1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_tx_vm_wr = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 631 "Use VM work requests to transmit packets."); 632 633 /* 634 * Set to non-zero to enable the attack filter. A packet that matches any of 635 * these conditions will get dropped on ingress: 636 * 1) IP && source address == destination address. 637 * 2) TCP/IP && source address is not a unicast address. 638 * 3) TCP/IP && destination address is not a unicast address. 639 * 4) IP && source address is loopback (127.x.y.z). 640 * 5) IP && destination address is loopback (127.x.y.z). 641 * 6) IPv6 && source address == destination address. 642 * 7) IPv6 && source address is not a unicast address. 643 * 8) IPv6 && source address is loopback (::1/128). 644 * 9) IPv6 && destination address is loopback (::1/128). 645 * 10) IPv6 && source address is unspecified (::/128). 646 * 11) IPv6 && destination address is unspecified (::/128). 647 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 648 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 649 */ 650 static int t4_attack_filter = 0; 651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 652 &t4_attack_filter, 0, "Drop suspicious traffic"); 653 654 static int t4_drop_ip_fragments = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 656 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 657 658 static int t4_drop_pkts_with_l2_errors = 1; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l2_errors, 0, 661 "Drop all frames with Layer 2 length or checksum errors"); 662 663 static int t4_drop_pkts_with_l3_errors = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 665 &t4_drop_pkts_with_l3_errors, 0, 666 "Drop all frames with IP version, length, or checksum errors"); 667 668 static int t4_drop_pkts_with_l4_errors = 0; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 670 &t4_drop_pkts_with_l4_errors, 0, 671 "Drop all frames with Layer 4 length, checksum, or other errors"); 672 673 #ifdef TCP_OFFLOAD 674 /* 675 * TOE tunables. 676 */ 677 static int t4_cop_managed_offloading = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 679 &t4_cop_managed_offloading, 0, 680 "COP (Connection Offload Policy) controls all TOE offload"); 681 #endif 682 683 #ifdef KERN_TLS 684 /* 685 * This enables KERN_TLS for all adapters if set. 686 */ 687 static int t4_kern_tls = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 689 "Enable KERN_TLS mode for all supported adapters"); 690 691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 692 "cxgbe(4) KERN_TLS parameters"); 693 694 static int t4_tls_inline_keys = 0; 695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 696 &t4_tls_inline_keys, 0, 697 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 698 "in card memory."); 699 700 static int t4_tls_combo_wrs = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 702 0, "Attempt to combine TCB field updates with TLS record work requests."); 703 #endif 704 705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 706 static int vi_mac_funcs[] = { 707 FW_VI_FUNC_ETH, 708 FW_VI_FUNC_OFLD, 709 FW_VI_FUNC_IWARP, 710 FW_VI_FUNC_OPENISCSI, 711 FW_VI_FUNC_OPENFCOE, 712 FW_VI_FUNC_FOISCSI, 713 FW_VI_FUNC_FOFCOE, 714 }; 715 716 struct intrs_and_queues { 717 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 718 uint16_t num_vis; /* number of VIs for each port */ 719 uint16_t nirq; /* Total # of vectors */ 720 uint16_t ntxq; /* # of NIC txq's for each port */ 721 uint16_t nrxq; /* # of NIC rxq's for each port */ 722 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 723 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 724 uint16_t nnmtxq; /* # of netmap txq's */ 725 uint16_t nnmrxq; /* # of netmap rxq's */ 726 727 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 728 uint16_t ntxq_vi; /* # of NIC txq's */ 729 uint16_t nrxq_vi; /* # of NIC rxq's */ 730 uint16_t nofldtxq_vi; /* # of TOE txq's */ 731 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 732 uint16_t nnmtxq_vi; /* # of netmap txq's */ 733 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 734 }; 735 736 static void setup_memwin(struct adapter *); 737 static void position_memwin(struct adapter *, int, uint32_t); 738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 739 static int fwmtype_to_hwmtype(int); 740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 741 uint32_t *); 742 static int fixup_devlog_params(struct adapter *); 743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 744 static int contact_firmware(struct adapter *); 745 static int partition_resources(struct adapter *); 746 static int get_params__pre_init(struct adapter *); 747 static int set_params__pre_init(struct adapter *); 748 static int get_params__post_init(struct adapter *); 749 static int set_params__post_init(struct adapter *); 750 static void t4_set_desc(struct adapter *); 751 static bool fixed_ifmedia(struct port_info *); 752 static void build_medialist(struct port_info *); 753 static void init_link_config(struct port_info *); 754 static int fixup_link_config(struct port_info *); 755 static int apply_link_config(struct port_info *); 756 static int cxgbe_init_synchronized(struct vi_info *); 757 static int cxgbe_uninit_synchronized(struct vi_info *); 758 static int adapter_full_init(struct adapter *); 759 static void adapter_full_uninit(struct adapter *); 760 static int vi_full_init(struct vi_info *); 761 static void vi_full_uninit(struct vi_info *); 762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 763 static void quiesce_txq(struct sge_txq *); 764 static void quiesce_wrq(struct sge_wrq *); 765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 766 static void quiesce_vi(struct vi_info *); 767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 768 driver_intr_t *, void *, char *); 769 static int t4_free_irq(struct adapter *, struct irq *); 770 static void t4_init_atid_table(struct adapter *); 771 static void t4_free_atid_table(struct adapter *); 772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 773 static void vi_refresh_stats(struct vi_info *); 774 static void cxgbe_refresh_stats(struct vi_info *); 775 static void cxgbe_tick(void *); 776 static void vi_tick(void *); 777 static void cxgbe_sysctls(struct port_info *); 778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 829 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 830 #ifdef TCP_OFFLOAD 831 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 841 #endif 842 static int get_sge_context(struct adapter *, struct t4_sge_context *); 843 static int load_fw(struct adapter *, struct t4_data *); 844 static int load_cfg(struct adapter *, struct t4_data *); 845 static int load_boot(struct adapter *, struct t4_bootrom *); 846 static int load_bootcfg(struct adapter *, struct t4_data *); 847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 848 static void free_offload_policy(struct t4_offload_policy *); 849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 851 static int read_i2c(struct adapter *, struct t4_i2c_data *); 852 static int clear_stats(struct adapter *, u_int); 853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 855 #ifdef TCP_OFFLOAD 856 static int toe_capability(struct vi_info *, bool); 857 static int t4_deactivate_all_uld(struct adapter *); 858 static void t4_async_event(struct adapter *); 859 #endif 860 #ifdef KERN_TLS 861 static int ktls_capability(struct adapter *, bool); 862 #endif 863 static int mod_event(module_t, int, void *); 864 static int notify_siblings(device_t, int); 865 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 866 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 867 static void enable_vxlan_rx(struct adapter *); 868 static void reset_adapter_task(void *, int); 869 static void fatal_error_task(void *, int); 870 static void dump_devlog(struct adapter *); 871 static void dump_cim_regs(struct adapter *); 872 static void dump_cimla(struct adapter *); 873 874 struct { 875 uint16_t device; 876 char *desc; 877 } t4_pciids[] = { 878 {0xa000, "Chelsio Terminator 4 FPGA"}, 879 {0x4400, "Chelsio T440-dbg"}, 880 {0x4401, "Chelsio T420-CR"}, 881 {0x4402, "Chelsio T422-CR"}, 882 {0x4403, "Chelsio T440-CR"}, 883 {0x4404, "Chelsio T420-BCH"}, 884 {0x4405, "Chelsio T440-BCH"}, 885 {0x4406, "Chelsio T440-CH"}, 886 {0x4407, "Chelsio T420-SO"}, 887 {0x4408, "Chelsio T420-CX"}, 888 {0x4409, "Chelsio T420-BT"}, 889 {0x440a, "Chelsio T404-BT"}, 890 {0x440e, "Chelsio T440-LP-CR"}, 891 }, t5_pciids[] = { 892 {0xb000, "Chelsio Terminator 5 FPGA"}, 893 {0x5400, "Chelsio T580-dbg"}, 894 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 895 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 896 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 897 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 898 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 899 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 900 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 901 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 902 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 903 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 904 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 905 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 906 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 907 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 908 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 909 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 910 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 911 912 /* Custom */ 913 {0x5483, "Custom T540-CR"}, 914 {0x5484, "Custom T540-BT"}, 915 }, t6_pciids[] = { 916 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 917 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 918 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 919 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 920 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 921 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 922 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 923 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 924 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 925 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 926 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 927 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 928 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 929 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 930 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 931 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 932 933 /* Custom */ 934 {0x6480, "Custom T6225-CR"}, 935 {0x6481, "Custom T62100-CR"}, 936 {0x6482, "Custom T6225-CR"}, 937 {0x6483, "Custom T62100-CR"}, 938 {0x6484, "Custom T64100-CR"}, 939 {0x6485, "Custom T6240-SO"}, 940 {0x6486, "Custom T6225-SO-CR"}, 941 {0x6487, "Custom T6225-CR"}, 942 }; 943 944 #ifdef TCP_OFFLOAD 945 /* 946 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 947 * be exactly the same for both rxq and ofld_rxq. 948 */ 949 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 950 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 951 #endif 952 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 953 954 static int 955 t4_probe(device_t dev) 956 { 957 int i; 958 uint16_t v = pci_get_vendor(dev); 959 uint16_t d = pci_get_device(dev); 960 uint8_t f = pci_get_function(dev); 961 962 if (v != PCI_VENDOR_ID_CHELSIO) 963 return (ENXIO); 964 965 /* Attach only to PF0 of the FPGA */ 966 if (d == 0xa000 && f != 0) 967 return (ENXIO); 968 969 for (i = 0; i < nitems(t4_pciids); i++) { 970 if (d == t4_pciids[i].device) { 971 device_set_desc(dev, t4_pciids[i].desc); 972 return (BUS_PROBE_DEFAULT); 973 } 974 } 975 976 return (ENXIO); 977 } 978 979 static int 980 t5_probe(device_t dev) 981 { 982 int i; 983 uint16_t v = pci_get_vendor(dev); 984 uint16_t d = pci_get_device(dev); 985 uint8_t f = pci_get_function(dev); 986 987 if (v != PCI_VENDOR_ID_CHELSIO) 988 return (ENXIO); 989 990 /* Attach only to PF0 of the FPGA */ 991 if (d == 0xb000 && f != 0) 992 return (ENXIO); 993 994 for (i = 0; i < nitems(t5_pciids); i++) { 995 if (d == t5_pciids[i].device) { 996 device_set_desc(dev, t5_pciids[i].desc); 997 return (BUS_PROBE_DEFAULT); 998 } 999 } 1000 1001 return (ENXIO); 1002 } 1003 1004 static int 1005 t6_probe(device_t dev) 1006 { 1007 int i; 1008 uint16_t v = pci_get_vendor(dev); 1009 uint16_t d = pci_get_device(dev); 1010 1011 if (v != PCI_VENDOR_ID_CHELSIO) 1012 return (ENXIO); 1013 1014 for (i = 0; i < nitems(t6_pciids); i++) { 1015 if (d == t6_pciids[i].device) { 1016 device_set_desc(dev, t6_pciids[i].desc); 1017 return (BUS_PROBE_DEFAULT); 1018 } 1019 } 1020 1021 return (ENXIO); 1022 } 1023 1024 static void 1025 t5_attribute_workaround(device_t dev) 1026 { 1027 device_t root_port; 1028 uint32_t v; 1029 1030 /* 1031 * The T5 chips do not properly echo the No Snoop and Relaxed 1032 * Ordering attributes when replying to a TLP from a Root 1033 * Port. As a workaround, find the parent Root Port and 1034 * disable No Snoop and Relaxed Ordering. Note that this 1035 * affects all devices under this root port. 1036 */ 1037 root_port = pci_find_pcie_root_port(dev); 1038 if (root_port == NULL) { 1039 device_printf(dev, "Unable to find parent root port\n"); 1040 return; 1041 } 1042 1043 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1044 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1045 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1046 0) 1047 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1048 device_get_nameunit(root_port)); 1049 } 1050 1051 static const struct devnames devnames[] = { 1052 { 1053 .nexus_name = "t4nex", 1054 .ifnet_name = "cxgbe", 1055 .vi_ifnet_name = "vcxgbe", 1056 .pf03_drv_name = "t4iov", 1057 .vf_nexus_name = "t4vf", 1058 .vf_ifnet_name = "cxgbev" 1059 }, { 1060 .nexus_name = "t5nex", 1061 .ifnet_name = "cxl", 1062 .vi_ifnet_name = "vcxl", 1063 .pf03_drv_name = "t5iov", 1064 .vf_nexus_name = "t5vf", 1065 .vf_ifnet_name = "cxlv" 1066 }, { 1067 .nexus_name = "t6nex", 1068 .ifnet_name = "cc", 1069 .vi_ifnet_name = "vcc", 1070 .pf03_drv_name = "t6iov", 1071 .vf_nexus_name = "t6vf", 1072 .vf_ifnet_name = "ccv" 1073 } 1074 }; 1075 1076 void 1077 t4_init_devnames(struct adapter *sc) 1078 { 1079 int id; 1080 1081 id = chip_id(sc); 1082 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1083 sc->names = &devnames[id - CHELSIO_T4]; 1084 else { 1085 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1086 sc->names = NULL; 1087 } 1088 } 1089 1090 static int 1091 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1092 { 1093 const char *parent, *name; 1094 long value; 1095 int line, unit; 1096 1097 line = 0; 1098 parent = device_get_nameunit(sc->dev); 1099 name = sc->names->ifnet_name; 1100 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1101 if (resource_long_value(name, unit, "port", &value) == 0 && 1102 value == pi->port_id) 1103 return (unit); 1104 } 1105 return (-1); 1106 } 1107 1108 static int 1109 t4_attach(device_t dev) 1110 { 1111 struct adapter *sc; 1112 int rc = 0, i, j, rqidx, tqidx, nports; 1113 struct make_dev_args mda; 1114 struct intrs_and_queues iaq; 1115 struct sge *s; 1116 uint32_t *buf; 1117 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1118 int ofld_tqidx; 1119 #endif 1120 #ifdef TCP_OFFLOAD 1121 int ofld_rqidx; 1122 #endif 1123 #ifdef DEV_NETMAP 1124 int nm_rqidx, nm_tqidx; 1125 #endif 1126 int num_vis; 1127 1128 sc = device_get_softc(dev); 1129 sc->dev = dev; 1130 sysctl_ctx_init(&sc->ctx); 1131 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1132 1133 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1134 t5_attribute_workaround(dev); 1135 pci_enable_busmaster(dev); 1136 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1137 uint32_t v; 1138 1139 pci_set_max_read_req(dev, 4096); 1140 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1141 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1142 if (pcie_relaxed_ordering == 0 && 1143 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1144 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1145 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1146 } else if (pcie_relaxed_ordering == 1 && 1147 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1148 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1149 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1150 } 1151 } 1152 1153 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1154 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1155 sc->traceq = -1; 1156 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1157 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1158 device_get_nameunit(dev)); 1159 1160 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1161 device_get_nameunit(dev)); 1162 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1163 t4_add_adapter(sc); 1164 1165 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1166 TAILQ_INIT(&sc->sfl); 1167 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1168 1169 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1170 1171 sc->policy = NULL; 1172 rw_init(&sc->policy_lock, "connection offload policy"); 1173 1174 callout_init(&sc->ktls_tick, 1); 1175 1176 refcount_init(&sc->vxlan_refcount, 0); 1177 1178 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1179 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1180 1181 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1182 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1183 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1184 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1185 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1186 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1187 1188 rc = t4_map_bars_0_and_4(sc); 1189 if (rc != 0) 1190 goto done; /* error message displayed already */ 1191 1192 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1193 1194 /* Prepare the adapter for operation. */ 1195 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1196 rc = -t4_prep_adapter(sc, buf); 1197 free(buf, M_CXGBE); 1198 if (rc != 0) { 1199 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1200 goto done; 1201 } 1202 1203 /* 1204 * This is the real PF# to which we're attaching. Works from within PCI 1205 * passthrough environments too, where pci_get_function() could return a 1206 * different PF# depending on the passthrough configuration. We need to 1207 * use the real PF# in all our communication with the firmware. 1208 */ 1209 j = t4_read_reg(sc, A_PL_WHOAMI); 1210 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1211 sc->mbox = sc->pf; 1212 1213 t4_init_devnames(sc); 1214 if (sc->names == NULL) { 1215 rc = ENOTSUP; 1216 goto done; /* error message displayed already */ 1217 } 1218 1219 /* 1220 * Do this really early, with the memory windows set up even before the 1221 * character device. The userland tool's register i/o and mem read 1222 * will work even in "recovery mode". 1223 */ 1224 setup_memwin(sc); 1225 if (t4_init_devlog_params(sc, 0) == 0) 1226 fixup_devlog_params(sc); 1227 make_dev_args_init(&mda); 1228 mda.mda_devsw = &t4_cdevsw; 1229 mda.mda_uid = UID_ROOT; 1230 mda.mda_gid = GID_WHEEL; 1231 mda.mda_mode = 0600; 1232 mda.mda_si_drv1 = sc; 1233 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1234 if (rc != 0) 1235 device_printf(dev, "failed to create nexus char device: %d.\n", 1236 rc); 1237 1238 /* Go no further if recovery mode has been requested. */ 1239 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1240 device_printf(dev, "recovery mode.\n"); 1241 goto done; 1242 } 1243 1244 #if defined(__i386__) 1245 if ((cpu_feature & CPUID_CX8) == 0) { 1246 device_printf(dev, "64 bit atomics not available.\n"); 1247 rc = ENOTSUP; 1248 goto done; 1249 } 1250 #endif 1251 1252 /* Contact the firmware and try to become the master driver. */ 1253 rc = contact_firmware(sc); 1254 if (rc != 0) 1255 goto done; /* error message displayed already */ 1256 MPASS(sc->flags & FW_OK); 1257 1258 rc = get_params__pre_init(sc); 1259 if (rc != 0) 1260 goto done; /* error message displayed already */ 1261 1262 if (sc->flags & MASTER_PF) { 1263 rc = partition_resources(sc); 1264 if (rc != 0) 1265 goto done; /* error message displayed already */ 1266 t4_intr_clear(sc); 1267 } 1268 1269 rc = get_params__post_init(sc); 1270 if (rc != 0) 1271 goto done; /* error message displayed already */ 1272 1273 rc = set_params__post_init(sc); 1274 if (rc != 0) 1275 goto done; /* error message displayed already */ 1276 1277 rc = t4_map_bar_2(sc); 1278 if (rc != 0) 1279 goto done; /* error message displayed already */ 1280 1281 rc = t4_create_dma_tag(sc); 1282 if (rc != 0) 1283 goto done; /* error message displayed already */ 1284 1285 /* 1286 * First pass over all the ports - allocate VIs and initialize some 1287 * basic parameters like mac address, port type, etc. 1288 */ 1289 for_each_port(sc, i) { 1290 struct port_info *pi; 1291 1292 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1293 sc->port[i] = pi; 1294 1295 /* These must be set before t4_port_init */ 1296 pi->adapter = sc; 1297 pi->port_id = i; 1298 /* 1299 * XXX: vi[0] is special so we can't delay this allocation until 1300 * pi->nvi's final value is known. 1301 */ 1302 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1303 M_ZERO | M_WAITOK); 1304 1305 /* 1306 * Allocate the "main" VI and initialize parameters 1307 * like mac addr. 1308 */ 1309 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1310 if (rc != 0) { 1311 device_printf(dev, "unable to initialize port %d: %d\n", 1312 i, rc); 1313 free(pi->vi, M_CXGBE); 1314 free(pi, M_CXGBE); 1315 sc->port[i] = NULL; 1316 goto done; 1317 } 1318 1319 if (is_bt(pi->port_type)) 1320 setbit(&sc->bt_map, pi->tx_chan); 1321 else 1322 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1323 1324 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1325 device_get_nameunit(dev), i); 1326 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1327 sc->chan_map[pi->tx_chan] = i; 1328 1329 /* 1330 * The MPS counter for FCS errors doesn't work correctly on the 1331 * T6 so we use the MAC counter here. Which MAC is in use 1332 * depends on the link settings which will be known when the 1333 * link comes up. 1334 */ 1335 if (is_t6(sc)) { 1336 pi->fcs_reg = -1; 1337 } else if (is_t4(sc)) { 1338 pi->fcs_reg = PORT_REG(pi->tx_chan, 1339 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1340 } else { 1341 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1342 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1343 } 1344 pi->fcs_base = 0; 1345 1346 /* All VIs on this port share this media. */ 1347 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1348 cxgbe_media_status); 1349 1350 PORT_LOCK(pi); 1351 init_link_config(pi); 1352 fixup_link_config(pi); 1353 build_medialist(pi); 1354 if (fixed_ifmedia(pi)) 1355 pi->flags |= FIXED_IFMEDIA; 1356 PORT_UNLOCK(pi); 1357 1358 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1359 t4_ifnet_unit(sc, pi)); 1360 if (pi->dev == NULL) { 1361 device_printf(dev, 1362 "failed to add device for port %d.\n", i); 1363 rc = ENXIO; 1364 goto done; 1365 } 1366 pi->vi[0].dev = pi->dev; 1367 device_set_softc(pi->dev, pi); 1368 } 1369 1370 /* 1371 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1372 */ 1373 nports = sc->params.nports; 1374 rc = cfg_itype_and_nqueues(sc, &iaq); 1375 if (rc != 0) 1376 goto done; /* error message displayed already */ 1377 1378 num_vis = iaq.num_vis; 1379 sc->intr_type = iaq.intr_type; 1380 sc->intr_count = iaq.nirq; 1381 1382 s = &sc->sge; 1383 s->nrxq = nports * iaq.nrxq; 1384 s->ntxq = nports * iaq.ntxq; 1385 if (num_vis > 1) { 1386 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1387 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1388 } 1389 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1390 s->neq += nports; /* ctrl queues: 1 per port */ 1391 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1392 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1393 if (is_offload(sc) || is_ethoffload(sc)) { 1394 s->nofldtxq = nports * iaq.nofldtxq; 1395 if (num_vis > 1) 1396 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1397 s->neq += s->nofldtxq; 1398 1399 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1400 M_CXGBE, M_ZERO | M_WAITOK); 1401 } 1402 #endif 1403 #ifdef TCP_OFFLOAD 1404 if (is_offload(sc)) { 1405 s->nofldrxq = nports * iaq.nofldrxq; 1406 if (num_vis > 1) 1407 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1408 s->neq += s->nofldrxq; /* free list */ 1409 s->niq += s->nofldrxq; 1410 1411 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1412 M_CXGBE, M_ZERO | M_WAITOK); 1413 } 1414 #endif 1415 #ifdef DEV_NETMAP 1416 s->nnmrxq = 0; 1417 s->nnmtxq = 0; 1418 if (t4_native_netmap & NN_MAIN_VI) { 1419 s->nnmrxq += nports * iaq.nnmrxq; 1420 s->nnmtxq += nports * iaq.nnmtxq; 1421 } 1422 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1423 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1424 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1425 } 1426 s->neq += s->nnmtxq + s->nnmrxq; 1427 s->niq += s->nnmrxq; 1428 1429 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1430 M_CXGBE, M_ZERO | M_WAITOK); 1431 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1432 M_CXGBE, M_ZERO | M_WAITOK); 1433 #endif 1434 MPASS(s->niq <= s->iqmap_sz); 1435 MPASS(s->neq <= s->eqmap_sz); 1436 1437 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1438 M_ZERO | M_WAITOK); 1439 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1440 M_ZERO | M_WAITOK); 1441 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1442 M_ZERO | M_WAITOK); 1443 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1444 M_ZERO | M_WAITOK); 1445 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1446 M_ZERO | M_WAITOK); 1447 1448 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1449 M_ZERO | M_WAITOK); 1450 1451 t4_init_l2t(sc, M_WAITOK); 1452 t4_init_smt(sc, M_WAITOK); 1453 t4_init_tx_sched(sc); 1454 t4_init_atid_table(sc); 1455 #ifdef RATELIMIT 1456 t4_init_etid_table(sc); 1457 #endif 1458 #ifdef INET6 1459 t4_init_clip_table(sc); 1460 #endif 1461 if (sc->vres.key.size != 0) 1462 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1463 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1464 1465 /* 1466 * Second pass over the ports. This time we know the number of rx and 1467 * tx queues that each port should get. 1468 */ 1469 rqidx = tqidx = 0; 1470 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1471 ofld_tqidx = 0; 1472 #endif 1473 #ifdef TCP_OFFLOAD 1474 ofld_rqidx = 0; 1475 #endif 1476 #ifdef DEV_NETMAP 1477 nm_rqidx = nm_tqidx = 0; 1478 #endif 1479 for_each_port(sc, i) { 1480 struct port_info *pi = sc->port[i]; 1481 struct vi_info *vi; 1482 1483 if (pi == NULL) 1484 continue; 1485 1486 pi->nvi = num_vis; 1487 for_each_vi(pi, j, vi) { 1488 vi->pi = pi; 1489 vi->adapter = sc; 1490 vi->first_intr = -1; 1491 vi->qsize_rxq = t4_qsize_rxq; 1492 vi->qsize_txq = t4_qsize_txq; 1493 1494 vi->first_rxq = rqidx; 1495 vi->first_txq = tqidx; 1496 vi->tmr_idx = t4_tmr_idx; 1497 vi->pktc_idx = t4_pktc_idx; 1498 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1499 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1500 1501 rqidx += vi->nrxq; 1502 tqidx += vi->ntxq; 1503 1504 if (j == 0 && vi->ntxq > 1) 1505 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1506 else 1507 vi->rsrv_noflowq = 0; 1508 1509 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1510 vi->first_ofld_txq = ofld_tqidx; 1511 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1512 ofld_tqidx += vi->nofldtxq; 1513 #endif 1514 #ifdef TCP_OFFLOAD 1515 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1516 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1517 vi->first_ofld_rxq = ofld_rqidx; 1518 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1519 1520 ofld_rqidx += vi->nofldrxq; 1521 #endif 1522 #ifdef DEV_NETMAP 1523 vi->first_nm_rxq = nm_rqidx; 1524 vi->first_nm_txq = nm_tqidx; 1525 if (j == 0) { 1526 vi->nnmrxq = iaq.nnmrxq; 1527 vi->nnmtxq = iaq.nnmtxq; 1528 } else { 1529 vi->nnmrxq = iaq.nnmrxq_vi; 1530 vi->nnmtxq = iaq.nnmtxq_vi; 1531 } 1532 nm_rqidx += vi->nnmrxq; 1533 nm_tqidx += vi->nnmtxq; 1534 #endif 1535 } 1536 } 1537 1538 rc = t4_setup_intr_handlers(sc); 1539 if (rc != 0) { 1540 device_printf(dev, 1541 "failed to setup interrupt handlers: %d\n", rc); 1542 goto done; 1543 } 1544 1545 rc = bus_generic_probe(dev); 1546 if (rc != 0) { 1547 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1548 goto done; 1549 } 1550 1551 /* 1552 * Ensure thread-safe mailbox access (in debug builds). 1553 * 1554 * So far this was the only thread accessing the mailbox but various 1555 * ifnets and sysctls are about to be created and their handlers/ioctls 1556 * will access the mailbox from different threads. 1557 */ 1558 sc->flags |= CHK_MBOX_ACCESS; 1559 1560 rc = bus_generic_attach(dev); 1561 if (rc != 0) { 1562 device_printf(dev, 1563 "failed to attach all child ports: %d\n", rc); 1564 goto done; 1565 } 1566 1567 device_printf(dev, 1568 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1569 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1570 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1571 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1572 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1573 1574 t4_set_desc(sc); 1575 1576 notify_siblings(dev, 0); 1577 1578 done: 1579 if (rc != 0 && sc->cdev) { 1580 /* cdev was created and so cxgbetool works; recover that way. */ 1581 device_printf(dev, 1582 "error during attach, adapter is now in recovery mode.\n"); 1583 rc = 0; 1584 } 1585 1586 if (rc != 0) 1587 t4_detach_common(dev); 1588 else 1589 t4_sysctls(sc); 1590 1591 return (rc); 1592 } 1593 1594 static int 1595 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1596 { 1597 struct adapter *sc; 1598 struct port_info *pi; 1599 int i; 1600 1601 sc = device_get_softc(bus); 1602 for_each_port(sc, i) { 1603 pi = sc->port[i]; 1604 if (pi != NULL && pi->dev == dev) { 1605 sbuf_printf(sb, "port=%d", pi->port_id); 1606 break; 1607 } 1608 } 1609 return (0); 1610 } 1611 1612 static int 1613 t4_ready(device_t dev) 1614 { 1615 struct adapter *sc; 1616 1617 sc = device_get_softc(dev); 1618 if (sc->flags & FW_OK) 1619 return (0); 1620 return (ENXIO); 1621 } 1622 1623 static int 1624 t4_read_port_device(device_t dev, int port, device_t *child) 1625 { 1626 struct adapter *sc; 1627 struct port_info *pi; 1628 1629 sc = device_get_softc(dev); 1630 if (port < 0 || port >= MAX_NPORTS) 1631 return (EINVAL); 1632 pi = sc->port[port]; 1633 if (pi == NULL || pi->dev == NULL) 1634 return (ENXIO); 1635 *child = pi->dev; 1636 return (0); 1637 } 1638 1639 static int 1640 notify_siblings(device_t dev, int detaching) 1641 { 1642 device_t sibling; 1643 int error, i; 1644 1645 error = 0; 1646 for (i = 0; i < PCI_FUNCMAX; i++) { 1647 if (i == pci_get_function(dev)) 1648 continue; 1649 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1650 pci_get_slot(dev), i); 1651 if (sibling == NULL || !device_is_attached(sibling)) 1652 continue; 1653 if (detaching) 1654 error = T4_DETACH_CHILD(sibling); 1655 else 1656 (void)T4_ATTACH_CHILD(sibling); 1657 if (error) 1658 break; 1659 } 1660 return (error); 1661 } 1662 1663 /* 1664 * Idempotent 1665 */ 1666 static int 1667 t4_detach(device_t dev) 1668 { 1669 int rc; 1670 1671 rc = notify_siblings(dev, 1); 1672 if (rc) { 1673 device_printf(dev, 1674 "failed to detach sibling devices: %d\n", rc); 1675 return (rc); 1676 } 1677 1678 return (t4_detach_common(dev)); 1679 } 1680 1681 int 1682 t4_detach_common(device_t dev) 1683 { 1684 struct adapter *sc; 1685 struct port_info *pi; 1686 int i, rc; 1687 1688 sc = device_get_softc(dev); 1689 1690 #ifdef TCP_OFFLOAD 1691 rc = t4_deactivate_all_uld(sc); 1692 if (rc) { 1693 device_printf(dev, 1694 "failed to detach upper layer drivers: %d\n", rc); 1695 return (rc); 1696 } 1697 #endif 1698 1699 if (sc->cdev) { 1700 destroy_dev(sc->cdev); 1701 sc->cdev = NULL; 1702 } 1703 1704 sx_xlock(&t4_list_lock); 1705 SLIST_REMOVE(&t4_list, sc, adapter, link); 1706 sx_xunlock(&t4_list_lock); 1707 1708 sc->flags &= ~CHK_MBOX_ACCESS; 1709 if (sc->flags & FULL_INIT_DONE) { 1710 if (!(sc->flags & IS_VF)) 1711 t4_intr_disable(sc); 1712 } 1713 1714 if (device_is_attached(dev)) { 1715 rc = bus_generic_detach(dev); 1716 if (rc) { 1717 device_printf(dev, 1718 "failed to detach child devices: %d\n", rc); 1719 return (rc); 1720 } 1721 } 1722 1723 for (i = 0; i < sc->intr_count; i++) 1724 t4_free_irq(sc, &sc->irq[i]); 1725 1726 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1727 t4_free_tx_sched(sc); 1728 1729 for (i = 0; i < MAX_NPORTS; i++) { 1730 pi = sc->port[i]; 1731 if (pi) { 1732 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1733 if (pi->dev) 1734 device_delete_child(dev, pi->dev); 1735 1736 mtx_destroy(&pi->pi_lock); 1737 free(pi->vi, M_CXGBE); 1738 free(pi, M_CXGBE); 1739 } 1740 } 1741 1742 device_delete_children(dev); 1743 sysctl_ctx_free(&sc->ctx); 1744 adapter_full_uninit(sc); 1745 1746 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1747 t4_fw_bye(sc, sc->mbox); 1748 1749 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1750 pci_release_msi(dev); 1751 1752 if (sc->regs_res) 1753 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1754 sc->regs_res); 1755 1756 if (sc->udbs_res) 1757 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1758 sc->udbs_res); 1759 1760 if (sc->msix_res) 1761 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1762 sc->msix_res); 1763 1764 if (sc->l2t) 1765 t4_free_l2t(sc->l2t); 1766 if (sc->smt) 1767 t4_free_smt(sc->smt); 1768 t4_free_atid_table(sc); 1769 #ifdef RATELIMIT 1770 t4_free_etid_table(sc); 1771 #endif 1772 if (sc->key_map) 1773 vmem_destroy(sc->key_map); 1774 #ifdef INET6 1775 t4_destroy_clip_table(sc); 1776 #endif 1777 1778 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1779 free(sc->sge.ofld_txq, M_CXGBE); 1780 #endif 1781 #ifdef TCP_OFFLOAD 1782 free(sc->sge.ofld_rxq, M_CXGBE); 1783 #endif 1784 #ifdef DEV_NETMAP 1785 free(sc->sge.nm_rxq, M_CXGBE); 1786 free(sc->sge.nm_txq, M_CXGBE); 1787 #endif 1788 free(sc->irq, M_CXGBE); 1789 free(sc->sge.rxq, M_CXGBE); 1790 free(sc->sge.txq, M_CXGBE); 1791 free(sc->sge.ctrlq, M_CXGBE); 1792 free(sc->sge.iqmap, M_CXGBE); 1793 free(sc->sge.eqmap, M_CXGBE); 1794 free(sc->tids.ftid_tab, M_CXGBE); 1795 free(sc->tids.hpftid_tab, M_CXGBE); 1796 free_hftid_hash(&sc->tids); 1797 free(sc->tids.tid_tab, M_CXGBE); 1798 free(sc->tt.tls_rx_ports, M_CXGBE); 1799 t4_destroy_dma_tag(sc); 1800 1801 callout_drain(&sc->ktls_tick); 1802 callout_drain(&sc->sfl_callout); 1803 if (mtx_initialized(&sc->tids.ftid_lock)) { 1804 mtx_destroy(&sc->tids.ftid_lock); 1805 cv_destroy(&sc->tids.ftid_cv); 1806 } 1807 if (mtx_initialized(&sc->tids.atid_lock)) 1808 mtx_destroy(&sc->tids.atid_lock); 1809 if (mtx_initialized(&sc->ifp_lock)) 1810 mtx_destroy(&sc->ifp_lock); 1811 1812 if (rw_initialized(&sc->policy_lock)) { 1813 rw_destroy(&sc->policy_lock); 1814 #ifdef TCP_OFFLOAD 1815 if (sc->policy != NULL) 1816 free_offload_policy(sc->policy); 1817 #endif 1818 } 1819 1820 for (i = 0; i < NUM_MEMWIN; i++) { 1821 struct memwin *mw = &sc->memwin[i]; 1822 1823 if (rw_initialized(&mw->mw_lock)) 1824 rw_destroy(&mw->mw_lock); 1825 } 1826 1827 mtx_destroy(&sc->sfl_lock); 1828 mtx_destroy(&sc->reg_lock); 1829 mtx_destroy(&sc->sc_lock); 1830 1831 bzero(sc, sizeof(*sc)); 1832 1833 return (0); 1834 } 1835 1836 static inline bool 1837 ok_to_reset(struct adapter *sc) 1838 { 1839 struct tid_info *t = &sc->tids; 1840 struct port_info *pi; 1841 struct vi_info *vi; 1842 int i, j; 1843 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1844 1845 ASSERT_SYNCHRONIZED_OP(sc); 1846 MPASS(!(sc->flags & IS_VF)); 1847 1848 for_each_port(sc, i) { 1849 pi = sc->port[i]; 1850 for_each_vi(pi, j, vi) { 1851 if (vi->ifp->if_capenable & caps) 1852 return (false); 1853 } 1854 } 1855 1856 if (atomic_load_int(&t->tids_in_use) > 0) 1857 return (false); 1858 if (atomic_load_int(&t->stids_in_use) > 0) 1859 return (false); 1860 if (atomic_load_int(&t->atids_in_use) > 0) 1861 return (false); 1862 if (atomic_load_int(&t->ftids_in_use) > 0) 1863 return (false); 1864 if (atomic_load_int(&t->hpftids_in_use) > 0) 1865 return (false); 1866 if (atomic_load_int(&t->etids_in_use) > 0) 1867 return (false); 1868 1869 return (true); 1870 } 1871 1872 static inline int 1873 stop_adapter(struct adapter *sc) 1874 { 1875 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1876 return (1); /* Already stopped. */ 1877 return (t4_shutdown_adapter(sc)); 1878 } 1879 1880 static int 1881 t4_suspend(device_t dev) 1882 { 1883 struct adapter *sc = device_get_softc(dev); 1884 struct port_info *pi; 1885 struct vi_info *vi; 1886 struct ifnet *ifp; 1887 struct sge_rxq *rxq; 1888 struct sge_txq *txq; 1889 struct sge_wrq *wrq; 1890 #ifdef TCP_OFFLOAD 1891 struct sge_ofld_rxq *ofld_rxq; 1892 #endif 1893 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1894 struct sge_ofld_txq *ofld_txq; 1895 #endif 1896 int rc, i, j, k; 1897 1898 CH_ALERT(sc, "suspend requested\n"); 1899 1900 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1901 if (rc != 0) 1902 return (ENXIO); 1903 1904 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1905 MPASS(!hw_off_limits(sc)); 1906 1907 if (!ok_to_reset(sc)) { 1908 /* XXX: should list what resource is preventing suspend. */ 1909 CH_ERR(sc, "not safe to suspend.\n"); 1910 rc = EBUSY; 1911 goto done; 1912 } 1913 1914 /* No more DMA or interrupts. */ 1915 stop_adapter(sc); 1916 1917 /* Quiesce all activity. */ 1918 for_each_port(sc, i) { 1919 pi = sc->port[i]; 1920 pi->vxlan_tcam_entry = false; 1921 1922 PORT_LOCK(pi); 1923 if (pi->up_vis > 0) { 1924 /* 1925 * t4_shutdown_adapter has already shut down all the 1926 * PHYs but it also disables interrupts and DMA so there 1927 * won't be a link interrupt. So we update the state 1928 * manually and inform the kernel. 1929 */ 1930 pi->link_cfg.link_ok = false; 1931 t4_os_link_changed(pi); 1932 } 1933 PORT_UNLOCK(pi); 1934 1935 for_each_vi(pi, j, vi) { 1936 vi->xact_addr_filt = -1; 1937 mtx_lock(&vi->tick_mtx); 1938 vi->flags |= VI_SKIP_STATS; 1939 mtx_unlock(&vi->tick_mtx); 1940 if (!(vi->flags & VI_INIT_DONE)) 1941 continue; 1942 1943 ifp = vi->ifp; 1944 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1945 mtx_lock(&vi->tick_mtx); 1946 callout_stop(&vi->tick); 1947 mtx_unlock(&vi->tick_mtx); 1948 callout_drain(&vi->tick); 1949 } 1950 1951 /* 1952 * Note that the HW is not available. 1953 */ 1954 for_each_txq(vi, k, txq) { 1955 TXQ_LOCK(txq); 1956 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1957 TXQ_UNLOCK(txq); 1958 } 1959 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1960 for_each_ofld_txq(vi, k, ofld_txq) { 1961 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1962 } 1963 #endif 1964 for_each_rxq(vi, k, rxq) { 1965 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1966 } 1967 #if defined(TCP_OFFLOAD) 1968 for_each_ofld_rxq(vi, k, ofld_rxq) { 1969 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1970 } 1971 #endif 1972 1973 quiesce_vi(vi); 1974 } 1975 1976 if (sc->flags & FULL_INIT_DONE) { 1977 /* Control queue */ 1978 wrq = &sc->sge.ctrlq[i]; 1979 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1980 quiesce_wrq(wrq); 1981 } 1982 } 1983 if (sc->flags & FULL_INIT_DONE) { 1984 /* Firmware event queue */ 1985 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1986 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1987 } 1988 1989 /* Mark the adapter totally off limits. */ 1990 mtx_lock(&sc->reg_lock); 1991 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1992 sc->flags &= ~(FW_OK | MASTER_PF); 1993 sc->reset_thread = NULL; 1994 mtx_unlock(&sc->reg_lock); 1995 1996 CH_ALERT(sc, "suspend completed.\n"); 1997 done: 1998 end_synchronized_op(sc, 0); 1999 return (rc); 2000 } 2001 2002 struct adapter_pre_reset_state { 2003 u_int flags; 2004 uint16_t nbmcaps; 2005 uint16_t linkcaps; 2006 uint16_t switchcaps; 2007 uint16_t niccaps; 2008 uint16_t toecaps; 2009 uint16_t rdmacaps; 2010 uint16_t cryptocaps; 2011 uint16_t iscsicaps; 2012 uint16_t fcoecaps; 2013 2014 u_int cfcsum; 2015 char cfg_file[32]; 2016 2017 struct adapter_params params; 2018 struct t4_virt_res vres; 2019 struct tid_info tids; 2020 struct sge sge; 2021 2022 int rawf_base; 2023 int nrawf; 2024 2025 }; 2026 2027 static void 2028 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2029 { 2030 2031 ASSERT_SYNCHRONIZED_OP(sc); 2032 2033 o->flags = sc->flags; 2034 2035 o->nbmcaps = sc->nbmcaps; 2036 o->linkcaps = sc->linkcaps; 2037 o->switchcaps = sc->switchcaps; 2038 o->niccaps = sc->niccaps; 2039 o->toecaps = sc->toecaps; 2040 o->rdmacaps = sc->rdmacaps; 2041 o->cryptocaps = sc->cryptocaps; 2042 o->iscsicaps = sc->iscsicaps; 2043 o->fcoecaps = sc->fcoecaps; 2044 2045 o->cfcsum = sc->cfcsum; 2046 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2047 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2048 2049 o->params = sc->params; 2050 o->vres = sc->vres; 2051 o->tids = sc->tids; 2052 o->sge = sc->sge; 2053 2054 o->rawf_base = sc->rawf_base; 2055 o->nrawf = sc->nrawf; 2056 } 2057 2058 static int 2059 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2060 { 2061 int rc = 0; 2062 2063 ASSERT_SYNCHRONIZED_OP(sc); 2064 2065 /* Capabilities */ 2066 #define COMPARE_CAPS(c) do { \ 2067 if (o->c##caps != sc->c##caps) { \ 2068 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2069 sc->c##caps); \ 2070 rc = EINVAL; \ 2071 } \ 2072 } while (0) 2073 COMPARE_CAPS(nbm); 2074 COMPARE_CAPS(link); 2075 COMPARE_CAPS(switch); 2076 COMPARE_CAPS(nic); 2077 COMPARE_CAPS(toe); 2078 COMPARE_CAPS(rdma); 2079 COMPARE_CAPS(crypto); 2080 COMPARE_CAPS(iscsi); 2081 COMPARE_CAPS(fcoe); 2082 #undef COMPARE_CAPS 2083 2084 /* Firmware config file */ 2085 if (o->cfcsum != sc->cfcsum) { 2086 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2087 o->cfcsum, sc->cfg_file, sc->cfcsum); 2088 rc = EINVAL; 2089 } 2090 2091 #define COMPARE_PARAM(p, name) do { \ 2092 if (o->p != sc->p) { \ 2093 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2094 rc = EINVAL; \ 2095 } \ 2096 } while (0) 2097 COMPARE_PARAM(sge.iq_start, iq_start); 2098 COMPARE_PARAM(sge.eq_start, eq_start); 2099 COMPARE_PARAM(tids.ftid_base, ftid_base); 2100 COMPARE_PARAM(tids.ftid_end, ftid_end); 2101 COMPARE_PARAM(tids.nftids, nftids); 2102 COMPARE_PARAM(vres.l2t.start, l2t_start); 2103 COMPARE_PARAM(vres.l2t.size, l2t_size); 2104 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2105 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2106 COMPARE_PARAM(tids.tid_base, tid_base); 2107 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2108 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2109 COMPARE_PARAM(tids.nhpftids, nhpftids); 2110 COMPARE_PARAM(rawf_base, rawf_base); 2111 COMPARE_PARAM(nrawf, nrawf); 2112 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2113 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2114 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2115 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2116 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2117 COMPARE_PARAM(tids.ntids, ntids); 2118 COMPARE_PARAM(tids.etid_base, etid_base); 2119 COMPARE_PARAM(tids.etid_end, etid_end); 2120 COMPARE_PARAM(tids.netids, netids); 2121 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2122 COMPARE_PARAM(params.ethoffload, ethoffload); 2123 COMPARE_PARAM(tids.natids, natids); 2124 COMPARE_PARAM(tids.stid_base, stid_base); 2125 COMPARE_PARAM(vres.ddp.start, ddp_start); 2126 COMPARE_PARAM(vres.ddp.size, ddp_size); 2127 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2128 COMPARE_PARAM(vres.stag.start, stag_start); 2129 COMPARE_PARAM(vres.stag.size, stag_size); 2130 COMPARE_PARAM(vres.rq.start, rq_start); 2131 COMPARE_PARAM(vres.rq.size, rq_size); 2132 COMPARE_PARAM(vres.pbl.start, pbl_start); 2133 COMPARE_PARAM(vres.pbl.size, pbl_size); 2134 COMPARE_PARAM(vres.qp.start, qp_start); 2135 COMPARE_PARAM(vres.qp.size, qp_size); 2136 COMPARE_PARAM(vres.cq.start, cq_start); 2137 COMPARE_PARAM(vres.cq.size, cq_size); 2138 COMPARE_PARAM(vres.ocq.start, ocq_start); 2139 COMPARE_PARAM(vres.ocq.size, ocq_size); 2140 COMPARE_PARAM(vres.srq.start, srq_start); 2141 COMPARE_PARAM(vres.srq.size, srq_size); 2142 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2143 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2144 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2145 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2146 COMPARE_PARAM(vres.key.start, key_start); 2147 COMPARE_PARAM(vres.key.size, key_size); 2148 #undef COMPARE_PARAM 2149 2150 return (rc); 2151 } 2152 2153 static int 2154 t4_resume(device_t dev) 2155 { 2156 struct adapter *sc = device_get_softc(dev); 2157 struct adapter_pre_reset_state *old_state = NULL; 2158 struct port_info *pi; 2159 struct vi_info *vi; 2160 struct ifnet *ifp; 2161 struct sge_txq *txq; 2162 int rc, i, j, k; 2163 2164 CH_ALERT(sc, "resume requested.\n"); 2165 2166 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2167 if (rc != 0) 2168 return (ENXIO); 2169 MPASS(hw_off_limits(sc)); 2170 MPASS((sc->flags & FW_OK) == 0); 2171 MPASS((sc->flags & MASTER_PF) == 0); 2172 MPASS(sc->reset_thread == NULL); 2173 sc->reset_thread = curthread; 2174 2175 /* Register access is expected to work by the time we're here. */ 2176 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2177 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2178 rc = ENXIO; 2179 goto done; 2180 } 2181 2182 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2183 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2184 2185 /* Restore memory window. */ 2186 setup_memwin(sc); 2187 2188 /* Go no further if recovery mode has been requested. */ 2189 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2190 CH_ALERT(sc, "recovery mode on resume.