1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 SLIST_HEAD(, uld_info) t4_uld_list; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_clock_gate_on_suspend = 0; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 639 640 static int t4_tx_vm_wr = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 642 "Use VM work requests to transmit packets."); 643 644 /* 645 * Set to non-zero to enable the attack filter. A packet that matches any of 646 * these conditions will get dropped on ingress: 647 * 1) IP && source address == destination address. 648 * 2) TCP/IP && source address is not a unicast address. 649 * 3) TCP/IP && destination address is not a unicast address. 650 * 4) IP && source address is loopback (127.x.y.z). 651 * 5) IP && destination address is loopback (127.x.y.z). 652 * 6) IPv6 && source address == destination address. 653 * 7) IPv6 && source address is not a unicast address. 654 * 8) IPv6 && source address is loopback (::1/128). 655 * 9) IPv6 && destination address is loopback (::1/128). 656 * 10) IPv6 && source address is unspecified (::/128). 657 * 11) IPv6 && destination address is unspecified (::/128). 658 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 660 */ 661 static int t4_attack_filter = 0; 662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 663 &t4_attack_filter, 0, "Drop suspicious traffic"); 664 665 static int t4_drop_ip_fragments = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 667 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 668 669 static int t4_drop_pkts_with_l2_errors = 1; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l2_errors, 0, 672 "Drop all frames with Layer 2 length or checksum errors"); 673 674 static int t4_drop_pkts_with_l3_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l3_errors, 0, 677 "Drop all frames with IP version, length, or checksum errors"); 678 679 static int t4_drop_pkts_with_l4_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l4_errors, 0, 682 "Drop all frames with Layer 4 length, checksum, or other errors"); 683 684 #ifdef TCP_OFFLOAD 685 /* 686 * TOE tunables. 687 */ 688 static int t4_cop_managed_offloading = 0; 689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 690 &t4_cop_managed_offloading, 0, 691 "COP (Connection Offload Policy) controls all TOE offload"); 692 #endif 693 694 #ifdef KERN_TLS 695 /* 696 * This enables KERN_TLS for all adapters if set. 697 */ 698 static int t4_kern_tls = 0; 699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 700 "Enable KERN_TLS mode for T6 adapters"); 701 702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 703 "cxgbe(4) KERN_TLS parameters"); 704 705 static int t4_tls_inline_keys = 0; 706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 707 &t4_tls_inline_keys, 0, 708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 709 "in card memory."); 710 711 static int t4_tls_combo_wrs = 0; 712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 713 0, "Attempt to combine TCB field updates with TLS record work requests."); 714 #endif 715 716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 717 static int vi_mac_funcs[] = { 718 FW_VI_FUNC_ETH, 719 FW_VI_FUNC_OFLD, 720 FW_VI_FUNC_IWARP, 721 FW_VI_FUNC_OPENISCSI, 722 FW_VI_FUNC_OPENFCOE, 723 FW_VI_FUNC_FOISCSI, 724 FW_VI_FUNC_FOFCOE, 725 }; 726 727 struct intrs_and_queues { 728 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 729 uint16_t num_vis; /* number of VIs for each port */ 730 uint16_t nirq; /* Total # of vectors */ 731 uint16_t ntxq; /* # of NIC txq's for each port */ 732 uint16_t nrxq; /* # of NIC rxq's for each port */ 733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 734 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 735 uint16_t nnmtxq; /* # of netmap txq's */ 736 uint16_t nnmrxq; /* # of netmap rxq's */ 737 738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 739 uint16_t ntxq_vi; /* # of NIC txq's */ 740 uint16_t nrxq_vi; /* # of NIC rxq's */ 741 uint16_t nofldtxq_vi; /* # of TOE txq's */ 742 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 743 uint16_t nnmtxq_vi; /* # of netmap txq's */ 744 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 745 }; 746 747 static void setup_memwin(struct adapter *); 748 static void position_memwin(struct adapter *, int, uint32_t); 749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 750 static int fwmtype_to_hwmtype(int); 751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 752 uint32_t *); 753 static int fixup_devlog_params(struct adapter *); 754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 755 static int contact_firmware(struct adapter *); 756 static int partition_resources(struct adapter *); 757 static int get_params__pre_init(struct adapter *); 758 static int set_params__pre_init(struct adapter *); 759 static int get_params__post_init(struct adapter *); 760 static int set_params__post_init(struct adapter *); 761 static void t4_set_desc(struct adapter *); 762 static bool fixed_ifmedia(struct port_info *); 763 static void build_medialist(struct port_info *); 764 static void init_link_config(struct port_info *); 765 static int fixup_link_config(struct port_info *); 766 static int apply_link_config(struct port_info *); 767 static int cxgbe_init_synchronized(struct vi_info *); 768 static int cxgbe_uninit_synchronized(struct vi_info *); 769 static int adapter_full_init(struct adapter *); 770 static void adapter_full_uninit(struct adapter *); 771 static int vi_full_init(struct vi_info *); 772 static void vi_full_uninit(struct vi_info *); 773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 774 static void quiesce_txq(struct sge_txq *); 775 static void quiesce_wrq(struct sge_wrq *); 776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 777 static void quiesce_vi(struct vi_info *); 778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 779 driver_intr_t *, void *, char *); 780 static int t4_free_irq(struct adapter *, struct irq *); 781 static void t4_init_atid_table(struct adapter *); 782 static void t4_free_atid_table(struct adapter *); 783 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 784 static void vi_refresh_stats(struct vi_info *); 785 static void cxgbe_refresh_stats(struct vi_info *); 786 static void cxgbe_tick(void *); 787 static void vi_tick(void *); 788 static void cxgbe_sysctls(struct port_info *); 789 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 790 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 791 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 792 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 793 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 794 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 795 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 796 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 797 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 798 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 799 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 800 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 801 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 802 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 803 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 804 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 805 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 806 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 807 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 808 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 809 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 810 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 811 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 812 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 813 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 814 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 817 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 820 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 821 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 822 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 824 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 825 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 826 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 827 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 828 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 829 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 830 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 831 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 837 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 838 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 839 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 840 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 841 #ifdef TCP_OFFLOAD 842 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 843 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 844 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 845 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 846 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 847 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 848 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 849 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 850 #endif 851 static int get_sge_context(struct adapter *, struct t4_sge_context *); 852 static int load_fw(struct adapter *, struct t4_data *); 853 static int load_cfg(struct adapter *, struct t4_data *); 854 static int load_boot(struct adapter *, struct t4_bootrom *); 855 static int load_bootcfg(struct adapter *, struct t4_data *); 856 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 857 static void free_offload_policy(struct t4_offload_policy *); 858 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 859 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 860 static int read_i2c(struct adapter *, struct t4_i2c_data *); 861 static int clear_stats(struct adapter *, u_int); 862 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 863 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 864 #ifdef TCP_OFFLOAD 865 static int toe_capability(struct vi_info *, bool); 866 static int t4_deactivate_all_uld(struct adapter *); 867 static void t4_async_event(struct adapter *); 868 #endif 869 #ifdef KERN_TLS 870 static int ktls_capability(struct adapter *, bool); 871 #endif 872 static int mod_event(module_t, int, void *); 873 static int notify_siblings(device_t, int); 874 static uint64_t vi_get_counter(if_t, ift_counter); 875 static uint64_t cxgbe_get_counter(if_t, ift_counter); 876 static void enable_vxlan_rx(struct adapter *); 877 static void reset_adapter_task(void *, int); 878 static void fatal_error_task(void *, int); 879 static void dump_devlog(struct adapter *); 880 static void dump_cim_regs(struct adapter *); 881 static void dump_cimla(struct adapter *); 882 883 struct { 884 uint16_t device; 885 char *desc; 886 } t4_pciids[] = { 887 {0xa000, "Chelsio Terminator 4 FPGA"}, 888 {0x4400, "Chelsio T440-dbg"}, 889 {0x4401, "Chelsio T420-CR"}, 890 {0x4402, "Chelsio T422-CR"}, 891 {0x4403, "Chelsio T440-CR"}, 892 {0x4404, "Chelsio T420-BCH"}, 893 {0x4405, "Chelsio T440-BCH"}, 894 {0x4406, "Chelsio T440-CH"}, 895 {0x4407, "Chelsio T420-SO"}, 896 {0x4408, "Chelsio T420-CX"}, 897 {0x4409, "Chelsio T420-BT"}, 898 {0x440a, "Chelsio T404-BT"}, 899 {0x440e, "Chelsio T440-LP-CR"}, 900 }, t5_pciids[] = { 901 {0xb000, "Chelsio Terminator 5 FPGA"}, 902 {0x5400, "Chelsio T580-dbg"}, 903 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 904 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 905 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 906 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 907 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 908 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 909 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 910 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 911 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 912 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 913 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 914 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 915 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 916 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 917 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 918 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 919 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 920 921 /* Custom */ 922 {0x5483, "Custom T540-CR"}, 923 {0x5484, "Custom T540-BT"}, 924 }, t6_pciids[] = { 925 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 926 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 927 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 928 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 929 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 930 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 931 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 932 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 933 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 934 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 935 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 936 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 937 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 938 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 939 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 940 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 941 942 /* Custom */ 943 {0x6480, "Custom T6225-CR"}, 944 {0x6481, "Custom T62100-CR"}, 945 {0x6482, "Custom T6225-CR"}, 946 {0x6483, "Custom T62100-CR"}, 947 {0x6484, "Custom T64100-CR"}, 948 {0x6485, "Custom T6240-SO"}, 949 {0x6486, "Custom T6225-SO-CR"}, 950 {0x6487, "Custom T6225-CR"}, 951 }; 952 953 #ifdef TCP_OFFLOAD 954 /* 955 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 956 * be exactly the same for both rxq and ofld_rxq. 957 */ 958 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 959 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 960 #endif 961 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 962 963 static int 964 t4_probe(device_t dev) 965 { 966 int i; 967 uint16_t v = pci_get_vendor(dev); 968 uint16_t d = pci_get_device(dev); 969 uint8_t f = pci_get_function(dev); 970 971 if (v != PCI_VENDOR_ID_CHELSIO) 972 return (ENXIO); 973 974 /* Attach only to PF0 of the FPGA */ 975 if (d == 0xa000 && f != 0) 976 return (ENXIO); 977 978 for (i = 0; i < nitems(t4_pciids); i++) { 979 if (d == t4_pciids[i].device) { 980 device_set_desc(dev, t4_pciids[i].desc); 981 return (BUS_PROBE_DEFAULT); 982 } 983 } 984 985 return (ENXIO); 986 } 987 988 static int 989 t5_probe(device_t dev) 990 { 991 int i; 992 uint16_t v = pci_get_vendor(dev); 993 uint16_t d = pci_get_device(dev); 994 uint8_t f = pci_get_function(dev); 995 996 if (v != PCI_VENDOR_ID_CHELSIO) 997 return (ENXIO); 998 999 /* Attach only to PF0 of the FPGA */ 1000 if (d == 0xb000 && f != 0) 1001 return (ENXIO); 1002 1003 for (i = 0; i < nitems(t5_pciids); i++) { 1004 if (d == t5_pciids[i].device) { 1005 device_set_desc(dev, t5_pciids[i].desc); 1006 return (BUS_PROBE_DEFAULT); 1007 } 1008 } 1009 1010 return (ENXIO); 1011 } 1012 1013 static int 1014 t6_probe(device_t dev) 1015 { 1016 int i; 1017 uint16_t v = pci_get_vendor(dev); 1018 uint16_t d = pci_get_device(dev); 1019 1020 if (v != PCI_VENDOR_ID_CHELSIO) 1021 return (ENXIO); 1022 1023 for (i = 0; i < nitems(t6_pciids); i++) { 1024 if (d == t6_pciids[i].device) { 1025 device_set_desc(dev, t6_pciids[i].desc); 1026 return (BUS_PROBE_DEFAULT); 1027 } 1028 } 1029 1030 return (ENXIO); 1031 } 1032 1033 static void 1034 t5_attribute_workaround(device_t dev) 1035 { 1036 device_t root_port; 1037 uint32_t v; 1038 1039 /* 1040 * The T5 chips do not properly echo the No Snoop and Relaxed 1041 * Ordering attributes when replying to a TLP from a Root 1042 * Port. As a workaround, find the parent Root Port and 1043 * disable No Snoop and Relaxed Ordering. Note that this 1044 * affects all devices under this root port. 1045 */ 1046 root_port = pci_find_pcie_root_port(dev); 1047 if (root_port == NULL) { 1048 device_printf(dev, "Unable to find parent root port\n"); 1049 return; 1050 } 1051 1052 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1053 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1054 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1055 0) 1056 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1057 device_get_nameunit(root_port)); 1058 } 1059 1060 static const struct devnames devnames[] = { 1061 { 1062 .nexus_name = "t4nex", 1063 .ifnet_name = "cxgbe", 1064 .vi_ifnet_name = "vcxgbe", 1065 .pf03_drv_name = "t4iov", 1066 .vf_nexus_name = "t4vf", 1067 .vf_ifnet_name = "cxgbev" 1068 }, { 1069 .nexus_name = "t5nex", 1070 .ifnet_name = "cxl", 1071 .vi_ifnet_name = "vcxl", 1072 .pf03_drv_name = "t5iov", 1073 .vf_nexus_name = "t5vf", 1074 .vf_ifnet_name = "cxlv" 1075 }, { 1076 .nexus_name = "t6nex", 1077 .ifnet_name = "cc", 1078 .vi_ifnet_name = "vcc", 1079 .pf03_drv_name = "t6iov", 1080 .vf_nexus_name = "t6vf", 1081 .vf_ifnet_name = "ccv" 1082 } 1083 }; 1084 1085 void 1086 t4_init_devnames(struct adapter *sc) 1087 { 1088 int id; 1089 1090 id = chip_id(sc); 1091 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1092 sc->names = &devnames[id - CHELSIO_T4]; 1093 else { 1094 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1095 sc->names = NULL; 1096 } 1097 } 1098 1099 static int 1100 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1101 { 1102 const char *parent, *name; 1103 long value; 1104 int line, unit; 1105 1106 line = 0; 1107 parent = device_get_nameunit(sc->dev); 1108 name = sc->names->ifnet_name; 1109 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1110 if (resource_long_value(name, unit, "port", &value) == 0 && 1111 value == pi->port_id) 1112 return (unit); 1113 } 1114 return (-1); 1115 } 1116 1117 static void 1118 t4_calibration(void *arg) 1119 { 1120 struct adapter *sc; 1121 struct clock_sync *cur, *nex; 1122 uint64_t hw; 1123 sbintime_t sbt; 1124 int next_up; 1125 1126 sc = (struct adapter *)arg; 1127 1128 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1129 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1130 sbt = sbinuptime(); 1131 1132 cur = &sc->cal_info[sc->cal_current]; 1133 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1134 nex = &sc->cal_info[next_up]; 1135 if (__predict_false(sc->cal_count == 0)) { 1136 /* First time in, just get the values in */ 1137 cur->hw_cur = hw; 1138 cur->sbt_cur = sbt; 1139 sc->cal_count++; 1140 goto done; 1141 } 1142 1143 if (cur->hw_cur == hw) { 1144 /* The clock is not advancing? */ 1145 sc->cal_count = 0; 1146 atomic_store_rel_int(&cur->gen, 0); 1147 goto done; 1148 } 1149 1150 seqc_write_begin(&nex->gen); 1151 nex->hw_prev = cur->hw_cur; 1152 nex->sbt_prev = cur->sbt_cur; 1153 nex->hw_cur = hw; 1154 nex->sbt_cur = sbt; 1155 seqc_write_end(&nex->gen); 1156 sc->cal_current = next_up; 1157 done: 1158 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1159 sc, C_DIRECT_EXEC); 1160 } 1161 1162 static void 1163 t4_calibration_start(struct adapter *sc) 1164 { 1165 /* 1166 * Here if we have not done a calibration 1167 * then do so otherwise start the appropriate 1168 * timer. 1169 */ 1170 int i; 1171 1172 for (i = 0; i < CNT_CAL_INFO; i++) { 1173 sc->cal_info[i].gen = 0; 1174 } 1175 sc->cal_current = 0; 1176 sc->cal_count = 0; 1177 sc->cal_gen = 0; 1178 t4_calibration(sc); 1179 } 1180 1181 static int 1182 t4_attach(device_t dev) 1183 { 1184 struct adapter *sc; 1185 int rc = 0, i, j, rqidx, tqidx, nports; 1186 struct make_dev_args mda; 1187 struct intrs_and_queues iaq; 1188 struct sge *s; 1189 uint32_t *buf; 1190 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1191 int ofld_tqidx; 1192 #endif 1193 #ifdef TCP_OFFLOAD 1194 int ofld_rqidx; 1195 #endif 1196 #ifdef DEV_NETMAP 1197 int nm_rqidx, nm_tqidx; 1198 #endif 1199 int num_vis; 1200 1201 sc = device_get_softc(dev); 1202 sc->dev = dev; 1203 sysctl_ctx_init(&sc->ctx); 1204 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1205 1206 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1207 t5_attribute_workaround(dev); 1208 pci_enable_busmaster(dev); 1209 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1210 uint32_t v; 1211 1212 pci_set_max_read_req(dev, 4096); 1213 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1214 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1215 if (pcie_relaxed_ordering == 0 && 1216 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1217 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1218 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1219 } else if (pcie_relaxed_ordering == 1 && 1220 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1221 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1222 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1223 } 1224 } 1225 1226 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1227 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1228 sc->traceq = -1; 1229 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1230 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1231 device_get_nameunit(dev)); 1232 1233 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1234 device_get_nameunit(dev)); 1235 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1236 t4_add_adapter(sc); 1237 1238 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1239 TAILQ_INIT(&sc->sfl); 1240 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1241 1242 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1243 1244 sc->policy = NULL; 1245 rw_init(&sc->policy_lock, "connection offload policy"); 1246 1247 callout_init(&sc->ktls_tick, 1); 1248 1249 callout_init(&sc->cal_callout, 1); 1250 1251 refcount_init(&sc->vxlan_refcount, 0); 1252 1253 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1254 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1255 1256 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1257 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1258 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1259 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1260 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1261 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1262 1263 rc = t4_map_bars_0_and_4(sc); 1264 if (rc != 0) 1265 goto done; /* error message displayed already */ 1266 1267 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1268 1269 /* Prepare the adapter for operation. */ 1270 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1271 rc = -t4_prep_adapter(sc, buf); 1272 free(buf, M_CXGBE); 1273 if (rc != 0) { 1274 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1275 goto done; 1276 } 1277 1278 /* 1279 * This is the real PF# to which we're attaching. Works from within PCI 1280 * passthrough environments too, where pci_get_function() could return a 1281 * different PF# depending on the passthrough configuration. We need to 1282 * use the real PF# in all our communication with the firmware. 1283 */ 1284 j = t4_read_reg(sc, A_PL_WHOAMI); 1285 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1286 sc->mbox = sc->pf; 1287 1288 t4_init_devnames(sc); 1289 if (sc->names == NULL) { 1290 rc = ENOTSUP; 1291 goto done; /* error message displayed already */ 1292 } 1293 1294 /* 1295 * Do this really early, with the memory windows set up even before the 1296 * character device. The userland tool's register i/o and mem read 1297 * will work even in "recovery mode". 1298 */ 1299 setup_memwin(sc); 1300 if (t4_init_devlog_params(sc, 0) == 0) 1301 fixup_devlog_params(sc); 1302 make_dev_args_init(&mda); 1303 mda.mda_devsw = &t4_cdevsw; 1304 mda.mda_uid = UID_ROOT; 1305 mda.mda_gid = GID_WHEEL; 1306 mda.mda_mode = 0600; 1307 mda.mda_si_drv1 = sc; 1308 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1309 if (rc != 0) 1310 device_printf(dev, "failed to create nexus char device: %d.\n", 1311 rc); 1312 1313 /* Go no further if recovery mode has been requested. */ 1314 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1315 device_printf(dev, "recovery mode.\n"); 1316 goto done; 1317 } 1318 1319 #if defined(__i386__) 1320 if ((cpu_feature & CPUID_CX8) == 0) { 1321 device_printf(dev, "64 bit atomics not available.\n"); 1322 rc = ENOTSUP; 1323 goto done; 1324 } 1325 #endif 1326 1327 /* Contact the firmware and try to become the master driver. */ 1328 rc = contact_firmware(sc); 1329 if (rc != 0) 1330 goto done; /* error message displayed already */ 1331 MPASS(sc->flags & FW_OK); 1332 1333 rc = get_params__pre_init(sc); 1334 if (rc != 0) 1335 goto done; /* error message displayed already */ 1336 1337 if (sc->flags & MASTER_PF) { 1338 rc = partition_resources(sc); 1339 if (rc != 0) 1340 goto done; /* error message displayed already */ 1341 } 1342 1343 rc = get_params__post_init(sc); 1344 if (rc != 0) 1345 goto done; /* error message displayed already */ 1346 1347 rc = set_params__post_init(sc); 1348 if (rc != 0) 1349 goto done; /* error message displayed already */ 1350 1351 rc = t4_map_bar_2(sc); 1352 if (rc != 0) 1353 goto done; /* error message displayed already */ 1354 1355 rc = t4_adj_doorbells(sc); 1356 if (rc != 0) 1357 goto done; /* error message displayed already */ 1358 1359 rc = t4_create_dma_tag(sc); 1360 if (rc != 0) 1361 goto done; /* error message displayed already */ 1362 1363 /* 1364 * First pass over all the ports - allocate VIs and initialize some 1365 * basic parameters like mac address, port type, etc. 1366 */ 1367 for_each_port(sc, i) { 1368 struct port_info *pi; 1369 1370 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1371 sc->port[i] = pi; 1372 1373 /* These must be set before t4_port_init */ 1374 pi->adapter = sc; 1375 pi->port_id = i; 1376 /* 1377 * XXX: vi[0] is special so we can't delay this allocation until 1378 * pi->nvi's final value is known. 1379 */ 1380 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1381 M_ZERO | M_WAITOK); 1382 1383 /* 1384 * Allocate the "main" VI and initialize parameters 1385 * like mac addr. 1386 */ 1387 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1388 if (rc != 0) { 1389 device_printf(dev, "unable to initialize port %d: %d\n", 1390 i, rc); 1391 free(pi->vi, M_CXGBE); 1392 free(pi, M_CXGBE); 1393 sc->port[i] = NULL; 1394 goto done; 1395 } 1396 1397 if (is_bt(pi->port_type)) 1398 setbit(&sc->bt_map, pi->tx_chan); 1399 else 1400 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1401 1402 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1403 device_get_nameunit(dev), i); 1404 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1405 sc->chan_map[pi->tx_chan] = i; 1406 1407 /* 1408 * The MPS counter for FCS errors doesn't work correctly on the 1409 * T6 so we use the MAC counter here. Which MAC is in use 1410 * depends on the link settings which will be known when the 1411 * link comes up. 1412 */ 1413 if (is_t6(sc)) 1414 pi->fcs_reg = -1; 1415 else { 1416 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1417 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1418 } 1419 pi->fcs_base = 0; 1420 1421 /* All VIs on this port share this media. */ 1422 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1423 cxgbe_media_status); 1424 1425 PORT_LOCK(pi); 1426 init_link_config(pi); 1427 fixup_link_config(pi); 1428 build_medialist(pi); 1429 if (fixed_ifmedia(pi)) 1430 pi->flags |= FIXED_IFMEDIA; 1431 PORT_UNLOCK(pi); 1432 1433 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1434 t4_ifnet_unit(sc, pi)); 1435 if (pi->dev == NULL) { 1436 device_printf(dev, 1437 "failed to add device for port %d.\n", i); 1438 rc = ENXIO; 1439 goto done; 1440 } 1441 pi->vi[0].dev = pi->dev; 1442 device_set_softc(pi->dev, pi); 1443 } 1444 1445 /* 1446 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1447 */ 1448 nports = sc->params.nports; 1449 rc = cfg_itype_and_nqueues(sc, &iaq); 1450 if (rc != 0) 1451 goto done; /* error message displayed already */ 1452 1453 num_vis = iaq.num_vis; 1454 sc->intr_type = iaq.intr_type; 1455 sc->intr_count = iaq.nirq; 1456 1457 s = &sc->sge; 1458 s->nrxq = nports * iaq.nrxq; 1459 s->ntxq = nports * iaq.ntxq; 1460 if (num_vis > 1) { 1461 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1462 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1463 } 1464 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1465 s->neq += nports; /* ctrl queues: 1 per port */ 1466 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1467 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1468 if (is_offload(sc) || is_ethoffload(sc)) { 1469 s->nofldtxq = nports * iaq.nofldtxq; 1470 if (num_vis > 1) 1471 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1472 s->neq += s->nofldtxq; 1473 1474 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1475 M_CXGBE, M_ZERO | M_WAITOK); 1476 } 1477 #endif 1478 #ifdef TCP_OFFLOAD 1479 if (is_offload(sc)) { 1480 s->nofldrxq = nports * iaq.nofldrxq; 1481 if (num_vis > 1) 1482 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1483 s->neq += s->nofldrxq; /* free list */ 1484 s->niq += s->nofldrxq; 1485 1486 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1487 M_CXGBE, M_ZERO | M_WAITOK); 1488 } 1489 #endif 1490 #ifdef DEV_NETMAP 1491 s->nnmrxq = 0; 1492 s->nnmtxq = 0; 1493 if (t4_native_netmap & NN_MAIN_VI) { 1494 s->nnmrxq += nports * iaq.nnmrxq; 1495 s->nnmtxq += nports * iaq.nnmtxq; 1496 } 1497 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1498 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1499 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1500 } 1501 s->neq += s->nnmtxq + s->nnmrxq; 1502 s->niq += s->nnmrxq; 1503 1504 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1505 M_CXGBE, M_ZERO | M_WAITOK); 1506 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1507 M_CXGBE, M_ZERO | M_WAITOK); 1508 #endif 1509 MPASS(s->niq <= s->iqmap_sz); 1510 MPASS(s->neq <= s->eqmap_sz); 1511 1512 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1513 M_ZERO | M_WAITOK); 1514 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1515 M_ZERO | M_WAITOK); 1516 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1517 M_ZERO | M_WAITOK); 1518 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1519 M_ZERO | M_WAITOK); 1520 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1521 M_ZERO | M_WAITOK); 1522 1523 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1524 M_ZERO | M_WAITOK); 1525 1526 t4_init_l2t(sc, M_WAITOK); 1527 t4_init_smt(sc, M_WAITOK); 1528 t4_init_tx_sched(sc); 1529 t4_init_atid_table(sc); 1530 #ifdef RATELIMIT 1531 t4_init_etid_table(sc); 1532 #endif 1533 #ifdef INET6 1534 t4_init_clip_table(sc); 1535 #endif 1536 if (sc->vres.key.size != 0) 1537 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1538 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1539 1540 /* 1541 * Second pass over the ports. This time we know the number of rx and 1542 * tx queues that each port should get. 1543 */ 1544 rqidx = tqidx = 0; 1545 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1546 ofld_tqidx = 0; 1547 #endif 1548 #ifdef TCP_OFFLOAD 1549 ofld_rqidx = 0; 1550 #endif 1551 #ifdef DEV_NETMAP 1552 nm_rqidx = nm_tqidx = 0; 1553 #endif 1554 for_each_port(sc, i) { 1555 struct port_info *pi = sc->port[i]; 1556 struct vi_info *vi; 1557 1558 if (pi == NULL) 1559 continue; 1560 1561 pi->nvi = num_vis; 1562 for_each_vi(pi, j, vi) { 1563 vi->pi = pi; 1564 vi->adapter = sc; 1565 vi->first_intr = -1; 1566 vi->qsize_rxq = t4_qsize_rxq; 1567 vi->qsize_txq = t4_qsize_txq; 1568 1569 vi->first_rxq = rqidx; 1570 vi->first_txq = tqidx; 1571 vi->tmr_idx = t4_tmr_idx; 1572 vi->pktc_idx = t4_pktc_idx; 1573 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1574 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1575 1576 rqidx += vi->nrxq; 1577 tqidx += vi->ntxq; 1578 1579 if (j == 0 && vi->ntxq > 1) 1580 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1581 else 1582 vi->rsrv_noflowq = 0; 1583 1584 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1585 vi->first_ofld_txq = ofld_tqidx; 1586 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1587 ofld_tqidx += vi->nofldtxq; 1588 #endif 1589 #ifdef TCP_OFFLOAD 1590 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1591 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1592 vi->first_ofld_rxq = ofld_rqidx; 1593 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1594 1595 ofld_rqidx += vi->nofldrxq; 1596 #endif 1597 #ifdef DEV_NETMAP 1598 vi->first_nm_rxq = nm_rqidx; 1599 vi->first_nm_txq = nm_tqidx; 1600 if (j == 0) { 1601 vi->nnmrxq = iaq.nnmrxq; 1602 vi->nnmtxq = iaq.nnmtxq; 1603 } else { 1604 vi->nnmrxq = iaq.nnmrxq_vi; 1605 vi->nnmtxq = iaq.nnmtxq_vi; 1606 } 1607 nm_rqidx += vi->nnmrxq; 1608 nm_tqidx += vi->nnmtxq; 1609 #endif 1610 } 1611 } 1612 1613 rc = t4_setup_intr_handlers(sc); 1614 if (rc != 0) { 1615 device_printf(dev, 1616 "failed to setup interrupt handlers: %d\n", rc); 1617 goto done; 1618 } 1619 1620 rc = bus_generic_probe(dev); 1621 if (rc != 0) { 1622 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1623 goto done; 1624 } 1625 1626 /* 1627 * Ensure thread-safe mailbox access (in debug builds). 1628 * 1629 * So far this was the only thread accessing the mailbox but various 1630 * ifnets and sysctls are about to be created and their handlers/ioctls 1631 * will access the mailbox from different threads. 1632 */ 1633 sc->flags |= CHK_MBOX_ACCESS; 1634 1635 rc = bus_generic_attach(dev); 1636 if (rc != 0) { 1637 device_printf(dev, 1638 "failed to attach all child ports: %d\n", rc); 1639 goto done; 1640 } 1641 t4_calibration_start(sc); 1642 1643 device_printf(dev, 1644 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1645 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1646 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1647 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1648 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1649 1650 t4_set_desc(sc); 1651 1652 notify_siblings(dev, 0); 1653 1654 done: 1655 if (rc != 0 && sc->cdev) { 1656 /* cdev was created and so cxgbetool works; recover that way. */ 1657 device_printf(dev, 1658 "error during attach, adapter is now in recovery mode.\n"); 1659 rc = 0; 1660 } 1661 1662 if (rc != 0) 1663 t4_detach_common(dev); 1664 else 1665 t4_sysctls(sc); 1666 1667 return (rc); 1668 } 1669 1670 static int 1671 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1672 { 1673 struct adapter *sc; 1674 struct port_info *pi; 1675 int i; 1676 1677 sc = device_get_softc(bus); 1678 for_each_port(sc, i) { 1679 pi = sc->port[i]; 1680 if (pi != NULL && pi->dev == dev) { 1681 sbuf_printf(sb, "port=%d", pi->port_id); 1682 break; 1683 } 1684 } 1685 return (0); 1686 } 1687 1688 static int 1689 t4_ready(device_t dev) 1690 { 1691 struct adapter *sc; 1692 1693 sc = device_get_softc(dev); 1694 if (sc->flags & FW_OK) 1695 return (0); 1696 return (ENXIO); 1697 } 1698 1699 static int 1700 t4_read_port_device(device_t dev, int port, device_t *child) 1701 { 1702 struct adapter *sc; 1703 struct port_info *pi; 1704 1705 sc = device_get_softc(dev); 1706 if (port < 0 || port >= MAX_NPORTS) 1707 return (EINVAL); 1708 pi = sc->port[port]; 1709 if (pi == NULL || pi->dev == NULL) 1710 return (ENXIO); 1711 *child = pi->dev; 1712 return (0); 1713 } 1714 1715 static int 1716 notify_siblings(device_t dev, int detaching) 1717 { 1718 device_t sibling; 1719 int error, i; 1720 1721 error = 0; 1722 for (i = 0; i < PCI_FUNCMAX; i++) { 1723 if (i == pci_get_function(dev)) 1724 continue; 1725 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1726 pci_get_slot(dev), i); 1727 if (sibling == NULL || !device_is_attached(sibling)) 1728 continue; 1729 if (detaching) 1730 error = T4_DETACH_CHILD(sibling); 1731 else 1732 (void)T4_ATTACH_CHILD(sibling); 1733 if (error) 1734 break; 1735 } 1736 return (error); 1737 } 1738 1739 /* 1740 * Idempotent 1741 */ 1742 static int 1743 t4_detach(device_t dev) 1744 { 1745 int rc; 1746 1747 rc = notify_siblings(dev, 1); 1748 if (rc) { 1749 device_printf(dev, 1750 "failed to detach sibling devices: %d\n", rc); 1751 return (rc); 1752 } 1753 1754 return (t4_detach_common(dev)); 1755 } 1756 1757 int 1758 t4_detach_common(device_t dev) 1759 { 1760 struct adapter *sc; 1761 struct port_info *pi; 1762 int i, rc; 1763 1764 sc = device_get_softc(dev); 1765 1766 #ifdef TCP_OFFLOAD 1767 rc = t4_deactivate_all_uld(sc); 1768 if (rc) { 1769 device_printf(dev, 1770 "failed to detach upper layer drivers: %d\n", rc); 1771 return (rc); 1772 } 1773 #endif 1774 1775 if (sc->cdev) { 1776 destroy_dev(sc->cdev); 1777 sc->cdev = NULL; 1778 } 1779 1780 sx_xlock(&t4_list_lock); 1781 SLIST_REMOVE(&t4_list, sc, adapter, link); 1782 sx_xunlock(&t4_list_lock); 1783 1784 sc->flags &= ~CHK_MBOX_ACCESS; 1785 if (sc->flags & FULL_INIT_DONE) { 1786 if (!(sc->flags & IS_VF)) 1787 t4_intr_disable(sc); 1788 } 1789 1790 if (device_is_attached(dev)) { 1791 rc = bus_generic_detach(dev); 1792 if (rc) { 1793 device_printf(dev, 1794 "failed to detach child devices: %d\n", rc); 1795 return (rc); 1796 } 1797 } 1798 1799 for (i = 0; i < sc->intr_count; i++) 1800 t4_free_irq(sc, &sc->irq[i]); 1801 1802 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1803 t4_free_tx_sched(sc); 1804 1805 for (i = 0; i < MAX_NPORTS; i++) { 1806 pi = sc->port[i]; 1807 if (pi) { 1808 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1809 if (pi->dev) 1810 device_delete_child(dev, pi->dev); 1811 1812 mtx_destroy(&pi->pi_lock); 1813 free(pi->vi, M_CXGBE); 1814 free(pi, M_CXGBE); 1815 } 1816 } 1817 callout_stop(&sc->cal_callout); 1818 callout_drain(&sc->cal_callout); 1819 device_delete_children(dev); 1820 sysctl_ctx_free(&sc->ctx); 1821 adapter_full_uninit(sc); 1822 1823 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1824 t4_fw_bye(sc, sc->mbox); 1825 1826 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1827 pci_release_msi(dev); 1828 1829 if (sc->regs_res) 1830 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1831 sc->regs_res); 1832 1833 if (sc->udbs_res) 1834 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1835 sc->udbs_res); 1836 1837 if (sc->msix_res) 1838 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1839 sc->msix_res); 1840 1841 if (sc->l2t) 1842 t4_free_l2t(sc->l2t); 1843 if (sc->smt) 1844 t4_free_smt(sc->smt); 1845 t4_free_atid_table(sc); 1846 #ifdef RATELIMIT 1847 t4_free_etid_table(sc); 1848 #endif 1849 if (sc->key_map) 1850 vmem_destroy(sc->key_map); 1851 #ifdef INET6 1852 t4_destroy_clip_table(sc); 1853 #endif 1854 1855 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1856 free(sc->sge.ofld_txq, M_CXGBE); 1857 #endif 1858 #ifdef TCP_OFFLOAD 1859 free(sc->sge.ofld_rxq, M_CXGBE); 1860 #endif 1861 #ifdef DEV_NETMAP 1862 free(sc->sge.nm_rxq, M_CXGBE); 1863 free(sc->sge.nm_txq, M_CXGBE); 1864 #endif 1865 free(sc->irq, M_CXGBE); 1866 free(sc->sge.rxq, M_CXGBE); 1867 free(sc->sge.txq, M_CXGBE); 1868 free(sc->sge.ctrlq, M_CXGBE); 1869 free(sc->sge.iqmap, M_CXGBE); 1870 free(sc->sge.eqmap, M_CXGBE); 1871 free(sc->tids.ftid_tab, M_CXGBE); 1872 free(sc->tids.hpftid_tab, M_CXGBE); 1873 free_hftid_hash(&sc->tids); 1874 free(sc->tids.tid_tab, M_CXGBE); 1875 t4_destroy_dma_tag(sc); 1876 1877 callout_drain(&sc->ktls_tick); 1878 callout_drain(&sc->sfl_callout); 1879 if (mtx_initialized(&sc->tids.ftid_lock)) { 1880 mtx_destroy(&sc->tids.ftid_lock); 1881 cv_destroy(&sc->tids.ftid_cv); 1882 } 1883 if (mtx_initialized(&sc->tids.atid_lock)) 1884 mtx_destroy(&sc->tids.atid_lock); 1885 if (mtx_initialized(&sc->ifp_lock)) 1886 mtx_destroy(&sc->ifp_lock); 1887 1888 if (rw_initialized(&sc->policy_lock)) { 1889 rw_destroy(&sc->policy_lock); 1890 #ifdef TCP_OFFLOAD 1891 if (sc->policy != NULL) 1892 free_offload_policy(sc->policy); 1893 #endif 1894 } 1895 1896 for (i = 0; i < NUM_MEMWIN; i++) { 1897 struct memwin *mw = &sc->memwin[i]; 1898 1899 if (rw_initialized(&mw->mw_lock)) 1900 rw_destroy(&mw->mw_lock); 1901 } 1902 1903 mtx_destroy(&sc->sfl_lock); 1904 mtx_destroy(&sc->reg_lock); 1905 mtx_destroy(&sc->sc_lock); 1906 1907 bzero(sc, sizeof(*sc)); 1908 1909 return (0); 1910 } 1911 1912 static inline bool 1913 ok_to_reset(struct adapter *sc) 1914 { 1915 struct tid_info *t = &sc->tids; 1916 struct port_info *pi; 1917 struct vi_info *vi; 1918 int i, j; 1919 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1920 1921 if (is_t6(sc)) 1922 caps |= IFCAP_TXTLS; 1923 1924 ASSERT_SYNCHRONIZED_OP(sc); 1925 MPASS(!(sc->flags & IS_VF)); 1926 1927 for_each_port(sc, i) { 1928 pi = sc->port[i]; 1929 for_each_vi(pi, j, vi) { 1930 if (if_getcapenable(vi->ifp) & caps) 1931 return (false); 1932 } 1933 } 1934 1935 if (atomic_load_int(&t->tids_in_use) > 0) 1936 return (false); 1937 if (atomic_load_int(&t->stids_in_use) > 0) 1938 return (false); 1939 if (atomic_load_int(&t->atids_in_use) > 0) 1940 return (false); 1941 if (atomic_load_int(&t->ftids_in_use) > 0) 1942 return (false); 1943 if (atomic_load_int(&t->hpftids_in_use) > 0) 1944 return (false); 1945 if (atomic_load_int(&t->etids_in_use) > 0) 1946 return (false); 1947 1948 return (true); 1949 } 1950 1951 static inline int 1952 stop_adapter(struct adapter *sc) 1953 { 1954 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1955 return (1); /* Already stopped. */ 1956 return (t4_shutdown_adapter(sc)); 1957 } 1958 1959 static int 1960 t4_suspend(device_t dev) 1961 { 1962 struct adapter *sc = device_get_softc(dev); 1963 struct port_info *pi; 1964 struct vi_info *vi; 1965 if_t ifp; 1966 struct sge_rxq *rxq; 1967 struct sge_txq *txq; 1968 struct sge_wrq *wrq; 1969 #ifdef TCP_OFFLOAD 1970 struct sge_ofld_rxq *ofld_rxq; 1971 #endif 1972 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1973 struct sge_ofld_txq *ofld_txq; 1974 #endif 1975 int rc, i, j, k; 1976 1977 CH_ALERT(sc, "suspend requested\n"); 1978 1979 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1980 if (rc != 0) 1981 return (ENXIO); 1982 1983 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1984 MPASS(!hw_off_limits(sc)); 1985 1986 if (!ok_to_reset(sc)) { 1987 /* XXX: should list what resource is preventing suspend. */ 1988 CH_ERR(sc, "not safe to suspend.\n"); 1989 rc = EBUSY; 1990 goto done; 1991 } 1992 1993 /* No more DMA or interrupts. */ 1994 stop_adapter(sc); 1995 1996 /* Quiesce all activity. */ 1997 for_each_port(sc, i) { 1998 pi = sc->port[i]; 1999 pi->vxlan_tcam_entry = false; 2000 2001 PORT_LOCK(pi); 2002 if (pi->up_vis > 0) { 2003 /* 2004 * t4_shutdown_adapter has already shut down all the 2005 * PHYs but it also disables interrupts and DMA so there 2006 * won't be a link interrupt. So we update the state 2007 * manually and inform the kernel. 2008 */ 2009 pi->link_cfg.link_ok = false; 2010 t4_os_link_changed(pi); 2011 } 2012 PORT_UNLOCK(pi); 2013 2014 for_each_vi(pi, j, vi) { 2015 vi->xact_addr_filt = -1; 2016 mtx_lock(&vi->tick_mtx); 2017 vi->flags |= VI_SKIP_STATS; 2018 mtx_unlock(&vi->tick_mtx); 2019 if (!(vi->flags & VI_INIT_DONE)) 2020 continue; 2021 2022 ifp = vi->ifp; 2023 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2024 mtx_lock(&vi->tick_mtx); 2025 callout_stop(&vi->tick); 2026 mtx_unlock(&vi->tick_mtx); 2027 callout_drain(&vi->tick); 2028 } 2029 2030 /* 2031 * Note that the HW is not available. 2032 */ 2033 for_each_txq(vi, k, txq) { 2034 TXQ_LOCK(txq); 2035 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2036 TXQ_UNLOCK(txq); 2037 } 2038 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2039 for_each_ofld_txq(vi, k, ofld_txq) { 2040 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2041 } 2042 #endif 2043 for_each_rxq(vi, k, rxq) { 2044 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2045 } 2046 #if defined(TCP_OFFLOAD) 2047 for_each_ofld_rxq(vi, k, ofld_rxq) { 2048 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2049 } 2050 #endif 2051 2052 quiesce_vi(vi); 2053 } 2054 2055 if (sc->flags & FULL_INIT_DONE) { 2056 /* Control queue */ 2057 wrq = &sc->sge.ctrlq[i]; 2058 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2059 quiesce_wrq(wrq); 2060 } 2061 } 2062 if (sc->flags & FULL_INIT_DONE) { 2063 /* Firmware event queue */ 2064 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2065 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2066 } 2067 2068 /* Stop calibration */ 2069 callout_stop(&sc->cal_callout); 2070 callout_drain(&sc->cal_callout); 2071 2072 /* Mark the adapter totally off limits. */ 2073 mtx_lock(&sc->reg_lock); 2074 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2075 sc->flags &= ~(FW_OK | MASTER_PF); 2076 sc->reset_thread = NULL; 2077 mtx_unlock(&sc->reg_lock); 2078 2079 if (t4_clock_gate_on_suspend) { 2080 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2081 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2082 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2083 } 2084 2085 CH_ALERT(sc, "suspend completed.