCntl ID               Data");
9258 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9259 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9260 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9261 	}
9262 
9263 	rc = sbuf_finish(sb);
9264 done:
9265 	sbuf_delete(sb);
9266 	free(buf, M_CXGBE);
9267 	return (rc);
9268 }
9269 
9270 static int
9271 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9272 {
9273 	struct adapter *sc = arg1;
9274 	struct sbuf *sb;
9275 	int rc, i;
9276 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9277 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9278 	uint16_t thres[CIM_NUM_IBQ];
9279 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9280 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9281 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9282 
9283 	cim_num_obq = sc->chip_params->cim_num_obq;
9284 	if (is_t4(sc)) {
9285 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9286 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9287 	} else {
9288 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9289 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9290 	}
9291 	nq = CIM_NUM_IBQ + cim_num_obq;
9292 
9293 	mtx_lock(&sc->reg_lock);
9294 	if (hw_off_limits(sc))
9295 		rc = ENXIO;
9296 	else {
9297 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9298 		if (rc == 0) {
9299 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9300 			    obq_wr);
9301 			if (rc == 0)
9302 				t4_read_cimq_cfg(sc, base, size, thres);
9303 		}
9304 	}
9305 	mtx_unlock(&sc->reg_lock);
9306 	if (rc)
9307 		return (rc);
9308 
9309 	rc = sysctl_wire_old_buffer(req, 0);
9310 	if (rc != 0)
9311 		return (rc);
9312 
9313 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9314 	if (sb == NULL)
9315 		return (ENOMEM);
9316 
9317 	sbuf_printf(sb,
9318 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9319 
9320 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9321 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9322 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9323 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9324 		    G_QUEREMFLITS(p[2]) * 16);
9325 	for ( ; i < nq; i++, p += 4, wr += 2)
9326 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9327 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9328 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9329 		    G_QUEREMFLITS(p[2]) * 16);
9330 
9331 	rc = sbuf_finish(sb);
9332 	sbuf_delete(sb);
9333 
9334 	return (rc);
9335 }
9336 
9337 static int
9338 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9339 {
9340 	struct adapter *sc = arg1;
9341 	struct sbuf *sb;
9342 	int rc;
9343 	struct tp_cpl_stats stats;
9344 
9345 	rc = sysctl_wire_old_buffer(req, 0);
9346 	if (rc != 0)
9347 		return (rc);
9348 
9349 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9350 	if (sb == NULL)
9351 		return (ENOMEM);
9352 
9353 	mtx_lock(&sc->reg_lock);
9354 	if (hw_off_limits(sc))
9355 		rc = ENXIO;
9356 	else
9357 		t4_tp_get_cpl_stats(sc, &stats, 0);
9358 	mtx_unlock(&sc->reg_lock);
9359 	if (rc)
9360 		goto done;
9361 
9362 	if (sc->chip_params->nchan > 2) {
9363 		sbuf_printf(sb, "                 channel 0  channel 1"
9364 		    "  channel 2  channel 3");
9365 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9366 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9367 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9368 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9369 	} else {
9370 		sbuf_printf(sb, "                 channel 0  channel 1");
9371 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9372 		    stats.req[0], stats.req[1]);
9373 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9374 		    stats.rsp[0], stats.rsp[1]);
9375 	}
9376 
9377 	rc = sbuf_finish(sb);
9378 done:
9379 	sbuf_delete(sb);
9380 	return (rc);
9381 }
9382 
9383 static int
9384 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9385 {
9386 	struct adapter *sc = arg1;
9387 	struct sbuf *sb;
9388 	int rc;
9389 	struct tp_usm_stats stats;
9390 
9391 	rc = sysctl_wire_old_buffer(req, 0);
9392 	if (rc != 0)
9393 		return(rc);
9394 
9395 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9396 	if (sb == NULL)
9397 		return (ENOMEM);
9398 
9399 	mtx_lock(&sc->reg_lock);
9400 	if (hw_off_limits(sc))
9401 		rc = ENXIO;
9402 	else
9403 		t4_get_usm_stats(sc, &stats, 1);
9404 	mtx_unlock(&sc->reg_lock);
9405 	if (rc == 0) {
9406 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9407 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9408 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9409 		rc = sbuf_finish(sb);
9410 	}
9411 	sbuf_delete(sb);
9412 
9413 	return (rc);
9414 }
9415 
9416 static int
9417 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9418 {
9419 	struct adapter *sc = arg1;
9420 	struct sbuf *sb;
9421 	int rc;
9422 	struct tp_tid_stats stats;
9423 
9424 	rc = sysctl_wire_old_buffer(req, 0);
9425 	if (rc != 0)
9426 		return(rc);
9427 
9428 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9429 	if (sb == NULL)
9430 		return (ENOMEM);
9431 
9432 	mtx_lock(&sc->reg_lock);
9433 	if (hw_off_limits(sc))
9434 		rc = ENXIO;
9435 	else
9436 		t4_tp_get_tid_stats(sc, &stats, 1);
9437 	mtx_unlock(&sc->reg_lock);
9438 	if (rc == 0) {
9439 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9440 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9441 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9442 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9443 		rc = sbuf_finish(sb);
9444 	}
9445 	sbuf_delete(sb);
9446 
9447 	return (rc);
9448 }
9449 
9450 static const char * const devlog_level_strings[] = {
9451 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9452 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9453 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9454 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9455 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9456 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9457 };
9458 
9459 static const char * const devlog_facility_strings[] = {
9460 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9461 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9462 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9463 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9464 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9465 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9466 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9467 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9468 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9469 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9470 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9471 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9472 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9473 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9474 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9475 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9476 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9477 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9478 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9479 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9480 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9481 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9482 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9483 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9484 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9485 };
9486 
9487 static int
9488 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9489 {
9490 	int i, j, rc, nentries, first = 0;
9491 	struct devlog_params *dparams = &sc->params.devlog;
9492 	struct fw_devlog_e *buf, *e;
9493 	uint64_t ftstamp = UINT64_MAX;
9494 
9495 	if (dparams->addr == 0)
9496 		return (ENXIO);
9497 
9498 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9499 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9500 	if (buf == NULL)
9501 		return (ENOMEM);
9502 
9503 	mtx_lock(&sc->reg_lock);
9504 	if (hw_off_limits(sc))
9505 		rc = ENXIO;
9506 	else
9507 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9508 		    dparams->size);
9509 	mtx_unlock(&sc->reg_lock);
9510 	if (rc != 0)
9511 		goto done;
9512 
9513 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9514 	for (i = 0; i < nentries; i++) {
9515 		e = &buf[i];
9516 
9517 		if (e->timestamp == 0)
9518 			break;	/* end */
9519 
9520 		e->timestamp = be64toh(e->timestamp);
9521 		e->seqno = be32toh(e->seqno);
9522 		for (j = 0; j < 8; j++)
9523 			e->params[j] = be32toh(e->params[j]);
9524 
9525 		if (e->timestamp < ftstamp) {
9526 			ftstamp = e->timestamp;
9527 			first = i;
9528 		}
9529 	}
9530 
9531 	if (buf[first].timestamp == 0)
9532 		goto done;	/* nothing in the log */
9533 
9534 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9535 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9536 
9537 	i = first;
9538 	do {
9539 		e = &buf[i];
9540 		if (e->timestamp == 0)
9541 			break;	/* end */
9542 
9543 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9544 		    e->seqno, e->timestamp,
9545 		    (e->level < nitems(devlog_level_strings) ?
9546 			devlog_level_strings[e->level] : "UNKNOWN"),
9547 		    (e->facility < nitems(devlog_facility_strings) ?
9548 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9549 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9550 		    e->params[2], e->params[3], e->params[4],
9551 		    e->params[5], e->params[6], e->params[7]);
9552 
9553 		if (++i == nentries)
9554 			i = 0;
9555 	} while (i != first);
9556 done:
9557 	free(buf, M_CXGBE);
9558 	return (rc);
9559 }
9560 
9561 static int
9562 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9563 {
9564 	struct adapter *sc = arg1;
9565 	int rc;
9566 	struct sbuf *sb;
9567 
9568 	rc = sysctl_wire_old_buffer(req, 0);
9569 	if (rc != 0)
9570 		return (rc);
9571 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9572 	if (sb == NULL)
9573 		return (ENOMEM);
9574 
9575 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9576 	if (rc == 0)
9577 		rc = sbuf_finish(sb);
9578 	sbuf_delete(sb);
9579 	return (rc);
9580 }
9581 
9582 static void
9583 dump_devlog(struct adapter *sc)
9584 {
9585 	int rc;
9586 	struct sbuf sb;
9587 
9588 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9589 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9590 		    device_get_nameunit(sc->dev));
9591 		return;
9592 	}
9593 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9594 	if (rc == 0) {
9595 		rc = sbuf_finish(&sb);
9596 		if (rc == 0) {
9597 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9598 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9599 		}
9600 	}
9601 	sbuf_delete(&sb);
9602 }
9603 
9604 static int
9605 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9606 {
9607 	struct adapter *sc = arg1;
9608 	struct sbuf *sb;
9609 	int rc;
9610 	struct tp_fcoe_stats stats[MAX_NCHAN];
9611 	int i, nchan = sc->chip_params->nchan;
9612 
9613 	rc = sysctl_wire_old_buffer(req, 0);
9614 	if (rc != 0)
9615 		return (rc);
9616 
9617 	mtx_lock(&sc->reg_lock);
9618 	if (hw_off_limits(sc))
9619 		rc = ENXIO;
9620 	else {
9621 		for (i = 0; i < nchan; i++)
9622 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9623 	}
9624 	mtx_unlock(&sc->reg_lock);
9625 	if (rc != 0)
9626 		return (rc);
9627 
9628 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9629 	if (sb == NULL)
9630 		return (ENOMEM);
9631 
9632 	if (nchan > 2) {
9633 		sbuf_printf(sb, "                   channel 0        channel 1"
9634 		    "        channel 2        channel 3");
9635 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9636 		    stats[0].octets_ddp, stats[1].octets_ddp,
9637 		    stats[2].octets_ddp, stats[3].octets_ddp);
9638 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9639 		    stats[0].frames_ddp, stats[1].frames_ddp,
9640 		    stats[2].frames_ddp, stats[3].frames_ddp);
9641 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9642 		    stats[0].frames_drop, stats[1].frames_drop,
9643 		    stats[2].frames_drop, stats[3].frames_drop);
9644 	} else {
9645 		sbuf_printf(sb, "                   channel 0        channel 1");
9646 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9647 		    stats[0].octets_ddp, stats[1].octets_ddp);
9648 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9649 		    stats[0].frames_ddp, stats[1].frames_ddp);
9650 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9651 		    stats[0].frames_drop, stats[1].frames_drop);
9652 	}
9653 
9654 	rc = sbuf_finish(sb);
9655 	sbuf_delete(sb);
9656 
9657 	return (rc);
9658 }
9659 
9660 static int
9661 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9662 {
9663 	struct adapter *sc = arg1;
9664 	struct sbuf *sb;
9665 	int rc, i;
9666 	unsigned int map, kbps, ipg, mode;
9667 	unsigned int pace_tab[NTX_SCHED];
9668 
9669 	rc = sysctl_wire_old_buffer(req, 0);
9670 	if (rc != 0)
9671 		return (rc);
9672 
9673 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9674 	if (sb == NULL)
9675 		return (ENOMEM);
9676 
9677 	mtx_lock(&sc->reg_lock);
9678 	if (hw_off_limits(sc)) {
9679 		rc = ENXIO;
9680 		goto done;
9681 	}
9682 
9683 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9684 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9685 	t4_read_pace_tbl(sc, pace_tab);
9686 
9687 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9688 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9689 
9690 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9691 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9692 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9693 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9694 		if (kbps)
9695 			sbuf_printf(sb, "%9u     ", kbps);
9696 		else
9697 			sbuf_printf(sb, " disabled     ");
9698 
9699 		if (ipg)
9700 			sbuf_printf(sb, "%13u        ", ipg);
9701 		else
9702 			sbuf_printf(sb, "     disabled        ");
9703 
9704 		if (pace_tab[i])
9705 			sbuf_printf(sb, "%10u", pace_tab[i]);
9706 		else
9707 			sbuf_printf(sb, "  disabled");
9708 	}
9709 	rc = sbuf_finish(sb);
9710 done:
9711 	mtx_unlock(&sc->reg_lock);
9712 	sbuf_delete(sb);
9713 	return (rc);
9714 }
9715 
9716 static int
9717 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9718 {
9719 	struct adapter *sc = arg1;
9720 	struct sbuf *sb;
9721 	int rc, i, j;
9722 	uint64_t *p0, *p1;
9723 	struct lb_port_stats s[2];
9724 	static const char *stat_name[] = {
9725 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9726 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9727 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9728 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9729 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9730 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9731 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9732 	};
9733 
9734 	rc = sysctl_wire_old_buffer(req, 0);
9735 	if (rc != 0)
9736 		return (rc);
9737 
9738 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9739 	if (sb == NULL)
9740 		return (ENOMEM);
9741 
9742 	memset(s, 0, sizeof(s));
9743 
9744 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9745 		mtx_lock(&sc->reg_lock);
9746 		if (hw_off_limits(sc))
9747 			rc = ENXIO;
9748 		else {
9749 			t4_get_lb_stats(sc, i, &s[0]);
9750 			t4_get_lb_stats(sc, i + 1, &s[1]);
9751 		}
9752 		mtx_unlock(&sc->reg_lock);
9753 		if (rc != 0)
9754 			break;
9755 
9756 		p0 = &s[0].octets;
9757 		p1 = &s[1].octets;
9758 		sbuf_printf(sb, "%s                       Loopback %u"
9759 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9760 
9761 		for (j = 0; j < nitems(stat_name); j++)
9762 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9763 				   *p0++, *p1++);
9764 	}
9765 
9766 	rc = sbuf_finish(sb);
9767 	sbuf_delete(sb);
9768 
9769 	return (rc);
9770 }
9771 
9772 static int
9773 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9774 {
9775 	int rc = 0;
9776 	struct port_info *pi = arg1;
9777 	struct link_config *lc = &pi->link_cfg;
9778 	struct sbuf *sb;
9779 
9780 	rc = sysctl_wire_old_buffer(req, 0);
9781 	if (rc != 0)
9782 		return(rc);
9783 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9784 	if (sb == NULL)
9785 		return (ENOMEM);
9786 
9787 	if (lc->link_ok || lc->link_down_rc == 255)
9788 		sbuf_printf(sb, "n/a");
9789 	else
9790 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9791 
9792 	rc = sbuf_finish(sb);
9793 	sbuf_delete(sb);
9794 
9795 	return (rc);
9796 }
9797 
9798 struct mem_desc {
9799 	u_int base;
9800 	u_int limit;
9801 	u_int idx;