\n"); 2191 rc = 0; 2192 mtx_lock(&sc->reg_lock); 2193 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2194 mtx_unlock(&sc->reg_lock); 2195 goto done; 2196 } 2197 2198 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2199 save_caps_and_params(sc, old_state); 2200 2201 /* Reestablish contact with firmware and become the primary PF. */ 2202 rc = contact_firmware(sc); 2203 if (rc != 0) 2204 goto done; /* error message displayed already */ 2205 MPASS(sc->flags & FW_OK); 2206 2207 if (sc->flags & MASTER_PF) { 2208 rc = partition_resources(sc); 2209 if (rc != 0) 2210 goto done; /* error message displayed already */ 2211 t4_intr_clear(sc); 2212 } 2213 2214 rc = get_params__post_init(sc); 2215 if (rc != 0) 2216 goto done; /* error message displayed already */ 2217 2218 rc = set_params__post_init(sc); 2219 if (rc != 0) 2220 goto done; /* error message displayed already */ 2221 2222 rc = compare_caps_and_params(sc, old_state); 2223 if (rc != 0) 2224 goto done; /* error message displayed already */ 2225 2226 for_each_port(sc, i) { 2227 pi = sc->port[i]; 2228 MPASS(pi != NULL); 2229 MPASS(pi->vi != NULL); 2230 MPASS(pi->vi[0].dev == pi->dev); 2231 2232 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2233 if (rc != 0) { 2234 CH_ERR(sc, 2235 "failed to re-initialize port %d: %d\n", i, rc); 2236 goto done; 2237 } 2238 MPASS(sc->chan_map[pi->tx_chan] == i); 2239 2240 PORT_LOCK(pi); 2241 fixup_link_config(pi); 2242 build_medialist(pi); 2243 PORT_UNLOCK(pi); 2244 for_each_vi(pi, j, vi) { 2245 if (IS_MAIN_VI(vi)) 2246 continue; 2247 rc = alloc_extra_vi(sc, pi, vi); 2248 if (rc != 0) { 2249 CH_ERR(vi, 2250 "failed to re-allocate extra VI: %d\n", rc); 2251 goto done; 2252 } 2253 } 2254 } 2255 2256 /* 2257 * Interrupts and queues are about to be enabled and other threads will 2258 * want to access the hardware too. It is safe to do so. Note that 2259 * this thread is still in the middle of a synchronized_op. 2260 */ 2261 mtx_lock(&sc->reg_lock); 2262 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2263 mtx_unlock(&sc->reg_lock); 2264 2265 if (sc->flags & FULL_INIT_DONE) { 2266 rc = adapter_full_init(sc); 2267 if (rc != 0) { 2268 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2269 goto done; 2270 } 2271 2272 if (sc->vxlan_refcount > 0) 2273 enable_vxlan_rx(sc); 2274 2275 for_each_port(sc, i) { 2276 pi = sc->port[i]; 2277 for_each_vi(pi, j, vi) { 2278 mtx_lock(&vi->tick_mtx); 2279 vi->flags &= ~VI_SKIP_STATS; 2280 mtx_unlock(&vi->tick_mtx); 2281 if (!(vi->flags & VI_INIT_DONE)) 2282 continue; 2283 rc = vi_full_init(vi); 2284 if (rc != 0) { 2285 CH_ERR(vi, "failed to re-initialize " 2286 "interface: %d\n", rc); 2287 goto done; 2288 } 2289 2290 ifp = vi->ifp; 2291 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2292 continue; 2293 /* 2294 * Note that we do not setup multicast addresses 2295 * in the first pass. This ensures that the 2296 * unicast DMACs for all VIs on all ports get an 2297 * MPS TCAM entry. 2298 */ 2299 rc = update_mac_settings(ifp, XGMAC_ALL & 2300 ~XGMAC_MCADDRS); 2301 if (rc != 0) { 2302 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2303 goto done; 2304 } 2305 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2306 true); 2307 if (rc != 0) { 2308 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2309 goto done; 2310 } 2311 for_each_txq(vi, k, txq) { 2312 TXQ_LOCK(txq); 2313 txq->eq.flags |= EQ_ENABLED; 2314 TXQ_UNLOCK(txq); 2315 } 2316 mtx_lock(&vi->tick_mtx); 2317 callout_schedule(&vi->tick, hz); 2318 mtx_unlock(&vi->tick_mtx); 2319 } 2320 PORT_LOCK(pi); 2321 if (pi->up_vis > 0) { 2322 t4_update_port_info(pi); 2323 fixup_link_config(pi); 2324 build_medialist(pi); 2325 apply_link_config(pi); 2326 if (pi->link_cfg.link_ok) 2327 t4_os_link_changed(pi); 2328 } 2329 PORT_UNLOCK(pi); 2330 } 2331 2332 /* Now reprogram the L2 multicast addresses. */ 2333 for_each_port(sc, i) { 2334 pi = sc->port[i]; 2335 for_each_vi(pi, j, vi) { 2336 if (!(vi->flags & VI_INIT_DONE)) 2337 continue; 2338 ifp = vi->ifp; 2339 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2340 continue; 2341 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2342 if (rc != 0) { 2343 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2344 rc = 0; /* carry on */ 2345 } 2346 } 2347 } 2348 } 2349 done: 2350 if (rc == 0) { 2351 sc->incarnation++; 2352 CH_ALERT(sc, "resume completed.\n"); 2353 } 2354 end_synchronized_op(sc, 0); 2355 free(old_state, M_CXGBE); 2356 return (rc); 2357 } 2358 2359 static int 2360 t4_reset_prepare(device_t dev, device_t child) 2361 { 2362 struct adapter *sc = device_get_softc(dev); 2363 2364 CH_ALERT(sc, "reset_prepare.\n"); 2365 return (0); 2366 } 2367 2368 static int 2369 t4_reset_post(device_t dev, device_t child) 2370 { 2371 struct adapter *sc = device_get_softc(dev); 2372 2373 CH_ALERT(sc, "reset_post.\n"); 2374 return (0); 2375 } 2376 2377 static int 2378 reset_adapter(struct adapter *sc) 2379 { 2380 int rc, oldinc, error_flags; 2381 2382 CH_ALERT(sc, "reset requested.\n"); 2383 2384 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2385 if (rc != 0) 2386 return (EBUSY); 2387 2388 if (hw_off_limits(sc)) { 2389 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2390 rc = ENXIO; 2391 goto done; 2392 } 2393 2394 if (!ok_to_reset(sc)) { 2395 /* XXX: should list what resource is preventing reset. */ 2396 CH_ERR(sc, "not safe to reset.\n"); 2397 rc = EBUSY; 2398 goto done; 2399 } 2400 2401 done: 2402 oldinc = sc->incarnation; 2403 end_synchronized_op(sc, 0); 2404 if (rc != 0) 2405 return (rc); /* Error logged already. */ 2406 2407 atomic_add_int(&sc->num_resets, 1); 2408 mtx_lock(&Giant); 2409 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2410 mtx_unlock(&Giant); 2411 if (rc != 0) 2412 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2413 else { 2414 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2415 if (rc != 0) 2416 return (EBUSY); 2417 error_flags = atomic_load_int(&sc->error_flags); 2418 if (sc->incarnation > oldinc && error_flags == 0) { 2419 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2420 } else { 2421 CH_ERR(sc, "adapter did not reset properly, flags " 2422 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2423 error_flags); 2424 rc = ENXIO; 2425 } 2426 end_synchronized_op(sc, 0); 2427 } 2428 2429 return (rc); 2430 } 2431 2432 static void 2433 reset_adapter_task(void *arg, int pending) 2434 { 2435 /* XXX: t4_async_event here? */ 2436 reset_adapter(arg); 2437 } 2438 2439 static int 2440 cxgbe_probe(device_t dev) 2441 { 2442 char buf[128]; 2443 struct port_info *pi = device_get_softc(dev); 2444 2445 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2446 device_set_desc_copy(dev, buf); 2447 2448 return (BUS_PROBE_DEFAULT); 2449 } 2450 2451 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2452 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2453 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2454 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2455 #define T4_CAP_ENABLE (T4_CAP) 2456 2457 static int 2458 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2459 { 2460 struct ifnet *ifp; 2461 struct sbuf *sb; 2462 struct sysctl_ctx_list *ctx = &vi->ctx; 2463 struct sysctl_oid_list *children; 2464 struct pfil_head_args pa; 2465 struct adapter *sc = vi->adapter; 2466 2467 sysctl_ctx_init(ctx); 2468 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2469 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2470 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2471 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2472 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2473 #ifdef DEV_NETMAP 2474 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2475 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2476 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2477 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2478 #endif 2479 #ifdef TCP_OFFLOAD 2480 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2481 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2482 #endif 2483 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2484 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2485 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2486 #endif 2487 2488 vi->xact_addr_filt = -1; 2489 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2490 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2491 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2492 vi->flags |= TX_USES_VM_WR; 2493 2494 /* Allocate an ifnet and set it up */ 2495 ifp = if_alloc_dev(IFT_ETHER, dev); 2496 if (ifp == NULL) { 2497 device_printf(dev, "Cannot allocate ifnet\n"); 2498 return (ENOMEM); 2499 } 2500 vi->ifp = ifp; 2501 ifp->if_softc = vi; 2502 2503 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2504 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2505 2506 ifp->if_init = cxgbe_init; 2507 ifp->if_ioctl = cxgbe_ioctl; 2508 ifp->if_transmit = cxgbe_transmit; 2509 ifp->if_qflush = cxgbe_qflush; 2510 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2511 ifp->if_get_counter = vi_get_counter; 2512 else 2513 ifp->if_get_counter = cxgbe_get_counter; 2514 #if defined(KERN_TLS) || defined(RATELIMIT) 2515 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2516 #endif 2517 #ifdef RATELIMIT 2518 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2519 #endif 2520 2521 ifp->if_capabilities = T4_CAP; 2522 ifp->if_capenable = T4_CAP_ENABLE; 2523 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2524 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2525 if (chip_id(sc) >= CHELSIO_T6) { 2526 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2527 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2528 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2529 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2530 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2531 } 2532 2533 #ifdef TCP_OFFLOAD 2534 if (vi->nofldrxq != 0) 2535 ifp->if_capabilities |= IFCAP_TOE; 2536 #endif 2537 #ifdef RATELIMIT 2538 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2539 ifp->if_capabilities |= IFCAP_TXRTLMT; 2540 ifp->if_capenable |= IFCAP_TXRTLMT; 2541 } 2542 #endif 2543 2544 ifp->if_hw_tsomax = IP_MAXPACKET; 2545 if (vi->flags & TX_USES_VM_WR) 2546 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2547 else 2548 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2549 #ifdef RATELIMIT 2550 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2551 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2552 #endif 2553 ifp->if_hw_tsomaxsegsize = 65536; 2554 #ifdef KERN_TLS 2555 if (is_ktls(sc)) { 2556 ifp->if_capabilities |= IFCAP_TXTLS; 2557 if (sc->flags & KERN_TLS_ON) 2558 ifp->if_capenable |= IFCAP_TXTLS; 2559 } 2560 #endif 2561 2562 ether_ifattach(ifp, vi->hw_addr); 2563 #ifdef DEV_NETMAP 2564 if (vi->nnmrxq != 0) 2565 cxgbe_nm_attach(vi); 2566 #endif 2567 sb = sbuf_new_auto(); 2568 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2569 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2570 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2571 case IFCAP_TOE: 2572 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2573 break; 2574 case IFCAP_TOE | IFCAP_TXRTLMT: 2575 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2576 break; 2577 case IFCAP_TXRTLMT: 2578 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2579 break; 2580 } 2581 #endif 2582 #ifdef TCP_OFFLOAD 2583 if (ifp->if_capabilities & IFCAP_TOE) 2584 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2585 #endif 2586 #ifdef DEV_NETMAP 2587 if (ifp->if_capabilities & IFCAP_NETMAP) 2588 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2589 vi->nnmtxq, vi->nnmrxq); 2590 #endif 2591 sbuf_finish(sb); 2592 device_printf(dev, "%s\n", sbuf_data(sb)); 2593 sbuf_delete(sb); 2594 2595 vi_sysctls(vi); 2596 2597 pa.pa_version = PFIL_VERSION; 2598 pa.pa_flags = PFIL_IN; 2599 pa.pa_type = PFIL_TYPE_ETHERNET; 2600 pa.pa_headname = ifp->if_xname; 2601 vi->pfil = pfil_head_register(&pa); 2602 2603 return (0); 2604 } 2605 2606 static int 2607 cxgbe_attach(device_t dev) 2608 { 2609 struct port_info *pi = device_get_softc(dev); 2610 struct adapter *sc = pi->adapter; 2611 struct vi_info *vi; 2612 int i, rc; 2613 2614 sysctl_ctx_init(&pi->ctx); 2615 2616 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2617 if (rc) 2618 return (rc); 2619 2620 for_each_vi(pi, i, vi) { 2621 if (i == 0) 2622 continue; 2623 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2624 if (vi->dev == NULL) { 2625 device_printf(dev, "failed to add VI %d\n", i); 2626 continue; 2627 } 2628 device_set_softc(vi->dev, vi); 2629 } 2630 2631 cxgbe_sysctls(pi); 2632 2633 bus_generic_attach(dev); 2634 2635 return (0); 2636 } 2637 2638 static void 2639 cxgbe_vi_detach(struct vi_info *vi) 2640 { 2641 struct ifnet *ifp = vi->ifp; 2642 2643 if (vi->pfil != NULL) { 2644 pfil_head_unregister(vi->pfil); 2645 vi->pfil = NULL; 2646 } 2647 2648 ether_ifdetach(ifp); 2649 2650 /* Let detach proceed even if these fail. */ 2651 #ifdef DEV_NETMAP 2652 if (ifp->if_capabilities & IFCAP_NETMAP) 2653 cxgbe_nm_detach(vi); 2654 #endif 2655 cxgbe_uninit_synchronized(vi); 2656 callout_drain(&vi->tick); 2657 sysctl_ctx_free(&vi->ctx); 2658 vi_full_uninit(vi); 2659 2660 if_free(vi->ifp); 2661 vi->ifp = NULL; 2662 } 2663 2664 static int 2665 cxgbe_detach(device_t dev) 2666 { 2667 struct port_info *pi = device_get_softc(dev); 2668 struct adapter *sc = pi->adapter; 2669 int rc; 2670 2671 /* Detach the extra VIs first. */ 2672 rc = bus_generic_detach(dev); 2673 if (rc) 2674 return (rc); 2675 device_delete_children(dev); 2676 2677 sysctl_ctx_free(&pi->ctx); 2678 doom_vi(sc, &pi->vi[0]); 2679 2680 if (pi->flags & HAS_TRACEQ) { 2681 sc->traceq = -1; /* cloner should not create ifnet */ 2682 t4_tracer_port_detach(sc); 2683 } 2684 2685 cxgbe_vi_detach(&pi->vi[0]); 2686 ifmedia_removeall(&pi->media); 2687 2688 end_synchronized_op(sc, 0); 2689 2690 return (0); 2691 } 2692 2693 static void 2694 cxgbe_init(void *arg) 2695 { 2696 struct vi_info *vi = arg; 2697 struct adapter *sc = vi->adapter; 2698 2699 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2700 return; 2701 cxgbe_init_synchronized(vi); 2702 end_synchronized_op(sc, 0); 2703 } 2704 2705 static int 2706 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2707 { 2708 int rc = 0, mtu, flags; 2709 struct vi_info *vi = ifp->if_softc; 2710 struct port_info *pi = vi->pi; 2711 struct adapter *sc = pi->adapter; 2712 struct ifreq *ifr = (struct ifreq *)data; 2713 uint32_t mask; 2714 2715 switch (cmd) { 2716 case SIOCSIFMTU: 2717 mtu = ifr->ifr_mtu; 2718 if (mtu < ETHERMIN || mtu > MAX_MTU) 2719 return (EINVAL); 2720 2721 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2722 if (rc) 2723 return (rc); 2724 ifp->if_mtu = mtu; 2725 if (vi->flags & VI_INIT_DONE) { 2726 t4_update_fl_bufsize(ifp); 2727 if (!hw_off_limits(sc) && 2728 ifp->if_drv_flags & IFF_DRV_RUNNING) 2729 rc = update_mac_settings(ifp, XGMAC_MTU); 2730 } 2731 end_synchronized_op(sc, 0); 2732 break; 2733 2734 case SIOCSIFFLAGS: 2735 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2736 if (rc) 2737 return (rc); 2738 2739 if (hw_off_limits(sc)) { 2740 rc = ENXIO; 2741 goto fail; 2742 } 2743 2744 if (ifp->if_flags & IFF_UP) { 2745 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2746 flags = vi->if_flags; 2747 if ((ifp->if_flags ^ flags) & 2748 (IFF_PROMISC | IFF_ALLMULTI)) { 2749 rc = update_mac_settings(ifp, 2750 XGMAC_PROMISC | XGMAC_ALLMULTI); 2751 } 2752 } else { 2753 rc = cxgbe_init_synchronized(vi); 2754 } 2755 vi->if_flags = ifp->if_flags; 2756 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2757 rc = cxgbe_uninit_synchronized(vi); 2758 } 2759 end_synchronized_op(sc, 0); 2760 break; 2761 2762 case SIOCADDMULTI: 2763 case SIOCDELMULTI: 2764 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2765 if (rc) 2766 return (rc); 2767 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2768 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2769 end_synchronized_op(sc, 0); 2770 break; 2771 2772 case SIOCSIFCAP: 2773 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2774 if (rc) 2775 return (rc); 2776 2777 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2778 if (mask & IFCAP_TXCSUM) { 2779 ifp->if_capenable ^= IFCAP_TXCSUM; 2780 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2781 2782 if (IFCAP_TSO4 & ifp->if_capenable && 2783 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2784 mask &= ~IFCAP_TSO4; 2785 ifp->if_capenable &= ~IFCAP_TSO4; 2786 if_printf(ifp, 2787 "tso4 disabled due to -txcsum.\n"); 2788 } 2789 } 2790 if (mask & IFCAP_TXCSUM_IPV6) { 2791 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2792 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2793 2794 if (IFCAP_TSO6 & ifp->if_capenable && 2795 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2796 mask &= ~IFCAP_TSO6; 2797 ifp->if_capenable &= ~IFCAP_TSO6; 2798 if_printf(ifp, 2799 "tso6 disabled due to -txcsum6.\n"); 2800 } 2801 } 2802 if (mask & IFCAP_RXCSUM) 2803 ifp->if_capenable ^= IFCAP_RXCSUM; 2804 if (mask & IFCAP_RXCSUM_IPV6) 2805 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2806 2807 /* 2808 * Note that we leave CSUM_TSO alone (it is always set). The 2809 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2810 * sending a TSO request our way, so it's sufficient to toggle 2811 * IFCAP_TSOx only. 2812 */ 2813 if (mask & IFCAP_TSO4) { 2814 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2815 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2816 if_printf(ifp, "enable txcsum first.\n"); 2817 rc = EAGAIN; 2818 goto fail; 2819 } 2820 ifp->if_capenable ^= IFCAP_TSO4; 2821 } 2822 if (mask & IFCAP_TSO6) { 2823 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2824 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2825 if_printf(ifp, "enable txcsum6 first.\n"); 2826 rc = EAGAIN; 2827 goto fail; 2828 } 2829 ifp->if_capenable ^= IFCAP_TSO6; 2830 } 2831 if (mask & IFCAP_LRO) { 2832 #if defined(INET) || defined(INET6) 2833 int i; 2834 struct sge_rxq *rxq; 2835 2836 ifp->if_capenable ^= IFCAP_LRO; 2837 for_each_rxq(vi, i, rxq) { 2838 if (ifp->if_capenable & IFCAP_LRO) 2839 rxq->iq.flags |= IQ_LRO_ENABLED; 2840 else 2841 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2842 } 2843 #endif 2844 } 2845 #ifdef TCP_OFFLOAD 2846 if (mask & IFCAP_TOE) { 2847 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2848 2849 rc = toe_capability(vi, enable); 2850 if (rc != 0) 2851 goto fail; 2852 2853 ifp->if_capenable ^= mask; 2854 } 2855 #endif 2856 if (mask & IFCAP_VLAN_HWTAGGING) { 2857 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2858 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2859 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2860 } 2861 if (mask & IFCAP_VLAN_MTU) { 2862 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2863 2864 /* Need to find out how to disable auto-mtu-inflation */ 2865 } 2866 if (mask & IFCAP_VLAN_HWTSO) 2867 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2868 if (mask & IFCAP_VLAN_HWCSUM) 2869 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2870 #ifdef RATELIMIT 2871 if (mask & IFCAP_TXRTLMT) 2872 ifp->if_capenable ^= IFCAP_TXRTLMT; 2873 #endif 2874 if (mask & IFCAP_HWRXTSTMP) { 2875 int i; 2876 struct sge_rxq *rxq; 2877 2878 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2879 for_each_rxq(vi, i, rxq) { 2880 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2881 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2882 else 2883 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2884 } 2885 } 2886 if (mask & IFCAP_MEXTPG) 2887 ifp->if_capenable ^= IFCAP_MEXTPG; 2888 2889 #ifdef KERN_TLS 2890 if (mask & IFCAP_TXTLS) { 2891 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2892 2893 rc = ktls_capability(sc, enable); 2894 if (rc != 0) 2895 goto fail; 2896 2897 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2898 } 2899 #endif 2900 if (mask & IFCAP_VXLAN_HWCSUM) { 2901 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2902 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2903 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2904 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2905 } 2906 if (mask & IFCAP_VXLAN_HWTSO) { 2907 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2908 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2909 CSUM_INNER_IP_TSO; 2910 } 2911 2912 #ifdef VLAN_CAPABILITIES 2913 VLAN_CAPABILITIES(ifp); 2914 #endif 2915 fail: 2916 end_synchronized_op(sc, 0); 2917 break; 2918 2919 case SIOCSIFMEDIA: 2920 case SIOCGIFMEDIA: 2921 case SIOCGIFXMEDIA: 2922 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2923 break; 2924 2925 case SIOCGI2C: { 2926 struct ifi2creq i2c; 2927 2928 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2929 if (rc != 0) 2930 break; 2931 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2932 rc = EPERM; 2933 break; 2934 } 2935 if (i2c.len > sizeof(i2c.data)) { 2936 rc = EINVAL; 2937 break; 2938 } 2939 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2940 if (rc) 2941 return (rc); 2942 if (hw_off_limits(sc)) 2943 rc = ENXIO; 2944 else 2945 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2946 i2c.offset, i2c.len, &i2c.data[0]); 2947 end_synchronized_op(sc, 0); 2948 if (rc == 0) 2949 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2950 break; 2951 } 2952 2953 default: 2954 rc = ether_ioctl(ifp, cmd, data); 2955 } 2956 2957 return (rc); 2958 } 2959 2960 static int 2961 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2962 { 2963 struct vi_info *vi = ifp->if_softc; 2964 struct port_info *pi = vi->pi; 2965 struct adapter *sc; 2966 struct sge_txq *txq; 2967 void *items[1]; 2968 int rc; 2969 2970 M_ASSERTPKTHDR(m); 2971 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2972 #if defined(KERN_TLS) || defined(RATELIMIT) 2973 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2974 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2975 #endif 2976 2977 if (__predict_false(pi->link_cfg.link_ok == false)) { 2978 m_freem(m); 2979 return (ENETDOWN); 2980 } 2981 2982 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2983 if (__predict_false(rc != 0)) { 2984 MPASS(m == NULL); /* was freed already */ 2985 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2986 return (rc); 2987 } 2988 #ifdef RATELIMIT 2989 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2990 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2991 return (ethofld_transmit(ifp, m)); 2992 } 2993 #endif 2994 2995 /* Select a txq. */ 2996 sc = vi->adapter; 2997 txq = &sc->sge.txq[vi->first_txq]; 2998 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2999 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3000 vi->rsrv_noflowq); 3001 3002 items[0] = m; 3003 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3004 if (__predict_false(rc != 0)) 3005 m_freem(m); 3006 3007 return (rc); 3008 } 3009 3010 static void 3011 cxgbe_qflush(struct ifnet *ifp) 3012 { 3013 struct vi_info *vi = ifp->if_softc; 3014 struct sge_txq *txq; 3015 int i; 3016 3017 /* queues do not exist if !VI_INIT_DONE. */ 3018 if (vi->flags & VI_INIT_DONE) { 3019 for_each_txq(vi, i, txq) { 3020 TXQ_LOCK(txq); 3021 txq->eq.flags |= EQ_QFLUSH; 3022 TXQ_UNLOCK(txq); 3023 while (!mp_ring_is_idle(txq->r)) { 3024 mp_ring_check_drainage(txq->r, 4096); 3025 pause("qflush", 1); 3026 } 3027 TXQ_LOCK(txq); 3028 txq->eq.flags &= ~EQ_QFLUSH; 3029 TXQ_UNLOCK(txq); 3030 } 3031 } 3032 if_qflush(ifp); 3033 } 3034 3035 static uint64_t 3036 vi_get_counter(struct ifnet *ifp, ift_counter c) 3037 { 3038 struct vi_info *vi = ifp->if_softc; 3039 struct fw_vi_stats_vf *s = &vi->stats; 3040 3041 mtx_lock(&vi->tick_mtx); 3042 vi_refresh_stats(vi); 3043 mtx_unlock(&vi->tick_mtx); 3044 3045 switch (c) { 3046 case IFCOUNTER_IPACKETS: 3047 return (s->rx_bcast_frames + s->rx_mcast_frames + 3048 s->rx_ucast_frames); 3049 case IFCOUNTER_IERRORS: 3050 return (s->rx_err_frames); 3051 case IFCOUNTER_OPACKETS: 3052 return (s->tx_bcast_frames + s->tx_mcast_frames + 3053 s->tx_ucast_frames + s->tx_offload_frames); 3054 case IFCOUNTER_OERRORS: 3055 return (s->tx_drop_frames); 3056 case IFCOUNTER_IBYTES: 3057 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3058 s->rx_ucast_bytes); 3059 case IFCOUNTER_OBYTES: 3060 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3061 s->tx_ucast_bytes + s->tx_offload_bytes); 3062 case IFCOUNTER_IMCASTS: 3063 return (s->rx_mcast_frames); 3064 case IFCOUNTER_OMCASTS: 3065 return (s->tx_mcast_frames); 3066 case IFCOUNTER_OQDROPS: { 3067 uint64_t drops; 3068 3069 drops = 0; 3070 if (vi->flags & VI_INIT_DONE) { 3071 int i; 3072 struct sge_txq *txq; 3073 3074 for_each_txq(vi, i, txq) 3075 drops += counter_u64_fetch(txq->r->dropped); 3076 } 3077 3078 return (drops); 3079 3080 } 3081 3082 default: 3083 return (if_get_counter_default(ifp, c)); 3084 } 3085 } 3086 3087 static uint64_t 3088 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3089 { 3090 struct vi_info *vi = ifp->if_softc; 3091 struct port_info *pi = vi->pi; 3092 struct port_stats *s = &pi->stats; 3093 3094 mtx_lock(&vi->tick_mtx); 3095 cxgbe_refresh_stats(vi); 3096 mtx_unlock(&vi->tick_mtx); 3097 3098 switch (c) { 3099 case IFCOUNTER_IPACKETS: 3100 return (s->rx_frames); 3101 3102 case IFCOUNTER_IERRORS: 3103 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3104 s->rx_fcs_err + s->rx_len_err); 3105 3106 case IFCOUNTER_OPACKETS: 3107 return (s->tx_frames); 3108 3109 case IFCOUNTER_OERRORS: 3110 return (s->tx_error_frames); 3111 3112 case IFCOUNTER_IBYTES: 3113 return (s->rx_octets); 3114 3115 case IFCOUNTER_OBYTES: 3116 return (s->tx_octets); 3117 3118 case IFCOUNTER_IMCASTS: 3119 return (s->rx_mcast_frames); 3120 3121 case IFCOUNTER_OMCASTS: 3122 return (s->tx_mcast_frames); 3123 3124 case IFCOUNTER_IQDROPS: 3125 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3126 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3127 s->rx_trunc3 + pi->tnl_cong_drops); 3128 3129 case IFCOUNTER_OQDROPS: { 3130 uint64_t drops; 3131 3132 drops = s->tx_drop; 3133 if (vi->flags & VI_INIT_DONE) { 3134 int i; 3135 struct sge_txq *txq; 3136 3137 for_each_txq(vi, i, txq) 3138 drops += counter_u64_fetch(txq->r->dropped); 3139 } 3140 3141 return (drops); 3142 3143 } 3144 3145 default: 3146 return (if_get_counter_default(ifp, c)); 3147 } 3148 } 3149 3150 #if defined(KERN_TLS) || defined(RATELIMIT) 3151 static int 3152 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3153 struct m_snd_tag **pt) 3154 { 3155 int error; 3156 3157 switch (params->hdr.type) { 3158 #ifdef RATELIMIT 3159 case IF_SND_TAG_TYPE_RATE_LIMIT: 3160 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3161 break; 3162 #endif 3163 #ifdef KERN_TLS 3164 case IF_SND_TAG_TYPE_TLS: 3165 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3166 break; 3167 #endif 3168 default: 3169 error = EOPNOTSUPP; 3170 } 3171 return (error); 3172 } 3173 #endif 3174 3175 /* 3176 * The kernel picks a media from the list we had provided but we still validate 3177 * the requeste. 3178 */ 3179 int 3180 cxgbe_media_change(struct ifnet *ifp) 3181 { 3182 struct vi_info *vi = ifp->if_softc; 3183 struct port_info *pi = vi->pi; 3184 struct ifmedia *ifm = &pi->media; 3185 struct link_config *lc = &pi->link_cfg; 3186 struct adapter *sc = pi->adapter; 3187 int rc; 3188 3189 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3190 if (rc != 0) 3191 return (rc); 3192 PORT_LOCK(pi); 3193 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3194 /* ifconfig .. media autoselect */ 3195 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3196 rc = ENOTSUP; /* AN not supported by transceiver */ 3197 goto done; 3198 } 3199 lc->requested_aneg = AUTONEG_ENABLE; 3200 lc->requested_speed = 0; 3201 lc->requested_fc |= PAUSE_AUTONEG; 3202 } else { 3203 lc->requested_aneg = AUTONEG_DISABLE; 3204 lc->requested_speed = 3205 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3206 lc->requested_fc = 0; 3207 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3208 lc->requested_fc |= PAUSE_RX; 3209 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3210 lc->requested_fc |= PAUSE_TX; 3211 } 3212 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3213 fixup_link_config(pi); 3214 rc = apply_link_config(pi); 3215 } 3216 done: 3217 PORT_UNLOCK(pi); 3218 end_synchronized_op(sc, 0); 3219 return (rc); 3220 } 3221 3222 /* 3223 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3224 * given speed. 3225 */ 3226 static int 3227 port_mword(struct port_info *pi, uint32_t speed) 3228 { 3229 3230 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3231 MPASS(powerof2(speed)); 3232 3233 switch(pi->port_type) { 3234 case FW_PORT_TYPE_BT_SGMII: 3235 case FW_PORT_TYPE_BT_XFI: 3236 case FW_PORT_TYPE_BT_XAUI: 3237 /* BaseT */ 3238 switch (speed) { 3239 case FW_PORT_CAP32_SPEED_100M: 3240 return (IFM_100_T); 3241 case FW_PORT_CAP32_SPEED_1G: 3242 return (IFM_1000_T); 3243 case FW_PORT_CAP32_SPEED_10G: 3244 return (IFM_10G_T); 3245 } 3246 break; 3247 case FW_PORT_TYPE_KX4: 3248 if (speed == FW_PORT_CAP32_SPEED_10G) 3249 return (IFM_10G_KX4); 3250 break; 3251 case FW_PORT_TYPE_CX4: 3252 if (speed == FW_PORT_CAP32_SPEED_10G) 3253 return (IFM_10G_CX4); 3254 break; 3255 case FW_PORT_TYPE_KX: 3256 if (speed == FW_PORT_CAP32_SPEED_1G) 3257 return (IFM_1000_KX); 3258 break; 3259 case FW_PORT_TYPE_KR: 3260 case FW_PORT_TYPE_BP_AP: 3261 case FW_PORT_TYPE_BP4_AP: 3262 case FW_PORT_TYPE_BP40_BA: 3263 case FW_PORT_TYPE_KR4_100G: 3264 case FW_PORT_TYPE_KR_SFP28: 3265 case FW_PORT_TYPE_KR_XLAUI: 3266 switch (speed) { 3267 case FW_PORT_CAP32_SPEED_1G: 3268 return (IFM_1000_KX); 3269 case FW_PORT_CAP32_SPEED_10G: 3270 return (IFM_10G_KR); 3271 case FW_PORT_CAP32_SPEED_25G: 3272 return (IFM_25G_KR); 3273 case FW_PORT_CAP32_SPEED_40G: 3274 return (IFM_40G_KR4); 3275 case FW_PORT_CAP32_SPEED_50G: 3276 return (IFM_50G_KR2); 3277 case FW_PORT_CAP32_SPEED_100G: 3278 return (IFM_100G_KR4); 3279 } 3280 break; 3281 case FW_PORT_TYPE_FIBER_XFI: 3282 case FW_PORT_TYPE_FIBER_XAUI: 3283 case FW_PORT_TYPE_SFP: 3284 case FW_PORT_TYPE_QSFP_10G: 3285 case FW_PORT_TYPE_QSA: 3286 case FW_PORT_TYPE_QSFP: 3287 case FW_PORT_TYPE_CR4_QSFP: 3288 case FW_PORT_TYPE_CR_QSFP: 3289 case FW_PORT_TYPE_CR2_QSFP: 3290 case FW_PORT_TYPE_SFP28: 3291 /* Pluggable transceiver */ 3292 switch (pi->mod_type) { 3293 case FW_PORT_MOD_TYPE_LR: 3294 switch (speed) { 3295 case FW_PORT_CAP32_SPEED_1G: 3296 return (IFM_1000_LX); 3297 case FW_PORT_CAP32_SPEED_10G: 3298 return (IFM_10G_LR); 3299 case FW_PORT_CAP32_SPEED_25G: 3300 return (IFM_25G_LR); 3301 case FW_PORT_CAP32_SPEED_40G: 3302 return (IFM_40G_LR4); 3303 case FW_PORT_CAP32_SPEED_50G: 3304 return (IFM_50G_LR2); 3305 case FW_PORT_CAP32_SPEED_100G: 3306 return (IFM_100G_LR4); 3307 } 3308 break; 3309 case FW_PORT_MOD_TYPE_SR: 3310 switch (speed) { 3311 case FW_PORT_CAP32_SPEED_1G: 3312 return (IFM_1000_SX); 3313 case FW_PORT_CAP32_SPEED_10G: 3314 return (IFM_10G_SR); 3315 case FW_PORT_CAP32_SPEED_25G: 3316 return (IFM_25G_SR); 3317 case FW_PORT_CAP32_SPEED_40G: 3318 return (IFM_40G_SR4); 3319 case FW_PORT_CAP32_SPEED_50G: 3320 return (IFM_50G_SR2); 3321 case FW_PORT_CAP32_SPEED_100G: 3322 return (IFM_100G_SR4); 3323 } 3324 break; 3325 case FW_PORT_MOD_TYPE_ER: 3326 if (speed == FW_PORT_CAP32_SPEED_10G) 3327 return (IFM_10G_ER); 3328 break; 3329 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3330 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3331 switch (speed) { 3332 case FW_PORT_CAP32_SPEED_1G: 3333 return (IFM_1000_CX); 3334 case FW_PORT_CAP32_SPEED_10G: 3335 return (IFM_10G_TWINAX); 3336 case FW_PORT_CAP32_SPEED_25G: 3337 return (IFM_25G_CR); 3338 case FW_PORT_CAP32_SPEED_40G: 3339 return (IFM_40G_CR4); 3340 case FW_PORT_CAP32_SPEED_50G: 3341 return (IFM_50G_CR2); 3342 case FW_PORT_CAP32_SPEED_100G: 3343 return (IFM_100G_CR4); 3344 } 3345 break; 3346 case FW_PORT_MOD_TYPE_LRM: 3347 if (speed == FW_PORT_CAP32_SPEED_10G) 3348 return (IFM_10G_LRM); 3349 break; 3350 case FW_PORT_MOD_TYPE_NA: 3351 MPASS(0); /* Not pluggable? */ 3352 /* fall throough */ 3353 case FW_PORT_MOD_TYPE_ERROR: 3354 case FW_PORT_MOD_TYPE_UNKNOWN: 3355 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3356 break; 3357 case FW_PORT_MOD_TYPE_NONE: 3358 return (IFM_NONE); 3359 } 3360 break; 3361 case FW_PORT_TYPE_NONE: 3362 return (IFM_NONE); 3363 } 3364 3365 return (IFM_UNKNOWN); 3366 } 3367 3368 void 3369 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3370 { 3371 struct vi_info *vi = ifp->if_softc; 3372 struct port_info *pi = vi->pi; 3373 struct adapter *sc = pi->adapter; 3374 struct link_config *lc = &pi->link_cfg; 3375 3376 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3377 return; 3378 PORT_LOCK(pi); 3379 3380 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3381 /* 3382 * If all the interfaces are administratively down the firmware 3383 * does not report transceiver changes. Refresh port info here 3384 * so that ifconfig displays accurate ifmedia at all times. 3385 * This is the only reason we have a synchronized op in this 3386 * function. Just PORT_LOCK would have been enough otherwise. 3387 */ 3388 t4_update_port_info(pi); 3389 build_medialist(pi); 3390 } 3391 3392 /* ifm_status */ 3393 ifmr->ifm_status = IFM_AVALID; 3394 if (lc->link_ok == false) 3395 goto done; 3396 ifmr->ifm_status |= IFM_ACTIVE; 3397 3398 /* ifm_active */ 3399 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3400 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3401 if (lc->fc & PAUSE_RX) 3402 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3403 if (lc->fc & PAUSE_TX) 3404 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3405 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3406 done: 3407 PORT_UNLOCK(pi); 3408 end_synchronized_op(sc, 0); 3409 } 3410 3411 static int 3412 vcxgbe_probe(device_t dev) 3413 { 3414 char buf[128]; 3415 struct vi_info *vi = device_get_softc(dev); 3416 3417 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3418 vi - vi->pi->vi); 3419 device_set_desc_copy(dev, buf); 3420 3421 return (BUS_PROBE_DEFAULT); 3422 } 3423 3424 static int 3425 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3426 { 3427 int func, index, rc; 3428 uint32_t param, val; 3429 3430 ASSERT_SYNCHRONIZED_OP(sc); 3431 3432 index = vi - pi->vi; 3433 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3434 KASSERT(index < nitems(vi_mac_funcs), 3435 ("%s: VI %s doesn't have a MAC func", __func__, 3436 device_get_nameunit(vi->dev))); 3437 func = vi_mac_funcs[index]; 3438 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3439 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3440 if (rc < 0) { 3441 CH_ERR(vi, "failed to allocate virtual interface %d" 3442 "for port %d: %d\n", index, pi->port_id, -rc); 3443 return (-rc); 3444 } 3445 vi->viid = rc; 3446 3447 if (vi->rss_size == 1) { 3448 /* 3449 * This VI didn't get a slice of the RSS table. Reduce the 3450 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3451 * configuration file (nvi, rssnvi for this PF) if this is a 3452 * problem. 3453 */ 3454 device_printf(vi->dev, "RSS table not available.\n"); 3455 vi->rss_base = 0xffff; 3456 3457 return (0); 3458 } 3459 3460 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3461 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3462 V_FW_PARAMS_PARAM_YZ(vi->viid); 3463 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3464 if (rc) 3465 vi->rss_base = 0xffff; 3466 else { 3467 MPASS((val >> 16) == vi->rss_size); 3468 vi->rss_base = val & 0xffff; 3469 } 3470 3471 return (0); 3472 } 3473 3474 static int 3475 vcxgbe_attach(device_t dev) 3476 { 3477 struct vi_info *vi; 3478 struct port_info *pi; 3479 struct adapter *sc; 3480 int rc; 3481 3482 vi = device_get_softc(dev); 3483 pi = vi->pi; 3484 sc = pi->adapter; 3485 3486 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3487 if (rc) 3488 return (rc); 3489 rc = alloc_extra_vi(sc, pi, vi); 3490 end_synchronized_op(sc, 0); 3491 if (rc) 3492 return (rc); 3493 3494 rc = cxgbe_vi_attach(dev, vi); 3495 if (rc) { 3496 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3497 return (rc); 3498 } 3499 return (0); 3500 } 3501 3502 static int 3503 vcxgbe_detach(device_t dev) 3504 { 3505 struct vi_info *vi; 3506 struct adapter *sc; 3507 3508 vi = device_get_softc(dev); 3509 sc = vi->adapter; 3510 3511 doom_vi(sc, vi); 3512 3513 cxgbe_vi_detach(vi); 3514 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3515 3516 end_synchronized_op(sc, 0); 3517 3518 return (0); 3519 } 3520 3521 static struct callout fatal_callout; 3522 static struct taskqueue *reset_tq; 3523 3524 static void 3525 delayed_panic(void *arg) 3526 { 3527 struct adapter *sc = arg; 3528 3529 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3530 } 3531 3532 static void 3533 fatal_error_task(void *arg, int pending) 3534 { 3535 struct adapter *sc = arg; 3536 int rc; 3537 3538 #ifdef TCP_OFFLOAD 3539 t4_async_event(sc); 3540 #endif 3541 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3542 dump_cim_regs(sc); 3543 dump_cimla(sc); 3544 dump_devlog(sc); 3545 } 3546 3547 if (t4_reset_on_fatal_err) { 3548 CH_ALERT(sc, "resetting on fatal error.\n"); 3549 rc = reset_adapter(sc); 3550 if (rc == 0 && t4_panic_on_fatal_err) { 3551 CH_ALERT(sc, "reset was successful, " 3552 "system will NOT panic.\n"); 3553 return; 3554 } 3555 } 3556 3557 if (t4_panic_on_fatal_err) { 3558 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3559 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3560 } 3561 } 3562 3563 void 3564 t4_fatal_err(struct adapter *sc, bool fw_error) 3565 { 3566 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3567 3568 stop_adapter(sc); 3569 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3570 return; 3571 if (fw_error) { 3572 /* 3573 * We are here because of a firmware error/timeout and not 3574 * because of a hardware interrupt. It is possible (although 3575 * not very likely) that an error interrupt was also raised but 3576 * this thread ran first and inhibited t4_intr_err. We walk the 3577 * main INT_CAUSE registers here to make sure we haven't missed 3578 * anything interesting. 3579 */ 3580 t4_slow_intr_handler(sc, verbose); 3581 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3582 } 3583 t4_report_fw_error(sc); 3584 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3585 device_get_nameunit(sc->dev), fw_error); 3586 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3587 } 3588 3589 void 3590 t4_add_adapter(struct adapter *sc) 3591 { 3592 sx_xlock(&t4_list_lock); 3593 SLIST_INSERT_HEAD(&t4_list, sc, link); 3594 sx_xunlock(&t4_list_lock); 3595 } 3596 3597 int 3598 t4_map_bars_0_and_4(struct adapter *sc) 3599 { 3600 sc->regs_rid = PCIR_BAR(0); 3601 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3602 &sc->regs_rid, RF_ACTIVE); 3603 if (sc->regs_res == NULL) { 3604 device_printf(sc->dev, "cannot map registers.\n"); 3605 return (ENXIO); 3606 } 3607 sc->bt = rman_get_bustag(sc->regs_res); 3608 sc->bh = rman_get_bushandle(sc->regs_res); 3609 sc->mmio_len = rman_get_size(sc->regs_res); 3610 setbit(&sc->doorbells, DOORBELL_KDB); 3611 3612 sc->msix_rid = PCIR_BAR(4); 3613 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3614 &sc->msix_rid, RF_ACTIVE); 3615 if (sc->msix_res == NULL) { 3616 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3617 return (ENXIO); 3618 } 3619 3620 return (0); 3621 } 3622 3623 int 3624 t4_map_bar_2(struct adapter *sc) 3625 { 3626 3627 /* 3628 * T4: only iWARP driver uses the userspace doorbells. There is no need 3629 * to map it if RDMA is disabled. 3630 */ 3631 if (is_t4(sc) && sc->rdmacaps == 0) 3632 return (0); 3633 3634 sc->udbs_rid = PCIR_BAR(2); 3635 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3636 &sc->udbs_rid, RF_ACTIVE); 3637 if (sc->udbs_res == NULL) { 3638 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3639 return (ENXIO); 3640 } 3641 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3642 3643 if (chip_id(sc) >= CHELSIO_T5) { 3644 setbit(&sc->doorbells, DOORBELL_UDB); 3645 #if defined(__i386__) || defined(__amd64__) 3646 if (t5_write_combine) { 3647 int rc, mode; 3648 3649 /* 3650 * Enable write combining on BAR2. This is the 3651 * userspace doorbell BAR and is split into 128B 3652 * (UDBS_SEG_SIZE) doorbell regions, each associated 3653 * with an egress queue. The first 64B has the doorbell 3654 * and the second 64B can be used to submit a tx work 3655 * request with an implicit doorbell. 3656 */ 3657 3658 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3659 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3660 if (rc == 0) { 3661 clrbit(&sc->doorbells, DOORBELL_UDB); 3662 setbit(&sc->doorbells, DOORBELL_WCWR); 3663 setbit(&sc->doorbells, DOORBELL_UDBWC); 3664 } else { 3665 device_printf(sc->dev, 3666 "couldn't enable write combining: %d\n", 3667 rc); 3668 } 3669 3670 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3671 t4_write_reg(sc, A_SGE_STAT_CFG, 3672 V_STATSOURCE_T5(7) | mode); 3673 } 3674 #endif 3675 } 3676 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3677 3678 return (0); 3679 } 3680 3681 struct memwin_init { 3682 uint32_t base; 3683 uint32_t aperture; 3684 }; 3685 3686 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3687 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3688 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3689 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3690 }; 3691 3692 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3693 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3694 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3695 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3696 }; 3697 3698 static void 3699 setup_memwin(struct adapter *sc) 3700 { 3701 const struct memwin_init *mw_init; 3702 struct memwin *mw; 3703 int i; 3704 uint32_t bar0; 3705 3706 if (is_t4(sc)) { 3707 /* 3708 * Read low 32b of bar0 indirectly via the hardware backdoor 3709 * mechanism. Works from within PCI passthrough environments 3710 * too, where rman_get_start() can return a different value. We 3711 * need to program the T4 memory window decoders with the actual 3712 * addresses that will be coming across the PCIe link. 3713 */ 3714 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3715 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3716 3717 mw_init = &t4_memwin[0]; 3718 } else { 3719 /* T5+ use the relative offset inside the PCIe BAR */ 3720 bar0 = 0; 3721 3722 mw_init = &t5_memwin[0]; 3723 } 3724 3725 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3726 if (!rw_initialized(&mw->mw_lock)) { 3727 rw_init(&mw->mw_lock, "memory window access"); 3728 mw->mw_base = mw_init->base; 3729 mw->mw_aperture = mw_init->aperture; 3730 mw->mw_curpos = 0; 3731 } 3732 t4_write_reg(sc, 3733 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3734 (mw->mw_base + bar0) | V_BIR(0) | 3735 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3736 rw_wlock(&mw->mw_lock); 3737 position_memwin(sc, i, mw->mw_curpos); 3738 rw_wunlock(&mw->mw_lock); 3739 } 3740 3741 /* flush */ 3742 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3743 } 3744 3745 /* 3746 * Positions the memory window at the given address in the card's address space. 3747 * There are some alignment requirements and the actual position may be at an 3748 * address prior to the requested address. mw->mw_curpos always has the actual 3749 * position of the window. 3750 */ 3751 static void 3752 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3753 { 3754 struct memwin *mw; 3755 uint32_t pf; 3756 uint32_t reg; 3757 3758 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3759 mw = &sc->memwin[idx]; 3760 rw_assert(&mw->mw_lock, RA_WLOCKED); 3761 3762 if (is_t4(sc)) { 3763 pf = 0; 3764 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3765 } else { 3766 pf = V_PFNUM(sc->pf); 3767 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3768 } 3769 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3770 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3771 t4_read_reg(sc, reg); /* flush */ 3772 } 3773 3774 int 3775 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3776 int len, int rw) 3777 { 3778 struct memwin *mw; 3779 uint32_t mw_end, v; 3780 3781 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3782 3783 /* Memory can only be accessed in naturally aligned 4 byte units */ 3784 if (addr & 3 || len & 3 || len <= 0) 3785 return (EINVAL); 3786 3787 mw = &sc->memwin[idx]; 3788 while (len > 0) { 3789 rw_rlock(&mw->mw_lock); 3790 mw_end = mw->mw_curpos + mw->mw_aperture; 3791 if (addr >= mw_end || addr < mw->mw_curpos) { 3792 /* Will need to reposition the window */ 3793 if (!rw_try_upgrade(&mw->mw_lock)) { 3794 rw_runlock(&mw->mw_lock); 3795 rw_wlock(&mw->mw_lock); 3796 } 3797 rw_assert(&mw->mw_lock, RA_WLOCKED); 3798 position_memwin(sc, idx, addr); 3799 rw_downgrade(&mw->mw_lock); 3800 mw_end = mw->mw_curpos + mw->mw_aperture; 3801 } 3802 rw_assert(&mw->mw_lock, RA_RLOCKED); 3803 while (addr < mw_end && len > 0) { 3804 if (rw == 0) { 3805 v = t4_read_reg(sc, mw->mw_base + addr - 3806 mw->mw_curpos); 3807 *val++ = le32toh(v); 3808 } else { 3809 v = *val++; 3810 t4_write_reg(sc, mw->mw_base + addr - 3811 mw->mw_curpos, htole32(v)); 3812 } 3813 addr += 4; 3814 len -= 4; 3815 } 3816 rw_runlock(&mw->mw_lock); 3817 } 3818 3819 return (0); 3820 } 3821 3822 static void 3823 t4_init_atid_table(struct adapter *sc) 3824 { 3825 struct tid_info *t; 3826 int i; 3827 3828 t = &sc->tids; 3829 if (t->natids == 0) 3830 return; 3831 3832 MPASS(t->atid_tab == NULL); 3833 3834 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3835 M_ZERO | M_WAITOK); 3836 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3837 t->afree = t->atid_tab; 3838 t->atids_in_use = 0; 3839 for (i = 1; i < t->natids; i++) 3840 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3841 t->atid_tab[t->natids - 1].next = NULL; 3842 } 3843 3844 static void 3845 t4_free_atid_table(struct adapter *sc) 3846 { 3847 struct tid_info *t; 3848 3849 t = &sc->tids; 3850 3851 KASSERT(t->atids_in_use == 0, 3852 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3853 3854 if (mtx_initialized(&t->atid_lock)) 3855 mtx_destroy(&t->atid_lock); 3856 free(t->atid_tab, M_CXGBE); 3857 t->atid_tab = NULL; 3858 } 3859 3860 int 3861 alloc_atid(struct adapter *sc, void *ctx) 3862 { 3863 struct tid_info *t = &sc->tids; 3864 int atid = -1; 3865 3866 mtx_lock(&t->atid_lock); 3867 if (t->afree) { 3868 union aopen_entry *p = t->afree; 3869 3870 atid = p - t->atid_tab; 3871 MPASS(atid <= M_TID_TID); 3872 t->afree = p->next; 3873 p->data = ctx; 3874 t->atids_in_use++; 3875 } 3876 mtx_unlock(&t->atid_lock); 3877 return (atid); 3878 } 3879 3880 void * 3881 lookup_atid(struct adapter *sc, int atid) 3882 { 3883 struct tid_info *t = &sc->tids; 3884 3885 return (t->atid_tab[atid].data); 3886 } 3887 3888 void 3889 free_atid(struct adapter *sc, int atid) 3890 { 3891 struct tid_info *t = &sc->tids; 3892 union aopen_entry *p = &t->atid_tab[atid]; 3893 3894 mtx_lock(&t->atid_lock); 3895 p->next = t->afree; 3896 t->afree = p; 3897 t->atids_in_use--; 3898 mtx_unlock(&t->atid_lock); 3899 } 3900 3901 static void 3902 queue_tid_release(struct adapter *sc, int tid) 3903 { 3904 3905 CXGBE_UNIMPLEMENTED("deferred tid release"); 3906 } 3907 3908 void 3909 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3910 { 3911 struct wrqe *wr; 3912 struct cpl_tid_release *req; 3913 3914 wr = alloc_wrqe(sizeof(*req), ctrlq); 3915 if (wr == NULL) { 3916 queue_tid_release(sc, tid); /* defer */ 3917 return; 3918 } 3919 req = wrtod(wr); 3920 3921 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3922 3923 t4_wrq_tx(sc, wr); 3924 } 3925 3926 static int 3927 t4_range_cmp(const void *a, const void *b) 3928 { 3929 return ((const struct t4_range *)a)->start - 3930 ((const struct t4_range *)b)->start; 3931 } 3932 3933 /* 3934 * Verify that the memory range specified by the addr/len pair is valid within 3935 * the card's address space. 