\n"); 2086 done: 2087 end_synchronized_op(sc, 0); 2088 return (rc); 2089 } 2090 2091 struct adapter_pre_reset_state { 2092 u_int flags; 2093 uint16_t nbmcaps; 2094 uint16_t linkcaps; 2095 uint16_t switchcaps; 2096 uint16_t niccaps; 2097 uint16_t toecaps; 2098 uint16_t rdmacaps; 2099 uint16_t cryptocaps; 2100 uint16_t iscsicaps; 2101 uint16_t fcoecaps; 2102 2103 u_int cfcsum; 2104 char cfg_file[32]; 2105 2106 struct adapter_params params; 2107 struct t4_virt_res vres; 2108 struct tid_info tids; 2109 struct sge sge; 2110 2111 int rawf_base; 2112 int nrawf; 2113 2114 }; 2115 2116 static void 2117 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2118 { 2119 2120 ASSERT_SYNCHRONIZED_OP(sc); 2121 2122 o->flags = sc->flags; 2123 2124 o->nbmcaps = sc->nbmcaps; 2125 o->linkcaps = sc->linkcaps; 2126 o->switchcaps = sc->switchcaps; 2127 o->niccaps = sc->niccaps; 2128 o->toecaps = sc->toecaps; 2129 o->rdmacaps = sc->rdmacaps; 2130 o->cryptocaps = sc->cryptocaps; 2131 o->iscsicaps = sc->iscsicaps; 2132 o->fcoecaps = sc->fcoecaps; 2133 2134 o->cfcsum = sc->cfcsum; 2135 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2136 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2137 2138 o->params = sc->params; 2139 o->vres = sc->vres; 2140 o->tids = sc->tids; 2141 o->sge = sc->sge; 2142 2143 o->rawf_base = sc->rawf_base; 2144 o->nrawf = sc->nrawf; 2145 } 2146 2147 static int 2148 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2149 { 2150 int rc = 0; 2151 2152 ASSERT_SYNCHRONIZED_OP(sc); 2153 2154 /* Capabilities */ 2155 #define COMPARE_CAPS(c) do { \ 2156 if (o->c##caps != sc->c##caps) { \ 2157 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2158 sc->c##caps); \ 2159 rc = EINVAL; \ 2160 } \ 2161 } while (0) 2162 COMPARE_CAPS(nbm); 2163 COMPARE_CAPS(link); 2164 COMPARE_CAPS(switch); 2165 COMPARE_CAPS(nic); 2166 COMPARE_CAPS(toe); 2167 COMPARE_CAPS(rdma); 2168 COMPARE_CAPS(crypto); 2169 COMPARE_CAPS(iscsi); 2170 COMPARE_CAPS(fcoe); 2171 #undef COMPARE_CAPS 2172 2173 /* Firmware config file */ 2174 if (o->cfcsum != sc->cfcsum) { 2175 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2176 o->cfcsum, sc->cfg_file, sc->cfcsum); 2177 rc = EINVAL; 2178 } 2179 2180 #define COMPARE_PARAM(p, name) do { \ 2181 if (o->p != sc->p) { \ 2182 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2183 rc = EINVAL; \ 2184 } \ 2185 } while (0) 2186 COMPARE_PARAM(sge.iq_start, iq_start); 2187 COMPARE_PARAM(sge.eq_start, eq_start); 2188 COMPARE_PARAM(tids.ftid_base, ftid_base); 2189 COMPARE_PARAM(tids.ftid_end, ftid_end); 2190 COMPARE_PARAM(tids.nftids, nftids); 2191 COMPARE_PARAM(vres.l2t.start, l2t_start); 2192 COMPARE_PARAM(vres.l2t.size, l2t_size); 2193 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2194 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2195 COMPARE_PARAM(tids.tid_base, tid_base); 2196 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2197 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2198 COMPARE_PARAM(tids.nhpftids, nhpftids); 2199 COMPARE_PARAM(rawf_base, rawf_base); 2200 COMPARE_PARAM(nrawf, nrawf); 2201 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2202 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2203 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2204 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2205 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2206 COMPARE_PARAM(tids.ntids, ntids); 2207 COMPARE_PARAM(tids.etid_base, etid_base); 2208 COMPARE_PARAM(tids.etid_end, etid_end); 2209 COMPARE_PARAM(tids.netids, netids); 2210 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2211 COMPARE_PARAM(params.ethoffload, ethoffload); 2212 COMPARE_PARAM(tids.natids, natids); 2213 COMPARE_PARAM(tids.stid_base, stid_base); 2214 COMPARE_PARAM(vres.ddp.start, ddp_start); 2215 COMPARE_PARAM(vres.ddp.size, ddp_size); 2216 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2217 COMPARE_PARAM(vres.stag.start, stag_start); 2218 COMPARE_PARAM(vres.stag.size, stag_size); 2219 COMPARE_PARAM(vres.rq.start, rq_start); 2220 COMPARE_PARAM(vres.rq.size, rq_size); 2221 COMPARE_PARAM(vres.pbl.start, pbl_start); 2222 COMPARE_PARAM(vres.pbl.size, pbl_size); 2223 COMPARE_PARAM(vres.qp.start, qp_start); 2224 COMPARE_PARAM(vres.qp.size, qp_size); 2225 COMPARE_PARAM(vres.cq.start, cq_start); 2226 COMPARE_PARAM(vres.cq.size, cq_size); 2227 COMPARE_PARAM(vres.ocq.start, ocq_start); 2228 COMPARE_PARAM(vres.ocq.size, ocq_size); 2229 COMPARE_PARAM(vres.srq.start, srq_start); 2230 COMPARE_PARAM(vres.srq.size, srq_size); 2231 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2232 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2233 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2234 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2235 COMPARE_PARAM(vres.key.start, key_start); 2236 COMPARE_PARAM(vres.key.size, key_size); 2237 #undef COMPARE_PARAM 2238 2239 return (rc); 2240 } 2241 2242 static int 2243 t4_resume(device_t dev) 2244 { 2245 struct adapter *sc = device_get_softc(dev); 2246 struct adapter_pre_reset_state *old_state = NULL; 2247 struct port_info *pi; 2248 struct vi_info *vi; 2249 if_t ifp; 2250 struct sge_txq *txq; 2251 int rc, i, j, k; 2252 2253 CH_ALERT(sc, "resume requested.\n"); 2254 2255 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2256 if (rc != 0) 2257 return (ENXIO); 2258 MPASS(hw_off_limits(sc)); 2259 MPASS((sc->flags & FW_OK) == 0); 2260 MPASS((sc->flags & MASTER_PF) == 0); 2261 MPASS(sc->reset_thread == NULL); 2262 sc->reset_thread = curthread; 2263 2264 /* Register access is expected to work by the time we're here. */ 2265 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2266 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2267 rc = ENXIO; 2268 goto done; 2269 } 2270 2271 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2272 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2273 2274 /* Restore memory window. */ 2275 setup_memwin(sc); 2276 2277 /* Go no further if recovery mode has been requested. */ 2278 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2279 CH_ALERT(sc, "recovery mode on resume.\n"); 2280 rc = 0; 2281 mtx_lock(&sc->reg_lock); 2282 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2283 mtx_unlock(&sc->reg_lock); 2284 goto done; 2285 } 2286 2287 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2288 save_caps_and_params(sc, old_state); 2289 2290 /* Reestablish contact with firmware and become the primary PF. */ 2291 rc = contact_firmware(sc); 2292 if (rc != 0) 2293 goto done; /* error message displayed already */ 2294 MPASS(sc->flags & FW_OK); 2295 2296 if (sc->flags & MASTER_PF) { 2297 rc = partition_resources(sc); 2298 if (rc != 0) 2299 goto done; /* error message displayed already */ 2300 } 2301 2302 rc = get_params__post_init(sc); 2303 if (rc != 0) 2304 goto done; /* error message displayed already */ 2305 2306 rc = set_params__post_init(sc); 2307 if (rc != 0) 2308 goto done; /* error message displayed already */ 2309 2310 rc = compare_caps_and_params(sc, old_state); 2311 if (rc != 0) 2312 goto done; /* error message displayed already */ 2313 2314 for_each_port(sc, i) { 2315 pi = sc->port[i]; 2316 MPASS(pi != NULL); 2317 MPASS(pi->vi != NULL); 2318 MPASS(pi->vi[0].dev == pi->dev); 2319 2320 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2321 if (rc != 0) { 2322 CH_ERR(sc, 2323 "failed to re-initialize port %d: %d\n", i, rc); 2324 goto done; 2325 } 2326 MPASS(sc->chan_map[pi->tx_chan] == i); 2327 2328 PORT_LOCK(pi); 2329 fixup_link_config(pi); 2330 build_medialist(pi); 2331 PORT_UNLOCK(pi); 2332 for_each_vi(pi, j, vi) { 2333 if (IS_MAIN_VI(vi)) 2334 continue; 2335 rc = alloc_extra_vi(sc, pi, vi); 2336 if (rc != 0) { 2337 CH_ERR(vi, 2338 "failed to re-allocate extra VI: %d\n", rc); 2339 goto done; 2340 } 2341 } 2342 } 2343 2344 /* 2345 * Interrupts and queues are about to be enabled and other threads will 2346 * want to access the hardware too. It is safe to do so. Note that 2347 * this thread is still in the middle of a synchronized_op. 2348 */ 2349 mtx_lock(&sc->reg_lock); 2350 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2351 mtx_unlock(&sc->reg_lock); 2352 2353 if (sc->flags & FULL_INIT_DONE) { 2354 rc = adapter_full_init(sc); 2355 if (rc != 0) { 2356 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2357 goto done; 2358 } 2359 2360 if (sc->vxlan_refcount > 0) 2361 enable_vxlan_rx(sc); 2362 2363 for_each_port(sc, i) { 2364 pi = sc->port[i]; 2365 for_each_vi(pi, j, vi) { 2366 mtx_lock(&vi->tick_mtx); 2367 vi->flags &= ~VI_SKIP_STATS; 2368 mtx_unlock(&vi->tick_mtx); 2369 if (!(vi->flags & VI_INIT_DONE)) 2370 continue; 2371 rc = vi_full_init(vi); 2372 if (rc != 0) { 2373 CH_ERR(vi, "failed to re-initialize " 2374 "interface: %d\n", rc); 2375 goto done; 2376 } 2377 2378 ifp = vi->ifp; 2379 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2380 continue; 2381 /* 2382 * Note that we do not setup multicast addresses 2383 * in the first pass. This ensures that the 2384 * unicast DMACs for all VIs on all ports get an 2385 * MPS TCAM entry. 2386 */ 2387 rc = update_mac_settings(ifp, XGMAC_ALL & 2388 ~XGMAC_MCADDRS); 2389 if (rc != 0) { 2390 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2391 goto done; 2392 } 2393 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2394 true); 2395 if (rc != 0) { 2396 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2397 goto done; 2398 } 2399 for_each_txq(vi, k, txq) { 2400 TXQ_LOCK(txq); 2401 txq->eq.flags |= EQ_ENABLED; 2402 TXQ_UNLOCK(txq); 2403 } 2404 mtx_lock(&vi->tick_mtx); 2405 callout_schedule(&vi->tick, hz); 2406 mtx_unlock(&vi->tick_mtx); 2407 } 2408 PORT_LOCK(pi); 2409 if (pi->up_vis > 0) { 2410 t4_update_port_info(pi); 2411 fixup_link_config(pi); 2412 build_medialist(pi); 2413 apply_link_config(pi); 2414 if (pi->link_cfg.link_ok) 2415 t4_os_link_changed(pi); 2416 } 2417 PORT_UNLOCK(pi); 2418 } 2419 2420 /* Now reprogram the L2 multicast addresses. */ 2421 for_each_port(sc, i) { 2422 pi = sc->port[i]; 2423 for_each_vi(pi, j, vi) { 2424 if (!(vi->flags & VI_INIT_DONE)) 2425 continue; 2426 ifp = vi->ifp; 2427 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2428 continue; 2429 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2430 if (rc != 0) { 2431 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2432 rc = 0; /* carry on */ 2433 } 2434 } 2435 } 2436 } 2437 2438 /* Reset all calibration */ 2439 t4_calibration_start(sc); 2440 2441 done: 2442 if (rc == 0) { 2443 sc->incarnation++; 2444 CH_ALERT(sc, "resume completed.\n"); 2445 } 2446 end_synchronized_op(sc, 0); 2447 free(old_state, M_CXGBE); 2448 return (rc); 2449 } 2450 2451 static int 2452 t4_reset_prepare(device_t dev, device_t child) 2453 { 2454 struct adapter *sc = device_get_softc(dev); 2455 2456 CH_ALERT(sc, "reset_prepare.\n"); 2457 return (0); 2458 } 2459 2460 static int 2461 t4_reset_post(device_t dev, device_t child) 2462 { 2463 struct adapter *sc = device_get_softc(dev); 2464 2465 CH_ALERT(sc, "reset_post.\n"); 2466 return (0); 2467 } 2468 2469 static int 2470 reset_adapter(struct adapter *sc) 2471 { 2472 int rc, oldinc, error_flags; 2473 2474 CH_ALERT(sc, "reset requested.\n"); 2475 2476 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2477 if (rc != 0) 2478 return (EBUSY); 2479 2480 if (hw_off_limits(sc)) { 2481 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2482 rc = ENXIO; 2483 goto done; 2484 } 2485 2486 if (!ok_to_reset(sc)) { 2487 /* XXX: should list what resource is preventing reset. */ 2488 CH_ERR(sc, "not safe to reset.\n"); 2489 rc = EBUSY; 2490 goto done; 2491 } 2492 2493 done: 2494 oldinc = sc->incarnation; 2495 end_synchronized_op(sc, 0); 2496 if (rc != 0) 2497 return (rc); /* Error logged already. */ 2498 2499 atomic_add_int(&sc->num_resets, 1); 2500 mtx_lock(&Giant); 2501 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2502 mtx_unlock(&Giant); 2503 if (rc != 0) 2504 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2505 else { 2506 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2507 if (rc != 0) 2508 return (EBUSY); 2509 error_flags = atomic_load_int(&sc->error_flags); 2510 if (sc->incarnation > oldinc && error_flags == 0) { 2511 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2512 } else { 2513 CH_ERR(sc, "adapter did not reset properly, flags " 2514 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2515 error_flags); 2516 rc = ENXIO; 2517 } 2518 end_synchronized_op(sc, 0); 2519 } 2520 2521 return (rc); 2522 } 2523 2524 static void 2525 reset_adapter_task(void *arg, int pending) 2526 { 2527 /* XXX: t4_async_event here? */ 2528 reset_adapter(arg); 2529 } 2530 2531 static int 2532 cxgbe_probe(device_t dev) 2533 { 2534 struct port_info *pi = device_get_softc(dev); 2535 2536 device_set_descf(dev, "port %d", pi->port_id); 2537 2538 return (BUS_PROBE_DEFAULT); 2539 } 2540 2541 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2542 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2543 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2544 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2545 #define T4_CAP_ENABLE (T4_CAP) 2546 2547 static int 2548 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2549 { 2550 if_t ifp; 2551 struct sbuf *sb; 2552 struct sysctl_ctx_list *ctx = &vi->ctx; 2553 struct sysctl_oid_list *children; 2554 struct pfil_head_args pa; 2555 struct adapter *sc = vi->adapter; 2556 2557 sysctl_ctx_init(ctx); 2558 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2559 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2560 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2561 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2562 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2563 #ifdef DEV_NETMAP 2564 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2565 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2566 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2567 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2568 #endif 2569 #ifdef TCP_OFFLOAD 2570 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2571 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2572 #endif 2573 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2574 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2575 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2576 #endif 2577 2578 vi->xact_addr_filt = -1; 2579 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2580 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2581 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2582 vi->flags |= TX_USES_VM_WR; 2583 2584 /* Allocate an ifnet and set it up */ 2585 ifp = if_alloc_dev(IFT_ETHER, dev); 2586 if (ifp == NULL) { 2587 device_printf(dev, "Cannot allocate ifnet\n"); 2588 return (ENOMEM); 2589 } 2590 vi->ifp = ifp; 2591 if_setsoftc(ifp, vi); 2592 2593 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2594 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2595 2596 if_setinitfn(ifp, cxgbe_init); 2597 if_setioctlfn(ifp, cxgbe_ioctl); 2598 if_settransmitfn(ifp, cxgbe_transmit); 2599 if_setqflushfn(ifp, cxgbe_qflush); 2600 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2601 if_setgetcounterfn(ifp, vi_get_counter); 2602 else 2603 if_setgetcounterfn(ifp, cxgbe_get_counter); 2604 #if defined(KERN_TLS) || defined(RATELIMIT) 2605 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2606 #endif 2607 #ifdef RATELIMIT 2608 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2609 #endif 2610 2611 if_setcapabilities(ifp, T4_CAP); 2612 if_setcapenable(ifp, T4_CAP_ENABLE); 2613 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2614 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2615 if (chip_id(sc) >= CHELSIO_T6) { 2616 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2617 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2618 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2619 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2620 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2621 } 2622 2623 #ifdef TCP_OFFLOAD 2624 if (vi->nofldrxq != 0) 2625 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2626 #endif 2627 #ifdef RATELIMIT 2628 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2629 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2630 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2631 } 2632 #endif 2633 2634 if_sethwtsomax(ifp, IP_MAXPACKET); 2635 if (vi->flags & TX_USES_VM_WR) 2636 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2637 else 2638 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2639 #ifdef RATELIMIT 2640 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2641 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2642 #endif 2643 if_sethwtsomaxsegsize(ifp, 65536); 2644 #ifdef KERN_TLS 2645 if (is_ktls(sc)) { 2646 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2647 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2648 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2649 } 2650 #endif 2651 2652 ether_ifattach(ifp, vi->hw_addr); 2653 #ifdef DEV_NETMAP 2654 if (vi->nnmrxq != 0) 2655 cxgbe_nm_attach(vi); 2656 #endif 2657 sb = sbuf_new_auto(); 2658 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2659 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2660 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2661 case IFCAP_TOE: 2662 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2663 break; 2664 case IFCAP_TOE | IFCAP_TXRTLMT: 2665 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2666 break; 2667 case IFCAP_TXRTLMT: 2668 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2669 break; 2670 } 2671 #endif 2672 #ifdef TCP_OFFLOAD 2673 if (if_getcapabilities(ifp) & IFCAP_TOE) 2674 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2675 #endif 2676 #ifdef DEV_NETMAP 2677 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2678 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2679 vi->nnmtxq, vi->nnmrxq); 2680 #endif 2681 sbuf_finish(sb); 2682 device_printf(dev, "%s\n", sbuf_data(sb)); 2683 sbuf_delete(sb); 2684 2685 vi_sysctls(vi); 2686 2687 pa.pa_version = PFIL_VERSION; 2688 pa.pa_flags = PFIL_IN; 2689 pa.pa_type = PFIL_TYPE_ETHERNET; 2690 pa.pa_headname = if_name(ifp); 2691 vi->pfil = pfil_head_register(&pa); 2692 2693 return (0); 2694 } 2695 2696 static int 2697 cxgbe_attach(device_t dev) 2698 { 2699 struct port_info *pi = device_get_softc(dev); 2700 struct adapter *sc = pi->adapter; 2701 struct vi_info *vi; 2702 int i, rc; 2703 2704 sysctl_ctx_init(&pi->ctx); 2705 2706 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2707 if (rc) 2708 return (rc); 2709 2710 for_each_vi(pi, i, vi) { 2711 if (i == 0) 2712 continue; 2713 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2714 if (vi->dev == NULL) { 2715 device_printf(dev, "failed to add VI %d\n", i); 2716 continue; 2717 } 2718 device_set_softc(vi->dev, vi); 2719 } 2720 2721 cxgbe_sysctls(pi); 2722 2723 bus_generic_attach(dev); 2724 2725 return (0); 2726 } 2727 2728 static void 2729 cxgbe_vi_detach(struct vi_info *vi) 2730 { 2731 if_t ifp = vi->ifp; 2732 2733 if (vi->pfil != NULL) { 2734 pfil_head_unregister(vi->pfil); 2735 vi->pfil = NULL; 2736 } 2737 2738 ether_ifdetach(ifp); 2739 2740 /* Let detach proceed even if these fail. */ 2741 #ifdef DEV_NETMAP 2742 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2743 cxgbe_nm_detach(vi); 2744 #endif 2745 cxgbe_uninit_synchronized(vi); 2746 callout_drain(&vi->tick); 2747 mtx_destroy(&vi->tick_mtx); 2748 sysctl_ctx_free(&vi->ctx); 2749 vi_full_uninit(vi); 2750 2751 if_free(vi->ifp); 2752 vi->ifp = NULL; 2753 } 2754 2755 static int 2756 cxgbe_detach(device_t dev) 2757 { 2758 struct port_info *pi = device_get_softc(dev); 2759 struct adapter *sc = pi->adapter; 2760 int rc; 2761 2762 /* Detach the extra VIs first. */ 2763 rc = bus_generic_detach(dev); 2764 if (rc) 2765 return (rc); 2766 device_delete_children(dev); 2767 2768 sysctl_ctx_free(&pi->ctx); 2769 begin_vi_detach(sc, &pi->vi[0]); 2770 if (pi->flags & HAS_TRACEQ) { 2771 sc->traceq = -1; /* cloner should not create ifnet */ 2772 t4_tracer_port_detach(sc); 2773 } 2774 cxgbe_vi_detach(&pi->vi[0]); 2775 ifmedia_removeall(&pi->media); 2776 end_vi_detach(sc, &pi->vi[0]); 2777 2778 return (0); 2779 } 2780 2781 static void 2782 cxgbe_init(void *arg) 2783 { 2784 struct vi_info *vi = arg; 2785 struct adapter *sc = vi->adapter; 2786 2787 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2788 return; 2789 cxgbe_init_synchronized(vi); 2790 end_synchronized_op(sc, 0); 2791 } 2792 2793 static int 2794 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2795 { 2796 int rc = 0, mtu, flags; 2797 struct vi_info *vi = if_getsoftc(ifp); 2798 struct port_info *pi = vi->pi; 2799 struct adapter *sc = pi->adapter; 2800 struct ifreq *ifr = (struct ifreq *)data; 2801 uint32_t mask; 2802 2803 switch (cmd) { 2804 case SIOCSIFMTU: 2805 mtu = ifr->ifr_mtu; 2806 if (mtu < ETHERMIN || mtu > MAX_MTU) 2807 return (EINVAL); 2808 2809 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2810 if (rc) 2811 return (rc); 2812 if_setmtu(ifp, mtu); 2813 if (vi->flags & VI_INIT_DONE) { 2814 t4_update_fl_bufsize(ifp); 2815 if (!hw_off_limits(sc) && 2816 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2817 rc = update_mac_settings(ifp, XGMAC_MTU); 2818 } 2819 end_synchronized_op(sc, 0); 2820 break; 2821 2822 case SIOCSIFFLAGS: 2823 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2824 if (rc) 2825 return (rc); 2826 2827 if (hw_off_limits(sc)) { 2828 rc = ENXIO; 2829 goto fail; 2830 } 2831 2832 if (if_getflags(ifp) & IFF_UP) { 2833 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2834 flags = vi->if_flags; 2835 if ((if_getflags(ifp) ^ flags) & 2836 (IFF_PROMISC | IFF_ALLMULTI)) { 2837 rc = update_mac_settings(ifp, 2838 XGMAC_PROMISC | XGMAC_ALLMULTI); 2839 } 2840 } else { 2841 rc = cxgbe_init_synchronized(vi); 2842 } 2843 vi->if_flags = if_getflags(ifp); 2844 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2845 rc = cxgbe_uninit_synchronized(vi); 2846 } 2847 end_synchronized_op(sc, 0); 2848 break; 2849 2850 case SIOCADDMULTI: 2851 case SIOCDELMULTI: 2852 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2853 if (rc) 2854 return (rc); 2855 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2856 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2857 end_synchronized_op(sc, 0); 2858 break; 2859 2860 case SIOCSIFCAP: 2861 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2862 if (rc) 2863 return (rc); 2864 2865 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2866 if (mask & IFCAP_TXCSUM) { 2867 if_togglecapenable(ifp, IFCAP_TXCSUM); 2868 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2869 2870 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2871 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2872 mask &= ~IFCAP_TSO4; 2873 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2874 if_printf(ifp, 2875 "tso4 disabled due to -txcsum.\n"); 2876 } 2877 } 2878 if (mask & IFCAP_TXCSUM_IPV6) { 2879 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2880 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2881 2882 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2883 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2884 mask &= ~IFCAP_TSO6; 2885 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2886 if_printf(ifp, 2887 "tso6 disabled due to -txcsum6.\n"); 2888 } 2889 } 2890 if (mask & IFCAP_RXCSUM) 2891 if_togglecapenable(ifp, IFCAP_RXCSUM); 2892 if (mask & IFCAP_RXCSUM_IPV6) 2893 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2894 2895 /* 2896 * Note that we leave CSUM_TSO alone (it is always set). The 2897 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2898 * sending a TSO request our way, so it's sufficient to toggle 2899 * IFCAP_TSOx only. 2900 */ 2901 if (mask & IFCAP_TSO4) { 2902 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2903 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2904 if_printf(ifp, "enable txcsum first.\n"); 2905 rc = EAGAIN; 2906 goto fail; 2907 } 2908 if_togglecapenable(ifp, IFCAP_TSO4); 2909 } 2910 if (mask & IFCAP_TSO6) { 2911 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2912 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2913 if_printf(ifp, "enable txcsum6 first.\n"); 2914 rc = EAGAIN; 2915 goto fail; 2916 } 2917 if_togglecapenable(ifp, IFCAP_TSO6); 2918 } 2919 if (mask & IFCAP_LRO) { 2920 #if defined(INET) || defined(INET6) 2921 int i; 2922 struct sge_rxq *rxq; 2923 2924 if_togglecapenable(ifp, IFCAP_LRO); 2925 for_each_rxq(vi, i, rxq) { 2926 if (if_getcapenable(ifp) & IFCAP_LRO) 2927 rxq->iq.flags |= IQ_LRO_ENABLED; 2928 else 2929 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2930 } 2931 #endif 2932 } 2933 #ifdef TCP_OFFLOAD 2934 if (mask & IFCAP_TOE) { 2935 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2936 2937 rc = toe_capability(vi, enable); 2938 if (rc != 0) 2939 goto fail; 2940 2941 if_togglecapenable(ifp, mask); 2942 } 2943 #endif 2944 if (mask & IFCAP_VLAN_HWTAGGING) { 2945 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2946 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2947 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2948 } 2949 if (mask & IFCAP_VLAN_MTU) { 2950 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2951 2952 /* Need to find out how to disable auto-mtu-inflation */ 2953 } 2954 if (mask & IFCAP_VLAN_HWTSO) 2955 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2956 if (mask & IFCAP_VLAN_HWCSUM) 2957 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2958 #ifdef RATELIMIT 2959 if (mask & IFCAP_TXRTLMT) 2960 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2961 #endif 2962 if (mask & IFCAP_HWRXTSTMP) { 2963 int i; 2964 struct sge_rxq *rxq; 2965 2966 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 2967 for_each_rxq(vi, i, rxq) { 2968 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 2969 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2970 else 2971 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2972 } 2973 } 2974 if (mask & IFCAP_MEXTPG) 2975 if_togglecapenable(ifp, IFCAP_MEXTPG); 2976 2977 #ifdef KERN_TLS 2978 if (mask & IFCAP_TXTLS) { 2979 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 2980 2981 rc = ktls_capability(sc, enable); 2982 if (rc != 0) 2983 goto fail; 2984 2985 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 2986 } 2987 #endif 2988 if (mask & IFCAP_VXLAN_HWCSUM) { 2989 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 2990 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 2991 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2992 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 2993 } 2994 if (mask & IFCAP_VXLAN_HWTSO) { 2995 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 2996 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 2997 CSUM_INNER_IP_TSO); 2998 } 2999 3000 #ifdef VLAN_CAPABILITIES 3001 VLAN_CAPABILITIES(ifp); 3002 #endif 3003 fail: 3004 end_synchronized_op(sc, 0); 3005 break; 3006 3007 case SIOCSIFMEDIA: 3008 case SIOCGIFMEDIA: 3009 case SIOCGIFXMEDIA: 3010 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3011 break; 3012 3013 case SIOCGI2C: { 3014 struct ifi2creq i2c; 3015 3016 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3017 if (rc != 0) 3018 break; 3019 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3020 rc = EPERM; 3021 break; 3022 } 3023 if (i2c.len > sizeof(i2c.data)) { 3024 rc = EINVAL; 3025 break; 3026 } 3027 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3028 if (rc) 3029 return (rc); 3030 if (hw_off_limits(sc)) 3031 rc = ENXIO; 3032 else 3033 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3034 i2c.offset, i2c.len, &i2c.data[0]); 3035 end_synchronized_op(sc, 0); 3036 if (rc == 0) 3037 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3038 break; 3039 } 3040 3041 default: 3042 rc = ether_ioctl(ifp, cmd, data); 3043 } 3044 3045 return (rc); 3046 } 3047 3048 static int 3049 cxgbe_transmit(if_t ifp, struct mbuf *m) 3050 { 3051 struct vi_info *vi = if_getsoftc(ifp); 3052 struct port_info *pi = vi->pi; 3053 struct adapter *sc; 3054 struct sge_txq *txq; 3055 void *items[1]; 3056 int rc; 3057 3058 M_ASSERTPKTHDR(m); 3059 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3060 #if defined(KERN_TLS) || defined(RATELIMIT) 3061 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3062 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3063 #endif 3064 3065 if (__predict_false(pi->link_cfg.link_ok == false)) { 3066 m_freem(m); 3067 return (ENETDOWN); 3068 } 3069 3070 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3071 if (__predict_false(rc != 0)) { 3072 if (__predict_true(rc == EINPROGRESS)) { 3073 /* queued by parse_pkt */ 3074 MPASS(m != NULL); 3075 return (0); 3076 } 3077 3078 MPASS(m == NULL); /* was freed already */ 3079 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3080 return (rc); 3081 } 3082 3083 /* Select a txq. */ 3084 sc = vi->adapter; 3085 txq = &sc->sge.txq[vi->first_txq]; 3086 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3087 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3088 vi->rsrv_noflowq); 3089 3090 items[0] = m; 3091 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3092 if (__predict_false(rc != 0)) 3093 m_freem(m); 3094 3095 return (rc); 3096 } 3097 3098 static void 3099 cxgbe_qflush(if_t ifp) 3100 { 3101 struct vi_info *vi = if_getsoftc(ifp); 3102 struct sge_txq *txq; 3103 int i; 3104 3105 /* queues do not exist if !VI_INIT_DONE. */ 3106 if (vi->flags & VI_INIT_DONE) { 3107 for_each_txq(vi, i, txq) { 3108 TXQ_LOCK(txq); 3109 txq->eq.flags |= EQ_QFLUSH; 3110 TXQ_UNLOCK(txq); 3111 while (!mp_ring_is_idle(txq->r)) { 3112 mp_ring_check_drainage(txq->r, 4096); 3113 pause("qflush", 1); 3114 } 3115 TXQ_LOCK(txq); 3116 txq->eq.flags &= ~EQ_QFLUSH; 3117 TXQ_UNLOCK(txq); 3118 } 3119 } 3120 if_qflush(ifp); 3121 } 3122 3123 static uint64_t 3124 vi_get_counter(if_t ifp, ift_counter c) 3125 { 3126 struct vi_info *vi = if_getsoftc(ifp); 3127 struct fw_vi_stats_vf *s = &vi->stats; 3128 3129 mtx_lock(&vi->tick_mtx); 3130 vi_refresh_stats(vi); 3131 mtx_unlock(&vi->tick_mtx); 3132 3133 switch (c) { 3134 case IFCOUNTER_IPACKETS: 3135 return (s->rx_bcast_frames + s->rx_mcast_frames + 3136 s->rx_ucast_frames); 3137 case IFCOUNTER_IERRORS: 3138 return (s->rx_err_frames); 3139 case IFCOUNTER_OPACKETS: 3140 return (s->tx_bcast_frames + s->tx_mcast_frames + 3141 s->tx_ucast_frames + s->tx_offload_frames); 3142 case IFCOUNTER_OERRORS: 3143 return (s->tx_drop_frames); 3144 case IFCOUNTER_IBYTES: 3145 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3146 s->rx_ucast_bytes); 3147 case IFCOUNTER_OBYTES: 3148 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3149 s->tx_ucast_bytes + s->tx_offload_bytes); 3150 case IFCOUNTER_IMCASTS: 3151 return (s->rx_mcast_frames); 3152 case IFCOUNTER_OMCASTS: 3153 return (s->tx_mcast_frames); 3154 case IFCOUNTER_OQDROPS: { 3155 uint64_t drops; 3156 3157 drops = 0; 3158 if (vi->flags & VI_INIT_DONE) { 3159 int i; 3160 struct sge_txq *txq; 3161 3162 for_each_txq(vi, i, txq) 3163 drops += counter_u64_fetch(txq->r->dropped); 3164 } 3165 3166 return (drops); 3167 3168 } 3169 3170 default: 3171 return (if_get_counter_default(ifp, c)); 3172 } 3173 } 3174 3175 static uint64_t 3176 cxgbe_get_counter(if_t ifp, ift_counter c) 3177 { 3178 struct vi_info *vi = if_getsoftc(ifp); 3179 struct port_info *pi = vi->pi; 3180 struct port_stats *s = &pi->stats; 3181 3182 mtx_lock(&vi->tick_mtx); 3183 cxgbe_refresh_stats(vi); 3184 mtx_unlock(&vi->tick_mtx); 3185 3186 switch (c) { 3187 case IFCOUNTER_IPACKETS: 3188 return (s->rx_frames); 3189 3190 case IFCOUNTER_IERRORS: 3191 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3192 s->rx_fcs_err + s->rx_len_err); 3193 3194 case IFCOUNTER_OPACKETS: 3195 return (s->tx_frames); 3196 3197 case IFCOUNTER_OERRORS: 3198 return (s->tx_error_frames); 3199 3200 case IFCOUNTER_IBYTES: 3201 return (s->rx_octets); 3202 3203 case IFCOUNTER_OBYTES: 3204 return (s->tx_octets); 3205 3206 case IFCOUNTER_IMCASTS: 3207 return (s->rx_mcast_frames); 3208 3209 case IFCOUNTER_OMCASTS: 3210 return (s->tx_mcast_frames); 3211 3212 case IFCOUNTER_IQDROPS: 3213 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3214 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3215 s->rx_trunc3 + pi->tnl_cong_drops); 3216 3217 case IFCOUNTER_OQDROPS: { 3218 uint64_t drops; 3219 3220 drops = s->tx_drop; 3221 if (vi->flags & VI_INIT_DONE) { 3222 int i; 3223 struct sge_txq *txq; 3224 3225 for_each_txq(vi, i, txq) 3226 drops += counter_u64_fetch(txq->r->dropped); 3227 } 3228 3229 return (drops); 3230 3231 } 3232 3233 default: 3234 return (if_get_counter_default(ifp, c)); 3235 } 3236 } 3237 3238 #if defined(KERN_TLS) || defined(RATELIMIT) 3239 static int 3240 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3241 struct m_snd_tag **pt) 3242 { 3243 int error; 3244 3245 switch (params->hdr.type) { 3246 #ifdef RATELIMIT 3247 case IF_SND_TAG_TYPE_RATE_LIMIT: 3248 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3249 break; 3250 #endif 3251 #ifdef KERN_TLS 3252 case IF_SND_TAG_TYPE_TLS: 3253 { 3254 struct vi_info *vi = if_getsoftc(ifp); 3255 3256 if (is_t6(vi->pi->adapter)) 3257 error = t6_tls_tag_alloc(ifp, params, pt); 3258 else 3259 error = EOPNOTSUPP; 3260 break; 3261 } 3262 #endif 3263 default: 3264 error = EOPNOTSUPP; 3265 } 3266 return (error); 3267 } 3268 #endif 3269 3270 /* 3271 * The kernel picks a media from the list we had provided but we still validate 3272 * the requeste. 3273 */ 3274 int 3275 cxgbe_media_change(if_t ifp) 3276 { 3277 struct vi_info *vi = if_getsoftc(ifp); 3278 struct port_info *pi = vi->pi; 3279 struct ifmedia *ifm = &pi->media; 3280 struct link_config *lc = &pi->link_cfg; 3281 struct adapter *sc = pi->adapter; 3282 int rc; 3283 3284 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3285 if (rc != 0) 3286 return (rc); 3287 PORT_LOCK(pi); 3288 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3289 /* ifconfig .. media autoselect */ 3290 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3291 rc = ENOTSUP; /* AN not supported by transceiver */ 3292 goto done; 3293 } 3294 lc->requested_aneg = AUTONEG_ENABLE; 3295 lc->requested_speed = 0; 3296 lc->requested_fc |= PAUSE_AUTONEG; 3297 } else { 3298 lc->requested_aneg = AUTONEG_DISABLE; 3299 lc->requested_speed = 3300 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3301 lc->requested_fc = 0; 3302 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3303 lc->requested_fc |= PAUSE_RX; 3304 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3305 lc->requested_fc |= PAUSE_TX; 3306 } 3307 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3308 fixup_link_config(pi); 3309 rc = apply_link_config(pi); 3310 } 3311 done: 3312 PORT_UNLOCK(pi); 3313 end_synchronized_op(sc, 0); 3314 return (rc); 3315 } 3316 3317 /* 3318 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3319 * given speed. 3320 */ 3321 static int 3322 port_mword(struct port_info *pi, uint32_t speed) 3323 { 3324 3325 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3326 MPASS(powerof2(speed)); 3327 3328 switch(pi->port_type) { 3329 case FW_PORT_TYPE_BT_SGMII: 3330 case FW_PORT_TYPE_BT_XFI: 3331 case FW_PORT_TYPE_BT_XAUI: 3332 /* BaseT */ 3333 switch (speed) { 3334 case FW_PORT_CAP32_SPEED_100M: 3335 return (IFM_100_T); 3336 case FW_PORT_CAP32_SPEED_1G: 3337 return (IFM_1000_T); 3338 case FW_PORT_CAP32_SPEED_10G: 3339 return (IFM_10G_T); 3340 } 3341 break; 3342 case FW_PORT_TYPE_KX4: 3343 if (speed == FW_PORT_CAP32_SPEED_10G) 3344 return (IFM_10G_KX4); 3345 break; 3346 case FW_PORT_TYPE_CX4: 3347 if (speed == FW_PORT_CAP32_SPEED_10G) 3348 return (IFM_10G_CX4); 3349 break; 3350 case FW_PORT_TYPE_KX: 3351 if (speed == FW_PORT_CAP32_SPEED_1G) 3352 return (IFM_1000_KX); 3353 break; 3354 case FW_PORT_TYPE_KR: 3355 case FW_PORT_TYPE_BP_AP: 3356 case FW_PORT_TYPE_BP4_AP: 3357 case FW_PORT_TYPE_BP40_BA: 3358 case FW_PORT_TYPE_KR4_100G: 3359 case FW_PORT_TYPE_KR_SFP28: 3360 case FW_PORT_TYPE_KR_XLAUI: 3361 switch (speed) { 3362 case FW_PORT_CAP32_SPEED_1G: 3363 return (IFM_1000_KX); 3364 case FW_PORT_CAP32_SPEED_10G: 3365 return (IFM_10G_KR); 3366 case FW_PORT_CAP32_SPEED_25G: 3367 return (IFM_25G_KR); 3368 case FW_PORT_CAP32_SPEED_40G: 3369 return (IFM_40G_KR4); 3370 case FW_PORT_CAP32_SPEED_50G: 3371 return (IFM_50G_KR2); 3372 case FW_PORT_CAP32_SPEED_100G: 3373 return (IFM_100G_KR4); 3374 } 3375 break; 3376 case FW_PORT_TYPE_FIBER_XFI: 3377 case FW_PORT_TYPE_FIBER_XAUI: 3378 case FW_PORT_TYPE_SFP: 3379 case FW_PORT_TYPE_QSFP_10G: 3380 case FW_PORT_TYPE_QSA: 3381 case FW_PORT_TYPE_QSFP: 3382 case FW_PORT_TYPE_CR4_QSFP: 3383 case FW_PORT_TYPE_CR_QSFP: 3384 case FW_PORT_TYPE_CR2_QSFP: 3385 case FW_PORT_TYPE_SFP28: 3386 /* Pluggable transceiver */ 3387 switch (pi->mod_type) { 3388 case FW_PORT_MOD_TYPE_LR: 3389 switch (speed) { 3390 case FW_PORT_CAP32_SPEED_1G: 3391 return (IFM_1000_LX); 3392 case FW_PORT_CAP32_SPEED_10G: 3393 return (IFM_10G_LR); 3394 case FW_PORT_CAP32_SPEED_25G: 3395 return (IFM_25G_LR); 3396 case FW_PORT_CAP32_SPEED_40G: 3397 return (IFM_40G_LR4); 3398 case FW_PORT_CAP32_SPEED_50G: 3399 return (IFM_50G_LR2); 3400 case FW_PORT_CAP32_SPEED_100G: 3401 return (IFM_100G_LR4); 3402 } 3403 break; 3404 case FW_PORT_MOD_TYPE_SR: 3405 switch (speed) { 3406 case FW_PORT_CAP32_SPEED_1G: 3407 return (IFM_1000_SX); 3408 case FW_PORT_CAP32_SPEED_10G: 3409 return (IFM_10G_SR); 3410 case FW_PORT_CAP32_SPEED_25G: 3411 return (IFM_25G_SR); 3412 case FW_PORT_CAP32_SPEED_40G: 3413 return (IFM_40G_SR4); 3414 case FW_PORT_CAP32_SPEED_50G: 3415 return (IFM_50G_SR2); 3416 case FW_PORT_CAP32_SPEED_100G: 3417 return (IFM_100G_SR4); 3418 } 3419 break; 3420 case FW_PORT_MOD_TYPE_ER: 3421 if (speed == FW_PORT_CAP32_SPEED_10G) 3422 return (IFM_10G_ER); 3423 break; 3424 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3425 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3426 switch (speed) { 3427 case FW_PORT_CAP32_SPEED_1G: 3428 return (IFM_1000_CX); 3429 case FW_PORT_CAP32_SPEED_10G: 3430 return (IFM_10G_TWINAX); 3431 case FW_PORT_CAP32_SPEED_25G: 3432 return (IFM_25G_CR); 3433 case FW_PORT_CAP32_SPEED_40G: 3434 return (IFM_40G_CR4); 3435 case FW_PORT_CAP32_SPEED_50G: 3436 return (IFM_50G_CR2); 3437 case FW_PORT_CAP32_SPEED_100G: 3438 return (IFM_100G_CR4); 3439 } 3440 break; 3441 case FW_PORT_MOD_TYPE_LRM: 3442 if (speed == FW_PORT_CAP32_SPEED_10G) 3443 return (IFM_10G_LRM); 3444 break; 3445 case FW_PORT_MOD_TYPE_NA: 3446 MPASS(0); /* Not pluggable? */ 3447 /* fall throough */ 3448 case FW_PORT_MOD_TYPE_ERROR: 3449 case FW_PORT_MOD_TYPE_UNKNOWN: 3450 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3451 break; 3452 case FW_PORT_MOD_TYPE_NONE: 3453 return (IFM_NONE); 3454 } 3455 break; 3456 case FW_PORT_TYPE_NONE: 3457 return (IFM_NONE); 3458 } 3459 3460 return (IFM_UNKNOWN); 3461 } 3462 3463 void 3464 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3465 { 3466 struct vi_info *vi = if_getsoftc(ifp); 3467 struct port_info *pi = vi->pi; 3468 struct adapter *sc = pi->adapter; 3469 struct link_config *lc = &pi->link_cfg; 3470 3471 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3472 return; 3473 PORT_LOCK(pi); 3474 3475 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3476 /* 3477 * If all the interfaces are administratively down the firmware 3478 * does not report transceiver changes. Refresh port info here 3479 * so that ifconfig displays accurate ifmedia at all times. 3480 * This is the only reason we have a synchronized op in this 3481 * function. Just PORT_LOCK would have been enough otherwise. 3482 */ 3483 t4_update_port_info(pi); 3484 build_medialist(pi); 3485 } 3486 3487 /* ifm_status */ 3488 ifmr->ifm_status = IFM_AVALID; 3489 if (lc->link_ok == false) 3490 goto done; 3491 ifmr->ifm_status |= IFM_ACTIVE; 3492 3493 /* ifm_active */ 3494 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3495 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3496 if (lc->fc & PAUSE_RX) 3497 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3498 if (lc->fc & PAUSE_TX) 3499 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3500 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3501 done: 3502 PORT_UNLOCK(pi); 3503 end_synchronized_op(sc, 0); 3504 } 3505 3506 static int 3507 vcxgbe_probe(device_t dev) 3508 { 3509 struct vi_info *vi = device_get_softc(dev); 3510 3511 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3512 vi - vi->pi->vi); 3513 3514 return (BUS_PROBE_DEFAULT); 3515 } 3516 3517 static int 3518 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3519 { 3520 int func, index, rc; 3521 uint32_t param, val; 3522 3523 ASSERT_SYNCHRONIZED_OP(sc); 3524 3525 index = vi - pi->vi; 3526 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3527 KASSERT(index < nitems(vi_mac_funcs), 3528 ("%s: VI %s doesn't have a MAC func", __func__, 3529 device_get_nameunit(vi->dev))); 3530 func = vi_mac_funcs[index]; 3531 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3532 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3533 if (rc < 0) { 3534 CH_ERR(vi, "failed to allocate virtual interface %d" 3535 "for port %d: %d\n", index, pi->port_id, -rc); 3536 return (-rc); 3537 } 3538 vi->viid = rc; 3539 3540 if (vi->rss_size == 1) { 3541 /* 3542 * This VI didn't get a slice of the RSS table. Reduce the 3543 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3544 * configuration file (nvi, rssnvi for this PF) if this is a 3545 * problem. 3546 */ 3547 device_printf(vi->dev, "RSS table not available.\n"); 3548 vi->rss_base = 0xffff; 3549 3550 return (0); 3551 } 3552 3553 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3554 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3555 V_FW_PARAMS_PARAM_YZ(vi->viid); 3556 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3557 if (rc) 3558 vi->rss_base = 0xffff; 3559 else { 3560 MPASS((val >> 16) == vi->rss_size); 3561 vi->rss_base = val & 0xffff; 3562 } 3563 3564 return (0); 3565 } 3566 3567 static int 3568 vcxgbe_attach(device_t dev) 3569 { 3570 struct vi_info *vi; 3571 struct port_info *pi; 3572 struct adapter *sc; 3573 int rc; 3574 3575 vi = device_get_softc(dev); 3576 pi = vi->pi; 3577 sc = pi->adapter; 3578 3579 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3580 if (rc) 3581 return (rc); 3582 rc = alloc_extra_vi(sc, pi, vi); 3583 end_synchronized_op(sc, 0); 3584 if (rc) 3585 return (rc); 3586 3587 rc = cxgbe_vi_attach(dev, vi); 3588 if (rc) { 3589 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3590 return (rc); 3591 } 3592 return (0); 3593 } 3594 3595 static int 3596 vcxgbe_detach(device_t dev) 3597 { 3598 struct vi_info *vi; 3599 struct adapter *sc; 3600 3601 vi = device_get_softc(dev); 3602 sc = vi->adapter; 3603 3604 begin_vi_detach(sc, vi); 3605 cxgbe_vi_detach(vi); 3606 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3607 end_vi_detach(sc, vi); 3608 3609 return (0); 3610 } 3611 3612 static struct callout fatal_callout; 3613 static struct taskqueue *reset_tq; 3614 3615 static void 3616 delayed_panic(void *arg) 3617 { 3618 struct adapter *sc = arg; 3619 3620 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3621 } 3622 3623 static void 3624 fatal_error_task(void *arg, int pending) 3625 { 3626 struct adapter *sc = arg; 3627 int rc; 3628 3629 #ifdef TCP_OFFLOAD 3630 t4_async_event(sc); 3631 #endif 3632 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3633 dump_cim_regs(sc); 3634 dump_cimla(sc); 3635 dump_devlog(sc); 3636 } 3637 3638 if (t4_reset_on_fatal_err) { 3639 CH_ALERT(sc, "resetting on fatal error.\n"); 3640 rc = reset_adapter(sc); 3641 if (rc == 0 && t4_panic_on_fatal_err) { 3642 CH_ALERT(sc, "reset was successful, " 3643 "system will NOT panic.\n"); 3644 return; 3645 } 3646 } 3647 3648 if (t4_panic_on_fatal_err) { 3649 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3650 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3651 } 3652 } 3653 3654 void 3655 t4_fatal_err(struct adapter *sc, bool fw_error) 3656 { 3657 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3658 3659 stop_adapter(sc); 3660 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3661 return; 3662 if (fw_error) { 3663 /* 3664 * We are here because of a firmware error/timeout and not 3665 * because of a hardware interrupt. It is possible (although 3666 * not very likely) that an error interrupt was also raised but 3667 * this thread ran first and inhibited t4_intr_err. We walk the 3668 * main INT_CAUSE registers here to make sure we haven't missed 3669 * anything interesting. 3670 */ 3671 t4_slow_intr_handler(sc, verbose); 3672 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3673 } 3674 t4_report_fw_error(sc); 3675 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3676 device_get_nameunit(sc->dev), fw_error); 3677 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3678 } 3679 3680 void 3681 t4_add_adapter(struct adapter *sc) 3682 { 3683 sx_xlock(&t4_list_lock); 3684 SLIST_INSERT_HEAD(&t4_list, sc, link); 3685 sx_xunlock(&t4_list_lock); 3686 } 3687 3688 int 3689 t4_map_bars_0_and_4(struct adapter *sc) 3690 { 3691 sc->regs_rid = PCIR_BAR(0); 3692 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3693 &sc->regs_rid, RF_ACTIVE); 3694 if (sc->regs_res == NULL) { 3695 device_printf(sc->dev, "cannot map registers.\n"); 3696 return (ENXIO); 3697 } 3698 sc->bt = rman_get_bustag(sc->regs_res); 3699 sc->bh = rman_get_bushandle(sc->regs_res); 3700 sc->mmio_len = rman_get_size(sc->regs_res); 3701 setbit(&sc->doorbells, DOORBELL_KDB); 3702 3703 sc->msix_rid = PCIR_BAR(4); 3704 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3705 &sc->msix_rid, RF_ACTIVE); 3706 if (sc->msix_res == NULL) { 3707 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3708 return (ENXIO); 3709 } 3710 3711 return (0); 3712 } 3713 3714 int 3715 t4_map_bar_2(struct adapter *sc) 3716 { 3717 3718 /* 3719 * T4: only iWARP driver uses the userspace doorbells. There is no need 3720 * to map it if RDMA is disabled. 3721 */ 3722 if (is_t4(sc) && sc->rdmacaps == 0) 3723 return (0); 3724 3725 sc->udbs_rid = PCIR_BAR(2); 3726 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3727 &sc->udbs_rid, RF_ACTIVE); 3728 if (sc->udbs_res == NULL) { 3729 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3730 return (ENXIO); 3731 } 3732 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3733 3734 if (chip_id(sc) >= CHELSIO_T5) { 3735 setbit(&sc->doorbells, DOORBELL_UDB); 3736 #if defined(__i386__) || defined(__amd64__) 3737 if (t5_write_combine) { 3738 int rc, mode; 3739 3740 /* 3741 * Enable write combining on BAR2. This is the 3742 * userspace doorbell BAR and is split into 128B 3743 * (UDBS_SEG_SIZE) doorbell regions, each associated 3744 * with an egress queue. The first 64B has the doorbell 3745 * and the second 64B can be used to submit a tx work 3746 * request with an implicit doorbell. 