9802 };
9803 
9804 static int
9805 mem_desc_cmp(const void *a, const void *b)
9806 {
9807 	const u_int v1 = ((const struct mem_desc *)a)->base;
9808 	const u_int v2 = ((const struct mem_desc *)b)->base;
9809 
9810 	if (v1 < v2)
9811 		return (-1);
9812 	else if (v1 > v2)
9813 		return (1);
9814 
9815 	return (0);
9816 }
9817 
9818 static void
9819 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9820     unsigned int to)
9821 {
9822 	unsigned int size;
9823 
9824 	if (from == to)
9825 		return;
9826 
9827 	size = to - from + 1;
9828 	if (size == 0)
9829 		return;
9830 
9831 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9832 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9833 }
9834 
9835 static int
9836 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9837 {
9838 	struct adapter *sc = arg1;
9839 	struct sbuf *sb;
9840 	int rc, i, n;
9841 	uint32_t lo, hi, used, free, alloc;
9842 	static const char *memory[] = {
9843 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9844 	};
9845 	static const char *region[] = {
9846 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9847 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9848 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9849 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9850 		"RQUDP region:", "PBL region:", "TXPBL region:",
9851 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9852 		"ULPTX state:", "On-chip queues:",
9853 	};
9854 	struct mem_desc avail[4];
9855 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9856 	struct mem_desc *md = mem;
9857 
9858 	rc = sysctl_wire_old_buffer(req, 0);
9859 	if (rc != 0)
9860 		return (rc);
9861 
9862 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9863 	if (sb == NULL)
9864 		return (ENOMEM);
9865 
9866 	for (i = 0; i < nitems(mem); i++) {
9867 		mem[i].limit = 0;
9868 		mem[i].idx = i;
9869 	}
9870 
9871 	mtx_lock(&sc->reg_lock);
9872 	if (hw_off_limits(sc)) {
9873 		rc = ENXIO;
9874 		goto done;
9875 	}
9876 
9877 	/* Find and sort the populated memory ranges */
9878 	i = 0;
9879 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9880 	if (lo & F_EDRAM0_ENABLE) {
9881 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9882 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9883 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9884 		avail[i].idx = 0;
9885 		i++;
9886 	}
9887 	if (lo & F_EDRAM1_ENABLE) {
9888 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9889 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9890 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9891 		avail[i].idx = 1;
9892 		i++;
9893 	}
9894 	if (lo & F_EXT_MEM_ENABLE) {
9895 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9896 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9897 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9898 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9899 		i++;
9900 	}
9901 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9902 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9903 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9904 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9905 		avail[i].idx = 4;
9906 		i++;
9907 	}
9908 	if (is_t6(sc) && lo & F_HMA_MUX) {
9909 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9910 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9911 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9912 		avail[i].idx = 5;
9913 		i++;
9914 	}
9915 	MPASS(i <= nitems(avail));
9916 	if (!i)                                    /* no memory available */
9917 		goto done;
9918 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9919 
9920 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9921 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9922 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9923 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9924 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9925 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9926 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9927 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9928 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9929 
9930 	/* the next few have explicit upper bounds */
9931 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9932 	md->limit = md->base - 1 +
9933 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9934 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9935 	md++;
9936 
9937 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9938 	md->limit = md->base - 1 +
9939 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9940 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9941 	md++;
9942 
9943 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9944 		if (chip_id(sc) <= CHELSIO_T5)
9945 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9946 		else
9947 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9948 		md->limit = 0;
9949 	} else {
9950 		md->base = 0;
9951 		md->idx = nitems(region);  /* hide it */
9952 	}
9953 	md++;
9954 
9955 #define ulp_region(reg) \
9956 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9957 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9958 
9959 	ulp_region(RX_ISCSI);
9960 	ulp_region(RX_TDDP);
9961 	ulp_region(TX_TPT);
9962 	ulp_region(RX_STAG);
9963 	ulp_region(RX_RQ);
9964 	ulp_region(RX_RQUDP);
9965 	ulp_region(RX_PBL);
9966 	ulp_region(TX_PBL);
9967 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9968 		ulp_region(RX_TLS_KEY);
9969 	}
9970 #undef ulp_region
9971 
9972 	md->base = 0;
9973 	if (is_t4(sc))
9974 		md->idx = nitems(region);
9975 	else {
9976 		uint32_t size = 0;
9977 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9978 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9979 
9980 		if (is_t5(sc)) {
9981 			if (sge_ctrl & F_VFIFO_ENABLE)
9982 				size = fifo_size << 2;
9983 		} else
9984 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9985 
9986 		if (size) {
9987 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9988 			md->limit = md->base + size - 1;
9989 		} else
9990 			md->idx = nitems(region);
9991 	}
9992 	md++;
9993 
9994 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9995 	md->limit = 0;
9996 	md++;
9997 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9998 	md->limit = 0;
9999 	md++;
10000 
10001 	md->base = sc->vres.ocq.start;
10002 	if (sc->vres.ocq.size)
10003 		md->limit = md->base + sc->vres.ocq.size - 1;
10004 	else
10005 		md->idx = nitems(region);  /* hide it */
10006 	md++;
10007 
10008 	/* add any address-space holes, there can be up to 3 */
10009 	for (n = 0; n < i - 1; n++)
10010 		if (avail[n].limit < avail[n + 1].base)
10011 			(md++)->base = avail[n].limit;
10012 	if (avail[n].limit)
10013 		(md++)->base = avail[n].limit;
10014 
10015 	n = md - mem;
10016 	MPASS(n <= nitems(mem));
10017 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10018 
10019 	for (lo = 0; lo < i; lo++)
10020 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10021 				avail[lo].limit - 1);
10022 
10023 	sbuf_printf(sb, "\n");
10024 	for (i = 0; i < n; i++) {
10025 		if (mem[i].idx >= nitems(region))
10026 			continue;                        /* skip holes */
10027 		if (!mem[i].limit)
10028 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10029 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
10030 				mem[i].limit);
10031 	}
10032 
10033 	sbuf_printf(sb, "\n");
10034 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10035 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10036 	mem_region_show(sb, "uP RAM:", lo, hi);
10037 
10038 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10039 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10040 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10041 
10042 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10043 	for (i = 0, free = 0; i < 2; i++)
10044 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10045 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10046 		   G_PMRXMAXPAGE(lo), free,
10047 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10048 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10049 
10050 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10051 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10052 	for (i = 0, free = 0; i < 4; i++)
10053 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10054 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10055 		   G_PMTXMAXPAGE(lo), free,
10056 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10057 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10058 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10059 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10060 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10061 
10062 	for (i = 0; i < 4; i++) {
10063 		if (chip_id(sc) > CHELSIO_T5)
10064 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10065 		else
10066 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10067 		if (is_t5(sc)) {
10068 			used = G_T5_USED(lo);
10069 			alloc = G_T5_ALLOC(lo);
10070 		} else {
10071 			used = G_USED(lo);
10072 			alloc = G_ALLOC(lo);
10073 		}
10074 		/* For T6 these are MAC buffer groups */
10075 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10076 		    i, used, alloc);
10077 	}
10078 	for (i = 0; i < sc->chip_params->nchan; i++) {
10079 		if (chip_id(sc) > CHELSIO_T5)
10080 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10081 		else
10082 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10083 		if (is_t5(sc)) {
10084 			used = G_T5_USED(lo);
10085 			alloc = G_T5_ALLOC(lo);
10086 		} else {
10087 			used = G_USED(lo);
10088 			alloc = G_ALLOC(lo);
10089 		}
10090 		/* For T6 these are MAC buffer groups */
10091 		sbuf_printf(sb,
10092 		    "\nLoopback %d using %u pages out of %u allocated",
10093 		    i, used, alloc);
10094 	}
10095 done:
10096 	mtx_unlock(&sc->reg_lock);
10097 	if (rc == 0)
10098 		rc = sbuf_finish(sb);
10099 	sbuf_delete(sb);
10100 	return (rc);
10101 }
10102 
10103 static inline void
10104 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10105 {
10106 	*mask = x | y;
10107 	y = htobe64(y);
10108 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10109 }
10110 
10111 static int
10112 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10113 {
10114 	struct adapter *sc = arg1;
10115 	struct sbuf *sb;
10116 	int rc, i;
10117 
10118 	MPASS(chip_id(sc) <= CHELSIO_T5);
10119 
10120 	rc = sysctl_wire_old_buffer(req, 0);
10121 	if (rc != 0)
10122 		return (rc);
10123 
10124 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10125 	if (sb == NULL)
10126 		return (ENOMEM);
10127 
10128 	sbuf_printf(sb,
10129 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10130 	    "  VF              Replication             P0 P1 P2 P3  ML");
10131 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10132 		uint64_t tcamx, tcamy, mask;
10133 		uint32_t cls_lo, cls_hi;
10134 		uint8_t addr[ETHER_ADDR_LEN];
10135 
10136 		mtx_lock(&sc->reg_lock);
10137 		if (hw_off_limits(sc))
10138 			rc = ENXIO;
10139 		else {
10140 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10141 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10142 		}
10143 		mtx_unlock(&sc->reg_lock);
10144 		if (rc != 0)
10145 			break;
10146 		if (tcamx & tcamy)
10147 			continue;
10148 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10149 		mtx_lock(&sc->reg_lock);
10150 		if (hw_off_limits(sc))
10151 			rc = ENXIO;
10152 		else {
10153 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10154 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10155 		}
10156 		mtx_unlock(&sc->reg_lock);
10157 		if (rc != 0)
10158 			break;
10159 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10160 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10161 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10162 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10163 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10164 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10165 
10166 		if (cls_lo & F_REPLICATE) {
10167 			struct fw_ldst_cmd ldst_cmd;
10168 
10169 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10170 			ldst_cmd.op_to_addrspace =
10171 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10172 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10173 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10174 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10175 			ldst_cmd.u.mps.rplc.fid_idx =
10176 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10177 				V_FW_LDST_CMD_IDX(i));
10178 
10179 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10180 			    "t4mps");
10181 			if (rc)
10182 				break;
10183 			if (hw_off_limits(sc))
10184 				rc = ENXIO;
10185 			else
10186 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10187 				    sizeof(ldst_cmd), &ldst_cmd);
10188 			end_synchronized_op(sc, 0);
10189 			if (rc != 0)
10190 				break;
10191 			else {
10192 				sbuf_printf(sb, " %08x %08x %08x %08x",
10193 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10194 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10195 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10196 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10197 			}
10198 		} else
10199 			sbuf_printf(sb, "%36s", "");
10200 
10201 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10202 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10203 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10204 	}
10205 
10206 	if (rc)
10207 		(void) sbuf_finish(sb);
10208 	else
10209 		rc = sbuf_finish(sb);
10210 	sbuf_delete(sb);
10211 
10212 	return (rc);
10213 }
10214 
10215 static int
10216 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10217 {
10218 	struct adapter *sc = arg1;
10219 	struct sbuf *sb;
10220 	int rc, i;
10221 
10222 	MPASS(chip_id(sc) > CHELSIO_T5);
10223 
10224 	rc = sysctl_wire_old_buffer(req, 0);
10225 	if (rc != 0)
10226 		return (rc);
10227 
10228 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10229 	if (sb == NULL)
10230 		return (ENOMEM);
10231 
10232 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10233 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10234 	    "                           Replication"
10235 	    "                                    P0 P1 P2 P3  ML\n");
10236 
10237 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10238 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10239 		uint16_t ivlan;
10240 		uint64_t tcamx, tcamy, val, mask;
10241 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10242 		uint8_t addr[ETHER_ADDR_LEN];
10243 
10244 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10245 		if (i < 256)
10246 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10247 		else
10248 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10249 		mtx_lock(&sc->reg_lock);
10250 		if (hw_off_limits(sc))
10251 			rc = ENXIO;
10252 		else {
10253 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10254 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10255 			tcamy = G_DMACH(val) << 32;
10256 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10257 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10258 		}
10259 		mtx_unlock(&sc->reg_lock);
10260 		if (rc != 0)
10261 			break;
10262 
10263 		lookup_type = G_DATALKPTYPE(data2);
10264 		port_num = G_DATAPORTNUM(data2);
10265 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10266 			/* Inner header VNI */
10267 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10268 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10269 			dip_hit = data2 & F_DATADIPHIT;
10270 			vlan_vld = 0;
10271 		} else {
10272 			vniy = 0;
10273 			dip_hit = 0;
10274 			vlan_vld = data2 & F_DATAVIDH2;
10275 			ivlan = G_VIDL(val);
10276 		}
10277 
10278 		ctl |= V_CTLXYBITSEL(1);
10279 		mtx_lock(&sc->reg_lock);
10280 		if (hw_off_limits(sc))
10281 			rc = ENXIO;
10282 		else {
10283 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10284 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10285 			tcamx = G_DMACH(val) << 32;
10286 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10287 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10288 		}
10289 		mtx_unlock(&sc->reg_lock);
10290 		if (rc != 0)
10291 			break;
10292 
10293 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10294 			/* Inner header VNI mask */
10295 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10296 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10297 		} else
10298 			vnix = 0;
10299 
10300 		if (tcamx & tcamy)
10301 			continue;
10302 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10303 
