1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011, 2025 Chelsio Communications. 5 * Written by: Navdeep Parhar <np@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ddb.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/priv.h> 40 #include <sys/kernel.h> 41 #include <sys/bus.h> 42 #include <sys/eventhandler.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #ifdef RSS 61 #include <net/rss_config.h> 62 #endif 63 #include <netinet/in.h> 64 #include <netinet/ip.h> 65 #ifdef KERN_TLS 66 #include <netinet/tcp_seq.h> 67 #endif 68 #if defined(__i386__) || defined(__amd64__) 69 #include <machine/md_var.h> 70 #include <machine/cputypes.h> 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #endif 74 #ifdef DDB 75 #include <ddb/ddb.h> 76 #include <ddb/db_lex.h> 77 #endif 78 79 #include "common/common.h" 80 #include "common/t4_msg.h" 81 #include "common/t4_regs.h" 82 #include "common/t4_regs_values.h" 83 #include "cudbg/cudbg.h" 84 #include "t4_clip.h" 85 #include "t4_ioctl.h" 86 #include "t4_l2t.h" 87 #include "t4_mp_ring.h" 88 #include "t4_if.h" 89 #include "t4_smt.h" 90 91 /* T4 bus driver interface */ 92 static int t4_probe(device_t); 93 static int t4_attach(device_t); 94 static int t4_detach(device_t); 95 static int t4_child_location(device_t, device_t, struct sbuf *); 96 static int t4_ready(device_t); 97 static int t4_read_port_device(device_t, int, device_t *); 98 static int t4_suspend(device_t); 99 static int t4_resume(device_t); 100 static int t4_reset_prepare(device_t, device_t); 101 static int t4_reset_post(device_t, device_t); 102 static device_method_t t4_methods[] = { 103 DEVMETHOD(device_probe, t4_probe), 104 DEVMETHOD(device_attach, t4_attach), 105 DEVMETHOD(device_detach, t4_detach), 106 DEVMETHOD(device_suspend, t4_suspend), 107 DEVMETHOD(device_resume, t4_resume), 108 109 DEVMETHOD(bus_child_location, t4_child_location), 110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 111 DEVMETHOD(bus_reset_post, t4_reset_post), 112 113 DEVMETHOD(t4_is_main_ready, t4_ready), 114 DEVMETHOD(t4_read_port_device, t4_read_port_device), 115 116 DEVMETHOD_END 117 }; 118 static driver_t t4_driver = { 119 "t4nex", 120 t4_methods, 121 sizeof(struct adapter) 122 }; 123 124 125 /* T4 port (cxgbe) interface */ 126 static int cxgbe_probe(device_t); 127 static int cxgbe_attach(device_t); 128 static int cxgbe_detach(device_t); 129 device_method_t cxgbe_methods[] = { 130 DEVMETHOD(device_probe, cxgbe_probe), 131 DEVMETHOD(device_attach, cxgbe_attach), 132 DEVMETHOD(device_detach, cxgbe_detach), 133 { 0, 0 } 134 }; 135 static driver_t cxgbe_driver = { 136 "cxgbe", 137 cxgbe_methods, 138 sizeof(struct port_info) 139 }; 140 141 /* T4 VI (vcxgbe) interface */ 142 static int vcxgbe_probe(device_t); 143 static int vcxgbe_attach(device_t); 144 static int vcxgbe_detach(device_t); 145 static device_method_t vcxgbe_methods[] = { 146 DEVMETHOD(device_probe, vcxgbe_probe), 147 DEVMETHOD(device_attach, vcxgbe_attach), 148 DEVMETHOD(device_detach, vcxgbe_detach), 149 { 0, 0 } 150 }; 151 static driver_t vcxgbe_driver = { 152 "vcxgbe", 153 vcxgbe_methods, 154 sizeof(struct vi_info) 155 }; 156 157 static d_ioctl_t t4_ioctl; 158 159 static struct cdevsw t4_cdevsw = { 160 .d_version = D_VERSION, 161 .d_ioctl = t4_ioctl, 162 .d_name = "t4nex", 163 }; 164 165 /* T5 bus driver interface */ 166 static int t5_probe(device_t); 167 static device_method_t t5_methods[] = { 168 DEVMETHOD(device_probe, t5_probe), 169 DEVMETHOD(device_attach, t4_attach), 170 DEVMETHOD(device_detach, t4_detach), 171 DEVMETHOD(device_suspend, t4_suspend), 172 DEVMETHOD(device_resume, t4_resume), 173 174 DEVMETHOD(bus_child_location, t4_child_location), 175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 176 DEVMETHOD(bus_reset_post, t4_reset_post), 177 178 DEVMETHOD(t4_is_main_ready, t4_ready), 179 DEVMETHOD(t4_read_port_device, t4_read_port_device), 180 181 DEVMETHOD_END 182 }; 183 static driver_t t5_driver = { 184 "t5nex", 185 t5_methods, 186 sizeof(struct adapter) 187 }; 188 189 190 /* T5 port (cxl) interface */ 191 static driver_t cxl_driver = { 192 "cxl", 193 cxgbe_methods, 194 sizeof(struct port_info) 195 }; 196 197 /* T5 VI (vcxl) interface */ 198 static driver_t vcxl_driver = { 199 "vcxl", 200 vcxgbe_methods, 201 sizeof(struct vi_info) 202 }; 203 204 /* T6 bus driver interface */ 205 static int t6_probe(device_t); 206 static device_method_t t6_methods[] = { 207 DEVMETHOD(device_probe, t6_probe), 208 DEVMETHOD(device_attach, t4_attach), 209 DEVMETHOD(device_detach, t4_detach), 210 DEVMETHOD(device_suspend, t4_suspend), 211 DEVMETHOD(device_resume, t4_resume), 212 213 DEVMETHOD(bus_child_location, t4_child_location), 214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 215 DEVMETHOD(bus_reset_post, t4_reset_post), 216 217 DEVMETHOD(t4_is_main_ready, t4_ready), 218 DEVMETHOD(t4_read_port_device, t4_read_port_device), 219 220 DEVMETHOD_END 221 }; 222 static driver_t t6_driver = { 223 "t6nex", 224 t6_methods, 225 sizeof(struct adapter) 226 }; 227 228 229 /* T6 port (cc) interface */ 230 static driver_t cc_driver = { 231 "cc", 232 cxgbe_methods, 233 sizeof(struct port_info) 234 }; 235 236 /* T6 VI (vcc) interface */ 237 static driver_t vcc_driver = { 238 "vcc", 239 vcxgbe_methods, 240 sizeof(struct vi_info) 241 }; 242 243 /* T7+ bus driver interface */ 244 static int ch_probe(device_t); 245 static device_method_t ch_methods[] = { 246 DEVMETHOD(device_probe, ch_probe), 247 DEVMETHOD(device_attach, t4_attach), 248 DEVMETHOD(device_detach, t4_detach), 249 DEVMETHOD(device_suspend, t4_suspend), 250 DEVMETHOD(device_resume, t4_resume), 251 252 DEVMETHOD(bus_child_location, t4_child_location), 253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 254 DEVMETHOD(bus_reset_post, t4_reset_post), 255 256 DEVMETHOD(t4_is_main_ready, t4_ready), 257 DEVMETHOD(t4_read_port_device, t4_read_port_device), 258 259 DEVMETHOD_END 260 }; 261 static driver_t ch_driver = { 262 "chnex", 263 ch_methods, 264 sizeof(struct adapter) 265 }; 266 267 268 /* T7+ port (che) interface */ 269 static driver_t che_driver = { 270 "che", 271 cxgbe_methods, 272 sizeof(struct port_info) 273 }; 274 275 /* T7+ VI (vche) interface */ 276 static driver_t vche_driver = { 277 "vche", 278 vcxgbe_methods, 279 sizeof(struct vi_info) 280 }; 281 282 /* ifnet interface */ 283 static void cxgbe_init(void *); 284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 285 static int cxgbe_transmit(if_t, struct mbuf *); 286 static void cxgbe_qflush(if_t); 287 #if defined(KERN_TLS) || defined(RATELIMIT) 288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 289 struct m_snd_tag **); 290 #endif 291 292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 293 294 /* 295 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 296 * then ADAPTER_LOCK, then t4_uld_list_lock. 297 */ 298 static struct sx t4_list_lock; 299 SLIST_HEAD(, adapter) t4_list; 300 #ifdef TCP_OFFLOAD 301 static struct sx t4_uld_list_lock; 302 struct uld_info *t4_uld_list[ULD_MAX + 1]; 303 #endif 304 305 /* 306 * Tunables. See tweak_tunables() too. 307 * 308 * Each tunable is set to a default value here if it's known at compile-time. 309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 310 * provide a reasonable default (upto n) when the driver is loaded. 311 * 312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 313 * T5 are under hw.cxl. 314 */ 315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 316 "cxgbe(4) parameters"); 317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 318 "cxgbe(4) T5+ parameters"); 319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 320 "cxgbe(4) TOE parameters"); 321 322 /* 323 * Number of queues for tx and rx, NIC and offload. 324 */ 325 #define NTXQ 16 326 int t4_ntxq = -NTXQ; 327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 328 "Number of TX queues per port"); 329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 330 331 #define NRXQ 8 332 int t4_nrxq = -NRXQ; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 334 "Number of RX queues per port"); 335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 336 337 #define NTXQ_VI 1 338 static int t4_ntxq_vi = -NTXQ_VI; 339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 340 "Number of TX queues per VI"); 341 342 #define NRXQ_VI 1 343 static int t4_nrxq_vi = -NRXQ_VI; 344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 345 "Number of RX queues per VI"); 346 347 static int t4_rsrv_noflowq = 0; 348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 349 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 350 351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 352 #define NOFLDTXQ 8 353 static int t4_nofldtxq = -NOFLDTXQ; 354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 355 "Number of offload TX queues per port"); 356 357 #define NOFLDTXQ_VI 1 358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 360 "Number of offload TX queues per VI"); 361 #endif 362 363 #if defined(TCP_OFFLOAD) 364 #define NOFLDRXQ 2 365 static int t4_nofldrxq = -NOFLDRXQ; 366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 367 "Number of offload RX queues per port"); 368 369 #define NOFLDRXQ_VI 1 370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 372 "Number of offload RX queues per VI"); 373 374 #define TMR_IDX_OFLD 1 375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 378 379 #define PKTC_IDX_OFLD (-1) 380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 383 384 /* 0 means chip/fw default, non-zero number is value in microseconds */ 385 static u_long t4_toe_keepalive_idle = 0; 386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 388 389 /* 0 means chip/fw default, non-zero number is value in microseconds */ 390 static u_long t4_toe_keepalive_interval = 0; 391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 393 394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 395 static int t4_toe_keepalive_count = 0; 396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 398 399 /* 0 means chip/fw default, non-zero number is value in microseconds */ 400 static u_long t4_toe_rexmt_min = 0; 401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 403 404 /* 0 means chip/fw default, non-zero number is value in microseconds */ 405 static u_long t4_toe_rexmt_max = 0; 406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 408 409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 410 static int t4_toe_rexmt_count = 0; 411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 413 414 /* -1 means chip/fw default, other values are raw backoff values to use */ 415 static int t4_toe_rexmt_backoff[16] = { 416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 417 }; 418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 420 "cxgbe(4) TOE retransmit backoff values"); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[0], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[1], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[2], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[3], 0, ""); 429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 430 &t4_toe_rexmt_backoff[4], 0, ""); 431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 432 &t4_toe_rexmt_backoff[5], 0, ""); 433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 434 &t4_toe_rexmt_backoff[6], 0, ""); 435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 436 &t4_toe_rexmt_backoff[7], 0, ""); 437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 438 &t4_toe_rexmt_backoff[8], 0, ""); 439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 440 &t4_toe_rexmt_backoff[9], 0, ""); 441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 442 &t4_toe_rexmt_backoff[10], 0, ""); 443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 444 &t4_toe_rexmt_backoff[11], 0, ""); 445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 446 &t4_toe_rexmt_backoff[12], 0, ""); 447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 448 &t4_toe_rexmt_backoff[13], 0, ""); 449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 450 &t4_toe_rexmt_backoff[14], 0, ""); 451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 452 &t4_toe_rexmt_backoff[15], 0, ""); 453 454 int t4_ddp_rcvbuf_len = 256 * 1024; 455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 457 458 unsigned int t4_ddp_rcvbuf_cache = 4; 459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 460 &t4_ddp_rcvbuf_cache, 0, 461 "maximum number of free DDP RX buffers to cache per connection"); 462 #endif 463 464 #ifdef DEV_NETMAP 465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 467 static int t4_native_netmap = NN_EXTRA_VI; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 470 471 #define NNMTXQ 8 472 static int t4_nnmtxq = -NNMTXQ; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 474 "Number of netmap TX queues"); 475 476 #define NNMRXQ 8 477 static int t4_nnmrxq = -NNMRXQ; 478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 479 "Number of netmap RX queues"); 480 481 #define NNMTXQ_VI 2 482 static int t4_nnmtxq_vi = -NNMTXQ_VI; 483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 484 "Number of netmap TX queues per VI"); 485 486 #define NNMRXQ_VI 2 487 static int t4_nnmrxq_vi = -NNMRXQ_VI; 488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 489 "Number of netmap RX queues per VI"); 490 #endif 491 492 /* 493 * Holdoff parameters for ports. 494 */ 495 #define TMR_IDX 1 496 int t4_tmr_idx = TMR_IDX; 497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 498 0, "Holdoff timer index"); 499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 500 501 #define PKTC_IDX (-1) 502 int t4_pktc_idx = PKTC_IDX; 503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 504 0, "Holdoff packet counter index"); 505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 506 507 /* 508 * Size (# of entries) of each tx and rx queue. 509 */ 510 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 512 "Number of descriptors in each TX queue"); 513 514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 516 "Number of descriptors in each RX queue"); 517 518 /* 519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 520 */ 521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 524 525 /* 526 * Configuration file. All the _CF names here are special. 527 */ 528 #define DEFAULT_CF "default" 529 #define BUILTIN_CF "built-in" 530 #define FLASH_CF "flash" 531 #define UWIRE_CF "uwire" 532 #define FPGA_CF "fpga" 533 static char t4_cfg_file[32] = DEFAULT_CF; 534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 535 sizeof(t4_cfg_file), "Firmware configuration file"); 536 537 /* 538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 541 * mark or when signalled to do so, 0 to never emit PAUSE. 542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 543 * negotiated settings will override rx_pause/tx_pause. 544 * Otherwise rx_pause/tx_pause are applied forcibly. 545 */ 546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 548 &t4_pause_settings, 0, 549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 550 551 /* 552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 554 * 0 to disable FEC. 555 */ 556 static int t4_fec = -1; 557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 559 560 static const char * 561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module"; 562 563 /* 564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 566 * driver runs as if this is set to 0. 567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 569 * transceiver. Multiple FEC bits may not be okay but will be passed on to 570 * the firmware anyway (may result in l1cfg errors with old firmwares). 571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 572 * means set all FEC bits that are valid for the speed. 573 */ 574 static int t4_force_fec = -1; 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 576 "Controls the use of FORCE_FEC bit in L1 configuration."); 577 578 /* 579 * Link autonegotiation. 580 * -1 to run with the firmware default. 581 * 0 to disable. 582 * 1 to enable. 583 */ 584 static int t4_autoneg = -1; 585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 586 "Link autonegotiation"); 587 588 /* 589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 590 * encouraged respectively). '-n' is the same as 'n' except the firmware 591 * version used in the checks is read from the firmware bundled with the driver. 592 */ 593 static int t4_fw_install = 1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 596 597 /* 598 * ASIC features that will be used. Disable the ones you don't want so that the 599 * chip resources aren't wasted on features that will not be used. 600 */ 601 static int t4_nbmcaps_allowed = 0; 602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 604 605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 607 &t4_linkcaps_allowed, 0, "Default link capabilities"); 608 609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 610 FW_CAPS_CONFIG_SWITCH_EGRESS; 611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 612 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 613 614 static int t4_nvmecaps_allowed = -1; 615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN, 616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities"); 617 618 #ifdef RATELIMIT 619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 621 #else 622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 623 FW_CAPS_CONFIG_NIC_HASHFILTER; 624 #endif 625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 626 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 627 628 static int t4_toecaps_allowed = -1; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 631 632 static int t4_rdmacaps_allowed = -1; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 635 636 static int t4_cryptocaps_allowed = -1; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 639 640 static int t4_iscsicaps_allowed = -1; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 643 644 static int t4_fcoecaps_allowed = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 647 648 static int t5_write_combine = 0; 649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 650 0, "Use WC instead of UC for BAR2"); 651 652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 653 static int t4_doorbells_allowed = 0xf; 654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 656 657 static int t4_num_vis = 1; 658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 659 "Number of VIs per port"); 660 661 /* 662 * PCIe Relaxed Ordering. 663 * -1: driver should figure out a good value. 664 * 0: disable RO. 665 * 1: enable RO. 666 * 2: leave RO alone. 667 */ 668 static int pcie_relaxed_ordering = -1; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 670 &pcie_relaxed_ordering, 0, 671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 672 673 static int t4_panic_on_fatal_err = 0; 674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 675 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 676 677 static int t4_reset_on_fatal_err = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 680 681 static int t4_reset_method = 1; 682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 684 685 static int t4_clock_gate_on_suspend = 0; 686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 688 689 static int t4_tx_vm_wr = 0; 690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 691 "Use VM work requests to transmit packets."); 692 693 /* 694 * Set to non-zero to enable the attack filter. A packet that matches any of 695 * these conditions will get dropped on ingress: 696 * 1) IP && source address == destination address. 697 * 2) TCP/IP && source address is not a unicast address. 698 * 3) TCP/IP && destination address is not a unicast address. 699 * 4) IP && source address is loopback (127.x.y.z). 700 * 5) IP && destination address is loopback (127.x.y.z). 701 * 6) IPv6 && source address == destination address. 702 * 7) IPv6 && source address is not a unicast address. 703 * 8) IPv6 && source address is loopback (::1/128). 704 * 9) IPv6 && destination address is loopback (::1/128). 705 * 10) IPv6 && source address is unspecified (::/128). 706 * 11) IPv6 && destination address is unspecified (::/128). 707 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 709 */ 710 static int t4_attack_filter = 0; 711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 712 &t4_attack_filter, 0, "Drop suspicious traffic"); 713 714 static int t4_drop_ip_fragments = 0; 715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 716 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 717 718 static int t4_drop_pkts_with_l2_errors = 1; 719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 720 &t4_drop_pkts_with_l2_errors, 0, 721 "Drop all frames with Layer 2 length or checksum errors"); 722 723 static int t4_drop_pkts_with_l3_errors = 0; 724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 725 &t4_drop_pkts_with_l3_errors, 0, 726 "Drop all frames with IP version, length, or checksum errors"); 727 728 static int t4_drop_pkts_with_l4_errors = 0; 729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 730 &t4_drop_pkts_with_l4_errors, 0, 731 "Drop all frames with Layer 4 length, checksum, or other errors"); 732 733 #ifdef TCP_OFFLOAD 734 /* 735 * TOE tunables. 736 */ 737 static int t4_cop_managed_offloading = 0; 738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 739 &t4_cop_managed_offloading, 0, 740 "COP (Connection Offload Policy) controls all TOE offload"); 741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 742 #endif 743 744 #ifdef KERN_TLS 745 /* 746 * This enables KERN_TLS for all adapters if set. 747 */ 748 static int t4_kern_tls = 0; 749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 750 "Enable KERN_TLS mode for T6 adapters"); 751 752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 753 "cxgbe(4) KERN_TLS parameters"); 754 755 static int t4_tls_inline_keys = 0; 756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 757 &t4_tls_inline_keys, 0, 758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 759 "in card memory."); 760 761 static int t4_tls_combo_wrs = 0; 762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 763 0, "Attempt to combine TCB field updates with TLS record work requests."); 764 765 static int t4_tls_short_records = 1; 766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN, 767 &t4_tls_short_records, 0, "Use cipher-only mode for short records."); 768 769 static int t4_tls_partial_ghash = 1; 770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN, 771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records."); 772 #endif 773 774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 775 static int vi_mac_funcs[] = { 776 FW_VI_FUNC_ETH, 777 FW_VI_FUNC_OFLD, 778 FW_VI_FUNC_IWARP, 779 FW_VI_FUNC_OPENISCSI, 780 FW_VI_FUNC_OPENFCOE, 781 FW_VI_FUNC_FOISCSI, 782 FW_VI_FUNC_FOFCOE, 783 }; 784 785 struct intrs_and_queues { 786 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 787 uint16_t num_vis; /* number of VIs for each port */ 788 uint16_t nirq; /* Total # of vectors */ 789 uint16_t ntxq; /* # of NIC txq's for each port */ 790 uint16_t nrxq; /* # of NIC rxq's for each port */ 791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 792 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 793 uint16_t nnmtxq; /* # of netmap txq's */ 794 uint16_t nnmrxq; /* # of netmap rxq's */ 795 796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 797 uint16_t ntxq_vi; /* # of NIC txq's */ 798 uint16_t nrxq_vi; /* # of NIC rxq's */ 799 uint16_t nofldtxq_vi; /* # of TOE txq's */ 800 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 801 uint16_t nnmtxq_vi; /* # of netmap txq's */ 802 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 803 }; 804 805 static void setup_memwin(struct adapter *); 806 static void position_memwin(struct adapter *, int, uint32_t); 807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 808 static int fwmtype_to_hwmtype(int); 809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 810 uint32_t *); 811 static int fixup_devlog_params(struct adapter *); 812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 813 static int contact_firmware(struct adapter *); 814 static int partition_resources(struct adapter *); 815 static int get_params__pre_init(struct adapter *); 816 static int set_params__pre_init(struct adapter *); 817 static int get_params__post_init(struct adapter *); 818 static int set_params__post_init(struct adapter *); 819 static void t4_set_desc(struct adapter *); 820 static bool fixed_ifmedia(struct port_info *); 821 static void build_medialist(struct port_info *); 822 static void init_link_config(struct port_info *); 823 static int fixup_link_config(struct port_info *); 824 static int apply_link_config(struct port_info *); 825 static int cxgbe_init_synchronized(struct vi_info *); 826 static int cxgbe_uninit_synchronized(struct vi_info *); 827 static int adapter_full_init(struct adapter *); 828 static void adapter_full_uninit(struct adapter *); 829 static int vi_full_init(struct vi_info *); 830 static void vi_full_uninit(struct vi_info *); 831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 832 static void quiesce_txq(struct sge_txq *); 833 static void quiesce_wrq(struct sge_wrq *); 834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 835 static void quiesce_vi(struct vi_info *); 836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 837 driver_intr_t *, void *, char *); 838 static int t4_free_irq(struct adapter *, struct irq *); 839 static void t4_init_atid_table(struct adapter *); 840 static void t4_free_atid_table(struct adapter *); 841 static void stop_atid_allocator(struct adapter *); 842 static void restart_atid_allocator(struct adapter *); 843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 844 static void vi_refresh_stats(struct vi_info *); 845 static void cxgbe_refresh_stats(struct vi_info *); 846 static void cxgbe_tick(void *); 847 static void vi_tick(void *); 848 static void cxgbe_sysctls(struct port_info *); 849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS); 866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS); 873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS); 874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS); 879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS); 891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 895 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 904 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 905 #ifdef TCP_OFFLOAD 906 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 914 #endif 915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *); 916 static int load_fw(struct adapter *, struct t4_data *); 917 static int load_cfg(struct adapter *, struct t4_data *); 918 static int load_boot(struct adapter *, struct t4_bootrom *); 919 static int load_bootcfg(struct adapter *, struct t4_data *); 920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 921 static void free_offload_policy(struct t4_offload_policy *); 922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 924 static int read_i2c(struct adapter *, struct t4_i2c_data *); 925 static int clear_stats(struct adapter *, u_int); 926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 928 static inline int stop_adapter(struct adapter *); 929 static inline void set_adapter_hwstatus(struct adapter *, const bool); 930 static int stop_lld(struct adapter *); 931 static inline int restart_adapter(struct adapter *); 932 static int restart_lld(struct adapter *); 933 #ifdef TCP_OFFLOAD 934 static int deactivate_all_uld(struct adapter *); 935 static void stop_all_uld(struct adapter *); 936 static void restart_all_uld(struct adapter *); 937 #endif 938 #ifdef KERN_TLS 939 static int ktls_capability(struct adapter *, bool); 940 #endif 941 static int mod_event(module_t, int, void *); 942 static int notify_siblings(device_t, int); 943 static uint64_t vi_get_counter(if_t, ift_counter); 944 static uint64_t cxgbe_get_counter(if_t, ift_counter); 945 static void enable_vxlan_rx(struct adapter *); 946 static void reset_adapter_task(void *, int); 947 static void fatal_error_task(void *, int); 948 static void dump_devlog(struct adapter *); 949 static void dump_cim_regs(struct adapter *); 950 static void dump_cimla(struct adapter *); 951 952 struct { 953 uint16_t device; 954 char *desc; 955 } t4_pciids[] = { 956 {0xa000, "Chelsio Terminator 4 FPGA"}, 957 {0x4400, "Chelsio T440-dbg"}, 958 {0x4401, "Chelsio T420-CR"}, 959 {0x4402, "Chelsio T422-CR"}, 960 {0x4403, "Chelsio T440-CR"}, 961 {0x4404, "Chelsio T420-BCH"}, 962 {0x4405, "Chelsio T440-BCH"}, 963 {0x4406, "Chelsio T440-CH"}, 964 {0x4407, "Chelsio T420-SO"}, 965 {0x4408, "Chelsio T420-CX"}, 966 {0x4409, "Chelsio T420-BT"}, 967 {0x440a, "Chelsio T404-BT"}, 968 {0x440e, "Chelsio T440-LP-CR"}, 969 }, t5_pciids[] = { 970 {0xb000, "Chelsio Terminator 5 FPGA"}, 971 {0x5400, "Chelsio T580-dbg"}, 972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 989 990 /* Custom */ 991 {0x5483, "Custom T540-CR"}, 992 {0x5484, "Custom T540-BT"}, 993 }, t6_pciids[] = { 994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 1010 1011 /* Custom */ 1012 {0x6480, "Custom T6225-CR"}, 1013 {0x6481, "Custom T62100-CR"}, 1014 {0x6482, "Custom T6225-CR"}, 1015 {0x6483, "Custom T62100-CR"}, 1016 {0x6484, "Custom T64100-CR"}, 1017 {0x6485, "Custom T6240-SO"}, 1018 {0x6486, "Custom T6225-SO-CR"}, 1019 {0x6487, "Custom T6225-CR"}, 1020 }, t7_pciids[] = { 1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */ 1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */ 1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */ 1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */ 1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */ 1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */ 1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */ 1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */ 1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */ 1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */ 1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */ 1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */ 1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */ 1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */ 1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */ 1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */ 1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */ 1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */ 1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */ 1040 1041 /* Custom */ 1042 {0x7480, "Custom T7"}, 1043 }; 1044 1045 #ifdef TCP_OFFLOAD 1046 /* 1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 1048 * be exactly the same for both rxq and ofld_rxq. 1049 */ 1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 1052 #endif 1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 1054 1055 static int 1056 t4_probe(device_t dev) 1057 { 1058 int i; 1059 uint16_t v = pci_get_vendor(dev); 1060 uint16_t d = pci_get_device(dev); 1061 uint8_t f = pci_get_function(dev); 1062 1063 if (v != PCI_VENDOR_ID_CHELSIO) 1064 return (ENXIO); 1065 1066 /* Attach only to PF0 of the FPGA */ 1067 if (d == 0xa000 && f != 0) 1068 return (ENXIO); 1069 1070 for (i = 0; i < nitems(t4_pciids); i++) { 1071 if (d == t4_pciids[i].device) { 1072 device_set_desc(dev, t4_pciids[i].desc); 1073 return (BUS_PROBE_DEFAULT); 1074 } 1075 } 1076 1077 return (ENXIO); 1078 } 1079 1080 static int 1081 t5_probe(device_t dev) 1082 { 1083 int i; 1084 uint16_t v = pci_get_vendor(dev); 1085 uint16_t d = pci_get_device(dev); 1086 uint8_t f = pci_get_function(dev); 1087 1088 if (v != PCI_VENDOR_ID_CHELSIO) 1089 return (ENXIO); 1090 1091 /* Attach only to PF0 of the FPGA */ 1092 if (d == 0xb000 && f != 0) 1093 return (ENXIO); 1094 1095 for (i = 0; i < nitems(t5_pciids); i++) { 1096 if (d == t5_pciids[i].device) { 1097 device_set_desc(dev, t5_pciids[i].desc); 1098 return (BUS_PROBE_DEFAULT); 1099 } 1100 } 1101 1102 return (ENXIO); 1103 } 1104 1105 static int 1106 t6_probe(device_t dev) 1107 { 1108 int i; 1109 uint16_t v = pci_get_vendor(dev); 1110 uint16_t d = pci_get_device(dev); 1111 1112 if (v != PCI_VENDOR_ID_CHELSIO) 1113 return (ENXIO); 1114 1115 for (i = 0; i < nitems(t6_pciids); i++) { 1116 if (d == t6_pciids[i].device) { 1117 device_set_desc(dev, t6_pciids[i].desc); 1118 return (BUS_PROBE_DEFAULT); 1119 } 1120 } 1121 1122 return (ENXIO); 1123 } 1124 1125 static int 1126 ch_probe(device_t dev) 1127 { 1128 int i; 1129 uint16_t v = pci_get_vendor(dev); 1130 uint16_t d = pci_get_device(dev); 1131 uint8_t f = pci_get_function(dev); 1132 1133 if (v != PCI_VENDOR_ID_CHELSIO) 1134 return (ENXIO); 1135 1136 /* Attach only to PF0 of the FPGA */ 1137 if (d == 0xd000 && f != 0) 1138 return (ENXIO); 1139 1140 for (i = 0; i < nitems(t7_pciids); i++) { 1141 if (d == t7_pciids[i].device) { 1142 device_set_desc(dev, t7_pciids[i].desc); 1143 return (BUS_PROBE_DEFAULT); 1144 } 1145 } 1146 1147 return (ENXIO); 1148 } 1149 1150 static void 1151 t5_attribute_workaround(device_t dev) 1152 { 1153 device_t root_port; 1154 uint32_t v; 1155 1156 /* 1157 * The T5 chips do not properly echo the No Snoop and Relaxed 1158 * Ordering attributes when replying to a TLP from a Root 1159 * Port. As a workaround, find the parent Root Port and 1160 * disable No Snoop and Relaxed Ordering. Note that this 1161 * affects all devices under this root port. 1162 */ 1163 root_port = pci_find_pcie_root_port(dev); 1164 if (root_port == NULL) { 1165 device_printf(dev, "Unable to find parent root port\n"); 1166 return; 1167 } 1168 1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1172 0) 1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1174 device_get_nameunit(root_port)); 1175 } 1176 1177 static const struct devnames devnames[] = { 1178 { 1179 .nexus_name = "t4nex", 1180 .ifnet_name = "cxgbe", 1181 .vi_ifnet_name = "vcxgbe", 1182 .pf03_drv_name = "t4iov", 1183 .vf_nexus_name = "t4vf", 1184 .vf_ifnet_name = "cxgbev" 1185 }, { 1186 .nexus_name = "t5nex", 1187 .ifnet_name = "cxl", 1188 .vi_ifnet_name = "vcxl", 1189 .pf03_drv_name = "t5iov", 1190 .vf_nexus_name = "t5vf", 1191 .vf_ifnet_name = "cxlv" 1192 }, { 1193 .nexus_name = "t6nex", 1194 .ifnet_name = "cc", 1195 .vi_ifnet_name = "vcc", 1196 .pf03_drv_name = "t6iov", 1197 .vf_nexus_name = "t6vf", 1198 .vf_ifnet_name = "ccv" 1199 }, { 1200 .nexus_name = "chnex", 1201 .ifnet_name = "che", 1202 .vi_ifnet_name = "vche", 1203 .pf03_drv_name = "chiov", 1204 .vf_nexus_name = "chvf", 1205 .vf_ifnet_name = "chev" 1206 } 1207 }; 1208 1209 void 1210 t4_init_devnames(struct adapter *sc) 1211 { 1212 int id; 1213 1214 id = chip_id(sc); 1215 if (id < CHELSIO_T4) { 1216 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1217 sc->names = NULL; 1218 } else if (id - CHELSIO_T4 < nitems(devnames)) 1219 sc->names = &devnames[id - CHELSIO_T4]; 1220 else 1221 sc->names = &devnames[nitems(devnames) - 1]; 1222 } 1223 1224 static int 1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1226 { 1227 const char *parent, *name; 1228 long value; 1229 int line, unit; 1230 1231 line = 0; 1232 parent = device_get_nameunit(sc->dev); 1233 name = sc->names->ifnet_name; 1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1235 if (resource_long_value(name, unit, "port", &value) == 0 && 1236 value == pi->port_id) 1237 return (unit); 1238 } 1239 return (-1); 1240 } 1241 1242 static void 1243 t4_calibration(void *arg) 1244 { 1245 struct adapter *sc; 1246 struct clock_sync *cur, *nex; 1247 uint64_t hw; 1248 sbintime_t sbt; 1249 int next_up; 1250 1251 sc = (struct adapter *)arg; 1252 1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1255 sbt = sbinuptime(); 1256 1257 cur = &sc->cal_info[sc->cal_current]; 1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1259 nex = &sc->cal_info[next_up]; 1260 if (__predict_false(sc->cal_count == 0)) { 1261 /* First time in, just get the values in */ 1262 cur->hw_cur = hw; 1263 cur->sbt_cur = sbt; 1264 sc->cal_count++; 1265 goto done; 1266 } 1267 1268 if (cur->hw_cur == hw) { 1269 /* The clock is not advancing? */ 1270 sc->cal_count = 0; 1271 atomic_store_rel_int(&cur->gen, 0); 1272 goto done; 1273 } 1274 1275 seqc_write_begin(&nex->gen); 1276 nex->hw_prev = cur->hw_cur; 1277 nex->sbt_prev = cur->sbt_cur; 1278 nex->hw_cur = hw; 1279 nex->sbt_cur = sbt; 1280 seqc_write_end(&nex->gen); 1281 sc->cal_current = next_up; 1282 done: 1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1284 sc, C_DIRECT_EXEC); 1285 } 1286 1287 static void 1288 t4_calibration_start(struct adapter *sc) 1289 { 1290 /* 1291 * Here if we have not done a calibration 1292 * then do so otherwise start the appropriate 1293 * timer. 1294 */ 1295 int i; 1296 1297 for (i = 0; i < CNT_CAL_INFO; i++) { 1298 sc->cal_info[i].gen = 0; 1299 } 1300 sc->cal_current = 0; 1301 sc->cal_count = 0; 1302 sc->cal_gen = 0; 1303 t4_calibration(sc); 1304 } 1305 1306 static int 1307 t4_attach(device_t dev) 1308 { 1309 struct adapter *sc; 1310 int rc = 0, i, j, rqidx, tqidx, nports; 1311 struct make_dev_args mda; 1312 struct intrs_and_queues iaq; 1313 struct sge *s; 1314 uint32_t *buf; 1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1316 int ofld_tqidx; 1317 #endif 1318 #ifdef TCP_OFFLOAD 1319 int ofld_rqidx; 1320 #endif 1321 #ifdef DEV_NETMAP 1322 int nm_rqidx, nm_tqidx; 1323 #endif 1324 int num_vis; 1325 1326 sc = device_get_softc(dev); 1327 sc->dev = dev; 1328 sysctl_ctx_init(&sc->ctx); 1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1330 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0) 1331 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED; 1332 1333 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1334 t5_attribute_workaround(dev); 1335 pci_enable_busmaster(dev); 1336 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1337 uint32_t v; 1338 1339 pci_set_max_read_req(dev, 4096); 1340 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1341 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1342 if (pcie_relaxed_ordering == 0 && 1343 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1344 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1345 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1346 } else if (pcie_relaxed_ordering == 1 && 1347 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1348 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1349 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1350 } 1351 } 1352 1353 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1354 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1355 sc->traceq = -1; 1356 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1357 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1358 device_get_nameunit(dev)); 1359 1360 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1361 device_get_nameunit(dev)); 1362 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1363 t4_add_adapter(sc); 1364 1365 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1366 TAILQ_INIT(&sc->sfl); 1367 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1368 1369 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1370 1371 sc->policy = NULL; 1372 rw_init(&sc->policy_lock, "connection offload policy"); 1373 1374 callout_init(&sc->ktls_tick, 1); 1375 1376 callout_init(&sc->cal_callout, 1); 1377 1378 refcount_init(&sc->vxlan_refcount, 0); 1379 1380 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1381 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1382 1383 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1384 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1385 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1386 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1387 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1389 1390 rc = t4_map_bars_0_and_4(sc); 1391 if (rc != 0) 1392 goto done; /* error message displayed already */ 1393 1394 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1395 memset(sc->port_map, 0xff, sizeof(sc->port_map)); 1396 1397 /* Prepare the adapter for operation. */ 1398 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1399 rc = -t4_prep_adapter(sc, buf); 1400 free(buf, M_CXGBE); 1401 if (rc != 0) { 1402 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1403 goto done; 1404 } 1405 1406 /* 1407 * This is the real PF# to which we're attaching. Works from within PCI 1408 * passthrough environments too, where pci_get_function() could return a 1409 * different PF# depending on the passthrough configuration. We need to 1410 * use the real PF# in all our communication with the firmware. 1411 */ 1412 j = t4_read_reg(sc, A_PL_WHOAMI); 1413 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1414 sc->mbox = sc->pf; 1415 1416 t4_init_devnames(sc); 1417 if (sc->names == NULL) { 1418 rc = ENOTSUP; 1419 goto done; /* error message displayed already */ 1420 } 1421 1422 /* 1423 * Do this really early, with the memory windows set up even before the 1424 * character device. The userland tool's register i/o and mem read 1425 * will work even in "recovery mode". 1426 */ 1427 setup_memwin(sc); 1428 if (t4_init_devlog_ncores_params(sc, 0) == 0) 1429 fixup_devlog_params(sc); 1430 make_dev_args_init(&mda); 1431 mda.mda_devsw = &t4_cdevsw; 1432 mda.mda_uid = UID_ROOT; 1433 mda.mda_gid = GID_WHEEL; 1434 mda.mda_mode = 0600; 1435 mda.mda_si_drv1 = sc; 1436 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1437 if (rc != 0) 1438 device_printf(dev, "failed to create nexus char device: %d.\n", 1439 rc); 1440 1441 /* Go no further if recovery mode has been requested. */ 1442 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1443 device_printf(dev, "recovery mode.\n"); 1444 goto done; 1445 } 1446 1447 #if defined(__i386__) 1448 if ((cpu_feature & CPUID_CX8) == 0) { 1449 device_printf(dev, "64 bit atomics not available.\n"); 1450 rc = ENOTSUP; 1451 goto done; 1452 } 1453 #endif 1454 1455 /* Contact the firmware and try to become the master driver. */ 1456 rc = contact_firmware(sc); 1457 if (rc != 0) 1458 goto done; /* error message displayed already */ 1459 MPASS(sc->flags & FW_OK); 1460 1461 rc = get_params__pre_init(sc); 1462 if (rc != 0) 1463 goto done; /* error message displayed already */ 1464 1465 if (sc->flags & MASTER_PF) { 1466 rc = partition_resources(sc); 1467 if (rc != 0) 1468 goto done; /* error message displayed already */ 1469 } 1470 1471 rc = get_params__post_init(sc); 1472 if (rc != 0) 1473 goto done; /* error message displayed already */ 1474 1475 rc = set_params__post_init(sc); 1476 if (rc != 0) 1477 goto done; /* error message displayed already */ 1478 1479 rc = t4_map_bar_2(sc); 1480 if (rc != 0) 1481 goto done; /* error message displayed already */ 1482 1483 rc = t4_adj_doorbells(sc); 1484 if (rc != 0) 1485 goto done; /* error message displayed already */ 1486 1487 rc = t4_create_dma_tag(sc); 1488 if (rc != 0) 1489 goto done; /* error message displayed already */ 1490 1491 /* 1492 * First pass over all the ports - allocate VIs and initialize some 1493 * basic parameters like mac address, port type, etc. 1494 */ 1495 for_each_port(sc, i) { 1496 struct port_info *pi; 1497 1498 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1499 sc->port[i] = pi; 1500 1501 /* These must be set before t4_port_init */ 1502 pi->adapter = sc; 1503 pi->port_id = i; 1504 /* 1505 * XXX: vi[0] is special so we can't delay this allocation until 1506 * pi->nvi's final value is known. 1507 */ 1508 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1509 M_ZERO | M_WAITOK); 1510 1511 /* 1512 * Allocate the "main" VI and initialize parameters 1513 * like mac addr. 1514 */ 1515 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1516 if (rc != 0) { 1517 device_printf(dev, "unable to initialize port %d: %d\n", 1518 i, rc); 1519 free(pi->vi, M_CXGBE); 1520 free(pi, M_CXGBE); 1521 sc->port[i] = NULL; 1522 goto done; 1523 } 1524 1525 if (is_bt(pi->port_type)) 1526 setbit(&sc->bt_map, pi->hw_port); 1527 else 1528 MPASS(!isset(&sc->bt_map, pi->hw_port)); 1529 1530 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1531 device_get_nameunit(dev), i); 1532 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1533 for (j = 0; j < sc->params.tp.lb_nchan; j++) 1534 sc->chan_map[pi->tx_chan + j] = i; 1535 sc->port_map[pi->hw_port] = i; 1536 1537 /* 1538 * The MPS counter for FCS errors doesn't work correctly on the 1539 * T6 so we use the MAC counter here. Which MAC is in use 1540 * depends on the link settings which will be known when the 1541 * link comes up. 1542 */ 1543 if (is_t6(sc)) 1544 pi->fcs_reg = -1; 1545 else 1546 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L; 1547 pi->fcs_base = 0; 1548 1549 /* All VIs on this port share this media. */ 1550 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1551 cxgbe_media_status); 1552 1553 PORT_LOCK(pi); 1554 init_link_config(pi); 1555 fixup_link_config(pi); 1556 build_medialist(pi); 1557 if (fixed_ifmedia(pi)) 1558 pi->flags |= FIXED_IFMEDIA; 1559 PORT_UNLOCK(pi); 1560 1561 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1562 t4_ifnet_unit(sc, pi)); 1563 if (pi->dev == NULL) { 1564 device_printf(dev, 1565 "failed to add device for port %d.\n", i); 1566 rc = ENXIO; 1567 goto done; 1568 } 1569 pi->vi[0].dev = pi->dev; 1570 device_set_softc(pi->dev, pi); 1571 } 1572 1573 /* 1574 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1575 */ 1576 nports = sc->params.nports; 1577 rc = cfg_itype_and_nqueues(sc, &iaq); 1578 if (rc != 0) 1579 goto done; /* error message displayed already */ 1580 1581 num_vis = iaq.num_vis; 1582 sc->intr_type = iaq.intr_type; 1583 sc->intr_count = iaq.nirq; 1584 1585 s = &sc->sge; 1586 s->nctrlq = max(sc->params.nports, sc->params.ncores); 1587 s->nrxq = nports * iaq.nrxq; 1588 s->ntxq = nports * iaq.ntxq; 1589 if (num_vis > 1) { 1590 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1591 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1592 } 1593 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1594 s->neq += nports; /* ctrl queues: 1 per port */ 1595 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1597 if (is_offload(sc) || is_ethoffload(sc)) { 1598 s->nofldtxq = nports * iaq.nofldtxq; 1599 if (num_vis > 1) 1600 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1601 s->neq += s->nofldtxq; 1602 1603 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1604 M_CXGBE, M_ZERO | M_WAITOK); 1605 } 1606 #endif 1607 #ifdef TCP_OFFLOAD 1608 if (is_offload(sc)) { 1609 s->nofldrxq = nports * iaq.nofldrxq; 1610 if (num_vis > 1) 1611 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1612 s->neq += s->nofldrxq; /* free list */ 1613 s->niq += s->nofldrxq; 1614 1615 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1616 M_CXGBE, M_ZERO | M_WAITOK); 1617 } 1618 #endif 1619 #ifdef DEV_NETMAP 1620 s->nnmrxq = 0; 1621 s->nnmtxq = 0; 1622 if (t4_native_netmap & NN_MAIN_VI) { 1623 s->nnmrxq += nports * iaq.nnmrxq; 1624 s->nnmtxq += nports * iaq.nnmtxq; 1625 } 1626 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1627 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1628 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1629 } 1630 s->neq += s->nnmtxq + s->nnmrxq; 1631 s->niq += s->nnmrxq; 1632 1633 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1634 M_CXGBE, M_ZERO | M_WAITOK); 1635 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1636 M_CXGBE, M_ZERO | M_WAITOK); 1637 #endif 1638 MPASS(s->niq <= s->iqmap_sz); 1639 MPASS(s->neq <= s->eqmap_sz); 1640 1641 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE, 1642 M_ZERO | M_WAITOK); 1643 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1644 M_ZERO | M_WAITOK); 1645 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1646 M_ZERO | M_WAITOK); 1647 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1648 M_ZERO | M_WAITOK); 1649 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1650 M_ZERO | M_WAITOK); 1651 1652 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1653 M_ZERO | M_WAITOK); 1654 1655 t4_init_l2t(sc, M_WAITOK); 1656 t4_init_smt(sc, M_WAITOK); 1657 t4_init_tx_sched(sc); 1658 t4_init_atid_table(sc); 1659 #ifdef RATELIMIT 1660 t4_init_etid_table(sc); 1661 #endif 1662 #ifdef INET6 1663 t4_init_clip_table(sc); 1664 #endif 1665 if (sc->vres.key.size != 0) 1666 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1667 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1668 t4_init_tpt(sc); 1669 1670 /* 1671 * Second pass over the ports. This time we know the number of rx and 1672 * tx queues that each port should get. 1673 */ 1674 rqidx = tqidx = 0; 1675 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1676 ofld_tqidx = 0; 1677 #endif 1678 #ifdef TCP_OFFLOAD 1679 ofld_rqidx = 0; 1680 #endif 1681 #ifdef DEV_NETMAP 1682 nm_rqidx = nm_tqidx = 0; 1683 #endif 1684 for_each_port(sc, i) { 1685 struct port_info *pi = sc->port[i]; 1686 struct vi_info *vi; 1687 1688 if (pi == NULL) 1689 continue; 1690 1691 pi->nvi = num_vis; 1692 for_each_vi(pi, j, vi) { 1693 vi->pi = pi; 1694 vi->adapter = sc; 1695 vi->first_intr = -1; 1696 vi->qsize_rxq = t4_qsize_rxq; 1697 vi->qsize_txq = t4_qsize_txq; 1698 1699 vi->first_rxq = rqidx; 1700 vi->first_txq = tqidx; 1701 vi->tmr_idx = t4_tmr_idx; 1702 vi->pktc_idx = t4_pktc_idx; 1703 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1704 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1705 1706 rqidx += vi->nrxq; 1707 tqidx += vi->ntxq; 1708 1709 if (j == 0 && vi->ntxq > 1) 1710 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1711 else 1712 vi->rsrv_noflowq = 0; 1713 1714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1715 vi->first_ofld_txq = ofld_tqidx; 1716 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1717 ofld_tqidx += vi->nofldtxq; 1718 #endif 1719 #ifdef TCP_OFFLOAD 1720 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1721 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1722 vi->first_ofld_rxq = ofld_rqidx; 1723 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1724 1725 ofld_rqidx += vi->nofldrxq; 1726 #endif 1727 #ifdef DEV_NETMAP 1728 vi->first_nm_rxq = nm_rqidx; 1729 vi->first_nm_txq = nm_tqidx; 1730 if (j == 0) { 1731 vi->nnmrxq = iaq.nnmrxq; 1732 vi->nnmtxq = iaq.nnmtxq; 1733 } else { 1734 vi->nnmrxq = iaq.nnmrxq_vi; 1735 vi->nnmtxq = iaq.nnmtxq_vi; 1736 } 1737 nm_rqidx += vi->nnmrxq; 1738 nm_tqidx += vi->nnmtxq; 1739 #endif 1740 } 1741 } 1742 1743 rc = t4_setup_intr_handlers(sc); 1744 if (rc != 0) { 1745 device_printf(dev, 1746 "failed to setup interrupt handlers: %d\n", rc); 1747 goto done; 1748 } 1749 1750 bus_identify_children(dev); 1751 1752 /* 1753 * Ensure thread-safe mailbox access (in debug builds). 