3747 */ 3748 3749 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3750 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3751 if (rc == 0) { 3752 clrbit(&sc->doorbells, DOORBELL_UDB); 3753 setbit(&sc->doorbells, DOORBELL_WCWR); 3754 setbit(&sc->doorbells, DOORBELL_UDBWC); 3755 } else { 3756 device_printf(sc->dev, 3757 "couldn't enable write combining: %d\n", 3758 rc); 3759 } 3760 3761 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3762 t4_write_reg(sc, A_SGE_STAT_CFG, 3763 V_STATSOURCE_T5(7) | mode); 3764 } 3765 #endif 3766 } 3767 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3768 3769 return (0); 3770 } 3771 3772 int 3773 t4_adj_doorbells(struct adapter *sc) 3774 { 3775 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3776 sc->doorbells &= t4_doorbells_allowed; 3777 return (0); 3778 } 3779 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3780 sc->doorbells, t4_doorbells_allowed); 3781 return (EINVAL); 3782 } 3783 3784 struct memwin_init { 3785 uint32_t base; 3786 uint32_t aperture; 3787 }; 3788 3789 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3790 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3791 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3792 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3793 }; 3794 3795 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3796 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3797 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3798 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3799 }; 3800 3801 static void 3802 setup_memwin(struct adapter *sc) 3803 { 3804 const struct memwin_init *mw_init; 3805 struct memwin *mw; 3806 int i; 3807 uint32_t bar0; 3808 3809 if (is_t4(sc)) { 3810 /* 3811 * Read low 32b of bar0 indirectly via the hardware backdoor 3812 * mechanism. Works from within PCI passthrough environments 3813 * too, where rman_get_start() can return a different value. We 3814 * need to program the T4 memory window decoders with the actual 3815 * addresses that will be coming across the PCIe link. 3816 */ 3817 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3818 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3819 3820 mw_init = &t4_memwin[0]; 3821 } else { 3822 /* T5+ use the relative offset inside the PCIe BAR */ 3823 bar0 = 0; 3824 3825 mw_init = &t5_memwin[0]; 3826 } 3827 3828 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3829 if (!rw_initialized(&mw->mw_lock)) { 3830 rw_init(&mw->mw_lock, "memory window access"); 3831 mw->mw_base = mw_init->base; 3832 mw->mw_aperture = mw_init->aperture; 3833 mw->mw_curpos = 0; 3834 } 3835 t4_write_reg(sc, 3836 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3837 (mw->mw_base + bar0) | V_BIR(0) | 3838 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3839 rw_wlock(&mw->mw_lock); 3840 position_memwin(sc, i, mw->mw_curpos); 3841 rw_wunlock(&mw->mw_lock); 3842 } 3843 3844 /* flush */ 3845 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3846 } 3847 3848 /* 3849 * Positions the memory window at the given address in the card's address space. 3850 * There are some alignment requirements and the actual position may be at an 3851 * address prior to the requested address. mw->mw_curpos always has the actual 3852 * position of the window. 3853 */ 3854 static void 3855 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3856 { 3857 struct memwin *mw; 3858 uint32_t pf; 3859 uint32_t reg; 3860 3861 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3862 mw = &sc->memwin[idx]; 3863 rw_assert(&mw->mw_lock, RA_WLOCKED); 3864 3865 if (is_t4(sc)) { 3866 pf = 0; 3867 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3868 } else { 3869 pf = V_PFNUM(sc->pf); 3870 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3871 } 3872 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3873 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3874 t4_read_reg(sc, reg); /* flush */ 3875 } 3876 3877 int 3878 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3879 int len, int rw) 3880 { 3881 struct memwin *mw; 3882 uint32_t mw_end, v; 3883 3884 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3885 3886 /* Memory can only be accessed in naturally aligned 4 byte units */ 3887 if (addr & 3 || len & 3 || len <= 0) 3888 return (EINVAL); 3889 3890 mw = &sc->memwin[idx]; 3891 while (len > 0) { 3892 rw_rlock(&mw->mw_lock); 3893 mw_end = mw->mw_curpos + mw->mw_aperture; 3894 if (addr >= mw_end || addr < mw->mw_curpos) { 3895 /* Will need to reposition the window */ 3896 if (!rw_try_upgrade(&mw->mw_lock)) { 3897 rw_runlock(&mw->mw_lock); 3898 rw_wlock(&mw->mw_lock); 3899 } 3900 rw_assert(&mw->mw_lock, RA_WLOCKED); 3901 position_memwin(sc, idx, addr); 3902 rw_downgrade(&mw->mw_lock); 3903 mw_end = mw->mw_curpos + mw->mw_aperture; 3904 } 3905 rw_assert(&mw->mw_lock, RA_RLOCKED); 3906 while (addr < mw_end && len > 0) { 3907 if (rw == 0) { 3908 v = t4_read_reg(sc, mw->mw_base + addr - 3909 mw->mw_curpos); 3910 *val++ = le32toh(v); 3911 } else { 3912 v = *val++; 3913 t4_write_reg(sc, mw->mw_base + addr - 3914 mw->mw_curpos, htole32(v)); 3915 } 3916 addr += 4; 3917 len -= 4; 3918 } 3919 rw_runlock(&mw->mw_lock); 3920 } 3921 3922 return (0); 3923 } 3924 3925 CTASSERT(M_TID_COOKIE == M_COOKIE); 3926 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3927 3928 static void 3929 t4_init_atid_table(struct adapter *sc) 3930 { 3931 struct tid_info *t; 3932 int i; 3933 3934 t = &sc->tids; 3935 if (t->natids == 0) 3936 return; 3937 3938 MPASS(t->atid_tab == NULL); 3939 3940 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3941 M_ZERO | M_WAITOK); 3942 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3943 t->afree = t->atid_tab; 3944 t->atids_in_use = 0; 3945 for (i = 1; i < t->natids; i++) 3946 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3947 t->atid_tab[t->natids - 1].next = NULL; 3948 } 3949 3950 static void 3951 t4_free_atid_table(struct adapter *sc) 3952 { 3953 struct tid_info *t; 3954 3955 t = &sc->tids; 3956 3957 KASSERT(t->atids_in_use == 0, 3958 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3959 3960 if (mtx_initialized(&t->atid_lock)) 3961 mtx_destroy(&t->atid_lock); 3962 free(t->atid_tab, M_CXGBE); 3963 t->atid_tab = NULL; 3964 } 3965 3966 int 3967 alloc_atid(struct adapter *sc, void *ctx) 3968 { 3969 struct tid_info *t = &sc->tids; 3970 int atid = -1; 3971 3972 mtx_lock(&t->atid_lock); 3973 if (t->afree) { 3974 union aopen_entry *p = t->afree; 3975 3976 atid = p - t->atid_tab; 3977 MPASS(atid <= M_TID_TID); 3978 t->afree = p->next; 3979 p->data = ctx; 3980 t->atids_in_use++; 3981 } 3982 mtx_unlock(&t->atid_lock); 3983 return (atid); 3984 } 3985 3986 void * 3987 lookup_atid(struct adapter *sc, int atid) 3988 { 3989 struct tid_info *t = &sc->tids; 3990 3991 return (t->atid_tab[atid].data); 3992 } 3993 3994 void 3995 free_atid(struct adapter *sc, int atid) 3996 { 3997 struct tid_info *t = &sc->tids; 3998 union aopen_entry *p = &t->atid_tab[atid]; 3999 4000 mtx_lock(&t->atid_lock); 4001 p->next = t->afree; 4002 t->afree = p; 4003 t->atids_in_use--; 4004 mtx_unlock(&t->atid_lock); 4005 } 4006 4007 static void 4008 queue_tid_release(struct adapter *sc, int tid) 4009 { 4010 4011 CXGBE_UNIMPLEMENTED("deferred tid release"); 4012 } 4013 4014 void 4015 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4016 { 4017 struct wrqe *wr; 4018 struct cpl_tid_release *req; 4019 4020 wr = alloc_wrqe(sizeof(*req), ctrlq); 4021 if (wr == NULL) { 4022 queue_tid_release(sc, tid); /* defer */ 4023 return; 4024 } 4025 req = wrtod(wr); 4026 4027 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4028 4029 t4_wrq_tx(sc, wr); 4030 } 4031 4032 static int 4033 t4_range_cmp(const void *a, const void *b) 4034 { 4035 return ((const struct t4_range *)a)->start - 4036 ((const struct t4_range *)b)->start; 4037 } 4038 4039 /* 4040 * Verify that the memory range specified by the addr/len pair is valid within 4041 * the card's address space. 4042 */ 4043 static int 4044 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4045 { 4046 struct t4_range mem_ranges[4], *r, *next; 4047 uint32_t em, addr_len; 4048 int i, n, remaining; 4049 4050 /* Memory can only be accessed in naturally aligned 4 byte units */ 4051 if (addr & 3 || len & 3 || len == 0) 4052 return (EINVAL); 4053 4054 /* Enabled memories */ 4055 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4056 4057 r = &mem_ranges[0]; 4058 n = 0; 4059 bzero(r, sizeof(mem_ranges)); 4060 if (em & F_EDRAM0_ENABLE) { 4061 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4062 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4063 if (r->size > 0) { 4064 r->start = G_EDRAM0_BASE(addr_len) << 20; 4065 if (addr >= r->start && 4066 addr + len <= r->start + r->size) 4067 return (0); 4068 r++; 4069 n++; 4070 } 4071 } 4072 if (em & F_EDRAM1_ENABLE) { 4073 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4074 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4075 if (r->size > 0) { 4076 r->start = G_EDRAM1_BASE(addr_len) << 20; 4077 if (addr >= r->start && 4078 addr + len <= r->start + r->size) 4079 return (0); 4080 r++; 4081 n++; 4082 } 4083 } 4084 if (em & F_EXT_MEM_ENABLE) { 4085 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4086 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4087 if (r->size > 0) { 4088 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4089 if (addr >= r->start && 4090 addr + len <= r->start + r->size) 4091 return (0); 4092 r++; 4093 n++; 4094 } 4095 } 4096 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4097 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4098 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4099 if (r->size > 0) { 4100 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4101 if (addr >= r->start && 4102 addr + len <= r->start + r->size) 4103 return (0); 4104 r++; 4105 n++; 4106 } 4107 } 4108 MPASS(n <= nitems(mem_ranges)); 4109 4110 if (n > 1) { 4111 /* Sort and merge the ranges. */ 4112 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4113 4114 /* Start from index 0 and examine the next n - 1 entries. */ 4115 r = &mem_ranges[0]; 4116 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4117 4118 MPASS(r->size > 0); /* r is a valid entry. */ 4119 next = r + 1; 4120 MPASS(next->size > 0); /* and so is the next one. */ 4121 4122 while (r->start + r->size >= next->start) { 4123 /* Merge the next one into the current entry. */ 4124 r->size = max(r->start + r->size, 4125 next->start + next->size) - r->start; 4126 n--; /* One fewer entry in total. */ 4127 if (--remaining == 0) 4128 goto done; /* short circuit */ 4129 next++; 4130 } 4131 if (next != r + 1) { 4132 /* 4133 * Some entries were merged into r and next 4134 * points to the first valid entry that couldn't 4135 * be merged. 4136 */ 4137 MPASS(next->size > 0); /* must be valid */ 4138 memcpy(r + 1, next, remaining * sizeof(*r)); 4139 #ifdef INVARIANTS 4140 /* 4141 * This so that the foo->size assertion in the 4142 * next iteration of the loop do the right 4143 * thing for entries that were pulled up and are 4144 * no longer valid. 4145 */ 4146 MPASS(n < nitems(mem_ranges)); 4147 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4148 sizeof(struct t4_range)); 4149 #endif 4150 } 4151 } 4152 done: 4153 /* Done merging the ranges. */ 4154 MPASS(n > 0); 4155 r = &mem_ranges[0]; 4156 for (i = 0; i < n; i++, r++) { 4157 if (addr >= r->start && 4158 addr + len <= r->start + r->size) 4159 return (0); 4160 } 4161 } 4162 4163 return (EFAULT); 4164 } 4165 4166 static int 4167 fwmtype_to_hwmtype(int mtype) 4168 { 4169 4170 switch (mtype) { 4171 case FW_MEMTYPE_EDC0: 4172 return (MEM_EDC0); 4173 case FW_MEMTYPE_EDC1: 4174 return (MEM_EDC1); 4175 case FW_MEMTYPE_EXTMEM: 4176 return (MEM_MC0); 4177 case FW_MEMTYPE_EXTMEM1: 4178 return (MEM_MC1); 4179 default: 4180 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4181 } 4182 } 4183 4184 /* 4185 * Verify that the memory range specified by the memtype/offset/len pair is 4186 * valid and lies entirely within the memtype specified. The global address of 4187 * the start of the range is returned in addr. 4188 */ 4189 static int 4190 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4191 uint32_t *addr) 4192 { 4193 uint32_t em, addr_len, maddr; 4194 4195 /* Memory can only be accessed in naturally aligned 4 byte units */ 4196 if (off & 3 || len & 3 || len == 0) 4197 return (EINVAL); 4198 4199 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4200 switch (fwmtype_to_hwmtype(mtype)) { 4201 case MEM_EDC0: 4202 if (!(em & F_EDRAM0_ENABLE)) 4203 return (EINVAL); 4204 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4205 maddr = G_EDRAM0_BASE(addr_len) << 20; 4206 break; 4207 case MEM_EDC1: 4208 if (!(em & F_EDRAM1_ENABLE)) 4209 return (EINVAL); 4210 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4211 maddr = G_EDRAM1_BASE(addr_len) << 20; 4212 break; 4213 case MEM_MC: 4214 if (!(em & F_EXT_MEM_ENABLE)) 4215 return (EINVAL); 4216 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4217 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4218 break; 4219 case MEM_MC1: 4220 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4221 return (EINVAL); 4222 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4223 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4224 break; 4225 default: 4226 return (EINVAL); 4227 } 4228 4229 *addr = maddr + off; /* global address */ 4230 return (validate_mem_range(sc, *addr, len)); 4231 } 4232 4233 static int 4234 fixup_devlog_params(struct adapter *sc) 4235 { 4236 struct devlog_params *dparams = &sc->params.devlog; 4237 int rc; 4238 4239 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4240 dparams->size, &dparams->addr); 4241 4242 return (rc); 4243 } 4244 4245 static void 4246 update_nirq(struct intrs_and_queues *iaq, int nports) 4247 { 4248 4249 iaq->nirq = T4_EXTRA_INTR; 4250 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4251 iaq->nirq += nports * iaq->nofldrxq; 4252 iaq->nirq += nports * (iaq->num_vis - 1) * 4253 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4254 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4255 } 4256 4257 /* 4258 * Adjust requirements to fit the number of interrupts available. 4259 */ 4260 static void 4261 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4262 int navail) 4263 { 4264 int old_nirq; 4265 const int nports = sc->params.nports; 4266 4267 MPASS(nports > 0); 4268 MPASS(navail > 0); 4269 4270 bzero(iaq, sizeof(*iaq)); 4271 iaq->intr_type = itype; 4272 iaq->num_vis = t4_num_vis; 4273 iaq->ntxq = t4_ntxq; 4274 iaq->ntxq_vi = t4_ntxq_vi; 4275 iaq->nrxq = t4_nrxq; 4276 iaq->nrxq_vi = t4_nrxq_vi; 4277 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4278 if (is_offload(sc) || is_ethoffload(sc)) { 4279 iaq->nofldtxq = t4_nofldtxq; 4280 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4281 } 4282 #endif 4283 #ifdef TCP_OFFLOAD 4284 if (is_offload(sc)) { 4285 iaq->nofldrxq = t4_nofldrxq; 4286 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4287 } 4288 #endif 4289 #ifdef DEV_NETMAP 4290 if (t4_native_netmap & NN_MAIN_VI) { 4291 iaq->nnmtxq = t4_nnmtxq; 4292 iaq->nnmrxq = t4_nnmrxq; 4293 } 4294 if (t4_native_netmap & NN_EXTRA_VI) { 4295 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4296 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4297 } 4298 #endif 4299 4300 update_nirq(iaq, nports); 4301 if (iaq->nirq <= navail && 4302 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4303 /* 4304 * This is the normal case -- there are enough interrupts for 4305 * everything. 4306 */ 4307 goto done; 4308 } 4309 4310 /* 4311 * If extra VIs have been configured try reducing their count and see if 4312 * that works. 4313 */ 4314 while (iaq->num_vis > 1) { 4315 iaq->num_vis--; 4316 update_nirq(iaq, nports); 4317 if (iaq->nirq <= navail && 4318 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4319 device_printf(sc->dev, "virtual interfaces per port " 4320 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4321 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4322 "itype %d, navail %u, nirq %d.\n", 4323 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4324 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4325 itype, navail, iaq->nirq); 4326 goto done; 4327 } 4328 } 4329 4330 /* 4331 * Extra VIs will not be created. Log a message if they were requested. 4332 */ 4333 MPASS(iaq->num_vis == 1); 4334 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4335 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4336 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4337 if (iaq->num_vis != t4_num_vis) { 4338 device_printf(sc->dev, "extra virtual interfaces disabled. " 4339 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4340 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4341 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4342 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4343 } 4344 4345 /* 4346 * Keep reducing the number of NIC rx queues to the next lower power of 4347 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4348 * if that works. 4349 */ 4350 do { 4351 if (iaq->nrxq > 1) { 4352 do { 4353 iaq->nrxq--; 4354 } while (!powerof2(iaq->nrxq)); 4355 if (iaq->nnmrxq > iaq->nrxq) 4356 iaq->nnmrxq = iaq->nrxq; 4357 } 4358 if (iaq->nofldrxq > 1) 4359 iaq->nofldrxq >>= 1; 4360 4361 old_nirq = iaq->nirq; 4362 update_nirq(iaq, nports); 4363 if (iaq->nirq <= navail && 4364 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4365 device_printf(sc->dev, "running with reduced number of " 4366 "rx queues because of shortage of interrupts. " 4367 "nrxq=%u, nofldrxq=%u. " 4368 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4369 iaq->nofldrxq, itype, navail, iaq->nirq); 4370 goto done; 4371 } 4372 } while (old_nirq != iaq->nirq); 4373 4374 /* One interrupt for everything. Ugh. */ 4375 device_printf(sc->dev, "running with minimal number of queues. " 4376 "itype %d, navail %u.\n", itype, navail); 4377 iaq->nirq = 1; 4378 iaq->nrxq = 1; 4379 iaq->ntxq = 1; 4380 if (iaq->nofldrxq > 0) { 4381 iaq->nofldrxq = 1; 4382 iaq->nofldtxq = 1; 4383 } 4384 iaq->nnmtxq = 0; 4385 iaq->nnmrxq = 0; 4386 done: 4387 MPASS(iaq->num_vis > 0); 4388 if (iaq->num_vis > 1) { 4389 MPASS(iaq->nrxq_vi > 0); 4390 MPASS(iaq->ntxq_vi > 0); 4391 } 4392 MPASS(iaq->nirq > 0); 4393 MPASS(iaq->nrxq > 0); 4394 MPASS(iaq->ntxq > 0); 4395 if (itype == INTR_MSI) { 4396 MPASS(powerof2(iaq->nirq)); 4397 } 4398 } 4399 4400 static int 4401 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4402 { 4403 int rc, itype, navail, nalloc; 4404 4405 for (itype = INTR_MSIX; itype; itype >>= 1) { 4406 4407 if ((itype & t4_intr_types) == 0) 4408 continue; /* not allowed */ 4409 4410 if (itype == INTR_MSIX) 4411 navail = pci_msix_count(sc->dev); 4412 else if (itype == INTR_MSI) 4413 navail = pci_msi_count(sc->dev); 4414 else 4415 navail = 1; 4416 restart: 4417 if (navail == 0) 4418 continue; 4419 4420 calculate_iaq(sc, iaq, itype, navail); 4421 nalloc = iaq->nirq; 4422 rc = 0; 4423 if (itype == INTR_MSIX) 4424 rc = pci_alloc_msix(sc->dev, &nalloc); 4425 else if (itype == INTR_MSI) 4426 rc = pci_alloc_msi(sc->dev, &nalloc); 4427 4428 if (rc == 0 && nalloc > 0) { 4429 if (nalloc == iaq->nirq) 4430 return (0); 4431 4432 /* 4433 * Didn't get the number requested. Use whatever number 4434 * the kernel is willing to allocate. 4435 */ 4436 device_printf(sc->dev, "fewer vectors than requested, " 4437 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4438 itype, iaq->nirq, nalloc); 4439 pci_release_msi(sc->dev); 4440 navail = nalloc; 4441 goto restart; 4442 } 4443 4444 device_printf(sc->dev, 4445 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4446 itype, rc, iaq->nirq, nalloc); 4447 } 4448 4449 device_printf(sc->dev, 4450 "failed to find a usable interrupt type. " 4451 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4452 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4453 4454 return (ENXIO); 4455 } 4456 4457 #define FW_VERSION(chip) ( \ 4458 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4459 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4460 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4461 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4462 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4463 4464 /* Just enough of fw_hdr to cover all version info. */ 4465 struct fw_h { 4466 __u8 ver; 4467 __u8 chip; 4468 __be16 len512; 4469 __be32 fw_ver; 4470 __be32 tp_microcode_ver; 4471 __u8 intfver_nic; 4472 __u8 intfver_vnic; 4473 __u8 intfver_ofld; 4474 __u8 intfver_ri; 4475 __u8 intfver_iscsipdu; 4476 __u8 intfver_iscsi; 4477 __u8 intfver_fcoepdu; 4478 __u8 intfver_fcoe; 4479 }; 4480 /* Spot check a couple of fields. */ 4481 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4482 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4483 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4484 4485 struct fw_info { 4486 uint8_t chip; 4487 char *kld_name; 4488 char *fw_mod_name; 4489 struct fw_h fw_h; 4490 } fw_info[] = { 4491 { 4492 .chip = CHELSIO_T4, 4493 .kld_name = "t4fw_cfg", 4494 .fw_mod_name = "t4fw", 4495 .fw_h = { 4496 .chip = FW_HDR_CHIP_T4, 4497 .fw_ver = htobe32(FW_VERSION(T4)), 4498 .intfver_nic = FW_INTFVER(T4, NIC), 4499 .intfver_vnic = FW_INTFVER(T4, VNIC), 4500 .intfver_ofld = FW_INTFVER(T4, OFLD), 4501 .intfver_ri = FW_INTFVER(T4, RI), 4502 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4503 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4504 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4505 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4506 }, 4507 }, { 4508 .chip = CHELSIO_T5, 4509 .kld_name = "t5fw_cfg", 4510 .fw_mod_name = "t5fw", 4511 .fw_h = { 4512 .chip = FW_HDR_CHIP_T5, 4513 .fw_ver = htobe32(FW_VERSION(T5)), 4514 .intfver_nic = FW_INTFVER(T5, NIC), 4515 .intfver_vnic = FW_INTFVER(T5, VNIC), 4516 .intfver_ofld = FW_INTFVER(T5, OFLD), 4517 .intfver_ri = FW_INTFVER(T5, RI), 4518 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4519 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4520 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4521 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4522 }, 4523 }, { 4524 .chip = CHELSIO_T6, 4525 .kld_name = "t6fw_cfg", 4526 .fw_mod_name = "t6fw", 4527 .fw_h = { 4528 .chip = FW_HDR_CHIP_T6, 4529 .fw_ver = htobe32(FW_VERSION(T6)), 4530 .intfver_nic = FW_INTFVER(T6, NIC), 4531 .intfver_vnic = FW_INTFVER(T6, VNIC), 4532 .intfver_ofld = FW_INTFVER(T6, OFLD), 4533 .intfver_ri = FW_INTFVER(T6, RI), 4534 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4535 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4536 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4537 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4538 }, 4539 } 4540 }; 4541 4542 static struct fw_info * 4543 find_fw_info(int chip) 4544 { 4545 int i; 4546 4547 for (i = 0; i < nitems(fw_info); i++) { 4548 if (fw_info[i].chip == chip) 4549 return (&fw_info[i]); 4550 } 4551 return (NULL); 4552 } 4553 4554 /* 4555 * Is the given firmware API compatible with the one the driver was compiled 4556 * with? 4557 */ 4558 static int 4559 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4560 { 4561 4562 /* short circuit if it's the exact same firmware version */ 4563 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4564 return (1); 4565 4566 /* 4567 * XXX: Is this too conservative? Perhaps I should limit this to the 4568 * features that are supported in the driver. 4569 */ 4570 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4571 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4572 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4573 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4574 return (1); 4575 #undef SAME_INTF 4576 4577 return (0); 4578 } 4579 4580 static int 4581 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4582 const struct firmware **fw) 4583 { 4584 struct fw_info *fw_info; 4585 4586 *dcfg = NULL; 4587 if (fw != NULL) 4588 *fw = NULL; 4589 4590 fw_info = find_fw_info(chip_id(sc)); 4591 if (fw_info == NULL) { 4592 device_printf(sc->dev, 4593 "unable to look up firmware information for chip %d.\n", 4594 chip_id(sc)); 4595 return (EINVAL); 4596 } 4597 4598 *dcfg = firmware_get(fw_info->kld_name); 4599 if (*dcfg != NULL) { 4600 if (fw != NULL) 4601 *fw = firmware_get(fw_info->fw_mod_name); 4602 return (0); 4603 } 4604 4605 return (ENOENT); 4606 } 4607 4608 static void 4609 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4610 const struct firmware *fw) 4611 { 4612 4613 if (fw != NULL) 4614 firmware_put(fw, FIRMWARE_UNLOAD); 4615 if (dcfg != NULL) 4616 firmware_put(dcfg, FIRMWARE_UNLOAD); 4617 } 4618 4619 /* 4620 * Return values: 4621 * 0 means no firmware install attempted. 4622 * ERESTART means a firmware install was attempted and was successful. 4623 * +ve errno means a firmware install was attempted but failed. 4624 */ 4625 static int 4626 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4627 const struct fw_h *drv_fw, const char *reason, int *already) 4628 { 4629 const struct firmware *cfg, *fw; 4630 const uint32_t c = be32toh(card_fw->fw_ver); 4631 uint32_t d, k; 4632 int rc, fw_install; 4633 struct fw_h bundled_fw; 4634 bool load_attempted; 4635 4636 cfg = fw = NULL; 4637 load_attempted = false; 4638 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4639 4640 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4641 if (t4_fw_install < 0) { 4642 rc = load_fw_module(sc, &cfg, &fw); 4643 if (rc != 0 || fw == NULL) { 4644 device_printf(sc->dev, 4645 "failed to load firmware module: %d. cfg %p, fw %p;" 4646 " will use compiled-in firmware version for" 4647 "hw.cxgbe.fw_install checks.\n", 4648 rc, cfg, fw); 4649 } else { 4650 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4651 } 4652 load_attempted = true; 4653 } 4654 d = be32toh(bundled_fw.fw_ver); 4655 4656 if (reason != NULL) 4657 goto install; 4658 4659 if ((sc->flags & FW_OK) == 0) { 4660 4661 if (c == 0xffffffff) { 4662 reason = "missing"; 4663 goto install; 4664 } 4665 4666 rc = 0; 4667 goto done; 4668 } 4669 4670 if (!fw_compatible(card_fw, &bundled_fw)) { 4671 reason = "incompatible or unusable"; 4672 goto install; 4673 } 4674 4675 if (d > c) { 4676 reason = "older than the version bundled with this driver"; 4677 goto install; 4678 } 4679 4680 if (fw_install == 2 && d != c) { 4681 reason = "different than the version bundled with this driver"; 4682 goto install; 4683 } 4684 4685 /* No reason to do anything to the firmware already on the card. */ 4686 rc = 0; 4687 goto done; 4688 4689 install: 4690 rc = 0; 4691 if ((*already)++) 4692 goto done; 4693 4694 if (fw_install == 0) { 4695 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4696 "but the driver is prohibited from installing a firmware " 4697 "on the card.\n", 4698 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4699 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4700 4701 goto done; 4702 } 4703 4704 /* 4705 * We'll attempt to install a firmware. Load the module first (if it 4706 * hasn't been loaded already). 4707 */ 4708 if (!load_attempted) { 4709 rc = load_fw_module(sc, &cfg, &fw); 4710 if (rc != 0 || fw == NULL) { 4711 device_printf(sc->dev, 4712 "failed to load firmware module: %d. cfg %p, fw %p\n", 4713 rc, cfg, fw); 4714 /* carry on */ 4715 } 4716 } 4717 if (fw == NULL) { 4718 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4719 "but the driver cannot take corrective action because it " 4720 "is unable to load the firmware module.\n", 4721 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4722 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4723 rc = sc->flags & FW_OK ? 0 : ENOENT; 4724 goto done; 4725 } 4726 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4727 if (k != d) { 4728 MPASS(t4_fw_install > 0); 4729 device_printf(sc->dev, 4730 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4731 "expecting (%u.%u.%u.%u) and will not be used.\n", 4732 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4733 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4734 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4735 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4736 rc = sc->flags & FW_OK ? 0 : EINVAL; 4737 goto done; 4738 } 4739 4740 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4741 "installing firmware %u.%u.%u.%u on card.\n", 4742 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4743 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4744 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4745 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4746 4747 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4748 if (rc != 0) { 4749 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4750 } else { 4751 /* Installed successfully, update the cached header too. */ 4752 rc = ERESTART; 4753 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4754 } 4755 done: 4756 unload_fw_module(sc, cfg, fw); 4757 4758 return (rc); 4759 } 4760 4761 /* 4762 * Establish contact with the firmware and attempt to become the master driver. 4763 * 4764 * A firmware will be installed to the card if needed (if the driver is allowed 4765 * to do so). 4766 */ 4767 static int 4768 contact_firmware(struct adapter *sc) 4769 { 4770 int rc, already = 0; 4771 enum dev_state state; 4772 struct fw_info *fw_info; 4773 struct fw_hdr *card_fw; /* fw on the card */ 4774 const struct fw_h *drv_fw; 4775 4776 fw_info = find_fw_info(chip_id(sc)); 4777 if (fw_info == NULL) { 4778 device_printf(sc->dev, 4779 "unable to look up firmware information for chip %d.\n", 4780 chip_id(sc)); 4781 return (EINVAL); 4782 } 4783 drv_fw = &fw_info->fw_h; 4784 4785 /* Read the header of the firmware on the card */ 4786 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4787 restart: 4788 rc = -t4_get_fw_hdr(sc, card_fw); 4789 if (rc != 0) { 4790 device_printf(sc->dev, 4791 "unable to read firmware header from card's flash: %d\n", 4792 rc); 4793 goto done; 4794 } 4795 4796 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4797 &already); 4798 if (rc == ERESTART) 4799 goto restart; 4800 if (rc != 0) 4801 goto done; 4802 4803 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4804 if (rc < 0 || state == DEV_STATE_ERR) { 4805 rc = -rc; 4806 device_printf(sc->dev, 4807 "failed to connect to the firmware: %d, %d. " 4808 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4809 #if 0 4810 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4811 "not responding properly to HELLO", &already) == ERESTART) 4812 goto restart; 4813 #endif 4814 goto done; 4815 } 4816 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4817 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4818 4819 if (rc == sc->pf) { 4820 sc->flags |= MASTER_PF; 4821 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4822 NULL, &already); 4823 if (rc == ERESTART) 4824 rc = 0; 4825 else if (rc != 0) 4826 goto done; 4827 } else if (state == DEV_STATE_UNINIT) { 4828 /* 4829 * We didn't get to be the master so we definitely won't be 4830 * configuring the chip. It's a bug if someone else hasn't 4831 * configured it already. 4832 */ 4833 device_printf(sc->dev, "couldn't be master(%d), " 4834 "device not already initialized either(%d). " 4835 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4836 rc = EPROTO; 4837 goto done; 4838 } else { 4839 /* 4840 * Some other PF is the master and has configured the chip. 4841 * This is allowed but untested. 4842 */ 4843 device_printf(sc->dev, "PF%d is master, device state %d. " 4844 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4845 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4846 sc->cfcsum = 0; 4847 rc = 0; 4848 } 4849 done: 4850 if (rc != 0 && sc->flags & FW_OK) { 4851 t4_fw_bye(sc, sc->mbox); 4852 sc->flags &= ~FW_OK; 4853 } 4854 free(card_fw, M_CXGBE); 4855 return (rc); 4856 } 4857 4858 static int 4859 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4860 uint32_t mtype, uint32_t moff) 4861 { 4862 struct fw_info *fw_info; 4863 const struct firmware *dcfg, *rcfg = NULL; 4864 const uint32_t *cfdata; 4865 uint32_t cflen, addr; 4866 int rc; 4867 4868 load_fw_module(sc, &dcfg, NULL); 4869 4870 /* Card specific interpretation of "default". */ 4871 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4872 if (pci_get_device(sc->dev) == 0x440a) 4873 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4874 if (is_fpga(sc)) 4875 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4876 } 4877 4878 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4879 if (dcfg == NULL) { 4880 device_printf(sc->dev, 4881 "KLD with default config is not available.\n"); 4882 rc = ENOENT; 4883 goto done; 4884 } 4885 cfdata = dcfg->data; 4886 cflen = dcfg->datasize & ~3; 4887 } else { 4888 char s[32]; 4889 4890 fw_info = find_fw_info(chip_id(sc)); 4891 if (fw_info == NULL) { 4892 device_printf(sc->dev, 4893 "unable to look up firmware information for chip %d.\n", 4894 chip_id(sc)); 4895 rc = EINVAL; 4896 goto done; 4897 } 4898 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4899 4900 rcfg = firmware_get(s); 4901 if (rcfg == NULL) { 4902 device_printf(sc->dev, 4903 "unable to load module \"%s\" for configuration " 4904 "profile \"%s\".\n", s, cfg_file); 4905 rc = ENOENT; 4906 goto done; 4907 } 4908 cfdata = rcfg->data; 4909 cflen = rcfg->datasize & ~3; 4910 } 4911 4912 if (cflen > FLASH_CFG_MAX_SIZE) { 4913 device_printf(sc->dev, 4914 "config file too long (%d, max allowed is %d).\n", 4915 cflen, FLASH_CFG_MAX_SIZE); 4916 rc = EINVAL; 4917 goto done; 4918 } 4919 4920 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4921 if (rc != 0) { 4922 device_printf(sc->dev, 4923 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4924 __func__, mtype, moff, cflen, rc); 4925 rc = EINVAL; 4926 goto done; 4927 } 4928 write_via_memwin(sc, 2, addr, cfdata, cflen); 4929 done: 4930 if (rcfg != NULL) 4931 firmware_put(rcfg, FIRMWARE_UNLOAD); 4932 unload_fw_module(sc, dcfg, NULL); 4933 return (rc); 4934 } 4935 4936 struct caps_allowed { 4937 uint16_t nbmcaps; 4938 uint16_t linkcaps; 4939 uint16_t switchcaps; 4940 uint16_t niccaps; 4941 uint16_t toecaps; 4942 uint16_t rdmacaps; 4943 uint16_t cryptocaps; 4944 uint16_t iscsicaps; 4945 uint16_t fcoecaps; 4946 }; 4947 4948 #define FW_PARAM_DEV(param) \ 4949 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4950 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4951 #define FW_PARAM_PFVF(param) \ 4952 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4953 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4954 4955 /* 4956 * Provide a configuration profile to the firmware and have it initialize the 4957 * chip accordingly. This may involve uploading a configuration file to the 4958 * card. 4959 */ 4960 static int 4961 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4962 const struct caps_allowed *caps_allowed) 4963 { 4964 int rc; 4965 struct fw_caps_config_cmd caps; 4966 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4967 4968 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4969 if (rc != 0) { 4970 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4971 return (rc); 4972 } 4973 4974 bzero(&caps, sizeof(caps)); 4975 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4976 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4977 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4978 mtype = 0; 4979 moff = 0; 4980 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4981 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4982 mtype = FW_MEMTYPE_FLASH; 4983 moff = t4_flash_cfg_addr(sc); 4984 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4985 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4986 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4987 FW_LEN16(caps)); 4988 } else { 4989 /* 4990 * Ask the firmware where it wants us to upload the config file. 4991 */ 4992 param = FW_PARAM_DEV(CF); 4993 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4994 if (rc != 0) { 4995 /* No support for config file? Shouldn't happen. */ 4996 device_printf(sc->dev, 4997 "failed to query config file location: %d.\n", rc); 4998 goto done; 4999 } 5000 mtype = G_FW_PARAMS_PARAM_Y(val); 5001 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5002 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5003 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5004 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5005 FW_LEN16(caps)); 5006 5007 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5008 if (rc != 0) { 5009 device_printf(sc->dev, 5010 "failed to upload config file to card: %d.\n", rc); 5011 goto done; 5012 } 5013 } 5014 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5015 if (rc != 0) { 5016 device_printf(sc->dev, "failed to pre-process config file: %d " 5017 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5018 goto done; 5019 } 5020 5021 finicsum = be32toh(caps.finicsum); 5022 cfcsum = be32toh(caps.cfcsum); /* actual */ 5023 if (finicsum != cfcsum) { 5024 device_printf(sc->dev, 5025 "WARNING: config file checksum mismatch: %08x %08x\n", 5026 finicsum, cfcsum); 5027 } 5028 sc->cfcsum = cfcsum; 5029 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5030 5031 /* 5032 * Let the firmware know what features will (not) be used so it can tune 5033 * things accordingly. 5034 */ 5035 #define LIMIT_CAPS(x) do { \ 5036 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5037 } while (0) 5038 LIMIT_CAPS(nbm); 5039 LIMIT_CAPS(link); 5040 LIMIT_CAPS(switch); 5041 LIMIT_CAPS(nic); 5042 LIMIT_CAPS(toe); 5043 LIMIT_CAPS(rdma); 5044 LIMIT_CAPS(crypto); 5045 LIMIT_CAPS(iscsi); 5046 LIMIT_CAPS(fcoe); 5047 #undef LIMIT_CAPS 5048 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5049 /* 5050 * TOE and hashfilters are mutually exclusive. It is a config 5051 * file or firmware bug if both are reported as available. Try 5052 * to cope with the situation in non-debug builds by disabling 5053 * TOE. 5054 */ 5055 MPASS(caps.toecaps == 0); 5056 5057 caps.toecaps = 0; 5058 caps.rdmacaps = 0; 5059 caps.iscsicaps = 0; 5060 } 5061 5062 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5063 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5064 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5065 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5066 if (rc != 0) { 5067 device_printf(sc->dev, 5068 "failed to process config file: %d.\n", rc); 5069 goto done; 5070 } 5071 5072 t4_tweak_chip_settings(sc); 5073 set_params__pre_init(sc); 5074 5075 /* get basic stuff going */ 5076 rc = -t4_fw_initialize(sc, sc->mbox); 5077 if (rc != 0) { 5078 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5079 goto done; 5080 } 5081 done: 5082 return (rc); 5083 } 5084 5085 /* 5086 * Partition chip resources for use between various PFs, VFs, etc. 5087 */ 5088 static int 5089 partition_resources(struct adapter *sc) 5090 { 5091 char cfg_file[sizeof(t4_cfg_file)]; 5092 struct caps_allowed caps_allowed; 5093 int rc; 5094 bool fallback; 5095 5096 /* Only the master driver gets to configure the chip resources. */ 5097 MPASS(sc->flags & MASTER_PF); 5098 5099 #define COPY_CAPS(x) do { \ 5100 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5101 } while (0) 5102 bzero(&caps_allowed, sizeof(caps_allowed)); 5103 COPY_CAPS(nbm); 5104 COPY_CAPS(link); 5105 COPY_CAPS(switch); 5106 COPY_CAPS(nic); 5107 COPY_CAPS(toe); 5108 COPY_CAPS(rdma); 5109 COPY_CAPS(crypto); 5110 COPY_CAPS(iscsi); 5111 COPY_CAPS(fcoe); 5112 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5113 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5114 retry: 5115 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5116 if (rc != 0 && fallback) { 5117 dump_devlog(sc); 5118 device_printf(sc->dev, 5119 "failed (%d) to configure card with \"%s\" profile, " 5120 "will fall back to a basic configuration and retry.\n", 5121 rc, cfg_file); 5122 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5123 bzero(&caps_allowed, sizeof(caps_allowed)); 5124 COPY_CAPS(switch); 5125 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5126 fallback = false; 5127 goto retry; 5128 } 5129 #undef COPY_CAPS 5130 return (rc); 5131 } 5132 5133 /* 5134 * Retrieve parameters that are needed (or nice to have) very early. 5135 */ 5136 static int 5137 get_params__pre_init(struct adapter *sc) 5138 { 5139 int rc; 5140 uint32_t param[2], val[2]; 5141 5142 t4_get_version_info(sc); 5143 5144 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5145 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5146 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5147 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5148 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5149 5150 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5151 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5152 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5153 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5154 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5155 5156 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5157 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5158 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5159 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5160 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5161 5162 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5163 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5164 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5165 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5166 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5167 5168 param[0] = FW_PARAM_DEV(PORTVEC); 5169 param[1] = FW_PARAM_DEV(CCLK); 5170 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5171 if (rc != 0) { 5172 device_printf(sc->dev, 5173 "failed to query parameters (pre_init): %d.\n", rc); 5174 return (rc); 5175 } 5176 5177 sc->params.portvec = val[0]; 5178 sc->params.nports = bitcount32(val[0]); 5179 sc->params.vpd.cclk = val[1]; 5180 5181 /* Read device log parameters. */ 5182 rc = -t4_init_devlog_params(sc, 1); 5183 if (rc == 0) 5184 fixup_devlog_params(sc); 5185 else { 5186 device_printf(sc->dev, 5187 "failed to get devlog parameters: %d.\n", rc); 5188 rc = 0; /* devlog isn't critical for device operation */ 5189 } 5190 5191 return (rc); 5192 } 5193 5194 /* 5195 * Any params that need to be set before FW_INITIALIZE. 5196 */ 5197 static int 5198 set_params__pre_init(struct adapter *sc) 5199 { 5200 int rc = 0; 5201 uint32_t param, val; 5202 5203 if (chip_id(sc) >= CHELSIO_T6) { 5204 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5205 val = 1; 5206 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5207 /* firmwares < 1.20.1.0 do not have this param. */ 5208 if (rc == FW_EINVAL && 5209 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5210 rc = 0; 5211 } 5212 if (rc != 0) { 5213 device_printf(sc->dev, 5214 "failed to enable high priority filters :%d.\n", 5215 rc); 5216 } 5217 5218 param = FW_PARAM_DEV(PPOD_EDRAM); 5219 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5220 if (rc == 0 && val == 1) { 5221 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5222 &val); 5223 if (rc != 0) { 5224 device_printf(sc->dev, 5225 "failed to set PPOD_EDRAM: %d.\n", rc); 5226 } 5227 } 5228 } 5229 5230 /* Enable opaque VIIDs with firmwares that support it. */ 5231 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5232 val = 1; 5233 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5234 if (rc == 0 && val == 1) 5235 sc->params.viid_smt_extn_support = true; 5236 else 5237 sc->params.viid_smt_extn_support = false; 5238 5239 return (rc); 5240 } 5241 5242 /* 5243 * Retrieve various parameters that are of interest to the driver. The device 5244 * has been initialized by the firmware at this point. 5245 */ 5246 static int 5247 get_params__post_init(struct adapter *sc) 5248 { 5249 int rc; 5250 uint32_t param[7], val[7]; 5251 struct fw_caps_config_cmd caps; 5252 5253 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5254 param[1] = FW_PARAM_PFVF(EQ_START); 5255 param[2] = FW_PARAM_PFVF(FILTER_START); 5256 param[3] = FW_PARAM_PFVF(FILTER_END); 5257 param[4] = FW_PARAM_PFVF(L2T_START); 5258 param[5] = FW_PARAM_PFVF(L2T_END); 5259 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5260 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5261 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5262 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5263 if (rc != 0) { 5264 device_printf(sc->dev, 5265 "failed to query parameters (post_init): %d.\n", rc); 5266 return (rc); 5267 } 5268 5269 sc->sge.iq_start = val[0]; 5270 sc->sge.eq_start = val[1]; 5271 if ((int)val[3] > (int)val[2]) { 5272 sc->tids.ftid_base = val[2]; 5273 sc->tids.ftid_end = val[3]; 5274 sc->tids.nftids = val[3] - val[2] + 1; 5275 } 5276 sc->vres.l2t.start = val[4]; 5277 sc->vres.l2t.size = val[5] - val[4] + 1; 5278 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5279 ("%s: L2 table size (%u) larger than expected (%u)", 5280 __func__, sc->vres.l2t.size, L2T_SIZE)); 5281 sc->params.core_vdd = val[6]; 5282 5283 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5284 param[1] = FW_PARAM_PFVF(EQ_END); 5285 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5286 if (rc != 0) { 5287 device_printf(sc->dev, 5288 "failed to query parameters (post_init2): %d.\n", rc); 5289 return (rc); 5290 } 5291 MPASS((int)val[0] >= sc->sge.iq_start); 5292 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5293 MPASS((int)val[1] >= sc->sge.eq_start); 5294 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5295 5296 if (chip_id(sc) >= CHELSIO_T6) { 5297 5298 sc->tids.tid_base = t4_read_reg(sc, 5299 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5300 5301 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5302 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5303 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5304 if (rc != 0) { 5305 device_printf(sc->dev, 5306 "failed to query hpfilter parameters: %d.\n", rc); 5307 return (rc); 5308 } 5309 if ((int)val[1] > (int)val[0]) { 5310 sc->tids.hpftid_base = val[0]; 5311 sc->tids.hpftid_end = val[1]; 5312 sc->tids.nhpftids = val[1] - val[0] + 1; 5313 5314 /* 5315 * These should go off if the layout changes and the 5316 * driver needs to catch up. 5317 */ 5318 MPASS(sc->tids.hpftid_base == 0); 5319 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5320 } 5321 5322 param[0] = FW_PARAM_PFVF(RAWF_START); 5323 param[1] = FW_PARAM_PFVF(RAWF_END); 5324 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5325 if (rc != 0) { 5326 device_printf(sc->dev, 5327 "failed to query rawf parameters: %d.\n", rc); 5328 return (rc); 5329 } 5330 if ((int)val[1] > (int)val[0]) { 5331 sc->rawf_base = val[0]; 5332 sc->nrawf = val[1] - val[0] + 1; 5333 } 5334 } 5335 5336 /* 5337 * The parameters that follow may not be available on all firmwares. We 5338 * query them individually rather than in a compound query because old 5339 * firmwares fail the entire query if an unknown parameter is queried. 5340 */ 5341 5342 /* 5343 * MPS buffer group configuration. 5344 */ 5345 param[0] = FW_PARAM_DEV(MPSBGMAP); 5346 val[0] = 0; 5347 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5348 if (rc == 0) 5349 sc->params.mps_bg_map = val[0]; 5350 else 5351 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5352 5353 param[0] = FW_PARAM_DEV(TPCHMAP); 5354 val[0] = 0; 5355 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5356 if (rc == 0) 5357 sc->params.tp_ch_map = val[0]; 5358 else 5359 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5360 5361 /* 5362 * Determine whether the firmware supports the filter2 work request. 