10304 		mtx_lock(&sc->reg_lock);
10305 		if (hw_off_limits(sc))
10306 			rc = ENXIO;
10307 		else {
10308 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10309 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10310 		}
10311 		mtx_unlock(&sc->reg_lock);
10312 		if (rc != 0)
10313 			break;
10314 
10315 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10316 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10317 			    "%012jx %06x %06x    -    -   %3c"
10318 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10319 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10320 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10321 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10322 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10323 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10324 		} else {
10325 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10326 			    "%012jx    -       -   ", i, addr[0], addr[1],
10327 			    addr[2], addr[3], addr[4], addr[5],
10328 			    (uintmax_t)mask);
10329 
10330 			if (vlan_vld)
10331 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10332 			else
10333 				sbuf_printf(sb, "  -    N     ");
10334 
10335 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10336 			    lookup_type ? 'I' : 'O', port_num,
10337 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10338 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10339 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10340 		}
10341 
10342 
10343 		if (cls_lo & F_T6_REPLICATE) {
10344 			struct fw_ldst_cmd ldst_cmd;
10345 
10346 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10347 			ldst_cmd.op_to_addrspace =
10348 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10349 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10350 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10351 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10352 			ldst_cmd.u.mps.rplc.fid_idx =
10353 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10354 				V_FW_LDST_CMD_IDX(i));
10355 
10356 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10357 			    "t6mps");
10358 			if (rc)
10359 				break;
10360 			if (hw_off_limits(sc))
10361 				rc = ENXIO;
10362 			else
10363 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10364 				    sizeof(ldst_cmd), &ldst_cmd);
10365 			end_synchronized_op(sc, 0);
10366 			if (rc != 0)
10367 				break;
10368 			else {
10369 				sbuf_printf(sb, " %08x %08x %08x %08x"
10370 				    " %08x %08x %08x %08x",
10371 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10372 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10373 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10374 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10375 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10376 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10377 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10378 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10379 			}
10380 		} else
10381 			sbuf_printf(sb, "%72s", "");
10382 
10383 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10384 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10385 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10386 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10387 	}
10388 
10389 	if (rc)
10390 		(void) sbuf_finish(sb);
10391 	else
10392 		rc = sbuf_finish(sb);
10393 	sbuf_delete(sb);
10394 
10395 	return (rc);
10396 }
10397 
10398 static int
10399 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10400 {
10401 	struct adapter *sc = arg1;
10402 	struct sbuf *sb;
10403 	int rc;
10404 	uint16_t mtus[NMTUS];
10405 
10406 	rc = sysctl_wire_old_buffer(req, 0);
10407 	if (rc != 0)
10408 		return (rc);
10409 
10410 	mtx_lock(&sc->reg_lock);
10411 	if (hw_off_limits(sc))
10412 		rc = ENXIO;
10413 	else
10414 		t4_read_mtu_tbl(sc, mtus, NULL);
10415 	mtx_unlock(&sc->reg_lock);
10416 	if (rc != 0)
10417 		return (rc);
10418 
10419 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10420 	if (sb == NULL)
10421 		return (ENOMEM);
10422 
10423 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10424 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10425 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10426 	    mtus[14], mtus[15]);
10427 
10428 	rc = sbuf_finish(sb);
10429 	sbuf_delete(sb);
10430 
10431 	return (rc);
10432 }
10433 
10434 static int
10435 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10436 {
10437 	struct adapter *sc = arg1;
10438 	struct sbuf *sb;
10439 	int rc, i;
10440 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10441 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10442 	static const char *tx_stats[MAX_PM_NSTATS] = {
10443 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10444 		"Tx FIFO wait", NULL, "Tx latency"
10445 	};
10446 	static const char *rx_stats[MAX_PM_NSTATS] = {
10447 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10448 		"Rx FIFO wait", NULL, "Rx latency"
10449 	};
10450 
10451 	rc = sysctl_wire_old_buffer(req, 0);
10452 	if (rc != 0)
10453 		return (rc);
10454 
10455 	mtx_lock(&sc->reg_lock);
10456 	if (hw_off_limits(sc))
10457 		rc = ENXIO;
10458 	else {
10459 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10460 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10461 	}
10462 	mtx_unlock(&sc->reg_lock);
10463 	if (rc != 0)
10464 		return (rc);
10465 
10466 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10467 	if (sb == NULL)
10468 		return (ENOMEM);
10469 
10470 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10471 	for (i = 0; i < 4; i++) {
10472 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10473 		    tx_cyc[i]);
10474 	}
10475 
10476 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10477 	for (i = 0; i < 4; i++) {
10478 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10479 		    rx_cyc[i]);
10480 	}
10481 
10482 	if (chip_id(sc) > CHELSIO_T5) {
10483 		sbuf_printf(sb,
10484 		    "\n              Total wait      Total occupancy");
10485 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10486 		    tx_cyc[i]);
10487 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10488 		    rx_cyc[i]);
10489 
10490 		i += 2;
10491 		MPASS(i < nitems(tx_stats));
10492 
10493 		sbuf_printf(sb,
10494 		    "\n                   Reads           Total wait");
10495 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10496 		    tx_cyc[i]);
10497 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10498 		    rx_cyc[i]);
10499 	}
10500 
10501 	rc = sbuf_finish(sb);
10502 	sbuf_delete(sb);
10503 
10504 	return (rc);
10505 }
10506 
10507 static int
10508 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10509 {
10510 	struct adapter *sc = arg1;
10511 	struct sbuf *sb;
10512 	int rc;
10513 	struct tp_rdma_stats stats;
10514 
10515 	rc = sysctl_wire_old_buffer(req, 0);
10516 	if (rc != 0)
10517 		return (rc);
10518 
10519 	mtx_lock(&sc->reg_lock);
10520 	if (hw_off_limits(sc))
10521 		rc = ENXIO;
10522 	else
10523 		t4_tp_get_rdma_stats(sc, &stats, 0);
10524 	mtx_unlock(&sc->reg_lock);
10525 	if (rc != 0)
10526 		return (rc);
10527 
10528 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10529 	if (sb == NULL)
10530 		return (ENOMEM);
10531 
10532 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10533 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10534 
10535 	rc = sbuf_finish(sb);
10536 	sbuf_delete(sb);
10537 
10538 	return (rc);
10539 }
10540 
10541 static int
10542 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10543 {
10544 	struct adapter *sc = arg1;
10545 	struct sbuf *sb;
10546 	int rc;
10547 	struct tp_tcp_stats v4, v6;
10548 
10549 	rc = sysctl_wire_old_buffer(req, 0);
10550 	if (rc != 0)
10551 		return (rc);
10552 
10553 	mtx_lock(&sc->reg_lock);
10554 	if (hw_off_limits(sc))
10555 		rc = ENXIO;
10556 	else
10557 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10558 	mtx_unlock(&sc->reg_lock);
10559 	if (rc != 0)
10560 		return (rc);
10561 
10562 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10563 	if (sb == NULL)
10564 		return (ENOMEM);
10565 
10566 	sbuf_printf(sb,
10567 	    "                                IP                 IPv6\n");
10568 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10569 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10570 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10571 	    v4.tcp_in_segs, v6.tcp_in_segs);
10572 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10573 	    v4.tcp_out_segs, v6.tcp_out_segs);
10574 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10575 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10576 
10577 	rc = sbuf_finish(sb);
10578 	sbuf_delete(sb);
10579 
10580 	return (rc);
10581 }
10582 
10583 static int
10584 sysctl_tids(SYSCTL_HANDLER_ARGS)
10585 {
10586 	struct adapter *sc = arg1;
10587 	struct sbuf *sb;
10588 	int rc;
10589 	uint32_t x, y;
10590 	struct tid_info *t = &sc->tids;
10591 
10592 	rc = sysctl_wire_old_buffer(req, 0);
10593 	if (rc != 0)
10594 		return (rc);
10595 
10596 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10597 	if (sb == NULL)
10598 		return (ENOMEM);
10599 
10600 	if (t->natids) {
10601 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10602 		    t->atids_in_use);
10603 	}
10604 
10605 	if (t->nhpftids) {
10606 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10607 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10608 	}
10609 
10610 	if (t->ntids) {
10611 		bool hashen = false;
10612 
10613 		mtx_lock(&sc->reg_lock);
10614 		if (hw_off_limits(sc))
10615 			rc = ENXIO;
10616 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10617 			hashen = true;
10618 			if (chip_id(sc) <= CHELSIO_T5) {
10619 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10620 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10621 			} else {
10622 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10623 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10624 			}
10625 		}
10626 		mtx_unlock(&sc->reg_lock);
10627 		if (rc != 0)
10628 			goto done;
10629 
10630 		sbuf_printf(sb, "TID range: ");
10631 		if (hashen) {
10632 			if (x)
10633 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10634 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10635 		} else {
10636 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10637 			    t->ntids - 1);
10638 		}
10639 		sbuf_printf(sb, ", in use: %u\n",
10640 		    atomic_load_acq_int(&t->tids_in_use));
10641 	}
10642 
10643 	if (t->nstids) {
10644 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10645 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10646 	}
10647 
10648 	if (t->nftids) {
10649 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10650 		    t->ftid_end, t->ftids_in_use);
10651 	}
10652 
10653 	if (t->netids) {
10654 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10655 		    t->etid_base + t->netids - 1, t->etids_in_use);
10656 	}
10657 
10658 	mtx_lock(&sc->reg_lock);
10659 	if (hw_off_limits(sc))
10660 		rc = ENXIO;
10661 	else {
10662 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10663 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10664 	}
10665 	mtx_unlock(&sc->reg_lock);
10666 	if (rc != 0)
10667 		goto done;
10668 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10669 done:
10670 	if (rc == 0)
10671 		rc = sbuf_finish(sb);
10672 	else
10673 		(void)sbuf_finish(sb);
10674 	sbuf_delete(sb);
10675 
10676 	return (rc);
10677 }
10678 
10679 static int
10680 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10681 {
10682 	struct adapter *sc = arg1;
10683 	struct sbuf *sb;
10684 	int rc;
10685 	struct tp_err_stats stats;
10686 
10687 	rc = sysctl_wire_old_buffer(req, 0);
10688 	if (rc != 0)
10689 		return (rc);
10690 
10691 	mtx_lock(&sc->reg_lock);
10692 	if (hw_off_limits(sc))
10693 		rc = ENXIO;
10694 	else
10695 		t4_tp_get_err_stats(sc, &stats, 0);
10696 	mtx_unlock(&sc->reg_lock);
10697 	if (rc != 0)
10698 		return (rc);
10699 
10700 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10701 	if (sb == NULL)
10702 		return (ENOMEM);
10703 
10704 	if (sc->chip_params->nchan > 2) {
10705 		sbuf_printf(sb, "                 channel 0  channel 1"
10706 		    "  channel 2  channel 3\n");
10707 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10708 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10709 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10710 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10711 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10712 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10713 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10714 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10715 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10716 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10717 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10718 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10719 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10720 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10721 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10722 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10723 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10724 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10725 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10726 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10727 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10728 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10729 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10730 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10731 	} else {
10732 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10733 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10734 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10735 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10736 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10737 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10738 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10739 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10740 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10741 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10742 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10743 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10744 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10745 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10746 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10747 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10748 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10749 	}
10750 
10751 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10752 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10753 
10754 	rc = sbuf_finish(sb);
10755 	sbuf_delete(sb);
10756 
10757 	return (rc);
10758 }
10759 
10760 static int
10761 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10762 {
10763 	struct adapter *sc = arg1;
10764 	struct sbuf *sb;
10765 	int rc;
10766 	struct tp_tnl_stats stats;
10767 
10768 	rc = sysctl_wire_old_buffer(req, 0);
10769 	if (rc != 0)
10770 		return(rc);
10771 
10772 	mtx_lock(&sc->reg_lock);
10773 	if (hw_off_limits(sc))
10774 		rc = ENXIO;
10775 	else
10776 		t4_tp_get_tnl_stats(sc, &stats, 1);
10777 	mtx_unlock(&sc->reg_lock);
10778 	if (rc != 0)
10779 		return (rc);
10780 
10781 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10782 	if (sb == NULL)
10783 		return (ENOMEM);
10784 
10785 	if (sc->chip_params->nchan > 2) {
10786 		sbuf_printf(sb, "           channel 0  channel 1"
10787 		    "  channel 2  channel 3\n");
10788 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10789 		    stats.out_pkt[0], stats.out_pkt[1],
10790 		    stats.out_pkt[2], stats.out_pkt[3]);
10791 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10792 		    stats.in_pkt[0], stats.in_pkt[1],
10793 		    stats.in_pkt[2], stats.in_pkt[3]);
10794 	} else {
10795 		sbuf_printf(sb, "           channel 0  channel 1\n");
10796 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10797 		    stats.out_pkt[0], stats.out_pkt[1]);
10798 		sbuf_printf(sb, "InPkts:   %10u %10u",
10799 		    stats.in_pkt[0], stats.in_pkt[1]);
10800 	}
10801 
10802 	rc = sbuf_finish(sb);
10803 	sbuf_delete(sb);
10804 
10805 	return (rc);
10806 }
10807 
10808 static int
10809 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10810 {
10811 	struct adapter *sc = arg1;
10812 	struct tp_params *tpp = &sc->params.tp;
10813 	u_int mask;
10814 	int rc;