1754 * 1755 * So far this was the only thread accessing the mailbox but various 1756 * ifnets and sysctls are about to be created and their handlers/ioctls 1757 * will access the mailbox from different threads. 1758 */ 1759 sc->flags |= CHK_MBOX_ACCESS; 1760 1761 bus_attach_children(dev); 1762 t4_calibration_start(sc); 1763 1764 device_printf(dev, 1765 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1766 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1767 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1768 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1769 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1770 1771 t4_set_desc(sc); 1772 1773 notify_siblings(dev, 0); 1774 1775 done: 1776 if (rc != 0 && sc->cdev) { 1777 /* cdev was created and so cxgbetool works; recover that way. */ 1778 device_printf(dev, 1779 "error during attach, adapter is now in recovery mode.\n"); 1780 rc = 0; 1781 } 1782 1783 if (rc != 0) 1784 t4_detach_common(dev); 1785 else 1786 t4_sysctls(sc); 1787 1788 return (rc); 1789 } 1790 1791 static int 1792 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1793 { 1794 struct adapter *sc; 1795 struct port_info *pi; 1796 int i; 1797 1798 sc = device_get_softc(bus); 1799 for_each_port(sc, i) { 1800 pi = sc->port[i]; 1801 if (pi != NULL && pi->dev == dev) { 1802 sbuf_printf(sb, "port=%d", pi->port_id); 1803 break; 1804 } 1805 } 1806 return (0); 1807 } 1808 1809 static int 1810 t4_ready(device_t dev) 1811 { 1812 struct adapter *sc; 1813 1814 sc = device_get_softc(dev); 1815 if (sc->flags & FW_OK) 1816 return (0); 1817 return (ENXIO); 1818 } 1819 1820 static int 1821 t4_read_port_device(device_t dev, int port, device_t *child) 1822 { 1823 struct adapter *sc; 1824 struct port_info *pi; 1825 1826 sc = device_get_softc(dev); 1827 if (port < 0 || port >= MAX_NPORTS) 1828 return (EINVAL); 1829 pi = sc->port[port]; 1830 if (pi == NULL || pi->dev == NULL) 1831 return (ENXIO); 1832 *child = pi->dev; 1833 return (0); 1834 } 1835 1836 static int 1837 notify_siblings(device_t dev, int detaching) 1838 { 1839 device_t sibling; 1840 int error, i; 1841 1842 error = 0; 1843 for (i = 0; i < PCI_FUNCMAX; i++) { 1844 if (i == pci_get_function(dev)) 1845 continue; 1846 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1847 pci_get_slot(dev), i); 1848 if (sibling == NULL || !device_is_attached(sibling)) 1849 continue; 1850 if (detaching) 1851 error = T4_DETACH_CHILD(sibling); 1852 else 1853 (void)T4_ATTACH_CHILD(sibling); 1854 if (error) 1855 break; 1856 } 1857 return (error); 1858 } 1859 1860 /* 1861 * Idempotent 1862 */ 1863 static int 1864 t4_detach(device_t dev) 1865 { 1866 int rc; 1867 1868 rc = notify_siblings(dev, 1); 1869 if (rc) { 1870 device_printf(dev, 1871 "failed to detach sibling devices: %d\n", rc); 1872 return (rc); 1873 } 1874 1875 return (t4_detach_common(dev)); 1876 } 1877 1878 int 1879 t4_detach_common(device_t dev) 1880 { 1881 struct adapter *sc; 1882 struct port_info *pi; 1883 int i, rc; 1884 1885 sc = device_get_softc(dev); 1886 1887 #ifdef TCP_OFFLOAD 1888 rc = deactivate_all_uld(sc); 1889 if (rc) { 1890 device_printf(dev, 1891 "failed to detach upper layer drivers: %d\n", rc); 1892 return (rc); 1893 } 1894 #endif 1895 1896 if (sc->cdev) { 1897 destroy_dev(sc->cdev); 1898 sc->cdev = NULL; 1899 } 1900 1901 sx_xlock(&t4_list_lock); 1902 SLIST_REMOVE(&t4_list, sc, adapter, link); 1903 sx_xunlock(&t4_list_lock); 1904 1905 sc->flags &= ~CHK_MBOX_ACCESS; 1906 if (sc->flags & FULL_INIT_DONE) { 1907 if (!(sc->flags & IS_VF)) 1908 t4_intr_disable(sc); 1909 } 1910 1911 if (device_is_attached(dev)) { 1912 rc = bus_detach_children(dev); 1913 if (rc) { 1914 device_printf(dev, 1915 "failed to detach child devices: %d\n", rc); 1916 return (rc); 1917 } 1918 } 1919 1920 for (i = 0; i < sc->intr_count; i++) 1921 t4_free_irq(sc, &sc->irq[i]); 1922 1923 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1924 t4_free_tx_sched(sc); 1925 1926 for (i = 0; i < MAX_NPORTS; i++) { 1927 pi = sc->port[i]; 1928 if (pi) { 1929 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1930 1931 mtx_destroy(&pi->pi_lock); 1932 free(pi->vi, M_CXGBE); 1933 free(pi, M_CXGBE); 1934 } 1935 } 1936 callout_stop(&sc->cal_callout); 1937 callout_drain(&sc->cal_callout); 1938 device_delete_children(dev); 1939 sysctl_ctx_free(&sc->ctx); 1940 adapter_full_uninit(sc); 1941 1942 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1943 t4_fw_bye(sc, sc->mbox); 1944 1945 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1946 pci_release_msi(dev); 1947 1948 if (sc->regs_res) 1949 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1950 sc->regs_res); 1951 1952 if (sc->udbs_res) 1953 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1954 sc->udbs_res); 1955 1956 if (sc->msix_res) 1957 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1958 sc->msix_res); 1959 1960 if (sc->l2t) 1961 t4_free_l2t(sc); 1962 if (sc->smt) 1963 t4_free_smt(sc->smt); 1964 t4_free_atid_table(sc); 1965 #ifdef RATELIMIT 1966 t4_free_etid_table(sc); 1967 #endif 1968 if (sc->key_map) 1969 vmem_destroy(sc->key_map); 1970 t4_free_tpt(sc); 1971 #ifdef INET6 1972 t4_destroy_clip_table(sc); 1973 #endif 1974 1975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1976 free(sc->sge.ofld_txq, M_CXGBE); 1977 #endif 1978 #ifdef TCP_OFFLOAD 1979 free(sc->sge.ofld_rxq, M_CXGBE); 1980 #endif 1981 #ifdef DEV_NETMAP 1982 free(sc->sge.nm_rxq, M_CXGBE); 1983 free(sc->sge.nm_txq, M_CXGBE); 1984 #endif 1985 free(sc->irq, M_CXGBE); 1986 free(sc->sge.rxq, M_CXGBE); 1987 free(sc->sge.txq, M_CXGBE); 1988 free(sc->sge.ctrlq, M_CXGBE); 1989 free(sc->sge.iqmap, M_CXGBE); 1990 free(sc->sge.eqmap, M_CXGBE); 1991 free(sc->tids.ftid_tab, M_CXGBE); 1992 free(sc->tids.hpftid_tab, M_CXGBE); 1993 free_hftid_hash(&sc->tids); 1994 free(sc->tids.tid_tab, M_CXGBE); 1995 t4_destroy_dma_tag(sc); 1996 1997 callout_drain(&sc->ktls_tick); 1998 callout_drain(&sc->sfl_callout); 1999 if (mtx_initialized(&sc->tids.ftid_lock)) { 2000 mtx_destroy(&sc->tids.ftid_lock); 2001 cv_destroy(&sc->tids.ftid_cv); 2002 } 2003 if (mtx_initialized(&sc->tids.atid_lock)) 2004 mtx_destroy(&sc->tids.atid_lock); 2005 if (mtx_initialized(&sc->ifp_lock)) 2006 mtx_destroy(&sc->ifp_lock); 2007 2008 if (rw_initialized(&sc->policy_lock)) { 2009 rw_destroy(&sc->policy_lock); 2010 #ifdef TCP_OFFLOAD 2011 if (sc->policy != NULL) 2012 free_offload_policy(sc->policy); 2013 #endif 2014 } 2015 2016 for (i = 0; i < NUM_MEMWIN; i++) { 2017 struct memwin *mw = &sc->memwin[i]; 2018 2019 if (rw_initialized(&mw->mw_lock)) 2020 rw_destroy(&mw->mw_lock); 2021 } 2022 2023 mtx_destroy(&sc->sfl_lock); 2024 mtx_destroy(&sc->reg_lock); 2025 mtx_destroy(&sc->sc_lock); 2026 2027 bzero(sc, sizeof(*sc)); 2028 2029 return (0); 2030 } 2031 2032 static inline int 2033 stop_adapter(struct adapter *sc) 2034 { 2035 struct port_info *pi; 2036 int i; 2037 2038 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2039 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2040 __func__, curthread, sc->flags, sc->error_flags); 2041 return (EALREADY); 2042 } 2043 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2044 sc->flags, sc->error_flags); 2045 t4_shutdown_adapter(sc); 2046 for_each_port(sc, i) { 2047 pi = sc->port[i]; 2048 if (pi == NULL) 2049 continue; 2050 PORT_LOCK(pi); 2051 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 2052 /* 2053 * t4_shutdown_adapter has already shut down all the 2054 * PHYs but it also disables interrupts and DMA so there 2055 * won't be a link interrupt. Update the state manually 2056 * if the link was up previously and inform the kernel. 2057 */ 2058 pi->link_cfg.link_ok = false; 2059 t4_os_link_changed(pi); 2060 } 2061 PORT_UNLOCK(pi); 2062 } 2063 2064 return (0); 2065 } 2066 2067 static inline int 2068 restart_adapter(struct adapter *sc) 2069 { 2070 uint32_t val; 2071 2072 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2073 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2074 __func__, curthread, sc->flags, sc->error_flags); 2075 return (EALREADY); 2076 } 2077 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2078 sc->flags, sc->error_flags); 2079 2080 MPASS(hw_off_limits(sc)); 2081 MPASS((sc->flags & FW_OK) == 0); 2082 MPASS((sc->flags & MASTER_PF) == 0); 2083 MPASS(sc->reset_thread == NULL); 2084 2085 /* 2086 * The adapter is supposed to be back on PCIE with its config space and 2087 * BARs restored to their state before reset. Register access via 2088 * t4_read_reg BAR0 should just work. 2089 */ 2090 sc->reset_thread = curthread; 2091 val = t4_read_reg(sc, A_PL_WHOAMI); 2092 if (val == 0xffffffff || val == 0xeeeeeeee) { 2093 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 2094 sc->reset_thread = NULL; 2095 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 2096 return (ENXIO); 2097 } 2098 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 2099 atomic_add_int(&sc->incarnation, 1); 2100 atomic_add_int(&sc->num_resets, 1); 2101 2102 return (0); 2103 } 2104 2105 static inline void 2106 set_adapter_hwstatus(struct adapter *sc, const bool usable) 2107 { 2108 if (usable) { 2109 /* Must be marked reusable by the designated thread. */ 2110 ASSERT_SYNCHRONIZED_OP(sc); 2111 MPASS(sc->reset_thread == curthread); 2112 mtx_lock(&sc->reg_lock); 2113 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2114 mtx_unlock(&sc->reg_lock); 2115 } else { 2116 /* Mark the adapter totally off limits. */ 2117 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2118 mtx_lock(&sc->reg_lock); 2119 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2120 mtx_unlock(&sc->reg_lock); 2121 sc->flags &= ~(FW_OK | MASTER_PF); 2122 sc->reset_thread = NULL; 2123 end_synchronized_op(sc, 0); 2124 } 2125 } 2126 2127 static int 2128 stop_lld(struct adapter *sc) 2129 { 2130 struct port_info *pi; 2131 struct vi_info *vi; 2132 if_t ifp; 2133 struct sge_rxq *rxq; 2134 struct sge_txq *txq; 2135 struct sge_wrq *wrq; 2136 #ifdef TCP_OFFLOAD 2137 struct sge_ofld_rxq *ofld_rxq; 2138 #endif 2139 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2140 struct sge_ofld_txq *ofld_txq; 2141 #endif 2142 int rc, i, j, k; 2143 2144 /* 2145 * XXX: Can there be a synch_op in progress that will hang because 2146 * hardware has been stopped? We'll hang too and the solution will be 2147 * to use a version of begin_synch_op that wakes up existing synch_op 2148 * with errors. Maybe stop_adapter should do this wakeup? 2149 * 2150 * I don't think any synch_op could get stranded waiting for DMA or 2151 * interrupt so I think we're okay here. Remove this comment block 2152 * after testing. 2153 */ 2154 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2155 if (rc != 0) 2156 return (ENXIO); 2157 2158 /* Quiesce all activity. */ 2159 for_each_port(sc, i) { 2160 pi = sc->port[i]; 2161 if (pi == NULL) 2162 continue; 2163 pi->vxlan_tcam_entry = false; 2164 for_each_vi(pi, j, vi) { 2165 vi->xact_addr_filt = -1; 2166 mtx_lock(&vi->tick_mtx); 2167 vi->flags |= VI_SKIP_STATS; 2168 mtx_unlock(&vi->tick_mtx); 2169 if (!(vi->flags & VI_INIT_DONE)) 2170 continue; 2171 2172 ifp = vi->ifp; 2173 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2174 mtx_lock(&vi->tick_mtx); 2175 callout_stop(&vi->tick); 2176 mtx_unlock(&vi->tick_mtx); 2177 callout_drain(&vi->tick); 2178 } 2179 2180 /* 2181 * Note that the HW is not available. 2182 */ 2183 for_each_txq(vi, k, txq) { 2184 TXQ_LOCK(txq); 2185 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2186 TXQ_UNLOCK(txq); 2187 } 2188 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2189 for_each_ofld_txq(vi, k, ofld_txq) { 2190 TXQ_LOCK(&ofld_txq->wrq); 2191 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2192 TXQ_UNLOCK(&ofld_txq->wrq); 2193 } 2194 #endif 2195 for_each_rxq(vi, k, rxq) { 2196 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2197 } 2198 #if defined(TCP_OFFLOAD) 2199 for_each_ofld_rxq(vi, k, ofld_rxq) { 2200 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2201 } 2202 #endif 2203 2204 quiesce_vi(vi); 2205 } 2206 2207 if (sc->flags & FULL_INIT_DONE) { 2208 /* Control queue */ 2209 wrq = &sc->sge.ctrlq[i]; 2210 TXQ_LOCK(wrq); 2211 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2212 TXQ_UNLOCK(wrq); 2213 quiesce_wrq(wrq); 2214 } 2215 2216 if (pi->flags & HAS_TRACEQ) { 2217 pi->flags &= ~HAS_TRACEQ; 2218 sc->traceq = -1; 2219 sc->tracer_valid = 0; 2220 sc->tracer_enabled = 0; 2221 } 2222 } 2223 if (sc->flags & FULL_INIT_DONE) { 2224 /* Firmware event queue */ 2225 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2226 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2227 } 2228 2229 /* Stop calibration */ 2230 callout_stop(&sc->cal_callout); 2231 callout_drain(&sc->cal_callout); 2232 2233 if (t4_clock_gate_on_suspend) { 2234 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2235 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2236 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2237 } 2238 2239 end_synchronized_op(sc, 0); 2240 2241 stop_atid_allocator(sc); 2242 t4_stop_l2t(sc); 2243 2244 return (rc); 2245 } 2246 2247 int 2248 suspend_adapter(struct adapter *sc) 2249 { 2250 stop_adapter(sc); 2251 stop_lld(sc); 2252 #ifdef TCP_OFFLOAD 2253 stop_all_uld(sc); 2254 #endif 2255 set_adapter_hwstatus(sc, false); 2256 2257 return (0); 2258 } 2259 2260 static int 2261 t4_suspend(device_t dev) 2262 { 2263 struct adapter *sc = device_get_softc(dev); 2264 int rc; 2265 2266 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2267 rc = suspend_adapter(sc); 2268 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2269 2270 return (rc); 2271 } 2272 2273 struct adapter_pre_reset_state { 2274 u_int flags; 2275 uint16_t nbmcaps; 2276 uint16_t linkcaps; 2277 uint16_t switchcaps; 2278 uint16_t nvmecaps; 2279 uint16_t niccaps; 2280 uint16_t toecaps; 2281 uint16_t rdmacaps; 2282 uint16_t cryptocaps; 2283 uint16_t iscsicaps; 2284 uint16_t fcoecaps; 2285 2286 u_int cfcsum; 2287 char cfg_file[32]; 2288 2289 struct adapter_params params; 2290 struct t4_virt_res vres; 2291 struct tid_info tids; 2292 struct sge sge; 2293 2294 int rawf_base; 2295 int nrawf; 2296 2297 }; 2298 2299 static void 2300 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2301 { 2302 2303 ASSERT_SYNCHRONIZED_OP(sc); 2304 2305 o->flags = sc->flags; 2306 2307 o->nbmcaps = sc->nbmcaps; 2308 o->linkcaps = sc->linkcaps; 2309 o->switchcaps = sc->switchcaps; 2310 o->nvmecaps = sc->nvmecaps; 2311 o->niccaps = sc->niccaps; 2312 o->toecaps = sc->toecaps; 2313 o->rdmacaps = sc->rdmacaps; 2314 o->cryptocaps = sc->cryptocaps; 2315 o->iscsicaps = sc->iscsicaps; 2316 o->fcoecaps = sc->fcoecaps; 2317 2318 o->cfcsum = sc->cfcsum; 2319 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2320 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2321 2322 o->params = sc->params; 2323 o->vres = sc->vres; 2324 o->tids = sc->tids; 2325 o->sge = sc->sge; 2326 2327 o->rawf_base = sc->rawf_base; 2328 o->nrawf = sc->nrawf; 2329 } 2330 2331 static int 2332 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2333 { 2334 int rc = 0; 2335 2336 ASSERT_SYNCHRONIZED_OP(sc); 2337 2338 /* Capabilities */ 2339 #define COMPARE_CAPS(c) do { \ 2340 if (o->c##caps != sc->c##caps) { \ 2341 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2342 sc->c##caps); \ 2343 rc = EINVAL; \ 2344 } \ 2345 } while (0) 2346 COMPARE_CAPS(nbm); 2347 COMPARE_CAPS(link); 2348 COMPARE_CAPS(switch); 2349 COMPARE_CAPS(nvme); 2350 COMPARE_CAPS(nic); 2351 COMPARE_CAPS(toe); 2352 COMPARE_CAPS(rdma); 2353 COMPARE_CAPS(crypto); 2354 COMPARE_CAPS(iscsi); 2355 COMPARE_CAPS(fcoe); 2356 #undef COMPARE_CAPS 2357 2358 /* Firmware config file */ 2359 if (o->cfcsum != sc->cfcsum) { 2360 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2361 o->cfcsum, sc->cfg_file, sc->cfcsum); 2362 rc = EINVAL; 2363 } 2364 2365 #define COMPARE_PARAM(p, name) do { \ 2366 if (o->p != sc->p) { \ 2367 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2368 rc = EINVAL; \ 2369 } \ 2370 } while (0) 2371 COMPARE_PARAM(sge.iq_start, iq_start); 2372 COMPARE_PARAM(sge.eq_start, eq_start); 2373 COMPARE_PARAM(tids.ftid_base, ftid_base); 2374 COMPARE_PARAM(tids.ftid_end, ftid_end); 2375 COMPARE_PARAM(tids.nftids, nftids); 2376 COMPARE_PARAM(vres.l2t.start, l2t_start); 2377 COMPARE_PARAM(vres.l2t.size, l2t_size); 2378 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2379 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2380 COMPARE_PARAM(tids.tid_base, tid_base); 2381 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2382 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2383 COMPARE_PARAM(tids.nhpftids, nhpftids); 2384 COMPARE_PARAM(rawf_base, rawf_base); 2385 COMPARE_PARAM(nrawf, nrawf); 2386 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2387 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2388 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2389 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2390 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2391 COMPARE_PARAM(tids.ntids, ntids); 2392 COMPARE_PARAM(tids.etid_base, etid_base); 2393 COMPARE_PARAM(tids.etid_end, etid_end); 2394 COMPARE_PARAM(tids.netids, netids); 2395 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2396 COMPARE_PARAM(params.ethoffload, ethoffload); 2397 COMPARE_PARAM(tids.natids, natids); 2398 COMPARE_PARAM(tids.stid_base, stid_base); 2399 COMPARE_PARAM(vres.ddp.start, ddp_start); 2400 COMPARE_PARAM(vres.ddp.size, ddp_size); 2401 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2402 COMPARE_PARAM(vres.stag.start, stag_start); 2403 COMPARE_PARAM(vres.stag.size, stag_size); 2404 COMPARE_PARAM(vres.rq.start, rq_start); 2405 COMPARE_PARAM(vres.rq.size, rq_size); 2406 COMPARE_PARAM(vres.pbl.start, pbl_start); 2407 COMPARE_PARAM(vres.pbl.size, pbl_size); 2408 COMPARE_PARAM(vres.qp.start, qp_start); 2409 COMPARE_PARAM(vres.qp.size, qp_size); 2410 COMPARE_PARAM(vres.cq.start, cq_start); 2411 COMPARE_PARAM(vres.cq.size, cq_size); 2412 COMPARE_PARAM(vres.ocq.start, ocq_start); 2413 COMPARE_PARAM(vres.ocq.size, ocq_size); 2414 COMPARE_PARAM(vres.srq.start, srq_start); 2415 COMPARE_PARAM(vres.srq.size, srq_size); 2416 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2417 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2418 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2419 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2420 COMPARE_PARAM(vres.key.start, key_start); 2421 COMPARE_PARAM(vres.key.size, key_size); 2422 #undef COMPARE_PARAM 2423 2424 return (rc); 2425 } 2426 2427 static int 2428 restart_lld(struct adapter *sc) 2429 { 2430 struct adapter_pre_reset_state *old_state = NULL; 2431 struct port_info *pi; 2432 struct vi_info *vi; 2433 if_t ifp; 2434 struct sge_txq *txq; 2435 int rc, i, j, k; 2436 2437 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2438 if (rc != 0) 2439 return (ENXIO); 2440 2441 /* Restore memory window. */ 2442 setup_memwin(sc); 2443 2444 /* Go no further if recovery mode has been requested. */ 2445 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2446 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2447 rc = 0; 2448 set_adapter_hwstatus(sc, true); 2449 goto done; 2450 } 2451 2452 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2453 save_caps_and_params(sc, old_state); 2454 2455 /* Reestablish contact with firmware and become the primary PF. */ 2456 rc = contact_firmware(sc); 2457 if (rc != 0) 2458 goto done; /* error message displayed already */ 2459 MPASS(sc->flags & FW_OK); 2460 2461 if (sc->flags & MASTER_PF) { 2462 rc = partition_resources(sc); 2463 if (rc != 0) 2464 goto done; /* error message displayed already */ 2465 } 2466 2467 rc = get_params__post_init(sc); 2468 if (rc != 0) 2469 goto done; /* error message displayed already */ 2470 2471 rc = set_params__post_init(sc); 2472 if (rc != 0) 2473 goto done; /* error message displayed already */ 2474 2475 rc = compare_caps_and_params(sc, old_state); 2476 if (rc != 0) 2477 goto done; /* error message displayed already */ 2478 2479 for_each_port(sc, i) { 2480 pi = sc->port[i]; 2481 MPASS(pi != NULL); 2482 MPASS(pi->vi != NULL); 2483 MPASS(pi->vi[0].dev == pi->dev); 2484 2485 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2486 if (rc != 0) { 2487 CH_ERR(sc, 2488 "failed to re-initialize port %d: %d\n", i, rc); 2489 goto done; 2490 } 2491 MPASS(sc->chan_map[pi->tx_chan] == i); 2492 2493 PORT_LOCK(pi); 2494 fixup_link_config(pi); 2495 build_medialist(pi); 2496 PORT_UNLOCK(pi); 2497 for_each_vi(pi, j, vi) { 2498 if (IS_MAIN_VI(vi)) 2499 continue; 2500 rc = alloc_extra_vi(sc, pi, vi); 2501 if (rc != 0) { 2502 CH_ERR(vi, 2503 "failed to re-allocate extra VI: %d\n", rc); 2504 goto done; 2505 } 2506 } 2507 } 2508 2509 /* 2510 * Interrupts and queues are about to be enabled and other threads will 2511 * want to access the hardware too. It is safe to do so. Note that 2512 * this thread is still in the middle of a synchronized_op. 2513 */ 2514 set_adapter_hwstatus(sc, true); 2515 2516 if (sc->flags & FULL_INIT_DONE) { 2517 rc = adapter_full_init(sc); 2518 if (rc != 0) { 2519 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2520 goto done; 2521 } 2522 2523 if (sc->vxlan_refcount > 0) 2524 enable_vxlan_rx(sc); 2525 2526 for_each_port(sc, i) { 2527 pi = sc->port[i]; 2528 for_each_vi(pi, j, vi) { 2529 mtx_lock(&vi->tick_mtx); 2530 vi->flags &= ~VI_SKIP_STATS; 2531 mtx_unlock(&vi->tick_mtx); 2532 if (!(vi->flags & VI_INIT_DONE)) 2533 continue; 2534 rc = vi_full_init(vi); 2535 if (rc != 0) { 2536 CH_ERR(vi, "failed to re-initialize " 2537 "interface: %d\n", rc); 2538 goto done; 2539 } 2540 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2541 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2542 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 2543 pi->flags |= HAS_TRACEQ; 2544 } 2545 2546 ifp = vi->ifp; 2547 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2548 continue; 2549 /* 2550 * Note that we do not setup multicast addresses 2551 * in the first pass. This ensures that the 2552 * unicast DMACs for all VIs on all ports get an 2553 * MPS TCAM entry. 2554 */ 2555 rc = update_mac_settings(ifp, XGMAC_ALL & 2556 ~XGMAC_MCADDRS); 2557 if (rc != 0) { 2558 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2559 goto done; 2560 } 2561 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2562 true); 2563 if (rc != 0) { 2564 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2565 goto done; 2566 } 2567 for_each_txq(vi, k, txq) { 2568 TXQ_LOCK(txq); 2569 txq->eq.flags |= EQ_ENABLED; 2570 TXQ_UNLOCK(txq); 2571 } 2572 mtx_lock(&vi->tick_mtx); 2573 callout_schedule(&vi->tick, hz); 2574 mtx_unlock(&vi->tick_mtx); 2575 } 2576 PORT_LOCK(pi); 2577 if (pi->up_vis > 0) { 2578 t4_update_port_info(pi); 2579 fixup_link_config(pi); 2580 build_medialist(pi); 2581 apply_link_config(pi); 2582 if (pi->link_cfg.link_ok) 2583 t4_os_link_changed(pi); 2584 } 2585 PORT_UNLOCK(pi); 2586 } 2587 2588 /* Now reprogram the L2 multicast addresses. */ 2589 for_each_port(sc, i) { 2590 pi = sc->port[i]; 2591 for_each_vi(pi, j, vi) { 2592 if (!(vi->flags & VI_INIT_DONE)) 2593 continue; 2594 ifp = vi->ifp; 2595 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2596 continue; 2597 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2598 if (rc != 0) { 2599 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2600 rc = 0; /* carry on */ 2601 } 2602 } 2603 } 2604 } 2605 2606 /* Reset all calibration */ 2607 t4_calibration_start(sc); 2608 done: 2609 end_synchronized_op(sc, 0); 2610 free(old_state, M_CXGBE); 2611 2612 restart_atid_allocator(sc); 2613 t4_restart_l2t(sc); 2614 2615 return (rc); 2616 } 2617 2618 int 2619 resume_adapter(struct adapter *sc) 2620 { 2621 restart_adapter(sc); 2622 restart_lld(sc); 2623 #ifdef TCP_OFFLOAD 2624 restart_all_uld(sc); 2625 #endif 2626 return (0); 2627 } 2628 2629 static int 2630 t4_resume(device_t dev) 2631 { 2632 struct adapter *sc = device_get_softc(dev); 2633 int rc; 2634 2635 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2636 rc = resume_adapter(sc); 2637 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2638 2639 return (rc); 2640 } 2641 2642 static int 2643 t4_reset_prepare(device_t dev, device_t child) 2644 { 2645 struct adapter *sc = device_get_softc(dev); 2646 2647 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2648 return (0); 2649 } 2650 2651 static int 2652 t4_reset_post(device_t dev, device_t child) 2653 { 2654 struct adapter *sc = device_get_softc(dev); 2655 2656 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2657 return (0); 2658 } 2659 2660 static int 2661 reset_adapter_with_pl_rst(struct adapter *sc) 2662 { 2663 /* This is a t4_write_reg without the hw_off_limits check. */ 2664 MPASS(sc->error_flags & HW_OFF_LIMITS); 2665 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2666 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2667 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2668 return (0); 2669 } 2670 2671 static int 2672 reset_adapter_with_pcie_sbr(struct adapter *sc) 2673 { 2674 device_t pdev = device_get_parent(sc->dev); 2675 device_t gpdev = device_get_parent(pdev); 2676 device_t *children; 2677 int rc, i, lcap, lsta, nchildren; 2678 uint32_t v; 2679 2680 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2681 if (rc != 0) { 2682 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2683 device_get_nameunit(gpdev), rc); 2684 return (ENOTSUP); 2685 } 2686 lcap = v + PCIER_LINK_CAP; 2687 lsta = v + PCIER_LINK_STA; 2688 2689 nchildren = 0; 2690 device_get_children(pdev, &children, &nchildren); 2691 for (i = 0; i < nchildren; i++) 2692 pci_save_state(children[i]); 2693 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2695 pause("pcie_sbr1", hz / 10); /* 100ms */ 2696 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2697 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2698 v = pci_read_config(gpdev, lsta, 2); 2699 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2700 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2701 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2702 rc = ETIMEDOUT; 2703 else 2704 rc = 0; 2705 if (rc != 0) 2706 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2707 __func__, v); 2708 else { 2709 for (i = 0; i < nchildren; i++) 2710 pci_restore_state(children[i]); 2711 } 2712 free(children, M_TEMP); 2713 2714 return (rc); 2715 } 2716 2717 static int 2718 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2719 { 2720 device_t pdev = device_get_parent(sc->dev); 2721 device_t gpdev = device_get_parent(pdev); 2722 device_t *children; 2723 int rc, i, lcap, lctl, lsta, nchildren; 2724 uint32_t v; 2725 2726 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2727 if (rc != 0) { 2728 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2729 device_get_nameunit(gpdev), rc); 2730 return (ENOTSUP); 2731 } 2732 lcap = v + PCIER_LINK_CAP; 2733 lctl = v + PCIER_LINK_CTL; 2734 lsta = v + PCIER_LINK_STA; 2735 2736 nchildren = 0; 2737 device_get_children(pdev, &children, &nchildren); 2738 for (i = 0; i < nchildren; i++) 2739 pci_save_state(children[i]); 2740 v = pci_read_config(gpdev, lctl, 2); 2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2742 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2743 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2744 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2745 v = pci_read_config(gpdev, lsta, 2); 2746 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2747 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2748 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2749 rc = ETIMEDOUT; 2750 else 2751 rc = 0; 2752 if (rc != 0) 2753 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2754 __func__, v); 2755 else { 2756 for (i = 0; i < nchildren; i++) 2757 pci_restore_state(children[i]); 2758 } 2759 free(children, M_TEMP); 2760 2761 return (rc); 2762 } 2763 2764 static inline int 2765 reset_adapter(struct adapter *sc) 2766 { 2767 int rc; 2768 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2769 2770 rc = suspend_adapter(sc); 2771 if (rc != 0) 2772 return (rc); 2773 2774 switch (reset_method) { 2775 case 1: 2776 rc = reset_adapter_with_pcie_sbr(sc); 2777 break; 2778 case 2: 2779 rc = reset_adapter_with_pcie_link_bounce(sc); 2780 break; 2781 case 0: 2782 default: 2783 rc = reset_adapter_with_pl_rst(sc); 2784 break; 2785 } 2786 if (rc == 0) 2787 rc = resume_adapter(sc); 2788 return (rc); 2789 } 2790 2791 static void 2792 reset_adapter_task(void *arg, int pending) 2793 { 2794 struct adapter *sc = arg; 2795 const int flags = sc->flags; 2796 const int eflags = sc->error_flags; 2797 int rc; 2798 2799 if (pending > 1) 2800 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2801 rc = reset_adapter(sc); 2802 if (rc != 0) { 2803 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2804 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2805 rc, flags, sc->flags, eflags, sc->error_flags); 2806 } 2807 } 2808 2809 static int 2810 cxgbe_probe(device_t dev) 2811 { 2812 struct port_info *pi = device_get_softc(dev); 2813 2814 device_set_descf(dev, "port %d", pi->port_id); 2815 2816 return (BUS_PROBE_DEFAULT); 2817 } 2818 2819 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2820 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2821 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2822 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2823 #define T4_CAP_ENABLE (T4_CAP) 2824 2825 static void 2826 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2827 { 2828 if_t ifp; 2829 struct sbuf *sb; 2830 struct sysctl_ctx_list *ctx = &vi->ctx; 2831 struct sysctl_oid_list *children; 2832 struct pfil_head_args pa; 2833 struct adapter *sc = vi->adapter; 2834 2835 sysctl_ctx_init(ctx); 2836 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2837 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2839 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2840 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2841 #ifdef DEV_NETMAP 2842 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2844 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2846 #endif 2847 #ifdef TCP_OFFLOAD 2848 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2849 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2850 #endif 2851 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2852 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2853 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2854 #endif 2855 2856 vi->xact_addr_filt = -1; 2857 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2858 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2859 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2860 vi->flags |= TX_USES_VM_WR; 2861 2862 /* Allocate an ifnet and set it up */ 2863 ifp = if_alloc_dev(IFT_ETHER, dev); 2864 vi->ifp = ifp; 2865 if_setsoftc(ifp, vi); 2866 2867 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2868 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2869 2870 if_setinitfn(ifp, cxgbe_init); 2871 if_setioctlfn(ifp, cxgbe_ioctl); 2872 if_settransmitfn(ifp, cxgbe_transmit); 2873 if_setqflushfn(ifp, cxgbe_qflush); 2874 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2875 if_setgetcounterfn(ifp, vi_get_counter); 2876 else 2877 if_setgetcounterfn(ifp, cxgbe_get_counter); 2878 #if defined(KERN_TLS) || defined(RATELIMIT) 2879 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2880 #endif 2881 #ifdef RATELIMIT 2882 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2883 #endif 2884 2885 if_setcapabilities(ifp, T4_CAP); 2886 if_setcapenable(ifp, T4_CAP_ENABLE); 2887 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2888 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2889 if (chip_id(sc) >= CHELSIO_T6) { 2890 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2891 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2892 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2893 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2894 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2895 } 2896 2897 #ifdef TCP_OFFLOAD 2898 if (vi->nofldrxq != 0) 2899 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2900 #endif 2901 #ifdef RATELIMIT 2902 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2903 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2904 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2905 } 2906 #endif 2907 2908 if_sethwtsomax(ifp, IP_MAXPACKET); 2909 if (vi->flags & TX_USES_VM_WR) 2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2911 else 2912 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2913 #ifdef RATELIMIT 2914 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2915 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2916 #endif 2917 if_sethwtsomaxsegsize(ifp, 65536); 2918 #ifdef KERN_TLS 2919 if (is_ktls(sc)) { 2920 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2921 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2922 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2923 } 2924 #endif 2925 2926 ether_ifattach(ifp, vi->hw_addr); 2927 #ifdef DEV_NETMAP 2928 if (vi->nnmrxq != 0) 2929 cxgbe_nm_attach(vi); 2930 #endif 2931 sb = sbuf_new_auto(); 2932 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2933 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2934 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2935 case IFCAP_TOE: 2936 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2937 break; 2938 case IFCAP_TOE | IFCAP_TXRTLMT: 2939 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2940 break; 2941 case IFCAP_TXRTLMT: 2942 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2943 break; 2944 } 2945 #endif 2946 #ifdef TCP_OFFLOAD 2947 if (if_getcapabilities(ifp) & IFCAP_TOE) 2948 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2949 #endif 2950 #ifdef DEV_NETMAP 2951 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2952 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2953 vi->nnmtxq, vi->nnmrxq); 2954 #endif 2955 sbuf_finish(sb); 2956 device_printf(dev, "%s\n", sbuf_data(sb)); 2957 sbuf_delete(sb); 2958 2959 vi_sysctls(vi); 2960 2961 pa.pa_version = PFIL_VERSION; 2962 pa.pa_flags = PFIL_IN; 2963 pa.pa_type = PFIL_TYPE_ETHERNET; 2964 pa.pa_headname = if_name(ifp); 2965 vi->pfil = pfil_head_register(&pa); 2966 } 2967 2968 static int 2969 cxgbe_attach(device_t dev) 2970 { 2971 struct port_info *pi = device_get_softc(dev); 2972 struct adapter *sc = pi->adapter; 2973 struct vi_info *vi; 2974 int i; 2975 2976 sysctl_ctx_init(&pi->ctx); 2977 2978 cxgbe_vi_attach(dev, &pi->vi[0]); 2979 2980 for_each_vi(pi, i, vi) { 2981 if (i == 0) 2982 continue; 2983 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2984 if (vi->dev == NULL) { 2985 device_printf(dev, "failed to add VI %d\n", i); 2986 continue; 2987 } 2988 device_set_softc(vi->dev, vi); 2989 } 2990 2991 cxgbe_sysctls(pi); 2992 2993 bus_attach_children(dev); 2994 2995 return (0); 2996 } 2997 2998 static void 2999 cxgbe_vi_detach(struct vi_info *vi) 3000 { 3001 if_t ifp = vi->ifp; 3002 3003 if (vi->pfil != NULL) { 3004 pfil_head_unregister(vi->pfil); 3005 vi->pfil = NULL; 3006 } 3007 3008 ether_ifdetach(ifp); 3009 3010 /* Let detach proceed even if these fail. */ 3011 #ifdef DEV_NETMAP 3012 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 3013 cxgbe_nm_detach(vi); 3014 #endif 3015 cxgbe_uninit_synchronized(vi); 3016 callout_drain(&vi->tick); 3017 mtx_destroy(&vi->tick_mtx); 3018 sysctl_ctx_free(&vi->ctx); 3019 vi_full_uninit(vi); 3020 3021 if_free(vi->ifp); 3022 vi->ifp = NULL; 3023 } 3024 3025 static int 3026 cxgbe_detach(device_t dev) 3027 { 3028 struct port_info *pi = device_get_softc(dev); 3029 struct adapter *sc = pi->adapter; 3030 int rc; 3031 3032 /* Detach the extra VIs first. */ 3033 rc = bus_generic_detach(dev); 3034 if (rc) 3035 return (rc); 3036 3037 sysctl_ctx_free(&pi->ctx); 3038 begin_vi_detach(sc, &pi->vi[0]); 3039 if (pi->flags & HAS_TRACEQ) { 3040 sc->traceq = -1; /* cloner should not create ifnet */ 3041 t4_tracer_port_detach(sc); 3042 } 3043 cxgbe_vi_detach(&pi->vi[0]); 3044 ifmedia_removeall(&pi->media); 3045 end_vi_detach(sc, &pi->vi[0]); 3046 3047 return (0); 3048 } 3049 3050 static void 3051 cxgbe_init(void *arg) 3052 { 3053 struct vi_info *vi = arg; 3054 struct adapter *sc = vi->adapter; 3055 3056 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 3057 return; 3058 cxgbe_init_synchronized(vi); 3059 end_synchronized_op(sc, 0); 3060 } 3061 3062 static int 3063 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 3064 { 3065 int rc = 0, mtu, flags; 3066 struct vi_info *vi = if_getsoftc(ifp); 3067 struct port_info *pi = vi->pi; 3068 struct adapter *sc = pi->adapter; 3069 struct ifreq *ifr = (struct ifreq *)data; 3070 uint32_t mask; 3071 3072 switch (cmd) { 3073 case SIOCSIFMTU: 3074 mtu = ifr->ifr_mtu; 3075 if (mtu < ETHERMIN || mtu > MAX_MTU) 3076 return (EINVAL); 3077 3078 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 3079 if (rc) 3080 return (rc); 3081 if_setmtu(ifp, mtu); 3082 if (vi->flags & VI_INIT_DONE) { 3083 t4_update_fl_bufsize(ifp); 3084 if (hw_all_ok(sc) && 3085 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3086 rc = update_mac_settings(ifp, XGMAC_MTU); 3087 } 3088 end_synchronized_op(sc, 0); 3089 break; 3090 3091 case SIOCSIFFLAGS: 3092 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 3093 if (rc) 3094 return (rc); 3095 3096 if (!hw_all_ok(sc)) { 3097 rc = ENXIO; 3098 goto fail; 3099 } 3100 3101 if (if_getflags(ifp) & IFF_UP) { 3102 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3103 flags = vi->if_flags; 3104 if ((if_getflags(ifp) ^ flags) & 3105 (IFF_PROMISC | IFF_ALLMULTI)) { 3106 rc = update_mac_settings(ifp, 3107 XGMAC_PROMISC | XGMAC_ALLMULTI); 3108 } 3109 } else { 3110 rc = cxgbe_init_synchronized(vi); 3111 } 3112 vi->if_flags = if_getflags(ifp); 3113 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3114 rc = cxgbe_uninit_synchronized(vi); 3115 } 3116 end_synchronized_op(sc, 0); 3117 break; 3118 3119 case SIOCADDMULTI: 3120 case SIOCDELMULTI: 3121 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3122 if (rc) 3123 return (rc); 3124 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3125 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3126 end_synchronized_op(sc, 0); 3127 break; 3128 3129 case SIOCSIFCAP: 3130 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3131 if (rc) 3132 return (rc); 3133 3134 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3135 if (mask & IFCAP_TXCSUM) { 3136 if_togglecapenable(ifp, IFCAP_TXCSUM); 3137 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3138 3139 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3140 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3141 mask &= ~IFCAP_TSO4; 3142 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3143 if_printf(ifp, 3144 "tso4 disabled due to -txcsum.\n"); 3145 } 3146 } 3147 if (mask & IFCAP_TXCSUM_IPV6) { 3148 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3149 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3150 3151 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3152 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3153 mask &= ~IFCAP_TSO6; 3154 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3155 if_printf(ifp, 3156 "tso6 disabled due to -txcsum6.\n"); 3157 } 3158 } 3159 if (mask & IFCAP_RXCSUM) 3160 if_togglecapenable(ifp, IFCAP_RXCSUM); 3161 if (mask & IFCAP_RXCSUM_IPV6) 3162 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3163 3164 /* 3165 * Note that we leave CSUM_TSO alone (it is always set). The 3166 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3167 * sending a TSO request our way, so it's sufficient to toggle 3168 * IFCAP_TSOx only. 3169 */ 3170 if (mask & IFCAP_TSO4) { 3171 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3172 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3173 if_printf(ifp, "enable txcsum first.\n"); 3174 rc = EAGAIN; 3175 goto fail; 3176 } 3177 if_togglecapenable(ifp, IFCAP_TSO4); 3178 } 3179 if (mask & IFCAP_TSO6) { 3180 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3181 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3182 if_printf(ifp, "enable txcsum6 first.\n"); 3183 rc = EAGAIN; 3184 goto fail; 3185 } 3186 if_togglecapenable(ifp, IFCAP_TSO6); 3187 } 3188 if (mask & IFCAP_LRO) { 3189 #if defined(INET) || defined(INET6) 3190 int i; 3191 struct sge_rxq *rxq; 3192 3193 if_togglecapenable(ifp, IFCAP_LRO); 3194 for_each_rxq(vi, i, rxq) { 3195 if (if_getcapenable(ifp) & IFCAP_LRO) 3196 rxq->iq.flags |= IQ_LRO_ENABLED; 3197 else 3198 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3199 } 3200 #endif 3201 } 3202 #ifdef TCP_OFFLOAD 3203 if (mask & IFCAP_TOE) { 3204 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3205 3206 rc = toe_capability(vi, enable); 3207 if (rc != 0) 3208 goto fail; 3209 3210 if_togglecapenable(ifp, mask); 3211 } 3212 #endif 3213 if (mask & IFCAP_VLAN_HWTAGGING) { 3214 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3215 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3216 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3217 } 3218 if (mask & IFCAP_VLAN_MTU) { 3219 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3220 3221 /* Need to find out how to disable auto-mtu-inflation */ 3222 } 3223 if (mask & IFCAP_VLAN_HWTSO) 3224 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3225 if (mask & IFCAP_VLAN_HWCSUM) 3226 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3227 #ifdef RATELIMIT 3228 if (mask & IFCAP_TXRTLMT) 3229 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3230 #endif 3231 if (mask & IFCAP_HWRXTSTMP) { 3232 int i; 3233 struct sge_rxq *rxq; 3234 3235 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3236 for_each_rxq(vi, i, rxq) { 3237 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3238 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3239 else 3240 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3241 } 3242 } 3243 if (mask & IFCAP_MEXTPG) 3244 if_togglecapenable(ifp, IFCAP_MEXTPG); 3245 3246 #ifdef KERN_TLS 3247 if (mask & IFCAP_TXTLS) { 3248 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3249 3250 rc = ktls_capability(sc, enable); 3251 if (rc != 0) 3252 goto fail; 3253 3254 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3255 } 3256 #endif 3257 if (mask & IFCAP_VXLAN_HWCSUM) { 3258 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3259 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3260 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3261 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3262 } 3263 if (mask & IFCAP_VXLAN_HWTSO) { 3264 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3265 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3266 CSUM_INNER_IP_TSO); 3267 } 3268 3269 #ifdef VLAN_CAPABILITIES 3270 VLAN_CAPABILITIES(ifp); 3271 #endif 3272 fail: 3273 end_synchronized_op(sc, 0); 3274 break; 3275 3276 case SIOCSIFMEDIA: 3277 case SIOCGIFMEDIA: 3278 case SIOCGIFXMEDIA: 3279 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3280 break; 3281 3282 case SIOCGI2C: { 3283 struct ifi2creq i2c; 3284 3285 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3286 if (rc != 0) 3287 break; 3288 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3289 rc = EPERM; 3290 break; 3291 } 3292 if (i2c.len > sizeof(i2c.data)) { 3293 rc = EINVAL; 3294 break; 3295 } 3296 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3297 if (rc) 3298 return (rc); 3299 if (!hw_all_ok(sc)) 3300 rc = ENXIO; 3301 else 3302 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3303 i2c.offset, i2c.len, &i2c.data[0]); 3304 end_synchronized_op(sc, 0); 3305 if (rc == 0) 3306 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3307 break; 3308 } 3309 3310 default: 3311 rc = ether_ioctl(ifp, cmd, data); 3312 } 3313 3314 return (rc); 3315 } 3316 3317 static int 3318 cxgbe_transmit(if_t ifp, struct mbuf *m) 3319 { 3320 struct vi_info *vi = if_getsoftc(ifp); 3321 struct port_info *pi = vi->pi; 3322 struct adapter *sc; 3323 struct sge_txq *txq; 3324 void *items[1]; 3325 int rc; 3326 3327 M_ASSERTPKTHDR(m); 3328 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3329 #if defined(KERN_TLS) || defined(RATELIMIT) 3330 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3331 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3332 #endif 3333 3334 if (__predict_false(pi->link_cfg.link_ok == false)) { 3335 m_freem(m); 3336 return (ENETDOWN); 3337 } 3338 3339 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3340 if (__predict_false(rc != 0)) { 3341 if (__predict_true(rc == EINPROGRESS)) { 3342 /* queued by parse_pkt */ 3343 MPASS(m != NULL); 3344 return (0); 3345 } 3346 3347 MPASS(m == NULL); /* was freed already */ 3348 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3349 return (rc); 3350 } 3351 3352 /* Select a txq. */ 3353 sc = vi->adapter; 3354 txq = &sc->sge.txq[vi->first_txq]; 3355 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3356 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3357 vi->rsrv_noflowq); 3358 3359 items[0] = m; 3360 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3361 if (__predict_false(rc != 0)) 3362 m_freem(m); 3363 3364 return (rc); 3365 } 3366 3367 static void 3368 cxgbe_qflush(if_t ifp) 3369 { 3370 struct vi_info *vi = if_getsoftc(ifp); 3371 struct sge_txq *txq; 3372 int i; 3373 3374 /* queues do not exist if !VI_INIT_DONE. */ 3375 if (vi->flags & VI_INIT_DONE) { 3376 for_each_txq(vi, i, txq) { 3377 TXQ_LOCK(txq); 3378 txq->eq.flags |= EQ_QFLUSH; 3379 TXQ_UNLOCK(txq); 3380 while (!mp_ring_is_idle(txq->r)) { 3381 mp_ring_check_drainage(txq->r, 4096); 3382 pause("qflush", 1); 3383 } 3384 TXQ_LOCK(txq); 3385 txq->eq.flags &= ~EQ_QFLUSH; 3386 TXQ_UNLOCK(txq); 3387 } 3388 } 3389 if_qflush(ifp); 3390 } 3391 3392 static uint64_t 3393 vi_get_counter(if_t ifp, ift_counter c) 3394 { 3395 struct vi_info *vi = if_getsoftc(ifp); 3396 struct fw_vi_stats_vf *s = &vi->stats; 3397 3398 mtx_lock(&vi->tick_mtx); 3399 vi_refresh_stats(vi); 3400 mtx_unlock(&vi->tick_mtx); 3401 3402 switch (c) { 3403 case IFCOUNTER_IPACKETS: 3404 return (s->rx_bcast_frames + s->rx_mcast_frames + 3405 s->rx_ucast_frames); 3406 case IFCOUNTER_IERRORS: 3407 return (s->rx_err_frames); 3408 case IFCOUNTER_OPACKETS: 3409 return (s->tx_bcast_frames + s->tx_mcast_frames + 3410 s->tx_ucast_frames + s->tx_offload_frames); 3411 case IFCOUNTER_OERRORS: 3412 return (s->tx_drop_frames); 3413 case IFCOUNTER_IBYTES: 3414 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3415 s->rx_ucast_bytes); 3416 case IFCOUNTER_OBYTES: 3417 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3418 s->tx_ucast_bytes + s->tx_offload_bytes); 3419 case IFCOUNTER_IMCASTS: 3420 return (s->rx_mcast_frames); 3421 case IFCOUNTER_OMCASTS: 3422 return (s->tx_mcast_frames); 3423 case IFCOUNTER_OQDROPS: { 3424 uint64_t drops; 3425 3426 drops = 0; 3427 if (vi->flags & VI_INIT_DONE) { 3428 int i; 3429 struct sge_txq *txq; 3430 3431 for_each_txq(vi, i, txq) 3432 drops += counter_u64_fetch(txq->r->dropped); 3433 } 3434 3435 return (drops); 3436 3437 } 3438 3439 default: 3440 return (if_get_counter_default(ifp, c)); 3441 } 3442 } 3443 3444 static uint64_t 3445 cxgbe_get_counter(if_t ifp, ift_counter c) 3446 { 3447 struct vi_info *vi = if_getsoftc(ifp); 3448 struct port_info *pi = vi->pi; 3449 struct port_stats *s = &pi->stats; 3450 3451 mtx_lock(&vi->tick_mtx); 3452 cxgbe_refresh_stats(vi); 3453 mtx_unlock(&vi->tick_mtx); 3454 3455 switch (c) { 3456 case IFCOUNTER_IPACKETS: 3457 return (s->rx_frames); 3458 3459 case IFCOUNTER_IERRORS: 3460 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3461 s->rx_fcs_err + s->rx_len_err); 3462 3463 case IFCOUNTER_OPACKETS: 3464 return (s->tx_frames); 3465 3466 case IFCOUNTER_OERRORS: 3467 return (s->tx_error_frames); 3468 3469 case IFCOUNTER_IBYTES: 3470 return (s->rx_octets); 3471 3472 case IFCOUNTER_OBYTES: 3473 return (s->tx_octets); 3474 3475 case IFCOUNTER_IMCASTS: 3476 return (s->rx_mcast_frames); 3477 3478 case IFCOUNTER_OMCASTS: 3479 return (s->tx_mcast_frames); 3480 3481 case IFCOUNTER_IQDROPS: 3482 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3483 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3484 s->rx_trunc3 + pi->tnl_cong_drops); 3485 3486 case IFCOUNTER_OQDROPS: { 3487 uint64_t drops; 3488 3489 drops = s->tx_drop; 3490 if (vi->flags & VI_INIT_DONE) { 3491 int i; 3492 struct sge_txq *txq; 3493 3494 for_each_txq(vi, i, txq) 3495 drops += counter_u64_fetch(txq->r->dropped); 3496 } 3497 3498 return (drops); 3499 3500 } 3501 3502 default: 3503 return (if_get_counter_default(ifp, c)); 3504 } 3505 } 3506 3507 #if defined(KERN_TLS) || defined(RATELIMIT) 3508 static int 3509 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3510 struct m_snd_tag **pt) 3511 { 3512 int error; 3513 3514 switch (params->hdr.type) { 3515 #ifdef RATELIMIT 3516 case IF_SND_TAG_TYPE_RATE_LIMIT: 3517 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3518 break; 3519 #endif 3520 #ifdef KERN_TLS 3521 case IF_SND_TAG_TYPE_TLS: 3522 { 3523 struct vi_info *vi = if_getsoftc(ifp); 3524 3525 if (is_t6(vi->pi->adapter)) 3526 error = t6_tls_tag_alloc(ifp, params, pt); 3527 else 3528 error = t7_tls_tag_alloc(ifp, params, pt); 3529 break; 3530 } 3531 #endif 3532 default: 3533 error = EOPNOTSUPP; 3534 } 3535 return (error); 3536 } 3537 #endif 3538 3539 /* 3540 * The kernel picks a media from the list we had provided but we still validate 3541 * the requeste. 