1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_clock_gate_on_suspend = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 631 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 632 633 static int t4_tx_vm_wr = 0; 634 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 635 "Use VM work requests to transmit packets."); 636 637 /* 638 * Set to non-zero to enable the attack filter. A packet that matches any of 639 * these conditions will get dropped on ingress: 640 * 1) IP && source address == destination address. 641 * 2) TCP/IP && source address is not a unicast address. 642 * 3) TCP/IP && destination address is not a unicast address. 643 * 4) IP && source address is loopback (127.x.y.z). 644 * 5) IP && destination address is loopback (127.x.y.z). 645 * 6) IPv6 && source address == destination address. 646 * 7) IPv6 && source address is not a unicast address. 647 * 8) IPv6 && source address is loopback (::1/128). 648 * 9) IPv6 && destination address is loopback (::1/128). 649 * 10) IPv6 && source address is unspecified (::/128). 650 * 11) IPv6 && destination address is unspecified (::/128). 651 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 652 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 653 */ 654 static int t4_attack_filter = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 656 &t4_attack_filter, 0, "Drop suspicious traffic"); 657 658 static int t4_drop_ip_fragments = 0; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 660 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 661 662 static int t4_drop_pkts_with_l2_errors = 1; 663 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 664 &t4_drop_pkts_with_l2_errors, 0, 665 "Drop all frames with Layer 2 length or checksum errors"); 666 667 static int t4_drop_pkts_with_l3_errors = 0; 668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 669 &t4_drop_pkts_with_l3_errors, 0, 670 "Drop all frames with IP version, length, or checksum errors"); 671 672 static int t4_drop_pkts_with_l4_errors = 0; 673 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 674 &t4_drop_pkts_with_l4_errors, 0, 675 "Drop all frames with Layer 4 length, checksum, or other errors"); 676 677 #ifdef TCP_OFFLOAD 678 /* 679 * TOE tunables. 680 */ 681 static int t4_cop_managed_offloading = 0; 682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 683 &t4_cop_managed_offloading, 0, 684 "COP (Connection Offload Policy) controls all TOE offload"); 685 #endif 686 687 #ifdef KERN_TLS 688 /* 689 * This enables KERN_TLS for all adapters if set. 690 */ 691 static int t4_kern_tls = 0; 692 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 693 "Enable KERN_TLS mode for T6 adapters"); 694 695 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 696 "cxgbe(4) KERN_TLS parameters"); 697 698 static int t4_tls_inline_keys = 0; 699 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 700 &t4_tls_inline_keys, 0, 701 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 702 "in card memory."); 703 704 static int t4_tls_combo_wrs = 0; 705 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 706 0, "Attempt to combine TCB field updates with TLS record work requests."); 707 #endif 708 709 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 710 static int vi_mac_funcs[] = { 711 FW_VI_FUNC_ETH, 712 FW_VI_FUNC_OFLD, 713 FW_VI_FUNC_IWARP, 714 FW_VI_FUNC_OPENISCSI, 715 FW_VI_FUNC_OPENFCOE, 716 FW_VI_FUNC_FOISCSI, 717 FW_VI_FUNC_FOFCOE, 718 }; 719 720 struct intrs_and_queues { 721 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 722 uint16_t num_vis; /* number of VIs for each port */ 723 uint16_t nirq; /* Total # of vectors */ 724 uint16_t ntxq; /* # of NIC txq's for each port */ 725 uint16_t nrxq; /* # of NIC rxq's for each port */ 726 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 727 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 728 uint16_t nnmtxq; /* # of netmap txq's */ 729 uint16_t nnmrxq; /* # of netmap rxq's */ 730 731 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 732 uint16_t ntxq_vi; /* # of NIC txq's */ 733 uint16_t nrxq_vi; /* # of NIC rxq's */ 734 uint16_t nofldtxq_vi; /* # of TOE txq's */ 735 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 736 uint16_t nnmtxq_vi; /* # of netmap txq's */ 737 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 738 }; 739 740 static void setup_memwin(struct adapter *); 741 static void position_memwin(struct adapter *, int, uint32_t); 742 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 743 static int fwmtype_to_hwmtype(int); 744 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 745 uint32_t *); 746 static int fixup_devlog_params(struct adapter *); 747 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 748 static int contact_firmware(struct adapter *); 749 static int partition_resources(struct adapter *); 750 static int get_params__pre_init(struct adapter *); 751 static int set_params__pre_init(struct adapter *); 752 static int get_params__post_init(struct adapter *); 753 static int set_params__post_init(struct adapter *); 754 static void t4_set_desc(struct adapter *); 755 static bool fixed_ifmedia(struct port_info *); 756 static void build_medialist(struct port_info *); 757 static void init_link_config(struct port_info *); 758 static int fixup_link_config(struct port_info *); 759 static int apply_link_config(struct port_info *); 760 static int cxgbe_init_synchronized(struct vi_info *); 761 static int cxgbe_uninit_synchronized(struct vi_info *); 762 static int adapter_full_init(struct adapter *); 763 static void adapter_full_uninit(struct adapter *); 764 static int vi_full_init(struct vi_info *); 765 static void vi_full_uninit(struct vi_info *); 766 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 767 static void quiesce_txq(struct sge_txq *); 768 static void quiesce_wrq(struct sge_wrq *); 769 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 770 static void quiesce_vi(struct vi_info *); 771 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 772 driver_intr_t *, void *, char *); 773 static int t4_free_irq(struct adapter *, struct irq *); 774 static void t4_init_atid_table(struct adapter *); 775 static void t4_free_atid_table(struct adapter *); 776 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 777 static void vi_refresh_stats(struct vi_info *); 778 static void cxgbe_refresh_stats(struct vi_info *); 779 static void cxgbe_tick(void *); 780 static void vi_tick(void *); 781 static void cxgbe_sysctls(struct port_info *); 782 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 783 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 784 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 785 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 786 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 788 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 789 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 790 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 791 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 792 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 793 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 795 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 796 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 797 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 798 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 799 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 800 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 801 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 802 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 806 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 807 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 808 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 809 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 811 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 813 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 814 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 815 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 817 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 818 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 819 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 820 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 821 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 827 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 828 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 829 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 830 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 831 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 832 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 833 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 834 #ifdef TCP_OFFLOAD 835 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 842 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 843 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 844 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 845 #endif 846 static int get_sge_context(struct adapter *, struct t4_sge_context *); 847 static int load_fw(struct adapter *, struct t4_data *); 848 static int load_cfg(struct adapter *, struct t4_data *); 849 static int load_boot(struct adapter *, struct t4_bootrom *); 850 static int load_bootcfg(struct adapter *, struct t4_data *); 851 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 852 static void free_offload_policy(struct t4_offload_policy *); 853 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 854 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 855 static int read_i2c(struct adapter *, struct t4_i2c_data *); 856 static int clear_stats(struct adapter *, u_int); 857 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 858 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 859 #ifdef TCP_OFFLOAD 860 static int toe_capability(struct vi_info *, bool); 861 static int t4_deactivate_all_uld(struct adapter *); 862 static void t4_async_event(struct adapter *); 863 #endif 864 #ifdef KERN_TLS 865 static int ktls_capability(struct adapter *, bool); 866 #endif 867 static int mod_event(module_t, int, void *); 868 static int notify_siblings(device_t, int); 869 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 870 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 871 static void enable_vxlan_rx(struct adapter *); 872 static void reset_adapter_task(void *, int); 873 static void fatal_error_task(void *, int); 874 static void dump_devlog(struct adapter *); 875 static void dump_cim_regs(struct adapter *); 876 static void dump_cimla(struct adapter *); 877 878 struct { 879 uint16_t device; 880 char *desc; 881 } t4_pciids[] = { 882 {0xa000, "Chelsio Terminator 4 FPGA"}, 883 {0x4400, "Chelsio T440-dbg"}, 884 {0x4401, "Chelsio T420-CR"}, 885 {0x4402, "Chelsio T422-CR"}, 886 {0x4403, "Chelsio T440-CR"}, 887 {0x4404, "Chelsio T420-BCH"}, 888 {0x4405, "Chelsio T440-BCH"}, 889 {0x4406, "Chelsio T440-CH"}, 890 {0x4407, "Chelsio T420-SO"}, 891 {0x4408, "Chelsio T420-CX"}, 892 {0x4409, "Chelsio T420-BT"}, 893 {0x440a, "Chelsio T404-BT"}, 894 {0x440e, "Chelsio T440-LP-CR"}, 895 }, t5_pciids[] = { 896 {0xb000, "Chelsio Terminator 5 FPGA"}, 897 {0x5400, "Chelsio T580-dbg"}, 898 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 899 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 900 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 901 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 902 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 903 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 904 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 905 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 906 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 907 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 908 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 909 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 910 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 911 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 912 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 913 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 914 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 915 916 /* Custom */ 917 {0x5483, "Custom T540-CR"}, 918 {0x5484, "Custom T540-BT"}, 919 }, t6_pciids[] = { 920 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 921 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 922 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 923 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 924 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 925 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 926 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 927 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 928 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 929 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 930 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 931 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 932 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 933 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 934 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 935 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 936 937 /* Custom */ 938 {0x6480, "Custom T6225-CR"}, 939 {0x6481, "Custom T62100-CR"}, 940 {0x6482, "Custom T6225-CR"}, 941 {0x6483, "Custom T62100-CR"}, 942 {0x6484, "Custom T64100-CR"}, 943 {0x6485, "Custom T6240-SO"}, 944 {0x6486, "Custom T6225-SO-CR"}, 945 {0x6487, "Custom T6225-CR"}, 946 }; 947 948 #ifdef TCP_OFFLOAD 949 /* 950 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 951 * be exactly the same for both rxq and ofld_rxq. 952 */ 953 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 954 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 955 #endif 956 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 957 958 static int 959 t4_probe(device_t dev) 960 { 961 int i; 962 uint16_t v = pci_get_vendor(dev); 963 uint16_t d = pci_get_device(dev); 964 uint8_t f = pci_get_function(dev); 965 966 if (v != PCI_VENDOR_ID_CHELSIO) 967 return (ENXIO); 968 969 /* Attach only to PF0 of the FPGA */ 970 if (d == 0xa000 && f != 0) 971 return (ENXIO); 972 973 for (i = 0; i < nitems(t4_pciids); i++) { 974 if (d == t4_pciids[i].device) { 975 device_set_desc(dev, t4_pciids[i].desc); 976 return (BUS_PROBE_DEFAULT); 977 } 978 } 979 980 return (ENXIO); 981 } 982 983 static int 984 t5_probe(device_t dev) 985 { 986 int i; 987 uint16_t v = pci_get_vendor(dev); 988 uint16_t d = pci_get_device(dev); 989 uint8_t f = pci_get_function(dev); 990 991 if (v != PCI_VENDOR_ID_CHELSIO) 992 return (ENXIO); 993 994 /* Attach only to PF0 of the FPGA */ 995 if (d == 0xb000 && f != 0) 996 return (ENXIO); 997 998 for (i = 0; i < nitems(t5_pciids); i++) { 999 if (d == t5_pciids[i].device) { 1000 device_set_desc(dev, t5_pciids[i].desc); 1001 return (BUS_PROBE_DEFAULT); 1002 } 1003 } 1004 1005 return (ENXIO); 1006 } 1007 1008 static int 1009 t6_probe(device_t dev) 1010 { 1011 int i; 1012 uint16_t v = pci_get_vendor(dev); 1013 uint16_t d = pci_get_device(dev); 1014 1015 if (v != PCI_VENDOR_ID_CHELSIO) 1016 return (ENXIO); 1017 1018 for (i = 0; i < nitems(t6_pciids); i++) { 1019 if (d == t6_pciids[i].device) { 1020 device_set_desc(dev, t6_pciids[i].desc); 1021 return (BUS_PROBE_DEFAULT); 1022 } 1023 } 1024 1025 return (ENXIO); 1026 } 1027 1028 static void 1029 t5_attribute_workaround(device_t dev) 1030 { 1031 device_t root_port; 1032 uint32_t v; 1033 1034 /* 1035 * The T5 chips do not properly echo the No Snoop and Relaxed 1036 * Ordering attributes when replying to a TLP from a Root 1037 * Port. As a workaround, find the parent Root Port and 1038 * disable No Snoop and Relaxed Ordering. Note that this 1039 * affects all devices under this root port. 1040 */ 1041 root_port = pci_find_pcie_root_port(dev); 1042 if (root_port == NULL) { 1043 device_printf(dev, "Unable to find parent root port\n"); 1044 return; 1045 } 1046 1047 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1048 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1049 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1050 0) 1051 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1052 device_get_nameunit(root_port)); 1053 } 1054 1055 static const struct devnames devnames[] = { 1056 { 1057 .nexus_name = "t4nex", 1058 .ifnet_name = "cxgbe", 1059 .vi_ifnet_name = "vcxgbe", 1060 .pf03_drv_name = "t4iov", 1061 .vf_nexus_name = "t4vf", 1062 .vf_ifnet_name = "cxgbev" 1063 }, { 1064 .nexus_name = "t5nex", 1065 .ifnet_name = "cxl", 1066 .vi_ifnet_name = "vcxl", 1067 .pf03_drv_name = "t5iov", 1068 .vf_nexus_name = "t5vf", 1069 .vf_ifnet_name = "cxlv" 1070 }, { 1071 .nexus_name = "t6nex", 1072 .ifnet_name = "cc", 1073 .vi_ifnet_name = "vcc", 1074 .pf03_drv_name = "t6iov", 1075 .vf_nexus_name = "t6vf", 1076 .vf_ifnet_name = "ccv" 1077 } 1078 }; 1079 1080 void 1081 t4_init_devnames(struct adapter *sc) 1082 { 1083 int id; 1084 1085 id = chip_id(sc); 1086 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1087 sc->names = &devnames[id - CHELSIO_T4]; 1088 else { 1089 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1090 sc->names = NULL; 1091 } 1092 } 1093 1094 static int 1095 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1096 { 1097 const char *parent, *name; 1098 long value; 1099 int line, unit; 1100 1101 line = 0; 1102 parent = device_get_nameunit(sc->dev); 1103 name = sc->names->ifnet_name; 1104 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1105 if (resource_long_value(name, unit, "port", &value) == 0 && 1106 value == pi->port_id) 1107 return (unit); 1108 } 1109 return (-1); 1110 } 1111 1112 static int 1113 t4_attach(device_t dev) 1114 { 1115 struct adapter *sc; 1116 int rc = 0, i, j, rqidx, tqidx, nports; 1117 struct make_dev_args mda; 1118 struct intrs_and_queues iaq; 1119 struct sge *s; 1120 uint32_t *buf; 1121 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1122 int ofld_tqidx; 1123 #endif 1124 #ifdef TCP_OFFLOAD 1125 int ofld_rqidx; 1126 #endif 1127 #ifdef DEV_NETMAP 1128 int nm_rqidx, nm_tqidx; 1129 #endif 1130 int num_vis; 1131 1132 sc = device_get_softc(dev); 1133 sc->dev = dev; 1134 sysctl_ctx_init(&sc->ctx); 1135 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1136 1137 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1138 t5_attribute_workaround(dev); 1139 pci_enable_busmaster(dev); 1140 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1141 uint32_t v; 1142 1143 pci_set_max_read_req(dev, 4096); 1144 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1145 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1146 if (pcie_relaxed_ordering == 0 && 1147 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1148 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1149 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1150 } else if (pcie_relaxed_ordering == 1 && 1151 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1152 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1153 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1154 } 1155 } 1156 1157 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1158 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1159 sc->traceq = -1; 1160 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1161 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1162 device_get_nameunit(dev)); 1163 1164 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1165 device_get_nameunit(dev)); 1166 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1167 t4_add_adapter(sc); 1168 1169 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1170 TAILQ_INIT(&sc->sfl); 1171 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1172 1173 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1174 1175 sc->policy = NULL; 1176 rw_init(&sc->policy_lock, "connection offload policy"); 1177 1178 callout_init(&sc->ktls_tick, 1); 1179 1180 refcount_init(&sc->vxlan_refcount, 0); 1181 1182 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1183 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1184 1185 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1186 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1187 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1188 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1189 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1190 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1191 1192 rc = t4_map_bars_0_and_4(sc); 1193 if (rc != 0) 1194 goto done; /* error message displayed already */ 1195 1196 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1197 1198 /* Prepare the adapter for operation. */ 1199 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1200 rc = -t4_prep_adapter(sc, buf); 1201 free(buf, M_CXGBE); 1202 if (rc != 0) { 1203 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1204 goto done; 1205 } 1206 1207 /* 1208 * This is the real PF# to which we're attaching. Works from within PCI 1209 * passthrough environments too, where pci_get_function() could return a 1210 * different PF# depending on the passthrough configuration. We need to 1211 * use the real PF# in all our communication with the firmware. 1212 */ 1213 j = t4_read_reg(sc, A_PL_WHOAMI); 1214 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1215 sc->mbox = sc->pf; 1216 1217 t4_init_devnames(sc); 1218 if (sc->names == NULL) { 1219 rc = ENOTSUP; 1220 goto done; /* error message displayed already */ 1221 } 1222 1223 /* 1224 * Do this really early, with the memory windows set up even before the 1225 * character device. The userland tool's register i/o and mem read 1226 * will work even in "recovery mode". 1227 */ 1228 setup_memwin(sc); 1229 if (t4_init_devlog_params(sc, 0) == 0) 1230 fixup_devlog_params(sc); 1231 make_dev_args_init(&mda); 1232 mda.mda_devsw = &t4_cdevsw; 1233 mda.mda_uid = UID_ROOT; 1234 mda.mda_gid = GID_WHEEL; 1235 mda.mda_mode = 0600; 1236 mda.mda_si_drv1 = sc; 1237 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1238 if (rc != 0) 1239 device_printf(dev, "failed to create nexus char device: %d.\n", 1240 rc); 1241 1242 /* Go no further if recovery mode has been requested. */ 1243 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1244 device_printf(dev, "recovery mode.\n"); 1245 goto done; 1246 } 1247 1248 #if defined(__i386__) 1249 if ((cpu_feature & CPUID_CX8) == 0) { 1250 device_printf(dev, "64 bit atomics not available.\n"); 1251 rc = ENOTSUP; 1252 goto done; 1253 } 1254 #endif 1255 1256 /* Contact the firmware and try to become the master driver. */ 1257 rc = contact_firmware(sc); 1258 if (rc != 0) 1259 goto done; /* error message displayed already */ 1260 MPASS(sc->flags & FW_OK); 1261 1262 rc = get_params__pre_init(sc); 1263 if (rc != 0) 1264 goto done; /* error message displayed already */ 1265 1266 if (sc->flags & MASTER_PF) { 1267 rc = partition_resources(sc); 1268 if (rc != 0) 1269 goto done; /* error message displayed already */ 1270 t4_intr_clear(sc); 1271 } 1272 1273 rc = get_params__post_init(sc); 1274 if (rc != 0) 1275 goto done; /* error message displayed already */ 1276 1277 rc = set_params__post_init(sc); 1278 if (rc != 0) 1279 goto done; /* error message displayed already */ 1280 1281 rc = t4_map_bar_2(sc); 1282 if (rc != 0) 1283 goto done; /* error message displayed already */ 1284 1285 rc = t4_create_dma_tag(sc); 1286 if (rc != 0) 1287 goto done; /* error message displayed already */ 1288 1289 /* 1290 * First pass over all the ports - allocate VIs and initialize some 1291 * basic parameters like mac address, port type, etc. 1292 */ 1293 for_each_port(sc, i) { 1294 struct port_info *pi; 1295 1296 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1297 sc->port[i] = pi; 1298 1299 /* These must be set before t4_port_init */ 1300 pi->adapter = sc; 1301 pi->port_id = i; 1302 /* 1303 * XXX: vi[0] is special so we can't delay this allocation until 1304 * pi->nvi's final value is known. 1305 */ 1306 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1307 M_ZERO | M_WAITOK); 1308 1309 /* 1310 * Allocate the "main" VI and initialize parameters 1311 * like mac addr. 1312 */ 1313 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1314 if (rc != 0) { 1315 device_printf(dev, "unable to initialize port %d: %d\n", 1316 i, rc); 1317 free(pi->vi, M_CXGBE); 1318 free(pi, M_CXGBE); 1319 sc->port[i] = NULL; 1320 goto done; 1321 } 1322 1323 if (is_bt(pi->port_type)) 1324 setbit(&sc->bt_map, pi->tx_chan); 1325 else 1326 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1327 1328 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1329 device_get_nameunit(dev), i); 1330 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1331 sc->chan_map[pi->tx_chan] = i; 1332 1333 /* 1334 * The MPS counter for FCS errors doesn't work correctly on the 1335 * T6 so we use the MAC counter here. Which MAC is in use 1336 * depends on the link settings which will be known when the 1337 * link comes up. 1338 */ 1339 if (is_t6(sc)) { 1340 pi->fcs_reg = -1; 1341 } else if (is_t4(sc)) { 1342 pi->fcs_reg = PORT_REG(pi->tx_chan, 1343 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1344 } else { 1345 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1346 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1347 } 1348 pi->fcs_base = 0; 1349 1350 /* All VIs on this port share this media. */ 1351 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1352 cxgbe_media_status); 1353 1354 PORT_LOCK(pi); 1355 init_link_config(pi); 1356 fixup_link_config(pi); 1357 build_medialist(pi); 1358 if (fixed_ifmedia(pi)) 1359 pi->flags |= FIXED_IFMEDIA; 1360 PORT_UNLOCK(pi); 1361 1362 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1363 t4_ifnet_unit(sc, pi)); 1364 if (pi->dev == NULL) { 1365 device_printf(dev, 1366 "failed to add device for port %d.\n", i); 1367 rc = ENXIO; 1368 goto done; 1369 } 1370 pi->vi[0].dev = pi->dev; 1371 device_set_softc(pi->dev, pi); 1372 } 1373 1374 /* 1375 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1376 */ 1377 nports = sc->params.nports; 1378 rc = cfg_itype_and_nqueues(sc, &iaq); 1379 if (rc != 0) 1380 goto done; /* error message displayed already */ 1381 1382 num_vis = iaq.num_vis; 1383 sc->intr_type = iaq.intr_type; 1384 sc->intr_count = iaq.nirq; 1385 1386 s = &sc->sge; 1387 s->nrxq = nports * iaq.nrxq; 1388 s->ntxq = nports * iaq.ntxq; 1389 if (num_vis > 1) { 1390 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1391 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1392 } 1393 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1394 s->neq += nports; /* ctrl queues: 1 per port */ 1395 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1396 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1397 if (is_offload(sc) || is_ethoffload(sc)) { 1398 s->nofldtxq = nports * iaq.nofldtxq; 1399 if (num_vis > 1) 1400 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1401 s->neq += s->nofldtxq; 1402 1403 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1404 M_CXGBE, M_ZERO | M_WAITOK); 1405 } 1406 #endif 1407 #ifdef TCP_OFFLOAD 1408 if (is_offload(sc)) { 1409 s->nofldrxq = nports * iaq.nofldrxq; 1410 if (num_vis > 1) 1411 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1412 s->neq += s->nofldrxq; /* free list */ 1413 s->niq += s->nofldrxq; 1414 1415 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1416 M_CXGBE, M_ZERO | M_WAITOK); 1417 } 1418 #endif 1419 #ifdef DEV_NETMAP 1420 s->nnmrxq = 0; 1421 s->nnmtxq = 0; 1422 if (t4_native_netmap & NN_MAIN_VI) { 1423 s->nnmrxq += nports * iaq.nnmrxq; 1424 s->nnmtxq += nports * iaq.nnmtxq; 1425 } 1426 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1427 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1428 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1429 } 1430 s->neq += s->nnmtxq + s->nnmrxq; 1431 s->niq += s->nnmrxq; 1432 1433 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1434 M_CXGBE, M_ZERO | M_WAITOK); 1435 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1436 M_CXGBE, M_ZERO | M_WAITOK); 1437 #endif 1438 MPASS(s->niq <= s->iqmap_sz); 1439 MPASS(s->neq <= s->eqmap_sz); 1440 1441 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1442 M_ZERO | M_WAITOK); 1443 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1444 M_ZERO | M_WAITOK); 1445 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1446 M_ZERO | M_WAITOK); 1447 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1448 M_ZERO | M_WAITOK); 1449 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1450 M_ZERO | M_WAITOK); 1451 1452 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1453 M_ZERO | M_WAITOK); 1454 1455 t4_init_l2t(sc, M_WAITOK); 1456 t4_init_smt(sc, M_WAITOK); 1457 t4_init_tx_sched(sc); 1458 t4_init_atid_table(sc); 1459 #ifdef RATELIMIT 1460 t4_init_etid_table(sc); 1461 #endif 1462 #ifdef INET6 1463 t4_init_clip_table(sc); 1464 #endif 1465 if (sc->vres.key.size != 0) 1466 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1467 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1468 1469 /* 1470 * Second pass over the ports. This time we know the number of rx and 1471 * tx queues that each port should get. 1472 */ 1473 rqidx = tqidx = 0; 1474 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1475 ofld_tqidx = 0; 1476 #endif 1477 #ifdef TCP_OFFLOAD 1478 ofld_rqidx = 0; 1479 #endif 1480 #ifdef DEV_NETMAP 1481 nm_rqidx = nm_tqidx = 0; 1482 #endif 1483 for_each_port(sc, i) { 1484 struct port_info *pi = sc->port[i]; 1485 struct vi_info *vi; 1486 1487 if (pi == NULL) 1488 continue; 1489 1490 pi->nvi = num_vis; 1491 for_each_vi(pi, j, vi) { 1492 vi->pi = pi; 1493 vi->adapter = sc; 1494 vi->first_intr = -1; 1495 vi->qsize_rxq = t4_qsize_rxq; 1496 vi->qsize_txq = t4_qsize_txq; 1497 1498 vi->first_rxq = rqidx; 1499 vi->first_txq = tqidx; 1500 vi->tmr_idx = t4_tmr_idx; 1501 vi->pktc_idx = t4_pktc_idx; 1502 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1503 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1504 1505 rqidx += vi->nrxq; 1506 tqidx += vi->ntxq; 1507 1508 if (j == 0 && vi->ntxq > 1) 1509 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1510 else 1511 vi->rsrv_noflowq = 0; 1512 1513 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1514 vi->first_ofld_txq = ofld_tqidx; 1515 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1516 ofld_tqidx += vi->nofldtxq; 1517 #endif 1518 #ifdef TCP_OFFLOAD 1519 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1520 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1521 vi->first_ofld_rxq = ofld_rqidx; 1522 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1523 1524 ofld_rqidx += vi->nofldrxq; 1525 #endif 1526 #ifdef DEV_NETMAP 1527 vi->first_nm_rxq = nm_rqidx; 1528 vi->first_nm_txq = nm_tqidx; 1529 if (j == 0) { 1530 vi->nnmrxq = iaq.nnmrxq; 1531 vi->nnmtxq = iaq.nnmtxq; 1532 } else { 1533 vi->nnmrxq = iaq.nnmrxq_vi; 1534 vi->nnmtxq = iaq.nnmtxq_vi; 1535 } 1536 nm_rqidx += vi->nnmrxq; 1537 nm_tqidx += vi->nnmtxq; 1538 #endif 1539 } 1540 } 1541 1542 rc = t4_setup_intr_handlers(sc); 1543 if (rc != 0) { 1544 device_printf(dev, 1545 "failed to setup interrupt handlers: %d\n", rc); 1546 goto done; 1547 } 1548 1549 rc = bus_generic_probe(dev); 1550 if (rc != 0) { 1551 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1552 goto done; 1553 } 1554 1555 /* 1556 * Ensure thread-safe mailbox access (in debug builds). 1557 * 1558 * So far this was the only thread accessing the mailbox but various 1559 * ifnets and sysctls are about to be created and their handlers/ioctls 1560 * will access the mailbox from different threads. 1561 */ 1562 sc->flags |= CHK_MBOX_ACCESS; 1563 1564 rc = bus_generic_attach(dev); 1565 if (rc != 0) { 1566 device_printf(dev, 1567 "failed to attach all child ports: %d\n", rc); 1568 goto done; 1569 } 1570 1571 device_printf(dev, 1572 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1573 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1574 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1575 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1576 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1577 1578 t4_set_desc(sc); 1579 1580 notify_siblings(dev, 0); 1581 1582 done: 1583 if (rc != 0 && sc->cdev) { 1584 /* cdev was created and so cxgbetool works; recover that way. */ 1585 device_printf(dev, 1586 "error during attach, adapter is now in recovery mode.\n"); 1587 rc = 0; 1588 } 1589 1590 if (rc != 0) 1591 t4_detach_common(dev); 1592 else 1593 t4_sysctls(sc); 1594 1595 return (rc); 1596 } 1597 1598 static int 1599 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1600 { 1601 struct adapter *sc; 1602 struct port_info *pi; 1603 int i; 1604 1605 sc = device_get_softc(bus); 1606 for_each_port(sc, i) { 1607 pi = sc->port[i]; 1608 if (pi != NULL && pi->dev == dev) { 1609 sbuf_printf(sb, "port=%d", pi->port_id); 1610 break; 1611 } 1612 } 1613 return (0); 1614 } 1615 1616 static int 1617 t4_ready(device_t dev) 1618 { 1619 struct adapter *sc; 1620 1621 sc = device_get_softc(dev); 1622 if (sc->flags & FW_OK) 1623 return (0); 1624 return (ENXIO); 1625 } 1626 1627 static int 1628 t4_read_port_device(device_t dev, int port, device_t *child) 1629 { 1630 struct adapter *sc; 1631 struct port_info *pi; 1632 1633 sc = device_get_softc(dev); 1634 if (port < 0 || port >= MAX_NPORTS) 1635 return (EINVAL); 1636 pi = sc->port[port]; 1637 if (pi == NULL || pi->dev == NULL) 1638 return (ENXIO); 1639 *child = pi->dev; 1640 return (0); 1641 } 1642 1643 static int 1644 notify_siblings(device_t dev, int detaching) 1645 { 1646 device_t sibling; 1647 int error, i; 1648 1649 error = 0; 1650 for (i = 0; i < PCI_FUNCMAX; i++) { 1651 if (i == pci_get_function(dev)) 1652 continue; 1653 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1654 pci_get_slot(dev), i); 1655 if (sibling == NULL || !device_is_attached(sibling)) 1656 continue; 1657 if (detaching) 1658 error = T4_DETACH_CHILD(sibling); 1659 else 1660 (void)T4_ATTACH_CHILD(sibling); 1661 if (error) 1662 break; 1663 } 1664 return (error); 1665 } 1666 1667 /* 1668 * Idempotent 1669 */ 1670 static int 1671 t4_detach(device_t dev) 1672 { 1673 int rc; 1674 1675 rc = notify_siblings(dev, 1); 1676 if (rc) { 1677 device_printf(dev, 1678 "failed to detach sibling devices: %d\n", rc); 1679 return (rc); 1680 } 1681 1682 return (t4_detach_common(dev)); 1683 } 1684 1685 int 1686 t4_detach_common(device_t dev) 1687 { 1688 struct adapter *sc; 1689 struct port_info *pi; 1690 int i, rc; 1691 1692 sc = device_get_softc(dev); 1693 1694 #ifdef TCP_OFFLOAD 1695 rc = t4_deactivate_all_uld(sc); 1696 if (rc) { 1697 device_printf(dev, 1698 "failed to detach upper layer drivers: %d\n", rc); 1699 return (rc); 1700 } 1701 #endif 1702 1703 if (sc->cdev) { 1704 destroy_dev(sc->cdev); 1705 sc->cdev = NULL; 1706 } 1707 1708 sx_xlock(&t4_list_lock); 1709 SLIST_REMOVE(&t4_list, sc, adapter, link); 1710 sx_xunlock(&t4_list_lock); 1711 1712 sc->flags &= ~CHK_MBOX_ACCESS; 1713 if (sc->flags & FULL_INIT_DONE) { 1714 if (!(sc->flags & IS_VF)) 1715 t4_intr_disable(sc); 1716 } 1717 1718 if (device_is_attached(dev)) { 1719 rc = bus_generic_detach(dev); 1720 if (rc) { 1721 device_printf(dev, 1722 "failed to detach child devices: %d\n", rc); 1723 return (rc); 1724 } 1725 } 1726 1727 for (i = 0; i < sc->intr_count; i++) 1728 t4_free_irq(sc, &sc->irq[i]); 1729 1730 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1731 t4_free_tx_sched(sc); 1732 1733 for (i = 0; i < MAX_NPORTS; i++) { 1734 pi = sc->port[i]; 1735 if (pi) { 1736 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1737 if (pi->dev) 1738 device_delete_child(dev, pi->dev); 1739 1740 mtx_destroy(&pi->pi_lock); 1741 free(pi->vi, M_CXGBE); 1742 free(pi, M_CXGBE); 1743 } 1744 } 1745 1746 device_delete_children(dev); 1747 sysctl_ctx_free(&sc->ctx); 1748 adapter_full_uninit(sc); 1749 1750 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1751 t4_fw_bye(sc, sc->mbox); 1752 1753 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1754 pci_release_msi(dev); 1755 1756 if (sc->regs_res) 1757 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1758 sc->regs_res); 1759 1760 if (sc->udbs_res) 1761 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1762 sc->udbs_res); 1763 1764 if (sc->msix_res) 1765 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1766 sc->msix_res); 1767 1768 if (sc->l2t) 1769 t4_free_l2t(sc->l2t); 1770 if (sc->smt) 1771 t4_free_smt(sc->smt); 1772 t4_free_atid_table(sc); 1773 #ifdef RATELIMIT 1774 t4_free_etid_table(sc); 1775 #endif 1776 if (sc->key_map) 1777 vmem_destroy(sc->key_map); 1778 #ifdef INET6 1779 t4_destroy_clip_table(sc); 1780 #endif 1781 1782 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1783 free(sc->sge.ofld_txq, M_CXGBE); 1784 #endif 1785 #ifdef TCP_OFFLOAD 1786 free(sc->sge.ofld_rxq, M_CXGBE); 1787 #endif 1788 #ifdef DEV_NETMAP 1789 free(sc->sge.nm_rxq, M_CXGBE); 1790 free(sc->sge.nm_txq, M_CXGBE); 1791 #endif 1792 free(sc->irq, M_CXGBE); 1793 free(sc->sge.rxq, M_CXGBE); 1794 free(sc->sge.txq, M_CXGBE); 1795 free(sc->sge.ctrlq, M_CXGBE); 1796 free(sc->sge.iqmap, M_CXGBE); 1797 free(sc->sge.eqmap, M_CXGBE); 1798 free(sc->tids.ftid_tab, M_CXGBE); 1799 free(sc->tids.hpftid_tab, M_CXGBE); 1800 free_hftid_hash(&sc->tids); 1801 free(sc->tids.tid_tab, M_CXGBE); 1802 free(sc->tt.tls_rx_ports, M_CXGBE); 1803 t4_destroy_dma_tag(sc); 1804 1805 callout_drain(&sc->ktls_tick); 1806 callout_drain(&sc->sfl_callout); 1807 if (mtx_initialized(&sc->tids.ftid_lock)) { 1808 mtx_destroy(&sc->tids.ftid_lock); 1809 cv_destroy(&sc->tids.ftid_cv); 1810 } 1811 if (mtx_initialized(&sc->tids.atid_lock)) 1812 mtx_destroy(&sc->tids.atid_lock); 1813 if (mtx_initialized(&sc->ifp_lock)) 1814 mtx_destroy(&sc->ifp_lock); 1815 1816 if (rw_initialized(&sc->policy_lock)) { 1817 rw_destroy(&sc->policy_lock); 1818 #ifdef TCP_OFFLOAD 1819 if (sc->policy != NULL) 1820 free_offload_policy(sc->policy); 1821 #endif 1822 } 1823 1824 for (i = 0; i < NUM_MEMWIN; i++) { 1825 struct memwin *mw = &sc->memwin[i]; 1826 1827 if (rw_initialized(&mw->mw_lock)) 1828 rw_destroy(&mw->mw_lock); 1829 } 1830 1831 mtx_destroy(&sc->sfl_lock); 1832 mtx_destroy(&sc->reg_lock); 1833 mtx_destroy(&sc->sc_lock); 1834 1835 bzero(sc, sizeof(*sc)); 1836 1837 return (0); 1838 } 1839 1840 static inline bool 1841 ok_to_reset(struct adapter *sc) 1842 { 1843 struct tid_info *t = &sc->tids; 1844 struct port_info *pi; 1845 struct vi_info *vi; 1846 int i, j; 1847 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1848 1849 if (is_t6(sc)) 1850 caps |= IFCAP_TXTLS; 1851 1852 ASSERT_SYNCHRONIZED_OP(sc); 1853 MPASS(!(sc->flags & IS_VF)); 1854 1855 for_each_port(sc, i) { 1856 pi = sc->port[i]; 1857 for_each_vi(pi, j, vi) { 1858 if (vi->ifp->if_capenable & caps) 1859 return (false); 1860 } 1861 } 1862 1863 if (atomic_load_int(&t->tids_in_use) > 0) 1864 return (false); 1865 if (atomic_load_int(&t->stids_in_use) > 0) 1866 return (false); 1867 if (atomic_load_int(&t->atids_in_use) > 0) 1868 return (false); 1869 if (atomic_load_int(&t->ftids_in_use) > 0) 1870 return (false); 1871 if (atomic_load_int(&t->hpftids_in_use) > 0) 1872 return (false); 1873 if (atomic_load_int(&t->etids_in_use) > 0) 1874 return (false); 1875 1876 return (true); 1877 } 1878 1879 static inline int 1880 stop_adapter(struct adapter *sc) 1881 { 1882 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1883 return (1); /* Already stopped. */ 1884 return (t4_shutdown_adapter(sc)); 1885 } 1886 1887 static int 1888 t4_suspend(device_t dev) 1889 { 1890 struct adapter *sc = device_get_softc(dev); 1891 struct port_info *pi; 1892 struct vi_info *vi; 1893 struct ifnet *ifp; 1894 struct sge_rxq *rxq; 1895 struct sge_txq *txq; 1896 struct sge_wrq *wrq; 1897 #ifdef TCP_OFFLOAD 1898 struct sge_ofld_rxq *ofld_rxq; 1899 #endif 1900 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1901 struct sge_ofld_txq *ofld_txq; 1902 #endif 1903 int rc, i, j, k; 1904 1905 CH_ALERT(sc, "suspend requested\n"); 1906 1907 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1908 if (rc != 0) 1909 return (ENXIO); 1910 1911 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1912 MPASS(!hw_off_limits(sc)); 1913 1914 if (!ok_to_reset(sc)) { 1915 /* XXX: should list what resource is preventing suspend. */ 1916 CH_ERR(sc, "not safe to suspend.\n"); 1917 rc = EBUSY; 1918 goto done; 1919 } 1920 1921 /* No more DMA or interrupts. */ 1922 stop_adapter(sc); 1923 1924 /* Quiesce all activity. */ 1925 for_each_port(sc, i) { 1926 pi = sc->port[i]; 1927 pi->vxlan_tcam_entry = false; 1928 1929 PORT_LOCK(pi); 1930 if (pi->up_vis > 0) { 1931 /* 1932 * t4_shutdown_adapter has already shut down all the 1933 * PHYs but it also disables interrupts and DMA so there 1934 * won't be a link interrupt. So we update the state 1935 * manually and inform the kernel. 1936 */ 1937 pi->link_cfg.link_ok = false; 1938 t4_os_link_changed(pi); 1939 } 1940 PORT_UNLOCK(pi); 1941 1942 for_each_vi(pi, j, vi) { 1943 vi->xact_addr_filt = -1; 1944 mtx_lock(&vi->tick_mtx); 1945 vi->flags |= VI_SKIP_STATS; 1946 mtx_unlock(&vi->tick_mtx); 1947 if (!(vi->flags & VI_INIT_DONE)) 1948 continue; 1949 1950 ifp = vi->ifp; 1951 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1952 mtx_lock(&vi->tick_mtx); 1953 callout_stop(&vi->tick); 1954 mtx_unlock(&vi->tick_mtx); 1955 callout_drain(&vi->tick); 1956 } 1957 1958 /* 1959 * Note that the HW is not available. 1960 */ 1961 for_each_txq(vi, k, txq) { 1962 TXQ_LOCK(txq); 1963 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1964 TXQ_UNLOCK(txq); 1965 } 1966 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1967 for_each_ofld_txq(vi, k, ofld_txq) { 1968 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1969 } 1970 #endif 1971 for_each_rxq(vi, k, rxq) { 1972 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1973 } 1974 #if defined(TCP_OFFLOAD) 1975 for_each_ofld_rxq(vi, k, ofld_rxq) { 1976 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1977 } 1978 #endif 1979 1980 quiesce_vi(vi); 1981 } 1982 1983 if (sc->flags & FULL_INIT_DONE) { 1984 /* Control queue */ 1985 wrq = &sc->sge.ctrlq[i]; 1986 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1987 quiesce_wrq(wrq); 1988 } 1989 } 1990 if (sc->flags & FULL_INIT_DONE) { 1991 /* Firmware event queue */ 1992 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1993 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1994 } 1995 1996 /* Mark the adapter totally off limits. */ 1997 mtx_lock(&sc->reg_lock); 1998 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1999 sc->flags &= ~(FW_OK | MASTER_PF); 2000 sc->reset_thread = NULL; 2001 mtx_unlock(&sc->reg_lock); 2002 2003 if (t4_clock_gate_on_suspend) { 2004 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2005 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2006 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2007 } 2008 2009 CH_ALERT(sc, "suspend completed.\n"); 2010 done: 2011 end_synchronized_op(sc, 0); 2012 return (rc); 2013 } 2014 2015 struct adapter_pre_reset_state { 2016 u_int flags; 2017 uint16_t nbmcaps; 2018 uint16_t linkcaps; 2019 uint16_t switchcaps; 2020 uint16_t niccaps; 2021 uint16_t toecaps; 2022 uint16_t rdmacaps; 2023 uint16_t cryptocaps; 2024 uint16_t iscsicaps; 2025 uint16_t fcoecaps; 2026 2027 u_int cfcsum; 2028 char cfg_file[32]; 2029 2030 struct adapter_params params; 2031 struct t4_virt_res vres; 2032 struct tid_info tids; 2033 struct sge sge; 2034 2035 int rawf_base; 2036 int nrawf; 2037 2038 }; 2039 2040 static void 2041 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2042 { 2043 2044 ASSERT_SYNCHRONIZED_OP(sc); 2045 2046 o->flags = sc->flags; 2047 2048 o->nbmcaps = sc->nbmcaps; 2049 o->linkcaps = sc->linkcaps; 2050 o->switchcaps = sc->switchcaps; 2051 o->niccaps = sc->niccaps; 2052 o->toecaps = sc->toecaps; 2053 o->rdmacaps = sc->rdmacaps; 2054 o->cryptocaps = sc->cryptocaps; 2055 o->iscsicaps = sc->iscsicaps; 2056 o->fcoecaps = sc->fcoecaps; 2057 2058 o->cfcsum = sc->cfcsum; 2059 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2060 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2061 2062 o->params = sc->params; 2063 o->vres = sc->vres; 2064 o->tids = sc->tids; 2065 o->sge = sc->sge; 2066 2067 o->rawf_base = sc->rawf_base; 2068 o->nrawf = sc->nrawf; 2069 } 2070 2071 static int 2072 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2073 { 2074 int rc = 0; 2075 2076 ASSERT_SYNCHRONIZED_OP(sc); 2077 2078 /* Capabilities */ 2079 #define COMPARE_CAPS(c) do { \ 2080 if (o->c##caps != sc->c##caps) { \ 2081 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2082 sc->c##caps); \ 2083 rc = EINVAL; \ 2084 } \ 2085 } while (0) 2086 COMPARE_CAPS(nbm); 2087 COMPARE_CAPS(link); 2088 COMPARE_CAPS(switch); 2089 COMPARE_CAPS(nic); 2090 COMPARE_CAPS(toe); 2091 COMPARE_CAPS(rdma); 2092 COMPARE_CAPS(crypto); 2093 COMPARE_CAPS(iscsi); 2094 COMPARE_CAPS(fcoe); 2095 #undef COMPARE_CAPS 2096 2097 /* Firmware config file */ 2098 if (o->cfcsum != sc->cfcsum) { 2099 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2100 o->cfcsum, sc->cfg_file, sc->cfcsum); 2101 rc = EINVAL; 2102 } 2103 2104 #define COMPARE_PARAM(p, name) do { \ 2105 if (o->p != sc->p) { \ 2106 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2107 rc = EINVAL; \ 2108 } \ 2109 } while (0) 2110 COMPARE_PARAM(sge.iq_start, iq_start); 2111 COMPARE_PARAM(sge.eq_start, eq_start); 2112 COMPARE_PARAM(tids.ftid_base, ftid_base); 2113 COMPARE_PARAM(tids.ftid_end, ftid_end); 2114 COMPARE_PARAM(tids.nftids, nftids); 2115 COMPARE_PARAM(vres.l2t.start, l2t_start); 2116 COMPARE_PARAM(vres.l2t.size, l2t_size); 2117 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2118 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2119 COMPARE_PARAM(tids.tid_base, tid_base); 2120 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2121 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2122 COMPARE_PARAM(tids.nhpftids, nhpftids); 2123 COMPARE_PARAM(rawf_base, rawf_base); 2124 COMPARE_PARAM(nrawf, nrawf); 2125 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2126 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2127 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2128 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2129 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2130 COMPARE_PARAM(tids.ntids, ntids); 2131 COMPARE_PARAM(tids.etid_base, etid_base); 2132 COMPARE_PARAM(tids.etid_end, etid_end); 2133 COMPARE_PARAM(tids.netids, netids); 2134 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2135 COMPARE_PARAM(params.ethoffload, ethoffload); 2136 COMPARE_PARAM(tids.natids, natids); 2137 COMPARE_PARAM(tids.stid_base, stid_base); 2138 COMPARE_PARAM(vres.ddp.start, ddp_start); 2139 COMPARE_PARAM(vres.ddp.size, ddp_size); 2140 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2141 COMPARE_PARAM(vres.stag.start, stag_start); 2142 COMPARE_PARAM(vres.stag.size, stag_size); 2143 COMPARE_PARAM(vres.rq.start, rq_start); 2144 COMPARE_PARAM(vres.rq.size, rq_size); 2145 COMPARE_PARAM(vres.pbl.start, pbl_start); 2146 COMPARE_PARAM(vres.pbl.size, pbl_size); 2147 COMPARE_PARAM(vres.qp.start, qp_start); 2148 COMPARE_PARAM(vres.qp.size, qp_size); 2149 COMPARE_PARAM(vres.cq.start, cq_start); 2150 COMPARE_PARAM(vres.cq.size, cq_size); 2151 COMPARE_PARAM(vres.ocq.start, ocq_start); 2152 COMPARE_PARAM(vres.ocq.size, ocq_size); 2153 COMPARE_PARAM(vres.srq.start, srq_start); 2154 COMPARE_PARAM(vres.srq.size, srq_size); 2155 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2156 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2157 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2158 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2159 COMPARE_PARAM(vres.key.start, key_start); 2160 COMPARE_PARAM(vres.key.size, key_size); 2161 #undef COMPARE_PARAM 2162 2163 return (rc); 2164 } 2165 2166 static int 2167 t4_resume(device_t dev) 2168 { 2169 struct adapter *sc = device_get_softc(dev); 2170 struct adapter_pre_reset_state *old_state = NULL; 2171 struct port_info *pi; 2172 struct vi_info *vi; 2173 struct ifnet *ifp; 2174 struct sge_txq *txq; 2175 int rc, i, j, k; 2176 2177 CH_ALERT(sc, "resume requested.