10815 
10816 	mask = tpp->la_mask >> 16;
10817 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10818 	if (rc != 0 || req->newptr == NULL)
10819 		return (rc);
10820 	if (mask > 0xffff)
10821 		return (EINVAL);
10822 	mtx_lock(&sc->reg_lock);
10823 	if (hw_off_limits(sc))
10824 		rc = ENXIO;
10825 	else {
10826 		tpp->la_mask = mask << 16;
10827 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10828 		    tpp->la_mask);
10829 	}
10830 	mtx_unlock(&sc->reg_lock);
10831 
10832 	return (rc);
10833 }
10834 
10835 struct field_desc {
10836 	const char *name;
10837 	u_int start;
10838 	u_int width;
10839 };
10840 
10841 static void
10842 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10843 {
10844 	char buf[32];
10845 	int line_size = 0;
10846 
10847 	while (f->name) {
10848 		uint64_t mask = (1ULL << f->width) - 1;
10849 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10850 		    ((uintmax_t)v >> f->start) & mask);
10851 
10852 		if (line_size + len >= 79) {
10853 			line_size = 8;
10854 			sbuf_printf(sb, "\n        ");
10855 		}
10856 		sbuf_printf(sb, "%s ", buf);
10857 		line_size += len + 1;
10858 		f++;
10859 	}
10860 	sbuf_printf(sb, "\n");
10861 }
10862 
10863 static const struct field_desc tp_la0[] = {
10864 	{ "RcfOpCodeOut", 60, 4 },
10865 	{ "State", 56, 4 },
10866 	{ "WcfState", 52, 4 },
10867 	{ "RcfOpcSrcOut", 50, 2 },
10868 	{ "CRxError", 49, 1 },
10869 	{ "ERxError", 48, 1 },
10870 	{ "SanityFailed", 47, 1 },
10871 	{ "SpuriousMsg", 46, 1 },
10872 	{ "FlushInputMsg", 45, 1 },
10873 	{ "FlushInputCpl", 44, 1 },
10874 	{ "RssUpBit", 43, 1 },
10875 	{ "RssFilterHit", 42, 1 },
10876 	{ "Tid", 32, 10 },
10877 	{ "InitTcb", 31, 1 },
10878 	{ "LineNumber", 24, 7 },
10879 	{ "Emsg", 23, 1 },
10880 	{ "EdataOut", 22, 1 },
10881 	{ "Cmsg", 21, 1 },
10882 	{ "CdataOut", 20, 1 },
10883 	{ "EreadPdu", 19, 1 },
10884 	{ "CreadPdu", 18, 1 },
10885 	{ "TunnelPkt", 17, 1 },
10886 	{ "RcfPeerFin", 16, 1 },
10887 	{ "RcfReasonOut", 12, 4 },
10888 	{ "TxCchannel", 10, 2 },
10889 	{ "RcfTxChannel", 8, 2 },
10890 	{ "RxEchannel", 6, 2 },
10891 	{ "RcfRxChannel", 5, 1 },
10892 	{ "RcfDataOutSrdy", 4, 1 },
10893 	{ "RxDvld", 3, 1 },
10894 	{ "RxOoDvld", 2, 1 },
10895 	{ "RxCongestion", 1, 1 },
10896 	{ "TxCongestion", 0, 1 },
10897 	{ NULL }
10898 };
10899 
10900 static const struct field_desc tp_la1[] = {
10901 	{ "CplCmdIn", 56, 8 },
10902 	{ "CplCmdOut", 48, 8 },
10903 	{ "ESynOut", 47, 1 },
10904 	{ "EAckOut", 46, 1 },
10905 	{ "EFinOut", 45, 1 },
10906 	{ "ERstOut", 44, 1 },
10907 	{ "SynIn", 43, 1 },
10908 	{ "AckIn", 42, 1 },
10909 	{ "FinIn", 41, 1 },
10910 	{ "RstIn", 40, 1 },
10911 	{ "DataIn", 39, 1 },
10912 	{ "DataInVld", 38, 1 },
10913 	{ "PadIn", 37, 1 },
10914 	{ "RxBufEmpty", 36, 1 },
10915 	{ "RxDdp", 35, 1 },
10916 	{ "RxFbCongestion", 34, 1 },
10917 	{ "TxFbCongestion", 33, 1 },
10918 	{ "TxPktSumSrdy", 32, 1 },
10919 	{ "RcfUlpType", 28, 4 },
10920 	{ "Eread", 27, 1 },
10921 	{ "Ebypass", 26, 1 },
10922 	{ "Esave", 25, 1 },
10923 	{ "Static0", 24, 1 },
10924 	{ "Cread", 23, 1 },
10925 	{ "Cbypass", 22, 1 },
10926 	{ "Csave", 21, 1 },
10927 	{ "CPktOut", 20, 1 },
10928 	{ "RxPagePoolFull", 18, 2 },
10929 	{ "RxLpbkPkt", 17, 1 },
10930 	{ "TxLpbkPkt", 16, 1 },
10931 	{ "RxVfValid", 15, 1 },
10932 	{ "SynLearned", 14, 1 },
10933 	{ "SetDelEntry", 13, 1 },
10934 	{ "SetInvEntry", 12, 1 },
10935 	{ "CpcmdDvld", 11, 1 },
10936 	{ "CpcmdSave", 10, 1 },
10937 	{ "RxPstructsFull", 8, 2 },
10938 	{ "EpcmdDvld", 7, 1 },
10939 	{ "EpcmdFlush", 6, 1 },
10940 	{ "EpcmdTrimPrefix", 5, 1 },
10941 	{ "EpcmdTrimPostfix", 4, 1 },
10942 	{ "ERssIp4Pkt", 3, 1 },
10943 	{ "ERssIp6Pkt", 2, 1 },
10944 	{ "ERssTcpUdpPkt", 1, 1 },
10945 	{ "ERssFceFipPkt", 0, 1 },
10946 	{ NULL }
10947 };
10948 
10949 static const struct field_desc tp_la2[] = {
10950 	{ "CplCmdIn", 56, 8 },
10951 	{ "MpsVfVld", 55, 1 },
10952 	{ "MpsPf", 52, 3 },
10953 	{ "MpsVf", 44, 8 },
10954 	{ "SynIn", 43, 1 },
10955 	{ "AckIn", 42, 1 },
10956 	{ "FinIn", 41, 1 },
10957 	{ "RstIn", 40, 1 },
10958 	{ "DataIn", 39, 1 },
10959 	{ "DataInVld", 38, 1 },
10960 	{ "PadIn", 37, 1 },
10961 	{ "RxBufEmpty", 36, 1 },
10962 	{ "RxDdp", 35, 1 },
10963 	{ "RxFbCongestion", 34, 1 },
10964 	{ "TxFbCongestion", 33, 1 },
10965 	{ "TxPktSumSrdy", 32, 1 },
10966 	{ "RcfUlpType", 28, 4 },
10967 	{ "Eread", 27, 1 },
10968 	{ "Ebypass", 26, 1 },
10969 	{ "Esave", 25, 1 },
10970 	{ "Static0", 24, 1 },
10971 	{ "Cread", 23, 1 },
10972 	{ "Cbypass", 22, 1 },
10973 	{ "Csave", 21, 1 },
10974 	{ "CPktOut", 20, 1 },
10975 	{ "RxPagePoolFull", 18, 2 },
10976 	{ "RxLpbkPkt", 17, 1 },
10977 	{ "TxLpbkPkt", 16, 1 },
10978 	{ "RxVfValid", 15, 1 },
10979 	{ "SynLearned", 14, 1 },
10980 	{ "SetDelEntry", 13, 1 },
10981 	{ "SetInvEntry", 12, 1 },
10982 	{ "CpcmdDvld", 11, 1 },
10983 	{ "CpcmdSave", 10, 1 },
10984 	{ "RxPstructsFull", 8, 2 },
10985 	{ "EpcmdDvld", 7, 1 },
10986 	{ "EpcmdFlush", 6, 1 },
10987 	{ "EpcmdTrimPrefix", 5, 1 },
10988 	{ "EpcmdTrimPostfix", 4, 1 },
10989 	{ "ERssIp4Pkt", 3, 1 },
10990 	{ "ERssIp6Pkt", 2, 1 },
10991 	{ "ERssTcpUdpPkt", 1, 1 },
10992 	{ "ERssFceFipPkt", 0, 1 },
10993 	{ NULL }
10994 };
10995 
10996 static void
10997 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10998 {
10999 
11000 	field_desc_show(sb, *p, tp_la0);
11001 }
11002 
11003 static void
11004 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11005 {
11006 
11007 	if (idx)
11008 		sbuf_printf(sb, "\n");
11009 	field_desc_show(sb, p[0], tp_la0);
11010 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11011 		field_desc_show(sb, p[1], tp_la0);
11012 }
11013 
11014 static void
11015 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11016 {
11017 
11018 	if (idx)
11019 		sbuf_printf(sb, "\n");
11020 	field_desc_show(sb, p[0], tp_la0);
11021 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11022 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11023 }
11024 
11025 static int
11026 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11027 {
11028 	struct adapter *sc = arg1;
11029 	struct sbuf *sb;
11030 	uint64_t *buf, *p;
11031 	int rc;
11032 	u_int i, inc;
11033 	void (*show_func)(struct sbuf *, uint64_t *, int);
11034 
11035 	rc = sysctl_wire_old_buffer(req, 0);
11036 	if (rc != 0)
11037 		return (rc);
11038 
11039 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11040 	if (sb == NULL)
11041 		return (ENOMEM);
11042 
11043 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11044 
11045 	mtx_lock(&sc->reg_lock);
11046 	if (hw_off_limits(sc))
11047 		rc = ENXIO;
11048 	else {
11049 		t4_tp_read_la(sc, buf, NULL);
11050 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11051 		case 2:
11052 			inc = 2;
11053 			show_func = tp_la_show2;
11054 			break;
11055 		case 3:
11056 			inc = 2;
11057 			show_func = tp_la_show3;
11058 			break;
11059 		default:
11060 			inc = 1;
11061 			show_func = tp_la_show;
11062 		}
11063 	}
11064 	mtx_unlock(&sc->reg_lock);
11065 	if (rc != 0)
11066 		goto done;
11067 
11068 	p = buf;
11069 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11070 		(*show_func)(sb, p, i);
11071 	rc = sbuf_finish(sb);
11072 done:
11073 	sbuf_delete(sb);
11074 	free(buf, M_CXGBE);
11075 	return (rc);
11076 }
11077 
11078 static int
11079 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11080 {
11081 	struct adapter *sc = arg1;
11082 	struct sbuf *sb;
11083 	int rc;
11084 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11085 
11086 	rc = sysctl_wire_old_buffer(req, 0);
11087 	if (rc != 0)
11088 		return (rc);
11089 
11090 	mtx_lock(&sc->reg_lock);
11091 	if (hw_off_limits(sc))
11092 		rc = ENXIO;
11093 	else
11094 		t4_get_chan_txrate(sc, nrate, orate);
11095 	mtx_unlock(&sc->reg_lock);
11096 	if (rc != 0)
11097 		return (rc);
11098 
11099 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11100 	if (sb == NULL)
11101 		return (ENOMEM);
11102 
11103 	if (sc->chip_params->nchan > 2) {
11104 		sbuf_printf(sb, "              channel 0   channel 1"
11105 		    "   channel 2   channel 3\n");
11106 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11107 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11108 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11109 		    orate[0], orate[1], orate[2], orate[3]);
11110 	} else {
11111 		sbuf_printf(sb, "              channel 0   channel 1\n");
11112 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11113 		    nrate[0], nrate[1]);
11114 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11115 		    orate[0], orate[1]);
11116 	}
11117 
11118 	rc = sbuf_finish(sb);
11119 	sbuf_delete(sb);
11120 
11121 	return (rc);
11122 }
11123 
11124 static int
11125 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11126 {
11127 	struct adapter *sc = arg1;
11128 	struct sbuf *sb;
11129 	uint32_t *buf, *p;
11130 	int rc, i;
11131 
11132 	rc = sysctl_wire_old_buffer(req, 0);
11133 	if (rc != 0)
11134 		return (rc);
11135 
11136 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11137 	if (sb == NULL)
11138 		return (ENOMEM);
11139 
11140 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11141 	    M_ZERO | M_WAITOK);
11142 
11143 	mtx_lock(&sc->reg_lock);
11144 	if (hw_off_limits(sc))
11145 		rc = ENXIO;
11146 	else
11147 		t4_ulprx_read_la(sc, buf);
11148 	mtx_unlock(&sc->reg_lock);
11149 	if (rc != 0)
11150 		goto done;
11151 
11152 	p = buf;
11153 	sbuf_printf(sb, "      Pcmd        Type   Message"
11154 	    "                Data");
11155 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11156 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11157 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11158 	}
11159 	rc = sbuf_finish(sb);
11160 done:
11161 	sbuf_delete(sb);
11162 	free(buf, M_CXGBE);
11163 	return (rc);
11164 }
11165 
11166 static int
11167 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11168 {
11169 	struct adapter *sc = arg1;
11170 	struct sbuf *sb;
11171 	int rc;
11172 	uint32_t cfg, s1, s2;
11173 
11174 	MPASS(chip_id(sc) >= CHELSIO_T5);
11175 
11176 	rc = sysctl_wire_old_buffer(req, 0);
11177 	if (rc != 0)
11178 		return (rc);
11179 
11180 	mtx_lock(&sc->reg_lock);
11181 	if (hw_off_limits(sc))
11182 		rc = ENXIO;
11183 	else {
11184 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11185 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11186 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11187 	}
11188 	mtx_unlock(&sc->reg_lock);
11189 	if (rc != 0)
11190 		return (rc);
11191 
11192 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11193 	if (sb == NULL)
11194 		return (ENOMEM);
11195 
11196 	if (G_STATSOURCE_T5(cfg) == 7) {
11197 		int mode;
11198 
11199 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11200 		if (mode == 0)
11201 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11202 		else if (mode == 1)
11203 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11204 		else
11205 			sbuf_printf(sb, "unknown mode %d", mode);
11206 	}
11207 	rc = sbuf_finish(sb);
11208 	sbuf_delete(sb);
11209 
11210 	return (rc);
11211 }
11212 
11213 static int
11214 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11215 {
11216 	struct adapter *sc = arg1;
11217 	enum cpu_sets op = arg2;
11218 	cpuset_t cpuset;
11219 	struct sbuf *sb;
11220 	int i, rc;
11221 
11222 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11223 
11224 	CPU_ZERO(&cpuset);
11225 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11226 	if (rc != 0)
11227 		return (rc);
11228 
11229 	rc = sysctl_wire_old_buffer(req, 0);
11230 	if (rc != 0)
11231 		return (rc);
11232 
11233 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11234 	if (sb == NULL)
11235 		return (ENOMEM);
11236 
11237 	CPU_FOREACH(i)
11238 		sbuf_printf(sb, "%d ", i);
11239 	rc = sbuf_finish(sb);
11240 	sbuf_delete(sb);
11241 
11242 	return (rc);
11243 }
11244 
11245 static int
11246 sysctl_reset(SYSCTL_HANDLER_ARGS)
11247 {
11248 	struct adapter *sc = arg1;
11249 	u_int val;
11250 	int rc;
11251 
11252 	val = atomic_load_int(&sc->num_resets);
11253 	rc = sysctl_handle_int(oidp, &val, 0, req);
11254 	if (rc != 0 || req->newptr == NULL)
11255 		return (rc);
11256 
11257 	if (val == 0) {
11258 		/* Zero out the counter that tracks reset. */
11259 		atomic_store_int(&sc->num_resets, 0);
11260 		return (0);
11261 	}
11262 
11263 	if (val != 1)
11264 		return (EINVAL);	/* 0 or 1 are the only legal values */
11265 
11266 	if (hw_off_limits(sc))		/* harmless race */
11267 		return (EALREADY);
11268 
11269 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11270 	return (0);
11271 }
11272 
11273 #ifdef TCP_OFFLOAD
11274 static int
11275 sysctl_tls(SYSCTL_HANDLER_ARGS)
11276 {
11277 	struct adapter *sc = arg1;
11278 	int i, j, v, rc;
11279 	struct vi_info *vi;
11280 
11281 	v = sc->tt.tls;
11282 	rc = sysctl_handle_int(oidp, &v, 0, req);
11283 	if (rc != 0 || req->newptr == NULL)
11284 		return (rc);
11285 
11286 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11287 		return (ENOTSUP);
11288 
11289 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11290 	if (rc)
11291 		return (rc);
11292 	if (hw_off_limits(sc))
11293 		rc = ENXIO;
11294 	else {
11295 		sc->tt.tls = !!v;
11296 		for_each_port(sc, i) {
11297 			for_each_vi(sc->port[i], j, vi) {
11298 				if (vi->flags & VI_INIT_DONE)
11299 					t4_update_fl_bufsize(vi->ifp);
11300 			}
11301 		}
11302 	}
11303 	end_synchronized_op(sc, 0);
11304 
11305 	return (rc);
11306 
11307 }
11308 
11309 static void
11310 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11311 {
11312 	u_int rem = val % factor;
11313 
11314 	if (rem == 0)
11315 		snprintf(buf, len, "%u", val / factor);
11316 	else {
11317 		while (rem % 10 == 0)
11318 			rem /= 10;
11319 		snprintf(buf, len, "%u.%u", val / factor, rem);
11320 	}
11321 }
11322 
11323 static int
11324 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11325 {
11326 	struct adapter *sc = arg1;
11327 	char buf[16];
11328 	u_int res, re;
11329 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11330 
11331 	mtx_lock(&sc->reg_lock);
11332 	if (hw_off_limits(sc))
11333 		res = (u_int)-1;
11334 	else
11335 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11336 	mtx_unlock(&sc->reg_lock);
11337 	if (res == (u_int)-1)
11338 		return (ENXIO);
11339 
11340 	switch (arg2) {
11341 	case 0:
11342 		/* timer_tick */
11343 		re = G_TIMERRESOLUTION(res);
11344 		break;
11345 	case 1:
11346 		/* TCP timestamp tick */
11347 		re = G_TIMESTAMPRESOLUTION(res);
11348 		break;
11349 	case 2:
11350 		/* DACK tick */
11351 		re = G_DELAYEDACKRESOLUTION(res);
11352 		break;
11353 	default:
11354 		return (EDOOFUS);
11355 	}
11356 
11357 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11358 
11359 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11360 }
11361 
11362 static int
11363 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11364 {
11365 	struct adapter *sc = arg1;
11366 	int rc;
11367 	u_int dack_tmr, dack_re, v;
11368 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11369 
11370 	mtx_lock(&sc->reg_lock);
11371 	if (hw_off_limits(sc))
11372 		rc = ENXIO;
11373 	else {
11374 		rc = 0;
11375 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11376 		    A_TP_TIMER_RESOLUTION));
11377 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11378 	}
11379 	mtx_unlock(&sc->reg_lock);
11380 	if (rc != 0)
11381 		return (rc);
11382 
11383 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11384 
11385 	return (sysctl_handle_int(oidp, &v, 0, req));
11386 }
11387 
11388 static int
11389 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11390 {
11391 	struct adapter *sc = arg1;
11392 	int rc, reg = arg2;
11393 	u_int tre;
11394 	u_long tp_tick_us, v;
11395 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11396 
11397 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11398 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11399 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11400 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11401 
11402 	mtx_lock(&sc->reg_lock);
11403 	if (hw_off_limits(sc))
11404 		rc = ENXIO;
11405 	else {
11406 		rc = 0;
11407 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11408 		tp_tick_us = (cclk_ps << tre) / 1000000;
11409 		if (reg == A_TP_INIT_SRTT)
11410 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11411 		else
11412 			v = tp_tick_us * t4_read_reg(sc, reg);
11413 	}
11414 	mtx_unlock(&sc->reg_lock);
11415 	if (rc != 0)
11416 		return (rc);
11417 	else
11418 		return (sysctl_handle_long(oidp, &v, 0, req));
11419 }
11420 
11421 /*
11422  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11423  * passed to this function.