5363 */ 5364 param[0] = FW_PARAM_DEV(FILTER2_WR); 5365 val[0] = 0; 5366 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5367 if (rc == 0) 5368 sc->params.filter2_wr_support = val[0] != 0; 5369 else 5370 sc->params.filter2_wr_support = 0; 5371 5372 /* 5373 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5374 */ 5375 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5376 val[0] = 0; 5377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5378 if (rc == 0) 5379 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5380 else 5381 sc->params.ulptx_memwrite_dsgl = false; 5382 5383 /* FW_RI_FR_NSMR_TPTE_WR support */ 5384 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5385 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5386 if (rc == 0) 5387 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5388 else 5389 sc->params.fr_nsmr_tpte_wr_support = false; 5390 5391 /* Support for 512 SGL entries per FR MR. */ 5392 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5393 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5394 if (rc == 0) 5395 sc->params.dev_512sgl_mr = val[0] != 0; 5396 else 5397 sc->params.dev_512sgl_mr = false; 5398 5399 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5400 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5401 if (rc == 0) 5402 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5403 else 5404 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5405 5406 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5407 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5408 if (rc == 0) { 5409 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5410 sc->params.nsched_cls = val[0]; 5411 } else 5412 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5413 5414 /* get capabilites */ 5415 bzero(&caps, sizeof(caps)); 5416 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5417 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5418 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5419 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5420 if (rc != 0) { 5421 device_printf(sc->dev, 5422 "failed to get card capabilities: %d.\n", rc); 5423 return (rc); 5424 } 5425 5426 #define READ_CAPS(x) do { \ 5427 sc->x = htobe16(caps.x); \ 5428 } while (0) 5429 READ_CAPS(nbmcaps); 5430 READ_CAPS(linkcaps); 5431 READ_CAPS(switchcaps); 5432 READ_CAPS(niccaps); 5433 READ_CAPS(toecaps); 5434 READ_CAPS(rdmacaps); 5435 READ_CAPS(cryptocaps); 5436 READ_CAPS(iscsicaps); 5437 READ_CAPS(fcoecaps); 5438 5439 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5440 MPASS(chip_id(sc) > CHELSIO_T4); 5441 MPASS(sc->toecaps == 0); 5442 sc->toecaps = 0; 5443 5444 param[0] = FW_PARAM_DEV(NTID); 5445 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5446 if (rc != 0) { 5447 device_printf(sc->dev, 5448 "failed to query HASHFILTER parameters: %d.\n", rc); 5449 return (rc); 5450 } 5451 sc->tids.ntids = val[0]; 5452 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5453 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5454 sc->tids.ntids -= sc->tids.nhpftids; 5455 } 5456 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5457 sc->params.hash_filter = 1; 5458 } 5459 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5460 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5461 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5462 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5463 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5464 if (rc != 0) { 5465 device_printf(sc->dev, 5466 "failed to query NIC parameters: %d.\n", rc); 5467 return (rc); 5468 } 5469 if ((int)val[1] > (int)val[0]) { 5470 sc->tids.etid_base = val[0]; 5471 sc->tids.etid_end = val[1]; 5472 sc->tids.netids = val[1] - val[0] + 1; 5473 sc->params.eo_wr_cred = val[2]; 5474 sc->params.ethoffload = 1; 5475 } 5476 } 5477 if (sc->toecaps) { 5478 /* query offload-related parameters */ 5479 param[0] = FW_PARAM_DEV(NTID); 5480 param[1] = FW_PARAM_PFVF(SERVER_START); 5481 param[2] = FW_PARAM_PFVF(SERVER_END); 5482 param[3] = FW_PARAM_PFVF(TDDP_START); 5483 param[4] = FW_PARAM_PFVF(TDDP_END); 5484 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5485 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5486 if (rc != 0) { 5487 device_printf(sc->dev, 5488 "failed to query TOE parameters: %d.\n", rc); 5489 return (rc); 5490 } 5491 sc->tids.ntids = val[0]; 5492 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5493 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5494 sc->tids.ntids -= sc->tids.nhpftids; 5495 } 5496 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5497 if ((int)val[2] > (int)val[1]) { 5498 sc->tids.stid_base = val[1]; 5499 sc->tids.nstids = val[2] - val[1] + 1; 5500 } 5501 sc->vres.ddp.start = val[3]; 5502 sc->vres.ddp.size = val[4] - val[3] + 1; 5503 sc->params.ofldq_wr_cred = val[5]; 5504 sc->params.offload = 1; 5505 } else { 5506 /* 5507 * The firmware attempts memfree TOE configuration for -SO cards 5508 * and will report toecaps=0 if it runs out of resources (this 5509 * depends on the config file). It may not report 0 for other 5510 * capabilities dependent on the TOE in this case. Set them to 5511 * 0 here so that the driver doesn't bother tracking resources 5512 * that will never be used. 5513 */ 5514 sc->iscsicaps = 0; 5515 sc->rdmacaps = 0; 5516 } 5517 if (sc->rdmacaps) { 5518 param[0] = FW_PARAM_PFVF(STAG_START); 5519 param[1] = FW_PARAM_PFVF(STAG_END); 5520 param[2] = FW_PARAM_PFVF(RQ_START); 5521 param[3] = FW_PARAM_PFVF(RQ_END); 5522 param[4] = FW_PARAM_PFVF(PBL_START); 5523 param[5] = FW_PARAM_PFVF(PBL_END); 5524 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5525 if (rc != 0) { 5526 device_printf(sc->dev, 5527 "failed to query RDMA parameters(1): %d.\n", rc); 5528 return (rc); 5529 } 5530 sc->vres.stag.start = val[0]; 5531 sc->vres.stag.size = val[1] - val[0] + 1; 5532 sc->vres.rq.start = val[2]; 5533 sc->vres.rq.size = val[3] - val[2] + 1; 5534 sc->vres.pbl.start = val[4]; 5535 sc->vres.pbl.size = val[5] - val[4] + 1; 5536 5537 param[0] = FW_PARAM_PFVF(SQRQ_START); 5538 param[1] = FW_PARAM_PFVF(SQRQ_END); 5539 param[2] = FW_PARAM_PFVF(CQ_START); 5540 param[3] = FW_PARAM_PFVF(CQ_END); 5541 param[4] = FW_PARAM_PFVF(OCQ_START); 5542 param[5] = FW_PARAM_PFVF(OCQ_END); 5543 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5544 if (rc != 0) { 5545 device_printf(sc->dev, 5546 "failed to query RDMA parameters(2): %d.\n", rc); 5547 return (rc); 5548 } 5549 sc->vres.qp.start = val[0]; 5550 sc->vres.qp.size = val[1] - val[0] + 1; 5551 sc->vres.cq.start = val[2]; 5552 sc->vres.cq.size = val[3] - val[2] + 1; 5553 sc->vres.ocq.start = val[4]; 5554 sc->vres.ocq.size = val[5] - val[4] + 1; 5555 5556 param[0] = FW_PARAM_PFVF(SRQ_START); 5557 param[1] = FW_PARAM_PFVF(SRQ_END); 5558 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5559 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5560 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5561 if (rc != 0) { 5562 device_printf(sc->dev, 5563 "failed to query RDMA parameters(3): %d.\n", rc); 5564 return (rc); 5565 } 5566 sc->vres.srq.start = val[0]; 5567 sc->vres.srq.size = val[1] - val[0] + 1; 5568 sc->params.max_ordird_qp = val[2]; 5569 sc->params.max_ird_adapter = val[3]; 5570 } 5571 if (sc->iscsicaps) { 5572 param[0] = FW_PARAM_PFVF(ISCSI_START); 5573 param[1] = FW_PARAM_PFVF(ISCSI_END); 5574 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5575 if (rc != 0) { 5576 device_printf(sc->dev, 5577 "failed to query iSCSI parameters: %d.\n", rc); 5578 return (rc); 5579 } 5580 sc->vres.iscsi.start = val[0]; 5581 sc->vres.iscsi.size = val[1] - val[0] + 1; 5582 } 5583 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5584 param[0] = FW_PARAM_PFVF(TLS_START); 5585 param[1] = FW_PARAM_PFVF(TLS_END); 5586 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5587 if (rc != 0) { 5588 device_printf(sc->dev, 5589 "failed to query TLS parameters: %d.\n", rc); 5590 return (rc); 5591 } 5592 sc->vres.key.start = val[0]; 5593 sc->vres.key.size = val[1] - val[0] + 1; 5594 } 5595 5596 /* 5597 * We've got the params we wanted to query directly from the firmware. 5598 * Grab some others via other means. 5599 */ 5600 t4_init_sge_params(sc); 5601 t4_init_tp_params(sc); 5602 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5603 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5604 5605 rc = t4_verify_chip_settings(sc); 5606 if (rc != 0) 5607 return (rc); 5608 t4_init_rx_buf_info(sc); 5609 5610 return (rc); 5611 } 5612 5613 #ifdef KERN_TLS 5614 static void 5615 ktls_tick(void *arg) 5616 { 5617 struct adapter *sc; 5618 uint32_t tstamp; 5619 5620 sc = arg; 5621 tstamp = tcp_ts_getticks(); 5622 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5623 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5624 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5625 } 5626 5627 static int 5628 t6_config_kern_tls(struct adapter *sc, bool enable) 5629 { 5630 int rc; 5631 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5632 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5633 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5634 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5635 5636 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5637 if (rc != 0) { 5638 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5639 enable ? "enable" : "disable", rc); 5640 return (rc); 5641 } 5642 5643 if (enable) { 5644 sc->flags |= KERN_TLS_ON; 5645 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5646 C_HARDCLOCK); 5647 } else { 5648 sc->flags &= ~KERN_TLS_ON; 5649 callout_stop(&sc->ktls_tick); 5650 } 5651 5652 return (rc); 5653 } 5654 #endif 5655 5656 static int 5657 set_params__post_init(struct adapter *sc) 5658 { 5659 uint32_t mask, param, val; 5660 #ifdef TCP_OFFLOAD 5661 int i, v, shift; 5662 #endif 5663 5664 /* ask for encapsulated CPLs */ 5665 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5666 val = 1; 5667 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5668 5669 /* Enable 32b port caps if the firmware supports it. */ 5670 param = FW_PARAM_PFVF(PORT_CAPS32); 5671 val = 1; 5672 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5673 sc->params.port_caps32 = 1; 5674 5675 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5676 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5677 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5678 V_MASKFILTER(val - 1)); 5679 5680 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5681 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5682 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5683 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5684 val = 0; 5685 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5686 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5687 F_ATTACKFILTERENABLE); 5688 val |= F_DROPERRORATTACK; 5689 } 5690 if (t4_drop_ip_fragments != 0) { 5691 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5692 F_FRAGMENTDROP); 5693 val |= F_DROPERRORFRAG; 5694 } 5695 if (t4_drop_pkts_with_l2_errors != 0) 5696 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5697 if (t4_drop_pkts_with_l3_errors != 0) { 5698 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5699 F_DROPERRORCSUMIP; 5700 } 5701 if (t4_drop_pkts_with_l4_errors != 0) { 5702 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5703 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5704 } 5705 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5706 5707 #ifdef TCP_OFFLOAD 5708 /* 5709 * Override the TOE timers with user provided tunables. This is not the 5710 * recommended way to change the timers (the firmware config file is) so 5711 * these tunables are not documented. 5712 * 5713 * All the timer tunables are in microseconds. 5714 */ 5715 if (t4_toe_keepalive_idle != 0) { 5716 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5717 v &= M_KEEPALIVEIDLE; 5718 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5719 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5720 } 5721 if (t4_toe_keepalive_interval != 0) { 5722 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5723 v &= M_KEEPALIVEINTVL; 5724 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5725 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5726 } 5727 if (t4_toe_keepalive_count != 0) { 5728 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5729 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5730 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5731 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5732 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5733 } 5734 if (t4_toe_rexmt_min != 0) { 5735 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5736 v &= M_RXTMIN; 5737 t4_set_reg_field(sc, A_TP_RXT_MIN, 5738 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5739 } 5740 if (t4_toe_rexmt_max != 0) { 5741 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5742 v &= M_RXTMAX; 5743 t4_set_reg_field(sc, A_TP_RXT_MAX, 5744 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5745 } 5746 if (t4_toe_rexmt_count != 0) { 5747 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5748 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5749 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5750 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5751 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5752 } 5753 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5754 if (t4_toe_rexmt_backoff[i] != -1) { 5755 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5756 shift = (i & 3) << 3; 5757 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5758 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5759 } 5760 } 5761 #endif 5762 5763 /* 5764 * Limit TOE connections to 2 reassembly "islands". This is 5765 * required to permit migrating TOE connections to either 5766 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5767 */ 5768 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5769 V_PASSMODE(2)); 5770 5771 #ifdef KERN_TLS 5772 if (is_ktls(sc)) { 5773 sc->tlst.inline_keys = t4_tls_inline_keys; 5774 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5775 if (t4_kern_tls != 0 && is_t6(sc)) 5776 t6_config_kern_tls(sc, true); 5777 } 5778 #endif 5779 return (0); 5780 } 5781 5782 #undef FW_PARAM_PFVF 5783 #undef FW_PARAM_DEV 5784 5785 static void 5786 t4_set_desc(struct adapter *sc) 5787 { 5788 struct adapter_params *p = &sc->params; 5789 5790 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5791 } 5792 5793 static inline void 5794 ifmedia_add4(struct ifmedia *ifm, int m) 5795 { 5796 5797 ifmedia_add(ifm, m, 0, NULL); 5798 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5799 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5800 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5801 } 5802 5803 /* 5804 * This is the selected media, which is not quite the same as the active media. 5805 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5806 * and active are not the same, and "media: Ethernet selected" otherwise. 5807 */ 5808 static void 5809 set_current_media(struct port_info *pi) 5810 { 5811 struct link_config *lc; 5812 struct ifmedia *ifm; 5813 int mword; 5814 u_int speed; 5815 5816 PORT_LOCK_ASSERT_OWNED(pi); 5817 5818 /* Leave current media alone if it's already set to IFM_NONE. */ 5819 ifm = &pi->media; 5820 if (ifm->ifm_cur != NULL && 5821 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5822 return; 5823 5824 lc = &pi->link_cfg; 5825 if (lc->requested_aneg != AUTONEG_DISABLE && 5826 lc->pcaps & FW_PORT_CAP32_ANEG) { 5827 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5828 return; 5829 } 5830 mword = IFM_ETHER | IFM_FDX; 5831 if (lc->requested_fc & PAUSE_TX) 5832 mword |= IFM_ETH_TXPAUSE; 5833 if (lc->requested_fc & PAUSE_RX) 5834 mword |= IFM_ETH_RXPAUSE; 5835 if (lc->requested_speed == 0) 5836 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5837 else 5838 speed = lc->requested_speed; 5839 mword |= port_mword(pi, speed_to_fwcap(speed)); 5840 ifmedia_set(ifm, mword); 5841 } 5842 5843 /* 5844 * Returns true if the ifmedia list for the port cannot change. 5845 */ 5846 static bool 5847 fixed_ifmedia(struct port_info *pi) 5848 { 5849 5850 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5851 pi->port_type == FW_PORT_TYPE_BT_XFI || 5852 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5853 pi->port_type == FW_PORT_TYPE_KX4 || 5854 pi->port_type == FW_PORT_TYPE_KX || 5855 pi->port_type == FW_PORT_TYPE_KR || 5856 pi->port_type == FW_PORT_TYPE_BP_AP || 5857 pi->port_type == FW_PORT_TYPE_BP4_AP || 5858 pi->port_type == FW_PORT_TYPE_BP40_BA || 5859 pi->port_type == FW_PORT_TYPE_KR4_100G || 5860 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5861 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5862 } 5863 5864 static void 5865 build_medialist(struct port_info *pi) 5866 { 5867 uint32_t ss, speed; 5868 int unknown, mword, bit; 5869 struct link_config *lc; 5870 struct ifmedia *ifm; 5871 5872 PORT_LOCK_ASSERT_OWNED(pi); 5873 5874 if (pi->flags & FIXED_IFMEDIA) 5875 return; 5876 5877 /* 5878 * Rebuild the ifmedia list. 5879 */ 5880 ifm = &pi->media; 5881 ifmedia_removeall(ifm); 5882 lc = &pi->link_cfg; 5883 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5884 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5885 MPASS(ss != 0); 5886 no_media: 5887 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5888 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5889 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5890 return; 5891 } 5892 5893 unknown = 0; 5894 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5895 speed = 1 << bit; 5896 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5897 if (ss & speed) { 5898 mword = port_mword(pi, speed); 5899 if (mword == IFM_NONE) { 5900 goto no_media; 5901 } else if (mword == IFM_UNKNOWN) 5902 unknown++; 5903 else 5904 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5905 } 5906 } 5907 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5908 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5909 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5910 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5911 5912 set_current_media(pi); 5913 } 5914 5915 /* 5916 * Initialize the requested fields in the link config based on driver tunables. 5917 */ 5918 static void 5919 init_link_config(struct port_info *pi) 5920 { 5921 struct link_config *lc = &pi->link_cfg; 5922 5923 PORT_LOCK_ASSERT_OWNED(pi); 5924 5925 lc->requested_caps = 0; 5926 lc->requested_speed = 0; 5927 5928 if (t4_autoneg == 0) 5929 lc->requested_aneg = AUTONEG_DISABLE; 5930 else if (t4_autoneg == 1) 5931 lc->requested_aneg = AUTONEG_ENABLE; 5932 else 5933 lc->requested_aneg = AUTONEG_AUTO; 5934 5935 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5936 PAUSE_AUTONEG); 5937 5938 if (t4_fec & FEC_AUTO) 5939 lc->requested_fec = FEC_AUTO; 5940 else if (t4_fec == 0) 5941 lc->requested_fec = FEC_NONE; 5942 else { 5943 /* -1 is handled by the FEC_AUTO block above and not here. */ 5944 lc->requested_fec = t4_fec & 5945 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5946 if (lc->requested_fec == 0) 5947 lc->requested_fec = FEC_AUTO; 5948 } 5949 if (t4_force_fec < 0) 5950 lc->force_fec = -1; 5951 else if (t4_force_fec > 0) 5952 lc->force_fec = 1; 5953 else 5954 lc->force_fec = 0; 5955 } 5956 5957 /* 5958 * Makes sure that all requested settings comply with what's supported by the 5959 * port. Returns the number of settings that were invalid and had to be fixed. 5960 */ 5961 static int 5962 fixup_link_config(struct port_info *pi) 5963 { 5964 int n = 0; 5965 struct link_config *lc = &pi->link_cfg; 5966 uint32_t fwspeed; 5967 5968 PORT_LOCK_ASSERT_OWNED(pi); 5969 5970 /* Speed (when not autonegotiating) */ 5971 if (lc->requested_speed != 0) { 5972 fwspeed = speed_to_fwcap(lc->requested_speed); 5973 if ((fwspeed & lc->pcaps) == 0) { 5974 n++; 5975 lc->requested_speed = 0; 5976 } 5977 } 5978 5979 /* Link autonegotiation */ 5980 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5981 lc->requested_aneg == AUTONEG_DISABLE || 5982 lc->requested_aneg == AUTONEG_AUTO); 5983 if (lc->requested_aneg == AUTONEG_ENABLE && 5984 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5985 n++; 5986 lc->requested_aneg = AUTONEG_AUTO; 5987 } 5988 5989 /* Flow control */ 5990 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5991 if (lc->requested_fc & PAUSE_TX && 5992 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5993 n++; 5994 lc->requested_fc &= ~PAUSE_TX; 5995 } 5996 if (lc->requested_fc & PAUSE_RX && 5997 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5998 n++; 5999 lc->requested_fc &= ~PAUSE_RX; 6000 } 6001 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6002 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6003 n++; 6004 lc->requested_fc |= PAUSE_AUTONEG; 6005 } 6006 6007 /* FEC */ 6008 if ((lc->requested_fec & FEC_RS && 6009 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6010 (lc->requested_fec & FEC_BASER_RS && 6011 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6012 n++; 6013 lc->requested_fec = FEC_AUTO; 6014 } 6015 6016 return (n); 6017 } 6018 6019 /* 6020 * Apply the requested L1 settings, which are expected to be valid, to the 6021 * hardware. 6022 */ 6023 static int 6024 apply_link_config(struct port_info *pi) 6025 { 6026 struct adapter *sc = pi->adapter; 6027 struct link_config *lc = &pi->link_cfg; 6028 int rc; 6029 6030 #ifdef INVARIANTS 6031 ASSERT_SYNCHRONIZED_OP(sc); 6032 PORT_LOCK_ASSERT_OWNED(pi); 6033 6034 if (lc->requested_aneg == AUTONEG_ENABLE) 6035 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6036 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6037 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6038 if (lc->requested_fc & PAUSE_TX) 6039 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6040 if (lc->requested_fc & PAUSE_RX) 6041 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6042 if (lc->requested_fec & FEC_RS) 6043 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6044 if (lc->requested_fec & FEC_BASER_RS) 6045 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6046 #endif 6047 if (!(sc->flags & IS_VF)) { 6048 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6049 if (rc != 0) { 6050 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6051 return (rc); 6052 } 6053 } 6054 6055 /* 6056 * An L1_CFG will almost always result in a link-change event if the 6057 * link is up, and the driver will refresh the actual fec/fc/etc. when 6058 * the notification is processed. If the link is down then the actual 6059 * settings are meaningless. 6060 * 6061 * This takes care of the case where a change in the L1 settings may not 6062 * result in a notification. 6063 */ 6064 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6065 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6066 6067 return (0); 6068 } 6069 6070 #define FW_MAC_EXACT_CHUNK 7 6071 struct mcaddr_ctx { 6072 if_t ifp; 6073 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6074 uint64_t hash; 6075 int i; 6076 int del; 6077 int rc; 6078 }; 6079 6080 static u_int 6081 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6082 { 6083 struct mcaddr_ctx *ctx = arg; 6084 struct vi_info *vi = if_getsoftc(ctx->ifp); 6085 struct port_info *pi = vi->pi; 6086 struct adapter *sc = pi->adapter; 6087 6088 if (ctx->rc < 0) 6089 return (0); 6090 6091 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6092 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6093 ctx->i++; 6094 6095 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6096 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6097 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6098 if (ctx->rc < 0) { 6099 int j; 6100 6101 for (j = 0; j < ctx->i; j++) { 6102 if_printf(ctx->ifp, 6103 "failed to add mc address" 6104 " %02x:%02x:%02x:" 6105 "%02x:%02x:%02x rc=%d\n", 6106 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6107 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6108 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6109 -ctx->rc); 6110 } 6111 return (0); 6112 } 6113 ctx->del = 0; 6114 ctx->i = 0; 6115 } 6116 6117 return (1); 6118 } 6119 6120 /* 6121 * Program the port's XGMAC based on parameters in ifnet. The caller also 6122 * indicates which parameters should be programmed (the rest are left alone). 6123 */ 6124 int 6125 update_mac_settings(if_t ifp, int flags) 6126 { 6127 int rc = 0; 6128 struct vi_info *vi = if_getsoftc(ifp); 6129 struct port_info *pi = vi->pi; 6130 struct adapter *sc = pi->adapter; 6131 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6132 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6133 6134 ASSERT_SYNCHRONIZED_OP(sc); 6135 KASSERT(flags, ("%s: not told what to update.", __func__)); 6136 6137 if (flags & XGMAC_MTU) 6138 mtu = if_getmtu(ifp); 6139 6140 if (flags & XGMAC_PROMISC) 6141 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6142 6143 if (flags & XGMAC_ALLMULTI) 6144 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6145 6146 if (flags & XGMAC_VLANEX) 6147 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6148 6149 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6150 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6151 allmulti, 1, vlanex, false); 6152 if (rc) { 6153 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6154 rc); 6155 return (rc); 6156 } 6157 } 6158 6159 if (flags & XGMAC_UCADDR) { 6160 uint8_t ucaddr[ETHER_ADDR_LEN]; 6161 6162 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6163 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6164 ucaddr, true, &vi->smt_idx); 6165 if (rc < 0) { 6166 rc = -rc; 6167 if_printf(ifp, "change_mac failed: %d\n", rc); 6168 return (rc); 6169 } else { 6170 vi->xact_addr_filt = rc; 6171 rc = 0; 6172 } 6173 } 6174 6175 if (flags & XGMAC_MCADDRS) { 6176 struct epoch_tracker et; 6177 struct mcaddr_ctx ctx; 6178 int j; 6179 6180 ctx.ifp = ifp; 6181 ctx.hash = 0; 6182 ctx.i = 0; 6183 ctx.del = 1; 6184 ctx.rc = 0; 6185 /* 6186 * Unlike other drivers, we accumulate list of pointers into 6187 * interface address lists and we need to keep it safe even 6188 * after if_foreach_llmaddr() returns, thus we must enter the 6189 * network epoch. 6190 */ 6191 NET_EPOCH_ENTER(et); 6192 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6193 if (ctx.rc < 0) { 6194 NET_EPOCH_EXIT(et); 6195 rc = -ctx.rc; 6196 return (rc); 6197 } 6198 if (ctx.i > 0) { 6199 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6200 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6201 NET_EPOCH_EXIT(et); 6202 if (rc < 0) { 6203 rc = -rc; 6204 for (j = 0; j < ctx.i; j++) { 6205 if_printf(ifp, 6206 "failed to add mcast address" 6207 " %02x:%02x:%02x:" 6208 "%02x:%02x:%02x rc=%d\n", 6209 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6210 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6211 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6212 rc); 6213 } 6214 return (rc); 6215 } 6216 ctx.del = 0; 6217 } else 6218 NET_EPOCH_EXIT(et); 6219 6220 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6221 if (rc != 0) 6222 if_printf(ifp, "failed to set mcast address hash: %d\n", 6223 rc); 6224 if (ctx.del == 0) { 6225 /* We clobbered the VXLAN entry if there was one. */ 6226 pi->vxlan_tcam_entry = false; 6227 } 6228 } 6229 6230 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6231 pi->vxlan_tcam_entry == false) { 6232 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6233 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6234 true); 6235 if (rc < 0) { 6236 rc = -rc; 6237 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6238 rc); 6239 } else { 6240 MPASS(rc == sc->rawf_base + pi->port_id); 6241 rc = 0; 6242 pi->vxlan_tcam_entry = true; 6243 } 6244 } 6245 6246 return (rc); 6247 } 6248 6249 /* 6250 * {begin|end}_synchronized_op must be called from the same thread. 6251 */ 6252 int 6253 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6254 char *wmesg) 6255 { 6256 int rc, pri; 6257 6258 #ifdef WITNESS 6259 /* the caller thinks it's ok to sleep, but is it really? */ 6260 if (flags & SLEEP_OK) 6261 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6262 "begin_synchronized_op"); 6263 #endif 6264 6265 if (INTR_OK) 6266 pri = PCATCH; 6267 else 6268 pri = 0; 6269 6270 ADAPTER_LOCK(sc); 6271 for (;;) { 6272 6273 if (vi && IS_DETACHING(vi)) { 6274 rc = ENXIO; 6275 goto done; 6276 } 6277 6278 if (!IS_BUSY(sc)) { 6279 rc = 0; 6280 break; 6281 } 6282 6283 if (!(flags & SLEEP_OK)) { 6284 rc = EBUSY; 6285 goto done; 6286 } 6287 6288 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6289 rc = EINTR; 6290 goto done; 6291 } 6292 } 6293 6294 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6295 SET_BUSY(sc); 6296 #ifdef INVARIANTS 6297 sc->last_op = wmesg; 6298 sc->last_op_thr = curthread; 6299 sc->last_op_flags = flags; 6300 #endif 6301 6302 done: 6303 if (!(flags & HOLD_LOCK) || rc) 6304 ADAPTER_UNLOCK(sc); 6305 6306 return (rc); 6307 } 6308 6309 /* 6310 * Tell if_ioctl and if_init that the VI is going away. This is 6311 * special variant of begin_synchronized_op and must be paired with a 6312 * call to end_vi_detach. 6313 */ 6314 void 6315 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6316 { 6317 ADAPTER_LOCK(sc); 6318 SET_DETACHING(vi); 6319 wakeup(&sc->flags); 6320 while (IS_BUSY(sc)) 6321 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6322 SET_BUSY(sc); 6323 #ifdef INVARIANTS 6324 sc->last_op = "t4detach"; 6325 sc->last_op_thr = curthread; 6326 sc->last_op_flags = 0; 6327 #endif 6328 ADAPTER_UNLOCK(sc); 6329 } 6330 6331 void 6332 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6333 { 6334 ADAPTER_LOCK(sc); 6335 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6336 CLR_BUSY(sc); 6337 CLR_DETACHING(vi); 6338 wakeup(&sc->flags); 6339 ADAPTER_UNLOCK(sc); 6340 } 6341 6342 /* 6343 * {begin|end}_synchronized_op must be called from the same thread. 6344 */ 6345 void 6346 end_synchronized_op(struct adapter *sc, int flags) 6347 { 6348 6349 if (flags & LOCK_HELD) 6350 ADAPTER_LOCK_ASSERT_OWNED(sc); 6351 else 6352 ADAPTER_LOCK(sc); 6353 6354 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6355 CLR_BUSY(sc); 6356 wakeup(&sc->flags); 6357 ADAPTER_UNLOCK(sc); 6358 } 6359 6360 static int 6361 cxgbe_init_synchronized(struct vi_info *vi) 6362 { 6363 struct port_info *pi = vi->pi; 6364 struct adapter *sc = pi->adapter; 6365 if_t ifp = vi->ifp; 6366 int rc = 0, i; 6367 struct sge_txq *txq; 6368 6369 ASSERT_SYNCHRONIZED_OP(sc); 6370 6371 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6372 return (0); /* already running */ 6373 6374 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6375 return (rc); /* error message displayed already */ 6376 6377 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6378 return (rc); /* error message displayed already */ 6379 6380 rc = update_mac_settings(ifp, XGMAC_ALL); 6381 if (rc) 6382 goto done; /* error message displayed already */ 6383 6384 PORT_LOCK(pi); 6385 if (pi->up_vis == 0) { 6386 t4_update_port_info(pi); 6387 fixup_link_config(pi); 6388 build_medialist(pi); 6389 apply_link_config(pi); 6390 } 6391 6392 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6393 if (rc != 0) { 6394 if_printf(ifp, "enable_vi failed: %d\n", rc); 6395 PORT_UNLOCK(pi); 6396 goto done; 6397 } 6398 6399 /* 6400 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6401 * if this changes. 6402 */ 6403 6404 for_each_txq(vi, i, txq) { 6405 TXQ_LOCK(txq); 6406 txq->eq.flags |= EQ_ENABLED; 6407 TXQ_UNLOCK(txq); 6408 } 6409 6410 /* 6411 * The first iq of the first port to come up is used for tracing. 6412 */ 6413 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6414 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6415 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6416 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6417 V_QUEUENUMBER(sc->traceq)); 6418 pi->flags |= HAS_TRACEQ; 6419 } 6420 6421 /* all ok */ 6422 pi->up_vis++; 6423 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6424 if (pi->link_cfg.link_ok) 6425 t4_os_link_changed(pi); 6426 PORT_UNLOCK(pi); 6427 6428 mtx_lock(&vi->tick_mtx); 6429 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6430 callout_reset(&vi->tick, hz, vi_tick, vi); 6431 else 6432 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6433 mtx_unlock(&vi->tick_mtx); 6434 done: 6435 if (rc != 0) 6436 cxgbe_uninit_synchronized(vi); 6437 6438 return (rc); 6439 } 6440 6441 /* 6442 * Idempotent. 6443 */ 6444 static int 6445 cxgbe_uninit_synchronized(struct vi_info *vi) 6446 { 6447 struct port_info *pi = vi->pi; 6448 struct adapter *sc = pi->adapter; 6449 if_t ifp = vi->ifp; 6450 int rc, i; 6451 struct sge_txq *txq; 6452 6453 ASSERT_SYNCHRONIZED_OP(sc); 6454 6455 if (!(vi->flags & VI_INIT_DONE)) { 6456 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6457 KASSERT(0, ("uninited VI is running")); 6458 if_printf(ifp, "uninited VI with running ifnet. " 6459 "vi->flags 0x%016lx, if_flags 0x%08x, " 6460 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6461 if_getdrvflags(ifp)); 6462 } 6463 return (0); 6464 } 6465 6466 /* 6467 * Disable the VI so that all its data in either direction is discarded 6468 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6469 * tick) intact as the TP can deliver negative advice or data that it's 6470 * holding in its RAM (for an offloaded connection) even after the VI is 6471 * disabled. 6472 */ 6473 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6474 if (rc) { 6475 if_printf(ifp, "disable_vi failed: %d\n", rc); 6476 return (rc); 6477 } 6478 6479 for_each_txq(vi, i, txq) { 6480 TXQ_LOCK(txq); 6481 txq->eq.flags &= ~EQ_ENABLED; 6482 TXQ_UNLOCK(txq); 6483 } 6484 6485 mtx_lock(&vi->tick_mtx); 6486 callout_stop(&vi->tick); 6487 mtx_unlock(&vi->tick_mtx); 6488 6489 PORT_LOCK(pi); 6490 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6491 PORT_UNLOCK(pi); 6492 return (0); 6493 } 6494 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6495 pi->up_vis--; 6496 if (pi->up_vis > 0) { 6497 PORT_UNLOCK(pi); 6498 return (0); 6499 } 6500 6501 pi->link_cfg.link_ok = false; 6502 pi->link_cfg.speed = 0; 6503 pi->link_cfg.link_down_rc = 255; 6504 t4_os_link_changed(pi); 6505 PORT_UNLOCK(pi); 6506 6507 return (0); 6508 } 6509 6510 /* 6511 * It is ok for this function to fail midway and return right away. t4_detach 6512 * will walk the entire sc->irq list and clean up whatever is valid. 6513 */ 6514 int 6515 t4_setup_intr_handlers(struct adapter *sc) 6516 { 6517 int rc, rid, p, q, v; 6518 char s[8]; 6519 struct irq *irq; 6520 struct port_info *pi; 6521 struct vi_info *vi; 6522 struct sge *sge = &sc->sge; 6523 struct sge_rxq *rxq; 6524 #ifdef TCP_OFFLOAD 6525 struct sge_ofld_rxq *ofld_rxq; 6526 #endif 6527 #ifdef DEV_NETMAP 6528 struct sge_nm_rxq *nm_rxq; 6529 #endif 6530 #ifdef RSS 6531 int nbuckets = rss_getnumbuckets(); 6532 #endif 6533 6534 /* 6535 * Setup interrupts. 6536 */ 6537 irq = &sc->irq[0]; 6538 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6539 if (forwarding_intr_to_fwq(sc)) 6540 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6541 6542 /* Multiple interrupts. */ 6543 if (sc->flags & IS_VF) 6544 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6545 ("%s: too few intr.", __func__)); 6546 else 6547 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6548 ("%s: too few intr.", __func__)); 6549 6550 /* The first one is always error intr on PFs */ 6551 if (!(sc->flags & IS_VF)) { 6552 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6553 if (rc != 0) 6554 return (rc); 6555 irq++; 6556 rid++; 6557 } 6558 6559 /* The second one is always the firmware event queue (first on VFs) */ 6560 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6561 if (rc != 0) 6562 return (rc); 6563 irq++; 6564 rid++; 6565 6566 for_each_port(sc, p) { 6567 pi = sc->port[p]; 6568 for_each_vi(pi, v, vi) { 6569 vi->first_intr = rid - 1; 6570 6571 if (vi->nnmrxq > 0) { 6572 int n = max(vi->nrxq, vi->nnmrxq); 6573 6574 rxq = &sge->rxq[vi->first_rxq]; 6575 #ifdef DEV_NETMAP 6576 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6577 #endif 6578 for (q = 0; q < n; q++) { 6579 snprintf(s, sizeof(s), "%x%c%x", p, 6580 'a' + v, q); 6581 if (q < vi->nrxq) 6582 irq->rxq = rxq++; 6583 #ifdef DEV_NETMAP 6584 if (q < vi->nnmrxq) 6585 irq->nm_rxq = nm_rxq++; 6586 6587 if (irq->nm_rxq != NULL && 6588 irq->rxq == NULL) { 6589 /* Netmap rx only */ 6590 rc = t4_alloc_irq(sc, irq, rid, 6591 t4_nm_intr, irq->nm_rxq, s); 6592 } 6593 if (irq->nm_rxq != NULL && 6594 irq->rxq != NULL) { 6595 /* NIC and Netmap rx */ 6596 rc = t4_alloc_irq(sc, irq, rid, 6597 t4_vi_intr, irq, s); 6598 } 6599 #endif 6600 if (irq->rxq != NULL && 6601 irq->nm_rxq == NULL) { 6602 /* NIC rx only */ 6603 rc = t4_alloc_irq(sc, irq, rid, 6604 t4_intr, irq->rxq, s); 6605 } 6606 if (rc != 0) 6607 return (rc); 6608 #ifdef RSS 6609 if (q < vi->nrxq) { 6610 bus_bind_intr(sc->dev, irq->res, 6611 rss_getcpu(q % nbuckets)); 6612 } 6613 #endif 6614 irq++; 6615 rid++; 6616 vi->nintr++; 6617 } 6618 } else { 6619 for_each_rxq(vi, q, rxq) { 6620 snprintf(s, sizeof(s), "%x%c%x", p, 6621 'a' + v, q); 6622 rc = t4_alloc_irq(sc, irq, rid, 6623 t4_intr, rxq, s); 6624 if (rc != 0) 6625 return (rc); 6626 #ifdef RSS 6627 bus_bind_intr(sc->dev, irq->res, 6628 rss_getcpu(q % nbuckets)); 6629 #endif 6630 irq++; 6631 rid++; 6632 vi->nintr++; 6633 } 6634 } 6635 #ifdef TCP_OFFLOAD 6636 for_each_ofld_rxq(vi, q, ofld_rxq) { 6637 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6638 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6639 ofld_rxq, s); 6640 if (rc != 0) 6641 return (rc); 6642 irq++; 6643 rid++; 6644 vi->nintr++; 6645 } 6646 #endif 6647 } 6648 } 6649 MPASS(irq == &sc->irq[sc->intr_count]); 6650 6651 return (0); 6652 } 6653 6654 static void 6655 write_global_rss_key(struct adapter *sc) 6656 { 6657 #ifdef RSS 6658 int i; 6659 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6660 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6661 6662 CTASSERT(RSS_KEYSIZE == 40); 6663 6664 rss_getkey((void *)&raw_rss_key[0]); 6665 for (i = 0; i < nitems(rss_key); i++) { 6666 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6667 } 6668 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6669 #endif 6670 } 6671 6672 /* 6673 * Idempotent. 6674 */ 6675 static int 6676 adapter_full_init(struct adapter *sc) 6677 { 6678 int rc, i; 6679 6680 ASSERT_SYNCHRONIZED_OP(sc); 6681 6682 /* 6683 * queues that belong to the adapter (not any particular port). 6684 */ 6685 rc = t4_setup_adapter_queues(sc); 6686 if (rc != 0) 6687 return (rc); 6688 6689 MPASS(sc->params.nports <= nitems(sc->tq)); 6690 for (i = 0; i < sc->params.nports; i++) { 6691 if (sc->tq[i] != NULL) 6692 continue; 6693 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6694 taskqueue_thread_enqueue, &sc->tq[i]); 6695 if (sc->tq[i] == NULL) { 6696 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6697 return (ENOMEM); 6698 } 6699 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6700 device_get_nameunit(sc->dev), i); 6701 } 6702 6703 if (!(sc->flags & IS_VF)) { 6704 write_global_rss_key(sc); 6705 t4_intr_enable(sc); 6706 } 6707 return (0); 6708 } 6709 6710 int 6711 adapter_init(struct adapter *sc) 6712 { 6713 int rc; 6714 6715 ASSERT_SYNCHRONIZED_OP(sc); 6716 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6717 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6718 ("%s: FULL_INIT_DONE already", __func__)); 6719 6720 rc = adapter_full_init(sc); 6721 if (rc != 0) 6722 adapter_full_uninit(sc); 6723 else 6724 sc->flags |= FULL_INIT_DONE; 6725 6726 return (rc); 6727 } 6728 6729 /* 6730 * Idempotent. 6731 */ 6732 static void 6733 adapter_full_uninit(struct adapter *sc) 6734 { 6735 int i; 6736 6737 t4_teardown_adapter_queues(sc); 6738 6739 for (i = 0; i < nitems(sc->tq); i++) { 6740 if (sc->tq[i] == NULL) 6741 continue; 6742 taskqueue_free(sc->tq[i]); 6743 sc->tq[i] = NULL; 6744 } 6745 6746 sc->flags &= ~FULL_INIT_DONE; 6747 } 6748 6749 #ifdef RSS 6750 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6751 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6752 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6753 RSS_HASHTYPE_RSS_UDP_IPV6) 6754 6755 /* Translates kernel hash types to hardware. */ 6756 static int 6757 hashconfig_to_hashen(int hashconfig) 6758 { 6759 int hashen = 0; 6760 6761 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6762 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6763 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6764 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6765 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6766 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6767 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6768 } 6769 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6770 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6771 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6772 } 6773 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6774 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6775 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6776 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6777 6778 return (hashen); 6779 } 6780 6781 /* Translates hardware hash types to kernel. */ 6782 static int 6783 hashen_to_hashconfig(int hashen) 6784 { 6785 int hashconfig = 0; 6786 6787 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6788 /* 6789 * If UDP hashing was enabled it must have been enabled for 6790 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6791 * enabling any 4-tuple hash is nonsense configuration. 6792 */ 6793 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6794 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6795 6796 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6797 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6798 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6799 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6800 } 6801 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6802 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6803 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6804 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6805 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6806 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6807 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6808 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6809 6810 return (hashconfig); 6811 } 6812 #endif 6813 6814 /* 6815 * Idempotent. 6816 */ 6817 static int 6818 vi_full_init(struct vi_info *vi) 6819 { 6820 struct adapter *sc = vi->adapter; 6821 struct sge_rxq *rxq; 6822 int rc, i, j; 6823 #ifdef RSS 6824 int nbuckets = rss_getnumbuckets(); 6825 int hashconfig = rss_gethashconfig(); 6826 int extra; 6827 #endif 6828 6829 ASSERT_SYNCHRONIZED_OP(sc); 6830 6831 /* 6832 * Allocate tx/rx/fl queues for this VI. 6833 */ 6834 rc = t4_setup_vi_queues(vi); 6835 if (rc != 0) 6836 return (rc); 6837 6838 /* 6839 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6840 */ 6841 if (vi->nrxq > vi->rss_size) { 6842 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6843 "some queues will never receive traffic.\n", vi->nrxq, 6844 vi->rss_size); 6845 } else if (vi->rss_size % vi->nrxq) { 6846 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6847 "expect uneven traffic distribution.\n", vi->nrxq, 6848 vi->rss_size); 6849 } 6850 #ifdef RSS 6851 if (vi->nrxq != nbuckets) { 6852 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6853 "performance will be impacted.\n", vi->nrxq, nbuckets); 6854 } 6855 #endif 6856 if (vi->rss == NULL) 6857 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6858 M_ZERO | M_WAITOK); 6859 for (i = 0; i < vi->rss_size;) { 6860 #ifdef RSS 6861 j = rss_get_indirection_to_bucket(i); 6862 j %= vi->nrxq; 6863 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6864 vi->rss[i++] = rxq->iq.abs_id; 6865 #else 6866 for_each_rxq(vi, j, rxq) { 6867 vi->rss[i++] = rxq->iq.abs_id; 6868 if (i == vi->rss_size) 6869 break; 6870 } 6871 #endif 6872 } 6873 6874 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6875 vi->rss, vi->rss_size); 6876 if (rc != 0) { 6877 CH_ERR(vi, "rss_config failed: %d\n", rc); 6878 return (rc); 6879 } 6880 6881 #ifdef RSS 6882 vi->hashen = hashconfig_to_hashen(hashconfig); 6883 6884 /* 6885 * We may have had to enable some hashes even though the global config 6886 * wants them disabled. This is a potential problem that must be 6887 * reported to the user. 6888 */ 6889 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6890 6891 /* 6892 * If we consider only the supported hash types, then the enabled hashes 6893 * are a superset of the requested hashes. In other words, there cannot 6894 * be any supported hash that was requested but not enabled, but there 6895 * can be hashes that were not requested but had to be enabled. 6896 */ 6897 extra &= SUPPORTED_RSS_HASHTYPES; 6898 MPASS((extra & hashconfig) == 0); 6899 6900 if (extra) { 6901 CH_ALERT(vi, 6902 "global RSS config (0x%x) cannot be accommodated.\n", 6903 hashconfig); 6904 } 6905 if (extra & RSS_HASHTYPE_RSS_IPV4) 6906 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6907 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6908 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6909 if (extra & RSS_HASHTYPE_RSS_IPV6) 6910 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6911 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6912 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6913 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6914 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6915 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6916 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6917 #else 6918 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6919 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6920 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6921 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6922 #endif 6923 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6924 0, 0); 6925 if (rc != 0) { 6926 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6927 return (rc); 6928 } 6929 6930 return (0); 6931 } 6932 6933 int 6934 vi_init(struct vi_info *vi) 6935 { 6936 int rc; 6937 6938 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6939 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6940 ("%s: VI_INIT_DONE already", __func__)); 6941 6942 rc = vi_full_init(vi); 6943 if (rc != 0) 6944 vi_full_uninit(vi); 6945 else 6946 vi->flags |= VI_INIT_DONE; 6947 6948 return (rc); 6949 } 6950 6951 /* 6952 * Idempotent. 