3542 */ 3543 int 3544 cxgbe_media_change(if_t ifp) 3545 { 3546 struct vi_info *vi = if_getsoftc(ifp); 3547 struct port_info *pi = vi->pi; 3548 struct ifmedia *ifm = &pi->media; 3549 struct link_config *lc = &pi->link_cfg; 3550 struct adapter *sc = pi->adapter; 3551 int rc; 3552 3553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3554 if (rc != 0) 3555 return (rc); 3556 PORT_LOCK(pi); 3557 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3558 /* ifconfig .. media autoselect */ 3559 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3560 rc = ENOTSUP; /* AN not supported by transceiver */ 3561 goto done; 3562 } 3563 lc->requested_aneg = AUTONEG_ENABLE; 3564 lc->requested_speed = 0; 3565 lc->requested_fc |= PAUSE_AUTONEG; 3566 } else { 3567 lc->requested_aneg = AUTONEG_DISABLE; 3568 lc->requested_speed = 3569 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3570 lc->requested_fc = 0; 3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3572 lc->requested_fc |= PAUSE_RX; 3573 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3574 lc->requested_fc |= PAUSE_TX; 3575 } 3576 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3577 fixup_link_config(pi); 3578 rc = apply_link_config(pi); 3579 } 3580 done: 3581 PORT_UNLOCK(pi); 3582 end_synchronized_op(sc, 0); 3583 return (rc); 3584 } 3585 3586 /* 3587 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3588 * given speed. 3589 */ 3590 static int 3591 port_mword(struct port_info *pi, uint32_t speed) 3592 { 3593 3594 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3595 MPASS(powerof2(speed)); 3596 3597 switch(pi->port_type) { 3598 case FW_PORT_TYPE_BT_SGMII: 3599 case FW_PORT_TYPE_BT_XFI: 3600 case FW_PORT_TYPE_BT_XAUI: 3601 /* BaseT */ 3602 switch (speed) { 3603 case FW_PORT_CAP32_SPEED_100M: 3604 return (IFM_100_T); 3605 case FW_PORT_CAP32_SPEED_1G: 3606 return (IFM_1000_T); 3607 case FW_PORT_CAP32_SPEED_10G: 3608 return (IFM_10G_T); 3609 } 3610 break; 3611 case FW_PORT_TYPE_KX4: 3612 if (speed == FW_PORT_CAP32_SPEED_10G) 3613 return (IFM_10G_KX4); 3614 break; 3615 case FW_PORT_TYPE_CX4: 3616 if (speed == FW_PORT_CAP32_SPEED_10G) 3617 return (IFM_10G_CX4); 3618 break; 3619 case FW_PORT_TYPE_KX: 3620 if (speed == FW_PORT_CAP32_SPEED_1G) 3621 return (IFM_1000_KX); 3622 break; 3623 case FW_PORT_TYPE_KR: 3624 case FW_PORT_TYPE_BP_AP: 3625 case FW_PORT_TYPE_BP4_AP: 3626 case FW_PORT_TYPE_BP40_BA: 3627 case FW_PORT_TYPE_KR4_100G: 3628 case FW_PORT_TYPE_KR_SFP28: 3629 case FW_PORT_TYPE_KR_XLAUI: 3630 switch (speed) { 3631 case FW_PORT_CAP32_SPEED_1G: 3632 return (IFM_1000_KX); 3633 case FW_PORT_CAP32_SPEED_10G: 3634 return (IFM_10G_KR); 3635 case FW_PORT_CAP32_SPEED_25G: 3636 return (IFM_25G_KR); 3637 case FW_PORT_CAP32_SPEED_40G: 3638 return (IFM_40G_KR4); 3639 case FW_PORT_CAP32_SPEED_50G: 3640 return (IFM_50G_KR2); 3641 case FW_PORT_CAP32_SPEED_100G: 3642 return (IFM_100G_KR4); 3643 } 3644 break; 3645 case FW_PORT_TYPE_FIBER_XFI: 3646 case FW_PORT_TYPE_FIBER_XAUI: 3647 case FW_PORT_TYPE_SFP: 3648 case FW_PORT_TYPE_QSFP_10G: 3649 case FW_PORT_TYPE_QSA: 3650 case FW_PORT_TYPE_QSFP: 3651 case FW_PORT_TYPE_CR4_QSFP: 3652 case FW_PORT_TYPE_CR_QSFP: 3653 case FW_PORT_TYPE_CR2_QSFP: 3654 case FW_PORT_TYPE_SFP28: 3655 case FW_PORT_TYPE_SFP56: 3656 case FW_PORT_TYPE_QSFP56: 3657 case FW_PORT_TYPE_QSFPDD: 3658 /* Pluggable transceiver */ 3659 switch (pi->mod_type) { 3660 case FW_PORT_MOD_TYPE_LR: 3661 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3662 switch (speed) { 3663 case FW_PORT_CAP32_SPEED_1G: 3664 return (IFM_1000_LX); 3665 case FW_PORT_CAP32_SPEED_10G: 3666 return (IFM_10G_LR); 3667 case FW_PORT_CAP32_SPEED_25G: 3668 return (IFM_25G_LR); 3669 case FW_PORT_CAP32_SPEED_40G: 3670 return (IFM_40G_LR4); 3671 case FW_PORT_CAP32_SPEED_50G: 3672 return (IFM_50G_LR2); 3673 case FW_PORT_CAP32_SPEED_100G: 3674 return (IFM_100G_LR4); 3675 case FW_PORT_CAP32_SPEED_200G: 3676 return (IFM_200G_LR4); 3677 case FW_PORT_CAP32_SPEED_400G: 3678 return (IFM_400G_LR8); 3679 } 3680 break; 3681 case FW_PORT_MOD_TYPE_SR: 3682 switch (speed) { 3683 case FW_PORT_CAP32_SPEED_1G: 3684 return (IFM_1000_SX); 3685 case FW_PORT_CAP32_SPEED_10G: 3686 return (IFM_10G_SR); 3687 case FW_PORT_CAP32_SPEED_25G: 3688 return (IFM_25G_SR); 3689 case FW_PORT_CAP32_SPEED_40G: 3690 return (IFM_40G_SR4); 3691 case FW_PORT_CAP32_SPEED_50G: 3692 return (IFM_50G_SR2); 3693 case FW_PORT_CAP32_SPEED_100G: 3694 return (IFM_100G_SR4); 3695 case FW_PORT_CAP32_SPEED_200G: 3696 return (IFM_200G_SR4); 3697 case FW_PORT_CAP32_SPEED_400G: 3698 return (IFM_400G_SR8); 3699 } 3700 break; 3701 case FW_PORT_MOD_TYPE_ER: 3702 if (speed == FW_PORT_CAP32_SPEED_10G) 3703 return (IFM_10G_ER); 3704 break; 3705 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3706 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3707 switch (speed) { 3708 case FW_PORT_CAP32_SPEED_1G: 3709 return (IFM_1000_CX); 3710 case FW_PORT_CAP32_SPEED_10G: 3711 return (IFM_10G_TWINAX); 3712 case FW_PORT_CAP32_SPEED_25G: 3713 return (IFM_25G_CR); 3714 case FW_PORT_CAP32_SPEED_40G: 3715 return (IFM_40G_CR4); 3716 case FW_PORT_CAP32_SPEED_50G: 3717 return (IFM_50G_CR2); 3718 case FW_PORT_CAP32_SPEED_100G: 3719 return (IFM_100G_CR4); 3720 case FW_PORT_CAP32_SPEED_200G: 3721 return (IFM_200G_CR4_PAM4); 3722 case FW_PORT_CAP32_SPEED_400G: 3723 return (IFM_400G_CR8); 3724 } 3725 break; 3726 case FW_PORT_MOD_TYPE_LRM: 3727 if (speed == FW_PORT_CAP32_SPEED_10G) 3728 return (IFM_10G_LRM); 3729 break; 3730 case FW_PORT_MOD_TYPE_DR: 3731 if (speed == FW_PORT_CAP32_SPEED_100G) 3732 return (IFM_100G_DR); 3733 if (speed == FW_PORT_CAP32_SPEED_200G) 3734 return (IFM_200G_DR4); 3735 if (speed == FW_PORT_CAP32_SPEED_400G) 3736 return (IFM_400G_DR4); 3737 break; 3738 case FW_PORT_MOD_TYPE_NA: 3739 MPASS(0); /* Not pluggable? */ 3740 /* fall through */ 3741 case FW_PORT_MOD_TYPE_ERROR: 3742 case FW_PORT_MOD_TYPE_UNKNOWN: 3743 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3744 break; 3745 case FW_PORT_MOD_TYPE_NONE: 3746 return (IFM_NONE); 3747 } 3748 break; 3749 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */ 3750 if (chip_id(pi->adapter) >= CHELSIO_T7) 3751 return (IFM_UNKNOWN); 3752 /* fall through */ 3753 case FW_PORT_TYPE_NONE: 3754 return (IFM_NONE); 3755 } 3756 3757 return (IFM_UNKNOWN); 3758 } 3759 3760 void 3761 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3762 { 3763 struct vi_info *vi = if_getsoftc(ifp); 3764 struct port_info *pi = vi->pi; 3765 struct adapter *sc = pi->adapter; 3766 struct link_config *lc = &pi->link_cfg; 3767 3768 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3769 return; 3770 PORT_LOCK(pi); 3771 3772 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3773 /* 3774 * If all the interfaces are administratively down the firmware 3775 * does not report transceiver changes. Refresh port info here 3776 * so that ifconfig displays accurate ifmedia at all times. 3777 * This is the only reason we have a synchronized op in this 3778 * function. Just PORT_LOCK would have been enough otherwise. 3779 */ 3780 t4_update_port_info(pi); 3781 build_medialist(pi); 3782 } 3783 3784 /* ifm_status */ 3785 ifmr->ifm_status = IFM_AVALID; 3786 if (lc->link_ok == false) 3787 goto done; 3788 ifmr->ifm_status |= IFM_ACTIVE; 3789 3790 /* ifm_active */ 3791 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3792 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3793 if (lc->fc & PAUSE_RX) 3794 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3795 if (lc->fc & PAUSE_TX) 3796 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3797 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3798 done: 3799 PORT_UNLOCK(pi); 3800 end_synchronized_op(sc, 0); 3801 } 3802 3803 static int 3804 vcxgbe_probe(device_t dev) 3805 { 3806 struct vi_info *vi = device_get_softc(dev); 3807 3808 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3809 vi - vi->pi->vi); 3810 3811 return (BUS_PROBE_DEFAULT); 3812 } 3813 3814 static int 3815 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3816 { 3817 int func, index, rc; 3818 uint32_t param, val; 3819 3820 ASSERT_SYNCHRONIZED_OP(sc); 3821 3822 index = vi - pi->vi; 3823 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3824 KASSERT(index < nitems(vi_mac_funcs), 3825 ("%s: VI %s doesn't have a MAC func", __func__, 3826 device_get_nameunit(vi->dev))); 3827 func = vi_mac_funcs[index]; 3828 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1, 3829 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3830 if (rc < 0) { 3831 CH_ERR(vi, "failed to allocate virtual interface %d" 3832 "for port %d: %d\n", index, pi->port_id, -rc); 3833 return (-rc); 3834 } 3835 vi->viid = rc; 3836 3837 if (vi->rss_size == 1) { 3838 /* 3839 * This VI didn't get a slice of the RSS table. Reduce the 3840 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3841 * configuration file (nvi, rssnvi for this PF) if this is a 3842 * problem. 3843 */ 3844 device_printf(vi->dev, "RSS table not available.\n"); 3845 vi->rss_base = 0xffff; 3846 3847 return (0); 3848 } 3849 3850 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3851 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3852 V_FW_PARAMS_PARAM_YZ(vi->viid); 3853 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3854 if (rc) 3855 vi->rss_base = 0xffff; 3856 else { 3857 MPASS((val >> 16) == vi->rss_size); 3858 vi->rss_base = val & 0xffff; 3859 } 3860 3861 return (0); 3862 } 3863 3864 static int 3865 vcxgbe_attach(device_t dev) 3866 { 3867 struct vi_info *vi; 3868 struct port_info *pi; 3869 struct adapter *sc; 3870 int rc; 3871 3872 vi = device_get_softc(dev); 3873 pi = vi->pi; 3874 sc = pi->adapter; 3875 3876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3877 if (rc) 3878 return (rc); 3879 rc = alloc_extra_vi(sc, pi, vi); 3880 end_synchronized_op(sc, 0); 3881 if (rc) 3882 return (rc); 3883 3884 cxgbe_vi_attach(dev, vi); 3885 3886 return (0); 3887 } 3888 3889 static int 3890 vcxgbe_detach(device_t dev) 3891 { 3892 struct vi_info *vi; 3893 struct adapter *sc; 3894 3895 vi = device_get_softc(dev); 3896 sc = vi->adapter; 3897 3898 begin_vi_detach(sc, vi); 3899 cxgbe_vi_detach(vi); 3900 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3901 end_vi_detach(sc, vi); 3902 3903 return (0); 3904 } 3905 3906 static struct callout fatal_callout; 3907 static struct taskqueue *reset_tq; 3908 3909 static void 3910 delayed_panic(void *arg) 3911 { 3912 struct adapter *sc = arg; 3913 3914 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3915 } 3916 3917 static void 3918 fatal_error_task(void *arg, int pending) 3919 { 3920 struct adapter *sc = arg; 3921 int rc; 3922 3923 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3924 dump_cim_regs(sc); 3925 dump_cimla(sc); 3926 dump_devlog(sc); 3927 } 3928 3929 if (t4_reset_on_fatal_err) { 3930 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3931 rc = reset_adapter(sc); 3932 if (rc == 0 && t4_panic_on_fatal_err) { 3933 CH_ALERT(sc, "reset was successful, " 3934 "system will NOT panic.\n"); 3935 return; 3936 } 3937 } 3938 3939 if (t4_panic_on_fatal_err) { 3940 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3941 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3942 } 3943 } 3944 3945 void 3946 t4_fatal_err(struct adapter *sc, bool fw_error) 3947 { 3948 stop_adapter(sc); 3949 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3950 return; 3951 if (fw_error) { 3952 /* 3953 * We are here because of a firmware error/timeout and not 3954 * because of a hardware interrupt. It is possible (although 3955 * not very likely) that an error interrupt was also raised but 3956 * this thread ran first and inhibited t4_intr_err. We walk the 3957 * main INT_CAUSE registers here to make sure we haven't missed 3958 * anything interesting. 3959 */ 3960 t4_slow_intr_handler(sc, sc->intr_flags); 3961 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3962 } 3963 t4_report_fw_error(sc); 3964 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3965 device_get_nameunit(sc->dev), fw_error); 3966 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3967 } 3968 3969 void 3970 t4_add_adapter(struct adapter *sc) 3971 { 3972 sx_xlock(&t4_list_lock); 3973 SLIST_INSERT_HEAD(&t4_list, sc, link); 3974 sx_xunlock(&t4_list_lock); 3975 } 3976 3977 int 3978 t4_map_bars_0_and_4(struct adapter *sc) 3979 { 3980 sc->regs_rid = PCIR_BAR(0); 3981 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3982 &sc->regs_rid, RF_ACTIVE); 3983 if (sc->regs_res == NULL) { 3984 device_printf(sc->dev, "cannot map registers.\n"); 3985 return (ENXIO); 3986 } 3987 sc->bt = rman_get_bustag(sc->regs_res); 3988 sc->bh = rman_get_bushandle(sc->regs_res); 3989 sc->mmio_len = rman_get_size(sc->regs_res); 3990 setbit(&sc->doorbells, DOORBELL_KDB); 3991 3992 sc->msix_rid = PCIR_BAR(4); 3993 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3994 &sc->msix_rid, RF_ACTIVE); 3995 if (sc->msix_res == NULL) { 3996 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3997 return (ENXIO); 3998 } 3999 4000 return (0); 4001 } 4002 4003 int 4004 t4_map_bar_2(struct adapter *sc) 4005 { 4006 4007 /* 4008 * T4: only iWARP driver uses the userspace doorbells. There is no need 4009 * to map it if RDMA is disabled. 4010 */ 4011 if (is_t4(sc) && sc->rdmacaps == 0) 4012 return (0); 4013 4014 sc->udbs_rid = PCIR_BAR(2); 4015 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4016 &sc->udbs_rid, RF_ACTIVE); 4017 if (sc->udbs_res == NULL) { 4018 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 4019 return (ENXIO); 4020 } 4021 sc->udbs_base = rman_get_virtual(sc->udbs_res); 4022 4023 if (chip_id(sc) >= CHELSIO_T5) { 4024 setbit(&sc->doorbells, DOORBELL_UDB); 4025 #if defined(__i386__) || defined(__amd64__) 4026 if (t5_write_combine) { 4027 int rc, mode; 4028 4029 /* 4030 * Enable write combining on BAR2. This is the 4031 * userspace doorbell BAR and is split into 128B 4032 * (UDBS_SEG_SIZE) doorbell regions, each associated 4033 * with an egress queue. The first 64B has the doorbell 4034 * and the second 64B can be used to submit a tx work 4035 * request with an implicit doorbell. 4036 */ 4037 4038 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 4039 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 4040 if (rc == 0) { 4041 clrbit(&sc->doorbells, DOORBELL_UDB); 4042 setbit(&sc->doorbells, DOORBELL_WCWR); 4043 setbit(&sc->doorbells, DOORBELL_UDBWC); 4044 } else { 4045 device_printf(sc->dev, 4046 "couldn't enable write combining: %d\n", 4047 rc); 4048 } 4049 4050 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 4051 t4_write_reg(sc, A_SGE_STAT_CFG, 4052 V_STATSOURCE_T5(7) | mode); 4053 } 4054 #endif 4055 } 4056 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 4057 4058 return (0); 4059 } 4060 4061 int 4062 t4_adj_doorbells(struct adapter *sc) 4063 { 4064 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 4065 sc->doorbells &= t4_doorbells_allowed; 4066 return (0); 4067 } 4068 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 4069 sc->doorbells, t4_doorbells_allowed); 4070 return (EINVAL); 4071 } 4072 4073 struct memwin_init { 4074 uint32_t base; 4075 uint32_t aperture; 4076 }; 4077 4078 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 4079 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4080 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4081 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 4082 }; 4083 4084 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 4085 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4086 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4087 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 4088 }; 4089 4090 static void 4091 setup_memwin(struct adapter *sc) 4092 { 4093 const struct memwin_init *mw_init; 4094 struct memwin *mw; 4095 int i; 4096 uint32_t bar0, reg; 4097 4098 if (is_t4(sc)) { 4099 /* 4100 * Read low 32b of bar0 indirectly via the hardware backdoor 4101 * mechanism. Works from within PCI passthrough environments 4102 * too, where rman_get_start() can return a different value. We 4103 * need to program the T4 memory window decoders with the actual 4104 * addresses that will be coming across the PCIe link. 4105 */ 4106 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 4107 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 4108 4109 mw_init = &t4_memwin[0]; 4110 } else { 4111 /* T5+ use the relative offset inside the PCIe BAR */ 4112 bar0 = 0; 4113 4114 mw_init = &t5_memwin[0]; 4115 } 4116 4117 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 4118 if (!rw_initialized(&mw->mw_lock)) { 4119 rw_init(&mw->mw_lock, "memory window access"); 4120 mw->mw_base = mw_init->base; 4121 mw->mw_aperture = mw_init->aperture; 4122 mw->mw_curpos = 0; 4123 } 4124 reg = chip_id(sc) > CHELSIO_T6 ? 4125 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) : 4126 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i); 4127 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) | 4128 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 4129 rw_wlock(&mw->mw_lock); 4130 position_memwin(sc, i, mw->mw_curpos); 4131 rw_wunlock(&mw->mw_lock); 4132 } 4133 4134 /* flush */ 4135 t4_read_reg(sc, reg); 4136 } 4137 4138 /* 4139 * Positions the memory window at the given address in the card's address space. 4140 * There are some alignment requirements and the actual position may be at an 4141 * address prior to the requested address. mw->mw_curpos always has the actual 4142 * position of the window. 4143 */ 4144 static void 4145 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4146 { 4147 struct memwin *mw; 4148 uint32_t pf, reg, val; 4149 4150 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4151 mw = &sc->memwin[idx]; 4152 rw_assert(&mw->mw_lock, RA_WLOCKED); 4153 4154 if (is_t4(sc)) { 4155 pf = 0; 4156 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4157 } else { 4158 pf = V_PFNUM(sc->pf); 4159 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4160 } 4161 if (chip_id(sc) > CHELSIO_T6) { 4162 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx); 4163 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf; 4164 } else { 4165 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4166 val = mw->mw_curpos | pf; 4167 } 4168 t4_write_reg(sc, reg, val); 4169 t4_read_reg(sc, reg); /* flush */ 4170 } 4171 4172 int 4173 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4174 int len, int rw) 4175 { 4176 struct memwin *mw; 4177 uint32_t mw_end, v; 4178 4179 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4180 4181 /* Memory can only be accessed in naturally aligned 4 byte units */ 4182 if (addr & 3 || len & 3 || len <= 0) 4183 return (EINVAL); 4184 4185 mw = &sc->memwin[idx]; 4186 while (len > 0) { 4187 rw_rlock(&mw->mw_lock); 4188 mw_end = mw->mw_curpos + mw->mw_aperture; 4189 if (addr >= mw_end || addr < mw->mw_curpos) { 4190 /* Will need to reposition the window */ 4191 if (!rw_try_upgrade(&mw->mw_lock)) { 4192 rw_runlock(&mw->mw_lock); 4193 rw_wlock(&mw->mw_lock); 4194 } 4195 rw_assert(&mw->mw_lock, RA_WLOCKED); 4196 position_memwin(sc, idx, addr); 4197 rw_downgrade(&mw->mw_lock); 4198 mw_end = mw->mw_curpos + mw->mw_aperture; 4199 } 4200 rw_assert(&mw->mw_lock, RA_RLOCKED); 4201 while (addr < mw_end && len > 0) { 4202 if (rw == 0) { 4203 v = t4_read_reg(sc, mw->mw_base + addr - 4204 mw->mw_curpos); 4205 *val++ = le32toh(v); 4206 } else { 4207 v = *val++; 4208 t4_write_reg(sc, mw->mw_base + addr - 4209 mw->mw_curpos, htole32(v)); 4210 } 4211 addr += 4; 4212 len -= 4; 4213 } 4214 rw_runlock(&mw->mw_lock); 4215 } 4216 4217 return (0); 4218 } 4219 4220 CTASSERT(M_TID_COOKIE == M_COOKIE); 4221 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4222 4223 static void 4224 t4_init_atid_table(struct adapter *sc) 4225 { 4226 struct tid_info *t; 4227 int i; 4228 4229 t = &sc->tids; 4230 if (t->natids == 0) 4231 return; 4232 4233 MPASS(t->atid_tab == NULL); 4234 4235 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4236 M_ZERO | M_WAITOK); 4237 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4238 t->afree = t->atid_tab; 4239 t->atids_in_use = 0; 4240 t->atid_alloc_stopped = false; 4241 for (i = 1; i < t->natids; i++) 4242 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4243 t->atid_tab[t->natids - 1].next = NULL; 4244 } 4245 4246 static void 4247 t4_free_atid_table(struct adapter *sc) 4248 { 4249 struct tid_info *t; 4250 4251 t = &sc->tids; 4252 4253 KASSERT(t->atids_in_use == 0, 4254 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4255 4256 if (mtx_initialized(&t->atid_lock)) 4257 mtx_destroy(&t->atid_lock); 4258 free(t->atid_tab, M_CXGBE); 4259 t->atid_tab = NULL; 4260 } 4261 4262 static void 4263 stop_atid_allocator(struct adapter *sc) 4264 { 4265 struct tid_info *t = &sc->tids; 4266 4267 if (t->natids == 0) 4268 return; 4269 mtx_lock(&t->atid_lock); 4270 t->atid_alloc_stopped = true; 4271 mtx_unlock(&t->atid_lock); 4272 } 4273 4274 static void 4275 restart_atid_allocator(struct adapter *sc) 4276 { 4277 struct tid_info *t = &sc->tids; 4278 4279 if (t->natids == 0) 4280 return; 4281 mtx_lock(&t->atid_lock); 4282 KASSERT(t->atids_in_use == 0, 4283 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4284 t->atid_alloc_stopped = false; 4285 mtx_unlock(&t->atid_lock); 4286 } 4287 4288 int 4289 alloc_atid(struct adapter *sc, void *ctx) 4290 { 4291 struct tid_info *t = &sc->tids; 4292 int atid = -1; 4293 4294 mtx_lock(&t->atid_lock); 4295 if (t->afree && !t->atid_alloc_stopped) { 4296 union aopen_entry *p = t->afree; 4297 4298 atid = p - t->atid_tab; 4299 MPASS(atid <= M_TID_TID); 4300 t->afree = p->next; 4301 p->data = ctx; 4302 t->atids_in_use++; 4303 } 4304 mtx_unlock(&t->atid_lock); 4305 return (atid); 4306 } 4307 4308 void * 4309 lookup_atid(struct adapter *sc, int atid) 4310 { 4311 struct tid_info *t = &sc->tids; 4312 4313 return (t->atid_tab[atid].data); 4314 } 4315 4316 void 4317 free_atid(struct adapter *sc, int atid) 4318 { 4319 struct tid_info *t = &sc->tids; 4320 union aopen_entry *p = &t->atid_tab[atid]; 4321 4322 mtx_lock(&t->atid_lock); 4323 p->next = t->afree; 4324 t->afree = p; 4325 t->atids_in_use--; 4326 mtx_unlock(&t->atid_lock); 4327 } 4328 4329 static void 4330 queue_tid_release(struct adapter *sc, int tid) 4331 { 4332 4333 CXGBE_UNIMPLEMENTED("deferred tid release"); 4334 } 4335 4336 void 4337 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4338 { 4339 struct wrqe *wr; 4340 struct cpl_tid_release *req; 4341 4342 wr = alloc_wrqe(sizeof(*req), ctrlq); 4343 if (wr == NULL) { 4344 queue_tid_release(sc, tid); /* defer */ 4345 return; 4346 } 4347 req = wrtod(wr); 4348 4349 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4350 4351 t4_wrq_tx(sc, wr); 4352 } 4353 4354 static int 4355 t4_range_cmp(const void *a, const void *b) 4356 { 4357 return ((const struct t4_range *)a)->start - 4358 ((const struct t4_range *)b)->start; 4359 } 4360 4361 /* 4362 * Verify that the memory range specified by the addr/len pair is valid within 4363 * the card's address space. 4364 */ 4365 static int 4366 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4367 { 4368 struct t4_range mem_ranges[4], *r, *next; 4369 uint32_t em, addr_len; 4370 int i, n, remaining; 4371 4372 /* Memory can only be accessed in naturally aligned 4 byte units */ 4373 if (addr & 3 || len & 3 || len == 0) 4374 return (EINVAL); 4375 4376 /* Enabled memories */ 4377 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4378 4379 r = &mem_ranges[0]; 4380 n = 0; 4381 bzero(r, sizeof(mem_ranges)); 4382 if (em & F_EDRAM0_ENABLE) { 4383 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4384 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4385 if (r->size > 0) { 4386 r->start = G_EDRAM0_BASE(addr_len) << 20; 4387 if (addr >= r->start && 4388 addr + len <= r->start + r->size) 4389 return (0); 4390 r++; 4391 n++; 4392 } 4393 } 4394 if (em & F_EDRAM1_ENABLE) { 4395 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4396 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4397 if (r->size > 0) { 4398 r->start = G_EDRAM1_BASE(addr_len) << 20; 4399 if (addr >= r->start && 4400 addr + len <= r->start + r->size) 4401 return (0); 4402 r++; 4403 n++; 4404 } 4405 } 4406 if (em & F_EXT_MEM_ENABLE) { 4407 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4408 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4409 if (r->size > 0) { 4410 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4411 if (addr >= r->start && 4412 addr + len <= r->start + r->size) 4413 return (0); 4414 r++; 4415 n++; 4416 } 4417 } 4418 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4419 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4420 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4421 if (r->size > 0) { 4422 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4423 if (addr >= r->start && 4424 addr + len <= r->start + r->size) 4425 return (0); 4426 r++; 4427 n++; 4428 } 4429 } 4430 MPASS(n <= nitems(mem_ranges)); 4431 4432 if (n > 1) { 4433 /* Sort and merge the ranges. */ 4434 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4435 4436 /* Start from index 0 and examine the next n - 1 entries. */ 4437 r = &mem_ranges[0]; 4438 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4439 4440 MPASS(r->size > 0); /* r is a valid entry. */ 4441 next = r + 1; 4442 MPASS(next->size > 0); /* and so is the next one. */ 4443 4444 while (r->start + r->size >= next->start) { 4445 /* Merge the next one into the current entry. */ 4446 r->size = max(r->start + r->size, 4447 next->start + next->size) - r->start; 4448 n--; /* One fewer entry in total. */ 4449 if (--remaining == 0) 4450 goto done; /* short circuit */ 4451 next++; 4452 } 4453 if (next != r + 1) { 4454 /* 4455 * Some entries were merged into r and next 4456 * points to the first valid entry that couldn't 4457 * be merged. 4458 */ 4459 MPASS(next->size > 0); /* must be valid */ 4460 memcpy(r + 1, next, remaining * sizeof(*r)); 4461 #ifdef INVARIANTS 4462 /* 4463 * This so that the foo->size assertion in the 4464 * next iteration of the loop do the right 4465 * thing for entries that were pulled up and are 4466 * no longer valid. 4467 */ 4468 MPASS(n < nitems(mem_ranges)); 4469 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4470 sizeof(struct t4_range)); 4471 #endif 4472 } 4473 } 4474 done: 4475 /* Done merging the ranges. */ 4476 MPASS(n > 0); 4477 r = &mem_ranges[0]; 4478 for (i = 0; i < n; i++, r++) { 4479 if (addr >= r->start && 4480 addr + len <= r->start + r->size) 4481 return (0); 4482 } 4483 } 4484 4485 return (EFAULT); 4486 } 4487 4488 static int 4489 fwmtype_to_hwmtype(int mtype) 4490 { 4491 4492 switch (mtype) { 4493 case FW_MEMTYPE_EDC0: 4494 return (MEM_EDC0); 4495 case FW_MEMTYPE_EDC1: 4496 return (MEM_EDC1); 4497 case FW_MEMTYPE_EXTMEM: 4498 return (MEM_MC0); 4499 case FW_MEMTYPE_EXTMEM1: 4500 return (MEM_MC1); 4501 default: 4502 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4503 } 4504 } 4505 4506 /* 4507 * Verify that the memory range specified by the memtype/offset/len pair is 4508 * valid and lies entirely within the memtype specified. The global address of 4509 * the start of the range is returned in addr. 4510 */ 4511 static int 4512 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4513 uint32_t *addr) 4514 { 4515 uint32_t em, addr_len, maddr; 4516 4517 /* Memory can only be accessed in naturally aligned 4 byte units */ 4518 if (off & 3 || len & 3 || len == 0) 4519 return (EINVAL); 4520 4521 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4522 switch (fwmtype_to_hwmtype(mtype)) { 4523 case MEM_EDC0: 4524 if (!(em & F_EDRAM0_ENABLE)) 4525 return (EINVAL); 4526 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4527 maddr = G_EDRAM0_BASE(addr_len) << 20; 4528 break; 4529 case MEM_EDC1: 4530 if (!(em & F_EDRAM1_ENABLE)) 4531 return (EINVAL); 4532 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4533 maddr = G_EDRAM1_BASE(addr_len) << 20; 4534 break; 4535 case MEM_MC: 4536 if (!(em & F_EXT_MEM_ENABLE)) 4537 return (EINVAL); 4538 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4539 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4540 break; 4541 case MEM_MC1: 4542 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4543 return (EINVAL); 4544 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4545 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4546 break; 4547 default: 4548 return (EINVAL); 4549 } 4550 4551 *addr = maddr + off; /* global address */ 4552 return (validate_mem_range(sc, *addr, len)); 4553 } 4554 4555 static int 4556 fixup_devlog_params(struct adapter *sc) 4557 { 4558 struct devlog_params *dparams = &sc->params.devlog; 4559 int rc; 4560 4561 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4562 dparams->size, &dparams->addr); 4563 4564 return (rc); 4565 } 4566 4567 static void 4568 update_nirq(struct intrs_and_queues *iaq, int nports) 4569 { 4570 4571 iaq->nirq = T4_EXTRA_INTR; 4572 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4573 iaq->nirq += nports * iaq->nofldrxq; 4574 iaq->nirq += nports * (iaq->num_vis - 1) * 4575 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4576 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4577 } 4578 4579 /* 4580 * Adjust requirements to fit the number of interrupts available. 4581 */ 4582 static void 4583 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4584 int navail) 4585 { 4586 int old_nirq; 4587 const int nports = sc->params.nports; 4588 4589 MPASS(nports > 0); 4590 MPASS(navail > 0); 4591 4592 bzero(iaq, sizeof(*iaq)); 4593 iaq->intr_type = itype; 4594 iaq->num_vis = t4_num_vis; 4595 iaq->ntxq = t4_ntxq; 4596 iaq->ntxq_vi = t4_ntxq_vi; 4597 iaq->nrxq = t4_nrxq; 4598 iaq->nrxq_vi = t4_nrxq_vi; 4599 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4600 if (is_offload(sc) || is_ethoffload(sc)) { 4601 if (sc->params.tid_qid_sel_mask == 0) { 4602 iaq->nofldtxq = t4_nofldtxq; 4603 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4604 } else { 4605 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores); 4606 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi, 4607 sc->params.ncores); 4608 if (iaq->nofldtxq != t4_nofldtxq) 4609 device_printf(sc->dev, 4610 "nofldtxq updated (%d -> %d) for correct" 4611 " operation with %d firmware cores.\n", 4612 t4_nofldtxq, iaq->nofldtxq, 4613 sc->params.ncores); 4614 if (iaq->num_vis > 1 && 4615 iaq->nofldtxq_vi != t4_nofldtxq_vi) 4616 device_printf(sc->dev, 4617 "nofldtxq_vi updated (%d -> %d) for correct" 4618 " operation with %d firmware cores.\n", 4619 t4_nofldtxq_vi, iaq->nofldtxq_vi, 4620 sc->params.ncores); 4621 } 4622 } 4623 #endif 4624 #ifdef TCP_OFFLOAD 4625 if (is_offload(sc)) { 4626 iaq->nofldrxq = t4_nofldrxq; 4627 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4628 } 4629 #endif 4630 #ifdef DEV_NETMAP 4631 if (t4_native_netmap & NN_MAIN_VI) { 4632 iaq->nnmtxq = t4_nnmtxq; 4633 iaq->nnmrxq = t4_nnmrxq; 4634 } 4635 if (t4_native_netmap & NN_EXTRA_VI) { 4636 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4637 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4638 } 4639 #endif 4640 4641 update_nirq(iaq, nports); 4642 if (iaq->nirq <= navail && 4643 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4644 /* 4645 * This is the normal case -- there are enough interrupts for 4646 * everything. 4647 */ 4648 goto done; 4649 } 4650 4651 /* 4652 * If extra VIs have been configured try reducing their count and see if 4653 * that works. 4654 */ 4655 while (iaq->num_vis > 1) { 4656 iaq->num_vis--; 4657 update_nirq(iaq, nports); 4658 if (iaq->nirq <= navail && 4659 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4660 device_printf(sc->dev, "virtual interfaces per port " 4661 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4662 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4663 "itype %d, navail %u, nirq %d.\n", 4664 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4665 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4666 itype, navail, iaq->nirq); 4667 goto done; 4668 } 4669 } 4670 4671 /* 4672 * Extra VIs will not be created. Log a message if they were requested. 4673 */ 4674 MPASS(iaq->num_vis == 1); 4675 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4676 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4677 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4678 if (iaq->num_vis != t4_num_vis) { 4679 device_printf(sc->dev, "extra virtual interfaces disabled. " 4680 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4681 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4682 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4683 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4684 } 4685 4686 /* 4687 * Keep reducing the number of NIC rx queues to the next lower power of 4688 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4689 * if that works. 4690 */ 4691 do { 4692 if (iaq->nrxq > 1) { 4693 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4694 if (iaq->nnmrxq > iaq->nrxq) 4695 iaq->nnmrxq = iaq->nrxq; 4696 } 4697 if (iaq->nofldrxq > 1) 4698 iaq->nofldrxq >>= 1; 4699 4700 old_nirq = iaq->nirq; 4701 update_nirq(iaq, nports); 4702 if (iaq->nirq <= navail && 4703 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4704 device_printf(sc->dev, "running with reduced number of " 4705 "rx queues because of shortage of interrupts. " 4706 "nrxq=%u, nofldrxq=%u. " 4707 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4708 iaq->nofldrxq, itype, navail, iaq->nirq); 4709 goto done; 4710 } 4711 } while (old_nirq != iaq->nirq); 4712 4713 /* One interrupt for everything. Ugh. */ 4714 device_printf(sc->dev, "running with minimal number of queues. " 4715 "itype %d, navail %u.\n", itype, navail); 4716 iaq->nirq = 1; 4717 iaq->nrxq = 1; 4718 iaq->ntxq = 1; 4719 if (iaq->nofldrxq > 0) { 4720 iaq->nofldrxq = 1; 4721 iaq->nofldtxq = 1; 4722 if (sc->params.tid_qid_sel_mask == 0) 4723 iaq->nofldtxq = 1; 4724 else 4725 iaq->nofldtxq = sc->params.ncores; 4726 } 4727 iaq->nnmtxq = 0; 4728 iaq->nnmrxq = 0; 4729 done: 4730 MPASS(iaq->num_vis > 0); 4731 if (iaq->num_vis > 1) { 4732 MPASS(iaq->nrxq_vi > 0); 4733 MPASS(iaq->ntxq_vi > 0); 4734 } 4735 MPASS(iaq->nirq > 0); 4736 MPASS(iaq->nrxq > 0); 4737 MPASS(iaq->ntxq > 0); 4738 if (itype == INTR_MSI) 4739 MPASS(powerof2(iaq->nirq)); 4740 if (sc->params.tid_qid_sel_mask != 0) 4741 MPASS(iaq->nofldtxq % sc->params.ncores == 0); 4742 } 4743 4744 static int 4745 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4746 { 4747 int rc, itype, navail, nalloc; 4748 4749 for (itype = INTR_MSIX; itype; itype >>= 1) { 4750 4751 if ((itype & t4_intr_types) == 0) 4752 continue; /* not allowed */ 4753 4754 if (itype == INTR_MSIX) 4755 navail = pci_msix_count(sc->dev); 4756 else if (itype == INTR_MSI) 4757 navail = pci_msi_count(sc->dev); 4758 else 4759 navail = 1; 4760 restart: 4761 if (navail == 0) 4762 continue; 4763 4764 calculate_iaq(sc, iaq, itype, navail); 4765 nalloc = iaq->nirq; 4766 rc = 0; 4767 if (itype == INTR_MSIX) 4768 rc = pci_alloc_msix(sc->dev, &nalloc); 4769 else if (itype == INTR_MSI) 4770 rc = pci_alloc_msi(sc->dev, &nalloc); 4771 4772 if (rc == 0 && nalloc > 0) { 4773 if (nalloc == iaq->nirq) 4774 return (0); 4775 4776 /* 4777 * Didn't get the number requested. Use whatever number 4778 * the kernel is willing to allocate. 4779 */ 4780 device_printf(sc->dev, "fewer vectors than requested, " 4781 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4782 itype, iaq->nirq, nalloc); 4783 pci_release_msi(sc->dev); 4784 navail = nalloc; 4785 goto restart; 4786 } 4787 4788 device_printf(sc->dev, 4789 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4790 itype, rc, iaq->nirq, nalloc); 4791 } 4792 4793 device_printf(sc->dev, 4794 "failed to find a usable interrupt type. " 4795 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4796 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4797 4798 return (ENXIO); 4799 } 4800 4801 #define FW_VERSION(chip) ( \ 4802 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4803 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4804 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4805 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4806 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4807 4808 /* Just enough of fw_hdr to cover all version info. */ 4809 struct fw_h { 4810 __u8 ver; 4811 __u8 chip; 4812 __be16 len512; 4813 __be32 fw_ver; 4814 __be32 tp_microcode_ver; 4815 __u8 intfver_nic; 4816 __u8 intfver_vnic; 4817 __u8 intfver_ofld; 4818 __u8 intfver_ri; 4819 __u8 intfver_iscsipdu; 4820 __u8 intfver_iscsi; 4821 __u8 intfver_fcoepdu; 4822 __u8 intfver_fcoe; 4823 }; 4824 /* Spot check a couple of fields. */ 4825 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4826 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4827 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4828 4829 struct fw_info { 4830 uint8_t chip; 4831 char *kld_name; 4832 char *fw_mod_name; 4833 struct fw_h fw_h; 4834 } fw_info[] = { 4835 { 4836 .chip = CHELSIO_T4, 4837 .kld_name = "t4fw_cfg", 4838 .fw_mod_name = "t4fw", 4839 .fw_h = { 4840 .chip = FW_HDR_CHIP_T4, 4841 .fw_ver = htobe32(FW_VERSION(T4)), 4842 .intfver_nic = FW_INTFVER(T4, NIC), 4843 .intfver_vnic = FW_INTFVER(T4, VNIC), 4844 .intfver_ofld = FW_INTFVER(T4, OFLD), 4845 .intfver_ri = FW_INTFVER(T4, RI), 4846 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4847 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4848 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4849 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4850 }, 4851 }, { 4852 .chip = CHELSIO_T5, 4853 .kld_name = "t5fw_cfg", 4854 .fw_mod_name = "t5fw", 4855 .fw_h = { 4856 .chip = FW_HDR_CHIP_T5, 4857 .fw_ver = htobe32(FW_VERSION(T5)), 4858 .intfver_nic = FW_INTFVER(T5, NIC), 4859 .intfver_vnic = FW_INTFVER(T5, VNIC), 4860 .intfver_ofld = FW_INTFVER(T5, OFLD), 4861 .intfver_ri = FW_INTFVER(T5, RI), 4862 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4863 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4864 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4865 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4866 }, 4867 }, { 4868 .chip = CHELSIO_T6, 4869 .kld_name = "t6fw_cfg", 4870 .fw_mod_name = "t6fw", 4871 .fw_h = { 4872 .chip = FW_HDR_CHIP_T6, 4873 .fw_ver = htobe32(FW_VERSION(T6)), 4874 .intfver_nic = FW_INTFVER(T6, NIC), 4875 .intfver_vnic = FW_INTFVER(T6, VNIC), 4876 .intfver_ofld = FW_INTFVER(T6, OFLD), 4877 .intfver_ri = FW_INTFVER(T6, RI), 4878 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4879 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4880 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4881 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4882 }, 4883 }, { 4884 .chip = CHELSIO_T7, 4885 .kld_name = "t7fw_cfg", 4886 .fw_mod_name = "t7fw", 4887 .fw_h = { 4888 .chip = FW_HDR_CHIP_T7, 4889 .fw_ver = htobe32(FW_VERSION(T7)), 4890 .intfver_nic = FW_INTFVER(T7, NIC), 4891 .intfver_vnic = FW_INTFVER(T7, VNIC), 4892 .intfver_ofld = FW_INTFVER(T7, OFLD), 4893 .intfver_ri = FW_INTFVER(T7, RI), 4894 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU), 4895 .intfver_iscsi = FW_INTFVER(T7, ISCSI), 4896 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU), 4897 .intfver_fcoe = FW_INTFVER(T7, FCOE), 4898 }, 4899 } 4900 }; 4901 4902 static struct fw_info * 4903 find_fw_info(int chip) 4904 { 4905 int i; 4906 4907 for (i = 0; i < nitems(fw_info); i++) { 4908 if (fw_info[i].chip == chip) 4909 return (&fw_info[i]); 4910 } 4911 return (NULL); 4912 } 4913 4914 /* 4915 * Is the given firmware API compatible with the one the driver was compiled 4916 * with? 4917 */ 4918 static int 4919 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4920 { 4921 4922 /* short circuit if it's the exact same firmware version */ 4923 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4924 return (1); 4925 4926 /* 4927 * XXX: Is this too conservative? Perhaps I should limit this to the 4928 * features that are supported in the driver. 4929 */ 4930 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4931 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4932 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4933 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4934 return (1); 4935 #undef SAME_INTF 4936 4937 return (0); 4938 } 4939 4940 static int 4941 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4942 const struct firmware **fw) 4943 { 4944 struct fw_info *fw_info; 4945 4946 *dcfg = NULL; 4947 if (fw != NULL) 4948 *fw = NULL; 4949 4950 fw_info = find_fw_info(chip_id(sc)); 4951 if (fw_info == NULL) { 4952 device_printf(sc->dev, 4953 "unable to look up firmware information for chip %d.\n", 4954 chip_id(sc)); 4955 return (EINVAL); 4956 } 4957 4958 *dcfg = firmware_get(fw_info->kld_name); 4959 if (*dcfg != NULL) { 4960 if (fw != NULL) 4961 *fw = firmware_get(fw_info->fw_mod_name); 4962 return (0); 4963 } 4964 4965 return (ENOENT); 4966 } 4967 4968 static void 4969 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4970 const struct firmware *fw) 4971 { 4972 4973 if (fw != NULL) 4974 firmware_put(fw, FIRMWARE_UNLOAD); 4975 if (dcfg != NULL) 4976 firmware_put(dcfg, FIRMWARE_UNLOAD); 4977 } 4978 4979 /* 4980 * Return values: 4981 * 0 means no firmware install attempted. 4982 * ERESTART means a firmware install was attempted and was successful. 4983 * +ve errno means a firmware install was attempted but failed. 4984 */ 4985 static int 4986 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4987 const struct fw_h *drv_fw, const char *reason, int *already) 4988 { 4989 const struct firmware *cfg, *fw; 4990 const uint32_t c = be32toh(card_fw->fw_ver); 4991 uint32_t d, k; 4992 int rc, fw_install; 4993 struct fw_h bundled_fw; 4994 bool load_attempted; 4995 4996 cfg = fw = NULL; 4997 load_attempted = false; 4998 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4999 5000 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 5001 if (t4_fw_install < 0) { 5002 rc = load_fw_module(sc, &cfg, &fw); 5003 if (rc != 0 || fw == NULL) { 5004 device_printf(sc->dev, 5005 "failed to load firmware module: %d. cfg %p, fw %p;" 5006 " will use compiled-in firmware version for" 5007 "hw.cxgbe.fw_install checks.\n", 5008 rc, cfg, fw); 5009 } else { 5010 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 5011 } 5012 load_attempted = true; 5013 } 5014 d = be32toh(bundled_fw.fw_ver); 5015 5016 if (reason != NULL) 5017 goto install; 5018 5019 if ((sc->flags & FW_OK) == 0) { 5020 5021 if (c == 0xffffffff) { 5022 reason = "missing"; 5023 goto install; 5024 } 5025 5026 rc = 0; 5027 goto done; 5028 } 5029 5030 if (!fw_compatible(card_fw, &bundled_fw)) { 5031 reason = "incompatible or unusable"; 5032 goto install; 5033 } 5034 5035 if (d > c) { 5036 reason = "older than the version bundled with this driver"; 5037 goto install; 5038 } 5039 5040 if (fw_install == 2 && d != c) { 5041 reason = "different than the version bundled with this driver"; 5042 goto install; 5043 } 5044 5045 /* No reason to do anything to the firmware already on the card. */ 5046 rc = 0; 5047 goto done; 5048 5049 install: 5050 rc = 0; 5051 if ((*already)++) 5052 goto done; 5053 5054 if (fw_install == 0) { 5055 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5056 "but the driver is prohibited from installing a firmware " 5057 "on the card.\n", 5058 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5059 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5060 5061 goto done; 5062 } 5063 5064 /* 5065 * We'll attempt to install a firmware. Load the module first (if it 5066 * hasn't been loaded already). 5067 */ 5068 if (!load_attempted) { 5069 rc = load_fw_module(sc, &cfg, &fw); 5070 if (rc != 0 || fw == NULL) { 5071 device_printf(sc->dev, 5072 "failed to load firmware module: %d. cfg %p, fw %p\n", 5073 rc, cfg, fw); 5074 /* carry on */ 5075 } 5076 } 5077 if (fw == NULL) { 5078 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5079 "but the driver cannot take corrective action because it " 5080 "is unable to load the firmware module.\n", 5081 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5082 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5083 rc = sc->flags & FW_OK ? 0 : ENOENT; 5084 goto done; 5085 } 5086 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 5087 if (k != d) { 5088 MPASS(t4_fw_install > 0); 5089 device_printf(sc->dev, 5090 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 5091 "expecting (%u.%u.%u.%u) and will not be used.\n", 5092 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 5093 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 5094 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5095 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5096 rc = sc->flags & FW_OK ? 0 : EINVAL; 5097 goto done; 5098 } 5099 5100 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5101 "installing firmware %u.%u.%u.%u on card.\n", 5102 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5103 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 5104 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5105 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5106 5107 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 5108 if (rc != 0) { 5109 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 5110 } else { 5111 /* Installed successfully, update the cached header too. */ 5112 rc = ERESTART; 5113 memcpy(card_fw, fw->data, sizeof(*card_fw)); 5114 } 5115 done: 5116 unload_fw_module(sc, cfg, fw); 5117 5118 return (rc); 5119 } 5120 5121 /* 5122 * Establish contact with the firmware and attempt to become the master driver. 5123 * 5124 * A firmware will be installed to the card if needed (if the driver is allowed 5125 * to do so). 5126 */ 5127 static int 5128 contact_firmware(struct adapter *sc) 5129 { 5130 int rc, already = 0; 5131 enum dev_state state; 5132 struct fw_info *fw_info; 5133 struct fw_hdr *card_fw; /* fw on the card */ 5134 const struct fw_h *drv_fw; 5135 5136 fw_info = find_fw_info(chip_id(sc)); 5137 if (fw_info == NULL) { 5138 device_printf(sc->dev, 5139 "unable to look up firmware information for chip %d.\n", 5140 chip_id(sc)); 5141 return (EINVAL); 5142 } 5143 drv_fw = &fw_info->fw_h; 5144 5145 /* Read the header of the firmware on the card */ 5146 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 5147 restart: 5148 rc = -t4_get_fw_hdr(sc, card_fw); 5149 if (rc != 0) { 5150 device_printf(sc->dev, 5151 "unable to read firmware header from card's flash: %d\n", 5152 rc); 5153 goto done; 5154 } 5155 5156 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 5157 &already); 5158 if (rc == ERESTART) 5159 goto restart; 5160 if (rc != 0) 5161 goto done; 5162 5163 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 5164 if (rc < 0 || state == DEV_STATE_ERR) { 5165 rc = -rc; 5166 device_printf(sc->dev, 5167 "failed to connect to the firmware: %d, %d. " 5168 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5169 #if 0 5170 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5171 "not responding properly to HELLO", &already) == ERESTART) 5172 goto restart; 5173 #endif 5174 goto done; 5175 } 5176 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 5177 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 5178 5179 if (rc == sc->pf) { 5180 sc->flags |= MASTER_PF; 5181 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5182 NULL, &already); 5183 if (rc == ERESTART) 5184 rc = 0; 5185 else if (rc != 0) 5186 goto done; 5187 } else if (state == DEV_STATE_UNINIT) { 5188 /* 5189 * We didn't get to be the master so we definitely won't be 5190 * configuring the chip. It's a bug if someone else hasn't 5191 * configured it already. 5192 */ 5193 device_printf(sc->dev, "couldn't be master(%d), " 5194 "device not already initialized either(%d). " 5195 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5196 rc = EPROTO; 5197 goto done; 5198 } else { 5199 /* 5200 * Some other PF is the master and has configured the chip. 5201 * This is allowed but untested. 5202 */ 5203 device_printf(sc->dev, "PF%d is master, device state %d. " 5204 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5205 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5206 sc->cfcsum = 0; 5207 rc = 0; 5208 } 5209 done: 5210 if (rc != 0 && sc->flags & FW_OK) { 5211 t4_fw_bye(sc, sc->mbox); 5212 sc->flags &= ~FW_OK; 5213 } 5214 free(card_fw, M_CXGBE); 5215 return (rc); 5216 } 5217 5218 static int 5219 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5220 uint32_t mtype, uint32_t moff, u_int maxlen) 5221 { 5222 struct fw_info *fw_info; 5223 const struct firmware *dcfg, *rcfg = NULL; 5224 const uint32_t *cfdata; 5225 uint32_t cflen, addr; 5226 int rc; 5227 5228 load_fw_module(sc, &dcfg, NULL); 5229 5230 /* Card specific interpretation of "default". */ 5231 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5232 if (pci_get_device(sc->dev) == 0x440a) 5233 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5234 if (is_fpga(sc)) 5235 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5236 } 5237 5238 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5239 if (dcfg == NULL) { 5240 device_printf(sc->dev, 5241 "KLD with default config is not available.