11424  */
11425 static int
11426 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11427 {
11428 	struct adapter *sc = arg1;
11429 	int rc, idx = arg2;
11430 	u_int v;
11431 
11432 	MPASS(idx >= 0 && idx <= 24);
11433 
11434 	mtx_lock(&sc->reg_lock);
11435 	if (hw_off_limits(sc))
11436 		rc = ENXIO;
11437 	else {
11438 		rc = 0;
11439 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11440 	}
11441 	mtx_unlock(&sc->reg_lock);
11442 	if (rc != 0)
11443 		return (rc);
11444 	else
11445 		return (sysctl_handle_int(oidp, &v, 0, req));
11446 }
11447 
11448 static int
11449 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11450 {
11451 	struct adapter *sc = arg1;
11452 	int rc, idx = arg2;
11453 	u_int shift, v, r;
11454 
11455 	MPASS(idx >= 0 && idx < 16);
11456 
11457 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11458 	shift = (idx & 3) << 3;
11459 	mtx_lock(&sc->reg_lock);
11460 	if (hw_off_limits(sc))
11461 		rc = ENXIO;
11462 	else {
11463 		rc = 0;
11464 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11465 	}
11466 	mtx_unlock(&sc->reg_lock);
11467 	if (rc != 0)
11468 		return (rc);
11469 	else
11470 		return (sysctl_handle_int(oidp, &v, 0, req));
11471 }
11472 
11473 static int
11474 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11475 {
11476 	struct vi_info *vi = arg1;
11477 	struct adapter *sc = vi->adapter;
11478 	int idx, rc, i;
11479 	struct sge_ofld_rxq *ofld_rxq;
11480 	uint8_t v;
11481 
11482 	idx = vi->ofld_tmr_idx;
11483 
11484 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11485 	if (rc != 0 || req->newptr == NULL)
11486 		return (rc);
11487 
11488 	if (idx < 0 || idx >= SGE_NTIMERS)
11489 		return (EINVAL);
11490 
11491 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11492 	    "t4otmr");
11493 	if (rc)
11494 		return (rc);
11495 
11496 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11497 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11498 #ifdef atomic_store_rel_8
11499 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11500 #else
11501 		ofld_rxq->iq.intr_params = v;
11502 #endif
11503 	}
11504 	vi->ofld_tmr_idx = idx;
11505 
11506 	end_synchronized_op(sc, LOCK_HELD);
11507 	return (0);
11508 }
11509 
11510 static int
11511 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11512 {
11513 	struct vi_info *vi = arg1;
11514 	struct adapter *sc = vi->adapter;
11515 	int idx, rc;
11516 
11517 	idx = vi->ofld_pktc_idx;
11518 
11519 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11520 	if (rc != 0 || req->newptr == NULL)
11521 		return (rc);
11522 
11523 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11524 		return (EINVAL);
11525 
11526 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11527 	    "t4opktc");
11528 	if (rc)
11529 		return (rc);
11530 
11531 	if (vi->flags & VI_INIT_DONE)
11532 		rc = EBUSY; /* cannot be changed once the queues are created */
11533 	else
11534 		vi->ofld_pktc_idx = idx;
11535 
11536 	end_synchronized_op(sc, LOCK_HELD);
11537 	return (rc);
11538 }
11539 #endif
11540 
11541 static int
11542 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11543 {
11544 	int rc;
11545 
11546 	if (cntxt->cid > M_CTXTQID)
11547 		return (EINVAL);
11548 
11549 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11550 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11551 		return (EINVAL);
11552 
11553 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11554 	if (rc)
11555 		return (rc);
11556 
11557 	if (hw_off_limits(sc)) {
11558 		rc = ENXIO;
11559 		goto done;
11560 	}
11561 
11562 	if (sc->flags & FW_OK) {
11563 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11564 		    &cntxt->data[0]);
11565 		if (rc == 0)
11566 			goto done;
11567 	}
11568 
11569 	/*
11570 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11571 	 * the backdoor.
11572 	 */
11573 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11574 done:
11575 	end_synchronized_op(sc, 0);
11576 	return (rc);
11577 }
11578 
11579 static int
11580 load_fw(struct adapter *sc, struct t4_data *fw)
11581 {
11582 	int rc;
11583 	uint8_t *fw_data;
11584 
11585 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11586 	if (rc)
11587 		return (rc);
11588 
11589 	if (hw_off_limits(sc)) {
11590 		rc = ENXIO;
11591 		goto done;
11592 	}
11593 
11594 	/*
11595 	 * The firmware, with the sole exception of the memory parity error
11596 	 * handler, runs from memory and not flash.  It is almost always safe to
11597 	 * install a new firmware on a running system.  Just set bit 1 in
11598 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11599 	 */
11600 	if (sc->flags & FULL_INIT_DONE &&
11601 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11602 		rc = EBUSY;
11603 		goto done;
11604 	}
11605 
11606 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11607 
11608 	rc = copyin(fw->data, fw_data, fw->len);
11609 	if (rc == 0)
11610 		rc = -t4_load_fw(sc, fw_data, fw->len);
11611 
11612 	free(fw_data, M_CXGBE);
11613 done:
11614 	end_synchronized_op(sc, 0);
11615 	return (rc);
11616 }
11617 
11618 static int
11619 load_cfg(struct adapter *sc, struct t4_data *cfg)
11620 {
11621 	int rc;
11622 	uint8_t *cfg_data = NULL;
11623 
11624 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11625 	if (rc)
11626 		return (rc);
11627 
11628 	if (hw_off_limits(sc)) {
11629 		rc = ENXIO;
11630 		goto done;
11631 	}
11632 
11633 	if (cfg->len == 0) {
11634 		/* clear */
11635 		rc = -t4_load_cfg(sc, NULL, 0);
11636 		goto done;
11637 	}
11638 
11639 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11640 
11641 	rc = copyin(cfg->data, cfg_data, cfg->len);
11642 	if (rc == 0)
11643 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11644 
11645 	free(cfg_data, M_CXGBE);
11646 done:
11647 	end_synchronized_op(sc, 0);
11648 	return (rc);
11649 }
11650 
11651 static int
11652 load_boot(struct adapter *sc, struct t4_bootrom *br)
11653 {
11654 	int rc;
11655 	uint8_t *br_data = NULL;
11656 	u_int offset;
11657 
11658 	if (br->len > 1024 * 1024)
11659 		return (EFBIG);
11660 
11661 	if (br->pf_offset == 0) {
11662 		/* pfidx */
11663 		if (br->pfidx_addr > 7)
11664 			return (EINVAL);
11665 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11666 		    A_PCIE_PF_EXPROM_OFST)));
11667 	} else if (br->pf_offset == 1) {
11668 		/* offset */
11669 		offset = G_OFFSET(br->pfidx_addr);
11670 	} else {
11671 		return (EINVAL);
11672 	}
11673 
11674 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11675 	if (rc)
11676 		return (rc);
11677 
11678 	if (hw_off_limits(sc)) {
11679 		rc = ENXIO;
11680 		goto done;
11681 	}
11682 
11683 	if (br->len == 0) {
11684 		/* clear */
11685 		rc = -t4_load_boot(sc, NULL, offset, 0);
11686 		goto done;
11687 	}
11688 
11689 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11690 
11691 	rc = copyin(br->data, br_data, br->len);
11692 	if (rc == 0)
11693 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11694 
11695 	free(br_data, M_CXGBE);
11696 done:
11697 	end_synchronized_op(sc, 0);
11698 	return (rc);
11699 }
11700 
11701 static int
11702 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11703 {
11704 	int rc;
11705 	uint8_t *bc_data = NULL;
11706 
11707 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11708 	if (rc)
11709 		return (rc);
11710 
11711 	if (hw_off_limits(sc)) {
11712 		rc = ENXIO;
11713 		goto done;
11714 	}
11715 
11716 	if (bc->len == 0) {
11717 		/* clear */
11718 		rc = -t4_load_bootcfg(sc, NULL, 0);
11719 		goto done;
11720 	}
11721 
11722 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11723 
11724 	rc = copyin(bc->data, bc_data, bc->len);
11725 	if (rc == 0)
11726 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11727 
11728 	free(bc_data, M_CXGBE);
11729 done:
11730 	end_synchronized_op(sc, 0);
11731 	return (rc);
11732 }
11733 
11734 static int
11735 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11736 {
11737 	int rc;
11738 	struct cudbg_init *cudbg;
11739 	void *handle, *buf;
11740 
11741 	/* buf is large, don't block if no memory is available */
11742 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11743 	if (buf == NULL)
11744 		return (ENOMEM);
11745 
11746 	handle = cudbg_alloc_handle();
11747 	if (handle == NULL) {
11748 		rc = ENOMEM;
11749 		goto done;
11750 	}
11751 
11752 	cudbg = cudbg_get_init(handle);
11753 	cudbg->adap = sc;
11754 	cudbg->print = (cudbg_print_cb)printf;
11755 
11756 #ifndef notyet
11757 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11758 	    __func__, dump->wr_flash, dump->len, dump->data);
11759 #endif
11760 
11761 	if (dump->wr_flash)
11762 		cudbg->use_flash = 1;
11763 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11764 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11765 
11766 	rc = cudbg_collect(handle, buf, &dump->len);
11767 	if (rc != 0)
11768 		goto done;
11769 
11770 	rc = copyout(buf, dump->data, dump->len);
11771 done:
11772 	cudbg_free_handle(handle);
11773 	free(buf, M_CXGBE);
11774 	return (rc);
11775 }
11776 
11777 static void
11778 free_offload_policy(struct t4_offload_policy *op)
11779 {
11780 	struct offload_rule *r;
11781 	int i;
11782 
11783 	if (op == NULL)
11784 		return;
11785 
11786 	r = &op->rule[0];
11787 	for (i = 0; i < op->nrules; i++, r++) {
11788 		free(r->bpf_prog.bf_insns, M_CXGBE);
11789 	}
11790 	free(op->rule, M_CXGBE);
11791 	free(op, M_CXGBE);
11792 }
11793 
11794 static int
11795 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11796 {
11797 	int i, rc, len;
11798 	struct t4_offload_policy *op, *old;
11799 	struct bpf_program *bf;
11800 	const struct offload_settings *s;
11801 	struct offload_rule *r;
11802 	void *u;
11803 
11804 	if (!is_offload(sc))
11805 		return (ENODEV);
11806 
11807 	if (uop->nrules == 0) {
11808 		/* Delete installed policies. */
11809 		op = NULL;
11810 		goto set_policy;
11811 	} else if (uop->nrules > 256) { /* arbitrary */
11812 		return (E2BIG);
11813 	}
11814 
11815 	/* Copy userspace offload policy to kernel */
11816 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11817 	op->nrules = uop->nrules;
11818 	len = op->nrules * sizeof(struct offload_rule);
11819 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11820 	rc = copyin(uop->rule, op->rule, len);
11821 	if (rc) {
11822 		free(op->rule, M_CXGBE);
11823 		free(op, M_CXGBE);
11824 		return (rc);
11825 	}
11826 
11827 	r = &op->rule[0];
11828 	for (i = 0; i < op->nrules; i++, r++) {
11829 
11830 		/* Validate open_type */
11831 		if (r->open_type != OPEN_TYPE_LISTEN &&
11832 		    r->open_type != OPEN_TYPE_ACTIVE &&
11833 		    r->open_type != OPEN_TYPE_PASSIVE &&
11834 		    r->open_type != OPEN_TYPE_DONTCARE) {
11835 error:
11836 			/*
11837 			 * Rules 0 to i have malloc'd filters that need to be
11838 			 * freed.  Rules i+1 to nrules have userspace pointers
11839 			 * and should be left alone.