6953 */ 6954 static void 6955 vi_full_uninit(struct vi_info *vi) 6956 { 6957 6958 if (vi->flags & VI_INIT_DONE) { 6959 quiesce_vi(vi); 6960 free(vi->rss, M_CXGBE); 6961 free(vi->nm_rss, M_CXGBE); 6962 } 6963 6964 t4_teardown_vi_queues(vi); 6965 vi->flags &= ~VI_INIT_DONE; 6966 } 6967 6968 static void 6969 quiesce_txq(struct sge_txq *txq) 6970 { 6971 struct sge_eq *eq = &txq->eq; 6972 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6973 6974 MPASS(eq->flags & EQ_SW_ALLOCATED); 6975 MPASS(!(eq->flags & EQ_ENABLED)); 6976 6977 /* Wait for the mp_ring to empty. */ 6978 while (!mp_ring_is_idle(txq->r)) { 6979 mp_ring_check_drainage(txq->r, 4096); 6980 pause("rquiesce", 1); 6981 } 6982 MPASS(txq->txp.npkt == 0); 6983 6984 if (eq->flags & EQ_HW_ALLOCATED) { 6985 /* 6986 * Hardware is alive and working normally. Wait for it to 6987 * finish and then wait for the driver to catch up and reclaim 6988 * all descriptors. 6989 */ 6990 while (spg->cidx != htobe16(eq->pidx)) 6991 pause("equiesce", 1); 6992 while (eq->cidx != eq->pidx) 6993 pause("dquiesce", 1); 6994 } else { 6995 /* 6996 * Hardware is unavailable. Discard all pending tx and reclaim 6997 * descriptors directly. 6998 */ 6999 TXQ_LOCK(txq); 7000 while (eq->cidx != eq->pidx) { 7001 struct mbuf *m, *nextpkt; 7002 struct tx_sdesc *txsd; 7003 7004 txsd = &txq->sdesc[eq->cidx]; 7005 for (m = txsd->m; m != NULL; m = nextpkt) { 7006 nextpkt = m->m_nextpkt; 7007 m->m_nextpkt = NULL; 7008 m_freem(m); 7009 } 7010 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7011 } 7012 spg->pidx = spg->cidx = htobe16(eq->cidx); 7013 TXQ_UNLOCK(txq); 7014 } 7015 } 7016 7017 static void 7018 quiesce_wrq(struct sge_wrq *wrq) 7019 { 7020 7021 /* XXXTX */ 7022 } 7023 7024 static void 7025 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7026 { 7027 /* Synchronize with the interrupt handler */ 7028 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7029 pause("iqfree", 1); 7030 7031 if (fl != NULL) { 7032 MPASS(iq->flags & IQ_HAS_FL); 7033 7034 mtx_lock(&sc->sfl_lock); 7035 FL_LOCK(fl); 7036 fl->flags |= FL_DOOMED; 7037 FL_UNLOCK(fl); 7038 callout_stop(&sc->sfl_callout); 7039 mtx_unlock(&sc->sfl_lock); 7040 7041 KASSERT((fl->flags & FL_STARVING) == 0, 7042 ("%s: still starving", __func__)); 7043 7044 /* Release all buffers if hardware is no longer available. */ 7045 if (!(iq->flags & IQ_HW_ALLOCATED)) 7046 free_fl_buffers(sc, fl); 7047 } 7048 } 7049 7050 /* 7051 * Wait for all activity on all the queues of the VI to complete. It is assumed 7052 * that no new work is being enqueued by the hardware or the driver. That part 7053 * should be arranged before calling this function. 7054 */ 7055 static void 7056 quiesce_vi(struct vi_info *vi) 7057 { 7058 int i; 7059 struct adapter *sc = vi->adapter; 7060 struct sge_rxq *rxq; 7061 struct sge_txq *txq; 7062 #ifdef TCP_OFFLOAD 7063 struct sge_ofld_rxq *ofld_rxq; 7064 #endif 7065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7066 struct sge_ofld_txq *ofld_txq; 7067 #endif 7068 7069 if (!(vi->flags & VI_INIT_DONE)) 7070 return; 7071 7072 for_each_txq(vi, i, txq) { 7073 quiesce_txq(txq); 7074 } 7075 7076 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7077 for_each_ofld_txq(vi, i, ofld_txq) { 7078 quiesce_wrq(&ofld_txq->wrq); 7079 } 7080 #endif 7081 7082 for_each_rxq(vi, i, rxq) { 7083 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7084 } 7085 7086 #ifdef TCP_OFFLOAD 7087 for_each_ofld_rxq(vi, i, ofld_rxq) { 7088 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7089 } 7090 #endif 7091 } 7092 7093 static int 7094 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7095 driver_intr_t *handler, void *arg, char *name) 7096 { 7097 int rc; 7098 7099 irq->rid = rid; 7100 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7101 RF_SHAREABLE | RF_ACTIVE); 7102 if (irq->res == NULL) { 7103 device_printf(sc->dev, 7104 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7105 return (ENOMEM); 7106 } 7107 7108 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7109 NULL, handler, arg, &irq->tag); 7110 if (rc != 0) { 7111 device_printf(sc->dev, 7112 "failed to setup interrupt for rid %d, name %s: %d\n", 7113 rid, name, rc); 7114 } else if (name) 7115 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7116 7117 return (rc); 7118 } 7119 7120 static int 7121 t4_free_irq(struct adapter *sc, struct irq *irq) 7122 { 7123 if (irq->tag) 7124 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7125 if (irq->res) 7126 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7127 7128 bzero(irq, sizeof(*irq)); 7129 7130 return (0); 7131 } 7132 7133 static void 7134 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7135 { 7136 7137 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7138 t4_get_regs(sc, buf, regs->len); 7139 } 7140 7141 #define A_PL_INDIR_CMD 0x1f8 7142 7143 #define S_PL_AUTOINC 31 7144 #define M_PL_AUTOINC 0x1U 7145 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7146 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7147 7148 #define S_PL_VFID 20 7149 #define M_PL_VFID 0xffU 7150 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7151 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7152 7153 #define S_PL_ADDR 0 7154 #define M_PL_ADDR 0xfffffU 7155 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7156 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7157 7158 #define A_PL_INDIR_DATA 0x1fc 7159 7160 static uint64_t 7161 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7162 { 7163 u32 stats[2]; 7164 7165 if (sc->flags & IS_VF) { 7166 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7167 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7168 } else { 7169 mtx_assert(&sc->reg_lock, MA_OWNED); 7170 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7171 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7172 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7173 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7174 } 7175 return (((uint64_t)stats[1]) << 32 | stats[0]); 7176 } 7177 7178 static void 7179 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7180 { 7181 7182 #define GET_STAT(name) \ 7183 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7184 7185 if (!(sc->flags & IS_VF)) 7186 mtx_lock(&sc->reg_lock); 7187 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7188 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7189 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7190 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7191 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7192 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7193 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7194 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7195 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7196 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7197 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7198 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7199 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7200 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7201 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7202 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7203 if (!(sc->flags & IS_VF)) 7204 mtx_unlock(&sc->reg_lock); 7205 7206 #undef GET_STAT 7207 } 7208 7209 static void 7210 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7211 { 7212 int reg; 7213 7214 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7215 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7216 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7217 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7218 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7219 } 7220 7221 static void 7222 vi_refresh_stats(struct vi_info *vi) 7223 { 7224 struct timeval tv; 7225 const struct timeval interval = {0, 250000}; /* 250ms */ 7226 7227 mtx_assert(&vi->tick_mtx, MA_OWNED); 7228 7229 if (vi->flags & VI_SKIP_STATS) 7230 return; 7231 7232 getmicrotime(&tv); 7233 timevalsub(&tv, &interval); 7234 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7235 return; 7236 7237 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7238 getmicrotime(&vi->last_refreshed); 7239 } 7240 7241 static void 7242 cxgbe_refresh_stats(struct vi_info *vi) 7243 { 7244 u_int i, v, tnl_cong_drops, chan_map; 7245 struct timeval tv; 7246 const struct timeval interval = {0, 250000}; /* 250ms */ 7247 struct port_info *pi; 7248 struct adapter *sc; 7249 7250 mtx_assert(&vi->tick_mtx, MA_OWNED); 7251 7252 if (vi->flags & VI_SKIP_STATS) 7253 return; 7254 7255 getmicrotime(&tv); 7256 timevalsub(&tv, &interval); 7257 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7258 return; 7259 7260 pi = vi->pi; 7261 sc = vi->adapter; 7262 tnl_cong_drops = 0; 7263 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7264 chan_map = pi->rx_e_chan_map; 7265 while (chan_map) { 7266 i = ffs(chan_map) - 1; 7267 mtx_lock(&sc->reg_lock); 7268 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7269 A_TP_MIB_TNL_CNG_DROP_0 + i); 7270 mtx_unlock(&sc->reg_lock); 7271 tnl_cong_drops += v; 7272 chan_map &= ~(1 << i); 7273 } 7274 pi->tnl_cong_drops = tnl_cong_drops; 7275 getmicrotime(&vi->last_refreshed); 7276 } 7277 7278 static void 7279 cxgbe_tick(void *arg) 7280 { 7281 struct vi_info *vi = arg; 7282 7283 MPASS(IS_MAIN_VI(vi)); 7284 mtx_assert(&vi->tick_mtx, MA_OWNED); 7285 7286 cxgbe_refresh_stats(vi); 7287 callout_schedule(&vi->tick, hz); 7288 } 7289 7290 static void 7291 vi_tick(void *arg) 7292 { 7293 struct vi_info *vi = arg; 7294 7295 mtx_assert(&vi->tick_mtx, MA_OWNED); 7296 7297 vi_refresh_stats(vi); 7298 callout_schedule(&vi->tick, hz); 7299 } 7300 7301 /* 7302 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7303 */ 7304 static char *caps_decoder[] = { 7305 "\20\001IPMI\002NCSI", /* 0: NBM */ 7306 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7307 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7308 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7309 "\006HASHFILTER\007ETHOFLD", 7310 "\20\001TOE", /* 4: TOE */ 7311 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7312 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7313 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7314 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7315 "\007T10DIF" 7316 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7317 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7318 "\004TLS_HW", 7319 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7320 "\004PO_INITIATOR\005PO_TARGET", 7321 }; 7322 7323 void 7324 t4_sysctls(struct adapter *sc) 7325 { 7326 struct sysctl_ctx_list *ctx = &sc->ctx; 7327 struct sysctl_oid *oid; 7328 struct sysctl_oid_list *children, *c0; 7329 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7330 7331 /* 7332 * dev.t4nex.X. 7333 */ 7334 oid = device_get_sysctl_tree(sc->dev); 7335 c0 = children = SYSCTL_CHILDREN(oid); 7336 7337 sc->sc_do_rxcopy = 1; 7338 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7339 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7340 7341 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7342 sc->params.nports, "# of ports"); 7343 7344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7345 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7346 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7347 "available doorbells"); 7348 7349 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7350 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7351 7352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7353 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7354 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7355 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7356 7357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7358 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7359 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7360 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7361 7362 t4_sge_sysctls(sc, ctx, children); 7363 7364 sc->lro_timeout = 100; 7365 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7366 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7367 7368 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7369 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7370 7371 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7372 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7373 7374 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7375 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7376 7377 if (sc->flags & IS_VF) 7378 return; 7379 7380 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7381 NULL, chip_rev(sc), "chip hardware revision"); 7382 7383 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7384 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7385 7386 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7387 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7388 7389 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7390 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7391 7392 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7393 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7394 7395 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7396 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7397 7398 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7399 sc->er_version, 0, "expansion ROM version"); 7400 7401 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7402 sc->bs_version, 0, "bootstrap firmware version"); 7403 7404 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7405 NULL, sc->params.scfg_vers, "serial config version"); 7406 7407 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7408 NULL, sc->params.vpd_vers, "VPD version"); 7409 7410 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7411 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7412 7413 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7414 sc->cfcsum, "config file checksum"); 7415 7416 #define SYSCTL_CAP(name, n, text) \ 7417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7418 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7419 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7420 "available " text " capabilities") 7421 7422 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7423 SYSCTL_CAP(linkcaps, 1, "link"); 7424 SYSCTL_CAP(switchcaps, 2, "switch"); 7425 SYSCTL_CAP(niccaps, 3, "NIC"); 7426 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7427 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7428 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7429 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7430 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7431 #undef SYSCTL_CAP 7432 7433 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7434 NULL, sc->tids.nftids, "number of filters"); 7435 7436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7437 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7438 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7440 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7441 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7442 7443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7444 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7445 sysctl_loadavg, "A", 7446 "microprocessor load averages (debug firmwares only)"); 7447 7448 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7449 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7450 "I", "core Vdd (in mV)"); 7451 7452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7453 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7454 sysctl_cpus, "A", "local CPUs"); 7455 7456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7457 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7458 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7459 7460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7461 &sc->swintr, 0, "software triggered interrupts"); 7462 7463 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7464 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7465 "1 = reset adapter, 0 = zero reset counter"); 7466 7467 /* 7468 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7469 */ 7470 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7471 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7472 "logs and miscellaneous information"); 7473 children = SYSCTL_CHILDREN(oid); 7474 7475 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7476 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7477 sysctl_cctrl, "A", "congestion control"); 7478 7479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7480 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7481 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7482 7483 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7484 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7485 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7486 7487 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7488 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7489 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7490 7491 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7492 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7493 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7494 7495 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7496 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7497 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7498 7499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7500 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7501 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7502 7503 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7504 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7505 sysctl_cim_la, "A", "CIM logic analyzer"); 7506 7507 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7508 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7509 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7510 7511 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7512 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7513 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7514 7515 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7516 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7517 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7518 7519 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7520 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7521 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7522 7523 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7524 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7525 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7526 7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7528 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7529 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7530 7531 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7532 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7533 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7534 7535 if (chip_id(sc) > CHELSIO_T4) { 7536 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7537 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7538 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7539 "CIM OBQ 6 (SGE0-RX)"); 7540 7541 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7542 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7543 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7544 "CIM OBQ 7 (SGE1-RX)"); 7545 } 7546 7547 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7548 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7549 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7550 7551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7552 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7553 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7554 7555 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7556 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7557 sysctl_cpl_stats, "A", "CPL statistics"); 7558 7559 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7560 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7561 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7562 7563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7564 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7565 sysctl_tid_stats, "A", "tid stats"); 7566 7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7568 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7569 sysctl_devlog, "A", "firmware's device log"); 7570 7571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7573 sysctl_fcoe_stats, "A", "FCoE statistics"); 7574 7575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7576 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7577 sysctl_hw_sched, "A", "hardware scheduler "); 7578 7579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7581 sysctl_l2t, "A", "hardware L2 table"); 7582 7583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7585 sysctl_smt, "A", "hardware source MAC table"); 7586 7587 #ifdef INET6 7588 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7589 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7590 sysctl_clip, "A", "active CLIP table entries"); 7591 #endif 7592 7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7595 sysctl_lb_stats, "A", "loopback statistics"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7599 sysctl_meminfo, "A", "memory regions"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7603 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7604 "A", "MPS TCAM entries"); 7605 7606 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7607 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7608 sysctl_path_mtus, "A", "path MTUs"); 7609 7610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7611 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7612 sysctl_pm_stats, "A", "PM statistics"); 7613 7614 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7615 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7616 sysctl_rdma_stats, "A", "RDMA statistics"); 7617 7618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7619 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7620 sysctl_tcp_stats, "A", "TCP statistics"); 7621 7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7623 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7624 sysctl_tids, "A", "TID information"); 7625 7626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7627 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7628 sysctl_tp_err_stats, "A", "TP error statistics"); 7629 7630 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7631 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7632 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7633 7634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7635 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7636 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7637 7638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7639 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7640 sysctl_tp_la, "A", "TP logic analyzer"); 7641 7642 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7643 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7644 sysctl_tx_rate, "A", "Tx rate"); 7645 7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7647 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7648 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7649 7650 if (chip_id(sc) >= CHELSIO_T5) { 7651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7652 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7653 sysctl_wcwr_stats, "A", "write combined work requests"); 7654 } 7655 7656 #ifdef KERN_TLS 7657 if (is_ktls(sc)) { 7658 /* 7659 * dev.t4nex.0.tls. 7660 */ 7661 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7662 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7663 children = SYSCTL_CHILDREN(oid); 7664 7665 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7666 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7667 "keys in work requests (1) or attempt to store TLS keys " 7668 "in card memory."); 7669 7670 if (is_t6(sc)) 7671 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7672 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7673 "combine TCB field updates with TLS record work " 7674 "requests."); 7675 } 7676 #endif 7677 7678 #ifdef TCP_OFFLOAD 7679 if (is_offload(sc)) { 7680 int i; 7681 char s[4]; 7682 7683 /* 7684 * dev.t4nex.X.toe. 7685 */ 7686 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7687 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7688 children = SYSCTL_CHILDREN(oid); 7689 7690 sc->tt.cong_algorithm = -1; 7691 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7692 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7693 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7694 "3 = highspeed)"); 7695 7696 sc->tt.sndbuf = -1; 7697 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7698 &sc->tt.sndbuf, 0, "hardware send buffer"); 7699 7700 sc->tt.ddp = 0; 7701 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7702 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7703 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7704 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7705 7706 sc->tt.rx_coalesce = -1; 7707 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7708 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7709 7710 sc->tt.tls = 0; 7711 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7712 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7713 "Inline TLS allowed"); 7714 7715 sc->tt.tx_align = -1; 7716 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7717 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7718 7719 sc->tt.tx_zcopy = 0; 7720 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7721 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7722 "Enable zero-copy aio_write(2)"); 7723 7724 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7725 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7726 "cop_managed_offloading", CTLFLAG_RW, 7727 &sc->tt.cop_managed_offloading, 0, 7728 "COP (Connection Offload Policy) controls all TOE offload"); 7729 7730 sc->tt.autorcvbuf_inc = 16 * 1024; 7731 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7732 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7733 "autorcvbuf increment"); 7734 7735 sc->tt.update_hc_on_pmtu_change = 1; 7736 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7737 "update_hc_on_pmtu_change", CTLFLAG_RW, 7738 &sc->tt.update_hc_on_pmtu_change, 0, 7739 "Update hostcache entry if the PMTU changes"); 7740 7741 sc->tt.iso = 1; 7742 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7743 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7744 7745 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7746 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7747 sysctl_tp_tick, "A", "TP timer tick (us)"); 7748 7749 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7750 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7751 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7752 7753 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7754 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7755 sysctl_tp_tick, "A", "DACK tick (us)"); 7756 7757 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7758 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7759 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7760 7761 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7762 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7763 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7764 "Minimum retransmit interval (us)"); 7765 7766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7767 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7768 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7769 "Maximum retransmit interval (us)"); 7770 7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7772 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7773 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7774 "Persist timer min (us)"); 7775 7776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7777 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7778 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7779 "Persist timer max (us)"); 7780 7781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7782 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7783 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7784 "Keepalive idle timer (us)"); 7785 7786 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7787 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7788 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7789 "Keepalive interval timer (us)"); 7790 7791 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7792 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7793 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7794 7795 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7796 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7797 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7798 "FINWAIT2 timer (us)"); 7799 7800 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7801 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7802 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7803 "Number of SYN retransmissions before abort"); 7804 7805 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7806 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7807 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7808 "Number of retransmissions before abort"); 7809 7810 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7811 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7812 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7813 "Number of keepalive probes before abort"); 7814 7815 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7816 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7817 "TOE retransmit backoffs"); 7818 children = SYSCTL_CHILDREN(oid); 7819 for (i = 0; i < 16; i++) { 7820 snprintf(s, sizeof(s), "%u", i); 7821 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7822 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7823 i, sysctl_tp_backoff, "IU", 7824 "TOE retransmit backoff"); 7825 } 7826 } 7827 #endif 7828 } 7829 7830 void 7831 vi_sysctls(struct vi_info *vi) 7832 { 7833 struct sysctl_ctx_list *ctx = &vi->ctx; 7834 struct sysctl_oid *oid; 7835 struct sysctl_oid_list *children; 7836 7837 /* 7838 * dev.v?(cxgbe|cxl).X. 7839 */ 7840 oid = device_get_sysctl_tree(vi->dev); 7841 children = SYSCTL_CHILDREN(oid); 7842 7843 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7844 vi->viid, "VI identifer"); 7845 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7846 &vi->nrxq, 0, "# of rx queues"); 7847 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7848 &vi->ntxq, 0, "# of tx queues"); 7849 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7850 &vi->first_rxq, 0, "index of first rx queue"); 7851 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7852 &vi->first_txq, 0, "index of first tx queue"); 7853 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7854 vi->rss_base, "start of RSS indirection table"); 7855 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7856 vi->rss_size, "size of RSS indirection table"); 7857 7858 if (IS_MAIN_VI(vi)) { 7859 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7860 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7861 sysctl_noflowq, "IU", 7862 "Reserve queue 0 for non-flowid packets"); 7863 } 7864 7865 if (vi->adapter->flags & IS_VF) { 7866 MPASS(vi->flags & TX_USES_VM_WR); 7867 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7868 NULL, 1, "use VM work requests for transmit"); 7869 } else { 7870 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7871 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7872 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7873 } 7874 7875 #ifdef TCP_OFFLOAD 7876 if (vi->nofldrxq != 0) { 7877 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7878 &vi->nofldrxq, 0, 7879 "# of rx queues for offloaded TCP connections"); 7880 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7881 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7882 "index of first TOE rx queue"); 7883 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7884 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7885 sysctl_holdoff_tmr_idx_ofld, "I", 7886 "holdoff timer index for TOE queues"); 7887 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7888 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7889 sysctl_holdoff_pktc_idx_ofld, "I", 7890 "holdoff packet counter index for TOE queues"); 7891 } 7892 #endif 7893 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7894 if (vi->nofldtxq != 0) { 7895 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7896 &vi->nofldtxq, 0, 7897 "# of tx queues for TOE/ETHOFLD"); 7898 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7899 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7900 "index of first TOE/ETHOFLD tx queue"); 7901 } 7902 #endif 7903 #ifdef DEV_NETMAP 7904 if (vi->nnmrxq != 0) { 7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7906 &vi->nnmrxq, 0, "# of netmap rx queues"); 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7908 &vi->nnmtxq, 0, "# of netmap tx queues"); 7909 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7910 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7911 "index of first netmap rx queue"); 7912 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7913 CTLFLAG_RD, &vi->first_nm_txq, 0, 7914 "index of first netmap tx queue"); 7915 } 7916 #endif 7917 7918 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7919 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7920 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7921 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7922 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7923 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7924 7925 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7926 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7927 sysctl_qsize_rxq, "I", "rx queue size"); 7928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7929 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7930 sysctl_qsize_txq, "I", "tx queue size"); 7931 } 7932 7933 static void 7934 cxgbe_sysctls(struct port_info *pi) 7935 { 7936 struct sysctl_ctx_list *ctx = &pi->ctx; 7937 struct sysctl_oid *oid; 7938 struct sysctl_oid_list *children, *children2; 7939 struct adapter *sc = pi->adapter; 7940 int i; 7941 char name[16]; 7942 static char *tc_flags = {"\20\1USER"}; 7943 7944 /* 7945 * dev.cxgbe.X. 7946 */ 7947 oid = device_get_sysctl_tree(pi->dev); 7948 children = SYSCTL_CHILDREN(oid); 7949 7950 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7951 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7952 sysctl_linkdnrc, "A", "reason why link is down"); 7953 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7954 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7955 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7956 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7957 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7958 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7959 sysctl_btphy, "I", "PHY firmware version"); 7960 } 7961 7962 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7963 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7964 sysctl_pause_settings, "A", 7965 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7966 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7967 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7968 "FEC in use on the link"); 7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7970 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7971 sysctl_requested_fec, "A", 7972 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7973 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7974 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7975 "FEC recommended by the cable/transceiver"); 7976 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7977 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7978 sysctl_autoneg, "I", 7979 "autonegotiation (-1 = not supported)"); 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7981 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7982 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7983 7984 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7985 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7987 &pi->link_cfg.pcaps, 0, "port capabilities"); 7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7989 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7990 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7991 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7992 7993 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7994 port_top_speed(pi), "max speed (in Gbps)"); 7995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7996 pi->mps_bg_map, "MPS buffer group map"); 7997 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7998 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7999 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8000 pi->tx_chan, "TP tx c-channel"); 8001 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8002 pi->rx_chan, "TP rx c-channel"); 8003 8004 if (sc->flags & IS_VF) 8005 return; 8006 8007 /* 8008 * dev.(cxgbe|cxl).X.tc. 8009 */ 8010 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8011 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8012 "Tx scheduler traffic classes (cl_rl)"); 8013 children2 = SYSCTL_CHILDREN(oid); 8014 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8015 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8016 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8017 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8018 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8019 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8020 for (i = 0; i < sc->params.nsched_cls; i++) { 8021 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8022 8023 snprintf(name, sizeof(name), "%d", i); 8024 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8025 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8026 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8027 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8028 CTLFLAG_RD, &tc->state, 0, "current state"); 8029 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8031 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8032 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8033 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8034 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8035 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8036 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8037 "traffic class parameters"); 8038 } 8039 8040 /* 8041 * dev.cxgbe.X.stats. 8042 */ 8043 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8044 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8045 children = SYSCTL_CHILDREN(oid); 8046 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8047 &pi->tx_parse_error, 0, 8048 "# of tx packets with invalid length or # of segments"); 8049 8050 #define T4_REGSTAT(name, stat, desc) \ 8051 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8052 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8053 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8054 sysctl_handle_t4_reg64, "QU", desc) 8055 8056 /* We get these from port_stats and they may be stale by up to 1s */ 8057 #define T4_PORTSTAT(name, desc) \ 8058 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8059 &pi->stats.name, desc) 8060 8061 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8062 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8063 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8064 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8065 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8066 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8067 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8068 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8069 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8070 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8071 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8072 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8073 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8074 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8075 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8076 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8077 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8078 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8079 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8080 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8081 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8082 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8083 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8084 8085 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8086 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8087 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8088 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8089 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8090 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8091 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8092 if (is_t6(sc)) { 8093 T4_PORTSTAT(rx_fcs_err, 8094 "# of frames received with bad FCS since last link up"); 8095 } else { 8096 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8097 "# of frames received with bad FCS"); 8098 } 8099 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8100 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8101 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8102 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8103 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8104 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8105 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8106 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8107 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8108 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8109 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8110 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8111 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8112 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8113 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8114 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8115 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8116 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8117 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8118 8119 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8120 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8121 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8122 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8123 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8124 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8125 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8126 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8127 8128 #undef T4_REGSTAT 8129 #undef T4_PORTSTAT 8130 } 8131 8132 static int 8133 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8134 { 8135 int rc, *i, space = 0; 8136 struct sbuf sb; 8137 8138 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8139 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8140 if (space) 8141 sbuf_printf(&sb, " "); 8142 sbuf_printf(&sb, "%d", *i); 8143 space = 1; 8144 } 8145 rc = sbuf_finish(&sb); 8146 sbuf_delete(&sb); 8147 return (rc); 8148 } 8149 8150 static int 8151 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8152 { 8153 int rc; 8154 struct sbuf *sb; 8155 8156 rc = sysctl_wire_old_buffer(req, 0); 8157 if (rc != 0) 8158 return(rc); 8159 8160 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8161 if (sb == NULL) 8162 return (ENOMEM); 8163 8164 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8165 rc = sbuf_finish(sb); 8166 sbuf_delete(sb); 8167 8168 return (rc); 8169 } 8170 8171 static int 8172 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8173 { 8174 int rc; 8175 struct sbuf *sb; 8176 8177 rc = sysctl_wire_old_buffer(req, 0); 8178 if (rc != 0) 8179 return(rc); 8180 8181 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8182 if (sb == NULL) 8183 return (ENOMEM); 8184 8185 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8186 rc = sbuf_finish(sb); 8187 sbuf_delete(sb); 8188 8189 return (rc); 8190 } 8191 8192 static int 8193 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8194 { 8195 struct port_info *pi = arg1; 8196 int op = arg2; 8197 struct adapter *sc = pi->adapter; 8198 u_int v; 8199 int rc; 8200 8201 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8202 if (rc) 8203 return (rc); 8204 if (hw_off_limits(sc)) 8205 rc = ENXIO; 8206 else { 8207 /* XXX: magic numbers */ 8208 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8209 op ? 0x20 : 0xc820, &v); 8210 } 8211 end_synchronized_op(sc, 0); 8212 if (rc) 8213 return (rc); 8214 if (op == 0) 8215 v /= 256; 8216 8217 rc = sysctl_handle_int(oidp, &v, 0, req); 8218 return (rc); 8219 } 8220 8221 static int 8222 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8223 { 8224 struct vi_info *vi = arg1; 8225 int rc, val; 8226 8227 val = vi->rsrv_noflowq; 8228 rc = sysctl_handle_int(oidp, &val, 0, req); 8229 if (rc != 0 || req->newptr == NULL) 8230 return (rc); 8231 8232 if ((val >= 1) && (vi->ntxq > 1)) 8233 vi->rsrv_noflowq = 1; 8234 else 8235 vi->rsrv_noflowq = 0; 8236 8237 return (rc); 8238 } 8239 8240 static int 8241 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8242 { 8243 struct vi_info *vi = arg1; 8244 struct adapter *sc = vi->adapter; 8245 int rc, val, i; 8246 8247 MPASS(!(sc->flags & IS_VF)); 8248 8249 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8250 rc = sysctl_handle_int(oidp, &val, 0, req); 8251 if (rc != 0 || req->newptr == NULL) 8252 return (rc); 8253 8254 if (val != 0 && val != 1) 8255 return (EINVAL); 8256 8257 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8258 "t4txvm"); 8259 if (rc) 8260 return (rc); 8261 if (hw_off_limits(sc)) 8262 rc = ENXIO; 8263 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8264 /* 8265 * We don't want parse_pkt to run with one setting (VF or PF) 8266 * and then eth_tx to see a different setting but still use 8267 * stale information calculated by parse_pkt. 8268 */ 8269 rc = EBUSY; 8270 } else { 8271 struct port_info *pi = vi->pi; 8272 struct sge_txq *txq; 8273 uint32_t ctrl0; 8274 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8275 8276 if (val) { 8277 vi->flags |= TX_USES_VM_WR; 8278 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8279 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8280 V_TXPKT_INTF(pi->tx_chan)); 8281 if (!