\n"); 2178 2179 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2180 if (rc != 0) 2181 return (ENXIO); 2182 MPASS(hw_off_limits(sc)); 2183 MPASS((sc->flags & FW_OK) == 0); 2184 MPASS((sc->flags & MASTER_PF) == 0); 2185 MPASS(sc->reset_thread == NULL); 2186 sc->reset_thread = curthread; 2187 2188 /* Register access is expected to work by the time we're here. */ 2189 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2190 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2191 rc = ENXIO; 2192 goto done; 2193 } 2194 2195 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2196 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2197 2198 /* Restore memory window. */ 2199 setup_memwin(sc); 2200 2201 /* Go no further if recovery mode has been requested. */ 2202 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2203 CH_ALERT(sc, "recovery mode on resume.\n"); 2204 rc = 0; 2205 mtx_lock(&sc->reg_lock); 2206 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2207 mtx_unlock(&sc->reg_lock); 2208 goto done; 2209 } 2210 2211 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2212 save_caps_and_params(sc, old_state); 2213 2214 /* Reestablish contact with firmware and become the primary PF. */ 2215 rc = contact_firmware(sc); 2216 if (rc != 0) 2217 goto done; /* error message displayed already */ 2218 MPASS(sc->flags & FW_OK); 2219 2220 if (sc->flags & MASTER_PF) { 2221 rc = partition_resources(sc); 2222 if (rc != 0) 2223 goto done; /* error message displayed already */ 2224 t4_intr_clear(sc); 2225 } 2226 2227 rc = get_params__post_init(sc); 2228 if (rc != 0) 2229 goto done; /* error message displayed already */ 2230 2231 rc = set_params__post_init(sc); 2232 if (rc != 0) 2233 goto done; /* error message displayed already */ 2234 2235 rc = compare_caps_and_params(sc, old_state); 2236 if (rc != 0) 2237 goto done; /* error message displayed already */ 2238 2239 for_each_port(sc, i) { 2240 pi = sc->port[i]; 2241 MPASS(pi != NULL); 2242 MPASS(pi->vi != NULL); 2243 MPASS(pi->vi[0].dev == pi->dev); 2244 2245 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2246 if (rc != 0) { 2247 CH_ERR(sc, 2248 "failed to re-initialize port %d: %d\n", i, rc); 2249 goto done; 2250 } 2251 MPASS(sc->chan_map[pi->tx_chan] == i); 2252 2253 PORT_LOCK(pi); 2254 fixup_link_config(pi); 2255 build_medialist(pi); 2256 PORT_UNLOCK(pi); 2257 for_each_vi(pi, j, vi) { 2258 if (IS_MAIN_VI(vi)) 2259 continue; 2260 rc = alloc_extra_vi(sc, pi, vi); 2261 if (rc != 0) { 2262 CH_ERR(vi, 2263 "failed to re-allocate extra VI: %d\n", rc); 2264 goto done; 2265 } 2266 } 2267 } 2268 2269 /* 2270 * Interrupts and queues are about to be enabled and other threads will 2271 * want to access the hardware too. It is safe to do so. Note that 2272 * this thread is still in the middle of a synchronized_op. 2273 */ 2274 mtx_lock(&sc->reg_lock); 2275 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2276 mtx_unlock(&sc->reg_lock); 2277 2278 if (sc->flags & FULL_INIT_DONE) { 2279 rc = adapter_full_init(sc); 2280 if (rc != 0) { 2281 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2282 goto done; 2283 } 2284 2285 if (sc->vxlan_refcount > 0) 2286 enable_vxlan_rx(sc); 2287 2288 for_each_port(sc, i) { 2289 pi = sc->port[i]; 2290 for_each_vi(pi, j, vi) { 2291 mtx_lock(&vi->tick_mtx); 2292 vi->flags &= ~VI_SKIP_STATS; 2293 mtx_unlock(&vi->tick_mtx); 2294 if (!(vi->flags & VI_INIT_DONE)) 2295 continue; 2296 rc = vi_full_init(vi); 2297 if (rc != 0) { 2298 CH_ERR(vi, "failed to re-initialize " 2299 "interface: %d\n", rc); 2300 goto done; 2301 } 2302 2303 ifp = vi->ifp; 2304 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2305 continue; 2306 /* 2307 * Note that we do not setup multicast addresses 2308 * in the first pass. This ensures that the 2309 * unicast DMACs for all VIs on all ports get an 2310 * MPS TCAM entry. 2311 */ 2312 rc = update_mac_settings(ifp, XGMAC_ALL & 2313 ~XGMAC_MCADDRS); 2314 if (rc != 0) { 2315 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2316 goto done; 2317 } 2318 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2319 true); 2320 if (rc != 0) { 2321 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2322 goto done; 2323 } 2324 for_each_txq(vi, k, txq) { 2325 TXQ_LOCK(txq); 2326 txq->eq.flags |= EQ_ENABLED; 2327 TXQ_UNLOCK(txq); 2328 } 2329 mtx_lock(&vi->tick_mtx); 2330 callout_schedule(&vi->tick, hz); 2331 mtx_unlock(&vi->tick_mtx); 2332 } 2333 PORT_LOCK(pi); 2334 if (pi->up_vis > 0) { 2335 t4_update_port_info(pi); 2336 fixup_link_config(pi); 2337 build_medialist(pi); 2338 apply_link_config(pi); 2339 if (pi->link_cfg.link_ok) 2340 t4_os_link_changed(pi); 2341 } 2342 PORT_UNLOCK(pi); 2343 } 2344 2345 /* Now reprogram the L2 multicast addresses. */ 2346 for_each_port(sc, i) { 2347 pi = sc->port[i]; 2348 for_each_vi(pi, j, vi) { 2349 if (!(vi->flags & VI_INIT_DONE)) 2350 continue; 2351 ifp = vi->ifp; 2352 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2353 continue; 2354 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2355 if (rc != 0) { 2356 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2357 rc = 0; /* carry on */ 2358 } 2359 } 2360 } 2361 } 2362 done: 2363 if (rc == 0) { 2364 sc->incarnation++; 2365 CH_ALERT(sc, "resume completed.\n"); 2366 } 2367 end_synchronized_op(sc, 0); 2368 free(old_state, M_CXGBE); 2369 return (rc); 2370 } 2371 2372 static int 2373 t4_reset_prepare(device_t dev, device_t child) 2374 { 2375 struct adapter *sc = device_get_softc(dev); 2376 2377 CH_ALERT(sc, "reset_prepare.\n"); 2378 return (0); 2379 } 2380 2381 static int 2382 t4_reset_post(device_t dev, device_t child) 2383 { 2384 struct adapter *sc = device_get_softc(dev); 2385 2386 CH_ALERT(sc, "reset_post.\n"); 2387 return (0); 2388 } 2389 2390 static int 2391 reset_adapter(struct adapter *sc) 2392 { 2393 int rc, oldinc, error_flags; 2394 2395 CH_ALERT(sc, "reset requested.\n"); 2396 2397 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2398 if (rc != 0) 2399 return (EBUSY); 2400 2401 if (hw_off_limits(sc)) { 2402 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2403 rc = ENXIO; 2404 goto done; 2405 } 2406 2407 if (!ok_to_reset(sc)) { 2408 /* XXX: should list what resource is preventing reset. */ 2409 CH_ERR(sc, "not safe to reset.\n"); 2410 rc = EBUSY; 2411 goto done; 2412 } 2413 2414 done: 2415 oldinc = sc->incarnation; 2416 end_synchronized_op(sc, 0); 2417 if (rc != 0) 2418 return (rc); /* Error logged already. */ 2419 2420 atomic_add_int(&sc->num_resets, 1); 2421 mtx_lock(&Giant); 2422 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2423 mtx_unlock(&Giant); 2424 if (rc != 0) 2425 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2426 else { 2427 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2428 if (rc != 0) 2429 return (EBUSY); 2430 error_flags = atomic_load_int(&sc->error_flags); 2431 if (sc->incarnation > oldinc && error_flags == 0) { 2432 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2433 } else { 2434 CH_ERR(sc, "adapter did not reset properly, flags " 2435 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2436 error_flags); 2437 rc = ENXIO; 2438 } 2439 end_synchronized_op(sc, 0); 2440 } 2441 2442 return (rc); 2443 } 2444 2445 static void 2446 reset_adapter_task(void *arg, int pending) 2447 { 2448 /* XXX: t4_async_event here? */ 2449 reset_adapter(arg); 2450 } 2451 2452 static int 2453 cxgbe_probe(device_t dev) 2454 { 2455 char buf[128]; 2456 struct port_info *pi = device_get_softc(dev); 2457 2458 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2459 device_set_desc_copy(dev, buf); 2460 2461 return (BUS_PROBE_DEFAULT); 2462 } 2463 2464 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2465 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2466 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2467 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2468 #define T4_CAP_ENABLE (T4_CAP) 2469 2470 static int 2471 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2472 { 2473 struct ifnet *ifp; 2474 struct sbuf *sb; 2475 struct sysctl_ctx_list *ctx = &vi->ctx; 2476 struct sysctl_oid_list *children; 2477 struct pfil_head_args pa; 2478 struct adapter *sc = vi->adapter; 2479 2480 sysctl_ctx_init(ctx); 2481 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2482 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2483 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2484 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2485 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2486 #ifdef DEV_NETMAP 2487 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2488 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2489 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2490 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2491 #endif 2492 #ifdef TCP_OFFLOAD 2493 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2494 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2495 #endif 2496 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2497 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2498 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2499 #endif 2500 2501 vi->xact_addr_filt = -1; 2502 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2503 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2504 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2505 vi->flags |= TX_USES_VM_WR; 2506 2507 /* Allocate an ifnet and set it up */ 2508 ifp = if_alloc_dev(IFT_ETHER, dev); 2509 if (ifp == NULL) { 2510 device_printf(dev, "Cannot allocate ifnet\n"); 2511 return (ENOMEM); 2512 } 2513 vi->ifp = ifp; 2514 ifp->if_softc = vi; 2515 2516 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2517 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2518 2519 ifp->if_init = cxgbe_init; 2520 ifp->if_ioctl = cxgbe_ioctl; 2521 ifp->if_transmit = cxgbe_transmit; 2522 ifp->if_qflush = cxgbe_qflush; 2523 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2524 ifp->if_get_counter = vi_get_counter; 2525 else 2526 ifp->if_get_counter = cxgbe_get_counter; 2527 #if defined(KERN_TLS) || defined(RATELIMIT) 2528 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2529 #endif 2530 #ifdef RATELIMIT 2531 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2532 #endif 2533 2534 ifp->if_capabilities = T4_CAP; 2535 ifp->if_capenable = T4_CAP_ENABLE; 2536 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2537 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2538 if (chip_id(sc) >= CHELSIO_T6) { 2539 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2540 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2541 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2542 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2543 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2544 } 2545 2546 #ifdef TCP_OFFLOAD 2547 if (vi->nofldrxq != 0) 2548 ifp->if_capabilities |= IFCAP_TOE; 2549 #endif 2550 #ifdef RATELIMIT 2551 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2552 ifp->if_capabilities |= IFCAP_TXRTLMT; 2553 ifp->if_capenable |= IFCAP_TXRTLMT; 2554 } 2555 #endif 2556 2557 ifp->if_hw_tsomax = IP_MAXPACKET; 2558 if (vi->flags & TX_USES_VM_WR) 2559 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2560 else 2561 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2562 #ifdef RATELIMIT 2563 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2564 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2565 #endif 2566 ifp->if_hw_tsomaxsegsize = 65536; 2567 #ifdef KERN_TLS 2568 if (is_ktls(sc)) { 2569 ifp->if_capabilities |= IFCAP_TXTLS; 2570 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2571 ifp->if_capenable |= IFCAP_TXTLS; 2572 } 2573 #endif 2574 2575 ether_ifattach(ifp, vi->hw_addr); 2576 #ifdef DEV_NETMAP 2577 if (vi->nnmrxq != 0) 2578 cxgbe_nm_attach(vi); 2579 #endif 2580 sb = sbuf_new_auto(); 2581 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2582 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2583 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2584 case IFCAP_TOE: 2585 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2586 break; 2587 case IFCAP_TOE | IFCAP_TXRTLMT: 2588 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2589 break; 2590 case IFCAP_TXRTLMT: 2591 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2592 break; 2593 } 2594 #endif 2595 #ifdef TCP_OFFLOAD 2596 if (ifp->if_capabilities & IFCAP_TOE) 2597 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2598 #endif 2599 #ifdef DEV_NETMAP 2600 if (ifp->if_capabilities & IFCAP_NETMAP) 2601 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2602 vi->nnmtxq, vi->nnmrxq); 2603 #endif 2604 sbuf_finish(sb); 2605 device_printf(dev, "%s\n", sbuf_data(sb)); 2606 sbuf_delete(sb); 2607 2608 vi_sysctls(vi); 2609 2610 pa.pa_version = PFIL_VERSION; 2611 pa.pa_flags = PFIL_IN; 2612 pa.pa_type = PFIL_TYPE_ETHERNET; 2613 pa.pa_headname = ifp->if_xname; 2614 vi->pfil = pfil_head_register(&pa); 2615 2616 return (0); 2617 } 2618 2619 static int 2620 cxgbe_attach(device_t dev) 2621 { 2622 struct port_info *pi = device_get_softc(dev); 2623 struct adapter *sc = pi->adapter; 2624 struct vi_info *vi; 2625 int i, rc; 2626 2627 sysctl_ctx_init(&pi->ctx); 2628 2629 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2630 if (rc) 2631 return (rc); 2632 2633 for_each_vi(pi, i, vi) { 2634 if (i == 0) 2635 continue; 2636 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2637 if (vi->dev == NULL) { 2638 device_printf(dev, "failed to add VI %d\n", i); 2639 continue; 2640 } 2641 device_set_softc(vi->dev, vi); 2642 } 2643 2644 cxgbe_sysctls(pi); 2645 2646 bus_generic_attach(dev); 2647 2648 return (0); 2649 } 2650 2651 static void 2652 cxgbe_vi_detach(struct vi_info *vi) 2653 { 2654 struct ifnet *ifp = vi->ifp; 2655 2656 if (vi->pfil != NULL) { 2657 pfil_head_unregister(vi->pfil); 2658 vi->pfil = NULL; 2659 } 2660 2661 ether_ifdetach(ifp); 2662 2663 /* Let detach proceed even if these fail. */ 2664 #ifdef DEV_NETMAP 2665 if (ifp->if_capabilities & IFCAP_NETMAP) 2666 cxgbe_nm_detach(vi); 2667 #endif 2668 cxgbe_uninit_synchronized(vi); 2669 callout_drain(&vi->tick); 2670 sysctl_ctx_free(&vi->ctx); 2671 vi_full_uninit(vi); 2672 2673 if_free(vi->ifp); 2674 vi->ifp = NULL; 2675 } 2676 2677 static int 2678 cxgbe_detach(device_t dev) 2679 { 2680 struct port_info *pi = device_get_softc(dev); 2681 struct adapter *sc = pi->adapter; 2682 int rc; 2683 2684 /* Detach the extra VIs first. */ 2685 rc = bus_generic_detach(dev); 2686 if (rc) 2687 return (rc); 2688 device_delete_children(dev); 2689 2690 sysctl_ctx_free(&pi->ctx); 2691 doom_vi(sc, &pi->vi[0]); 2692 2693 if (pi->flags & HAS_TRACEQ) { 2694 sc->traceq = -1; /* cloner should not create ifnet */ 2695 t4_tracer_port_detach(sc); 2696 } 2697 2698 cxgbe_vi_detach(&pi->vi[0]); 2699 ifmedia_removeall(&pi->media); 2700 2701 end_synchronized_op(sc, 0); 2702 2703 return (0); 2704 } 2705 2706 static void 2707 cxgbe_init(void *arg) 2708 { 2709 struct vi_info *vi = arg; 2710 struct adapter *sc = vi->adapter; 2711 2712 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2713 return; 2714 cxgbe_init_synchronized(vi); 2715 end_synchronized_op(sc, 0); 2716 } 2717 2718 static int 2719 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2720 { 2721 int rc = 0, mtu, flags; 2722 struct vi_info *vi = ifp->if_softc; 2723 struct port_info *pi = vi->pi; 2724 struct adapter *sc = pi->adapter; 2725 struct ifreq *ifr = (struct ifreq *)data; 2726 uint32_t mask; 2727 2728 switch (cmd) { 2729 case SIOCSIFMTU: 2730 mtu = ifr->ifr_mtu; 2731 if (mtu < ETHERMIN || mtu > MAX_MTU) 2732 return (EINVAL); 2733 2734 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2735 if (rc) 2736 return (rc); 2737 ifp->if_mtu = mtu; 2738 if (vi->flags & VI_INIT_DONE) { 2739 t4_update_fl_bufsize(ifp); 2740 if (!hw_off_limits(sc) && 2741 ifp->if_drv_flags & IFF_DRV_RUNNING) 2742 rc = update_mac_settings(ifp, XGMAC_MTU); 2743 } 2744 end_synchronized_op(sc, 0); 2745 break; 2746 2747 case SIOCSIFFLAGS: 2748 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2749 if (rc) 2750 return (rc); 2751 2752 if (hw_off_limits(sc)) { 2753 rc = ENXIO; 2754 goto fail; 2755 } 2756 2757 if (ifp->if_flags & IFF_UP) { 2758 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2759 flags = vi->if_flags; 2760 if ((ifp->if_flags ^ flags) & 2761 (IFF_PROMISC | IFF_ALLMULTI)) { 2762 rc = update_mac_settings(ifp, 2763 XGMAC_PROMISC | XGMAC_ALLMULTI); 2764 } 2765 } else { 2766 rc = cxgbe_init_synchronized(vi); 2767 } 2768 vi->if_flags = ifp->if_flags; 2769 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2770 rc = cxgbe_uninit_synchronized(vi); 2771 } 2772 end_synchronized_op(sc, 0); 2773 break; 2774 2775 case SIOCADDMULTI: 2776 case SIOCDELMULTI: 2777 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2778 if (rc) 2779 return (rc); 2780 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2781 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2782 end_synchronized_op(sc, 0); 2783 break; 2784 2785 case SIOCSIFCAP: 2786 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2787 if (rc) 2788 return (rc); 2789 2790 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2791 if (mask & IFCAP_TXCSUM) { 2792 ifp->if_capenable ^= IFCAP_TXCSUM; 2793 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2794 2795 if (IFCAP_TSO4 & ifp->if_capenable && 2796 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2797 mask &= ~IFCAP_TSO4; 2798 ifp->if_capenable &= ~IFCAP_TSO4; 2799 if_printf(ifp, 2800 "tso4 disabled due to -txcsum.\n"); 2801 } 2802 } 2803 if (mask & IFCAP_TXCSUM_IPV6) { 2804 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2805 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2806 2807 if (IFCAP_TSO6 & ifp->if_capenable && 2808 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2809 mask &= ~IFCAP_TSO6; 2810 ifp->if_capenable &= ~IFCAP_TSO6; 2811 if_printf(ifp, 2812 "tso6 disabled due to -txcsum6.\n"); 2813 } 2814 } 2815 if (mask & IFCAP_RXCSUM) 2816 ifp->if_capenable ^= IFCAP_RXCSUM; 2817 if (mask & IFCAP_RXCSUM_IPV6) 2818 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2819 2820 /* 2821 * Note that we leave CSUM_TSO alone (it is always set). The 2822 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2823 * sending a TSO request our way, so it's sufficient to toggle 2824 * IFCAP_TSOx only. 2825 */ 2826 if (mask & IFCAP_TSO4) { 2827 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2828 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2829 if_printf(ifp, "enable txcsum first.\n"); 2830 rc = EAGAIN; 2831 goto fail; 2832 } 2833 ifp->if_capenable ^= IFCAP_TSO4; 2834 } 2835 if (mask & IFCAP_TSO6) { 2836 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2837 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2838 if_printf(ifp, "enable txcsum6 first.\n"); 2839 rc = EAGAIN; 2840 goto fail; 2841 } 2842 ifp->if_capenable ^= IFCAP_TSO6; 2843 } 2844 if (mask & IFCAP_LRO) { 2845 #if defined(INET) || defined(INET6) 2846 int i; 2847 struct sge_rxq *rxq; 2848 2849 ifp->if_capenable ^= IFCAP_LRO; 2850 for_each_rxq(vi, i, rxq) { 2851 if (ifp->if_capenable & IFCAP_LRO) 2852 rxq->iq.flags |= IQ_LRO_ENABLED; 2853 else 2854 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2855 } 2856 #endif 2857 } 2858 #ifdef TCP_OFFLOAD 2859 if (mask & IFCAP_TOE) { 2860 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2861 2862 rc = toe_capability(vi, enable); 2863 if (rc != 0) 2864 goto fail; 2865 2866 ifp->if_capenable ^= mask; 2867 } 2868 #endif 2869 if (mask & IFCAP_VLAN_HWTAGGING) { 2870 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2871 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2872 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2873 } 2874 if (mask & IFCAP_VLAN_MTU) { 2875 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2876 2877 /* Need to find out how to disable auto-mtu-inflation */ 2878 } 2879 if (mask & IFCAP_VLAN_HWTSO) 2880 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2881 if (mask & IFCAP_VLAN_HWCSUM) 2882 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2883 #ifdef RATELIMIT 2884 if (mask & IFCAP_TXRTLMT) 2885 ifp->if_capenable ^= IFCAP_TXRTLMT; 2886 #endif 2887 if (mask & IFCAP_HWRXTSTMP) { 2888 int i; 2889 struct sge_rxq *rxq; 2890 2891 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2892 for_each_rxq(vi, i, rxq) { 2893 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2894 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2895 else 2896 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2897 } 2898 } 2899 if (mask & IFCAP_MEXTPG) 2900 ifp->if_capenable ^= IFCAP_MEXTPG; 2901 2902 #ifdef KERN_TLS 2903 if (mask & IFCAP_TXTLS) { 2904 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2905 2906 rc = ktls_capability(sc, enable); 2907 if (rc != 0) 2908 goto fail; 2909 2910 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2911 } 2912 #endif 2913 if (mask & IFCAP_VXLAN_HWCSUM) { 2914 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2915 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2916 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2917 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2918 } 2919 if (mask & IFCAP_VXLAN_HWTSO) { 2920 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2921 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2922 CSUM_INNER_IP_TSO; 2923 } 2924 2925 #ifdef VLAN_CAPABILITIES 2926 VLAN_CAPABILITIES(ifp); 2927 #endif 2928 fail: 2929 end_synchronized_op(sc, 0); 2930 break; 2931 2932 case SIOCSIFMEDIA: 2933 case SIOCGIFMEDIA: 2934 case SIOCGIFXMEDIA: 2935 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2936 break; 2937 2938 case SIOCGI2C: { 2939 struct ifi2creq i2c; 2940 2941 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2942 if (rc != 0) 2943 break; 2944 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2945 rc = EPERM; 2946 break; 2947 } 2948 if (i2c.len > sizeof(i2c.data)) { 2949 rc = EINVAL; 2950 break; 2951 } 2952 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2953 if (rc) 2954 return (rc); 2955 if (hw_off_limits(sc)) 2956 rc = ENXIO; 2957 else 2958 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2959 i2c.offset, i2c.len, &i2c.data[0]); 2960 end_synchronized_op(sc, 0); 2961 if (rc == 0) 2962 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2963 break; 2964 } 2965 2966 default: 2967 rc = ether_ioctl(ifp, cmd, data); 2968 } 2969 2970 return (rc); 2971 } 2972 2973 static int 2974 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2975 { 2976 struct vi_info *vi = ifp->if_softc; 2977 struct port_info *pi = vi->pi; 2978 struct adapter *sc; 2979 struct sge_txq *txq; 2980 void *items[1]; 2981 int rc; 2982 2983 M_ASSERTPKTHDR(m); 2984 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2985 #if defined(KERN_TLS) || defined(RATELIMIT) 2986 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2987 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2988 #endif 2989 2990 if (__predict_false(pi->link_cfg.link_ok == false)) { 2991 m_freem(m); 2992 return (ENETDOWN); 2993 } 2994 2995 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2996 if (__predict_false(rc != 0)) { 2997 MPASS(m == NULL); /* was freed already */ 2998 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2999 return (rc); 3000 } 3001 #ifdef RATELIMIT 3002 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 3003 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 3004 return (ethofld_transmit(ifp, m)); 3005 } 3006 #endif 3007 3008 /* Select a txq. */ 3009 sc = vi->adapter; 3010 txq = &sc->sge.txq[vi->first_txq]; 3011 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3012 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3013 vi->rsrv_noflowq); 3014 3015 items[0] = m; 3016 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3017 if (__predict_false(rc != 0)) 3018 m_freem(m); 3019 3020 return (rc); 3021 } 3022 3023 static void 3024 cxgbe_qflush(struct ifnet *ifp) 3025 { 3026 struct vi_info *vi = ifp->if_softc; 3027 struct sge_txq *txq; 3028 int i; 3029 3030 /* queues do not exist if !VI_INIT_DONE. */ 3031 if (vi->flags & VI_INIT_DONE) { 3032 for_each_txq(vi, i, txq) { 3033 TXQ_LOCK(txq); 3034 txq->eq.flags |= EQ_QFLUSH; 3035 TXQ_UNLOCK(txq); 3036 while (!mp_ring_is_idle(txq->r)) { 3037 mp_ring_check_drainage(txq->r, 4096); 3038 pause("qflush", 1); 3039 } 3040 TXQ_LOCK(txq); 3041 txq->eq.flags &= ~EQ_QFLUSH; 3042 TXQ_UNLOCK(txq); 3043 } 3044 } 3045 if_qflush(ifp); 3046 } 3047 3048 static uint64_t 3049 vi_get_counter(struct ifnet *ifp, ift_counter c) 3050 { 3051 struct vi_info *vi = ifp->if_softc; 3052 struct fw_vi_stats_vf *s = &vi->stats; 3053 3054 mtx_lock(&vi->tick_mtx); 3055 vi_refresh_stats(vi); 3056 mtx_unlock(&vi->tick_mtx); 3057 3058 switch (c) { 3059 case IFCOUNTER_IPACKETS: 3060 return (s->rx_bcast_frames + s->rx_mcast_frames + 3061 s->rx_ucast_frames); 3062 case IFCOUNTER_IERRORS: 3063 return (s->rx_err_frames); 3064 case IFCOUNTER_OPACKETS: 3065 return (s->tx_bcast_frames + s->tx_mcast_frames + 3066 s->tx_ucast_frames + s->tx_offload_frames); 3067 case IFCOUNTER_OERRORS: 3068 return (s->tx_drop_frames); 3069 case IFCOUNTER_IBYTES: 3070 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3071 s->rx_ucast_bytes); 3072 case IFCOUNTER_OBYTES: 3073 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3074 s->tx_ucast_bytes + s->tx_offload_bytes); 3075 case IFCOUNTER_IMCASTS: 3076 return (s->rx_mcast_frames); 3077 case IFCOUNTER_OMCASTS: 3078 return (s->tx_mcast_frames); 3079 case IFCOUNTER_OQDROPS: { 3080 uint64_t drops; 3081 3082 drops = 0; 3083 if (vi->flags & VI_INIT_DONE) { 3084 int i; 3085 struct sge_txq *txq; 3086 3087 for_each_txq(vi, i, txq) 3088 drops += counter_u64_fetch(txq->r->dropped); 3089 } 3090 3091 return (drops); 3092 3093 } 3094 3095 default: 3096 return (if_get_counter_default(ifp, c)); 3097 } 3098 } 3099 3100 static uint64_t 3101 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3102 { 3103 struct vi_info *vi = ifp->if_softc; 3104 struct port_info *pi = vi->pi; 3105 struct port_stats *s = &pi->stats; 3106 3107 mtx_lock(&vi->tick_mtx); 3108 cxgbe_refresh_stats(vi); 3109 mtx_unlock(&vi->tick_mtx); 3110 3111 switch (c) { 3112 case IFCOUNTER_IPACKETS: 3113 return (s->rx_frames); 3114 3115 case IFCOUNTER_IERRORS: 3116 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3117 s->rx_fcs_err + s->rx_len_err); 3118 3119 case IFCOUNTER_OPACKETS: 3120 return (s->tx_frames); 3121 3122 case IFCOUNTER_OERRORS: 3123 return (s->tx_error_frames); 3124 3125 case IFCOUNTER_IBYTES: 3126 return (s->rx_octets); 3127 3128 case IFCOUNTER_OBYTES: 3129 return (s->tx_octets); 3130 3131 case IFCOUNTER_IMCASTS: 3132 return (s->rx_mcast_frames); 3133 3134 case IFCOUNTER_OMCASTS: 3135 return (s->tx_mcast_frames); 3136 3137 case IFCOUNTER_IQDROPS: 3138 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3139 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3140 s->rx_trunc3 + pi->tnl_cong_drops); 3141 3142 case IFCOUNTER_OQDROPS: { 3143 uint64_t drops; 3144 3145 drops = s->tx_drop; 3146 if (vi->flags & VI_INIT_DONE) { 3147 int i; 3148 struct sge_txq *txq; 3149 3150 for_each_txq(vi, i, txq) 3151 drops += counter_u64_fetch(txq->r->dropped); 3152 } 3153 3154 return (drops); 3155 3156 } 3157 3158 default: 3159 return (if_get_counter_default(ifp, c)); 3160 } 3161 } 3162 3163 #if defined(KERN_TLS) || defined(RATELIMIT) 3164 static int 3165 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3166 struct m_snd_tag **pt) 3167 { 3168 int error; 3169 3170 switch (params->hdr.type) { 3171 #ifdef RATELIMIT 3172 case IF_SND_TAG_TYPE_RATE_LIMIT: 3173 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3174 break; 3175 #endif 3176 #ifdef KERN_TLS 3177 case IF_SND_TAG_TYPE_TLS: 3178 { 3179 struct vi_info *vi = ifp->if_softc; 3180 3181 if (is_t6(vi->pi->adapter)) 3182 error = t6_tls_tag_alloc(ifp, params, pt); 3183 else 3184 error = EOPNOTSUPP; 3185 break; 3186 } 3187 #endif 3188 default: 3189 error = EOPNOTSUPP; 3190 } 3191 return (error); 3192 } 3193 #endif 3194 3195 /* 3196 * The kernel picks a media from the list we had provided but we still validate 3197 * the requeste. 3198 */ 3199 int 3200 cxgbe_media_change(struct ifnet *ifp) 3201 { 3202 struct vi_info *vi = ifp->if_softc; 3203 struct port_info *pi = vi->pi; 3204 struct ifmedia *ifm = &pi->media; 3205 struct link_config *lc = &pi->link_cfg; 3206 struct adapter *sc = pi->adapter; 3207 int rc; 3208 3209 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3210 if (rc != 0) 3211 return (rc); 3212 PORT_LOCK(pi); 3213 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3214 /* ifconfig .. media autoselect */ 3215 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3216 rc = ENOTSUP; /* AN not supported by transceiver */ 3217 goto done; 3218 } 3219 lc->requested_aneg = AUTONEG_ENABLE; 3220 lc->requested_speed = 0; 3221 lc->requested_fc |= PAUSE_AUTONEG; 3222 } else { 3223 lc->requested_aneg = AUTONEG_DISABLE; 3224 lc->requested_speed = 3225 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3226 lc->requested_fc = 0; 3227 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3228 lc->requested_fc |= PAUSE_RX; 3229 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3230 lc->requested_fc |= PAUSE_TX; 3231 } 3232 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3233 fixup_link_config(pi); 3234 rc = apply_link_config(pi); 3235 } 3236 done: 3237 PORT_UNLOCK(pi); 3238 end_synchronized_op(sc, 0); 3239 return (rc); 3240 } 3241 3242 /* 3243 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3244 * given speed. 3245 */ 3246 static int 3247 port_mword(struct port_info *pi, uint32_t speed) 3248 { 3249 3250 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3251 MPASS(powerof2(speed)); 3252 3253 switch(pi->port_type) { 3254 case FW_PORT_TYPE_BT_SGMII: 3255 case FW_PORT_TYPE_BT_XFI: 3256 case FW_PORT_TYPE_BT_XAUI: 3257 /* BaseT */ 3258 switch (speed) { 3259 case FW_PORT_CAP32_SPEED_100M: 3260 return (IFM_100_T); 3261 case FW_PORT_CAP32_SPEED_1G: 3262 return (IFM_1000_T); 3263 case FW_PORT_CAP32_SPEED_10G: 3264 return (IFM_10G_T); 3265 } 3266 break; 3267 case FW_PORT_TYPE_KX4: 3268 if (speed == FW_PORT_CAP32_SPEED_10G) 3269 return (IFM_10G_KX4); 3270 break; 3271 case FW_PORT_TYPE_CX4: 3272 if (speed == FW_PORT_CAP32_SPEED_10G) 3273 return (IFM_10G_CX4); 3274 break; 3275 case FW_PORT_TYPE_KX: 3276 if (speed == FW_PORT_CAP32_SPEED_1G) 3277 return (IFM_1000_KX); 3278 break; 3279 case FW_PORT_TYPE_KR: 3280 case FW_PORT_TYPE_BP_AP: 3281 case FW_PORT_TYPE_BP4_AP: 3282 case FW_PORT_TYPE_BP40_BA: 3283 case FW_PORT_TYPE_KR4_100G: 3284 case FW_PORT_TYPE_KR_SFP28: 3285 case FW_PORT_TYPE_KR_XLAUI: 3286 switch (speed) { 3287 case FW_PORT_CAP32_SPEED_1G: 3288 return (IFM_1000_KX); 3289 case FW_PORT_CAP32_SPEED_10G: 3290 return (IFM_10G_KR); 3291 case FW_PORT_CAP32_SPEED_25G: 3292 return (IFM_25G_KR); 3293 case FW_PORT_CAP32_SPEED_40G: 3294 return (IFM_40G_KR4); 3295 case FW_PORT_CAP32_SPEED_50G: 3296 return (IFM_50G_KR2); 3297 case FW_PORT_CAP32_SPEED_100G: 3298 return (IFM_100G_KR4); 3299 } 3300 break; 3301 case FW_PORT_TYPE_FIBER_XFI: 3302 case FW_PORT_TYPE_FIBER_XAUI: 3303 case FW_PORT_TYPE_SFP: 3304 case FW_PORT_TYPE_QSFP_10G: 3305 case FW_PORT_TYPE_QSA: 3306 case FW_PORT_TYPE_QSFP: 3307 case FW_PORT_TYPE_CR4_QSFP: 3308 case FW_PORT_TYPE_CR_QSFP: 3309 case FW_PORT_TYPE_CR2_QSFP: 3310 case FW_PORT_TYPE_SFP28: 3311 /* Pluggable transceiver */ 3312 switch (pi->mod_type) { 3313 case FW_PORT_MOD_TYPE_LR: 3314 switch (speed) { 3315 case FW_PORT_CAP32_SPEED_1G: 3316 return (IFM_1000_LX); 3317 case FW_PORT_CAP32_SPEED_10G: 3318 return (IFM_10G_LR); 3319 case FW_PORT_CAP32_SPEED_25G: 3320 return (IFM_25G_LR); 3321 case FW_PORT_CAP32_SPEED_40G: 3322 return (IFM_40G_LR4); 3323 case FW_PORT_CAP32_SPEED_50G: 3324 return (IFM_50G_LR2); 3325 case FW_PORT_CAP32_SPEED_100G: 3326 return (IFM_100G_LR4); 3327 } 3328 break; 3329 case FW_PORT_MOD_TYPE_SR: 3330 switch (speed) { 3331 case FW_PORT_CAP32_SPEED_1G: 3332 return (IFM_1000_SX); 3333 case FW_PORT_CAP32_SPEED_10G: 3334 return (IFM_10G_SR); 3335 case FW_PORT_CAP32_SPEED_25G: 3336 return (IFM_25G_SR); 3337 case FW_PORT_CAP32_SPEED_40G: 3338 return (IFM_40G_SR4); 3339 case FW_PORT_CAP32_SPEED_50G: 3340 return (IFM_50G_SR2); 3341 case FW_PORT_CAP32_SPEED_100G: 3342 return (IFM_100G_SR4); 3343 } 3344 break; 3345 case FW_PORT_MOD_TYPE_ER: 3346 if (speed == FW_PORT_CAP32_SPEED_10G) 3347 return (IFM_10G_ER); 3348 break; 3349 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3350 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3351 switch (speed) { 3352 case FW_PORT_CAP32_SPEED_1G: 3353 return (IFM_1000_CX); 3354 case FW_PORT_CAP32_SPEED_10G: 3355 return (IFM_10G_TWINAX); 3356 case FW_PORT_CAP32_SPEED_25G: 3357 return (IFM_25G_CR); 3358 case FW_PORT_CAP32_SPEED_40G: 3359 return (IFM_40G_CR4); 3360 case FW_PORT_CAP32_SPEED_50G: 3361 return (IFM_50G_CR2); 3362 case FW_PORT_CAP32_SPEED_100G: 3363 return (IFM_100G_CR4); 3364 } 3365 break; 3366 case FW_PORT_MOD_TYPE_LRM: 3367 if (speed == FW_PORT_CAP32_SPEED_10G) 3368 return (IFM_10G_LRM); 3369 break; 3370 case FW_PORT_MOD_TYPE_NA: 3371 MPASS(0); /* Not pluggable? */ 3372 /* fall throough */ 3373 case FW_PORT_MOD_TYPE_ERROR: 3374 case FW_PORT_MOD_TYPE_UNKNOWN: 3375 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3376 break; 3377 case FW_PORT_MOD_TYPE_NONE: 3378 return (IFM_NONE); 3379 } 3380 break; 3381 case FW_PORT_TYPE_NONE: 3382 return (IFM_NONE); 3383 } 3384 3385 return (IFM_UNKNOWN); 3386 } 3387 3388 void 3389 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3390 { 3391 struct vi_info *vi = ifp->if_softc; 3392 struct port_info *pi = vi->pi; 3393 struct adapter *sc = pi->adapter; 3394 struct link_config *lc = &pi->link_cfg; 3395 3396 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3397 return; 3398 PORT_LOCK(pi); 3399 3400 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3401 /* 3402 * If all the interfaces are administratively down the firmware 3403 * does not report transceiver changes. Refresh port info here 3404 * so that ifconfig displays accurate ifmedia at all times. 3405 * This is the only reason we have a synchronized op in this 3406 * function. Just PORT_LOCK would have been enough otherwise. 3407 */ 3408 t4_update_port_info(pi); 3409 build_medialist(pi); 3410 } 3411 3412 /* ifm_status */ 3413 ifmr->ifm_status = IFM_AVALID; 3414 if (lc->link_ok == false) 3415 goto done; 3416 ifmr->ifm_status |= IFM_ACTIVE; 3417 3418 /* ifm_active */ 3419 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3420 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3421 if (lc->fc & PAUSE_RX) 3422 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3423 if (lc->fc & PAUSE_TX) 3424 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3425 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3426 done: 3427 PORT_UNLOCK(pi); 3428 end_synchronized_op(sc, 0); 3429 } 3430 3431 static int 3432 vcxgbe_probe(device_t dev) 3433 { 3434 char buf[128]; 3435 struct vi_info *vi = device_get_softc(dev); 3436 3437 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3438 vi - vi->pi->vi); 3439 device_set_desc_copy(dev, buf); 3440 3441 return (BUS_PROBE_DEFAULT); 3442 } 3443 3444 static int 3445 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3446 { 3447 int func, index, rc; 3448 uint32_t param, val; 3449 3450 ASSERT_SYNCHRONIZED_OP(sc); 3451 3452 index = vi - pi->vi; 3453 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3454 KASSERT(index < nitems(vi_mac_funcs), 3455 ("%s: VI %s doesn't have a MAC func", __func__, 3456 device_get_nameunit(vi->dev))); 3457 func = vi_mac_funcs[index]; 3458 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3459 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3460 if (rc < 0) { 3461 CH_ERR(vi, "failed to allocate virtual interface %d" 3462 "for port %d: %d\n", index, pi->port_id, -rc); 3463 return (-rc); 3464 } 3465 vi->viid = rc; 3466 3467 if (vi->rss_size == 1) { 3468 /* 3469 * This VI didn't get a slice of the RSS table. Reduce the 3470 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3471 * configuration file (nvi, rssnvi for this PF) if this is a 3472 * problem. 3473 */ 3474 device_printf(vi->dev, "RSS table not available.\n"); 3475 vi->rss_base = 0xffff; 3476 3477 return (0); 3478 } 3479 3480 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3481 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3482 V_FW_PARAMS_PARAM_YZ(vi->viid); 3483 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3484 if (rc) 3485 vi->rss_base = 0xffff; 3486 else { 3487 MPASS((val >> 16) == vi->rss_size); 3488 vi->rss_base = val & 0xffff; 3489 } 3490 3491 return (0); 3492 } 3493 3494 static int 3495 vcxgbe_attach(device_t dev) 3496 { 3497 struct vi_info *vi; 3498 struct port_info *pi; 3499 struct adapter *sc; 3500 int rc; 3501 3502 vi = device_get_softc(dev); 3503 pi = vi->pi; 3504 sc = pi->adapter; 3505 3506 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3507 if (rc) 3508 return (rc); 3509 rc = alloc_extra_vi(sc, pi, vi); 3510 end_synchronized_op(sc, 0); 3511 if (rc) 3512 return (rc); 3513 3514 rc = cxgbe_vi_attach(dev, vi); 3515 if (rc) { 3516 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3517 return (rc); 3518 } 3519 return (0); 3520 } 3521 3522 static int 3523 vcxgbe_detach(device_t dev) 3524 { 3525 struct vi_info *vi; 3526 struct adapter *sc; 3527 3528 vi = device_get_softc(dev); 3529 sc = vi->adapter; 3530 3531 doom_vi(sc, vi); 3532 3533 cxgbe_vi_detach(vi); 3534 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3535 3536 end_synchronized_op(sc, 0); 3537 3538 return (0); 3539 } 3540 3541 static struct callout fatal_callout; 3542 static struct taskqueue *reset_tq; 3543 3544 static void 3545 delayed_panic(void *arg) 3546 { 3547 struct adapter *sc = arg; 3548 3549 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3550 } 3551 3552 static void 3553 fatal_error_task(void *arg, int pending) 3554 { 3555 struct adapter *sc = arg; 3556 int rc; 3557 3558 #ifdef TCP_OFFLOAD 3559 t4_async_event(sc); 3560 #endif 3561 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3562 dump_cim_regs(sc); 3563 dump_cimla(sc); 3564 dump_devlog(sc); 3565 } 3566 3567 if (t4_reset_on_fatal_err) { 3568 CH_ALERT(sc, "resetting on fatal error.\n"); 3569 rc = reset_adapter(sc); 3570 if (rc == 0 && t4_panic_on_fatal_err) { 3571 CH_ALERT(sc, "reset was successful, " 3572 "system will NOT panic.\n"); 3573 return; 3574 } 3575 } 3576 3577 if (t4_panic_on_fatal_err) { 3578 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3579 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3580 } 3581 } 3582 3583 void 3584 t4_fatal_err(struct adapter *sc, bool fw_error) 3585 { 3586 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3587 3588 stop_adapter(sc); 3589 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3590 return; 3591 if (fw_error) { 3592 /* 3593 * We are here because of a firmware error/timeout and not 3594 * because of a hardware interrupt. It is possible (although 3595 * not very likely) that an error interrupt was also raised but 3596 * this thread ran first and inhibited t4_intr_err. We walk the 3597 * main INT_CAUSE registers here to make sure we haven't missed 3598 * anything interesting. 3599 */ 3600 t4_slow_intr_handler(sc, verbose); 3601 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3602 } 3603 t4_report_fw_error(sc); 3604 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3605 device_get_nameunit(sc->dev), fw_error); 3606 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3607 } 3608 3609 void 3610 t4_add_adapter(struct adapter *sc) 3611 { 3612 sx_xlock(&t4_list_lock); 3613 SLIST_INSERT_HEAD(&t4_list, sc, link); 3614 sx_xunlock(&t4_list_lock); 3615 } 3616 3617 int 3618 t4_map_bars_0_and_4(struct adapter *sc) 3619 { 3620 sc->regs_rid = PCIR_BAR(0); 3621 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3622 &sc->regs_rid, RF_ACTIVE); 3623 if (sc->regs_res == NULL) { 3624 device_printf(sc->dev, "cannot map registers.\n"); 3625 return (ENXIO); 3626 } 3627 sc->bt = rman_get_bustag(sc->regs_res); 3628 sc->bh = rman_get_bushandle(sc->regs_res); 3629 sc->mmio_len = rman_get_size(sc->regs_res); 3630 setbit(&sc->doorbells, DOORBELL_KDB); 3631 3632 sc->msix_rid = PCIR_BAR(4); 3633 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3634 &sc->msix_rid, RF_ACTIVE); 3635 if (sc->msix_res == NULL) { 3636 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3637 return (ENXIO); 3638 } 3639 3640 return (0); 3641 } 3642 3643 int 3644 t4_map_bar_2(struct adapter *sc) 3645 { 3646 3647 /* 3648 * T4: only iWARP driver uses the userspace doorbells. There is no need 3649 * to map it if RDMA is disabled. 3650 */ 3651 if (is_t4(sc) && sc->rdmacaps == 0) 3652 return (0); 3653 3654 sc->udbs_rid = PCIR_BAR(2); 3655 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3656 &sc->udbs_rid, RF_ACTIVE); 3657 if (sc->udbs_res == NULL) { 3658 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3659 return (ENXIO); 3660 } 3661 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3662 3663 if (chip_id(sc) >= CHELSIO_T5) { 3664 setbit(&sc->doorbells, DOORBELL_UDB); 3665 #if defined(__i386__) || defined(__amd64__) 3666 if (t5_write_combine) { 3667 int rc, mode; 3668 3669 /* 3670 * Enable write combining on BAR2. This is the 3671 * userspace doorbell BAR and is split into 128B 3672 * (UDBS_SEG_SIZE) doorbell regions, each associated 3673 * with an egress queue. The first 64B has the doorbell 3674 * and the second 64B can be used to submit a tx work 3675 * request with an implicit doorbell. 3676 */ 3677 3678 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3679 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3680 if (rc == 0) { 3681 clrbit(&sc->doorbells, DOORBELL_UDB); 3682 setbit(&sc->doorbells, DOORBELL_WCWR); 3683 setbit(&sc->doorbells, DOORBELL_UDBWC); 3684 } else { 3685 device_printf(sc->dev, 3686 "couldn't enable write combining: %d\n", 3687 rc); 3688 } 3689 3690 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3691 t4_write_reg(sc, A_SGE_STAT_CFG, 3692 V_STATSOURCE_T5(7) | mode); 3693 } 3694 #endif 3695 } 3696 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3697 3698 return (0); 3699 } 3700 3701 struct memwin_init { 3702 uint32_t base; 3703 uint32_t aperture; 3704 }; 3705 3706 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3707 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3708 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3709 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3710 }; 3711 3712 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3713 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3714 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3715 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3716 }; 3717 3718 static void 3719 setup_memwin(struct adapter *sc) 3720 { 3721 const struct memwin_init *mw_init; 3722 struct memwin *mw; 3723 int i; 3724 uint32_t bar0; 3725 3726 if (is_t4(sc)) { 3727 /* 3728 * Read low 32b of bar0 indirectly via the hardware backdoor 3729 * mechanism. Works from within PCI passthrough environments 3730 * too, where rman_get_start() can return a different value. We 3731 * need to program the T4 memory window decoders with the actual 3732 * addresses that will be coming across the PCIe link. 3733 */ 3734 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3735 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3736 3737 mw_init = &t4_memwin[0]; 3738 } else { 3739 /* T5+ use the relative offset inside the PCIe BAR */ 3740 bar0 = 0; 3741 3742 mw_init = &t5_memwin[0]; 3743 } 3744 3745 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3746 if (!rw_initialized(&mw->mw_lock)) { 3747 rw_init(&mw->mw_lock, "memory window access"); 3748 mw->mw_base = mw_init->base; 3749 mw->mw_aperture = mw_init->aperture; 3750 mw->mw_curpos = 0; 3751 } 3752 t4_write_reg(sc, 3753 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3754 (mw->mw_base + bar0) | V_BIR(0) | 3755 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3756 rw_wlock(&mw->mw_lock); 3757 position_memwin(sc, i, mw->mw_curpos); 3758 rw_wunlock(&mw->mw_lock); 3759 } 3760 3761 /* flush */ 3762 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3763 } 3764 3765 /* 3766 * Positions the memory window at the given address in the card's address space. 3767 * There are some alignment requirements and the actual position may be at an 3768 * address prior to the requested address. mw->mw_curpos always has the actual 3769 * position of the window. 