11840 			 */
11841 			op->nrules = i;
11842 			free_offload_policy(op);
11843 			return (rc);
11844 		}
11845 
11846 		/* Validate settings */
11847 		s = &r->settings;
11848 		if ((s->offload != 0 && s->offload != 1) ||
11849 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11850 		    s->sched_class < -1 ||
11851 		    s->sched_class >= sc->params.nsched_cls) {
11852 			rc = EINVAL;
11853 			goto error;
11854 		}
11855 
11856 		bf = &r->bpf_prog;
11857 		u = bf->bf_insns;	/* userspace ptr */
11858 		bf->bf_insns = NULL;
11859 		if (bf->bf_len == 0) {
11860 			/* legal, matches everything */
11861 			continue;
11862 		}
11863 		len = bf->bf_len * sizeof(*bf->bf_insns);
11864 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11865 		rc = copyin(u, bf->bf_insns, len);
11866 		if (rc != 0)
11867 			goto error;
11868 
11869 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11870 			rc = EINVAL;
11871 			goto error;
11872 		}
11873 	}
11874 set_policy:
11875 	rw_wlock(&sc->policy_lock);
11876 	old = sc->policy;
11877 	sc->policy = op;
11878 	rw_wunlock(&sc->policy_lock);
11879 	free_offload_policy(old);
11880 
11881 	return (0);
11882 }
11883 
11884 #define MAX_READ_BUF_SIZE (128 * 1024)
11885 static int
11886 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11887 {
11888 	uint32_t addr, remaining, n;
11889 	uint32_t *buf;
11890 	int rc;
11891 	uint8_t *dst;
11892 
11893 	mtx_lock(&sc->reg_lock);
11894 	if (hw_off_limits(sc))
11895 		rc = ENXIO;
11896 	else
11897 		rc = validate_mem_range(sc, mr->addr, mr->len);
11898 	mtx_unlock(&sc->reg_lock);
11899 	if (rc != 0)
11900 		return (rc);
11901 
11902 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11903 	addr = mr->addr;
11904 	remaining = mr->len;
11905 	dst = (void *)mr->data;
11906 
11907 	while (remaining) {
11908 		n = min(remaining, MAX_READ_BUF_SIZE);
11909 		mtx_lock(&sc->reg_lock);
11910 		if (hw_off_limits(sc))
11911 			rc = ENXIO;
11912 		else
11913 			read_via_memwin(sc, 2, addr, buf, n);
11914 		mtx_unlock(&sc->reg_lock);
11915 		if (rc != 0)
11916 			break;
11917 
11918 		rc = copyout(buf, dst, n);
11919 		if (rc != 0)
11920 			break;
11921 
11922 		dst += n;
11923 		remaining -= n;
11924 		addr += n;
11925 	}
11926 
11927 	free(buf, M_CXGBE);
11928 	return (rc);
11929 }
11930 #undef MAX_READ_BUF_SIZE
11931 
11932 static int
11933 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11934 {
11935 	int rc;
11936 
11937 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11938 		return (EINVAL);
11939 
11940 	if (i2cd->len > sizeof(i2cd->data))
11941 		return (EFBIG);
11942 
11943 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11944 	if (rc)
11945 		return (rc);
11946 	if (hw_off_limits(sc))
11947 		rc = ENXIO;
11948 	else
11949 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11950 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11951 	end_synchronized_op(sc, 0);
11952 
11953 	return (rc);
11954 }
11955 
11956 static int
11957 clear_stats(struct adapter *sc, u_int port_id)
11958 {
11959 	int i, v, chan_map;
11960 	struct port_info *pi;
11961 	struct vi_info *vi;
11962 	struct sge_rxq *rxq;
11963 	struct sge_txq *txq;
11964 	struct sge_wrq *wrq;
11965 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11966 	struct sge_ofld_txq *ofld_txq;
11967 #endif
11968 #ifdef TCP_OFFLOAD
11969 	struct sge_ofld_rxq *ofld_rxq;
11970 #endif
11971 
11972 	if (port_id >= sc->params.nports)
11973 		return (EINVAL);
11974 	pi = sc->port[port_id];
11975 	if (pi == NULL)
11976 		return (EIO);
11977 
11978 	mtx_lock(&sc->reg_lock);
11979 	if (!hw_off_limits(sc)) {
11980 		/* MAC stats */
11981 		t4_clr_port_stats(sc, pi->tx_chan);
11982 		if (is_t6(sc)) {
11983 			if (pi->fcs_reg != -1)
11984 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11985 			else
11986 				pi->stats.rx_fcs_err = 0;
11987 		}
11988 		for_each_vi(pi, v, vi) {
11989 			if (vi->flags & VI_INIT_DONE)
11990 				t4_clr_vi_stats(sc, vi->vin);
11991 		}
11992 		chan_map = pi->rx_e_chan_map;
11993 		v = 0;	/* reuse */
11994 		while (chan_map) {
11995 			i = ffs(chan_map) - 1;
11996 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11997 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11998 			chan_map &= ~(1 << i);
11999 		}
12000 	}
12001 	mtx_unlock(&sc->reg_lock);
12002 	pi->tx_parse_error = 0;
12003 	pi->tnl_cong_drops = 0;
12004 
12005 	/*
12006 	 * Since this command accepts a port, clear stats for
12007 	 * all VIs on this port.
12008 	 */
12009 	for_each_vi(pi, v, vi) {
12010 		if (vi->flags & VI_INIT_DONE) {
12011 
12012 			for_each_rxq(vi, i, rxq) {
12013 #if defined(INET) || defined(INET6)
12014 				rxq->lro.lro_queued = 0;
12015 				rxq->lro.lro_flushed = 0;
12016 #endif
12017 				rxq->rxcsum = 0;
12018 				rxq->vlan_extraction = 0;
12019 				rxq->vxlan_rxcsum = 0;
12020 
12021 				rxq->fl.cl_allocated = 0;
12022 				rxq->fl.cl_recycled = 0;
12023 				rxq->fl.cl_fast_recycled = 0;
12024 			}
12025 
12026 			for_each_txq(vi, i, txq) {
12027 				txq->txcsum = 0;
12028 				txq->tso_wrs = 0;
12029 				txq->vlan_insertion = 0;
12030 				txq->imm_wrs = 0;
12031 				txq->sgl_wrs = 0;
12032 				txq->txpkt_wrs = 0;
12033 				txq->txpkts0_wrs = 0;
12034 				txq->txpkts1_wrs = 0;
12035 				txq->txpkts0_pkts = 0;
12036 				txq->txpkts1_pkts = 0;
12037 				txq->txpkts_flush = 0;
12038 				txq->raw_wrs = 0;
12039 				txq->vxlan_tso_wrs = 0;
12040 				txq->vxlan_txcsum = 0;
12041 				txq->kern_tls_records = 0;
12042 				txq->kern_tls_short = 0;
12043 				txq->kern_tls_partial = 0;
12044 				txq->kern_tls_full = 0;
12045 				txq->kern_tls_octets = 0;
12046 				txq->kern_tls_waste = 0;
12047 				txq->kern_tls_options = 0;
12048 				txq->kern_tls_header = 0;
12049 				txq->kern_tls_fin = 0;
12050 				txq->kern_tls_fin_short = 0;
12051 				txq->kern_tls_cbc = 0;
12052 				txq->kern_tls_gcm = 0;
12053 				mp_ring_reset_stats(txq->r);
12054 			}
12055 
12056 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12057 			for_each_ofld_txq(vi, i, ofld_txq) {
12058 				ofld_txq->wrq.tx_wrs_direct = 0;
12059 				ofld_txq->wrq.tx_wrs_copied = 0;
12060 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12061 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12062 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12063 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12064 				counter_u64_zero(ofld_txq->tx_aio_octets);
12065 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12066 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12067 			}
12068 #endif
12069 #ifdef TCP_OFFLOAD
12070 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12071 				ofld_rxq->fl.cl_allocated = 0;
12072 				ofld_rxq->fl.cl_recycled = 0;
12073 				ofld_rxq->fl.cl_fast_recycled = 0;
12074 				counter_u64_zero(
12075 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12076 				counter_u64_zero(
12077 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12078 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12079 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12080 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12081 				ofld_rxq->rx_iscsi_fl_octets = 0;
12082 				ofld_rxq->rx_aio_ddp_jobs = 0;
12083 				ofld_rxq->rx_aio_ddp_octets = 0;
12084 				ofld_rxq->rx_toe_tls_records = 0;
12085 				ofld_rxq->rx_toe_tls_octets = 0;
12086 				ofld_rxq->rx_toe_ddp_octets = 0;
12087 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12088 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12089 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12090 			}
12091 #endif
12092 
12093 			if (IS_MAIN_VI(vi)) {
12094 				wrq = &sc->sge.ctrlq[pi->port_id];
12095 				wrq->tx_wrs_direct = 0;
12096 				wrq->tx_wrs_copied = 0;
12097 			}
12098 		}
12099 	}
12100 
12101 	return (0);
12102 }
12103 
12104 static int
12105 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12106 {
12107 #ifdef INET6
12108 	struct in6_addr in6;
12109 
12110 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12111 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12112 		return (0);
12113 	else
12114 		return (EIO);
12115 #else
12116 	return (ENOTSUP);
12117 #endif
12118 }
12119 
12120 static int
12121 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12122 {
12123 #ifdef INET6
12124 	struct in6_addr in6;
12125 
12126 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12127 	return (t4_release_clip_addr(sc, &in6));
12128 #else
12129 	return (ENOTSUP);
12130 #endif
12131 }
12132 
12133 int
12134 t4_os_find_pci_capability(struct adapter *sc, int cap)
12135 {
12136 	int i;
12137 
12138 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12139 }
12140 
12141 int
12142 t4_os_pci_save_state(struct adapter *sc)
12143 {
12144 	device_t dev;
12145 	struct pci_devinfo *dinfo;
12146 
12147 	dev = sc->dev;
12148 	dinfo = device_get_ivars(dev);
12149 
12150 	pci_cfg_save(dev, dinfo, 0);
12151 	return (0);
12152 }
12153 
12154 int
12155 t4_os_pci_restore_state(struct adapter *sc)
12156 {
12157 	device_t dev;
12158 	struct pci_devinfo *dinfo;
12159 
12160 	dev = sc->dev;
12161 	dinfo = device_get_ivars(dev);
12162 
12163 	pci_cfg_restore(dev, dinfo);
12164 	return (0);
12165 }
12166 
12167 void
12168 t4_os_portmod_changed(struct port_info *pi)
12169 {
12170 	struct adapter *sc = pi->adapter;
12171 	struct vi_info *vi;
12172 	if_t ifp;
12173 	static const char *mod_str[] = {
12174 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12175 	};
12176 
12177 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12178 	    ("%s: port_type %u", __func__, pi->port_type));
12179 
12180 	vi = &pi->vi[0];
12181 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12182 		PORT_LOCK(pi);
12183 		build_medialist(pi);
12184 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12185 			fixup_link_config(pi);
12186 			apply_link_config(pi);
12187 		}
12188 		PORT_UNLOCK(pi);
12189 		end_synchronized_op(sc, LOCK_HELD);
12190 	}
12191 
12192 	ifp = vi->ifp;
12193 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12194 		if_printf(ifp, "transceiver unplugged.\n");
12195 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12196 		if_printf(ifp, "unknown transceiver inserted.\n");
12197 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12198 		if_printf(ifp, "unsupported transceiver inserted.\n");
12199 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12200 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12201 		    port_top_speed(pi), mod_str[pi->mod_type]);
12202 	} else {
12203 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12204 		    pi->mod_type);
12205 	}
12206 }
12207 
12208 void
12209 t4_os_link_changed(struct port_info *pi)
12210 {
12211 	struct vi_info *vi;
12212 	if_t ifp;
12213 	struct link_config *lc = &pi->link_cfg;
12214 	struct adapter *sc = pi->adapter;
12215 	int v;
12216 
12217 	PORT_LOCK_ASSERT_OWNED(pi);
12218 
12219 	if (is_t6(sc)) {
12220 		if (lc->link_ok) {
12221 			if (lc->speed > 25000 ||
12222 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12223 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12224 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12225 			} else {
12226 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12227 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12228 			}
12229 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12230 			pi->stats.rx_fcs_err = 0;
12231 		} else {
12232 			pi->fcs_reg = -1;
12233 		}
12234 	} else {
12235 		MPASS(pi->fcs_reg != -1);
12236 		MPASS(pi->fcs_base == 0);
12237 	}
12238 
12239 	for_each_vi(pi, v, vi) {
12240 		ifp = vi->ifp;
12241 		if (ifp == NULL)
12242 			continue;
12243 
12244 		if (lc->link_ok) {
12245 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12246 			if_link_state_change(ifp, LINK_STATE_UP);
12247 		} else {
12248 			if_link_state_change(ifp, LINK_STATE_DOWN);
12249 		}
12250 	}
12251 }
12252 
12253 void
12254 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12255 {
12256 	struct adapter *sc;
12257 
12258 	sx_slock(&t4_list_lock);
12259 	SLIST_FOREACH(sc, &t4_list, link) {
12260 		/*
12261 		 * func should not make any assumptions about what state sc is
12262 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12263 		 */
12264 		func(sc, arg);
12265 	}
12266 	sx_sunlock(&t4_list_lock);
12267 }
12268 
12269 static int
12270 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12271     struct thread *td)
12272 {
12273 	int rc;
12274 	struct adapter *sc = dev->si_drv1;
12275 
12276 	rc = priv_check(td, PRIV_DRIVER);
12277 	if (rc != 0)
12278 		return (rc);
12279 
12280 	switch (cmd) {
12281 	case CHELSIO_T4_GETREG: {
12282 		struct t4_reg *edata = (struct t4_reg *)data;
12283 
12284 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12285 			return (EFAULT);
12286 
12287 		mtx_lock(&sc->reg_lock);
12288 		if (hw_off_limits(sc))
12289 			rc = ENXIO;
12290 		else if (edata->size == 4)
12291 			edata->val = t4_read_reg(sc, edata->addr);
12292 		else if (edata->size == 8)
12293 			edata->val = t4_read_reg64(sc, edata->addr);
12294 		else
12295 			rc = EINVAL;
12296 		mtx_unlock(&sc->reg_lock);
12297 
12298 		break;
12299 	}
12300 	case CHELSIO_T4_SETREG: {
12301 		struct t4_reg *edata = (struct t4_reg *)data;
12302 
12303 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12304 			return (EFAULT);
12305 
12306 		mtx_lock(&sc->reg_lock);
12307 		if (hw_off_limits(sc))
12308 			rc = ENXIO;
12309 		else if (edata->size == 4) {
12310 			if (edata->val & 0xffffffff00000000)
12311 				rc = EINVAL;
12312 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12313 		} else if (edata->size == 8)
12314 			t4_write_reg64(sc, edata->addr, edata->val);
12315 		else
12316 			rc = EINVAL;
12317 		mtx_unlock(&sc->reg_lock);
12318 
12319 		break;
12320 	}
12321 	case CHELSIO_T4_REGDUMP: {
12322 		struct t4_regdump *regs = (struct t4_regdump *)data;
12323 		int reglen = t4_get_regs_len(sc);
12324 		uint8_t *buf;
12325 
12326 		if (regs->len < reglen) {
12327 			regs->len = reglen; /* hint to the caller */
12328 			return (ENOBUFS);
12329 		}
12330 
12331 		regs->len = reglen;
12332 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12333 		mtx_lock(&sc->reg_lock);
12334 		if (hw_off_limits(sc))
12335 			rc = ENXIO;
12336 		else
12337 			get_regs(sc, regs, buf);
12338 		mtx_unlock(&sc->reg_lock);
12339 		if (rc == 0)
12340 			rc = copyout(buf, regs->data, reglen);
12341 		free(buf, M_CXGBE);
12342 		break;
12343 	}
12344 	case CHELSIO_T4_GET_FILTER_MODE:
12345 		rc = get_filter_mode(sc, (uint32_t *)data);
12346 		break;
12347 	case CHELSIO_T4_SET_FILTER_MODE:
12348 		rc = set_filter_mode(sc, *(uint32_t *)data);
12349 		break;
12350 	case CHELSIO_T4_SET_FILTER_MASK:
12351 		rc = set_filter_mask(sc, *(uint32_t *)data);
12352 		break;
12353 	case CHELSIO_T4_GET_FILTER:
12354 		rc = get_filter(sc, (struct t4_filter *)data);
12355 		break;
12356 	case CHELSIO_T4_SET_FILTER:
12357 		rc = set_filter(sc, (struct t4_filter *)data);
12358 		break;
12359 	case CHELSIO_T4_DEL_FILTER:
12360 		rc = del_filter(sc, (struct t4_filter *)data);
12361 		break;
12362 	case CHELSIO_T4_GET_SGE_CONTEXT:
12363 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12364 		break;
12365 	case CHELSIO_T4_LOAD_FW:
12366 		rc = load_fw(sc, (struct t4_data *)data);
12367 		break;
12368 	case CHELSIO_T4_GET_MEM:
12369 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12370 		break;
12371 	case CHELSIO_T4_GET_I2C:
12372 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12373 		break;
12374 	case CHELSIO_T4_CLEAR_STATS:
12375 		rc = clear_stats(sc, *(uint32_t *)data);
12376 		break;
12377 	case CHELSIO_T4_SCHED_CLASS:
12378 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12379 		break;
12380 	case CHELSIO_T4_SCHED_QUEUE:
12381 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12382 		break;
12383 	case CHELSIO_T4_GET_TRACER:
12384 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12385 		break;
12386 	case CHELSIO_T4_SET_TRACER:
12387 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12388 		break;
12389 	case CHELSIO_T4_LOAD_CFG:
12390 		rc = load_cfg(sc, (struct t4_data *)data);
12391 		break;
12392 	case CHELSIO_T4_LOAD_BOOT:
12393 		rc = load_boot(sc, (struct t4_bootrom *)data);
12394 		break;
12395 	case CHELSIO_T4_LOAD_BOOTCFG:
12396 		rc = load_bootcfg(sc, (struct t4_data *)data);
12397 		break;
12398 	case CHELSIO_T4_CUDBG_DUMP:
12399 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12400 		break;
12401 	case CHELSIO_T4_SET_OFLD_POLICY:
12402 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12403 		break;
12404 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12405 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12406 		break;
12407 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12408 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12409 		break;
12410 	default:
12411 		rc = ENOTTY;
12412 	}
12413 
12414 	return (rc);
12415 }
12416 
12417 #ifdef TCP_OFFLOAD
12418 static int
12419 toe_capability(struct vi_info *vi, bool enable)
12420 {
12421 	int rc;
12422 	struct port_info *pi = vi->pi;
12423 	struct adapter *sc = pi->adapter;
12424 
12425 	ASSERT_SYNCHRONIZED_OP(sc);
12426 
12427 	if (!is_offload(sc))
12428 		return (ENODEV);
12429 	if (hw_off_limits(sc))
12430 		return (ENXIO);
12431 
12432 	if (enable) {
12433 #ifdef KERN_TLS
12434 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12435 			int i, j, n;
12436 			struct port_info *p;
12437 			struct vi_info *v;
12438 
12439 			/*
12440 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12441 			 * on any ifnet.