\n"); 5242 rc = ENOENT; 5243 goto done; 5244 } 5245 cfdata = dcfg->data; 5246 cflen = dcfg->datasize & ~3; 5247 } else { 5248 char s[32]; 5249 5250 fw_info = find_fw_info(chip_id(sc)); 5251 if (fw_info == NULL) { 5252 device_printf(sc->dev, 5253 "unable to look up firmware information for chip %d.\n", 5254 chip_id(sc)); 5255 rc = EINVAL; 5256 goto done; 5257 } 5258 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5259 5260 rcfg = firmware_get(s); 5261 if (rcfg == NULL) { 5262 device_printf(sc->dev, 5263 "unable to load module \"%s\" for configuration " 5264 "profile \"%s\".\n", s, cfg_file); 5265 rc = ENOENT; 5266 goto done; 5267 } 5268 cfdata = rcfg->data; 5269 cflen = rcfg->datasize & ~3; 5270 } 5271 5272 if (cflen > maxlen) { 5273 device_printf(sc->dev, 5274 "config file too long (%d, max allowed is %d).\n", 5275 cflen, maxlen); 5276 rc = EINVAL; 5277 goto done; 5278 } 5279 5280 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5281 if (rc != 0) { 5282 device_printf(sc->dev, 5283 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5284 __func__, mtype, moff, cflen, rc); 5285 rc = EINVAL; 5286 goto done; 5287 } 5288 write_via_memwin(sc, 2, addr, cfdata, cflen); 5289 done: 5290 if (rcfg != NULL) 5291 firmware_put(rcfg, FIRMWARE_UNLOAD); 5292 unload_fw_module(sc, dcfg, NULL); 5293 return (rc); 5294 } 5295 5296 struct caps_allowed { 5297 uint16_t nbmcaps; 5298 uint16_t linkcaps; 5299 uint16_t switchcaps; 5300 uint16_t nvmecaps; 5301 uint16_t niccaps; 5302 uint16_t toecaps; 5303 uint16_t rdmacaps; 5304 uint16_t cryptocaps; 5305 uint16_t iscsicaps; 5306 uint16_t fcoecaps; 5307 }; 5308 5309 #define FW_PARAM_DEV(param) \ 5310 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5311 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5312 #define FW_PARAM_PFVF(param) \ 5313 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5314 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5315 5316 /* 5317 * Provide a configuration profile to the firmware and have it initialize the 5318 * chip accordingly. This may involve uploading a configuration file to the 5319 * card. 5320 */ 5321 static int 5322 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5323 const struct caps_allowed *caps_allowed) 5324 { 5325 int rc; 5326 struct fw_caps_config_cmd caps; 5327 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5328 unsigned int maxlen = 0; 5329 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen); 5330 5331 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5332 if (rc != 0) { 5333 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5334 return (rc); 5335 } 5336 5337 bzero(&caps, sizeof(caps)); 5338 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5339 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5340 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5341 mtype = 0; 5342 moff = 0; 5343 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5344 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5345 mtype = FW_MEMTYPE_FLASH; 5346 moff = cfg_addr; 5347 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5348 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5349 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5350 FW_LEN16(caps)); 5351 } else { 5352 /* 5353 * Ask the firmware where it wants us to upload the config file. 5354 */ 5355 param = FW_PARAM_DEV(CF); 5356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5357 if (rc != 0) { 5358 /* No support for config file? Shouldn't happen. */ 5359 device_printf(sc->dev, 5360 "failed to query config file location: %d.\n", rc); 5361 goto done; 5362 } 5363 mtype = G_FW_PARAMS_PARAM_Y(val); 5364 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5365 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5366 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5367 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5368 FW_LEN16(caps)); 5369 5370 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen); 5371 if (rc != 0) { 5372 device_printf(sc->dev, 5373 "failed to upload config file to card: %d.\n", rc); 5374 goto done; 5375 } 5376 } 5377 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5378 if (rc != 0) { 5379 device_printf(sc->dev, "failed to pre-process config file: %d " 5380 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5381 goto done; 5382 } 5383 5384 finicsum = be32toh(caps.finicsum); 5385 cfcsum = be32toh(caps.cfcsum); /* actual */ 5386 if (finicsum != cfcsum) { 5387 device_printf(sc->dev, 5388 "WARNING: config file checksum mismatch: %08x %08x\n", 5389 finicsum, cfcsum); 5390 } 5391 sc->cfcsum = cfcsum; 5392 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5393 5394 /* 5395 * Let the firmware know what features will (not) be used so it can tune 5396 * things accordingly. 5397 */ 5398 #define LIMIT_CAPS(x) do { \ 5399 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5400 } while (0) 5401 LIMIT_CAPS(nbm); 5402 LIMIT_CAPS(link); 5403 LIMIT_CAPS(switch); 5404 LIMIT_CAPS(nvme); 5405 LIMIT_CAPS(nic); 5406 LIMIT_CAPS(toe); 5407 LIMIT_CAPS(rdma); 5408 LIMIT_CAPS(crypto); 5409 LIMIT_CAPS(iscsi); 5410 LIMIT_CAPS(fcoe); 5411 #undef LIMIT_CAPS 5412 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5413 /* 5414 * TOE and hashfilters are mutually exclusive. It is a config 5415 * file or firmware bug if both are reported as available. Try 5416 * to cope with the situation in non-debug builds by disabling 5417 * TOE. 5418 */ 5419 MPASS(caps.toecaps == 0); 5420 5421 caps.toecaps = 0; 5422 caps.rdmacaps = 0; 5423 caps.iscsicaps = 0; 5424 caps.nvmecaps = 0; 5425 } 5426 5427 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5428 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5429 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5430 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5431 if (rc != 0) { 5432 device_printf(sc->dev, 5433 "failed to process config file: %d.\n", rc); 5434 goto done; 5435 } 5436 5437 t4_tweak_chip_settings(sc); 5438 set_params__pre_init(sc); 5439 5440 /* get basic stuff going */ 5441 rc = -t4_fw_initialize(sc, sc->mbox); 5442 if (rc != 0) { 5443 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5444 goto done; 5445 } 5446 done: 5447 return (rc); 5448 } 5449 5450 /* 5451 * Partition chip resources for use between various PFs, VFs, etc. 5452 */ 5453 static int 5454 partition_resources(struct adapter *sc) 5455 { 5456 char cfg_file[sizeof(t4_cfg_file)]; 5457 struct caps_allowed caps_allowed; 5458 int rc; 5459 bool fallback; 5460 5461 /* Only the master driver gets to configure the chip resources. */ 5462 MPASS(sc->flags & MASTER_PF); 5463 5464 #define COPY_CAPS(x) do { \ 5465 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5466 } while (0) 5467 bzero(&caps_allowed, sizeof(caps_allowed)); 5468 COPY_CAPS(nbm); 5469 COPY_CAPS(link); 5470 COPY_CAPS(switch); 5471 COPY_CAPS(nvme); 5472 COPY_CAPS(nic); 5473 COPY_CAPS(toe); 5474 COPY_CAPS(rdma); 5475 COPY_CAPS(crypto); 5476 COPY_CAPS(iscsi); 5477 COPY_CAPS(fcoe); 5478 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5479 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5480 retry: 5481 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5482 if (rc != 0 && fallback) { 5483 dump_devlog(sc); 5484 device_printf(sc->dev, 5485 "failed (%d) to configure card with \"%s\" profile, " 5486 "will fall back to a basic configuration and retry.\n", 5487 rc, cfg_file); 5488 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5489 bzero(&caps_allowed, sizeof(caps_allowed)); 5490 COPY_CAPS(switch); 5491 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5492 fallback = false; 5493 goto retry; 5494 } 5495 #undef COPY_CAPS 5496 return (rc); 5497 } 5498 5499 /* 5500 * Retrieve parameters that are needed (or nice to have) very early. 5501 */ 5502 static int 5503 get_params__pre_init(struct adapter *sc) 5504 { 5505 int rc; 5506 uint32_t param[2], val[2]; 5507 5508 t4_get_version_info(sc); 5509 5510 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5511 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5512 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5513 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5514 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5515 5516 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5517 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5518 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5519 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5520 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5521 5522 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5523 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5524 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5525 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5526 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5527 5528 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5529 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5530 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5531 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5532 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5533 5534 param[0] = FW_PARAM_DEV(PORTVEC); 5535 param[1] = FW_PARAM_DEV(CCLK); 5536 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5537 if (rc != 0) { 5538 device_printf(sc->dev, 5539 "failed to query parameters (pre_init): %d.\n", rc); 5540 return (rc); 5541 } 5542 5543 sc->params.portvec = val[0]; 5544 sc->params.nports = bitcount32(val[0]); 5545 sc->params.vpd.cclk = val[1]; 5546 5547 /* Read device log parameters. */ 5548 rc = -t4_init_devlog_ncores_params(sc, 1); 5549 if (rc == 0) 5550 fixup_devlog_params(sc); 5551 else { 5552 device_printf(sc->dev, 5553 "failed to get devlog parameters: %d.\n", rc); 5554 rc = 0; /* devlog isn't critical for device operation */ 5555 } 5556 5557 return (rc); 5558 } 5559 5560 /* 5561 * Any params that need to be set before FW_INITIALIZE. 5562 */ 5563 static int 5564 set_params__pre_init(struct adapter *sc) 5565 { 5566 int rc = 0; 5567 uint32_t param, val; 5568 5569 if (chip_id(sc) >= CHELSIO_T6) { 5570 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5571 val = 1; 5572 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5573 /* firmwares < 1.20.1.0 do not have this param. */ 5574 if (rc == FW_EINVAL && 5575 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5576 rc = 0; 5577 } 5578 if (rc != 0) { 5579 device_printf(sc->dev, 5580 "failed to enable high priority filters :%d.\n", 5581 rc); 5582 } 5583 5584 param = FW_PARAM_DEV(PPOD_EDRAM); 5585 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5586 if (rc == 0 && val == 1) { 5587 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5588 &val); 5589 if (rc != 0) { 5590 device_printf(sc->dev, 5591 "failed to set PPOD_EDRAM: %d.\n", rc); 5592 } 5593 } 5594 } 5595 5596 /* Enable opaque VIIDs with firmwares that support it. */ 5597 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5598 val = 1; 5599 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5600 if (rc == 0 && val == 1) 5601 sc->params.viid_smt_extn_support = true; 5602 else 5603 sc->params.viid_smt_extn_support = false; 5604 5605 return (rc); 5606 } 5607 5608 /* 5609 * Retrieve various parameters that are of interest to the driver. The device 5610 * has been initialized by the firmware at this point. 5611 */ 5612 static int 5613 get_params__post_init(struct adapter *sc) 5614 { 5615 int rc; 5616 uint32_t param[7], val[7]; 5617 struct fw_caps_config_cmd caps; 5618 5619 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5620 param[1] = FW_PARAM_PFVF(EQ_START); 5621 param[2] = FW_PARAM_PFVF(FILTER_START); 5622 param[3] = FW_PARAM_PFVF(FILTER_END); 5623 param[4] = FW_PARAM_PFVF(L2T_START); 5624 param[5] = FW_PARAM_PFVF(L2T_END); 5625 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5626 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5627 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5629 if (rc != 0) { 5630 device_printf(sc->dev, 5631 "failed to query parameters (post_init): %d.\n", rc); 5632 return (rc); 5633 } 5634 5635 sc->sge.iq_start = val[0]; 5636 sc->sge.eq_start = val[1]; 5637 if ((int)val[3] > (int)val[2]) { 5638 sc->tids.ftid_base = val[2]; 5639 sc->tids.ftid_end = val[3]; 5640 sc->tids.nftids = val[3] - val[2] + 1; 5641 } 5642 sc->vres.l2t.start = val[4]; 5643 sc->vres.l2t.size = val[5] - val[4] + 1; 5644 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5645 if (sc->vres.l2t.size > 0) 5646 MPASS(fls(val[5]) <= S_SYNC_WR); 5647 sc->params.core_vdd = val[6]; 5648 5649 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5650 param[1] = FW_PARAM_PFVF(EQ_END); 5651 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5652 if (rc != 0) { 5653 device_printf(sc->dev, 5654 "failed to query parameters (post_init2): %d.\n", rc); 5655 return (rc); 5656 } 5657 MPASS((int)val[0] >= sc->sge.iq_start); 5658 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5659 MPASS((int)val[1] >= sc->sge.eq_start); 5660 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5661 5662 if (chip_id(sc) >= CHELSIO_T6) { 5663 5664 sc->tids.tid_base = t4_read_reg(sc, 5665 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5666 5667 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5668 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5669 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5670 if (rc != 0) { 5671 device_printf(sc->dev, 5672 "failed to query hpfilter parameters: %d.\n", rc); 5673 return (rc); 5674 } 5675 if ((int)val[1] > (int)val[0]) { 5676 sc->tids.hpftid_base = val[0]; 5677 sc->tids.hpftid_end = val[1]; 5678 sc->tids.nhpftids = val[1] - val[0] + 1; 5679 5680 /* 5681 * These should go off if the layout changes and the 5682 * driver needs to catch up. 5683 */ 5684 MPASS(sc->tids.hpftid_base == 0); 5685 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5686 } 5687 5688 param[0] = FW_PARAM_PFVF(RAWF_START); 5689 param[1] = FW_PARAM_PFVF(RAWF_END); 5690 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5691 if (rc != 0) { 5692 device_printf(sc->dev, 5693 "failed to query rawf parameters: %d.\n", rc); 5694 return (rc); 5695 } 5696 if ((int)val[1] > (int)val[0]) { 5697 sc->rawf_base = val[0]; 5698 sc->nrawf = val[1] - val[0] + 1; 5699 } 5700 } 5701 5702 if (sc->params.ncores > 1) { 5703 MPASS(chip_id(sc) >= CHELSIO_T7); 5704 5705 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK); 5706 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5707 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0; 5708 } 5709 5710 /* 5711 * The parameters that follow may not be available on all firmwares. We 5712 * query them individually rather than in a compound query because old 5713 * firmwares fail the entire query if an unknown parameter is queried. 5714 */ 5715 5716 /* 5717 * MPS buffer group configuration. 5718 */ 5719 param[0] = FW_PARAM_DEV(MPSBGMAP); 5720 val[0] = 0; 5721 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5722 if (rc == 0) 5723 sc->params.mps_bg_map = val[0]; 5724 else 5725 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5726 5727 param[0] = FW_PARAM_DEV(TPCHMAP); 5728 val[0] = 0; 5729 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5730 if (rc == 0) 5731 sc->params.tp_ch_map = val[0]; 5732 else 5733 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5734 5735 param[0] = FW_PARAM_DEV(TX_TPCHMAP); 5736 val[0] = 0; 5737 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5738 if (rc == 0) 5739 sc->params.tx_tp_ch_map = val[0]; 5740 else 5741 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5742 5743 /* 5744 * Determine whether the firmware supports the filter2 work request. 5745 */ 5746 param[0] = FW_PARAM_DEV(FILTER2_WR); 5747 val[0] = 0; 5748 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5749 if (rc == 0) 5750 sc->params.filter2_wr_support = val[0] != 0; 5751 else 5752 sc->params.filter2_wr_support = 0; 5753 5754 /* 5755 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5756 */ 5757 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5758 val[0] = 0; 5759 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5760 if (rc == 0) 5761 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5762 else 5763 sc->params.ulptx_memwrite_dsgl = false; 5764 5765 /* FW_RI_FR_NSMR_TPTE_WR support */ 5766 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5767 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5768 if (rc == 0) 5769 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5770 else 5771 sc->params.fr_nsmr_tpte_wr_support = false; 5772 5773 /* Support for 512 SGL entries per FR MR. */ 5774 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5775 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5776 if (rc == 0) 5777 sc->params.dev_512sgl_mr = val[0] != 0; 5778 else 5779 sc->params.dev_512sgl_mr = false; 5780 5781 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5782 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5783 if (rc == 0) 5784 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5785 else 5786 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5787 5788 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5789 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5790 if (rc == 0) { 5791 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5792 sc->params.nsched_cls = val[0]; 5793 } else 5794 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5795 5796 /* get capabilites */ 5797 bzero(&caps, sizeof(caps)); 5798 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5799 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5800 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5801 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5802 if (rc != 0) { 5803 device_printf(sc->dev, 5804 "failed to get card capabilities: %d.\n", rc); 5805 return (rc); 5806 } 5807 5808 #define READ_CAPS(x) do { \ 5809 sc->x = htobe16(caps.x); \ 5810 } while (0) 5811 READ_CAPS(nbmcaps); 5812 READ_CAPS(linkcaps); 5813 READ_CAPS(switchcaps); 5814 READ_CAPS(nvmecaps); 5815 READ_CAPS(niccaps); 5816 READ_CAPS(toecaps); 5817 READ_CAPS(rdmacaps); 5818 READ_CAPS(cryptocaps); 5819 READ_CAPS(iscsicaps); 5820 READ_CAPS(fcoecaps); 5821 5822 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5823 MPASS(chip_id(sc) > CHELSIO_T4); 5824 MPASS(sc->toecaps == 0); 5825 sc->toecaps = 0; 5826 5827 param[0] = FW_PARAM_DEV(NTID); 5828 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5829 if (rc != 0) { 5830 device_printf(sc->dev, 5831 "failed to query HASHFILTER parameters: %d.\n", rc); 5832 return (rc); 5833 } 5834 sc->tids.ntids = val[0]; 5835 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5836 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5837 sc->tids.ntids -= sc->tids.nhpftids; 5838 } 5839 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5840 sc->params.hash_filter = 1; 5841 } 5842 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5843 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5844 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5845 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5846 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5847 if (rc != 0) { 5848 device_printf(sc->dev, 5849 "failed to query NIC parameters: %d.\n", rc); 5850 return (rc); 5851 } 5852 if ((int)val[1] > (int)val[0]) { 5853 sc->tids.etid_base = val[0]; 5854 sc->tids.etid_end = val[1]; 5855 sc->tids.netids = val[1] - val[0] + 1; 5856 sc->params.eo_wr_cred = val[2]; 5857 sc->params.ethoffload = 1; 5858 } 5859 } 5860 if (sc->toecaps) { 5861 /* query offload-related parameters */ 5862 param[0] = FW_PARAM_DEV(NTID); 5863 param[1] = FW_PARAM_PFVF(SERVER_START); 5864 param[2] = FW_PARAM_PFVF(SERVER_END); 5865 param[3] = FW_PARAM_PFVF(TDDP_START); 5866 param[4] = FW_PARAM_PFVF(TDDP_END); 5867 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5868 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5869 if (rc != 0) { 5870 device_printf(sc->dev, 5871 "failed to query TOE parameters: %d.\n", rc); 5872 return (rc); 5873 } 5874 sc->tids.ntids = val[0]; 5875 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5876 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5877 sc->tids.ntids -= sc->tids.nhpftids; 5878 } 5879 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5880 if ((int)val[2] > (int)val[1]) { 5881 sc->tids.stid_base = val[1]; 5882 sc->tids.nstids = val[2] - val[1] + 1; 5883 } 5884 sc->vres.ddp.start = val[3]; 5885 sc->vres.ddp.size = val[4] - val[3] + 1; 5886 sc->params.ofldq_wr_cred = val[5]; 5887 sc->params.offload = 1; 5888 } else { 5889 /* 5890 * The firmware attempts memfree TOE configuration for -SO cards 5891 * and will report toecaps=0 if it runs out of resources (this 5892 * depends on the config file). It may not report 0 for other 5893 * capabilities dependent on the TOE in this case. Set them to 5894 * 0 here so that the driver doesn't bother tracking resources 5895 * that will never be used. 5896 */ 5897 sc->iscsicaps = 0; 5898 sc->nvmecaps = 0; 5899 sc->rdmacaps = 0; 5900 } 5901 if (sc->nvmecaps || sc->rdmacaps) { 5902 param[0] = FW_PARAM_PFVF(STAG_START); 5903 param[1] = FW_PARAM_PFVF(STAG_END); 5904 param[2] = FW_PARAM_PFVF(PBL_START); 5905 param[3] = FW_PARAM_PFVF(PBL_END); 5906 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5907 if (rc != 0) { 5908 device_printf(sc->dev, 5909 "failed to query NVMe/RDMA parameters: %d.\n", rc); 5910 return (rc); 5911 } 5912 sc->vres.stag.start = val[0]; 5913 sc->vres.stag.size = val[1] - val[0] + 1; 5914 sc->vres.pbl.start = val[2]; 5915 sc->vres.pbl.size = val[3] - val[2] + 1; 5916 } 5917 if (sc->rdmacaps) { 5918 param[0] = FW_PARAM_PFVF(RQ_START); 5919 param[1] = FW_PARAM_PFVF(RQ_END); 5920 param[2] = FW_PARAM_PFVF(SQRQ_START); 5921 param[3] = FW_PARAM_PFVF(SQRQ_END); 5922 param[4] = FW_PARAM_PFVF(CQ_START); 5923 param[5] = FW_PARAM_PFVF(CQ_END); 5924 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5925 if (rc != 0) { 5926 device_printf(sc->dev, 5927 "failed to query RDMA parameters(1): %d.\n", rc); 5928 return (rc); 5929 } 5930 sc->vres.rq.start = val[0]; 5931 sc->vres.rq.size = val[1] - val[0] + 1; 5932 sc->vres.qp.start = val[2]; 5933 sc->vres.qp.size = val[3] - val[2] + 1; 5934 sc->vres.cq.start = val[4]; 5935 sc->vres.cq.size = val[5] - val[4] + 1; 5936 5937 param[0] = FW_PARAM_PFVF(OCQ_START); 5938 param[1] = FW_PARAM_PFVF(OCQ_END); 5939 param[2] = FW_PARAM_PFVF(SRQ_START); 5940 param[3] = FW_PARAM_PFVF(SRQ_END); 5941 param[4] = FW_PARAM_DEV(MAXORDIRD_QP); 5942 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5943 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5944 if (rc != 0) { 5945 device_printf(sc->dev, 5946 "failed to query RDMA parameters(2): %d.\n", rc); 5947 return (rc); 5948 } 5949 sc->vres.ocq.start = val[0]; 5950 sc->vres.ocq.size = val[1] - val[0] + 1; 5951 sc->vres.srq.start = val[2]; 5952 sc->vres.srq.size = val[3] - val[2] + 1; 5953 sc->params.max_ordird_qp = val[4]; 5954 sc->params.max_ird_adapter = val[5]; 5955 } 5956 if (sc->iscsicaps) { 5957 param[0] = FW_PARAM_PFVF(ISCSI_START); 5958 param[1] = FW_PARAM_PFVF(ISCSI_END); 5959 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5960 if (rc != 0) { 5961 device_printf(sc->dev, 5962 "failed to query iSCSI parameters: %d.\n", rc); 5963 return (rc); 5964 } 5965 sc->vres.iscsi.start = val[0]; 5966 sc->vres.iscsi.size = val[1] - val[0] + 1; 5967 } 5968 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5969 param[0] = FW_PARAM_PFVF(TLS_START); 5970 param[1] = FW_PARAM_PFVF(TLS_END); 5971 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5972 if (rc != 0) { 5973 device_printf(sc->dev, 5974 "failed to query TLS parameters: %d.\n", rc); 5975 return (rc); 5976 } 5977 sc->vres.key.start = val[0]; 5978 sc->vres.key.size = val[1] - val[0] + 1; 5979 } 5980 5981 /* 5982 * We've got the params we wanted to query directly from the firmware. 5983 * Grab some others via other means. 5984 */ 5985 t4_init_sge_params(sc); 5986 t4_init_tp_params(sc); 5987 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5988 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5989 5990 rc = t4_verify_chip_settings(sc); 5991 if (rc != 0) 5992 return (rc); 5993 t4_init_rx_buf_info(sc); 5994 5995 return (rc); 5996 } 5997 5998 #ifdef KERN_TLS 5999 static void 6000 ktls_tick(void *arg) 6001 { 6002 struct adapter *sc; 6003 uint32_t tstamp; 6004 6005 sc = arg; 6006 tstamp = tcp_ts_getticks(); 6007 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 6008 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 6009 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 6010 } 6011 6012 static int 6013 t6_config_kern_tls(struct adapter *sc, bool enable) 6014 { 6015 int rc; 6016 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6017 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 6018 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 6019 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 6020 6021 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 6022 if (rc != 0) { 6023 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 6024 enable ? "enable" : "disable", rc); 6025 return (rc); 6026 } 6027 6028 if (enable) { 6029 sc->flags |= KERN_TLS_ON; 6030 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6031 C_HARDCLOCK); 6032 } else { 6033 sc->flags &= ~KERN_TLS_ON; 6034 callout_stop(&sc->ktls_tick); 6035 } 6036 6037 return (rc); 6038 } 6039 #endif 6040 6041 static int 6042 set_params__post_init(struct adapter *sc) 6043 { 6044 uint32_t mask, param, val; 6045 #ifdef TCP_OFFLOAD 6046 int i, v, shift; 6047 #endif 6048 6049 /* ask for encapsulated CPLs */ 6050 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 6051 val = 1; 6052 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6053 6054 /* Enable 32b port caps if the firmware supports it. */ 6055 param = FW_PARAM_PFVF(PORT_CAPS32); 6056 val = 1; 6057 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 6058 sc->params.port_caps32 = 1; 6059 6060 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 6061 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 6062 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 6063 V_MASKFILTER(val - 1)); 6064 6065 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 6066 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 6067 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6068 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 6069 val = 0; 6070 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 6071 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 6072 F_ATTACKFILTERENABLE); 6073 val |= F_DROPERRORATTACK; 6074 } 6075 if (t4_drop_ip_fragments != 0) { 6076 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 6077 F_FRAGMENTDROP); 6078 val |= F_DROPERRORFRAG; 6079 } 6080 if (t4_drop_pkts_with_l2_errors != 0) 6081 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 6082 if (t4_drop_pkts_with_l3_errors != 0) { 6083 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 6084 F_DROPERRORCSUMIP; 6085 } 6086 if (t4_drop_pkts_with_l4_errors != 0) { 6087 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6088 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 6089 } 6090 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 6091 6092 #ifdef TCP_OFFLOAD 6093 /* 6094 * Override the TOE timers with user provided tunables. This is not the 6095 * recommended way to change the timers (the firmware config file is) so 6096 * these tunables are not documented. 6097 * 6098 * All the timer tunables are in microseconds. 6099 */ 6100 if (t4_toe_keepalive_idle != 0) { 6101 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 6102 v &= M_KEEPALIVEIDLE; 6103 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 6104 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 6105 } 6106 if (t4_toe_keepalive_interval != 0) { 6107 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 6108 v &= M_KEEPALIVEINTVL; 6109 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 6110 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 6111 } 6112 if (t4_toe_keepalive_count != 0) { 6113 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 6114 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6115 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 6116 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 6117 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 6118 } 6119 if (t4_toe_rexmt_min != 0) { 6120 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 6121 v &= M_RXTMIN; 6122 t4_set_reg_field(sc, A_TP_RXT_MIN, 6123 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 6124 } 6125 if (t4_toe_rexmt_max != 0) { 6126 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 6127 v &= M_RXTMAX; 6128 t4_set_reg_field(sc, A_TP_RXT_MAX, 6129 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 6130 } 6131 if (t4_toe_rexmt_count != 0) { 6132 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 6133 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6134 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 6135 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 6136 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 6137 } 6138 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 6139 if (t4_toe_rexmt_backoff[i] != -1) { 6140 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 6141 shift = (i & 3) << 3; 6142 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 6143 M_TIMERBACKOFFINDEX0 << shift, v << shift); 6144 } 6145 } 6146 #endif 6147 6148 /* 6149 * Limit TOE connections to 2 reassembly "islands". This is 6150 * required to permit migrating TOE connections to either 6151 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 6152 */ 6153 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 6154 V_PASSMODE(2)); 6155 6156 #ifdef KERN_TLS 6157 if (is_ktls(sc)) { 6158 sc->tlst.inline_keys = t4_tls_inline_keys; 6159 if (t4_kern_tls != 0 && is_t6(sc)) { 6160 sc->tlst.combo_wrs = t4_tls_combo_wrs; 6161 t6_config_kern_tls(sc, true); 6162 } else { 6163 sc->tlst.short_records = t4_tls_short_records; 6164 sc->tlst.partial_ghash = t4_tls_partial_ghash; 6165 } 6166 } 6167 #endif 6168 return (0); 6169 } 6170 6171 #undef FW_PARAM_PFVF 6172 #undef FW_PARAM_DEV 6173 6174 static void 6175 t4_set_desc(struct adapter *sc) 6176 { 6177 struct adapter_params *p = &sc->params; 6178 6179 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 6180 } 6181 6182 static inline void 6183 ifmedia_add4(struct ifmedia *ifm, int m) 6184 { 6185 6186 ifmedia_add(ifm, m, 0, NULL); 6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 6188 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 6189 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 6190 } 6191 6192 /* 6193 * This is the selected media, which is not quite the same as the active media. 6194 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 6195 * and active are not the same, and "media: Ethernet selected" otherwise. 6196 */ 6197 static void 6198 set_current_media(struct port_info *pi) 6199 { 6200 struct link_config *lc; 6201 struct ifmedia *ifm; 6202 int mword; 6203 u_int speed; 6204 6205 PORT_LOCK_ASSERT_OWNED(pi); 6206 6207 /* Leave current media alone if it's already set to IFM_NONE. */ 6208 ifm = &pi->media; 6209 if (ifm->ifm_cur != NULL && 6210 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 6211 return; 6212 6213 lc = &pi->link_cfg; 6214 if (lc->requested_aneg != AUTONEG_DISABLE && 6215 lc->pcaps & FW_PORT_CAP32_ANEG) { 6216 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6217 return; 6218 } 6219 mword = IFM_ETHER | IFM_FDX; 6220 if (lc->requested_fc & PAUSE_TX) 6221 mword |= IFM_ETH_TXPAUSE; 6222 if (lc->requested_fc & PAUSE_RX) 6223 mword |= IFM_ETH_RXPAUSE; 6224 if (lc->requested_speed == 0) 6225 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6226 else 6227 speed = lc->requested_speed; 6228 mword |= port_mword(pi, speed_to_fwcap(speed)); 6229 ifmedia_set(ifm, mword); 6230 } 6231 6232 /* 6233 * Returns true if the ifmedia list for the port cannot change. 6234 */ 6235 static bool 6236 fixed_ifmedia(struct port_info *pi) 6237 { 6238 6239 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6240 pi->port_type == FW_PORT_TYPE_BT_XFI || 6241 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6242 pi->port_type == FW_PORT_TYPE_KX4 || 6243 pi->port_type == FW_PORT_TYPE_KX || 6244 pi->port_type == FW_PORT_TYPE_KR || 6245 pi->port_type == FW_PORT_TYPE_BP_AP || 6246 pi->port_type == FW_PORT_TYPE_BP4_AP || 6247 pi->port_type == FW_PORT_TYPE_BP40_BA || 6248 pi->port_type == FW_PORT_TYPE_KR4_100G || 6249 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6250 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6251 } 6252 6253 static void 6254 build_medialist(struct port_info *pi) 6255 { 6256 uint32_t ss, speed; 6257 int unknown, mword, bit; 6258 struct link_config *lc; 6259 struct ifmedia *ifm; 6260 6261 PORT_LOCK_ASSERT_OWNED(pi); 6262 6263 if (pi->flags & FIXED_IFMEDIA) 6264 return; 6265 6266 /* 6267 * Rebuild the ifmedia list. 6268 */ 6269 ifm = &pi->media; 6270 ifmedia_removeall(ifm); 6271 lc = &pi->link_cfg; 6272 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6273 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6274 MPASS(ss != 0); 6275 no_media: 6276 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6277 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6278 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6279 return; 6280 } 6281 6282 unknown = 0; 6283 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6284 speed = 1 << bit; 6285 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6286 if (ss & speed) { 6287 mword = port_mword(pi, speed); 6288 if (mword == IFM_NONE) { 6289 goto no_media; 6290 } else if (mword == IFM_UNKNOWN) 6291 unknown++; 6292 else 6293 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6294 } 6295 } 6296 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6297 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6298 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6299 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6300 6301 set_current_media(pi); 6302 } 6303 6304 /* 6305 * Initialize the requested fields in the link config based on driver tunables. 6306 */ 6307 static void 6308 init_link_config(struct port_info *pi) 6309 { 6310 struct link_config *lc = &pi->link_cfg; 6311 6312 PORT_LOCK_ASSERT_OWNED(pi); 6313 6314 lc->requested_caps = 0; 6315 lc->requested_speed = 0; 6316 6317 if (t4_autoneg == 0) 6318 lc->requested_aneg = AUTONEG_DISABLE; 6319 else if (t4_autoneg == 1) 6320 lc->requested_aneg = AUTONEG_ENABLE; 6321 else 6322 lc->requested_aneg = AUTONEG_AUTO; 6323 6324 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6325 PAUSE_AUTONEG); 6326 6327 if (t4_fec & FEC_AUTO) 6328 lc->requested_fec = FEC_AUTO; 6329 else if (t4_fec == 0) 6330 lc->requested_fec = FEC_NONE; 6331 else { 6332 /* -1 is handled by the FEC_AUTO block above and not here. */ 6333 lc->requested_fec = t4_fec & 6334 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6335 if (lc->requested_fec == 0) 6336 lc->requested_fec = FEC_AUTO; 6337 } 6338 if (t4_force_fec < 0) 6339 lc->force_fec = -1; 6340 else if (t4_force_fec > 0) 6341 lc->force_fec = 1; 6342 else 6343 lc->force_fec = 0; 6344 } 6345 6346 /* 6347 * Makes sure that all requested settings comply with what's supported by the 6348 * port. Returns the number of settings that were invalid and had to be fixed. 6349 */ 6350 static int 6351 fixup_link_config(struct port_info *pi) 6352 { 6353 int n = 0; 6354 struct link_config *lc = &pi->link_cfg; 6355 uint32_t fwspeed; 6356 6357 PORT_LOCK_ASSERT_OWNED(pi); 6358 6359 /* Speed (when not autonegotiating) */ 6360 if (lc->requested_speed != 0) { 6361 fwspeed = speed_to_fwcap(lc->requested_speed); 6362 if ((fwspeed & lc->pcaps) == 0) { 6363 n++; 6364 lc->requested_speed = 0; 6365 } 6366 } 6367 6368 /* Link autonegotiation */ 6369 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6370 lc->requested_aneg == AUTONEG_DISABLE || 6371 lc->requested_aneg == AUTONEG_AUTO); 6372 if (lc->requested_aneg == AUTONEG_ENABLE && 6373 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6374 n++; 6375 lc->requested_aneg = AUTONEG_AUTO; 6376 } 6377 6378 /* Flow control */ 6379 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6380 if (lc->requested_fc & PAUSE_TX && 6381 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6382 n++; 6383 lc->requested_fc &= ~PAUSE_TX; 6384 } 6385 if (lc->requested_fc & PAUSE_RX && 6386 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6387 n++; 6388 lc->requested_fc &= ~PAUSE_RX; 6389 } 6390 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6391 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6392 n++; 6393 lc->requested_fc |= PAUSE_AUTONEG; 6394 } 6395 6396 /* FEC */ 6397 if ((lc->requested_fec & FEC_RS && 6398 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6399 (lc->requested_fec & FEC_BASER_RS && 6400 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6401 n++; 6402 lc->requested_fec = FEC_AUTO; 6403 } 6404 6405 return (n); 6406 } 6407 6408 /* 6409 * Apply the requested L1 settings, which are expected to be valid, to the 6410 * hardware. 6411 */ 6412 static int 6413 apply_link_config(struct port_info *pi) 6414 { 6415 struct adapter *sc = pi->adapter; 6416 struct link_config *lc = &pi->link_cfg; 6417 int rc; 6418 6419 #ifdef INVARIANTS 6420 ASSERT_SYNCHRONIZED_OP(sc); 6421 PORT_LOCK_ASSERT_OWNED(pi); 6422 6423 if (lc->requested_aneg == AUTONEG_ENABLE) 6424 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6425 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6426 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6427 if (lc->requested_fc & PAUSE_TX) 6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6429 if (lc->requested_fc & PAUSE_RX) 6430 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6431 if (lc->requested_fec & FEC_RS) 6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6433 if (lc->requested_fec & FEC_BASER_RS) 6434 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6435 #endif 6436 if (!(sc->flags & IS_VF)) { 6437 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc); 6438 if (rc != 0) { 6439 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6440 return (rc); 6441 } 6442 } 6443 6444 /* 6445 * An L1_CFG will almost always result in a link-change event if the 6446 * link is up, and the driver will refresh the actual fec/fc/etc. when 6447 * the notification is processed. If the link is down then the actual 6448 * settings are meaningless. 6449 * 6450 * This takes care of the case where a change in the L1 settings may not 6451 * result in a notification. 6452 */ 6453 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6454 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6455 6456 return (0); 6457 } 6458 6459 #define FW_MAC_EXACT_CHUNK 7 6460 struct mcaddr_ctx { 6461 if_t ifp; 6462 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6463 uint64_t hash; 6464 int i; 6465 int del; 6466 int rc; 6467 }; 6468 6469 static u_int 6470 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6471 { 6472 struct mcaddr_ctx *ctx = arg; 6473 struct vi_info *vi = if_getsoftc(ctx->ifp); 6474 struct port_info *pi = vi->pi; 6475 struct adapter *sc = pi->adapter; 6476 6477 if (ctx->rc < 0) 6478 return (0); 6479 6480 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6481 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6482 ctx->i++; 6483 6484 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6485 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6486 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6487 if (ctx->rc < 0) { 6488 int j; 6489 6490 for (j = 0; j < ctx->i; j++) { 6491 if_printf(ctx->ifp, 6492 "failed to add mc address" 6493 " %02x:%02x:%02x:" 6494 "%02x:%02x:%02x rc=%d\n", 6495 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6496 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6497 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6498 -ctx->rc); 6499 } 6500 return (0); 6501 } 6502 ctx->del = 0; 6503 ctx->i = 0; 6504 } 6505 6506 return (1); 6507 } 6508 6509 /* 6510 * Program the port's XGMAC based on parameters in ifnet. The caller also 6511 * indicates which parameters should be programmed (the rest are left alone). 6512 */ 6513 int 6514 update_mac_settings(if_t ifp, int flags) 6515 { 6516 int rc = 0; 6517 struct vi_info *vi = if_getsoftc(ifp); 6518 struct port_info *pi = vi->pi; 6519 struct adapter *sc = pi->adapter; 6520 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6521 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6522 6523 ASSERT_SYNCHRONIZED_OP(sc); 6524 KASSERT(flags, ("%s: not told what to update.", __func__)); 6525 6526 if (flags & XGMAC_MTU) 6527 mtu = if_getmtu(ifp); 6528 6529 if (flags & XGMAC_PROMISC) 6530 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6531 6532 if (flags & XGMAC_ALLMULTI) 6533 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6534 6535 if (flags & XGMAC_VLANEX) 6536 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6537 6538 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6539 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6540 allmulti, 1, vlanex, false); 6541 if (rc) { 6542 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6543 rc); 6544 return (rc); 6545 } 6546 } 6547 6548 if (flags & XGMAC_UCADDR) { 6549 uint8_t ucaddr[ETHER_ADDR_LEN]; 6550 6551 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6552 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6553 ucaddr, true, &vi->smt_idx); 6554 if (rc < 0) { 6555 rc = -rc; 6556 if_printf(ifp, "change_mac failed: %d\n", rc); 6557 return (rc); 6558 } else { 6559 vi->xact_addr_filt = rc; 6560 rc = 0; 6561 } 6562 } 6563 6564 if (flags & XGMAC_MCADDRS) { 6565 struct epoch_tracker et; 6566 struct mcaddr_ctx ctx; 6567 int j; 6568 6569 ctx.ifp = ifp; 6570 ctx.hash = 0; 6571 ctx.i = 0; 6572 ctx.del = 1; 6573 ctx.rc = 0; 6574 /* 6575 * Unlike other drivers, we accumulate list of pointers into 6576 * interface address lists and we need to keep it safe even 6577 * after if_foreach_llmaddr() returns, thus we must enter the 6578 * network epoch. 6579 */ 6580 NET_EPOCH_ENTER(et); 6581 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6582 if (ctx.rc < 0) { 6583 NET_EPOCH_EXIT(et); 6584 rc = -ctx.rc; 6585 return (rc); 6586 } 6587 if (ctx.i > 0) { 6588 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6589 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6590 NET_EPOCH_EXIT(et); 6591 if (rc < 0) { 6592 rc = -rc; 6593 for (j = 0; j < ctx.i; j++) { 6594 if_printf(ifp, 6595 "failed to add mcast address" 6596 " %02x:%02x:%02x:" 6597 "%02x:%02x:%02x rc=%d\n", 6598 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6599 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6600 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6601 rc); 6602 } 6603 return (rc); 6604 } 6605 ctx.del = 0; 6606 } else 6607 NET_EPOCH_EXIT(et); 6608 6609 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6610 if (rc != 0) 6611 if_printf(ifp, "failed to set mcast address hash: %d\n", 6612 rc); 6613 if (ctx.del == 0) { 6614 /* We clobbered the VXLAN entry if there was one. */ 6615 pi->vxlan_tcam_entry = false; 6616 } 6617 } 6618 6619 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6620 pi->vxlan_tcam_entry == false) { 6621 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6622 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6623 true); 6624 if (rc < 0) { 6625 rc = -rc; 6626 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6627 rc); 6628 } else { 6629 MPASS(rc == sc->rawf_base + pi->port_id); 6630 rc = 0; 6631 pi->vxlan_tcam_entry = true; 6632 } 6633 } 6634 6635 return (rc); 6636 } 6637 6638 /* 6639 * {begin|end}_synchronized_op must be called from the same thread. 6640 */ 6641 int 6642 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6643 char *wmesg) 6644 { 6645 int rc; 6646 6647 #ifdef WITNESS 6648 /* the caller thinks it's ok to sleep, but is it really? */ 6649 if (flags & SLEEP_OK) 6650 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6651 #endif 6652 ADAPTER_LOCK(sc); 6653 for (;;) { 6654 6655 if (vi && IS_DETACHING(vi)) { 6656 rc = ENXIO; 6657 goto done; 6658 } 6659 6660 if (!IS_BUSY(sc)) { 6661 rc = 0; 6662 break; 6663 } 6664 6665 if (!(flags & SLEEP_OK)) { 6666 rc = EBUSY; 6667 goto done; 6668 } 6669 6670 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6671 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6672 rc = EINTR; 6673 goto done; 6674 } 6675 } 6676 6677 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6678 SET_BUSY(sc); 6679 #ifdef INVARIANTS 6680 sc->last_op = wmesg; 6681 sc->last_op_thr = curthread; 6682 sc->last_op_flags = flags; 6683 #endif 6684 6685 done: 6686 if (!(flags & HOLD_LOCK) || rc) 6687 ADAPTER_UNLOCK(sc); 6688 6689 return (rc); 6690 } 6691 6692 /* 6693 * Tell if_ioctl and if_init that the VI is going away. This is 6694 * special variant of begin_synchronized_op and must be paired with a 6695 * call to end_vi_detach. 6696 */ 6697 void 6698 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6699 { 6700 ADAPTER_LOCK(sc); 6701 SET_DETACHING(vi); 6702 wakeup(&sc->flags); 6703 while (IS_BUSY(sc)) 6704 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6705 SET_BUSY(sc); 6706 #ifdef INVARIANTS 6707 sc->last_op = "t4detach"; 6708 sc->last_op_thr = curthread; 6709 sc->last_op_flags = 0; 6710 #endif 6711 ADAPTER_UNLOCK(sc); 6712 } 6713 6714 void 6715 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6716 { 6717 ADAPTER_LOCK(sc); 6718 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6719 CLR_BUSY(sc); 6720 CLR_DETACHING(vi); 6721 wakeup(&sc->flags); 6722 ADAPTER_UNLOCK(sc); 6723 } 6724 6725 /* 6726 * {begin|end}_synchronized_op must be called from the same thread. 6727 */ 6728 void 6729 end_synchronized_op(struct adapter *sc, int flags) 6730 { 6731 6732 if (flags & LOCK_HELD) 6733 ADAPTER_LOCK_ASSERT_OWNED(sc); 6734 else 6735 ADAPTER_LOCK(sc); 6736 6737 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6738 CLR_BUSY(sc); 6739 wakeup(&sc->flags); 6740 ADAPTER_UNLOCK(sc); 6741 } 6742 6743 static int 6744 cxgbe_init_synchronized(struct vi_info *vi) 6745 { 6746 struct port_info *pi = vi->pi; 6747 struct adapter *sc = pi->adapter; 6748 if_t ifp = vi->ifp; 6749 int rc = 0, i; 6750 struct sge_txq *txq; 6751 6752 ASSERT_SYNCHRONIZED_OP(sc); 6753 6754 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6755 return (0); /* already running */ 6756 6757 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6758 return (rc); /* error message displayed already */ 6759 6760 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6761 return (rc); /* error message displayed already */ 6762 6763 rc = update_mac_settings(ifp, XGMAC_ALL); 6764 if (rc) 6765 goto done; /* error message displayed already */ 6766 6767 PORT_LOCK(pi); 6768 if (pi->up_vis == 0) { 6769 t4_update_port_info(pi); 6770 fixup_link_config(pi); 6771 build_medialist(pi); 6772 apply_link_config(pi); 6773 } 6774 6775 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6776 if (rc != 0) { 6777 if_printf(ifp, "enable_vi failed: %d\n", rc); 6778 PORT_UNLOCK(pi); 6779 goto done; 6780 } 6781 6782 /* 6783 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6784 * if this changes. 6785 */ 6786 6787 for_each_txq(vi, i, txq) { 6788 TXQ_LOCK(txq); 6789 txq->eq.flags |= EQ_ENABLED; 6790 TXQ_UNLOCK(txq); 6791 } 6792 6793 /* 6794 * The first iq of the first port to come up is used for tracing. 6795 */ 6796 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6797 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6798 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 6799 pi->flags |= HAS_TRACEQ; 6800 } 6801 6802 /* all ok */ 6803 pi->up_vis++; 6804 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6805 if (pi->link_cfg.link_ok) 6806 t4_os_link_changed(pi); 6807 PORT_UNLOCK(pi); 6808 6809 mtx_lock(&vi->tick_mtx); 6810 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6811 callout_reset(&vi->tick, hz, vi_tick, vi); 6812 else 6813 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6814 mtx_unlock(&vi->tick_mtx); 6815 done: 6816 if (rc != 0) 6817 cxgbe_uninit_synchronized(vi); 6818 6819 return (rc); 6820 } 6821 6822 /* 6823 * Idempotent. 6824 */ 6825 static int 6826 cxgbe_uninit_synchronized(struct vi_info *vi) 6827 { 6828 struct port_info *pi = vi->pi; 6829 struct adapter *sc = pi->adapter; 6830 if_t ifp = vi->ifp; 6831 int rc, i; 6832 struct sge_txq *txq; 6833 6834 ASSERT_SYNCHRONIZED_OP(sc); 6835 6836 if (!(vi->flags & VI_INIT_DONE)) { 6837 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6838 KASSERT(0, ("uninited VI is running")); 6839 if_printf(ifp, "uninited VI with running ifnet. " 6840 "vi->flags 0x%016lx, if_flags 0x%08x, " 6841 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6842 if_getdrvflags(ifp)); 6843 } 6844 return (0); 6845 } 6846 6847 /* 6848 * Disable the VI so that all its data in either direction is discarded 6849 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6850 * tick) intact as the TP can deliver negative advice or data that it's 6851 * holding in its RAM (for an offloaded connection) even after the VI is 6852 * disabled. 