3770 */ 3771 static void 3772 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3773 { 3774 struct memwin *mw; 3775 uint32_t pf; 3776 uint32_t reg; 3777 3778 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3779 mw = &sc->memwin[idx]; 3780 rw_assert(&mw->mw_lock, RA_WLOCKED); 3781 3782 if (is_t4(sc)) { 3783 pf = 0; 3784 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3785 } else { 3786 pf = V_PFNUM(sc->pf); 3787 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3788 } 3789 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3790 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3791 t4_read_reg(sc, reg); /* flush */ 3792 } 3793 3794 int 3795 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3796 int len, int rw) 3797 { 3798 struct memwin *mw; 3799 uint32_t mw_end, v; 3800 3801 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3802 3803 /* Memory can only be accessed in naturally aligned 4 byte units */ 3804 if (addr & 3 || len & 3 || len <= 0) 3805 return (EINVAL); 3806 3807 mw = &sc->memwin[idx]; 3808 while (len > 0) { 3809 rw_rlock(&mw->mw_lock); 3810 mw_end = mw->mw_curpos + mw->mw_aperture; 3811 if (addr >= mw_end || addr < mw->mw_curpos) { 3812 /* Will need to reposition the window */ 3813 if (!rw_try_upgrade(&mw->mw_lock)) { 3814 rw_runlock(&mw->mw_lock); 3815 rw_wlock(&mw->mw_lock); 3816 } 3817 rw_assert(&mw->mw_lock, RA_WLOCKED); 3818 position_memwin(sc, idx, addr); 3819 rw_downgrade(&mw->mw_lock); 3820 mw_end = mw->mw_curpos + mw->mw_aperture; 3821 } 3822 rw_assert(&mw->mw_lock, RA_RLOCKED); 3823 while (addr < mw_end && len > 0) { 3824 if (rw == 0) { 3825 v = t4_read_reg(sc, mw->mw_base + addr - 3826 mw->mw_curpos); 3827 *val++ = le32toh(v); 3828 } else { 3829 v = *val++; 3830 t4_write_reg(sc, mw->mw_base + addr - 3831 mw->mw_curpos, htole32(v)); 3832 } 3833 addr += 4; 3834 len -= 4; 3835 } 3836 rw_runlock(&mw->mw_lock); 3837 } 3838 3839 return (0); 3840 } 3841 3842 static void 3843 t4_init_atid_table(struct adapter *sc) 3844 { 3845 struct tid_info *t; 3846 int i; 3847 3848 t = &sc->tids; 3849 if (t->natids == 0) 3850 return; 3851 3852 MPASS(t->atid_tab == NULL); 3853 3854 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3855 M_ZERO | M_WAITOK); 3856 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3857 t->afree = t->atid_tab; 3858 t->atids_in_use = 0; 3859 for (i = 1; i < t->natids; i++) 3860 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3861 t->atid_tab[t->natids - 1].next = NULL; 3862 } 3863 3864 static void 3865 t4_free_atid_table(struct adapter *sc) 3866 { 3867 struct tid_info *t; 3868 3869 t = &sc->tids; 3870 3871 KASSERT(t->atids_in_use == 0, 3872 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3873 3874 if (mtx_initialized(&t->atid_lock)) 3875 mtx_destroy(&t->atid_lock); 3876 free(t->atid_tab, M_CXGBE); 3877 t->atid_tab = NULL; 3878 } 3879 3880 int 3881 alloc_atid(struct adapter *sc, void *ctx) 3882 { 3883 struct tid_info *t = &sc->tids; 3884 int atid = -1; 3885 3886 mtx_lock(&t->atid_lock); 3887 if (t->afree) { 3888 union aopen_entry *p = t->afree; 3889 3890 atid = p - t->atid_tab; 3891 MPASS(atid <= M_TID_TID); 3892 t->afree = p->next; 3893 p->data = ctx; 3894 t->atids_in_use++; 3895 } 3896 mtx_unlock(&t->atid_lock); 3897 return (atid); 3898 } 3899 3900 void * 3901 lookup_atid(struct adapter *sc, int atid) 3902 { 3903 struct tid_info *t = &sc->tids; 3904 3905 return (t->atid_tab[atid].data); 3906 } 3907 3908 void 3909 free_atid(struct adapter *sc, int atid) 3910 { 3911 struct tid_info *t = &sc->tids; 3912 union aopen_entry *p = &t->atid_tab[atid]; 3913 3914 mtx_lock(&t->atid_lock); 3915 p->next = t->afree; 3916 t->afree = p; 3917 t->atids_in_use--; 3918 mtx_unlock(&t->atid_lock); 3919 } 3920 3921 static void 3922 queue_tid_release(struct adapter *sc, int tid) 3923 { 3924 3925 CXGBE_UNIMPLEMENTED("deferred tid release"); 3926 } 3927 3928 void 3929 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3930 { 3931 struct wrqe *wr; 3932 struct cpl_tid_release *req; 3933 3934 wr = alloc_wrqe(sizeof(*req), ctrlq); 3935 if (wr == NULL) { 3936 queue_tid_release(sc, tid); /* defer */ 3937 return; 3938 } 3939 req = wrtod(wr); 3940 3941 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3942 3943 t4_wrq_tx(sc, wr); 3944 } 3945 3946 static int 3947 t4_range_cmp(const void *a, const void *b) 3948 { 3949 return ((const struct t4_range *)a)->start - 3950 ((const struct t4_range *)b)->start; 3951 } 3952 3953 /* 3954 * Verify that the memory range specified by the addr/len pair is valid within 3955 * the card's address space. 3956 */ 3957 static int 3958 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3959 { 3960 struct t4_range mem_ranges[4], *r, *next; 3961 uint32_t em, addr_len; 3962 int i, n, remaining; 3963 3964 /* Memory can only be accessed in naturally aligned 4 byte units */ 3965 if (addr & 3 || len & 3 || len == 0) 3966 return (EINVAL); 3967 3968 /* Enabled memories */ 3969 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3970 3971 r = &mem_ranges[0]; 3972 n = 0; 3973 bzero(r, sizeof(mem_ranges)); 3974 if (em & F_EDRAM0_ENABLE) { 3975 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3976 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3977 if (r->size > 0) { 3978 r->start = G_EDRAM0_BASE(addr_len) << 20; 3979 if (addr >= r->start && 3980 addr + len <= r->start + r->size) 3981 return (0); 3982 r++; 3983 n++; 3984 } 3985 } 3986 if (em & F_EDRAM1_ENABLE) { 3987 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3988 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3989 if (r->size > 0) { 3990 r->start = G_EDRAM1_BASE(addr_len) << 20; 3991 if (addr >= r->start && 3992 addr + len <= r->start + r->size) 3993 return (0); 3994 r++; 3995 n++; 3996 } 3997 } 3998 if (em & F_EXT_MEM_ENABLE) { 3999 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4000 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4001 if (r->size > 0) { 4002 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4003 if (addr >= r->start && 4004 addr + len <= r->start + r->size) 4005 return (0); 4006 r++; 4007 n++; 4008 } 4009 } 4010 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4011 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4012 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4013 if (r->size > 0) { 4014 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4015 if (addr >= r->start && 4016 addr + len <= r->start + r->size) 4017 return (0); 4018 r++; 4019 n++; 4020 } 4021 } 4022 MPASS(n <= nitems(mem_ranges)); 4023 4024 if (n > 1) { 4025 /* Sort and merge the ranges. */ 4026 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4027 4028 /* Start from index 0 and examine the next n - 1 entries. */ 4029 r = &mem_ranges[0]; 4030 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4031 4032 MPASS(r->size > 0); /* r is a valid entry. */ 4033 next = r + 1; 4034 MPASS(next->size > 0); /* and so is the next one. */ 4035 4036 while (r->start + r->size >= next->start) { 4037 /* Merge the next one into the current entry. */ 4038 r->size = max(r->start + r->size, 4039 next->start + next->size) - r->start; 4040 n--; /* One fewer entry in total. */ 4041 if (--remaining == 0) 4042 goto done; /* short circuit */ 4043 next++; 4044 } 4045 if (next != r + 1) { 4046 /* 4047 * Some entries were merged into r and next 4048 * points to the first valid entry that couldn't 4049 * be merged. 4050 */ 4051 MPASS(next->size > 0); /* must be valid */ 4052 memcpy(r + 1, next, remaining * sizeof(*r)); 4053 #ifdef INVARIANTS 4054 /* 4055 * This so that the foo->size assertion in the 4056 * next iteration of the loop do the right 4057 * thing for entries that were pulled up and are 4058 * no longer valid. 4059 */ 4060 MPASS(n < nitems(mem_ranges)); 4061 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4062 sizeof(struct t4_range)); 4063 #endif 4064 } 4065 } 4066 done: 4067 /* Done merging the ranges. */ 4068 MPASS(n > 0); 4069 r = &mem_ranges[0]; 4070 for (i = 0; i < n; i++, r++) { 4071 if (addr >= r->start && 4072 addr + len <= r->start + r->size) 4073 return (0); 4074 } 4075 } 4076 4077 return (EFAULT); 4078 } 4079 4080 static int 4081 fwmtype_to_hwmtype(int mtype) 4082 { 4083 4084 switch (mtype) { 4085 case FW_MEMTYPE_EDC0: 4086 return (MEM_EDC0); 4087 case FW_MEMTYPE_EDC1: 4088 return (MEM_EDC1); 4089 case FW_MEMTYPE_EXTMEM: 4090 return (MEM_MC0); 4091 case FW_MEMTYPE_EXTMEM1: 4092 return (MEM_MC1); 4093 default: 4094 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4095 } 4096 } 4097 4098 /* 4099 * Verify that the memory range specified by the memtype/offset/len pair is 4100 * valid and lies entirely within the memtype specified. The global address of 4101 * the start of the range is returned in addr. 4102 */ 4103 static int 4104 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4105 uint32_t *addr) 4106 { 4107 uint32_t em, addr_len, maddr; 4108 4109 /* Memory can only be accessed in naturally aligned 4 byte units */ 4110 if (off & 3 || len & 3 || len == 0) 4111 return (EINVAL); 4112 4113 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4114 switch (fwmtype_to_hwmtype(mtype)) { 4115 case MEM_EDC0: 4116 if (!(em & F_EDRAM0_ENABLE)) 4117 return (EINVAL); 4118 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4119 maddr = G_EDRAM0_BASE(addr_len) << 20; 4120 break; 4121 case MEM_EDC1: 4122 if (!(em & F_EDRAM1_ENABLE)) 4123 return (EINVAL); 4124 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4125 maddr = G_EDRAM1_BASE(addr_len) << 20; 4126 break; 4127 case MEM_MC: 4128 if (!(em & F_EXT_MEM_ENABLE)) 4129 return (EINVAL); 4130 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4131 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4132 break; 4133 case MEM_MC1: 4134 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4135 return (EINVAL); 4136 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4137 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4138 break; 4139 default: 4140 return (EINVAL); 4141 } 4142 4143 *addr = maddr + off; /* global address */ 4144 return (validate_mem_range(sc, *addr, len)); 4145 } 4146 4147 static int 4148 fixup_devlog_params(struct adapter *sc) 4149 { 4150 struct devlog_params *dparams = &sc->params.devlog; 4151 int rc; 4152 4153 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4154 dparams->size, &dparams->addr); 4155 4156 return (rc); 4157 } 4158 4159 static void 4160 update_nirq(struct intrs_and_queues *iaq, int nports) 4161 { 4162 4163 iaq->nirq = T4_EXTRA_INTR; 4164 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4165 iaq->nirq += nports * iaq->nofldrxq; 4166 iaq->nirq += nports * (iaq->num_vis - 1) * 4167 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4168 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4169 } 4170 4171 /* 4172 * Adjust requirements to fit the number of interrupts available. 4173 */ 4174 static void 4175 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4176 int navail) 4177 { 4178 int old_nirq; 4179 const int nports = sc->params.nports; 4180 4181 MPASS(nports > 0); 4182 MPASS(navail > 0); 4183 4184 bzero(iaq, sizeof(*iaq)); 4185 iaq->intr_type = itype; 4186 iaq->num_vis = t4_num_vis; 4187 iaq->ntxq = t4_ntxq; 4188 iaq->ntxq_vi = t4_ntxq_vi; 4189 iaq->nrxq = t4_nrxq; 4190 iaq->nrxq_vi = t4_nrxq_vi; 4191 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4192 if (is_offload(sc) || is_ethoffload(sc)) { 4193 iaq->nofldtxq = t4_nofldtxq; 4194 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4195 } 4196 #endif 4197 #ifdef TCP_OFFLOAD 4198 if (is_offload(sc)) { 4199 iaq->nofldrxq = t4_nofldrxq; 4200 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4201 } 4202 #endif 4203 #ifdef DEV_NETMAP 4204 if (t4_native_netmap & NN_MAIN_VI) { 4205 iaq->nnmtxq = t4_nnmtxq; 4206 iaq->nnmrxq = t4_nnmrxq; 4207 } 4208 if (t4_native_netmap & NN_EXTRA_VI) { 4209 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4210 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4211 } 4212 #endif 4213 4214 update_nirq(iaq, nports); 4215 if (iaq->nirq <= navail && 4216 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4217 /* 4218 * This is the normal case -- there are enough interrupts for 4219 * everything. 4220 */ 4221 goto done; 4222 } 4223 4224 /* 4225 * If extra VIs have been configured try reducing their count and see if 4226 * that works. 4227 */ 4228 while (iaq->num_vis > 1) { 4229 iaq->num_vis--; 4230 update_nirq(iaq, nports); 4231 if (iaq->nirq <= navail && 4232 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4233 device_printf(sc->dev, "virtual interfaces per port " 4234 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4235 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4236 "itype %d, navail %u, nirq %d.\n", 4237 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4238 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4239 itype, navail, iaq->nirq); 4240 goto done; 4241 } 4242 } 4243 4244 /* 4245 * Extra VIs will not be created. Log a message if they were requested. 4246 */ 4247 MPASS(iaq->num_vis == 1); 4248 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4249 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4250 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4251 if (iaq->num_vis != t4_num_vis) { 4252 device_printf(sc->dev, "extra virtual interfaces disabled. " 4253 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4254 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4255 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4256 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4257 } 4258 4259 /* 4260 * Keep reducing the number of NIC rx queues to the next lower power of 4261 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4262 * if that works. 4263 */ 4264 do { 4265 if (iaq->nrxq > 1) { 4266 do { 4267 iaq->nrxq--; 4268 } while (!powerof2(iaq->nrxq)); 4269 if (iaq->nnmrxq > iaq->nrxq) 4270 iaq->nnmrxq = iaq->nrxq; 4271 } 4272 if (iaq->nofldrxq > 1) 4273 iaq->nofldrxq >>= 1; 4274 4275 old_nirq = iaq->nirq; 4276 update_nirq(iaq, nports); 4277 if (iaq->nirq <= navail && 4278 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4279 device_printf(sc->dev, "running with reduced number of " 4280 "rx queues because of shortage of interrupts. " 4281 "nrxq=%u, nofldrxq=%u. " 4282 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4283 iaq->nofldrxq, itype, navail, iaq->nirq); 4284 goto done; 4285 } 4286 } while (old_nirq != iaq->nirq); 4287 4288 /* One interrupt for everything. Ugh. */ 4289 device_printf(sc->dev, "running with minimal number of queues. " 4290 "itype %d, navail %u.\n", itype, navail); 4291 iaq->nirq = 1; 4292 iaq->nrxq = 1; 4293 iaq->ntxq = 1; 4294 if (iaq->nofldrxq > 0) { 4295 iaq->nofldrxq = 1; 4296 iaq->nofldtxq = 1; 4297 } 4298 iaq->nnmtxq = 0; 4299 iaq->nnmrxq = 0; 4300 done: 4301 MPASS(iaq->num_vis > 0); 4302 if (iaq->num_vis > 1) { 4303 MPASS(iaq->nrxq_vi > 0); 4304 MPASS(iaq->ntxq_vi > 0); 4305 } 4306 MPASS(iaq->nirq > 0); 4307 MPASS(iaq->nrxq > 0); 4308 MPASS(iaq->ntxq > 0); 4309 if (itype == INTR_MSI) { 4310 MPASS(powerof2(iaq->nirq)); 4311 } 4312 } 4313 4314 static int 4315 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4316 { 4317 int rc, itype, navail, nalloc; 4318 4319 for (itype = INTR_MSIX; itype; itype >>= 1) { 4320 4321 if ((itype & t4_intr_types) == 0) 4322 continue; /* not allowed */ 4323 4324 if (itype == INTR_MSIX) 4325 navail = pci_msix_count(sc->dev); 4326 else if (itype == INTR_MSI) 4327 navail = pci_msi_count(sc->dev); 4328 else 4329 navail = 1; 4330 restart: 4331 if (navail == 0) 4332 continue; 4333 4334 calculate_iaq(sc, iaq, itype, navail); 4335 nalloc = iaq->nirq; 4336 rc = 0; 4337 if (itype == INTR_MSIX) 4338 rc = pci_alloc_msix(sc->dev, &nalloc); 4339 else if (itype == INTR_MSI) 4340 rc = pci_alloc_msi(sc->dev, &nalloc); 4341 4342 if (rc == 0 && nalloc > 0) { 4343 if (nalloc == iaq->nirq) 4344 return (0); 4345 4346 /* 4347 * Didn't get the number requested. Use whatever number 4348 * the kernel is willing to allocate. 4349 */ 4350 device_printf(sc->dev, "fewer vectors than requested, " 4351 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4352 itype, iaq->nirq, nalloc); 4353 pci_release_msi(sc->dev); 4354 navail = nalloc; 4355 goto restart; 4356 } 4357 4358 device_printf(sc->dev, 4359 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4360 itype, rc, iaq->nirq, nalloc); 4361 } 4362 4363 device_printf(sc->dev, 4364 "failed to find a usable interrupt type. " 4365 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4366 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4367 4368 return (ENXIO); 4369 } 4370 4371 #define FW_VERSION(chip) ( \ 4372 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4373 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4374 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4375 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4376 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4377 4378 /* Just enough of fw_hdr to cover all version info. */ 4379 struct fw_h { 4380 __u8 ver; 4381 __u8 chip; 4382 __be16 len512; 4383 __be32 fw_ver; 4384 __be32 tp_microcode_ver; 4385 __u8 intfver_nic; 4386 __u8 intfver_vnic; 4387 __u8 intfver_ofld; 4388 __u8 intfver_ri; 4389 __u8 intfver_iscsipdu; 4390 __u8 intfver_iscsi; 4391 __u8 intfver_fcoepdu; 4392 __u8 intfver_fcoe; 4393 }; 4394 /* Spot check a couple of fields. */ 4395 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4396 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4397 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4398 4399 struct fw_info { 4400 uint8_t chip; 4401 char *kld_name; 4402 char *fw_mod_name; 4403 struct fw_h fw_h; 4404 } fw_info[] = { 4405 { 4406 .chip = CHELSIO_T4, 4407 .kld_name = "t4fw_cfg", 4408 .fw_mod_name = "t4fw", 4409 .fw_h = { 4410 .chip = FW_HDR_CHIP_T4, 4411 .fw_ver = htobe32(FW_VERSION(T4)), 4412 .intfver_nic = FW_INTFVER(T4, NIC), 4413 .intfver_vnic = FW_INTFVER(T4, VNIC), 4414 .intfver_ofld = FW_INTFVER(T4, OFLD), 4415 .intfver_ri = FW_INTFVER(T4, RI), 4416 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4417 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4418 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4419 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4420 }, 4421 }, { 4422 .chip = CHELSIO_T5, 4423 .kld_name = "t5fw_cfg", 4424 .fw_mod_name = "t5fw", 4425 .fw_h = { 4426 .chip = FW_HDR_CHIP_T5, 4427 .fw_ver = htobe32(FW_VERSION(T5)), 4428 .intfver_nic = FW_INTFVER(T5, NIC), 4429 .intfver_vnic = FW_INTFVER(T5, VNIC), 4430 .intfver_ofld = FW_INTFVER(T5, OFLD), 4431 .intfver_ri = FW_INTFVER(T5, RI), 4432 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4433 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4434 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4435 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4436 }, 4437 }, { 4438 .chip = CHELSIO_T6, 4439 .kld_name = "t6fw_cfg", 4440 .fw_mod_name = "t6fw", 4441 .fw_h = { 4442 .chip = FW_HDR_CHIP_T6, 4443 .fw_ver = htobe32(FW_VERSION(T6)), 4444 .intfver_nic = FW_INTFVER(T6, NIC), 4445 .intfver_vnic = FW_INTFVER(T6, VNIC), 4446 .intfver_ofld = FW_INTFVER(T6, OFLD), 4447 .intfver_ri = FW_INTFVER(T6, RI), 4448 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4449 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4450 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4451 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4452 }, 4453 } 4454 }; 4455 4456 static struct fw_info * 4457 find_fw_info(int chip) 4458 { 4459 int i; 4460 4461 for (i = 0; i < nitems(fw_info); i++) { 4462 if (fw_info[i].chip == chip) 4463 return (&fw_info[i]); 4464 } 4465 return (NULL); 4466 } 4467 4468 /* 4469 * Is the given firmware API compatible with the one the driver was compiled 4470 * with? 4471 */ 4472 static int 4473 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4474 { 4475 4476 /* short circuit if it's the exact same firmware version */ 4477 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4478 return (1); 4479 4480 /* 4481 * XXX: Is this too conservative? Perhaps I should limit this to the 4482 * features that are supported in the driver. 4483 */ 4484 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4485 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4486 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4487 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4488 return (1); 4489 #undef SAME_INTF 4490 4491 return (0); 4492 } 4493 4494 static int 4495 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4496 const struct firmware **fw) 4497 { 4498 struct fw_info *fw_info; 4499 4500 *dcfg = NULL; 4501 if (fw != NULL) 4502 *fw = NULL; 4503 4504 fw_info = find_fw_info(chip_id(sc)); 4505 if (fw_info == NULL) { 4506 device_printf(sc->dev, 4507 "unable to look up firmware information for chip %d.\n", 4508 chip_id(sc)); 4509 return (EINVAL); 4510 } 4511 4512 *dcfg = firmware_get(fw_info->kld_name); 4513 if (*dcfg != NULL) { 4514 if (fw != NULL) 4515 *fw = firmware_get(fw_info->fw_mod_name); 4516 return (0); 4517 } 4518 4519 return (ENOENT); 4520 } 4521 4522 static void 4523 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4524 const struct firmware *fw) 4525 { 4526 4527 if (fw != NULL) 4528 firmware_put(fw, FIRMWARE_UNLOAD); 4529 if (dcfg != NULL) 4530 firmware_put(dcfg, FIRMWARE_UNLOAD); 4531 } 4532 4533 /* 4534 * Return values: 4535 * 0 means no firmware install attempted. 4536 * ERESTART means a firmware install was attempted and was successful. 4537 * +ve errno means a firmware install was attempted but failed. 4538 */ 4539 static int 4540 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4541 const struct fw_h *drv_fw, const char *reason, int *already) 4542 { 4543 const struct firmware *cfg, *fw; 4544 const uint32_t c = be32toh(card_fw->fw_ver); 4545 uint32_t d, k; 4546 int rc, fw_install; 4547 struct fw_h bundled_fw; 4548 bool load_attempted; 4549 4550 cfg = fw = NULL; 4551 load_attempted = false; 4552 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4553 4554 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4555 if (t4_fw_install < 0) { 4556 rc = load_fw_module(sc, &cfg, &fw); 4557 if (rc != 0 || fw == NULL) { 4558 device_printf(sc->dev, 4559 "failed to load firmware module: %d. cfg %p, fw %p;" 4560 " will use compiled-in firmware version for" 4561 "hw.cxgbe.fw_install checks.\n", 4562 rc, cfg, fw); 4563 } else { 4564 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4565 } 4566 load_attempted = true; 4567 } 4568 d = be32toh(bundled_fw.fw_ver); 4569 4570 if (reason != NULL) 4571 goto install; 4572 4573 if ((sc->flags & FW_OK) == 0) { 4574 4575 if (c == 0xffffffff) { 4576 reason = "missing"; 4577 goto install; 4578 } 4579 4580 rc = 0; 4581 goto done; 4582 } 4583 4584 if (!fw_compatible(card_fw, &bundled_fw)) { 4585 reason = "incompatible or unusable"; 4586 goto install; 4587 } 4588 4589 if (d > c) { 4590 reason = "older than the version bundled with this driver"; 4591 goto install; 4592 } 4593 4594 if (fw_install == 2 && d != c) { 4595 reason = "different than the version bundled with this driver"; 4596 goto install; 4597 } 4598 4599 /* No reason to do anything to the firmware already on the card. */ 4600 rc = 0; 4601 goto done; 4602 4603 install: 4604 rc = 0; 4605 if ((*already)++) 4606 goto done; 4607 4608 if (fw_install == 0) { 4609 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4610 "but the driver is prohibited from installing a firmware " 4611 "on the card.\n", 4612 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4613 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4614 4615 goto done; 4616 } 4617 4618 /* 4619 * We'll attempt to install a firmware. Load the module first (if it 4620 * hasn't been loaded already). 4621 */ 4622 if (!load_attempted) { 4623 rc = load_fw_module(sc, &cfg, &fw); 4624 if (rc != 0 || fw == NULL) { 4625 device_printf(sc->dev, 4626 "failed to load firmware module: %d. cfg %p, fw %p\n", 4627 rc, cfg, fw); 4628 /* carry on */ 4629 } 4630 } 4631 if (fw == NULL) { 4632 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4633 "but the driver cannot take corrective action because it " 4634 "is unable to load the firmware module.\n", 4635 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4636 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4637 rc = sc->flags & FW_OK ? 0 : ENOENT; 4638 goto done; 4639 } 4640 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4641 if (k != d) { 4642 MPASS(t4_fw_install > 0); 4643 device_printf(sc->dev, 4644 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4645 "expecting (%u.%u.%u.%u) and will not be used.\n", 4646 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4647 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4648 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4649 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4650 rc = sc->flags & FW_OK ? 0 : EINVAL; 4651 goto done; 4652 } 4653 4654 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4655 "installing firmware %u.%u.%u.%u on card.\n", 4656 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4657 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4658 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4659 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4660 4661 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4662 if (rc != 0) { 4663 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4664 } else { 4665 /* Installed successfully, update the cached header too. */ 4666 rc = ERESTART; 4667 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4668 } 4669 done: 4670 unload_fw_module(sc, cfg, fw); 4671 4672 return (rc); 4673 } 4674 4675 /* 4676 * Establish contact with the firmware and attempt to become the master driver. 4677 * 4678 * A firmware will be installed to the card if needed (if the driver is allowed 4679 * to do so). 4680 */ 4681 static int 4682 contact_firmware(struct adapter *sc) 4683 { 4684 int rc, already = 0; 4685 enum dev_state state; 4686 struct fw_info *fw_info; 4687 struct fw_hdr *card_fw; /* fw on the card */ 4688 const struct fw_h *drv_fw; 4689 4690 fw_info = find_fw_info(chip_id(sc)); 4691 if (fw_info == NULL) { 4692 device_printf(sc->dev, 4693 "unable to look up firmware information for chip %d.\n", 4694 chip_id(sc)); 4695 return (EINVAL); 4696 } 4697 drv_fw = &fw_info->fw_h; 4698 4699 /* Read the header of the firmware on the card */ 4700 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4701 restart: 4702 rc = -t4_get_fw_hdr(sc, card_fw); 4703 if (rc != 0) { 4704 device_printf(sc->dev, 4705 "unable to read firmware header from card's flash: %d\n", 4706 rc); 4707 goto done; 4708 } 4709 4710 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4711 &already); 4712 if (rc == ERESTART) 4713 goto restart; 4714 if (rc != 0) 4715 goto done; 4716 4717 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4718 if (rc < 0 || state == DEV_STATE_ERR) { 4719 rc = -rc; 4720 device_printf(sc->dev, 4721 "failed to connect to the firmware: %d, %d. " 4722 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4723 #if 0 4724 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4725 "not responding properly to HELLO", &already) == ERESTART) 4726 goto restart; 4727 #endif 4728 goto done; 4729 } 4730 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4731 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4732 4733 if (rc == sc->pf) { 4734 sc->flags |= MASTER_PF; 4735 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4736 NULL, &already); 4737 if (rc == ERESTART) 4738 rc = 0; 4739 else if (rc != 0) 4740 goto done; 4741 } else if (state == DEV_STATE_UNINIT) { 4742 /* 4743 * We didn't get to be the master so we definitely won't be 4744 * configuring the chip. It's a bug if someone else hasn't 4745 * configured it already. 4746 */ 4747 device_printf(sc->dev, "couldn't be master(%d), " 4748 "device not already initialized either(%d). " 4749 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4750 rc = EPROTO; 4751 goto done; 4752 } else { 4753 /* 4754 * Some other PF is the master and has configured the chip. 4755 * This is allowed but untested. 4756 */ 4757 device_printf(sc->dev, "PF%d is master, device state %d. " 4758 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4759 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4760 sc->cfcsum = 0; 4761 rc = 0; 4762 } 4763 done: 4764 if (rc != 0 && sc->flags & FW_OK) { 4765 t4_fw_bye(sc, sc->mbox); 4766 sc->flags &= ~FW_OK; 4767 } 4768 free(card_fw, M_CXGBE); 4769 return (rc); 4770 } 4771 4772 static int 4773 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4774 uint32_t mtype, uint32_t moff) 4775 { 4776 struct fw_info *fw_info; 4777 const struct firmware *dcfg, *rcfg = NULL; 4778 const uint32_t *cfdata; 4779 uint32_t cflen, addr; 4780 int rc; 4781 4782 load_fw_module(sc, &dcfg, NULL); 4783 4784 /* Card specific interpretation of "default". */ 4785 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4786 if (pci_get_device(sc->dev) == 0x440a) 4787 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4788 if (is_fpga(sc)) 4789 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4790 } 4791 4792 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4793 if (dcfg == NULL) { 4794 device_printf(sc->dev, 4795 "KLD with default config is not available.\n"); 4796 rc = ENOENT; 4797 goto done; 4798 } 4799 cfdata = dcfg->data; 4800 cflen = dcfg->datasize & ~3; 4801 } else { 4802 char s[32]; 4803 4804 fw_info = find_fw_info(chip_id(sc)); 4805 if (fw_info == NULL) { 4806 device_printf(sc->dev, 4807 "unable to look up firmware information for chip %d.\n", 4808 chip_id(sc)); 4809 rc = EINVAL; 4810 goto done; 4811 } 4812 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4813 4814 rcfg = firmware_get(s); 4815 if (rcfg == NULL) { 4816 device_printf(sc->dev, 4817 "unable to load module \"%s\" for configuration " 4818 "profile \"%s\".\n", s, cfg_file); 4819 rc = ENOENT; 4820 goto done; 4821 } 4822 cfdata = rcfg->data; 4823 cflen = rcfg->datasize & ~3; 4824 } 4825 4826 if (cflen > FLASH_CFG_MAX_SIZE) { 4827 device_printf(sc->dev, 4828 "config file too long (%d, max allowed is %d).\n", 4829 cflen, FLASH_CFG_MAX_SIZE); 4830 rc = EINVAL; 4831 goto done; 4832 } 4833 4834 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4835 if (rc != 0) { 4836 device_printf(sc->dev, 4837 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4838 __func__, mtype, moff, cflen, rc); 4839 rc = EINVAL; 4840 goto done; 4841 } 4842 write_via_memwin(sc, 2, addr, cfdata, cflen); 4843 done: 4844 if (rcfg != NULL) 4845 firmware_put(rcfg, FIRMWARE_UNLOAD); 4846 unload_fw_module(sc, dcfg, NULL); 4847 return (rc); 4848 } 4849 4850 struct caps_allowed { 4851 uint16_t nbmcaps; 4852 uint16_t linkcaps; 4853 uint16_t switchcaps; 4854 uint16_t niccaps; 4855 uint16_t toecaps; 4856 uint16_t rdmacaps; 4857 uint16_t cryptocaps; 4858 uint16_t iscsicaps; 4859 uint16_t fcoecaps; 4860 }; 4861 4862 #define FW_PARAM_DEV(param) \ 4863 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4864 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4865 #define FW_PARAM_PFVF(param) \ 4866 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4867 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4868 4869 /* 4870 * Provide a configuration profile to the firmware and have it initialize the 4871 * chip accordingly. This may involve uploading a configuration file to the 4872 * card. 4873 */ 4874 static int 4875 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4876 const struct caps_allowed *caps_allowed) 4877 { 4878 int rc; 4879 struct fw_caps_config_cmd caps; 4880 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4881 4882 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4883 if (rc != 0) { 4884 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4885 return (rc); 4886 } 4887 4888 bzero(&caps, sizeof(caps)); 4889 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4890 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4891 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4892 mtype = 0; 4893 moff = 0; 4894 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4895 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4896 mtype = FW_MEMTYPE_FLASH; 4897 moff = t4_flash_cfg_addr(sc); 4898 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4899 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4900 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4901 FW_LEN16(caps)); 4902 } else { 4903 /* 4904 * Ask the firmware where it wants us to upload the config file. 4905 */ 4906 param = FW_PARAM_DEV(CF); 4907 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4908 if (rc != 0) { 4909 /* No support for config file? Shouldn't happen. */ 4910 device_printf(sc->dev, 4911 "failed to query config file location: %d.\n", rc); 4912 goto done; 4913 } 4914 mtype = G_FW_PARAMS_PARAM_Y(val); 4915 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4916 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4917 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4918 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4919 FW_LEN16(caps)); 4920 4921 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4922 if (rc != 0) { 4923 device_printf(sc->dev, 4924 "failed to upload config file to card: %d.\n", rc); 4925 goto done; 4926 } 4927 } 4928 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4929 if (rc != 0) { 4930 device_printf(sc->dev, "failed to pre-process config file: %d " 4931 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4932 goto done; 4933 } 4934 4935 finicsum = be32toh(caps.finicsum); 4936 cfcsum = be32toh(caps.cfcsum); /* actual */ 4937 if (finicsum != cfcsum) { 4938 device_printf(sc->dev, 4939 "WARNING: config file checksum mismatch: %08x %08x\n", 4940 finicsum, cfcsum); 4941 } 4942 sc->cfcsum = cfcsum; 4943 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4944 4945 /* 4946 * Let the firmware know what features will (not) be used so it can tune 4947 * things accordingly. 4948 */ 4949 #define LIMIT_CAPS(x) do { \ 4950 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4951 } while (0) 4952 LIMIT_CAPS(nbm); 4953 LIMIT_CAPS(link); 4954 LIMIT_CAPS(switch); 4955 LIMIT_CAPS(nic); 4956 LIMIT_CAPS(toe); 4957 LIMIT_CAPS(rdma); 4958 LIMIT_CAPS(crypto); 4959 LIMIT_CAPS(iscsi); 4960 LIMIT_CAPS(fcoe); 4961 #undef LIMIT_CAPS 4962 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4963 /* 4964 * TOE and hashfilters are mutually exclusive. It is a config 4965 * file or firmware bug if both are reported as available. Try 4966 * to cope with the situation in non-debug builds by disabling 4967 * TOE. 4968 */ 4969 MPASS(caps.toecaps == 0); 4970 4971 caps.toecaps = 0; 4972 caps.rdmacaps = 0; 4973 caps.iscsicaps = 0; 4974 } 4975 4976 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4977 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4978 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4979 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4980 if (rc != 0) { 4981 device_printf(sc->dev, 4982 "failed to process config file: %d.\n", rc); 4983 goto done; 4984 } 4985 4986 t4_tweak_chip_settings(sc); 4987 set_params__pre_init(sc); 4988 4989 /* get basic stuff going */ 4990 rc = -t4_fw_initialize(sc, sc->mbox); 4991 if (rc != 0) { 4992 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4993 goto done; 4994 } 4995 done: 4996 return (rc); 4997 } 4998 4999 /* 5000 * Partition chip resources for use between various PFs, VFs, etc. 5001 */ 5002 static int 5003 partition_resources(struct adapter *sc) 5004 { 5005 char cfg_file[sizeof(t4_cfg_file)]; 5006 struct caps_allowed caps_allowed; 5007 int rc; 5008 bool fallback; 5009 5010 /* Only the master driver gets to configure the chip resources. */ 5011 MPASS(sc->flags & MASTER_PF); 5012 5013 #define COPY_CAPS(x) do { \ 5014 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5015 } while (0) 5016 bzero(&caps_allowed, sizeof(caps_allowed)); 5017 COPY_CAPS(nbm); 5018 COPY_CAPS(link); 5019 COPY_CAPS(switch); 5020 COPY_CAPS(nic); 5021 COPY_CAPS(toe); 5022 COPY_CAPS(rdma); 5023 COPY_CAPS(crypto); 5024 COPY_CAPS(iscsi); 5025 COPY_CAPS(fcoe); 5026 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5027 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5028 retry: 5029 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5030 if (rc != 0 && fallback) { 5031 device_printf(sc->dev, 5032 "failed (%d) to configure card with \"%s\" profile, " 5033 "will fall back to a basic configuration and retry.\n", 5034 rc, cfg_file); 5035 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5036 bzero(&caps_allowed, sizeof(caps_allowed)); 5037 COPY_CAPS(switch); 5038 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5039 fallback = false; 5040 goto retry; 5041 } 5042 #undef COPY_CAPS 5043 return (rc); 5044 } 5045 5046 /* 5047 * Retrieve parameters that are needed (or nice to have) very early. 5048 */ 5049 static int 5050 get_params__pre_init(struct adapter *sc) 5051 { 5052 int rc; 5053 uint32_t param[2], val[2]; 5054 5055 t4_get_version_info(sc); 5056 5057 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5058 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5059 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5060 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5061 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5062 5063 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5064 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5065 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5066 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5067 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5068 5069 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5070 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5071 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5072 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5073 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5074 5075 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5076 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5077 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5078 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5079 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5080 5081 param[0] = FW_PARAM_DEV(PORTVEC); 5082 param[1] = FW_PARAM_DEV(CCLK); 5083 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5084 if (rc != 0) { 5085 device_printf(sc->dev, 5086 "failed to query parameters (pre_init): %d.\n", rc); 5087 return (rc); 5088 } 5089 5090 sc->params.portvec = val[0]; 5091 sc->params.nports = bitcount32(val[0]); 5092 sc->params.vpd.cclk = val[1]; 5093 5094 /* Read device log parameters. */ 5095 rc = -t4_init_devlog_params(sc, 1); 5096 if (rc == 0) 5097 fixup_devlog_params(sc); 5098 else { 5099 device_printf(sc->dev, 5100 "failed to get devlog parameters: %d.\n", rc); 5101 rc = 0; /* devlog isn't critical for device operation */ 5102 } 5103 5104 return (rc); 5105 } 5106 5107 /* 5108 * Any params that need to be set before FW_INITIALIZE. 5109 */ 5110 static int 5111 set_params__pre_init(struct adapter *sc) 5112 { 5113 int rc = 0; 5114 uint32_t param, val; 5115 5116 if (chip_id(sc) >= CHELSIO_T6) { 5117 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5118 val = 1; 5119 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5120 /* firmwares < 1.20.1.0 do not have this param. */ 5121 if (rc == FW_EINVAL && 5122 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5123 rc = 0; 5124 } 5125 if (rc != 0) { 5126 device_printf(sc->dev, 5127 "failed to enable high priority filters :%d.\n", 5128 rc); 5129 } 5130 5131 param = FW_PARAM_DEV(PPOD_EDRAM); 5132 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5133 if (rc == 0 && val == 1) { 5134 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5135 &val); 5136 if (rc != 0) { 5137 device_printf(sc->dev, 5138 "failed to set PPOD_EDRAM: %d.\n", rc); 5139 } 5140 } 5141 } 5142 5143 /* Enable opaque VIIDs with firmwares that support it. */ 5144 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5145 val = 1; 5146 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5147 if (rc == 0 && val == 1) 5148 sc->params.viid_smt_extn_support = true; 5149 else 5150 sc->params.viid_smt_extn_support = false; 5151 5152 return (rc); 5153 } 5154 5155 /* 5156 * Retrieve various parameters that are of interest to the driver. The device 5157 * has been initialized by the firmware at this point. 5158 */ 5159 static int 5160 get_params__post_init(struct adapter *sc) 5161 { 5162 int rc; 5163 uint32_t param[7], val[7]; 5164 struct fw_caps_config_cmd caps; 5165 5166 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5167 param[1] = FW_PARAM_PFVF(EQ_START); 5168 param[2] = FW_PARAM_PFVF(FILTER_START); 5169 param[3] = FW_PARAM_PFVF(FILTER_END); 5170 param[4] = FW_PARAM_PFVF(L2T_START); 5171 param[5] = FW_PARAM_PFVF(L2T_END); 5172 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5173 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5174 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5175 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5176 if (rc != 0) { 5177 device_printf(sc->dev, 5178 "failed to query parameters (post_init): %d.\n", rc); 5179 return (rc); 5180 } 5181 5182 sc->sge.iq_start = val[0]; 5183 sc->sge.eq_start = val[1]; 5184 if ((int)val[3] > (int)val[2]) { 5185 sc->tids.ftid_base = val[2]; 5186 sc->tids.ftid_end = val[3]; 5187 sc->tids.nftids = val[3] - val[2] + 1; 5188 } 5189 sc->vres.l2t.start = val[4]; 5190 sc->vres.l2t.size = val[5] - val[4] + 1; 5191 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5192 ("%s: L2 table size (%u) larger than expected (%u)", 5193 __func__, sc->vres.l2t.size, L2T_SIZE)); 5194 sc->params.core_vdd = val[6]; 5195 5196 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5197 param[1] = FW_PARAM_PFVF(EQ_END); 5198 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5199 if (rc != 0) { 5200 device_printf(sc->dev, 5201 "failed to query parameters (post_init2): %d.\n", rc); 5202 return (rc); 5203 } 5204 MPASS((int)val[0] >= sc->sge.iq_start); 5205 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5206 MPASS((int)val[1] >= sc->sge.eq_start); 5207 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5208 5209 if (chip_id(sc) >= CHELSIO_T6) { 5210 5211 sc->tids.tid_base = t4_read_reg(sc, 5212 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5213 5214 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5215 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5216 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5217 if (rc != 0) { 5218 device_printf(sc->dev, 5219 "failed to query hpfilter parameters: %d.\n", rc); 5220 return (rc); 5221 } 5222 if ((int)val[1] > (int)val[0]) { 5223 sc->tids.hpftid_base = val[0]; 5224 sc->tids.hpftid_end = val[1]; 5225 sc->tids.nhpftids = val[1] - val[0] + 1; 5226 5227 /* 5228 * These should go off if the layout changes and the 5229 * driver needs to catch up. 5230 */ 5231 MPASS(sc->tids.hpftid_base == 0); 5232 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5233 } 5234 5235 param[0] = FW_PARAM_PFVF(RAWF_START); 5236 param[1] = FW_PARAM_PFVF(RAWF_END); 5237 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5238 if (rc != 0) { 5239 device_printf(sc->dev, 5240 "failed to query rawf parameters: %d.\n", rc); 5241 return (rc); 5242 } 5243 if ((int)val[1] > (int)val[0]) { 5244 sc->rawf_base = val[0]; 5245 sc->nrawf = val[1] - val[0] + 1; 5246 } 5247 } 5248 5249 /* 5250 * MPSBGMAP is queried separately because only recent firmwares support 5251 * it as a parameter and we don't want the compound query above to fail 5252 * on older firmwares. 5253 */ 5254 param[0] = FW_PARAM_DEV(MPSBGMAP); 5255 val[0] = 0; 5256 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5257 if (rc == 0) 5258 sc->params.mps_bg_map = val[0]; 5259 else 5260 sc->params.mps_bg_map = 0; 5261 5262 /* 5263 * Determine whether the firmware supports the filter2 work request. 5264 * This is queried separately for the same reason as MPSBGMAP above. 5265 */ 5266 param[0] = FW_PARAM_DEV(FILTER2_WR); 5267 val[0] = 0; 5268 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5269 if (rc == 0) 5270 sc->params.filter2_wr_support = val[0] != 0; 5271 else 5272 sc->params.filter2_wr_support = 0; 5273 5274 /* 5275 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5276 * This is queried separately for the same reason as other params above. 5277 */ 5278 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5279 val[0] = 0; 5280 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5281 if (rc == 0) 5282 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5283 else 5284 sc->params.ulptx_memwrite_dsgl = false; 5285 5286 /* FW_RI_FR_NSMR_TPTE_WR support */ 5287 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5288 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5289 if (rc == 0) 5290 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5291 else 5292 sc->params.fr_nsmr_tpte_wr_support = false; 5293 5294 /* Support for 512 SGL entries per FR MR. */ 5295 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5296 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5297 if (rc == 0) 5298 sc->params.dev_512sgl_mr = val[0] != 0; 5299 else 5300 sc->params.dev_512sgl_mr = false; 5301 5302 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5303 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5304 if (rc == 0) 5305 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5306 else 5307 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5308 5309 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5310 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5311 if (rc == 0) { 5312 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5313 sc->params.nsched_cls = val[0]; 5314 } else 5315 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5316 5317 /* get capabilites */ 5318 bzero(&caps, sizeof(caps)); 5319 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5320 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5321 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5322 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5323 if (rc != 0) { 5324 device_printf(sc->dev, 5325 "failed to get card capabilities: %d.\n", rc); 5326 return (rc); 5327 } 5328 5329 #define READ_CAPS(x) do { \ 5330 sc->x = htobe16(caps.x); \ 5331 } while (0) 5332 READ_CAPS(nbmcaps); 5333 READ_CAPS(linkcaps); 5334 READ_CAPS(switchcaps); 5335 READ_CAPS(niccaps); 5336 READ_CAPS(toecaps); 5337 READ_CAPS(rdmacaps); 5338 READ_CAPS(cryptocaps); 5339 READ_CAPS(iscsicaps); 5340 READ_CAPS(fcoecaps); 5341 5342 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5343 MPASS(chip_id(sc) > CHELSIO_T4); 5344 MPASS(sc->toecaps == 0); 5345 sc->toecaps = 0; 5346 5347 param[0] = FW_PARAM_DEV(NTID); 5348 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5349 if (rc != 0) { 5350 device_printf(sc->dev, 5351 "failed to query HASHFILTER parameters: %d.