(sc->flags & IS_VF)) 8282 npkt--; 8283 } else { 8284 vi->flags &= ~TX_USES_VM_WR; 8285 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8286 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8287 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8288 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8289 } 8290 for_each_txq(vi, i, txq) { 8291 txq->cpl_ctrl0 = ctrl0; 8292 txq->txp.max_npkt = npkt; 8293 } 8294 } 8295 end_synchronized_op(sc, LOCK_HELD); 8296 return (rc); 8297 } 8298 8299 static int 8300 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8301 { 8302 struct vi_info *vi = arg1; 8303 struct adapter *sc = vi->adapter; 8304 int idx, rc, i; 8305 struct sge_rxq *rxq; 8306 uint8_t v; 8307 8308 idx = vi->tmr_idx; 8309 8310 rc = sysctl_handle_int(oidp, &idx, 0, req); 8311 if (rc != 0 || req->newptr == NULL) 8312 return (rc); 8313 8314 if (idx < 0 || idx >= SGE_NTIMERS) 8315 return (EINVAL); 8316 8317 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8318 "t4tmr"); 8319 if (rc) 8320 return (rc); 8321 8322 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8323 for_each_rxq(vi, i, rxq) { 8324 #ifdef atomic_store_rel_8 8325 atomic_store_rel_8(&rxq->iq.intr_params, v); 8326 #else 8327 rxq->iq.intr_params = v; 8328 #endif 8329 } 8330 vi->tmr_idx = idx; 8331 8332 end_synchronized_op(sc, LOCK_HELD); 8333 return (0); 8334 } 8335 8336 static int 8337 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8338 { 8339 struct vi_info *vi = arg1; 8340 struct adapter *sc = vi->adapter; 8341 int idx, rc; 8342 8343 idx = vi->pktc_idx; 8344 8345 rc = sysctl_handle_int(oidp, &idx, 0, req); 8346 if (rc != 0 || req->newptr == NULL) 8347 return (rc); 8348 8349 if (idx < -1 || idx >= SGE_NCOUNTERS) 8350 return (EINVAL); 8351 8352 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8353 "t4pktc"); 8354 if (rc) 8355 return (rc); 8356 8357 if (vi->flags & VI_INIT_DONE) 8358 rc = EBUSY; /* cannot be changed once the queues are created */ 8359 else 8360 vi->pktc_idx = idx; 8361 8362 end_synchronized_op(sc, LOCK_HELD); 8363 return (rc); 8364 } 8365 8366 static int 8367 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8368 { 8369 struct vi_info *vi = arg1; 8370 struct adapter *sc = vi->adapter; 8371 int qsize, rc; 8372 8373 qsize = vi->qsize_rxq; 8374 8375 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8376 if (rc != 0 || req->newptr == NULL) 8377 return (rc); 8378 8379 if (qsize < 128 || (qsize & 7)) 8380 return (EINVAL); 8381 8382 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8383 "t4rxqs"); 8384 if (rc) 8385 return (rc); 8386 8387 if (vi->flags & VI_INIT_DONE) 8388 rc = EBUSY; /* cannot be changed once the queues are created */ 8389 else 8390 vi->qsize_rxq = qsize; 8391 8392 end_synchronized_op(sc, LOCK_HELD); 8393 return (rc); 8394 } 8395 8396 static int 8397 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8398 { 8399 struct vi_info *vi = arg1; 8400 struct adapter *sc = vi->adapter; 8401 int qsize, rc; 8402 8403 qsize = vi->qsize_txq; 8404 8405 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8406 if (rc != 0 || req->newptr == NULL) 8407 return (rc); 8408 8409 if (qsize < 128 || qsize > 65536) 8410 return (EINVAL); 8411 8412 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8413 "t4txqs"); 8414 if (rc) 8415 return (rc); 8416 8417 if (vi->flags & VI_INIT_DONE) 8418 rc = EBUSY; /* cannot be changed once the queues are created */ 8419 else 8420 vi->qsize_txq = qsize; 8421 8422 end_synchronized_op(sc, LOCK_HELD); 8423 return (rc); 8424 } 8425 8426 static int 8427 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8428 { 8429 struct port_info *pi = arg1; 8430 struct adapter *sc = pi->adapter; 8431 struct link_config *lc = &pi->link_cfg; 8432 int rc; 8433 8434 if (req->newptr == NULL) { 8435 struct sbuf *sb; 8436 static char *bits = "\20\1RX\2TX\3AUTO"; 8437 8438 rc = sysctl_wire_old_buffer(req, 0); 8439 if (rc != 0) 8440 return(rc); 8441 8442 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8443 if (sb == NULL) 8444 return (ENOMEM); 8445 8446 if (lc->link_ok) { 8447 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8448 (lc->requested_fc & PAUSE_AUTONEG), bits); 8449 } else { 8450 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8451 PAUSE_RX | PAUSE_AUTONEG), bits); 8452 } 8453 rc = sbuf_finish(sb); 8454 sbuf_delete(sb); 8455 } else { 8456 char s[2]; 8457 int n; 8458 8459 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8460 PAUSE_AUTONEG)); 8461 s[1] = 0; 8462 8463 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8464 if (rc != 0) 8465 return(rc); 8466 8467 if (s[1] != 0) 8468 return (EINVAL); 8469 if (s[0] < '0' || s[0] > '9') 8470 return (EINVAL); /* not a number */ 8471 n = s[0] - '0'; 8472 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8473 return (EINVAL); /* some other bit is set too */ 8474 8475 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8476 "t4PAUSE"); 8477 if (rc) 8478 return (rc); 8479 if (!hw_off_limits(sc)) { 8480 PORT_LOCK(pi); 8481 lc->requested_fc = n; 8482 fixup_link_config(pi); 8483 if (pi->up_vis > 0) 8484 rc = apply_link_config(pi); 8485 set_current_media(pi); 8486 PORT_UNLOCK(pi); 8487 } 8488 end_synchronized_op(sc, 0); 8489 } 8490 8491 return (rc); 8492 } 8493 8494 static int 8495 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8496 { 8497 struct port_info *pi = arg1; 8498 struct link_config *lc = &pi->link_cfg; 8499 int rc; 8500 struct sbuf *sb; 8501 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8502 8503 rc = sysctl_wire_old_buffer(req, 0); 8504 if (rc != 0) 8505 return(rc); 8506 8507 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8508 if (sb == NULL) 8509 return (ENOMEM); 8510 if (lc->link_ok) 8511 sbuf_printf(sb, "%b", lc->fec, bits); 8512 else 8513 sbuf_printf(sb, "no link"); 8514 rc = sbuf_finish(sb); 8515 sbuf_delete(sb); 8516 8517 return (rc); 8518 } 8519 8520 static int 8521 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8522 { 8523 struct port_info *pi = arg1; 8524 struct adapter *sc = pi->adapter; 8525 struct link_config *lc = &pi->link_cfg; 8526 int rc; 8527 int8_t old; 8528 8529 if (req->newptr == NULL) { 8530 struct sbuf *sb; 8531 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8532 "\5RSVD3\6auto\7module"; 8533 8534 rc = sysctl_wire_old_buffer(req, 0); 8535 if (rc != 0) 8536 return(rc); 8537 8538 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8539 if (sb == NULL) 8540 return (ENOMEM); 8541 8542 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8543 rc = sbuf_finish(sb); 8544 sbuf_delete(sb); 8545 } else { 8546 char s[8]; 8547 int n; 8548 8549 snprintf(s, sizeof(s), "%d", 8550 lc->requested_fec == FEC_AUTO ? -1 : 8551 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8552 8553 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8554 if (rc != 0) 8555 return(rc); 8556 8557 n = strtol(&s[0], NULL, 0); 8558 if (n < 0 || n & FEC_AUTO) 8559 n = FEC_AUTO; 8560 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8561 return (EINVAL);/* some other bit is set too */ 8562 8563 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8564 "t4reqf"); 8565 if (rc) 8566 return (rc); 8567 PORT_LOCK(pi); 8568 old = lc->requested_fec; 8569 if (n == FEC_AUTO) 8570 lc->requested_fec = FEC_AUTO; 8571 else if (n == 0 || n == FEC_NONE) 8572 lc->requested_fec = FEC_NONE; 8573 else { 8574 if ((lc->pcaps | 8575 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8576 lc->pcaps) { 8577 rc = ENOTSUP; 8578 goto done; 8579 } 8580 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8581 FEC_MODULE); 8582 } 8583 if (!hw_off_limits(sc)) { 8584 fixup_link_config(pi); 8585 if (pi->up_vis > 0) { 8586 rc = apply_link_config(pi); 8587 if (rc != 0) { 8588 lc->requested_fec = old; 8589 if (rc == FW_EPROTO) 8590 rc = ENOTSUP; 8591 } 8592 } 8593 } 8594 done: 8595 PORT_UNLOCK(pi); 8596 end_synchronized_op(sc, 0); 8597 } 8598 8599 return (rc); 8600 } 8601 8602 static int 8603 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8604 { 8605 struct port_info *pi = arg1; 8606 struct adapter *sc = pi->adapter; 8607 struct link_config *lc = &pi->link_cfg; 8608 int rc; 8609 int8_t fec; 8610 struct sbuf *sb; 8611 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8612 8613 rc = sysctl_wire_old_buffer(req, 0); 8614 if (rc != 0) 8615 return (rc); 8616 8617 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8618 if (sb == NULL) 8619 return (ENOMEM); 8620 8621 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8622 rc = EBUSY; 8623 goto done; 8624 } 8625 if (hw_off_limits(sc)) { 8626 rc = ENXIO; 8627 goto done; 8628 } 8629 PORT_LOCK(pi); 8630 if (pi->up_vis == 0) { 8631 /* 8632 * If all the interfaces are administratively down the firmware 8633 * does not report transceiver changes. Refresh port info here. 8634 * This is the only reason we have a synchronized op in this 8635 * function. Just PORT_LOCK would have been enough otherwise. 8636 */ 8637 t4_update_port_info(pi); 8638 } 8639 8640 fec = lc->fec_hint; 8641 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8642 !fec_supported(lc->pcaps)) { 8643 sbuf_printf(sb, "n/a"); 8644 } else { 8645 if (fec == 0) 8646 fec = FEC_NONE; 8647 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8648 } 8649 rc = sbuf_finish(sb); 8650 PORT_UNLOCK(pi); 8651 done: 8652 sbuf_delete(sb); 8653 end_synchronized_op(sc, 0); 8654 8655 return (rc); 8656 } 8657 8658 static int 8659 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8660 { 8661 struct port_info *pi = arg1; 8662 struct adapter *sc = pi->adapter; 8663 struct link_config *lc = &pi->link_cfg; 8664 int rc, val; 8665 8666 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8667 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8668 else 8669 val = -1; 8670 rc = sysctl_handle_int(oidp, &val, 0, req); 8671 if (rc != 0 || req->newptr == NULL) 8672 return (rc); 8673 if (val == 0) 8674 val = AUTONEG_DISABLE; 8675 else if (val == 1) 8676 val = AUTONEG_ENABLE; 8677 else 8678 val = AUTONEG_AUTO; 8679 8680 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8681 "t4aneg"); 8682 if (rc) 8683 return (rc); 8684 PORT_LOCK(pi); 8685 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8686 rc = ENOTSUP; 8687 goto done; 8688 } 8689 lc->requested_aneg = val; 8690 if (!hw_off_limits(sc)) { 8691 fixup_link_config(pi); 8692 if (pi->up_vis > 0) 8693 rc = apply_link_config(pi); 8694 set_current_media(pi); 8695 } 8696 done: 8697 PORT_UNLOCK(pi); 8698 end_synchronized_op(sc, 0); 8699 return (rc); 8700 } 8701 8702 static int 8703 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8704 { 8705 struct port_info *pi = arg1; 8706 struct adapter *sc = pi->adapter; 8707 struct link_config *lc = &pi->link_cfg; 8708 int rc, val; 8709 8710 val = lc->force_fec; 8711 MPASS(val >= -1 && val <= 1); 8712 rc = sysctl_handle_int(oidp, &val, 0, req); 8713 if (rc != 0 || req->newptr == NULL) 8714 return (rc); 8715 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8716 return (ENOTSUP); 8717 if (val < -1 || val > 1) 8718 return (EINVAL); 8719 8720 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8721 if (rc) 8722 return (rc); 8723 PORT_LOCK(pi); 8724 lc->force_fec = val; 8725 if (!hw_off_limits(sc)) { 8726 fixup_link_config(pi); 8727 if (pi->up_vis > 0) 8728 rc = apply_link_config(pi); 8729 } 8730 PORT_UNLOCK(pi); 8731 end_synchronized_op(sc, 0); 8732 return (rc); 8733 } 8734 8735 static int 8736 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8737 { 8738 struct adapter *sc = arg1; 8739 int rc, reg = arg2; 8740 uint64_t val; 8741 8742 mtx_lock(&sc->reg_lock); 8743 if (hw_off_limits(sc)) 8744 rc = ENXIO; 8745 else { 8746 rc = 0; 8747 val = t4_read_reg64(sc, reg); 8748 } 8749 mtx_unlock(&sc->reg_lock); 8750 if (rc == 0) 8751 rc = sysctl_handle_64(oidp, &val, 0, req); 8752 return (rc); 8753 } 8754 8755 static int 8756 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8757 { 8758 struct adapter *sc = arg1; 8759 int rc, t; 8760 uint32_t param, val; 8761 8762 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8763 if (rc) 8764 return (rc); 8765 if (hw_off_limits(sc)) 8766 rc = ENXIO; 8767 else { 8768 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8769 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8770 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8771 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8772 } 8773 end_synchronized_op(sc, 0); 8774 if (rc) 8775 return (rc); 8776 8777 /* unknown is returned as 0 but we display -1 in that case */ 8778 t = val == 0 ? -1 : val; 8779 8780 rc = sysctl_handle_int(oidp, &t, 0, req); 8781 return (rc); 8782 } 8783 8784 static int 8785 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8786 { 8787 struct adapter *sc = arg1; 8788 int rc; 8789 uint32_t param, val; 8790 8791 if (sc->params.core_vdd == 0) { 8792 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8793 "t4vdd"); 8794 if (rc) 8795 return (rc); 8796 if (hw_off_limits(sc)) 8797 rc = ENXIO; 8798 else { 8799 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8800 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8801 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8802 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8803 ¶m, &val); 8804 } 8805 end_synchronized_op(sc, 0); 8806 if (rc) 8807 return (rc); 8808 sc->params.core_vdd = val; 8809 } 8810 8811 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8812 } 8813 8814 static int 8815 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8816 { 8817 struct adapter *sc = arg1; 8818 int rc, v; 8819 uint32_t param, val; 8820 8821 v = sc->sensor_resets; 8822 rc = sysctl_handle_int(oidp, &v, 0, req); 8823 if (rc != 0 || req->newptr == NULL || v <= 0) 8824 return (rc); 8825 8826 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8827 chip_id(sc) < CHELSIO_T5) 8828 return (ENOTSUP); 8829 8830 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8831 if (rc) 8832 return (rc); 8833 if (hw_off_limits(sc)) 8834 rc = ENXIO; 8835 else { 8836 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8837 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8838 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8839 val = 1; 8840 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8841 } 8842 end_synchronized_op(sc, 0); 8843 if (rc == 0) 8844 sc->sensor_resets++; 8845 return (rc); 8846 } 8847 8848 static int 8849 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8850 { 8851 struct adapter *sc = arg1; 8852 struct sbuf *sb; 8853 int rc; 8854 uint32_t param, val; 8855 8856 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8857 if (rc) 8858 return (rc); 8859 if (hw_off_limits(sc)) 8860 rc = ENXIO; 8861 else { 8862 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8863 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8864 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8865 } 8866 end_synchronized_op(sc, 0); 8867 if (rc) 8868 return (rc); 8869 8870 rc = sysctl_wire_old_buffer(req, 0); 8871 if (rc != 0) 8872 return (rc); 8873 8874 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8875 if (sb == NULL) 8876 return (ENOMEM); 8877 8878 if (val == 0xffffffff) { 8879 /* Only debug and custom firmwares report load averages. */ 8880 sbuf_printf(sb, "not available"); 8881 } else { 8882 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8883 (val >> 16) & 0xff); 8884 } 8885 rc = sbuf_finish(sb); 8886 sbuf_delete(sb); 8887 8888 return (rc); 8889 } 8890 8891 static int 8892 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8893 { 8894 struct adapter *sc = arg1; 8895 struct sbuf *sb; 8896 int rc, i; 8897 uint16_t incr[NMTUS][NCCTRL_WIN]; 8898 static const char *dec_fac[] = { 8899 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8900 "0.9375" 8901 }; 8902 8903 rc = sysctl_wire_old_buffer(req, 0); 8904 if (rc != 0) 8905 return (rc); 8906 8907 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8908 if (sb == NULL) 8909 return (ENOMEM); 8910 8911 mtx_lock(&sc->reg_lock); 8912 if (hw_off_limits(sc)) 8913 rc = ENXIO; 8914 else 8915 t4_read_cong_tbl(sc, incr); 8916 mtx_unlock(&sc->reg_lock); 8917 if (rc) 8918 goto done; 8919 8920 for (i = 0; i < NCCTRL_WIN; ++i) { 8921 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8922 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8923 incr[5][i], incr[6][i], incr[7][i]); 8924 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8925 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8926 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8927 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8928 } 8929 8930 rc = sbuf_finish(sb); 8931 done: 8932 sbuf_delete(sb); 8933 return (rc); 8934 } 8935 8936 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8937 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8938 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8939 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8940 }; 8941 8942 static int 8943 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8944 { 8945 struct adapter *sc = arg1; 8946 struct sbuf *sb; 8947 int rc, i, n, qid = arg2; 8948 uint32_t *buf, *p; 8949 char *qtype; 8950 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8951 8952 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8953 ("%s: bad qid %d\n", __func__, qid)); 8954 8955 if (qid < CIM_NUM_IBQ) { 8956 /* inbound queue */ 8957 qtype = "IBQ"; 8958 n = 4 * CIM_IBQ_SIZE; 8959 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8960 mtx_lock(&sc->reg_lock); 8961 if (hw_off_limits(sc)) 8962 rc = -ENXIO; 8963 else 8964 rc = t4_read_cim_ibq(sc, qid, buf, n); 8965 mtx_unlock(&sc->reg_lock); 8966 } else { 8967 /* outbound queue */ 8968 qtype = "OBQ"; 8969 qid -= CIM_NUM_IBQ; 8970 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8971 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8972 mtx_lock(&sc->reg_lock); 8973 if (hw_off_limits(sc)) 8974 rc = -ENXIO; 8975 else 8976 rc = t4_read_cim_obq(sc, qid, buf, n); 8977 mtx_unlock(&sc->reg_lock); 8978 } 8979 8980 if (rc < 0) { 8981 rc = -rc; 8982 goto done; 8983 } 8984 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8985 8986 rc = sysctl_wire_old_buffer(req, 0); 8987 if (rc != 0) 8988 goto done; 8989 8990 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8991 if (sb == NULL) { 8992 rc = ENOMEM; 8993 goto done; 8994 } 8995 8996 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8997 for (i = 0, p = buf; i < n; i += 16, p += 4) 8998 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8999 p[2], p[3]); 9000 9001 rc = sbuf_finish(sb); 9002 sbuf_delete(sb); 9003 done: 9004 free(buf, M_CXGBE); 9005 return (rc); 9006 } 9007 9008 static void 9009 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9010 { 9011 uint32_t *p; 9012 9013 sbuf_printf(sb, "Status Data PC%s", 9014 cfg & F_UPDBGLACAPTPCONLY ? "" : 9015 " LS0Stat LS0Addr LS0Data"); 9016 9017 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9018 if (cfg & F_UPDBGLACAPTPCONLY) { 9019 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9020 p[6], p[7]); 9021 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9022 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9023 p[4] & 0xff, p[5] >> 8); 9024 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9025 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9026 p[1] & 0xf, p[2] >> 4); 9027 } else { 9028 sbuf_printf(sb, 9029 "\n %02x %x%07x %x%07x %08x %08x " 9030 "%08x%08x%08x%08x", 9031 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9032 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9033 p[6], p[7]); 9034 } 9035 } 9036 } 9037 9038 static void 9039 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9040 { 9041 uint32_t *p; 9042 9043 sbuf_printf(sb, "Status Inst Data PC%s", 9044 cfg & F_UPDBGLACAPTPCONLY ? "" : 9045 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9046 9047 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9048 if (cfg & F_UPDBGLACAPTPCONLY) { 9049 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9050 p[3] & 0xff, p[2], p[1], p[0]); 9051 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9052 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9053 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9054 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9055 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9056 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9057 p[6] >> 16); 9058 } else { 9059 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9060 "%08x %08x %08x %08x %08x %08x", 9061 (p[9] >> 16) & 0xff, 9062 p[9] & 0xffff, p[8] >> 16, 9063 p[8] & 0xffff, p[7] >> 16, 9064 p[7] & 0xffff, p[6] >> 16, 9065 p[2], p[1], p[0], p[5], p[4], p[3]); 9066 } 9067 } 9068 } 9069 9070 static int 9071 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9072 { 9073 uint32_t cfg, *buf; 9074 int rc; 9075 9076 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9077 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9078 M_ZERO | flags); 9079 if (buf == NULL) 9080 return (ENOMEM); 9081 9082 mtx_lock(&sc->reg_lock); 9083 if (hw_off_limits(sc)) 9084 rc = ENXIO; 9085 else { 9086 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9087 if (rc == 0) 9088 rc = -t4_cim_read_la(sc, buf, NULL); 9089 } 9090 mtx_unlock(&sc->reg_lock); 9091 if (rc == 0) { 9092 if (chip_id(sc) < CHELSIO_T6) 9093 sbuf_cim_la4(sc, sb, buf, cfg); 9094 else 9095 sbuf_cim_la6(sc, sb, buf, cfg); 9096 } 9097 free(buf, M_CXGBE); 9098 return (rc); 9099 } 9100 9101 static int 9102 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9103 { 9104 struct adapter *sc = arg1; 9105 struct sbuf *sb; 9106 int rc; 9107 9108 rc = sysctl_wire_old_buffer(req, 0); 9109 if (rc != 0) 9110 return (rc); 9111 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9112 if (sb == NULL) 9113 return (ENOMEM); 9114 9115 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9116 if (rc == 0) 9117 rc = sbuf_finish(sb); 9118 sbuf_delete(sb); 9119 return (rc); 9120 } 9121 9122 static void 9123 dump_cim_regs(struct adapter *sc) 9124 { 9125 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9126 device_get_nameunit(sc->dev), 9127 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9128 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9129 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9130 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9131 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9132 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9133 device_get_nameunit(sc->dev), 9134 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9135 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9136 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9137 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9138 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9139 } 9140 9141 static void 9142 dump_cimla(struct adapter *sc) 9143 { 9144 struct sbuf sb; 9145 int rc; 9146 9147 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9148 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9149 device_get_nameunit(sc->dev)); 9150 return; 9151 } 9152 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9153 if (rc == 0) { 9154 rc = sbuf_finish(&sb); 9155 if (rc == 0) { 9156 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9157 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9158 } 9159 } 9160 sbuf_delete(&sb); 9161 } 9162 9163 void 9164 t4_os_cim_err(struct adapter *sc) 9165 { 9166 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9167 } 9168 9169 static int 9170 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9171 { 9172 struct adapter *sc = arg1; 9173 u_int i; 9174 struct sbuf *sb; 9175 uint32_t *buf, *p; 9176 int rc; 9177 9178 rc = sysctl_wire_old_buffer(req, 0); 9179 if (rc != 0) 9180 return (rc); 9181 9182 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9183 if (sb == NULL) 9184 return (ENOMEM); 9185 9186 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9187 M_ZERO | M_WAITOK); 9188 9189 mtx_lock(&sc->reg_lock); 9190 if (hw_off_limits(sc)) 9191 rc = ENXIO; 9192 else 9193 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9194 mtx_unlock(&sc->reg_lock); 9195 if (rc) 9196 goto done; 9197 9198 p = buf; 9199 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9200 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9201 p[1], p[0]); 9202 } 9203 9204 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9205 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9206 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9207 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9208 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9209 (p[1] >> 2) | ((p[2] & 3) << 30), 9210 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9211 p[0] & 1); 9212 } 9213 rc = sbuf_finish(sb); 9214 done: 9215 sbuf_delete(sb); 9216 free(buf, M_CXGBE); 9217 return (rc); 9218 } 9219 9220 static int 9221 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9222 { 9223 struct adapter *sc = arg1; 9224 u_int i; 9225 struct sbuf *sb; 9226 uint32_t *buf, *p; 9227 int rc; 9228 9229 rc = sysctl_wire_old_buffer(req, 0); 9230 if (rc != 0) 9231 return (rc); 9232 9233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9234 if (sb == NULL) 9235 return (ENOMEM); 9236 9237 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9238 M_ZERO | M_WAITOK); 9239 9240 mtx_lock(&sc->reg_lock); 9241 if (hw_off_limits(sc)) 9242 rc = ENXIO; 9243 else 9244 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9245 mtx_unlock(&sc->reg_lock); 9246 if (rc) 9247 goto done; 9248 9249 p = buf; 9250 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9251 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9252 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9253 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9254 p[4], p[3], p[2], p[1], p[0]); 9255 } 9256 9257 sbuf_printf(sb, "\n\nCntl ID Data"); 9258 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9259 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9260 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9261 } 9262 9263 rc = sbuf_finish(sb); 9264 done: 9265 sbuf_delete(sb); 9266 free(buf, M_CXGBE); 9267 return (rc); 9268 } 9269 9270 static int 9271 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9272 { 9273 struct adapter *sc = arg1; 9274 struct sbuf *sb; 9275 int rc, i; 9276 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9277 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9278 uint16_t thres[CIM_NUM_IBQ]; 9279 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9280 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9281 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9282 9283 cim_num_obq = sc->chip_params->cim_num_obq; 9284 if (is_t4(sc)) { 9285 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9286 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9287 } else { 9288 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9289 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9290 } 9291 nq = CIM_NUM_IBQ + cim_num_obq; 9292 9293 mtx_lock(&sc->reg_lock); 9294 if (hw_off_limits(sc)) 9295 rc = ENXIO; 9296 else { 9297 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9298 if (rc == 0) { 9299 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9300 obq_wr); 9301 if (rc == 0) 9302 t4_read_cimq_cfg(sc, base, size, thres); 9303 } 9304 } 9305 mtx_unlock(&sc->reg_lock); 9306 if (rc) 9307 return (rc); 9308 9309 rc = sysctl_wire_old_buffer(req, 0); 9310 if (rc != 0) 9311 return (rc); 9312 9313 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9314 if (sb == NULL) 9315 return (ENOMEM); 9316 9317 sbuf_printf(sb, 9318 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9319 9320 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9321 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9322 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9323 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9324 G_QUEREMFLITS(p[2]) * 16); 9325 for ( ; i < nq; i++, p += 4, wr += 2) 9326 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9327 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9328 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9329 G_QUEREMFLITS(p[2]) * 16); 9330 9331 rc = sbuf_finish(sb); 9332 sbuf_delete(sb); 9333 9334 return (rc); 9335 } 9336 9337 static int 9338 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9339 { 9340 struct adapter *sc = arg1; 9341 struct sbuf *sb; 9342 int rc; 9343 struct tp_cpl_stats stats; 9344 9345 rc = sysctl_wire_old_buffer(req, 0); 9346 if (rc != 0) 9347 return (rc); 9348 9349 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9350 if (sb == NULL) 9351 return (ENOMEM); 9352 9353 mtx_lock(&sc->reg_lock); 9354 if (hw_off_limits(sc)) 9355 rc = ENXIO; 9356 else 9357 t4_tp_get_cpl_stats(sc, &stats, 0); 9358 mtx_unlock(&sc->reg_lock); 9359 if (rc) 9360 goto done; 9361 9362 if (sc->chip_params->nchan > 2) { 9363 sbuf_printf(sb, " channel 0 channel 1" 9364 " channel 2 channel 3"); 9365 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9366 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9367 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9368 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9369 } else { 9370 sbuf_printf(sb, " channel 0 channel 1"); 9371 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9372 stats.req[0], stats.req[1]); 9373 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9374 stats.rsp[0], stats.rsp[1]); 9375 } 9376 9377 rc = sbuf_finish(sb); 9378 done: 9379 sbuf_delete(sb); 9380 return (rc); 9381 } 9382 9383 static int 9384 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9385 { 9386 struct adapter *sc = arg1; 9387 struct sbuf *sb; 9388 int rc; 9389 struct tp_usm_stats stats; 9390 9391 rc = sysctl_wire_old_buffer(req, 0); 9392 if (rc != 0) 9393 return(rc); 9394 9395 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9396 if (sb == NULL) 9397 return (ENOMEM); 9398 9399 mtx_lock(&sc->reg_lock); 9400 if (hw_off_limits(sc)) 9401 rc = ENXIO; 9402 else 9403 t4_get_usm_stats(sc, &stats, 1); 9404 mtx_unlock(&sc->reg_lock); 9405 if (rc == 0) { 9406 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9407 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9408 sbuf_printf(sb, "Drops: %u", stats.drops); 9409 rc = sbuf_finish(sb); 9410 } 9411 sbuf_delete(sb); 9412 9413 return (rc); 9414 } 9415 9416 static int 9417 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9418 { 9419 struct adapter *sc = arg1; 9420 struct sbuf *sb; 9421 int rc; 9422 struct tp_tid_stats stats; 9423 9424 rc = sysctl_wire_old_buffer(req, 0); 9425 if (rc != 0) 9426 return(rc); 9427 9428 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9429 if (sb == NULL) 9430 return (ENOMEM); 9431 9432 mtx_lock(&sc->reg_lock); 9433 if (hw_off_limits(sc)) 9434 rc = ENXIO; 9435 else 9436 t4_tp_get_tid_stats(sc, &stats, 1); 9437 mtx_unlock(&sc->reg_lock); 9438 if (rc == 0) { 9439 sbuf_printf(sb, "Delete: %u\n", stats.del); 9440 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9441 sbuf_printf(sb, "Active: %u\n", stats.act); 9442 sbuf_printf(sb, "Passive: %u", stats.pas); 9443 rc = sbuf_finish(sb); 9444 } 9445 sbuf_delete(sb); 9446 9447 return (rc); 9448 } 9449 9450 static const char * const devlog_level_strings[] = { 9451 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9452 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9453 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9454 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9455 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9456 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9457 }; 9458 9459 static const char * const devlog_facility_strings[] = { 9460 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9461 [FW_DEVLOG_FACILITY_CF] = "CF", 9462 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9463 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9464 [FW_DEVLOG_FACILITY_RES] = "RES", 9465 [FW_DEVLOG_FACILITY_HW] = "HW", 9466 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9467 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9468 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9469 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9470 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9471 [FW_DEVLOG_FACILITY_VI] = "VI", 9472 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9473 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9474 [FW_DEVLOG_FACILITY_TM] = "TM", 9475 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9476 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9477 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9478 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9479 [FW_DEVLOG_FACILITY_RI] = "RI", 9480 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9481 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9482 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9483 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9484 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9485 }; 9486 9487 static int 9488 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9489 { 9490 int i, j, rc, nentries, first = 0; 9491 struct devlog_params *dparams = &sc->params.devlog; 9492 struct fw_devlog_e *buf, *e; 9493 uint64_t ftstamp = UINT64_MAX; 9494 9495 if (dparams->addr == 0) 9496 return (ENXIO); 9497 9498 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9499 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9500 if (buf == NULL) 9501 return (ENOMEM); 9502 9503 mtx_lock(&sc->reg_lock); 9504 if (hw_off_limits(sc)) 9505 rc = ENXIO; 9506 else 9507 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9508 dparams->size); 9509 mtx_unlock(&sc->reg_lock); 9510 if (rc != 0) 9511 goto done; 9512 9513 nentries = dparams->size / sizeof(struct fw_devlog_e); 9514 for (i = 0; i < nentries; i++) { 9515 e = &buf[i]; 9516 9517 if (e->timestamp == 0) 9518 break; /* end */ 9519 9520 e->timestamp = be64toh(e->timestamp); 9521 e->seqno = be32toh(e->seqno); 9522 for (j = 0; j < 8; j++) 9523 e->params[j] = be32toh(e->params[j]); 9524 9525 if (e->timestamp < ftstamp) { 9526 ftstamp = e->timestamp; 9527 first = i; 9528 } 9529 } 9530 9531 if (buf[first].timestamp == 0) 9532 goto done; /* nothing in the log */ 9533 9534 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9535 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9536 9537 i = first; 9538 do { 9539 e = &buf[i]; 9540 if (e->timestamp == 0) 9541 break; /* end */ 9542 9543 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9544 e->seqno, e->timestamp, 9545 (e->level < nitems(devlog_level_strings) ? 9546 devlog_level_strings[e->level] : "UNKNOWN"), 9547 (e->facility < nitems(devlog_facility_strings) ? 9548 devlog_facility_strings[e->facility] : "UNKNOWN")); 9549 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9550 e->params[2], e->params[3], e->params[4], 9551 e->params[5], e->params[6], e->params[7]); 9552 9553 if (++i == nentries) 9554 i = 0; 9555 } while (i != first); 9556 done: 9557 free(buf, M_CXGBE); 9558 return (rc); 9559 } 9560 9561 static int 9562 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9563 { 9564 struct adapter *sc = arg1; 9565 int rc; 9566 struct sbuf *sb; 9567 9568 rc = sysctl_wire_old_buffer(req, 0); 9569 if (rc != 0) 9570 return (rc); 9571 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9572 if (sb == NULL) 9573 return (ENOMEM); 9574 9575 rc = sbuf_devlog(sc, sb, M_WAITOK); 9576 if (rc == 0) 9577 rc = sbuf_finish(sb); 9578 sbuf_delete(sb); 9579 return (rc); 9580 } 9581 9582 static void 9583 dump_devlog(struct adapter *sc) 9584 { 9585 int rc; 9586 struct sbuf sb; 9587 9588 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9589 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9590 device_get_nameunit(sc->dev)); 9591 return; 9592 } 9593 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9594 if (rc == 0) { 9595 rc = sbuf_finish(&sb); 9596 if (rc == 0) { 9597 log(LOG_DEBUG, "%s: device log follows.\n%s", 9598 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9599 } 9600 } 9601 sbuf_delete(&sb); 9602 } 9603 9604 static int 9605 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9606 { 9607 struct adapter *sc = arg1; 9608 struct sbuf *sb; 9609 int rc; 9610 struct tp_fcoe_stats stats[MAX_NCHAN]; 9611 int i, nchan = sc->chip_params->nchan; 9612 9613 rc = sysctl_wire_old_buffer(req, 0); 9614 if (rc != 0) 9615 return (rc); 9616 9617 mtx_lock(&sc->reg_lock); 9618 if (hw_off_limits(sc)) 9619 rc = ENXIO; 9620 else { 9621 for (i = 0; i < nchan; i++) 9622 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9623 } 9624 mtx_unlock(&sc->reg_lock); 9625 if (rc != 0) 9626 return (rc); 9627 9628 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9629 if (sb == NULL) 9630 return (ENOMEM); 9631 9632 if (nchan > 2) { 9633 sbuf_printf(sb, " channel 0 channel 1" 9634 " channel 2 channel 3"); 9635 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9636 stats[0].octets_ddp, stats[1].octets_ddp, 9637 stats[2].octets_ddp, stats[3].octets_ddp); 9638 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9639 stats[0].frames_ddp, stats[1].frames_ddp, 9640 stats[2].frames_ddp, stats[3].frames_ddp); 9641 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9642 stats[0].frames_drop, stats[1].frames_drop, 9643 stats[2].frames_drop, stats[3].frames_drop); 9644 } else { 9645 sbuf_printf(sb, " channel 0 channel 1"); 9646 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9647 stats[0].octets_ddp, stats[1].octets_ddp); 9648 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9649 stats[0].frames_ddp, stats[1].frames_ddp); 9650 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9651 stats[0].frames_drop, stats[1].frames_drop); 9652 } 9653 9654 rc = sbuf_finish(sb); 9655 sbuf_delete(sb); 9656 9657 return (rc); 9658 } 9659 9660 static int 9661 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9662 { 9663 struct adapter *sc = arg1; 9664 struct sbuf *sb; 9665 int rc, i; 9666 unsigned int map, kbps, ipg, mode; 9667 unsigned int pace_tab[NTX_SCHED]; 9668 9669 rc = sysctl_wire_old_buffer(req, 0); 9670 if (rc != 0) 9671 return (rc); 9672 9673 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9674 if (sb == NULL) 9675 return (ENOMEM); 9676 9677 mtx_lock(&sc->reg_lock); 9678 if (hw_off_limits(sc)) { 9679 rc = ENXIO; 9680 goto done; 9681 } 9682 9683 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9684 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9685 t4_read_pace_tbl(sc, pace_tab); 9686 9687 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9688 "Class IPG (0.1 ns) Flow IPG (us)"); 9689 9690 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9691 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9692 sbuf_printf(sb, "\n %u %-5s %u ", i, 9693 (mode & (1 << i)) ? "flow" : "class", map & 3); 9694 if (kbps) 9695 sbuf_printf(sb, "%9u ", kbps); 9696 else 9697 sbuf_printf(sb, " disabled "); 9698 9699 if (ipg) 9700 sbuf_printf(sb, "%13u ", ipg); 9701 else 9702 sbuf_printf(sb, " disabled "); 9703 9704 if (pace_tab[i]) 9705 sbuf_printf(sb, "%10u", pace_tab[i]); 9706 else 9707 sbuf_printf(sb, " disabled"); 9708 } 9709 rc = sbuf_finish(sb); 9710 done: 9711 mtx_unlock(&sc->reg_lock); 9712 sbuf_delete(sb); 9713 return (rc); 9714 } 9715 9716 static int 9717 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9718 { 9719 struct adapter *sc = arg1; 9720 struct sbuf *sb; 9721 int rc, i, j; 9722 uint64_t *p0, *p1; 9723 struct lb_port_stats s[2]; 9724 static const char *stat_name[] = { 9725 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9726 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9727 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9728 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9729 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9730 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9731 "BG2FramesTrunc:", "BG3FramesTrunc:" 9732 }; 9733 9734 rc = sysctl_wire_old_buffer(req, 0); 9735 if (rc != 0) 9736 return (rc); 9737 9738 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9739 if (sb == NULL) 9740 return (ENOMEM); 9741 9742 memset(s, 0, sizeof(s)); 9743 9744 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9745 mtx_lock(&sc->reg_lock); 9746 if (hw_off_limits(sc)) 9747 rc = ENXIO; 9748 else { 9749 t4_get_lb_stats(sc, i, &s[0]); 9750 t4_get_lb_stats(sc, i + 1, &s[1]); 9751 } 9752 mtx_unlock(&sc->reg_lock); 9753 if (rc != 0) 9754 break; 9755 9756 p0 = &s[0].octets; 9757 p1 = &s[1].octets; 9758 sbuf_printf(sb, "%s Loopback %u" 9759 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9760 9761 for (j = 0; j < nitems(stat_name); j++) 9762 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9763 *p0++, *p1++); 9764 } 9765 9766 rc = sbuf_finish(sb); 9767 sbuf_delete(sb); 9768 9769 return (rc); 9770 } 9771 9772 static int 9773 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9774 { 9775 int rc = 0; 9776 struct port_info *pi = arg1; 9777 struct link_config *lc = &pi->link_cfg; 9778 struct sbuf *sb; 9779 9780 rc = sysctl_wire_old_buffer(req, 0); 9781 if (rc != 0) 9782 return(rc); 9783 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9784 if (sb == NULL) 9785 return (ENOMEM); 9786 9787 if (lc->link_ok || lc->link_down_rc == 255) 9788 sbuf_printf(sb, "n/a"); 9789 else 9790 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9791 9792 rc = sbuf_finish(sb); 9793 sbuf_delete(sb); 9794 9795 return (rc); 9796 } 9797 9798 struct mem_desc { 9799 u_int base; 9800 u_int limit; 9801 u_int idx; 9802 }; 9803 9804 static int 9805 mem_desc_cmp(const void *a, const void *b) 9806 { 9807 const u_int v1 = ((const struct mem_desc *)a)->base; 9808 const u_int v2 = ((const struct mem_desc *)b)->base; 9809 9810 if (v1 < v2) 9811 return (-1); 9812 else if (v1 > v2) 9813 return (1); 9814 9815 return (0); 9816 } 9817 9818 static void 9819 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9820 unsigned int to) 9821 { 9822 unsigned int size; 9823 9824 if (from == to) 9825 return; 9826 9827 size = to - from + 1; 9828 if (size == 0) 9829 return; 9830 9831 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9832 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9833 } 9834 9835 static int 9836 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9837 { 9838 struct adapter *sc = arg1; 9839 struct sbuf *sb; 9840 int rc, i, n; 9841 uint32_t lo, hi, used, free, alloc; 9842 static const char *memory[] = { 9843 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9844 }; 9845 static const char *region[] = { 9846 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9847 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9848 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9849 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9850 "RQUDP region:", "PBL region:", "TXPBL region:", 9851 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9852 "ULPTX state:", "On-chip queues:", 9853 }; 9854 struct mem_desc avail[4]; 9855 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9856 struct mem_desc *md = mem; 9857 9858 rc = sysctl_wire_old_buffer(req, 0); 9859 if (rc != 0) 9860 return (rc); 9861 9862 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9863 if (sb == NULL) 9864 return (ENOMEM); 9865 9866 for (i = 0; i < nitems(mem); i++) { 9867 mem[i].limit = 0; 9868 mem[i].idx = i; 9869 } 9870 9871 mtx_lock(&sc->reg_lock); 9872 if (hw_off_limits(sc)) { 9873 rc = ENXIO; 9874 goto done; 9875 } 9876 9877 /* Find and sort the populated memory ranges */ 9878 i = 0; 9879 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9880 if (lo & F_EDRAM0_ENABLE) { 9881 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9882 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9883 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9884 avail[i].idx = 0; 9885 i++; 9886 } 9887 if (lo & F_EDRAM1_ENABLE) { 9888 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9889 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9890 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9891 avail[i].idx = 1; 9892 i++; 9893 } 9894 if (lo & F_EXT_MEM_ENABLE) { 9895 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9896 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9897 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9898 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9899 i++; 9900 } 9901 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9902 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9903 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9904 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9905 avail[i].idx = 4; 9906 i++; 9907 } 9908 if (is_t6(sc) && lo & F_HMA_MUX) { 9909 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9910 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9911 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9912 avail[i].idx = 5; 9913 i++; 9914 } 9915 MPASS(i <= nitems(avail)); 9916 if (!i) /* no memory available */ 9917 goto done; 9918 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9919 9920 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9921 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9922 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9923 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9924 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9925 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9926 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9927 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9928 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9929 9930 /* the next few have explicit upper bounds */ 9931 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9932 md->limit = md->base - 1 + 9933 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9934 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9935 md++; 9936 9937 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9938 md->limit = md->base - 1 + 9939 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9940 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9941 md++; 9942 9943 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9944 if (chip_id(sc) <= CHELSIO_T5) 9945 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9946 else 9947 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9948 md->limit = 0; 9949 } else { 9950 md->base = 0; 9951 md->idx = nitems(region); /* hide it */ 9952 } 9953 md++; 9954 9955 #define ulp_region(reg) \ 9956 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9957 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9958 9959 ulp_region(RX_ISCSI); 9960 ulp_region(RX_TDDP); 9961 ulp_region(TX_TPT); 9962 ulp_region(RX_STAG); 9963 ulp_region(RX_RQ); 9964 ulp_region(RX_RQUDP); 9965 ulp_region(RX_PBL); 9966 ulp_region(TX_PBL); 9967 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9968 ulp_region(RX_TLS_KEY); 9969 } 9970 #undef ulp_region 9971 9972 md->base = 0; 9973 if (is_t4(sc)) 9974 md->idx = nitems(region); 9975 else { 9976 uint32_t size = 0; 9977 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9978 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9979 9980 if (is_t5(sc)) { 9981 if (sge_ctrl & F_VFIFO_ENABLE) 9982 size = fifo_size << 2; 9983 } else 9984 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9985 9986 if (size) { 9987 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9988 md->limit = md->base + size - 1; 9989 } else 9990 md->idx = nitems(region); 9991 } 9992 md++; 9993 9994 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9995 md->limit = 0; 9996 md++; 9997 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9998 md->limit = 0; 9999 md++; 10000 10001 md->base = sc->vres.ocq.start; 10002 if (sc->vres.ocq.size) 10003 md->limit = md->base + sc->vres.ocq.size - 1; 10004 else 10005 md->idx = nitems(region); /* hide it */ 10006 md++; 10007 10008 /* add any address-space holes, there can be up to 3 */ 10009 for (n = 0; n < i - 1; n++) 10010 if (avail[n].limit < avail[n + 1].base) 10011 (md++)->base = avail[n].limit; 10012 if (avail[n].limit) 10013 (md++)->base = avail[n].limit; 10014 10015 n = md - mem; 10016 MPASS(n <= nitems(mem)); 10017 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10018 10019 for (lo = 0; lo < i; lo++) 10020 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10021 avail[lo].limit - 1); 10022 10023 sbuf_printf(sb, "\n"); 10024 for (i = 0; i < n; i++) { 10025 if (mem[i].idx >= nitems(region)) 10026 continue; /* skip holes */ 10027 if (!mem[i].limit) 10028 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10029 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10030 mem[i].limit); 10031 } 10032 10033 sbuf_printf(sb, "\n"); 10034 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10035 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10036 mem_region_show(sb, "uP RAM:", lo, hi); 10037 10038 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10039 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10040 mem_region_show(sb, "uP Extmem2:", lo, hi); 10041 10042 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10043 for (i = 0, free = 0; i < 2; i++) 10044 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10045 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10046 G_PMRXMAXPAGE(lo), free, 10047 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10048 (lo & F_PMRXNUMCHN) ? 