3936 */ 3937 static int 3938 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3939 { 3940 struct t4_range mem_ranges[4], *r, *next; 3941 uint32_t em, addr_len; 3942 int i, n, remaining; 3943 3944 /* Memory can only be accessed in naturally aligned 4 byte units */ 3945 if (addr & 3 || len & 3 || len == 0) 3946 return (EINVAL); 3947 3948 /* Enabled memories */ 3949 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3950 3951 r = &mem_ranges[0]; 3952 n = 0; 3953 bzero(r, sizeof(mem_ranges)); 3954 if (em & F_EDRAM0_ENABLE) { 3955 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3956 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3957 if (r->size > 0) { 3958 r->start = G_EDRAM0_BASE(addr_len) << 20; 3959 if (addr >= r->start && 3960 addr + len <= r->start + r->size) 3961 return (0); 3962 r++; 3963 n++; 3964 } 3965 } 3966 if (em & F_EDRAM1_ENABLE) { 3967 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3968 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3969 if (r->size > 0) { 3970 r->start = G_EDRAM1_BASE(addr_len) << 20; 3971 if (addr >= r->start && 3972 addr + len <= r->start + r->size) 3973 return (0); 3974 r++; 3975 n++; 3976 } 3977 } 3978 if (em & F_EXT_MEM_ENABLE) { 3979 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3980 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3981 if (r->size > 0) { 3982 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3983 if (addr >= r->start && 3984 addr + len <= r->start + r->size) 3985 return (0); 3986 r++; 3987 n++; 3988 } 3989 } 3990 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3991 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3992 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3993 if (r->size > 0) { 3994 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3995 if (addr >= r->start && 3996 addr + len <= r->start + r->size) 3997 return (0); 3998 r++; 3999 n++; 4000 } 4001 } 4002 MPASS(n <= nitems(mem_ranges)); 4003 4004 if (n > 1) { 4005 /* Sort and merge the ranges. */ 4006 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4007 4008 /* Start from index 0 and examine the next n - 1 entries. */ 4009 r = &mem_ranges[0]; 4010 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4011 4012 MPASS(r->size > 0); /* r is a valid entry. */ 4013 next = r + 1; 4014 MPASS(next->size > 0); /* and so is the next one. */ 4015 4016 while (r->start + r->size >= next->start) { 4017 /* Merge the next one into the current entry. */ 4018 r->size = max(r->start + r->size, 4019 next->start + next->size) - r->start; 4020 n--; /* One fewer entry in total. */ 4021 if (--remaining == 0) 4022 goto done; /* short circuit */ 4023 next++; 4024 } 4025 if (next != r + 1) { 4026 /* 4027 * Some entries were merged into r and next 4028 * points to the first valid entry that couldn't 4029 * be merged. 4030 */ 4031 MPASS(next->size > 0); /* must be valid */ 4032 memcpy(r + 1, next, remaining * sizeof(*r)); 4033 #ifdef INVARIANTS 4034 /* 4035 * This so that the foo->size assertion in the 4036 * next iteration of the loop do the right 4037 * thing for entries that were pulled up and are 4038 * no longer valid. 4039 */ 4040 MPASS(n < nitems(mem_ranges)); 4041 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4042 sizeof(struct t4_range)); 4043 #endif 4044 } 4045 } 4046 done: 4047 /* Done merging the ranges. */ 4048 MPASS(n > 0); 4049 r = &mem_ranges[0]; 4050 for (i = 0; i < n; i++, r++) { 4051 if (addr >= r->start && 4052 addr + len <= r->start + r->size) 4053 return (0); 4054 } 4055 } 4056 4057 return (EFAULT); 4058 } 4059 4060 static int 4061 fwmtype_to_hwmtype(int mtype) 4062 { 4063 4064 switch (mtype) { 4065 case FW_MEMTYPE_EDC0: 4066 return (MEM_EDC0); 4067 case FW_MEMTYPE_EDC1: 4068 return (MEM_EDC1); 4069 case FW_MEMTYPE_EXTMEM: 4070 return (MEM_MC0); 4071 case FW_MEMTYPE_EXTMEM1: 4072 return (MEM_MC1); 4073 default: 4074 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4075 } 4076 } 4077 4078 /* 4079 * Verify that the memory range specified by the memtype/offset/len pair is 4080 * valid and lies entirely within the memtype specified. The global address of 4081 * the start of the range is returned in addr. 4082 */ 4083 static int 4084 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4085 uint32_t *addr) 4086 { 4087 uint32_t em, addr_len, maddr; 4088 4089 /* Memory can only be accessed in naturally aligned 4 byte units */ 4090 if (off & 3 || len & 3 || len == 0) 4091 return (EINVAL); 4092 4093 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4094 switch (fwmtype_to_hwmtype(mtype)) { 4095 case MEM_EDC0: 4096 if (!(em & F_EDRAM0_ENABLE)) 4097 return (EINVAL); 4098 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4099 maddr = G_EDRAM0_BASE(addr_len) << 20; 4100 break; 4101 case MEM_EDC1: 4102 if (!(em & F_EDRAM1_ENABLE)) 4103 return (EINVAL); 4104 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4105 maddr = G_EDRAM1_BASE(addr_len) << 20; 4106 break; 4107 case MEM_MC: 4108 if (!(em & F_EXT_MEM_ENABLE)) 4109 return (EINVAL); 4110 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4111 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4112 break; 4113 case MEM_MC1: 4114 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4115 return (EINVAL); 4116 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4117 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4118 break; 4119 default: 4120 return (EINVAL); 4121 } 4122 4123 *addr = maddr + off; /* global address */ 4124 return (validate_mem_range(sc, *addr, len)); 4125 } 4126 4127 static int 4128 fixup_devlog_params(struct adapter *sc) 4129 { 4130 struct devlog_params *dparams = &sc->params.devlog; 4131 int rc; 4132 4133 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4134 dparams->size, &dparams->addr); 4135 4136 return (rc); 4137 } 4138 4139 static void 4140 update_nirq(struct intrs_and_queues *iaq, int nports) 4141 { 4142 4143 iaq->nirq = T4_EXTRA_INTR; 4144 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4145 iaq->nirq += nports * iaq->nofldrxq; 4146 iaq->nirq += nports * (iaq->num_vis - 1) * 4147 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4148 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4149 } 4150 4151 /* 4152 * Adjust requirements to fit the number of interrupts available. 4153 */ 4154 static void 4155 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4156 int navail) 4157 { 4158 int old_nirq; 4159 const int nports = sc->params.nports; 4160 4161 MPASS(nports > 0); 4162 MPASS(navail > 0); 4163 4164 bzero(iaq, sizeof(*iaq)); 4165 iaq->intr_type = itype; 4166 iaq->num_vis = t4_num_vis; 4167 iaq->ntxq = t4_ntxq; 4168 iaq->ntxq_vi = t4_ntxq_vi; 4169 iaq->nrxq = t4_nrxq; 4170 iaq->nrxq_vi = t4_nrxq_vi; 4171 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4172 if (is_offload(sc) || is_ethoffload(sc)) { 4173 iaq->nofldtxq = t4_nofldtxq; 4174 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4175 } 4176 #endif 4177 #ifdef TCP_OFFLOAD 4178 if (is_offload(sc)) { 4179 iaq->nofldrxq = t4_nofldrxq; 4180 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4181 } 4182 #endif 4183 #ifdef DEV_NETMAP 4184 if (t4_native_netmap & NN_MAIN_VI) { 4185 iaq->nnmtxq = t4_nnmtxq; 4186 iaq->nnmrxq = t4_nnmrxq; 4187 } 4188 if (t4_native_netmap & NN_EXTRA_VI) { 4189 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4190 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4191 } 4192 #endif 4193 4194 update_nirq(iaq, nports); 4195 if (iaq->nirq <= navail && 4196 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4197 /* 4198 * This is the normal case -- there are enough interrupts for 4199 * everything. 4200 */ 4201 goto done; 4202 } 4203 4204 /* 4205 * If extra VIs have been configured try reducing their count and see if 4206 * that works. 4207 */ 4208 while (iaq->num_vis > 1) { 4209 iaq->num_vis--; 4210 update_nirq(iaq, nports); 4211 if (iaq->nirq <= navail && 4212 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4213 device_printf(sc->dev, "virtual interfaces per port " 4214 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4215 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4216 "itype %d, navail %u, nirq %d.\n", 4217 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4218 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4219 itype, navail, iaq->nirq); 4220 goto done; 4221 } 4222 } 4223 4224 /* 4225 * Extra VIs will not be created. Log a message if they were requested. 4226 */ 4227 MPASS(iaq->num_vis == 1); 4228 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4229 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4230 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4231 if (iaq->num_vis != t4_num_vis) { 4232 device_printf(sc->dev, "extra virtual interfaces disabled. " 4233 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4234 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4235 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4236 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4237 } 4238 4239 /* 4240 * Keep reducing the number of NIC rx queues to the next lower power of 4241 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4242 * if that works. 4243 */ 4244 do { 4245 if (iaq->nrxq > 1) { 4246 do { 4247 iaq->nrxq--; 4248 } while (!powerof2(iaq->nrxq)); 4249 if (iaq->nnmrxq > iaq->nrxq) 4250 iaq->nnmrxq = iaq->nrxq; 4251 } 4252 if (iaq->nofldrxq > 1) 4253 iaq->nofldrxq >>= 1; 4254 4255 old_nirq = iaq->nirq; 4256 update_nirq(iaq, nports); 4257 if (iaq->nirq <= navail && 4258 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4259 device_printf(sc->dev, "running with reduced number of " 4260 "rx queues because of shortage of interrupts. " 4261 "nrxq=%u, nofldrxq=%u. " 4262 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4263 iaq->nofldrxq, itype, navail, iaq->nirq); 4264 goto done; 4265 } 4266 } while (old_nirq != iaq->nirq); 4267 4268 /* One interrupt for everything. Ugh. */ 4269 device_printf(sc->dev, "running with minimal number of queues. " 4270 "itype %d, navail %u.\n", itype, navail); 4271 iaq->nirq = 1; 4272 iaq->nrxq = 1; 4273 iaq->ntxq = 1; 4274 if (iaq->nofldrxq > 0) { 4275 iaq->nofldrxq = 1; 4276 iaq->nofldtxq = 1; 4277 } 4278 iaq->nnmtxq = 0; 4279 iaq->nnmrxq = 0; 4280 done: 4281 MPASS(iaq->num_vis > 0); 4282 if (iaq->num_vis > 1) { 4283 MPASS(iaq->nrxq_vi > 0); 4284 MPASS(iaq->ntxq_vi > 0); 4285 } 4286 MPASS(iaq->nirq > 0); 4287 MPASS(iaq->nrxq > 0); 4288 MPASS(iaq->ntxq > 0); 4289 if (itype == INTR_MSI) { 4290 MPASS(powerof2(iaq->nirq)); 4291 } 4292 } 4293 4294 static int 4295 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4296 { 4297 int rc, itype, navail, nalloc; 4298 4299 for (itype = INTR_MSIX; itype; itype >>= 1) { 4300 4301 if ((itype & t4_intr_types) == 0) 4302 continue; /* not allowed */ 4303 4304 if (itype == INTR_MSIX) 4305 navail = pci_msix_count(sc->dev); 4306 else if (itype == INTR_MSI) 4307 navail = pci_msi_count(sc->dev); 4308 else 4309 navail = 1; 4310 restart: 4311 if (navail == 0) 4312 continue; 4313 4314 calculate_iaq(sc, iaq, itype, navail); 4315 nalloc = iaq->nirq; 4316 rc = 0; 4317 if (itype == INTR_MSIX) 4318 rc = pci_alloc_msix(sc->dev, &nalloc); 4319 else if (itype == INTR_MSI) 4320 rc = pci_alloc_msi(sc->dev, &nalloc); 4321 4322 if (rc == 0 && nalloc > 0) { 4323 if (nalloc == iaq->nirq) 4324 return (0); 4325 4326 /* 4327 * Didn't get the number requested. Use whatever number 4328 * the kernel is willing to allocate. 4329 */ 4330 device_printf(sc->dev, "fewer vectors than requested, " 4331 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4332 itype, iaq->nirq, nalloc); 4333 pci_release_msi(sc->dev); 4334 navail = nalloc; 4335 goto restart; 4336 } 4337 4338 device_printf(sc->dev, 4339 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4340 itype, rc, iaq->nirq, nalloc); 4341 } 4342 4343 device_printf(sc->dev, 4344 "failed to find a usable interrupt type. " 4345 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4346 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4347 4348 return (ENXIO); 4349 } 4350 4351 #define FW_VERSION(chip) ( \ 4352 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4353 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4354 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4355 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4356 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4357 4358 /* Just enough of fw_hdr to cover all version info. */ 4359 struct fw_h { 4360 __u8 ver; 4361 __u8 chip; 4362 __be16 len512; 4363 __be32 fw_ver; 4364 __be32 tp_microcode_ver; 4365 __u8 intfver_nic; 4366 __u8 intfver_vnic; 4367 __u8 intfver_ofld; 4368 __u8 intfver_ri; 4369 __u8 intfver_iscsipdu; 4370 __u8 intfver_iscsi; 4371 __u8 intfver_fcoepdu; 4372 __u8 intfver_fcoe; 4373 }; 4374 /* Spot check a couple of fields. */ 4375 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4376 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4377 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4378 4379 struct fw_info { 4380 uint8_t chip; 4381 char *kld_name; 4382 char *fw_mod_name; 4383 struct fw_h fw_h; 4384 } fw_info[] = { 4385 { 4386 .chip = CHELSIO_T4, 4387 .kld_name = "t4fw_cfg", 4388 .fw_mod_name = "t4fw", 4389 .fw_h = { 4390 .chip = FW_HDR_CHIP_T4, 4391 .fw_ver = htobe32(FW_VERSION(T4)), 4392 .intfver_nic = FW_INTFVER(T4, NIC), 4393 .intfver_vnic = FW_INTFVER(T4, VNIC), 4394 .intfver_ofld = FW_INTFVER(T4, OFLD), 4395 .intfver_ri = FW_INTFVER(T4, RI), 4396 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4397 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4398 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4399 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4400 }, 4401 }, { 4402 .chip = CHELSIO_T5, 4403 .kld_name = "t5fw_cfg", 4404 .fw_mod_name = "t5fw", 4405 .fw_h = { 4406 .chip = FW_HDR_CHIP_T5, 4407 .fw_ver = htobe32(FW_VERSION(T5)), 4408 .intfver_nic = FW_INTFVER(T5, NIC), 4409 .intfver_vnic = FW_INTFVER(T5, VNIC), 4410 .intfver_ofld = FW_INTFVER(T5, OFLD), 4411 .intfver_ri = FW_INTFVER(T5, RI), 4412 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4413 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4414 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4415 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4416 }, 4417 }, { 4418 .chip = CHELSIO_T6, 4419 .kld_name = "t6fw_cfg", 4420 .fw_mod_name = "t6fw", 4421 .fw_h = { 4422 .chip = FW_HDR_CHIP_T6, 4423 .fw_ver = htobe32(FW_VERSION(T6)), 4424 .intfver_nic = FW_INTFVER(T6, NIC), 4425 .intfver_vnic = FW_INTFVER(T6, VNIC), 4426 .intfver_ofld = FW_INTFVER(T6, OFLD), 4427 .intfver_ri = FW_INTFVER(T6, RI), 4428 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4429 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4430 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4431 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4432 }, 4433 } 4434 }; 4435 4436 static struct fw_info * 4437 find_fw_info(int chip) 4438 { 4439 int i; 4440 4441 for (i = 0; i < nitems(fw_info); i++) { 4442 if (fw_info[i].chip == chip) 4443 return (&fw_info[i]); 4444 } 4445 return (NULL); 4446 } 4447 4448 /* 4449 * Is the given firmware API compatible with the one the driver was compiled 4450 * with? 4451 */ 4452 static int 4453 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4454 { 4455 4456 /* short circuit if it's the exact same firmware version */ 4457 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4458 return (1); 4459 4460 /* 4461 * XXX: Is this too conservative? Perhaps I should limit this to the 4462 * features that are supported in the driver. 4463 */ 4464 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4465 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4466 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4467 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4468 return (1); 4469 #undef SAME_INTF 4470 4471 return (0); 4472 } 4473 4474 static int 4475 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4476 const struct firmware **fw) 4477 { 4478 struct fw_info *fw_info; 4479 4480 *dcfg = NULL; 4481 if (fw != NULL) 4482 *fw = NULL; 4483 4484 fw_info = find_fw_info(chip_id(sc)); 4485 if (fw_info == NULL) { 4486 device_printf(sc->dev, 4487 "unable to look up firmware information for chip %d.\n", 4488 chip_id(sc)); 4489 return (EINVAL); 4490 } 4491 4492 *dcfg = firmware_get(fw_info->kld_name); 4493 if (*dcfg != NULL) { 4494 if (fw != NULL) 4495 *fw = firmware_get(fw_info->fw_mod_name); 4496 return (0); 4497 } 4498 4499 return (ENOENT); 4500 } 4501 4502 static void 4503 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4504 const struct firmware *fw) 4505 { 4506 4507 if (fw != NULL) 4508 firmware_put(fw, FIRMWARE_UNLOAD); 4509 if (dcfg != NULL) 4510 firmware_put(dcfg, FIRMWARE_UNLOAD); 4511 } 4512 4513 /* 4514 * Return values: 4515 * 0 means no firmware install attempted. 4516 * ERESTART means a firmware install was attempted and was successful. 4517 * +ve errno means a firmware install was attempted but failed. 4518 */ 4519 static int 4520 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4521 const struct fw_h *drv_fw, const char *reason, int *already) 4522 { 4523 const struct firmware *cfg, *fw; 4524 const uint32_t c = be32toh(card_fw->fw_ver); 4525 uint32_t d, k; 4526 int rc, fw_install; 4527 struct fw_h bundled_fw; 4528 bool load_attempted; 4529 4530 cfg = fw = NULL; 4531 load_attempted = false; 4532 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4533 4534 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4535 if (t4_fw_install < 0) { 4536 rc = load_fw_module(sc, &cfg, &fw); 4537 if (rc != 0 || fw == NULL) { 4538 device_printf(sc->dev, 4539 "failed to load firmware module: %d. cfg %p, fw %p;" 4540 " will use compiled-in firmware version for" 4541 "hw.cxgbe.fw_install checks.\n", 4542 rc, cfg, fw); 4543 } else { 4544 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4545 } 4546 load_attempted = true; 4547 } 4548 d = be32toh(bundled_fw.fw_ver); 4549 4550 if (reason != NULL) 4551 goto install; 4552 4553 if ((sc->flags & FW_OK) == 0) { 4554 4555 if (c == 0xffffffff) { 4556 reason = "missing"; 4557 goto install; 4558 } 4559 4560 rc = 0; 4561 goto done; 4562 } 4563 4564 if (!fw_compatible(card_fw, &bundled_fw)) { 4565 reason = "incompatible or unusable"; 4566 goto install; 4567 } 4568 4569 if (d > c) { 4570 reason = "older than the version bundled with this driver"; 4571 goto install; 4572 } 4573 4574 if (fw_install == 2 && d != c) { 4575 reason = "different than the version bundled with this driver"; 4576 goto install; 4577 } 4578 4579 /* No reason to do anything to the firmware already on the card. */ 4580 rc = 0; 4581 goto done; 4582 4583 install: 4584 rc = 0; 4585 if ((*already)++) 4586 goto done; 4587 4588 if (fw_install == 0) { 4589 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4590 "but the driver is prohibited from installing a firmware " 4591 "on the card.\n", 4592 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4593 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4594 4595 goto done; 4596 } 4597 4598 /* 4599 * We'll attempt to install a firmware. Load the module first (if it 4600 * hasn't been loaded already). 4601 */ 4602 if (!load_attempted) { 4603 rc = load_fw_module(sc, &cfg, &fw); 4604 if (rc != 0 || fw == NULL) { 4605 device_printf(sc->dev, 4606 "failed to load firmware module: %d. cfg %p, fw %p\n", 4607 rc, cfg, fw); 4608 /* carry on */ 4609 } 4610 } 4611 if (fw == NULL) { 4612 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4613 "but the driver cannot take corrective action because it " 4614 "is unable to load the firmware module.\n", 4615 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4616 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4617 rc = sc->flags & FW_OK ? 0 : ENOENT; 4618 goto done; 4619 } 4620 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4621 if (k != d) { 4622 MPASS(t4_fw_install > 0); 4623 device_printf(sc->dev, 4624 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4625 "expecting (%u.%u.%u.%u) and will not be used.\n", 4626 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4627 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4628 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4629 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4630 rc = sc->flags & FW_OK ? 0 : EINVAL; 4631 goto done; 4632 } 4633 4634 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4635 "installing firmware %u.%u.%u.%u on card.\n", 4636 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4637 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4638 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4639 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4640 4641 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4642 if (rc != 0) { 4643 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4644 } else { 4645 /* Installed successfully, update the cached header too. */ 4646 rc = ERESTART; 4647 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4648 } 4649 done: 4650 unload_fw_module(sc, cfg, fw); 4651 4652 return (rc); 4653 } 4654 4655 /* 4656 * Establish contact with the firmware and attempt to become the master driver. 4657 * 4658 * A firmware will be installed to the card if needed (if the driver is allowed 4659 * to do so). 4660 */ 4661 static int 4662 contact_firmware(struct adapter *sc) 4663 { 4664 int rc, already = 0; 4665 enum dev_state state; 4666 struct fw_info *fw_info; 4667 struct fw_hdr *card_fw; /* fw on the card */ 4668 const struct fw_h *drv_fw; 4669 4670 fw_info = find_fw_info(chip_id(sc)); 4671 if (fw_info == NULL) { 4672 device_printf(sc->dev, 4673 "unable to look up firmware information for chip %d.\n", 4674 chip_id(sc)); 4675 return (EINVAL); 4676 } 4677 drv_fw = &fw_info->fw_h; 4678 4679 /* Read the header of the firmware on the card */ 4680 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4681 restart: 4682 rc = -t4_get_fw_hdr(sc, card_fw); 4683 if (rc != 0) { 4684 device_printf(sc->dev, 4685 "unable to read firmware header from card's flash: %d\n", 4686 rc); 4687 goto done; 4688 } 4689 4690 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4691 &already); 4692 if (rc == ERESTART) 4693 goto restart; 4694 if (rc != 0) 4695 goto done; 4696 4697 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4698 if (rc < 0 || state == DEV_STATE_ERR) { 4699 rc = -rc; 4700 device_printf(sc->dev, 4701 "failed to connect to the firmware: %d, %d. " 4702 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4703 #if 0 4704 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4705 "not responding properly to HELLO", &already) == ERESTART) 4706 goto restart; 4707 #endif 4708 goto done; 4709 } 4710 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4711 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4712 4713 if (rc == sc->pf) { 4714 sc->flags |= MASTER_PF; 4715 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4716 NULL, &already); 4717 if (rc == ERESTART) 4718 rc = 0; 4719 else if (rc != 0) 4720 goto done; 4721 } else if (state == DEV_STATE_UNINIT) { 4722 /* 4723 * We didn't get to be the master so we definitely won't be 4724 * configuring the chip. It's a bug if someone else hasn't 4725 * configured it already. 4726 */ 4727 device_printf(sc->dev, "couldn't be master(%d), " 4728 "device not already initialized either(%d). " 4729 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4730 rc = EPROTO; 4731 goto done; 4732 } else { 4733 /* 4734 * Some other PF is the master and has configured the chip. 4735 * This is allowed but untested. 4736 */ 4737 device_printf(sc->dev, "PF%d is master, device state %d. " 4738 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4739 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4740 sc->cfcsum = 0; 4741 rc = 0; 4742 } 4743 done: 4744 if (rc != 0 && sc->flags & FW_OK) { 4745 t4_fw_bye(sc, sc->mbox); 4746 sc->flags &= ~FW_OK; 4747 } 4748 free(card_fw, M_CXGBE); 4749 return (rc); 4750 } 4751 4752 static int 4753 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4754 uint32_t mtype, uint32_t moff) 4755 { 4756 struct fw_info *fw_info; 4757 const struct firmware *dcfg, *rcfg = NULL; 4758 const uint32_t *cfdata; 4759 uint32_t cflen, addr; 4760 int rc; 4761 4762 load_fw_module(sc, &dcfg, NULL); 4763 4764 /* Card specific interpretation of "default". */ 4765 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4766 if (pci_get_device(sc->dev) == 0x440a) 4767 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4768 if (is_fpga(sc)) 4769 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4770 } 4771 4772 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4773 if (dcfg == NULL) { 4774 device_printf(sc->dev, 4775 "KLD with default config is not available.\n"); 4776 rc = ENOENT; 4777 goto done; 4778 } 4779 cfdata = dcfg->data; 4780 cflen = dcfg->datasize & ~3; 4781 } else { 4782 char s[32]; 4783 4784 fw_info = find_fw_info(chip_id(sc)); 4785 if (fw_info == NULL) { 4786 device_printf(sc->dev, 4787 "unable to look up firmware information for chip %d.\n", 4788 chip_id(sc)); 4789 rc = EINVAL; 4790 goto done; 4791 } 4792 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4793 4794 rcfg = firmware_get(s); 4795 if (rcfg == NULL) { 4796 device_printf(sc->dev, 4797 "unable to load module \"%s\" for configuration " 4798 "profile \"%s\".\n", s, cfg_file); 4799 rc = ENOENT; 4800 goto done; 4801 } 4802 cfdata = rcfg->data; 4803 cflen = rcfg->datasize & ~3; 4804 } 4805 4806 if (cflen > FLASH_CFG_MAX_SIZE) { 4807 device_printf(sc->dev, 4808 "config file too long (%d, max allowed is %d).\n", 4809 cflen, FLASH_CFG_MAX_SIZE); 4810 rc = EINVAL; 4811 goto done; 4812 } 4813 4814 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4815 if (rc != 0) { 4816 device_printf(sc->dev, 4817 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4818 __func__, mtype, moff, cflen, rc); 4819 rc = EINVAL; 4820 goto done; 4821 } 4822 write_via_memwin(sc, 2, addr, cfdata, cflen); 4823 done: 4824 if (rcfg != NULL) 4825 firmware_put(rcfg, FIRMWARE_UNLOAD); 4826 unload_fw_module(sc, dcfg, NULL); 4827 return (rc); 4828 } 4829 4830 struct caps_allowed { 4831 uint16_t nbmcaps; 4832 uint16_t linkcaps; 4833 uint16_t switchcaps; 4834 uint16_t niccaps; 4835 uint16_t toecaps; 4836 uint16_t rdmacaps; 4837 uint16_t cryptocaps; 4838 uint16_t iscsicaps; 4839 uint16_t fcoecaps; 4840 }; 4841 4842 #define FW_PARAM_DEV(param) \ 4843 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4844 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4845 #define FW_PARAM_PFVF(param) \ 4846 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4847 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4848 4849 /* 4850 * Provide a configuration profile to the firmware and have it initialize the 4851 * chip accordingly. This may involve uploading a configuration file to the 4852 * card. 4853 */ 4854 static int 4855 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4856 const struct caps_allowed *caps_allowed) 4857 { 4858 int rc; 4859 struct fw_caps_config_cmd caps; 4860 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4861 4862 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4863 if (rc != 0) { 4864 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4865 return (rc); 4866 } 4867 4868 bzero(&caps, sizeof(caps)); 4869 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4870 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4871 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4872 mtype = 0; 4873 moff = 0; 4874 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4875 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4876 mtype = FW_MEMTYPE_FLASH; 4877 moff = t4_flash_cfg_addr(sc); 4878 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4879 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4880 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4881 FW_LEN16(caps)); 4882 } else { 4883 /* 4884 * Ask the firmware where it wants us to upload the config file. 4885 */ 4886 param = FW_PARAM_DEV(CF); 4887 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4888 if (rc != 0) { 4889 /* No support for config file? Shouldn't happen. */ 4890 device_printf(sc->dev, 4891 "failed to query config file location: %d.\n", rc); 4892 goto done; 4893 } 4894 mtype = G_FW_PARAMS_PARAM_Y(val); 4895 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4896 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4897 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4898 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4899 FW_LEN16(caps)); 4900 4901 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4902 if (rc != 0) { 4903 device_printf(sc->dev, 4904 "failed to upload config file to card: %d.\n", rc); 4905 goto done; 4906 } 4907 } 4908 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4909 if (rc != 0) { 4910 device_printf(sc->dev, "failed to pre-process config file: %d " 4911 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4912 goto done; 4913 } 4914 4915 finicsum = be32toh(caps.finicsum); 4916 cfcsum = be32toh(caps.cfcsum); /* actual */ 4917 if (finicsum != cfcsum) { 4918 device_printf(sc->dev, 4919 "WARNING: config file checksum mismatch: %08x %08x\n", 4920 finicsum, cfcsum); 4921 } 4922 sc->cfcsum = cfcsum; 4923 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4924 4925 /* 4926 * Let the firmware know what features will (not) be used so it can tune 4927 * things accordingly. 4928 */ 4929 #define LIMIT_CAPS(x) do { \ 4930 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4931 } while (0) 4932 LIMIT_CAPS(nbm); 4933 LIMIT_CAPS(link); 4934 LIMIT_CAPS(switch); 4935 LIMIT_CAPS(nic); 4936 LIMIT_CAPS(toe); 4937 LIMIT_CAPS(rdma); 4938 LIMIT_CAPS(crypto); 4939 LIMIT_CAPS(iscsi); 4940 LIMIT_CAPS(fcoe); 4941 #undef LIMIT_CAPS 4942 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4943 /* 4944 * TOE and hashfilters are mutually exclusive. It is a config 4945 * file or firmware bug if both are reported as available. Try 4946 * to cope with the situation in non-debug builds by disabling 4947 * TOE. 4948 */ 4949 MPASS(caps.toecaps == 0); 4950 4951 caps.toecaps = 0; 4952 caps.rdmacaps = 0; 4953 caps.iscsicaps = 0; 4954 } 4955 4956 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4957 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4958 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4959 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4960 if (rc != 0) { 4961 device_printf(sc->dev, 4962 "failed to process config file: %d.\n", rc); 4963 goto done; 4964 } 4965 4966 t4_tweak_chip_settings(sc); 4967 set_params__pre_init(sc); 4968 4969 /* get basic stuff going */ 4970 rc = -t4_fw_initialize(sc, sc->mbox); 4971 if (rc != 0) { 4972 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4973 goto done; 4974 } 4975 done: 4976 return (rc); 4977 } 4978 4979 /* 4980 * Partition chip resources for use between various PFs, VFs, etc. 4981 */ 4982 static int 4983 partition_resources(struct adapter *sc) 4984 { 4985 char cfg_file[sizeof(t4_cfg_file)]; 4986 struct caps_allowed caps_allowed; 4987 int rc; 4988 bool fallback; 4989 4990 /* Only the master driver gets to configure the chip resources. */ 4991 MPASS(sc->flags & MASTER_PF); 4992 4993 #define COPY_CAPS(x) do { \ 4994 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4995 } while (0) 4996 bzero(&caps_allowed, sizeof(caps_allowed)); 4997 COPY_CAPS(nbm); 4998 COPY_CAPS(link); 4999 COPY_CAPS(switch); 5000 COPY_CAPS(nic); 5001 COPY_CAPS(toe); 5002 COPY_CAPS(rdma); 5003 COPY_CAPS(crypto); 5004 COPY_CAPS(iscsi); 5005 COPY_CAPS(fcoe); 5006 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5007 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5008 retry: 5009 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5010 if (rc != 0 && fallback) { 5011 device_printf(sc->dev, 5012 "failed (%d) to configure card with \"%s\" profile, " 5013 "will fall back to a basic configuration and retry.\n", 5014 rc, cfg_file); 5015 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5016 bzero(&caps_allowed, sizeof(caps_allowed)); 5017 COPY_CAPS(switch); 5018 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5019 fallback = false; 5020 goto retry; 5021 } 5022 #undef COPY_CAPS 5023 return (rc); 5024 } 5025 5026 /* 5027 * Retrieve parameters that are needed (or nice to have) very early. 5028 */ 5029 static int 5030 get_params__pre_init(struct adapter *sc) 5031 { 5032 int rc; 5033 uint32_t param[2], val[2]; 5034 5035 t4_get_version_info(sc); 5036 5037 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5038 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5039 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5040 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5041 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5042 5043 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5044 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5045 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5046 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5047 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5048 5049 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5050 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5051 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5052 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5053 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5054 5055 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5056 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5057 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5058 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5059 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5060 5061 param[0] = FW_PARAM_DEV(PORTVEC); 5062 param[1] = FW_PARAM_DEV(CCLK); 5063 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5064 if (rc != 0) { 5065 device_printf(sc->dev, 5066 "failed to query parameters (pre_init): %d.\n", rc); 5067 return (rc); 5068 } 5069 5070 sc->params.portvec = val[0]; 5071 sc->params.nports = bitcount32(val[0]); 5072 sc->params.vpd.cclk = val[1]; 5073 5074 /* Read device log parameters. */ 5075 rc = -t4_init_devlog_params(sc, 1); 5076 if (rc == 0) 5077 fixup_devlog_params(sc); 5078 else { 5079 device_printf(sc->dev, 5080 "failed to get devlog parameters: %d.\n", rc); 5081 rc = 0; /* devlog isn't critical for device operation */ 5082 } 5083 5084 return (rc); 5085 } 5086 5087 /* 5088 * Any params that need to be set before FW_INITIALIZE. 5089 */ 5090 static int 5091 set_params__pre_init(struct adapter *sc) 5092 { 5093 int rc = 0; 5094 uint32_t param, val; 5095 5096 if (chip_id(sc) >= CHELSIO_T6) { 5097 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5098 val = 1; 5099 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5100 /* firmwares < 1.20.1.0 do not have this param. */ 5101 if (rc == FW_EINVAL && 5102 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5103 rc = 0; 5104 } 5105 if (rc != 0) { 5106 device_printf(sc->dev, 5107 "failed to enable high priority filters :%d.\n", 5108 rc); 5109 } 5110 5111 param = FW_PARAM_DEV(PPOD_EDRAM); 5112 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5113 if (rc == 0 && val == 1) { 5114 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5115 &val); 5116 if (rc != 0) { 5117 device_printf(sc->dev, 5118 "failed to set PPOD_EDRAM: %d.\n", rc); 5119 } 5120 } 5121 } 5122 5123 /* Enable opaque VIIDs with firmwares that support it. */ 5124 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5125 val = 1; 5126 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5127 if (rc == 0 && val == 1) 5128 sc->params.viid_smt_extn_support = true; 5129 else 5130 sc->params.viid_smt_extn_support = false; 5131 5132 return (rc); 5133 } 5134 5135 /* 5136 * Retrieve various parameters that are of interest to the driver. The device 5137 * has been initialized by the firmware at this point. 5138 */ 5139 static int 5140 get_params__post_init(struct adapter *sc) 5141 { 5142 int rc; 5143 uint32_t param[7], val[7]; 5144 struct fw_caps_config_cmd caps; 5145 5146 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5147 param[1] = FW_PARAM_PFVF(EQ_START); 5148 param[2] = FW_PARAM_PFVF(FILTER_START); 5149 param[3] = FW_PARAM_PFVF(FILTER_END); 5150 param[4] = FW_PARAM_PFVF(L2T_START); 5151 param[5] = FW_PARAM_PFVF(L2T_END); 5152 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5153 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5154 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5155 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5156 if (rc != 0) { 5157 device_printf(sc->dev, 5158 "failed to query parameters (post_init): %d.\n", rc); 5159 return (rc); 5160 } 5161 5162 sc->sge.iq_start = val[0]; 5163 sc->sge.eq_start = val[1]; 5164 if ((int)val[3] > (int)val[2]) { 5165 sc->tids.ftid_base = val[2]; 5166 sc->tids.ftid_end = val[3]; 5167 sc->tids.nftids = val[3] - val[2] + 1; 5168 } 5169 sc->vres.l2t.start = val[4]; 5170 sc->vres.l2t.size = val[5] - val[4] + 1; 5171 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5172 ("%s: L2 table size (%u) larger than expected (%u)", 5173 __func__, sc->vres.l2t.size, L2T_SIZE)); 5174 sc->params.core_vdd = val[6]; 5175 5176 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5177 param[1] = FW_PARAM_PFVF(EQ_END); 5178 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5179 if (rc != 0) { 5180 device_printf(sc->dev, 5181 "failed to query parameters (post_init2): %d.\n", rc); 5182 return (rc); 5183 } 5184 MPASS((int)val[0] >= sc->sge.iq_start); 5185 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5186 MPASS((int)val[1] >= sc->sge.eq_start); 5187 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5188 5189 if (chip_id(sc) >= CHELSIO_T6) { 5190 5191 sc->tids.tid_base = t4_read_reg(sc, 5192 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5193 5194 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5195 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5196 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5197 if (rc != 0) { 5198 device_printf(sc->dev, 5199 "failed to query hpfilter parameters: %d.\n", rc); 5200 return (rc); 5201 } 5202 if ((int)val[1] > (int)val[0]) { 5203 sc->tids.hpftid_base = val[0]; 5204 sc->tids.hpftid_end = val[1]; 5205 sc->tids.nhpftids = val[1] - val[0] + 1; 5206 5207 /* 5208 * These should go off if the layout changes and the 5209 * driver needs to catch up. 5210 */ 5211 MPASS(sc->tids.hpftid_base == 0); 5212 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5213 } 5214 5215 param[0] = FW_PARAM_PFVF(RAWF_START); 5216 param[1] = FW_PARAM_PFVF(RAWF_END); 5217 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5218 if (rc != 0) { 5219 device_printf(sc->dev, 5220 "failed to query rawf parameters: %d.\n", rc); 5221 return (rc); 5222 } 5223 if ((int)val[1] > (int)val[0]) { 5224 sc->rawf_base = val[0]; 5225 sc->nrawf = val[1] - val[0] + 1; 5226 } 5227 } 5228 5229 /* 5230 * MPSBGMAP is queried separately because only recent firmwares support 5231 * it as a parameter and we don't want the compound query above to fail 5232 * on older firmwares. 5233 */ 5234 param[0] = FW_PARAM_DEV(MPSBGMAP); 5235 val[0] = 0; 5236 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5237 if (rc == 0) 5238 sc->params.mps_bg_map = val[0]; 5239 else 5240 sc->params.mps_bg_map = 0; 5241 5242 /* 5243 * Determine whether the firmware supports the filter2 work request. 5244 * This is queried separately for the same reason as MPSBGMAP above. 5245 */ 5246 param[0] = FW_PARAM_DEV(FILTER2_WR); 5247 val[0] = 0; 5248 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5249 if (rc == 0) 5250 sc->params.filter2_wr_support = val[0] != 0; 5251 else 5252 sc->params.filter2_wr_support = 0; 5253 5254 /* 5255 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5256 * This is queried separately for the same reason as other params above. 5257 */ 5258 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5259 val[0] = 0; 5260 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5261 if (rc == 0) 5262 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5263 else 5264 sc->params.ulptx_memwrite_dsgl = false; 5265 5266 /* FW_RI_FR_NSMR_TPTE_WR support */ 5267 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5268 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5269 if (rc == 0) 5270 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5271 else 5272 sc->params.fr_nsmr_tpte_wr_support = false; 5273 5274 /* Support for 512 SGL entries per FR MR. */ 5275 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5276 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5277 if (rc == 0) 5278 sc->params.dev_512sgl_mr = val[0] != 0; 5279 else 5280 sc->params.dev_512sgl_mr = false; 5281 5282 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5283 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5284 if (rc == 0) 5285 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5286 else 5287 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5288 5289 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5290 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5291 if (rc == 0) { 5292 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5293 sc->params.nsched_cls = val[0]; 5294 } else 5295 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5296 5297 /* get capabilites */ 5298 bzero(&caps, sizeof(caps)); 5299 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5300 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5301 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5302 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5303 if (rc != 0) { 5304 device_printf(sc->dev, 5305 "failed to get card capabilities: %d.\n", rc); 5306 return (rc); 5307 } 5308 5309 #define READ_CAPS(x) do { \ 5310 sc->x = htobe16(caps.x); \ 5311 } while (0) 5312 READ_CAPS(nbmcaps); 5313 READ_CAPS(linkcaps); 5314 READ_CAPS(switchcaps); 5315 READ_CAPS(niccaps); 5316 READ_CAPS(toecaps); 5317 READ_CAPS(rdmacaps); 5318 READ_CAPS(cryptocaps); 5319 READ_CAPS(iscsicaps); 5320 READ_CAPS(fcoecaps); 5321 5322 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5323 MPASS(chip_id(sc) > CHELSIO_T4); 5324 MPASS(sc->toecaps == 0); 5325 sc->toecaps = 0; 5326 5327 param[0] = FW_PARAM_DEV(NTID); 5328 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5329 if (rc != 0) { 5330 device_printf(sc->dev, 5331 "failed to query HASHFILTER parameters: %d.\n", rc); 5332 return (rc); 5333 } 5334 sc->tids.ntids = val[0]; 5335 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5336 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5337 sc->tids.ntids -= sc->tids.nhpftids; 5338 } 5339 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5340 sc->params.hash_filter = 1; 5341 } 5342 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5343 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5344 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5345 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5346 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5347 if (rc != 0) { 5348 device_printf(sc->dev, 5349 "failed to query NIC parameters: %d.\n", rc); 5350 return (rc); 5351 } 5352 if ((int)val[1] > (int)val[0]) { 5353 sc->tids.etid_base = val[0]; 5354 sc->tids.etid_end = val[1]; 5355 sc->tids.netids = val[1] - val[0] + 1; 5356 sc->params.eo_wr_cred = val[2]; 5357 sc->params.ethoffload = 1; 5358 } 5359 } 5360 if (sc->toecaps) { 5361 /* query offload-related parameters */ 5362 param[0] = FW_PARAM_DEV(NTID); 5363 param[1] = FW_PARAM_PFVF(SERVER_START); 5364 param[2] = FW_PARAM_PFVF(SERVER_END); 5365 param[3] = FW_PARAM_PFVF(TDDP_START); 5366 param[4] = FW_PARAM_PFVF(TDDP_END); 5367 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5368 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5369 if (rc != 0) { 5370 device_printf(sc->dev, 5371 "failed to query TOE parameters: %d.