\n", rc); 5352 return (rc); 5353 } 5354 sc->tids.ntids = val[0]; 5355 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5356 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5357 sc->tids.ntids -= sc->tids.nhpftids; 5358 } 5359 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5360 sc->params.hash_filter = 1; 5361 } 5362 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5363 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5364 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5365 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5366 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5367 if (rc != 0) { 5368 device_printf(sc->dev, 5369 "failed to query NIC parameters: %d.\n", rc); 5370 return (rc); 5371 } 5372 if ((int)val[1] > (int)val[0]) { 5373 sc->tids.etid_base = val[0]; 5374 sc->tids.etid_end = val[1]; 5375 sc->tids.netids = val[1] - val[0] + 1; 5376 sc->params.eo_wr_cred = val[2]; 5377 sc->params.ethoffload = 1; 5378 } 5379 } 5380 if (sc->toecaps) { 5381 /* query offload-related parameters */ 5382 param[0] = FW_PARAM_DEV(NTID); 5383 param[1] = FW_PARAM_PFVF(SERVER_START); 5384 param[2] = FW_PARAM_PFVF(SERVER_END); 5385 param[3] = FW_PARAM_PFVF(TDDP_START); 5386 param[4] = FW_PARAM_PFVF(TDDP_END); 5387 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5388 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5389 if (rc != 0) { 5390 device_printf(sc->dev, 5391 "failed to query TOE parameters: %d.\n", rc); 5392 return (rc); 5393 } 5394 sc->tids.ntids = val[0]; 5395 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5396 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5397 sc->tids.ntids -= sc->tids.nhpftids; 5398 } 5399 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5400 if ((int)val[2] > (int)val[1]) { 5401 sc->tids.stid_base = val[1]; 5402 sc->tids.nstids = val[2] - val[1] + 1; 5403 } 5404 sc->vres.ddp.start = val[3]; 5405 sc->vres.ddp.size = val[4] - val[3] + 1; 5406 sc->params.ofldq_wr_cred = val[5]; 5407 sc->params.offload = 1; 5408 } else { 5409 /* 5410 * The firmware attempts memfree TOE configuration for -SO cards 5411 * and will report toecaps=0 if it runs out of resources (this 5412 * depends on the config file). It may not report 0 for other 5413 * capabilities dependent on the TOE in this case. Set them to 5414 * 0 here so that the driver doesn't bother tracking resources 5415 * that will never be used. 5416 */ 5417 sc->iscsicaps = 0; 5418 sc->rdmacaps = 0; 5419 } 5420 if (sc->rdmacaps) { 5421 param[0] = FW_PARAM_PFVF(STAG_START); 5422 param[1] = FW_PARAM_PFVF(STAG_END); 5423 param[2] = FW_PARAM_PFVF(RQ_START); 5424 param[3] = FW_PARAM_PFVF(RQ_END); 5425 param[4] = FW_PARAM_PFVF(PBL_START); 5426 param[5] = FW_PARAM_PFVF(PBL_END); 5427 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5428 if (rc != 0) { 5429 device_printf(sc->dev, 5430 "failed to query RDMA parameters(1): %d.\n", rc); 5431 return (rc); 5432 } 5433 sc->vres.stag.start = val[0]; 5434 sc->vres.stag.size = val[1] - val[0] + 1; 5435 sc->vres.rq.start = val[2]; 5436 sc->vres.rq.size = val[3] - val[2] + 1; 5437 sc->vres.pbl.start = val[4]; 5438 sc->vres.pbl.size = val[5] - val[4] + 1; 5439 5440 param[0] = FW_PARAM_PFVF(SQRQ_START); 5441 param[1] = FW_PARAM_PFVF(SQRQ_END); 5442 param[2] = FW_PARAM_PFVF(CQ_START); 5443 param[3] = FW_PARAM_PFVF(CQ_END); 5444 param[4] = FW_PARAM_PFVF(OCQ_START); 5445 param[5] = FW_PARAM_PFVF(OCQ_END); 5446 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5447 if (rc != 0) { 5448 device_printf(sc->dev, 5449 "failed to query RDMA parameters(2): %d.\n", rc); 5450 return (rc); 5451 } 5452 sc->vres.qp.start = val[0]; 5453 sc->vres.qp.size = val[1] - val[0] + 1; 5454 sc->vres.cq.start = val[2]; 5455 sc->vres.cq.size = val[3] - val[2] + 1; 5456 sc->vres.ocq.start = val[4]; 5457 sc->vres.ocq.size = val[5] - val[4] + 1; 5458 5459 param[0] = FW_PARAM_PFVF(SRQ_START); 5460 param[1] = FW_PARAM_PFVF(SRQ_END); 5461 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5462 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5463 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5464 if (rc != 0) { 5465 device_printf(sc->dev, 5466 "failed to query RDMA parameters(3): %d.\n", rc); 5467 return (rc); 5468 } 5469 sc->vres.srq.start = val[0]; 5470 sc->vres.srq.size = val[1] - val[0] + 1; 5471 sc->params.max_ordird_qp = val[2]; 5472 sc->params.max_ird_adapter = val[3]; 5473 } 5474 if (sc->iscsicaps) { 5475 param[0] = FW_PARAM_PFVF(ISCSI_START); 5476 param[1] = FW_PARAM_PFVF(ISCSI_END); 5477 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5478 if (rc != 0) { 5479 device_printf(sc->dev, 5480 "failed to query iSCSI parameters: %d.\n", rc); 5481 return (rc); 5482 } 5483 sc->vres.iscsi.start = val[0]; 5484 sc->vres.iscsi.size = val[1] - val[0] + 1; 5485 } 5486 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5487 param[0] = FW_PARAM_PFVF(TLS_START); 5488 param[1] = FW_PARAM_PFVF(TLS_END); 5489 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5490 if (rc != 0) { 5491 device_printf(sc->dev, 5492 "failed to query TLS parameters: %d.\n", rc); 5493 return (rc); 5494 } 5495 sc->vres.key.start = val[0]; 5496 sc->vres.key.size = val[1] - val[0] + 1; 5497 } 5498 5499 /* 5500 * We've got the params we wanted to query directly from the firmware. 5501 * Grab some others via other means. 5502 */ 5503 t4_init_sge_params(sc); 5504 t4_init_tp_params(sc); 5505 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5506 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5507 5508 rc = t4_verify_chip_settings(sc); 5509 if (rc != 0) 5510 return (rc); 5511 t4_init_rx_buf_info(sc); 5512 5513 return (rc); 5514 } 5515 5516 #ifdef KERN_TLS 5517 static void 5518 ktls_tick(void *arg) 5519 { 5520 struct adapter *sc; 5521 uint32_t tstamp; 5522 5523 sc = arg; 5524 tstamp = tcp_ts_getticks(); 5525 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5526 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5527 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5528 } 5529 5530 static int 5531 t6_config_kern_tls(struct adapter *sc, bool enable) 5532 { 5533 int rc; 5534 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5535 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5536 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5537 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5538 5539 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5540 if (rc != 0) { 5541 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5542 enable ? "enable" : "disable", rc); 5543 return (rc); 5544 } 5545 5546 if (enable) { 5547 sc->flags |= KERN_TLS_ON; 5548 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5549 C_HARDCLOCK); 5550 } else { 5551 sc->flags &= ~KERN_TLS_ON; 5552 callout_stop(&sc->ktls_tick); 5553 } 5554 5555 return (rc); 5556 } 5557 #endif 5558 5559 static int 5560 set_params__post_init(struct adapter *sc) 5561 { 5562 uint32_t mask, param, val; 5563 #ifdef TCP_OFFLOAD 5564 int i, v, shift; 5565 #endif 5566 5567 /* ask for encapsulated CPLs */ 5568 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5569 val = 1; 5570 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5571 5572 /* Enable 32b port caps if the firmware supports it. */ 5573 param = FW_PARAM_PFVF(PORT_CAPS32); 5574 val = 1; 5575 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5576 sc->params.port_caps32 = 1; 5577 5578 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5579 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5580 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5581 V_MASKFILTER(val - 1)); 5582 5583 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5584 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5585 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5586 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5587 val = 0; 5588 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5589 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5590 F_ATTACKFILTERENABLE); 5591 val |= F_DROPERRORATTACK; 5592 } 5593 if (t4_drop_ip_fragments != 0) { 5594 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5595 F_FRAGMENTDROP); 5596 val |= F_DROPERRORFRAG; 5597 } 5598 if (t4_drop_pkts_with_l2_errors != 0) 5599 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5600 if (t4_drop_pkts_with_l3_errors != 0) { 5601 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5602 F_DROPERRORCSUMIP; 5603 } 5604 if (t4_drop_pkts_with_l4_errors != 0) { 5605 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5606 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5607 } 5608 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5609 5610 #ifdef TCP_OFFLOAD 5611 /* 5612 * Override the TOE timers with user provided tunables. This is not the 5613 * recommended way to change the timers (the firmware config file is) so 5614 * these tunables are not documented. 5615 * 5616 * All the timer tunables are in microseconds. 5617 */ 5618 if (t4_toe_keepalive_idle != 0) { 5619 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5620 v &= M_KEEPALIVEIDLE; 5621 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5622 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5623 } 5624 if (t4_toe_keepalive_interval != 0) { 5625 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5626 v &= M_KEEPALIVEINTVL; 5627 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5628 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5629 } 5630 if (t4_toe_keepalive_count != 0) { 5631 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5632 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5633 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5634 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5635 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5636 } 5637 if (t4_toe_rexmt_min != 0) { 5638 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5639 v &= M_RXTMIN; 5640 t4_set_reg_field(sc, A_TP_RXT_MIN, 5641 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5642 } 5643 if (t4_toe_rexmt_max != 0) { 5644 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5645 v &= M_RXTMAX; 5646 t4_set_reg_field(sc, A_TP_RXT_MAX, 5647 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5648 } 5649 if (t4_toe_rexmt_count != 0) { 5650 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5651 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5652 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5653 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5654 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5655 } 5656 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5657 if (t4_toe_rexmt_backoff[i] != -1) { 5658 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5659 shift = (i & 3) << 3; 5660 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5661 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5662 } 5663 } 5664 #endif 5665 5666 #ifdef KERN_TLS 5667 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5668 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5669 /* 5670 * Limit TOE connections to 2 reassembly "islands". This is 5671 * required for TOE TLS connections to downgrade to plain TOE 5672 * connections if an unsupported TLS version or ciphersuite is 5673 * used. 5674 */ 5675 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5676 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5677 } 5678 5679 if (is_ktls(sc)) { 5680 sc->tlst.inline_keys = t4_tls_inline_keys; 5681 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5682 if (t4_kern_tls != 0 && is_t6(sc)) 5683 t6_config_kern_tls(sc, true); 5684 } 5685 #endif 5686 return (0); 5687 } 5688 5689 #undef FW_PARAM_PFVF 5690 #undef FW_PARAM_DEV 5691 5692 static void 5693 t4_set_desc(struct adapter *sc) 5694 { 5695 char buf[128]; 5696 struct adapter_params *p = &sc->params; 5697 5698 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5699 5700 device_set_desc_copy(sc->dev, buf); 5701 } 5702 5703 static inline void 5704 ifmedia_add4(struct ifmedia *ifm, int m) 5705 { 5706 5707 ifmedia_add(ifm, m, 0, NULL); 5708 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5709 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5710 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5711 } 5712 5713 /* 5714 * This is the selected media, which is not quite the same as the active media. 5715 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5716 * and active are not the same, and "media: Ethernet selected" otherwise. 5717 */ 5718 static void 5719 set_current_media(struct port_info *pi) 5720 { 5721 struct link_config *lc; 5722 struct ifmedia *ifm; 5723 int mword; 5724 u_int speed; 5725 5726 PORT_LOCK_ASSERT_OWNED(pi); 5727 5728 /* Leave current media alone if it's already set to IFM_NONE. */ 5729 ifm = &pi->media; 5730 if (ifm->ifm_cur != NULL && 5731 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5732 return; 5733 5734 lc = &pi->link_cfg; 5735 if (lc->requested_aneg != AUTONEG_DISABLE && 5736 lc->pcaps & FW_PORT_CAP32_ANEG) { 5737 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5738 return; 5739 } 5740 mword = IFM_ETHER | IFM_FDX; 5741 if (lc->requested_fc & PAUSE_TX) 5742 mword |= IFM_ETH_TXPAUSE; 5743 if (lc->requested_fc & PAUSE_RX) 5744 mword |= IFM_ETH_RXPAUSE; 5745 if (lc->requested_speed == 0) 5746 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5747 else 5748 speed = lc->requested_speed; 5749 mword |= port_mword(pi, speed_to_fwcap(speed)); 5750 ifmedia_set(ifm, mword); 5751 } 5752 5753 /* 5754 * Returns true if the ifmedia list for the port cannot change. 5755 */ 5756 static bool 5757 fixed_ifmedia(struct port_info *pi) 5758 { 5759 5760 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5761 pi->port_type == FW_PORT_TYPE_BT_XFI || 5762 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5763 pi->port_type == FW_PORT_TYPE_KX4 || 5764 pi->port_type == FW_PORT_TYPE_KX || 5765 pi->port_type == FW_PORT_TYPE_KR || 5766 pi->port_type == FW_PORT_TYPE_BP_AP || 5767 pi->port_type == FW_PORT_TYPE_BP4_AP || 5768 pi->port_type == FW_PORT_TYPE_BP40_BA || 5769 pi->port_type == FW_PORT_TYPE_KR4_100G || 5770 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5771 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5772 } 5773 5774 static void 5775 build_medialist(struct port_info *pi) 5776 { 5777 uint32_t ss, speed; 5778 int unknown, mword, bit; 5779 struct link_config *lc; 5780 struct ifmedia *ifm; 5781 5782 PORT_LOCK_ASSERT_OWNED(pi); 5783 5784 if (pi->flags & FIXED_IFMEDIA) 5785 return; 5786 5787 /* 5788 * Rebuild the ifmedia list. 5789 */ 5790 ifm = &pi->media; 5791 ifmedia_removeall(ifm); 5792 lc = &pi->link_cfg; 5793 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5794 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5795 MPASS(ss != 0); 5796 no_media: 5797 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5798 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5799 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5800 return; 5801 } 5802 5803 unknown = 0; 5804 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5805 speed = 1 << bit; 5806 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5807 if (ss & speed) { 5808 mword = port_mword(pi, speed); 5809 if (mword == IFM_NONE) { 5810 goto no_media; 5811 } else if (mword == IFM_UNKNOWN) 5812 unknown++; 5813 else 5814 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5815 } 5816 } 5817 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5818 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5819 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5820 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5821 5822 set_current_media(pi); 5823 } 5824 5825 /* 5826 * Initialize the requested fields in the link config based on driver tunables. 5827 */ 5828 static void 5829 init_link_config(struct port_info *pi) 5830 { 5831 struct link_config *lc = &pi->link_cfg; 5832 5833 PORT_LOCK_ASSERT_OWNED(pi); 5834 5835 lc->requested_caps = 0; 5836 lc->requested_speed = 0; 5837 5838 if (t4_autoneg == 0) 5839 lc->requested_aneg = AUTONEG_DISABLE; 5840 else if (t4_autoneg == 1) 5841 lc->requested_aneg = AUTONEG_ENABLE; 5842 else 5843 lc->requested_aneg = AUTONEG_AUTO; 5844 5845 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5846 PAUSE_AUTONEG); 5847 5848 if (t4_fec & FEC_AUTO) 5849 lc->requested_fec = FEC_AUTO; 5850 else if (t4_fec == 0) 5851 lc->requested_fec = FEC_NONE; 5852 else { 5853 /* -1 is handled by the FEC_AUTO block above and not here. */ 5854 lc->requested_fec = t4_fec & 5855 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5856 if (lc->requested_fec == 0) 5857 lc->requested_fec = FEC_AUTO; 5858 } 5859 if (t4_force_fec < 0) 5860 lc->force_fec = -1; 5861 else if (t4_force_fec > 0) 5862 lc->force_fec = 1; 5863 else 5864 lc->force_fec = 0; 5865 } 5866 5867 /* 5868 * Makes sure that all requested settings comply with what's supported by the 5869 * port. Returns the number of settings that were invalid and had to be fixed. 5870 */ 5871 static int 5872 fixup_link_config(struct port_info *pi) 5873 { 5874 int n = 0; 5875 struct link_config *lc = &pi->link_cfg; 5876 uint32_t fwspeed; 5877 5878 PORT_LOCK_ASSERT_OWNED(pi); 5879 5880 /* Speed (when not autonegotiating) */ 5881 if (lc->requested_speed != 0) { 5882 fwspeed = speed_to_fwcap(lc->requested_speed); 5883 if ((fwspeed & lc->pcaps) == 0) { 5884 n++; 5885 lc->requested_speed = 0; 5886 } 5887 } 5888 5889 /* Link autonegotiation */ 5890 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5891 lc->requested_aneg == AUTONEG_DISABLE || 5892 lc->requested_aneg == AUTONEG_AUTO); 5893 if (lc->requested_aneg == AUTONEG_ENABLE && 5894 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5895 n++; 5896 lc->requested_aneg = AUTONEG_AUTO; 5897 } 5898 5899 /* Flow control */ 5900 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5901 if (lc->requested_fc & PAUSE_TX && 5902 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5903 n++; 5904 lc->requested_fc &= ~PAUSE_TX; 5905 } 5906 if (lc->requested_fc & PAUSE_RX && 5907 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5908 n++; 5909 lc->requested_fc &= ~PAUSE_RX; 5910 } 5911 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5912 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5913 n++; 5914 lc->requested_fc |= PAUSE_AUTONEG; 5915 } 5916 5917 /* FEC */ 5918 if ((lc->requested_fec & FEC_RS && 5919 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5920 (lc->requested_fec & FEC_BASER_RS && 5921 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5922 n++; 5923 lc->requested_fec = FEC_AUTO; 5924 } 5925 5926 return (n); 5927 } 5928 5929 /* 5930 * Apply the requested L1 settings, which are expected to be valid, to the 5931 * hardware. 5932 */ 5933 static int 5934 apply_link_config(struct port_info *pi) 5935 { 5936 struct adapter *sc = pi->adapter; 5937 struct link_config *lc = &pi->link_cfg; 5938 int rc; 5939 5940 #ifdef INVARIANTS 5941 ASSERT_SYNCHRONIZED_OP(sc); 5942 PORT_LOCK_ASSERT_OWNED(pi); 5943 5944 if (lc->requested_aneg == AUTONEG_ENABLE) 5945 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5946 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5947 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5948 if (lc->requested_fc & PAUSE_TX) 5949 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5950 if (lc->requested_fc & PAUSE_RX) 5951 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5952 if (lc->requested_fec & FEC_RS) 5953 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5954 if (lc->requested_fec & FEC_BASER_RS) 5955 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5956 #endif 5957 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5958 if (rc != 0) { 5959 /* Don't complain if the VF driver gets back an EPERM. */ 5960 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5961 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5962 } else { 5963 /* 5964 * An L1_CFG will almost always result in a link-change event if 5965 * the link is up, and the driver will refresh the actual 5966 * fec/fc/etc. when the notification is processed. If the link 5967 * is down then the actual settings are meaningless. 5968 * 5969 * This takes care of the case where a change in the L1 settings 5970 * may not result in a notification. 5971 */ 5972 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5973 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5974 } 5975 return (rc); 5976 } 5977 5978 #define FW_MAC_EXACT_CHUNK 7 5979 struct mcaddr_ctx { 5980 struct ifnet *ifp; 5981 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5982 uint64_t hash; 5983 int i; 5984 int del; 5985 int rc; 5986 }; 5987 5988 static u_int 5989 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5990 { 5991 struct mcaddr_ctx *ctx = arg; 5992 struct vi_info *vi = ctx->ifp->if_softc; 5993 struct port_info *pi = vi->pi; 5994 struct adapter *sc = pi->adapter; 5995 5996 if (ctx->rc < 0) 5997 return (0); 5998 5999 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6000 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6001 ctx->i++; 6002 6003 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6004 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6005 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6006 if (ctx->rc < 0) { 6007 int j; 6008 6009 for (j = 0; j < ctx->i; j++) { 6010 if_printf(ctx->ifp, 6011 "failed to add mc address" 6012 " %02x:%02x:%02x:" 6013 "%02x:%02x:%02x rc=%d\n", 6014 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6015 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6016 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6017 -ctx->rc); 6018 } 6019 return (0); 6020 } 6021 ctx->del = 0; 6022 ctx->i = 0; 6023 } 6024 6025 return (1); 6026 } 6027 6028 /* 6029 * Program the port's XGMAC based on parameters in ifnet. The caller also 6030 * indicates which parameters should be programmed (the rest are left alone). 6031 */ 6032 int 6033 update_mac_settings(struct ifnet *ifp, int flags) 6034 { 6035 int rc = 0; 6036 struct vi_info *vi = ifp->if_softc; 6037 struct port_info *pi = vi->pi; 6038 struct adapter *sc = pi->adapter; 6039 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6040 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6041 6042 ASSERT_SYNCHRONIZED_OP(sc); 6043 KASSERT(flags, ("%s: not told what to update.", __func__)); 6044 6045 if (flags & XGMAC_MTU) 6046 mtu = ifp->if_mtu; 6047 6048 if (flags & XGMAC_PROMISC) 6049 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 6050 6051 if (flags & XGMAC_ALLMULTI) 6052 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 6053 6054 if (flags & XGMAC_VLANEX) 6055 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6056 6057 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6058 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6059 allmulti, 1, vlanex, false); 6060 if (rc) { 6061 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6062 rc); 6063 return (rc); 6064 } 6065 } 6066 6067 if (flags & XGMAC_UCADDR) { 6068 uint8_t ucaddr[ETHER_ADDR_LEN]; 6069 6070 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 6071 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6072 ucaddr, true, &vi->smt_idx); 6073 if (rc < 0) { 6074 rc = -rc; 6075 if_printf(ifp, "change_mac failed: %d\n", rc); 6076 return (rc); 6077 } else { 6078 vi->xact_addr_filt = rc; 6079 rc = 0; 6080 } 6081 } 6082 6083 if (flags & XGMAC_MCADDRS) { 6084 struct epoch_tracker et; 6085 struct mcaddr_ctx ctx; 6086 int j; 6087 6088 ctx.ifp = ifp; 6089 ctx.hash = 0; 6090 ctx.i = 0; 6091 ctx.del = 1; 6092 ctx.rc = 0; 6093 /* 6094 * Unlike other drivers, we accumulate list of pointers into 6095 * interface address lists and we need to keep it safe even 6096 * after if_foreach_llmaddr() returns, thus we must enter the 6097 * network epoch. 6098 */ 6099 NET_EPOCH_ENTER(et); 6100 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6101 if (ctx.rc < 0) { 6102 NET_EPOCH_EXIT(et); 6103 rc = -ctx.rc; 6104 return (rc); 6105 } 6106 if (ctx.i > 0) { 6107 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6108 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6109 NET_EPOCH_EXIT(et); 6110 if (rc < 0) { 6111 rc = -rc; 6112 for (j = 0; j < ctx.i; j++) { 6113 if_printf(ifp, 6114 "failed to add mcast address" 6115 " %02x:%02x:%02x:" 6116 "%02x:%02x:%02x rc=%d\n", 6117 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6118 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6119 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6120 rc); 6121 } 6122 return (rc); 6123 } 6124 ctx.del = 0; 6125 } else 6126 NET_EPOCH_EXIT(et); 6127 6128 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6129 if (rc != 0) 6130 if_printf(ifp, "failed to set mcast address hash: %d\n", 6131 rc); 6132 if (ctx.del == 0) { 6133 /* We clobbered the VXLAN entry if there was one. */ 6134 pi->vxlan_tcam_entry = false; 6135 } 6136 } 6137 6138 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6139 pi->vxlan_tcam_entry == false) { 6140 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6141 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6142 true); 6143 if (rc < 0) { 6144 rc = -rc; 6145 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6146 rc); 6147 } else { 6148 MPASS(rc == sc->rawf_base + pi->port_id); 6149 rc = 0; 6150 pi->vxlan_tcam_entry = true; 6151 } 6152 } 6153 6154 return (rc); 6155 } 6156 6157 /* 6158 * {begin|end}_synchronized_op must be called from the same thread. 6159 */ 6160 int 6161 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6162 char *wmesg) 6163 { 6164 int rc, pri; 6165 6166 #ifdef WITNESS 6167 /* the caller thinks it's ok to sleep, but is it really? */ 6168 if (flags & SLEEP_OK) 6169 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6170 "begin_synchronized_op"); 6171 #endif 6172 6173 if (INTR_OK) 6174 pri = PCATCH; 6175 else 6176 pri = 0; 6177 6178 ADAPTER_LOCK(sc); 6179 for (;;) { 6180 6181 if (vi && IS_DOOMED(vi)) { 6182 rc = ENXIO; 6183 goto done; 6184 } 6185 6186 if (!IS_BUSY(sc)) { 6187 rc = 0; 6188 break; 6189 } 6190 6191 if (!(flags & SLEEP_OK)) { 6192 rc = EBUSY; 6193 goto done; 6194 } 6195 6196 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6197 rc = EINTR; 6198 goto done; 6199 } 6200 } 6201 6202 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6203 SET_BUSY(sc); 6204 #ifdef INVARIANTS 6205 sc->last_op = wmesg; 6206 sc->last_op_thr = curthread; 6207 sc->last_op_flags = flags; 6208 #endif 6209 6210 done: 6211 if (!(flags & HOLD_LOCK) || rc) 6212 ADAPTER_UNLOCK(sc); 6213 6214 return (rc); 6215 } 6216 6217 /* 6218 * Tell if_ioctl and if_init that the VI is going away. This is 6219 * special variant of begin_synchronized_op and must be paired with a 6220 * call to end_synchronized_op. 6221 */ 6222 void 6223 doom_vi(struct adapter *sc, struct vi_info *vi) 6224 { 6225 6226 ADAPTER_LOCK(sc); 6227 SET_DOOMED(vi); 6228 wakeup(&sc->flags); 6229 while (IS_BUSY(sc)) 6230 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6231 SET_BUSY(sc); 6232 #ifdef INVARIANTS 6233 sc->last_op = "t4detach"; 6234 sc->last_op_thr = curthread; 6235 sc->last_op_flags = 0; 6236 #endif 6237 ADAPTER_UNLOCK(sc); 6238 } 6239 6240 /* 6241 * {begin|end}_synchronized_op must be called from the same thread. 6242 */ 6243 void 6244 end_synchronized_op(struct adapter *sc, int flags) 6245 { 6246 6247 if (flags & LOCK_HELD) 6248 ADAPTER_LOCK_ASSERT_OWNED(sc); 6249 else 6250 ADAPTER_LOCK(sc); 6251 6252 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6253 CLR_BUSY(sc); 6254 wakeup(&sc->flags); 6255 ADAPTER_UNLOCK(sc); 6256 } 6257 6258 static int 6259 cxgbe_init_synchronized(struct vi_info *vi) 6260 { 6261 struct port_info *pi = vi->pi; 6262 struct adapter *sc = pi->adapter; 6263 struct ifnet *ifp = vi->ifp; 6264 int rc = 0, i; 6265 struct sge_txq *txq; 6266 6267 ASSERT_SYNCHRONIZED_OP(sc); 6268 6269 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6270 return (0); /* already running */ 6271 6272 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6273 return (rc); /* error message displayed already */ 6274 6275 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6276 return (rc); /* error message displayed already */ 6277 6278 rc = update_mac_settings(ifp, XGMAC_ALL); 6279 if (rc) 6280 goto done; /* error message displayed already */ 6281 6282 PORT_LOCK(pi); 6283 if (pi->up_vis == 0) { 6284 t4_update_port_info(pi); 6285 fixup_link_config(pi); 6286 build_medialist(pi); 6287 apply_link_config(pi); 6288 } 6289 6290 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6291 if (rc != 0) { 6292 if_printf(ifp, "enable_vi failed: %d\n", rc); 6293 PORT_UNLOCK(pi); 6294 goto done; 6295 } 6296 6297 /* 6298 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6299 * if this changes. 6300 */ 6301 6302 for_each_txq(vi, i, txq) { 6303 TXQ_LOCK(txq); 6304 txq->eq.flags |= EQ_ENABLED; 6305 TXQ_UNLOCK(txq); 6306 } 6307 6308 /* 6309 * The first iq of the first port to come up is used for tracing. 6310 */ 6311 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6312 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6313 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6314 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6315 V_QUEUENUMBER(sc->traceq)); 6316 pi->flags |= HAS_TRACEQ; 6317 } 6318 6319 /* all ok */ 6320 pi->up_vis++; 6321 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6322 if (pi->link_cfg.link_ok) 6323 t4_os_link_changed(pi); 6324 PORT_UNLOCK(pi); 6325 6326 mtx_lock(&vi->tick_mtx); 6327 if (ifp->if_get_counter == vi_get_counter) 6328 callout_reset(&vi->tick, hz, vi_tick, vi); 6329 else 6330 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6331 mtx_unlock(&vi->tick_mtx); 6332 done: 6333 if (rc != 0) 6334 cxgbe_uninit_synchronized(vi); 6335 6336 return (rc); 6337 } 6338 6339 /* 6340 * Idempotent. 6341 */ 6342 static int 6343 cxgbe_uninit_synchronized(struct vi_info *vi) 6344 { 6345 struct port_info *pi = vi->pi; 6346 struct adapter *sc = pi->adapter; 6347 struct ifnet *ifp = vi->ifp; 6348 int rc, i; 6349 struct sge_txq *txq; 6350 6351 ASSERT_SYNCHRONIZED_OP(sc); 6352 6353 if (!(vi->flags & VI_INIT_DONE)) { 6354 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6355 KASSERT(0, ("uninited VI is running")); 6356 if_printf(ifp, "uninited VI with running ifnet. " 6357 "vi->flags 0x%016lx, if_flags 0x%08x, " 6358 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6359 ifp->if_drv_flags); 6360 } 6361 return (0); 6362 } 6363 6364 /* 6365 * Disable the VI so that all its data in either direction is discarded 6366 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6367 * tick) intact as the TP can deliver negative advice or data that it's 6368 * holding in its RAM (for an offloaded connection) even after the VI is 6369 * disabled. 6370 */ 6371 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6372 if (rc) { 6373 if_printf(ifp, "disable_vi failed: %d\n", rc); 6374 return (rc); 6375 } 6376 6377 for_each_txq(vi, i, txq) { 6378 TXQ_LOCK(txq); 6379 txq->eq.flags &= ~EQ_ENABLED; 6380 TXQ_UNLOCK(txq); 6381 } 6382 6383 mtx_lock(&vi->tick_mtx); 6384 callout_stop(&vi->tick); 6385 mtx_unlock(&vi->tick_mtx); 6386 6387 PORT_LOCK(pi); 6388 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6389 PORT_UNLOCK(pi); 6390 return (0); 6391 } 6392 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6393 pi->up_vis--; 6394 if (pi->up_vis > 0) { 6395 PORT_UNLOCK(pi); 6396 return (0); 6397 } 6398 6399 pi->link_cfg.link_ok = false; 6400 pi->link_cfg.speed = 0; 6401 pi->link_cfg.link_down_rc = 255; 6402 t4_os_link_changed(pi); 6403 PORT_UNLOCK(pi); 6404 6405 return (0); 6406 } 6407 6408 /* 6409 * It is ok for this function to fail midway and return right away. t4_detach 6410 * will walk the entire sc->irq list and clean up whatever is valid. 6411 */ 6412 int 6413 t4_setup_intr_handlers(struct adapter *sc) 6414 { 6415 int rc, rid, p, q, v; 6416 char s[8]; 6417 struct irq *irq; 6418 struct port_info *pi; 6419 struct vi_info *vi; 6420 struct sge *sge = &sc->sge; 6421 struct sge_rxq *rxq; 6422 #ifdef TCP_OFFLOAD 6423 struct sge_ofld_rxq *ofld_rxq; 6424 #endif 6425 #ifdef DEV_NETMAP 6426 struct sge_nm_rxq *nm_rxq; 6427 #endif 6428 #ifdef RSS 6429 int nbuckets = rss_getnumbuckets(); 6430 #endif 6431 6432 /* 6433 * Setup interrupts. 6434 */ 6435 irq = &sc->irq[0]; 6436 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6437 if (forwarding_intr_to_fwq(sc)) 6438 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6439 6440 /* Multiple interrupts. */ 6441 if (sc->flags & IS_VF) 6442 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6443 ("%s: too few intr.", __func__)); 6444 else 6445 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6446 ("%s: too few intr.", __func__)); 6447 6448 /* The first one is always error intr on PFs */ 6449 if (!(sc->flags & IS_VF)) { 6450 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6451 if (rc != 0) 6452 return (rc); 6453 irq++; 6454 rid++; 6455 } 6456 6457 /* The second one is always the firmware event queue (first on VFs) */ 6458 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6459 if (rc != 0) 6460 return (rc); 6461 irq++; 6462 rid++; 6463 6464 for_each_port(sc, p) { 6465 pi = sc->port[p]; 6466 for_each_vi(pi, v, vi) { 6467 vi->first_intr = rid - 1; 6468 6469 if (vi->nnmrxq > 0) { 6470 int n = max(vi->nrxq, vi->nnmrxq); 6471 6472 rxq = &sge->rxq[vi->first_rxq]; 6473 #ifdef DEV_NETMAP 6474 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6475 #endif 6476 for (q = 0; q < n; q++) { 6477 snprintf(s, sizeof(s), "%x%c%x", p, 6478 'a' + v, q); 6479 if (q < vi->nrxq) 6480 irq->rxq = rxq++; 6481 #ifdef DEV_NETMAP 6482 if (q < vi->nnmrxq) 6483 irq->nm_rxq = nm_rxq++; 6484 6485 if (irq->nm_rxq != NULL && 6486 irq->rxq == NULL) { 6487 /* Netmap rx only */ 6488 rc = t4_alloc_irq(sc, irq, rid, 6489 t4_nm_intr, irq->nm_rxq, s); 6490 } 6491 if (irq->nm_rxq != NULL && 6492 irq->rxq != NULL) { 6493 /* NIC and Netmap rx */ 6494 rc = t4_alloc_irq(sc, irq, rid, 6495 t4_vi_intr, irq, s); 6496 } 6497 #endif 6498 if (irq->rxq != NULL && 6499 irq->nm_rxq == NULL) { 6500 /* NIC rx only */ 6501 rc = t4_alloc_irq(sc, irq, rid, 6502 t4_intr, irq->rxq, s); 6503 } 6504 if (rc != 0) 6505 return (rc); 6506 #ifdef RSS 6507 if (q < vi->nrxq) { 6508 bus_bind_intr(sc->dev, irq->res, 6509 rss_getcpu(q % nbuckets)); 6510 } 6511 #endif 6512 irq++; 6513 rid++; 6514 vi->nintr++; 6515 } 6516 } else { 6517 for_each_rxq(vi, q, rxq) { 6518 snprintf(s, sizeof(s), "%x%c%x", p, 6519 'a' + v, q); 6520 rc = t4_alloc_irq(sc, irq, rid, 6521 t4_intr, rxq, s); 6522 if (rc != 0) 6523 return (rc); 6524 #ifdef RSS 6525 bus_bind_intr(sc->dev, irq->res, 6526 rss_getcpu(q % nbuckets)); 6527 #endif 6528 irq++; 6529 rid++; 6530 vi->nintr++; 6531 } 6532 } 6533 #ifdef TCP_OFFLOAD 6534 for_each_ofld_rxq(vi, q, ofld_rxq) { 6535 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6536 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6537 ofld_rxq, s); 6538 if (rc != 0) 6539 return (rc); 6540 irq++; 6541 rid++; 6542 vi->nintr++; 6543 } 6544 #endif 6545 } 6546 } 6547 MPASS(irq == &sc->irq[sc->intr_count]); 6548 6549 return (0); 6550 } 6551 6552 static void 6553 write_global_rss_key(struct adapter *sc) 6554 { 6555 #ifdef RSS 6556 int i; 6557 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6558 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6559 6560 CTASSERT(RSS_KEYSIZE == 40); 6561 6562 rss_getkey((void *)&raw_rss_key[0]); 6563 for (i = 0; i < nitems(rss_key); i++) { 6564 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6565 } 6566 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6567 #endif 6568 } 6569 6570 /* 6571 * Idempotent. 6572 */ 6573 static int 6574 adapter_full_init(struct adapter *sc) 6575 { 6576 int rc, i; 6577 6578 ASSERT_SYNCHRONIZED_OP(sc); 6579 6580 /* 6581 * queues that belong to the adapter (not any particular port). 6582 */ 6583 rc = t4_setup_adapter_queues(sc); 6584 if (rc != 0) 6585 return (rc); 6586 6587 for (i = 0; i < nitems(sc->tq); i++) { 6588 if (sc->tq[i] != NULL) 6589 continue; 6590 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6591 taskqueue_thread_enqueue, &sc->tq[i]); 6592 if (sc->tq[i] == NULL) { 6593 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6594 return (ENOMEM); 6595 } 6596 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6597 device_get_nameunit(sc->dev), i); 6598 } 6599 6600 if (!(sc->flags & IS_VF)) { 6601 write_global_rss_key(sc); 6602 t4_intr_enable(sc); 6603 } 6604 return (0); 6605 } 6606 6607 int 6608 adapter_init(struct adapter *sc) 6609 { 6610 int rc; 6611 6612 ASSERT_SYNCHRONIZED_OP(sc); 6613 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6614 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6615 ("%s: FULL_INIT_DONE already", __func__)); 6616 6617 rc = adapter_full_init(sc); 6618 if (rc != 0) 6619 adapter_full_uninit(sc); 6620 else 6621 sc->flags |= FULL_INIT_DONE; 6622 6623 return (rc); 6624 } 6625 6626 /* 6627 * Idempotent. 6628 */ 6629 static void 6630 adapter_full_uninit(struct adapter *sc) 6631 { 6632 int i; 6633 6634 t4_teardown_adapter_queues(sc); 6635 6636 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6637 taskqueue_free(sc->tq[i]); 6638 sc->tq[i] = NULL; 6639 } 6640 6641 sc->flags &= ~FULL_INIT_DONE; 6642 } 6643 6644 #ifdef RSS 6645 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6646 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6647 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6648 RSS_HASHTYPE_RSS_UDP_IPV6) 6649 6650 /* Translates kernel hash types to hardware. */ 6651 static int 6652 hashconfig_to_hashen(int hashconfig) 6653 { 6654 int hashen = 0; 6655 6656 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6657 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6658 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6659 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6660 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6661 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6662 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6663 } 6664 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6665 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6666 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6667 } 6668 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6669 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6670 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6671 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6672 6673 return (hashen); 6674 } 6675 6676 /* Translates hardware hash types to kernel. */ 6677 static int 6678 hashen_to_hashconfig(int hashen) 6679 { 6680 int hashconfig = 0; 6681 6682 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6683 /* 6684 * If UDP hashing was enabled it must have been enabled for 6685 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6686 * enabling any 4-tuple hash is nonsense configuration. 6687 */ 6688 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6689 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6690 6691 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6692 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6693 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6694 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6695 } 6696 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6697 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6698 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6699 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6700 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6701 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6702 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6703 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6704 6705 return (hashconfig); 6706 } 6707 #endif 6708 6709 /* 6710 * Idempotent. 6711 */ 6712 static int 6713 vi_full_init(struct vi_info *vi) 6714 { 6715 struct adapter *sc = vi->adapter; 6716 struct sge_rxq *rxq; 6717 int rc, i, j; 6718 #ifdef RSS 6719 int nbuckets = rss_getnumbuckets(); 6720 int hashconfig = rss_gethashconfig(); 6721 int extra; 6722 #endif 6723 6724 ASSERT_SYNCHRONIZED_OP(sc); 6725 6726 /* 6727 * Allocate tx/rx/fl queues for this VI. 6728 */ 6729 rc = t4_setup_vi_queues(vi); 6730 if (rc != 0) 6731 return (rc); 6732 6733 /* 6734 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6735 */ 6736 if (vi->nrxq > vi->rss_size) { 6737 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6738 "some queues will never receive traffic.\n", vi->nrxq, 6739 vi->rss_size); 6740 } else if (vi->rss_size % vi->nrxq) { 6741 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6742 "expect uneven traffic distribution.\n", vi->nrxq, 6743 vi->rss_size); 6744 } 6745 #ifdef RSS 6746 if (vi->nrxq != nbuckets) { 6747 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6748 "performance will be impacted.\n", vi->nrxq, nbuckets); 6749 } 6750 #endif 6751 if (vi->rss == NULL) 6752 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6753 M_ZERO | M_WAITOK); 6754 for (i = 0; i < vi->rss_size;) { 6755 #ifdef RSS 6756 j = rss_get_indirection_to_bucket(i); 6757 j %= vi->nrxq; 6758 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6759 vi->rss[i++] = rxq->iq.abs_id; 6760 #else 6761 for_each_rxq(vi, j, rxq) { 6762 vi->rss[i++] = rxq->iq.abs_id; 6763 if (i == vi->rss_size) 6764 break; 6765 } 6766 #endif 6767 } 6768 6769 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6770 vi->rss, vi->rss_size); 6771 if (rc != 0) { 6772 CH_ERR(vi, "rss_config failed: %d\n", rc); 6773 return (rc); 6774 } 6775 6776 #ifdef RSS 6777 vi->hashen = hashconfig_to_hashen(hashconfig); 6778 6779 /* 6780 * We may have had to enable some hashes even though the global config 6781 * wants them disabled. This is a potential problem that must be 6782 * reported to the user. 6783 */ 6784 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6785 6786 /* 6787 * If we consider only the supported hash types, then the enabled hashes 6788 * are a superset of the requested hashes. In other words, there cannot 6789 * be any supported hash that was requested but not enabled, but there 6790 * can be hashes that were not requested but had to be enabled. 6791 */ 6792 extra &= SUPPORTED_RSS_HASHTYPES; 6793 MPASS((extra & hashconfig) == 0); 6794 6795 if (extra) { 6796 CH_ALERT(vi, 6797 "global RSS config (0x%x) cannot be accommodated.\n", 6798 hashconfig); 6799 } 6800 if (extra & RSS_HASHTYPE_RSS_IPV4) 6801 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6802 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6803 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6804 if (extra & RSS_HASHTYPE_RSS_IPV6) 6805 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6806 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6807 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6808 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6809 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6810 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6811 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6812 #else 6813 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6814 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6815 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6816 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6817 #endif 6818 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6819 0, 0); 6820 if (rc != 0) { 6821 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6822 return (rc); 6823 } 6824 6825 return (0); 6826 } 6827 6828 int 6829 vi_init(struct vi_info *vi) 6830 { 6831 int rc; 6832 6833 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6834 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6835 ("%s: VI_INIT_DONE already", __func__)); 6836 6837 rc = vi_full_init(vi); 6838 if (rc != 0) 6839 vi_full_uninit(vi); 6840 else 6841 vi->flags |= VI_INIT_DONE; 6842 6843 return (rc); 6844 } 6845 6846 /* 6847 * Idempotent. 6848 */ 6849 static void 6850 vi_full_uninit(struct vi_info *vi) 6851 { 6852 6853 if (vi->flags & VI_INIT_DONE) { 6854 quiesce_vi(vi); 6855 free(vi->rss, M_CXGBE); 6856 free(vi->nm_rss, M_CXGBE); 6857 } 6858 6859 t4_teardown_vi_queues(vi); 6860 vi->flags &= ~VI_INIT_DONE; 6861 } 6862 6863 static void 6864 quiesce_txq(struct sge_txq *txq) 6865 { 6866 struct sge_eq *eq = &txq->eq; 6867 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6868 6869 MPASS(eq->flags & EQ_SW_ALLOCATED); 6870 MPASS(!(eq->flags & EQ_ENABLED)); 6871 6872 /* Wait for the mp_ring to empty. */ 6873 while (!mp_ring_is_idle(txq->r)) { 6874 mp_ring_check_drainage(txq->r, 4096); 6875 pause("rquiesce", 1); 6876 } 6877 MPASS(txq->txp.npkt == 0); 6878 6879 if (eq->flags & EQ_HW_ALLOCATED) { 6880 /* 6881 * Hardware is alive and working normally. Wait for it to 6882 * finish and then wait for the driver to catch up and reclaim 6883 * all descriptors. 6884 */ 6885 while (spg->cidx != htobe16(eq->pidx)) 6886 pause("equiesce", 1); 6887 while (eq->cidx != eq->pidx) 6888 pause("dquiesce", 1); 6889 } else { 6890 /* 6891 * Hardware is unavailable. Discard all pending tx and reclaim 6892 * descriptors directly. 6893 */ 6894 TXQ_LOCK(txq); 6895 while (eq->cidx != eq->pidx) { 6896 struct mbuf *m, *nextpkt; 6897 struct tx_sdesc *txsd; 6898 6899 txsd = &txq->sdesc[eq->cidx]; 6900 for (m = txsd->m; m != NULL; m = nextpkt) { 6901 nextpkt = m->m_nextpkt; 6902 m->m_nextpkt = NULL; 6903 m_freem(m); 6904 } 6905 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6906 } 6907 spg->pidx = spg->cidx = htobe16(eq->cidx); 6908 TXQ_UNLOCK(txq); 6909 } 6910 } 6911 6912 static void 6913 quiesce_wrq(struct sge_wrq *wrq) 6914 { 6915 6916 /* XXXTX */ 6917 } 6918 6919 static void 6920 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6921 { 6922 /* Synchronize with the interrupt handler */ 6923 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6924 pause("iqfree", 1); 6925 6926 if (fl != NULL) { 6927 MPASS(iq->flags & IQ_HAS_FL); 6928 6929 mtx_lock(&sc->sfl_lock); 6930 FL_LOCK(fl); 6931 fl->flags |= FL_DOOMED; 6932 FL_UNLOCK(fl); 6933 callout_stop(&sc->sfl_callout); 6934 mtx_unlock(&sc->sfl_lock); 6935 6936 KASSERT((fl->flags & FL_STARVING) == 0, 6937 ("%s: still starving", __func__)); 6938 6939 /* Release all buffers if hardware is no longer available. */ 6940 if (!(iq->flags & IQ_HW_ALLOCATED)) 6941 free_fl_buffers(sc, fl); 6942 } 6943 } 6944 6945 /* 6946 * Wait for all activity on all the queues of the VI to complete. It is assumed 6947 * that no new work is being enqueued by the hardware or the driver. That part 6948 * should be arranged before calling this function. 