12442 			 */
12443 			n = 0;
12444 			for_each_port(sc, i) {
12445 				p = sc->port[i];
12446 				for_each_vi(p, j, v) {
12447 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12448 						CH_WARN(sc,
12449 						    "%s has NIC TLS enabled.\n",
12450 						    device_get_nameunit(v->dev));
12451 						n++;
12452 					}
12453 				}
12454 			}
12455 			if (n > 0) {
12456 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12457 				    "associated with this adapter before "
12458 				    "trying to enable TOE.\n");
12459 				return (EAGAIN);
12460 			}
12461 			rc = t6_config_kern_tls(sc, false);
12462 			if (rc)
12463 				return (rc);
12464 		}
12465 #endif
12466 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12467 			/* TOE is already enabled. */
12468 			return (0);
12469 		}
12470 
12471 		/*
12472 		 * We need the port's queues around so that we're able to send
12473 		 * and receive CPLs to/from the TOE even if the ifnet for this
12474 		 * port has never been UP'd administratively.
12475 		 */
12476 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12477 			return (rc);
12478 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12479 		    ((rc = vi_init(&pi->vi[0])) != 0))
12480 			return (rc);
12481 
12482 		if (isset(&sc->offload_map, pi->port_id)) {
12483 			/* TOE is enabled on another VI of this port. */
12484 			pi->uld_vis++;
12485 			return (0);
12486 		}
12487 
12488 		if (!uld_active(sc, ULD_TOM)) {
12489 			rc = t4_activate_uld(sc, ULD_TOM);
12490 			if (rc == EAGAIN) {
12491 				log(LOG_WARNING,
12492 				    "You must kldload t4_tom.ko before trying "
12493 				    "to enable TOE on a cxgbe interface.\n");
12494 			}
12495 			if (rc != 0)
12496 				return (rc);
12497 			KASSERT(sc->tom_softc != NULL,
12498 			    ("%s: TOM activated but softc NULL", __func__));
12499 			KASSERT(uld_active(sc, ULD_TOM),
12500 			    ("%s: TOM activated but flag not set", __func__));
12501 		}
12502 
12503 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12504 		if (!uld_active(sc, ULD_IWARP))
12505 			(void) t4_activate_uld(sc, ULD_IWARP);
12506 		if (!uld_active(sc, ULD_ISCSI))
12507 			(void) t4_activate_uld(sc, ULD_ISCSI);
12508 
12509 		pi->uld_vis++;
12510 		setbit(&sc->offload_map, pi->port_id);
12511 	} else {
12512 		pi->uld_vis--;
12513 
12514 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12515 			return (0);
12516 
12517 		KASSERT(uld_active(sc, ULD_TOM),
12518 		    ("%s: TOM never initialized?", __func__));
12519 		clrbit(&sc->offload_map, pi->port_id);
12520 	}
12521 
12522 	return (0);
12523 }
12524 
12525 /*
12526  * Add an upper layer driver to the global list.
12527  */
12528 int
12529 t4_register_uld(struct uld_info *ui)
12530 {
12531 	int rc = 0;
12532 	struct uld_info *u;
12533 
12534 	sx_xlock(&t4_uld_list_lock);
12535 	SLIST_FOREACH(u, &t4_uld_list, link) {
12536 	    if (u->uld_id == ui->uld_id) {
12537 		    rc = EEXIST;
12538 		    goto done;
12539 	    }
12540 	}
12541 
12542 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12543 	ui->refcount = 0;
12544 done:
12545 	sx_xunlock(&t4_uld_list_lock);
12546 	return (rc);
12547 }
12548 
12549 int
12550 t4_unregister_uld(struct uld_info *ui)
12551 {
12552 	int rc = EINVAL;
12553 	struct uld_info *u;
12554 
12555 	sx_xlock(&t4_uld_list_lock);
12556 
12557 	SLIST_FOREACH(u, &t4_uld_list, link) {
12558 	    if (u == ui) {
12559 		    if (ui->refcount > 0) {
12560 			    rc = EBUSY;
12561 			    goto done;
12562 		    }
12563 
12564 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12565 		    rc = 0;
12566 		    goto done;
12567 	    }
12568 	}
12569 done:
12570 	sx_xunlock(&t4_uld_list_lock);
12571 	return (rc);
12572 }
12573 
12574 int
12575 t4_activate_uld(struct adapter *sc, int id)
12576 {
12577 	int rc;
12578 	struct uld_info *ui;
12579 
12580 	ASSERT_SYNCHRONIZED_OP(sc);
12581 
12582 	if (id < 0 || id > ULD_MAX)
12583 		return (EINVAL);
12584 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
12585 
12586 	sx_slock(&t4_uld_list_lock);
12587 
12588 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12589 		if (ui->uld_id == id) {
12590 			if (!(sc->flags & FULL_INIT_DONE)) {
12591 				rc = adapter_init(sc);
12592 				if (rc != 0)
12593 					break;
12594 			}
12595 
12596 			rc = ui->activate(sc);
12597 			if (rc == 0) {
12598 				setbit(&sc->active_ulds, id);
12599 				ui->refcount++;
12600 			}
12601 			break;
12602 		}
12603 	}
12604 
12605 	sx_sunlock(&t4_uld_list_lock);
12606 
12607 	return (rc);
12608 }
12609 
12610 int
12611 t4_deactivate_uld(struct adapter *sc, int id)
12612 {
12613 	int rc;
12614 	struct uld_info *ui;
12615 
12616 	ASSERT_SYNCHRONIZED_OP(sc);
12617 
12618 	if (id < 0 || id > ULD_MAX)
12619 		return (EINVAL);
12620 	rc = ENXIO;
12621 
12622 	sx_slock(&t4_uld_list_lock);
12623 
12624 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12625 		if (ui->uld_id == id) {
12626 			rc = ui->deactivate(sc);
12627 			if (rc == 0) {
12628 				clrbit(&sc->active_ulds, id);
12629 				ui->refcount--;
12630 			}
12631 			break;
12632 		}
12633 	}
12634 
12635 	sx_sunlock(&t4_uld_list_lock);
12636 
12637 	return (rc);
12638 }
12639 
12640 static int
12641 t4_deactivate_all_uld(struct adapter *sc)
12642 {
12643 	int rc;
12644 	struct uld_info *ui;
12645 
12646 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12647 	if (rc != 0)
12648 		return (ENXIO);
12649 
12650 	sx_slock(&t4_uld_list_lock);
12651 
12652 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12653 		if (isset(&sc->active_ulds, ui->uld_id)) {
12654 			rc = ui->deactivate(sc);
12655 			if (rc != 0)
12656 				break;
12657 			clrbit(&sc->active_ulds, ui->uld_id);
12658 			ui->refcount--;
12659 		}
12660 	}
12661 
12662 	sx_sunlock(&t4_uld_list_lock);
12663 	end_synchronized_op(sc, 0);
12664 
12665 	return (rc);
12666 }
12667 
12668 static void
12669 t4_async_event(struct adapter *sc)
12670 {
12671 	struct uld_info *ui;
12672 
12673 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12674 		return;
12675 	sx_slock(&t4_uld_list_lock);
12676 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12677 		if (ui->uld_id == ULD_IWARP) {
12678 			ui->async_event(sc);
12679 			break;
12680 		}
12681 	}
12682 	sx_sunlock(&t4_uld_list_lock);
12683 	end_synchronized_op(sc, 0);
12684 }
12685 
12686 int
12687 uld_active(struct adapter *sc, int uld_id)
12688 {
12689 
12690 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12691 
12692 	return (isset(&sc->active_ulds, uld_id));
12693 }
12694 #endif
12695 
12696 #ifdef KERN_TLS
12697 static int
12698 ktls_capability(struct adapter *sc, bool enable)
12699 {
12700 	ASSERT_SYNCHRONIZED_OP(sc);
12701 
12702 	if (!is_ktls(sc))
12703 		return (ENODEV);
12704 	if (!is_t6(sc))
12705 		return (0);
12706 	if (hw_off_limits(sc))
12707 		return (ENXIO);
12708 
12709 	if (enable) {
12710 		if (sc->flags & KERN_TLS_ON)
12711 			return (0);	/* already on */
12712 		if (sc->offload_map != 0) {
12713 			CH_WARN(sc,
12714 			    "Disable TOE on all interfaces associated with "
12715 			    "this adapter before trying to enable NIC TLS.\n");
12716 			return (EAGAIN);
12717 		}
12718 		return (t6_config_kern_tls(sc, true));
12719 	} else {
12720 		/*
12721 		 * Nothing to do for disable.  If TOE is enabled sometime later
12722 		 * then toe_capability will reconfigure the hardware.
12723 		 */
12724 		return (0);
12725 	}
12726 }
12727 #endif
12728 
12729 /*
12730  * t  = ptr to tunable.
12731  * nc = number of CPUs.
12732  * c  = compiled in default for that tunable.
12733  */
12734 static void
12735 calculate_nqueues(int *t, int nc, const int c)
12736 {
12737 	int nq;
12738 
12739 	if (*t > 0)
12740 		return;
12741 	nq = *t < 0 ? -*t : c;
12742 	*t = min(nc, nq);
12743 }
12744 
12745 /*
12746  * Come up with reasonable defaults for some of the tunables, provided they're
12747  * not set by the user (in which case we'll use the values as is).
12748  */
12749 static void
12750 tweak_tunables(void)
12751 {
12752 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12753 
12754 	if (t4_ntxq < 1) {
12755 #ifdef RSS
12756 		t4_ntxq = rss_getnumbuckets();
12757 #else
12758 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12759 #endif
12760 	}
12761 
12762 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12763 
12764 	if (t4_nrxq < 1) {
12765 #ifdef RSS
12766 		t4_nrxq = rss_getnumbuckets();
12767 #else
12768 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12769 #endif
12770 	}
12771 
12772 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12773 
12774 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12775 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12776 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12777 #endif
12778 #ifdef TCP_OFFLOAD
12779 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12780 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12781 #endif
12782 
12783 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12784 	if (t4_toecaps_allowed == -1)
12785 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12786 #else
12787 	if (t4_toecaps_allowed == -1)
12788 		t4_toecaps_allowed = 0;
12789 #endif
12790 
12791 #ifdef TCP_OFFLOAD
12792 	if (t4_rdmacaps_allowed == -1) {
12793 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12794 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12795 	}
12796 
12797 	if (t4_iscsicaps_allowed == -1) {
12798 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12799 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12800 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12801 	}
12802 
12803 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12804 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12805 
12806 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12807 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12808 #else
12809 	if (t4_rdmacaps_allowed == -1)
12810 		t4_rdmacaps_allowed = 0;
12811 
12812 	if (t4_iscsicaps_allowed == -1)
12813 		t4_iscsicaps_allowed = 0;
12814 #endif
12815 
12816 #ifdef DEV_NETMAP
12817 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12818 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12819 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12820 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12821 #endif
12822 
12823 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12824 		t4_tmr_idx = TMR_IDX;
12825 
12826 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12827 		t4_pktc_idx = PKTC_IDX;
12828 
12829 	if (t4_qsize_txq < 128)
12830 		t4_qsize_txq = 128;
12831 
12832 	if (t4_qsize_rxq < 128)
12833 		t4_qsize_rxq = 128;
12834 	while (t4_qsize_rxq & 7)
12835 		t4_qsize_rxq++;
12836 
12837 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12838 
12839 	/*
12840 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12841 	 * VI for the port.  The rest are additional virtual interfaces on the
12842 	 * same physical port.  Note that the main VI does not have native
12843 	 * netmap support but the extra VIs do.