\n", rc); 5372 return (rc); 5373 } 5374 sc->tids.ntids = val[0]; 5375 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5376 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5377 sc->tids.ntids -= sc->tids.nhpftids; 5378 } 5379 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5380 if ((int)val[2] > (int)val[1]) { 5381 sc->tids.stid_base = val[1]; 5382 sc->tids.nstids = val[2] - val[1] + 1; 5383 } 5384 sc->vres.ddp.start = val[3]; 5385 sc->vres.ddp.size = val[4] - val[3] + 1; 5386 sc->params.ofldq_wr_cred = val[5]; 5387 sc->params.offload = 1; 5388 } else { 5389 /* 5390 * The firmware attempts memfree TOE configuration for -SO cards 5391 * and will report toecaps=0 if it runs out of resources (this 5392 * depends on the config file). It may not report 0 for other 5393 * capabilities dependent on the TOE in this case. Set them to 5394 * 0 here so that the driver doesn't bother tracking resources 5395 * that will never be used. 5396 */ 5397 sc->iscsicaps = 0; 5398 sc->rdmacaps = 0; 5399 } 5400 if (sc->rdmacaps) { 5401 param[0] = FW_PARAM_PFVF(STAG_START); 5402 param[1] = FW_PARAM_PFVF(STAG_END); 5403 param[2] = FW_PARAM_PFVF(RQ_START); 5404 param[3] = FW_PARAM_PFVF(RQ_END); 5405 param[4] = FW_PARAM_PFVF(PBL_START); 5406 param[5] = FW_PARAM_PFVF(PBL_END); 5407 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5408 if (rc != 0) { 5409 device_printf(sc->dev, 5410 "failed to query RDMA parameters(1): %d.\n", rc); 5411 return (rc); 5412 } 5413 sc->vres.stag.start = val[0]; 5414 sc->vres.stag.size = val[1] - val[0] + 1; 5415 sc->vres.rq.start = val[2]; 5416 sc->vres.rq.size = val[3] - val[2] + 1; 5417 sc->vres.pbl.start = val[4]; 5418 sc->vres.pbl.size = val[5] - val[4] + 1; 5419 5420 param[0] = FW_PARAM_PFVF(SQRQ_START); 5421 param[1] = FW_PARAM_PFVF(SQRQ_END); 5422 param[2] = FW_PARAM_PFVF(CQ_START); 5423 param[3] = FW_PARAM_PFVF(CQ_END); 5424 param[4] = FW_PARAM_PFVF(OCQ_START); 5425 param[5] = FW_PARAM_PFVF(OCQ_END); 5426 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5427 if (rc != 0) { 5428 device_printf(sc->dev, 5429 "failed to query RDMA parameters(2): %d.\n", rc); 5430 return (rc); 5431 } 5432 sc->vres.qp.start = val[0]; 5433 sc->vres.qp.size = val[1] - val[0] + 1; 5434 sc->vres.cq.start = val[2]; 5435 sc->vres.cq.size = val[3] - val[2] + 1; 5436 sc->vres.ocq.start = val[4]; 5437 sc->vres.ocq.size = val[5] - val[4] + 1; 5438 5439 param[0] = FW_PARAM_PFVF(SRQ_START); 5440 param[1] = FW_PARAM_PFVF(SRQ_END); 5441 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5442 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5443 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5444 if (rc != 0) { 5445 device_printf(sc->dev, 5446 "failed to query RDMA parameters(3): %d.\n", rc); 5447 return (rc); 5448 } 5449 sc->vres.srq.start = val[0]; 5450 sc->vres.srq.size = val[1] - val[0] + 1; 5451 sc->params.max_ordird_qp = val[2]; 5452 sc->params.max_ird_adapter = val[3]; 5453 } 5454 if (sc->iscsicaps) { 5455 param[0] = FW_PARAM_PFVF(ISCSI_START); 5456 param[1] = FW_PARAM_PFVF(ISCSI_END); 5457 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5458 if (rc != 0) { 5459 device_printf(sc->dev, 5460 "failed to query iSCSI parameters: %d.\n", rc); 5461 return (rc); 5462 } 5463 sc->vres.iscsi.start = val[0]; 5464 sc->vres.iscsi.size = val[1] - val[0] + 1; 5465 } 5466 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5467 param[0] = FW_PARAM_PFVF(TLS_START); 5468 param[1] = FW_PARAM_PFVF(TLS_END); 5469 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5470 if (rc != 0) { 5471 device_printf(sc->dev, 5472 "failed to query TLS parameters: %d.\n", rc); 5473 return (rc); 5474 } 5475 sc->vres.key.start = val[0]; 5476 sc->vres.key.size = val[1] - val[0] + 1; 5477 } 5478 5479 /* 5480 * We've got the params we wanted to query directly from the firmware. 5481 * Grab some others via other means. 5482 */ 5483 t4_init_sge_params(sc); 5484 t4_init_tp_params(sc); 5485 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5486 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5487 5488 rc = t4_verify_chip_settings(sc); 5489 if (rc != 0) 5490 return (rc); 5491 t4_init_rx_buf_info(sc); 5492 5493 return (rc); 5494 } 5495 5496 #ifdef KERN_TLS 5497 static void 5498 ktls_tick(void *arg) 5499 { 5500 struct adapter *sc; 5501 uint32_t tstamp; 5502 5503 sc = arg; 5504 tstamp = tcp_ts_getticks(); 5505 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5506 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5507 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5508 } 5509 5510 static int 5511 t4_config_kern_tls(struct adapter *sc, bool enable) 5512 { 5513 int rc; 5514 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5515 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5516 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5517 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5518 5519 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5520 if (rc != 0) { 5521 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5522 enable ? "enable" : "disable", rc); 5523 return (rc); 5524 } 5525 5526 if (enable) { 5527 sc->flags |= KERN_TLS_ON; 5528 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5529 C_HARDCLOCK); 5530 } else { 5531 sc->flags &= ~KERN_TLS_ON; 5532 callout_stop(&sc->ktls_tick); 5533 } 5534 5535 return (rc); 5536 } 5537 #endif 5538 5539 static int 5540 set_params__post_init(struct adapter *sc) 5541 { 5542 uint32_t mask, param, val; 5543 #ifdef TCP_OFFLOAD 5544 int i, v, shift; 5545 #endif 5546 5547 /* ask for encapsulated CPLs */ 5548 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5549 val = 1; 5550 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5551 5552 /* Enable 32b port caps if the firmware supports it. */ 5553 param = FW_PARAM_PFVF(PORT_CAPS32); 5554 val = 1; 5555 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5556 sc->params.port_caps32 = 1; 5557 5558 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5559 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5560 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5561 V_MASKFILTER(val - 1)); 5562 5563 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5564 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5565 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5566 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5567 val = 0; 5568 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5569 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5570 F_ATTACKFILTERENABLE); 5571 val |= F_DROPERRORATTACK; 5572 } 5573 if (t4_drop_ip_fragments != 0) { 5574 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5575 F_FRAGMENTDROP); 5576 val |= F_DROPERRORFRAG; 5577 } 5578 if (t4_drop_pkts_with_l2_errors != 0) 5579 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5580 if (t4_drop_pkts_with_l3_errors != 0) { 5581 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5582 F_DROPERRORCSUMIP; 5583 } 5584 if (t4_drop_pkts_with_l4_errors != 0) { 5585 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5586 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5587 } 5588 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5589 5590 #ifdef TCP_OFFLOAD 5591 /* 5592 * Override the TOE timers with user provided tunables. This is not the 5593 * recommended way to change the timers (the firmware config file is) so 5594 * these tunables are not documented. 5595 * 5596 * All the timer tunables are in microseconds. 5597 */ 5598 if (t4_toe_keepalive_idle != 0) { 5599 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5600 v &= M_KEEPALIVEIDLE; 5601 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5602 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5603 } 5604 if (t4_toe_keepalive_interval != 0) { 5605 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5606 v &= M_KEEPALIVEINTVL; 5607 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5608 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5609 } 5610 if (t4_toe_keepalive_count != 0) { 5611 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5612 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5613 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5614 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5615 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5616 } 5617 if (t4_toe_rexmt_min != 0) { 5618 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5619 v &= M_RXTMIN; 5620 t4_set_reg_field(sc, A_TP_RXT_MIN, 5621 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5622 } 5623 if (t4_toe_rexmt_max != 0) { 5624 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5625 v &= M_RXTMAX; 5626 t4_set_reg_field(sc, A_TP_RXT_MAX, 5627 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5628 } 5629 if (t4_toe_rexmt_count != 0) { 5630 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5631 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5632 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5633 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5634 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5635 } 5636 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5637 if (t4_toe_rexmt_backoff[i] != -1) { 5638 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5639 shift = (i & 3) << 3; 5640 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5641 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5642 } 5643 } 5644 #endif 5645 5646 #ifdef KERN_TLS 5647 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5648 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5649 /* 5650 * Limit TOE connections to 2 reassembly "islands". This is 5651 * required for TOE TLS connections to downgrade to plain TOE 5652 * connections if an unsupported TLS version or ciphersuite is 5653 * used. 5654 */ 5655 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5656 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5657 if (is_ktls(sc)) { 5658 sc->tlst.inline_keys = t4_tls_inline_keys; 5659 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5660 if (t4_kern_tls != 0) 5661 t4_config_kern_tls(sc, true); 5662 } 5663 } 5664 #endif 5665 return (0); 5666 } 5667 5668 #undef FW_PARAM_PFVF 5669 #undef FW_PARAM_DEV 5670 5671 static void 5672 t4_set_desc(struct adapter *sc) 5673 { 5674 char buf[128]; 5675 struct adapter_params *p = &sc->params; 5676 5677 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5678 5679 device_set_desc_copy(sc->dev, buf); 5680 } 5681 5682 static inline void 5683 ifmedia_add4(struct ifmedia *ifm, int m) 5684 { 5685 5686 ifmedia_add(ifm, m, 0, NULL); 5687 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5688 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5689 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5690 } 5691 5692 /* 5693 * This is the selected media, which is not quite the same as the active media. 5694 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5695 * and active are not the same, and "media: Ethernet selected" otherwise. 5696 */ 5697 static void 5698 set_current_media(struct port_info *pi) 5699 { 5700 struct link_config *lc; 5701 struct ifmedia *ifm; 5702 int mword; 5703 u_int speed; 5704 5705 PORT_LOCK_ASSERT_OWNED(pi); 5706 5707 /* Leave current media alone if it's already set to IFM_NONE. */ 5708 ifm = &pi->media; 5709 if (ifm->ifm_cur != NULL && 5710 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5711 return; 5712 5713 lc = &pi->link_cfg; 5714 if (lc->requested_aneg != AUTONEG_DISABLE && 5715 lc->pcaps & FW_PORT_CAP32_ANEG) { 5716 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5717 return; 5718 } 5719 mword = IFM_ETHER | IFM_FDX; 5720 if (lc->requested_fc & PAUSE_TX) 5721 mword |= IFM_ETH_TXPAUSE; 5722 if (lc->requested_fc & PAUSE_RX) 5723 mword |= IFM_ETH_RXPAUSE; 5724 if (lc->requested_speed == 0) 5725 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5726 else 5727 speed = lc->requested_speed; 5728 mword |= port_mword(pi, speed_to_fwcap(speed)); 5729 ifmedia_set(ifm, mword); 5730 } 5731 5732 /* 5733 * Returns true if the ifmedia list for the port cannot change. 5734 */ 5735 static bool 5736 fixed_ifmedia(struct port_info *pi) 5737 { 5738 5739 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5740 pi->port_type == FW_PORT_TYPE_BT_XFI || 5741 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5742 pi->port_type == FW_PORT_TYPE_KX4 || 5743 pi->port_type == FW_PORT_TYPE_KX || 5744 pi->port_type == FW_PORT_TYPE_KR || 5745 pi->port_type == FW_PORT_TYPE_BP_AP || 5746 pi->port_type == FW_PORT_TYPE_BP4_AP || 5747 pi->port_type == FW_PORT_TYPE_BP40_BA || 5748 pi->port_type == FW_PORT_TYPE_KR4_100G || 5749 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5750 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5751 } 5752 5753 static void 5754 build_medialist(struct port_info *pi) 5755 { 5756 uint32_t ss, speed; 5757 int unknown, mword, bit; 5758 struct link_config *lc; 5759 struct ifmedia *ifm; 5760 5761 PORT_LOCK_ASSERT_OWNED(pi); 5762 5763 if (pi->flags & FIXED_IFMEDIA) 5764 return; 5765 5766 /* 5767 * Rebuild the ifmedia list. 5768 */ 5769 ifm = &pi->media; 5770 ifmedia_removeall(ifm); 5771 lc = &pi->link_cfg; 5772 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5773 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5774 MPASS(ss != 0); 5775 no_media: 5776 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5777 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5778 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5779 return; 5780 } 5781 5782 unknown = 0; 5783 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5784 speed = 1 << bit; 5785 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5786 if (ss & speed) { 5787 mword = port_mword(pi, speed); 5788 if (mword == IFM_NONE) { 5789 goto no_media; 5790 } else if (mword == IFM_UNKNOWN) 5791 unknown++; 5792 else 5793 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5794 } 5795 } 5796 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5797 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5798 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5799 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5800 5801 set_current_media(pi); 5802 } 5803 5804 /* 5805 * Initialize the requested fields in the link config based on driver tunables. 5806 */ 5807 static void 5808 init_link_config(struct port_info *pi) 5809 { 5810 struct link_config *lc = &pi->link_cfg; 5811 5812 PORT_LOCK_ASSERT_OWNED(pi); 5813 5814 lc->requested_caps = 0; 5815 lc->requested_speed = 0; 5816 5817 if (t4_autoneg == 0) 5818 lc->requested_aneg = AUTONEG_DISABLE; 5819 else if (t4_autoneg == 1) 5820 lc->requested_aneg = AUTONEG_ENABLE; 5821 else 5822 lc->requested_aneg = AUTONEG_AUTO; 5823 5824 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5825 PAUSE_AUTONEG); 5826 5827 if (t4_fec & FEC_AUTO) 5828 lc->requested_fec = FEC_AUTO; 5829 else if (t4_fec == 0) 5830 lc->requested_fec = FEC_NONE; 5831 else { 5832 /* -1 is handled by the FEC_AUTO block above and not here. */ 5833 lc->requested_fec = t4_fec & 5834 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5835 if (lc->requested_fec == 0) 5836 lc->requested_fec = FEC_AUTO; 5837 } 5838 if (t4_force_fec < 0) 5839 lc->force_fec = -1; 5840 else if (t4_force_fec > 0) 5841 lc->force_fec = 1; 5842 else 5843 lc->force_fec = 0; 5844 } 5845 5846 /* 5847 * Makes sure that all requested settings comply with what's supported by the 5848 * port. Returns the number of settings that were invalid and had to be fixed. 5849 */ 5850 static int 5851 fixup_link_config(struct port_info *pi) 5852 { 5853 int n = 0; 5854 struct link_config *lc = &pi->link_cfg; 5855 uint32_t fwspeed; 5856 5857 PORT_LOCK_ASSERT_OWNED(pi); 5858 5859 /* Speed (when not autonegotiating) */ 5860 if (lc->requested_speed != 0) { 5861 fwspeed = speed_to_fwcap(lc->requested_speed); 5862 if ((fwspeed & lc->pcaps) == 0) { 5863 n++; 5864 lc->requested_speed = 0; 5865 } 5866 } 5867 5868 /* Link autonegotiation */ 5869 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5870 lc->requested_aneg == AUTONEG_DISABLE || 5871 lc->requested_aneg == AUTONEG_AUTO); 5872 if (lc->requested_aneg == AUTONEG_ENABLE && 5873 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5874 n++; 5875 lc->requested_aneg = AUTONEG_AUTO; 5876 } 5877 5878 /* Flow control */ 5879 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5880 if (lc->requested_fc & PAUSE_TX && 5881 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5882 n++; 5883 lc->requested_fc &= ~PAUSE_TX; 5884 } 5885 if (lc->requested_fc & PAUSE_RX && 5886 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5887 n++; 5888 lc->requested_fc &= ~PAUSE_RX; 5889 } 5890 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5891 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5892 n++; 5893 lc->requested_fc |= PAUSE_AUTONEG; 5894 } 5895 5896 /* FEC */ 5897 if ((lc->requested_fec & FEC_RS && 5898 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5899 (lc->requested_fec & FEC_BASER_RS && 5900 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5901 n++; 5902 lc->requested_fec = FEC_AUTO; 5903 } 5904 5905 return (n); 5906 } 5907 5908 /* 5909 * Apply the requested L1 settings, which are expected to be valid, to the 5910 * hardware. 5911 */ 5912 static int 5913 apply_link_config(struct port_info *pi) 5914 { 5915 struct adapter *sc = pi->adapter; 5916 struct link_config *lc = &pi->link_cfg; 5917 int rc; 5918 5919 #ifdef INVARIANTS 5920 ASSERT_SYNCHRONIZED_OP(sc); 5921 PORT_LOCK_ASSERT_OWNED(pi); 5922 5923 if (lc->requested_aneg == AUTONEG_ENABLE) 5924 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5925 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5926 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5927 if (lc->requested_fc & PAUSE_TX) 5928 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5929 if (lc->requested_fc & PAUSE_RX) 5930 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5931 if (lc->requested_fec & FEC_RS) 5932 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5933 if (lc->requested_fec & FEC_BASER_RS) 5934 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5935 #endif 5936 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5937 if (rc != 0) { 5938 /* Don't complain if the VF driver gets back an EPERM. */ 5939 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5940 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5941 } else { 5942 /* 5943 * An L1_CFG will almost always result in a link-change event if 5944 * the link is up, and the driver will refresh the actual 5945 * fec/fc/etc. when the notification is processed. If the link 5946 * is down then the actual settings are meaningless. 5947 * 5948 * This takes care of the case where a change in the L1 settings 5949 * may not result in a notification. 5950 */ 5951 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5952 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5953 } 5954 return (rc); 5955 } 5956 5957 #define FW_MAC_EXACT_CHUNK 7 5958 struct mcaddr_ctx { 5959 struct ifnet *ifp; 5960 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5961 uint64_t hash; 5962 int i; 5963 int del; 5964 int rc; 5965 }; 5966 5967 static u_int 5968 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5969 { 5970 struct mcaddr_ctx *ctx = arg; 5971 struct vi_info *vi = ctx->ifp->if_softc; 5972 struct port_info *pi = vi->pi; 5973 struct adapter *sc = pi->adapter; 5974 5975 if (ctx->rc < 0) 5976 return (0); 5977 5978 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5979 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5980 ctx->i++; 5981 5982 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5983 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5984 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5985 if (ctx->rc < 0) { 5986 int j; 5987 5988 for (j = 0; j < ctx->i; j++) { 5989 if_printf(ctx->ifp, 5990 "failed to add mc address" 5991 " %02x:%02x:%02x:" 5992 "%02x:%02x:%02x rc=%d\n", 5993 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5994 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5995 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5996 -ctx->rc); 5997 } 5998 return (0); 5999 } 6000 ctx->del = 0; 6001 ctx->i = 0; 6002 } 6003 6004 return (1); 6005 } 6006 6007 /* 6008 * Program the port's XGMAC based on parameters in ifnet. The caller also 6009 * indicates which parameters should be programmed (the rest are left alone). 6010 */ 6011 int 6012 update_mac_settings(struct ifnet *ifp, int flags) 6013 { 6014 int rc = 0; 6015 struct vi_info *vi = ifp->if_softc; 6016 struct port_info *pi = vi->pi; 6017 struct adapter *sc = pi->adapter; 6018 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6019 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6020 6021 ASSERT_SYNCHRONIZED_OP(sc); 6022 KASSERT(flags, ("%s: not told what to update.", __func__)); 6023 6024 if (flags & XGMAC_MTU) 6025 mtu = ifp->if_mtu; 6026 6027 if (flags & XGMAC_PROMISC) 6028 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 6029 6030 if (flags & XGMAC_ALLMULTI) 6031 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 6032 6033 if (flags & XGMAC_VLANEX) 6034 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6035 6036 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6037 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6038 allmulti, 1, vlanex, false); 6039 if (rc) { 6040 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6041 rc); 6042 return (rc); 6043 } 6044 } 6045 6046 if (flags & XGMAC_UCADDR) { 6047 uint8_t ucaddr[ETHER_ADDR_LEN]; 6048 6049 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 6050 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6051 ucaddr, true, &vi->smt_idx); 6052 if (rc < 0) { 6053 rc = -rc; 6054 if_printf(ifp, "change_mac failed: %d\n", rc); 6055 return (rc); 6056 } else { 6057 vi->xact_addr_filt = rc; 6058 rc = 0; 6059 } 6060 } 6061 6062 if (flags & XGMAC_MCADDRS) { 6063 struct epoch_tracker et; 6064 struct mcaddr_ctx ctx; 6065 int j; 6066 6067 ctx.ifp = ifp; 6068 ctx.hash = 0; 6069 ctx.i = 0; 6070 ctx.del = 1; 6071 ctx.rc = 0; 6072 /* 6073 * Unlike other drivers, we accumulate list of pointers into 6074 * interface address lists and we need to keep it safe even 6075 * after if_foreach_llmaddr() returns, thus we must enter the 6076 * network epoch. 6077 */ 6078 NET_EPOCH_ENTER(et); 6079 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6080 if (ctx.rc < 0) { 6081 NET_EPOCH_EXIT(et); 6082 rc = -ctx.rc; 6083 return (rc); 6084 } 6085 if (ctx.i > 0) { 6086 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6087 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6088 NET_EPOCH_EXIT(et); 6089 if (rc < 0) { 6090 rc = -rc; 6091 for (j = 0; j < ctx.i; j++) { 6092 if_printf(ifp, 6093 "failed to add mcast address" 6094 " %02x:%02x:%02x:" 6095 "%02x:%02x:%02x rc=%d\n", 6096 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6097 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6098 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6099 rc); 6100 } 6101 return (rc); 6102 } 6103 ctx.del = 0; 6104 } else 6105 NET_EPOCH_EXIT(et); 6106 6107 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6108 if (rc != 0) 6109 if_printf(ifp, "failed to set mcast address hash: %d\n", 6110 rc); 6111 if (ctx.del == 0) { 6112 /* We clobbered the VXLAN entry if there was one. */ 6113 pi->vxlan_tcam_entry = false; 6114 } 6115 } 6116 6117 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6118 pi->vxlan_tcam_entry == false) { 6119 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6120 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6121 true); 6122 if (rc < 0) { 6123 rc = -rc; 6124 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6125 rc); 6126 } else { 6127 MPASS(rc == sc->rawf_base + pi->port_id); 6128 rc = 0; 6129 pi->vxlan_tcam_entry = true; 6130 } 6131 } 6132 6133 return (rc); 6134 } 6135 6136 /* 6137 * {begin|end}_synchronized_op must be called from the same thread. 6138 */ 6139 int 6140 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6141 char *wmesg) 6142 { 6143 int rc, pri; 6144 6145 #ifdef WITNESS 6146 /* the caller thinks it's ok to sleep, but is it really? */ 6147 if (flags & SLEEP_OK) 6148 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6149 "begin_synchronized_op"); 6150 #endif 6151 6152 if (INTR_OK) 6153 pri = PCATCH; 6154 else 6155 pri = 0; 6156 6157 ADAPTER_LOCK(sc); 6158 for (;;) { 6159 6160 if (vi && IS_DOOMED(vi)) { 6161 rc = ENXIO; 6162 goto done; 6163 } 6164 6165 if (!IS_BUSY(sc)) { 6166 rc = 0; 6167 break; 6168 } 6169 6170 if (!(flags & SLEEP_OK)) { 6171 rc = EBUSY; 6172 goto done; 6173 } 6174 6175 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6176 rc = EINTR; 6177 goto done; 6178 } 6179 } 6180 6181 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6182 SET_BUSY(sc); 6183 #ifdef INVARIANTS 6184 sc->last_op = wmesg; 6185 sc->last_op_thr = curthread; 6186 sc->last_op_flags = flags; 6187 #endif 6188 6189 done: 6190 if (!(flags & HOLD_LOCK) || rc) 6191 ADAPTER_UNLOCK(sc); 6192 6193 return (rc); 6194 } 6195 6196 /* 6197 * Tell if_ioctl and if_init that the VI is going away. This is 6198 * special variant of begin_synchronized_op and must be paired with a 6199 * call to end_synchronized_op. 6200 */ 6201 void 6202 doom_vi(struct adapter *sc, struct vi_info *vi) 6203 { 6204 6205 ADAPTER_LOCK(sc); 6206 SET_DOOMED(vi); 6207 wakeup(&sc->flags); 6208 while (IS_BUSY(sc)) 6209 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6210 SET_BUSY(sc); 6211 #ifdef INVARIANTS 6212 sc->last_op = "t4detach"; 6213 sc->last_op_thr = curthread; 6214 sc->last_op_flags = 0; 6215 #endif 6216 ADAPTER_UNLOCK(sc); 6217 } 6218 6219 /* 6220 * {begin|end}_synchronized_op must be called from the same thread. 6221 */ 6222 void 6223 end_synchronized_op(struct adapter *sc, int flags) 6224 { 6225 6226 if (flags & LOCK_HELD) 6227 ADAPTER_LOCK_ASSERT_OWNED(sc); 6228 else 6229 ADAPTER_LOCK(sc); 6230 6231 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6232 CLR_BUSY(sc); 6233 wakeup(&sc->flags); 6234 ADAPTER_UNLOCK(sc); 6235 } 6236 6237 static int 6238 cxgbe_init_synchronized(struct vi_info *vi) 6239 { 6240 struct port_info *pi = vi->pi; 6241 struct adapter *sc = pi->adapter; 6242 struct ifnet *ifp = vi->ifp; 6243 int rc = 0, i; 6244 struct sge_txq *txq; 6245 6246 ASSERT_SYNCHRONIZED_OP(sc); 6247 6248 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6249 return (0); /* already running */ 6250 6251 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6252 return (rc); /* error message displayed already */ 6253 6254 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6255 return (rc); /* error message displayed already */ 6256 6257 rc = update_mac_settings(ifp, XGMAC_ALL); 6258 if (rc) 6259 goto done; /* error message displayed already */ 6260 6261 PORT_LOCK(pi); 6262 if (pi->up_vis == 0) { 6263 t4_update_port_info(pi); 6264 fixup_link_config(pi); 6265 build_medialist(pi); 6266 apply_link_config(pi); 6267 } 6268 6269 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6270 if (rc != 0) { 6271 if_printf(ifp, "enable_vi failed: %d\n", rc); 6272 PORT_UNLOCK(pi); 6273 goto done; 6274 } 6275 6276 /* 6277 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6278 * if this changes. 6279 */ 6280 6281 for_each_txq(vi, i, txq) { 6282 TXQ_LOCK(txq); 6283 txq->eq.flags |= EQ_ENABLED; 6284 TXQ_UNLOCK(txq); 6285 } 6286 6287 /* 6288 * The first iq of the first port to come up is used for tracing. 6289 */ 6290 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6291 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6292 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6293 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6294 V_QUEUENUMBER(sc->traceq)); 6295 pi->flags |= HAS_TRACEQ; 6296 } 6297 6298 /* all ok */ 6299 pi->up_vis++; 6300 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6301 if (pi->link_cfg.link_ok) 6302 t4_os_link_changed(pi); 6303 PORT_UNLOCK(pi); 6304 6305 mtx_lock(&vi->tick_mtx); 6306 if (ifp->if_get_counter == vi_get_counter) 6307 callout_reset(&vi->tick, hz, vi_tick, vi); 6308 else 6309 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6310 mtx_unlock(&vi->tick_mtx); 6311 done: 6312 if (rc != 0) 6313 cxgbe_uninit_synchronized(vi); 6314 6315 return (rc); 6316 } 6317 6318 /* 6319 * Idempotent. 6320 */ 6321 static int 6322 cxgbe_uninit_synchronized(struct vi_info *vi) 6323 { 6324 struct port_info *pi = vi->pi; 6325 struct adapter *sc = pi->adapter; 6326 struct ifnet *ifp = vi->ifp; 6327 int rc, i; 6328 struct sge_txq *txq; 6329 6330 ASSERT_SYNCHRONIZED_OP(sc); 6331 6332 if (!(vi->flags & VI_INIT_DONE)) { 6333 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6334 KASSERT(0, ("uninited VI is running")); 6335 if_printf(ifp, "uninited VI with running ifnet. " 6336 "vi->flags 0x%016lx, if_flags 0x%08x, " 6337 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6338 ifp->if_drv_flags); 6339 } 6340 return (0); 6341 } 6342 6343 /* 6344 * Disable the VI so that all its data in either direction is discarded 6345 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6346 * tick) intact as the TP can deliver negative advice or data that it's 6347 * holding in its RAM (for an offloaded connection) even after the VI is 6348 * disabled. 6349 */ 6350 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6351 if (rc) { 6352 if_printf(ifp, "disable_vi failed: %d\n", rc); 6353 return (rc); 6354 } 6355 6356 for_each_txq(vi, i, txq) { 6357 TXQ_LOCK(txq); 6358 txq->eq.flags &= ~EQ_ENABLED; 6359 TXQ_UNLOCK(txq); 6360 } 6361 6362 mtx_lock(&vi->tick_mtx); 6363 callout_stop(&vi->tick); 6364 mtx_unlock(&vi->tick_mtx); 6365 6366 PORT_LOCK(pi); 6367 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6368 PORT_UNLOCK(pi); 6369 return (0); 6370 } 6371 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6372 pi->up_vis--; 6373 if (pi->up_vis > 0) { 6374 PORT_UNLOCK(pi); 6375 return (0); 6376 } 6377 6378 pi->link_cfg.link_ok = false; 6379 pi->link_cfg.speed = 0; 6380 pi->link_cfg.link_down_rc = 255; 6381 t4_os_link_changed(pi); 6382 PORT_UNLOCK(pi); 6383 6384 return (0); 6385 } 6386 6387 /* 6388 * It is ok for this function to fail midway and return right away. t4_detach 6389 * will walk the entire sc->irq list and clean up whatever is valid. 6390 */ 6391 int 6392 t4_setup_intr_handlers(struct adapter *sc) 6393 { 6394 int rc, rid, p, q, v; 6395 char s[8]; 6396 struct irq *irq; 6397 struct port_info *pi; 6398 struct vi_info *vi; 6399 struct sge *sge = &sc->sge; 6400 struct sge_rxq *rxq; 6401 #ifdef TCP_OFFLOAD 6402 struct sge_ofld_rxq *ofld_rxq; 6403 #endif 6404 #ifdef DEV_NETMAP 6405 struct sge_nm_rxq *nm_rxq; 6406 #endif 6407 #ifdef RSS 6408 int nbuckets = rss_getnumbuckets(); 6409 #endif 6410 6411 /* 6412 * Setup interrupts. 6413 */ 6414 irq = &sc->irq[0]; 6415 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6416 if (forwarding_intr_to_fwq(sc)) 6417 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6418 6419 /* Multiple interrupts. */ 6420 if (sc->flags & IS_VF) 6421 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6422 ("%s: too few intr.", __func__)); 6423 else 6424 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6425 ("%s: too few intr.", __func__)); 6426 6427 /* The first one is always error intr on PFs */ 6428 if (!(sc->flags & IS_VF)) { 6429 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6430 if (rc != 0) 6431 return (rc); 6432 irq++; 6433 rid++; 6434 } 6435 6436 /* The second one is always the firmware event queue (first on VFs) */ 6437 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6438 if (rc != 0) 6439 return (rc); 6440 irq++; 6441 rid++; 6442 6443 for_each_port(sc, p) { 6444 pi = sc->port[p]; 6445 for_each_vi(pi, v, vi) { 6446 vi->first_intr = rid - 1; 6447 6448 if (vi->nnmrxq > 0) { 6449 int n = max(vi->nrxq, vi->nnmrxq); 6450 6451 rxq = &sge->rxq[vi->first_rxq]; 6452 #ifdef DEV_NETMAP 6453 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6454 #endif 6455 for (q = 0; q < n; q++) { 6456 snprintf(s, sizeof(s), "%x%c%x", p, 6457 'a' + v, q); 6458 if (q < vi->nrxq) 6459 irq->rxq = rxq++; 6460 #ifdef DEV_NETMAP 6461 if (q < vi->nnmrxq) 6462 irq->nm_rxq = nm_rxq++; 6463 6464 if (irq->nm_rxq != NULL && 6465 irq->rxq == NULL) { 6466 /* Netmap rx only */ 6467 rc = t4_alloc_irq(sc, irq, rid, 6468 t4_nm_intr, irq->nm_rxq, s); 6469 } 6470 if (irq->nm_rxq != NULL && 6471 irq->rxq != NULL) { 6472 /* NIC and Netmap rx */ 6473 rc = t4_alloc_irq(sc, irq, rid, 6474 t4_vi_intr, irq, s); 6475 } 6476 #endif 6477 if (irq->rxq != NULL && 6478 irq->nm_rxq == NULL) { 6479 /* NIC rx only */ 6480 rc = t4_alloc_irq(sc, irq, rid, 6481 t4_intr, irq->rxq, s); 6482 } 6483 if (rc != 0) 6484 return (rc); 6485 #ifdef RSS 6486 if (q < vi->nrxq) { 6487 bus_bind_intr(sc->dev, irq->res, 6488 rss_getcpu(q % nbuckets)); 6489 } 6490 #endif 6491 irq++; 6492 rid++; 6493 vi->nintr++; 6494 } 6495 } else { 6496 for_each_rxq(vi, q, rxq) { 6497 snprintf(s, sizeof(s), "%x%c%x", p, 6498 'a' + v, q); 6499 rc = t4_alloc_irq(sc, irq, rid, 6500 t4_intr, rxq, s); 6501 if (rc != 0) 6502 return (rc); 6503 #ifdef RSS 6504 bus_bind_intr(sc->dev, irq->res, 6505 rss_getcpu(q % nbuckets)); 6506 #endif 6507 irq++; 6508 rid++; 6509 vi->nintr++; 6510 } 6511 } 6512 #ifdef TCP_OFFLOAD 6513 for_each_ofld_rxq(vi, q, ofld_rxq) { 6514 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6515 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6516 ofld_rxq, s); 6517 if (rc != 0) 6518 return (rc); 6519 irq++; 6520 rid++; 6521 vi->nintr++; 6522 } 6523 #endif 6524 } 6525 } 6526 MPASS(irq == &sc->irq[sc->intr_count]); 6527 6528 return (0); 6529 } 6530 6531 static void 6532 write_global_rss_key(struct adapter *sc) 6533 { 6534 #ifdef RSS 6535 int i; 6536 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6537 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6538 6539 CTASSERT(RSS_KEYSIZE == 40); 6540 6541 rss_getkey((void *)&raw_rss_key[0]); 6542 for (i = 0; i < nitems(rss_key); i++) { 6543 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6544 } 6545 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6546 #endif 6547 } 6548 6549 /* 6550 * Idempotent. 6551 */ 6552 static int 6553 adapter_full_init(struct adapter *sc) 6554 { 6555 int rc, i; 6556 6557 ASSERT_SYNCHRONIZED_OP(sc); 6558 6559 /* 6560 * queues that belong to the adapter (not any particular port). 6561 */ 6562 rc = t4_setup_adapter_queues(sc); 6563 if (rc != 0) 6564 return (rc); 6565 6566 for (i = 0; i < nitems(sc->tq); i++) { 6567 if (sc->tq[i] != NULL) 6568 continue; 6569 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6570 taskqueue_thread_enqueue, &sc->tq[i]); 6571 if (sc->tq[i] == NULL) { 6572 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6573 return (ENOMEM); 6574 } 6575 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6576 device_get_nameunit(sc->dev), i); 6577 } 6578 6579 if (!(sc->flags & IS_VF)) { 6580 write_global_rss_key(sc); 6581 t4_intr_enable(sc); 6582 } 6583 return (0); 6584 } 6585 6586 int 6587 adapter_init(struct adapter *sc) 6588 { 6589 int rc; 6590 6591 ASSERT_SYNCHRONIZED_OP(sc); 6592 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6593 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6594 ("%s: FULL_INIT_DONE already", __func__)); 6595 6596 rc = adapter_full_init(sc); 6597 if (rc != 0) 6598 adapter_full_uninit(sc); 6599 else 6600 sc->flags |= FULL_INIT_DONE; 6601 6602 return (rc); 6603 } 6604 6605 /* 6606 * Idempotent. 6607 */ 6608 static void 6609 adapter_full_uninit(struct adapter *sc) 6610 { 6611 int i; 6612 6613 t4_teardown_adapter_queues(sc); 6614 6615 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6616 taskqueue_free(sc->tq[i]); 6617 sc->tq[i] = NULL; 6618 } 6619 6620 sc->flags &= ~FULL_INIT_DONE; 6621 } 6622 6623 #ifdef RSS 6624 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6625 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6626 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6627 RSS_HASHTYPE_RSS_UDP_IPV6) 6628 6629 /* Translates kernel hash types to hardware. */ 6630 static int 6631 hashconfig_to_hashen(int hashconfig) 6632 { 6633 int hashen = 0; 6634 6635 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6636 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6637 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6638 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6639 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6640 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6641 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6642 } 6643 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6644 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6645 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6646 } 6647 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6648 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6649 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6650 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6651 6652 return (hashen); 6653 } 6654 6655 /* Translates hardware hash types to kernel. */ 6656 static int 6657 hashen_to_hashconfig(int hashen) 6658 { 6659 int hashconfig = 0; 6660 6661 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6662 /* 6663 * If UDP hashing was enabled it must have been enabled for 6664 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6665 * enabling any 4-tuple hash is nonsense configuration. 6666 */ 6667 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6668 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6669 6670 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6671 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6672 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6673 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6674 } 6675 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6676 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6677 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6678 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6679 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6680 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6681 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6682 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6683 6684 return (hashconfig); 6685 } 6686 #endif 6687 6688 /* 6689 * Idempotent. 6690 */ 6691 static int 6692 vi_full_init(struct vi_info *vi) 6693 { 6694 struct adapter *sc = vi->adapter; 6695 struct sge_rxq *rxq; 6696 int rc, i, j; 6697 #ifdef RSS 6698 int nbuckets = rss_getnumbuckets(); 6699 int hashconfig = rss_gethashconfig(); 6700 int extra; 6701 #endif 6702 6703 ASSERT_SYNCHRONIZED_OP(sc); 6704 6705 /* 6706 * Allocate tx/rx/fl queues for this VI. 6707 */ 6708 rc = t4_setup_vi_queues(vi); 6709 if (rc != 0) 6710 return (rc); 6711 6712 /* 6713 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6714 */ 6715 if (vi->nrxq > vi->rss_size) { 6716 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6717 "some queues will never receive traffic.\n", vi->nrxq, 6718 vi->rss_size); 6719 } else if (vi->rss_size % vi->nrxq) { 6720 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6721 "expect uneven traffic distribution.\n", vi->nrxq, 6722 vi->rss_size); 6723 } 6724 #ifdef RSS 6725 if (vi->nrxq != nbuckets) { 6726 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6727 "performance will be impacted.\n", vi->nrxq, nbuckets); 6728 } 6729 #endif 6730 if (vi->rss == NULL) 6731 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6732 M_ZERO | M_WAITOK); 6733 for (i = 0; i < vi->rss_size;) { 6734 #ifdef RSS 6735 j = rss_get_indirection_to_bucket(i); 6736 j %= vi->nrxq; 6737 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6738 vi->rss[i++] = rxq->iq.abs_id; 6739 #else 6740 for_each_rxq(vi, j, rxq) { 6741 vi->rss[i++] = rxq->iq.abs_id; 6742 if (i == vi->rss_size) 6743 break; 6744 } 6745 #endif 6746 } 6747 6748 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6749 vi->rss, vi->rss_size); 6750 if (rc != 0) { 6751 CH_ERR(vi, "rss_config failed: %d\n", rc); 6752 return (rc); 6753 } 6754 6755 #ifdef RSS 6756 vi->hashen = hashconfig_to_hashen(hashconfig); 6757 6758 /* 6759 * We may have had to enable some hashes even though the global config 6760 * wants them disabled. This is a potential problem that must be 6761 * reported to the user. 6762 */ 6763 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6764 6765 /* 6766 * If we consider only the supported hash types, then the enabled hashes 6767 * are a superset of the requested hashes. In other words, there cannot 6768 * be any supported hash that was requested but not enabled, but there 6769 * can be hashes that were not requested but had to be enabled. 6770 */ 6771 extra &= SUPPORTED_RSS_HASHTYPES; 6772 MPASS((extra & hashconfig) == 0); 6773 6774 if (extra) { 6775 CH_ALERT(vi, 6776 "global RSS config (0x%x) cannot be accommodated.\n", 6777 hashconfig); 6778 } 6779 if (extra & RSS_HASHTYPE_RSS_IPV4) 6780 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6781 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6782 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6783 if (extra & RSS_HASHTYPE_RSS_IPV6) 6784 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6785 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6786 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6787 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6788 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6789 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6790 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6791 #else 6792 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6793 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6794 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6795 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6796 #endif 6797 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6798 0, 0); 6799 if (rc != 0) { 6800 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6801 return (rc); 6802 } 6803 6804 return (0); 6805 } 6806 6807 int 6808 vi_init(struct vi_info *vi) 6809 { 6810 int rc; 6811 6812 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6813 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6814 ("%s: VI_INIT_DONE already", __func__)); 6815 6816 rc = vi_full_init(vi); 6817 if (rc != 0) 6818 vi_full_uninit(vi); 6819 else 6820 vi->flags |= VI_INIT_DONE; 6821 6822 return (rc); 6823 } 6824 6825 /* 6826 * Idempotent. 6827 */ 6828 static void 6829 vi_full_uninit(struct vi_info *vi) 6830 { 6831 6832 if (vi->flags & VI_INIT_DONE) { 6833 quiesce_vi(vi); 6834 free(vi->rss, M_CXGBE); 6835 free(vi->nm_rss, M_CXGBE); 6836 } 6837 6838 t4_teardown_vi_queues(vi); 6839 vi->flags &= ~VI_INIT_DONE; 6840 } 6841 6842 static void 6843 quiesce_txq(struct sge_txq *txq) 6844 { 6845 struct sge_eq *eq = &txq->eq; 6846 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6847 6848 MPASS(eq->flags & EQ_SW_ALLOCATED); 6849 MPASS(!(eq->flags & EQ_ENABLED)); 6850 6851 /* Wait for the mp_ring to empty. */ 6852 while (!mp_ring_is_idle(txq->r)) { 6853 mp_ring_check_drainage(txq->r, 4096); 6854 pause("rquiesce", 1); 6855 } 6856 MPASS(txq->txp.npkt == 0); 6857 6858 if (eq->flags & EQ_HW_ALLOCATED) { 6859 /* 6860 * Hardware is alive and working normally. Wait for it to 6861 * finish and then wait for the driver to catch up and reclaim 6862 * all descriptors. 6863 */ 6864 while (spg->cidx != htobe16(eq->pidx)) 6865 pause("equiesce", 1); 6866 while (eq->cidx != eq->pidx) 6867 pause("dquiesce", 1); 6868 } else { 6869 /* 6870 * Hardware is unavailable. Discard all pending tx and reclaim 6871 * descriptors directly. 6872 */ 6873 TXQ_LOCK(txq); 6874 while (eq->cidx != eq->pidx) { 6875 struct mbuf *m, *nextpkt; 6876 struct tx_sdesc *txsd; 6877 6878 txsd = &txq->sdesc[eq->cidx]; 6879 for (m = txsd->m; m != NULL; m = nextpkt) { 6880 nextpkt = m->m_nextpkt; 6881 m->m_nextpkt = NULL; 6882 m_freem(m); 6883 } 6884 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6885 } 6886 spg->pidx = spg->cidx = htobe16(eq->cidx); 6887 TXQ_UNLOCK(txq); 6888 } 6889 } 6890 6891 static void 6892 quiesce_wrq(struct sge_wrq *wrq) 6893 { 6894 6895 /* XXXTX */ 6896 } 6897 6898 static void 6899 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6900 { 6901 /* Synchronize with the interrupt handler */ 6902 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6903 pause("iqfree", 1); 6904 6905 if (fl != NULL) { 6906 MPASS(iq->flags & IQ_HAS_FL); 6907 6908 mtx_lock(&sc->sfl_lock); 6909 FL_LOCK(fl); 6910 fl->flags |= FL_DOOMED; 6911 FL_UNLOCK(fl); 6912 callout_stop(&sc->sfl_callout); 6913 mtx_unlock(&sc->sfl_lock); 6914 6915 KASSERT((fl->flags & FL_STARVING) == 0, 6916 ("%s: still starving", __func__)); 6917 6918 /* Release all buffers if hardware is no longer available. */ 6919 if (!(iq->flags & IQ_HW_ALLOCATED)) 6920 free_fl_buffers(sc, fl); 6921 } 6922 } 6923 6924 /* 6925 * Wait for all activity on all the queues of the VI to complete. It is assumed 6926 * that no new work is being enqueued by the hardware or the driver. That part 6927 * should be arranged before calling this function. 6928 */ 6929 static void 6930 quiesce_vi(struct vi_info *vi) 6931 { 6932 int i; 6933 struct adapter *sc = vi->adapter; 6934 struct sge_rxq *rxq; 6935 struct sge_txq *txq; 6936 #ifdef TCP_OFFLOAD 6937 struct sge_ofld_rxq *ofld_rxq; 6938 #endif 6939 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6940 struct sge_ofld_txq *ofld_txq; 6941 #endif 6942 6943 if (!