6853 */ 6854 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6855 if (rc) { 6856 if_printf(ifp, "disable_vi failed: %d\n", rc); 6857 return (rc); 6858 } 6859 6860 for_each_txq(vi, i, txq) { 6861 TXQ_LOCK(txq); 6862 txq->eq.flags &= ~EQ_ENABLED; 6863 TXQ_UNLOCK(txq); 6864 } 6865 6866 mtx_lock(&vi->tick_mtx); 6867 callout_stop(&vi->tick); 6868 mtx_unlock(&vi->tick_mtx); 6869 6870 PORT_LOCK(pi); 6871 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6872 PORT_UNLOCK(pi); 6873 return (0); 6874 } 6875 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6876 pi->up_vis--; 6877 if (pi->up_vis > 0) { 6878 PORT_UNLOCK(pi); 6879 return (0); 6880 } 6881 6882 pi->link_cfg.link_ok = false; 6883 pi->link_cfg.speed = 0; 6884 pi->link_cfg.link_down_rc = 255; 6885 t4_os_link_changed(pi); 6886 PORT_UNLOCK(pi); 6887 6888 return (0); 6889 } 6890 6891 /* 6892 * It is ok for this function to fail midway and return right away. t4_detach 6893 * will walk the entire sc->irq list and clean up whatever is valid. 6894 */ 6895 int 6896 t4_setup_intr_handlers(struct adapter *sc) 6897 { 6898 int rc, rid, p, q, v; 6899 char s[8]; 6900 struct irq *irq; 6901 struct port_info *pi; 6902 struct vi_info *vi; 6903 struct sge *sge = &sc->sge; 6904 struct sge_rxq *rxq; 6905 #ifdef TCP_OFFLOAD 6906 struct sge_ofld_rxq *ofld_rxq; 6907 #endif 6908 #ifdef DEV_NETMAP 6909 struct sge_nm_rxq *nm_rxq; 6910 #endif 6911 #ifdef RSS 6912 int nbuckets = rss_getnumbuckets(); 6913 #endif 6914 6915 /* 6916 * Setup interrupts. 6917 */ 6918 irq = &sc->irq[0]; 6919 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6920 if (forwarding_intr_to_fwq(sc)) 6921 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6922 6923 /* Multiple interrupts. */ 6924 if (sc->flags & IS_VF) 6925 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6926 ("%s: too few intr.", __func__)); 6927 else 6928 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6929 ("%s: too few intr.", __func__)); 6930 6931 /* The first one is always error intr on PFs */ 6932 if (!(sc->flags & IS_VF)) { 6933 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6934 if (rc != 0) 6935 return (rc); 6936 irq++; 6937 rid++; 6938 } 6939 6940 /* The second one is always the firmware event queue (first on VFs) */ 6941 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6942 if (rc != 0) 6943 return (rc); 6944 irq++; 6945 rid++; 6946 6947 for_each_port(sc, p) { 6948 pi = sc->port[p]; 6949 for_each_vi(pi, v, vi) { 6950 vi->first_intr = rid - 1; 6951 6952 if (vi->nnmrxq > 0) { 6953 int n = max(vi->nrxq, vi->nnmrxq); 6954 6955 rxq = &sge->rxq[vi->first_rxq]; 6956 #ifdef DEV_NETMAP 6957 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6958 #endif 6959 for (q = 0; q < n; q++) { 6960 snprintf(s, sizeof(s), "%x%c%x", p, 6961 'a' + v, q); 6962 if (q < vi->nrxq) 6963 irq->rxq = rxq++; 6964 #ifdef DEV_NETMAP 6965 if (q < vi->nnmrxq) 6966 irq->nm_rxq = nm_rxq++; 6967 6968 if (irq->nm_rxq != NULL && 6969 irq->rxq == NULL) { 6970 /* Netmap rx only */ 6971 rc = t4_alloc_irq(sc, irq, rid, 6972 t4_nm_intr, irq->nm_rxq, s); 6973 } 6974 if (irq->nm_rxq != NULL && 6975 irq->rxq != NULL) { 6976 /* NIC and Netmap rx */ 6977 rc = t4_alloc_irq(sc, irq, rid, 6978 t4_vi_intr, irq, s); 6979 } 6980 #endif 6981 if (irq->rxq != NULL && 6982 irq->nm_rxq == NULL) { 6983 /* NIC rx only */ 6984 rc = t4_alloc_irq(sc, irq, rid, 6985 t4_intr, irq->rxq, s); 6986 } 6987 if (rc != 0) 6988 return (rc); 6989 #ifdef RSS 6990 if (q < vi->nrxq) { 6991 bus_bind_intr(sc->dev, irq->res, 6992 rss_getcpu(q % nbuckets)); 6993 } 6994 #endif 6995 irq++; 6996 rid++; 6997 vi->nintr++; 6998 } 6999 } else { 7000 for_each_rxq(vi, q, rxq) { 7001 snprintf(s, sizeof(s), "%x%c%x", p, 7002 'a' + v, q); 7003 rc = t4_alloc_irq(sc, irq, rid, 7004 t4_intr, rxq, s); 7005 if (rc != 0) 7006 return (rc); 7007 #ifdef RSS 7008 bus_bind_intr(sc->dev, irq->res, 7009 rss_getcpu(q % nbuckets)); 7010 #endif 7011 irq++; 7012 rid++; 7013 vi->nintr++; 7014 } 7015 } 7016 #ifdef TCP_OFFLOAD 7017 for_each_ofld_rxq(vi, q, ofld_rxq) { 7018 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 7019 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 7020 ofld_rxq, s); 7021 if (rc != 0) 7022 return (rc); 7023 irq++; 7024 rid++; 7025 vi->nintr++; 7026 } 7027 #endif 7028 } 7029 } 7030 MPASS(irq == &sc->irq[sc->intr_count]); 7031 7032 return (0); 7033 } 7034 7035 static void 7036 write_global_rss_key(struct adapter *sc) 7037 { 7038 #ifdef RSS 7039 int i; 7040 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7041 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7042 7043 CTASSERT(RSS_KEYSIZE == 40); 7044 7045 rss_getkey((void *)&raw_rss_key[0]); 7046 for (i = 0; i < nitems(rss_key); i++) { 7047 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 7048 } 7049 t4_write_rss_key(sc, &rss_key[0], -1, 1); 7050 #endif 7051 } 7052 7053 /* 7054 * Idempotent. 7055 */ 7056 static int 7057 adapter_full_init(struct adapter *sc) 7058 { 7059 int rc, i; 7060 7061 ASSERT_SYNCHRONIZED_OP(sc); 7062 7063 /* 7064 * queues that belong to the adapter (not any particular port). 7065 */ 7066 rc = t4_setup_adapter_queues(sc); 7067 if (rc != 0) 7068 return (rc); 7069 7070 MPASS(sc->params.nports <= nitems(sc->tq)); 7071 for (i = 0; i < sc->params.nports; i++) { 7072 if (sc->tq[i] != NULL) 7073 continue; 7074 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 7075 taskqueue_thread_enqueue, &sc->tq[i]); 7076 if (sc->tq[i] == NULL) { 7077 CH_ERR(sc, "failed to allocate task queue %d\n", i); 7078 return (ENOMEM); 7079 } 7080 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 7081 device_get_nameunit(sc->dev), i); 7082 } 7083 7084 if (!(sc->flags & IS_VF)) { 7085 write_global_rss_key(sc); 7086 t4_intr_enable(sc); 7087 } 7088 return (0); 7089 } 7090 7091 int 7092 adapter_init(struct adapter *sc) 7093 { 7094 int rc; 7095 7096 ASSERT_SYNCHRONIZED_OP(sc); 7097 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 7098 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 7099 ("%s: FULL_INIT_DONE already", __func__)); 7100 7101 rc = adapter_full_init(sc); 7102 if (rc != 0) 7103 adapter_full_uninit(sc); 7104 else 7105 sc->flags |= FULL_INIT_DONE; 7106 7107 return (rc); 7108 } 7109 7110 /* 7111 * Idempotent. 7112 */ 7113 static void 7114 adapter_full_uninit(struct adapter *sc) 7115 { 7116 int i; 7117 7118 t4_teardown_adapter_queues(sc); 7119 7120 for (i = 0; i < nitems(sc->tq); i++) { 7121 if (sc->tq[i] == NULL) 7122 continue; 7123 taskqueue_free(sc->tq[i]); 7124 sc->tq[i] = NULL; 7125 } 7126 7127 sc->flags &= ~FULL_INIT_DONE; 7128 } 7129 7130 #ifdef RSS 7131 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 7132 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 7133 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 7134 RSS_HASHTYPE_RSS_UDP_IPV6) 7135 7136 /* Translates kernel hash types to hardware. */ 7137 static int 7138 hashconfig_to_hashen(int hashconfig) 7139 { 7140 int hashen = 0; 7141 7142 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 7143 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 7144 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 7145 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 7146 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 7147 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7148 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7149 } 7150 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 7151 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7152 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7153 } 7154 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 7155 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7156 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 7157 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7158 7159 return (hashen); 7160 } 7161 7162 /* Translates hardware hash types to kernel. */ 7163 static int 7164 hashen_to_hashconfig(int hashen) 7165 { 7166 int hashconfig = 0; 7167 7168 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 7169 /* 7170 * If UDP hashing was enabled it must have been enabled for 7171 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 7172 * enabling any 4-tuple hash is nonsense configuration. 7173 */ 7174 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7175 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 7176 7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7178 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7180 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 7181 } 7182 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7183 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 7184 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7185 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 7186 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 7187 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 7188 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 7189 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 7190 7191 return (hashconfig); 7192 } 7193 #endif 7194 7195 /* 7196 * Idempotent. 7197 */ 7198 static int 7199 vi_full_init(struct vi_info *vi) 7200 { 7201 struct adapter *sc = vi->adapter; 7202 struct sge_rxq *rxq; 7203 int rc, i, j; 7204 #ifdef RSS 7205 int nbuckets = rss_getnumbuckets(); 7206 int hashconfig = rss_gethashconfig(); 7207 int extra; 7208 #endif 7209 7210 ASSERT_SYNCHRONIZED_OP(sc); 7211 7212 /* 7213 * Allocate tx/rx/fl queues for this VI. 7214 */ 7215 rc = t4_setup_vi_queues(vi); 7216 if (rc != 0) 7217 return (rc); 7218 7219 /* 7220 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7221 */ 7222 if (vi->nrxq > vi->rss_size) { 7223 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7224 "some queues will never receive traffic.\n", vi->nrxq, 7225 vi->rss_size); 7226 } else if (vi->rss_size % vi->nrxq) { 7227 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7228 "expect uneven traffic distribution.\n", vi->nrxq, 7229 vi->rss_size); 7230 } 7231 #ifdef RSS 7232 if (vi->nrxq != nbuckets) { 7233 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7234 "performance will be impacted.\n", vi->nrxq, nbuckets); 7235 } 7236 #endif 7237 if (vi->rss == NULL) 7238 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7239 M_ZERO | M_WAITOK); 7240 for (i = 0; i < vi->rss_size;) { 7241 #ifdef RSS 7242 j = rss_get_indirection_to_bucket(i); 7243 j %= vi->nrxq; 7244 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7245 vi->rss[i++] = rxq->iq.abs_id; 7246 #else 7247 for_each_rxq(vi, j, rxq) { 7248 vi->rss[i++] = rxq->iq.abs_id; 7249 if (i == vi->rss_size) 7250 break; 7251 } 7252 #endif 7253 } 7254 7255 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7256 vi->rss, vi->rss_size); 7257 if (rc != 0) { 7258 CH_ERR(vi, "rss_config failed: %d\n", rc); 7259 return (rc); 7260 } 7261 7262 #ifdef RSS 7263 vi->hashen = hashconfig_to_hashen(hashconfig); 7264 7265 /* 7266 * We may have had to enable some hashes even though the global config 7267 * wants them disabled. This is a potential problem that must be 7268 * reported to the user. 7269 */ 7270 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7271 7272 /* 7273 * If we consider only the supported hash types, then the enabled hashes 7274 * are a superset of the requested hashes. In other words, there cannot 7275 * be any supported hash that was requested but not enabled, but there 7276 * can be hashes that were not requested but had to be enabled. 7277 */ 7278 extra &= SUPPORTED_RSS_HASHTYPES; 7279 MPASS((extra & hashconfig) == 0); 7280 7281 if (extra) { 7282 CH_ALERT(vi, 7283 "global RSS config (0x%x) cannot be accommodated.\n", 7284 hashconfig); 7285 } 7286 if (extra & RSS_HASHTYPE_RSS_IPV4) 7287 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7288 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7289 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7290 if (extra & RSS_HASHTYPE_RSS_IPV6) 7291 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7292 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7293 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7294 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7295 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7296 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7297 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7298 #else 7299 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 7300 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 7301 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7302 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 7303 #endif 7304 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7305 0, 0); 7306 if (rc != 0) { 7307 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7308 return (rc); 7309 } 7310 7311 return (0); 7312 } 7313 7314 int 7315 vi_init(struct vi_info *vi) 7316 { 7317 int rc; 7318 7319 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7320 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7321 ("%s: VI_INIT_DONE already", __func__)); 7322 7323 rc = vi_full_init(vi); 7324 if (rc != 0) 7325 vi_full_uninit(vi); 7326 else 7327 vi->flags |= VI_INIT_DONE; 7328 7329 return (rc); 7330 } 7331 7332 /* 7333 * Idempotent. 7334 */ 7335 static void 7336 vi_full_uninit(struct vi_info *vi) 7337 { 7338 7339 if (vi->flags & VI_INIT_DONE) { 7340 quiesce_vi(vi); 7341 free(vi->rss, M_CXGBE); 7342 free(vi->nm_rss, M_CXGBE); 7343 } 7344 7345 t4_teardown_vi_queues(vi); 7346 vi->flags &= ~VI_INIT_DONE; 7347 } 7348 7349 static void 7350 quiesce_txq(struct sge_txq *txq) 7351 { 7352 struct sge_eq *eq = &txq->eq; 7353 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7354 7355 MPASS(eq->flags & EQ_SW_ALLOCATED); 7356 MPASS(!(eq->flags & EQ_ENABLED)); 7357 7358 /* Wait for the mp_ring to empty. */ 7359 while (!mp_ring_is_idle(txq->r)) { 7360 mp_ring_check_drainage(txq->r, 4096); 7361 pause("rquiesce", 1); 7362 } 7363 MPASS(txq->txp.npkt == 0); 7364 7365 if (eq->flags & EQ_HW_ALLOCATED) { 7366 /* 7367 * Hardware is alive and working normally. Wait for it to 7368 * finish and then wait for the driver to catch up and reclaim 7369 * all descriptors. 7370 */ 7371 while (spg->cidx != htobe16(eq->pidx)) 7372 pause("equiesce", 1); 7373 while (eq->cidx != eq->pidx) 7374 pause("dquiesce", 1); 7375 } else { 7376 /* 7377 * Hardware is unavailable. Discard all pending tx and reclaim 7378 * descriptors directly. 7379 */ 7380 TXQ_LOCK(txq); 7381 while (eq->cidx != eq->pidx) { 7382 struct mbuf *m, *nextpkt; 7383 struct tx_sdesc *txsd; 7384 7385 txsd = &txq->sdesc[eq->cidx]; 7386 for (m = txsd->m; m != NULL; m = nextpkt) { 7387 nextpkt = m->m_nextpkt; 7388 m->m_nextpkt = NULL; 7389 m_freem(m); 7390 } 7391 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7392 } 7393 spg->pidx = spg->cidx = htobe16(eq->cidx); 7394 TXQ_UNLOCK(txq); 7395 } 7396 } 7397 7398 static void 7399 quiesce_wrq(struct sge_wrq *wrq) 7400 { 7401 struct wrqe *wr; 7402 7403 TXQ_LOCK(wrq); 7404 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7405 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7406 #ifdef INVARIANTS 7407 wrq->nwr_pending--; 7408 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7409 #endif 7410 free(wr, M_CXGBE); 7411 } 7412 MPASS(wrq->nwr_pending == 0); 7413 MPASS(wrq->ndesc_needed == 0); 7414 wrq->nwr_pending = 0; 7415 wrq->ndesc_needed = 0; 7416 TXQ_UNLOCK(wrq); 7417 } 7418 7419 static void 7420 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7421 { 7422 /* Synchronize with the interrupt handler */ 7423 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7424 pause("iqfree", 1); 7425 7426 if (fl != NULL) { 7427 MPASS(iq->flags & IQ_HAS_FL); 7428 7429 mtx_lock(&sc->sfl_lock); 7430 FL_LOCK(fl); 7431 fl->flags |= FL_DOOMED; 7432 FL_UNLOCK(fl); 7433 callout_stop(&sc->sfl_callout); 7434 mtx_unlock(&sc->sfl_lock); 7435 7436 KASSERT((fl->flags & FL_STARVING) == 0, 7437 ("%s: still starving", __func__)); 7438 7439 /* Release all buffers if hardware is no longer available. */ 7440 if (!(iq->flags & IQ_HW_ALLOCATED)) 7441 free_fl_buffers(sc, fl); 7442 } 7443 } 7444 7445 /* 7446 * Wait for all activity on all the queues of the VI to complete. It is assumed 7447 * that no new work is being enqueued by the hardware or the driver. That part 7448 * should be arranged before calling this function. 7449 */ 7450 static void 7451 quiesce_vi(struct vi_info *vi) 7452 { 7453 int i; 7454 struct adapter *sc = vi->adapter; 7455 struct sge_rxq *rxq; 7456 struct sge_txq *txq; 7457 #ifdef TCP_OFFLOAD 7458 struct sge_ofld_rxq *ofld_rxq; 7459 #endif 7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7461 struct sge_ofld_txq *ofld_txq; 7462 #endif 7463 7464 if (!(vi->flags & VI_INIT_DONE)) 7465 return; 7466 7467 for_each_txq(vi, i, txq) { 7468 quiesce_txq(txq); 7469 } 7470 7471 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7472 for_each_ofld_txq(vi, i, ofld_txq) { 7473 quiesce_wrq(&ofld_txq->wrq); 7474 } 7475 #endif 7476 7477 for_each_rxq(vi, i, rxq) { 7478 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7479 } 7480 7481 #ifdef TCP_OFFLOAD 7482 for_each_ofld_rxq(vi, i, ofld_rxq) { 7483 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7484 } 7485 #endif 7486 } 7487 7488 static int 7489 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7490 driver_intr_t *handler, void *arg, char *name) 7491 { 7492 int rc; 7493 7494 irq->rid = rid; 7495 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7496 RF_SHAREABLE | RF_ACTIVE); 7497 if (irq->res == NULL) { 7498 device_printf(sc->dev, 7499 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7500 return (ENOMEM); 7501 } 7502 7503 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7504 NULL, handler, arg, &irq->tag); 7505 if (rc != 0) { 7506 device_printf(sc->dev, 7507 "failed to setup interrupt for rid %d, name %s: %d\n", 7508 rid, name, rc); 7509 } else if (name) 7510 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7511 7512 return (rc); 7513 } 7514 7515 static int 7516 t4_free_irq(struct adapter *sc, struct irq *irq) 7517 { 7518 if (irq->tag) 7519 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7520 if (irq->res) 7521 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7522 7523 bzero(irq, sizeof(*irq)); 7524 7525 return (0); 7526 } 7527 7528 static void 7529 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7530 { 7531 7532 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7533 t4_get_regs(sc, buf, regs->len); 7534 } 7535 7536 #define A_PL_INDIR_CMD 0x1f8 7537 7538 #define S_PL_AUTOINC 31 7539 #define M_PL_AUTOINC 0x1U 7540 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7541 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7542 7543 #define S_PL_VFID 20 7544 #define M_PL_VFID 0xffU 7545 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7546 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7547 7548 #define S_PL_ADDR 0 7549 #define M_PL_ADDR 0xfffffU 7550 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7551 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7552 7553 #define A_PL_INDIR_DATA 0x1fc 7554 7555 static uint64_t 7556 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7557 { 7558 u32 stats[2]; 7559 7560 if (sc->flags & IS_VF) { 7561 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7562 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7563 } else { 7564 mtx_assert(&sc->reg_lock, MA_OWNED); 7565 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7566 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7567 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7568 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7569 } 7570 return (((uint64_t)stats[1]) << 32 | stats[0]); 7571 } 7572 7573 static void 7574 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7575 { 7576 7577 #define GET_STAT(name) \ 7578 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7579 7580 if (!(sc->flags & IS_VF)) 7581 mtx_lock(&sc->reg_lock); 7582 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7583 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7584 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7585 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7586 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7587 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7588 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7589 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7590 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7591 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7592 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7593 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7594 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7595 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7596 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7597 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7598 if (!(sc->flags & IS_VF)) 7599 mtx_unlock(&sc->reg_lock); 7600 7601 #undef GET_STAT 7602 } 7603 7604 static void 7605 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7606 { 7607 int reg; 7608 7609 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7610 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7611 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7612 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7613 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7614 } 7615 7616 static void 7617 vi_refresh_stats(struct vi_info *vi) 7618 { 7619 struct timeval tv; 7620 const struct timeval interval = {0, 250000}; /* 250ms */ 7621 7622 mtx_assert(&vi->tick_mtx, MA_OWNED); 7623 7624 if (vi->flags & VI_SKIP_STATS) 7625 return; 7626 7627 getmicrotime(&tv); 7628 timevalsub(&tv, &interval); 7629 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7630 return; 7631 7632 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7633 getmicrotime(&vi->last_refreshed); 7634 } 7635 7636 static void 7637 cxgbe_refresh_stats(struct vi_info *vi) 7638 { 7639 u_int i, v, tnl_cong_drops, chan_map; 7640 struct timeval tv; 7641 const struct timeval interval = {0, 250000}; /* 250ms */ 7642 struct port_info *pi; 7643 struct adapter *sc; 7644 7645 mtx_assert(&vi->tick_mtx, MA_OWNED); 7646 7647 if (vi->flags & VI_SKIP_STATS) 7648 return; 7649 7650 getmicrotime(&tv); 7651 timevalsub(&tv, &interval); 7652 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7653 return; 7654 7655 pi = vi->pi; 7656 sc = vi->adapter; 7657 tnl_cong_drops = 0; 7658 t4_get_port_stats(sc, pi->hw_port, &pi->stats); 7659 chan_map = pi->rx_e_chan_map; 7660 while (chan_map) { 7661 i = ffs(chan_map) - 1; 7662 mtx_lock(&sc->reg_lock); 7663 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7664 A_TP_MIB_TNL_CNG_DROP_0 + i); 7665 mtx_unlock(&sc->reg_lock); 7666 tnl_cong_drops += v; 7667 chan_map &= ~(1 << i); 7668 } 7669 pi->tnl_cong_drops = tnl_cong_drops; 7670 getmicrotime(&vi->last_refreshed); 7671 } 7672 7673 static void 7674 cxgbe_tick(void *arg) 7675 { 7676 struct vi_info *vi = arg; 7677 7678 MPASS(IS_MAIN_VI(vi)); 7679 mtx_assert(&vi->tick_mtx, MA_OWNED); 7680 7681 cxgbe_refresh_stats(vi); 7682 callout_schedule(&vi->tick, hz); 7683 } 7684 7685 static void 7686 vi_tick(void *arg) 7687 { 7688 struct vi_info *vi = arg; 7689 7690 mtx_assert(&vi->tick_mtx, MA_OWNED); 7691 7692 vi_refresh_stats(vi); 7693 callout_schedule(&vi->tick, hz); 7694 } 7695 7696 /* CIM inbound queues */ 7697 static const char *t4_ibq[CIM_NUM_IBQ] = { 7698 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi" 7699 }; 7700 static const char *t7_ibq[CIM_NUM_IBQ_T7] = { 7701 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7702 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3", 7703 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7" 7704 }; 7705 static const char *t7_ibq_sec[] = { 7706 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7707 NULL, NULL, NULL, "ibq_ipc0" 7708 }; 7709 7710 /* CIM outbound queues */ 7711 static const char *t4_obq[CIM_NUM_OBQ_T5] = { 7712 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7713 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */ 7714 }; 7715 static const char *t7_obq[CIM_NUM_OBQ_T7] = { 7716 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7717 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3", 7718 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7" 7719 }; 7720 static const char *t7_obq_sec[] = { 7721 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL, 7722 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0" 7723 }; 7724 7725 static void 7726 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 7727 struct sysctl_oid_list *c0) 7728 { 7729 struct sysctl_oid *oid; 7730 struct sysctl_oid_list *children1; 7731 int i, j, qcount; 7732 char s[16]; 7733 const char **qname; 7734 7735 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim", 7736 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block"); 7737 c0 = SYSCTL_CHILDREN(oid); 7738 7739 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL, 7740 sc->params.ncores, "# of active CIM cores"); 7741 7742 for (i = 0; i < sc->params.ncores; i++) { 7743 snprintf(s, sizeof(s), "%u", i); 7744 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s, 7745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core"); 7746 children1 = SYSCTL_CHILDREN(oid); 7747 7748 /* 7749 * CTLFLAG_SKIP because the misc.devlog sysctl already displays 7750 * the log for all cores. Use this sysctl to get the log for a 7751 * particular core only. 7752 */ 7753 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog", 7754 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP, 7755 sc, i, sysctl_devlog, "A", "firmware's device log"); 7756 7757 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg", 7758 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7759 sysctl_loadavg, "A", 7760 "microprocessor load averages (select firmwares only)"); 7761 7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg", 7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7764 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg, 7765 "A", "Queue configuration"); 7766 7767 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la", 7768 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7769 sysctl_cim_la, "A", "Logic analyzer"); 7770 7771 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la", 7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7773 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7774 7775 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la", 7776 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7777 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7778 7779 /* IBQs */ 7780 switch (chip_id(sc)) { 7781 case CHELSIO_T4: 7782 case CHELSIO_T5: 7783 case CHELSIO_T6: 7784 qname = &t4_ibq[0]; 7785 qcount = nitems(t4_ibq); 7786 break; 7787 case CHELSIO_T7: 7788 default: 7789 if (i == 0) { 7790 qname = &t7_ibq[0]; 7791 qcount = nitems(t7_ibq); 7792 } else { 7793 qname = &t7_ibq_sec[0]; 7794 qcount = nitems(t7_ibq_sec); 7795 } 7796 break; 7797 } 7798 MPASS(qcount <= sc->chip_params->cim_num_ibq); 7799 for (j = 0; j < qcount; j++) { 7800 if (qname[j] == NULL) 7801 continue; 7802 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7803 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7804 (i << 16) | j, sysctl_cim_ibq, "A", NULL); 7805 } 7806 7807 /* OBQs */ 7808 switch (chip_id(sc)) { 7809 case CHELSIO_T4: 7810 qname = t4_obq; 7811 qcount = CIM_NUM_OBQ; 7812 break; 7813 case CHELSIO_T5: 7814 case CHELSIO_T6: 7815 qname = t4_obq; 7816 qcount = nitems(t4_obq); 7817 break; 7818 case CHELSIO_T7: 7819 default: 7820 if (i == 0) { 7821 qname = t7_obq; 7822 qcount = nitems(t7_obq); 7823 } else { 7824 qname = t7_obq_sec; 7825 qcount = nitems(t7_obq_sec); 7826 } 7827 break; 7828 } 7829 MPASS(qcount <= sc->chip_params->cim_num_obq); 7830 for (j = 0; j < qcount; j++) { 7831 if (qname[j] == NULL) 7832 continue; 7833 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7835 (i << 16) | j, sysctl_cim_obq, "A", NULL); 7836 } 7837 } 7838 } 7839 7840 /* 7841 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7842 */ 7843 static char *caps_decoder[] = { 7844 "\20\001IPMI\002NCSI", /* 0: NBM */ 7845 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7846 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7847 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7848 "\006HASHFILTER\007ETHOFLD", 7849 "\20\001TOE\002SENDPATH", /* 4: TOE */ 7850 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */ 7851 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7852 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7853 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7854 "\007T10DIF" 7855 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7856 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7857 "\004TLS_HW,\005TOE_IPSEC", 7858 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7859 "\004PO_INITIATOR\005PO_TARGET", 7860 "\20\001NVMe_TCP", /* 9: NVMe */ 7861 }; 7862 7863 void 7864 t4_sysctls(struct adapter *sc) 7865 { 7866 struct sysctl_ctx_list *ctx = &sc->ctx; 7867 struct sysctl_oid *oid; 7868 struct sysctl_oid_list *children, *c0; 7869 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7870 7871 /* 7872 * dev.t4nex.X. 7873 */ 7874 oid = device_get_sysctl_tree(sc->dev); 7875 c0 = children = SYSCTL_CHILDREN(oid); 7876 7877 sc->sc_do_rxcopy = 1; 7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7879 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7880 7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7882 sc->params.nports, "# of ports"); 7883 7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7886 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7887 "available doorbells"); 7888 7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7890 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7891 7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7893 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7894 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7895 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7896 7897 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7898 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7899 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7900 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7901 7902 t4_sge_sysctls(sc, ctx, children); 7903 7904 sc->lro_timeout = 100; 7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7906 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7907 7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7909 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7910 7911 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW, 7912 &sc->intr_flags, 0, "flags for the slow interrupt handler"); 7913 7914 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7915 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7916 7917 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7918 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7919 7920 if (sc->flags & IS_VF) 7921 return; 7922 7923 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7924 NULL, chip_rev(sc), "chip hardware revision"); 7925 7926 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7927 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7928 7929 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7930 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7931 7932 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7933 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7934 7935 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7936 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7937 7938 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7939 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7940 7941 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7942 sc->er_version, 0, "expansion ROM version"); 7943 7944 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7945 sc->bs_version, 0, "bootstrap firmware version"); 7946 7947 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7948 NULL, sc->params.scfg_vers, "serial config version"); 7949 7950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7951 NULL, sc->params.vpd_vers, "VPD version"); 7952 7953 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7954 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7955 7956 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7957 sc->cfcsum, "config file checksum"); 7958 7959 #define SYSCTL_CAP(name, n, text) \ 7960 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7961 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7962 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7963 "available " text " capabilities") 7964 7965 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7966 SYSCTL_CAP(linkcaps, 1, "link"); 7967 SYSCTL_CAP(switchcaps, 2, "switch"); 7968 SYSCTL_CAP(nvmecaps, 9, "NVMe"); 7969 SYSCTL_CAP(niccaps, 3, "NIC"); 7970 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7971 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7972 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7973 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7974 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7975 #undef SYSCTL_CAP 7976 7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7978 NULL, sc->tids.nftids, "number of filters"); 7979 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7981 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7982 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7984 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7985 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7986 7987 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7988 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7989 "I", "core Vdd (in mV)"); 7990 7991 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7992 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7993 sysctl_cpus, "A", "local CPUs"); 7994 7995 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7996 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7997 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7998 7999 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 8000 &sc->swintr, 0, "software triggered interrupts"); 8001 8002 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 8003 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 8004 "1 = reset adapter, 0 = zero reset counter"); 8005 8006 /* 8007 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 8008 */ 8009 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 8010 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 8011 "logs and miscellaneous information"); 8012 children = SYSCTL_CHILDREN(oid); 8013 8014 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 8015 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8016 sysctl_cctrl, "A", "congestion control"); 8017 8018 cim_sysctls(sc, ctx, children); 8019 8020 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 8021 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8022 sysctl_cpl_stats, "A", "CPL statistics"); 8023 8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 8025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8026 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 8027 8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 8029 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8030 sysctl_tid_stats, "A", "tid stats"); 8031 8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1, 8034 sysctl_devlog, "A", "firmware's device log (all cores)"); 8035 8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 8037 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8038 sysctl_fcoe_stats, "A", "FCoE statistics"); 8039 8040 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 8041 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8042 sysctl_hw_sched, "A", "hardware scheduler "); 8043 8044 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 8045 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8046 sysctl_l2t, "A", "hardware L2 table"); 8047 8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 8049 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8050 sysctl_smt, "A", "hardware source MAC table"); 8051 8052 #ifdef INET6 8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 8054 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8055 sysctl_clip, "A", "active CLIP table entries"); 8056 #endif 8057 8058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 8059 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8060 sysctl_lb_stats, "A", "loopback statistics"); 8061 8062 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 8063 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8064 sysctl_meminfo, "A", "memory regions"); 8065 8066 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 8067 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8068 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 : 8069 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam), 8070 "A", "MPS TCAM entries"); 8071 8072 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 8073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8074 sysctl_path_mtus, "A", "path MTUs"); 8075 8076 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 8077 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8078 sysctl_pm_stats, "A", "PM statistics"); 8079 8080 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 8081 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8082 sysctl_rdma_stats, "A", "RDMA statistics"); 8083 8084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 8085 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8086 sysctl_tcp_stats, "A", "TCP statistics"); 8087 8088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 8089 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8090 sysctl_tids, "A", "TID information"); 8091 8092 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 8093 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8094 sysctl_tp_err_stats, "A", "TP error statistics"); 8095 8096 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8098 sysctl_tnl_stats, "A", "TP tunnel statistics"); 8099 8100 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 8101 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 8102 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 8103 8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 8105 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8106 sysctl_tp_la, "A", "TP logic analyzer"); 8107 8108 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 8109 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8110 sysctl_tx_rate, "A", "Tx rate"); 8111 8112 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 8113 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8114 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 8115 8116 if (chip_id(sc) >= CHELSIO_T5) { 8117 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8119 sysctl_wcwr_stats, "A", "write combined work requests"); 8120 } 8121 8122 #ifdef KERN_TLS 8123 if (is_ktls(sc)) { 8124 /* 8125 * dev.t4nex.0.tls. 8126 */ 8127 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 8128 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 8129 children = SYSCTL_CHILDREN(oid); 8130 8131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 8132 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 8133 "keys in work requests (1) or attempt to store TLS keys " 8134 "in card memory."); 8135 8136 if (is_t6(sc)) 8137 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 8138 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 8139 "combine TCB field updates with TLS record work " 8140 "requests."); 8141 else { 8142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records", 8143 CTLFLAG_RW, &sc->tlst.short_records, 0, 8144 "Use cipher-only mode for short records."); 8145 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash", 8146 CTLFLAG_RW, &sc->tlst.partial_ghash, 0, 8147 "Use partial GHASH for AES-GCM records."); 8148 } 8149 } 8150 #endif 8151 8152 #ifdef TCP_OFFLOAD 8153 if (is_offload(sc)) { 8154 int i; 8155 char s[4]; 8156 8157 /* 8158 * dev.t4nex.X.toe. 8159 */ 8160 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 8161 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 8162 children = SYSCTL_CHILDREN(oid); 8163 8164 sc->tt.cong_algorithm = -1; 8165 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 8166 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 8167 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 8168 "3 = highspeed)"); 8169 8170 sc->tt.sndbuf = -1; 8171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 8172 &sc->tt.sndbuf, 0, "hardware send buffer"); 8173 8174 sc->tt.ddp = 0; 8175 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 8176 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 8177 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 8178 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 8179 8180 sc->tt.rx_coalesce = -1; 8181 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 8182 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 8183 8184 sc->tt.tls = 1; 8185 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 8186 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 8187 "Inline TLS allowed"); 8188 8189 sc->tt.tx_align = -1; 8190 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 8191 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 8192 8193 sc->tt.tx_zcopy = 0; 8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 8195 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 8196 "Enable zero-copy aio_write(2)"); 8197 8198 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 8199 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8200 "cop_managed_offloading", CTLFLAG_RW, 8201 &sc->tt.cop_managed_offloading, 0, 8202 "COP (Connection Offload Policy) controls all TOE offload"); 8203 8204 sc->tt.autorcvbuf_inc = 16 * 1024; 8205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 8206 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 8207 "autorcvbuf increment"); 8208 8209 sc->tt.update_hc_on_pmtu_change = 1; 8210 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8211 "update_hc_on_pmtu_change", CTLFLAG_RW, 8212 &sc->tt.update_hc_on_pmtu_change, 0, 8213 "Update hostcache entry if the PMTU changes"); 8214 8215 sc->tt.iso = 1; 8216 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 8217 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 8218 8219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 8220 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8221 sysctl_tp_tick, "A", "TP timer tick (us)"); 8222 8223 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 8224 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 8225 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 8226 8227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 8228 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 8229 sysctl_tp_tick, "A", "DACK tick (us)"); 8230 8231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 8232 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8233 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 8234 8235 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 8236 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8237 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 8238 "Minimum retransmit interval (us)"); 8239 8240 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 8241 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8242 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 8243 "Maximum retransmit interval (us)"); 8244 8245 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 8246 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8247 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 8248 "Persist timer min (us)"); 8249 8250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 8251 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8252 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 8253 "Persist timer max (us)"); 8254 8255 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 8256 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8257 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 8258 "Keepalive idle timer (us)"); 8259 8260 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 8261 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8262 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 8263 "Keepalive interval timer (us)"); 8264 8265 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 8266 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8267 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 8268 8269 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 8270 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8271 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 8272 "FINWAIT2 timer (us)"); 8273 8274 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 8275 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8276 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 8277 "Number of SYN retransmissions before abort"); 8278 8279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 8280 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8281 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 8282 "Number of retransmissions before abort"); 8283 8284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 8285 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8286 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 8287 "Number of keepalive probes before abort"); 8288 8289 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 8290 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8291 "TOE retransmit backoffs"); 8292 children = SYSCTL_CHILDREN(oid); 8293 for (i = 0; i < 16; i++) { 8294 snprintf(s, sizeof(s), "%u", i); 8295 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8297 i, sysctl_tp_backoff, "IU", 8298 "TOE retransmit backoff"); 8299 } 8300 } 8301 #endif 8302 } 8303 8304 void 8305 vi_sysctls(struct vi_info *vi) 8306 { 8307 struct sysctl_ctx_list *ctx = &vi->ctx; 8308 struct sysctl_oid *oid; 8309 struct sysctl_oid_list *children; 8310 8311 /* 8312 * dev.v?(cxgbe|cxl).X. 8313 */ 8314 oid = device_get_sysctl_tree(vi->dev); 8315 children = SYSCTL_CHILDREN(oid); 8316 8317 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8318 vi->viid, "VI identifer"); 8319 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8320 &vi->nrxq, 0, "# of rx queues"); 8321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8322 &vi->ntxq, 0, "# of tx queues"); 8323 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8324 &vi->first_rxq, 0, "index of first rx queue"); 8325 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8326 &vi->first_txq, 0, "index of first tx queue"); 8327 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8328 vi->rss_base, "start of RSS indirection table"); 8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8330 vi->rss_size, "size of RSS indirection table"); 8331 8332 if (IS_MAIN_VI(vi)) { 8333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8334 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8335 sysctl_noflowq, "IU", 8336 "Reserve queue 0 for non-flowid packets"); 8337 } 8338 8339 if (vi->adapter->flags & IS_VF) { 8340 MPASS(vi->flags & TX_USES_VM_WR); 8341 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8342 NULL, 1, "use VM work requests for transmit"); 8343 } else { 8344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8345 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8346 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8347 } 8348 8349 #ifdef TCP_OFFLOAD 8350 if (vi->nofldrxq != 0) { 8351 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8352 &vi->nofldrxq, 0, 8353 "# of rx queues for offloaded TCP connections"); 8354 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8355 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8356 "index of first TOE rx queue"); 8357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8358 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8359 sysctl_holdoff_tmr_idx_ofld, "I", 8360 "holdoff timer index for TOE queues"); 8361 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8362 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8363 sysctl_holdoff_pktc_idx_ofld, "I", 8364 "holdoff packet counter index for TOE queues"); 8365 } 8366 #endif 8367 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8368 if (vi->nofldtxq != 0) { 8369 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8370 &vi->nofldtxq, 0, 8371 "# of tx queues for TOE/ETHOFLD"); 8372 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8373 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8374 "index of first TOE/ETHOFLD tx queue"); 8375 } 8376 #endif 8377 #ifdef DEV_NETMAP 8378 if (vi->nnmrxq != 0) { 8379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8380 &vi->nnmrxq, 0, "# of netmap rx queues"); 8381 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8382 &vi->nnmtxq, 0, "# of netmap tx queues"); 8383 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8384 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8385 "index of first netmap rx queue"); 8386 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8387 CTLFLAG_RD, &vi->first_nm_txq, 0, 8388 "index of first netmap tx queue"); 8389 } 8390 #endif 8391 8392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8393 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8394 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8396 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8397 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8398 8399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8400 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8401 sysctl_qsize_rxq, "I", "rx queue size"); 8402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8403 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8404 sysctl_qsize_txq, "I", "tx queue size"); 8405 } 8406 8407 static void 8408 cxgbe_sysctls(struct port_info *pi) 8409 { 8410 struct sysctl_ctx_list *ctx = &pi->ctx; 8411 struct sysctl_oid *oid; 8412 struct sysctl_oid_list *children, *children2; 8413 struct adapter *sc = pi->adapter; 8414 int i; 8415 char name[16]; 8416 static char *tc_flags = {"\20\1USER"}; 8417 8418 /* 8419 * dev.cxgbe.X. 8420 */ 8421 oid = device_get_sysctl_tree(pi->dev); 8422 children = SYSCTL_CHILDREN(oid); 8423 8424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8425 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8426 sysctl_linkdnrc, "A", "reason why link is down"); 8427 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8428 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8429 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8430 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8432 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8433 sysctl_btphy, "I", "PHY firmware version"); 8434 } 8435 8436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8437 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8438 sysctl_pause_settings, "A", 8439 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8441 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8442 "FEC in use on the link"); 8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8444 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8445 sysctl_requested_fec, "A", 8446 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8448 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8449 "FEC recommended by the cable/transceiver"); 8450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8451 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8452 sysctl_autoneg, "I", 8453 "autonegotiation (-1 = not supported)"); 8454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8455 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8456 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8457 8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8459 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8461 &pi->link_cfg.pcaps, 0, "port capabilities"); 8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8463 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8465 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8466 8467 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8468 port_top_speed(pi), "max speed (in Gbps)"); 8469 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8470 pi->mps_bg_map, "MPS buffer group map"); 8471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8472 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8473 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8474 pi->tx_chan, "TP tx c-channel"); 8475 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8476 pi->rx_chan, "TP rx c-channel"); 8477 8478 if (sc->flags & IS_VF) 8479 return; 8480 8481 /* 8482 * dev.