12844 	 *
12845 	 * Limit the number of VIs per port to the number of available
12846 	 * MAC addresses per port.
12847 	 */
12848 	if (t4_num_vis < 1)
12849 		t4_num_vis = 1;
12850 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12851 		t4_num_vis = nitems(vi_mac_funcs);
12852 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12853 	}
12854 
12855 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12856 		pcie_relaxed_ordering = 1;
12857 #if defined(__i386__) || defined(__amd64__)
12858 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12859 			pcie_relaxed_ordering = 0;
12860 #endif
12861 	}
12862 }
12863 
12864 #ifdef DDB
12865 static void
12866 t4_dump_tcb(struct adapter *sc, int tid)
12867 {
12868 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12869 
12870 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12871 	save = t4_read_reg(sc, reg);
12872 	base = sc->memwin[2].mw_base;
12873 
12874 	/* Dump TCB for the tid */
12875 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12876 	tcb_addr += tid * TCB_SIZE;
12877 
12878 	if (is_t4(sc)) {
12879 		pf = 0;
12880 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
12881 	} else {
12882 		pf = V_PFNUM(sc->pf);
12883 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
12884 	}
12885 	t4_write_reg(sc, reg, win_pos | pf);
12886 	t4_read_reg(sc, reg);
12887 
12888 	off = tcb_addr - win_pos;
12889 	for (i = 0; i < 4; i++) {
12890 		uint32_t buf[8];
12891 		for (j = 0; j < 8; j++, off += 4)
12892 			buf[j] = htonl(t4_read_reg(sc, base + off));
12893 
12894 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12895 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12896 		    buf[7]);
12897 	}
12898 
12899 	t4_write_reg(sc, reg, save);
12900 	t4_read_reg(sc, reg);
12901 }
12902 
12903 static void
12904 t4_dump_devlog(struct adapter *sc)
12905 {
12906 	struct devlog_params *dparams = &sc->params.devlog;
12907 	struct fw_devlog_e e;
12908 	int i, first, j, m, nentries, rc;
12909 	uint64_t ftstamp = UINT64_MAX;
12910 
12911 	if (dparams->start == 0) {
12912 		db_printf("devlog params not valid\n");
12913 		return;
12914 	}
12915 
12916 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12917 	m = fwmtype_to_hwmtype(dparams->memtype);
12918 
12919 	/* Find the first entry. */
12920 	first = -1;
12921 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12922 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12923 		    sizeof(e), (void *)&e);
12924 		if (rc != 0)
12925 			break;
12926 
12927 		if (e.timestamp == 0)
12928 			break;
12929 
12930 		e.timestamp = be64toh(e.timestamp);
12931 		if (e.timestamp < ftstamp) {
12932 			ftstamp = e.timestamp;
12933 			first = i;
12934 		}
12935 	}
12936 
12937 	if (first == -1)
12938 		return;
12939 
12940 	i = first;
12941 	do {
12942 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12943 		    sizeof(e), (void *)&e);
12944 		if (rc != 0)
12945 			return;
12946 
12947 		if (e.timestamp == 0)
12948 			return;
12949 
12950 		e.timestamp = be64toh(e.timestamp);
12951 		e.seqno = be32toh(e.seqno);
12952 		for (j = 0; j < 8; j++)
12953 			e.params[j] = be32toh(e.params[j]);
12954 
12955 		db_printf("%10d  %15ju  %8s  %8s  ",
12956 		    e.seqno, e.timestamp,
12957 		    (e.level < nitems(devlog_level_strings) ?
12958 			devlog_level_strings[e.level] : "UNKNOWN"),
12959 		    (e.facility < nitems(devlog_facility_strings) ?
12960 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12961 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12962 		    e.params[3], e.params[4], e.params[5], e.params[6],
12963 		    e.params[7]);
12964 
12965 		if (++i == nentries)
12966 			i = 0;
12967 	} while (i != first && !db_pager_quit);
12968 }
12969 
12970 static DB_DEFINE_TABLE(show, t4, show_t4);
12971 
12972 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12973 {
12974 	device_t dev;
12975 	int t;
12976 	bool valid;
12977 
12978 	valid = false;
12979 	t = db_read_token();
12980 	if (t == tIDENT) {
12981 		dev = device_lookup_by_name(db_tok_string);
12982 		valid = true;
12983 	}
12984 	db_skip_to_eol();
12985 	if (!valid) {
12986 		db_printf("usage: show t4 devlog <nexus>\n");
12987 		return;
12988 	}
12989 
12990 	if (dev == NULL) {
12991 		db_printf("device not found\n");
12992 		return;
12993 	}
12994 
12995 	t4_dump_devlog(device_get_softc(dev));
12996 }
12997 
12998 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12999 {
13000 	device_t dev;
13001 	int radix, tid, t;
13002 	bool valid;
13003 
13004 	valid = false;
13005 	radix = db_radix;
13006 	db_radix = 10;
13007 	t = db_read_token();
13008 	if (t == tIDENT) {
13009 		dev = device_lookup_by_name(db_tok_string);
13010 		t = db_read_token();
13011 		if (t == tNUMBER) {
13012 			tid = db_tok_number;
13013 			valid = true;
13014 		}
13015 	}
13016 	db_radix = radix;
13017 	db_skip_to_eol();
13018 	if (!valid) {
13019 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
13020 		return;
13021 	}
13022 
13023 	if (dev == NULL) {
13024 		db_printf("device not found\n");
13025 		return;
13026 	}
13027 	if (tid < 0) {
13028 		db_printf("invalid tid\n");
13029 		return;
13030 	}
13031 
13032 	t4_dump_tcb(device_get_softc(dev), tid);
13033 }
13034 #endif
13035 
13036 static eventhandler_tag vxlan_start_evtag;
13037 static eventhandler_tag vxlan_stop_evtag;
13038 
13039 struct vxlan_evargs {
13040 	if_t ifp;
13041 	uint16_t port;
13042 };
13043 
13044 static void
13045 enable_vxlan_rx(struct adapter *sc)
13046 {
13047 	int i, rc;
13048 	struct port_info *pi;
13049 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13050 
13051 	ASSERT_SYNCHRONIZED_OP(sc);
13052 
13053 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13054 	    F_VXLAN_EN);
13055 	for_each_port(sc, i) {
13056 		pi = sc->port[i];
13057 		if (pi->vxlan_tcam_entry == true)
13058 			continue;
13059 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13060 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13061 		    true);
13062 		if (rc < 0) {
13063 			rc = -rc;
13064 			CH_ERR(&pi->vi[0],
13065 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13066 		} else {
13067 			MPASS(rc == sc->rawf_base + pi->port_id);
13068 			pi->vxlan_tcam_entry = true;
13069 		}
13070 	}
13071 }
13072 
13073 static void
13074 t4_vxlan_start(struct adapter *sc, void *arg)
13075 {
13076 	struct vxlan_evargs *v = arg;
13077 
13078 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13079 		return;
13080 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13081 		return;
13082 
13083 	if (sc->vxlan_refcount == 0) {
13084 		sc->vxlan_port = v->port;
13085 		sc->vxlan_refcount = 1;
13086 		if (!hw_off_limits(sc))
13087 			enable_vxlan_rx(sc);
13088 	} else if (sc->vxlan_port == v->port) {
13089 		sc->vxlan_refcount++;
13090 	} else {
13091 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13092 		    "ignoring attempt to configure it on port %d\n",
13093 		    sc->vxlan_port, v->port);
13094 	}
13095 	end_synchronized_op(sc, 0);
13096 }
13097 
13098 static void
13099 t4_vxlan_stop(struct adapter *sc, void *arg)
13100 {
13101 	struct vxlan_evargs *v = arg;
13102 
13103 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13104 		return;
13105 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13106 		return;
13107 
13108 	/*
13109 	 * VXLANs may have been configured before the driver was loaded so we
13110 	 * may see more stops than starts.  This is not handled cleanly but at
13111 	 * least we keep the refcount sane.
13112 	 */
13113 	if (sc->vxlan_port != v->port)
13114 		goto done;
13115 	if (sc->vxlan_refcount == 0) {
13116 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13117 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13118 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13119 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13120 done:
13121 	end_synchronized_op(sc, 0);
13122 }
13123 
13124 static void
13125 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13126     sa_family_t family, u_int port)
13127 {
13128 	struct vxlan_evargs v;
13129 
13130 	MPASS(family == AF_INET || family == AF_INET6);
13131 	v.ifp = ifp;
13132 	v.port = port;
13133 
13134 	t4_iterate(t4_vxlan_start, &v);
13135 }
13136 
13137 static void
13138 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13139     u_int port)
13140 {
13141 	struct vxlan_evargs v;
13142 
13143 	MPASS(family == AF_INET || family == AF_INET6);
13144 	v.ifp = ifp;
13145 	v.port = port;
13146 
13147 	t4_iterate(t4_vxlan_stop, &v);
13148 }
13149 
13150 
13151 static struct sx mlu;	/* mod load unload */
13152 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13153 
13154 static int
13155 mod_event(module_t mod, int cmd, void *arg)
13156 {
13157 	int rc = 0;
13158 	static int loaded = 0;
13159 
13160 	switch (cmd) {
13161 	case MOD_LOAD:
13162 		sx_xlock(&mlu);
13163 		if (loaded++ == 0) {
13164 			t4_sge_modload();
13165 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13166 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13167 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13168 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13169 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13170 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13171 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13172 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13173 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13174 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13175 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13176 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13177 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13178 			    do_smt_write_rpl);
13179 			sx_init(&t4_list_lock, "T4/T5 adapters");
13180 			SLIST_INIT(&t4_list);
13181 			callout_init(&fatal_callout, 1);
13182 #ifdef TCP_OFFLOAD
13183 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13184 			SLIST_INIT(&t4_uld_list);
13185 #endif
13186 #ifdef INET6
13187 			t4_clip_modload();
13188 #endif
13189 #ifdef KERN_TLS
13190 			t6_ktls_modload();
13191 #endif
13192 			t4_tracer_modload();
13193 			tweak_tunables();
13194 			vxlan_start_evtag =
13195 			    EVENTHANDLER_REGISTER(vxlan_start,
13196 				t4_vxlan_start_handler, NULL,
13197 				EVENTHANDLER_PRI_ANY);
13198 			vxlan_stop_evtag =
13199 			    EVENTHANDLER_REGISTER(vxlan_stop,
13200 				t4_vxlan_stop_handler, NULL,
13201 				EVENTHANDLER_PRI_ANY);
13202 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13203 			    taskqueue_thread_enqueue, &reset_tq);
13204 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13205 			    "t4_rst_thr");
13206 		}
13207 		sx_xunlock(&mlu);
13208 		break;
13209 
13210 	case MOD_UNLOAD:
13211 		sx_xlock(&mlu);
13212 		if (--loaded == 0) {
13213 			int tries;
13214 
13215 			taskqueue_free(reset_tq);
13216 			sx_slock(&t4_list_lock);
13217 			if (!SLIST_EMPTY(&t4_list)) {
13218 				rc = EBUSY;
13219 				sx_sunlock(&t4_list_lock);
13220 				goto done_unload;
13221 			}
13222 #ifdef TCP_OFFLOAD
13223 			sx_slock(&t4_uld_list_lock);
13224 			if (!SLIST_EMPTY(&t4_uld_list)) {
13225 				rc = EBUSY;
13226 				sx_sunlock(&t4_uld_list_lock);
13227 				sx_sunlock(&t4_list_lock);
13228 				goto done_unload;
13229 			}
13230 #endif
13231 			tries = 0;
13232 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13233 				uprintf("%ju clusters with custom free routine "
13234 				    "still is use.\n", t4_sge_extfree_refs());
13235 				pause("t4unload", 2 * hz);
13236 			}
13237 #ifdef TCP_OFFLOAD
13238 			sx_sunlock(&t4_uld_list_lock);
13239 #endif
13240 			sx_sunlock(&t4_list_lock);
13241 
13242 			if (t4_sge_extfree_refs() == 0) {
13243 				EVENTHANDLER_DEREGISTER(vxlan_start,
13244 				    vxlan_start_evtag);
13245 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13246 				    vxlan_stop_evtag);
13247 				t4_tracer_modunload();
13248 #ifdef KERN_TLS
13249 				t6_ktls_modunload();
13250 #endif
13251 #ifdef INET6
13252 				t4_clip_modunload();
13253 #endif
13254 #ifdef TCP_OFFLOAD
13255 				sx_destroy(&t4_uld_list_lock);
13256 #endif
13257 				sx_destroy(&t4_list_lock);
13258 				t4_sge_modunload();
13259 				loaded = 0;
13260 			} else {
13261 				rc = EBUSY;
13262 				loaded++;	/* undo earlier decrement */
13263 			}
13264 		}
13265 done_unload:
13266 		sx_xunlock(&mlu);
13267 		break;
13268 	}
13269 
13270 	return (rc);
13271 }
13272 
13273 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13274 MODULE_VERSION(t4nex, 1);
13275 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13276 #ifdef DEV_NETMAP
13277 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13278 #endif /* DEV_NETMAP */
13279 
13280 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13281 MODULE_VERSION(t5nex, 1);
13282 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13283 #ifdef DEV_NETMAP
13284 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13285 #endif /* DEV_NETMAP */
13286 
13287 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13288 MODULE_VERSION(t6nex, 1);
13289 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13290 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13291 #ifdef DEV_NETMAP
13292 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13293 #endif /* DEV_NETMAP */
13294 
13295 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13296 MODULE_VERSION(cxgbe, 1);
13297 
13298 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13299 MODULE_VERSION(cxl, 1);
13300 
13301 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13302 MODULE_VERSION(cc, 1);
13303 
13304 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13305 MODULE_VERSION(vcxgbe, 1);
13306 
13307 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13308 MODULE_VERSION(vcxl, 1);
13309 
13310 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13311 MODULE_VERSION(vcc, 1);
13312