6949 */ 6950 static void 6951 quiesce_vi(struct vi_info *vi) 6952 { 6953 int i; 6954 struct adapter *sc = vi->adapter; 6955 struct sge_rxq *rxq; 6956 struct sge_txq *txq; 6957 #ifdef TCP_OFFLOAD 6958 struct sge_ofld_rxq *ofld_rxq; 6959 #endif 6960 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6961 struct sge_ofld_txq *ofld_txq; 6962 #endif 6963 6964 if (!(vi->flags & VI_INIT_DONE)) 6965 return; 6966 6967 for_each_txq(vi, i, txq) { 6968 quiesce_txq(txq); 6969 } 6970 6971 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6972 for_each_ofld_txq(vi, i, ofld_txq) { 6973 quiesce_wrq(&ofld_txq->wrq); 6974 } 6975 #endif 6976 6977 for_each_rxq(vi, i, rxq) { 6978 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6979 } 6980 6981 #ifdef TCP_OFFLOAD 6982 for_each_ofld_rxq(vi, i, ofld_rxq) { 6983 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6984 } 6985 #endif 6986 } 6987 6988 static int 6989 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6990 driver_intr_t *handler, void *arg, char *name) 6991 { 6992 int rc; 6993 6994 irq->rid = rid; 6995 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6996 RF_SHAREABLE | RF_ACTIVE); 6997 if (irq->res == NULL) { 6998 device_printf(sc->dev, 6999 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7000 return (ENOMEM); 7001 } 7002 7003 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7004 NULL, handler, arg, &irq->tag); 7005 if (rc != 0) { 7006 device_printf(sc->dev, 7007 "failed to setup interrupt for rid %d, name %s: %d\n", 7008 rid, name, rc); 7009 } else if (name) 7010 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7011 7012 return (rc); 7013 } 7014 7015 static int 7016 t4_free_irq(struct adapter *sc, struct irq *irq) 7017 { 7018 if (irq->tag) 7019 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7020 if (irq->res) 7021 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7022 7023 bzero(irq, sizeof(*irq)); 7024 7025 return (0); 7026 } 7027 7028 static void 7029 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7030 { 7031 7032 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7033 t4_get_regs(sc, buf, regs->len); 7034 } 7035 7036 #define A_PL_INDIR_CMD 0x1f8 7037 7038 #define S_PL_AUTOINC 31 7039 #define M_PL_AUTOINC 0x1U 7040 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7041 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7042 7043 #define S_PL_VFID 20 7044 #define M_PL_VFID 0xffU 7045 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7046 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7047 7048 #define S_PL_ADDR 0 7049 #define M_PL_ADDR 0xfffffU 7050 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7051 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7052 7053 #define A_PL_INDIR_DATA 0x1fc 7054 7055 static uint64_t 7056 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7057 { 7058 u32 stats[2]; 7059 7060 if (sc->flags & IS_VF) { 7061 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7062 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7063 } else { 7064 mtx_assert(&sc->reg_lock, MA_OWNED); 7065 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7066 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7067 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7068 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7069 } 7070 return (((uint64_t)stats[1]) << 32 | stats[0]); 7071 } 7072 7073 static void 7074 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7075 { 7076 7077 #define GET_STAT(name) \ 7078 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7079 7080 if (!(sc->flags & IS_VF)) 7081 mtx_lock(&sc->reg_lock); 7082 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7083 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7084 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7085 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7086 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7087 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7088 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7089 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7090 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7091 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7092 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7093 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7094 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7095 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7096 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7097 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7098 if (!(sc->flags & IS_VF)) 7099 mtx_unlock(&sc->reg_lock); 7100 7101 #undef GET_STAT 7102 } 7103 7104 static void 7105 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7106 { 7107 int reg; 7108 7109 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7110 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7111 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7112 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7113 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7114 } 7115 7116 static void 7117 vi_refresh_stats(struct vi_info *vi) 7118 { 7119 struct timeval tv; 7120 const struct timeval interval = {0, 250000}; /* 250ms */ 7121 7122 mtx_assert(&vi->tick_mtx, MA_OWNED); 7123 7124 if (vi->flags & VI_SKIP_STATS) 7125 return; 7126 7127 getmicrotime(&tv); 7128 timevalsub(&tv, &interval); 7129 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7130 return; 7131 7132 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7133 getmicrotime(&vi->last_refreshed); 7134 } 7135 7136 static void 7137 cxgbe_refresh_stats(struct vi_info *vi) 7138 { 7139 u_int i, v, tnl_cong_drops, chan_map; 7140 struct timeval tv; 7141 const struct timeval interval = {0, 250000}; /* 250ms */ 7142 struct port_info *pi; 7143 struct adapter *sc; 7144 7145 mtx_assert(&vi->tick_mtx, MA_OWNED); 7146 7147 if (vi->flags & VI_SKIP_STATS) 7148 return; 7149 7150 getmicrotime(&tv); 7151 timevalsub(&tv, &interval); 7152 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7153 return; 7154 7155 pi = vi->pi; 7156 sc = vi->adapter; 7157 tnl_cong_drops = 0; 7158 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7159 chan_map = pi->rx_e_chan_map; 7160 while (chan_map) { 7161 i = ffs(chan_map) - 1; 7162 mtx_lock(&sc->reg_lock); 7163 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7164 A_TP_MIB_TNL_CNG_DROP_0 + i); 7165 mtx_unlock(&sc->reg_lock); 7166 tnl_cong_drops += v; 7167 chan_map &= ~(1 << i); 7168 } 7169 pi->tnl_cong_drops = tnl_cong_drops; 7170 getmicrotime(&vi->last_refreshed); 7171 } 7172 7173 static void 7174 cxgbe_tick(void *arg) 7175 { 7176 struct vi_info *vi = arg; 7177 7178 MPASS(IS_MAIN_VI(vi)); 7179 mtx_assert(&vi->tick_mtx, MA_OWNED); 7180 7181 cxgbe_refresh_stats(vi); 7182 callout_schedule(&vi->tick, hz); 7183 } 7184 7185 static void 7186 vi_tick(void *arg) 7187 { 7188 struct vi_info *vi = arg; 7189 7190 mtx_assert(&vi->tick_mtx, MA_OWNED); 7191 7192 vi_refresh_stats(vi); 7193 callout_schedule(&vi->tick, hz); 7194 } 7195 7196 /* 7197 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7198 */ 7199 static char *caps_decoder[] = { 7200 "\20\001IPMI\002NCSI", /* 0: NBM */ 7201 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7202 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7203 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7204 "\006HASHFILTER\007ETHOFLD", 7205 "\20\001TOE", /* 4: TOE */ 7206 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7207 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7208 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7209 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7210 "\007T10DIF" 7211 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7212 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7213 "\004TLS_HW", 7214 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7215 "\004PO_INITIATOR\005PO_TARGET", 7216 }; 7217 7218 void 7219 t4_sysctls(struct adapter *sc) 7220 { 7221 struct sysctl_ctx_list *ctx = &sc->ctx; 7222 struct sysctl_oid *oid; 7223 struct sysctl_oid_list *children, *c0; 7224 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7225 7226 /* 7227 * dev.t4nex.X. 7228 */ 7229 oid = device_get_sysctl_tree(sc->dev); 7230 c0 = children = SYSCTL_CHILDREN(oid); 7231 7232 sc->sc_do_rxcopy = 1; 7233 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7234 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7235 7236 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7237 sc->params.nports, "# of ports"); 7238 7239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7240 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7241 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7242 "available doorbells"); 7243 7244 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7245 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7246 7247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7248 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7249 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7250 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7251 7252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7253 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7254 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7255 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7256 7257 t4_sge_sysctls(sc, ctx, children); 7258 7259 sc->lro_timeout = 100; 7260 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7261 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7262 7263 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7264 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7265 7266 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7267 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7268 7269 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7270 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7271 7272 if (sc->flags & IS_VF) 7273 return; 7274 7275 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7276 NULL, chip_rev(sc), "chip hardware revision"); 7277 7278 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7279 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7280 7281 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7282 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7283 7284 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7285 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7286 7287 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7288 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7289 7290 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7291 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7292 7293 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7294 sc->er_version, 0, "expansion ROM version"); 7295 7296 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7297 sc->bs_version, 0, "bootstrap firmware version"); 7298 7299 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7300 NULL, sc->params.scfg_vers, "serial config version"); 7301 7302 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7303 NULL, sc->params.vpd_vers, "VPD version"); 7304 7305 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7306 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7307 7308 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7309 sc->cfcsum, "config file checksum"); 7310 7311 #define SYSCTL_CAP(name, n, text) \ 7312 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7313 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7314 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7315 "available " text " capabilities") 7316 7317 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7318 SYSCTL_CAP(linkcaps, 1, "link"); 7319 SYSCTL_CAP(switchcaps, 2, "switch"); 7320 SYSCTL_CAP(niccaps, 3, "NIC"); 7321 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7322 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7323 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7324 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7325 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7326 #undef SYSCTL_CAP 7327 7328 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7329 NULL, sc->tids.nftids, "number of filters"); 7330 7331 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7332 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7333 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7334 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7335 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7336 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7337 7338 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7339 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7340 sysctl_loadavg, "A", 7341 "microprocessor load averages (debug firmwares only)"); 7342 7343 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7344 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7345 "I", "core Vdd (in mV)"); 7346 7347 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7348 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7349 sysctl_cpus, "A", "local CPUs"); 7350 7351 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7352 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7353 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7354 7355 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7356 &sc->swintr, 0, "software triggered interrupts"); 7357 7358 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7359 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7360 "1 = reset adapter, 0 = zero reset counter"); 7361 7362 /* 7363 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7364 */ 7365 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7366 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7367 "logs and miscellaneous information"); 7368 children = SYSCTL_CHILDREN(oid); 7369 7370 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7371 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7372 sysctl_cctrl, "A", "congestion control"); 7373 7374 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7375 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7376 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7377 7378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7379 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7380 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7381 7382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7383 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7384 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7385 7386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7387 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7388 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7389 7390 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7391 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7392 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7393 7394 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7395 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7396 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7397 7398 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7399 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7400 sysctl_cim_la, "A", "CIM logic analyzer"); 7401 7402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7403 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7404 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7405 7406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7407 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7408 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7409 7410 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7411 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7412 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7413 7414 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7415 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7416 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7417 7418 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7419 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7420 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7421 7422 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7423 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7424 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7425 7426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7428 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7429 7430 if (chip_id(sc) > CHELSIO_T4) { 7431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7432 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7433 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7434 "CIM OBQ 6 (SGE0-RX)"); 7435 7436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7437 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7438 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7439 "CIM OBQ 7 (SGE1-RX)"); 7440 } 7441 7442 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7443 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7444 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7445 7446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7447 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7448 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7449 7450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7451 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7452 sysctl_cpl_stats, "A", "CPL statistics"); 7453 7454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7455 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7456 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7457 7458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7459 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7460 sysctl_tid_stats, "A", "tid stats"); 7461 7462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7463 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7464 sysctl_devlog, "A", "firmware's device log"); 7465 7466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7467 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7468 sysctl_fcoe_stats, "A", "FCoE statistics"); 7469 7470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7471 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7472 sysctl_hw_sched, "A", "hardware scheduler "); 7473 7474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7475 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7476 sysctl_l2t, "A", "hardware L2 table"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7479 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7480 sysctl_smt, "A", "hardware source MAC table"); 7481 7482 #ifdef INET6 7483 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7484 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7485 sysctl_clip, "A", "active CLIP table entries"); 7486 #endif 7487 7488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7489 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7490 sysctl_lb_stats, "A", "loopback statistics"); 7491 7492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7494 sysctl_meminfo, "A", "memory regions"); 7495 7496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7497 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7498 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7499 "A", "MPS TCAM entries"); 7500 7501 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7502 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7503 sysctl_path_mtus, "A", "path MTUs"); 7504 7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7507 sysctl_pm_stats, "A", "PM statistics"); 7508 7509 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7510 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7511 sysctl_rdma_stats, "A", "RDMA statistics"); 7512 7513 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7514 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7515 sysctl_tcp_stats, "A", "TCP statistics"); 7516 7517 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7518 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7519 sysctl_tids, "A", "TID information"); 7520 7521 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7522 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7523 sysctl_tp_err_stats, "A", "TP error statistics"); 7524 7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7526 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7527 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7528 7529 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7530 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7531 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7532 7533 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7534 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7535 sysctl_tp_la, "A", "TP logic analyzer"); 7536 7537 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7538 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7539 sysctl_tx_rate, "A", "Tx rate"); 7540 7541 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7542 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7543 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7544 7545 if (chip_id(sc) >= CHELSIO_T5) { 7546 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7547 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7548 sysctl_wcwr_stats, "A", "write combined work requests"); 7549 } 7550 7551 #ifdef KERN_TLS 7552 if (is_ktls(sc)) { 7553 /* 7554 * dev.t4nex.0.tls. 7555 */ 7556 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7557 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7558 children = SYSCTL_CHILDREN(oid); 7559 7560 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7561 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7562 "keys in work requests (1) or attempt to store TLS keys " 7563 "in card memory."); 7564 7565 if (is_t6(sc)) 7566 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7567 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7568 "combine TCB field updates with TLS record work " 7569 "requests."); 7570 } 7571 #endif 7572 7573 #ifdef TCP_OFFLOAD 7574 if (is_offload(sc)) { 7575 int i; 7576 char s[4]; 7577 7578 /* 7579 * dev.t4nex.X.toe. 7580 */ 7581 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7582 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7583 children = SYSCTL_CHILDREN(oid); 7584 7585 sc->tt.cong_algorithm = -1; 7586 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7587 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7588 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7589 "3 = highspeed)"); 7590 7591 sc->tt.sndbuf = -1; 7592 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7593 &sc->tt.sndbuf, 0, "hardware send buffer"); 7594 7595 sc->tt.ddp = 0; 7596 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7597 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7598 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7599 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7600 7601 sc->tt.rx_coalesce = -1; 7602 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7603 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7604 7605 sc->tt.tls = 0; 7606 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7607 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7608 "Inline TLS allowed"); 7609 7610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7611 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7612 sysctl_tls_rx_ports, "I", 7613 "TCP ports that use inline TLS+TOE RX"); 7614 7615 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7616 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7617 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7618 sysctl_tls_rx_timeout, "I", 7619 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7620 7621 sc->tt.tx_align = -1; 7622 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7623 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7624 7625 sc->tt.tx_zcopy = 0; 7626 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7627 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7628 "Enable zero-copy aio_write(2)"); 7629 7630 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7631 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7632 "cop_managed_offloading", CTLFLAG_RW, 7633 &sc->tt.cop_managed_offloading, 0, 7634 "COP (Connection Offload Policy) controls all TOE offload"); 7635 7636 sc->tt.autorcvbuf_inc = 16 * 1024; 7637 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7638 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7639 "autorcvbuf increment"); 7640 7641 sc->tt.update_hc_on_pmtu_change = 1; 7642 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7643 "update_hc_on_pmtu_change", CTLFLAG_RW, 7644 &sc->tt.update_hc_on_pmtu_change, 0, 7645 "Update hostcache entry if the PMTU changes"); 7646 7647 sc->tt.iso = 1; 7648 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7649 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7650 7651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7652 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7653 sysctl_tp_tick, "A", "TP timer tick (us)"); 7654 7655 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7656 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7657 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7658 7659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7660 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7661 sysctl_tp_tick, "A", "DACK tick (us)"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7664 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7665 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7666 7667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7668 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7669 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7670 "Minimum retransmit interval (us)"); 7671 7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7673 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7674 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7675 "Maximum retransmit interval (us)"); 7676 7677 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7678 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7679 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7680 "Persist timer min (us)"); 7681 7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7683 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7684 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7685 "Persist timer max (us)"); 7686 7687 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7688 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7689 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7690 "Keepalive idle timer (us)"); 7691 7692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7693 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7694 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7695 "Keepalive interval timer (us)"); 7696 7697 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7698 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7699 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7700 7701 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7702 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7703 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7704 "FINWAIT2 timer (us)"); 7705 7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7707 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7708 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7709 "Number of SYN retransmissions before abort"); 7710 7711 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7712 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7713 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7714 "Number of retransmissions before abort"); 7715 7716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7717 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7718 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7719 "Number of keepalive probes before abort"); 7720 7721 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7722 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7723 "TOE retransmit backoffs"); 7724 children = SYSCTL_CHILDREN(oid); 7725 for (i = 0; i < 16; i++) { 7726 snprintf(s, sizeof(s), "%u", i); 7727 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7728 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7729 i, sysctl_tp_backoff, "IU", 7730 "TOE retransmit backoff"); 7731 } 7732 } 7733 #endif 7734 } 7735 7736 void 7737 vi_sysctls(struct vi_info *vi) 7738 { 7739 struct sysctl_ctx_list *ctx = &vi->ctx; 7740 struct sysctl_oid *oid; 7741 struct sysctl_oid_list *children; 7742 7743 /* 7744 * dev.v?(cxgbe|cxl).X. 7745 */ 7746 oid = device_get_sysctl_tree(vi->dev); 7747 children = SYSCTL_CHILDREN(oid); 7748 7749 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7750 vi->viid, "VI identifer"); 7751 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7752 &vi->nrxq, 0, "# of rx queues"); 7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7754 &vi->ntxq, 0, "# of tx queues"); 7755 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7756 &vi->first_rxq, 0, "index of first rx queue"); 7757 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7758 &vi->first_txq, 0, "index of first tx queue"); 7759 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7760 vi->rss_base, "start of RSS indirection table"); 7761 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7762 vi->rss_size, "size of RSS indirection table"); 7763 7764 if (IS_MAIN_VI(vi)) { 7765 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7766 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7767 sysctl_noflowq, "IU", 7768 "Reserve queue 0 for non-flowid packets"); 7769 } 7770 7771 if (vi->adapter->flags & IS_VF) { 7772 MPASS(vi->flags & TX_USES_VM_WR); 7773 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7774 NULL, 1, "use VM work requests for transmit"); 7775 } else { 7776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7777 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7778 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7779 } 7780 7781 #ifdef TCP_OFFLOAD 7782 if (vi->nofldrxq != 0) { 7783 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7784 &vi->nofldrxq, 0, 7785 "# of rx queues for offloaded TCP connections"); 7786 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7787 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7788 "index of first TOE rx queue"); 7789 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7790 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7791 sysctl_holdoff_tmr_idx_ofld, "I", 7792 "holdoff timer index for TOE queues"); 7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7794 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7795 sysctl_holdoff_pktc_idx_ofld, "I", 7796 "holdoff packet counter index for TOE queues"); 7797 } 7798 #endif 7799 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7800 if (vi->nofldtxq != 0) { 7801 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7802 &vi->nofldtxq, 0, 7803 "# of tx queues for TOE/ETHOFLD"); 7804 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7805 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7806 "index of first TOE/ETHOFLD tx queue"); 7807 } 7808 #endif 7809 #ifdef DEV_NETMAP 7810 if (vi->nnmrxq != 0) { 7811 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7812 &vi->nnmrxq, 0, "# of netmap rx queues"); 7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7814 &vi->nnmtxq, 0, "# of netmap tx queues"); 7815 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7816 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7817 "index of first netmap rx queue"); 7818 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7819 CTLFLAG_RD, &vi->first_nm_txq, 0, 7820 "index of first netmap tx queue"); 7821 } 7822 #endif 7823 7824 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7825 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7826 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7827 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7828 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7829 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7830 7831 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7832 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7833 sysctl_qsize_rxq, "I", "rx queue size"); 7834 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7835 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7836 sysctl_qsize_txq, "I", "tx queue size"); 7837 } 7838 7839 static void 7840 cxgbe_sysctls(struct port_info *pi) 7841 { 7842 struct sysctl_ctx_list *ctx = &pi->ctx; 7843 struct sysctl_oid *oid; 7844 struct sysctl_oid_list *children, *children2; 7845 struct adapter *sc = pi->adapter; 7846 int i; 7847 char name[16]; 7848 static char *tc_flags = {"\20\1USER"}; 7849 7850 /* 7851 * dev.cxgbe.X. 7852 */ 7853 oid = device_get_sysctl_tree(pi->dev); 7854 children = SYSCTL_CHILDREN(oid); 7855 7856 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7857 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7858 sysctl_linkdnrc, "A", "reason why link is down"); 7859 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7860 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7861 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7862 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7863 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7864 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7865 sysctl_btphy, "I", "PHY firmware version"); 7866 } 7867 7868 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7869 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7870 sysctl_pause_settings, "A", 7871 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7872 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7873 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7874 "FEC in use on the link"); 7875 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7876 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7877 sysctl_requested_fec, "A", 7878 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7880 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7881 "FEC recommended by the cable/transceiver"); 7882 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7883 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7884 sysctl_autoneg, "I", 7885 "autonegotiation (-1 = not supported)"); 7886 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7887 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7888 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7889 7890 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7891 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7892 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7893 &pi->link_cfg.pcaps, 0, "port capabilities"); 7894 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7895 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7896 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7897 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7898 7899 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7900 port_top_speed(pi), "max speed (in Gbps)"); 7901 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7902 pi->mps_bg_map, "MPS buffer group map"); 7903 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7904 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7906 pi->rx_c_chan, "TP rx c-channel"); 7907 7908 if (sc->flags & IS_VF) 7909 return; 7910 7911 /* 7912 * dev.(cxgbe|cxl).X.tc. 7913 */ 7914 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7915 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7916 "Tx scheduler traffic classes (cl_rl)"); 7917 children2 = SYSCTL_CHILDREN(oid); 7918 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7919 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7920 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7921 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7922 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7923 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7924 for (i = 0; i < sc->params.nsched_cls; i++) { 7925 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7926 7927 snprintf(name, sizeof(name), "%d", i); 7928 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7929 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7930 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7931 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7932 CTLFLAG_RD, &tc->state, 0, "current state"); 7933 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7934 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7935 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7936 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7937 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7938 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7939 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7940 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7941 "traffic class parameters"); 7942 } 7943 7944 /* 7945 * dev.cxgbe.X.stats. 7946 */ 7947 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7948 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7949 children = SYSCTL_CHILDREN(oid); 7950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7951 &pi->tx_parse_error, 0, 7952 "# of tx packets with invalid length or # of segments"); 7953 7954 #define T4_REGSTAT(name, stat, desc) \ 7955 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7956 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7957 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7958 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7959 sysctl_handle_t4_reg64, "QU", desc) 7960 7961 /* We get these from port_stats and they may be stale by up to 1s */ 7962 #define T4_PORTSTAT(name, desc) \ 7963 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7964 &pi->stats.name, desc) 7965 7966 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7967 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7968 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7969 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7970 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7971 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7972 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7973 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7974 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7975 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7976 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7977 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7978 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7979 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7980 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7981 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7982 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7983 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7984 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7985 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7986 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7987 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7988 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7989 7990 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7991 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7992 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7993 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7994 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7995 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7996 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7997 if (is_t6(sc)) { 7998 T4_PORTSTAT(rx_fcs_err, 7999 "# of frames received with bad FCS since last link up"); 8000 } else { 8001 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8002 "# of frames received with bad FCS"); 8003 } 8004 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8005 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8006 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8007 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8008 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8009 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8010 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8011 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8012 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8013 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8014 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8015 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8016 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8017 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8018 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8019 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8020 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8021 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8022 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8023 8024 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8025 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8026 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8027 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8028 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8029 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8030 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8031 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8032 8033 #undef T4_REGSTAT 8034 #undef T4_PORTSTAT 8035 } 8036 8037 static int 8038 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8039 { 8040 int rc, *i, space = 0; 8041 struct sbuf sb; 8042 8043 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8044 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8045 if (space) 8046 sbuf_printf(&sb, " "); 8047 sbuf_printf(&sb, "%d", *i); 8048 space = 1; 8049 } 8050 rc = sbuf_finish(&sb); 8051 sbuf_delete(&sb); 8052 return (rc); 8053 } 8054 8055 static int 8056 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8057 { 8058 int rc; 8059 struct sbuf *sb; 8060 8061 rc = sysctl_wire_old_buffer(req, 0); 8062 if (rc != 0) 8063 return(rc); 8064 8065 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8066 if (sb == NULL) 8067 return (ENOMEM); 8068 8069 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8070 rc = sbuf_finish(sb); 8071 sbuf_delete(sb); 8072 8073 return (rc); 8074 } 8075 8076 static int 8077 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8078 { 8079 int rc; 8080 struct sbuf *sb; 8081 8082 rc = sysctl_wire_old_buffer(req, 0); 8083 if (rc != 0) 8084 return(rc); 8085 8086 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8087 if (sb == NULL) 8088 return (ENOMEM); 8089 8090 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8091 rc = sbuf_finish(sb); 8092 sbuf_delete(sb); 8093 8094 return (rc); 8095 } 8096 8097 static int 8098 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8099 { 8100 struct port_info *pi = arg1; 8101 int op = arg2; 8102 struct adapter *sc = pi->adapter; 8103 u_int v; 8104 int rc; 8105 8106 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8107 if (rc) 8108 return (rc); 8109 if (hw_off_limits(sc)) 8110 rc = ENXIO; 8111 else { 8112 /* XXX: magic numbers */ 8113 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8114 op ? 0x20 : 0xc820, &v); 8115 } 8116 end_synchronized_op(sc, 0); 8117 if (rc) 8118 return (rc); 8119 if (op == 0) 8120 v /= 256; 8121 8122 rc = sysctl_handle_int(oidp, &v, 0, req); 8123 return (rc); 8124 } 8125 8126 static int 8127 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8128 { 8129 struct vi_info *vi = arg1; 8130 int rc, val; 8131 8132 val = vi->rsrv_noflowq; 8133 rc = sysctl_handle_int(oidp, &val, 0, req); 8134 if (rc != 0 || req->newptr == NULL) 8135 return (rc); 8136 8137 if ((val >= 1) && (vi->ntxq > 1)) 8138 vi->rsrv_noflowq = 1; 8139 else 8140 vi->rsrv_noflowq = 0; 8141 8142 return (rc); 8143 } 8144 8145 static int 8146 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8147 { 8148 struct vi_info *vi = arg1; 8149 struct adapter *sc = vi->adapter; 8150 int rc, val, i; 8151 8152 MPASS(!(sc->flags & IS_VF)); 8153 8154 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8155 rc = sysctl_handle_int(oidp, &val, 0, req); 8156 if (rc != 0 || req->newptr == NULL) 8157 return (rc); 8158 8159 if (val != 0 && val != 1) 8160 return (EINVAL); 8161 8162 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8163 "t4txvm"); 8164 if (rc) 8165 return (rc); 8166 if (hw_off_limits(sc)) 8167 rc = ENXIO; 8168 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8169 /* 8170 * We don't want parse_pkt to run with one setting (VF or PF) 8171 * and then eth_tx to see a different setting but still use 8172 * stale information calculated by parse_pkt. 8173 */ 8174 rc = EBUSY; 8175 } else { 8176 struct port_info *pi = vi->pi; 8177 struct sge_txq *txq; 8178 uint32_t ctrl0; 8179 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8180 8181 if (val) { 8182 vi->flags |= TX_USES_VM_WR; 8183 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8184 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8185 V_TXPKT_INTF(pi->tx_chan)); 8186 if (!