(cxgbe|cxl).X.tc. 8483 */ 8484 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8485 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8486 "Tx scheduler traffic classes (cl_rl)"); 8487 children2 = SYSCTL_CHILDREN(oid); 8488 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8489 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8490 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8491 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8492 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8493 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8494 for (i = 0; i < sc->params.nsched_cls; i++) { 8495 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8496 8497 snprintf(name, sizeof(name), "%d", i); 8498 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8499 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8500 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8501 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8502 CTLFLAG_RD, &tc->state, 0, "current state"); 8503 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8504 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8505 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8506 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8507 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8508 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8509 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8510 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8511 "traffic class parameters"); 8512 } 8513 8514 /* 8515 * dev.cxgbe.X.stats. 8516 */ 8517 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8518 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8519 children = SYSCTL_CHILDREN(oid); 8520 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8521 &pi->tx_parse_error, 0, 8522 "# of tx packets with invalid length or # of segments"); 8523 8524 #define T4_LBSTAT(name, stat, desc) do { \ 8525 if (sc->params.tp.lb_mode) { \ 8526 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8527 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \ 8528 A_MPS_PORT_STAT_##stat##_L, \ 8529 sysctl_handle_t4_portstat64, "QU", desc); \ 8530 } else { \ 8531 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8532 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8533 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8534 sysctl_handle_t4_reg64, "QU", desc); \ 8535 } \ 8536 } while (0) 8537 8538 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8539 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8540 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8541 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8542 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8543 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8544 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8545 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8546 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8547 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8548 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8549 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8550 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8551 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8552 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8553 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8554 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8555 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8556 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8557 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8558 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8559 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8560 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8561 8562 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8563 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8564 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8565 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8566 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8567 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8568 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8569 if (is_t6(sc)) { 8570 /* Read from port_stats and may be stale by up to 1s */ 8571 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err", 8572 CTLFLAG_RD, &pi->stats.rx_fcs_err, 8573 "# of frames received with bad FCS since last link up"); 8574 } else { 8575 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8576 "# of frames received with bad FCS"); 8577 } 8578 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8579 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8580 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8581 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8582 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8583 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8584 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8585 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8586 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8587 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8588 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8589 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8590 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8591 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8592 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8593 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8594 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8595 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8596 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8597 #undef T4_LBSTAT 8598 8599 #define T4_REGSTAT(name, stat, desc) do { \ 8600 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8601 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8602 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \ 8603 } while (0) 8604 8605 if (pi->mps_bg_map & 1) { 8606 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME, 8607 "# drops due to buffer-group 0 overflows"); 8608 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME, 8609 "# of buffer-group 0 truncated packets"); 8610 } 8611 if (pi->mps_bg_map & 2) { 8612 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME, 8613 "# drops due to buffer-group 1 overflows"); 8614 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME, 8615 "# of buffer-group 1 truncated packets"); 8616 } 8617 if (pi->mps_bg_map & 4) { 8618 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME, 8619 "# drops due to buffer-group 2 overflows"); 8620 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME, 8621 "# of buffer-group 2 truncated packets"); 8622 } 8623 if (pi->mps_bg_map & 8) { 8624 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME, 8625 "# drops due to buffer-group 3 overflows"); 8626 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME, 8627 "# of buffer-group 3 truncated packets"); 8628 } 8629 #undef T4_REGSTAT 8630 } 8631 8632 static int 8633 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8634 { 8635 int rc, *i, space = 0; 8636 struct sbuf sb; 8637 8638 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8639 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8640 if (space) 8641 sbuf_printf(&sb, " "); 8642 sbuf_printf(&sb, "%d", *i); 8643 space = 1; 8644 } 8645 rc = sbuf_finish(&sb); 8646 sbuf_delete(&sb); 8647 return (rc); 8648 } 8649 8650 static int 8651 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8652 { 8653 int rc; 8654 struct sbuf *sb; 8655 8656 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8657 if (sb == NULL) 8658 return (ENOMEM); 8659 8660 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8661 rc = sbuf_finish(sb); 8662 sbuf_delete(sb); 8663 8664 return (rc); 8665 } 8666 8667 static int 8668 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8669 { 8670 int rc; 8671 struct sbuf *sb; 8672 8673 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8674 if (sb == NULL) 8675 return (ENOMEM); 8676 8677 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8678 rc = sbuf_finish(sb); 8679 sbuf_delete(sb); 8680 8681 return (rc); 8682 } 8683 8684 static int 8685 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8686 { 8687 struct port_info *pi = arg1; 8688 int op = arg2; 8689 struct adapter *sc = pi->adapter; 8690 u_int v; 8691 int rc; 8692 8693 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8694 if (rc) 8695 return (rc); 8696 if (!hw_all_ok(sc)) 8697 rc = ENXIO; 8698 else { 8699 /* XXX: magic numbers */ 8700 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8701 op ? 0x20 : 0xc820, &v); 8702 } 8703 end_synchronized_op(sc, 0); 8704 if (rc) 8705 return (rc); 8706 if (op == 0) 8707 v /= 256; 8708 8709 rc = sysctl_handle_int(oidp, &v, 0, req); 8710 return (rc); 8711 } 8712 8713 static int 8714 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8715 { 8716 struct vi_info *vi = arg1; 8717 int rc, val; 8718 8719 val = vi->rsrv_noflowq; 8720 rc = sysctl_handle_int(oidp, &val, 0, req); 8721 if (rc != 0 || req->newptr == NULL) 8722 return (rc); 8723 8724 if ((val >= 1) && (vi->ntxq > 1)) 8725 vi->rsrv_noflowq = 1; 8726 else 8727 vi->rsrv_noflowq = 0; 8728 8729 return (rc); 8730 } 8731 8732 static int 8733 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8734 { 8735 struct vi_info *vi = arg1; 8736 struct adapter *sc = vi->adapter; 8737 int rc, val, i; 8738 8739 MPASS(!(sc->flags & IS_VF)); 8740 8741 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8742 rc = sysctl_handle_int(oidp, &val, 0, req); 8743 if (rc != 0 || req->newptr == NULL) 8744 return (rc); 8745 8746 if (val != 0 && val != 1) 8747 return (EINVAL); 8748 8749 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8750 "t4txvm"); 8751 if (rc) 8752 return (rc); 8753 if (!hw_all_ok(sc)) 8754 rc = ENXIO; 8755 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8756 /* 8757 * We don't want parse_pkt to run with one setting (VF or PF) 8758 * and then eth_tx to see a different setting but still use 8759 * stale information calculated by parse_pkt. 8760 */ 8761 rc = EBUSY; 8762 } else { 8763 struct port_info *pi = vi->pi; 8764 struct sge_txq *txq; 8765 uint32_t ctrl0; 8766 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8767 8768 if (val) { 8769 vi->flags |= TX_USES_VM_WR; 8770 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8771 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8772 V_TXPKT_INTF(pi->hw_port)); 8773 if (!(sc->flags & IS_VF)) 8774 npkt--; 8775 } else { 8776 vi->flags &= ~TX_USES_VM_WR; 8777 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8778 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8779 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) | 8780 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8781 } 8782 for_each_txq(vi, i, txq) { 8783 txq->cpl_ctrl0 = ctrl0; 8784 txq->txp.max_npkt = npkt; 8785 } 8786 } 8787 end_synchronized_op(sc, LOCK_HELD); 8788 return (rc); 8789 } 8790 8791 static int 8792 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8793 { 8794 struct vi_info *vi = arg1; 8795 struct adapter *sc = vi->adapter; 8796 int idx, rc, i; 8797 struct sge_rxq *rxq; 8798 uint8_t v; 8799 8800 idx = vi->tmr_idx; 8801 8802 rc = sysctl_handle_int(oidp, &idx, 0, req); 8803 if (rc != 0 || req->newptr == NULL) 8804 return (rc); 8805 8806 if (idx < 0 || idx >= SGE_NTIMERS) 8807 return (EINVAL); 8808 8809 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8810 "t4tmr"); 8811 if (rc) 8812 return (rc); 8813 8814 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8815 for_each_rxq(vi, i, rxq) { 8816 #ifdef atomic_store_rel_8 8817 atomic_store_rel_8(&rxq->iq.intr_params, v); 8818 #else 8819 rxq->iq.intr_params = v; 8820 #endif 8821 } 8822 vi->tmr_idx = idx; 8823 8824 end_synchronized_op(sc, LOCK_HELD); 8825 return (0); 8826 } 8827 8828 static int 8829 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8830 { 8831 struct vi_info *vi = arg1; 8832 struct adapter *sc = vi->adapter; 8833 int idx, rc; 8834 8835 idx = vi->pktc_idx; 8836 8837 rc = sysctl_handle_int(oidp, &idx, 0, req); 8838 if (rc != 0 || req->newptr == NULL) 8839 return (rc); 8840 8841 if (idx < -1 || idx >= SGE_NCOUNTERS) 8842 return (EINVAL); 8843 8844 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8845 "t4pktc"); 8846 if (rc) 8847 return (rc); 8848 8849 if (vi->flags & VI_INIT_DONE) 8850 rc = EBUSY; /* cannot be changed once the queues are created */ 8851 else 8852 vi->pktc_idx = idx; 8853 8854 end_synchronized_op(sc, LOCK_HELD); 8855 return (rc); 8856 } 8857 8858 static int 8859 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8860 { 8861 struct vi_info *vi = arg1; 8862 struct adapter *sc = vi->adapter; 8863 int qsize, rc; 8864 8865 qsize = vi->qsize_rxq; 8866 8867 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8868 if (rc != 0 || req->newptr == NULL) 8869 return (rc); 8870 8871 if (qsize < 128 || (qsize & 7)) 8872 return (EINVAL); 8873 8874 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8875 "t4rxqs"); 8876 if (rc) 8877 return (rc); 8878 8879 if (vi->flags & VI_INIT_DONE) 8880 rc = EBUSY; /* cannot be changed once the queues are created */ 8881 else 8882 vi->qsize_rxq = qsize; 8883 8884 end_synchronized_op(sc, LOCK_HELD); 8885 return (rc); 8886 } 8887 8888 static int 8889 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8890 { 8891 struct vi_info *vi = arg1; 8892 struct adapter *sc = vi->adapter; 8893 int qsize, rc; 8894 8895 qsize = vi->qsize_txq; 8896 8897 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8898 if (rc != 0 || req->newptr == NULL) 8899 return (rc); 8900 8901 if (qsize < 128 || qsize > 65536) 8902 return (EINVAL); 8903 8904 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8905 "t4txqs"); 8906 if (rc) 8907 return (rc); 8908 8909 if (vi->flags & VI_INIT_DONE) 8910 rc = EBUSY; /* cannot be changed once the queues are created */ 8911 else 8912 vi->qsize_txq = qsize; 8913 8914 end_synchronized_op(sc, LOCK_HELD); 8915 return (rc); 8916 } 8917 8918 static int 8919 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8920 { 8921 struct port_info *pi = arg1; 8922 struct adapter *sc = pi->adapter; 8923 struct link_config *lc = &pi->link_cfg; 8924 int rc; 8925 8926 if (req->newptr == NULL) { 8927 struct sbuf *sb; 8928 static char *bits = "\20\1RX\2TX\3AUTO"; 8929 8930 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8931 if (sb == NULL) 8932 return (ENOMEM); 8933 8934 if (lc->link_ok) { 8935 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8936 (lc->requested_fc & PAUSE_AUTONEG), bits); 8937 } else { 8938 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8939 PAUSE_RX | PAUSE_AUTONEG), bits); 8940 } 8941 rc = sbuf_finish(sb); 8942 sbuf_delete(sb); 8943 } else { 8944 char s[2]; 8945 int n; 8946 8947 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8948 PAUSE_AUTONEG)); 8949 s[1] = 0; 8950 8951 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8952 if (rc != 0) 8953 return(rc); 8954 8955 if (s[1] != 0) 8956 return (EINVAL); 8957 if (s[0] < '0' || s[0] > '9') 8958 return (EINVAL); /* not a number */ 8959 n = s[0] - '0'; 8960 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8961 return (EINVAL); /* some other bit is set too */ 8962 8963 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8964 "t4PAUSE"); 8965 if (rc) 8966 return (rc); 8967 if (hw_all_ok(sc)) { 8968 PORT_LOCK(pi); 8969 lc->requested_fc = n; 8970 fixup_link_config(pi); 8971 if (pi->up_vis > 0) 8972 rc = apply_link_config(pi); 8973 set_current_media(pi); 8974 PORT_UNLOCK(pi); 8975 } 8976 end_synchronized_op(sc, 0); 8977 } 8978 8979 return (rc); 8980 } 8981 8982 static int 8983 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8984 { 8985 struct port_info *pi = arg1; 8986 struct link_config *lc = &pi->link_cfg; 8987 int rc; 8988 struct sbuf *sb; 8989 8990 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8991 if (sb == NULL) 8992 return (ENOMEM); 8993 if (lc->link_ok) 8994 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits); 8995 else 8996 sbuf_printf(sb, "no link"); 8997 rc = sbuf_finish(sb); 8998 sbuf_delete(sb); 8999 9000 return (rc); 9001 } 9002 9003 static int 9004 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 9005 { 9006 struct port_info *pi = arg1; 9007 struct adapter *sc = pi->adapter; 9008 struct link_config *lc = &pi->link_cfg; 9009 int rc; 9010 int8_t old = lc->requested_fec; 9011 9012 if (req->newptr == NULL) { 9013 struct sbuf *sb; 9014 9015 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9016 if (sb == NULL) 9017 return (ENOMEM); 9018 9019 sbuf_printf(sb, "%b", old, t4_fec_bits); 9020 rc = sbuf_finish(sb); 9021 sbuf_delete(sb); 9022 } else { 9023 char s[8]; 9024 int n; 9025 9026 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 : 9027 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 9028 9029 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 9030 if (rc != 0) 9031 return(rc); 9032 9033 n = strtol(&s[0], NULL, 0); 9034 if (n < 0 || n & FEC_AUTO) 9035 n = FEC_AUTO; 9036 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 9037 return (EINVAL);/* some other bit is set too */ 9038 9039 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9040 "t4reqf"); 9041 if (rc) 9042 return (rc); 9043 PORT_LOCK(pi); 9044 if (lc->requested_fec != old) { 9045 rc = EBUSY; 9046 goto done; 9047 } 9048 if (n == FEC_AUTO) 9049 lc->requested_fec = FEC_AUTO; 9050 else if (n == 0 || n == FEC_NONE) 9051 lc->requested_fec = FEC_NONE; 9052 else { 9053 if ((lc->pcaps | 9054 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 9055 lc->pcaps) { 9056 rc = ENOTSUP; 9057 goto done; 9058 } 9059 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 9060 FEC_MODULE); 9061 } 9062 if (hw_all_ok(sc)) { 9063 fixup_link_config(pi); 9064 if (pi->up_vis > 0) { 9065 rc = apply_link_config(pi); 9066 if (rc != 0) { 9067 lc->requested_fec = old; 9068 if (rc == FW_EPROTO) 9069 rc = ENOTSUP; 9070 } 9071 } 9072 } 9073 done: 9074 PORT_UNLOCK(pi); 9075 end_synchronized_op(sc, 0); 9076 } 9077 9078 return (rc); 9079 } 9080 9081 static int 9082 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 9083 { 9084 struct port_info *pi = arg1; 9085 struct adapter *sc = pi->adapter; 9086 struct link_config *lc = &pi->link_cfg; 9087 int rc; 9088 int8_t fec; 9089 struct sbuf *sb; 9090 9091 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9092 if (sb == NULL) 9093 return (ENOMEM); 9094 9095 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 9096 rc = EBUSY; 9097 goto done; 9098 } 9099 if (!hw_all_ok(sc)) { 9100 rc = ENXIO; 9101 goto done; 9102 } 9103 PORT_LOCK(pi); 9104 if (pi->up_vis == 0) { 9105 /* 9106 * If all the interfaces are administratively down the firmware 9107 * does not report transceiver changes. Refresh port info here. 9108 * This is the only reason we have a synchronized op in this 9109 * function. Just PORT_LOCK would have been enough otherwise. 9110 */ 9111 t4_update_port_info(pi); 9112 } 9113 9114 fec = lc->fec_hint; 9115 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 9116 !fec_supported(lc->pcaps)) { 9117 PORT_UNLOCK(pi); 9118 sbuf_printf(sb, "n/a"); 9119 } else { 9120 if (fec == 0) 9121 fec = FEC_NONE; 9122 PORT_UNLOCK(pi); 9123 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits); 9124 } 9125 rc = sbuf_finish(sb); 9126 done: 9127 sbuf_delete(sb); 9128 end_synchronized_op(sc, 0); 9129 9130 return (rc); 9131 } 9132 9133 static int 9134 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 9135 { 9136 struct port_info *pi = arg1; 9137 struct adapter *sc = pi->adapter; 9138 struct link_config *lc = &pi->link_cfg; 9139 int rc, val; 9140 9141 if (lc->pcaps & FW_PORT_CAP32_ANEG) 9142 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 9143 else 9144 val = -1; 9145 rc = sysctl_handle_int(oidp, &val, 0, req); 9146 if (rc != 0 || req->newptr == NULL) 9147 return (rc); 9148 if (val == 0) 9149 val = AUTONEG_DISABLE; 9150 else if (val == 1) 9151 val = AUTONEG_ENABLE; 9152 else 9153 val = AUTONEG_AUTO; 9154 9155 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9156 "t4aneg"); 9157 if (rc) 9158 return (rc); 9159 PORT_LOCK(pi); 9160 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 9161 rc = ENOTSUP; 9162 goto done; 9163 } 9164 lc->requested_aneg = val; 9165 if (hw_all_ok(sc)) { 9166 fixup_link_config(pi); 9167 if (pi->up_vis > 0) 9168 rc = apply_link_config(pi); 9169 set_current_media(pi); 9170 } 9171 done: 9172 PORT_UNLOCK(pi); 9173 end_synchronized_op(sc, 0); 9174 return (rc); 9175 } 9176 9177 static int 9178 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 9179 { 9180 struct port_info *pi = arg1; 9181 struct adapter *sc = pi->adapter; 9182 struct link_config *lc = &pi->link_cfg; 9183 int rc, val; 9184 9185 val = lc->force_fec; 9186 MPASS(val >= -1 && val <= 1); 9187 rc = sysctl_handle_int(oidp, &val, 0, req); 9188 if (rc != 0 || req->newptr == NULL) 9189 return (rc); 9190 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 9191 return (ENOTSUP); 9192 if (val < -1 || val > 1) 9193 return (EINVAL); 9194 9195 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 9196 if (rc) 9197 return (rc); 9198 PORT_LOCK(pi); 9199 lc->force_fec = val; 9200 if (hw_all_ok(sc)) { 9201 fixup_link_config(pi); 9202 if (pi->up_vis > 0) 9203 rc = apply_link_config(pi); 9204 } 9205 PORT_UNLOCK(pi); 9206 end_synchronized_op(sc, 0); 9207 return (rc); 9208 } 9209 9210 static int 9211 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 9212 { 9213 struct adapter *sc = arg1; 9214 int rc, reg = arg2; 9215 uint64_t val; 9216 9217 mtx_lock(&sc->reg_lock); 9218 if (hw_off_limits(sc)) 9219 rc = ENXIO; 9220 else { 9221 rc = 0; 9222 val = t4_read_reg64(sc, reg); 9223 } 9224 mtx_unlock(&sc->reg_lock); 9225 if (rc == 0) 9226 rc = sysctl_handle_64(oidp, &val, 0, req); 9227 return (rc); 9228 } 9229 9230 static int 9231 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS) 9232 { 9233 struct port_info *pi = arg1; 9234 struct adapter *sc = pi->adapter; 9235 int rc, i, reg = arg2; 9236 uint64_t val; 9237 9238 mtx_lock(&sc->reg_lock); 9239 if (hw_off_limits(sc)) 9240 rc = ENXIO; 9241 else { 9242 val = 0; 9243 for (i = 0; i < sc->params.tp.lb_nchan; i++) { 9244 val += t4_read_reg64(sc, 9245 t4_port_reg(sc, pi->tx_chan + i, reg)); 9246 } 9247 rc = 0; 9248 } 9249 mtx_unlock(&sc->reg_lock); 9250 if (rc == 0) 9251 rc = sysctl_handle_64(oidp, &val, 0, req); 9252 return (rc); 9253 } 9254 9255 static int 9256 sysctl_temperature(SYSCTL_HANDLER_ARGS) 9257 { 9258 struct adapter *sc = arg1; 9259 int rc, t; 9260 uint32_t param, val; 9261 9262 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 9263 if (rc) 9264 return (rc); 9265 if (!hw_all_ok(sc)) 9266 rc = ENXIO; 9267 else { 9268 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9269 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9270 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 9271 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9272 } 9273 end_synchronized_op(sc, 0); 9274 if (rc) 9275 return (rc); 9276 9277 /* unknown is returned as 0 but we display -1 in that case */ 9278 t = val == 0 ? -1 : val; 9279 9280 rc = sysctl_handle_int(oidp, &t, 0, req); 9281 return (rc); 9282 } 9283 9284 static int 9285 sysctl_vdd(SYSCTL_HANDLER_ARGS) 9286 { 9287 struct adapter *sc = arg1; 9288 int rc; 9289 uint32_t param, val; 9290 9291 if (sc->params.core_vdd == 0) { 9292 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9293 "t4vdd"); 9294 if (rc) 9295 return (rc); 9296 if (!hw_all_ok(sc)) 9297 rc = ENXIO; 9298 else { 9299 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9300 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9301 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 9302 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 9303 ¶m, &val); 9304 } 9305 end_synchronized_op(sc, 0); 9306 if (rc) 9307 return (rc); 9308 sc->params.core_vdd = val; 9309 } 9310 9311 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 9312 } 9313 9314 static int 9315 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 9316 { 9317 struct adapter *sc = arg1; 9318 int rc, v; 9319 uint32_t param, val; 9320 9321 v = sc->sensor_resets; 9322 rc = sysctl_handle_int(oidp, &v, 0, req); 9323 if (rc != 0 || req->newptr == NULL || v <= 0) 9324 return (rc); 9325 9326 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 9327 chip_id(sc) < CHELSIO_T5) 9328 return (ENOTSUP); 9329 9330 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 9331 if (rc) 9332 return (rc); 9333 if (!hw_all_ok(sc)) 9334 rc = ENXIO; 9335 else { 9336 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9337 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9338 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 9339 val = 1; 9340 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9341 } 9342 end_synchronized_op(sc, 0); 9343 if (rc == 0) 9344 sc->sensor_resets++; 9345 return (rc); 9346 } 9347 9348 static int 9349 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9350 { 9351 struct adapter *sc = arg1; 9352 struct sbuf *sb; 9353 int rc; 9354 uint32_t param, val; 9355 uint8_t coreid = (uint8_t)arg2; 9356 9357 KASSERT(coreid < sc->params.ncores, 9358 ("%s: bad coreid %u\n", __func__, coreid)); 9359 9360 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9361 if (rc) 9362 return (rc); 9363 if (!hw_all_ok(sc)) 9364 rc = ENXIO; 9365 else { 9366 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9367 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) | 9368 V_FW_PARAMS_PARAM_Y(coreid); 9369 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9370 } 9371 end_synchronized_op(sc, 0); 9372 if (rc) 9373 return (rc); 9374 9375 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9376 if (sb == NULL) 9377 return (ENOMEM); 9378 9379 if (val == 0xffffffff) { 9380 /* Only debug and custom firmwares report load averages. */ 9381 sbuf_printf(sb, "not available"); 9382 } else { 9383 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9384 (val >> 16) & 0xff); 9385 } 9386 rc = sbuf_finish(sb); 9387 sbuf_delete(sb); 9388 9389 return (rc); 9390 } 9391 9392 static int 9393 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9394 { 9395 struct adapter *sc = arg1; 9396 struct sbuf *sb; 9397 int rc, i; 9398 uint16_t incr[NMTUS][NCCTRL_WIN]; 9399 static const char *dec_fac[] = { 9400 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9401 "0.9375" 9402 }; 9403 9404 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9405 if (sb == NULL) 9406 return (ENOMEM); 9407 9408 rc = 0; 9409 mtx_lock(&sc->reg_lock); 9410 if (hw_off_limits(sc)) 9411 rc = ENXIO; 9412 else 9413 t4_read_cong_tbl(sc, incr); 9414 mtx_unlock(&sc->reg_lock); 9415 if (rc) 9416 goto done; 9417 9418 for (i = 0; i < NCCTRL_WIN; ++i) { 9419 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9420 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9421 incr[5][i], incr[6][i], incr[7][i]); 9422 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9423 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9424 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9425 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9426 } 9427 9428 rc = sbuf_finish(sb); 9429 done: 9430 sbuf_delete(sb); 9431 return (rc); 9432 } 9433 9434 static int 9435 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS) 9436 { 9437 struct adapter *sc = arg1; 9438 struct sbuf *sb; 9439 int rc, i, n, qid, coreid; 9440 uint32_t *buf, *p; 9441 9442 qid = arg2 & 0xffff; 9443 coreid = arg2 >> 16; 9444 9445 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq, 9446 ("%s: bad ibq qid %d\n", __func__, qid)); 9447 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9448 ("%s: bad coreid %d\n", __func__, coreid)); 9449 9450 n = 4 * CIM_IBQ_SIZE; 9451 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9452 mtx_lock(&sc->reg_lock); 9453 if (hw_off_limits(sc)) 9454 rc = -ENXIO; 9455 else 9456 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n); 9457 mtx_unlock(&sc->reg_lock); 9458 if (rc < 0) { 9459 rc = -rc; 9460 goto done; 9461 } 9462 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9463 9464 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9465 if (sb == NULL) { 9466 rc = ENOMEM; 9467 goto done; 9468 } 9469 for (i = 0, p = buf; i < n; i += 16, p += 4) 9470 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9471 p[2], p[3]); 9472 rc = sbuf_finish(sb); 9473 sbuf_delete(sb); 9474 done: 9475 free(buf, M_CXGBE); 9476 return (rc); 9477 } 9478 9479 static int 9480 sysctl_cim_obq(SYSCTL_HANDLER_ARGS) 9481 { 9482 struct adapter *sc = arg1; 9483 struct sbuf *sb; 9484 int rc, i, n, qid, coreid; 9485 uint32_t *buf, *p; 9486 9487 qid = arg2 & 0xffff; 9488 coreid = arg2 >> 16; 9489 9490 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq, 9491 ("%s: bad obq qid %d\n", __func__, qid)); 9492 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9493 ("%s: bad coreid %d\n", __func__, coreid)); 9494 9495 n = 6 * CIM_OBQ_SIZE * 4; 9496 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9497 mtx_lock(&sc->reg_lock); 9498 if (hw_off_limits(sc)) 9499 rc = -ENXIO; 9500 else 9501 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n); 9502 mtx_unlock(&sc->reg_lock); 9503 if (rc < 0) { 9504 rc = -rc; 9505 goto done; 9506 } 9507 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9508 9509 rc = sysctl_wire_old_buffer(req, 0); 9510 if (rc != 0) 9511 goto done; 9512 9513 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9514 if (sb == NULL) { 9515 rc = ENOMEM; 9516 goto done; 9517 } 9518 for (i = 0, p = buf; i < n; i += 16, p += 4) 9519 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9520 p[2], p[3]); 9521 rc = sbuf_finish(sb); 9522 sbuf_delete(sb); 9523 done: 9524 free(buf, M_CXGBE); 9525 return (rc); 9526 } 9527 9528 static void 9529 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9530 { 9531 uint32_t *p; 9532 9533 sbuf_printf(sb, "Status Data PC%s", 9534 cfg & F_UPDBGLACAPTPCONLY ? "" : 9535 " LS0Stat LS0Addr LS0Data"); 9536 9537 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9538 if (cfg & F_UPDBGLACAPTPCONLY) { 9539 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9540 p[6], p[7]); 9541 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9542 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9543 p[4] & 0xff, p[5] >> 8); 9544 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9545 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9546 p[1] & 0xf, p[2] >> 4); 9547 } else { 9548 sbuf_printf(sb, 9549 "\n %02x %x%07x %x%07x %08x %08x " 9550 "%08x%08x%08x%08x", 9551 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9552 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9553 p[6], p[7]); 9554 } 9555 } 9556 } 9557 9558 static void 9559 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9560 { 9561 uint32_t *p; 9562 9563 sbuf_printf(sb, "Status Inst Data PC%s", 9564 cfg & F_UPDBGLACAPTPCONLY ? "" : 9565 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9566 9567 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9568 if (cfg & F_UPDBGLACAPTPCONLY) { 9569 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9570 p[3] & 0xff, p[2], p[1], p[0]); 9571 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9572 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9573 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9574 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9575 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9576 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9577 p[6] >> 16); 9578 } else { 9579 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9580 "%08x %08x %08x %08x %08x %08x", 9581 (p[9] >> 16) & 0xff, 9582 p[9] & 0xffff, p[8] >> 16, 9583 p[8] & 0xffff, p[7] >> 16, 9584 p[7] & 0xffff, p[6] >> 16, 9585 p[2], p[1], p[0], p[5], p[4], p[3]); 9586 } 9587 } 9588 } 9589 9590 static int 9591 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 9592 { 9593 uint32_t cfg, *buf; 9594 int rc; 9595 9596 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9597 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9598 M_ZERO | flags); 9599 if (buf == NULL) 9600 return (ENOMEM); 9601 9602 mtx_lock(&sc->reg_lock); 9603 if (hw_off_limits(sc)) 9604 rc = ENXIO; 9605 else { 9606 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, 9607 &cfg); 9608 if (rc == 0) 9609 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL); 9610 } 9611 mtx_unlock(&sc->reg_lock); 9612 if (rc == 0) { 9613 if (chip_id(sc) < CHELSIO_T6) 9614 sbuf_cim_la4(sc, sb, buf, cfg); 9615 else 9616 sbuf_cim_la6(sc, sb, buf, cfg); 9617 } 9618 free(buf, M_CXGBE); 9619 return (rc); 9620 } 9621 9622 static int 9623 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9624 { 9625 struct adapter *sc = arg1; 9626 int coreid = arg2; 9627 struct sbuf *sb; 9628 int rc; 9629 9630 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9631 if (sb == NULL) 9632 return (ENOMEM); 9633 9634 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK); 9635 if (rc == 0) 9636 rc = sbuf_finish(sb); 9637 sbuf_delete(sb); 9638 return (rc); 9639 } 9640 9641 static void 9642 dump_cim_regs(struct adapter *sc) 9643 { 9644 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9645 device_get_nameunit(sc->dev), 9646 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9647 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9648 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9649 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9650 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9651 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9652 device_get_nameunit(sc->dev), 9653 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9654 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9655 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9656 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9657 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9658 } 9659 9660 static void 9661 dump_cimla(struct adapter *sc) 9662 { 9663 struct sbuf sb; 9664 int rc; 9665 9666 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9667 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9668 device_get_nameunit(sc->dev)); 9669 return; 9670 } 9671 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK); 9672 if (rc == 0) { 9673 rc = sbuf_finish(&sb); 9674 if (rc == 0) { 9675 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9676 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9677 } 9678 } 9679 sbuf_delete(&sb); 9680 } 9681 9682 void 9683 t4_os_cim_err(struct adapter *sc) 9684 { 9685 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9686 } 9687 9688 static int 9689 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9690 { 9691 struct adapter *sc = arg1; 9692 u_int i; 9693 struct sbuf *sb; 9694 uint32_t *buf, *p; 9695 int rc; 9696 9697 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9698 if (sb == NULL) 9699 return (ENOMEM); 9700 9701 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9702 M_ZERO | M_WAITOK); 9703 9704 rc = 0; 9705 mtx_lock(&sc->reg_lock); 9706 if (hw_off_limits(sc)) 9707 rc = ENXIO; 9708 else 9709 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9710 mtx_unlock(&sc->reg_lock); 9711 if (rc) 9712 goto done; 9713 9714 p = buf; 9715 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9716 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9717 p[1], p[0]); 9718 } 9719 9720 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9721 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9722 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9723 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9724 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9725 (p[1] >> 2) | ((p[2] & 3) << 30), 9726 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9727 p[0] & 1); 9728 } 9729 rc = sbuf_finish(sb); 9730 done: 9731 sbuf_delete(sb); 9732 free(buf, M_CXGBE); 9733 return (rc); 9734 } 9735 9736 static int 9737 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9738 { 9739 struct adapter *sc = arg1; 9740 u_int i; 9741 struct sbuf *sb; 9742 uint32_t *buf, *p; 9743 int rc; 9744 9745 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9746 if (sb == NULL) 9747 return (ENOMEM); 9748 9749 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9750 M_ZERO | M_WAITOK); 9751 9752 rc = 0; 9753 mtx_lock(&sc->reg_lock); 9754 if (hw_off_limits(sc)) 9755 rc = ENXIO; 9756 else 9757 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9758 mtx_unlock(&sc->reg_lock); 9759 if (rc) 9760 goto done; 9761 9762 p = buf; 9763 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9764 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9765 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9766 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9767 p[4], p[3], p[2], p[1], p[0]); 9768 } 9769 9770 sbuf_printf(sb, "\n\nCntl ID Data"); 9771 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9772 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9773 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9774 } 9775 9776 rc = sbuf_finish(sb); 9777 done: 9778 sbuf_delete(sb); 9779 free(buf, M_CXGBE); 9780 return (rc); 9781 } 9782 9783 static int 9784 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9785 { 9786 struct adapter *sc = arg1; 9787 struct sbuf *sb; 9788 int rc, i; 9789 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9790 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9791 uint16_t thres[CIM_NUM_IBQ]; 9792 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9793 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9794 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9795 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9796 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9797 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9798 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9799 }; 9800 9801 MPASS(chip_id(sc) < CHELSIO_T7); 9802 9803 cim_num_obq = sc->chip_params->cim_num_obq; 9804 if (is_t4(sc)) { 9805 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9806 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9807 } else { 9808 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9809 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9810 } 9811 nq = CIM_NUM_IBQ + cim_num_obq; 9812 9813 mtx_lock(&sc->reg_lock); 9814 if (hw_off_limits(sc)) 9815 rc = ENXIO; 9816 else { 9817 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9818 if (rc == 0) { 9819 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9820 obq_wr); 9821 if (rc == 0) 9822 t4_read_cimq_cfg(sc, base, size, thres); 9823 } 9824 } 9825 mtx_unlock(&sc->reg_lock); 9826 if (rc) 9827 return (rc); 9828 9829 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9830 if (sb == NULL) 9831 return (ENOMEM); 9832 9833 sbuf_printf(sb, 9834 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9835 9836 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9837 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9838 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9839 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9840 G_QUEREMFLITS(p[2]) * 16); 9841 for ( ; i < nq; i++, p += 4, wr += 2) 9842 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9843 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9844 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9845 G_QUEREMFLITS(p[2]) * 16); 9846 9847 rc = sbuf_finish(sb); 9848 sbuf_delete(sb); 9849 9850 return (rc); 9851 } 9852 9853 static int 9854 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS) 9855 { 9856 struct adapter *sc = arg1; 9857 u_int coreid = arg2; 9858 struct sbuf *sb; 9859 int rc, i; 9860 u_int addr; 9861 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9862 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9863 uint16_t thres[CIM_NUM_IBQ_T7]; 9864 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr; 9865 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat; 9866 static const char * const qname_ibq_t7[] = { 9867 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI", 9868 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7", 9869 }; 9870 static const char * const qname_obq_t7[] = { 9871 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", 9872 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", 9873 "IPC6", "IPC7" 9874 }; 9875 static const char * const qname_ibq_sec_t7[] = { 9876 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD", 9877 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", 9878 }; 9879 static const char * const qname_obq_sec_t7[] = { 9880 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX", 9881 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", 9882 "RSVD", "RSVD", 9883 }; 9884 9885 MPASS(chip_id(sc) >= CHELSIO_T7); 9886 9887 mtx_lock(&sc->reg_lock); 9888 if (hw_off_limits(sc)) 9889 rc = ENXIO; 9890 else { 9891 rc = -t4_cim_read_core(sc, 1, coreid, 9892 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat); 9893 if (rc != 0) 9894 goto unlock; 9895 9896 rc = -t4_cim_read_core(sc, 1, coreid, 9897 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7, 9898 &stat[4 * CIM_NUM_IBQ_T7]); 9899 if (rc != 0) 9900 goto unlock; 9901 9902 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR; 9903 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) { 9904 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1, 9905 &obq_wr[i]); 9906 if (rc != 0) 9907 goto unlock; 9908 } 9909 t4_read_cimq_cfg_core(sc, coreid, base, size, thres); 9910 } 9911 unlock: 9912 mtx_unlock(&sc->reg_lock); 9913 if (rc) 9914 return (rc); 9915 9916 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9917 if (sb == NULL) 9918 return (ENOMEM); 9919 9920 sbuf_printf(sb, 9921 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9922 9923 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) { 9924 if (!size[i]) 9925 continue; 9926 9927 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9928 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i], 9929 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff, 9930 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]), 9931 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16); 9932 } 9933 9934 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) { 9935 if (!size[i]) 9936 continue; 9937 9938 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", 9939 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] : 9940 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7], 9941 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff, 9942 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9943 G_T7_QUEREMFLITS(p[2]) * 16); 9944 } 9945 9946 rc = sbuf_finish(sb); 9947 sbuf_delete(sb); 9948 return (rc); 9949 } 9950 9951 static int 9952 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9953 { 9954 struct adapter *sc = arg1; 9955 struct sbuf *sb; 9956 int rc; 9957 struct tp_cpl_stats stats; 9958 9959 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9960 if (sb == NULL) 9961 return (ENOMEM); 9962 9963 rc = 0; 9964 mtx_lock(&sc->reg_lock); 9965 if (hw_off_limits(sc)) 9966 rc = ENXIO; 9967 else 9968 t4_tp_get_cpl_stats(sc, &stats, 0); 9969 mtx_unlock(&sc->reg_lock); 9970 if (rc) 9971 goto done; 9972 9973 if (sc->chip_params->nchan > 2) { 9974 sbuf_printf(sb, " channel 0 channel 1" 9975 " channel 2 channel 3"); 9976 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9977 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9978 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9979 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9980 } else { 9981 sbuf_printf(sb, " channel 0 channel 1"); 9982 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9983 stats.req[0], stats.req[1]); 9984 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9985 stats.rsp[0], stats.rsp[1]); 9986 } 9987 9988 rc = sbuf_finish(sb); 9989 done: 9990 sbuf_delete(sb); 9991 return (rc); 9992 } 9993 9994 static int 9995 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9996 { 9997 struct adapter *sc = arg1; 9998 struct sbuf *sb; 9999 int rc; 10000 struct tp_usm_stats stats; 10001 10002 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10003 if (sb == NULL) 10004 return (ENOMEM); 10005 10006 rc = 0; 10007 mtx_lock(&sc->reg_lock); 10008 if (hw_off_limits(sc)) 10009 rc = ENXIO; 10010 else 10011 t4_get_usm_stats(sc, &stats, 1); 10012 mtx_unlock(&sc->reg_lock); 10013 if (rc == 0) { 10014 sbuf_printf(sb, "Frames: %u\n", stats.frames); 10015 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 10016 sbuf_printf(sb, "Drops: %u", stats.drops); 10017 rc = sbuf_finish(sb); 10018 } 10019 sbuf_delete(sb); 10020 10021 return (rc); 10022 } 10023 10024 static int 10025 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 10026 { 10027 struct adapter *sc = arg1; 10028 struct sbuf *sb; 10029 int rc; 10030 struct tp_tid_stats stats; 10031 10032 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10033 if (sb == NULL) 10034 return (ENOMEM); 10035 10036 rc = 0; 10037 mtx_lock(&sc->reg_lock); 10038 if (hw_off_limits(sc)) 10039 rc = ENXIO; 10040 else 10041 t4_tp_get_tid_stats(sc, &stats, 1); 10042 mtx_unlock(&sc->reg_lock); 10043 if (rc == 0) { 10044 sbuf_printf(sb, "Delete: %u\n", stats.del); 10045 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 10046 sbuf_printf(sb, "Active: %u\n", stats.act); 10047 sbuf_printf(sb, "Passive: %u", stats.pas); 10048 rc = sbuf_finish(sb); 10049 } 10050 sbuf_delete(sb); 10051 10052 return (rc); 10053 } 10054 10055 static const char * const devlog_level_strings[] = { 10056 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 10057 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 10058 [FW_DEVLOG_LEVEL_ERR] = "ERR", 10059 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 10060 [FW_DEVLOG_LEVEL_INFO] = "INFO", 10061 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 10062 }; 10063 10064 static const char * const devlog_facility_strings[] = { 10065 [FW_DEVLOG_FACILITY_CORE] = "CORE", 10066 [FW_DEVLOG_FACILITY_CF] = "CF", 10067 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 10068 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 10069 [FW_DEVLOG_FACILITY_RES] = "RES", 10070 [FW_DEVLOG_FACILITY_HW] = "HW", 10071 [FW_DEVLOG_FACILITY_FLR] = "FLR", 10072 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 10073 [FW_DEVLOG_FACILITY_PHY] = "PHY", 10074 [FW_DEVLOG_FACILITY_MAC] = "MAC", 10075 [FW_DEVLOG_FACILITY_PORT] = "PORT", 10076 [FW_DEVLOG_FACILITY_VI] = "VI", 10077 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 10078 [FW_DEVLOG_FACILITY_ACL] = "ACL", 10079 [FW_DEVLOG_FACILITY_TM] = "TM", 10080 [FW_DEVLOG_FACILITY_QFC] = "QFC", 10081 [FW_DEVLOG_FACILITY_DCB] = "DCB", 10082 [FW_DEVLOG_FACILITY_ETH] = "ETH", 10083 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 10084 [FW_DEVLOG_FACILITY_RI] = "RI", 10085 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 10086 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 10087 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 10088 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 10089 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 10090 }; 10091 10092 static int 10093 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 10094 { 10095 int i, j, rc, nentries, first = 0; 10096 struct devlog_params *dparams = &sc->params.devlog; 10097 struct fw_devlog_e *buf, *e; 10098 uint32_t addr, size; 10099 uint64_t ftstamp = UINT64_MAX; 10100 10101 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10102 ("%s: bad coreid %d\n", __func__, coreid)); 10103 10104 if (dparams->addr == 0) 10105 return (ENXIO); 10106 10107 size = dparams->size / sc->params.ncores; 10108 addr = dparams->addr + coreid * size; 10109 10110 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 10111 buf = malloc(size, M_CXGBE, M_ZERO | flags); 10112 if (buf == NULL) 10113 return (ENOMEM); 10114 10115 mtx_lock(&sc->reg_lock); 10116 if (hw_off_limits(sc)) 10117 rc = ENXIO; 10118 else 10119 rc = read_via_memwin(sc, 1, addr, (void *)buf, size); 10120 mtx_unlock(&sc->reg_lock); 10121 if (rc != 0) 10122 goto done; 10123 10124 nentries = size / sizeof(struct fw_devlog_e); 10125 for (i = 0; i < nentries; i++) { 10126 e = &buf[i]; 10127 10128 if (e->timestamp == 0) 10129 break; /* end */ 10130 10131 e->timestamp = be64toh(e->timestamp); 10132 e->seqno = be32toh(e->seqno); 10133 for (j = 0; j < 8; j++) 10134 e->params[j] = be32toh(e->params[j]); 10135 10136 if (e->timestamp < ftstamp) { 10137 ftstamp = e->timestamp; 10138 first = i; 10139 } 10140 } 10141 10142 if (buf[first].timestamp == 0) 10143 goto done; /* nothing in the log */ 10144 10145 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 10146 "Seq#", "Tstamp", "Level", "Facility", "Message"); 10147 10148 i = first; 10149 do { 10150 e = &buf[i]; 10151 if (e->timestamp == 0) 10152 break; /* end */ 10153 10154 sbuf_printf(sb, "%10d %15ju %8s %8s ", 10155 e->seqno, e->timestamp, 10156 (e->level < nitems(devlog_level_strings) ? 