(vi->flags & VI_INIT_DONE)) 6944 return; 6945 6946 for_each_txq(vi, i, txq) { 6947 quiesce_txq(txq); 6948 } 6949 6950 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6951 for_each_ofld_txq(vi, i, ofld_txq) { 6952 quiesce_wrq(&ofld_txq->wrq); 6953 } 6954 #endif 6955 6956 for_each_rxq(vi, i, rxq) { 6957 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6958 } 6959 6960 #ifdef TCP_OFFLOAD 6961 for_each_ofld_rxq(vi, i, ofld_rxq) { 6962 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6963 } 6964 #endif 6965 } 6966 6967 static int 6968 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6969 driver_intr_t *handler, void *arg, char *name) 6970 { 6971 int rc; 6972 6973 irq->rid = rid; 6974 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6975 RF_SHAREABLE | RF_ACTIVE); 6976 if (irq->res == NULL) { 6977 device_printf(sc->dev, 6978 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6979 return (ENOMEM); 6980 } 6981 6982 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6983 NULL, handler, arg, &irq->tag); 6984 if (rc != 0) { 6985 device_printf(sc->dev, 6986 "failed to setup interrupt for rid %d, name %s: %d\n", 6987 rid, name, rc); 6988 } else if (name) 6989 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6990 6991 return (rc); 6992 } 6993 6994 static int 6995 t4_free_irq(struct adapter *sc, struct irq *irq) 6996 { 6997 if (irq->tag) 6998 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6999 if (irq->res) 7000 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7001 7002 bzero(irq, sizeof(*irq)); 7003 7004 return (0); 7005 } 7006 7007 static void 7008 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7009 { 7010 7011 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7012 t4_get_regs(sc, buf, regs->len); 7013 } 7014 7015 #define A_PL_INDIR_CMD 0x1f8 7016 7017 #define S_PL_AUTOINC 31 7018 #define M_PL_AUTOINC 0x1U 7019 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7020 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7021 7022 #define S_PL_VFID 20 7023 #define M_PL_VFID 0xffU 7024 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7025 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7026 7027 #define S_PL_ADDR 0 7028 #define M_PL_ADDR 0xfffffU 7029 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7030 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7031 7032 #define A_PL_INDIR_DATA 0x1fc 7033 7034 static uint64_t 7035 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7036 { 7037 u32 stats[2]; 7038 7039 if (sc->flags & IS_VF) { 7040 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7041 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7042 } else { 7043 mtx_assert(&sc->reg_lock, MA_OWNED); 7044 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7045 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7046 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7047 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7048 } 7049 return (((uint64_t)stats[1]) << 32 | stats[0]); 7050 } 7051 7052 static void 7053 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7054 { 7055 7056 #define GET_STAT(name) \ 7057 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7058 7059 if (!(sc->flags & IS_VF)) 7060 mtx_lock(&sc->reg_lock); 7061 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7062 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7063 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7064 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7065 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7066 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7067 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7068 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7069 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7070 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7071 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7072 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7073 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7074 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7075 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7076 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7077 if (!(sc->flags & IS_VF)) 7078 mtx_unlock(&sc->reg_lock); 7079 7080 #undef GET_STAT 7081 } 7082 7083 static void 7084 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7085 { 7086 int reg; 7087 7088 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7089 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7090 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7091 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7092 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7093 } 7094 7095 static void 7096 vi_refresh_stats(struct vi_info *vi) 7097 { 7098 struct timeval tv; 7099 const struct timeval interval = {0, 250000}; /* 250ms */ 7100 7101 mtx_assert(&vi->tick_mtx, MA_OWNED); 7102 7103 if (vi->flags & VI_SKIP_STATS) 7104 return; 7105 7106 getmicrotime(&tv); 7107 timevalsub(&tv, &interval); 7108 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7109 return; 7110 7111 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7112 getmicrotime(&vi->last_refreshed); 7113 } 7114 7115 static void 7116 cxgbe_refresh_stats(struct vi_info *vi) 7117 { 7118 u_int i, v, tnl_cong_drops, chan_map; 7119 struct timeval tv; 7120 const struct timeval interval = {0, 250000}; /* 250ms */ 7121 struct port_info *pi; 7122 struct adapter *sc; 7123 7124 mtx_assert(&vi->tick_mtx, MA_OWNED); 7125 7126 if (vi->flags & VI_SKIP_STATS) 7127 return; 7128 7129 getmicrotime(&tv); 7130 timevalsub(&tv, &interval); 7131 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7132 return; 7133 7134 pi = vi->pi; 7135 sc = vi->adapter; 7136 tnl_cong_drops = 0; 7137 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7138 chan_map = pi->rx_e_chan_map; 7139 while (chan_map) { 7140 i = ffs(chan_map) - 1; 7141 mtx_lock(&sc->reg_lock); 7142 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7143 A_TP_MIB_TNL_CNG_DROP_0 + i); 7144 mtx_unlock(&sc->reg_lock); 7145 tnl_cong_drops += v; 7146 chan_map &= ~(1 << i); 7147 } 7148 pi->tnl_cong_drops = tnl_cong_drops; 7149 getmicrotime(&vi->last_refreshed); 7150 } 7151 7152 static void 7153 cxgbe_tick(void *arg) 7154 { 7155 struct vi_info *vi = arg; 7156 7157 MPASS(IS_MAIN_VI(vi)); 7158 mtx_assert(&vi->tick_mtx, MA_OWNED); 7159 7160 cxgbe_refresh_stats(vi); 7161 callout_schedule(&vi->tick, hz); 7162 } 7163 7164 static void 7165 vi_tick(void *arg) 7166 { 7167 struct vi_info *vi = arg; 7168 7169 mtx_assert(&vi->tick_mtx, MA_OWNED); 7170 7171 vi_refresh_stats(vi); 7172 callout_schedule(&vi->tick, hz); 7173 } 7174 7175 /* 7176 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7177 */ 7178 static char *caps_decoder[] = { 7179 "\20\001IPMI\002NCSI", /* 0: NBM */ 7180 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7181 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7182 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7183 "\006HASHFILTER\007ETHOFLD", 7184 "\20\001TOE", /* 4: TOE */ 7185 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7186 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7187 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7188 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7189 "\007T10DIF" 7190 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7191 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7192 "\004TLS_HW", 7193 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7194 "\004PO_INITIATOR\005PO_TARGET", 7195 }; 7196 7197 void 7198 t4_sysctls(struct adapter *sc) 7199 { 7200 struct sysctl_ctx_list *ctx = &sc->ctx; 7201 struct sysctl_oid *oid; 7202 struct sysctl_oid_list *children, *c0; 7203 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7204 7205 /* 7206 * dev.t4nex.X. 7207 */ 7208 oid = device_get_sysctl_tree(sc->dev); 7209 c0 = children = SYSCTL_CHILDREN(oid); 7210 7211 sc->sc_do_rxcopy = 1; 7212 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7213 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7214 7215 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7216 sc->params.nports, "# of ports"); 7217 7218 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7219 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7220 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7221 "available doorbells"); 7222 7223 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7224 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7225 7226 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7227 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7228 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7229 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7230 7231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7232 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7233 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7234 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7235 7236 t4_sge_sysctls(sc, ctx, children); 7237 7238 sc->lro_timeout = 100; 7239 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7240 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7241 7242 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7243 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7244 7245 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7246 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7247 7248 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7249 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7250 7251 if (sc->flags & IS_VF) 7252 return; 7253 7254 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7255 NULL, chip_rev(sc), "chip hardware revision"); 7256 7257 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7258 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7259 7260 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7261 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7262 7263 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7264 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7265 7266 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7267 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7268 7269 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7270 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7271 7272 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7273 sc->er_version, 0, "expansion ROM version"); 7274 7275 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7276 sc->bs_version, 0, "bootstrap firmware version"); 7277 7278 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7279 NULL, sc->params.scfg_vers, "serial config version"); 7280 7281 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7282 NULL, sc->params.vpd_vers, "VPD version"); 7283 7284 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7285 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7286 7287 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7288 sc->cfcsum, "config file checksum"); 7289 7290 #define SYSCTL_CAP(name, n, text) \ 7291 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7292 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7293 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7294 "available " text " capabilities") 7295 7296 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7297 SYSCTL_CAP(linkcaps, 1, "link"); 7298 SYSCTL_CAP(switchcaps, 2, "switch"); 7299 SYSCTL_CAP(niccaps, 3, "NIC"); 7300 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7301 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7302 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7303 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7304 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7305 #undef SYSCTL_CAP 7306 7307 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7308 NULL, sc->tids.nftids, "number of filters"); 7309 7310 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7311 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7312 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7313 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7314 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7315 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7316 7317 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7318 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7319 sysctl_loadavg, "A", 7320 "microprocessor load averages (debug firmwares only)"); 7321 7322 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7323 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7324 "I", "core Vdd (in mV)"); 7325 7326 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7327 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7328 sysctl_cpus, "A", "local CPUs"); 7329 7330 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7331 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7332 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7333 7334 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7335 &sc->swintr, 0, "software triggered interrupts"); 7336 7337 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7338 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7339 "1 = reset adapter, 0 = zero reset counter"); 7340 7341 /* 7342 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7343 */ 7344 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7345 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7346 "logs and miscellaneous information"); 7347 children = SYSCTL_CHILDREN(oid); 7348 7349 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7351 sysctl_cctrl, "A", "congestion control"); 7352 7353 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7354 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7355 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7356 7357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7358 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7359 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7360 7361 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7362 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7363 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7364 7365 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7366 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7367 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7368 7369 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7371 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7372 7373 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7374 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7375 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7376 7377 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7378 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7379 sysctl_cim_la, "A", "CIM logic analyzer"); 7380 7381 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7382 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7383 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7384 7385 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7386 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7387 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7388 7389 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7390 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7391 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7392 7393 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7394 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7395 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7396 7397 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7398 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7399 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7400 7401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7402 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7403 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7404 7405 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7406 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7407 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7408 7409 if (chip_id(sc) > CHELSIO_T4) { 7410 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7411 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7412 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7413 "CIM OBQ 6 (SGE0-RX)"); 7414 7415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7416 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7417 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7418 "CIM OBQ 7 (SGE1-RX)"); 7419 } 7420 7421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7422 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7423 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7424 7425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7426 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7427 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7428 7429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7430 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7431 sysctl_cpl_stats, "A", "CPL statistics"); 7432 7433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7434 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7435 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7436 7437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7438 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7439 sysctl_tid_stats, "A", "tid stats"); 7440 7441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7442 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7443 sysctl_devlog, "A", "firmware's device log"); 7444 7445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7446 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7447 sysctl_fcoe_stats, "A", "FCoE statistics"); 7448 7449 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7450 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7451 sysctl_hw_sched, "A", "hardware scheduler "); 7452 7453 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7454 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7455 sysctl_l2t, "A", "hardware L2 table"); 7456 7457 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7458 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7459 sysctl_smt, "A", "hardware source MAC table"); 7460 7461 #ifdef INET6 7462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7463 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7464 sysctl_clip, "A", "active CLIP table entries"); 7465 #endif 7466 7467 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7468 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7469 sysctl_lb_stats, "A", "loopback statistics"); 7470 7471 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7472 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7473 sysctl_meminfo, "A", "memory regions"); 7474 7475 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7476 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7477 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7478 "A", "MPS TCAM entries"); 7479 7480 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7481 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7482 sysctl_path_mtus, "A", "path MTUs"); 7483 7484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7485 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7486 sysctl_pm_stats, "A", "PM statistics"); 7487 7488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7489 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7490 sysctl_rdma_stats, "A", "RDMA statistics"); 7491 7492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7494 sysctl_tcp_stats, "A", "TCP statistics"); 7495 7496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7497 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7498 sysctl_tids, "A", "TID information"); 7499 7500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7501 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7502 sysctl_tp_err_stats, "A", "TP error statistics"); 7503 7504 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7505 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7506 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7507 7508 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7509 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7510 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7511 7512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7513 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7514 sysctl_tp_la, "A", "TP logic analyzer"); 7515 7516 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7517 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7518 sysctl_tx_rate, "A", "Tx rate"); 7519 7520 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7521 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7522 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7523 7524 if (chip_id(sc) >= CHELSIO_T5) { 7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7526 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7527 sysctl_wcwr_stats, "A", "write combined work requests"); 7528 } 7529 7530 #ifdef KERN_TLS 7531 if (is_ktls(sc)) { 7532 /* 7533 * dev.t4nex.0.tls. 7534 */ 7535 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7536 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7537 children = SYSCTL_CHILDREN(oid); 7538 7539 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7540 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7541 "keys in work requests (1) or attempt to store TLS keys " 7542 "in card memory."); 7543 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7544 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7545 "TCB field updates with TLS record work requests."); 7546 } 7547 #endif 7548 7549 #ifdef TCP_OFFLOAD 7550 if (is_offload(sc)) { 7551 int i; 7552 char s[4]; 7553 7554 /* 7555 * dev.t4nex.X.toe. 7556 */ 7557 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7558 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7559 children = SYSCTL_CHILDREN(oid); 7560 7561 sc->tt.cong_algorithm = -1; 7562 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7563 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7564 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7565 "3 = highspeed)"); 7566 7567 sc->tt.sndbuf = -1; 7568 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7569 &sc->tt.sndbuf, 0, "hardware send buffer"); 7570 7571 sc->tt.ddp = 0; 7572 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7573 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7574 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7575 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7576 7577 sc->tt.rx_coalesce = -1; 7578 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7579 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7580 7581 sc->tt.tls = 0; 7582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7583 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7584 "Inline TLS allowed"); 7585 7586 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7587 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7588 sysctl_tls_rx_ports, "I", 7589 "TCP ports that use inline TLS+TOE RX"); 7590 7591 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7593 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7594 sysctl_tls_rx_timeout, "I", 7595 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7596 7597 sc->tt.tx_align = -1; 7598 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7599 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7600 7601 sc->tt.tx_zcopy = 0; 7602 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7603 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7604 "Enable zero-copy aio_write(2)"); 7605 7606 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7607 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7608 "cop_managed_offloading", CTLFLAG_RW, 7609 &sc->tt.cop_managed_offloading, 0, 7610 "COP (Connection Offload Policy) controls all TOE offload"); 7611 7612 sc->tt.autorcvbuf_inc = 16 * 1024; 7613 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7614 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7615 "autorcvbuf increment"); 7616 7617 sc->tt.update_hc_on_pmtu_change = 1; 7618 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7619 "update_hc_on_pmtu_change", CTLFLAG_RW, 7620 &sc->tt.update_hc_on_pmtu_change, 0, 7621 "Update hostcache entry if the PMTU changes"); 7622 7623 sc->tt.iso = 1; 7624 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7625 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7626 7627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7628 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7629 sysctl_tp_tick, "A", "TP timer tick (us)"); 7630 7631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7632 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7633 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7634 7635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7637 sysctl_tp_tick, "A", "DACK tick (us)"); 7638 7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7640 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7641 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7642 7643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7644 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7645 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7646 "Minimum retransmit interval (us)"); 7647 7648 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7649 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7650 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7651 "Maximum retransmit interval (us)"); 7652 7653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7654 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7655 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7656 "Persist timer min (us)"); 7657 7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7659 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7660 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7661 "Persist timer max (us)"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7664 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7665 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7666 "Keepalive idle timer (us)"); 7667 7668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7669 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7670 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7671 "Keepalive interval timer (us)"); 7672 7673 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7674 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7675 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7676 7677 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7678 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7679 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7680 "FINWAIT2 timer (us)"); 7681 7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7683 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7684 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7685 "Number of SYN retransmissions before abort"); 7686 7687 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7688 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7689 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7690 "Number of retransmissions before abort"); 7691 7692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7693 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7694 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7695 "Number of keepalive probes before abort"); 7696 7697 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7698 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7699 "TOE retransmit backoffs"); 7700 children = SYSCTL_CHILDREN(oid); 7701 for (i = 0; i < 16; i++) { 7702 snprintf(s, sizeof(s), "%u", i); 7703 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7704 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7705 i, sysctl_tp_backoff, "IU", 7706 "TOE retransmit backoff"); 7707 } 7708 } 7709 #endif 7710 } 7711 7712 void 7713 vi_sysctls(struct vi_info *vi) 7714 { 7715 struct sysctl_ctx_list *ctx = &vi->ctx; 7716 struct sysctl_oid *oid; 7717 struct sysctl_oid_list *children; 7718 7719 /* 7720 * dev.v?(cxgbe|cxl).X. 7721 */ 7722 oid = device_get_sysctl_tree(vi->dev); 7723 children = SYSCTL_CHILDREN(oid); 7724 7725 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7726 vi->viid, "VI identifer"); 7727 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7728 &vi->nrxq, 0, "# of rx queues"); 7729 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7730 &vi->ntxq, 0, "# of tx queues"); 7731 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7732 &vi->first_rxq, 0, "index of first rx queue"); 7733 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7734 &vi->first_txq, 0, "index of first tx queue"); 7735 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7736 vi->rss_base, "start of RSS indirection table"); 7737 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7738 vi->rss_size, "size of RSS indirection table"); 7739 7740 if (IS_MAIN_VI(vi)) { 7741 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7742 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7743 sysctl_noflowq, "IU", 7744 "Reserve queue 0 for non-flowid packets"); 7745 } 7746 7747 if (vi->adapter->flags & IS_VF) { 7748 MPASS(vi->flags & TX_USES_VM_WR); 7749 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7750 NULL, 1, "use VM work requests for transmit"); 7751 } else { 7752 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7753 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7754 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7755 } 7756 7757 #ifdef TCP_OFFLOAD 7758 if (vi->nofldrxq != 0) { 7759 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7760 &vi->nofldrxq, 0, 7761 "# of rx queues for offloaded TCP connections"); 7762 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7763 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7764 "index of first TOE rx queue"); 7765 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7766 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7767 sysctl_holdoff_tmr_idx_ofld, "I", 7768 "holdoff timer index for TOE queues"); 7769 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7770 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7771 sysctl_holdoff_pktc_idx_ofld, "I", 7772 "holdoff packet counter index for TOE queues"); 7773 } 7774 #endif 7775 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7776 if (vi->nofldtxq != 0) { 7777 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7778 &vi->nofldtxq, 0, 7779 "# of tx queues for TOE/ETHOFLD"); 7780 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7781 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7782 "index of first TOE/ETHOFLD tx queue"); 7783 } 7784 #endif 7785 #ifdef DEV_NETMAP 7786 if (vi->nnmrxq != 0) { 7787 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7788 &vi->nnmrxq, 0, "# of netmap rx queues"); 7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7790 &vi->nnmtxq, 0, "# of netmap tx queues"); 7791 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7792 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7793 "index of first netmap rx queue"); 7794 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7795 CTLFLAG_RD, &vi->first_nm_txq, 0, 7796 "index of first netmap tx queue"); 7797 } 7798 #endif 7799 7800 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7801 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7802 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7803 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7804 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7805 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7806 7807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7808 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7809 sysctl_qsize_rxq, "I", "rx queue size"); 7810 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7811 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7812 sysctl_qsize_txq, "I", "tx queue size"); 7813 } 7814 7815 static void 7816 cxgbe_sysctls(struct port_info *pi) 7817 { 7818 struct sysctl_ctx_list *ctx = &pi->ctx; 7819 struct sysctl_oid *oid; 7820 struct sysctl_oid_list *children, *children2; 7821 struct adapter *sc = pi->adapter; 7822 int i; 7823 char name[16]; 7824 static char *tc_flags = {"\20\1USER"}; 7825 7826 /* 7827 * dev.cxgbe.X. 7828 */ 7829 oid = device_get_sysctl_tree(pi->dev); 7830 children = SYSCTL_CHILDREN(oid); 7831 7832 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7833 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7834 sysctl_linkdnrc, "A", "reason why link is down"); 7835 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7836 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7837 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7838 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7839 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7840 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7841 sysctl_btphy, "I", "PHY firmware version"); 7842 } 7843 7844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7845 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7846 sysctl_pause_settings, "A", 7847 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7849 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7850 "FEC in use on the link"); 7851 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7852 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7853 sysctl_requested_fec, "A", 7854 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7855 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7856 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7857 "FEC recommended by the cable/transceiver"); 7858 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7859 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7860 sysctl_autoneg, "I", 7861 "autonegotiation (-1 = not supported)"); 7862 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7863 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7864 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7865 7866 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7867 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7869 &pi->link_cfg.pcaps, 0, "port capabilities"); 7870 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7871 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7872 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7873 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7874 7875 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7876 port_top_speed(pi), "max speed (in Gbps)"); 7877 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7878 pi->mps_bg_map, "MPS buffer group map"); 7879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7880 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7882 pi->rx_c_chan, "TP rx c-channel"); 7883 7884 if (sc->flags & IS_VF) 7885 return; 7886 7887 /* 7888 * dev.(cxgbe|cxl).X.tc. 7889 */ 7890 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7891 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7892 "Tx scheduler traffic classes (cl_rl)"); 7893 children2 = SYSCTL_CHILDREN(oid); 7894 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7895 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7896 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7897 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7898 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7899 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7900 for (i = 0; i < sc->params.nsched_cls; i++) { 7901 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7902 7903 snprintf(name, sizeof(name), "%d", i); 7904 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7905 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7906 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7907 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7908 CTLFLAG_RD, &tc->state, 0, "current state"); 7909 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7910 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7911 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7912 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7913 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7914 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7915 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7916 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7917 "traffic class parameters"); 7918 } 7919 7920 /* 7921 * dev.cxgbe.X.stats. 7922 */ 7923 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7924 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7925 children = SYSCTL_CHILDREN(oid); 7926 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7927 &pi->tx_parse_error, 0, 7928 "# of tx packets with invalid length or # of segments"); 7929 7930 #define T4_REGSTAT(name, stat, desc) \ 7931 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7932 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7933 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7934 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7935 sysctl_handle_t4_reg64, "QU", desc) 7936 7937 /* We get these from port_stats and they may be stale by up to 1s */ 7938 #define T4_PORTSTAT(name, desc) \ 7939 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7940 &pi->stats.name, desc) 7941 7942 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7943 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7944 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7945 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7946 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7947 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7948 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7949 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7950 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7951 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7952 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7953 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7954 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7955 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7956 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7957 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7958 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7959 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7960 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7961 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7962 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7963 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7964 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7965 7966 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7967 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7968 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7969 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7970 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7971 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7972 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7973 if (is_t6(sc)) { 7974 T4_PORTSTAT(rx_fcs_err, 7975 "# of frames received with bad FCS since last link up"); 7976 } else { 7977 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7978 "# of frames received with bad FCS"); 7979 } 7980 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7981 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7982 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7983 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7984 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7985 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7986 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7987 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7988 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7989 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7990 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7991 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7992 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7993 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7994 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7995 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7996 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7997 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7998 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7999 8000 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8001 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8002 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8003 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8004 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8005 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8006 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8007 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8008 8009 #undef T4_REGSTAT 8010 #undef T4_PORTSTAT 8011 } 8012 8013 static int 8014 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8015 { 8016 int rc, *i, space = 0; 8017 struct sbuf sb; 8018 8019 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8020 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8021 if (space) 8022 sbuf_printf(&sb, " "); 8023 sbuf_printf(&sb, "%d", *i); 8024 space = 1; 8025 } 8026 rc = sbuf_finish(&sb); 8027 sbuf_delete(&sb); 8028 return (rc); 8029 } 8030 8031 static int 8032 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8033 { 8034 int rc; 8035 struct sbuf *sb; 8036 8037 rc = sysctl_wire_old_buffer(req, 0); 8038 if (rc != 0) 8039 return(rc); 8040 8041 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8042 if (sb == NULL) 8043 return (ENOMEM); 8044 8045 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8046 rc = sbuf_finish(sb); 8047 sbuf_delete(sb); 8048 8049 return (rc); 8050 } 8051 8052 static int 8053 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8054 { 8055 int rc; 8056 struct sbuf *sb; 8057 8058 rc = sysctl_wire_old_buffer(req, 0); 8059 if (rc != 0) 8060 return(rc); 8061 8062 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8063 if (sb == NULL) 8064 return (ENOMEM); 8065 8066 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8067 rc = sbuf_finish(sb); 8068 sbuf_delete(sb); 8069 8070 return (rc); 8071 } 8072 8073 static int 8074 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8075 { 8076 struct port_info *pi = arg1; 8077 int op = arg2; 8078 struct adapter *sc = pi->adapter; 8079 u_int v; 8080 int rc; 8081 8082 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8083 if (rc) 8084 return (rc); 8085 if (hw_off_limits(sc)) 8086 rc = ENXIO; 8087 else { 8088 /* XXX: magic numbers */ 8089 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8090 op ? 0x20 : 0xc820, &v); 8091 } 8092 end_synchronized_op(sc, 0); 8093 if (rc) 8094 return (rc); 8095 if (op == 0) 8096 v /= 256; 8097 8098 rc = sysctl_handle_int(oidp, &v, 0, req); 8099 return (rc); 8100 } 8101 8102 static int 8103 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8104 { 8105 struct vi_info *vi = arg1; 8106 int rc, val; 8107 8108 val = vi->rsrv_noflowq; 8109 rc = sysctl_handle_int(oidp, &val, 0, req); 8110 if (rc != 0 || req->newptr == NULL) 8111 return (rc); 8112 8113 if ((val >= 1) && (vi->ntxq > 1)) 8114 vi->rsrv_noflowq = 1; 8115 else 8116 vi->rsrv_noflowq = 0; 8117 8118 return (rc); 8119 } 8120 8121 static int 8122 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8123 { 8124 struct vi_info *vi = arg1; 8125 struct adapter *sc = vi->adapter; 8126 int rc, val, i; 8127 8128 MPASS(!(sc->flags & IS_VF)); 8129 8130 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8131 rc = sysctl_handle_int(oidp, &val, 0, req); 8132 if (rc != 0 || req->newptr == NULL) 8133 return (rc); 8134 8135 if (val != 0 && val != 1) 8136 return (EINVAL); 8137 8138 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8139 "t4txvm"); 8140 if (rc) 8141 return (rc); 8142 if (hw_off_limits(sc)) 8143 rc = ENXIO; 8144 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8145 /* 8146 * We don't want parse_pkt to run with one setting (VF or PF) 8147 * and then eth_tx to see a different setting but still use 8148 * stale information calculated by parse_pkt. 8149 */ 8150 rc = EBUSY; 8151 } else { 8152 struct port_info *pi = vi->pi; 8153 struct sge_txq *txq; 8154 uint32_t ctrl0; 8155 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8156 8157 if (val) { 8158 vi->flags |= TX_USES_VM_WR; 8159 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8160 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8161 V_TXPKT_INTF(pi->tx_chan)); 8162 if (!