2 : 1); 10049 10050 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10051 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10052 for (i = 0, free = 0; i < 4; i++) 10053 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10054 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10055 G_PMTXMAXPAGE(lo), free, 10056 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10057 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10058 sbuf_printf(sb, "%u p-structs (%u free)\n", 10059 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10060 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10061 10062 for (i = 0; i < 4; i++) { 10063 if (chip_id(sc) > CHELSIO_T5) 10064 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10065 else 10066 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10067 if (is_t5(sc)) { 10068 used = G_T5_USED(lo); 10069 alloc = G_T5_ALLOC(lo); 10070 } else { 10071 used = G_USED(lo); 10072 alloc = G_ALLOC(lo); 10073 } 10074 /* For T6 these are MAC buffer groups */ 10075 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10076 i, used, alloc); 10077 } 10078 for (i = 0; i < sc->chip_params->nchan; i++) { 10079 if (chip_id(sc) > CHELSIO_T5) 10080 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10081 else 10082 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10083 if (is_t5(sc)) { 10084 used = G_T5_USED(lo); 10085 alloc = G_T5_ALLOC(lo); 10086 } else { 10087 used = G_USED(lo); 10088 alloc = G_ALLOC(lo); 10089 } 10090 /* For T6 these are MAC buffer groups */ 10091 sbuf_printf(sb, 10092 "\nLoopback %d using %u pages out of %u allocated", 10093 i, used, alloc); 10094 } 10095 done: 10096 mtx_unlock(&sc->reg_lock); 10097 if (rc == 0) 10098 rc = sbuf_finish(sb); 10099 sbuf_delete(sb); 10100 return (rc); 10101 } 10102 10103 static inline void 10104 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10105 { 10106 *mask = x | y; 10107 y = htobe64(y); 10108 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10109 } 10110 10111 static int 10112 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10113 { 10114 struct adapter *sc = arg1; 10115 struct sbuf *sb; 10116 int rc, i; 10117 10118 MPASS(chip_id(sc) <= CHELSIO_T5); 10119 10120 rc = sysctl_wire_old_buffer(req, 0); 10121 if (rc != 0) 10122 return (rc); 10123 10124 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10125 if (sb == NULL) 10126 return (ENOMEM); 10127 10128 sbuf_printf(sb, 10129 "Idx Ethernet address Mask Vld Ports PF" 10130 " VF Replication P0 P1 P2 P3 ML"); 10131 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10132 uint64_t tcamx, tcamy, mask; 10133 uint32_t cls_lo, cls_hi; 10134 uint8_t addr[ETHER_ADDR_LEN]; 10135 10136 mtx_lock(&sc->reg_lock); 10137 if (hw_off_limits(sc)) 10138 rc = ENXIO; 10139 else { 10140 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10141 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10142 } 10143 mtx_unlock(&sc->reg_lock); 10144 if (rc != 0) 10145 break; 10146 if (tcamx & tcamy) 10147 continue; 10148 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10149 mtx_lock(&sc->reg_lock); 10150 if (hw_off_limits(sc)) 10151 rc = ENXIO; 10152 else { 10153 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10154 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10155 } 10156 mtx_unlock(&sc->reg_lock); 10157 if (rc != 0) 10158 break; 10159 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10160 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10161 addr[3], addr[4], addr[5], (uintmax_t)mask, 10162 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10163 G_PORTMAP(cls_hi), G_PF(cls_lo), 10164 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10165 10166 if (cls_lo & F_REPLICATE) { 10167 struct fw_ldst_cmd ldst_cmd; 10168 10169 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10170 ldst_cmd.op_to_addrspace = 10171 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10172 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10173 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10174 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10175 ldst_cmd.u.mps.rplc.fid_idx = 10176 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10177 V_FW_LDST_CMD_IDX(i)); 10178 10179 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10180 "t4mps"); 10181 if (rc) 10182 break; 10183 if (hw_off_limits(sc)) 10184 rc = ENXIO; 10185 else 10186 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10187 sizeof(ldst_cmd), &ldst_cmd); 10188 end_synchronized_op(sc, 0); 10189 if (rc != 0) 10190 break; 10191 else { 10192 sbuf_printf(sb, " %08x %08x %08x %08x", 10193 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10194 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10195 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10196 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10197 } 10198 } else 10199 sbuf_printf(sb, "%36s", ""); 10200 10201 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10202 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10203 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10204 } 10205 10206 if (rc) 10207 (void) sbuf_finish(sb); 10208 else 10209 rc = sbuf_finish(sb); 10210 sbuf_delete(sb); 10211 10212 return (rc); 10213 } 10214 10215 static int 10216 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10217 { 10218 struct adapter *sc = arg1; 10219 struct sbuf *sb; 10220 int rc, i; 10221 10222 MPASS(chip_id(sc) > CHELSIO_T5); 10223 10224 rc = sysctl_wire_old_buffer(req, 0); 10225 if (rc != 0) 10226 return (rc); 10227 10228 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10229 if (sb == NULL) 10230 return (ENOMEM); 10231 10232 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10233 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10234 " Replication" 10235 " P0 P1 P2 P3 ML\n"); 10236 10237 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10238 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10239 uint16_t ivlan; 10240 uint64_t tcamx, tcamy, val, mask; 10241 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10242 uint8_t addr[ETHER_ADDR_LEN]; 10243 10244 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10245 if (i < 256) 10246 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10247 else 10248 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10249 mtx_lock(&sc->reg_lock); 10250 if (hw_off_limits(sc)) 10251 rc = ENXIO; 10252 else { 10253 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10254 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10255 tcamy = G_DMACH(val) << 32; 10256 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10257 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10258 } 10259 mtx_unlock(&sc->reg_lock); 10260 if (rc != 0) 10261 break; 10262 10263 lookup_type = G_DATALKPTYPE(data2); 10264 port_num = G_DATAPORTNUM(data2); 10265 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10266 /* Inner header VNI */ 10267 vniy = ((data2 & F_DATAVIDH2) << 23) | 10268 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10269 dip_hit = data2 & F_DATADIPHIT; 10270 vlan_vld = 0; 10271 } else { 10272 vniy = 0; 10273 dip_hit = 0; 10274 vlan_vld = data2 & F_DATAVIDH2; 10275 ivlan = G_VIDL(val); 10276 } 10277 10278 ctl |= V_CTLXYBITSEL(1); 10279 mtx_lock(&sc->reg_lock); 10280 if (hw_off_limits(sc)) 10281 rc = ENXIO; 10282 else { 10283 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10284 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10285 tcamx = G_DMACH(val) << 32; 10286 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10287 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10288 } 10289 mtx_unlock(&sc->reg_lock); 10290 if (rc != 0) 10291 break; 10292 10293 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10294 /* Inner header VNI mask */ 10295 vnix = ((data2 & F_DATAVIDH2) << 23) | 10296 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10297 } else 10298 vnix = 0; 10299 10300 if (tcamx & tcamy) 10301 continue; 10302 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10303 10304 mtx_lock(&sc->reg_lock); 10305 if (hw_off_limits(sc)) 10306 rc = ENXIO; 10307 else { 10308 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10309 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10310 } 10311 mtx_unlock(&sc->reg_lock); 10312 if (rc != 0) 10313 break; 10314 10315 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10316 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10317 "%012jx %06x %06x - - %3c" 10318 " I %4x %3c %#x%4u%4d", i, addr[0], 10319 addr[1], addr[2], addr[3], addr[4], addr[5], 10320 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10321 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10322 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10323 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10324 } else { 10325 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10326 "%012jx - - ", i, addr[0], addr[1], 10327 addr[2], addr[3], addr[4], addr[5], 10328 (uintmax_t)mask); 10329 10330 if (vlan_vld) 10331 sbuf_printf(sb, "%4u Y ", ivlan); 10332 else 10333 sbuf_printf(sb, " - N "); 10334 10335 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10336 lookup_type ? 'I' : 'O', port_num, 10337 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10338 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10339 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10340 } 10341 10342 10343 if (cls_lo & F_T6_REPLICATE) { 10344 struct fw_ldst_cmd ldst_cmd; 10345 10346 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10347 ldst_cmd.op_to_addrspace = 10348 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10349 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10350 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10351 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10352 ldst_cmd.u.mps.rplc.fid_idx = 10353 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10354 V_FW_LDST_CMD_IDX(i)); 10355 10356 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10357 "t6mps"); 10358 if (rc) 10359 break; 10360 if (hw_off_limits(sc)) 10361 rc = ENXIO; 10362 else 10363 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10364 sizeof(ldst_cmd), &ldst_cmd); 10365 end_synchronized_op(sc, 0); 10366 if (rc != 0) 10367 break; 10368 else { 10369 sbuf_printf(sb, " %08x %08x %08x %08x" 10370 " %08x %08x %08x %08x", 10371 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10372 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10373 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10374 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10375 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10376 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10377 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10378 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10379 } 10380 } else 10381 sbuf_printf(sb, "%72s", ""); 10382 10383 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10384 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10385 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10386 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10387 } 10388 10389 if (rc) 10390 (void) sbuf_finish(sb); 10391 else 10392 rc = sbuf_finish(sb); 10393 sbuf_delete(sb); 10394 10395 return (rc); 10396 } 10397 10398 static int 10399 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10400 { 10401 struct adapter *sc = arg1; 10402 struct sbuf *sb; 10403 int rc; 10404 uint16_t mtus[NMTUS]; 10405 10406 rc = sysctl_wire_old_buffer(req, 0); 10407 if (rc != 0) 10408 return (rc); 10409 10410 mtx_lock(&sc->reg_lock); 10411 if (hw_off_limits(sc)) 10412 rc = ENXIO; 10413 else 10414 t4_read_mtu_tbl(sc, mtus, NULL); 10415 mtx_unlock(&sc->reg_lock); 10416 if (rc != 0) 10417 return (rc); 10418 10419 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10420 if (sb == NULL) 10421 return (ENOMEM); 10422 10423 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10424 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10425 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10426 mtus[14], mtus[15]); 10427 10428 rc = sbuf_finish(sb); 10429 sbuf_delete(sb); 10430 10431 return (rc); 10432 } 10433 10434 static int 10435 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10436 { 10437 struct adapter *sc = arg1; 10438 struct sbuf *sb; 10439 int rc, i; 10440 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10441 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10442 static const char *tx_stats[MAX_PM_NSTATS] = { 10443 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10444 "Tx FIFO wait", NULL, "Tx latency" 10445 }; 10446 static const char *rx_stats[MAX_PM_NSTATS] = { 10447 "Read:", "Write bypass:", "Write mem:", "Flush:", 10448 "Rx FIFO wait", NULL, "Rx latency" 10449 }; 10450 10451 rc = sysctl_wire_old_buffer(req, 0); 10452 if (rc != 0) 10453 return (rc); 10454 10455 mtx_lock(&sc->reg_lock); 10456 if (hw_off_limits(sc)) 10457 rc = ENXIO; 10458 else { 10459 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10460 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10461 } 10462 mtx_unlock(&sc->reg_lock); 10463 if (rc != 0) 10464 return (rc); 10465 10466 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10467 if (sb == NULL) 10468 return (ENOMEM); 10469 10470 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10471 for (i = 0; i < 4; i++) { 10472 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10473 tx_cyc[i]); 10474 } 10475 10476 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10477 for (i = 0; i < 4; i++) { 10478 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10479 rx_cyc[i]); 10480 } 10481 10482 if (chip_id(sc) > CHELSIO_T5) { 10483 sbuf_printf(sb, 10484 "\n Total wait Total occupancy"); 10485 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10486 tx_cyc[i]); 10487 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10488 rx_cyc[i]); 10489 10490 i += 2; 10491 MPASS(i < nitems(tx_stats)); 10492 10493 sbuf_printf(sb, 10494 "\n Reads Total wait"); 10495 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10496 tx_cyc[i]); 10497 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10498 rx_cyc[i]); 10499 } 10500 10501 rc = sbuf_finish(sb); 10502 sbuf_delete(sb); 10503 10504 return (rc); 10505 } 10506 10507 static int 10508 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10509 { 10510 struct adapter *sc = arg1; 10511 struct sbuf *sb; 10512 int rc; 10513 struct tp_rdma_stats stats; 10514 10515 rc = sysctl_wire_old_buffer(req, 0); 10516 if (rc != 0) 10517 return (rc); 10518 10519 mtx_lock(&sc->reg_lock); 10520 if (hw_off_limits(sc)) 10521 rc = ENXIO; 10522 else 10523 t4_tp_get_rdma_stats(sc, &stats, 0); 10524 mtx_unlock(&sc->reg_lock); 10525 if (rc != 0) 10526 return (rc); 10527 10528 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10529 if (sb == NULL) 10530 return (ENOMEM); 10531 10532 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10533 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10534 10535 rc = sbuf_finish(sb); 10536 sbuf_delete(sb); 10537 10538 return (rc); 10539 } 10540 10541 static int 10542 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10543 { 10544 struct adapter *sc = arg1; 10545 struct sbuf *sb; 10546 int rc; 10547 struct tp_tcp_stats v4, v6; 10548 10549 rc = sysctl_wire_old_buffer(req, 0); 10550 if (rc != 0) 10551 return (rc); 10552 10553 mtx_lock(&sc->reg_lock); 10554 if (hw_off_limits(sc)) 10555 rc = ENXIO; 10556 else 10557 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10558 mtx_unlock(&sc->reg_lock); 10559 if (rc != 0) 10560 return (rc); 10561 10562 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10563 if (sb == NULL) 10564 return (ENOMEM); 10565 10566 sbuf_printf(sb, 10567 " IP IPv6\n"); 10568 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10569 v4.tcp_out_rsts, v6.tcp_out_rsts); 10570 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10571 v4.tcp_in_segs, v6.tcp_in_segs); 10572 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10573 v4.tcp_out_segs, v6.tcp_out_segs); 10574 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10575 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10576 10577 rc = sbuf_finish(sb); 10578 sbuf_delete(sb); 10579 10580 return (rc); 10581 } 10582 10583 static int 10584 sysctl_tids(SYSCTL_HANDLER_ARGS) 10585 { 10586 struct adapter *sc = arg1; 10587 struct sbuf *sb; 10588 int rc; 10589 uint32_t x, y; 10590 struct tid_info *t = &sc->tids; 10591 10592 rc = sysctl_wire_old_buffer(req, 0); 10593 if (rc != 0) 10594 return (rc); 10595 10596 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10597 if (sb == NULL) 10598 return (ENOMEM); 10599 10600 if (t->natids) { 10601 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10602 t->atids_in_use); 10603 } 10604 10605 if (t->nhpftids) { 10606 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10607 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10608 } 10609 10610 if (t->ntids) { 10611 bool hashen = false; 10612 10613 mtx_lock(&sc->reg_lock); 10614 if (hw_off_limits(sc)) 10615 rc = ENXIO; 10616 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10617 hashen = true; 10618 if (chip_id(sc) <= CHELSIO_T5) { 10619 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10620 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10621 } else { 10622 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10623 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10624 } 10625 } 10626 mtx_unlock(&sc->reg_lock); 10627 if (rc != 0) 10628 goto done; 10629 10630 sbuf_printf(sb, "TID range: "); 10631 if (hashen) { 10632 if (x) 10633 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10634 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10635 } else { 10636 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10637 t->ntids - 1); 10638 } 10639 sbuf_printf(sb, ", in use: %u\n", 10640 atomic_load_acq_int(&t->tids_in_use)); 10641 } 10642 10643 if (t->nstids) { 10644 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10645 t->stid_base + t->nstids - 1, t->stids_in_use); 10646 } 10647 10648 if (t->nftids) { 10649 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10650 t->ftid_end, t->ftids_in_use); 10651 } 10652 10653 if (t->netids) { 10654 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10655 t->etid_base + t->netids - 1, t->etids_in_use); 10656 } 10657 10658 mtx_lock(&sc->reg_lock); 10659 if (hw_off_limits(sc)) 10660 rc = ENXIO; 10661 else { 10662 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10663 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10664 } 10665 mtx_unlock(&sc->reg_lock); 10666 if (rc != 0) 10667 goto done; 10668 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10669 done: 10670 if (rc == 0) 10671 rc = sbuf_finish(sb); 10672 else 10673 (void)sbuf_finish(sb); 10674 sbuf_delete(sb); 10675 10676 return (rc); 10677 } 10678 10679 static int 10680 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10681 { 10682 struct adapter *sc = arg1; 10683 struct sbuf *sb; 10684 int rc; 10685 struct tp_err_stats stats; 10686 10687 rc = sysctl_wire_old_buffer(req, 0); 10688 if (rc != 0) 10689 return (rc); 10690 10691 mtx_lock(&sc->reg_lock); 10692 if (hw_off_limits(sc)) 10693 rc = ENXIO; 10694 else 10695 t4_tp_get_err_stats(sc, &stats, 0); 10696 mtx_unlock(&sc->reg_lock); 10697 if (rc != 0) 10698 return (rc); 10699 10700 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10701 if (sb == NULL) 10702 return (ENOMEM); 10703 10704 if (sc->chip_params->nchan > 2) { 10705 sbuf_printf(sb, " channel 0 channel 1" 10706 " channel 2 channel 3\n"); 10707 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10708 stats.mac_in_errs[0], stats.mac_in_errs[1], 10709 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10710 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10711 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10712 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10713 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10714 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10715 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10716 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10717 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10718 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10719 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10720 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10721 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10722 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10723 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10724 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10725 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10726 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10727 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10728 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10729 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10730 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10731 } else { 10732 sbuf_printf(sb, " channel 0 channel 1\n"); 10733 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10734 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10735 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10736 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10737 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10738 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10739 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10740 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10741 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10742 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10743 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10744 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10745 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10746 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10747 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10748 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10749 } 10750 10751 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10752 stats.ofld_no_neigh, stats.ofld_cong_defer); 10753 10754 rc = sbuf_finish(sb); 10755 sbuf_delete(sb); 10756 10757 return (rc); 10758 } 10759 10760 static int 10761 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10762 { 10763 struct adapter *sc = arg1; 10764 struct sbuf *sb; 10765 int rc; 10766 struct tp_tnl_stats stats; 10767 10768 rc = sysctl_wire_old_buffer(req, 0); 10769 if (rc != 0) 10770 return(rc); 10771 10772 mtx_lock(&sc->reg_lock); 10773 if (hw_off_limits(sc)) 10774 rc = ENXIO; 10775 else 10776 t4_tp_get_tnl_stats(sc, &stats, 1); 10777 mtx_unlock(&sc->reg_lock); 10778 if (rc != 0) 10779 return (rc); 10780 10781 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10782 if (sb == NULL) 10783 return (ENOMEM); 10784 10785 if (sc->chip_params->nchan > 2) { 10786 sbuf_printf(sb, " channel 0 channel 1" 10787 " channel 2 channel 3\n"); 10788 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10789 stats.out_pkt[0], stats.out_pkt[1], 10790 stats.out_pkt[2], stats.out_pkt[3]); 10791 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10792 stats.in_pkt[0], stats.in_pkt[1], 10793 stats.in_pkt[2], stats.in_pkt[3]); 10794 } else { 10795 sbuf_printf(sb, " channel 0 channel 1\n"); 10796 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10797 stats.out_pkt[0], stats.out_pkt[1]); 10798 sbuf_printf(sb, "InPkts: %10u %10u", 10799 stats.in_pkt[0], stats.in_pkt[1]); 10800 } 10801 10802 rc = sbuf_finish(sb); 10803 sbuf_delete(sb); 10804 10805 return (rc); 10806 } 10807 10808 static int 10809 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10810 { 10811 struct adapter *sc = arg1; 10812 struct tp_params *tpp = &sc->params.tp; 10813 u_int mask; 10814 int rc; 10815 10816 mask = tpp->la_mask >> 16; 10817 rc = sysctl_handle_int(oidp, &mask, 0, req); 10818 if (rc != 0 || req->newptr == NULL) 10819 return (rc); 10820 if (mask > 0xffff) 10821 return (EINVAL); 10822 mtx_lock(&sc->reg_lock); 10823 if (hw_off_limits(sc)) 10824 rc = ENXIO; 10825 else { 10826 tpp->la_mask = mask << 16; 10827 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10828 tpp->la_mask); 10829 } 10830 mtx_unlock(&sc->reg_lock); 10831 10832 return (rc); 10833 } 10834 10835 struct field_desc { 10836 const char *name; 10837 u_int start; 10838 u_int width; 10839 }; 10840 10841 static void 10842 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10843 { 10844 char buf[32]; 10845 int line_size = 0; 10846 10847 while (f->name) { 10848 uint64_t mask = (1ULL << f->width) - 1; 10849 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10850 ((uintmax_t)v >> f->start) & mask); 10851 10852 if (line_size + len >= 79) { 10853 line_size = 8; 10854 sbuf_printf(sb, "\n "); 10855 } 10856 sbuf_printf(sb, "%s ", buf); 10857 line_size += len + 1; 10858 f++; 10859 } 10860 sbuf_printf(sb, "\n"); 10861 } 10862 10863 static const struct field_desc tp_la0[] = { 10864 { "RcfOpCodeOut", 60, 4 }, 10865 { "State", 56, 4 }, 10866 { "WcfState", 52, 4 }, 10867 { "RcfOpcSrcOut", 50, 2 }, 10868 { "CRxError", 49, 1 }, 10869 { "ERxError", 48, 1 }, 10870 { "SanityFailed", 47, 1 }, 10871 { "SpuriousMsg", 46, 1 }, 10872 { "FlushInputMsg", 45, 1 }, 10873 { "FlushInputCpl", 44, 1 }, 10874 { "RssUpBit", 43, 1 }, 10875 { "RssFilterHit", 42, 1 }, 10876 { "Tid", 32, 10 }, 10877 { "InitTcb", 31, 1 }, 10878 { "LineNumber", 24, 7 }, 10879 { "Emsg", 23, 1 }, 10880 { "EdataOut", 22, 1 }, 10881 { "Cmsg", 21, 1 }, 10882 { "CdataOut", 20, 1 }, 10883 { "EreadPdu", 19, 1 }, 10884 { "CreadPdu", 18, 1 }, 10885 { "TunnelPkt", 17, 1 }, 10886 { "RcfPeerFin", 16, 1 }, 10887 { "RcfReasonOut", 12, 4 }, 10888 { "TxCchannel", 10, 2 }, 10889 { "RcfTxChannel", 8, 2 }, 10890 { "RxEchannel", 6, 2 }, 10891 { "RcfRxChannel", 5, 1 }, 10892 { "RcfDataOutSrdy", 4, 1 }, 10893 { "RxDvld", 3, 1 }, 10894 { "RxOoDvld", 2, 1 }, 10895 { "RxCongestion", 1, 1 }, 10896 { "TxCongestion", 0, 1 }, 10897 { NULL } 10898 }; 10899 10900 static const struct field_desc tp_la1[] = { 10901 { "CplCmdIn", 56, 8 }, 10902 { "CplCmdOut", 48, 8 }, 10903 { "ESynOut", 47, 1 }, 10904 { "EAckOut", 46, 1 }, 10905 { "EFinOut", 45, 1 }, 10906 { "ERstOut", 44, 1 }, 10907 { "SynIn", 43, 1 }, 10908 { "AckIn", 42, 1 }, 10909 { "FinIn", 41, 1 }, 10910 { "RstIn", 40, 1 }, 10911 { "DataIn", 39, 1 }, 10912 { "DataInVld", 38, 1 }, 10913 { "PadIn", 37, 1 }, 10914 { "RxBufEmpty", 36, 1 }, 10915 { "RxDdp", 35, 1 }, 10916 { "RxFbCongestion", 34, 1 }, 10917 { "TxFbCongestion", 33, 1 }, 10918 { "TxPktSumSrdy", 32, 1 }, 10919 { "RcfUlpType", 28, 4 }, 10920 { "Eread", 27, 1 }, 10921 { "Ebypass", 26, 1 }, 10922 { "Esave", 25, 1 }, 10923 { "Static0", 24, 1 }, 10924 { "Cread", 23, 1 }, 10925 { "Cbypass", 22, 1 }, 10926 { "Csave", 21, 1 }, 10927 { "CPktOut", 20, 1 }, 10928 { "RxPagePoolFull", 18, 2 }, 10929 { "RxLpbkPkt", 17, 1 }, 10930 { "TxLpbkPkt", 16, 1 }, 10931 { "RxVfValid", 15, 1 }, 10932 { "SynLearned", 14, 1 }, 10933 { "SetDelEntry", 13, 1 }, 10934 { "SetInvEntry", 12, 1 }, 10935 { "CpcmdDvld", 11, 1 }, 10936 { "CpcmdSave", 10, 1 }, 10937 { "RxPstructsFull", 8, 2 }, 10938 { "EpcmdDvld", 7, 1 }, 10939 { "EpcmdFlush", 6, 1 }, 10940 { "EpcmdTrimPrefix", 5, 1 }, 10941 { "EpcmdTrimPostfix", 4, 1 }, 10942 { "ERssIp4Pkt", 3, 1 }, 10943 { "ERssIp6Pkt", 2, 1 }, 10944 { "ERssTcpUdpPkt", 1, 1 }, 10945 { "ERssFceFipPkt", 0, 1 }, 10946 { NULL } 10947 }; 10948 10949 static const struct field_desc tp_la2[] = { 10950 { "CplCmdIn", 56, 8 }, 10951 { "MpsVfVld", 55, 1 }, 10952 { "MpsPf", 52, 3 }, 10953 { "MpsVf", 44, 8 }, 10954 { "SynIn", 43, 1 }, 10955 { "AckIn", 42, 1 }, 10956 { "FinIn", 41, 1 }, 10957 { "RstIn", 40, 1 }, 10958 { "DataIn", 39, 1 }, 10959 { "DataInVld", 38, 1 }, 10960 { "PadIn", 37, 1 }, 10961 { "RxBufEmpty", 36, 1 }, 10962 { "RxDdp", 35, 1 }, 10963 { "RxFbCongestion", 34, 1 }, 10964 { "TxFbCongestion", 33, 1 }, 10965 { "TxPktSumSrdy", 32, 1 }, 10966 { "RcfUlpType", 28, 4 }, 10967 { "Eread", 27, 1 }, 10968 { "Ebypass", 26, 1 }, 10969 { "Esave", 25, 1 }, 10970 { "Static0", 24, 1 }, 10971 { "Cread", 23, 1 }, 10972 { "Cbypass", 22, 1 }, 10973 { "Csave", 21, 1 }, 10974 { "CPktOut", 20, 1 }, 10975 { "RxPagePoolFull", 18, 2 }, 10976 { "RxLpbkPkt", 17, 1 }, 10977 { "TxLpbkPkt", 16, 1 }, 10978 { "RxVfValid", 15, 1 }, 10979 { "SynLearned", 14, 1 }, 10980 { "SetDelEntry", 13, 1 }, 10981 { "SetInvEntry", 12, 1 }, 10982 { "CpcmdDvld", 11, 1 }, 10983 { "CpcmdSave", 10, 1 }, 10984 { "RxPstructsFull", 8, 2 }, 10985 { "EpcmdDvld", 7, 1 }, 10986 { "EpcmdFlush", 6, 1 }, 10987 { "EpcmdTrimPrefix", 5, 1 }, 10988 { "EpcmdTrimPostfix", 4, 1 }, 10989 { "ERssIp4Pkt", 3, 1 }, 10990 { "ERssIp6Pkt", 2, 1 }, 10991 { "ERssTcpUdpPkt", 1, 1 }, 10992 { "ERssFceFipPkt", 0, 1 }, 10993 { NULL } 10994 }; 10995 10996 static void 10997 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10998 { 10999 11000 field_desc_show(sb, *p, tp_la0); 11001 } 11002 11003 static void 11004 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11005 { 11006 11007 if (idx) 11008 sbuf_printf(sb, "\n"); 11009 field_desc_show(sb, p[0], tp_la0); 11010 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11011 field_desc_show(sb, p[1], tp_la0); 11012 } 11013 11014 static void 11015 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11016 { 11017 11018 if (idx) 11019 sbuf_printf(sb, "\n"); 11020 field_desc_show(sb, p[0], tp_la0); 11021 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11022 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11023 } 11024 11025 static int 11026 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11027 { 11028 struct adapter *sc = arg1; 11029 struct sbuf *sb; 11030 uint64_t *buf, *p; 11031 int rc; 11032 u_int i, inc; 11033 void (*show_func)(struct sbuf *, uint64_t *, int); 11034 11035 rc = sysctl_wire_old_buffer(req, 0); 11036 if (rc != 0) 11037 return (rc); 11038 11039 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11040 if (sb == NULL) 11041 return (ENOMEM); 11042 11043 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11044 11045 mtx_lock(&sc->reg_lock); 11046 if (hw_off_limits(sc)) 11047 rc = ENXIO; 11048 else { 11049 t4_tp_read_la(sc, buf, NULL); 11050 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11051 case 2: 11052 inc = 2; 11053 show_func = tp_la_show2; 11054 break; 11055 case 3: 11056 inc = 2; 11057 show_func = tp_la_show3; 11058 break; 11059 default: 11060 inc = 1; 11061 show_func = tp_la_show; 11062 } 11063 } 11064 mtx_unlock(&sc->reg_lock); 11065 if (rc != 0) 11066 goto done; 11067 11068 p = buf; 11069 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11070 (*show_func)(sb, p, i); 11071 rc = sbuf_finish(sb); 11072 done: 11073 sbuf_delete(sb); 11074 free(buf, M_CXGBE); 11075 return (rc); 11076 } 11077 11078 static int 11079 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11080 { 11081 struct adapter *sc = arg1; 11082 struct sbuf *sb; 11083 int rc; 11084 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11085 11086 rc = sysctl_wire_old_buffer(req, 0); 11087 if (rc != 0) 11088 return (rc); 11089 11090 mtx_lock(&sc->reg_lock); 11091 if (hw_off_limits(sc)) 11092 rc = ENXIO; 11093 else 11094 t4_get_chan_txrate(sc, nrate, orate); 11095 mtx_unlock(&sc->reg_lock); 11096 if (rc != 0) 11097 return (rc); 11098 11099 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11100 if (sb == NULL) 11101 return (ENOMEM); 11102 11103 if (sc->chip_params->nchan > 2) { 11104 sbuf_printf(sb, " channel 0 channel 1" 11105 " channel 2 channel 3\n"); 11106 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11107 nrate[0], nrate[1], nrate[2], nrate[3]); 11108 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11109 orate[0], orate[1], orate[2], orate[3]); 11110 } else { 11111 sbuf_printf(sb, " channel 0 channel 1\n"); 11112 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11113 nrate[0], nrate[1]); 11114 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11115 orate[0], orate[1]); 11116 } 11117 11118 rc = sbuf_finish(sb); 11119 sbuf_delete(sb); 11120 11121 return (rc); 11122 } 11123 11124 static int 11125 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11126 { 11127 struct adapter *sc = arg1; 11128 struct sbuf *sb; 11129 uint32_t *buf, *p; 11130 int rc, i; 11131 11132 rc = sysctl_wire_old_buffer(req, 0); 11133 if (rc != 0) 11134 return (rc); 11135 11136 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11137 if (sb == NULL) 11138 return (ENOMEM); 11139 11140 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11141 M_ZERO | M_WAITOK); 11142 11143 mtx_lock(&sc->reg_lock); 11144 if (hw_off_limits(sc)) 11145 rc = ENXIO; 11146 else 11147 t4_ulprx_read_la(sc, buf); 11148 mtx_unlock(&sc->reg_lock); 11149 if (rc != 0) 11150 goto done; 11151 11152 p = buf; 11153 sbuf_printf(sb, " Pcmd Type Message" 11154 " Data"); 11155 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11156 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11157 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11158 } 11159 rc = sbuf_finish(sb); 11160 done: 11161 sbuf_delete(sb); 11162 free(buf, M_CXGBE); 11163 return (rc); 11164 } 11165 11166 static int 11167 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11168 { 11169 struct adapter *sc = arg1; 11170 struct sbuf *sb; 11171 int rc; 11172 uint32_t cfg, s1, s2; 11173 11174 MPASS(chip_id(sc) >= CHELSIO_T5); 11175 11176 rc = sysctl_wire_old_buffer(req, 0); 11177 if (rc != 0) 11178 return (rc); 11179 11180 mtx_lock(&sc->reg_lock); 11181 if (hw_off_limits(sc)) 11182 rc = ENXIO; 11183 else { 11184 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11185 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11186 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11187 } 11188 mtx_unlock(&sc->reg_lock); 11189 if (rc != 0) 11190 return (rc); 11191 11192 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11193 if (sb == NULL) 11194 return (ENOMEM); 11195 11196 if (G_STATSOURCE_T5(cfg) == 7) { 11197 int mode; 11198 11199 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11200 if (mode == 0) 11201 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11202 else if (mode == 1) 11203 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11204 else 11205 sbuf_printf(sb, "unknown mode %d", mode); 11206 } 11207 rc = sbuf_finish(sb); 11208 sbuf_delete(sb); 11209 11210 return (rc); 11211 } 11212 11213 static int 11214 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11215 { 11216 struct adapter *sc = arg1; 11217 enum cpu_sets op = arg2; 11218 cpuset_t cpuset; 11219 struct sbuf *sb; 11220 int i, rc; 11221 11222 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11223 11224 CPU_ZERO(&cpuset); 11225 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11226 if (rc != 0) 11227 return (rc); 11228 11229 rc = sysctl_wire_old_buffer(req, 0); 11230 if (rc != 0) 11231 return (rc); 11232 11233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11234 if (sb == NULL) 11235 return (ENOMEM); 11236 11237 CPU_FOREACH(i) 11238 sbuf_printf(sb, "%d ", i); 11239 rc = sbuf_finish(sb); 11240 sbuf_delete(sb); 11241 11242 return (rc); 11243 } 11244 11245 static int 11246 sysctl_reset(SYSCTL_HANDLER_ARGS) 11247 { 11248 struct adapter *sc = arg1; 11249 u_int val; 11250 int rc; 11251 11252 val = atomic_load_int(&sc->num_resets); 11253 rc = sysctl_handle_int(oidp, &val, 0, req); 11254 if (rc != 0 || req->newptr == NULL) 11255 return (rc); 11256 11257 if (val == 0) { 11258 /* Zero out the counter that tracks reset. */ 11259 atomic_store_int(&sc->num_resets, 0); 11260 return (0); 11261 } 11262 11263 if (val != 1) 11264 return (EINVAL); /* 0 or 1 are the only legal values */ 11265 11266 if (hw_off_limits(sc)) /* harmless race */ 11267 return (EALREADY); 11268 11269 taskqueue_enqueue(reset_tq, &sc->reset_task); 11270 return (0); 11271 } 11272 11273 #ifdef TCP_OFFLOAD 11274 static int 11275 sysctl_tls(SYSCTL_HANDLER_ARGS) 11276 { 11277 struct adapter *sc = arg1; 11278 int i, j, v, rc; 11279 struct vi_info *vi; 11280 11281 v = sc->tt.tls; 11282 rc = sysctl_handle_int(oidp, &v, 0, req); 11283 if (rc != 0 || req->newptr == NULL) 11284 return (rc); 11285 11286 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11287 return (ENOTSUP); 11288 11289 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11290 if (rc) 11291 return (rc); 11292 if (hw_off_limits(sc)) 11293 rc = ENXIO; 11294 else { 11295 sc->tt.tls = !!v; 11296 for_each_port(sc, i) { 11297 for_each_vi(sc->port[i], j, vi) { 11298 if (vi->flags & VI_INIT_DONE) 11299 t4_update_fl_bufsize(vi->ifp); 11300 } 11301 } 11302 } 11303 end_synchronized_op(sc, 0); 11304 11305 return (rc); 11306 11307 } 11308 11309 static void 11310 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11311 { 11312 u_int rem = val % factor; 11313 11314 if (rem == 0) 11315 snprintf(buf, len, "%u", val / factor); 11316 else { 11317 while (rem % 10 == 0) 11318 rem /= 10; 11319 snprintf(buf, len, "%u.%u", val / factor, rem); 11320 } 11321 } 11322 11323 static int 11324 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11325 { 11326 struct adapter *sc = arg1; 11327 char buf[16]; 11328 u_int res, re; 11329 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11330 11331 mtx_lock(&sc->reg_lock); 11332 if (hw_off_limits(sc)) 11333 res = (u_int)-1; 11334 else 11335 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11336 mtx_unlock(&sc->reg_lock); 11337 if (res == (u_int)-1) 11338 return (ENXIO); 11339 11340 switch (arg2) { 11341 case 0: 11342 /* timer_tick */ 11343 re = G_TIMERRESOLUTION(res); 11344 break; 11345 case 1: 11346 /* TCP timestamp tick */ 11347 re = G_TIMESTAMPRESOLUTION(res); 11348 break; 11349 case 2: 11350 /* DACK tick */ 11351 re = G_DELAYEDACKRESOLUTION(res); 11352 break; 11353 default: 11354 return (EDOOFUS); 11355 } 11356 11357 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11358 11359 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11360 } 11361 11362 static int 11363 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11364 { 11365 struct adapter *sc = arg1; 11366 int rc; 11367 u_int dack_tmr, dack_re, v; 11368 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11369 11370 mtx_lock(&sc->reg_lock); 11371 if (hw_off_limits(sc)) 11372 rc = ENXIO; 11373 else { 11374 rc = 0; 11375 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11376 A_TP_TIMER_RESOLUTION)); 11377 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11378 } 11379 mtx_unlock(&sc->reg_lock); 11380 if (rc != 0) 11381 return (rc); 11382 11383 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11384 11385 return (sysctl_handle_int(oidp, &v, 0, req)); 11386 } 11387 11388 static int 11389 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11390 { 11391 struct adapter *sc = arg1; 11392 int rc, reg = arg2; 11393 u_int tre; 11394 u_long tp_tick_us, v; 11395 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11396 11397 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11398 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11399 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11400 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11401 11402 mtx_lock(&sc->reg_lock); 11403 if (hw_off_limits(sc)) 11404 rc = ENXIO; 11405 else { 11406 rc = 0; 11407 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11408 tp_tick_us = (cclk_ps << tre) / 1000000; 11409 if (reg == A_TP_INIT_SRTT) 11410 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11411 else 11412 v = tp_tick_us * t4_read_reg(sc, reg); 11413 } 11414 mtx_unlock(&sc->reg_lock); 11415 if (rc != 0) 11416 return (rc); 11417 else 11418 return (sysctl_handle_long(oidp, &v, 0, req)); 11419 } 11420 11421 /* 11422 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11423 * passed to this function. 11424 */ 11425 static int 11426 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11427 { 11428 struct adapter *sc = arg1; 11429 int rc, idx = arg2; 11430 u_int v; 11431 11432 MPASS(idx >= 0 && idx <= 24); 11433 11434 mtx_lock(&sc->reg_lock); 11435 if (hw_off_limits(sc)) 11436 rc = ENXIO; 11437 else { 11438 rc = 0; 11439 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11440 } 11441 mtx_unlock(&sc->reg_lock); 11442 if (rc != 0) 11443 return (rc); 11444 else 11445 return (sysctl_handle_int(oidp, &v, 0, req)); 11446 } 11447 11448 static int 11449 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11450 { 11451 struct adapter *sc = arg1; 11452 int rc, idx = arg2; 11453 u_int shift, v, r; 11454 11455 MPASS(idx >= 0 && idx < 16); 11456 11457 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11458 shift = (idx & 3) << 3; 11459 mtx_lock(&sc->reg_lock); 11460 if (hw_off_limits(sc)) 11461 rc = ENXIO; 11462 else { 11463 rc = 0; 11464 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11465 } 11466 mtx_unlock(&sc->reg_lock); 11467 if (rc != 0) 11468 return (rc); 11469 else 11470 return (sysctl_handle_int(oidp, &v, 0, req)); 11471 } 11472 11473 static int 11474 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11475 { 11476 struct vi_info *vi = arg1; 11477 struct adapter *sc = vi->adapter; 11478 int idx, rc, i; 11479 struct sge_ofld_rxq *ofld_rxq; 11480 uint8_t v; 11481 11482 idx = vi->ofld_tmr_idx; 11483 11484 rc = sysctl_handle_int(oidp, &idx, 0, req); 11485 if (rc != 0 || req->newptr == NULL) 11486 return (rc); 11487 11488 if (idx < 0 || idx >= SGE_NTIMERS) 11489 return (EINVAL); 11490 11491 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11492 "t4otmr"); 11493 if (rc) 11494 return (rc); 11495 11496 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11497 for_each_ofld_rxq(vi, i, ofld_rxq) { 11498 #ifdef atomic_store_rel_8 11499 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11500 #else 11501 ofld_rxq->iq.intr_params = v; 11502 #endif 11503 } 11504 vi->ofld_tmr_idx = idx; 11505 11506 end_synchronized_op(sc, LOCK_HELD); 11507 return (0); 11508 } 11509 11510 static int 11511 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11512 { 11513 struct vi_info *vi = arg1; 11514 struct adapter *sc = vi->adapter; 11515 int idx, rc; 11516 11517 idx = vi->ofld_pktc_idx; 11518 11519 rc = sysctl_handle_int(oidp, &idx, 0, req); 11520 if (rc != 0 || req->newptr == NULL) 11521 return (rc); 11522 11523 if (idx < -1 || idx >= SGE_NCOUNTERS) 11524 return (EINVAL); 11525 11526 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11527 "t4opktc"); 11528 if (rc) 11529 return (rc); 11530 11531 if (vi->flags & VI_INIT_DONE) 11532 rc = EBUSY; /* cannot be changed once the queues are created */ 11533 else 11534 vi->ofld_pktc_idx = idx; 11535 11536 end_synchronized_op(sc, LOCK_HELD); 11537 return (rc); 11538 } 11539 #endif 11540 11541 static int 11542 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11543 { 11544 int rc; 11545 11546 if (cntxt->cid > M_CTXTQID) 11547 return (EINVAL); 11548 11549 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11550 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11551 return (EINVAL); 11552 11553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11554 if (rc) 11555 return (rc); 11556 11557 if (hw_off_limits(sc)) { 11558 rc = ENXIO; 11559 goto done; 11560 } 11561 11562 if (sc->flags & FW_OK) { 11563 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11564 &cntxt->data[0]); 11565 if (rc == 0) 11566 goto done; 11567 } 11568 11569 /* 11570 * Read via firmware failed or wasn't even attempted. Read directly via 11571 * the backdoor. 