10157 devlog_level_strings[e->level] : "UNKNOWN"), 10158 (e->facility < nitems(devlog_facility_strings) ? 10159 devlog_facility_strings[e->facility] : "UNKNOWN")); 10160 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 10161 e->params[2], e->params[3], e->params[4], 10162 e->params[5], e->params[6], e->params[7]); 10163 10164 if (++i == nentries) 10165 i = 0; 10166 } while (i != first); 10167 done: 10168 free(buf, M_CXGBE); 10169 return (rc); 10170 } 10171 10172 static int 10173 sysctl_devlog(SYSCTL_HANDLER_ARGS) 10174 { 10175 struct adapter *sc = arg1; 10176 int rc, i, coreid = arg2; 10177 struct sbuf *sb; 10178 10179 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10180 if (sb == NULL) 10181 return (ENOMEM); 10182 if (coreid == -1) { 10183 /* -1 means all cores */ 10184 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10185 if (sc->params.ncores > 0) 10186 sbuf_printf(sb, "=== CIM core %u ===\n", i); 10187 rc = sbuf_devlog(sc, i, sb, M_WAITOK); 10188 } 10189 } else { 10190 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10191 ("%s: bad coreid %d\n", __func__, coreid)); 10192 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK); 10193 } 10194 if (rc == 0) 10195 rc = sbuf_finish(sb); 10196 sbuf_delete(sb); 10197 return (rc); 10198 } 10199 10200 static void 10201 dump_devlog(struct adapter *sc) 10202 { 10203 int rc, i; 10204 struct sbuf sb; 10205 10206 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 10207 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 10208 device_get_nameunit(sc->dev)); 10209 return; 10210 } 10211 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10212 if (sc->params.ncores > 0) 10213 sbuf_printf(&sb, "=== CIM core %u ===\n", i); 10214 rc = sbuf_devlog(sc, i, &sb, M_WAITOK); 10215 } 10216 if (rc == 0) { 10217 sbuf_finish(&sb); 10218 log(LOG_DEBUG, "%s: device log follows.\n%s", 10219 device_get_nameunit(sc->dev), sbuf_data(&sb)); 10220 } 10221 sbuf_delete(&sb); 10222 } 10223 10224 static int 10225 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 10226 { 10227 struct adapter *sc = arg1; 10228 struct sbuf *sb; 10229 int rc; 10230 struct tp_fcoe_stats stats[MAX_NCHAN]; 10231 int i, nchan = sc->chip_params->nchan; 10232 10233 rc = 0; 10234 mtx_lock(&sc->reg_lock); 10235 if (hw_off_limits(sc)) 10236 rc = ENXIO; 10237 else { 10238 for (i = 0; i < nchan; i++) 10239 t4_get_fcoe_stats(sc, i, &stats[i], 1); 10240 } 10241 mtx_unlock(&sc->reg_lock); 10242 if (rc != 0) 10243 return (rc); 10244 10245 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10246 if (sb == NULL) 10247 return (ENOMEM); 10248 10249 if (nchan > 2) { 10250 sbuf_printf(sb, " channel 0 channel 1" 10251 " channel 2 channel 3"); 10252 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 10253 stats[0].octets_ddp, stats[1].octets_ddp, 10254 stats[2].octets_ddp, stats[3].octets_ddp); 10255 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 10256 stats[0].frames_ddp, stats[1].frames_ddp, 10257 stats[2].frames_ddp, stats[3].frames_ddp); 10258 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 10259 stats[0].frames_drop, stats[1].frames_drop, 10260 stats[2].frames_drop, stats[3].frames_drop); 10261 } else { 10262 sbuf_printf(sb, " channel 0 channel 1"); 10263 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 10264 stats[0].octets_ddp, stats[1].octets_ddp); 10265 sbuf_printf(sb, "\nframesDDP: %16u %16u", 10266 stats[0].frames_ddp, stats[1].frames_ddp); 10267 sbuf_printf(sb, "\nframesDrop: %16u %16u", 10268 stats[0].frames_drop, stats[1].frames_drop); 10269 } 10270 10271 rc = sbuf_finish(sb); 10272 sbuf_delete(sb); 10273 10274 return (rc); 10275 } 10276 10277 static int 10278 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 10279 { 10280 struct adapter *sc = arg1; 10281 struct sbuf *sb; 10282 int rc, i; 10283 unsigned int map, kbps, ipg, mode; 10284 unsigned int pace_tab[NTX_SCHED]; 10285 10286 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 10287 if (sb == NULL) 10288 return (ENOMEM); 10289 10290 mtx_lock(&sc->reg_lock); 10291 if (hw_off_limits(sc)) { 10292 mtx_unlock(&sc->reg_lock); 10293 rc = ENXIO; 10294 goto done; 10295 } 10296 10297 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 10298 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 10299 t4_read_pace_tbl(sc, pace_tab); 10300 mtx_unlock(&sc->reg_lock); 10301 10302 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 10303 "Class IPG (0.1 ns) Flow IPG (us)"); 10304 10305 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 10306 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 10307 sbuf_printf(sb, "\n %u %-5s %u ", i, 10308 (mode & (1 << i)) ? "flow" : "class", map & 3); 10309 if (kbps) 10310 sbuf_printf(sb, "%9u ", kbps); 10311 else 10312 sbuf_printf(sb, " disabled "); 10313 10314 if (ipg) 10315 sbuf_printf(sb, "%13u ", ipg); 10316 else 10317 sbuf_printf(sb, " disabled "); 10318 10319 if (pace_tab[i]) 10320 sbuf_printf(sb, "%10u", pace_tab[i]); 10321 else 10322 sbuf_printf(sb, " disabled"); 10323 } 10324 rc = sbuf_finish(sb); 10325 done: 10326 sbuf_delete(sb); 10327 return (rc); 10328 } 10329 10330 static int 10331 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 10332 { 10333 struct adapter *sc = arg1; 10334 struct sbuf *sb; 10335 int rc, i, j; 10336 uint64_t *p0, *p1; 10337 struct lb_port_stats s[2]; 10338 static const char *stat_name[] = { 10339 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 10340 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 10341 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 10342 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 10343 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 10344 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 10345 "BG2FramesTrunc:", "BG3FramesTrunc:" 10346 }; 10347 10348 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10349 if (sb == NULL) 10350 return (ENOMEM); 10351 10352 memset(s, 0, sizeof(s)); 10353 10354 rc = 0; 10355 for (i = 0; i < sc->chip_params->nchan; i += 2) { 10356 mtx_lock(&sc->reg_lock); 10357 if (hw_off_limits(sc)) 10358 rc = ENXIO; 10359 else { 10360 t4_get_lb_stats(sc, i, &s[0]); 10361 t4_get_lb_stats(sc, i + 1, &s[1]); 10362 } 10363 mtx_unlock(&sc->reg_lock); 10364 if (rc != 0) 10365 break; 10366 10367 p0 = &s[0].octets; 10368 p1 = &s[1].octets; 10369 sbuf_printf(sb, "%s Loopback %u" 10370 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 10371 10372 for (j = 0; j < nitems(stat_name); j++) 10373 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 10374 *p0++, *p1++); 10375 } 10376 10377 if (rc == 0) 10378 rc = sbuf_finish(sb); 10379 sbuf_delete(sb); 10380 10381 return (rc); 10382 } 10383 10384 static int 10385 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 10386 { 10387 int rc = 0; 10388 struct port_info *pi = arg1; 10389 struct link_config *lc = &pi->link_cfg; 10390 struct sbuf *sb; 10391 10392 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 10393 if (sb == NULL) 10394 return (ENOMEM); 10395 10396 if (lc->link_ok || lc->link_down_rc == 255) 10397 sbuf_printf(sb, "n/a"); 10398 else 10399 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 10400 10401 rc = sbuf_finish(sb); 10402 sbuf_delete(sb); 10403 10404 return (rc); 10405 } 10406 10407 struct mem_desc { 10408 uint64_t base; 10409 uint64_t limit; 10410 u_int idx; 10411 }; 10412 10413 static int 10414 mem_desc_cmp(const void *a, const void *b) 10415 { 10416 const uint64_t v1 = ((const struct mem_desc *)a)->base; 10417 const uint64_t v2 = ((const struct mem_desc *)b)->base; 10418 10419 if (v1 < v2) 10420 return (-1); 10421 else if (v1 > v2) 10422 return (1); 10423 10424 return (0); 10425 } 10426 10427 static void 10428 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to) 10429 { 10430 uintmax_t size; 10431 10432 if (from == to) 10433 return; 10434 10435 size = to - from + 1; 10436 if (size == 0) 10437 return; 10438 10439 if (from > UINT32_MAX || to > UINT32_MAX) 10440 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name, 10441 (uintmax_t)from, (uintmax_t)to, size); 10442 else 10443 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name, 10444 (uintmax_t)from, (uintmax_t)to, size); 10445 } 10446 10447 static int 10448 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 10449 { 10450 struct adapter *sc = arg1; 10451 struct sbuf *sb; 10452 int rc, i, n, nchan; 10453 uint32_t lo, hi, used, free, alloc; 10454 static const char *memory[] = { 10455 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 10456 }; 10457 static const char *region[] = { 10458 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 10459 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 10460 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 10461 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 10462 "RQUDP region:", "PBL region:", "TXPBL region:", 10463 "TLSKey region:", "RRQ region:", "NVMe STAG region:", 10464 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:", 10465 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:", 10466 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:", 10467 }; 10468 struct mem_desc avail[4]; 10469 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 10470 struct mem_desc *md; 10471 10472 rc = sysctl_wire_old_buffer(req, 0); 10473 if (rc != 0) 10474 return (rc); 10475 10476 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10477 if (sb == NULL) 10478 return (ENOMEM); 10479 10480 for (i = 0; i < nitems(mem); i++) { 10481 mem[i].limit = 0; 10482 mem[i].idx = i; 10483 } 10484 10485 mtx_lock(&sc->reg_lock); 10486 if (hw_off_limits(sc)) { 10487 rc = ENXIO; 10488 goto done; 10489 } 10490 10491 /* Find and sort the populated memory ranges */ 10492 i = 0; 10493 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 10494 if (lo & F_EDRAM0_ENABLE) { 10495 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 10496 if (chip_id(sc) >= CHELSIO_T7) { 10497 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20; 10498 avail[i].limit = avail[i].base + 10499 (G_T7_EDRAM0_SIZE(hi) << 20); 10500 } else { 10501 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20; 10502 avail[i].limit = avail[i].base + 10503 (G_EDRAM0_SIZE(hi) << 20); 10504 } 10505 avail[i].idx = 0; 10506 i++; 10507 } 10508 if (lo & F_EDRAM1_ENABLE) { 10509 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10510 if (chip_id(sc) >= CHELSIO_T7) { 10511 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20; 10512 avail[i].limit = avail[i].base + 10513 (G_T7_EDRAM1_SIZE(hi) << 20); 10514 } else { 10515 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20; 10516 avail[i].limit = avail[i].base + 10517 (G_EDRAM1_SIZE(hi) << 20); 10518 } 10519 avail[i].idx = 1; 10520 i++; 10521 } 10522 if (lo & F_EXT_MEM_ENABLE) { 10523 switch (chip_id(sc)) { 10524 case CHELSIO_T4: 10525 case CHELSIO_T6: 10526 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10527 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20; 10528 avail[i].limit = avail[i].base + 10529 (G_EXT_MEM_SIZE(hi) << 20); 10530 avail[i].idx = 2; 10531 break; 10532 case CHELSIO_T5: 10533 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10534 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20; 10535 avail[i].limit = avail[i].base + 10536 (G_EXT_MEM0_SIZE(hi) << 20); 10537 avail[i].idx = 3; /* Call it MC0 for T5 */ 10538 break; 10539 default: 10540 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10541 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20; 10542 avail[i].limit = avail[i].base + 10543 (G_T7_EXT_MEM0_SIZE(hi) << 20); 10544 avail[i].idx = 3; /* Call it MC0 for T7+ */ 10545 break; 10546 } 10547 i++; 10548 } 10549 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) { 10550 /* Only T5 and T7+ have 2 MCs. */ 10551 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7); 10552 10553 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10554 if (chip_id(sc) >= CHELSIO_T7) { 10555 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20; 10556 avail[i].limit = avail[i].base + 10557 (G_T7_EXT_MEM1_SIZE(hi) << 20); 10558 } else { 10559 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20; 10560 avail[i].limit = avail[i].base + 10561 (G_EXT_MEM1_SIZE(hi) << 20); 10562 } 10563 avail[i].idx = 4; 10564 i++; 10565 } 10566 if (lo & F_HMA_MUX) { 10567 /* Only T6+ have HMA. */ 10568 MPASS(chip_id(sc) >= CHELSIO_T6); 10569 10570 if (chip_id(sc) >= CHELSIO_T7) { 10571 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR); 10572 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20; 10573 avail[i].limit = avail[i].base + 10574 (G_T7_HMA_SIZE(hi) << 20); 10575 } else { 10576 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10577 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10578 avail[i].limit = avail[i].base + 10579 (G_EXT_MEM1_SIZE(hi) << 20); 10580 } 10581 avail[i].idx = 5; 10582 i++; 10583 } 10584 MPASS(i <= nitems(avail)); 10585 if (!i) /* no memory available */ 10586 goto done; 10587 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10588 10589 md = &mem[0]; 10590 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10591 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10592 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10593 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10594 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10595 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10596 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10597 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10598 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10599 10600 /* the next few have explicit upper bounds */ 10601 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10602 md->limit = md->base - 1 + 10603 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10604 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10605 md++; 10606 10607 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10608 md->limit = md->base - 1 + 10609 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10610 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10611 md++; 10612 10613 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10614 if (chip_id(sc) <= CHELSIO_T5) 10615 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10616 else 10617 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10618 md->limit = 0; 10619 } else { 10620 md->base = 0; 10621 md->idx = nitems(region); /* hide it */ 10622 } 10623 md++; 10624 10625 #define ulp_region(reg) do {\ 10626 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \ 10627 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \ 10628 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \ 10629 md->limit += (1 << shift) - 1; \ 10630 md++; \ 10631 } while (0) 10632 10633 #define hide_ulp_region() do { \ 10634 md->base = 0; \ 10635 md->idx = nitems(region); \ 10636 md++; \ 10637 } while (0) 10638 10639 ulp_region(RX_ISCSI); 10640 ulp_region(RX_TDDP); 10641 ulp_region(TX_TPT); 10642 ulp_region(RX_STAG); 10643 ulp_region(RX_RQ); 10644 if (chip_id(sc) < CHELSIO_T7) 10645 ulp_region(RX_RQUDP); 10646 else 10647 hide_ulp_region(); 10648 ulp_region(RX_PBL); 10649 ulp_region(TX_PBL); 10650 if (chip_id(sc) >= CHELSIO_T6) 10651 ulp_region(RX_TLS_KEY); 10652 else 10653 hide_ulp_region(); 10654 if (chip_id(sc) >= CHELSIO_T7) { 10655 ulp_region(RX_RRQ); 10656 ulp_region(RX_NVME_TCP_STAG); 10657 ulp_region(RX_NVME_TCP_RQ); 10658 ulp_region(RX_NVME_TCP_PBL); 10659 ulp_region(TX_NVME_TCP_TPT); 10660 ulp_region(TX_NVME_TCP_PBL); 10661 } else { 10662 hide_ulp_region(); 10663 hide_ulp_region(); 10664 hide_ulp_region(); 10665 hide_ulp_region(); 10666 hide_ulp_region(); 10667 hide_ulp_region(); 10668 } 10669 #undef ulp_region 10670 #undef hide_ulp_region 10671 10672 md->base = 0; 10673 if (is_t4(sc)) 10674 md->idx = nitems(region); 10675 else { 10676 uint32_t size = 0; 10677 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10678 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10679 10680 if (is_t5(sc)) { 10681 if (sge_ctrl & F_VFIFO_ENABLE) 10682 size = fifo_size << 2; 10683 } else 10684 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10685 10686 if (size) { 10687 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10688 md->limit = md->base + size - 1; 10689 } else 10690 md->idx = nitems(region); 10691 } 10692 md++; 10693 10694 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10695 md->limit = 0; 10696 md++; 10697 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10698 md->limit = 0; 10699 md++; 10700 10701 if (chip_id(sc) >= CHELSIO_T7) { 10702 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false); 10703 md->base = lo; 10704 } else { 10705 md->base = 0; 10706 md->idx = nitems(region); 10707 } 10708 md++; 10709 10710 md->base = sc->vres.ocq.start; 10711 if (sc->vres.ocq.size) 10712 md->limit = md->base + sc->vres.ocq.size - 1; 10713 else 10714 md->idx = nitems(region); /* hide it */ 10715 md++; 10716 10717 /* add any address-space holes, there can be up to 3 */ 10718 for (n = 0; n < i - 1; n++) 10719 if (avail[n].limit < avail[n + 1].base) 10720 (md++)->base = avail[n].limit; 10721 if (avail[n].limit) 10722 (md++)->base = avail[n].limit; 10723 10724 n = md - mem; 10725 MPASS(n <= nitems(mem)); 10726 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10727 10728 for (lo = 0; lo < i; lo++) 10729 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10730 avail[lo].limit - 1); 10731 10732 sbuf_printf(sb, "\n"); 10733 for (i = 0; i < n; i++) { 10734 if (mem[i].idx >= nitems(region)) 10735 continue; /* skip holes */ 10736 if (!mem[i].limit) 10737 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10738 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10739 mem[i].limit); 10740 } 10741 10742 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10743 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10744 if (hi != lo - 1) { 10745 sbuf_printf(sb, "\n"); 10746 mem_region_show(sb, "uP RAM:", lo, hi); 10747 } 10748 10749 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10750 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10751 if (hi != lo - 1) 10752 mem_region_show(sb, "uP Extmem2:", lo, hi); 10753 10754 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10755 if (chip_id(sc) >= CHELSIO_T7) 10756 nchan = 1 << G_T7_PMRXNUMCHN(lo); 10757 else 10758 nchan = lo & F_PMRXNUMCHN ? 2 : 1; 10759 for (i = 0, free = 0; i < nchan; i++) 10760 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10761 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10762 G_PMRXMAXPAGE(lo), free, 10763 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan); 10764 10765 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10766 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10767 if (chip_id(sc) >= CHELSIO_T7) 10768 nchan = 1 << G_T7_PMTXNUMCHN(lo); 10769 else 10770 nchan = 1 << G_PMTXNUMCHN(lo); 10771 for (i = 0, free = 0; i < nchan; i++) 10772 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10773 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10774 G_PMTXMAXPAGE(lo), free, 10775 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10776 hi >= (1 << 20) ? 'M' : 'K', nchan); 10777 sbuf_printf(sb, "%u p-structs (%u free)\n", 10778 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10779 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10780 10781 for (i = 0; i < 4; i++) { 10782 if (chip_id(sc) > CHELSIO_T5) 10783 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10784 else 10785 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10786 if (is_t5(sc)) { 10787 used = G_T5_USED(lo); 10788 alloc = G_T5_ALLOC(lo); 10789 } else { 10790 used = G_USED(lo); 10791 alloc = G_ALLOC(lo); 10792 } 10793 /* For T6+ these are MAC buffer groups */ 10794 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10795 i, used, alloc); 10796 } 10797 for (i = 0; i < sc->chip_params->nchan; i++) { 10798 if (chip_id(sc) > CHELSIO_T5) 10799 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10800 else 10801 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10802 if (is_t5(sc)) { 10803 used = G_T5_USED(lo); 10804 alloc = G_T5_ALLOC(lo); 10805 } else { 10806 used = G_USED(lo); 10807 alloc = G_ALLOC(lo); 10808 } 10809 /* For T6+ these are MAC buffer groups */ 10810 sbuf_printf(sb, 10811 "\nLoopback %d using %u pages out of %u allocated", 10812 i, used, alloc); 10813 } 10814 done: 10815 mtx_unlock(&sc->reg_lock); 10816 if (rc == 0) 10817 rc = sbuf_finish(sb); 10818 sbuf_delete(sb); 10819 return (rc); 10820 } 10821 10822 static inline void 10823 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10824 { 10825 *mask = x | y; 10826 y = htobe64(y); 10827 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10828 } 10829 10830 static int 10831 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10832 { 10833 struct adapter *sc = arg1; 10834 struct sbuf *sb; 10835 int rc, i; 10836 10837 MPASS(chip_id(sc) <= CHELSIO_T5); 10838 10839 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10840 if (sb == NULL) 10841 return (ENOMEM); 10842 10843 sbuf_printf(sb, 10844 "Idx Ethernet address Mask Vld Ports PF" 10845 " VF Replication P0 P1 P2 P3 ML"); 10846 rc = 0; 10847 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10848 uint64_t tcamx, tcamy, mask; 10849 uint32_t cls_lo, cls_hi; 10850 uint8_t addr[ETHER_ADDR_LEN]; 10851 10852 mtx_lock(&sc->reg_lock); 10853 if (hw_off_limits(sc)) 10854 rc = ENXIO; 10855 else { 10856 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10857 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10858 } 10859 mtx_unlock(&sc->reg_lock); 10860 if (rc != 0) 10861 break; 10862 if (tcamx & tcamy) 10863 continue; 10864 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10865 mtx_lock(&sc->reg_lock); 10866 if (hw_off_limits(sc)) 10867 rc = ENXIO; 10868 else { 10869 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10870 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10871 } 10872 mtx_unlock(&sc->reg_lock); 10873 if (rc != 0) 10874 break; 10875 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10876 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10877 addr[3], addr[4], addr[5], (uintmax_t)mask, 10878 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10879 G_PORTMAP(cls_hi), G_PF(cls_lo), 10880 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10881 10882 if (cls_lo & F_REPLICATE) { 10883 struct fw_ldst_cmd ldst_cmd; 10884 10885 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10886 ldst_cmd.op_to_addrspace = 10887 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10888 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10889 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10890 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10891 ldst_cmd.u.mps.rplc.fid_idx = 10892 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10893 V_FW_LDST_CMD_IDX(i)); 10894 10895 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10896 "t4mps"); 10897 if (rc) 10898 break; 10899 if (hw_off_limits(sc)) 10900 rc = ENXIO; 10901 else 10902 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10903 sizeof(ldst_cmd), &ldst_cmd); 10904 end_synchronized_op(sc, 0); 10905 if (rc != 0) 10906 break; 10907 else { 10908 sbuf_printf(sb, " %08x %08x %08x %08x", 10909 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10910 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10911 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10912 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10913 } 10914 } else 10915 sbuf_printf(sb, "%36s", ""); 10916 10917 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10918 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10919 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10920 } 10921 10922 if (rc) 10923 (void) sbuf_finish(sb); 10924 else 10925 rc = sbuf_finish(sb); 10926 sbuf_delete(sb); 10927 10928 return (rc); 10929 } 10930 10931 static int 10932 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10933 { 10934 struct adapter *sc = arg1; 10935 struct sbuf *sb; 10936 int rc, i; 10937 10938 MPASS(chip_id(sc) == CHELSIO_T6); 10939 10940 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10941 if (sb == NULL) 10942 return (ENOMEM); 10943 10944 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10945 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10946 " Replication" 10947 " P0 P1 P2 P3 ML"); 10948 10949 rc = 0; 10950 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10951 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10952 uint16_t ivlan; 10953 uint64_t tcamx, tcamy, val, mask; 10954 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10955 uint8_t addr[ETHER_ADDR_LEN]; 10956 10957 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10958 if (i < 256) 10959 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10960 else 10961 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10962 mtx_lock(&sc->reg_lock); 10963 if (hw_off_limits(sc)) 10964 rc = ENXIO; 10965 else { 10966 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10967 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10968 tcamy = G_DMACH(val) << 32; 10969 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10970 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10971 } 10972 mtx_unlock(&sc->reg_lock); 10973 if (rc != 0) 10974 break; 10975 10976 lookup_type = G_DATALKPTYPE(data2); 10977 port_num = G_DATAPORTNUM(data2); 10978 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10979 /* Inner header VNI */ 10980 vniy = ((data2 & F_DATAVIDH2) << 23) | 10981 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10982 dip_hit = data2 & F_DATADIPHIT; 10983 vlan_vld = 0; 10984 } else { 10985 vniy = 0; 10986 dip_hit = 0; 10987 vlan_vld = data2 & F_DATAVIDH2; 10988 ivlan = G_VIDL(val); 10989 } 10990 10991 ctl |= V_CTLXYBITSEL(1); 10992 mtx_lock(&sc->reg_lock); 10993 if (hw_off_limits(sc)) 10994 rc = ENXIO; 10995 else { 10996 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10997 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10998 tcamx = G_DMACH(val) << 32; 10999 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 11000 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 11001 } 11002 mtx_unlock(&sc->reg_lock); 11003 if (rc != 0) 11004 break; 11005 11006 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11007 /* Inner header VNI mask */ 11008 vnix = ((data2 & F_DATAVIDH2) << 23) | 11009 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 11010 } else 11011 vnix = 0; 11012 11013 if (tcamx & tcamy) 11014 continue; 11015 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11016 11017 mtx_lock(&sc->reg_lock); 11018 if (hw_off_limits(sc)) 11019 rc = ENXIO; 11020 else { 11021 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11022 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11023 } 11024 mtx_unlock(&sc->reg_lock); 11025 if (rc != 0) 11026 break; 11027 11028 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11029 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11030 "%012jx %06x %06x - - %3c" 11031 " I %4x %3c %#x%4u%4d", i, addr[0], 11032 addr[1], addr[2], addr[3], addr[4], addr[5], 11033 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11034 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11035 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11036 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11037 } else { 11038 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11039 "%012jx - - ", i, addr[0], addr[1], 11040 addr[2], addr[3], addr[4], addr[5], 11041 (uintmax_t)mask); 11042 11043 if (vlan_vld) 11044 sbuf_printf(sb, "%4u Y ", ivlan); 11045 else 11046 sbuf_printf(sb, " - N "); 11047 11048 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11049 lookup_type ? 'I' : 'O', port_num, 11050 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11051 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11052 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11053 } 11054 11055 11056 if (cls_lo & F_T6_REPLICATE) { 11057 struct fw_ldst_cmd ldst_cmd; 11058 11059 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11060 ldst_cmd.op_to_addrspace = 11061 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11062 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11063 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11064 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11065 ldst_cmd.u.mps.rplc.fid_idx = 11066 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11067 V_FW_LDST_CMD_IDX(i)); 11068 11069 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11070 "t6mps"); 11071 if (rc) 11072 break; 11073 if (hw_off_limits(sc)) 11074 rc = ENXIO; 11075 else 11076 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11077 sizeof(ldst_cmd), &ldst_cmd); 11078 end_synchronized_op(sc, 0); 11079 if (rc != 0) 11080 break; 11081 else { 11082 sbuf_printf(sb, " %08x %08x %08x %08x" 11083 " %08x %08x %08x %08x", 11084 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11085 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11086 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11087 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11088 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11089 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11090 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11091 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11092 } 11093 } else 11094 sbuf_printf(sb, "%72s", ""); 11095 11096 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11097 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11098 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11099 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11100 } 11101 11102 if (rc) 11103 (void) sbuf_finish(sb); 11104 else 11105 rc = sbuf_finish(sb); 11106 sbuf_delete(sb); 11107 11108 return (rc); 11109 } 11110 11111 static int 11112 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS) 11113 { 11114 struct adapter *sc = arg1; 11115 struct sbuf *sb; 11116 int rc, i; 11117 11118 MPASS(chip_id(sc) >= CHELSIO_T7); 11119 11120 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11121 if (sb == NULL) 11122 return (ENOMEM); 11123 11124 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 11125 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 11126 " Replication" 11127 " P0 P1 P2 P3 ML"); 11128 11129 rc = 0; 11130 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 11131 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 11132 uint16_t ivlan; 11133 uint64_t tcamx, tcamy, val, mask; 11134 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 11135 uint8_t addr[ETHER_ADDR_LEN]; 11136 11137 /* Read tcamy */ 11138 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11139 if (chip_rev(sc) == 0) { 11140 if (i < 256) 11141 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11142 else 11143 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1); 11144 } else { 11145 #if 0 11146 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11147 #endif 11148 if (i < 512) 11149 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11150 else if (i < 1024) 11151 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1); 11152 else 11153 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2); 11154 } 11155 11156 mtx_lock(&sc->reg_lock); 11157 if (hw_off_limits(sc)) 11158 rc = ENXIO; 11159 else { 11160 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11161 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11162 tcamy = G_DMACH(val) << 32; 11163 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11164 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11165 } 11166 mtx_unlock(&sc->reg_lock); 11167 if (rc != 0) 11168 break; 11169 11170 lookup_type = G_DATALKPTYPE(data2); 11171 port_num = G_DATAPORTNUM(data2); 11172 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11173 /* Inner header VNI */ 11174 vniy = (((data2 & F_DATAVIDH2) | 11175 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11176 dip_hit = data2 & F_DATADIPHIT; 11177 vlan_vld = 0; 11178 } else { 11179 vniy = 0; 11180 dip_hit = 0; 11181 vlan_vld = data2 & F_DATAVIDH2; 11182 ivlan = G_VIDL(val); 11183 } 11184 11185 ctl |= V_CTLXYBITSEL(1); 11186 mtx_lock(&sc->reg_lock); 11187 if (hw_off_limits(sc)) 11188 rc = ENXIO; 11189 else { 11190 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11191 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11192 tcamx = G_DMACH(val) << 32; 11193 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11194 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11195 } 11196 mtx_unlock(&sc->reg_lock); 11197 if (rc != 0) 11198 break; 11199 11200 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11201 /* Inner header VNI mask */ 11202 vnix = (((data2 & F_DATAVIDH2) | 11203 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11204 } else 11205 vnix = 0; 11206 11207 if (tcamx & tcamy) 11208 continue; 11209 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11210 11211 mtx_lock(&sc->reg_lock); 11212 if (hw_off_limits(sc)) 11213 rc = ENXIO; 11214 else { 11215 if (chip_rev(sc) == 0) { 11216 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11217 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11218 } else { 11219 t4_write_reg(sc, A_MPS_CLS_SRAM_H, 11220 V_SRAMWRN(0) | V_SRAMINDEX(i)); 11221 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L); 11222 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H); 11223 } 11224 } 11225 mtx_unlock(&sc->reg_lock); 11226 if (rc != 0) 11227 break; 11228 11229 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11230 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11231 "%012jx %06x %06x - - %3c" 11232 " I %4x %3c %#x%4u%4d", i, addr[0], 11233 addr[1], addr[2], addr[3], addr[4], addr[5], 11234 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11235 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11236 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11237 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11238 } else { 11239 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11240 "%012jx - - ", i, addr[0], addr[1], 11241 addr[2], addr[3], addr[4], addr[5], 11242 (uintmax_t)mask); 11243 11244 if (vlan_vld) 11245 sbuf_printf(sb, "%4u Y ", ivlan); 11246 else 11247 sbuf_printf(sb, " - N "); 11248 11249 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11250 lookup_type ? 'I' : 'O', port_num, 11251 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11252 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11253 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11254 } 11255 11256 if (cls_lo & F_T6_REPLICATE) { 11257 struct fw_ldst_cmd ldst_cmd; 11258 11259 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11260 ldst_cmd.op_to_addrspace = 11261 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11262 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11263 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11264 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11265 ldst_cmd.u.mps.rplc.fid_idx = 11266 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11267 V_FW_LDST_CMD_IDX(i)); 11268 11269 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11270 "t6mps"); 11271 if (rc) 11272 break; 11273 if (hw_off_limits(sc)) 11274 rc = ENXIO; 11275 else 11276 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11277 sizeof(ldst_cmd), &ldst_cmd); 11278 end_synchronized_op(sc, 0); 11279 if (rc != 0) 11280 break; 11281 else { 11282 sbuf_printf(sb, " %08x %08x %08x %08x" 11283 " %08x %08x %08x %08x", 11284 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11285 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11286 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11287 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11288 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11289 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11290 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11291 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11292 } 11293 } else 11294 sbuf_printf(sb, "%72s", ""); 11295 11296 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11297 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11298 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11299 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11300 } 11301 11302 if (rc) 11303 (void) sbuf_finish(sb); 11304 else 11305 rc = sbuf_finish(sb); 11306 sbuf_delete(sb); 11307 11308 return (rc); 11309 } 11310 11311 static int 11312 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 11313 { 11314 struct adapter *sc = arg1; 11315 struct sbuf *sb; 11316 int rc; 11317 uint16_t mtus[NMTUS]; 11318 11319 rc = 0; 11320 mtx_lock(&sc->reg_lock); 11321 if (hw_off_limits(sc)) 11322 rc = ENXIO; 11323 else 11324 t4_read_mtu_tbl(sc, mtus, NULL); 11325 mtx_unlock(&sc->reg_lock); 11326 if (rc != 0) 11327 return (rc); 11328 11329 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11330 if (sb == NULL) 11331 return (ENOMEM); 11332 11333 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 11334 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 11335 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 11336 mtus[14], mtus[15]); 11337 11338 rc = sbuf_finish(sb); 11339 sbuf_delete(sb); 11340 11341 return (rc); 11342 } 11343 11344 static int 11345 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 11346 { 11347 struct adapter *sc = arg1; 11348 struct sbuf *sb; 11349 int rc, i; 11350 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 11351 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 11352 uint32_t stats[T7_PM_RX_CACHE_NSTATS]; 11353 static const char *tx_stats[MAX_PM_NSTATS] = { 11354 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 11355 "Tx FIFO wait", NULL, "Tx latency" 11356 }; 11357 static const char *rx_stats[MAX_PM_NSTATS] = { 11358 "Read:", "Write bypass:", "Write mem:", "Flush:", 11359 "Rx FIFO wait", NULL, "Rx latency" 11360 }; 11361 11362 rc = 0; 11363 mtx_lock(&sc->reg_lock); 11364 if (hw_off_limits(sc)) 11365 rc = ENXIO; 11366 else { 11367 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 11368 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 11369 if (chip_id(sc) >= CHELSIO_T7) 11370 t4_pmrx_cache_get_stats(sc, stats); 11371 } 11372 mtx_unlock(&sc->reg_lock); 11373 if (rc != 0) 11374 return (rc); 11375 11376 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11377 if (sb == NULL) 11378 return (ENOMEM); 11379 11380 sbuf_printf(sb, " Tx pcmds Tx bytes"); 11381 for (i = 0; i < 4; i++) { 11382 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11383 tx_cyc[i]); 11384 } 11385 11386 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 11387 for (i = 0; i < 4; i++) { 11388 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11389 rx_cyc[i]); 11390 } 11391 11392 if (chip_id(sc) > CHELSIO_T5) { 11393 sbuf_printf(sb, 11394 "\n Total wait Total occupancy"); 11395 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11396 tx_cyc[i]); 11397 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11398 rx_cyc[i]); 11399 11400 i += 2; 11401 MPASS(i < nitems(tx_stats)); 11402 11403 sbuf_printf(sb, 11404 "\n Reads Total wait"); 11405 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11406 tx_cyc[i]); 11407 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11408 rx_cyc[i]); 11409 } 11410 11411 if (chip_id(sc) >= CHELSIO_T7) { 11412 i = 0; 11413 sbuf_printf(sb, "\n\nPM RX Cache Stats\n"); 11414 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]); 11415 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]); 11416 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]); 11417 sbuf_printf(sb, "%-40s %u\n", "Write Split Request", 11418 stats[i++]); 11419 sbuf_printf(sb, "%-40s %u\n", 11420 "Normal Read Split (Read Invalidate)", stats[i++]); 11421 sbuf_printf(sb, "%-40s %u\n", 11422 "Feedback Read Split (Read NoInvalidate)", 11423 stats[i++]); 11424 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]); 11425 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit", 11426 stats[i++]); 11427 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit", 11428 stats[i++]); 11429 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail", 11430 stats[i++]); 11431 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail", 11432 stats[i++]); 11433 sbuf_printf(sb, "%-40s %u\n", 11434 "Normal Read Hit Partial Avail", 11435 stats[i++]); 11436 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail", 11437 stats[i++]); 11438 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail", 11439 stats[i++]); 11440 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail", 11441 stats[i++]); 11442 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free", 11443 stats[i++]); 11444 sbuf_printf(sb, "%-40s %u\n", 11445 "Normal Read Part-avail Mul-Regions", 11446 stats[i++]); 11447 sbuf_printf(sb, "%-40s %u\n", 11448 "FB Read Part-avail Mul-Regions", 11449 stats[i++]); 11450 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used", 11451 stats[i++]); 11452 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used", 11453 stats[i++]); 11454 sbuf_printf(sb, "%-40s %u\n", 11455 "Write Miss LRU-Multiple Evict", stats[i++]); 11456 sbuf_printf(sb, "%-40s %u\n", 11457 "Write Hit Increasing Islands", stats[i++]); 11458 sbuf_printf(sb, "%-40s %u\n", 11459 "Normal Read Island Read split", stats[i++]); 11460 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction", 11461 stats[i++]); 11462 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction", 11463 stats[i++]); 11464 } 11465 11466 rc = sbuf_finish(sb); 11467 sbuf_delete(sb); 11468 11469 return (rc); 11470 } 11471 11472 static int 11473 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 11474 { 11475 struct adapter *sc = arg1; 11476 struct sbuf *sb; 11477 int rc; 11478 struct tp_rdma_stats stats; 11479 11480 rc = 0; 11481 mtx_lock(&sc->reg_lock); 11482 if (hw_off_limits(sc)) 11483 rc = ENXIO; 11484 else 11485 t4_tp_get_rdma_stats(sc, &stats, 0); 11486 mtx_unlock(&sc->reg_lock); 11487 if (rc != 0) 11488 return (rc); 11489 11490 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11491 if (sb == NULL) 11492 return (ENOMEM); 11493 11494 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 11495 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 11496 11497 rc = sbuf_finish(sb); 11498 sbuf_delete(sb); 11499 11500 return (rc); 11501 } 11502 11503 static int 11504 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 11505 { 11506 struct adapter *sc = arg1; 11507 struct sbuf *sb; 11508 int rc; 11509 struct tp_tcp_stats v4, v6; 11510 11511 rc = 0; 11512 mtx_lock(&sc->reg_lock); 11513 if (hw_off_limits(sc)) 11514 rc = ENXIO; 11515 else 11516 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 11517 mtx_unlock(&sc->reg_lock); 11518 if (rc != 0) 11519 return (rc); 11520 11521 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11522 if (sb == NULL) 11523 return (ENOMEM); 11524 11525 sbuf_printf(sb, 11526 " IP IPv6\n"); 11527 sbuf_printf(sb, "OutRsts: %20u %20u\n", 11528 v4.tcp_out_rsts, v6.tcp_out_rsts); 11529 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 11530 v4.tcp_in_segs, v6.tcp_in_segs); 11531 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 11532 v4.tcp_out_segs, v6.tcp_out_segs); 11533 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 11534 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 11535 11536 rc = sbuf_finish(sb); 11537 sbuf_delete(sb); 11538 11539 return (rc); 11540 } 11541 11542 static int 11543 sysctl_tids(SYSCTL_HANDLER_ARGS) 11544 { 11545 struct adapter *sc = arg1; 11546 struct sbuf *sb; 11547 int rc; 11548 uint32_t x, y; 11549 struct tid_info *t = &sc->tids; 11550 11551 rc = 0; 11552 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11553 if (sb == NULL) 11554 return (ENOMEM); 11555 11556 if (t->natids) { 11557 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 11558 t->atids_in_use); 11559 } 11560 11561 if (t->nhpftids) { 11562 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 11563 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 11564 } 11565 11566 if (t->ntids) { 11567 bool hashen = false; 11568 11569 mtx_lock(&sc->reg_lock); 11570 if (hw_off_limits(sc)) 11571 rc = ENXIO; 11572 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 11573 hashen = true; 11574 if (chip_id(sc) <= CHELSIO_T5) { 11575 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 11576 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 11577 } else { 11578 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 11579 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 11580 } 11581 } 11582 mtx_unlock(&sc->reg_lock); 11583 if (rc != 0) 11584 goto done; 11585 11586 sbuf_printf(sb, "TID range: "); 11587 if (hashen) { 11588 if (x) 11589 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 11590 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 11591 } else { 11592 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 11593 t->ntids - 1); 11594 } 11595 sbuf_printf(sb, ", in use: %u\n", 11596 atomic_load_acq_int(&t->tids_in_use)); 11597 } 11598 11599 if (t->nstids) { 11600 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 11601 t->stid_base + t->nstids - 1, t->stids_in_use); 11602 } 11603 11604 if (t->nftids) { 11605 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 11606 t->ftid_end, t->ftids_in_use); 11607 } 11608 11609 if (t->netids) { 11610 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 11611 t->etid_base + t->netids - 1, t->etids_in_use); 11612 } 11613 11614 mtx_lock(&sc->reg_lock); 11615 if (hw_off_limits(sc)) 11616 rc = ENXIO; 11617 else { 11618 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 11619 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 11620 } 11621 mtx_unlock(&sc->reg_lock); 11622 if (rc != 0) 11623 goto done; 11624 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 11625 done: 11626 if (rc == 0) 11627 rc = sbuf_finish(sb); 11628 else 11629 (void)sbuf_finish(sb); 11630 sbuf_delete(sb); 11631 11632 return (rc); 11633 } 11634 11635 static int 11636 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 11637 { 11638 struct adapter *sc = arg1; 11639 struct sbuf *sb; 11640 int rc; 11641 struct tp_err_stats stats; 11642 11643 rc = 0; 11644 mtx_lock(&sc->reg_lock); 11645 if (hw_off_limits(sc)) 11646 rc = ENXIO; 11647 else 11648 t4_tp_get_err_stats(sc, &stats, 0); 11649 mtx_unlock(&sc->reg_lock); 11650 if (rc != 0) 11651 return (rc); 11652 11653 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11654 if (sb == NULL) 11655 return (ENOMEM); 11656 11657 if (sc->chip_params->nchan > 2) { 11658 sbuf_printf(sb, " channel 0 channel 1" 11659 " channel 2 channel 3\n"); 11660 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 11661 stats.mac_in_errs[0], stats.mac_in_errs[1], 11662 stats.mac_in_errs[2], stats.mac_in_errs[3]); 11663 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 11664 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 11665 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 11666 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 11667 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 11668 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 11669 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 11670 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 11671 