(sc->flags & IS_VF)) 8163 npkt--; 8164 } else { 8165 vi->flags &= ~TX_USES_VM_WR; 8166 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8167 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8168 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8169 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8170 } 8171 for_each_txq(vi, i, txq) { 8172 txq->cpl_ctrl0 = ctrl0; 8173 txq->txp.max_npkt = npkt; 8174 } 8175 } 8176 end_synchronized_op(sc, LOCK_HELD); 8177 return (rc); 8178 } 8179 8180 static int 8181 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8182 { 8183 struct vi_info *vi = arg1; 8184 struct adapter *sc = vi->adapter; 8185 int idx, rc, i; 8186 struct sge_rxq *rxq; 8187 uint8_t v; 8188 8189 idx = vi->tmr_idx; 8190 8191 rc = sysctl_handle_int(oidp, &idx, 0, req); 8192 if (rc != 0 || req->newptr == NULL) 8193 return (rc); 8194 8195 if (idx < 0 || idx >= SGE_NTIMERS) 8196 return (EINVAL); 8197 8198 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8199 "t4tmr"); 8200 if (rc) 8201 return (rc); 8202 8203 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8204 for_each_rxq(vi, i, rxq) { 8205 #ifdef atomic_store_rel_8 8206 atomic_store_rel_8(&rxq->iq.intr_params, v); 8207 #else 8208 rxq->iq.intr_params = v; 8209 #endif 8210 } 8211 vi->tmr_idx = idx; 8212 8213 end_synchronized_op(sc, LOCK_HELD); 8214 return (0); 8215 } 8216 8217 static int 8218 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8219 { 8220 struct vi_info *vi = arg1; 8221 struct adapter *sc = vi->adapter; 8222 int idx, rc; 8223 8224 idx = vi->pktc_idx; 8225 8226 rc = sysctl_handle_int(oidp, &idx, 0, req); 8227 if (rc != 0 || req->newptr == NULL) 8228 return (rc); 8229 8230 if (idx < -1 || idx >= SGE_NCOUNTERS) 8231 return (EINVAL); 8232 8233 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8234 "t4pktc"); 8235 if (rc) 8236 return (rc); 8237 8238 if (vi->flags & VI_INIT_DONE) 8239 rc = EBUSY; /* cannot be changed once the queues are created */ 8240 else 8241 vi->pktc_idx = idx; 8242 8243 end_synchronized_op(sc, LOCK_HELD); 8244 return (rc); 8245 } 8246 8247 static int 8248 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8249 { 8250 struct vi_info *vi = arg1; 8251 struct adapter *sc = vi->adapter; 8252 int qsize, rc; 8253 8254 qsize = vi->qsize_rxq; 8255 8256 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8257 if (rc != 0 || req->newptr == NULL) 8258 return (rc); 8259 8260 if (qsize < 128 || (qsize & 7)) 8261 return (EINVAL); 8262 8263 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8264 "t4rxqs"); 8265 if (rc) 8266 return (rc); 8267 8268 if (vi->flags & VI_INIT_DONE) 8269 rc = EBUSY; /* cannot be changed once the queues are created */ 8270 else 8271 vi->qsize_rxq = qsize; 8272 8273 end_synchronized_op(sc, LOCK_HELD); 8274 return (rc); 8275 } 8276 8277 static int 8278 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8279 { 8280 struct vi_info *vi = arg1; 8281 struct adapter *sc = vi->adapter; 8282 int qsize, rc; 8283 8284 qsize = vi->qsize_txq; 8285 8286 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8287 if (rc != 0 || req->newptr == NULL) 8288 return (rc); 8289 8290 if (qsize < 128 || qsize > 65536) 8291 return (EINVAL); 8292 8293 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8294 "t4txqs"); 8295 if (rc) 8296 return (rc); 8297 8298 if (vi->flags & VI_INIT_DONE) 8299 rc = EBUSY; /* cannot be changed once the queues are created */ 8300 else 8301 vi->qsize_txq = qsize; 8302 8303 end_synchronized_op(sc, LOCK_HELD); 8304 return (rc); 8305 } 8306 8307 static int 8308 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8309 { 8310 struct port_info *pi = arg1; 8311 struct adapter *sc = pi->adapter; 8312 struct link_config *lc = &pi->link_cfg; 8313 int rc; 8314 8315 if (req->newptr == NULL) { 8316 struct sbuf *sb; 8317 static char *bits = "\20\1RX\2TX\3AUTO"; 8318 8319 rc = sysctl_wire_old_buffer(req, 0); 8320 if (rc != 0) 8321 return(rc); 8322 8323 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8324 if (sb == NULL) 8325 return (ENOMEM); 8326 8327 if (lc->link_ok) { 8328 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8329 (lc->requested_fc & PAUSE_AUTONEG), bits); 8330 } else { 8331 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8332 PAUSE_RX | PAUSE_AUTONEG), bits); 8333 } 8334 rc = sbuf_finish(sb); 8335 sbuf_delete(sb); 8336 } else { 8337 char s[2]; 8338 int n; 8339 8340 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8341 PAUSE_AUTONEG)); 8342 s[1] = 0; 8343 8344 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8345 if (rc != 0) 8346 return(rc); 8347 8348 if (s[1] != 0) 8349 return (EINVAL); 8350 if (s[0] < '0' || s[0] > '9') 8351 return (EINVAL); /* not a number */ 8352 n = s[0] - '0'; 8353 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8354 return (EINVAL); /* some other bit is set too */ 8355 8356 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8357 "t4PAUSE"); 8358 if (rc) 8359 return (rc); 8360 if (!hw_off_limits(sc)) { 8361 PORT_LOCK(pi); 8362 lc->requested_fc = n; 8363 fixup_link_config(pi); 8364 if (pi->up_vis > 0) 8365 rc = apply_link_config(pi); 8366 set_current_media(pi); 8367 PORT_UNLOCK(pi); 8368 } 8369 end_synchronized_op(sc, 0); 8370 } 8371 8372 return (rc); 8373 } 8374 8375 static int 8376 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8377 { 8378 struct port_info *pi = arg1; 8379 struct link_config *lc = &pi->link_cfg; 8380 int rc; 8381 struct sbuf *sb; 8382 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8383 8384 rc = sysctl_wire_old_buffer(req, 0); 8385 if (rc != 0) 8386 return(rc); 8387 8388 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8389 if (sb == NULL) 8390 return (ENOMEM); 8391 if (lc->link_ok) 8392 sbuf_printf(sb, "%b", lc->fec, bits); 8393 else 8394 sbuf_printf(sb, "no link"); 8395 rc = sbuf_finish(sb); 8396 sbuf_delete(sb); 8397 8398 return (rc); 8399 } 8400 8401 static int 8402 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8403 { 8404 struct port_info *pi = arg1; 8405 struct adapter *sc = pi->adapter; 8406 struct link_config *lc = &pi->link_cfg; 8407 int rc; 8408 int8_t old; 8409 8410 if (req->newptr == NULL) { 8411 struct sbuf *sb; 8412 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8413 "\5RSVD3\6auto\7module"; 8414 8415 rc = sysctl_wire_old_buffer(req, 0); 8416 if (rc != 0) 8417 return(rc); 8418 8419 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8420 if (sb == NULL) 8421 return (ENOMEM); 8422 8423 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8424 rc = sbuf_finish(sb); 8425 sbuf_delete(sb); 8426 } else { 8427 char s[8]; 8428 int n; 8429 8430 snprintf(s, sizeof(s), "%d", 8431 lc->requested_fec == FEC_AUTO ? -1 : 8432 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8433 8434 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8435 if (rc != 0) 8436 return(rc); 8437 8438 n = strtol(&s[0], NULL, 0); 8439 if (n < 0 || n & FEC_AUTO) 8440 n = FEC_AUTO; 8441 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8442 return (EINVAL);/* some other bit is set too */ 8443 8444 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8445 "t4reqf"); 8446 if (rc) 8447 return (rc); 8448 PORT_LOCK(pi); 8449 old = lc->requested_fec; 8450 if (n == FEC_AUTO) 8451 lc->requested_fec = FEC_AUTO; 8452 else if (n == 0 || n == FEC_NONE) 8453 lc->requested_fec = FEC_NONE; 8454 else { 8455 if ((lc->pcaps | 8456 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8457 lc->pcaps) { 8458 rc = ENOTSUP; 8459 goto done; 8460 } 8461 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8462 FEC_MODULE); 8463 } 8464 if (!hw_off_limits(sc)) { 8465 fixup_link_config(pi); 8466 if (pi->up_vis > 0) { 8467 rc = apply_link_config(pi); 8468 if (rc != 0) { 8469 lc->requested_fec = old; 8470 if (rc == FW_EPROTO) 8471 rc = ENOTSUP; 8472 } 8473 } 8474 } 8475 done: 8476 PORT_UNLOCK(pi); 8477 end_synchronized_op(sc, 0); 8478 } 8479 8480 return (rc); 8481 } 8482 8483 static int 8484 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8485 { 8486 struct port_info *pi = arg1; 8487 struct adapter *sc = pi->adapter; 8488 struct link_config *lc = &pi->link_cfg; 8489 int rc; 8490 int8_t fec; 8491 struct sbuf *sb; 8492 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8493 8494 rc = sysctl_wire_old_buffer(req, 0); 8495 if (rc != 0) 8496 return (rc); 8497 8498 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8499 if (sb == NULL) 8500 return (ENOMEM); 8501 8502 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8503 rc = EBUSY; 8504 goto done; 8505 } 8506 if (hw_off_limits(sc)) { 8507 rc = ENXIO; 8508 goto done; 8509 } 8510 PORT_LOCK(pi); 8511 if (pi->up_vis == 0) { 8512 /* 8513 * If all the interfaces are administratively down the firmware 8514 * does not report transceiver changes. Refresh port info here. 8515 * This is the only reason we have a synchronized op in this 8516 * function. Just PORT_LOCK would have been enough otherwise. 8517 */ 8518 t4_update_port_info(pi); 8519 } 8520 8521 fec = lc->fec_hint; 8522 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8523 !fec_supported(lc->pcaps)) { 8524 sbuf_printf(sb, "n/a"); 8525 } else { 8526 if (fec == 0) 8527 fec = FEC_NONE; 8528 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8529 } 8530 rc = sbuf_finish(sb); 8531 PORT_UNLOCK(pi); 8532 done: 8533 sbuf_delete(sb); 8534 end_synchronized_op(sc, 0); 8535 8536 return (rc); 8537 } 8538 8539 static int 8540 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8541 { 8542 struct port_info *pi = arg1; 8543 struct adapter *sc = pi->adapter; 8544 struct link_config *lc = &pi->link_cfg; 8545 int rc, val; 8546 8547 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8548 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8549 else 8550 val = -1; 8551 rc = sysctl_handle_int(oidp, &val, 0, req); 8552 if (rc != 0 || req->newptr == NULL) 8553 return (rc); 8554 if (val == 0) 8555 val = AUTONEG_DISABLE; 8556 else if (val == 1) 8557 val = AUTONEG_ENABLE; 8558 else 8559 val = AUTONEG_AUTO; 8560 8561 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8562 "t4aneg"); 8563 if (rc) 8564 return (rc); 8565 PORT_LOCK(pi); 8566 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8567 rc = ENOTSUP; 8568 goto done; 8569 } 8570 lc->requested_aneg = val; 8571 if (!hw_off_limits(sc)) { 8572 fixup_link_config(pi); 8573 if (pi->up_vis > 0) 8574 rc = apply_link_config(pi); 8575 set_current_media(pi); 8576 } 8577 done: 8578 PORT_UNLOCK(pi); 8579 end_synchronized_op(sc, 0); 8580 return (rc); 8581 } 8582 8583 static int 8584 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8585 { 8586 struct port_info *pi = arg1; 8587 struct adapter *sc = pi->adapter; 8588 struct link_config *lc = &pi->link_cfg; 8589 int rc, val; 8590 8591 val = lc->force_fec; 8592 MPASS(val >= -1 && val <= 1); 8593 rc = sysctl_handle_int(oidp, &val, 0, req); 8594 if (rc != 0 || req->newptr == NULL) 8595 return (rc); 8596 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8597 return (ENOTSUP); 8598 if (val < -1 || val > 1) 8599 return (EINVAL); 8600 8601 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8602 if (rc) 8603 return (rc); 8604 PORT_LOCK(pi); 8605 lc->force_fec = val; 8606 if (!hw_off_limits(sc)) { 8607 fixup_link_config(pi); 8608 if (pi->up_vis > 0) 8609 rc = apply_link_config(pi); 8610 } 8611 PORT_UNLOCK(pi); 8612 end_synchronized_op(sc, 0); 8613 return (rc); 8614 } 8615 8616 static int 8617 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8618 { 8619 struct adapter *sc = arg1; 8620 int rc, reg = arg2; 8621 uint64_t val; 8622 8623 mtx_lock(&sc->reg_lock); 8624 if (hw_off_limits(sc)) 8625 rc = ENXIO; 8626 else { 8627 rc = 0; 8628 val = t4_read_reg64(sc, reg); 8629 } 8630 mtx_unlock(&sc->reg_lock); 8631 if (rc == 0) 8632 rc = sysctl_handle_64(oidp, &val, 0, req); 8633 return (rc); 8634 } 8635 8636 static int 8637 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8638 { 8639 struct adapter *sc = arg1; 8640 int rc, t; 8641 uint32_t param, val; 8642 8643 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8644 if (rc) 8645 return (rc); 8646 if (hw_off_limits(sc)) 8647 rc = ENXIO; 8648 else { 8649 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8650 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8651 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8652 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8653 } 8654 end_synchronized_op(sc, 0); 8655 if (rc) 8656 return (rc); 8657 8658 /* unknown is returned as 0 but we display -1 in that case */ 8659 t = val == 0 ? -1 : val; 8660 8661 rc = sysctl_handle_int(oidp, &t, 0, req); 8662 return (rc); 8663 } 8664 8665 static int 8666 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8667 { 8668 struct adapter *sc = arg1; 8669 int rc; 8670 uint32_t param, val; 8671 8672 if (sc->params.core_vdd == 0) { 8673 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8674 "t4vdd"); 8675 if (rc) 8676 return (rc); 8677 if (hw_off_limits(sc)) 8678 rc = ENXIO; 8679 else { 8680 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8681 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8682 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8683 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8684 ¶m, &val); 8685 } 8686 end_synchronized_op(sc, 0); 8687 if (rc) 8688 return (rc); 8689 sc->params.core_vdd = val; 8690 } 8691 8692 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8693 } 8694 8695 static int 8696 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8697 { 8698 struct adapter *sc = arg1; 8699 int rc, v; 8700 uint32_t param, val; 8701 8702 v = sc->sensor_resets; 8703 rc = sysctl_handle_int(oidp, &v, 0, req); 8704 if (rc != 0 || req->newptr == NULL || v <= 0) 8705 return (rc); 8706 8707 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8708 chip_id(sc) < CHELSIO_T5) 8709 return (ENOTSUP); 8710 8711 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8712 if (rc) 8713 return (rc); 8714 if (hw_off_limits(sc)) 8715 rc = ENXIO; 8716 else { 8717 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8718 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8719 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8720 val = 1; 8721 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8722 } 8723 end_synchronized_op(sc, 0); 8724 if (rc == 0) 8725 sc->sensor_resets++; 8726 return (rc); 8727 } 8728 8729 static int 8730 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8731 { 8732 struct adapter *sc = arg1; 8733 struct sbuf *sb; 8734 int rc; 8735 uint32_t param, val; 8736 8737 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8738 if (rc) 8739 return (rc); 8740 if (hw_off_limits(sc)) 8741 rc = ENXIO; 8742 else { 8743 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8744 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8745 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8746 } 8747 end_synchronized_op(sc, 0); 8748 if (rc) 8749 return (rc); 8750 8751 rc = sysctl_wire_old_buffer(req, 0); 8752 if (rc != 0) 8753 return (rc); 8754 8755 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8756 if (sb == NULL) 8757 return (ENOMEM); 8758 8759 if (val == 0xffffffff) { 8760 /* Only debug and custom firmwares report load averages. */ 8761 sbuf_printf(sb, "not available"); 8762 } else { 8763 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8764 (val >> 16) & 0xff); 8765 } 8766 rc = sbuf_finish(sb); 8767 sbuf_delete(sb); 8768 8769 return (rc); 8770 } 8771 8772 static int 8773 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8774 { 8775 struct adapter *sc = arg1; 8776 struct sbuf *sb; 8777 int rc, i; 8778 uint16_t incr[NMTUS][NCCTRL_WIN]; 8779 static const char *dec_fac[] = { 8780 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8781 "0.9375" 8782 }; 8783 8784 rc = sysctl_wire_old_buffer(req, 0); 8785 if (rc != 0) 8786 return (rc); 8787 8788 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8789 if (sb == NULL) 8790 return (ENOMEM); 8791 8792 mtx_lock(&sc->reg_lock); 8793 if (hw_off_limits(sc)) 8794 rc = ENXIO; 8795 else 8796 t4_read_cong_tbl(sc, incr); 8797 mtx_unlock(&sc->reg_lock); 8798 if (rc) 8799 goto done; 8800 8801 for (i = 0; i < NCCTRL_WIN; ++i) { 8802 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8803 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8804 incr[5][i], incr[6][i], incr[7][i]); 8805 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8806 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8807 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8808 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8809 } 8810 8811 rc = sbuf_finish(sb); 8812 done: 8813 sbuf_delete(sb); 8814 return (rc); 8815 } 8816 8817 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8818 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8819 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8820 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8821 }; 8822 8823 static int 8824 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8825 { 8826 struct adapter *sc = arg1; 8827 struct sbuf *sb; 8828 int rc, i, n, qid = arg2; 8829 uint32_t *buf, *p; 8830 char *qtype; 8831 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8832 8833 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8834 ("%s: bad qid %d\n", __func__, qid)); 8835 8836 if (qid < CIM_NUM_IBQ) { 8837 /* inbound queue */ 8838 qtype = "IBQ"; 8839 n = 4 * CIM_IBQ_SIZE; 8840 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8841 mtx_lock(&sc->reg_lock); 8842 if (hw_off_limits(sc)) 8843 rc = -ENXIO; 8844 else 8845 rc = t4_read_cim_ibq(sc, qid, buf, n); 8846 mtx_unlock(&sc->reg_lock); 8847 } else { 8848 /* outbound queue */ 8849 qtype = "OBQ"; 8850 qid -= CIM_NUM_IBQ; 8851 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8852 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8853 mtx_lock(&sc->reg_lock); 8854 if (hw_off_limits(sc)) 8855 rc = -ENXIO; 8856 else 8857 rc = t4_read_cim_obq(sc, qid, buf, n); 8858 mtx_unlock(&sc->reg_lock); 8859 } 8860 8861 if (rc < 0) { 8862 rc = -rc; 8863 goto done; 8864 } 8865 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8866 8867 rc = sysctl_wire_old_buffer(req, 0); 8868 if (rc != 0) 8869 goto done; 8870 8871 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8872 if (sb == NULL) { 8873 rc = ENOMEM; 8874 goto done; 8875 } 8876 8877 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8878 for (i = 0, p = buf; i < n; i += 16, p += 4) 8879 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8880 p[2], p[3]); 8881 8882 rc = sbuf_finish(sb); 8883 sbuf_delete(sb); 8884 done: 8885 free(buf, M_CXGBE); 8886 return (rc); 8887 } 8888 8889 static void 8890 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8891 { 8892 uint32_t *p; 8893 8894 sbuf_printf(sb, "Status Data PC%s", 8895 cfg & F_UPDBGLACAPTPCONLY ? "" : 8896 " LS0Stat LS0Addr LS0Data"); 8897 8898 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8899 if (cfg & F_UPDBGLACAPTPCONLY) { 8900 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8901 p[6], p[7]); 8902 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8903 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8904 p[4] & 0xff, p[5] >> 8); 8905 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8906 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8907 p[1] & 0xf, p[2] >> 4); 8908 } else { 8909 sbuf_printf(sb, 8910 "\n %02x %x%07x %x%07x %08x %08x " 8911 "%08x%08x%08x%08x", 8912 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8913 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8914 p[6], p[7]); 8915 } 8916 } 8917 } 8918 8919 static void 8920 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8921 { 8922 uint32_t *p; 8923 8924 sbuf_printf(sb, "Status Inst Data PC%s", 8925 cfg & F_UPDBGLACAPTPCONLY ? "" : 8926 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8927 8928 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8929 if (cfg & F_UPDBGLACAPTPCONLY) { 8930 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8931 p[3] & 0xff, p[2], p[1], p[0]); 8932 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8933 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8934 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8935 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8936 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8937 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8938 p[6] >> 16); 8939 } else { 8940 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8941 "%08x %08x %08x %08x %08x %08x", 8942 (p[9] >> 16) & 0xff, 8943 p[9] & 0xffff, p[8] >> 16, 8944 p[8] & 0xffff, p[7] >> 16, 8945 p[7] & 0xffff, p[6] >> 16, 8946 p[2], p[1], p[0], p[5], p[4], p[3]); 8947 } 8948 } 8949 } 8950 8951 static int 8952 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8953 { 8954 uint32_t cfg, *buf; 8955 int rc; 8956 8957 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8958 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8959 M_ZERO | flags); 8960 if (buf == NULL) 8961 return (ENOMEM); 8962 8963 mtx_lock(&sc->reg_lock); 8964 if (hw_off_limits(sc)) 8965 rc = ENXIO; 8966 else { 8967 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8968 if (rc == 0) 8969 rc = -t4_cim_read_la(sc, buf, NULL); 8970 } 8971 mtx_unlock(&sc->reg_lock); 8972 if (rc == 0) { 8973 if (chip_id(sc) < CHELSIO_T6) 8974 sbuf_cim_la4(sc, sb, buf, cfg); 8975 else 8976 sbuf_cim_la6(sc, sb, buf, cfg); 8977 } 8978 free(buf, M_CXGBE); 8979 return (rc); 8980 } 8981 8982 static int 8983 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8984 { 8985 struct adapter *sc = arg1; 8986 struct sbuf *sb; 8987 int rc; 8988 8989 rc = sysctl_wire_old_buffer(req, 0); 8990 if (rc != 0) 8991 return (rc); 8992 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8993 if (sb == NULL) 8994 return (ENOMEM); 8995 8996 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8997 if (rc == 0) 8998 rc = sbuf_finish(sb); 8999 sbuf_delete(sb); 9000 return (rc); 9001 } 9002 9003 static void 9004 dump_cim_regs(struct adapter *sc) 9005 { 9006 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9007 device_get_nameunit(sc->dev), 9008 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9009 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9010 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9011 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9012 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9013 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9014 device_get_nameunit(sc->dev), 9015 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9016 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9017 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9018 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9019 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9020 } 9021 9022 static void 9023 dump_cimla(struct adapter *sc) 9024 { 9025 struct sbuf sb; 9026 int rc; 9027 9028 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9029 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9030 device_get_nameunit(sc->dev)); 9031 return; 9032 } 9033 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9034 if (rc == 0) { 9035 rc = sbuf_finish(&sb); 9036 if (rc == 0) { 9037 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9038 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9039 } 9040 } 9041 sbuf_delete(&sb); 9042 } 9043 9044 void 9045 t4_os_cim_err(struct adapter *sc) 9046 { 9047 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9048 } 9049 9050 static int 9051 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9052 { 9053 struct adapter *sc = arg1; 9054 u_int i; 9055 struct sbuf *sb; 9056 uint32_t *buf, *p; 9057 int rc; 9058 9059 rc = sysctl_wire_old_buffer(req, 0); 9060 if (rc != 0) 9061 return (rc); 9062 9063 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9064 if (sb == NULL) 9065 return (ENOMEM); 9066 9067 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9068 M_ZERO | M_WAITOK); 9069 9070 mtx_lock(&sc->reg_lock); 9071 if (hw_off_limits(sc)) 9072 rc = ENXIO; 9073 else 9074 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9075 mtx_unlock(&sc->reg_lock); 9076 if (rc) 9077 goto done; 9078 9079 p = buf; 9080 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9081 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9082 p[1], p[0]); 9083 } 9084 9085 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9086 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9087 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9088 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9089 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9090 (p[1] >> 2) | ((p[2] & 3) << 30), 9091 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9092 p[0] & 1); 9093 } 9094 rc = sbuf_finish(sb); 9095 done: 9096 sbuf_delete(sb); 9097 free(buf, M_CXGBE); 9098 return (rc); 9099 } 9100 9101 static int 9102 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9103 { 9104 struct adapter *sc = arg1; 9105 u_int i; 9106 struct sbuf *sb; 9107 uint32_t *buf, *p; 9108 int rc; 9109 9110 rc = sysctl_wire_old_buffer(req, 0); 9111 if (rc != 0) 9112 return (rc); 9113 9114 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9115 if (sb == NULL) 9116 return (ENOMEM); 9117 9118 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9119 M_ZERO | M_WAITOK); 9120 9121 mtx_lock(&sc->reg_lock); 9122 if (hw_off_limits(sc)) 9123 rc = ENXIO; 9124 else 9125 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9126 mtx_unlock(&sc->reg_lock); 9127 if (rc) 9128 goto done; 9129 9130 p = buf; 9131 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9132 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9133 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9134 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9135 p[4], p[3], p[2], p[1], p[0]); 9136 } 9137 9138 sbuf_printf(sb, "\n\nCntl ID Data"); 9139 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9140 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9141 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9142 } 9143 9144 rc = sbuf_finish(sb); 9145 done: 9146 sbuf_delete(sb); 9147 free(buf, M_CXGBE); 9148 return (rc); 9149 } 9150 9151 static int 9152 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9153 { 9154 struct adapter *sc = arg1; 9155 struct sbuf *sb; 9156 int rc, i; 9157 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9158 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9159 uint16_t thres[CIM_NUM_IBQ]; 9160 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9161 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9162 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9163 9164 cim_num_obq = sc->chip_params->cim_num_obq; 9165 if (is_t4(sc)) { 9166 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9167 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9168 } else { 9169 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9170 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9171 } 9172 nq = CIM_NUM_IBQ + cim_num_obq; 9173 9174 mtx_lock(&sc->reg_lock); 9175 if (hw_off_limits(sc)) 9176 rc = ENXIO; 9177 else { 9178 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9179 if (rc == 0) { 9180 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9181 obq_wr); 9182 if (rc == 0) 9183 t4_read_cimq_cfg(sc, base, size, thres); 9184 } 9185 } 9186 mtx_unlock(&sc->reg_lock); 9187 if (rc) 9188 return (rc); 9189 9190 rc = sysctl_wire_old_buffer(req, 0); 9191 if (rc != 0) 9192 return (rc); 9193 9194 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9195 if (sb == NULL) 9196 return (ENOMEM); 9197 9198 sbuf_printf(sb, 9199 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9200 9201 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9202 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9203 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9204 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9205 G_QUEREMFLITS(p[2]) * 16); 9206 for ( ; i < nq; i++, p += 4, wr += 2) 9207 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9208 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9209 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9210 G_QUEREMFLITS(p[2]) * 16); 9211 9212 rc = sbuf_finish(sb); 9213 sbuf_delete(sb); 9214 9215 return (rc); 9216 } 9217 9218 static int 9219 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9220 { 9221 struct adapter *sc = arg1; 9222 struct sbuf *sb; 9223 int rc; 9224 struct tp_cpl_stats stats; 9225 9226 rc = sysctl_wire_old_buffer(req, 0); 9227 if (rc != 0) 9228 return (rc); 9229 9230 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9231 if (sb == NULL) 9232 return (ENOMEM); 9233 9234 mtx_lock(&sc->reg_lock); 9235 if (hw_off_limits(sc)) 9236 rc = ENXIO; 9237 else 9238 t4_tp_get_cpl_stats(sc, &stats, 0); 9239 mtx_unlock(&sc->reg_lock); 9240 if (rc) 9241 goto done; 9242 9243 if (sc->chip_params->nchan > 2) { 9244 sbuf_printf(sb, " channel 0 channel 1" 9245 " channel 2 channel 3"); 9246 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9247 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9248 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9249 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9250 } else { 9251 sbuf_printf(sb, " channel 0 channel 1"); 9252 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9253 stats.req[0], stats.req[1]); 9254 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9255 stats.rsp[0], stats.rsp[1]); 9256 } 9257 9258 rc = sbuf_finish(sb); 9259 done: 9260 sbuf_delete(sb); 9261 return (rc); 9262 } 9263 9264 static int 9265 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9266 { 9267 struct adapter *sc = arg1; 9268 struct sbuf *sb; 9269 int rc; 9270 struct tp_usm_stats stats; 9271 9272 rc = sysctl_wire_old_buffer(req, 0); 9273 if (rc != 0) 9274 return(rc); 9275 9276 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9277 if (sb == NULL) 9278 return (ENOMEM); 9279 9280 mtx_lock(&sc->reg_lock); 9281 if (hw_off_limits(sc)) 9282 rc = ENXIO; 9283 else 9284 t4_get_usm_stats(sc, &stats, 1); 9285 mtx_unlock(&sc->reg_lock); 9286 if (rc == 0) { 9287 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9288 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9289 sbuf_printf(sb, "Drops: %u", stats.drops); 9290 rc = sbuf_finish(sb); 9291 } 9292 sbuf_delete(sb); 9293 9294 return (rc); 9295 } 9296 9297 static int 9298 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9299 { 9300 struct adapter *sc = arg1; 9301 struct sbuf *sb; 9302 int rc; 9303 struct tp_tid_stats stats; 9304 9305 rc = sysctl_wire_old_buffer(req, 0); 9306 if (rc != 0) 9307 return(rc); 9308 9309 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9310 if (sb == NULL) 9311 return (ENOMEM); 9312 9313 mtx_lock(&sc->reg_lock); 9314 if (hw_off_limits(sc)) 9315 rc = ENXIO; 9316 else 9317 t4_tp_get_tid_stats(sc, &stats, 1); 9318 mtx_unlock(&sc->reg_lock); 9319 if (rc == 0) { 9320 sbuf_printf(sb, "Delete: %u\n", stats.del); 9321 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9322 sbuf_printf(sb, "Active: %u\n", stats.act); 9323 sbuf_printf(sb, "Passive: %u", stats.pas); 9324 rc = sbuf_finish(sb); 9325 } 9326 sbuf_delete(sb); 9327 9328 return (rc); 9329 } 9330 9331 static const char * const devlog_level_strings[] = { 9332 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9333 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9334 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9335 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9336 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9337 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9338 }; 9339 9340 static const char * const devlog_facility_strings[] = { 9341 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9342 [FW_DEVLOG_FACILITY_CF] = "CF", 9343 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9344 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9345 [FW_DEVLOG_FACILITY_RES] = "RES", 9346 [FW_DEVLOG_FACILITY_HW] = "HW", 9347 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9348 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9349 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9350 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9351 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9352 [FW_DEVLOG_FACILITY_VI] = "VI", 9353 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9354 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9355 [FW_DEVLOG_FACILITY_TM] = "TM", 9356 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9357 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9358 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9359 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9360 [FW_DEVLOG_FACILITY_RI] = "RI", 9361 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9362 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9363 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9364 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9365 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9366 }; 9367 9368 static int 9369 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9370 { 9371 int i, j, rc, nentries, first = 0; 9372 struct devlog_params *dparams = &sc->params.devlog; 9373 struct fw_devlog_e *buf, *e; 9374 uint64_t ftstamp = UINT64_MAX; 9375 9376 if (dparams->addr == 0) 9377 return (ENXIO); 9378 9379 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9380 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9381 if (buf == NULL) 9382 return (ENOMEM); 9383 9384 mtx_lock(&sc->reg_lock); 9385 if (hw_off_limits(sc)) 9386 rc = ENXIO; 9387 else 9388 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9389 dparams->size); 9390 mtx_unlock(&sc->reg_lock); 9391 if (rc != 0) 9392 goto done; 9393 9394 nentries = dparams->size / sizeof(struct fw_devlog_e); 9395 for (i = 0; i < nentries; i++) { 9396 e = &buf[i]; 9397 9398 if (e->timestamp == 0) 9399 break; /* end */ 9400 9401 e->timestamp = be64toh(e->timestamp); 9402 e->seqno = be32toh(e->seqno); 9403 for (j = 0; j < 8; j++) 9404 e->params[j] = be32toh(e->params[j]); 9405 9406 if (e->timestamp < ftstamp) { 9407 ftstamp = e->timestamp; 9408 first = i; 9409 } 9410 } 9411 9412 if (buf[first].timestamp == 0) 9413 goto done; /* nothing in the log */ 9414 9415 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9416 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9417 9418 i = first; 9419 do { 9420 e = &buf[i]; 9421 if (e->timestamp == 0) 9422 break; /* end */ 9423 9424 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9425 e->seqno, e->timestamp, 9426 (e->level < nitems(devlog_level_strings) ? 9427 devlog_level_strings[e->level] : "UNKNOWN"), 9428 (e->facility < nitems(devlog_facility_strings) ? 9429 devlog_facility_strings[e->facility] : "UNKNOWN")); 9430 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9431 e->params[2], e->params[3], e->params[4], 9432 e->params[5], e->params[6], e->params[7]); 9433 9434 if (++i == nentries) 9435 i = 0; 9436 } while (i != first); 9437 done: 9438 free(buf, M_CXGBE); 9439 return (rc); 9440 } 9441 9442 static int 9443 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9444 { 9445 struct adapter *sc = arg1; 9446 int rc; 9447 struct sbuf *sb; 9448 9449 rc = sysctl_wire_old_buffer(req, 0); 9450 if (rc != 0) 9451 return (rc); 9452 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9453 if (sb == NULL) 9454 return (ENOMEM); 9455 9456 rc = sbuf_devlog(sc, sb, M_WAITOK); 9457 if (rc == 0) 9458 rc = sbuf_finish(sb); 9459 sbuf_delete(sb); 9460 return (rc); 9461 } 9462 9463 static void 9464 dump_devlog(struct adapter *sc) 9465 { 9466 int rc; 9467 struct sbuf sb; 9468 9469 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9470 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9471 device_get_nameunit(sc->dev)); 9472 return; 9473 } 9474 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9475 if (rc == 0) { 9476 rc = sbuf_finish(&sb); 9477 if (rc == 0) { 9478 log(LOG_DEBUG, "%s: device log follows.\n%s", 9479 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9480 } 9481 } 9482 sbuf_delete(&sb); 9483 } 9484 9485 static int 9486 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9487 { 9488 struct adapter *sc = arg1; 9489 struct sbuf *sb; 9490 int rc; 9491 struct tp_fcoe_stats stats[MAX_NCHAN]; 9492 int i, nchan = sc->chip_params->nchan; 9493 9494 rc = sysctl_wire_old_buffer(req, 0); 9495 if (rc != 0) 9496 return (rc); 9497 9498 mtx_lock(&sc->reg_lock); 9499 if (hw_off_limits(sc)) 9500 rc = ENXIO; 9501 else { 9502 for (i = 0; i < nchan; i++) 9503 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9504 } 9505 mtx_unlock(&sc->reg_lock); 9506 if (rc != 0) 9507 return (rc); 9508 9509 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9510 if (sb == NULL) 9511 return (ENOMEM); 9512 9513 if (nchan > 2) { 9514 sbuf_printf(sb, " channel 0 channel 1" 9515 " channel 2 channel 3"); 9516 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9517 stats[0].octets_ddp, stats[1].octets_ddp, 9518 stats[2].octets_ddp, stats[3].octets_ddp); 9519 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9520 stats[0].frames_ddp, stats[1].frames_ddp, 9521 stats[2].frames_ddp, stats[3].frames_ddp); 9522 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9523 stats[0].frames_drop, stats[1].frames_drop, 9524 stats[2].frames_drop, stats[3].frames_drop); 9525 } else { 9526 sbuf_printf(sb, " channel 0 channel 1"); 9527 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9528 stats[0].octets_ddp, stats[1].octets_ddp); 9529 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9530 stats[0].frames_ddp, stats[1].frames_ddp); 9531 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9532 stats[0].frames_drop, stats[1].frames_drop); 9533 } 9534 9535 rc = sbuf_finish(sb); 9536 sbuf_delete(sb); 9537 9538 return (rc); 9539 } 9540 9541 static int 9542 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9543 { 9544 struct adapter *sc = arg1; 9545 struct sbuf *sb; 9546 int rc, i; 9547 unsigned int map, kbps, ipg, mode; 9548 unsigned int pace_tab[NTX_SCHED]; 9549 9550 rc = sysctl_wire_old_buffer(req, 0); 9551 if (rc != 0) 9552 return (rc); 9553 9554 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9555 if (sb == NULL) 9556 return (ENOMEM); 9557 9558 mtx_lock(&sc->reg_lock); 9559 if (hw_off_limits(sc)) { 9560 rc = ENXIO; 9561 goto done; 9562 } 9563 9564 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9565 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9566 t4_read_pace_tbl(sc, pace_tab); 9567 9568 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9569 "Class IPG (0.1 ns) Flow IPG (us)"); 9570 9571 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9572 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9573 sbuf_printf(sb, "\n %u %-5s %u ", i, 9574 (mode & (1 << i)) ? "flow" : "class", map & 3); 9575 if (kbps) 9576 sbuf_printf(sb, "%9u ", kbps); 9577 else 9578 sbuf_printf(sb, " disabled "); 9579 9580 if (ipg) 9581 sbuf_printf(sb, "%13u ", ipg); 9582 else 9583 sbuf_printf(sb, " disabled "); 9584 9585 if (pace_tab[i]) 9586 sbuf_printf(sb, "%10u", pace_tab[i]); 9587 else 9588 sbuf_printf(sb, " disabled"); 9589 } 9590 rc = sbuf_finish(sb); 9591 done: 9592 mtx_unlock(&sc->reg_lock); 9593 sbuf_delete(sb); 9594 return (rc); 9595 } 9596 9597 static int 9598 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9599 { 9600 struct adapter *sc = arg1; 9601 struct sbuf *sb; 9602 int rc, i, j; 9603 uint64_t *p0, *p1; 9604 struct lb_port_stats s[2]; 9605 static const char *stat_name[] = { 9606 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9607 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9608 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9609 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9610 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9611 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9612 "BG2FramesTrunc:", "BG3FramesTrunc:" 9613 }; 9614 9615 rc = sysctl_wire_old_buffer(req, 0); 9616 if (rc != 0) 9617 return (rc); 9618 9619 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9620 if (sb == NULL) 9621 return (ENOMEM); 9622 9623 memset(s, 0, sizeof(s)); 9624 9625 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9626 mtx_lock(&sc->reg_lock); 9627 if (hw_off_limits(sc)) 9628 rc = ENXIO; 9629 else { 9630 t4_get_lb_stats(sc, i, &s[0]); 9631 t4_get_lb_stats(sc, i + 1, &s[1]); 9632 } 9633 mtx_unlock(&sc->reg_lock); 9634 if (rc != 0) 9635 break; 9636 9637 p0 = &s[0].octets; 9638 p1 = &s[1].octets; 9639 sbuf_printf(sb, "%s Loopback %u" 9640 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9641 9642 for (j = 0; j < nitems(stat_name); j++) 9643 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9644 *p0++, *p1++); 9645 } 9646 9647 rc = sbuf_finish(sb); 9648 sbuf_delete(sb); 9649 9650 return (rc); 9651 } 9652 9653 static int 9654 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9655 { 9656 int rc = 0; 9657 struct port_info *pi = arg1; 9658 struct link_config *lc = &pi->link_cfg; 9659 struct sbuf *sb; 9660 9661 rc = sysctl_wire_old_buffer(req, 0); 9662 if (rc != 0) 9663 return(rc); 9664 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9665 if (sb == NULL) 9666 return (ENOMEM); 9667 9668 if (lc->link_ok || lc->link_down_rc == 255) 9669 sbuf_printf(sb, "n/a"); 9670 else 9671 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9672 9673 rc = sbuf_finish(sb); 9674 sbuf_delete(sb); 9675 9676 return (rc); 9677 } 9678 9679 struct mem_desc { 9680 u_int base; 9681 u_int limit; 9682 u_int idx; 9683 }; 9684 9685 static int 9686 mem_desc_cmp(const void *a, const void *b) 9687 { 9688 const u_int v1 = ((const struct mem_desc *)a)->base; 9689 const u_int v2 = ((const struct mem_desc *)b)->base; 9690 9691 if (v1 < v2) 9692 return (-1); 9693 else if (v1 > v2) 9694 return (1); 9695 9696 return (0); 9697 } 9698 9699 static void 9700 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9701 unsigned int to) 9702 { 9703 unsigned int size; 9704 9705 if (from == to) 9706 return; 9707 9708 size = to - from + 1; 9709 if (size == 0) 9710 return; 9711 9712 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9713 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9714 } 9715 9716 static int 9717 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9718 { 9719 struct adapter *sc = arg1; 9720 struct sbuf *sb; 9721 int rc, i, n; 9722 uint32_t lo, hi, used, free, alloc; 9723 static const char *memory[] = { 9724 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9725 }; 9726 static const char *region[] = { 9727 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9728 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9729 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9730 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9731 "RQUDP region:", "PBL region:", "TXPBL region:", 9732 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9733 "ULPTX state:", "On-chip queues:", 9734 }; 9735 struct mem_desc avail[4]; 9736 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9737 struct mem_desc *md = mem; 9738 9739 rc = sysctl_wire_old_buffer(req, 0); 9740 if (rc != 0) 9741 return (rc); 9742 9743 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9744 if (sb == NULL) 9745 return (ENOMEM); 9746 9747 for (i = 0; i < nitems(mem); i++) { 9748 mem[i].limit = 0; 9749 mem[i].idx = i; 9750 } 9751 9752 mtx_lock(&sc->reg_lock); 9753 if (hw_off_limits(sc)) { 9754 rc = ENXIO; 9755 goto done; 9756 } 9757 9758 /* Find and sort the populated memory ranges */ 9759 i = 0; 9760 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9761 if (lo & F_EDRAM0_ENABLE) { 9762 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9763 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9764 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9765 avail[i].idx = 0; 9766 i++; 9767 } 9768 if (lo & F_EDRAM1_ENABLE) { 9769 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9770 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9771 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9772 avail[i].idx = 1; 9773 i++; 9774 } 9775 if (lo & F_EXT_MEM_ENABLE) { 9776 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9777 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9778 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9779 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9780 i++; 9781 } 9782 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9783 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9784 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9785 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9786 avail[i].idx = 4; 9787 i++; 9788 } 9789 if (is_t6(sc) && lo & F_HMA_MUX) { 9790 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9791 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9792 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9793 avail[i].idx = 5; 9794 i++; 9795 } 9796 MPASS(i <= nitems(avail)); 9797 if (!i) /* no memory available */ 9798 goto done; 9799 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9800 9801 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9802 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9803 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9804 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9805 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9806 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9807 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9808 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9809 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9810 9811 /* the next few have explicit upper bounds */ 9812 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9813 md->limit = md->base - 1 + 9814 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9815 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9816 md++; 9817 9818 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9819 md->limit = md->base - 1 + 9820 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9821 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9822 md++; 9823 9824 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9825 if (chip_id(sc) <= CHELSIO_T5) 9826 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9827 else 9828 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9829 md->limit = 0; 9830 } else { 9831 md->base = 0; 9832 md->idx = nitems(region); /* hide it */ 9833 } 9834 md++; 9835 9836 #define ulp_region(reg) \ 9837 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9838 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9839 9840 ulp_region(RX_ISCSI); 9841 ulp_region(RX_TDDP); 9842 ulp_region(TX_TPT); 9843 ulp_region(RX_STAG); 9844 ulp_region(RX_RQ); 9845 ulp_region(RX_RQUDP); 9846 ulp_region(RX_PBL); 9847 ulp_region(TX_PBL); 9848 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9849 ulp_region(RX_TLS_KEY); 9850 } 9851 #undef ulp_region 9852 9853 md->base = 0; 9854 if (is_t4(sc)) 9855 md->idx = nitems(region); 9856 else { 9857 uint32_t size = 0; 9858 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9859 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9860 9861 if (is_t5(sc)) { 9862 if (sge_ctrl & F_VFIFO_ENABLE) 9863 size = fifo_size << 2; 9864 } else 9865 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9866 9867 if (size) { 9868 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9869 md->limit = md->base + size - 1; 9870 } else 9871 md->idx = nitems(region); 9872 } 9873 md++; 9874 9875 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9876 md->limit = 0; 9877 md++; 9878 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9879 md->limit = 0; 9880 md++; 9881 9882 md->base = sc->vres.ocq.start; 9883 if (sc->vres.ocq.size) 9884 md->limit = md->base + sc->vres.ocq.size - 1; 9885 else 9886 md->idx = nitems(region); /* hide it */ 9887 md++; 9888 9889 /* add any address-space holes, there can be up to 3 */ 9890 for (n = 0; n < i - 1; n++) 9891 if (avail[n].limit < avail[n + 1].base) 9892 (md++)->base = avail[n].limit; 9893 if (avail[n].limit) 9894 (md++)->base = avail[n].limit; 9895 9896 n = md - mem; 9897 MPASS(n <= nitems(mem)); 9898 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9899 9900 for (lo = 0; lo < i; lo++) 9901 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9902 avail[lo].limit - 1); 9903 9904 sbuf_printf(sb, "\n"); 9905 for (i = 0; i < n; i++) { 9906 if (mem[i].idx >= nitems(region)) 9907 continue; /* skip holes */ 9908 if (!mem[i].limit) 9909 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9910 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9911 mem[i].limit); 9912 } 9913 9914 sbuf_printf(sb, "\n"); 9915 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9916 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9917 mem_region_show(sb, "uP RAM:", lo, hi); 9918 9919 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9920 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9921 mem_region_show(sb, "uP Extmem2:", lo, hi); 9922 9923 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9924 for (i = 0, free = 0; i < 2; i++) 9925 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 9926 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 9927 G_PMRXMAXPAGE(lo), free, 9928 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9929 (lo & F_PMRXNUMCHN) ? 