(sc->flags & IS_VF)) 8187 npkt--; 8188 } else { 8189 vi->flags &= ~TX_USES_VM_WR; 8190 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8191 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8192 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8193 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8194 } 8195 for_each_txq(vi, i, txq) { 8196 txq->cpl_ctrl0 = ctrl0; 8197 txq->txp.max_npkt = npkt; 8198 } 8199 } 8200 end_synchronized_op(sc, LOCK_HELD); 8201 return (rc); 8202 } 8203 8204 static int 8205 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8206 { 8207 struct vi_info *vi = arg1; 8208 struct adapter *sc = vi->adapter; 8209 int idx, rc, i; 8210 struct sge_rxq *rxq; 8211 uint8_t v; 8212 8213 idx = vi->tmr_idx; 8214 8215 rc = sysctl_handle_int(oidp, &idx, 0, req); 8216 if (rc != 0 || req->newptr == NULL) 8217 return (rc); 8218 8219 if (idx < 0 || idx >= SGE_NTIMERS) 8220 return (EINVAL); 8221 8222 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8223 "t4tmr"); 8224 if (rc) 8225 return (rc); 8226 8227 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8228 for_each_rxq(vi, i, rxq) { 8229 #ifdef atomic_store_rel_8 8230 atomic_store_rel_8(&rxq->iq.intr_params, v); 8231 #else 8232 rxq->iq.intr_params = v; 8233 #endif 8234 } 8235 vi->tmr_idx = idx; 8236 8237 end_synchronized_op(sc, LOCK_HELD); 8238 return (0); 8239 } 8240 8241 static int 8242 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8243 { 8244 struct vi_info *vi = arg1; 8245 struct adapter *sc = vi->adapter; 8246 int idx, rc; 8247 8248 idx = vi->pktc_idx; 8249 8250 rc = sysctl_handle_int(oidp, &idx, 0, req); 8251 if (rc != 0 || req->newptr == NULL) 8252 return (rc); 8253 8254 if (idx < -1 || idx >= SGE_NCOUNTERS) 8255 return (EINVAL); 8256 8257 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8258 "t4pktc"); 8259 if (rc) 8260 return (rc); 8261 8262 if (vi->flags & VI_INIT_DONE) 8263 rc = EBUSY; /* cannot be changed once the queues are created */ 8264 else 8265 vi->pktc_idx = idx; 8266 8267 end_synchronized_op(sc, LOCK_HELD); 8268 return (rc); 8269 } 8270 8271 static int 8272 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8273 { 8274 struct vi_info *vi = arg1; 8275 struct adapter *sc = vi->adapter; 8276 int qsize, rc; 8277 8278 qsize = vi->qsize_rxq; 8279 8280 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8281 if (rc != 0 || req->newptr == NULL) 8282 return (rc); 8283 8284 if (qsize < 128 || (qsize & 7)) 8285 return (EINVAL); 8286 8287 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8288 "t4rxqs"); 8289 if (rc) 8290 return (rc); 8291 8292 if (vi->flags & VI_INIT_DONE) 8293 rc = EBUSY; /* cannot be changed once the queues are created */ 8294 else 8295 vi->qsize_rxq = qsize; 8296 8297 end_synchronized_op(sc, LOCK_HELD); 8298 return (rc); 8299 } 8300 8301 static int 8302 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8303 { 8304 struct vi_info *vi = arg1; 8305 struct adapter *sc = vi->adapter; 8306 int qsize, rc; 8307 8308 qsize = vi->qsize_txq; 8309 8310 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8311 if (rc != 0 || req->newptr == NULL) 8312 return (rc); 8313 8314 if (qsize < 128 || qsize > 65536) 8315 return (EINVAL); 8316 8317 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8318 "t4txqs"); 8319 if (rc) 8320 return (rc); 8321 8322 if (vi->flags & VI_INIT_DONE) 8323 rc = EBUSY; /* cannot be changed once the queues are created */ 8324 else 8325 vi->qsize_txq = qsize; 8326 8327 end_synchronized_op(sc, LOCK_HELD); 8328 return (rc); 8329 } 8330 8331 static int 8332 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8333 { 8334 struct port_info *pi = arg1; 8335 struct adapter *sc = pi->adapter; 8336 struct link_config *lc = &pi->link_cfg; 8337 int rc; 8338 8339 if (req->newptr == NULL) { 8340 struct sbuf *sb; 8341 static char *bits = "\20\1RX\2TX\3AUTO"; 8342 8343 rc = sysctl_wire_old_buffer(req, 0); 8344 if (rc != 0) 8345 return(rc); 8346 8347 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8348 if (sb == NULL) 8349 return (ENOMEM); 8350 8351 if (lc->link_ok) { 8352 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8353 (lc->requested_fc & PAUSE_AUTONEG), bits); 8354 } else { 8355 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8356 PAUSE_RX | PAUSE_AUTONEG), bits); 8357 } 8358 rc = sbuf_finish(sb); 8359 sbuf_delete(sb); 8360 } else { 8361 char s[2]; 8362 int n; 8363 8364 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8365 PAUSE_AUTONEG)); 8366 s[1] = 0; 8367 8368 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8369 if (rc != 0) 8370 return(rc); 8371 8372 if (s[1] != 0) 8373 return (EINVAL); 8374 if (s[0] < '0' || s[0] > '9') 8375 return (EINVAL); /* not a number */ 8376 n = s[0] - '0'; 8377 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8378 return (EINVAL); /* some other bit is set too */ 8379 8380 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8381 "t4PAUSE"); 8382 if (rc) 8383 return (rc); 8384 if (!hw_off_limits(sc)) { 8385 PORT_LOCK(pi); 8386 lc->requested_fc = n; 8387 fixup_link_config(pi); 8388 if (pi->up_vis > 0) 8389 rc = apply_link_config(pi); 8390 set_current_media(pi); 8391 PORT_UNLOCK(pi); 8392 } 8393 end_synchronized_op(sc, 0); 8394 } 8395 8396 return (rc); 8397 } 8398 8399 static int 8400 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8401 { 8402 struct port_info *pi = arg1; 8403 struct link_config *lc = &pi->link_cfg; 8404 int rc; 8405 struct sbuf *sb; 8406 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8407 8408 rc = sysctl_wire_old_buffer(req, 0); 8409 if (rc != 0) 8410 return(rc); 8411 8412 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8413 if (sb == NULL) 8414 return (ENOMEM); 8415 if (lc->link_ok) 8416 sbuf_printf(sb, "%b", lc->fec, bits); 8417 else 8418 sbuf_printf(sb, "no link"); 8419 rc = sbuf_finish(sb); 8420 sbuf_delete(sb); 8421 8422 return (rc); 8423 } 8424 8425 static int 8426 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8427 { 8428 struct port_info *pi = arg1; 8429 struct adapter *sc = pi->adapter; 8430 struct link_config *lc = &pi->link_cfg; 8431 int rc; 8432 int8_t old; 8433 8434 if (req->newptr == NULL) { 8435 struct sbuf *sb; 8436 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8437 "\5RSVD3\6auto\7module"; 8438 8439 rc = sysctl_wire_old_buffer(req, 0); 8440 if (rc != 0) 8441 return(rc); 8442 8443 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8444 if (sb == NULL) 8445 return (ENOMEM); 8446 8447 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8448 rc = sbuf_finish(sb); 8449 sbuf_delete(sb); 8450 } else { 8451 char s[8]; 8452 int n; 8453 8454 snprintf(s, sizeof(s), "%d", 8455 lc->requested_fec == FEC_AUTO ? -1 : 8456 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8457 8458 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8459 if (rc != 0) 8460 return(rc); 8461 8462 n = strtol(&s[0], NULL, 0); 8463 if (n < 0 || n & FEC_AUTO) 8464 n = FEC_AUTO; 8465 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8466 return (EINVAL);/* some other bit is set too */ 8467 8468 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8469 "t4reqf"); 8470 if (rc) 8471 return (rc); 8472 PORT_LOCK(pi); 8473 old = lc->requested_fec; 8474 if (n == FEC_AUTO) 8475 lc->requested_fec = FEC_AUTO; 8476 else if (n == 0 || n == FEC_NONE) 8477 lc->requested_fec = FEC_NONE; 8478 else { 8479 if ((lc->pcaps | 8480 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8481 lc->pcaps) { 8482 rc = ENOTSUP; 8483 goto done; 8484 } 8485 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8486 FEC_MODULE); 8487 } 8488 if (!hw_off_limits(sc)) { 8489 fixup_link_config(pi); 8490 if (pi->up_vis > 0) { 8491 rc = apply_link_config(pi); 8492 if (rc != 0) { 8493 lc->requested_fec = old; 8494 if (rc == FW_EPROTO) 8495 rc = ENOTSUP; 8496 } 8497 } 8498 } 8499 done: 8500 PORT_UNLOCK(pi); 8501 end_synchronized_op(sc, 0); 8502 } 8503 8504 return (rc); 8505 } 8506 8507 static int 8508 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8509 { 8510 struct port_info *pi = arg1; 8511 struct adapter *sc = pi->adapter; 8512 struct link_config *lc = &pi->link_cfg; 8513 int rc; 8514 int8_t fec; 8515 struct sbuf *sb; 8516 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8517 8518 rc = sysctl_wire_old_buffer(req, 0); 8519 if (rc != 0) 8520 return (rc); 8521 8522 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8523 if (sb == NULL) 8524 return (ENOMEM); 8525 8526 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8527 rc = EBUSY; 8528 goto done; 8529 } 8530 if (hw_off_limits(sc)) { 8531 rc = ENXIO; 8532 goto done; 8533 } 8534 PORT_LOCK(pi); 8535 if (pi->up_vis == 0) { 8536 /* 8537 * If all the interfaces are administratively down the firmware 8538 * does not report transceiver changes. Refresh port info here. 8539 * This is the only reason we have a synchronized op in this 8540 * function. Just PORT_LOCK would have been enough otherwise. 8541 */ 8542 t4_update_port_info(pi); 8543 } 8544 8545 fec = lc->fec_hint; 8546 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8547 !fec_supported(lc->pcaps)) { 8548 sbuf_printf(sb, "n/a"); 8549 } else { 8550 if (fec == 0) 8551 fec = FEC_NONE; 8552 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8553 } 8554 rc = sbuf_finish(sb); 8555 PORT_UNLOCK(pi); 8556 done: 8557 sbuf_delete(sb); 8558 end_synchronized_op(sc, 0); 8559 8560 return (rc); 8561 } 8562 8563 static int 8564 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8565 { 8566 struct port_info *pi = arg1; 8567 struct adapter *sc = pi->adapter; 8568 struct link_config *lc = &pi->link_cfg; 8569 int rc, val; 8570 8571 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8572 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8573 else 8574 val = -1; 8575 rc = sysctl_handle_int(oidp, &val, 0, req); 8576 if (rc != 0 || req->newptr == NULL) 8577 return (rc); 8578 if (val == 0) 8579 val = AUTONEG_DISABLE; 8580 else if (val == 1) 8581 val = AUTONEG_ENABLE; 8582 else 8583 val = AUTONEG_AUTO; 8584 8585 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8586 "t4aneg"); 8587 if (rc) 8588 return (rc); 8589 PORT_LOCK(pi); 8590 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8591 rc = ENOTSUP; 8592 goto done; 8593 } 8594 lc->requested_aneg = val; 8595 if (!hw_off_limits(sc)) { 8596 fixup_link_config(pi); 8597 if (pi->up_vis > 0) 8598 rc = apply_link_config(pi); 8599 set_current_media(pi); 8600 } 8601 done: 8602 PORT_UNLOCK(pi); 8603 end_synchronized_op(sc, 0); 8604 return (rc); 8605 } 8606 8607 static int 8608 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8609 { 8610 struct port_info *pi = arg1; 8611 struct adapter *sc = pi->adapter; 8612 struct link_config *lc = &pi->link_cfg; 8613 int rc, val; 8614 8615 val = lc->force_fec; 8616 MPASS(val >= -1 && val <= 1); 8617 rc = sysctl_handle_int(oidp, &val, 0, req); 8618 if (rc != 0 || req->newptr == NULL) 8619 return (rc); 8620 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8621 return (ENOTSUP); 8622 if (val < -1 || val > 1) 8623 return (EINVAL); 8624 8625 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8626 if (rc) 8627 return (rc); 8628 PORT_LOCK(pi); 8629 lc->force_fec = val; 8630 if (!hw_off_limits(sc)) { 8631 fixup_link_config(pi); 8632 if (pi->up_vis > 0) 8633 rc = apply_link_config(pi); 8634 } 8635 PORT_UNLOCK(pi); 8636 end_synchronized_op(sc, 0); 8637 return (rc); 8638 } 8639 8640 static int 8641 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8642 { 8643 struct adapter *sc = arg1; 8644 int rc, reg = arg2; 8645 uint64_t val; 8646 8647 mtx_lock(&sc->reg_lock); 8648 if (hw_off_limits(sc)) 8649 rc = ENXIO; 8650 else { 8651 rc = 0; 8652 val = t4_read_reg64(sc, reg); 8653 } 8654 mtx_unlock(&sc->reg_lock); 8655 if (rc == 0) 8656 rc = sysctl_handle_64(oidp, &val, 0, req); 8657 return (rc); 8658 } 8659 8660 static int 8661 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8662 { 8663 struct adapter *sc = arg1; 8664 int rc, t; 8665 uint32_t param, val; 8666 8667 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8668 if (rc) 8669 return (rc); 8670 if (hw_off_limits(sc)) 8671 rc = ENXIO; 8672 else { 8673 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8674 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8675 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8676 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8677 } 8678 end_synchronized_op(sc, 0); 8679 if (rc) 8680 return (rc); 8681 8682 /* unknown is returned as 0 but we display -1 in that case */ 8683 t = val == 0 ? -1 : val; 8684 8685 rc = sysctl_handle_int(oidp, &t, 0, req); 8686 return (rc); 8687 } 8688 8689 static int 8690 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8691 { 8692 struct adapter *sc = arg1; 8693 int rc; 8694 uint32_t param, val; 8695 8696 if (sc->params.core_vdd == 0) { 8697 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8698 "t4vdd"); 8699 if (rc) 8700 return (rc); 8701 if (hw_off_limits(sc)) 8702 rc = ENXIO; 8703 else { 8704 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8705 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8706 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8707 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8708 ¶m, &val); 8709 } 8710 end_synchronized_op(sc, 0); 8711 if (rc) 8712 return (rc); 8713 sc->params.core_vdd = val; 8714 } 8715 8716 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8717 } 8718 8719 static int 8720 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8721 { 8722 struct adapter *sc = arg1; 8723 int rc, v; 8724 uint32_t param, val; 8725 8726 v = sc->sensor_resets; 8727 rc = sysctl_handle_int(oidp, &v, 0, req); 8728 if (rc != 0 || req->newptr == NULL || v <= 0) 8729 return (rc); 8730 8731 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8732 chip_id(sc) < CHELSIO_T5) 8733 return (ENOTSUP); 8734 8735 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8736 if (rc) 8737 return (rc); 8738 if (hw_off_limits(sc)) 8739 rc = ENXIO; 8740 else { 8741 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8742 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8743 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8744 val = 1; 8745 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8746 } 8747 end_synchronized_op(sc, 0); 8748 if (rc == 0) 8749 sc->sensor_resets++; 8750 return (rc); 8751 } 8752 8753 static int 8754 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8755 { 8756 struct adapter *sc = arg1; 8757 struct sbuf *sb; 8758 int rc; 8759 uint32_t param, val; 8760 8761 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8762 if (rc) 8763 return (rc); 8764 if (hw_off_limits(sc)) 8765 rc = ENXIO; 8766 else { 8767 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8768 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8769 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8770 } 8771 end_synchronized_op(sc, 0); 8772 if (rc) 8773 return (rc); 8774 8775 rc = sysctl_wire_old_buffer(req, 0); 8776 if (rc != 0) 8777 return (rc); 8778 8779 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8780 if (sb == NULL) 8781 return (ENOMEM); 8782 8783 if (val == 0xffffffff) { 8784 /* Only debug and custom firmwares report load averages. */ 8785 sbuf_printf(sb, "not available"); 8786 } else { 8787 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8788 (val >> 16) & 0xff); 8789 } 8790 rc = sbuf_finish(sb); 8791 sbuf_delete(sb); 8792 8793 return (rc); 8794 } 8795 8796 static int 8797 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8798 { 8799 struct adapter *sc = arg1; 8800 struct sbuf *sb; 8801 int rc, i; 8802 uint16_t incr[NMTUS][NCCTRL_WIN]; 8803 static const char *dec_fac[] = { 8804 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8805 "0.9375" 8806 }; 8807 8808 rc = sysctl_wire_old_buffer(req, 0); 8809 if (rc != 0) 8810 return (rc); 8811 8812 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8813 if (sb == NULL) 8814 return (ENOMEM); 8815 8816 mtx_lock(&sc->reg_lock); 8817 if (hw_off_limits(sc)) 8818 rc = ENXIO; 8819 else 8820 t4_read_cong_tbl(sc, incr); 8821 mtx_unlock(&sc->reg_lock); 8822 if (rc) 8823 goto done; 8824 8825 for (i = 0; i < NCCTRL_WIN; ++i) { 8826 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8827 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8828 incr[5][i], incr[6][i], incr[7][i]); 8829 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8830 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8831 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8832 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8833 } 8834 8835 rc = sbuf_finish(sb); 8836 done: 8837 sbuf_delete(sb); 8838 return (rc); 8839 } 8840 8841 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8842 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8843 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8844 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8845 }; 8846 8847 static int 8848 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8849 { 8850 struct adapter *sc = arg1; 8851 struct sbuf *sb; 8852 int rc, i, n, qid = arg2; 8853 uint32_t *buf, *p; 8854 char *qtype; 8855 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8856 8857 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8858 ("%s: bad qid %d\n", __func__, qid)); 8859 8860 if (qid < CIM_NUM_IBQ) { 8861 /* inbound queue */ 8862 qtype = "IBQ"; 8863 n = 4 * CIM_IBQ_SIZE; 8864 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8865 mtx_lock(&sc->reg_lock); 8866 if (hw_off_limits(sc)) 8867 rc = -ENXIO; 8868 else 8869 rc = t4_read_cim_ibq(sc, qid, buf, n); 8870 mtx_unlock(&sc->reg_lock); 8871 } else { 8872 /* outbound queue */ 8873 qtype = "OBQ"; 8874 qid -= CIM_NUM_IBQ; 8875 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8876 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8877 mtx_lock(&sc->reg_lock); 8878 if (hw_off_limits(sc)) 8879 rc = -ENXIO; 8880 else 8881 rc = t4_read_cim_obq(sc, qid, buf, n); 8882 mtx_unlock(&sc->reg_lock); 8883 } 8884 8885 if (rc < 0) { 8886 rc = -rc; 8887 goto done; 8888 } 8889 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8890 8891 rc = sysctl_wire_old_buffer(req, 0); 8892 if (rc != 0) 8893 goto done; 8894 8895 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8896 if (sb == NULL) { 8897 rc = ENOMEM; 8898 goto done; 8899 } 8900 8901 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8902 for (i = 0, p = buf; i < n; i += 16, p += 4) 8903 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8904 p[2], p[3]); 8905 8906 rc = sbuf_finish(sb); 8907 sbuf_delete(sb); 8908 done: 8909 free(buf, M_CXGBE); 8910 return (rc); 8911 } 8912 8913 static void 8914 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8915 { 8916 uint32_t *p; 8917 8918 sbuf_printf(sb, "Status Data PC%s", 8919 cfg & F_UPDBGLACAPTPCONLY ? "" : 8920 " LS0Stat LS0Addr LS0Data"); 8921 8922 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8923 if (cfg & F_UPDBGLACAPTPCONLY) { 8924 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8925 p[6], p[7]); 8926 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8927 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8928 p[4] & 0xff, p[5] >> 8); 8929 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8930 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8931 p[1] & 0xf, p[2] >> 4); 8932 } else { 8933 sbuf_printf(sb, 8934 "\n %02x %x%07x %x%07x %08x %08x " 8935 "%08x%08x%08x%08x", 8936 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8937 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8938 p[6], p[7]); 8939 } 8940 } 8941 } 8942 8943 static void 8944 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8945 { 8946 uint32_t *p; 8947 8948 sbuf_printf(sb, "Status Inst Data PC%s", 8949 cfg & F_UPDBGLACAPTPCONLY ? "" : 8950 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8951 8952 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8953 if (cfg & F_UPDBGLACAPTPCONLY) { 8954 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8955 p[3] & 0xff, p[2], p[1], p[0]); 8956 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8957 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8958 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8959 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8960 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8961 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8962 p[6] >> 16); 8963 } else { 8964 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8965 "%08x %08x %08x %08x %08x %08x", 8966 (p[9] >> 16) & 0xff, 8967 p[9] & 0xffff, p[8] >> 16, 8968 p[8] & 0xffff, p[7] >> 16, 8969 p[7] & 0xffff, p[6] >> 16, 8970 p[2], p[1], p[0], p[5], p[4], p[3]); 8971 } 8972 } 8973 } 8974 8975 static int 8976 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8977 { 8978 uint32_t cfg, *buf; 8979 int rc; 8980 8981 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8982 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8983 M_ZERO | flags); 8984 if (buf == NULL) 8985 return (ENOMEM); 8986 8987 mtx_lock(&sc->reg_lock); 8988 if (hw_off_limits(sc)) 8989 rc = ENXIO; 8990 else { 8991 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8992 if (rc == 0) 8993 rc = -t4_cim_read_la(sc, buf, NULL); 8994 } 8995 mtx_unlock(&sc->reg_lock); 8996 if (rc == 0) { 8997 if (chip_id(sc) < CHELSIO_T6) 8998 sbuf_cim_la4(sc, sb, buf, cfg); 8999 else 9000 sbuf_cim_la6(sc, sb, buf, cfg); 9001 } 9002 free(buf, M_CXGBE); 9003 return (rc); 9004 } 9005 9006 static int 9007 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9008 { 9009 struct adapter *sc = arg1; 9010 struct sbuf *sb; 9011 int rc; 9012 9013 rc = sysctl_wire_old_buffer(req, 0); 9014 if (rc != 0) 9015 return (rc); 9016 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9017 if (sb == NULL) 9018 return (ENOMEM); 9019 9020 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9021 if (rc == 0) 9022 rc = sbuf_finish(sb); 9023 sbuf_delete(sb); 9024 return (rc); 9025 } 9026 9027 static void 9028 dump_cim_regs(struct adapter *sc) 9029 { 9030 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9031 device_get_nameunit(sc->dev), 9032 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9033 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9034 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9035 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9036 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9037 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9038 device_get_nameunit(sc->dev), 9039 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9040 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9041 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9042 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9043 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9044 } 9045 9046 static void 9047 dump_cimla(struct adapter *sc) 9048 { 9049 struct sbuf sb; 9050 int rc; 9051 9052 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9053 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9054 device_get_nameunit(sc->dev)); 9055 return; 9056 } 9057 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9058 if (rc == 0) { 9059 rc = sbuf_finish(&sb); 9060 if (rc == 0) { 9061 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9062 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9063 } 9064 } 9065 sbuf_delete(&sb); 9066 } 9067 9068 void 9069 t4_os_cim_err(struct adapter *sc) 9070 { 9071 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9072 } 9073 9074 static int 9075 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9076 { 9077 struct adapter *sc = arg1; 9078 u_int i; 9079 struct sbuf *sb; 9080 uint32_t *buf, *p; 9081 int rc; 9082 9083 rc = sysctl_wire_old_buffer(req, 0); 9084 if (rc != 0) 9085 return (rc); 9086 9087 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9088 if (sb == NULL) 9089 return (ENOMEM); 9090 9091 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9092 M_ZERO | M_WAITOK); 9093 9094 mtx_lock(&sc->reg_lock); 9095 if (hw_off_limits(sc)) 9096 rc = ENXIO; 9097 else 9098 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9099 mtx_unlock(&sc->reg_lock); 9100 if (rc) 9101 goto done; 9102 9103 p = buf; 9104 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9105 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9106 p[1], p[0]); 9107 } 9108 9109 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9110 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9111 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9112 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9113 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9114 (p[1] >> 2) | ((p[2] & 3) << 30), 9115 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9116 p[0] & 1); 9117 } 9118 rc = sbuf_finish(sb); 9119 done: 9120 sbuf_delete(sb); 9121 free(buf, M_CXGBE); 9122 return (rc); 9123 } 9124 9125 static int 9126 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9127 { 9128 struct adapter *sc = arg1; 9129 u_int i; 9130 struct sbuf *sb; 9131 uint32_t *buf, *p; 9132 int rc; 9133 9134 rc = sysctl_wire_old_buffer(req, 0); 9135 if (rc != 0) 9136 return (rc); 9137 9138 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9139 if (sb == NULL) 9140 return (ENOMEM); 9141 9142 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9143 M_ZERO | M_WAITOK); 9144 9145 mtx_lock(&sc->reg_lock); 9146 if (hw_off_limits(sc)) 9147 rc = ENXIO; 9148 else 9149 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9150 mtx_unlock(&sc->reg_lock); 9151 if (rc) 9152 goto done; 9153 9154 p = buf; 9155 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9156 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9157 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9158 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9159 p[4], p[3], p[2], p[1], p[0]); 9160 } 9161 9162 sbuf_printf(sb, "\n\nCntl ID Data"); 9163 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9164 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9165 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9166 } 9167 9168 rc = sbuf_finish(sb); 9169 done: 9170 sbuf_delete(sb); 9171 free(buf, M_CXGBE); 9172 return (rc); 9173 } 9174 9175 static int 9176 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9177 { 9178 struct adapter *sc = arg1; 9179 struct sbuf *sb; 9180 int rc, i; 9181 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9182 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9183 uint16_t thres[CIM_NUM_IBQ]; 9184 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9185 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9186 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9187 9188 cim_num_obq = sc->chip_params->cim_num_obq; 9189 if (is_t4(sc)) { 9190 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9191 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9192 } else { 9193 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9194 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9195 } 9196 nq = CIM_NUM_IBQ + cim_num_obq; 9197 9198 mtx_lock(&sc->reg_lock); 9199 if (hw_off_limits(sc)) 9200 rc = ENXIO; 9201 else { 9202 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9203 if (rc == 0) { 9204 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9205 obq_wr); 9206 if (rc == 0) 9207 t4_read_cimq_cfg(sc, base, size, thres); 9208 } 9209 } 9210 mtx_unlock(&sc->reg_lock); 9211 if (rc) 9212 return (rc); 9213 9214 rc = sysctl_wire_old_buffer(req, 0); 9215 if (rc != 0) 9216 return (rc); 9217 9218 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9219 if (sb == NULL) 9220 return (ENOMEM); 9221 9222 sbuf_printf(sb, 9223 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9224 9225 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9226 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9227 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9228 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9229 G_QUEREMFLITS(p[2]) * 16); 9230 for ( ; i < nq; i++, p += 4, wr += 2) 9231 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9232 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9233 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9234 G_QUEREMFLITS(p[2]) * 16); 9235 9236 rc = sbuf_finish(sb); 9237 sbuf_delete(sb); 9238 9239 return (rc); 9240 } 9241 9242 static int 9243 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9244 { 9245 struct adapter *sc = arg1; 9246 struct sbuf *sb; 9247 int rc; 9248 struct tp_cpl_stats stats; 9249 9250 rc = sysctl_wire_old_buffer(req, 0); 9251 if (rc != 0) 9252 return (rc); 9253 9254 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9255 if (sb == NULL) 9256 return (ENOMEM); 9257 9258 mtx_lock(&sc->reg_lock); 9259 if (hw_off_limits(sc)) 9260 rc = ENXIO; 9261 else 9262 t4_tp_get_cpl_stats(sc, &stats, 0); 9263 mtx_unlock(&sc->reg_lock); 9264 if (rc) 9265 goto done; 9266 9267 if (sc->chip_params->nchan > 2) { 9268 sbuf_printf(sb, " channel 0 channel 1" 9269 " channel 2 channel 3"); 9270 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9271 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9272 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9273 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9274 } else { 9275 sbuf_printf(sb, " channel 0 channel 1"); 9276 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9277 stats.req[0], stats.req[1]); 9278 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9279 stats.rsp[0], stats.rsp[1]); 9280 } 9281 9282 rc = sbuf_finish(sb); 9283 done: 9284 sbuf_delete(sb); 9285 return (rc); 9286 } 9287 9288 static int 9289 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9290 { 9291 struct adapter *sc = arg1; 9292 struct sbuf *sb; 9293 int rc; 9294 struct tp_usm_stats stats; 9295 9296 rc = sysctl_wire_old_buffer(req, 0); 9297 if (rc != 0) 9298 return(rc); 9299 9300 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9301 if (sb == NULL) 9302 return (ENOMEM); 9303 9304 mtx_lock(&sc->reg_lock); 9305 if (hw_off_limits(sc)) 9306 rc = ENXIO; 9307 else 9308 t4_get_usm_stats(sc, &stats, 1); 9309 mtx_unlock(&sc->reg_lock); 9310 if (rc == 0) { 9311 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9312 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9313 sbuf_printf(sb, "Drops: %u", stats.drops); 9314 rc = sbuf_finish(sb); 9315 } 9316 sbuf_delete(sb); 9317 9318 return (rc); 9319 } 9320 9321 static int 9322 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9323 { 9324 struct adapter *sc = arg1; 9325 struct sbuf *sb; 9326 int rc; 9327 struct tp_tid_stats stats; 9328 9329 rc = sysctl_wire_old_buffer(req, 0); 9330 if (rc != 0) 9331 return(rc); 9332 9333 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9334 if (sb == NULL) 9335 return (ENOMEM); 9336 9337 mtx_lock(&sc->reg_lock); 9338 if (hw_off_limits(sc)) 9339 rc = ENXIO; 9340 else 9341 t4_tp_get_tid_stats(sc, &stats, 1); 9342 mtx_unlock(&sc->reg_lock); 9343 if (rc == 0) { 9344 sbuf_printf(sb, "Delete: %u\n", stats.del); 9345 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9346 sbuf_printf(sb, "Active: %u\n", stats.act); 9347 sbuf_printf(sb, "Passive: %u", stats.pas); 9348 rc = sbuf_finish(sb); 9349 } 9350 sbuf_delete(sb); 9351 9352 return (rc); 9353 } 9354 9355 static const char * const devlog_level_strings[] = { 9356 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9357 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9358 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9359 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9360 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9361 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9362 }; 9363 9364 static const char * const devlog_facility_strings[] = { 9365 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9366 [FW_DEVLOG_FACILITY_CF] = "CF", 9367 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9368 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9369 [FW_DEVLOG_FACILITY_RES] = "RES", 9370 [FW_DEVLOG_FACILITY_HW] = "HW", 9371 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9372 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9373 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9374 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9375 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9376 [FW_DEVLOG_FACILITY_VI] = "VI", 9377 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9378 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9379 [FW_DEVLOG_FACILITY_TM] = "TM", 9380 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9381 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9382 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9383 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9384 [FW_DEVLOG_FACILITY_RI] = "RI", 9385 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9386 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9387 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9388 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9389 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9390 }; 9391 9392 static int 9393 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9394 { 9395 int i, j, rc, nentries, first = 0; 9396 struct devlog_params *dparams = &sc->params.devlog; 9397 struct fw_devlog_e *buf, *e; 9398 uint64_t ftstamp = UINT64_MAX; 9399 9400 if (dparams->addr == 0) 9401 return (ENXIO); 9402 9403 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9404 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9405 if (buf == NULL) 9406 return (ENOMEM); 9407 9408 mtx_lock(&sc->reg_lock); 9409 if (hw_off_limits(sc)) 9410 rc = ENXIO; 9411 else 9412 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9413 dparams->size); 9414 mtx_unlock(&sc->reg_lock); 9415 if (rc != 0) 9416 goto done; 9417 9418 nentries = dparams->size / sizeof(struct fw_devlog_e); 9419 for (i = 0; i < nentries; i++) { 9420 e = &buf[i]; 9421 9422 if (e->timestamp == 0) 9423 break; /* end */ 9424 9425 e->timestamp = be64toh(e->timestamp); 9426 e->seqno = be32toh(e->seqno); 9427 for (j = 0; j < 8; j++) 9428 e->params[j] = be32toh(e->params[j]); 9429 9430 if (e->timestamp < ftstamp) { 9431 ftstamp = e->timestamp; 9432 first = i; 9433 } 9434 } 9435 9436 if (buf[first].timestamp == 0) 9437 goto done; /* nothing in the log */ 9438 9439 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9440 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9441 9442 i = first; 9443 do { 9444 e = &buf[i]; 9445 if (e->timestamp == 0) 9446 break; /* end */ 9447 9448 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9449 e->seqno, e->timestamp, 9450 (e->level < nitems(devlog_level_strings) ? 9451 devlog_level_strings[e->level] : "UNKNOWN"), 9452 (e->facility < nitems(devlog_facility_strings) ? 9453 devlog_facility_strings[e->facility] : "UNKNOWN")); 9454 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9455 e->params[2], e->params[3], e->params[4], 9456 e->params[5], e->params[6], e->params[7]); 9457 9458 if (++i == nentries) 9459 i = 0; 9460 } while (i != first); 9461 done: 9462 free(buf, M_CXGBE); 9463 return (rc); 9464 } 9465 9466 static int 9467 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9468 { 9469 struct adapter *sc = arg1; 9470 int rc; 9471 struct sbuf *sb; 9472 9473 rc = sysctl_wire_old_buffer(req, 0); 9474 if (rc != 0) 9475 return (rc); 9476 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9477 if (sb == NULL) 9478 return (ENOMEM); 9479 9480 rc = sbuf_devlog(sc, sb, M_WAITOK); 9481 if (rc == 0) 9482 rc = sbuf_finish(sb); 9483 sbuf_delete(sb); 9484 return (rc); 9485 } 9486 9487 static void 9488 dump_devlog(struct adapter *sc) 9489 { 9490 int rc; 9491 struct sbuf sb; 9492 9493 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9494 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9495 device_get_nameunit(sc->dev)); 9496 return; 9497 } 9498 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9499 if (rc == 0) { 9500 rc = sbuf_finish(&sb); 9501 if (rc == 0) { 9502 log(LOG_DEBUG, "%s: device log follows.\n%s", 9503 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9504 } 9505 } 9506 sbuf_delete(&sb); 9507 } 9508 9509 static int 9510 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9511 { 9512 struct adapter *sc = arg1; 9513 struct sbuf *sb; 9514 int rc; 9515 struct tp_fcoe_stats stats[MAX_NCHAN]; 9516 int i, nchan = sc->chip_params->nchan; 9517 9518 rc = sysctl_wire_old_buffer(req, 0); 9519 if (rc != 0) 9520 return (rc); 9521 9522 mtx_lock(&sc->reg_lock); 9523 if (hw_off_limits(sc)) 9524 rc = ENXIO; 9525 else { 9526 for (i = 0; i < nchan; i++) 9527 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9528 } 9529 mtx_unlock(&sc->reg_lock); 9530 if (rc != 0) 9531 return (rc); 9532 9533 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9534 if (sb == NULL) 9535 return (ENOMEM); 9536 9537 if (nchan > 2) { 9538 sbuf_printf(sb, " channel 0 channel 1" 9539 " channel 2 channel 3"); 9540 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9541 stats[0].octets_ddp, stats[1].octets_ddp, 9542 stats[2].octets_ddp, stats[3].octets_ddp); 9543 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9544 stats[0].frames_ddp, stats[1].frames_ddp, 9545 stats[2].frames_ddp, stats[3].frames_ddp); 9546 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9547 stats[0].frames_drop, stats[1].frames_drop, 9548 stats[2].frames_drop, stats[3].frames_drop); 9549 } else { 9550 sbuf_printf(sb, " channel 0 channel 1"); 9551 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9552 stats[0].octets_ddp, stats[1].octets_ddp); 9553 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9554 stats[0].frames_ddp, stats[1].frames_ddp); 9555 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9556 stats[0].frames_drop, stats[1].frames_drop); 9557 } 9558 9559 rc = sbuf_finish(sb); 9560 sbuf_delete(sb); 9561 9562 return (rc); 9563 } 9564 9565 static int 9566 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9567 { 9568 struct adapter *sc = arg1; 9569 struct sbuf *sb; 9570 int rc, i; 9571 unsigned int map, kbps, ipg, mode; 9572 unsigned int pace_tab[NTX_SCHED]; 9573 9574 rc = sysctl_wire_old_buffer(req, 0); 9575 if (rc != 0) 9576 return (rc); 9577 9578 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9579 if (sb == NULL) 9580 return (ENOMEM); 9581 9582 mtx_lock(&sc->reg_lock); 9583 if (hw_off_limits(sc)) { 9584 rc = ENXIO; 9585 goto done; 9586 } 9587 9588 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9589 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9590 t4_read_pace_tbl(sc, pace_tab); 9591 9592 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9593 "Class IPG (0.1 ns) Flow IPG (us)"); 9594 9595 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9596 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9597 sbuf_printf(sb, "\n %u %-5s %u ", i, 9598 (mode & (1 << i)) ? "flow" : "class", map & 3); 9599 if (kbps) 9600 sbuf_printf(sb, "%9u ", kbps); 9601 else 9602 sbuf_printf(sb, " disabled "); 9603 9604 if (ipg) 9605 sbuf_printf(sb, "%13u ", ipg); 9606 else 9607 sbuf_printf(sb, " disabled "); 9608 9609 if (pace_tab[i]) 9610 sbuf_printf(sb, "%10u", pace_tab[i]); 9611 else 9612 sbuf_printf(sb, " disabled"); 9613 } 9614 rc = sbuf_finish(sb); 9615 done: 9616 mtx_unlock(&sc->reg_lock); 9617 sbuf_delete(sb); 9618 return (rc); 9619 } 9620 9621 static int 9622 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9623 { 9624 struct adapter *sc = arg1; 9625 struct sbuf *sb; 9626 int rc, i, j; 9627 uint64_t *p0, *p1; 9628 struct lb_port_stats s[2]; 9629 static const char *stat_name[] = { 9630 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9631 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9632 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9633 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9634 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9635 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9636 "BG2FramesTrunc:", "BG3FramesTrunc:" 9637 }; 9638 9639 rc = sysctl_wire_old_buffer(req, 0); 9640 if (rc != 0) 9641 return (rc); 9642 9643 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9644 if (sb == NULL) 9645 return (ENOMEM); 9646 9647 memset(s, 0, sizeof(s)); 9648 9649 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9650 mtx_lock(&sc->reg_lock); 9651 if (hw_off_limits(sc)) 9652 rc = ENXIO; 9653 else { 9654 t4_get_lb_stats(sc, i, &s[0]); 9655 t4_get_lb_stats(sc, i + 1, &s[1]); 9656 } 9657 mtx_unlock(&sc->reg_lock); 9658 if (rc != 0) 9659 break; 9660 9661 p0 = &s[0].octets; 9662 p1 = &s[1].octets; 9663 sbuf_printf(sb, "%s Loopback %u" 9664 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9665 9666 for (j = 0; j < nitems(stat_name); j++) 9667 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9668 *p0++, *p1++); 9669 } 9670 9671 rc = sbuf_finish(sb); 9672 sbuf_delete(sb); 9673 9674 return (rc); 9675 } 9676 9677 static int 9678 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9679 { 9680 int rc = 0; 9681 struct port_info *pi = arg1; 9682 struct link_config *lc = &pi->link_cfg; 9683 struct sbuf *sb; 9684 9685 rc = sysctl_wire_old_buffer(req, 0); 9686 if (rc != 0) 9687 return(rc); 9688 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9689 if (sb == NULL) 9690 return (ENOMEM); 9691 9692 if (lc->link_ok || lc->link_down_rc == 255) 9693 sbuf_printf(sb, "n/a"); 9694 else 9695 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9696 9697 rc = sbuf_finish(sb); 9698 sbuf_delete(sb); 9699 9700 return (rc); 9701 } 9702 9703 struct mem_desc { 9704 u_int base; 9705 u_int limit; 9706 u_int idx; 9707 }; 9708 9709 static int 9710 mem_desc_cmp(const void *a, const void *b) 9711 { 9712 const u_int v1 = ((const struct mem_desc *)a)->base; 9713 const u_int v2 = ((const struct mem_desc *)b)->base; 9714 9715 if (v1 < v2) 9716 return (-1); 9717 else if (v1 > v2) 9718 return (1); 9719 9720 return (0); 9721 } 9722 9723 static void 9724 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9725 unsigned int to) 9726 { 9727 unsigned int size; 9728 9729 if (from == to) 9730 return; 9731 9732 size = to - from + 1; 9733 if (size == 0) 9734 return; 9735 9736 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9737 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9738 } 9739 9740 static int 9741 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9742 { 9743 struct adapter *sc = arg1; 9744 struct sbuf *sb; 9745 int rc, i, n; 9746 uint32_t lo, hi, used, free, alloc; 9747 static const char *memory[] = { 9748 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9749 }; 9750 static const char *region[] = { 9751 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9752 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9753 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9754 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9755 "RQUDP region:", "PBL region:", "TXPBL region:", 9756 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9757 "ULPTX state:", "On-chip queues:", 9758 }; 9759 struct mem_desc avail[4]; 9760 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9761 struct mem_desc *md = mem; 9762 9763 rc = sysctl_wire_old_buffer(req, 0); 9764 if (rc != 0) 9765 return (rc); 9766 9767 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9768 if (sb == NULL) 9769 return (ENOMEM); 9770 9771 for (i = 0; i < nitems(mem); i++) { 9772 mem[i].limit = 0; 9773 mem[i].idx = i; 9774 } 9775 9776 mtx_lock(&sc->reg_lock); 9777 if (hw_off_limits(sc)) { 9778 rc = ENXIO; 9779 goto done; 9780 } 9781 9782 /* Find and sort the populated memory ranges */ 9783 i = 0; 9784 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9785 if (lo & F_EDRAM0_ENABLE) { 9786 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9787 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9788 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9789 avail[i].idx = 0; 9790 i++; 9791 } 9792 if (lo & F_EDRAM1_ENABLE) { 9793 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9794 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9795 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9796 avail[i].idx = 1; 9797 i++; 9798 } 9799 if (lo & F_EXT_MEM_ENABLE) { 9800 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9801 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9802 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9803 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9804 i++; 9805 } 9806 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9807 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9808 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9809 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9810 avail[i].idx = 4; 9811 i++; 9812 } 9813 if (is_t6(sc) && lo & F_HMA_MUX) { 9814 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9815 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9816 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9817 avail[i].idx = 5; 9818 i++; 9819 } 9820 MPASS(i <= nitems(avail)); 9821 if (!i) /* no memory available */ 9822 goto done; 9823 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9824 9825 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9826 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9827 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9828 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9829 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9830 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9831 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9832 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9833 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9834 9835 /* the next few have explicit upper bounds */ 9836 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9837 md->limit = md->base - 1 + 9838 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9839 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9840 md++; 9841 9842 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9843 md->limit = md->base - 1 + 9844 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9845 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9846 md++; 9847 9848 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9849 if (chip_id(sc) <= CHELSIO_T5) 9850 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9851 else 9852 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9853 md->limit = 0; 9854 } else { 9855 md->base = 0; 9856 md->idx = nitems(region); /* hide it */ 9857 } 9858 md++; 9859 9860 #define ulp_region(reg) \ 9861 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9862 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9863 9864 ulp_region(RX_ISCSI); 9865 ulp_region(RX_TDDP); 9866 ulp_region(TX_TPT); 9867 ulp_region(RX_STAG); 9868 ulp_region(RX_RQ); 9869 ulp_region(RX_RQUDP); 9870 ulp_region(RX_PBL); 9871 ulp_region(TX_PBL); 9872 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9873 ulp_region(RX_TLS_KEY); 9874 } 9875 #undef ulp_region 9876 9877 md->base = 0; 9878 if (is_t4(sc)) 9879 md->idx = nitems(region); 9880 else { 9881 uint32_t size = 0; 9882 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9883 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9884 9885 if (is_t5(sc)) { 9886 if (sge_ctrl & F_VFIFO_ENABLE) 9887 size = fifo_size << 2; 9888 } else 9889 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9890 9891 if (size) { 9892 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9893 md->limit = md->base + size - 1; 9894 } else 9895 md->idx = nitems(region); 9896 } 9897 md++; 9898 9899 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9900 md->limit = 0; 9901 md++; 9902 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9903 md->limit = 0; 9904 md++; 9905 9906 md->base = sc->vres.ocq.start; 9907 if (sc->vres.ocq.size) 9908 md->limit = md->base + sc->vres.ocq.size - 1; 9909 else 9910 md->idx = nitems(region); /* hide it */ 9911 md++; 9912 9913 /* add any address-space holes, there can be up to 3 */ 9914 for (n = 0; n < i - 1; n++) 9915 if (avail[n].limit < avail[n + 1].base) 9916 (md++)->base = avail[n].limit; 9917 if (avail[n].limit) 9918 (md++)->base = avail[n].limit; 9919 9920 n = md - mem; 9921 MPASS(n <= nitems(mem)); 9922 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9923 9924 for (lo = 0; lo < i; lo++) 9925 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9926 avail[lo].limit - 1); 9927 9928 sbuf_printf(sb, "\n"); 9929 for (i = 0; i < n; i++) { 9930 if (mem[i].idx >= nitems(region)) 9931 continue; /* skip holes */ 9932 if (!mem[i].limit) 9933 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9934 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9935 mem[i].limit); 9936 } 9937 9938 sbuf_printf(sb, "\n"); 9939 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9940 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9941 mem_region_show(sb, "uP RAM:", lo, hi); 9942 9943 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9944 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9945 mem_region_show(sb, "uP Extmem2:", lo, hi); 9946 9947 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9948 for (i = 0, free = 0; i < 2; i++) 9949 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 9950 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 9951 G_PMRXMAXPAGE(lo), free, 9952 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9953 (lo & F_PMRXNUMCHN) ? 