11572 */ 11573 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11574 done: 11575 end_synchronized_op(sc, 0); 11576 return (rc); 11577 } 11578 11579 static int 11580 load_fw(struct adapter *sc, struct t4_data *fw) 11581 { 11582 int rc; 11583 uint8_t *fw_data; 11584 11585 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11586 if (rc) 11587 return (rc); 11588 11589 if (hw_off_limits(sc)) { 11590 rc = ENXIO; 11591 goto done; 11592 } 11593 11594 /* 11595 * The firmware, with the sole exception of the memory parity error 11596 * handler, runs from memory and not flash. It is almost always safe to 11597 * install a new firmware on a running system. Just set bit 1 in 11598 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11599 */ 11600 if (sc->flags & FULL_INIT_DONE && 11601 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11602 rc = EBUSY; 11603 goto done; 11604 } 11605 11606 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11607 11608 rc = copyin(fw->data, fw_data, fw->len); 11609 if (rc == 0) 11610 rc = -t4_load_fw(sc, fw_data, fw->len); 11611 11612 free(fw_data, M_CXGBE); 11613 done: 11614 end_synchronized_op(sc, 0); 11615 return (rc); 11616 } 11617 11618 static int 11619 load_cfg(struct adapter *sc, struct t4_data *cfg) 11620 { 11621 int rc; 11622 uint8_t *cfg_data = NULL; 11623 11624 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11625 if (rc) 11626 return (rc); 11627 11628 if (hw_off_limits(sc)) { 11629 rc = ENXIO; 11630 goto done; 11631 } 11632 11633 if (cfg->len == 0) { 11634 /* clear */ 11635 rc = -t4_load_cfg(sc, NULL, 0); 11636 goto done; 11637 } 11638 11639 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11640 11641 rc = copyin(cfg->data, cfg_data, cfg->len); 11642 if (rc == 0) 11643 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11644 11645 free(cfg_data, M_CXGBE); 11646 done: 11647 end_synchronized_op(sc, 0); 11648 return (rc); 11649 } 11650 11651 static int 11652 load_boot(struct adapter *sc, struct t4_bootrom *br) 11653 { 11654 int rc; 11655 uint8_t *br_data = NULL; 11656 u_int offset; 11657 11658 if (br->len > 1024 * 1024) 11659 return (EFBIG); 11660 11661 if (br->pf_offset == 0) { 11662 /* pfidx */ 11663 if (br->pfidx_addr > 7) 11664 return (EINVAL); 11665 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11666 A_PCIE_PF_EXPROM_OFST))); 11667 } else if (br->pf_offset == 1) { 11668 /* offset */ 11669 offset = G_OFFSET(br->pfidx_addr); 11670 } else { 11671 return (EINVAL); 11672 } 11673 11674 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11675 if (rc) 11676 return (rc); 11677 11678 if (hw_off_limits(sc)) { 11679 rc = ENXIO; 11680 goto done; 11681 } 11682 11683 if (br->len == 0) { 11684 /* clear */ 11685 rc = -t4_load_boot(sc, NULL, offset, 0); 11686 goto done; 11687 } 11688 11689 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11690 11691 rc = copyin(br->data, br_data, br->len); 11692 if (rc == 0) 11693 rc = -t4_load_boot(sc, br_data, offset, br->len); 11694 11695 free(br_data, M_CXGBE); 11696 done: 11697 end_synchronized_op(sc, 0); 11698 return (rc); 11699 } 11700 11701 static int 11702 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11703 { 11704 int rc; 11705 uint8_t *bc_data = NULL; 11706 11707 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11708 if (rc) 11709 return (rc); 11710 11711 if (hw_off_limits(sc)) { 11712 rc = ENXIO; 11713 goto done; 11714 } 11715 11716 if (bc->len == 0) { 11717 /* clear */ 11718 rc = -t4_load_bootcfg(sc, NULL, 0); 11719 goto done; 11720 } 11721 11722 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11723 11724 rc = copyin(bc->data, bc_data, bc->len); 11725 if (rc == 0) 11726 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11727 11728 free(bc_data, M_CXGBE); 11729 done: 11730 end_synchronized_op(sc, 0); 11731 return (rc); 11732 } 11733 11734 static int 11735 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11736 { 11737 int rc; 11738 struct cudbg_init *cudbg; 11739 void *handle, *buf; 11740 11741 /* buf is large, don't block if no memory is available */ 11742 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11743 if (buf == NULL) 11744 return (ENOMEM); 11745 11746 handle = cudbg_alloc_handle(); 11747 if (handle == NULL) { 11748 rc = ENOMEM; 11749 goto done; 11750 } 11751 11752 cudbg = cudbg_get_init(handle); 11753 cudbg->adap = sc; 11754 cudbg->print = (cudbg_print_cb)printf; 11755 11756 #ifndef notyet 11757 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11758 __func__, dump->wr_flash, dump->len, dump->data); 11759 #endif 11760 11761 if (dump->wr_flash) 11762 cudbg->use_flash = 1; 11763 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11764 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11765 11766 rc = cudbg_collect(handle, buf, &dump->len); 11767 if (rc != 0) 11768 goto done; 11769 11770 rc = copyout(buf, dump->data, dump->len); 11771 done: 11772 cudbg_free_handle(handle); 11773 free(buf, M_CXGBE); 11774 return (rc); 11775 } 11776 11777 static void 11778 free_offload_policy(struct t4_offload_policy *op) 11779 { 11780 struct offload_rule *r; 11781 int i; 11782 11783 if (op == NULL) 11784 return; 11785 11786 r = &op->rule[0]; 11787 for (i = 0; i < op->nrules; i++, r++) { 11788 free(r->bpf_prog.bf_insns, M_CXGBE); 11789 } 11790 free(op->rule, M_CXGBE); 11791 free(op, M_CXGBE); 11792 } 11793 11794 static int 11795 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11796 { 11797 int i, rc, len; 11798 struct t4_offload_policy *op, *old; 11799 struct bpf_program *bf; 11800 const struct offload_settings *s; 11801 struct offload_rule *r; 11802 void *u; 11803 11804 if (!is_offload(sc)) 11805 return (ENODEV); 11806 11807 if (uop->nrules == 0) { 11808 /* Delete installed policies. */ 11809 op = NULL; 11810 goto set_policy; 11811 } else if (uop->nrules > 256) { /* arbitrary */ 11812 return (E2BIG); 11813 } 11814 11815 /* Copy userspace offload policy to kernel */ 11816 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11817 op->nrules = uop->nrules; 11818 len = op->nrules * sizeof(struct offload_rule); 11819 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11820 rc = copyin(uop->rule, op->rule, len); 11821 if (rc) { 11822 free(op->rule, M_CXGBE); 11823 free(op, M_CXGBE); 11824 return (rc); 11825 } 11826 11827 r = &op->rule[0]; 11828 for (i = 0; i < op->nrules; i++, r++) { 11829 11830 /* Validate open_type */ 11831 if (r->open_type != OPEN_TYPE_LISTEN && 11832 r->open_type != OPEN_TYPE_ACTIVE && 11833 r->open_type != OPEN_TYPE_PASSIVE && 11834 r->open_type != OPEN_TYPE_DONTCARE) { 11835 error: 11836 /* 11837 * Rules 0 to i have malloc'd filters that need to be 11838 * freed. Rules i+1 to nrules have userspace pointers 11839 * and should be left alone. 11840 */ 11841 op->nrules = i; 11842 free_offload_policy(op); 11843 return (rc); 11844 } 11845 11846 /* Validate settings */ 11847 s = &r->settings; 11848 if ((s->offload != 0 && s->offload != 1) || 11849 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11850 s->sched_class < -1 || 11851 s->sched_class >= sc->params.nsched_cls) { 11852 rc = EINVAL; 11853 goto error; 11854 } 11855 11856 bf = &r->bpf_prog; 11857 u = bf->bf_insns; /* userspace ptr */ 11858 bf->bf_insns = NULL; 11859 if (bf->bf_len == 0) { 11860 /* legal, matches everything */ 11861 continue; 11862 } 11863 len = bf->bf_len * sizeof(*bf->bf_insns); 11864 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11865 rc = copyin(u, bf->bf_insns, len); 11866 if (rc != 0) 11867 goto error; 11868 11869 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11870 rc = EINVAL; 11871 goto error; 11872 } 11873 } 11874 set_policy: 11875 rw_wlock(&sc->policy_lock); 11876 old = sc->policy; 11877 sc->policy = op; 11878 rw_wunlock(&sc->policy_lock); 11879 free_offload_policy(old); 11880 11881 return (0); 11882 } 11883 11884 #define MAX_READ_BUF_SIZE (128 * 1024) 11885 static int 11886 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11887 { 11888 uint32_t addr, remaining, n; 11889 uint32_t *buf; 11890 int rc; 11891 uint8_t *dst; 11892 11893 mtx_lock(&sc->reg_lock); 11894 if (hw_off_limits(sc)) 11895 rc = ENXIO; 11896 else 11897 rc = validate_mem_range(sc, mr->addr, mr->len); 11898 mtx_unlock(&sc->reg_lock); 11899 if (rc != 0) 11900 return (rc); 11901 11902 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11903 addr = mr->addr; 11904 remaining = mr->len; 11905 dst = (void *)mr->data; 11906 11907 while (remaining) { 11908 n = min(remaining, MAX_READ_BUF_SIZE); 11909 mtx_lock(&sc->reg_lock); 11910 if (hw_off_limits(sc)) 11911 rc = ENXIO; 11912 else 11913 read_via_memwin(sc, 2, addr, buf, n); 11914 mtx_unlock(&sc->reg_lock); 11915 if (rc != 0) 11916 break; 11917 11918 rc = copyout(buf, dst, n); 11919 if (rc != 0) 11920 break; 11921 11922 dst += n; 11923 remaining -= n; 11924 addr += n; 11925 } 11926 11927 free(buf, M_CXGBE); 11928 return (rc); 11929 } 11930 #undef MAX_READ_BUF_SIZE 11931 11932 static int 11933 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11934 { 11935 int rc; 11936 11937 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11938 return (EINVAL); 11939 11940 if (i2cd->len > sizeof(i2cd->data)) 11941 return (EFBIG); 11942 11943 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11944 if (rc) 11945 return (rc); 11946 if (hw_off_limits(sc)) 11947 rc = ENXIO; 11948 else 11949 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11950 i2cd->offset, i2cd->len, &i2cd->data[0]); 11951 end_synchronized_op(sc, 0); 11952 11953 return (rc); 11954 } 11955 11956 static int 11957 clear_stats(struct adapter *sc, u_int port_id) 11958 { 11959 int i, v, chan_map; 11960 struct port_info *pi; 11961 struct vi_info *vi; 11962 struct sge_rxq *rxq; 11963 struct sge_txq *txq; 11964 struct sge_wrq *wrq; 11965 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11966 struct sge_ofld_txq *ofld_txq; 11967 #endif 11968 #ifdef TCP_OFFLOAD 11969 struct sge_ofld_rxq *ofld_rxq; 11970 #endif 11971 11972 if (port_id >= sc->params.nports) 11973 return (EINVAL); 11974 pi = sc->port[port_id]; 11975 if (pi == NULL) 11976 return (EIO); 11977 11978 mtx_lock(&sc->reg_lock); 11979 if (!hw_off_limits(sc)) { 11980 /* MAC stats */ 11981 t4_clr_port_stats(sc, pi->tx_chan); 11982 if (is_t6(sc)) { 11983 if (pi->fcs_reg != -1) 11984 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11985 else 11986 pi->stats.rx_fcs_err = 0; 11987 } 11988 for_each_vi(pi, v, vi) { 11989 if (vi->flags & VI_INIT_DONE) 11990 t4_clr_vi_stats(sc, vi->vin); 11991 } 11992 chan_map = pi->rx_e_chan_map; 11993 v = 0; /* reuse */ 11994 while (chan_map) { 11995 i = ffs(chan_map) - 1; 11996 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11997 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11998 chan_map &= ~(1 << i); 11999 } 12000 } 12001 mtx_unlock(&sc->reg_lock); 12002 pi->tx_parse_error = 0; 12003 pi->tnl_cong_drops = 0; 12004 12005 /* 12006 * Since this command accepts a port, clear stats for 12007 * all VIs on this port. 12008 */ 12009 for_each_vi(pi, v, vi) { 12010 if (vi->flags & VI_INIT_DONE) { 12011 12012 for_each_rxq(vi, i, rxq) { 12013 #if defined(INET) || defined(INET6) 12014 rxq->lro.lro_queued = 0; 12015 rxq->lro.lro_flushed = 0; 12016 #endif 12017 rxq->rxcsum = 0; 12018 rxq->vlan_extraction = 0; 12019 rxq->vxlan_rxcsum = 0; 12020 12021 rxq->fl.cl_allocated = 0; 12022 rxq->fl.cl_recycled = 0; 12023 rxq->fl.cl_fast_recycled = 0; 12024 } 12025 12026 for_each_txq(vi, i, txq) { 12027 txq->txcsum = 0; 12028 txq->tso_wrs = 0; 12029 txq->vlan_insertion = 0; 12030 txq->imm_wrs = 0; 12031 txq->sgl_wrs = 0; 12032 txq->txpkt_wrs = 0; 12033 txq->txpkts0_wrs = 0; 12034 txq->txpkts1_wrs = 0; 12035 txq->txpkts0_pkts = 0; 12036 txq->txpkts1_pkts = 0; 12037 txq->txpkts_flush = 0; 12038 txq->raw_wrs = 0; 12039 txq->vxlan_tso_wrs = 0; 12040 txq->vxlan_txcsum = 0; 12041 txq->kern_tls_records = 0; 12042 txq->kern_tls_short = 0; 12043 txq->kern_tls_partial = 0; 12044 txq->kern_tls_full = 0; 12045 txq->kern_tls_octets = 0; 12046 txq->kern_tls_waste = 0; 12047 txq->kern_tls_options = 0; 12048 txq->kern_tls_header = 0; 12049 txq->kern_tls_fin = 0; 12050 txq->kern_tls_fin_short = 0; 12051 txq->kern_tls_cbc = 0; 12052 txq->kern_tls_gcm = 0; 12053 mp_ring_reset_stats(txq->r); 12054 } 12055 12056 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12057 for_each_ofld_txq(vi, i, ofld_txq) { 12058 ofld_txq->wrq.tx_wrs_direct = 0; 12059 ofld_txq->wrq.tx_wrs_copied = 0; 12060 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12061 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12062 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12063 counter_u64_zero(ofld_txq->tx_aio_jobs); 12064 counter_u64_zero(ofld_txq->tx_aio_octets); 12065 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12066 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12067 } 12068 #endif 12069 #ifdef TCP_OFFLOAD 12070 for_each_ofld_rxq(vi, i, ofld_rxq) { 12071 ofld_rxq->fl.cl_allocated = 0; 12072 ofld_rxq->fl.cl_recycled = 0; 12073 ofld_rxq->fl.cl_fast_recycled = 0; 12074 counter_u64_zero( 12075 ofld_rxq->rx_iscsi_ddp_setup_ok); 12076 counter_u64_zero( 12077 ofld_rxq->rx_iscsi_ddp_setup_error); 12078 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12079 ofld_rxq->rx_iscsi_ddp_octets = 0; 12080 ofld_rxq->rx_iscsi_fl_pdus = 0; 12081 ofld_rxq->rx_iscsi_fl_octets = 0; 12082 ofld_rxq->rx_aio_ddp_jobs = 0; 12083 ofld_rxq->rx_aio_ddp_octets = 0; 12084 ofld_rxq->rx_toe_tls_records = 0; 12085 ofld_rxq->rx_toe_tls_octets = 0; 12086 ofld_rxq->rx_toe_ddp_octets = 0; 12087 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12088 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12089 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12090 } 12091 #endif 12092 12093 if (IS_MAIN_VI(vi)) { 12094 wrq = &sc->sge.ctrlq[pi->port_id]; 12095 wrq->tx_wrs_direct = 0; 12096 wrq->tx_wrs_copied = 0; 12097 } 12098 } 12099 } 12100 12101 return (0); 12102 } 12103 12104 static int 12105 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12106 { 12107 #ifdef INET6 12108 struct in6_addr in6; 12109 12110 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12111 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12112 return (0); 12113 else 12114 return (EIO); 12115 #else 12116 return (ENOTSUP); 12117 #endif 12118 } 12119 12120 static int 12121 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12122 { 12123 #ifdef INET6 12124 struct in6_addr in6; 12125 12126 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12127 return (t4_release_clip_addr(sc, &in6)); 12128 #else 12129 return (ENOTSUP); 12130 #endif 12131 } 12132 12133 int 12134 t4_os_find_pci_capability(struct adapter *sc, int cap) 12135 { 12136 int i; 12137 12138 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12139 } 12140 12141 int 12142 t4_os_pci_save_state(struct adapter *sc) 12143 { 12144 device_t dev; 12145 struct pci_devinfo *dinfo; 12146 12147 dev = sc->dev; 12148 dinfo = device_get_ivars(dev); 12149 12150 pci_cfg_save(dev, dinfo, 0); 12151 return (0); 12152 } 12153 12154 int 12155 t4_os_pci_restore_state(struct adapter *sc) 12156 { 12157 device_t dev; 12158 struct pci_devinfo *dinfo; 12159 12160 dev = sc->dev; 12161 dinfo = device_get_ivars(dev); 12162 12163 pci_cfg_restore(dev, dinfo); 12164 return (0); 12165 } 12166 12167 void 12168 t4_os_portmod_changed(struct port_info *pi) 12169 { 12170 struct adapter *sc = pi->adapter; 12171 struct vi_info *vi; 12172 if_t ifp; 12173 static const char *mod_str[] = { 12174 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12175 }; 12176 12177 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12178 ("%s: port_type %u", __func__, pi->port_type)); 12179 12180 vi = &pi->vi[0]; 12181 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12182 PORT_LOCK(pi); 12183 build_medialist(pi); 12184 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12185 fixup_link_config(pi); 12186 apply_link_config(pi); 12187 } 12188 PORT_UNLOCK(pi); 12189 end_synchronized_op(sc, LOCK_HELD); 12190 } 12191 12192 ifp = vi->ifp; 12193 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12194 if_printf(ifp, "transceiver unplugged.\n"); 12195 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12196 if_printf(ifp, "unknown transceiver inserted.\n"); 12197 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12198 if_printf(ifp, "unsupported transceiver inserted.\n"); 12199 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12200 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12201 port_top_speed(pi), mod_str[pi->mod_type]); 12202 } else { 12203 if_printf(ifp, "transceiver (type %d) inserted.\n", 12204 pi->mod_type); 12205 } 12206 } 12207 12208 void 12209 t4_os_link_changed(struct port_info *pi) 12210 { 12211 struct vi_info *vi; 12212 if_t ifp; 12213 struct link_config *lc = &pi->link_cfg; 12214 struct adapter *sc = pi->adapter; 12215 int v; 12216 12217 PORT_LOCK_ASSERT_OWNED(pi); 12218 12219 if (is_t6(sc)) { 12220 if (lc->link_ok) { 12221 if (lc->speed > 25000 || 12222 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12223 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12224 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12225 } else { 12226 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12227 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12228 } 12229 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12230 pi->stats.rx_fcs_err = 0; 12231 } else { 12232 pi->fcs_reg = -1; 12233 } 12234 } else { 12235 MPASS(pi->fcs_reg != -1); 12236 MPASS(pi->fcs_base == 0); 12237 } 12238 12239 for_each_vi(pi, v, vi) { 12240 ifp = vi->ifp; 12241 if (ifp == NULL) 12242 continue; 12243 12244 if (lc->link_ok) { 12245 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12246 if_link_state_change(ifp, LINK_STATE_UP); 12247 } else { 12248 if_link_state_change(ifp, LINK_STATE_DOWN); 12249 } 12250 } 12251 } 12252 12253 void 12254 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12255 { 12256 struct adapter *sc; 12257 12258 sx_slock(&t4_list_lock); 12259 SLIST_FOREACH(sc, &t4_list, link) { 12260 /* 12261 * func should not make any assumptions about what state sc is 12262 * in - the only guarantee is that sc->sc_lock is a valid lock. 12263 */ 12264 func(sc, arg); 12265 } 12266 sx_sunlock(&t4_list_lock); 12267 } 12268 12269 static int 12270 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12271 struct thread *td) 12272 { 12273 int rc; 12274 struct adapter *sc = dev->si_drv1; 12275 12276 rc = priv_check(td, PRIV_DRIVER); 12277 if (rc != 0) 12278 return (rc); 12279 12280 switch (cmd) { 12281 case CHELSIO_T4_GETREG: { 12282 struct t4_reg *edata = (struct t4_reg *)data; 12283 12284 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12285 return (EFAULT); 12286 12287 mtx_lock(&sc->reg_lock); 12288 if (hw_off_limits(sc)) 12289 rc = ENXIO; 12290 else if (edata->size == 4) 12291 edata->val = t4_read_reg(sc, edata->addr); 12292 else if (edata->size == 8) 12293 edata->val = t4_read_reg64(sc, edata->addr); 12294 else 12295 rc = EINVAL; 12296 mtx_unlock(&sc->reg_lock); 12297 12298 break; 12299 } 12300 case CHELSIO_T4_SETREG: { 12301 struct t4_reg *edata = (struct t4_reg *)data; 12302 12303 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12304 return (EFAULT); 12305 12306 mtx_lock(&sc->reg_lock); 12307 if (hw_off_limits(sc)) 12308 rc = ENXIO; 12309 else if (edata->size == 4) { 12310 if (edata->val & 0xffffffff00000000) 12311 rc = EINVAL; 12312 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12313 } else if (edata->size == 8) 12314 t4_write_reg64(sc, edata->addr, edata->val); 12315 else 12316 rc = EINVAL; 12317 mtx_unlock(&sc->reg_lock); 12318 12319 break; 12320 } 12321 case CHELSIO_T4_REGDUMP: { 12322 struct t4_regdump *regs = (struct t4_regdump *)data; 12323 int reglen = t4_get_regs_len(sc); 12324 uint8_t *buf; 12325 12326 if (regs->len < reglen) { 12327 regs->len = reglen; /* hint to the caller */ 12328 return (ENOBUFS); 12329 } 12330 12331 regs->len = reglen; 12332 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12333 mtx_lock(&sc->reg_lock); 12334 if (hw_off_limits(sc)) 12335 rc = ENXIO; 12336 else 12337 get_regs(sc, regs, buf); 12338 mtx_unlock(&sc->reg_lock); 12339 if (rc == 0) 12340 rc = copyout(buf, regs->data, reglen); 12341 free(buf, M_CXGBE); 12342 break; 12343 } 12344 case CHELSIO_T4_GET_FILTER_MODE: 12345 rc = get_filter_mode(sc, (uint32_t *)data); 12346 break; 12347 case CHELSIO_T4_SET_FILTER_MODE: 12348 rc = set_filter_mode(sc, *(uint32_t *)data); 12349 break; 12350 case CHELSIO_T4_SET_FILTER_MASK: 12351 rc = set_filter_mask(sc, *(uint32_t *)data); 12352 break; 12353 case CHELSIO_T4_GET_FILTER: 12354 rc = get_filter(sc, (struct t4_filter *)data); 12355 break; 12356 case CHELSIO_T4_SET_FILTER: 12357 rc = set_filter(sc, (struct t4_filter *)data); 12358 break; 12359 case CHELSIO_T4_DEL_FILTER: 12360 rc = del_filter(sc, (struct t4_filter *)data); 12361 break; 12362 case CHELSIO_T4_GET_SGE_CONTEXT: 12363 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12364 break; 12365 case CHELSIO_T4_LOAD_FW: 12366 rc = load_fw(sc, (struct t4_data *)data); 12367 break; 12368 case CHELSIO_T4_GET_MEM: 12369 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12370 break; 12371 case CHELSIO_T4_GET_I2C: 12372 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12373 break; 12374 case CHELSIO_T4_CLEAR_STATS: 12375 rc = clear_stats(sc, *(uint32_t *)data); 12376 break; 12377 case CHELSIO_T4_SCHED_CLASS: 12378 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12379 break; 12380 case CHELSIO_T4_SCHED_QUEUE: 12381 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12382 break; 12383 case CHELSIO_T4_GET_TRACER: 12384 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12385 break; 12386 case CHELSIO_T4_SET_TRACER: 12387 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12388 break; 12389 case CHELSIO_T4_LOAD_CFG: 12390 rc = load_cfg(sc, (struct t4_data *)data); 12391 break; 12392 case CHELSIO_T4_LOAD_BOOT: 12393 rc = load_boot(sc, (struct t4_bootrom *)data); 12394 break; 12395 case CHELSIO_T4_LOAD_BOOTCFG: 12396 rc = load_bootcfg(sc, (struct t4_data *)data); 12397 break; 12398 case CHELSIO_T4_CUDBG_DUMP: 12399 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12400 break; 12401 case CHELSIO_T4_SET_OFLD_POLICY: 12402 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12403 break; 12404 case CHELSIO_T4_HOLD_CLIP_ADDR: 12405 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12406 break; 12407 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12408 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12409 break; 12410 default: 12411 rc = ENOTTY; 12412 } 12413 12414 return (rc); 12415 } 12416 12417 #ifdef TCP_OFFLOAD 12418 static int 12419 toe_capability(struct vi_info *vi, bool enable) 12420 { 12421 int rc; 12422 struct port_info *pi = vi->pi; 12423 struct adapter *sc = pi->adapter; 12424 12425 ASSERT_SYNCHRONIZED_OP(sc); 12426 12427 if (!is_offload(sc)) 12428 return (ENODEV); 12429 if (hw_off_limits(sc)) 12430 return (ENXIO); 12431 12432 if (enable) { 12433 #ifdef KERN_TLS 12434 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12435 int i, j, n; 12436 struct port_info *p; 12437 struct vi_info *v; 12438 12439 /* 12440 * Reconfigure hardware for TOE if TXTLS is not enabled 12441 * on any ifnet. 12442 */ 12443 n = 0; 12444 for_each_port(sc, i) { 12445 p = sc->port[i]; 12446 for_each_vi(p, j, v) { 12447 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12448 CH_WARN(sc, 12449 "%s has NIC TLS enabled.\n", 12450 device_get_nameunit(v->dev)); 12451 n++; 12452 } 12453 } 12454 } 12455 if (n > 0) { 12456 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12457 "associated with this adapter before " 12458 "trying to enable TOE.\n"); 12459 return (EAGAIN); 12460 } 12461 rc = t6_config_kern_tls(sc, false); 12462 if (rc) 12463 return (rc); 12464 } 12465 #endif 12466 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12467 /* TOE is already enabled. */ 12468 return (0); 12469 } 12470 12471 /* 12472 * We need the port's queues around so that we're able to send 12473 * and receive CPLs to/from the TOE even if the ifnet for this 12474 * port has never been UP'd administratively. 12475 */ 12476 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12477 return (rc); 12478 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12479 ((rc = vi_init(&pi->vi[0])) != 0)) 12480 return (rc); 12481 12482 if (isset(&sc->offload_map, pi->port_id)) { 12483 /* TOE is enabled on another VI of this port. */ 12484 pi->uld_vis++; 12485 return (0); 12486 } 12487 12488 if (!uld_active(sc, ULD_TOM)) { 12489 rc = t4_activate_uld(sc, ULD_TOM); 12490 if (rc == EAGAIN) { 12491 log(LOG_WARNING, 12492 "You must kldload t4_tom.ko before trying " 12493 "to enable TOE on a cxgbe interface.\n"); 12494 } 12495 if (rc != 0) 12496 return (rc); 12497 KASSERT(sc->tom_softc != NULL, 12498 ("%s: TOM activated but softc NULL", __func__)); 12499 KASSERT(uld_active(sc, ULD_TOM), 12500 ("%s: TOM activated but flag not set", __func__)); 12501 } 12502 12503 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12504 if (!uld_active(sc, ULD_IWARP)) 12505 (void) t4_activate_uld(sc, ULD_IWARP); 12506 if (!uld_active(sc, ULD_ISCSI)) 12507 (void) t4_activate_uld(sc, ULD_ISCSI); 12508 12509 pi->uld_vis++; 12510 setbit(&sc->offload_map, pi->port_id); 12511 } else { 12512 pi->uld_vis--; 12513 12514 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12515 return (0); 12516 12517 KASSERT(uld_active(sc, ULD_TOM), 12518 ("%s: TOM never initialized?", __func__)); 12519 clrbit(&sc->offload_map, pi->port_id); 12520 } 12521 12522 return (0); 12523 } 12524 12525 /* 12526 * Add an upper layer driver to the global list. 12527 */ 12528 int 12529 t4_register_uld(struct uld_info *ui) 12530 { 12531 int rc = 0; 12532 struct uld_info *u; 12533 12534 sx_xlock(&t4_uld_list_lock); 12535 SLIST_FOREACH(u, &t4_uld_list, link) { 12536 if (u->uld_id == ui->uld_id) { 12537 rc = EEXIST; 12538 goto done; 12539 } 12540 } 12541 12542 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12543 ui->refcount = 0; 12544 done: 12545 sx_xunlock(&t4_uld_list_lock); 12546 return (rc); 12547 } 12548 12549 int 12550 t4_unregister_uld(struct uld_info *ui) 12551 { 12552 int rc = EINVAL; 12553 struct uld_info *u; 12554 12555 sx_xlock(&t4_uld_list_lock); 12556 12557 SLIST_FOREACH(u, &t4_uld_list, link) { 12558 if (u == ui) { 12559 if (ui->refcount > 0) { 12560 rc = EBUSY; 12561 goto done; 12562 } 12563 12564 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12565 rc = 0; 12566 goto done; 12567 } 12568 } 12569 done: 12570 sx_xunlock(&t4_uld_list_lock); 12571 return (rc); 12572 } 12573 12574 int 12575 t4_activate_uld(struct adapter *sc, int id) 12576 { 12577 int rc; 12578 struct uld_info *ui; 12579 12580 ASSERT_SYNCHRONIZED_OP(sc); 12581 12582 if (id < 0 || id > ULD_MAX) 12583 return (EINVAL); 12584 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12585 12586 sx_slock(&t4_uld_list_lock); 12587 12588 SLIST_FOREACH(ui, &t4_uld_list, link) { 12589 if (ui->uld_id == id) { 12590 if (!(sc->flags & FULL_INIT_DONE)) { 12591 rc = adapter_init(sc); 12592 if (rc != 0) 12593 break; 12594 } 12595 12596 rc = ui->activate(sc); 12597 if (rc == 0) { 12598 setbit(&sc->active_ulds, id); 12599 ui->refcount++; 12600 } 12601 break; 12602 } 12603 } 12604 12605 sx_sunlock(&t4_uld_list_lock); 12606 12607 return (rc); 12608 } 12609 12610 int 12611 t4_deactivate_uld(struct adapter *sc, int id) 12612 { 12613 int rc; 12614 struct uld_info *ui; 12615 12616 ASSERT_SYNCHRONIZED_OP(sc); 12617 12618 if (id < 0 || id > ULD_MAX) 12619 return (EINVAL); 12620 rc = ENXIO; 12621 12622 sx_slock(&t4_uld_list_lock); 12623 12624 SLIST_FOREACH(ui, &t4_uld_list, link) { 12625 if (ui->uld_id == id) { 12626 rc = ui->deactivate(sc); 12627 if (rc == 0) { 12628 clrbit(&sc->active_ulds, id); 12629 ui->refcount--; 12630 } 12631 break; 12632 } 12633 } 12634 12635 sx_sunlock(&t4_uld_list_lock); 12636 12637 return (rc); 12638 } 12639 12640 static int 12641 t4_deactivate_all_uld(struct adapter *sc) 12642 { 12643 int rc; 12644 struct uld_info *ui; 12645 12646 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12647 if (rc != 0) 12648 return (ENXIO); 12649 12650 sx_slock(&t4_uld_list_lock); 12651 12652 SLIST_FOREACH(ui, &t4_uld_list, link) { 12653 if (isset(&sc->active_ulds, ui->uld_id)) { 12654 rc = ui->deactivate(sc); 12655 if (rc != 0) 12656 break; 12657 clrbit(&sc->active_ulds, ui->uld_id); 12658 ui->refcount--; 12659 } 12660 } 12661 12662 sx_sunlock(&t4_uld_list_lock); 12663 end_synchronized_op(sc, 0); 12664 12665 return (rc); 12666 } 12667 12668 static void 12669 t4_async_event(struct adapter *sc) 12670 { 12671 struct uld_info *ui; 12672 12673 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12674 return; 12675 sx_slock(&t4_uld_list_lock); 12676 SLIST_FOREACH(ui, &t4_uld_list, link) { 12677 if (ui->uld_id == ULD_IWARP) { 12678 ui->async_event(sc); 12679 break; 12680 } 12681 } 12682 sx_sunlock(&t4_uld_list_lock); 12683 end_synchronized_op(sc, 0); 12684 } 12685 12686 int 12687 uld_active(struct adapter *sc, int uld_id) 12688 { 12689 12690 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12691 12692 return (isset(&sc->active_ulds, uld_id)); 12693 } 12694 #endif 12695 12696 #ifdef KERN_TLS 12697 static int 12698 ktls_capability(struct adapter *sc, bool enable) 12699 { 12700 ASSERT_SYNCHRONIZED_OP(sc); 12701 12702 if (!is_ktls(sc)) 12703 return (ENODEV); 12704 if (!is_t6(sc)) 12705 return (0); 12706 if (hw_off_limits(sc)) 12707 return (ENXIO); 12708 12709 if (enable) { 12710 if (sc->flags & KERN_TLS_ON) 12711 return (0); /* already on */ 12712 if (sc->offload_map != 0) { 12713 CH_WARN(sc, 12714 "Disable TOE on all interfaces associated with " 12715 "this adapter before trying to enable NIC TLS.\n"); 12716 return (EAGAIN); 12717 } 12718 return (t6_config_kern_tls(sc, true)); 12719 } else { 12720 /* 12721 * Nothing to do for disable. If TOE is enabled sometime later 12722 * then toe_capability will reconfigure the hardware. 12723 */ 12724 return (0); 12725 } 12726 } 12727 #endif 12728 12729 /* 12730 * t = ptr to tunable. 12731 * nc = number of CPUs. 12732 * c = compiled in default for that tunable. 12733 */ 12734 static void 12735 calculate_nqueues(int *t, int nc, const int c) 12736 { 12737 int nq; 12738 12739 if (*t > 0) 12740 return; 12741 nq = *t < 0 ? -*t : c; 12742 *t = min(nc, nq); 12743 } 12744 12745 /* 12746 * Come up with reasonable defaults for some of the tunables, provided they're 12747 * not set by the user (in which case we'll use the values as is). 12748 */ 12749 static void 12750 tweak_tunables(void) 12751 { 12752 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12753 12754 if (t4_ntxq < 1) { 12755 #ifdef RSS 12756 t4_ntxq = rss_getnumbuckets(); 12757 #else 12758 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12759 #endif 12760 } 12761 12762 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12763 12764 if (t4_nrxq < 1) { 12765 #ifdef RSS 12766 t4_nrxq = rss_getnumbuckets(); 12767 #else 12768 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12769 #endif 12770 } 12771 12772 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12773 12774 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12775 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12776 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12777 #endif 12778 #ifdef TCP_OFFLOAD 12779 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12780 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12781 #endif 12782 12783 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12784 if (t4_toecaps_allowed == -1) 12785 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12786 #else 12787 if (t4_toecaps_allowed == -1) 12788 t4_toecaps_allowed = 0; 12789 #endif 12790 12791 #ifdef TCP_OFFLOAD 12792 if (t4_rdmacaps_allowed == -1) { 12793 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12794 FW_CAPS_CONFIG_RDMA_RDMAC; 12795 } 12796 12797 if (t4_iscsicaps_allowed == -1) { 12798 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12799 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12800 FW_CAPS_CONFIG_ISCSI_T10DIF; 12801 } 12802 12803 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12804 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12805 12806 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12807 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12808 #else 12809 if (t4_rdmacaps_allowed == -1) 12810 t4_rdmacaps_allowed = 0; 12811 12812 if (t4_iscsicaps_allowed == -1) 12813 t4_iscsicaps_allowed = 0; 12814 #endif 12815 12816 #ifdef DEV_NETMAP 12817 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12818 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12819 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12820 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12821 #endif 12822 12823 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12824 t4_tmr_idx = TMR_IDX; 12825 12826 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12827 t4_pktc_idx = PKTC_IDX; 12828 12829 if (t4_qsize_txq < 128) 12830 t4_qsize_txq = 128; 12831 12832 if (t4_qsize_rxq < 128) 12833 t4_qsize_rxq = 128; 12834 while (t4_qsize_rxq & 7) 12835 t4_qsize_rxq++; 12836 12837 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12838 12839 /* 12840 * Number of VIs to create per-port. The first VI is the "main" regular 12841 * VI for the port. The rest are additional virtual interfaces on the 12842 * same physical port. Note that the main VI does not have native 12843 * netmap support but the extra VIs do. 12844 * 12845 * Limit the number of VIs per port to the number of available 12846 * MAC addresses per port. 12847 */ 12848 if (t4_num_vis < 1) 12849 t4_num_vis = 1; 12850 if (t4_num_vis > nitems(vi_mac_funcs)) { 12851 t4_num_vis = nitems(vi_mac_funcs); 12852 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12853 } 12854 12855 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12856 pcie_relaxed_ordering = 1; 12857 #if defined(__i386__) || defined(__amd64__) 12858 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12859 pcie_relaxed_ordering = 0; 12860 #endif 12861 } 12862 } 12863 12864 #ifdef DDB 12865 static void 12866 t4_dump_tcb(struct adapter *sc, int tid) 12867 { 12868 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12869 12870 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12871 save = t4_read_reg(sc, reg); 12872 base = sc->memwin[2].mw_base; 12873 12874 /* Dump TCB for the tid */ 12875 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12876 tcb_addr += tid * TCB_SIZE; 12877 12878 if (is_t4(sc)) { 12879 pf = 0; 12880 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12881 } else { 12882 pf = V_PFNUM(sc->pf); 12883 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12884 } 12885 t4_write_reg(sc, reg, win_pos | pf); 12886 t4_read_reg(sc, reg); 12887 12888 off = tcb_addr - win_pos; 12889 for (i = 0; i < 4; i++) { 12890 uint32_t buf[8]; 12891 for (j = 0; j < 8; j++, off += 4) 12892 buf[j] = htonl(t4_read_reg(sc, base + off)); 12893 12894 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12895 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12896 buf[7]); 12897 } 12898 12899 t4_write_reg(sc, reg, save); 12900 t4_read_reg(sc, reg); 12901 } 12902 12903 static void 12904 t4_dump_devlog(struct adapter *sc) 12905 { 12906 struct devlog_params *dparams = &sc->params.devlog; 12907 struct fw_devlog_e e; 12908 int i, first, j, m, nentries, rc; 12909 uint64_t ftstamp = UINT64_MAX; 12910 12911 if (dparams->start == 0) { 12912 db_printf("devlog params not valid\n"); 12913 return; 12914 } 12915 12916 nentries = dparams->size / sizeof(struct fw_devlog_e); 12917 m = fwmtype_to_hwmtype(dparams->memtype); 12918 12919 /* Find the first entry. */ 12920 first = -1; 12921 for (i = 0; i < nentries && !db_pager_quit; i++) { 12922 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12923 sizeof(e), (void *)&e); 12924 if (rc != 0) 12925 break; 12926 12927 if (e.timestamp == 0) 12928 break; 12929 12930 e.timestamp = be64toh(e.timestamp); 12931 if (e.timestamp < ftstamp) { 12932 ftstamp = e.timestamp; 12933 first = i; 12934 } 12935 } 12936 12937 if (first == -1) 12938 return; 12939 12940 i = first; 12941 do { 12942 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12943 sizeof(e), (void *)&e); 12944 if (rc != 0) 12945 return; 12946 12947 if (e.timestamp == 0) 12948 return; 12949 12950 e.timestamp = be64toh(e.timestamp); 12951 e.seqno = be32toh(e.seqno); 12952 for (j = 0; j < 8; j++) 12953 e.params[j] = be32toh(e.params[j]); 12954 12955 db_printf("%10d %15ju %8s %8s ", 12956 e.seqno, e.timestamp, 12957 (e.level < nitems(devlog_level_strings) ? 12958 devlog_level_strings[e.level] : "UNKNOWN"), 12959 (e.facility < nitems(devlog_facility_strings) ? 12960 devlog_facility_strings[e.facility] : "UNKNOWN")); 12961 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12962 e.params[3], e.params[4], e.params[5], e.params[6], 12963 e.params[7]); 12964 12965 if (++i == nentries) 12966 i = 0; 12967 } while (i != first && !db_pager_quit); 12968 } 12969 12970 static DB_DEFINE_TABLE(show, t4, show_t4); 12971 12972 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12973 { 12974 device_t dev; 12975 int t; 12976 bool valid; 12977 12978 valid = false; 12979 t = db_read_token(); 12980 if (t == tIDENT) { 12981 dev = device_lookup_by_name(db_tok_string); 12982 valid = true; 12983 } 12984 db_skip_to_eol(); 12985 if (!valid) { 12986 db_printf("usage: show t4 devlog <nexus>\n"); 12987 return; 12988 } 12989 12990 if (dev == NULL) { 12991 db_printf("device not found\n"); 12992 return; 12993 } 12994 12995 t4_dump_devlog(device_get_softc(dev)); 12996 } 12997 12998 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12999 { 13000 device_t dev; 13001 int radix, tid, t; 13002 bool valid; 13003 13004 valid = false; 13005 radix = db_radix; 13006 db_radix = 10; 13007 t = db_read_token(); 13008 if (t == tIDENT) { 13009 dev = device_lookup_by_name(db_tok_string); 13010 t = db_read_token(); 13011 if (t == tNUMBER) { 13012 tid = db_tok_number; 13013 valid = true; 13014 } 13015 } 13016 db_radix = radix; 13017 db_skip_to_eol(); 13018 if (!valid) { 13019 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13020 return; 13021 } 13022 13023 if (dev == NULL) { 13024 db_printf("device not found\n"); 13025 return; 13026 } 13027 if (tid < 0) { 13028 db_printf("invalid tid\n"); 13029 return; 13030 } 13031 13032 t4_dump_tcb(device_get_softc(dev), tid); 13033 } 13034 #endif 13035 13036 static eventhandler_tag vxlan_start_evtag; 13037 static eventhandler_tag vxlan_stop_evtag; 13038 13039 struct vxlan_evargs { 13040 if_t ifp; 13041 uint16_t port; 13042 }; 13043 13044 static void 13045 enable_vxlan_rx(struct adapter *sc) 13046 { 13047 int i, rc; 13048 struct port_info *pi; 13049 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13050 13051 ASSERT_SYNCHRONIZED_OP(sc); 13052 13053 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13054 F_VXLAN_EN); 13055 for_each_port(sc, i) { 13056 pi = sc->port[i]; 13057 if (pi->vxlan_tcam_entry == true) 13058 continue; 13059 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13060 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13061 true); 13062 if (rc < 0) { 13063 rc = -rc; 13064 CH_ERR(&pi->vi[0], 13065 "failed to add VXLAN TCAM entry: %d.\n", rc); 13066 } else { 13067 MPASS(rc == sc->rawf_base + pi->port_id); 13068 pi->vxlan_tcam_entry = true; 13069 } 13070 } 13071 } 13072 13073 static void 13074 t4_vxlan_start(struct adapter *sc, void *arg) 13075 { 13076 struct vxlan_evargs *v = arg; 13077 13078 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13079 return; 13080 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13081 return; 13082 13083 if (sc->vxlan_refcount == 0) { 13084 sc->vxlan_port = v->port; 13085 sc->vxlan_refcount = 1; 13086 if (!hw_off_limits(sc)) 13087 enable_vxlan_rx(sc); 13088 } else if (sc->vxlan_port == v->port) { 13089 sc->vxlan_refcount++; 13090 } else { 13091 CH_ERR(sc, "VXLAN already configured on port %d; " 13092 "ignoring attempt to configure it on port %d\n", 13093 sc->vxlan_port, v->port); 13094 } 13095 end_synchronized_op(sc, 0); 13096 } 13097 13098 static void 13099 t4_vxlan_stop(struct adapter *sc, void *arg) 13100 { 13101 struct vxlan_evargs *v = arg; 13102 13103 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13104 return; 13105 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13106 return; 13107 13108 /* 13109 * VXLANs may have been configured before the driver was loaded so we 13110 * may see more stops than starts. This is not handled cleanly but at 13111 * least we keep the refcount sane. 13112 */ 13113 if (sc->vxlan_port != v->port) 13114 goto done; 13115 if (sc->vxlan_refcount == 0) { 13116 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13117 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13118 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13119 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13120 done: 13121 end_synchronized_op(sc, 0); 13122 } 13123 13124 static void 13125 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13126 sa_family_t family, u_int port) 13127 { 13128 struct vxlan_evargs v; 13129 13130 MPASS(family == AF_INET || family == AF_INET6); 13131 v.ifp = ifp; 13132 v.port = port; 13133 13134 t4_iterate(t4_vxlan_start, &v); 13135 } 13136 13137 static void 13138 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13139 u_int port) 13140 { 13141 struct vxlan_evargs v; 13142 13143 MPASS(family == AF_INET || family == AF_INET6); 13144 v.ifp = ifp; 13145 v.port = port; 13146 13147 t4_iterate(t4_vxlan_stop, &v); 13148 } 13149 13150 13151 static struct sx mlu; /* mod load unload */ 13152 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13153 13154 static int 13155 mod_event(module_t mod, int cmd, void *arg) 13156 { 13157 int rc = 0; 13158 static int loaded = 0; 13159 13160 switch (cmd) { 13161 case MOD_LOAD: 13162 sx_xlock(&mlu); 13163 if (loaded++ == 0) { 13164 t4_sge_modload(); 13165 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13166 t4_filter_rpl, CPL_COOKIE_FILTER); 13167 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13168 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13169 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13170 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13171 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13172 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13173 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13174 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13175 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13176 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13177 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13178 do_smt_write_rpl); 13179 sx_init(&t4_list_lock, "T4/T5 adapters"); 13180 SLIST_INIT(&t4_list); 13181 callout_init(&fatal_callout, 1); 13182 #ifdef TCP_OFFLOAD 13183 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13184 SLIST_INIT(&t4_uld_list); 13185 #endif 13186 #ifdef INET6 13187 t4_clip_modload(); 13188 #endif 13189 #ifdef KERN_TLS 13190 t6_ktls_modload(); 13191 #endif 13192 t4_tracer_modload(); 13193 tweak_tunables(); 13194 vxlan_start_evtag = 13195 EVENTHANDLER_REGISTER(vxlan_start, 13196 t4_vxlan_start_handler, NULL, 13197 EVENTHANDLER_PRI_ANY); 13198 vxlan_stop_evtag = 13199 EVENTHANDLER_REGISTER(vxlan_stop, 13200 t4_vxlan_stop_handler, NULL, 13201 EVENTHANDLER_PRI_ANY); 13202 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13203 taskqueue_thread_enqueue, &reset_tq); 13204 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13205 "t4_rst_thr"); 13206 } 13207 sx_xunlock(&mlu); 13208 break; 13209 13210 case MOD_UNLOAD: 13211 sx_xlock(&mlu); 13212 if (--loaded == 0) { 13213 int tries; 13214 13215 taskqueue_free(reset_tq); 13216 sx_slock(&t4_list_lock); 13217 if (!SLIST_EMPTY(&t4_list)) { 13218 rc = EBUSY; 13219 sx_sunlock(&t4_list_lock); 13220 goto done_unload; 13221 } 13222 #ifdef TCP_OFFLOAD 13223 sx_slock(&t4_uld_list_lock); 13224 if (!SLIST_EMPTY(&t4_uld_list)) { 13225 rc = EBUSY; 13226 sx_sunlock(&t4_uld_list_lock); 13227 sx_sunlock(&t4_list_lock); 13228 goto done_unload; 13229 } 13230 #endif 13231 tries = 0; 13232 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13233 uprintf("%ju clusters with custom free routine " 13234 "still is use.\n", t4_sge_extfree_refs()); 13235 pause("t4unload", 2 * hz); 13236 } 13237 #ifdef TCP_OFFLOAD 13238 sx_sunlock(&t4_uld_list_lock); 13239 #endif 13240 sx_sunlock(&t4_list_lock); 13241 13242 if (t4_sge_extfree_refs() == 0) { 13243 EVENTHANDLER_DEREGISTER(vxlan_start, 13244 vxlan_start_evtag); 13245 EVENTHANDLER_DEREGISTER(vxlan_stop, 13246 vxlan_stop_evtag); 13247 t4_tracer_modunload(); 13248 #ifdef KERN_TLS 13249 t6_ktls_modunload(); 13250 #endif 13251 #ifdef INET6 13252 t4_clip_modunload(); 13253 #endif 13254 #ifdef TCP_OFFLOAD 13255 sx_destroy(&t4_uld_list_lock); 13256 #endif 13257 sx_destroy(&t4_list_lock); 13258 t4_sge_modunload(); 13259 loaded = 0; 13260 } else { 13261 rc = EBUSY; 13262 loaded++; /* undo earlier decrement */ 13263 } 13264 } 13265 done_unload: 13266 sx_xunlock(&mlu); 13267 break; 13268 } 13269 13270 return (rc); 13271 } 13272 13273 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13274 MODULE_VERSION(t4nex, 1); 13275 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13276 #ifdef DEV_NETMAP 13277 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13278 #endif /* DEV_NETMAP */ 13279 13280 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13281 MODULE_VERSION(t5nex, 1); 13282 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13283 #ifdef DEV_NETMAP 13284 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13285 #endif /* DEV_NETMAP */ 13286 13287 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13288 MODULE_VERSION(t6nex, 1); 13289 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13290 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13291 #ifdef DEV_NETMAP 13292 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13293 #endif /* DEV_NETMAP */ 13294 13295 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13296 MODULE_VERSION(cxgbe, 1); 13297 13298 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13299 MODULE_VERSION(cxl, 1); 13300 13301 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13302 MODULE_VERSION(cc, 1); 13303 13304 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13305 MODULE_VERSION(vcxgbe, 1); 13306 13307 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13308 MODULE_VERSION(vcxl, 1); 13309 13310 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13311 MODULE_VERSION(vcc, 1); 13312