2 : 1); 9930 9931 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9932 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9933 for (i = 0, free = 0; i < 4; i++) 9934 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 9935 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 9936 G_PMTXMAXPAGE(lo), free, 9937 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9938 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9939 sbuf_printf(sb, "%u p-structs (%u free)\n", 9940 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 9941 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 9942 9943 for (i = 0; i < 4; i++) { 9944 if (chip_id(sc) > CHELSIO_T5) 9945 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9946 else 9947 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9948 if (is_t5(sc)) { 9949 used = G_T5_USED(lo); 9950 alloc = G_T5_ALLOC(lo); 9951 } else { 9952 used = G_USED(lo); 9953 alloc = G_ALLOC(lo); 9954 } 9955 /* For T6 these are MAC buffer groups */ 9956 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9957 i, used, alloc); 9958 } 9959 for (i = 0; i < sc->chip_params->nchan; i++) { 9960 if (chip_id(sc) > CHELSIO_T5) 9961 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9962 else 9963 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9964 if (is_t5(sc)) { 9965 used = G_T5_USED(lo); 9966 alloc = G_T5_ALLOC(lo); 9967 } else { 9968 used = G_USED(lo); 9969 alloc = G_ALLOC(lo); 9970 } 9971 /* For T6 these are MAC buffer groups */ 9972 sbuf_printf(sb, 9973 "\nLoopback %d using %u pages out of %u allocated", 9974 i, used, alloc); 9975 } 9976 done: 9977 mtx_unlock(&sc->reg_lock); 9978 if (rc == 0) 9979 rc = sbuf_finish(sb); 9980 sbuf_delete(sb); 9981 return (rc); 9982 } 9983 9984 static inline void 9985 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9986 { 9987 *mask = x | y; 9988 y = htobe64(y); 9989 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9990 } 9991 9992 static int 9993 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9994 { 9995 struct adapter *sc = arg1; 9996 struct sbuf *sb; 9997 int rc, i; 9998 9999 MPASS(chip_id(sc) <= CHELSIO_T5); 10000 10001 rc = sysctl_wire_old_buffer(req, 0); 10002 if (rc != 0) 10003 return (rc); 10004 10005 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10006 if (sb == NULL) 10007 return (ENOMEM); 10008 10009 sbuf_printf(sb, 10010 "Idx Ethernet address Mask Vld Ports PF" 10011 " VF Replication P0 P1 P2 P3 ML"); 10012 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10013 uint64_t tcamx, tcamy, mask; 10014 uint32_t cls_lo, cls_hi; 10015 uint8_t addr[ETHER_ADDR_LEN]; 10016 10017 mtx_lock(&sc->reg_lock); 10018 if (hw_off_limits(sc)) 10019 rc = ENXIO; 10020 else { 10021 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10022 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10023 } 10024 mtx_unlock(&sc->reg_lock); 10025 if (rc != 0) 10026 break; 10027 if (tcamx & tcamy) 10028 continue; 10029 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10030 mtx_lock(&sc->reg_lock); 10031 if (hw_off_limits(sc)) 10032 rc = ENXIO; 10033 else { 10034 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10035 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10036 } 10037 mtx_unlock(&sc->reg_lock); 10038 if (rc != 0) 10039 break; 10040 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10041 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10042 addr[3], addr[4], addr[5], (uintmax_t)mask, 10043 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10044 G_PORTMAP(cls_hi), G_PF(cls_lo), 10045 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10046 10047 if (cls_lo & F_REPLICATE) { 10048 struct fw_ldst_cmd ldst_cmd; 10049 10050 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10051 ldst_cmd.op_to_addrspace = 10052 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10053 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10054 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10055 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10056 ldst_cmd.u.mps.rplc.fid_idx = 10057 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10058 V_FW_LDST_CMD_IDX(i)); 10059 10060 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10061 "t4mps"); 10062 if (rc) 10063 break; 10064 if (hw_off_limits(sc)) 10065 rc = ENXIO; 10066 else 10067 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10068 sizeof(ldst_cmd), &ldst_cmd); 10069 end_synchronized_op(sc, 0); 10070 if (rc != 0) 10071 break; 10072 else { 10073 sbuf_printf(sb, " %08x %08x %08x %08x", 10074 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10075 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10076 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10077 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10078 } 10079 } else 10080 sbuf_printf(sb, "%36s", ""); 10081 10082 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10083 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10084 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10085 } 10086 10087 if (rc) 10088 (void) sbuf_finish(sb); 10089 else 10090 rc = sbuf_finish(sb); 10091 sbuf_delete(sb); 10092 10093 return (rc); 10094 } 10095 10096 static int 10097 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10098 { 10099 struct adapter *sc = arg1; 10100 struct sbuf *sb; 10101 int rc, i; 10102 10103 MPASS(chip_id(sc) > CHELSIO_T5); 10104 10105 rc = sysctl_wire_old_buffer(req, 0); 10106 if (rc != 0) 10107 return (rc); 10108 10109 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10110 if (sb == NULL) 10111 return (ENOMEM); 10112 10113 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10114 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10115 " Replication" 10116 " P0 P1 P2 P3 ML\n"); 10117 10118 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10119 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10120 uint16_t ivlan; 10121 uint64_t tcamx, tcamy, val, mask; 10122 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10123 uint8_t addr[ETHER_ADDR_LEN]; 10124 10125 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10126 if (i < 256) 10127 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10128 else 10129 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10130 mtx_lock(&sc->reg_lock); 10131 if (hw_off_limits(sc)) 10132 rc = ENXIO; 10133 else { 10134 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10135 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10136 tcamy = G_DMACH(val) << 32; 10137 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10138 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10139 } 10140 mtx_unlock(&sc->reg_lock); 10141 if (rc != 0) 10142 break; 10143 10144 lookup_type = G_DATALKPTYPE(data2); 10145 port_num = G_DATAPORTNUM(data2); 10146 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10147 /* Inner header VNI */ 10148 vniy = ((data2 & F_DATAVIDH2) << 23) | 10149 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10150 dip_hit = data2 & F_DATADIPHIT; 10151 vlan_vld = 0; 10152 } else { 10153 vniy = 0; 10154 dip_hit = 0; 10155 vlan_vld = data2 & F_DATAVIDH2; 10156 ivlan = G_VIDL(val); 10157 } 10158 10159 ctl |= V_CTLXYBITSEL(1); 10160 mtx_lock(&sc->reg_lock); 10161 if (hw_off_limits(sc)) 10162 rc = ENXIO; 10163 else { 10164 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10165 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10166 tcamx = G_DMACH(val) << 32; 10167 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10168 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10169 } 10170 mtx_unlock(&sc->reg_lock); 10171 if (rc != 0) 10172 break; 10173 10174 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10175 /* Inner header VNI mask */ 10176 vnix = ((data2 & F_DATAVIDH2) << 23) | 10177 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10178 } else 10179 vnix = 0; 10180 10181 if (tcamx & tcamy) 10182 continue; 10183 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10184 10185 mtx_lock(&sc->reg_lock); 10186 if (hw_off_limits(sc)) 10187 rc = ENXIO; 10188 else { 10189 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10190 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10191 } 10192 mtx_unlock(&sc->reg_lock); 10193 if (rc != 0) 10194 break; 10195 10196 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10197 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10198 "%012jx %06x %06x - - %3c" 10199 " I %4x %3c %#x%4u%4d", i, addr[0], 10200 addr[1], addr[2], addr[3], addr[4], addr[5], 10201 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10202 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10203 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10204 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10205 } else { 10206 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10207 "%012jx - - ", i, addr[0], addr[1], 10208 addr[2], addr[3], addr[4], addr[5], 10209 (uintmax_t)mask); 10210 10211 if (vlan_vld) 10212 sbuf_printf(sb, "%4u Y ", ivlan); 10213 else 10214 sbuf_printf(sb, " - N "); 10215 10216 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10217 lookup_type ? 'I' : 'O', port_num, 10218 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10219 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10220 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10221 } 10222 10223 10224 if (cls_lo & F_T6_REPLICATE) { 10225 struct fw_ldst_cmd ldst_cmd; 10226 10227 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10228 ldst_cmd.op_to_addrspace = 10229 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10230 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10231 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10232 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10233 ldst_cmd.u.mps.rplc.fid_idx = 10234 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10235 V_FW_LDST_CMD_IDX(i)); 10236 10237 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10238 "t6mps"); 10239 if (rc) 10240 break; 10241 if (hw_off_limits(sc)) 10242 rc = ENXIO; 10243 else 10244 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10245 sizeof(ldst_cmd), &ldst_cmd); 10246 end_synchronized_op(sc, 0); 10247 if (rc != 0) 10248 break; 10249 else { 10250 sbuf_printf(sb, " %08x %08x %08x %08x" 10251 " %08x %08x %08x %08x", 10252 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10253 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10254 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10255 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10256 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10257 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10258 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10259 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10260 } 10261 } else 10262 sbuf_printf(sb, "%72s", ""); 10263 10264 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10265 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10266 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10267 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10268 } 10269 10270 if (rc) 10271 (void) sbuf_finish(sb); 10272 else 10273 rc = sbuf_finish(sb); 10274 sbuf_delete(sb); 10275 10276 return (rc); 10277 } 10278 10279 static int 10280 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10281 { 10282 struct adapter *sc = arg1; 10283 struct sbuf *sb; 10284 int rc; 10285 uint16_t mtus[NMTUS]; 10286 10287 rc = sysctl_wire_old_buffer(req, 0); 10288 if (rc != 0) 10289 return (rc); 10290 10291 mtx_lock(&sc->reg_lock); 10292 if (hw_off_limits(sc)) 10293 rc = ENXIO; 10294 else 10295 t4_read_mtu_tbl(sc, mtus, NULL); 10296 mtx_unlock(&sc->reg_lock); 10297 if (rc != 0) 10298 return (rc); 10299 10300 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10301 if (sb == NULL) 10302 return (ENOMEM); 10303 10304 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10305 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10306 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10307 mtus[14], mtus[15]); 10308 10309 rc = sbuf_finish(sb); 10310 sbuf_delete(sb); 10311 10312 return (rc); 10313 } 10314 10315 static int 10316 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10317 { 10318 struct adapter *sc = arg1; 10319 struct sbuf *sb; 10320 int rc, i; 10321 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10322 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10323 static const char *tx_stats[MAX_PM_NSTATS] = { 10324 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10325 "Tx FIFO wait", NULL, "Tx latency" 10326 }; 10327 static const char *rx_stats[MAX_PM_NSTATS] = { 10328 "Read:", "Write bypass:", "Write mem:", "Flush:", 10329 "Rx FIFO wait", NULL, "Rx latency" 10330 }; 10331 10332 rc = sysctl_wire_old_buffer(req, 0); 10333 if (rc != 0) 10334 return (rc); 10335 10336 mtx_lock(&sc->reg_lock); 10337 if (hw_off_limits(sc)) 10338 rc = ENXIO; 10339 else { 10340 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10341 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10342 } 10343 mtx_unlock(&sc->reg_lock); 10344 if (rc != 0) 10345 return (rc); 10346 10347 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10348 if (sb == NULL) 10349 return (ENOMEM); 10350 10351 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10352 for (i = 0; i < 4; i++) { 10353 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10354 tx_cyc[i]); 10355 } 10356 10357 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10358 for (i = 0; i < 4; i++) { 10359 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10360 rx_cyc[i]); 10361 } 10362 10363 if (chip_id(sc) > CHELSIO_T5) { 10364 sbuf_printf(sb, 10365 "\n Total wait Total occupancy"); 10366 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10367 tx_cyc[i]); 10368 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10369 rx_cyc[i]); 10370 10371 i += 2; 10372 MPASS(i < nitems(tx_stats)); 10373 10374 sbuf_printf(sb, 10375 "\n Reads Total wait"); 10376 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10377 tx_cyc[i]); 10378 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10379 rx_cyc[i]); 10380 } 10381 10382 rc = sbuf_finish(sb); 10383 sbuf_delete(sb); 10384 10385 return (rc); 10386 } 10387 10388 static int 10389 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10390 { 10391 struct adapter *sc = arg1; 10392 struct sbuf *sb; 10393 int rc; 10394 struct tp_rdma_stats stats; 10395 10396 rc = sysctl_wire_old_buffer(req, 0); 10397 if (rc != 0) 10398 return (rc); 10399 10400 mtx_lock(&sc->reg_lock); 10401 if (hw_off_limits(sc)) 10402 rc = ENXIO; 10403 else 10404 t4_tp_get_rdma_stats(sc, &stats, 0); 10405 mtx_unlock(&sc->reg_lock); 10406 if (rc != 0) 10407 return (rc); 10408 10409 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10410 if (sb == NULL) 10411 return (ENOMEM); 10412 10413 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10414 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10415 10416 rc = sbuf_finish(sb); 10417 sbuf_delete(sb); 10418 10419 return (rc); 10420 } 10421 10422 static int 10423 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10424 { 10425 struct adapter *sc = arg1; 10426 struct sbuf *sb; 10427 int rc; 10428 struct tp_tcp_stats v4, v6; 10429 10430 rc = sysctl_wire_old_buffer(req, 0); 10431 if (rc != 0) 10432 return (rc); 10433 10434 mtx_lock(&sc->reg_lock); 10435 if (hw_off_limits(sc)) 10436 rc = ENXIO; 10437 else 10438 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10439 mtx_unlock(&sc->reg_lock); 10440 if (rc != 0) 10441 return (rc); 10442 10443 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10444 if (sb == NULL) 10445 return (ENOMEM); 10446 10447 sbuf_printf(sb, 10448 " IP IPv6\n"); 10449 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10450 v4.tcp_out_rsts, v6.tcp_out_rsts); 10451 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10452 v4.tcp_in_segs, v6.tcp_in_segs); 10453 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10454 v4.tcp_out_segs, v6.tcp_out_segs); 10455 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10456 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10457 10458 rc = sbuf_finish(sb); 10459 sbuf_delete(sb); 10460 10461 return (rc); 10462 } 10463 10464 static int 10465 sysctl_tids(SYSCTL_HANDLER_ARGS) 10466 { 10467 struct adapter *sc = arg1; 10468 struct sbuf *sb; 10469 int rc; 10470 uint32_t x, y; 10471 struct tid_info *t = &sc->tids; 10472 10473 rc = sysctl_wire_old_buffer(req, 0); 10474 if (rc != 0) 10475 return (rc); 10476 10477 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10478 if (sb == NULL) 10479 return (ENOMEM); 10480 10481 if (t->natids) { 10482 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10483 t->atids_in_use); 10484 } 10485 10486 if (t->nhpftids) { 10487 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10488 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10489 } 10490 10491 if (t->ntids) { 10492 bool hashen = false; 10493 10494 mtx_lock(&sc->reg_lock); 10495 if (hw_off_limits(sc)) 10496 rc = ENXIO; 10497 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10498 hashen = true; 10499 if (chip_id(sc) <= CHELSIO_T5) { 10500 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10501 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10502 } else { 10503 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10504 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10505 } 10506 } 10507 mtx_unlock(&sc->reg_lock); 10508 if (rc != 0) 10509 goto done; 10510 10511 sbuf_printf(sb, "TID range: "); 10512 if (hashen) { 10513 if (x) 10514 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10515 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10516 } else { 10517 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10518 t->ntids - 1); 10519 } 10520 sbuf_printf(sb, ", in use: %u\n", 10521 atomic_load_acq_int(&t->tids_in_use)); 10522 } 10523 10524 if (t->nstids) { 10525 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10526 t->stid_base + t->nstids - 1, t->stids_in_use); 10527 } 10528 10529 if (t->nftids) { 10530 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10531 t->ftid_end, t->ftids_in_use); 10532 } 10533 10534 if (t->netids) { 10535 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10536 t->etid_base + t->netids - 1, t->etids_in_use); 10537 } 10538 10539 mtx_lock(&sc->reg_lock); 10540 if (hw_off_limits(sc)) 10541 rc = ENXIO; 10542 else { 10543 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10544 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10545 } 10546 mtx_unlock(&sc->reg_lock); 10547 if (rc != 0) 10548 goto done; 10549 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10550 done: 10551 if (rc == 0) 10552 rc = sbuf_finish(sb); 10553 else 10554 (void)sbuf_finish(sb); 10555 sbuf_delete(sb); 10556 10557 return (rc); 10558 } 10559 10560 static int 10561 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10562 { 10563 struct adapter *sc = arg1; 10564 struct sbuf *sb; 10565 int rc; 10566 struct tp_err_stats stats; 10567 10568 rc = sysctl_wire_old_buffer(req, 0); 10569 if (rc != 0) 10570 return (rc); 10571 10572 mtx_lock(&sc->reg_lock); 10573 if (hw_off_limits(sc)) 10574 rc = ENXIO; 10575 else 10576 t4_tp_get_err_stats(sc, &stats, 0); 10577 mtx_unlock(&sc->reg_lock); 10578 if (rc != 0) 10579 return (rc); 10580 10581 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10582 if (sb == NULL) 10583 return (ENOMEM); 10584 10585 if (sc->chip_params->nchan > 2) { 10586 sbuf_printf(sb, " channel 0 channel 1" 10587 " channel 2 channel 3\n"); 10588 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10589 stats.mac_in_errs[0], stats.mac_in_errs[1], 10590 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10591 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10592 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10593 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10594 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10595 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10596 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10597 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10598 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10599 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10600 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10601 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10602 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10603 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10604 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10605 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10606 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10607 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10608 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10609 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10610 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10611 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10612 } else { 10613 sbuf_printf(sb, " channel 0 channel 1\n"); 10614 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10615 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10616 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10617 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10618 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10619 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10620 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10621 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10622 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10623 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10624 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10625 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10626 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10627 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10628 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10629 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10630 } 10631 10632 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10633 stats.ofld_no_neigh, stats.ofld_cong_defer); 10634 10635 rc = sbuf_finish(sb); 10636 sbuf_delete(sb); 10637 10638 return (rc); 10639 } 10640 10641 static int 10642 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10643 { 10644 struct adapter *sc = arg1; 10645 struct sbuf *sb; 10646 int rc; 10647 struct tp_tnl_stats stats; 10648 10649 rc = sysctl_wire_old_buffer(req, 0); 10650 if (rc != 0) 10651 return(rc); 10652 10653 mtx_lock(&sc->reg_lock); 10654 if (hw_off_limits(sc)) 10655 rc = ENXIO; 10656 else 10657 t4_tp_get_tnl_stats(sc, &stats, 1); 10658 mtx_unlock(&sc->reg_lock); 10659 if (rc != 0) 10660 return (rc); 10661 10662 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10663 if (sb == NULL) 10664 return (ENOMEM); 10665 10666 if (sc->chip_params->nchan > 2) { 10667 sbuf_printf(sb, " channel 0 channel 1" 10668 " channel 2 channel 3\n"); 10669 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10670 stats.out_pkt[0], stats.out_pkt[1], 10671 stats.out_pkt[2], stats.out_pkt[3]); 10672 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10673 stats.in_pkt[0], stats.in_pkt[1], 10674 stats.in_pkt[2], stats.in_pkt[3]); 10675 } else { 10676 sbuf_printf(sb, " channel 0 channel 1\n"); 10677 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10678 stats.out_pkt[0], stats.out_pkt[1]); 10679 sbuf_printf(sb, "InPkts: %10u %10u", 10680 stats.in_pkt[0], stats.in_pkt[1]); 10681 } 10682 10683 rc = sbuf_finish(sb); 10684 sbuf_delete(sb); 10685 10686 return (rc); 10687 } 10688 10689 static int 10690 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10691 { 10692 struct adapter *sc = arg1; 10693 struct tp_params *tpp = &sc->params.tp; 10694 u_int mask; 10695 int rc; 10696 10697 mask = tpp->la_mask >> 16; 10698 rc = sysctl_handle_int(oidp, &mask, 0, req); 10699 if (rc != 0 || req->newptr == NULL) 10700 return (rc); 10701 if (mask > 0xffff) 10702 return (EINVAL); 10703 mtx_lock(&sc->reg_lock); 10704 if (hw_off_limits(sc)) 10705 rc = ENXIO; 10706 else { 10707 tpp->la_mask = mask << 16; 10708 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10709 tpp->la_mask); 10710 } 10711 mtx_unlock(&sc->reg_lock); 10712 10713 return (rc); 10714 } 10715 10716 struct field_desc { 10717 const char *name; 10718 u_int start; 10719 u_int width; 10720 }; 10721 10722 static void 10723 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10724 { 10725 char buf[32]; 10726 int line_size = 0; 10727 10728 while (f->name) { 10729 uint64_t mask = (1ULL << f->width) - 1; 10730 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10731 ((uintmax_t)v >> f->start) & mask); 10732 10733 if (line_size + len >= 79) { 10734 line_size = 8; 10735 sbuf_printf(sb, "\n "); 10736 } 10737 sbuf_printf(sb, "%s ", buf); 10738 line_size += len + 1; 10739 f++; 10740 } 10741 sbuf_printf(sb, "\n"); 10742 } 10743 10744 static const struct field_desc tp_la0[] = { 10745 { "RcfOpCodeOut", 60, 4 }, 10746 { "State", 56, 4 }, 10747 { "WcfState", 52, 4 }, 10748 { "RcfOpcSrcOut", 50, 2 }, 10749 { "CRxError", 49, 1 }, 10750 { "ERxError", 48, 1 }, 10751 { "SanityFailed", 47, 1 }, 10752 { "SpuriousMsg", 46, 1 }, 10753 { "FlushInputMsg", 45, 1 }, 10754 { "FlushInputCpl", 44, 1 }, 10755 { "RssUpBit", 43, 1 }, 10756 { "RssFilterHit", 42, 1 }, 10757 { "Tid", 32, 10 }, 10758 { "InitTcb", 31, 1 }, 10759 { "LineNumber", 24, 7 }, 10760 { "Emsg", 23, 1 }, 10761 { "EdataOut", 22, 1 }, 10762 { "Cmsg", 21, 1 }, 10763 { "CdataOut", 20, 1 }, 10764 { "EreadPdu", 19, 1 }, 10765 { "CreadPdu", 18, 1 }, 10766 { "TunnelPkt", 17, 1 }, 10767 { "RcfPeerFin", 16, 1 }, 10768 { "RcfReasonOut", 12, 4 }, 10769 { "TxCchannel", 10, 2 }, 10770 { "RcfTxChannel", 8, 2 }, 10771 { "RxEchannel", 6, 2 }, 10772 { "RcfRxChannel", 5, 1 }, 10773 { "RcfDataOutSrdy", 4, 1 }, 10774 { "RxDvld", 3, 1 }, 10775 { "RxOoDvld", 2, 1 }, 10776 { "RxCongestion", 1, 1 }, 10777 { "TxCongestion", 0, 1 }, 10778 { NULL } 10779 }; 10780 10781 static const struct field_desc tp_la1[] = { 10782 { "CplCmdIn", 56, 8 }, 10783 { "CplCmdOut", 48, 8 }, 10784 { "ESynOut", 47, 1 }, 10785 { "EAckOut", 46, 1 }, 10786 { "EFinOut", 45, 1 }, 10787 { "ERstOut", 44, 1 }, 10788 { "SynIn", 43, 1 }, 10789 { "AckIn", 42, 1 }, 10790 { "FinIn", 41, 1 }, 10791 { "RstIn", 40, 1 }, 10792 { "DataIn", 39, 1 }, 10793 { "DataInVld", 38, 1 }, 10794 { "PadIn", 37, 1 }, 10795 { "RxBufEmpty", 36, 1 }, 10796 { "RxDdp", 35, 1 }, 10797 { "RxFbCongestion", 34, 1 }, 10798 { "TxFbCongestion", 33, 1 }, 10799 { "TxPktSumSrdy", 32, 1 }, 10800 { "RcfUlpType", 28, 4 }, 10801 { "Eread", 27, 1 }, 10802 { "Ebypass", 26, 1 }, 10803 { "Esave", 25, 1 }, 10804 { "Static0", 24, 1 }, 10805 { "Cread", 23, 1 }, 10806 { "Cbypass", 22, 1 }, 10807 { "Csave", 21, 1 }, 10808 { "CPktOut", 20, 1 }, 10809 { "RxPagePoolFull", 18, 2 }, 10810 { "RxLpbkPkt", 17, 1 }, 10811 { "TxLpbkPkt", 16, 1 }, 10812 { "RxVfValid", 15, 1 }, 10813 { "SynLearned", 14, 1 }, 10814 { "SetDelEntry", 13, 1 }, 10815 { "SetInvEntry", 12, 1 }, 10816 { "CpcmdDvld", 11, 1 }, 10817 { "CpcmdSave", 10, 1 }, 10818 { "RxPstructsFull", 8, 2 }, 10819 { "EpcmdDvld", 7, 1 }, 10820 { "EpcmdFlush", 6, 1 }, 10821 { "EpcmdTrimPrefix", 5, 1 }, 10822 { "EpcmdTrimPostfix", 4, 1 }, 10823 { "ERssIp4Pkt", 3, 1 }, 10824 { "ERssIp6Pkt", 2, 1 }, 10825 { "ERssTcpUdpPkt", 1, 1 }, 10826 { "ERssFceFipPkt", 0, 1 }, 10827 { NULL } 10828 }; 10829 10830 static const struct field_desc tp_la2[] = { 10831 { "CplCmdIn", 56, 8 }, 10832 { "MpsVfVld", 55, 1 }, 10833 { "MpsPf", 52, 3 }, 10834 { "MpsVf", 44, 8 }, 10835 { "SynIn", 43, 1 }, 10836 { "AckIn", 42, 1 }, 10837 { "FinIn", 41, 1 }, 10838 { "RstIn", 40, 1 }, 10839 { "DataIn", 39, 1 }, 10840 { "DataInVld", 38, 1 }, 10841 { "PadIn", 37, 1 }, 10842 { "RxBufEmpty", 36, 1 }, 10843 { "RxDdp", 35, 1 }, 10844 { "RxFbCongestion", 34, 1 }, 10845 { "TxFbCongestion", 33, 1 }, 10846 { "TxPktSumSrdy", 32, 1 }, 10847 { "RcfUlpType", 28, 4 }, 10848 { "Eread", 27, 1 }, 10849 { "Ebypass", 26, 1 }, 10850 { "Esave", 25, 1 }, 10851 { "Static0", 24, 1 }, 10852 { "Cread", 23, 1 }, 10853 { "Cbypass", 22, 1 }, 10854 { "Csave", 21, 1 }, 10855 { "CPktOut", 20, 1 }, 10856 { "RxPagePoolFull", 18, 2 }, 10857 { "RxLpbkPkt", 17, 1 }, 10858 { "TxLpbkPkt", 16, 1 }, 10859 { "RxVfValid", 15, 1 }, 10860 { "SynLearned", 14, 1 }, 10861 { "SetDelEntry", 13, 1 }, 10862 { "SetInvEntry", 12, 1 }, 10863 { "CpcmdDvld", 11, 1 }, 10864 { "CpcmdSave", 10, 1 }, 10865 { "RxPstructsFull", 8, 2 }, 10866 { "EpcmdDvld", 7, 1 }, 10867 { "EpcmdFlush", 6, 1 }, 10868 { "EpcmdTrimPrefix", 5, 1 }, 10869 { "EpcmdTrimPostfix", 4, 1 }, 10870 { "ERssIp4Pkt", 3, 1 }, 10871 { "ERssIp6Pkt", 2, 1 }, 10872 { "ERssTcpUdpPkt", 1, 1 }, 10873 { "ERssFceFipPkt", 0, 1 }, 10874 { NULL } 10875 }; 10876 10877 static void 10878 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10879 { 10880 10881 field_desc_show(sb, *p, tp_la0); 10882 } 10883 10884 static void 10885 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10886 { 10887 10888 if (idx) 10889 sbuf_printf(sb, "\n"); 10890 field_desc_show(sb, p[0], tp_la0); 10891 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10892 field_desc_show(sb, p[1], tp_la0); 10893 } 10894 10895 static void 10896 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10897 { 10898 10899 if (idx) 10900 sbuf_printf(sb, "\n"); 10901 field_desc_show(sb, p[0], tp_la0); 10902 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10903 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10904 } 10905 10906 static int 10907 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10908 { 10909 struct adapter *sc = arg1; 10910 struct sbuf *sb; 10911 uint64_t *buf, *p; 10912 int rc; 10913 u_int i, inc; 10914 void (*show_func)(struct sbuf *, uint64_t *, int); 10915 10916 rc = sysctl_wire_old_buffer(req, 0); 10917 if (rc != 0) 10918 return (rc); 10919 10920 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10921 if (sb == NULL) 10922 return (ENOMEM); 10923 10924 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10925 10926 mtx_lock(&sc->reg_lock); 10927 if (hw_off_limits(sc)) 10928 rc = ENXIO; 10929 else { 10930 t4_tp_read_la(sc, buf, NULL); 10931 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10932 case 2: 10933 inc = 2; 10934 show_func = tp_la_show2; 10935 break; 10936 case 3: 10937 inc = 2; 10938 show_func = tp_la_show3; 10939 break; 10940 default: 10941 inc = 1; 10942 show_func = tp_la_show; 10943 } 10944 } 10945 mtx_unlock(&sc->reg_lock); 10946 if (rc != 0) 10947 goto done; 10948 10949 p = buf; 10950 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10951 (*show_func)(sb, p, i); 10952 rc = sbuf_finish(sb); 10953 done: 10954 sbuf_delete(sb); 10955 free(buf, M_CXGBE); 10956 return (rc); 10957 } 10958 10959 static int 10960 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10961 { 10962 struct adapter *sc = arg1; 10963 struct sbuf *sb; 10964 int rc; 10965 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10966 10967 rc = sysctl_wire_old_buffer(req, 0); 10968 if (rc != 0) 10969 return (rc); 10970 10971 mtx_lock(&sc->reg_lock); 10972 if (hw_off_limits(sc)) 10973 rc = ENXIO; 10974 else 10975 t4_get_chan_txrate(sc, nrate, orate); 10976 mtx_unlock(&sc->reg_lock); 10977 if (rc != 0) 10978 return (rc); 10979 10980 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10981 if (sb == NULL) 10982 return (ENOMEM); 10983 10984 if (sc->chip_params->nchan > 2) { 10985 sbuf_printf(sb, " channel 0 channel 1" 10986 " channel 2 channel 3\n"); 10987 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10988 nrate[0], nrate[1], nrate[2], nrate[3]); 10989 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10990 orate[0], orate[1], orate[2], orate[3]); 10991 } else { 10992 sbuf_printf(sb, " channel 0 channel 1\n"); 10993 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10994 nrate[0], nrate[1]); 10995 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10996 orate[0], orate[1]); 10997 } 10998 10999 rc = sbuf_finish(sb); 11000 sbuf_delete(sb); 11001 11002 return (rc); 11003 } 11004 11005 static int 11006 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11007 { 11008 struct adapter *sc = arg1; 11009 struct sbuf *sb; 11010 uint32_t *buf, *p; 11011 int rc, i; 11012 11013 rc = sysctl_wire_old_buffer(req, 0); 11014 if (rc != 0) 11015 return (rc); 11016 11017 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11018 if (sb == NULL) 11019 return (ENOMEM); 11020 11021 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11022 M_ZERO | M_WAITOK); 11023 11024 mtx_lock(&sc->reg_lock); 11025 if (hw_off_limits(sc)) 11026 rc = ENXIO; 11027 else 11028 t4_ulprx_read_la(sc, buf); 11029 mtx_unlock(&sc->reg_lock); 11030 if (rc != 0) 11031 goto done; 11032 11033 p = buf; 11034 sbuf_printf(sb, " Pcmd Type Message" 11035 " Data"); 11036 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11037 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11038 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11039 } 11040 rc = sbuf_finish(sb); 11041 done: 11042 sbuf_delete(sb); 11043 free(buf, M_CXGBE); 11044 return (rc); 11045 } 11046 11047 static int 11048 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11049 { 11050 struct adapter *sc = arg1; 11051 struct sbuf *sb; 11052 int rc; 11053 uint32_t cfg, s1, s2; 11054 11055 MPASS(chip_id(sc) >= CHELSIO_T5); 11056 11057 rc = sysctl_wire_old_buffer(req, 0); 11058 if (rc != 0) 11059 return (rc); 11060 11061 mtx_lock(&sc->reg_lock); 11062 if (hw_off_limits(sc)) 11063 rc = ENXIO; 11064 else { 11065 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11066 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11067 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11068 } 11069 mtx_unlock(&sc->reg_lock); 11070 if (rc != 0) 11071 return (rc); 11072 11073 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11074 if (sb == NULL) 11075 return (ENOMEM); 11076 11077 if (G_STATSOURCE_T5(cfg) == 7) { 11078 int mode; 11079 11080 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11081 if (mode == 0) 11082 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11083 else if (mode == 1) 11084 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11085 else 11086 sbuf_printf(sb, "unknown mode %d", mode); 11087 } 11088 rc = sbuf_finish(sb); 11089 sbuf_delete(sb); 11090 11091 return (rc); 11092 } 11093 11094 static int 11095 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11096 { 11097 struct adapter *sc = arg1; 11098 enum cpu_sets op = arg2; 11099 cpuset_t cpuset; 11100 struct sbuf *sb; 11101 int i, rc; 11102 11103 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11104 11105 CPU_ZERO(&cpuset); 11106 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11107 if (rc != 0) 11108 return (rc); 11109 11110 rc = sysctl_wire_old_buffer(req, 0); 11111 if (rc != 0) 11112 return (rc); 11113 11114 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11115 if (sb == NULL) 11116 return (ENOMEM); 11117 11118 CPU_FOREACH(i) 11119 sbuf_printf(sb, "%d ", i); 11120 rc = sbuf_finish(sb); 11121 sbuf_delete(sb); 11122 11123 return (rc); 11124 } 11125 11126 static int 11127 sysctl_reset(SYSCTL_HANDLER_ARGS) 11128 { 11129 struct adapter *sc = arg1; 11130 u_int val; 11131 int rc; 11132 11133 val = atomic_load_int(&sc->num_resets); 11134 rc = sysctl_handle_int(oidp, &val, 0, req); 11135 if (rc != 0 || req->newptr == NULL) 11136 return (rc); 11137 11138 if (val == 0) { 11139 /* Zero out the counter that tracks reset. */ 11140 atomic_store_int(&sc->num_resets, 0); 11141 return (0); 11142 } 11143 11144 if (val != 1) 11145 return (EINVAL); /* 0 or 1 are the only legal values */ 11146 11147 if (hw_off_limits(sc)) /* harmless race */ 11148 return (EALREADY); 11149 11150 taskqueue_enqueue(reset_tq, &sc->reset_task); 11151 return (0); 11152 } 11153 11154 #ifdef TCP_OFFLOAD 11155 static int 11156 sysctl_tls(SYSCTL_HANDLER_ARGS) 11157 { 11158 struct adapter *sc = arg1; 11159 int i, j, v, rc; 11160 struct vi_info *vi; 11161 11162 v = sc->tt.tls; 11163 rc = sysctl_handle_int(oidp, &v, 0, req); 11164 if (rc != 0 || req->newptr == NULL) 11165 return (rc); 11166 11167 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11168 return (ENOTSUP); 11169 11170 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11171 if (rc) 11172 return (rc); 11173 if (hw_off_limits(sc)) 11174 rc = ENXIO; 11175 else { 11176 sc->tt.tls = !!v; 11177 for_each_port(sc, i) { 11178 for_each_vi(sc->port[i], j, vi) { 11179 if (vi->flags & VI_INIT_DONE) 11180 t4_update_fl_bufsize(vi->ifp); 11181 } 11182 } 11183 } 11184 end_synchronized_op(sc, 0); 11185 11186 return (rc); 11187 11188 } 11189 11190 static int 11191 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11192 { 11193 struct adapter *sc = arg1; 11194 int *old_ports, *new_ports; 11195 int i, new_count, rc; 11196 11197 if (req->newptr == NULL && req->oldptr == NULL) 11198 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11199 sizeof(sc->tt.tls_rx_ports[0]))); 11200 11201 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11202 if (rc) 11203 return (rc); 11204 11205 if (hw_off_limits(sc)) { 11206 rc = ENXIO; 11207 goto done; 11208 } 11209 11210 if (sc->tt.num_tls_rx_ports == 0) { 11211 i = -1; 11212 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11213 } else 11214 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11215 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11216 if (rc == 0 && req->newptr != NULL) { 11217 new_count = req->newlen / sizeof(new_ports[0]); 11218 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11219 M_WAITOK); 11220 rc = SYSCTL_IN(req, new_ports, new_count * 11221 sizeof(new_ports[0])); 11222 if (rc) 11223 goto err; 11224 11225 /* Allow setting to a single '-1' to clear the list. */ 11226 if (new_count == 1 && new_ports[0] == -1) { 11227 ADAPTER_LOCK(sc); 11228 old_ports = sc->tt.tls_rx_ports; 11229 sc->tt.tls_rx_ports = NULL; 11230 sc->tt.num_tls_rx_ports = 0; 11231 ADAPTER_UNLOCK(sc); 11232 free(old_ports, M_CXGBE); 11233 } else { 11234 for (i = 0; i < new_count; i++) { 11235 if (new_ports[i] < 1 || 11236 new_ports[i] > IPPORT_MAX) { 11237 rc = EINVAL; 11238 goto err; 11239 } 11240 } 11241 11242 ADAPTER_LOCK(sc); 11243 old_ports = sc->tt.tls_rx_ports; 11244 sc->tt.tls_rx_ports = new_ports; 11245 sc->tt.num_tls_rx_ports = new_count; 11246 ADAPTER_UNLOCK(sc); 11247 free(old_ports, M_CXGBE); 11248 new_ports = NULL; 11249 } 11250 err: 11251 free(new_ports, M_CXGBE); 11252 } 11253 done: 11254 end_synchronized_op(sc, 0); 11255 return (rc); 11256 } 11257 11258 static int 11259 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11260 { 11261 struct adapter *sc = arg1; 11262 int v, rc; 11263 11264 v = sc->tt.tls_rx_timeout; 11265 rc = sysctl_handle_int(oidp, &v, 0, req); 11266 if (rc != 0 || req->newptr == NULL) 11267 return (rc); 11268 11269 if (v < 0) 11270 return (EINVAL); 11271 11272 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11273 return (ENOTSUP); 11274 11275 sc->tt.tls_rx_timeout = v; 11276 11277 return (0); 11278 11279 } 11280 11281 static void 11282 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11283 { 11284 u_int rem = val % factor; 11285 11286 if (rem == 0) 11287 snprintf(buf, len, "%u", val / factor); 11288 else { 11289 while (rem % 10 == 0) 11290 rem /= 10; 11291 snprintf(buf, len, "%u.%u", val / factor, rem); 11292 } 11293 } 11294 11295 static int 11296 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11297 { 11298 struct adapter *sc = arg1; 11299 char buf[16]; 11300 u_int res, re; 11301 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11302 11303 mtx_lock(&sc->reg_lock); 11304 if (hw_off_limits(sc)) 11305 res = (u_int)-1; 11306 else 11307 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11308 mtx_unlock(&sc->reg_lock); 11309 if (res == (u_int)-1) 11310 return (ENXIO); 11311 11312 switch (arg2) { 11313 case 0: 11314 /* timer_tick */ 11315 re = G_TIMERRESOLUTION(res); 11316 break; 11317 case 1: 11318 /* TCP timestamp tick */ 11319 re = G_TIMESTAMPRESOLUTION(res); 11320 break; 11321 case 2: 11322 /* DACK tick */ 11323 re = G_DELAYEDACKRESOLUTION(res); 11324 break; 11325 default: 11326 return (EDOOFUS); 11327 } 11328 11329 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11330 11331 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11332 } 11333 11334 static int 11335 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11336 { 11337 struct adapter *sc = arg1; 11338 int rc; 11339 u_int dack_tmr, dack_re, v; 11340 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11341 11342 mtx_lock(&sc->reg_lock); 11343 if (hw_off_limits(sc)) 11344 rc = ENXIO; 11345 else { 11346 rc = 0; 11347 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11348 A_TP_TIMER_RESOLUTION)); 11349 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11350 } 11351 mtx_unlock(&sc->reg_lock); 11352 if (rc != 0) 11353 return (rc); 11354 11355 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11356 11357 return (sysctl_handle_int(oidp, &v, 0, req)); 11358 } 11359 11360 static int 11361 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11362 { 11363 struct adapter *sc = arg1; 11364 int rc, reg = arg2; 11365 u_int tre; 11366 u_long tp_tick_us, v; 11367 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11368 11369 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11370 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11371 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11372 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11373 11374 mtx_lock(&sc->reg_lock); 11375 if (hw_off_limits(sc)) 11376 rc = ENXIO; 11377 else { 11378 rc = 0; 11379 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11380 tp_tick_us = (cclk_ps << tre) / 1000000; 11381 if (reg == A_TP_INIT_SRTT) 11382 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11383 else 11384 v = tp_tick_us * t4_read_reg(sc, reg); 11385 } 11386 mtx_unlock(&sc->reg_lock); 11387 if (rc != 0) 11388 return (rc); 11389 else 11390 return (sysctl_handle_long(oidp, &v, 0, req)); 11391 } 11392 11393 /* 11394 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11395 * passed to this function. 11396 */ 11397 static int 11398 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11399 { 11400 struct adapter *sc = arg1; 11401 int rc, idx = arg2; 11402 u_int v; 11403 11404 MPASS(idx >= 0 && idx <= 24); 11405 11406 mtx_lock(&sc->reg_lock); 11407 if (hw_off_limits(sc)) 11408 rc = ENXIO; 11409 else { 11410 rc = 0; 11411 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11412 } 11413 mtx_unlock(&sc->reg_lock); 11414 if (rc != 0) 11415 return (rc); 11416 else 11417 return (sysctl_handle_int(oidp, &v, 0, req)); 11418 } 11419 11420 static int 11421 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11422 { 11423 struct adapter *sc = arg1; 11424 int rc, idx = arg2; 11425 u_int shift, v, r; 11426 11427 MPASS(idx >= 0 && idx < 16); 11428 11429 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11430 shift = (idx & 3) << 3; 11431 mtx_lock(&sc->reg_lock); 11432 if (hw_off_limits(sc)) 11433 rc = ENXIO; 11434 else { 11435 rc = 0; 11436 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11437 } 11438 mtx_unlock(&sc->reg_lock); 11439 if (rc != 0) 11440 return (rc); 11441 else 11442 return (sysctl_handle_int(oidp, &v, 0, req)); 11443 } 11444 11445 static int 11446 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11447 { 11448 struct vi_info *vi = arg1; 11449 struct adapter *sc = vi->adapter; 11450 int idx, rc, i; 11451 struct sge_ofld_rxq *ofld_rxq; 11452 uint8_t v; 11453 11454 idx = vi->ofld_tmr_idx; 11455 11456 rc = sysctl_handle_int(oidp, &idx, 0, req); 11457 if (rc != 0 || req->newptr == NULL) 11458 return (rc); 11459 11460 if (idx < 0 || idx >= SGE_NTIMERS) 11461 return (EINVAL); 11462 11463 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11464 "t4otmr"); 11465 if (rc) 11466 return (rc); 11467 11468 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11469 for_each_ofld_rxq(vi, i, ofld_rxq) { 11470 #ifdef atomic_store_rel_8 11471 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11472 #else 11473 ofld_rxq->iq.intr_params = v; 11474 #endif 11475 } 11476 vi->ofld_tmr_idx = idx; 11477 11478 end_synchronized_op(sc, LOCK_HELD); 11479 return (0); 11480 } 11481 11482 static int 11483 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11484 { 11485 struct vi_info *vi = arg1; 11486 struct adapter *sc = vi->adapter; 11487 int idx, rc; 11488 11489 idx = vi->ofld_pktc_idx; 11490 11491 rc = sysctl_handle_int(oidp, &idx, 0, req); 11492 if (rc != 0 || req->newptr == NULL) 11493 return (rc); 11494 11495 if (idx < -1 || idx >= SGE_NCOUNTERS) 11496 return (EINVAL); 11497 11498 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11499 "t4opktc"); 11500 if (rc) 11501 return (rc); 11502 11503 if (vi->flags & VI_INIT_DONE) 11504 rc = EBUSY; /* cannot be changed once the queues are created */ 11505 else 11506 vi->ofld_pktc_idx = idx; 11507 11508 end_synchronized_op(sc, LOCK_HELD); 11509 return (rc); 11510 } 11511 #endif 11512 11513 static int 11514 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11515 { 11516 int rc; 11517 11518 if (cntxt->cid > M_CTXTQID) 11519 return (EINVAL); 11520 11521 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11522 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11523 return (EINVAL); 11524 11525 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11526 if (rc) 11527 return (rc); 11528 11529 if (hw_off_limits(sc)) { 11530 rc = ENXIO; 11531 goto done; 11532 } 11533 11534 if (sc->flags & FW_OK) { 11535 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11536 &cntxt->data[0]); 11537 if (rc == 0) 11538 goto done; 11539 } 11540 11541 /* 11542 * Read via firmware failed or wasn't even attempted. Read directly via 11543 * the backdoor. 