2 : 1); 9954 9955 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9956 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9957 for (i = 0, free = 0; i < 4; i++) 9958 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 9959 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 9960 G_PMTXMAXPAGE(lo), free, 9961 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9962 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9963 sbuf_printf(sb, "%u p-structs (%u free)\n", 9964 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 9965 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 9966 9967 for (i = 0; i < 4; i++) { 9968 if (chip_id(sc) > CHELSIO_T5) 9969 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9970 else 9971 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9972 if (is_t5(sc)) { 9973 used = G_T5_USED(lo); 9974 alloc = G_T5_ALLOC(lo); 9975 } else { 9976 used = G_USED(lo); 9977 alloc = G_ALLOC(lo); 9978 } 9979 /* For T6 these are MAC buffer groups */ 9980 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9981 i, used, alloc); 9982 } 9983 for (i = 0; i < sc->chip_params->nchan; i++) { 9984 if (chip_id(sc) > CHELSIO_T5) 9985 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9986 else 9987 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9988 if (is_t5(sc)) { 9989 used = G_T5_USED(lo); 9990 alloc = G_T5_ALLOC(lo); 9991 } else { 9992 used = G_USED(lo); 9993 alloc = G_ALLOC(lo); 9994 } 9995 /* For T6 these are MAC buffer groups */ 9996 sbuf_printf(sb, 9997 "\nLoopback %d using %u pages out of %u allocated", 9998 i, used, alloc); 9999 } 10000 done: 10001 mtx_unlock(&sc->reg_lock); 10002 if (rc == 0) 10003 rc = sbuf_finish(sb); 10004 sbuf_delete(sb); 10005 return (rc); 10006 } 10007 10008 static inline void 10009 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10010 { 10011 *mask = x | y; 10012 y = htobe64(y); 10013 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10014 } 10015 10016 static int 10017 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10018 { 10019 struct adapter *sc = arg1; 10020 struct sbuf *sb; 10021 int rc, i; 10022 10023 MPASS(chip_id(sc) <= CHELSIO_T5); 10024 10025 rc = sysctl_wire_old_buffer(req, 0); 10026 if (rc != 0) 10027 return (rc); 10028 10029 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10030 if (sb == NULL) 10031 return (ENOMEM); 10032 10033 sbuf_printf(sb, 10034 "Idx Ethernet address Mask Vld Ports PF" 10035 " VF Replication P0 P1 P2 P3 ML"); 10036 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10037 uint64_t tcamx, tcamy, mask; 10038 uint32_t cls_lo, cls_hi; 10039 uint8_t addr[ETHER_ADDR_LEN]; 10040 10041 mtx_lock(&sc->reg_lock); 10042 if (hw_off_limits(sc)) 10043 rc = ENXIO; 10044 else { 10045 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10046 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10047 } 10048 mtx_unlock(&sc->reg_lock); 10049 if (rc != 0) 10050 break; 10051 if (tcamx & tcamy) 10052 continue; 10053 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10054 mtx_lock(&sc->reg_lock); 10055 if (hw_off_limits(sc)) 10056 rc = ENXIO; 10057 else { 10058 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10059 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10060 } 10061 mtx_unlock(&sc->reg_lock); 10062 if (rc != 0) 10063 break; 10064 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10065 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10066 addr[3], addr[4], addr[5], (uintmax_t)mask, 10067 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10068 G_PORTMAP(cls_hi), G_PF(cls_lo), 10069 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10070 10071 if (cls_lo & F_REPLICATE) { 10072 struct fw_ldst_cmd ldst_cmd; 10073 10074 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10075 ldst_cmd.op_to_addrspace = 10076 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10077 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10078 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10079 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10080 ldst_cmd.u.mps.rplc.fid_idx = 10081 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10082 V_FW_LDST_CMD_IDX(i)); 10083 10084 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10085 "t4mps"); 10086 if (rc) 10087 break; 10088 if (hw_off_limits(sc)) 10089 rc = ENXIO; 10090 else 10091 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10092 sizeof(ldst_cmd), &ldst_cmd); 10093 end_synchronized_op(sc, 0); 10094 if (rc != 0) 10095 break; 10096 else { 10097 sbuf_printf(sb, " %08x %08x %08x %08x", 10098 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10099 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10100 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10101 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10102 } 10103 } else 10104 sbuf_printf(sb, "%36s", ""); 10105 10106 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10107 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10108 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10109 } 10110 10111 if (rc) 10112 (void) sbuf_finish(sb); 10113 else 10114 rc = sbuf_finish(sb); 10115 sbuf_delete(sb); 10116 10117 return (rc); 10118 } 10119 10120 static int 10121 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10122 { 10123 struct adapter *sc = arg1; 10124 struct sbuf *sb; 10125 int rc, i; 10126 10127 MPASS(chip_id(sc) > CHELSIO_T5); 10128 10129 rc = sysctl_wire_old_buffer(req, 0); 10130 if (rc != 0) 10131 return (rc); 10132 10133 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10134 if (sb == NULL) 10135 return (ENOMEM); 10136 10137 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10138 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10139 " Replication" 10140 " P0 P1 P2 P3 ML\n"); 10141 10142 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10143 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10144 uint16_t ivlan; 10145 uint64_t tcamx, tcamy, val, mask; 10146 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10147 uint8_t addr[ETHER_ADDR_LEN]; 10148 10149 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10150 if (i < 256) 10151 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10152 else 10153 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10154 mtx_lock(&sc->reg_lock); 10155 if (hw_off_limits(sc)) 10156 rc = ENXIO; 10157 else { 10158 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10159 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10160 tcamy = G_DMACH(val) << 32; 10161 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10162 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10163 } 10164 mtx_unlock(&sc->reg_lock); 10165 if (rc != 0) 10166 break; 10167 10168 lookup_type = G_DATALKPTYPE(data2); 10169 port_num = G_DATAPORTNUM(data2); 10170 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10171 /* Inner header VNI */ 10172 vniy = ((data2 & F_DATAVIDH2) << 23) | 10173 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10174 dip_hit = data2 & F_DATADIPHIT; 10175 vlan_vld = 0; 10176 } else { 10177 vniy = 0; 10178 dip_hit = 0; 10179 vlan_vld = data2 & F_DATAVIDH2; 10180 ivlan = G_VIDL(val); 10181 } 10182 10183 ctl |= V_CTLXYBITSEL(1); 10184 mtx_lock(&sc->reg_lock); 10185 if (hw_off_limits(sc)) 10186 rc = ENXIO; 10187 else { 10188 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10189 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10190 tcamx = G_DMACH(val) << 32; 10191 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10192 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10193 } 10194 mtx_unlock(&sc->reg_lock); 10195 if (rc != 0) 10196 break; 10197 10198 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10199 /* Inner header VNI mask */ 10200 vnix = ((data2 & F_DATAVIDH2) << 23) | 10201 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10202 } else 10203 vnix = 0; 10204 10205 if (tcamx & tcamy) 10206 continue; 10207 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10208 10209 mtx_lock(&sc->reg_lock); 10210 if (hw_off_limits(sc)) 10211 rc = ENXIO; 10212 else { 10213 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10214 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10215 } 10216 mtx_unlock(&sc->reg_lock); 10217 if (rc != 0) 10218 break; 10219 10220 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10221 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10222 "%012jx %06x %06x - - %3c" 10223 " I %4x %3c %#x%4u%4d", i, addr[0], 10224 addr[1], addr[2], addr[3], addr[4], addr[5], 10225 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10226 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10227 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10228 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10229 } else { 10230 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10231 "%012jx - - ", i, addr[0], addr[1], 10232 addr[2], addr[3], addr[4], addr[5], 10233 (uintmax_t)mask); 10234 10235 if (vlan_vld) 10236 sbuf_printf(sb, "%4u Y ", ivlan); 10237 else 10238 sbuf_printf(sb, " - N "); 10239 10240 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10241 lookup_type ? 'I' : 'O', port_num, 10242 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10243 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10244 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10245 } 10246 10247 10248 if (cls_lo & F_T6_REPLICATE) { 10249 struct fw_ldst_cmd ldst_cmd; 10250 10251 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10252 ldst_cmd.op_to_addrspace = 10253 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10254 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10255 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10256 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10257 ldst_cmd.u.mps.rplc.fid_idx = 10258 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10259 V_FW_LDST_CMD_IDX(i)); 10260 10261 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10262 "t6mps"); 10263 if (rc) 10264 break; 10265 if (hw_off_limits(sc)) 10266 rc = ENXIO; 10267 else 10268 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10269 sizeof(ldst_cmd), &ldst_cmd); 10270 end_synchronized_op(sc, 0); 10271 if (rc != 0) 10272 break; 10273 else { 10274 sbuf_printf(sb, " %08x %08x %08x %08x" 10275 " %08x %08x %08x %08x", 10276 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10277 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10278 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10279 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10280 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10281 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10282 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10283 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10284 } 10285 } else 10286 sbuf_printf(sb, "%72s", ""); 10287 10288 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10289 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10290 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10291 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10292 } 10293 10294 if (rc) 10295 (void) sbuf_finish(sb); 10296 else 10297 rc = sbuf_finish(sb); 10298 sbuf_delete(sb); 10299 10300 return (rc); 10301 } 10302 10303 static int 10304 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10305 { 10306 struct adapter *sc = arg1; 10307 struct sbuf *sb; 10308 int rc; 10309 uint16_t mtus[NMTUS]; 10310 10311 rc = sysctl_wire_old_buffer(req, 0); 10312 if (rc != 0) 10313 return (rc); 10314 10315 mtx_lock(&sc->reg_lock); 10316 if (hw_off_limits(sc)) 10317 rc = ENXIO; 10318 else 10319 t4_read_mtu_tbl(sc, mtus, NULL); 10320 mtx_unlock(&sc->reg_lock); 10321 if (rc != 0) 10322 return (rc); 10323 10324 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10325 if (sb == NULL) 10326 return (ENOMEM); 10327 10328 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10329 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10330 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10331 mtus[14], mtus[15]); 10332 10333 rc = sbuf_finish(sb); 10334 sbuf_delete(sb); 10335 10336 return (rc); 10337 } 10338 10339 static int 10340 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10341 { 10342 struct adapter *sc = arg1; 10343 struct sbuf *sb; 10344 int rc, i; 10345 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10346 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10347 static const char *tx_stats[MAX_PM_NSTATS] = { 10348 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10349 "Tx FIFO wait", NULL, "Tx latency" 10350 }; 10351 static const char *rx_stats[MAX_PM_NSTATS] = { 10352 "Read:", "Write bypass:", "Write mem:", "Flush:", 10353 "Rx FIFO wait", NULL, "Rx latency" 10354 }; 10355 10356 rc = sysctl_wire_old_buffer(req, 0); 10357 if (rc != 0) 10358 return (rc); 10359 10360 mtx_lock(&sc->reg_lock); 10361 if (hw_off_limits(sc)) 10362 rc = ENXIO; 10363 else { 10364 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10365 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10366 } 10367 mtx_unlock(&sc->reg_lock); 10368 if (rc != 0) 10369 return (rc); 10370 10371 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10372 if (sb == NULL) 10373 return (ENOMEM); 10374 10375 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10376 for (i = 0; i < 4; i++) { 10377 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10378 tx_cyc[i]); 10379 } 10380 10381 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10382 for (i = 0; i < 4; i++) { 10383 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10384 rx_cyc[i]); 10385 } 10386 10387 if (chip_id(sc) > CHELSIO_T5) { 10388 sbuf_printf(sb, 10389 "\n Total wait Total occupancy"); 10390 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10391 tx_cyc[i]); 10392 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10393 rx_cyc[i]); 10394 10395 i += 2; 10396 MPASS(i < nitems(tx_stats)); 10397 10398 sbuf_printf(sb, 10399 "\n Reads Total wait"); 10400 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10401 tx_cyc[i]); 10402 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10403 rx_cyc[i]); 10404 } 10405 10406 rc = sbuf_finish(sb); 10407 sbuf_delete(sb); 10408 10409 return (rc); 10410 } 10411 10412 static int 10413 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10414 { 10415 struct adapter *sc = arg1; 10416 struct sbuf *sb; 10417 int rc; 10418 struct tp_rdma_stats stats; 10419 10420 rc = sysctl_wire_old_buffer(req, 0); 10421 if (rc != 0) 10422 return (rc); 10423 10424 mtx_lock(&sc->reg_lock); 10425 if (hw_off_limits(sc)) 10426 rc = ENXIO; 10427 else 10428 t4_tp_get_rdma_stats(sc, &stats, 0); 10429 mtx_unlock(&sc->reg_lock); 10430 if (rc != 0) 10431 return (rc); 10432 10433 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10434 if (sb == NULL) 10435 return (ENOMEM); 10436 10437 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10438 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10439 10440 rc = sbuf_finish(sb); 10441 sbuf_delete(sb); 10442 10443 return (rc); 10444 } 10445 10446 static int 10447 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10448 { 10449 struct adapter *sc = arg1; 10450 struct sbuf *sb; 10451 int rc; 10452 struct tp_tcp_stats v4, v6; 10453 10454 rc = sysctl_wire_old_buffer(req, 0); 10455 if (rc != 0) 10456 return (rc); 10457 10458 mtx_lock(&sc->reg_lock); 10459 if (hw_off_limits(sc)) 10460 rc = ENXIO; 10461 else 10462 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10463 mtx_unlock(&sc->reg_lock); 10464 if (rc != 0) 10465 return (rc); 10466 10467 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10468 if (sb == NULL) 10469 return (ENOMEM); 10470 10471 sbuf_printf(sb, 10472 " IP IPv6\n"); 10473 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10474 v4.tcp_out_rsts, v6.tcp_out_rsts); 10475 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10476 v4.tcp_in_segs, v6.tcp_in_segs); 10477 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10478 v4.tcp_out_segs, v6.tcp_out_segs); 10479 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10480 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10481 10482 rc = sbuf_finish(sb); 10483 sbuf_delete(sb); 10484 10485 return (rc); 10486 } 10487 10488 static int 10489 sysctl_tids(SYSCTL_HANDLER_ARGS) 10490 { 10491 struct adapter *sc = arg1; 10492 struct sbuf *sb; 10493 int rc; 10494 uint32_t x, y; 10495 struct tid_info *t = &sc->tids; 10496 10497 rc = sysctl_wire_old_buffer(req, 0); 10498 if (rc != 0) 10499 return (rc); 10500 10501 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10502 if (sb == NULL) 10503 return (ENOMEM); 10504 10505 if (t->natids) { 10506 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10507 t->atids_in_use); 10508 } 10509 10510 if (t->nhpftids) { 10511 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10512 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10513 } 10514 10515 if (t->ntids) { 10516 bool hashen = false; 10517 10518 mtx_lock(&sc->reg_lock); 10519 if (hw_off_limits(sc)) 10520 rc = ENXIO; 10521 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10522 hashen = true; 10523 if (chip_id(sc) <= CHELSIO_T5) { 10524 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10525 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10526 } else { 10527 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10528 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10529 } 10530 } 10531 mtx_unlock(&sc->reg_lock); 10532 if (rc != 0) 10533 goto done; 10534 10535 sbuf_printf(sb, "TID range: "); 10536 if (hashen) { 10537 if (x) 10538 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10539 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10540 } else { 10541 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10542 t->ntids - 1); 10543 } 10544 sbuf_printf(sb, ", in use: %u\n", 10545 atomic_load_acq_int(&t->tids_in_use)); 10546 } 10547 10548 if (t->nstids) { 10549 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10550 t->stid_base + t->nstids - 1, t->stids_in_use); 10551 } 10552 10553 if (t->nftids) { 10554 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10555 t->ftid_end, t->ftids_in_use); 10556 } 10557 10558 if (t->netids) { 10559 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10560 t->etid_base + t->netids - 1, t->etids_in_use); 10561 } 10562 10563 mtx_lock(&sc->reg_lock); 10564 if (hw_off_limits(sc)) 10565 rc = ENXIO; 10566 else { 10567 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10568 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10569 } 10570 mtx_unlock(&sc->reg_lock); 10571 if (rc != 0) 10572 goto done; 10573 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10574 done: 10575 if (rc == 0) 10576 rc = sbuf_finish(sb); 10577 else 10578 (void)sbuf_finish(sb); 10579 sbuf_delete(sb); 10580 10581 return (rc); 10582 } 10583 10584 static int 10585 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10586 { 10587 struct adapter *sc = arg1; 10588 struct sbuf *sb; 10589 int rc; 10590 struct tp_err_stats stats; 10591 10592 rc = sysctl_wire_old_buffer(req, 0); 10593 if (rc != 0) 10594 return (rc); 10595 10596 mtx_lock(&sc->reg_lock); 10597 if (hw_off_limits(sc)) 10598 rc = ENXIO; 10599 else 10600 t4_tp_get_err_stats(sc, &stats, 0); 10601 mtx_unlock(&sc->reg_lock); 10602 if (rc != 0) 10603 return (rc); 10604 10605 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10606 if (sb == NULL) 10607 return (ENOMEM); 10608 10609 if (sc->chip_params->nchan > 2) { 10610 sbuf_printf(sb, " channel 0 channel 1" 10611 " channel 2 channel 3\n"); 10612 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10613 stats.mac_in_errs[0], stats.mac_in_errs[1], 10614 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10615 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10616 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10617 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10618 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10619 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10620 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10621 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10622 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10623 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10624 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10625 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10626 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10627 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10628 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10629 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10630 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10631 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10632 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10633 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10634 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10635 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10636 } else { 10637 sbuf_printf(sb, " channel 0 channel 1\n"); 10638 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10639 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10640 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10641 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10642 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10643 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10644 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10645 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10646 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10647 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10648 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10649 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10650 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10651 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10652 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10653 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10654 } 10655 10656 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10657 stats.ofld_no_neigh, stats.ofld_cong_defer); 10658 10659 rc = sbuf_finish(sb); 10660 sbuf_delete(sb); 10661 10662 return (rc); 10663 } 10664 10665 static int 10666 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10667 { 10668 struct adapter *sc = arg1; 10669 struct sbuf *sb; 10670 int rc; 10671 struct tp_tnl_stats stats; 10672 10673 rc = sysctl_wire_old_buffer(req, 0); 10674 if (rc != 0) 10675 return(rc); 10676 10677 mtx_lock(&sc->reg_lock); 10678 if (hw_off_limits(sc)) 10679 rc = ENXIO; 10680 else 10681 t4_tp_get_tnl_stats(sc, &stats, 1); 10682 mtx_unlock(&sc->reg_lock); 10683 if (rc != 0) 10684 return (rc); 10685 10686 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10687 if (sb == NULL) 10688 return (ENOMEM); 10689 10690 if (sc->chip_params->nchan > 2) { 10691 sbuf_printf(sb, " channel 0 channel 1" 10692 " channel 2 channel 3\n"); 10693 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10694 stats.out_pkt[0], stats.out_pkt[1], 10695 stats.out_pkt[2], stats.out_pkt[3]); 10696 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10697 stats.in_pkt[0], stats.in_pkt[1], 10698 stats.in_pkt[2], stats.in_pkt[3]); 10699 } else { 10700 sbuf_printf(sb, " channel 0 channel 1\n"); 10701 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10702 stats.out_pkt[0], stats.out_pkt[1]); 10703 sbuf_printf(sb, "InPkts: %10u %10u", 10704 stats.in_pkt[0], stats.in_pkt[1]); 10705 } 10706 10707 rc = sbuf_finish(sb); 10708 sbuf_delete(sb); 10709 10710 return (rc); 10711 } 10712 10713 static int 10714 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10715 { 10716 struct adapter *sc = arg1; 10717 struct tp_params *tpp = &sc->params.tp; 10718 u_int mask; 10719 int rc; 10720 10721 mask = tpp->la_mask >> 16; 10722 rc = sysctl_handle_int(oidp, &mask, 0, req); 10723 if (rc != 0 || req->newptr == NULL) 10724 return (rc); 10725 if (mask > 0xffff) 10726 return (EINVAL); 10727 mtx_lock(&sc->reg_lock); 10728 if (hw_off_limits(sc)) 10729 rc = ENXIO; 10730 else { 10731 tpp->la_mask = mask << 16; 10732 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10733 tpp->la_mask); 10734 } 10735 mtx_unlock(&sc->reg_lock); 10736 10737 return (rc); 10738 } 10739 10740 struct field_desc { 10741 const char *name; 10742 u_int start; 10743 u_int width; 10744 }; 10745 10746 static void 10747 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10748 { 10749 char buf[32]; 10750 int line_size = 0; 10751 10752 while (f->name) { 10753 uint64_t mask = (1ULL << f->width) - 1; 10754 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10755 ((uintmax_t)v >> f->start) & mask); 10756 10757 if (line_size + len >= 79) { 10758 line_size = 8; 10759 sbuf_printf(sb, "\n "); 10760 } 10761 sbuf_printf(sb, "%s ", buf); 10762 line_size += len + 1; 10763 f++; 10764 } 10765 sbuf_printf(sb, "\n"); 10766 } 10767 10768 static const struct field_desc tp_la0[] = { 10769 { "RcfOpCodeOut", 60, 4 }, 10770 { "State", 56, 4 }, 10771 { "WcfState", 52, 4 }, 10772 { "RcfOpcSrcOut", 50, 2 }, 10773 { "CRxError", 49, 1 }, 10774 { "ERxError", 48, 1 }, 10775 { "SanityFailed", 47, 1 }, 10776 { "SpuriousMsg", 46, 1 }, 10777 { "FlushInputMsg", 45, 1 }, 10778 { "FlushInputCpl", 44, 1 }, 10779 { "RssUpBit", 43, 1 }, 10780 { "RssFilterHit", 42, 1 }, 10781 { "Tid", 32, 10 }, 10782 { "InitTcb", 31, 1 }, 10783 { "LineNumber", 24, 7 }, 10784 { "Emsg", 23, 1 }, 10785 { "EdataOut", 22, 1 }, 10786 { "Cmsg", 21, 1 }, 10787 { "CdataOut", 20, 1 }, 10788 { "EreadPdu", 19, 1 }, 10789 { "CreadPdu", 18, 1 }, 10790 { "TunnelPkt", 17, 1 }, 10791 { "RcfPeerFin", 16, 1 }, 10792 { "RcfReasonOut", 12, 4 }, 10793 { "TxCchannel", 10, 2 }, 10794 { "RcfTxChannel", 8, 2 }, 10795 { "RxEchannel", 6, 2 }, 10796 { "RcfRxChannel", 5, 1 }, 10797 { "RcfDataOutSrdy", 4, 1 }, 10798 { "RxDvld", 3, 1 }, 10799 { "RxOoDvld", 2, 1 }, 10800 { "RxCongestion", 1, 1 }, 10801 { "TxCongestion", 0, 1 }, 10802 { NULL } 10803 }; 10804 10805 static const struct field_desc tp_la1[] = { 10806 { "CplCmdIn", 56, 8 }, 10807 { "CplCmdOut", 48, 8 }, 10808 { "ESynOut", 47, 1 }, 10809 { "EAckOut", 46, 1 }, 10810 { "EFinOut", 45, 1 }, 10811 { "ERstOut", 44, 1 }, 10812 { "SynIn", 43, 1 }, 10813 { "AckIn", 42, 1 }, 10814 { "FinIn", 41, 1 }, 10815 { "RstIn", 40, 1 }, 10816 { "DataIn", 39, 1 }, 10817 { "DataInVld", 38, 1 }, 10818 { "PadIn", 37, 1 }, 10819 { "RxBufEmpty", 36, 1 }, 10820 { "RxDdp", 35, 1 }, 10821 { "RxFbCongestion", 34, 1 }, 10822 { "TxFbCongestion", 33, 1 }, 10823 { "TxPktSumSrdy", 32, 1 }, 10824 { "RcfUlpType", 28, 4 }, 10825 { "Eread", 27, 1 }, 10826 { "Ebypass", 26, 1 }, 10827 { "Esave", 25, 1 }, 10828 { "Static0", 24, 1 }, 10829 { "Cread", 23, 1 }, 10830 { "Cbypass", 22, 1 }, 10831 { "Csave", 21, 1 }, 10832 { "CPktOut", 20, 1 }, 10833 { "RxPagePoolFull", 18, 2 }, 10834 { "RxLpbkPkt", 17, 1 }, 10835 { "TxLpbkPkt", 16, 1 }, 10836 { "RxVfValid", 15, 1 }, 10837 { "SynLearned", 14, 1 }, 10838 { "SetDelEntry", 13, 1 }, 10839 { "SetInvEntry", 12, 1 }, 10840 { "CpcmdDvld", 11, 1 }, 10841 { "CpcmdSave", 10, 1 }, 10842 { "RxPstructsFull", 8, 2 }, 10843 { "EpcmdDvld", 7, 1 }, 10844 { "EpcmdFlush", 6, 1 }, 10845 { "EpcmdTrimPrefix", 5, 1 }, 10846 { "EpcmdTrimPostfix", 4, 1 }, 10847 { "ERssIp4Pkt", 3, 1 }, 10848 { "ERssIp6Pkt", 2, 1 }, 10849 { "ERssTcpUdpPkt", 1, 1 }, 10850 { "ERssFceFipPkt", 0, 1 }, 10851 { NULL } 10852 }; 10853 10854 static const struct field_desc tp_la2[] = { 10855 { "CplCmdIn", 56, 8 }, 10856 { "MpsVfVld", 55, 1 }, 10857 { "MpsPf", 52, 3 }, 10858 { "MpsVf", 44, 8 }, 10859 { "SynIn", 43, 1 }, 10860 { "AckIn", 42, 1 }, 10861 { "FinIn", 41, 1 }, 10862 { "RstIn", 40, 1 }, 10863 { "DataIn", 39, 1 }, 10864 { "DataInVld", 38, 1 }, 10865 { "PadIn", 37, 1 }, 10866 { "RxBufEmpty", 36, 1 }, 10867 { "RxDdp", 35, 1 }, 10868 { "RxFbCongestion", 34, 1 }, 10869 { "TxFbCongestion", 33, 1 }, 10870 { "TxPktSumSrdy", 32, 1 }, 10871 { "RcfUlpType", 28, 4 }, 10872 { "Eread", 27, 1 }, 10873 { "Ebypass", 26, 1 }, 10874 { "Esave", 25, 1 }, 10875 { "Static0", 24, 1 }, 10876 { "Cread", 23, 1 }, 10877 { "Cbypass", 22, 1 }, 10878 { "Csave", 21, 1 }, 10879 { "CPktOut", 20, 1 }, 10880 { "RxPagePoolFull", 18, 2 }, 10881 { "RxLpbkPkt", 17, 1 }, 10882 { "TxLpbkPkt", 16, 1 }, 10883 { "RxVfValid", 15, 1 }, 10884 { "SynLearned", 14, 1 }, 10885 { "SetDelEntry", 13, 1 }, 10886 { "SetInvEntry", 12, 1 }, 10887 { "CpcmdDvld", 11, 1 }, 10888 { "CpcmdSave", 10, 1 }, 10889 { "RxPstructsFull", 8, 2 }, 10890 { "EpcmdDvld", 7, 1 }, 10891 { "EpcmdFlush", 6, 1 }, 10892 { "EpcmdTrimPrefix", 5, 1 }, 10893 { "EpcmdTrimPostfix", 4, 1 }, 10894 { "ERssIp4Pkt", 3, 1 }, 10895 { "ERssIp6Pkt", 2, 1 }, 10896 { "ERssTcpUdpPkt", 1, 1 }, 10897 { "ERssFceFipPkt", 0, 1 }, 10898 { NULL } 10899 }; 10900 10901 static void 10902 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10903 { 10904 10905 field_desc_show(sb, *p, tp_la0); 10906 } 10907 10908 static void 10909 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10910 { 10911 10912 if (idx) 10913 sbuf_printf(sb, "\n"); 10914 field_desc_show(sb, p[0], tp_la0); 10915 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10916 field_desc_show(sb, p[1], tp_la0); 10917 } 10918 10919 static void 10920 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10921 { 10922 10923 if (idx) 10924 sbuf_printf(sb, "\n"); 10925 field_desc_show(sb, p[0], tp_la0); 10926 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10927 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10928 } 10929 10930 static int 10931 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10932 { 10933 struct adapter *sc = arg1; 10934 struct sbuf *sb; 10935 uint64_t *buf, *p; 10936 int rc; 10937 u_int i, inc; 10938 void (*show_func)(struct sbuf *, uint64_t *, int); 10939 10940 rc = sysctl_wire_old_buffer(req, 0); 10941 if (rc != 0) 10942 return (rc); 10943 10944 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10945 if (sb == NULL) 10946 return (ENOMEM); 10947 10948 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10949 10950 mtx_lock(&sc->reg_lock); 10951 if (hw_off_limits(sc)) 10952 rc = ENXIO; 10953 else { 10954 t4_tp_read_la(sc, buf, NULL); 10955 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10956 case 2: 10957 inc = 2; 10958 show_func = tp_la_show2; 10959 break; 10960 case 3: 10961 inc = 2; 10962 show_func = tp_la_show3; 10963 break; 10964 default: 10965 inc = 1; 10966 show_func = tp_la_show; 10967 } 10968 } 10969 mtx_unlock(&sc->reg_lock); 10970 if (rc != 0) 10971 goto done; 10972 10973 p = buf; 10974 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10975 (*show_func)(sb, p, i); 10976 rc = sbuf_finish(sb); 10977 done: 10978 sbuf_delete(sb); 10979 free(buf, M_CXGBE); 10980 return (rc); 10981 } 10982 10983 static int 10984 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10985 { 10986 struct adapter *sc = arg1; 10987 struct sbuf *sb; 10988 int rc; 10989 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10990 10991 rc = sysctl_wire_old_buffer(req, 0); 10992 if (rc != 0) 10993 return (rc); 10994 10995 mtx_lock(&sc->reg_lock); 10996 if (hw_off_limits(sc)) 10997 rc = ENXIO; 10998 else 10999 t4_get_chan_txrate(sc, nrate, orate); 11000 mtx_unlock(&sc->reg_lock); 11001 if (rc != 0) 11002 return (rc); 11003 11004 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11005 if (sb == NULL) 11006 return (ENOMEM); 11007 11008 if (sc->chip_params->nchan > 2) { 11009 sbuf_printf(sb, " channel 0 channel 1" 11010 " channel 2 channel 3\n"); 11011 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11012 nrate[0], nrate[1], nrate[2], nrate[3]); 11013 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11014 orate[0], orate[1], orate[2], orate[3]); 11015 } else { 11016 sbuf_printf(sb, " channel 0 channel 1\n"); 11017 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11018 nrate[0], nrate[1]); 11019 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11020 orate[0], orate[1]); 11021 } 11022 11023 rc = sbuf_finish(sb); 11024 sbuf_delete(sb); 11025 11026 return (rc); 11027 } 11028 11029 static int 11030 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11031 { 11032 struct adapter *sc = arg1; 11033 struct sbuf *sb; 11034 uint32_t *buf, *p; 11035 int rc, i; 11036 11037 rc = sysctl_wire_old_buffer(req, 0); 11038 if (rc != 0) 11039 return (rc); 11040 11041 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11042 if (sb == NULL) 11043 return (ENOMEM); 11044 11045 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11046 M_ZERO | M_WAITOK); 11047 11048 mtx_lock(&sc->reg_lock); 11049 if (hw_off_limits(sc)) 11050 rc = ENXIO; 11051 else 11052 t4_ulprx_read_la(sc, buf); 11053 mtx_unlock(&sc->reg_lock); 11054 if (rc != 0) 11055 goto done; 11056 11057 p = buf; 11058 sbuf_printf(sb, " Pcmd Type Message" 11059 " Data"); 11060 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11061 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11062 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11063 } 11064 rc = sbuf_finish(sb); 11065 done: 11066 sbuf_delete(sb); 11067 free(buf, M_CXGBE); 11068 return (rc); 11069 } 11070 11071 static int 11072 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11073 { 11074 struct adapter *sc = arg1; 11075 struct sbuf *sb; 11076 int rc; 11077 uint32_t cfg, s1, s2; 11078 11079 MPASS(chip_id(sc) >= CHELSIO_T5); 11080 11081 rc = sysctl_wire_old_buffer(req, 0); 11082 if (rc != 0) 11083 return (rc); 11084 11085 mtx_lock(&sc->reg_lock); 11086 if (hw_off_limits(sc)) 11087 rc = ENXIO; 11088 else { 11089 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11090 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11091 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11092 } 11093 mtx_unlock(&sc->reg_lock); 11094 if (rc != 0) 11095 return (rc); 11096 11097 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11098 if (sb == NULL) 11099 return (ENOMEM); 11100 11101 if (G_STATSOURCE_T5(cfg) == 7) { 11102 int mode; 11103 11104 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11105 if (mode == 0) 11106 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11107 else if (mode == 1) 11108 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11109 else 11110 sbuf_printf(sb, "unknown mode %d", mode); 11111 } 11112 rc = sbuf_finish(sb); 11113 sbuf_delete(sb); 11114 11115 return (rc); 11116 } 11117 11118 static int 11119 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11120 { 11121 struct adapter *sc = arg1; 11122 enum cpu_sets op = arg2; 11123 cpuset_t cpuset; 11124 struct sbuf *sb; 11125 int i, rc; 11126 11127 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11128 11129 CPU_ZERO(&cpuset); 11130 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11131 if (rc != 0) 11132 return (rc); 11133 11134 rc = sysctl_wire_old_buffer(req, 0); 11135 if (rc != 0) 11136 return (rc); 11137 11138 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11139 if (sb == NULL) 11140 return (ENOMEM); 11141 11142 CPU_FOREACH(i) 11143 sbuf_printf(sb, "%d ", i); 11144 rc = sbuf_finish(sb); 11145 sbuf_delete(sb); 11146 11147 return (rc); 11148 } 11149 11150 static int 11151 sysctl_reset(SYSCTL_HANDLER_ARGS) 11152 { 11153 struct adapter *sc = arg1; 11154 u_int val; 11155 int rc; 11156 11157 val = atomic_load_int(&sc->num_resets); 11158 rc = sysctl_handle_int(oidp, &val, 0, req); 11159 if (rc != 0 || req->newptr == NULL) 11160 return (rc); 11161 11162 if (val == 0) { 11163 /* Zero out the counter that tracks reset. */ 11164 atomic_store_int(&sc->num_resets, 0); 11165 return (0); 11166 } 11167 11168 if (val != 1) 11169 return (EINVAL); /* 0 or 1 are the only legal values */ 11170 11171 if (hw_off_limits(sc)) /* harmless race */ 11172 return (EALREADY); 11173 11174 taskqueue_enqueue(reset_tq, &sc->reset_task); 11175 return (0); 11176 } 11177 11178 #ifdef TCP_OFFLOAD 11179 static int 11180 sysctl_tls(SYSCTL_HANDLER_ARGS) 11181 { 11182 struct adapter *sc = arg1; 11183 int i, j, v, rc; 11184 struct vi_info *vi; 11185 11186 v = sc->tt.tls; 11187 rc = sysctl_handle_int(oidp, &v, 0, req); 11188 if (rc != 0 || req->newptr == NULL) 11189 return (rc); 11190 11191 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11192 return (ENOTSUP); 11193 11194 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11195 if (rc) 11196 return (rc); 11197 if (hw_off_limits(sc)) 11198 rc = ENXIO; 11199 else { 11200 sc->tt.tls = !!v; 11201 for_each_port(sc, i) { 11202 for_each_vi(sc->port[i], j, vi) { 11203 if (vi->flags & VI_INIT_DONE) 11204 t4_update_fl_bufsize(vi->ifp); 11205 } 11206 } 11207 } 11208 end_synchronized_op(sc, 0); 11209 11210 return (rc); 11211 11212 } 11213 11214 static int 11215 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11216 { 11217 struct adapter *sc = arg1; 11218 int *old_ports, *new_ports; 11219 int i, new_count, rc; 11220 11221 if (req->newptr == NULL && req->oldptr == NULL) 11222 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11223 sizeof(sc->tt.tls_rx_ports[0]))); 11224 11225 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11226 if (rc) 11227 return (rc); 11228 11229 if (hw_off_limits(sc)) { 11230 rc = ENXIO; 11231 goto done; 11232 } 11233 11234 if (sc->tt.num_tls_rx_ports == 0) { 11235 i = -1; 11236 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11237 } else 11238 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11239 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11240 if (rc == 0 && req->newptr != NULL) { 11241 new_count = req->newlen / sizeof(new_ports[0]); 11242 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11243 M_WAITOK); 11244 rc = SYSCTL_IN(req, new_ports, new_count * 11245 sizeof(new_ports[0])); 11246 if (rc) 11247 goto err; 11248 11249 /* Allow setting to a single '-1' to clear the list. */ 11250 if (new_count == 1 && new_ports[0] == -1) { 11251 ADAPTER_LOCK(sc); 11252 old_ports = sc->tt.tls_rx_ports; 11253 sc->tt.tls_rx_ports = NULL; 11254 sc->tt.num_tls_rx_ports = 0; 11255 ADAPTER_UNLOCK(sc); 11256 free(old_ports, M_CXGBE); 11257 } else { 11258 for (i = 0; i < new_count; i++) { 11259 if (new_ports[i] < 1 || 11260 new_ports[i] > IPPORT_MAX) { 11261 rc = EINVAL; 11262 goto err; 11263 } 11264 } 11265 11266 ADAPTER_LOCK(sc); 11267 old_ports = sc->tt.tls_rx_ports; 11268 sc->tt.tls_rx_ports = new_ports; 11269 sc->tt.num_tls_rx_ports = new_count; 11270 ADAPTER_UNLOCK(sc); 11271 free(old_ports, M_CXGBE); 11272 new_ports = NULL; 11273 } 11274 err: 11275 free(new_ports, M_CXGBE); 11276 } 11277 done: 11278 end_synchronized_op(sc, 0); 11279 return (rc); 11280 } 11281 11282 static int 11283 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11284 { 11285 struct adapter *sc = arg1; 11286 int v, rc; 11287 11288 v = sc->tt.tls_rx_timeout; 11289 rc = sysctl_handle_int(oidp, &v, 0, req); 11290 if (rc != 0 || req->newptr == NULL) 11291 return (rc); 11292 11293 if (v < 0) 11294 return (EINVAL); 11295 11296 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11297 return (ENOTSUP); 11298 11299 sc->tt.tls_rx_timeout = v; 11300 11301 return (0); 11302 11303 } 11304 11305 static void 11306 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11307 { 11308 u_int rem = val % factor; 11309 11310 if (rem == 0) 11311 snprintf(buf, len, "%u", val / factor); 11312 else { 11313 while (rem % 10 == 0) 11314 rem /= 10; 11315 snprintf(buf, len, "%u.%u", val / factor, rem); 11316 } 11317 } 11318 11319 static int 11320 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11321 { 11322 struct adapter *sc = arg1; 11323 char buf[16]; 11324 u_int res, re; 11325 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11326 11327 mtx_lock(&sc->reg_lock); 11328 if (hw_off_limits(sc)) 11329 res = (u_int)-1; 11330 else 11331 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11332 mtx_unlock(&sc->reg_lock); 11333 if (res == (u_int)-1) 11334 return (ENXIO); 11335 11336 switch (arg2) { 11337 case 0: 11338 /* timer_tick */ 11339 re = G_TIMERRESOLUTION(res); 11340 break; 11341 case 1: 11342 /* TCP timestamp tick */ 11343 re = G_TIMESTAMPRESOLUTION(res); 11344 break; 11345 case 2: 11346 /* DACK tick */ 11347 re = G_DELAYEDACKRESOLUTION(res); 11348 break; 11349 default: 11350 return (EDOOFUS); 11351 } 11352 11353 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11354 11355 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11356 } 11357 11358 static int 11359 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11360 { 11361 struct adapter *sc = arg1; 11362 int rc; 11363 u_int dack_tmr, dack_re, v; 11364 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11365 11366 mtx_lock(&sc->reg_lock); 11367 if (hw_off_limits(sc)) 11368 rc = ENXIO; 11369 else { 11370 rc = 0; 11371 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11372 A_TP_TIMER_RESOLUTION)); 11373 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11374 } 11375 mtx_unlock(&sc->reg_lock); 11376 if (rc != 0) 11377 return (rc); 11378 11379 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11380 11381 return (sysctl_handle_int(oidp, &v, 0, req)); 11382 } 11383 11384 static int 11385 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11386 { 11387 struct adapter *sc = arg1; 11388 int rc, reg = arg2; 11389 u_int tre; 11390 u_long tp_tick_us, v; 11391 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11392 11393 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11394 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11395 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11396 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11397 11398 mtx_lock(&sc->reg_lock); 11399 if (hw_off_limits(sc)) 11400 rc = ENXIO; 11401 else { 11402 rc = 0; 11403 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11404 tp_tick_us = (cclk_ps << tre) / 1000000; 11405 if (reg == A_TP_INIT_SRTT) 11406 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11407 else 11408 v = tp_tick_us * t4_read_reg(sc, reg); 11409 } 11410 mtx_unlock(&sc->reg_lock); 11411 if (rc != 0) 11412 return (rc); 11413 else 11414 return (sysctl_handle_long(oidp, &v, 0, req)); 11415 } 11416 11417 /* 11418 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11419 * passed to this function. 11420 */ 11421 static int 11422 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11423 { 11424 struct adapter *sc = arg1; 11425 int rc, idx = arg2; 11426 u_int v; 11427 11428 MPASS(idx >= 0 && idx <= 24); 11429 11430 mtx_lock(&sc->reg_lock); 11431 if (hw_off_limits(sc)) 11432 rc = ENXIO; 11433 else { 11434 rc = 0; 11435 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11436 } 11437 mtx_unlock(&sc->reg_lock); 11438 if (rc != 0) 11439 return (rc); 11440 else 11441 return (sysctl_handle_int(oidp, &v, 0, req)); 11442 } 11443 11444 static int 11445 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11446 { 11447 struct adapter *sc = arg1; 11448 int rc, idx = arg2; 11449 u_int shift, v, r; 11450 11451 MPASS(idx >= 0 && idx < 16); 11452 11453 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11454 shift = (idx & 3) << 3; 11455 mtx_lock(&sc->reg_lock); 11456 if (hw_off_limits(sc)) 11457 rc = ENXIO; 11458 else { 11459 rc = 0; 11460 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11461 } 11462 mtx_unlock(&sc->reg_lock); 11463 if (rc != 0) 11464 return (rc); 11465 else 11466 return (sysctl_handle_int(oidp, &v, 0, req)); 11467 } 11468 11469 static int 11470 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11471 { 11472 struct vi_info *vi = arg1; 11473 struct adapter *sc = vi->adapter; 11474 int idx, rc, i; 11475 struct sge_ofld_rxq *ofld_rxq; 11476 uint8_t v; 11477 11478 idx = vi->ofld_tmr_idx; 11479 11480 rc = sysctl_handle_int(oidp, &idx, 0, req); 11481 if (rc != 0 || req->newptr == NULL) 11482 return (rc); 11483 11484 if (idx < 0 || idx >= SGE_NTIMERS) 11485 return (EINVAL); 11486 11487 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11488 "t4otmr"); 11489 if (rc) 11490 return (rc); 11491 11492 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11493 for_each_ofld_rxq(vi, i, ofld_rxq) { 11494 #ifdef atomic_store_rel_8 11495 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11496 #else 11497 ofld_rxq->iq.intr_params = v; 11498 #endif 11499 } 11500 vi->ofld_tmr_idx = idx; 11501 11502 end_synchronized_op(sc, LOCK_HELD); 11503 return (0); 11504 } 11505 11506 static int 11507 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11508 { 11509 struct vi_info *vi = arg1; 11510 struct adapter *sc = vi->adapter; 11511 int idx, rc; 11512 11513 idx = vi->ofld_pktc_idx; 11514 11515 rc = sysctl_handle_int(oidp, &idx, 0, req); 11516 if (rc != 0 || req->newptr == NULL) 11517 return (rc); 11518 11519 if (idx < -1 || idx >= SGE_NCOUNTERS) 11520 return (EINVAL); 11521 11522 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11523 "t4opktc"); 11524 if (rc) 11525 return (rc); 11526 11527 if (vi->flags & VI_INIT_DONE) 11528 rc = EBUSY; /* cannot be changed once the queues are created */ 11529 else 11530 vi->ofld_pktc_idx = idx; 11531 11532 end_synchronized_op(sc, LOCK_HELD); 11533 return (rc); 11534 } 11535 #endif 11536 11537 static int 11538 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11539 { 11540 int rc; 11541 11542 if (cntxt->cid > M_CTXTQID) 11543 return (EINVAL); 11544 11545 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11546 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11547 return (EINVAL); 11548 11549 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11550 if (rc) 11551 return (rc); 11552 11553 if (hw_off_limits(sc)) { 11554 rc = ENXIO; 11555 goto done; 11556 } 11557 11558 if (sc->flags & FW_OK) { 11559 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11560 &cntxt->data[0]); 11561 if (rc == 0) 11562 goto done; 11563 } 11564 11565 /* 11566 * Read via firmware failed or wasn't even attempted. Read directly via 11567 * the backdoor. 