11544 */ 11545 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11546 done: 11547 end_synchronized_op(sc, 0); 11548 return (rc); 11549 } 11550 11551 static int 11552 load_fw(struct adapter *sc, struct t4_data *fw) 11553 { 11554 int rc; 11555 uint8_t *fw_data; 11556 11557 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11558 if (rc) 11559 return (rc); 11560 11561 if (hw_off_limits(sc)) { 11562 rc = ENXIO; 11563 goto done; 11564 } 11565 11566 /* 11567 * The firmware, with the sole exception of the memory parity error 11568 * handler, runs from memory and not flash. It is almost always safe to 11569 * install a new firmware on a running system. Just set bit 1 in 11570 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11571 */ 11572 if (sc->flags & FULL_INIT_DONE && 11573 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11574 rc = EBUSY; 11575 goto done; 11576 } 11577 11578 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11579 11580 rc = copyin(fw->data, fw_data, fw->len); 11581 if (rc == 0) 11582 rc = -t4_load_fw(sc, fw_data, fw->len); 11583 11584 free(fw_data, M_CXGBE); 11585 done: 11586 end_synchronized_op(sc, 0); 11587 return (rc); 11588 } 11589 11590 static int 11591 load_cfg(struct adapter *sc, struct t4_data *cfg) 11592 { 11593 int rc; 11594 uint8_t *cfg_data = NULL; 11595 11596 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11597 if (rc) 11598 return (rc); 11599 11600 if (hw_off_limits(sc)) { 11601 rc = ENXIO; 11602 goto done; 11603 } 11604 11605 if (cfg->len == 0) { 11606 /* clear */ 11607 rc = -t4_load_cfg(sc, NULL, 0); 11608 goto done; 11609 } 11610 11611 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11612 11613 rc = copyin(cfg->data, cfg_data, cfg->len); 11614 if (rc == 0) 11615 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11616 11617 free(cfg_data, M_CXGBE); 11618 done: 11619 end_synchronized_op(sc, 0); 11620 return (rc); 11621 } 11622 11623 static int 11624 load_boot(struct adapter *sc, struct t4_bootrom *br) 11625 { 11626 int rc; 11627 uint8_t *br_data = NULL; 11628 u_int offset; 11629 11630 if (br->len > 1024 * 1024) 11631 return (EFBIG); 11632 11633 if (br->pf_offset == 0) { 11634 /* pfidx */ 11635 if (br->pfidx_addr > 7) 11636 return (EINVAL); 11637 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11638 A_PCIE_PF_EXPROM_OFST))); 11639 } else if (br->pf_offset == 1) { 11640 /* offset */ 11641 offset = G_OFFSET(br->pfidx_addr); 11642 } else { 11643 return (EINVAL); 11644 } 11645 11646 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11647 if (rc) 11648 return (rc); 11649 11650 if (hw_off_limits(sc)) { 11651 rc = ENXIO; 11652 goto done; 11653 } 11654 11655 if (br->len == 0) { 11656 /* clear */ 11657 rc = -t4_load_boot(sc, NULL, offset, 0); 11658 goto done; 11659 } 11660 11661 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11662 11663 rc = copyin(br->data, br_data, br->len); 11664 if (rc == 0) 11665 rc = -t4_load_boot(sc, br_data, offset, br->len); 11666 11667 free(br_data, M_CXGBE); 11668 done: 11669 end_synchronized_op(sc, 0); 11670 return (rc); 11671 } 11672 11673 static int 11674 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11675 { 11676 int rc; 11677 uint8_t *bc_data = NULL; 11678 11679 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11680 if (rc) 11681 return (rc); 11682 11683 if (hw_off_limits(sc)) { 11684 rc = ENXIO; 11685 goto done; 11686 } 11687 11688 if (bc->len == 0) { 11689 /* clear */ 11690 rc = -t4_load_bootcfg(sc, NULL, 0); 11691 goto done; 11692 } 11693 11694 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11695 11696 rc = copyin(bc->data, bc_data, bc->len); 11697 if (rc == 0) 11698 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11699 11700 free(bc_data, M_CXGBE); 11701 done: 11702 end_synchronized_op(sc, 0); 11703 return (rc); 11704 } 11705 11706 static int 11707 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11708 { 11709 int rc; 11710 struct cudbg_init *cudbg; 11711 void *handle, *buf; 11712 11713 /* buf is large, don't block if no memory is available */ 11714 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11715 if (buf == NULL) 11716 return (ENOMEM); 11717 11718 handle = cudbg_alloc_handle(); 11719 if (handle == NULL) { 11720 rc = ENOMEM; 11721 goto done; 11722 } 11723 11724 cudbg = cudbg_get_init(handle); 11725 cudbg->adap = sc; 11726 cudbg->print = (cudbg_print_cb)printf; 11727 11728 #ifndef notyet 11729 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11730 __func__, dump->wr_flash, dump->len, dump->data); 11731 #endif 11732 11733 if (dump->wr_flash) 11734 cudbg->use_flash = 1; 11735 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11736 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11737 11738 rc = cudbg_collect(handle, buf, &dump->len); 11739 if (rc != 0) 11740 goto done; 11741 11742 rc = copyout(buf, dump->data, dump->len); 11743 done: 11744 cudbg_free_handle(handle); 11745 free(buf, M_CXGBE); 11746 return (rc); 11747 } 11748 11749 static void 11750 free_offload_policy(struct t4_offload_policy *op) 11751 { 11752 struct offload_rule *r; 11753 int i; 11754 11755 if (op == NULL) 11756 return; 11757 11758 r = &op->rule[0]; 11759 for (i = 0; i < op->nrules; i++, r++) { 11760 free(r->bpf_prog.bf_insns, M_CXGBE); 11761 } 11762 free(op->rule, M_CXGBE); 11763 free(op, M_CXGBE); 11764 } 11765 11766 static int 11767 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11768 { 11769 int i, rc, len; 11770 struct t4_offload_policy *op, *old; 11771 struct bpf_program *bf; 11772 const struct offload_settings *s; 11773 struct offload_rule *r; 11774 void *u; 11775 11776 if (!is_offload(sc)) 11777 return (ENODEV); 11778 11779 if (uop->nrules == 0) { 11780 /* Delete installed policies. */ 11781 op = NULL; 11782 goto set_policy; 11783 } else if (uop->nrules > 256) { /* arbitrary */ 11784 return (E2BIG); 11785 } 11786 11787 /* Copy userspace offload policy to kernel */ 11788 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11789 op->nrules = uop->nrules; 11790 len = op->nrules * sizeof(struct offload_rule); 11791 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11792 rc = copyin(uop->rule, op->rule, len); 11793 if (rc) { 11794 free(op->rule, M_CXGBE); 11795 free(op, M_CXGBE); 11796 return (rc); 11797 } 11798 11799 r = &op->rule[0]; 11800 for (i = 0; i < op->nrules; i++, r++) { 11801 11802 /* Validate open_type */ 11803 if (r->open_type != OPEN_TYPE_LISTEN && 11804 r->open_type != OPEN_TYPE_ACTIVE && 11805 r->open_type != OPEN_TYPE_PASSIVE && 11806 r->open_type != OPEN_TYPE_DONTCARE) { 11807 error: 11808 /* 11809 * Rules 0 to i have malloc'd filters that need to be 11810 * freed. Rules i+1 to nrules have userspace pointers 11811 * and should be left alone. 11812 */ 11813 op->nrules = i; 11814 free_offload_policy(op); 11815 return (rc); 11816 } 11817 11818 /* Validate settings */ 11819 s = &r->settings; 11820 if ((s->offload != 0 && s->offload != 1) || 11821 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11822 s->sched_class < -1 || 11823 s->sched_class >= sc->params.nsched_cls) { 11824 rc = EINVAL; 11825 goto error; 11826 } 11827 11828 bf = &r->bpf_prog; 11829 u = bf->bf_insns; /* userspace ptr */ 11830 bf->bf_insns = NULL; 11831 if (bf->bf_len == 0) { 11832 /* legal, matches everything */ 11833 continue; 11834 } 11835 len = bf->bf_len * sizeof(*bf->bf_insns); 11836 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11837 rc = copyin(u, bf->bf_insns, len); 11838 if (rc != 0) 11839 goto error; 11840 11841 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11842 rc = EINVAL; 11843 goto error; 11844 } 11845 } 11846 set_policy: 11847 rw_wlock(&sc->policy_lock); 11848 old = sc->policy; 11849 sc->policy = op; 11850 rw_wunlock(&sc->policy_lock); 11851 free_offload_policy(old); 11852 11853 return (0); 11854 } 11855 11856 #define MAX_READ_BUF_SIZE (128 * 1024) 11857 static int 11858 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11859 { 11860 uint32_t addr, remaining, n; 11861 uint32_t *buf; 11862 int rc; 11863 uint8_t *dst; 11864 11865 mtx_lock(&sc->reg_lock); 11866 if (hw_off_limits(sc)) 11867 rc = ENXIO; 11868 else 11869 rc = validate_mem_range(sc, mr->addr, mr->len); 11870 mtx_unlock(&sc->reg_lock); 11871 if (rc != 0) 11872 return (rc); 11873 11874 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11875 addr = mr->addr; 11876 remaining = mr->len; 11877 dst = (void *)mr->data; 11878 11879 while (remaining) { 11880 n = min(remaining, MAX_READ_BUF_SIZE); 11881 mtx_lock(&sc->reg_lock); 11882 if (hw_off_limits(sc)) 11883 rc = ENXIO; 11884 else 11885 read_via_memwin(sc, 2, addr, buf, n); 11886 mtx_unlock(&sc->reg_lock); 11887 if (rc != 0) 11888 break; 11889 11890 rc = copyout(buf, dst, n); 11891 if (rc != 0) 11892 break; 11893 11894 dst += n; 11895 remaining -= n; 11896 addr += n; 11897 } 11898 11899 free(buf, M_CXGBE); 11900 return (rc); 11901 } 11902 #undef MAX_READ_BUF_SIZE 11903 11904 static int 11905 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11906 { 11907 int rc; 11908 11909 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11910 return (EINVAL); 11911 11912 if (i2cd->len > sizeof(i2cd->data)) 11913 return (EFBIG); 11914 11915 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11916 if (rc) 11917 return (rc); 11918 if (hw_off_limits(sc)) 11919 rc = ENXIO; 11920 else 11921 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11922 i2cd->offset, i2cd->len, &i2cd->data[0]); 11923 end_synchronized_op(sc, 0); 11924 11925 return (rc); 11926 } 11927 11928 static int 11929 clear_stats(struct adapter *sc, u_int port_id) 11930 { 11931 int i, v, chan_map; 11932 struct port_info *pi; 11933 struct vi_info *vi; 11934 struct sge_rxq *rxq; 11935 struct sge_txq *txq; 11936 struct sge_wrq *wrq; 11937 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11938 struct sge_ofld_txq *ofld_txq; 11939 #endif 11940 #ifdef TCP_OFFLOAD 11941 struct sge_ofld_rxq *ofld_rxq; 11942 #endif 11943 11944 if (port_id >= sc->params.nports) 11945 return (EINVAL); 11946 pi = sc->port[port_id]; 11947 if (pi == NULL) 11948 return (EIO); 11949 11950 mtx_lock(&sc->reg_lock); 11951 if (!hw_off_limits(sc)) { 11952 /* MAC stats */ 11953 t4_clr_port_stats(sc, pi->tx_chan); 11954 if (is_t6(sc)) { 11955 if (pi->fcs_reg != -1) 11956 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11957 else 11958 pi->stats.rx_fcs_err = 0; 11959 } 11960 for_each_vi(pi, v, vi) { 11961 if (vi->flags & VI_INIT_DONE) 11962 t4_clr_vi_stats(sc, vi->vin); 11963 } 11964 chan_map = pi->rx_e_chan_map; 11965 v = 0; /* reuse */ 11966 while (chan_map) { 11967 i = ffs(chan_map) - 1; 11968 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11969 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11970 chan_map &= ~(1 << i); 11971 } 11972 } 11973 mtx_unlock(&sc->reg_lock); 11974 pi->tx_parse_error = 0; 11975 pi->tnl_cong_drops = 0; 11976 11977 /* 11978 * Since this command accepts a port, clear stats for 11979 * all VIs on this port. 11980 */ 11981 for_each_vi(pi, v, vi) { 11982 if (vi->flags & VI_INIT_DONE) { 11983 11984 for_each_rxq(vi, i, rxq) { 11985 #if defined(INET) || defined(INET6) 11986 rxq->lro.lro_queued = 0; 11987 rxq->lro.lro_flushed = 0; 11988 #endif 11989 rxq->rxcsum = 0; 11990 rxq->vlan_extraction = 0; 11991 rxq->vxlan_rxcsum = 0; 11992 11993 rxq->fl.cl_allocated = 0; 11994 rxq->fl.cl_recycled = 0; 11995 rxq->fl.cl_fast_recycled = 0; 11996 } 11997 11998 for_each_txq(vi, i, txq) { 11999 txq->txcsum = 0; 12000 txq->tso_wrs = 0; 12001 txq->vlan_insertion = 0; 12002 txq->imm_wrs = 0; 12003 txq->sgl_wrs = 0; 12004 txq->txpkt_wrs = 0; 12005 txq->txpkts0_wrs = 0; 12006 txq->txpkts1_wrs = 0; 12007 txq->txpkts0_pkts = 0; 12008 txq->txpkts1_pkts = 0; 12009 txq->txpkts_flush = 0; 12010 txq->raw_wrs = 0; 12011 txq->vxlan_tso_wrs = 0; 12012 txq->vxlan_txcsum = 0; 12013 txq->kern_tls_records = 0; 12014 txq->kern_tls_short = 0; 12015 txq->kern_tls_partial = 0; 12016 txq->kern_tls_full = 0; 12017 txq->kern_tls_octets = 0; 12018 txq->kern_tls_waste = 0; 12019 txq->kern_tls_options = 0; 12020 txq->kern_tls_header = 0; 12021 txq->kern_tls_fin = 0; 12022 txq->kern_tls_fin_short = 0; 12023 txq->kern_tls_cbc = 0; 12024 txq->kern_tls_gcm = 0; 12025 mp_ring_reset_stats(txq->r); 12026 } 12027 12028 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12029 for_each_ofld_txq(vi, i, ofld_txq) { 12030 ofld_txq->wrq.tx_wrs_direct = 0; 12031 ofld_txq->wrq.tx_wrs_copied = 0; 12032 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12033 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12034 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12035 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12036 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12037 } 12038 #endif 12039 #ifdef TCP_OFFLOAD 12040 for_each_ofld_rxq(vi, i, ofld_rxq) { 12041 ofld_rxq->fl.cl_allocated = 0; 12042 ofld_rxq->fl.cl_recycled = 0; 12043 ofld_rxq->fl.cl_fast_recycled = 0; 12044 counter_u64_zero( 12045 ofld_rxq->rx_iscsi_ddp_setup_ok); 12046 counter_u64_zero( 12047 ofld_rxq->rx_iscsi_ddp_setup_error); 12048 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12049 ofld_rxq->rx_iscsi_ddp_octets = 0; 12050 ofld_rxq->rx_iscsi_fl_pdus = 0; 12051 ofld_rxq->rx_iscsi_fl_octets = 0; 12052 ofld_rxq->rx_toe_tls_records = 0; 12053 ofld_rxq->rx_toe_tls_octets = 0; 12054 } 12055 #endif 12056 12057 if (IS_MAIN_VI(vi)) { 12058 wrq = &sc->sge.ctrlq[pi->port_id]; 12059 wrq->tx_wrs_direct = 0; 12060 wrq->tx_wrs_copied = 0; 12061 } 12062 } 12063 } 12064 12065 return (0); 12066 } 12067 12068 static int 12069 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12070 { 12071 #ifdef INET6 12072 struct in6_addr in6; 12073 12074 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12075 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12076 return (0); 12077 else 12078 return (EIO); 12079 #else 12080 return (ENOTSUP); 12081 #endif 12082 } 12083 12084 static int 12085 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12086 { 12087 #ifdef INET6 12088 struct in6_addr in6; 12089 12090 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12091 return (t4_release_clip_addr(sc, &in6)); 12092 #else 12093 return (ENOTSUP); 12094 #endif 12095 } 12096 12097 int 12098 t4_os_find_pci_capability(struct adapter *sc, int cap) 12099 { 12100 int i; 12101 12102 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12103 } 12104 12105 int 12106 t4_os_pci_save_state(struct adapter *sc) 12107 { 12108 device_t dev; 12109 struct pci_devinfo *dinfo; 12110 12111 dev = sc->dev; 12112 dinfo = device_get_ivars(dev); 12113 12114 pci_cfg_save(dev, dinfo, 0); 12115 return (0); 12116 } 12117 12118 int 12119 t4_os_pci_restore_state(struct adapter *sc) 12120 { 12121 device_t dev; 12122 struct pci_devinfo *dinfo; 12123 12124 dev = sc->dev; 12125 dinfo = device_get_ivars(dev); 12126 12127 pci_cfg_restore(dev, dinfo); 12128 return (0); 12129 } 12130 12131 void 12132 t4_os_portmod_changed(struct port_info *pi) 12133 { 12134 struct adapter *sc = pi->adapter; 12135 struct vi_info *vi; 12136 struct ifnet *ifp; 12137 static const char *mod_str[] = { 12138 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12139 }; 12140 12141 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12142 ("%s: port_type %u", __func__, pi->port_type)); 12143 12144 vi = &pi->vi[0]; 12145 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12146 PORT_LOCK(pi); 12147 build_medialist(pi); 12148 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12149 fixup_link_config(pi); 12150 apply_link_config(pi); 12151 } 12152 PORT_UNLOCK(pi); 12153 end_synchronized_op(sc, LOCK_HELD); 12154 } 12155 12156 ifp = vi->ifp; 12157 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12158 if_printf(ifp, "transceiver unplugged.\n"); 12159 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12160 if_printf(ifp, "unknown transceiver inserted.\n"); 12161 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12162 if_printf(ifp, "unsupported transceiver inserted.\n"); 12163 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12164 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12165 port_top_speed(pi), mod_str[pi->mod_type]); 12166 } else { 12167 if_printf(ifp, "transceiver (type %d) inserted.\n", 12168 pi->mod_type); 12169 } 12170 } 12171 12172 void 12173 t4_os_link_changed(struct port_info *pi) 12174 { 12175 struct vi_info *vi; 12176 struct ifnet *ifp; 12177 struct link_config *lc = &pi->link_cfg; 12178 struct adapter *sc = pi->adapter; 12179 int v; 12180 12181 PORT_LOCK_ASSERT_OWNED(pi); 12182 12183 if (is_t6(sc)) { 12184 if (lc->link_ok) { 12185 if (lc->speed > 25000 || 12186 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12187 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12188 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12189 } else { 12190 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12191 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12192 } 12193 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12194 pi->stats.rx_fcs_err = 0; 12195 } else { 12196 pi->fcs_reg = -1; 12197 } 12198 } else { 12199 MPASS(pi->fcs_reg != -1); 12200 MPASS(pi->fcs_base == 0); 12201 } 12202 12203 for_each_vi(pi, v, vi) { 12204 ifp = vi->ifp; 12205 if (ifp == NULL) 12206 continue; 12207 12208 if (lc->link_ok) { 12209 ifp->if_baudrate = IF_Mbps(lc->speed); 12210 if_link_state_change(ifp, LINK_STATE_UP); 12211 } else { 12212 if_link_state_change(ifp, LINK_STATE_DOWN); 12213 } 12214 } 12215 } 12216 12217 void 12218 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12219 { 12220 struct adapter *sc; 12221 12222 sx_slock(&t4_list_lock); 12223 SLIST_FOREACH(sc, &t4_list, link) { 12224 /* 12225 * func should not make any assumptions about what state sc is 12226 * in - the only guarantee is that sc->sc_lock is a valid lock. 12227 */ 12228 func(sc, arg); 12229 } 12230 sx_sunlock(&t4_list_lock); 12231 } 12232 12233 static int 12234 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12235 struct thread *td) 12236 { 12237 int rc; 12238 struct adapter *sc = dev->si_drv1; 12239 12240 rc = priv_check(td, PRIV_DRIVER); 12241 if (rc != 0) 12242 return (rc); 12243 12244 switch (cmd) { 12245 case CHELSIO_T4_GETREG: { 12246 struct t4_reg *edata = (struct t4_reg *)data; 12247 12248 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12249 return (EFAULT); 12250 12251 mtx_lock(&sc->reg_lock); 12252 if (hw_off_limits(sc)) 12253 rc = ENXIO; 12254 else if (edata->size == 4) 12255 edata->val = t4_read_reg(sc, edata->addr); 12256 else if (edata->size == 8) 12257 edata->val = t4_read_reg64(sc, edata->addr); 12258 else 12259 rc = EINVAL; 12260 mtx_unlock(&sc->reg_lock); 12261 12262 break; 12263 } 12264 case CHELSIO_T4_SETREG: { 12265 struct t4_reg *edata = (struct t4_reg *)data; 12266 12267 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12268 return (EFAULT); 12269 12270 mtx_lock(&sc->reg_lock); 12271 if (hw_off_limits(sc)) 12272 rc = ENXIO; 12273 else if (edata->size == 4) { 12274 if (edata->val & 0xffffffff00000000) 12275 rc = EINVAL; 12276 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12277 } else if (edata->size == 8) 12278 t4_write_reg64(sc, edata->addr, edata->val); 12279 else 12280 rc = EINVAL; 12281 mtx_unlock(&sc->reg_lock); 12282 12283 break; 12284 } 12285 case CHELSIO_T4_REGDUMP: { 12286 struct t4_regdump *regs = (struct t4_regdump *)data; 12287 int reglen = t4_get_regs_len(sc); 12288 uint8_t *buf; 12289 12290 if (regs->len < reglen) { 12291 regs->len = reglen; /* hint to the caller */ 12292 return (ENOBUFS); 12293 } 12294 12295 regs->len = reglen; 12296 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12297 mtx_lock(&sc->reg_lock); 12298 if (hw_off_limits(sc)) 12299 rc = ENXIO; 12300 else 12301 get_regs(sc, regs, buf); 12302 mtx_unlock(&sc->reg_lock); 12303 if (rc == 0) 12304 rc = copyout(buf, regs->data, reglen); 12305 free(buf, M_CXGBE); 12306 break; 12307 } 12308 case CHELSIO_T4_GET_FILTER_MODE: 12309 rc = get_filter_mode(sc, (uint32_t *)data); 12310 break; 12311 case CHELSIO_T4_SET_FILTER_MODE: 12312 rc = set_filter_mode(sc, *(uint32_t *)data); 12313 break; 12314 case CHELSIO_T4_SET_FILTER_MASK: 12315 rc = set_filter_mask(sc, *(uint32_t *)data); 12316 break; 12317 case CHELSIO_T4_GET_FILTER: 12318 rc = get_filter(sc, (struct t4_filter *)data); 12319 break; 12320 case CHELSIO_T4_SET_FILTER: 12321 rc = set_filter(sc, (struct t4_filter *)data); 12322 break; 12323 case CHELSIO_T4_DEL_FILTER: 12324 rc = del_filter(sc, (struct t4_filter *)data); 12325 break; 12326 case CHELSIO_T4_GET_SGE_CONTEXT: 12327 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12328 break; 12329 case CHELSIO_T4_LOAD_FW: 12330 rc = load_fw(sc, (struct t4_data *)data); 12331 break; 12332 case CHELSIO_T4_GET_MEM: 12333 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12334 break; 12335 case CHELSIO_T4_GET_I2C: 12336 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12337 break; 12338 case CHELSIO_T4_CLEAR_STATS: 12339 rc = clear_stats(sc, *(uint32_t *)data); 12340 break; 12341 case CHELSIO_T4_SCHED_CLASS: 12342 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12343 break; 12344 case CHELSIO_T4_SCHED_QUEUE: 12345 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12346 break; 12347 case CHELSIO_T4_GET_TRACER: 12348 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12349 break; 12350 case CHELSIO_T4_SET_TRACER: 12351 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12352 break; 12353 case CHELSIO_T4_LOAD_CFG: 12354 rc = load_cfg(sc, (struct t4_data *)data); 12355 break; 12356 case CHELSIO_T4_LOAD_BOOT: 12357 rc = load_boot(sc, (struct t4_bootrom *)data); 12358 break; 12359 case CHELSIO_T4_LOAD_BOOTCFG: 12360 rc = load_bootcfg(sc, (struct t4_data *)data); 12361 break; 12362 case CHELSIO_T4_CUDBG_DUMP: 12363 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12364 break; 12365 case CHELSIO_T4_SET_OFLD_POLICY: 12366 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12367 break; 12368 case CHELSIO_T4_HOLD_CLIP_ADDR: 12369 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12370 break; 12371 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12372 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12373 break; 12374 default: 12375 rc = ENOTTY; 12376 } 12377 12378 return (rc); 12379 } 12380 12381 #ifdef TCP_OFFLOAD 12382 static int 12383 toe_capability(struct vi_info *vi, bool enable) 12384 { 12385 int rc; 12386 struct port_info *pi = vi->pi; 12387 struct adapter *sc = pi->adapter; 12388 12389 ASSERT_SYNCHRONIZED_OP(sc); 12390 12391 if (!is_offload(sc)) 12392 return (ENODEV); 12393 if (hw_off_limits(sc)) 12394 return (ENXIO); 12395 12396 if (enable) { 12397 #ifdef KERN_TLS 12398 if (sc->flags & KERN_TLS_ON) { 12399 int i, j, n; 12400 struct port_info *p; 12401 struct vi_info *v; 12402 12403 /* 12404 * Reconfigure hardware for TOE if TXTLS is not enabled 12405 * on any ifnet. 12406 */ 12407 n = 0; 12408 for_each_port(sc, i) { 12409 p = sc->port[i]; 12410 for_each_vi(p, j, v) { 12411 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12412 CH_WARN(sc, 12413 "%s has NIC TLS enabled.\n", 12414 device_get_nameunit(v->dev)); 12415 n++; 12416 } 12417 } 12418 } 12419 if (n > 0) { 12420 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12421 "associated with this adapter before " 12422 "trying to enable TOE.\n"); 12423 return (EAGAIN); 12424 } 12425 rc = t4_config_kern_tls(sc, false); 12426 if (rc) 12427 return (rc); 12428 } 12429 #endif 12430 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12431 /* TOE is already enabled. */ 12432 return (0); 12433 } 12434 12435 /* 12436 * We need the port's queues around so that we're able to send 12437 * and receive CPLs to/from the TOE even if the ifnet for this 12438 * port has never been UP'd administratively. 12439 */ 12440 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12441 return (rc); 12442 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12443 ((rc = vi_init(&pi->vi[0])) != 0)) 12444 return (rc); 12445 12446 if (isset(&sc->offload_map, pi->port_id)) { 12447 /* TOE is enabled on another VI of this port. */ 12448 pi->uld_vis++; 12449 return (0); 12450 } 12451 12452 if (!uld_active(sc, ULD_TOM)) { 12453 rc = t4_activate_uld(sc, ULD_TOM); 12454 if (rc == EAGAIN) { 12455 log(LOG_WARNING, 12456 "You must kldload t4_tom.ko before trying " 12457 "to enable TOE on a cxgbe interface.\n"); 12458 } 12459 if (rc != 0) 12460 return (rc); 12461 KASSERT(sc->tom_softc != NULL, 12462 ("%s: TOM activated but softc NULL", __func__)); 12463 KASSERT(uld_active(sc, ULD_TOM), 12464 ("%s: TOM activated but flag not set", __func__)); 12465 } 12466 12467 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12468 if (!uld_active(sc, ULD_IWARP)) 12469 (void) t4_activate_uld(sc, ULD_IWARP); 12470 if (!uld_active(sc, ULD_ISCSI)) 12471 (void) t4_activate_uld(sc, ULD_ISCSI); 12472 12473 pi->uld_vis++; 12474 setbit(&sc->offload_map, pi->port_id); 12475 } else { 12476 pi->uld_vis--; 12477 12478 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12479 return (0); 12480 12481 KASSERT(uld_active(sc, ULD_TOM), 12482 ("%s: TOM never initialized?", __func__)); 12483 clrbit(&sc->offload_map, pi->port_id); 12484 } 12485 12486 return (0); 12487 } 12488 12489 /* 12490 * Add an upper layer driver to the global list. 12491 */ 12492 int 12493 t4_register_uld(struct uld_info *ui) 12494 { 12495 int rc = 0; 12496 struct uld_info *u; 12497 12498 sx_xlock(&t4_uld_list_lock); 12499 SLIST_FOREACH(u, &t4_uld_list, link) { 12500 if (u->uld_id == ui->uld_id) { 12501 rc = EEXIST; 12502 goto done; 12503 } 12504 } 12505 12506 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12507 ui->refcount = 0; 12508 done: 12509 sx_xunlock(&t4_uld_list_lock); 12510 return (rc); 12511 } 12512 12513 int 12514 t4_unregister_uld(struct uld_info *ui) 12515 { 12516 int rc = EINVAL; 12517 struct uld_info *u; 12518 12519 sx_xlock(&t4_uld_list_lock); 12520 12521 SLIST_FOREACH(u, &t4_uld_list, link) { 12522 if (u == ui) { 12523 if (ui->refcount > 0) { 12524 rc = EBUSY; 12525 goto done; 12526 } 12527 12528 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12529 rc = 0; 12530 goto done; 12531 } 12532 } 12533 done: 12534 sx_xunlock(&t4_uld_list_lock); 12535 return (rc); 12536 } 12537 12538 int 12539 t4_activate_uld(struct adapter *sc, int id) 12540 { 12541 int rc; 12542 struct uld_info *ui; 12543 12544 ASSERT_SYNCHRONIZED_OP(sc); 12545 12546 if (id < 0 || id > ULD_MAX) 12547 return (EINVAL); 12548 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12549 12550 sx_slock(&t4_uld_list_lock); 12551 12552 SLIST_FOREACH(ui, &t4_uld_list, link) { 12553 if (ui->uld_id == id) { 12554 if (!(sc->flags & FULL_INIT_DONE)) { 12555 rc = adapter_init(sc); 12556 if (rc != 0) 12557 break; 12558 } 12559 12560 rc = ui->activate(sc); 12561 if (rc == 0) { 12562 setbit(&sc->active_ulds, id); 12563 ui->refcount++; 12564 } 12565 break; 12566 } 12567 } 12568 12569 sx_sunlock(&t4_uld_list_lock); 12570 12571 return (rc); 12572 } 12573 12574 int 12575 t4_deactivate_uld(struct adapter *sc, int id) 12576 { 12577 int rc; 12578 struct uld_info *ui; 12579 12580 ASSERT_SYNCHRONIZED_OP(sc); 12581 12582 if (id < 0 || id > ULD_MAX) 12583 return (EINVAL); 12584 rc = ENXIO; 12585 12586 sx_slock(&t4_uld_list_lock); 12587 12588 SLIST_FOREACH(ui, &t4_uld_list, link) { 12589 if (ui->uld_id == id) { 12590 rc = ui->deactivate(sc); 12591 if (rc == 0) { 12592 clrbit(&sc->active_ulds, id); 12593 ui->refcount--; 12594 } 12595 break; 12596 } 12597 } 12598 12599 sx_sunlock(&t4_uld_list_lock); 12600 12601 return (rc); 12602 } 12603 12604 static int 12605 t4_deactivate_all_uld(struct adapter *sc) 12606 { 12607 int rc; 12608 struct uld_info *ui; 12609 12610 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12611 if (rc != 0) 12612 return (ENXIO); 12613 12614 sx_slock(&t4_uld_list_lock); 12615 12616 SLIST_FOREACH(ui, &t4_uld_list, link) { 12617 if (isset(&sc->active_ulds, ui->uld_id)) { 12618 rc = ui->deactivate(sc); 12619 if (rc != 0) 12620 break; 12621 clrbit(&sc->active_ulds, ui->uld_id); 12622 ui->refcount--; 12623 } 12624 } 12625 12626 sx_sunlock(&t4_uld_list_lock); 12627 end_synchronized_op(sc, 0); 12628 12629 return (rc); 12630 } 12631 12632 static void 12633 t4_async_event(struct adapter *sc) 12634 { 12635 struct uld_info *ui; 12636 12637 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12638 return; 12639 sx_slock(&t4_uld_list_lock); 12640 SLIST_FOREACH(ui, &t4_uld_list, link) { 12641 if (ui->uld_id == ULD_IWARP) { 12642 ui->async_event(sc); 12643 break; 12644 } 12645 } 12646 sx_sunlock(&t4_uld_list_lock); 12647 end_synchronized_op(sc, 0); 12648 } 12649 12650 int 12651 uld_active(struct adapter *sc, int uld_id) 12652 { 12653 12654 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12655 12656 return (isset(&sc->active_ulds, uld_id)); 12657 } 12658 #endif 12659 12660 #ifdef KERN_TLS 12661 static int 12662 ktls_capability(struct adapter *sc, bool enable) 12663 { 12664 ASSERT_SYNCHRONIZED_OP(sc); 12665 12666 if (!is_ktls(sc)) 12667 return (ENODEV); 12668 if (hw_off_limits(sc)) 12669 return (ENXIO); 12670 12671 if (enable) { 12672 if (sc->flags & KERN_TLS_ON) 12673 return (0); /* already on */ 12674 if (sc->offload_map != 0) { 12675 CH_WARN(sc, 12676 "Disable TOE on all interfaces associated with " 12677 "this adapter before trying to enable NIC TLS.\n"); 12678 return (EAGAIN); 12679 } 12680 return (t4_config_kern_tls(sc, true)); 12681 } else { 12682 /* 12683 * Nothing to do for disable. If TOE is enabled sometime later 12684 * then toe_capability will reconfigure the hardware. 12685 */ 12686 return (0); 12687 } 12688 } 12689 #endif 12690 12691 /* 12692 * t = ptr to tunable. 12693 * nc = number of CPUs. 12694 * c = compiled in default for that tunable. 12695 */ 12696 static void 12697 calculate_nqueues(int *t, int nc, const int c) 12698 { 12699 int nq; 12700 12701 if (*t > 0) 12702 return; 12703 nq = *t < 0 ? -*t : c; 12704 *t = min(nc, nq); 12705 } 12706 12707 /* 12708 * Come up with reasonable defaults for some of the tunables, provided they're 12709 * not set by the user (in which case we'll use the values as is). 12710 */ 12711 static void 12712 tweak_tunables(void) 12713 { 12714 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12715 12716 if (t4_ntxq < 1) { 12717 #ifdef RSS 12718 t4_ntxq = rss_getnumbuckets(); 12719 #else 12720 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12721 #endif 12722 } 12723 12724 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12725 12726 if (t4_nrxq < 1) { 12727 #ifdef RSS 12728 t4_nrxq = rss_getnumbuckets(); 12729 #else 12730 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12731 #endif 12732 } 12733 12734 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12735 12736 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12737 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12738 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12739 #endif 12740 #ifdef TCP_OFFLOAD 12741 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12742 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12743 #endif 12744 12745 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12746 if (t4_toecaps_allowed == -1) 12747 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12748 #else 12749 if (t4_toecaps_allowed == -1) 12750 t4_toecaps_allowed = 0; 12751 #endif 12752 12753 #ifdef TCP_OFFLOAD 12754 if (t4_rdmacaps_allowed == -1) { 12755 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12756 FW_CAPS_CONFIG_RDMA_RDMAC; 12757 } 12758 12759 if (t4_iscsicaps_allowed == -1) { 12760 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12761 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12762 FW_CAPS_CONFIG_ISCSI_T10DIF; 12763 } 12764 12765 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12766 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12767 12768 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12769 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12770 12771 if (t4_toe_tls_rx_timeout < 0) 12772 t4_toe_tls_rx_timeout = 0; 12773 #else 12774 if (t4_rdmacaps_allowed == -1) 12775 t4_rdmacaps_allowed = 0; 12776 12777 if (t4_iscsicaps_allowed == -1) 12778 t4_iscsicaps_allowed = 0; 12779 #endif 12780 12781 #ifdef DEV_NETMAP 12782 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12783 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12784 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12785 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12786 #endif 12787 12788 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12789 t4_tmr_idx = TMR_IDX; 12790 12791 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12792 t4_pktc_idx = PKTC_IDX; 12793 12794 if (t4_qsize_txq < 128) 12795 t4_qsize_txq = 128; 12796 12797 if (t4_qsize_rxq < 128) 12798 t4_qsize_rxq = 128; 12799 while (t4_qsize_rxq & 7) 12800 t4_qsize_rxq++; 12801 12802 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12803 12804 /* 12805 * Number of VIs to create per-port. The first VI is the "main" regular 12806 * VI for the port. The rest are additional virtual interfaces on the 12807 * same physical port. Note that the main VI does not have native 12808 * netmap support but the extra VIs do. 12809 * 12810 * Limit the number of VIs per port to the number of available 12811 * MAC addresses per port. 12812 */ 12813 if (t4_num_vis < 1) 12814 t4_num_vis = 1; 12815 if (t4_num_vis > nitems(vi_mac_funcs)) { 12816 t4_num_vis = nitems(vi_mac_funcs); 12817 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12818 } 12819 12820 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12821 pcie_relaxed_ordering = 1; 12822 #if defined(__i386__) || defined(__amd64__) 12823 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12824 pcie_relaxed_ordering = 0; 12825 #endif 12826 } 12827 } 12828 12829 #ifdef DDB 12830 static void 12831 t4_dump_tcb(struct adapter *sc, int tid) 12832 { 12833 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12834 12835 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12836 save = t4_read_reg(sc, reg); 12837 base = sc->memwin[2].mw_base; 12838 12839 /* Dump TCB for the tid */ 12840 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12841 tcb_addr += tid * TCB_SIZE; 12842 12843 if (is_t4(sc)) { 12844 pf = 0; 12845 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12846 } else { 12847 pf = V_PFNUM(sc->pf); 12848 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12849 } 12850 t4_write_reg(sc, reg, win_pos | pf); 12851 t4_read_reg(sc, reg); 12852 12853 off = tcb_addr - win_pos; 12854 for (i = 0; i < 4; i++) { 12855 uint32_t buf[8]; 12856 for (j = 0; j < 8; j++, off += 4) 12857 buf[j] = htonl(t4_read_reg(sc, base + off)); 12858 12859 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12860 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12861 buf[7]); 12862 } 12863 12864 t4_write_reg(sc, reg, save); 12865 t4_read_reg(sc, reg); 12866 } 12867 12868 static void 12869 t4_dump_devlog(struct adapter *sc) 12870 { 12871 struct devlog_params *dparams = &sc->params.devlog; 12872 struct fw_devlog_e e; 12873 int i, first, j, m, nentries, rc; 12874 uint64_t ftstamp = UINT64_MAX; 12875 12876 if (dparams->start == 0) { 12877 db_printf("devlog params not valid\n"); 12878 return; 12879 } 12880 12881 nentries = dparams->size / sizeof(struct fw_devlog_e); 12882 m = fwmtype_to_hwmtype(dparams->memtype); 12883 12884 /* Find the first entry. */ 12885 first = -1; 12886 for (i = 0; i < nentries && !db_pager_quit; i++) { 12887 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12888 sizeof(e), (void *)&e); 12889 if (rc != 0) 12890 break; 12891 12892 if (e.timestamp == 0) 12893 break; 12894 12895 e.timestamp = be64toh(e.timestamp); 12896 if (e.timestamp < ftstamp) { 12897 ftstamp = e.timestamp; 12898 first = i; 12899 } 12900 } 12901 12902 if (first == -1) 12903 return; 12904 12905 i = first; 12906 do { 12907 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12908 sizeof(e), (void *)&e); 12909 if (rc != 0) 12910 return; 12911 12912 if (e.timestamp == 0) 12913 return; 12914 12915 e.timestamp = be64toh(e.timestamp); 12916 e.seqno = be32toh(e.seqno); 12917 for (j = 0; j < 8; j++) 12918 e.params[j] = be32toh(e.params[j]); 12919 12920 db_printf("%10d %15ju %8s %8s ", 12921 e.seqno, e.timestamp, 12922 (e.level < nitems(devlog_level_strings) ? 12923 devlog_level_strings[e.level] : "UNKNOWN"), 12924 (e.facility < nitems(devlog_facility_strings) ? 12925 devlog_facility_strings[e.facility] : "UNKNOWN")); 12926 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12927 e.params[3], e.params[4], e.params[5], e.params[6], 12928 e.params[7]); 12929 12930 if (++i == nentries) 12931 i = 0; 12932 } while (i != first && !db_pager_quit); 12933 } 12934 12935 static struct db_command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12936 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12937 12938 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12939 { 12940 device_t dev; 12941 int t; 12942 bool valid; 12943 12944 valid = false; 12945 t = db_read_token(); 12946 if (t == tIDENT) { 12947 dev = device_lookup_by_name(db_tok_string); 12948 valid = true; 12949 } 12950 db_skip_to_eol(); 12951 if (!valid) { 12952 db_printf("usage: show t4 devlog <nexus>\n"); 12953 return; 12954 } 12955 12956 if (dev == NULL) { 12957 db_printf("device not found\n"); 12958 return; 12959 } 12960 12961 t4_dump_devlog(device_get_softc(dev)); 12962 } 12963 12964 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12965 { 12966 device_t dev; 12967 int radix, tid, t; 12968 bool valid; 12969 12970 valid = false; 12971 radix = db_radix; 12972 db_radix = 10; 12973 t = db_read_token(); 12974 if (t == tIDENT) { 12975 dev = device_lookup_by_name(db_tok_string); 12976 t = db_read_token(); 12977 if (t == tNUMBER) { 12978 tid = db_tok_number; 12979 valid = true; 12980 } 12981 } 12982 db_radix = radix; 12983 db_skip_to_eol(); 12984 if (!valid) { 12985 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12986 return; 12987 } 12988 12989 if (dev == NULL) { 12990 db_printf("device not found\n"); 12991 return; 12992 } 12993 if (tid < 0) { 12994 db_printf("invalid tid\n"); 12995 return; 12996 } 12997 12998 t4_dump_tcb(device_get_softc(dev), tid); 12999 } 13000 #endif 13001 13002 static eventhandler_tag vxlan_start_evtag; 13003 static eventhandler_tag vxlan_stop_evtag; 13004 13005 struct vxlan_evargs { 13006 struct ifnet *ifp; 13007 uint16_t port; 13008 }; 13009 13010 static void 13011 enable_vxlan_rx(struct adapter *sc) 13012 { 13013 int i, rc; 13014 struct port_info *pi; 13015 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13016 13017 ASSERT_SYNCHRONIZED_OP(sc); 13018 13019 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13020 F_VXLAN_EN); 13021 for_each_port(sc, i) { 13022 pi = sc->port[i]; 13023 if (pi->vxlan_tcam_entry == true) 13024 continue; 13025 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13026 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13027 true); 13028 if (rc < 0) { 13029 rc = -rc; 13030 CH_ERR(&pi->vi[0], 13031 "failed to add VXLAN TCAM entry: %d.\n", rc); 13032 } else { 13033 MPASS(rc == sc->rawf_base + pi->port_id); 13034 pi->vxlan_tcam_entry = true; 13035 } 13036 } 13037 } 13038 13039 static void 13040 t4_vxlan_start(struct adapter *sc, void *arg) 13041 { 13042 struct vxlan_evargs *v = arg; 13043 13044 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13045 return; 13046 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13047 return; 13048 13049 if (sc->vxlan_refcount == 0) { 13050 sc->vxlan_port = v->port; 13051 sc->vxlan_refcount = 1; 13052 if (!hw_off_limits(sc)) 13053 enable_vxlan_rx(sc); 13054 } else if (sc->vxlan_port == v->port) { 13055 sc->vxlan_refcount++; 13056 } else { 13057 CH_ERR(sc, "VXLAN already configured on port %d; " 13058 "ignoring attempt to configure it on port %d\n", 13059 sc->vxlan_port, v->port); 13060 } 13061 end_synchronized_op(sc, 0); 13062 } 13063 13064 static void 13065 t4_vxlan_stop(struct adapter *sc, void *arg) 13066 { 13067 struct vxlan_evargs *v = arg; 13068 13069 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13070 return; 13071 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13072 return; 13073 13074 /* 13075 * VXLANs may have been configured before the driver was loaded so we 13076 * may see more stops than starts. This is not handled cleanly but at 13077 * least we keep the refcount sane. 13078 */ 13079 if (sc->vxlan_port != v->port) 13080 goto done; 13081 if (sc->vxlan_refcount == 0) { 13082 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13083 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13084 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13085 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13086 done: 13087 end_synchronized_op(sc, 0); 13088 } 13089 13090 static void 13091 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 13092 sa_family_t family, u_int port) 13093 { 13094 struct vxlan_evargs v; 13095 13096 MPASS(family == AF_INET || family == AF_INET6); 13097 v.ifp = ifp; 13098 v.port = port; 13099 13100 t4_iterate(t4_vxlan_start, &v); 13101 } 13102 13103 static void 13104 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 13105 u_int port) 13106 { 13107 struct vxlan_evargs v; 13108 13109 MPASS(family == AF_INET || family == AF_INET6); 13110 v.ifp = ifp; 13111 v.port = port; 13112 13113 t4_iterate(t4_vxlan_stop, &v); 13114 } 13115 13116 13117 static struct sx mlu; /* mod load unload */ 13118 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13119 13120 static int 13121 mod_event(module_t mod, int cmd, void *arg) 13122 { 13123 int rc = 0; 13124 static int loaded = 0; 13125 13126 switch (cmd) { 13127 case MOD_LOAD: 13128 sx_xlock(&mlu); 13129 if (loaded++ == 0) { 13130 t4_sge_modload(); 13131 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13132 t4_filter_rpl, CPL_COOKIE_FILTER); 13133 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13134 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13135 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13136 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13137 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13138 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13139 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13140 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13141 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13142 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13143 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13144 do_smt_write_rpl); 13145 sx_init(&t4_list_lock, "T4/T5 adapters"); 13146 SLIST_INIT(&t4_list); 13147 callout_init(&fatal_callout, 1); 13148 #ifdef TCP_OFFLOAD 13149 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13150 SLIST_INIT(&t4_uld_list); 13151 #endif 13152 #ifdef INET6 13153 t4_clip_modload(); 13154 #endif 13155 #ifdef KERN_TLS 13156 t6_ktls_modload(); 13157 #endif 13158 t4_tracer_modload(); 13159 tweak_tunables(); 13160 vxlan_start_evtag = 13161 EVENTHANDLER_REGISTER(vxlan_start, 13162 t4_vxlan_start_handler, NULL, 13163 EVENTHANDLER_PRI_ANY); 13164 vxlan_stop_evtag = 13165 EVENTHANDLER_REGISTER(vxlan_stop, 13166 t4_vxlan_stop_handler, NULL, 13167 EVENTHANDLER_PRI_ANY); 13168 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13169 taskqueue_thread_enqueue, &reset_tq); 13170 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13171 "t4_rst_thr"); 13172 } 13173 sx_xunlock(&mlu); 13174 break; 13175 13176 case MOD_UNLOAD: 13177 sx_xlock(&mlu); 13178 if (--loaded == 0) { 13179 int tries; 13180 13181 taskqueue_free(reset_tq); 13182 sx_slock(&t4_list_lock); 13183 if (!SLIST_EMPTY(&t4_list)) { 13184 rc = EBUSY; 13185 sx_sunlock(&t4_list_lock); 13186 goto done_unload; 13187 } 13188 #ifdef TCP_OFFLOAD 13189 sx_slock(&t4_uld_list_lock); 13190 if (!SLIST_EMPTY(&t4_uld_list)) { 13191 rc = EBUSY; 13192 sx_sunlock(&t4_uld_list_lock); 13193 sx_sunlock(&t4_list_lock); 13194 goto done_unload; 13195 } 13196 #endif 13197 tries = 0; 13198 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13199 uprintf("%ju clusters with custom free routine " 13200 "still is use.\n", t4_sge_extfree_refs()); 13201 pause("t4unload", 2 * hz); 13202 } 13203 #ifdef TCP_OFFLOAD 13204 sx_sunlock(&t4_uld_list_lock); 13205 #endif 13206 sx_sunlock(&t4_list_lock); 13207 13208 if (t4_sge_extfree_refs() == 0) { 13209 EVENTHANDLER_DEREGISTER(vxlan_start, 13210 vxlan_start_evtag); 13211 EVENTHANDLER_DEREGISTER(vxlan_stop, 13212 vxlan_stop_evtag); 13213 t4_tracer_modunload(); 13214 #ifdef KERN_TLS 13215 t6_ktls_modunload(); 13216 #endif 13217 #ifdef INET6 13218 t4_clip_modunload(); 13219 #endif 13220 #ifdef TCP_OFFLOAD 13221 sx_destroy(&t4_uld_list_lock); 13222 #endif 13223 sx_destroy(&t4_list_lock); 13224 t4_sge_modunload(); 13225 loaded = 0; 13226 } else { 13227 rc = EBUSY; 13228 loaded++; /* undo earlier decrement */ 13229 } 13230 } 13231 done_unload: 13232 sx_xunlock(&mlu); 13233 break; 13234 } 13235 13236 return (rc); 13237 } 13238 13239 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13240 MODULE_VERSION(t4nex, 1); 13241 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13242 #ifdef DEV_NETMAP 13243 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13244 #endif /* DEV_NETMAP */ 13245 13246 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13247 MODULE_VERSION(t5nex, 1); 13248 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13249 #ifdef DEV_NETMAP 13250 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13251 #endif /* DEV_NETMAP */ 13252 13253 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13254 MODULE_VERSION(t6nex, 1); 13255 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13256 #ifdef DEV_NETMAP 13257 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13258 #endif /* DEV_NETMAP */ 13259 13260 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13261 MODULE_VERSION(cxgbe, 1); 13262 13263 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13264 MODULE_VERSION(cxl, 1); 13265 13266 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13267 MODULE_VERSION(cc, 1); 13268 13269 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13270 MODULE_VERSION(vcxgbe, 1); 13271 13272 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13273 MODULE_VERSION(vcxl, 1); 13274 13275 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13276 MODULE_VERSION(vcc, 1); 13277