11568 */ 11569 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11570 done: 11571 end_synchronized_op(sc, 0); 11572 return (rc); 11573 } 11574 11575 static int 11576 load_fw(struct adapter *sc, struct t4_data *fw) 11577 { 11578 int rc; 11579 uint8_t *fw_data; 11580 11581 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11582 if (rc) 11583 return (rc); 11584 11585 if (hw_off_limits(sc)) { 11586 rc = ENXIO; 11587 goto done; 11588 } 11589 11590 /* 11591 * The firmware, with the sole exception of the memory parity error 11592 * handler, runs from memory and not flash. It is almost always safe to 11593 * install a new firmware on a running system. Just set bit 1 in 11594 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11595 */ 11596 if (sc->flags & FULL_INIT_DONE && 11597 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11598 rc = EBUSY; 11599 goto done; 11600 } 11601 11602 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11603 11604 rc = copyin(fw->data, fw_data, fw->len); 11605 if (rc == 0) 11606 rc = -t4_load_fw(sc, fw_data, fw->len); 11607 11608 free(fw_data, M_CXGBE); 11609 done: 11610 end_synchronized_op(sc, 0); 11611 return (rc); 11612 } 11613 11614 static int 11615 load_cfg(struct adapter *sc, struct t4_data *cfg) 11616 { 11617 int rc; 11618 uint8_t *cfg_data = NULL; 11619 11620 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11621 if (rc) 11622 return (rc); 11623 11624 if (hw_off_limits(sc)) { 11625 rc = ENXIO; 11626 goto done; 11627 } 11628 11629 if (cfg->len == 0) { 11630 /* clear */ 11631 rc = -t4_load_cfg(sc, NULL, 0); 11632 goto done; 11633 } 11634 11635 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11636 11637 rc = copyin(cfg->data, cfg_data, cfg->len); 11638 if (rc == 0) 11639 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11640 11641 free(cfg_data, M_CXGBE); 11642 done: 11643 end_synchronized_op(sc, 0); 11644 return (rc); 11645 } 11646 11647 static int 11648 load_boot(struct adapter *sc, struct t4_bootrom *br) 11649 { 11650 int rc; 11651 uint8_t *br_data = NULL; 11652 u_int offset; 11653 11654 if (br->len > 1024 * 1024) 11655 return (EFBIG); 11656 11657 if (br->pf_offset == 0) { 11658 /* pfidx */ 11659 if (br->pfidx_addr > 7) 11660 return (EINVAL); 11661 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11662 A_PCIE_PF_EXPROM_OFST))); 11663 } else if (br->pf_offset == 1) { 11664 /* offset */ 11665 offset = G_OFFSET(br->pfidx_addr); 11666 } else { 11667 return (EINVAL); 11668 } 11669 11670 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11671 if (rc) 11672 return (rc); 11673 11674 if (hw_off_limits(sc)) { 11675 rc = ENXIO; 11676 goto done; 11677 } 11678 11679 if (br->len == 0) { 11680 /* clear */ 11681 rc = -t4_load_boot(sc, NULL, offset, 0); 11682 goto done; 11683 } 11684 11685 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11686 11687 rc = copyin(br->data, br_data, br->len); 11688 if (rc == 0) 11689 rc = -t4_load_boot(sc, br_data, offset, br->len); 11690 11691 free(br_data, M_CXGBE); 11692 done: 11693 end_synchronized_op(sc, 0); 11694 return (rc); 11695 } 11696 11697 static int 11698 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11699 { 11700 int rc; 11701 uint8_t *bc_data = NULL; 11702 11703 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11704 if (rc) 11705 return (rc); 11706 11707 if (hw_off_limits(sc)) { 11708 rc = ENXIO; 11709 goto done; 11710 } 11711 11712 if (bc->len == 0) { 11713 /* clear */ 11714 rc = -t4_load_bootcfg(sc, NULL, 0); 11715 goto done; 11716 } 11717 11718 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11719 11720 rc = copyin(bc->data, bc_data, bc->len); 11721 if (rc == 0) 11722 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11723 11724 free(bc_data, M_CXGBE); 11725 done: 11726 end_synchronized_op(sc, 0); 11727 return (rc); 11728 } 11729 11730 static int 11731 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11732 { 11733 int rc; 11734 struct cudbg_init *cudbg; 11735 void *handle, *buf; 11736 11737 /* buf is large, don't block if no memory is available */ 11738 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11739 if (buf == NULL) 11740 return (ENOMEM); 11741 11742 handle = cudbg_alloc_handle(); 11743 if (handle == NULL) { 11744 rc = ENOMEM; 11745 goto done; 11746 } 11747 11748 cudbg = cudbg_get_init(handle); 11749 cudbg->adap = sc; 11750 cudbg->print = (cudbg_print_cb)printf; 11751 11752 #ifndef notyet 11753 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11754 __func__, dump->wr_flash, dump->len, dump->data); 11755 #endif 11756 11757 if (dump->wr_flash) 11758 cudbg->use_flash = 1; 11759 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11760 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11761 11762 rc = cudbg_collect(handle, buf, &dump->len); 11763 if (rc != 0) 11764 goto done; 11765 11766 rc = copyout(buf, dump->data, dump->len); 11767 done: 11768 cudbg_free_handle(handle); 11769 free(buf, M_CXGBE); 11770 return (rc); 11771 } 11772 11773 static void 11774 free_offload_policy(struct t4_offload_policy *op) 11775 { 11776 struct offload_rule *r; 11777 int i; 11778 11779 if (op == NULL) 11780 return; 11781 11782 r = &op->rule[0]; 11783 for (i = 0; i < op->nrules; i++, r++) { 11784 free(r->bpf_prog.bf_insns, M_CXGBE); 11785 } 11786 free(op->rule, M_CXGBE); 11787 free(op, M_CXGBE); 11788 } 11789 11790 static int 11791 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11792 { 11793 int i, rc, len; 11794 struct t4_offload_policy *op, *old; 11795 struct bpf_program *bf; 11796 const struct offload_settings *s; 11797 struct offload_rule *r; 11798 void *u; 11799 11800 if (!is_offload(sc)) 11801 return (ENODEV); 11802 11803 if (uop->nrules == 0) { 11804 /* Delete installed policies. */ 11805 op = NULL; 11806 goto set_policy; 11807 } else if (uop->nrules > 256) { /* arbitrary */ 11808 return (E2BIG); 11809 } 11810 11811 /* Copy userspace offload policy to kernel */ 11812 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11813 op->nrules = uop->nrules; 11814 len = op->nrules * sizeof(struct offload_rule); 11815 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11816 rc = copyin(uop->rule, op->rule, len); 11817 if (rc) { 11818 free(op->rule, M_CXGBE); 11819 free(op, M_CXGBE); 11820 return (rc); 11821 } 11822 11823 r = &op->rule[0]; 11824 for (i = 0; i < op->nrules; i++, r++) { 11825 11826 /* Validate open_type */ 11827 if (r->open_type != OPEN_TYPE_LISTEN && 11828 r->open_type != OPEN_TYPE_ACTIVE && 11829 r->open_type != OPEN_TYPE_PASSIVE && 11830 r->open_type != OPEN_TYPE_DONTCARE) { 11831 error: 11832 /* 11833 * Rules 0 to i have malloc'd filters that need to be 11834 * freed. Rules i+1 to nrules have userspace pointers 11835 * and should be left alone. 11836 */ 11837 op->nrules = i; 11838 free_offload_policy(op); 11839 return (rc); 11840 } 11841 11842 /* Validate settings */ 11843 s = &r->settings; 11844 if ((s->offload != 0 && s->offload != 1) || 11845 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11846 s->sched_class < -1 || 11847 s->sched_class >= sc->params.nsched_cls) { 11848 rc = EINVAL; 11849 goto error; 11850 } 11851 11852 bf = &r->bpf_prog; 11853 u = bf->bf_insns; /* userspace ptr */ 11854 bf->bf_insns = NULL; 11855 if (bf->bf_len == 0) { 11856 /* legal, matches everything */ 11857 continue; 11858 } 11859 len = bf->bf_len * sizeof(*bf->bf_insns); 11860 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11861 rc = copyin(u, bf->bf_insns, len); 11862 if (rc != 0) 11863 goto error; 11864 11865 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11866 rc = EINVAL; 11867 goto error; 11868 } 11869 } 11870 set_policy: 11871 rw_wlock(&sc->policy_lock); 11872 old = sc->policy; 11873 sc->policy = op; 11874 rw_wunlock(&sc->policy_lock); 11875 free_offload_policy(old); 11876 11877 return (0); 11878 } 11879 11880 #define MAX_READ_BUF_SIZE (128 * 1024) 11881 static int 11882 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11883 { 11884 uint32_t addr, remaining, n; 11885 uint32_t *buf; 11886 int rc; 11887 uint8_t *dst; 11888 11889 mtx_lock(&sc->reg_lock); 11890 if (hw_off_limits(sc)) 11891 rc = ENXIO; 11892 else 11893 rc = validate_mem_range(sc, mr->addr, mr->len); 11894 mtx_unlock(&sc->reg_lock); 11895 if (rc != 0) 11896 return (rc); 11897 11898 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11899 addr = mr->addr; 11900 remaining = mr->len; 11901 dst = (void *)mr->data; 11902 11903 while (remaining) { 11904 n = min(remaining, MAX_READ_BUF_SIZE); 11905 mtx_lock(&sc->reg_lock); 11906 if (hw_off_limits(sc)) 11907 rc = ENXIO; 11908 else 11909 read_via_memwin(sc, 2, addr, buf, n); 11910 mtx_unlock(&sc->reg_lock); 11911 if (rc != 0) 11912 break; 11913 11914 rc = copyout(buf, dst, n); 11915 if (rc != 0) 11916 break; 11917 11918 dst += n; 11919 remaining -= n; 11920 addr += n; 11921 } 11922 11923 free(buf, M_CXGBE); 11924 return (rc); 11925 } 11926 #undef MAX_READ_BUF_SIZE 11927 11928 static int 11929 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11930 { 11931 int rc; 11932 11933 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11934 return (EINVAL); 11935 11936 if (i2cd->len > sizeof(i2cd->data)) 11937 return (EFBIG); 11938 11939 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11940 if (rc) 11941 return (rc); 11942 if (hw_off_limits(sc)) 11943 rc = ENXIO; 11944 else 11945 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11946 i2cd->offset, i2cd->len, &i2cd->data[0]); 11947 end_synchronized_op(sc, 0); 11948 11949 return (rc); 11950 } 11951 11952 static int 11953 clear_stats(struct adapter *sc, u_int port_id) 11954 { 11955 int i, v, chan_map; 11956 struct port_info *pi; 11957 struct vi_info *vi; 11958 struct sge_rxq *rxq; 11959 struct sge_txq *txq; 11960 struct sge_wrq *wrq; 11961 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11962 struct sge_ofld_txq *ofld_txq; 11963 #endif 11964 #ifdef TCP_OFFLOAD 11965 struct sge_ofld_rxq *ofld_rxq; 11966 #endif 11967 11968 if (port_id >= sc->params.nports) 11969 return (EINVAL); 11970 pi = sc->port[port_id]; 11971 if (pi == NULL) 11972 return (EIO); 11973 11974 mtx_lock(&sc->reg_lock); 11975 if (!hw_off_limits(sc)) { 11976 /* MAC stats */ 11977 t4_clr_port_stats(sc, pi->tx_chan); 11978 if (is_t6(sc)) { 11979 if (pi->fcs_reg != -1) 11980 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11981 else 11982 pi->stats.rx_fcs_err = 0; 11983 } 11984 for_each_vi(pi, v, vi) { 11985 if (vi->flags & VI_INIT_DONE) 11986 t4_clr_vi_stats(sc, vi->vin); 11987 } 11988 chan_map = pi->rx_e_chan_map; 11989 v = 0; /* reuse */ 11990 while (chan_map) { 11991 i = ffs(chan_map) - 1; 11992 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11993 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11994 chan_map &= ~(1 << i); 11995 } 11996 } 11997 mtx_unlock(&sc->reg_lock); 11998 pi->tx_parse_error = 0; 11999 pi->tnl_cong_drops = 0; 12000 12001 /* 12002 * Since this command accepts a port, clear stats for 12003 * all VIs on this port. 12004 */ 12005 for_each_vi(pi, v, vi) { 12006 if (vi->flags & VI_INIT_DONE) { 12007 12008 for_each_rxq(vi, i, rxq) { 12009 #if defined(INET) || defined(INET6) 12010 rxq->lro.lro_queued = 0; 12011 rxq->lro.lro_flushed = 0; 12012 #endif 12013 rxq->rxcsum = 0; 12014 rxq->vlan_extraction = 0; 12015 rxq->vxlan_rxcsum = 0; 12016 12017 rxq->fl.cl_allocated = 0; 12018 rxq->fl.cl_recycled = 0; 12019 rxq->fl.cl_fast_recycled = 0; 12020 } 12021 12022 for_each_txq(vi, i, txq) { 12023 txq->txcsum = 0; 12024 txq->tso_wrs = 0; 12025 txq->vlan_insertion = 0; 12026 txq->imm_wrs = 0; 12027 txq->sgl_wrs = 0; 12028 txq->txpkt_wrs = 0; 12029 txq->txpkts0_wrs = 0; 12030 txq->txpkts1_wrs = 0; 12031 txq->txpkts0_pkts = 0; 12032 txq->txpkts1_pkts = 0; 12033 txq->txpkts_flush = 0; 12034 txq->raw_wrs = 0; 12035 txq->vxlan_tso_wrs = 0; 12036 txq->vxlan_txcsum = 0; 12037 txq->kern_tls_records = 0; 12038 txq->kern_tls_short = 0; 12039 txq->kern_tls_partial = 0; 12040 txq->kern_tls_full = 0; 12041 txq->kern_tls_octets = 0; 12042 txq->kern_tls_waste = 0; 12043 txq->kern_tls_options = 0; 12044 txq->kern_tls_header = 0; 12045 txq->kern_tls_fin = 0; 12046 txq->kern_tls_fin_short = 0; 12047 txq->kern_tls_cbc = 0; 12048 txq->kern_tls_gcm = 0; 12049 mp_ring_reset_stats(txq->r); 12050 } 12051 12052 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12053 for_each_ofld_txq(vi, i, ofld_txq) { 12054 ofld_txq->wrq.tx_wrs_direct = 0; 12055 ofld_txq->wrq.tx_wrs_copied = 0; 12056 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12057 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12058 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12059 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12060 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12061 } 12062 #endif 12063 #ifdef TCP_OFFLOAD 12064 for_each_ofld_rxq(vi, i, ofld_rxq) { 12065 ofld_rxq->fl.cl_allocated = 0; 12066 ofld_rxq->fl.cl_recycled = 0; 12067 ofld_rxq->fl.cl_fast_recycled = 0; 12068 counter_u64_zero( 12069 ofld_rxq->rx_iscsi_ddp_setup_ok); 12070 counter_u64_zero( 12071 ofld_rxq->rx_iscsi_ddp_setup_error); 12072 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12073 ofld_rxq->rx_iscsi_ddp_octets = 0; 12074 ofld_rxq->rx_iscsi_fl_pdus = 0; 12075 ofld_rxq->rx_iscsi_fl_octets = 0; 12076 ofld_rxq->rx_toe_tls_records = 0; 12077 ofld_rxq->rx_toe_tls_octets = 0; 12078 } 12079 #endif 12080 12081 if (IS_MAIN_VI(vi)) { 12082 wrq = &sc->sge.ctrlq[pi->port_id]; 12083 wrq->tx_wrs_direct = 0; 12084 wrq->tx_wrs_copied = 0; 12085 } 12086 } 12087 } 12088 12089 return (0); 12090 } 12091 12092 static int 12093 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12094 { 12095 #ifdef INET6 12096 struct in6_addr in6; 12097 12098 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12099 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12100 return (0); 12101 else 12102 return (EIO); 12103 #else 12104 return (ENOTSUP); 12105 #endif 12106 } 12107 12108 static int 12109 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12110 { 12111 #ifdef INET6 12112 struct in6_addr in6; 12113 12114 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12115 return (t4_release_clip_addr(sc, &in6)); 12116 #else 12117 return (ENOTSUP); 12118 #endif 12119 } 12120 12121 int 12122 t4_os_find_pci_capability(struct adapter *sc, int cap) 12123 { 12124 int i; 12125 12126 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12127 } 12128 12129 int 12130 t4_os_pci_save_state(struct adapter *sc) 12131 { 12132 device_t dev; 12133 struct pci_devinfo *dinfo; 12134 12135 dev = sc->dev; 12136 dinfo = device_get_ivars(dev); 12137 12138 pci_cfg_save(dev, dinfo, 0); 12139 return (0); 12140 } 12141 12142 int 12143 t4_os_pci_restore_state(struct adapter *sc) 12144 { 12145 device_t dev; 12146 struct pci_devinfo *dinfo; 12147 12148 dev = sc->dev; 12149 dinfo = device_get_ivars(dev); 12150 12151 pci_cfg_restore(dev, dinfo); 12152 return (0); 12153 } 12154 12155 void 12156 t4_os_portmod_changed(struct port_info *pi) 12157 { 12158 struct adapter *sc = pi->adapter; 12159 struct vi_info *vi; 12160 struct ifnet *ifp; 12161 static const char *mod_str[] = { 12162 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12163 }; 12164 12165 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12166 ("%s: port_type %u", __func__, pi->port_type)); 12167 12168 vi = &pi->vi[0]; 12169 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12170 PORT_LOCK(pi); 12171 build_medialist(pi); 12172 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12173 fixup_link_config(pi); 12174 apply_link_config(pi); 12175 } 12176 PORT_UNLOCK(pi); 12177 end_synchronized_op(sc, LOCK_HELD); 12178 } 12179 12180 ifp = vi->ifp; 12181 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12182 if_printf(ifp, "transceiver unplugged.\n"); 12183 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12184 if_printf(ifp, "unknown transceiver inserted.\n"); 12185 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12186 if_printf(ifp, "unsupported transceiver inserted.\n"); 12187 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12188 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12189 port_top_speed(pi), mod_str[pi->mod_type]); 12190 } else { 12191 if_printf(ifp, "transceiver (type %d) inserted.\n", 12192 pi->mod_type); 12193 } 12194 } 12195 12196 void 12197 t4_os_link_changed(struct port_info *pi) 12198 { 12199 struct vi_info *vi; 12200 struct ifnet *ifp; 12201 struct link_config *lc = &pi->link_cfg; 12202 struct adapter *sc = pi->adapter; 12203 int v; 12204 12205 PORT_LOCK_ASSERT_OWNED(pi); 12206 12207 if (is_t6(sc)) { 12208 if (lc->link_ok) { 12209 if (lc->speed > 25000 || 12210 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12211 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12212 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12213 } else { 12214 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12215 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12216 } 12217 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12218 pi->stats.rx_fcs_err = 0; 12219 } else { 12220 pi->fcs_reg = -1; 12221 } 12222 } else { 12223 MPASS(pi->fcs_reg != -1); 12224 MPASS(pi->fcs_base == 0); 12225 } 12226 12227 for_each_vi(pi, v, vi) { 12228 ifp = vi->ifp; 12229 if (ifp == NULL) 12230 continue; 12231 12232 if (lc->link_ok) { 12233 ifp->if_baudrate = IF_Mbps(lc->speed); 12234 if_link_state_change(ifp, LINK_STATE_UP); 12235 } else { 12236 if_link_state_change(ifp, LINK_STATE_DOWN); 12237 } 12238 } 12239 } 12240 12241 void 12242 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12243 { 12244 struct adapter *sc; 12245 12246 sx_slock(&t4_list_lock); 12247 SLIST_FOREACH(sc, &t4_list, link) { 12248 /* 12249 * func should not make any assumptions about what state sc is 12250 * in - the only guarantee is that sc->sc_lock is a valid lock. 12251 */ 12252 func(sc, arg); 12253 } 12254 sx_sunlock(&t4_list_lock); 12255 } 12256 12257 static int 12258 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12259 struct thread *td) 12260 { 12261 int rc; 12262 struct adapter *sc = dev->si_drv1; 12263 12264 rc = priv_check(td, PRIV_DRIVER); 12265 if (rc != 0) 12266 return (rc); 12267 12268 switch (cmd) { 12269 case CHELSIO_T4_GETREG: { 12270 struct t4_reg *edata = (struct t4_reg *)data; 12271 12272 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12273 return (EFAULT); 12274 12275 mtx_lock(&sc->reg_lock); 12276 if (hw_off_limits(sc)) 12277 rc = ENXIO; 12278 else if (edata->size == 4) 12279 edata->val = t4_read_reg(sc, edata->addr); 12280 else if (edata->size == 8) 12281 edata->val = t4_read_reg64(sc, edata->addr); 12282 else 12283 rc = EINVAL; 12284 mtx_unlock(&sc->reg_lock); 12285 12286 break; 12287 } 12288 case CHELSIO_T4_SETREG: { 12289 struct t4_reg *edata = (struct t4_reg *)data; 12290 12291 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12292 return (EFAULT); 12293 12294 mtx_lock(&sc->reg_lock); 12295 if (hw_off_limits(sc)) 12296 rc = ENXIO; 12297 else if (edata->size == 4) { 12298 if (edata->val & 0xffffffff00000000) 12299 rc = EINVAL; 12300 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12301 } else if (edata->size == 8) 12302 t4_write_reg64(sc, edata->addr, edata->val); 12303 else 12304 rc = EINVAL; 12305 mtx_unlock(&sc->reg_lock); 12306 12307 break; 12308 } 12309 case CHELSIO_T4_REGDUMP: { 12310 struct t4_regdump *regs = (struct t4_regdump *)data; 12311 int reglen = t4_get_regs_len(sc); 12312 uint8_t *buf; 12313 12314 if (regs->len < reglen) { 12315 regs->len = reglen; /* hint to the caller */ 12316 return (ENOBUFS); 12317 } 12318 12319 regs->len = reglen; 12320 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12321 mtx_lock(&sc->reg_lock); 12322 if (hw_off_limits(sc)) 12323 rc = ENXIO; 12324 else 12325 get_regs(sc, regs, buf); 12326 mtx_unlock(&sc->reg_lock); 12327 if (rc == 0) 12328 rc = copyout(buf, regs->data, reglen); 12329 free(buf, M_CXGBE); 12330 break; 12331 } 12332 case CHELSIO_T4_GET_FILTER_MODE: 12333 rc = get_filter_mode(sc, (uint32_t *)data); 12334 break; 12335 case CHELSIO_T4_SET_FILTER_MODE: 12336 rc = set_filter_mode(sc, *(uint32_t *)data); 12337 break; 12338 case CHELSIO_T4_SET_FILTER_MASK: 12339 rc = set_filter_mask(sc, *(uint32_t *)data); 12340 break; 12341 case CHELSIO_T4_GET_FILTER: 12342 rc = get_filter(sc, (struct t4_filter *)data); 12343 break; 12344 case CHELSIO_T4_SET_FILTER: 12345 rc = set_filter(sc, (struct t4_filter *)data); 12346 break; 12347 case CHELSIO_T4_DEL_FILTER: 12348 rc = del_filter(sc, (struct t4_filter *)data); 12349 break; 12350 case CHELSIO_T4_GET_SGE_CONTEXT: 12351 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12352 break; 12353 case CHELSIO_T4_LOAD_FW: 12354 rc = load_fw(sc, (struct t4_data *)data); 12355 break; 12356 case CHELSIO_T4_GET_MEM: 12357 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12358 break; 12359 case CHELSIO_T4_GET_I2C: 12360 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12361 break; 12362 case CHELSIO_T4_CLEAR_STATS: 12363 rc = clear_stats(sc, *(uint32_t *)data); 12364 break; 12365 case CHELSIO_T4_SCHED_CLASS: 12366 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12367 break; 12368 case CHELSIO_T4_SCHED_QUEUE: 12369 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12370 break; 12371 case CHELSIO_T4_GET_TRACER: 12372 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12373 break; 12374 case CHELSIO_T4_SET_TRACER: 12375 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12376 break; 12377 case CHELSIO_T4_LOAD_CFG: 12378 rc = load_cfg(sc, (struct t4_data *)data); 12379 break; 12380 case CHELSIO_T4_LOAD_BOOT: 12381 rc = load_boot(sc, (struct t4_bootrom *)data); 12382 break; 12383 case CHELSIO_T4_LOAD_BOOTCFG: 12384 rc = load_bootcfg(sc, (struct t4_data *)data); 12385 break; 12386 case CHELSIO_T4_CUDBG_DUMP: 12387 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12388 break; 12389 case CHELSIO_T4_SET_OFLD_POLICY: 12390 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12391 break; 12392 case CHELSIO_T4_HOLD_CLIP_ADDR: 12393 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12394 break; 12395 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12396 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12397 break; 12398 default: 12399 rc = ENOTTY; 12400 } 12401 12402 return (rc); 12403 } 12404 12405 #ifdef TCP_OFFLOAD 12406 static int 12407 toe_capability(struct vi_info *vi, bool enable) 12408 { 12409 int rc; 12410 struct port_info *pi = vi->pi; 12411 struct adapter *sc = pi->adapter; 12412 12413 ASSERT_SYNCHRONIZED_OP(sc); 12414 12415 if (!is_offload(sc)) 12416 return (ENODEV); 12417 if (hw_off_limits(sc)) 12418 return (ENXIO); 12419 12420 if (enable) { 12421 #ifdef KERN_TLS 12422 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12423 int i, j, n; 12424 struct port_info *p; 12425 struct vi_info *v; 12426 12427 /* 12428 * Reconfigure hardware for TOE if TXTLS is not enabled 12429 * on any ifnet. 12430 */ 12431 n = 0; 12432 for_each_port(sc, i) { 12433 p = sc->port[i]; 12434 for_each_vi(p, j, v) { 12435 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12436 CH_WARN(sc, 12437 "%s has NIC TLS enabled.\n", 12438 device_get_nameunit(v->dev)); 12439 n++; 12440 } 12441 } 12442 } 12443 if (n > 0) { 12444 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12445 "associated with this adapter before " 12446 "trying to enable TOE.\n"); 12447 return (EAGAIN); 12448 } 12449 rc = t6_config_kern_tls(sc, false); 12450 if (rc) 12451 return (rc); 12452 } 12453 #endif 12454 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12455 /* TOE is already enabled. */ 12456 return (0); 12457 } 12458 12459 /* 12460 * We need the port's queues around so that we're able to send 12461 * and receive CPLs to/from the TOE even if the ifnet for this 12462 * port has never been UP'd administratively. 12463 */ 12464 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12465 return (rc); 12466 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12467 ((rc = vi_init(&pi->vi[0])) != 0)) 12468 return (rc); 12469 12470 if (isset(&sc->offload_map, pi->port_id)) { 12471 /* TOE is enabled on another VI of this port. */ 12472 pi->uld_vis++; 12473 return (0); 12474 } 12475 12476 if (!uld_active(sc, ULD_TOM)) { 12477 rc = t4_activate_uld(sc, ULD_TOM); 12478 if (rc == EAGAIN) { 12479 log(LOG_WARNING, 12480 "You must kldload t4_tom.ko before trying " 12481 "to enable TOE on a cxgbe interface.\n"); 12482 } 12483 if (rc != 0) 12484 return (rc); 12485 KASSERT(sc->tom_softc != NULL, 12486 ("%s: TOM activated but softc NULL", __func__)); 12487 KASSERT(uld_active(sc, ULD_TOM), 12488 ("%s: TOM activated but flag not set", __func__)); 12489 } 12490 12491 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12492 if (!uld_active(sc, ULD_IWARP)) 12493 (void) t4_activate_uld(sc, ULD_IWARP); 12494 if (!uld_active(sc, ULD_ISCSI)) 12495 (void) t4_activate_uld(sc, ULD_ISCSI); 12496 12497 pi->uld_vis++; 12498 setbit(&sc->offload_map, pi->port_id); 12499 } else { 12500 pi->uld_vis--; 12501 12502 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12503 return (0); 12504 12505 KASSERT(uld_active(sc, ULD_TOM), 12506 ("%s: TOM never initialized?", __func__)); 12507 clrbit(&sc->offload_map, pi->port_id); 12508 } 12509 12510 return (0); 12511 } 12512 12513 /* 12514 * Add an upper layer driver to the global list. 12515 */ 12516 int 12517 t4_register_uld(struct uld_info *ui) 12518 { 12519 int rc = 0; 12520 struct uld_info *u; 12521 12522 sx_xlock(&t4_uld_list_lock); 12523 SLIST_FOREACH(u, &t4_uld_list, link) { 12524 if (u->uld_id == ui->uld_id) { 12525 rc = EEXIST; 12526 goto done; 12527 } 12528 } 12529 12530 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12531 ui->refcount = 0; 12532 done: 12533 sx_xunlock(&t4_uld_list_lock); 12534 return (rc); 12535 } 12536 12537 int 12538 t4_unregister_uld(struct uld_info *ui) 12539 { 12540 int rc = EINVAL; 12541 struct uld_info *u; 12542 12543 sx_xlock(&t4_uld_list_lock); 12544 12545 SLIST_FOREACH(u, &t4_uld_list, link) { 12546 if (u == ui) { 12547 if (ui->refcount > 0) { 12548 rc = EBUSY; 12549 goto done; 12550 } 12551 12552 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12553 rc = 0; 12554 goto done; 12555 } 12556 } 12557 done: 12558 sx_xunlock(&t4_uld_list_lock); 12559 return (rc); 12560 } 12561 12562 int 12563 t4_activate_uld(struct adapter *sc, int id) 12564 { 12565 int rc; 12566 struct uld_info *ui; 12567 12568 ASSERT_SYNCHRONIZED_OP(sc); 12569 12570 if (id < 0 || id > ULD_MAX) 12571 return (EINVAL); 12572 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12573 12574 sx_slock(&t4_uld_list_lock); 12575 12576 SLIST_FOREACH(ui, &t4_uld_list, link) { 12577 if (ui->uld_id == id) { 12578 if (!(sc->flags & FULL_INIT_DONE)) { 12579 rc = adapter_init(sc); 12580 if (rc != 0) 12581 break; 12582 } 12583 12584 rc = ui->activate(sc); 12585 if (rc == 0) { 12586 setbit(&sc->active_ulds, id); 12587 ui->refcount++; 12588 } 12589 break; 12590 } 12591 } 12592 12593 sx_sunlock(&t4_uld_list_lock); 12594 12595 return (rc); 12596 } 12597 12598 int 12599 t4_deactivate_uld(struct adapter *sc, int id) 12600 { 12601 int rc; 12602 struct uld_info *ui; 12603 12604 ASSERT_SYNCHRONIZED_OP(sc); 12605 12606 if (id < 0 || id > ULD_MAX) 12607 return (EINVAL); 12608 rc = ENXIO; 12609 12610 sx_slock(&t4_uld_list_lock); 12611 12612 SLIST_FOREACH(ui, &t4_uld_list, link) { 12613 if (ui->uld_id == id) { 12614 rc = ui->deactivate(sc); 12615 if (rc == 0) { 12616 clrbit(&sc->active_ulds, id); 12617 ui->refcount--; 12618 } 12619 break; 12620 } 12621 } 12622 12623 sx_sunlock(&t4_uld_list_lock); 12624 12625 return (rc); 12626 } 12627 12628 static int 12629 t4_deactivate_all_uld(struct adapter *sc) 12630 { 12631 int rc; 12632 struct uld_info *ui; 12633 12634 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12635 if (rc != 0) 12636 return (ENXIO); 12637 12638 sx_slock(&t4_uld_list_lock); 12639 12640 SLIST_FOREACH(ui, &t4_uld_list, link) { 12641 if (isset(&sc->active_ulds, ui->uld_id)) { 12642 rc = ui->deactivate(sc); 12643 if (rc != 0) 12644 break; 12645 clrbit(&sc->active_ulds, ui->uld_id); 12646 ui->refcount--; 12647 } 12648 } 12649 12650 sx_sunlock(&t4_uld_list_lock); 12651 end_synchronized_op(sc, 0); 12652 12653 return (rc); 12654 } 12655 12656 static void 12657 t4_async_event(struct adapter *sc) 12658 { 12659 struct uld_info *ui; 12660 12661 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12662 return; 12663 sx_slock(&t4_uld_list_lock); 12664 SLIST_FOREACH(ui, &t4_uld_list, link) { 12665 if (ui->uld_id == ULD_IWARP) { 12666 ui->async_event(sc); 12667 break; 12668 } 12669 } 12670 sx_sunlock(&t4_uld_list_lock); 12671 end_synchronized_op(sc, 0); 12672 } 12673 12674 int 12675 uld_active(struct adapter *sc, int uld_id) 12676 { 12677 12678 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12679 12680 return (isset(&sc->active_ulds, uld_id)); 12681 } 12682 #endif 12683 12684 #ifdef KERN_TLS 12685 static int 12686 ktls_capability(struct adapter *sc, bool enable) 12687 { 12688 ASSERT_SYNCHRONIZED_OP(sc); 12689 12690 if (!is_ktls(sc)) 12691 return (ENODEV); 12692 if (!is_t6(sc)) 12693 return (0); 12694 if (hw_off_limits(sc)) 12695 return (ENXIO); 12696 12697 if (enable) { 12698 if (sc->flags & KERN_TLS_ON) 12699 return (0); /* already on */ 12700 if (sc->offload_map != 0) { 12701 CH_WARN(sc, 12702 "Disable TOE on all interfaces associated with " 12703 "this adapter before trying to enable NIC TLS.\n"); 12704 return (EAGAIN); 12705 } 12706 return (t6_config_kern_tls(sc, true)); 12707 } else { 12708 /* 12709 * Nothing to do for disable. If TOE is enabled sometime later 12710 * then toe_capability will reconfigure the hardware. 12711 */ 12712 return (0); 12713 } 12714 } 12715 #endif 12716 12717 /* 12718 * t = ptr to tunable. 12719 * nc = number of CPUs. 12720 * c = compiled in default for that tunable. 12721 */ 12722 static void 12723 calculate_nqueues(int *t, int nc, const int c) 12724 { 12725 int nq; 12726 12727 if (*t > 0) 12728 return; 12729 nq = *t < 0 ? -*t : c; 12730 *t = min(nc, nq); 12731 } 12732 12733 /* 12734 * Come up with reasonable defaults for some of the tunables, provided they're 12735 * not set by the user (in which case we'll use the values as is). 12736 */ 12737 static void 12738 tweak_tunables(void) 12739 { 12740 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12741 12742 if (t4_ntxq < 1) { 12743 #ifdef RSS 12744 t4_ntxq = rss_getnumbuckets(); 12745 #else 12746 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12747 #endif 12748 } 12749 12750 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12751 12752 if (t4_nrxq < 1) { 12753 #ifdef RSS 12754 t4_nrxq = rss_getnumbuckets(); 12755 #else 12756 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12757 #endif 12758 } 12759 12760 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12761 12762 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12763 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12764 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12765 #endif 12766 #ifdef TCP_OFFLOAD 12767 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12768 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12769 #endif 12770 12771 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12772 if (t4_toecaps_allowed == -1) 12773 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12774 #else 12775 if (t4_toecaps_allowed == -1) 12776 t4_toecaps_allowed = 0; 12777 #endif 12778 12779 #ifdef TCP_OFFLOAD 12780 if (t4_rdmacaps_allowed == -1) { 12781 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12782 FW_CAPS_CONFIG_RDMA_RDMAC; 12783 } 12784 12785 if (t4_iscsicaps_allowed == -1) { 12786 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12787 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12788 FW_CAPS_CONFIG_ISCSI_T10DIF; 12789 } 12790 12791 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12792 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12793 12794 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12795 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12796 12797 if (t4_toe_tls_rx_timeout < 0) 12798 t4_toe_tls_rx_timeout = 0; 12799 #else 12800 if (t4_rdmacaps_allowed == -1) 12801 t4_rdmacaps_allowed = 0; 12802 12803 if (t4_iscsicaps_allowed == -1) 12804 t4_iscsicaps_allowed = 0; 12805 #endif 12806 12807 #ifdef DEV_NETMAP 12808 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12809 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12810 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12811 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12812 #endif 12813 12814 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12815 t4_tmr_idx = TMR_IDX; 12816 12817 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12818 t4_pktc_idx = PKTC_IDX; 12819 12820 if (t4_qsize_txq < 128) 12821 t4_qsize_txq = 128; 12822 12823 if (t4_qsize_rxq < 128) 12824 t4_qsize_rxq = 128; 12825 while (t4_qsize_rxq & 7) 12826 t4_qsize_rxq++; 12827 12828 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12829 12830 /* 12831 * Number of VIs to create per-port. The first VI is the "main" regular 12832 * VI for the port. The rest are additional virtual interfaces on the 12833 * same physical port. Note that the main VI does not have native 12834 * netmap support but the extra VIs do. 12835 * 12836 * Limit the number of VIs per port to the number of available 12837 * MAC addresses per port. 12838 */ 12839 if (t4_num_vis < 1) 12840 t4_num_vis = 1; 12841 if (t4_num_vis > nitems(vi_mac_funcs)) { 12842 t4_num_vis = nitems(vi_mac_funcs); 12843 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12844 } 12845 12846 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12847 pcie_relaxed_ordering = 1; 12848 #if defined(__i386__) || defined(__amd64__) 12849 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12850 pcie_relaxed_ordering = 0; 12851 #endif 12852 } 12853 } 12854 12855 #ifdef DDB 12856 static void 12857 t4_dump_tcb(struct adapter *sc, int tid) 12858 { 12859 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12860 12861 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12862 save = t4_read_reg(sc, reg); 12863 base = sc->memwin[2].mw_base; 12864 12865 /* Dump TCB for the tid */ 12866 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12867 tcb_addr += tid * TCB_SIZE; 12868 12869 if (is_t4(sc)) { 12870 pf = 0; 12871 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12872 } else { 12873 pf = V_PFNUM(sc->pf); 12874 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12875 } 12876 t4_write_reg(sc, reg, win_pos | pf); 12877 t4_read_reg(sc, reg); 12878 12879 off = tcb_addr - win_pos; 12880 for (i = 0; i < 4; i++) { 12881 uint32_t buf[8]; 12882 for (j = 0; j < 8; j++, off += 4) 12883 buf[j] = htonl(t4_read_reg(sc, base + off)); 12884 12885 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12886 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12887 buf[7]); 12888 } 12889 12890 t4_write_reg(sc, reg, save); 12891 t4_read_reg(sc, reg); 12892 } 12893 12894 static void 12895 t4_dump_devlog(struct adapter *sc) 12896 { 12897 struct devlog_params *dparams = &sc->params.devlog; 12898 struct fw_devlog_e e; 12899 int i, first, j, m, nentries, rc; 12900 uint64_t ftstamp = UINT64_MAX; 12901 12902 if (dparams->start == 0) { 12903 db_printf("devlog params not valid\n"); 12904 return; 12905 } 12906 12907 nentries = dparams->size / sizeof(struct fw_devlog_e); 12908 m = fwmtype_to_hwmtype(dparams->memtype); 12909 12910 /* Find the first entry. */ 12911 first = -1; 12912 for (i = 0; i < nentries && !db_pager_quit; i++) { 12913 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12914 sizeof(e), (void *)&e); 12915 if (rc != 0) 12916 break; 12917 12918 if (e.timestamp == 0) 12919 break; 12920 12921 e.timestamp = be64toh(e.timestamp); 12922 if (e.timestamp < ftstamp) { 12923 ftstamp = e.timestamp; 12924 first = i; 12925 } 12926 } 12927 12928 if (first == -1) 12929 return; 12930 12931 i = first; 12932 do { 12933 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12934 sizeof(e), (void *)&e); 12935 if (rc != 0) 12936 return; 12937 12938 if (e.timestamp == 0) 12939 return; 12940 12941 e.timestamp = be64toh(e.timestamp); 12942 e.seqno = be32toh(e.seqno); 12943 for (j = 0; j < 8; j++) 12944 e.params[j] = be32toh(e.params[j]); 12945 12946 db_printf("%10d %15ju %8s %8s ", 12947 e.seqno, e.timestamp, 12948 (e.level < nitems(devlog_level_strings) ? 12949 devlog_level_strings[e.level] : "UNKNOWN"), 12950 (e.facility < nitems(devlog_facility_strings) ? 12951 devlog_facility_strings[e.facility] : "UNKNOWN")); 12952 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12953 e.params[3], e.params[4], e.params[5], e.params[6], 12954 e.params[7]); 12955 12956 if (++i == nentries) 12957 i = 0; 12958 } while (i != first && !db_pager_quit); 12959 } 12960 12961 static struct db_command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12962 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12963 12964 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12965 { 12966 device_t dev; 12967 int t; 12968 bool valid; 12969 12970 valid = false; 12971 t = db_read_token(); 12972 if (t == tIDENT) { 12973 dev = device_lookup_by_name(db_tok_string); 12974 valid = true; 12975 } 12976 db_skip_to_eol(); 12977 if (!valid) { 12978 db_printf("usage: show t4 devlog <nexus>\n"); 12979 return; 12980 } 12981 12982 if (dev == NULL) { 12983 db_printf("device not found\n"); 12984 return; 12985 } 12986 12987 t4_dump_devlog(device_get_softc(dev)); 12988 } 12989 12990 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12991 { 12992 device_t dev; 12993 int radix, tid, t; 12994 bool valid; 12995 12996 valid = false; 12997 radix = db_radix; 12998 db_radix = 10; 12999 t = db_read_token(); 13000 if (t == tIDENT) { 13001 dev = device_lookup_by_name(db_tok_string); 13002 t = db_read_token(); 13003 if (t == tNUMBER) { 13004 tid = db_tok_number; 13005 valid = true; 13006 } 13007 } 13008 db_radix = radix; 13009 db_skip_to_eol(); 13010 if (!valid) { 13011 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13012 return; 13013 } 13014 13015 if (dev == NULL) { 13016 db_printf("device not found\n"); 13017 return; 13018 } 13019 if (tid < 0) { 13020 db_printf("invalid tid\n"); 13021 return; 13022 } 13023 13024 t4_dump_tcb(device_get_softc(dev), tid); 13025 } 13026 #endif 13027 13028 static eventhandler_tag vxlan_start_evtag; 13029 static eventhandler_tag vxlan_stop_evtag; 13030 13031 struct vxlan_evargs { 13032 struct ifnet *ifp; 13033 uint16_t port; 13034 }; 13035 13036 static void 13037 enable_vxlan_rx(struct adapter *sc) 13038 { 13039 int i, rc; 13040 struct port_info *pi; 13041 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13042 13043 ASSERT_SYNCHRONIZED_OP(sc); 13044 13045 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13046 F_VXLAN_EN); 13047 for_each_port(sc, i) { 13048 pi = sc->port[i]; 13049 if (pi->vxlan_tcam_entry == true) 13050 continue; 13051 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13052 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13053 true); 13054 if (rc < 0) { 13055 rc = -rc; 13056 CH_ERR(&pi->vi[0], 13057 "failed to add VXLAN TCAM entry: %d.\n", rc); 13058 } else { 13059 MPASS(rc == sc->rawf_base + pi->port_id); 13060 pi->vxlan_tcam_entry = true; 13061 } 13062 } 13063 } 13064 13065 static void 13066 t4_vxlan_start(struct adapter *sc, void *arg) 13067 { 13068 struct vxlan_evargs *v = arg; 13069 13070 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13071 return; 13072 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13073 return; 13074 13075 if (sc->vxlan_refcount == 0) { 13076 sc->vxlan_port = v->port; 13077 sc->vxlan_refcount = 1; 13078 if (!hw_off_limits(sc)) 13079 enable_vxlan_rx(sc); 13080 } else if (sc->vxlan_port == v->port) { 13081 sc->vxlan_refcount++; 13082 } else { 13083 CH_ERR(sc, "VXLAN already configured on port %d; " 13084 "ignoring attempt to configure it on port %d\n", 13085 sc->vxlan_port, v->port); 13086 } 13087 end_synchronized_op(sc, 0); 13088 } 13089 13090 static void 13091 t4_vxlan_stop(struct adapter *sc, void *arg) 13092 { 13093 struct vxlan_evargs *v = arg; 13094 13095 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13096 return; 13097 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13098 return; 13099 13100 /* 13101 * VXLANs may have been configured before the driver was loaded so we 13102 * may see more stops than starts. This is not handled cleanly but at 13103 * least we keep the refcount sane. 13104 */ 13105 if (sc->vxlan_port != v->port) 13106 goto done; 13107 if (sc->vxlan_refcount == 0) { 13108 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13109 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13110 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13111 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13112 done: 13113 end_synchronized_op(sc, 0); 13114 } 13115 13116 static void 13117 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 13118 sa_family_t family, u_int port) 13119 { 13120 struct vxlan_evargs v; 13121 13122 MPASS(family == AF_INET || family == AF_INET6); 13123 v.ifp = ifp; 13124 v.port = port; 13125 13126 t4_iterate(t4_vxlan_start, &v); 13127 } 13128 13129 static void 13130 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 13131 u_int port) 13132 { 13133 struct vxlan_evargs v; 13134 13135 MPASS(family == AF_INET || family == AF_INET6); 13136 v.ifp = ifp; 13137 v.port = port; 13138 13139 t4_iterate(t4_vxlan_stop, &v); 13140 } 13141 13142 13143 static struct sx mlu; /* mod load unload */ 13144 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13145 13146 static int 13147 mod_event(module_t mod, int cmd, void *arg) 13148 { 13149 int rc = 0; 13150 static int loaded = 0; 13151 13152 switch (cmd) { 13153 case MOD_LOAD: 13154 sx_xlock(&mlu); 13155 if (loaded++ == 0) { 13156 t4_sge_modload(); 13157 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13158 t4_filter_rpl, CPL_COOKIE_FILTER); 13159 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13160 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13161 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13162 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13163 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13164 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13165 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13166 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13167 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13168 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13169 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13170 do_smt_write_rpl); 13171 sx_init(&t4_list_lock, "T4/T5 adapters"); 13172 SLIST_INIT(&t4_list); 13173 callout_init(&fatal_callout, 1); 13174 #ifdef TCP_OFFLOAD 13175 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13176 SLIST_INIT(&t4_uld_list); 13177 #endif 13178 #ifdef INET6 13179 t4_clip_modload(); 13180 #endif 13181 #ifdef KERN_TLS 13182 t6_ktls_modload(); 13183 #endif 13184 t4_tracer_modload(); 13185 tweak_tunables(); 13186 vxlan_start_evtag = 13187 EVENTHANDLER_REGISTER(vxlan_start, 13188 t4_vxlan_start_handler, NULL, 13189 EVENTHANDLER_PRI_ANY); 13190 vxlan_stop_evtag = 13191 EVENTHANDLER_REGISTER(vxlan_stop, 13192 t4_vxlan_stop_handler, NULL, 13193 EVENTHANDLER_PRI_ANY); 13194 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13195 taskqueue_thread_enqueue, &reset_tq); 13196 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13197 "t4_rst_thr"); 13198 } 13199 sx_xunlock(&mlu); 13200 break; 13201 13202 case MOD_UNLOAD: 13203 sx_xlock(&mlu); 13204 if (--loaded == 0) { 13205 int tries; 13206 13207 taskqueue_free(reset_tq); 13208 sx_slock(&t4_list_lock); 13209 if (!SLIST_EMPTY(&t4_list)) { 13210 rc = EBUSY; 13211 sx_sunlock(&t4_list_lock); 13212 goto done_unload; 13213 } 13214 #ifdef TCP_OFFLOAD 13215 sx_slock(&t4_uld_list_lock); 13216 if (!SLIST_EMPTY(&t4_uld_list)) { 13217 rc = EBUSY; 13218 sx_sunlock(&t4_uld_list_lock); 13219 sx_sunlock(&t4_list_lock); 13220 goto done_unload; 13221 } 13222 #endif 13223 tries = 0; 13224 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13225 uprintf("%ju clusters with custom free routine " 13226 "still is use.\n", t4_sge_extfree_refs()); 13227 pause("t4unload", 2 * hz); 13228 } 13229 #ifdef TCP_OFFLOAD 13230 sx_sunlock(&t4_uld_list_lock); 13231 #endif 13232 sx_sunlock(&t4_list_lock); 13233 13234 if (t4_sge_extfree_refs() == 0) { 13235 EVENTHANDLER_DEREGISTER(vxlan_start, 13236 vxlan_start_evtag); 13237 EVENTHANDLER_DEREGISTER(vxlan_stop, 13238 vxlan_stop_evtag); 13239 t4_tracer_modunload(); 13240 #ifdef KERN_TLS 13241 t6_ktls_modunload(); 13242 #endif 13243 #ifdef INET6 13244 t4_clip_modunload(); 13245 #endif 13246 #ifdef TCP_OFFLOAD 13247 sx_destroy(&t4_uld_list_lock); 13248 #endif 13249 sx_destroy(&t4_list_lock); 13250 t4_sge_modunload(); 13251 loaded = 0; 13252 } else { 13253 rc = EBUSY; 13254 loaded++; /* undo earlier decrement */ 13255 } 13256 } 13257 done_unload: 13258 sx_xunlock(&mlu); 13259 break; 13260 } 13261 13262 return (rc); 13263 } 13264 13265 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13266 MODULE_VERSION(t4nex, 1); 13267 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13268 #ifdef DEV_NETMAP 13269 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13270 #endif /* DEV_NETMAP */ 13271 13272 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13273 MODULE_VERSION(t5nex, 1); 13274 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13275 #ifdef DEV_NETMAP 13276 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13277 #endif /* DEV_NETMAP */ 13278 13279 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13280 MODULE_VERSION(t6nex, 1); 13281 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13282 #ifdef DEV_NETMAP 13283 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13284 #endif /* DEV_NETMAP */ 13285 13286 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13287 MODULE_VERSION(cxgbe, 1); 13288 13289 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13290 MODULE_VERSION(cxl, 1); 13291 13292 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13293 MODULE_VERSION(cc, 1); 13294 13295 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13296 MODULE_VERSION(vcxgbe, 1); 13297 13298 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13299 MODULE_VERSION(vcxl, 1); 13300 13301 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13302 MODULE_VERSION(vcc, 1); 13303