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 11672 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 11673 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 11674 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 11675 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 11676 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 11677 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 11678 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 11679 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 11680 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 11681 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 11682 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 11683 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 11684 } else { 11685 sbuf_printf(sb, " channel 0 channel 1\n"); 11686 sbuf_printf(sb, "macInErrs: %10u %10u\n", 11687 stats.mac_in_errs[0], stats.mac_in_errs[1]); 11688 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 11689 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 11690 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 11691 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 11692 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 11693 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 11694 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 11695 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 11696 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 11697 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 11698 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 11699 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 11700 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 11701 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 11702 } 11703 11704 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 11705 stats.ofld_no_neigh, stats.ofld_cong_defer); 11706 11707 rc = sbuf_finish(sb); 11708 sbuf_delete(sb); 11709 11710 return (rc); 11711 } 11712 11713 static int 11714 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 11715 { 11716 struct adapter *sc = arg1; 11717 struct sbuf *sb; 11718 int rc; 11719 struct tp_tnl_stats stats; 11720 11721 rc = 0; 11722 mtx_lock(&sc->reg_lock); 11723 if (hw_off_limits(sc)) 11724 rc = ENXIO; 11725 else 11726 t4_tp_get_tnl_stats(sc, &stats, 1); 11727 mtx_unlock(&sc->reg_lock); 11728 if (rc != 0) 11729 return (rc); 11730 11731 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11732 if (sb == NULL) 11733 return (ENOMEM); 11734 11735 if (sc->chip_params->nchan > 2) { 11736 sbuf_printf(sb, " channel 0 channel 1" 11737 " channel 2 channel 3\n"); 11738 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 11739 stats.out_pkt[0], stats.out_pkt[1], 11740 stats.out_pkt[2], stats.out_pkt[3]); 11741 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 11742 stats.in_pkt[0], stats.in_pkt[1], 11743 stats.in_pkt[2], stats.in_pkt[3]); 11744 } else { 11745 sbuf_printf(sb, " channel 0 channel 1\n"); 11746 sbuf_printf(sb, "OutPkts: %10u %10u\n", 11747 stats.out_pkt[0], stats.out_pkt[1]); 11748 sbuf_printf(sb, "InPkts: %10u %10u", 11749 stats.in_pkt[0], stats.in_pkt[1]); 11750 } 11751 11752 rc = sbuf_finish(sb); 11753 sbuf_delete(sb); 11754 11755 return (rc); 11756 } 11757 11758 static int 11759 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 11760 { 11761 struct adapter *sc = arg1; 11762 struct tp_params *tpp = &sc->params.tp; 11763 u_int mask; 11764 int rc; 11765 11766 mask = tpp->la_mask >> 16; 11767 rc = sysctl_handle_int(oidp, &mask, 0, req); 11768 if (rc != 0 || req->newptr == NULL) 11769 return (rc); 11770 if (mask > 0xffff) 11771 return (EINVAL); 11772 mtx_lock(&sc->reg_lock); 11773 if (hw_off_limits(sc)) 11774 rc = ENXIO; 11775 else { 11776 tpp->la_mask = mask << 16; 11777 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 11778 tpp->la_mask); 11779 } 11780 mtx_unlock(&sc->reg_lock); 11781 11782 return (rc); 11783 } 11784 11785 struct field_desc { 11786 const char *name; 11787 u_int start; 11788 u_int width; 11789 }; 11790 11791 static void 11792 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 11793 { 11794 char buf[32]; 11795 int line_size = 0; 11796 11797 while (f->name) { 11798 uint64_t mask = (1ULL << f->width) - 1; 11799 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 11800 ((uintmax_t)v >> f->start) & mask); 11801 11802 if (line_size + len >= 79) { 11803 line_size = 8; 11804 sbuf_printf(sb, "\n "); 11805 } 11806 sbuf_printf(sb, "%s ", buf); 11807 line_size += len + 1; 11808 f++; 11809 } 11810 sbuf_printf(sb, "\n"); 11811 } 11812 11813 static const struct field_desc tp_la0[] = { 11814 { "RcfOpCodeOut", 60, 4 }, 11815 { "State", 56, 4 }, 11816 { "WcfState", 52, 4 }, 11817 { "RcfOpcSrcOut", 50, 2 }, 11818 { "CRxError", 49, 1 }, 11819 { "ERxError", 48, 1 }, 11820 { "SanityFailed", 47, 1 }, 11821 { "SpuriousMsg", 46, 1 }, 11822 { "FlushInputMsg", 45, 1 }, 11823 { "FlushInputCpl", 44, 1 }, 11824 { "RssUpBit", 43, 1 }, 11825 { "RssFilterHit", 42, 1 }, 11826 { "Tid", 32, 10 }, 11827 { "InitTcb", 31, 1 }, 11828 { "LineNumber", 24, 7 }, 11829 { "Emsg", 23, 1 }, 11830 { "EdataOut", 22, 1 }, 11831 { "Cmsg", 21, 1 }, 11832 { "CdataOut", 20, 1 }, 11833 { "EreadPdu", 19, 1 }, 11834 { "CreadPdu", 18, 1 }, 11835 { "TunnelPkt", 17, 1 }, 11836 { "RcfPeerFin", 16, 1 }, 11837 { "RcfReasonOut", 12, 4 }, 11838 { "TxCchannel", 10, 2 }, 11839 { "RcfTxChannel", 8, 2 }, 11840 { "RxEchannel", 6, 2 }, 11841 { "RcfRxChannel", 5, 1 }, 11842 { "RcfDataOutSrdy", 4, 1 }, 11843 { "RxDvld", 3, 1 }, 11844 { "RxOoDvld", 2, 1 }, 11845 { "RxCongestion", 1, 1 }, 11846 { "TxCongestion", 0, 1 }, 11847 { NULL } 11848 }; 11849 11850 static const struct field_desc tp_la1[] = { 11851 { "CplCmdIn", 56, 8 }, 11852 { "CplCmdOut", 48, 8 }, 11853 { "ESynOut", 47, 1 }, 11854 { "EAckOut", 46, 1 }, 11855 { "EFinOut", 45, 1 }, 11856 { "ERstOut", 44, 1 }, 11857 { "SynIn", 43, 1 }, 11858 { "AckIn", 42, 1 }, 11859 { "FinIn", 41, 1 }, 11860 { "RstIn", 40, 1 }, 11861 { "DataIn", 39, 1 }, 11862 { "DataInVld", 38, 1 }, 11863 { "PadIn", 37, 1 }, 11864 { "RxBufEmpty", 36, 1 }, 11865 { "RxDdp", 35, 1 }, 11866 { "RxFbCongestion", 34, 1 }, 11867 { "TxFbCongestion", 33, 1 }, 11868 { "TxPktSumSrdy", 32, 1 }, 11869 { "RcfUlpType", 28, 4 }, 11870 { "Eread", 27, 1 }, 11871 { "Ebypass", 26, 1 }, 11872 { "Esave", 25, 1 }, 11873 { "Static0", 24, 1 }, 11874 { "Cread", 23, 1 }, 11875 { "Cbypass", 22, 1 }, 11876 { "Csave", 21, 1 }, 11877 { "CPktOut", 20, 1 }, 11878 { "RxPagePoolFull", 18, 2 }, 11879 { "RxLpbkPkt", 17, 1 }, 11880 { "TxLpbkPkt", 16, 1 }, 11881 { "RxVfValid", 15, 1 }, 11882 { "SynLearned", 14, 1 }, 11883 { "SetDelEntry", 13, 1 }, 11884 { "SetInvEntry", 12, 1 }, 11885 { "CpcmdDvld", 11, 1 }, 11886 { "CpcmdSave", 10, 1 }, 11887 { "RxPstructsFull", 8, 2 }, 11888 { "EpcmdDvld", 7, 1 }, 11889 { "EpcmdFlush", 6, 1 }, 11890 { "EpcmdTrimPrefix", 5, 1 }, 11891 { "EpcmdTrimPostfix", 4, 1 }, 11892 { "ERssIp4Pkt", 3, 1 }, 11893 { "ERssIp6Pkt", 2, 1 }, 11894 { "ERssTcpUdpPkt", 1, 1 }, 11895 { "ERssFceFipPkt", 0, 1 }, 11896 { NULL } 11897 }; 11898 11899 static const struct field_desc tp_la2[] = { 11900 { "CplCmdIn", 56, 8 }, 11901 { "MpsVfVld", 55, 1 }, 11902 { "MpsPf", 52, 3 }, 11903 { "MpsVf", 44, 8 }, 11904 { "SynIn", 43, 1 }, 11905 { "AckIn", 42, 1 }, 11906 { "FinIn", 41, 1 }, 11907 { "RstIn", 40, 1 }, 11908 { "DataIn", 39, 1 }, 11909 { "DataInVld", 38, 1 }, 11910 { "PadIn", 37, 1 }, 11911 { "RxBufEmpty", 36, 1 }, 11912 { "RxDdp", 35, 1 }, 11913 { "RxFbCongestion", 34, 1 }, 11914 { "TxFbCongestion", 33, 1 }, 11915 { "TxPktSumSrdy", 32, 1 }, 11916 { "RcfUlpType", 28, 4 }, 11917 { "Eread", 27, 1 }, 11918 { "Ebypass", 26, 1 }, 11919 { "Esave", 25, 1 }, 11920 { "Static0", 24, 1 }, 11921 { "Cread", 23, 1 }, 11922 { "Cbypass", 22, 1 }, 11923 { "Csave", 21, 1 }, 11924 { "CPktOut", 20, 1 }, 11925 { "RxPagePoolFull", 18, 2 }, 11926 { "RxLpbkPkt", 17, 1 }, 11927 { "TxLpbkPkt", 16, 1 }, 11928 { "RxVfValid", 15, 1 }, 11929 { "SynLearned", 14, 1 }, 11930 { "SetDelEntry", 13, 1 }, 11931 { "SetInvEntry", 12, 1 }, 11932 { "CpcmdDvld", 11, 1 }, 11933 { "CpcmdSave", 10, 1 }, 11934 { "RxPstructsFull", 8, 2 }, 11935 { "EpcmdDvld", 7, 1 }, 11936 { "EpcmdFlush", 6, 1 }, 11937 { "EpcmdTrimPrefix", 5, 1 }, 11938 { "EpcmdTrimPostfix", 4, 1 }, 11939 { "ERssIp4Pkt", 3, 1 }, 11940 { "ERssIp6Pkt", 2, 1 }, 11941 { "ERssTcpUdpPkt", 1, 1 }, 11942 { "ERssFceFipPkt", 0, 1 }, 11943 { NULL } 11944 }; 11945 11946 static void 11947 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11948 { 11949 11950 field_desc_show(sb, *p, tp_la0); 11951 } 11952 11953 static void 11954 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11955 { 11956 11957 if (idx) 11958 sbuf_printf(sb, "\n"); 11959 field_desc_show(sb, p[0], tp_la0); 11960 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11961 field_desc_show(sb, p[1], tp_la0); 11962 } 11963 11964 static void 11965 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11966 { 11967 11968 if (idx) 11969 sbuf_printf(sb, "\n"); 11970 field_desc_show(sb, p[0], tp_la0); 11971 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11972 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11973 } 11974 11975 static int 11976 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11977 { 11978 struct adapter *sc = arg1; 11979 struct sbuf *sb; 11980 uint64_t *buf, *p; 11981 int rc; 11982 u_int i, inc; 11983 void (*show_func)(struct sbuf *, uint64_t *, int); 11984 11985 rc = 0; 11986 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11987 if (sb == NULL) 11988 return (ENOMEM); 11989 11990 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11991 11992 mtx_lock(&sc->reg_lock); 11993 if (hw_off_limits(sc)) 11994 rc = ENXIO; 11995 else { 11996 t4_tp_read_la(sc, buf, NULL); 11997 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11998 case 2: 11999 inc = 2; 12000 show_func = tp_la_show2; 12001 break; 12002 case 3: 12003 inc = 2; 12004 show_func = tp_la_show3; 12005 break; 12006 default: 12007 inc = 1; 12008 show_func = tp_la_show; 12009 } 12010 } 12011 mtx_unlock(&sc->reg_lock); 12012 if (rc != 0) 12013 goto done; 12014 12015 p = buf; 12016 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 12017 (*show_func)(sb, p, i); 12018 rc = sbuf_finish(sb); 12019 done: 12020 sbuf_delete(sb); 12021 free(buf, M_CXGBE); 12022 return (rc); 12023 } 12024 12025 static int 12026 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 12027 { 12028 struct adapter *sc = arg1; 12029 struct sbuf *sb; 12030 int rc; 12031 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 12032 12033 rc = 0; 12034 mtx_lock(&sc->reg_lock); 12035 if (hw_off_limits(sc)) 12036 rc = ENXIO; 12037 else 12038 t4_get_chan_txrate(sc, nrate, orate); 12039 mtx_unlock(&sc->reg_lock); 12040 if (rc != 0) 12041 return (rc); 12042 12043 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 12044 if (sb == NULL) 12045 return (ENOMEM); 12046 12047 if (sc->chip_params->nchan > 2) { 12048 sbuf_printf(sb, " channel 0 channel 1" 12049 " channel 2 channel 3\n"); 12050 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 12051 nrate[0], nrate[1], nrate[2], nrate[3]); 12052 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 12053 orate[0], orate[1], orate[2], orate[3]); 12054 } else { 12055 sbuf_printf(sb, " channel 0 channel 1\n"); 12056 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 12057 nrate[0], nrate[1]); 12058 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 12059 orate[0], orate[1]); 12060 } 12061 12062 rc = sbuf_finish(sb); 12063 sbuf_delete(sb); 12064 12065 return (rc); 12066 } 12067 12068 static int 12069 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 12070 { 12071 struct adapter *sc = arg1; 12072 struct sbuf *sb; 12073 uint32_t *buf, *p; 12074 int rc, i; 12075 12076 rc = 0; 12077 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12078 if (sb == NULL) 12079 return (ENOMEM); 12080 12081 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 12082 M_ZERO | M_WAITOK); 12083 12084 mtx_lock(&sc->reg_lock); 12085 if (hw_off_limits(sc)) 12086 rc = ENXIO; 12087 else 12088 t4_ulprx_read_la(sc, buf); 12089 mtx_unlock(&sc->reg_lock); 12090 if (rc != 0) 12091 goto done; 12092 12093 p = buf; 12094 sbuf_printf(sb, " Pcmd Type Message" 12095 " Data"); 12096 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 12097 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 12098 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 12099 } 12100 rc = sbuf_finish(sb); 12101 done: 12102 sbuf_delete(sb); 12103 free(buf, M_CXGBE); 12104 return (rc); 12105 } 12106 12107 static int 12108 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 12109 { 12110 struct adapter *sc = arg1; 12111 struct sbuf *sb; 12112 int rc; 12113 uint32_t cfg, s1, s2; 12114 12115 MPASS(chip_id(sc) >= CHELSIO_T5); 12116 12117 rc = 0; 12118 mtx_lock(&sc->reg_lock); 12119 if (hw_off_limits(sc)) 12120 rc = ENXIO; 12121 else { 12122 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 12123 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 12124 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 12125 } 12126 mtx_unlock(&sc->reg_lock); 12127 if (rc != 0) 12128 return (rc); 12129 12130 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12131 if (sb == NULL) 12132 return (ENOMEM); 12133 12134 if (G_STATSOURCE_T5(cfg) == 7) { 12135 int mode; 12136 12137 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 12138 if (mode == 0) 12139 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 12140 else if (mode == 1) 12141 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 12142 else 12143 sbuf_printf(sb, "unknown mode %d", mode); 12144 } 12145 rc = sbuf_finish(sb); 12146 sbuf_delete(sb); 12147 12148 return (rc); 12149 } 12150 12151 static int 12152 sysctl_cpus(SYSCTL_HANDLER_ARGS) 12153 { 12154 struct adapter *sc = arg1; 12155 enum cpu_sets op = arg2; 12156 cpuset_t cpuset; 12157 struct sbuf *sb; 12158 int i, rc; 12159 12160 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 12161 12162 CPU_ZERO(&cpuset); 12163 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 12164 if (rc != 0) 12165 return (rc); 12166 12167 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12168 if (sb == NULL) 12169 return (ENOMEM); 12170 12171 CPU_FOREACH(i) 12172 sbuf_printf(sb, "%d ", i); 12173 rc = sbuf_finish(sb); 12174 sbuf_delete(sb); 12175 12176 return (rc); 12177 } 12178 12179 static int 12180 sysctl_reset(SYSCTL_HANDLER_ARGS) 12181 { 12182 struct adapter *sc = arg1; 12183 u_int val; 12184 int rc; 12185 12186 val = atomic_load_int(&sc->num_resets); 12187 rc = sysctl_handle_int(oidp, &val, 0, req); 12188 if (rc != 0 || req->newptr == NULL) 12189 return (rc); 12190 12191 if (val == 0) { 12192 /* Zero out the counter that tracks reset. */ 12193 atomic_store_int(&sc->num_resets, 0); 12194 return (0); 12195 } 12196 12197 if (val != 1) 12198 return (EINVAL); /* 0 or 1 are the only legal values */ 12199 12200 if (hw_off_limits(sc)) /* harmless race */ 12201 return (EALREADY); 12202 12203 taskqueue_enqueue(reset_tq, &sc->reset_task); 12204 return (0); 12205 } 12206 12207 #ifdef TCP_OFFLOAD 12208 static int 12209 sysctl_tls(SYSCTL_HANDLER_ARGS) 12210 { 12211 struct adapter *sc = arg1; 12212 int i, j, v, rc; 12213 struct vi_info *vi; 12214 12215 v = sc->tt.tls; 12216 rc = sysctl_handle_int(oidp, &v, 0, req); 12217 if (rc != 0 || req->newptr == NULL) 12218 return (rc); 12219 12220 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 12221 return (ENOTSUP); 12222 12223 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 12224 if (rc) 12225 return (rc); 12226 if (hw_off_limits(sc)) 12227 rc = ENXIO; 12228 else { 12229 sc->tt.tls = !!v; 12230 for_each_port(sc, i) { 12231 for_each_vi(sc->port[i], j, vi) { 12232 if (vi->flags & VI_INIT_DONE) 12233 t4_update_fl_bufsize(vi->ifp); 12234 } 12235 } 12236 } 12237 end_synchronized_op(sc, 0); 12238 12239 return (rc); 12240 12241 } 12242 12243 static void 12244 unit_conv(char *buf, size_t len, u_int val, u_int factor) 12245 { 12246 u_int rem = val % factor; 12247 12248 if (rem == 0) 12249 snprintf(buf, len, "%u", val / factor); 12250 else { 12251 while (rem % 10 == 0) 12252 rem /= 10; 12253 snprintf(buf, len, "%u.%u", val / factor, rem); 12254 } 12255 } 12256 12257 static int 12258 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 12259 { 12260 struct adapter *sc = arg1; 12261 char buf[16]; 12262 u_int res, re; 12263 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12264 12265 mtx_lock(&sc->reg_lock); 12266 if (hw_off_limits(sc)) 12267 res = (u_int)-1; 12268 else 12269 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 12270 mtx_unlock(&sc->reg_lock); 12271 if (res == (u_int)-1) 12272 return (ENXIO); 12273 12274 switch (arg2) { 12275 case 0: 12276 /* timer_tick */ 12277 re = G_TIMERRESOLUTION(res); 12278 break; 12279 case 1: 12280 /* TCP timestamp tick */ 12281 re = G_TIMESTAMPRESOLUTION(res); 12282 break; 12283 case 2: 12284 /* DACK tick */ 12285 re = G_DELAYEDACKRESOLUTION(res); 12286 break; 12287 default: 12288 return (EDOOFUS); 12289 } 12290 12291 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 12292 12293 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 12294 } 12295 12296 static int 12297 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 12298 { 12299 struct adapter *sc = arg1; 12300 int rc; 12301 u_int dack_tmr, dack_re, v; 12302 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12303 12304 mtx_lock(&sc->reg_lock); 12305 if (hw_off_limits(sc)) 12306 rc = ENXIO; 12307 else { 12308 rc = 0; 12309 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 12310 A_TP_TIMER_RESOLUTION)); 12311 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 12312 } 12313 mtx_unlock(&sc->reg_lock); 12314 if (rc != 0) 12315 return (rc); 12316 12317 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 12318 12319 return (sysctl_handle_int(oidp, &v, 0, req)); 12320 } 12321 12322 static int 12323 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 12324 { 12325 struct adapter *sc = arg1; 12326 int rc, reg = arg2; 12327 u_int tre; 12328 u_long tp_tick_us, v; 12329 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12330 12331 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 12332 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 12333 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 12334 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 12335 12336 mtx_lock(&sc->reg_lock); 12337 if (hw_off_limits(sc)) 12338 rc = ENXIO; 12339 else { 12340 rc = 0; 12341 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 12342 tp_tick_us = (cclk_ps << tre) / 1000000; 12343 if (reg == A_TP_INIT_SRTT) 12344 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 12345 else 12346 v = tp_tick_us * t4_read_reg(sc, reg); 12347 } 12348 mtx_unlock(&sc->reg_lock); 12349 if (rc != 0) 12350 return (rc); 12351 else 12352 return (sysctl_handle_long(oidp, &v, 0, req)); 12353 } 12354 12355 /* 12356 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 12357 * passed to this function. 12358 */ 12359 static int 12360 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 12361 { 12362 struct adapter *sc = arg1; 12363 int rc, idx = arg2; 12364 u_int v; 12365 12366 MPASS(idx >= 0 && idx <= 24); 12367 12368 mtx_lock(&sc->reg_lock); 12369 if (hw_off_limits(sc)) 12370 rc = ENXIO; 12371 else { 12372 rc = 0; 12373 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 12374 } 12375 mtx_unlock(&sc->reg_lock); 12376 if (rc != 0) 12377 return (rc); 12378 else 12379 return (sysctl_handle_int(oidp, &v, 0, req)); 12380 } 12381 12382 static int 12383 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 12384 { 12385 struct adapter *sc = arg1; 12386 int rc, idx = arg2; 12387 u_int shift, v, r; 12388 12389 MPASS(idx >= 0 && idx < 16); 12390 12391 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 12392 shift = (idx & 3) << 3; 12393 mtx_lock(&sc->reg_lock); 12394 if (hw_off_limits(sc)) 12395 rc = ENXIO; 12396 else { 12397 rc = 0; 12398 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 12399 } 12400 mtx_unlock(&sc->reg_lock); 12401 if (rc != 0) 12402 return (rc); 12403 else 12404 return (sysctl_handle_int(oidp, &v, 0, req)); 12405 } 12406 12407 static int 12408 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 12409 { 12410 struct vi_info *vi = arg1; 12411 struct adapter *sc = vi->adapter; 12412 int idx, rc, i; 12413 struct sge_ofld_rxq *ofld_rxq; 12414 uint8_t v; 12415 12416 idx = vi->ofld_tmr_idx; 12417 12418 rc = sysctl_handle_int(oidp, &idx, 0, req); 12419 if (rc != 0 || req->newptr == NULL) 12420 return (rc); 12421 12422 if (idx < 0 || idx >= SGE_NTIMERS) 12423 return (EINVAL); 12424 12425 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12426 "t4otmr"); 12427 if (rc) 12428 return (rc); 12429 12430 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 12431 for_each_ofld_rxq(vi, i, ofld_rxq) { 12432 #ifdef atomic_store_rel_8 12433 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 12434 #else 12435 ofld_rxq->iq.intr_params = v; 12436 #endif 12437 } 12438 vi->ofld_tmr_idx = idx; 12439 12440 end_synchronized_op(sc, LOCK_HELD); 12441 return (0); 12442 } 12443 12444 static int 12445 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 12446 { 12447 struct vi_info *vi = arg1; 12448 struct adapter *sc = vi->adapter; 12449 int idx, rc; 12450 12451 idx = vi->ofld_pktc_idx; 12452 12453 rc = sysctl_handle_int(oidp, &idx, 0, req); 12454 if (rc != 0 || req->newptr == NULL) 12455 return (rc); 12456 12457 if (idx < -1 || idx >= SGE_NCOUNTERS) 12458 return (EINVAL); 12459 12460 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12461 "t4opktc"); 12462 if (rc) 12463 return (rc); 12464 12465 if (vi->flags & VI_INIT_DONE) 12466 rc = EBUSY; /* cannot be changed once the queues are created */ 12467 else 12468 vi->ofld_pktc_idx = idx; 12469 12470 end_synchronized_op(sc, LOCK_HELD); 12471 return (rc); 12472 } 12473 #endif 12474 12475 static int 12476 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len, 12477 uint32_t *data) 12478 { 12479 int rc; 12480 12481 if (len < sc->chip_params->sge_ctxt_size) 12482 return (ENOBUFS); 12483 if (cid > M_CTXTQID) 12484 return (EINVAL); 12485 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS && 12486 mem_id != CTXT_FLM && mem_id != CTXT_CNM) 12487 return (EINVAL); 12488 12489 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 12490 if (rc) 12491 return (rc); 12492 12493 if (hw_off_limits(sc)) { 12494 rc = ENXIO; 12495 goto done; 12496 } 12497 12498 if (sc->flags & FW_OK) { 12499 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data); 12500 if (rc == 0) 12501 goto done; 12502 } 12503 12504 /* 12505 * Read via firmware failed or wasn't even attempted. Read directly via 12506 * the backdoor. 12507 */ 12508 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data); 12509 done: 12510 end_synchronized_op(sc, 0); 12511 return (rc); 12512 } 12513 12514 static int 12515 load_fw(struct adapter *sc, struct t4_data *fw) 12516 { 12517 int rc; 12518 uint8_t *fw_data; 12519 12520 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 12521 if (rc) 12522 return (rc); 12523 12524 if (hw_off_limits(sc)) { 12525 rc = ENXIO; 12526 goto done; 12527 } 12528 12529 /* 12530 * The firmware, with the sole exception of the memory parity error 12531 * handler, runs from memory and not flash. It is almost always safe to 12532 * install a new firmware on a running system. Just set bit 1 in 12533 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 12534 */ 12535 if (sc->flags & FULL_INIT_DONE && 12536 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 12537 rc = EBUSY; 12538 goto done; 12539 } 12540 12541 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 12542 12543 rc = copyin(fw->data, fw_data, fw->len); 12544 if (rc == 0) 12545 rc = -t4_load_fw(sc, fw_data, fw->len); 12546 12547 free(fw_data, M_CXGBE); 12548 done: 12549 end_synchronized_op(sc, 0); 12550 return (rc); 12551 } 12552 12553 static int 12554 load_cfg(struct adapter *sc, struct t4_data *cfg) 12555 { 12556 int rc; 12557 uint8_t *cfg_data = NULL; 12558 12559 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12560 if (rc) 12561 return (rc); 12562 12563 if (hw_off_limits(sc)) { 12564 rc = ENXIO; 12565 goto done; 12566 } 12567 12568 if (cfg->len == 0) { 12569 /* clear */ 12570 rc = -t4_load_cfg(sc, NULL, 0); 12571 goto done; 12572 } 12573 12574 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 12575 12576 rc = copyin(cfg->data, cfg_data, cfg->len); 12577 if (rc == 0) 12578 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 12579 12580 free(cfg_data, M_CXGBE); 12581 done: 12582 end_synchronized_op(sc, 0); 12583 return (rc); 12584 } 12585 12586 static int 12587 load_boot(struct adapter *sc, struct t4_bootrom *br) 12588 { 12589 int rc; 12590 uint8_t *br_data = NULL; 12591 u_int offset; 12592 12593 if (br->len > 1024 * 1024) 12594 return (EFBIG); 12595 12596 if (br->pf_offset == 0) { 12597 /* pfidx */ 12598 if (br->pfidx_addr > 7) 12599 return (EINVAL); 12600 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 12601 A_PCIE_PF_EXPROM_OFST))); 12602 } else if (br->pf_offset == 1) { 12603 /* offset */ 12604 offset = G_OFFSET(br->pfidx_addr); 12605 } else { 12606 return (EINVAL); 12607 } 12608 12609 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 12610 if (rc) 12611 return (rc); 12612 12613 if (hw_off_limits(sc)) { 12614 rc = ENXIO; 12615 goto done; 12616 } 12617 12618 if (br->len == 0) { 12619 /* clear */ 12620 rc = -t4_load_boot(sc, NULL, offset, 0); 12621 goto done; 12622 } 12623 12624 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 12625 12626 rc = copyin(br->data, br_data, br->len); 12627 if (rc == 0) 12628 rc = -t4_load_boot(sc, br_data, offset, br->len); 12629 12630 free(br_data, M_CXGBE); 12631 done: 12632 end_synchronized_op(sc, 0); 12633 return (rc); 12634 } 12635 12636 static int 12637 load_bootcfg(struct adapter *sc, struct t4_data *bc) 12638 { 12639 int rc; 12640 uint8_t *bc_data = NULL; 12641 12642 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12643 if (rc) 12644 return (rc); 12645 12646 if (hw_off_limits(sc)) { 12647 rc = ENXIO; 12648 goto done; 12649 } 12650 12651 if (bc->len == 0) { 12652 /* clear */ 12653 rc = -t4_load_bootcfg(sc, NULL, 0); 12654 goto done; 12655 } 12656 12657 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 12658 12659 rc = copyin(bc->data, bc_data, bc->len); 12660 if (rc == 0) 12661 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 12662 12663 free(bc_data, M_CXGBE); 12664 done: 12665 end_synchronized_op(sc, 0); 12666 return (rc); 12667 } 12668 12669 static int 12670 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 12671 { 12672 int rc; 12673 struct cudbg_init *cudbg; 12674 void *handle, *buf; 12675 12676 /* buf is large, don't block if no memory is available */ 12677 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 12678 if (buf == NULL) 12679 return (ENOMEM); 12680 12681 handle = cudbg_alloc_handle(); 12682 if (handle == NULL) { 12683 rc = ENOMEM; 12684 goto done; 12685 } 12686 12687 cudbg = cudbg_get_init(handle); 12688 cudbg->adap = sc; 12689 cudbg->print = (cudbg_print_cb)printf; 12690 12691 #ifndef notyet 12692 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 12693 __func__, dump->wr_flash, dump->len, dump->data); 12694 #endif 12695 12696 if (dump->wr_flash) 12697 cudbg->use_flash = 1; 12698 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 12699 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 12700 12701 rc = cudbg_collect(handle, buf, &dump->len); 12702 if (rc != 0) 12703 goto done; 12704 12705 rc = copyout(buf, dump->data, dump->len); 12706 done: 12707 cudbg_free_handle(handle); 12708 free(buf, M_CXGBE); 12709 return (rc); 12710 } 12711 12712 static void 12713 free_offload_policy(struct t4_offload_policy *op) 12714 { 12715 struct offload_rule *r; 12716 int i; 12717 12718 if (op == NULL) 12719 return; 12720 12721 r = &op->rule[0]; 12722 for (i = 0; i < op->nrules; i++, r++) { 12723 free(r->bpf_prog.bf_insns, M_CXGBE); 12724 } 12725 free(op->rule, M_CXGBE); 12726 free(op, M_CXGBE); 12727 } 12728 12729 static int 12730 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 12731 { 12732 int i, rc, len; 12733 struct t4_offload_policy *op, *old; 12734 struct bpf_program *bf; 12735 const struct offload_settings *s; 12736 struct offload_rule *r; 12737 void *u; 12738 12739 if (!is_offload(sc)) 12740 return (ENODEV); 12741 12742 if (uop->nrules == 0) { 12743 /* Delete installed policies. */ 12744 op = NULL; 12745 goto set_policy; 12746 } else if (uop->nrules > 256) { /* arbitrary */ 12747 return (E2BIG); 12748 } 12749 12750 /* Copy userspace offload policy to kernel */ 12751 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 12752 op->nrules = uop->nrules; 12753 len = op->nrules * sizeof(struct offload_rule); 12754 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12755 rc = copyin(uop->rule, op->rule, len); 12756 if (rc) { 12757 free(op->rule, M_CXGBE); 12758 free(op, M_CXGBE); 12759 return (rc); 12760 } 12761 12762 r = &op->rule[0]; 12763 for (i = 0; i < op->nrules; i++, r++) { 12764 12765 /* Validate open_type */ 12766 if (r->open_type != OPEN_TYPE_LISTEN && 12767 r->open_type != OPEN_TYPE_ACTIVE && 12768 r->open_type != OPEN_TYPE_PASSIVE && 12769 r->open_type != OPEN_TYPE_DONTCARE) { 12770 error: 12771 /* 12772 * Rules 0 to i have malloc'd filters that need to be 12773 * freed. Rules i+1 to nrules have userspace pointers 12774 * and should be left alone. 12775 */ 12776 op->nrules = i; 12777 free_offload_policy(op); 12778 return (rc); 12779 } 12780 12781 /* Validate settings */ 12782 s = &r->settings; 12783 if ((s->offload != 0 && s->offload != 1) || 12784 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 12785 s->sched_class < -1 || 12786 s->sched_class >= sc->params.nsched_cls) { 12787 rc = EINVAL; 12788 goto error; 12789 } 12790 12791 bf = &r->bpf_prog; 12792 u = bf->bf_insns; /* userspace ptr */ 12793 bf->bf_insns = NULL; 12794 if (bf->bf_len == 0) { 12795 /* legal, matches everything */ 12796 continue; 12797 } 12798 len = bf->bf_len * sizeof(*bf->bf_insns); 12799 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12800 rc = copyin(u, bf->bf_insns, len); 12801 if (rc != 0) 12802 goto error; 12803 12804 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 12805 rc = EINVAL; 12806 goto error; 12807 } 12808 } 12809 set_policy: 12810 rw_wlock(&sc->policy_lock); 12811 old = sc->policy; 12812 sc->policy = op; 12813 rw_wunlock(&sc->policy_lock); 12814 free_offload_policy(old); 12815 12816 return (0); 12817 } 12818 12819 #define MAX_READ_BUF_SIZE (128 * 1024) 12820 static int 12821 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 12822 { 12823 uint32_t addr, remaining, n; 12824 uint32_t *buf; 12825 int rc; 12826 uint8_t *dst; 12827 12828 mtx_lock(&sc->reg_lock); 12829 if (hw_off_limits(sc)) 12830 rc = ENXIO; 12831 else 12832 rc = validate_mem_range(sc, mr->addr, mr->len); 12833 mtx_unlock(&sc->reg_lock); 12834 if (rc != 0) 12835 return (rc); 12836 12837 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 12838 addr = mr->addr; 12839 remaining = mr->len; 12840 dst = (void *)mr->data; 12841 12842 while (remaining) { 12843 n = min(remaining, MAX_READ_BUF_SIZE); 12844 mtx_lock(&sc->reg_lock); 12845 if (hw_off_limits(sc)) 12846 rc = ENXIO; 12847 else 12848 read_via_memwin(sc, 2, addr, buf, n); 12849 mtx_unlock(&sc->reg_lock); 12850 if (rc != 0) 12851 break; 12852 12853 rc = copyout(buf, dst, n); 12854 if (rc != 0) 12855 break; 12856 12857 dst += n; 12858 remaining -= n; 12859 addr += n; 12860 } 12861 12862 free(buf, M_CXGBE); 12863 return (rc); 12864 } 12865 #undef MAX_READ_BUF_SIZE 12866 12867 static int 12868 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12869 { 12870 int rc; 12871 12872 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12873 return (EINVAL); 12874 12875 if (i2cd->len > sizeof(i2cd->data)) 12876 return (EFBIG); 12877 12878 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12879 if (rc) 12880 return (rc); 12881 if (hw_off_limits(sc)) 12882 rc = ENXIO; 12883 else 12884 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12885 i2cd->offset, i2cd->len, &i2cd->data[0]); 12886 end_synchronized_op(sc, 0); 12887 12888 return (rc); 12889 } 12890 12891 static int 12892 clear_stats(struct adapter *sc, u_int port_id) 12893 { 12894 int i, v, chan_map; 12895 struct port_info *pi; 12896 struct vi_info *vi; 12897 struct sge_rxq *rxq; 12898 struct sge_txq *txq; 12899 struct sge_wrq *wrq; 12900 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12901 struct sge_ofld_txq *ofld_txq; 12902 #endif 12903 #ifdef TCP_OFFLOAD 12904 struct sge_ofld_rxq *ofld_rxq; 12905 #endif 12906 12907 if (port_id >= sc->params.nports) 12908 return (EINVAL); 12909 pi = sc->port[port_id]; 12910 if (pi == NULL) 12911 return (EIO); 12912 12913 mtx_lock(&sc->reg_lock); 12914 if (!hw_off_limits(sc)) { 12915 /* MAC stats */ 12916 t4_clr_port_stats(sc, pi->hw_port); 12917 if (is_t6(sc)) { 12918 if (pi->fcs_reg != -1) 12919 pi->fcs_base = t4_read_reg64(sc, 12920 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 12921 else 12922 pi->stats.rx_fcs_err = 0; 12923 } 12924 for_each_vi(pi, v, vi) { 12925 if (vi->flags & VI_INIT_DONE) 12926 t4_clr_vi_stats(sc, vi->vin); 12927 } 12928 chan_map = pi->rx_e_chan_map; 12929 v = 0; /* reuse */ 12930 while (chan_map) { 12931 i = ffs(chan_map) - 1; 12932 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12933 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12934 chan_map &= ~(1 << i); 12935 } 12936 } 12937 mtx_unlock(&sc->reg_lock); 12938 pi->tx_parse_error = 0; 12939 pi->tnl_cong_drops = 0; 12940 12941 /* 12942 * Since this command accepts a port, clear stats for 12943 * all VIs on this port. 12944 */ 12945 for_each_vi(pi, v, vi) { 12946 if (vi->flags & VI_INIT_DONE) { 12947 12948 for_each_rxq(vi, i, rxq) { 12949 #if defined(INET) || defined(INET6) 12950 rxq->lro.lro_queued = 0; 12951 rxq->lro.lro_flushed = 0; 12952 #endif 12953 rxq->rxcsum = 0; 12954 rxq->vlan_extraction = 0; 12955 rxq->vxlan_rxcsum = 0; 12956 12957 rxq->fl.cl_allocated = 0; 12958 rxq->fl.cl_recycled = 0; 12959 rxq->fl.cl_fast_recycled = 0; 12960 } 12961 12962 for_each_txq(vi, i, txq) { 12963 txq->txcsum = 0; 12964 txq->tso_wrs = 0; 12965 txq->vlan_insertion = 0; 12966 txq->imm_wrs = 0; 12967 txq->sgl_wrs = 0; 12968 txq->txpkt_wrs = 0; 12969 txq->txpkts0_wrs = 0; 12970 txq->txpkts1_wrs = 0; 12971 txq->txpkts0_pkts = 0; 12972 txq->txpkts1_pkts = 0; 12973 txq->txpkts_flush = 0; 12974 txq->raw_wrs = 0; 12975 txq->vxlan_tso_wrs = 0; 12976 txq->vxlan_txcsum = 0; 12977 txq->kern_tls_records = 0; 12978 txq->kern_tls_short = 0; 12979 txq->kern_tls_partial = 0; 12980 txq->kern_tls_full = 0; 12981 txq->kern_tls_octets = 0; 12982 txq->kern_tls_waste = 0; 12983 txq->kern_tls_header = 0; 12984 txq->kern_tls_fin_short = 0; 12985 txq->kern_tls_cbc = 0; 12986 txq->kern_tls_gcm = 0; 12987 if (is_t6(sc)) { 12988 txq->kern_tls_options = 0; 12989 txq->kern_tls_fin = 0; 12990 } else { 12991 txq->kern_tls_ghash_received = 0; 12992 txq->kern_tls_ghash_requested = 0; 12993 txq->kern_tls_lso = 0; 12994 txq->kern_tls_partial_ghash = 0; 12995 txq->kern_tls_splitmode = 0; 12996 txq->kern_tls_trailer = 0; 12997 } 12998 mp_ring_reset_stats(txq->r); 12999 } 13000 13001 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13002 for_each_ofld_txq(vi, i, ofld_txq) { 13003 ofld_txq->wrq.tx_wrs_direct = 0; 13004 ofld_txq->wrq.tx_wrs_copied = 0; 13005 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 13006 counter_u64_zero(ofld_txq->tx_iscsi_octets); 13007 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 13008 counter_u64_zero(ofld_txq->tx_nvme_pdus); 13009 counter_u64_zero(ofld_txq->tx_nvme_octets); 13010 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs); 13011 counter_u64_zero(ofld_txq->tx_aio_jobs); 13012 counter_u64_zero(ofld_txq->tx_aio_octets); 13013 counter_u64_zero(ofld_txq->tx_toe_tls_records); 13014 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 13015 } 13016 #endif 13017 #ifdef TCP_OFFLOAD 13018 for_each_ofld_rxq(vi, i, ofld_rxq) { 13019 ofld_rxq->fl.cl_allocated = 0; 13020 ofld_rxq->fl.cl_recycled = 0; 13021 ofld_rxq->fl.cl_fast_recycled = 0; 13022 counter_u64_zero( 13023 ofld_rxq->rx_iscsi_ddp_setup_ok); 13024 counter_u64_zero( 13025 ofld_rxq->rx_iscsi_ddp_setup_error); 13026 ofld_rxq->rx_iscsi_ddp_pdus = 0; 13027 ofld_rxq->rx_iscsi_ddp_octets = 0; 13028 ofld_rxq->rx_iscsi_fl_pdus = 0; 13029 ofld_rxq->rx_iscsi_fl_octets = 0; 13030 counter_u64_zero( 13031 ofld_rxq->rx_nvme_ddp_setup_ok); 13032 counter_u64_zero( 13033 ofld_rxq->rx_nvme_ddp_setup_no_stag); 13034 counter_u64_zero( 13035 ofld_rxq->rx_nvme_ddp_setup_error); 13036 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus); 13037 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets); 13038 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus); 13039 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets); 13040 counter_u64_zero( 13041 ofld_rxq->rx_nvme_invalid_headers); 13042 counter_u64_zero( 13043 ofld_rxq->rx_nvme_header_digest_errors); 13044 counter_u64_zero( 13045 ofld_rxq->rx_nvme_data_digest_errors); 13046 ofld_rxq->rx_aio_ddp_jobs = 0; 13047 ofld_rxq->rx_aio_ddp_octets = 0; 13048 ofld_rxq->rx_toe_tls_records = 0; 13049 ofld_rxq->rx_toe_tls_octets = 0; 13050 ofld_rxq->rx_toe_ddp_octets = 0; 13051 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 13052 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 13053 counter_u64_zero(ofld_rxq->ddp_buffer_free); 13054 } 13055 #endif 13056 13057 if (IS_MAIN_VI(vi)) { 13058 wrq = &sc->sge.ctrlq[pi->port_id]; 13059 wrq->tx_wrs_direct = 0; 13060 wrq->tx_wrs_copied = 0; 13061 } 13062 } 13063 } 13064 13065 return (0); 13066 } 13067 13068 static int 13069 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13070 { 13071 #ifdef INET6 13072 struct in6_addr in6; 13073 13074 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13075 if (t4_get_clip_entry(sc, &in6, true) != NULL) 13076 return (0); 13077 else 13078 return (EIO); 13079 #else 13080 return (ENOTSUP); 13081 #endif 13082 } 13083 13084 static int 13085 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13086 { 13087 #ifdef INET6 13088 struct in6_addr in6; 13089 13090 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13091 return (t4_release_clip_addr(sc, &in6)); 13092 #else 13093 return (ENOTSUP); 13094 #endif 13095 } 13096 13097 int 13098 t4_os_find_pci_capability(struct adapter *sc, int cap) 13099 { 13100 int i; 13101 13102 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 13103 } 13104 13105 void 13106 t4_os_portmod_changed(struct port_info *pi) 13107 { 13108 struct adapter *sc = pi->adapter; 13109 struct vi_info *vi; 13110 if_t ifp; 13111 static const char *mod_str[] = { 13112 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 13113 "LR_SIMPLEX", "DR" 13114 }; 13115 13116 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 13117 ("%s: port_type %u", __func__, pi->port_type)); 13118 13119 vi = &pi->vi[0]; 13120 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 13121 PORT_LOCK(pi); 13122 build_medialist(pi); 13123 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 13124 fixup_link_config(pi); 13125 apply_link_config(pi); 13126 } 13127 PORT_UNLOCK(pi); 13128 end_synchronized_op(sc, LOCK_HELD); 13129 } 13130 13131 ifp = vi->ifp; 13132 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 13133 if_printf(ifp, "transceiver unplugged.\n"); 13134 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 13135 if_printf(ifp, "unknown transceiver inserted.\n"); 13136 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 13137 if_printf(ifp, "unsupported transceiver inserted.\n"); 13138 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 13139 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 13140 port_top_speed(pi), mod_str[pi->mod_type]); 13141 } else { 13142 if_printf(ifp, "transceiver (type %d) inserted.\n", 13143 pi->mod_type); 13144 } 13145 } 13146 13147 void 13148 t4_os_link_changed(struct port_info *pi) 13149 { 13150 struct vi_info *vi; 13151 if_t ifp; 13152 struct link_config *lc = &pi->link_cfg; 13153 struct adapter *sc = pi->adapter; 13154 int v; 13155 13156 PORT_LOCK_ASSERT_OWNED(pi); 13157 13158 if (is_t6(sc)) { 13159 if (lc->link_ok) { 13160 if (lc->speed > 25000 || 13161 (lc->speed == 25000 && lc->fec == FEC_RS)) 13162 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS; 13163 else 13164 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS; 13165 pi->fcs_base = t4_read_reg64(sc, 13166 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 13167 pi->stats.rx_fcs_err = 0; 13168 } else { 13169 pi->fcs_reg = -1; 13170 } 13171 } else { 13172 MPASS(pi->fcs_reg != -1); 13173 MPASS(pi->fcs_base == 0); 13174 } 13175 13176 for_each_vi(pi, v, vi) { 13177 ifp = vi->ifp; 13178 if (ifp == NULL || IS_DETACHING(vi)) 13179 continue; 13180 13181 if (lc->link_ok) { 13182 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 13183 if_link_state_change(ifp, LINK_STATE_UP); 13184 } else { 13185 if_link_state_change(ifp, LINK_STATE_DOWN); 13186 } 13187 } 13188 } 13189 13190 void 13191 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 13192 { 13193 struct adapter *sc; 13194 13195 sx_slock(&t4_list_lock); 13196 SLIST_FOREACH(sc, &t4_list, link) { 13197 /* 13198 * func should not make any assumptions about what state sc is 13199 * in - the only guarantee is that sc->sc_lock is a valid lock. 13200 */ 13201 func(sc, arg); 13202 } 13203 sx_sunlock(&t4_list_lock); 13204 } 13205 13206 static int 13207 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 13208 struct thread *td) 13209 { 13210 int rc; 13211 struct adapter *sc = dev->si_drv1; 13212 13213 rc = priv_check(td, PRIV_DRIVER); 13214 if (rc != 0) 13215 return (rc); 13216 13217 switch (cmd) { 13218 case CHELSIO_T4_GETREG: { 13219 struct t4_reg *edata = (struct t4_reg *)data; 13220 13221 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13222 return (EFAULT); 13223 13224 mtx_lock(&sc->reg_lock); 13225 if (hw_off_limits(sc)) 13226 rc = ENXIO; 13227 else if (edata->size == 4) 13228 edata->val = t4_read_reg(sc, edata->addr); 13229 else if (edata->size == 8) 13230 edata->val = t4_read_reg64(sc, edata->addr); 13231 else 13232 rc = EINVAL; 13233 mtx_unlock(&sc->reg_lock); 13234 13235 break; 13236 } 13237 case CHELSIO_T4_SETREG: { 13238 struct t4_reg *edata = (struct t4_reg *)data; 13239 13240 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13241 return (EFAULT); 13242 13243 mtx_lock(&sc->reg_lock); 13244 if (hw_off_limits(sc)) 13245 rc = ENXIO; 13246 else if (edata->size == 4) { 13247 if (edata->val & 0xffffffff00000000) 13248 rc = EINVAL; 13249 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 13250 } else if (edata->size == 8) 13251 t4_write_reg64(sc, edata->addr, edata->val); 13252 else 13253 rc = EINVAL; 13254 mtx_unlock(&sc->reg_lock); 13255 13256 break; 13257 } 13258 case CHELSIO_T4_REGDUMP: { 13259 struct t4_regdump *regs = (struct t4_regdump *)data; 13260 int reglen = t4_get_regs_len(sc); 13261 uint8_t *buf; 13262 13263 if (regs->len < reglen) { 13264 regs->len = reglen; /* hint to the caller */ 13265 return (ENOBUFS); 13266 } 13267 13268 regs->len = reglen; 13269 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 13270 mtx_lock(&sc->reg_lock); 13271 if (hw_off_limits(sc)) 13272 rc = ENXIO; 13273 else 13274 get_regs(sc, regs, buf); 13275 mtx_unlock(&sc->reg_lock); 13276 if (rc == 0) 13277 rc = copyout(buf, regs->data, reglen); 13278 free(buf, M_CXGBE); 13279 break; 13280 } 13281 case CHELSIO_T4_GET_FILTER_MODE: 13282 rc = get_filter_mode(sc, (uint32_t *)data); 13283 break; 13284 case CHELSIO_T4_SET_FILTER_MODE: 13285 rc = set_filter_mode(sc, *(uint32_t *)data); 13286 break; 13287 case CHELSIO_T4_SET_FILTER_MASK: 13288 rc = set_filter_mask(sc, *(uint32_t *)data); 13289 break; 13290 case CHELSIO_T4_GET_FILTER: 13291 rc = get_filter(sc, (struct t4_filter *)data); 13292 break; 13293 case CHELSIO_T4_SET_FILTER: 13294 rc = set_filter(sc, (struct t4_filter *)data); 13295 break; 13296 case CHELSIO_T4_DEL_FILTER: 13297 rc = del_filter(sc, (struct t4_filter *)data); 13298 break; 13299 case CHELSIO_T4_GET_SGE_CONTEXT: { 13300 struct t4_sge_context *ctxt = (struct t4_sge_context *)data; 13301 13302 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13303 sizeof(ctxt->data), &ctxt->data[0]); 13304 break; 13305 } 13306 case CHELSIO_T4_LOAD_FW: 13307 rc = load_fw(sc, (struct t4_data *)data); 13308 break; 13309 case CHELSIO_T4_GET_MEM: 13310 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 13311 break; 13312 case CHELSIO_T4_GET_I2C: 13313 rc = read_i2c(sc, (struct t4_i2c_data *)data); 13314 break; 13315 case CHELSIO_T4_CLEAR_STATS: 13316 rc = clear_stats(sc, *(uint32_t *)data); 13317 break; 13318 case CHELSIO_T4_SCHED_CLASS: 13319 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 13320 break; 13321 case CHELSIO_T4_SCHED_QUEUE: 13322 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 13323 break; 13324 case CHELSIO_T4_GET_TRACER: 13325 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 13326 break; 13327 case CHELSIO_T4_SET_TRACER: 13328 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 13329 break; 13330 case CHELSIO_T4_LOAD_CFG: 13331 rc = load_cfg(sc, (struct t4_data *)data); 13332 break; 13333 case CHELSIO_T4_LOAD_BOOT: 13334 rc = load_boot(sc, (struct t4_bootrom *)data); 13335 break; 13336 case CHELSIO_T4_LOAD_BOOTCFG: 13337 rc = load_bootcfg(sc, (struct t4_data *)data); 13338 break; 13339 case CHELSIO_T4_CUDBG_DUMP: 13340 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 13341 break; 13342 case CHELSIO_T4_SET_OFLD_POLICY: 13343 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 13344 break; 13345 case CHELSIO_T4_HOLD_CLIP_ADDR: 13346 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 13347 break; 13348 case CHELSIO_T4_RELEASE_CLIP_ADDR: 13349 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 13350 break; 13351 case CHELSIO_T4_GET_SGE_CTXT: { 13352 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data; 13353 13354 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13355 sizeof(ctxt->data), &ctxt->data[0]); 13356 break; 13357 } 13358 default: 13359 rc = ENOTTY; 13360 } 13361 13362 return (rc); 13363 } 13364 13365 #ifdef TCP_OFFLOAD 13366 int 13367 toe_capability(struct vi_info *vi, bool enable) 13368 { 13369 int rc; 13370 struct port_info *pi = vi->pi; 13371 struct adapter *sc = pi->adapter; 13372 13373 ASSERT_SYNCHRONIZED_OP(sc); 13374 13375 if (!is_offload(sc)) 13376 return (ENODEV); 13377 if (!hw_all_ok(sc)) 13378 return (ENXIO); 13379 13380 if (enable) { 13381 #ifdef KERN_TLS 13382 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 13383 int i, j, n; 13384 struct port_info *p; 13385 struct vi_info *v; 13386 13387 /* 13388 * Reconfigure hardware for TOE if TXTLS is not enabled 13389 * on any ifnet. 13390 */ 13391 n = 0; 13392 for_each_port(sc, i) { 13393 p = sc->port[i]; 13394 for_each_vi(p, j, v) { 13395 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 13396 CH_WARN(sc, 13397 "%s has NIC TLS enabled.\n", 13398 device_get_nameunit(v->dev)); 13399 n++; 13400 } 13401 } 13402 } 13403 if (n > 0) { 13404 CH_WARN(sc, "Disable NIC TLS on all interfaces " 13405 "associated with this adapter before " 13406 "trying to enable TOE.\n"); 13407 return (EAGAIN); 13408 } 13409 rc = t6_config_kern_tls(sc, false); 13410 if (rc) 13411 return (rc); 13412 } 13413 #endif 13414 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 13415 /* TOE is already enabled. */ 13416 return (0); 13417 } 13418 13419 /* 13420 * We need the port's queues around so that we're able to send 13421 * and receive CPLs to/from the TOE even if the ifnet for this 13422 * port has never been UP'd administratively. 13423 */ 13424 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 13425 return (rc); 13426 if (!(pi->vi[0].flags & VI_INIT_DONE) && 13427 ((rc = vi_init(&pi->vi[0])) != 0)) 13428 return (rc); 13429 13430 if (isset(&sc->offload_map, pi->port_id)) { 13431 /* TOE is enabled on another VI of this port. */ 13432 MPASS(pi->uld_vis > 0); 13433 pi->uld_vis++; 13434 return (0); 13435 } 13436 13437 if (!uld_active(sc, ULD_TOM)) { 13438 rc = t4_activate_uld(sc, ULD_TOM); 13439 if (rc == EAGAIN) { 13440 log(LOG_WARNING, 13441 "You must kldload t4_tom.ko before trying " 13442 "to enable TOE on a cxgbe interface.\n"); 13443 } 13444 if (rc != 0) 13445 return (rc); 13446 KASSERT(sc->tom_softc != NULL, 13447 ("%s: TOM activated but softc NULL", __func__)); 13448 KASSERT(uld_active(sc, ULD_TOM), 13449 ("%s: TOM activated but flag not set", __func__)); 13450 } 13451 13452 /* 13453 * Activate iWARP, iSCSI, and NVMe too, if the modules 13454 * are loaded. 13455 */ 13456 if (!uld_active(sc, ULD_IWARP)) 13457 (void) t4_activate_uld(sc, ULD_IWARP); 13458 if (!uld_active(sc, ULD_ISCSI)) 13459 (void) t4_activate_uld(sc, ULD_ISCSI); 13460 if (!uld_active(sc, ULD_NVME)) 13461 (void) t4_activate_uld(sc, ULD_NVME); 13462 13463 if (pi->uld_vis++ == 0) 13464 setbit(&sc->offload_map, pi->port_id); 13465 } else { 13466 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 13467 /* TOE is already disabled. */ 13468 return (0); 13469 } 13470 MPASS(isset(&sc->offload_map, pi->port_id)); 13471 MPASS(pi->uld_vis > 0); 13472 if (--pi->uld_vis == 0) 13473 clrbit(&sc->offload_map, pi->port_id); 13474 } 13475 13476 return (0); 13477 } 13478 13479 /* 13480 * Add an upper layer driver to the global list. 13481 */ 13482 int 13483 t4_register_uld(struct uld_info *ui, int id) 13484 { 13485 int rc; 13486 13487 if (id < 0 || id > ULD_MAX) 13488 return (EINVAL); 13489 sx_xlock(&t4_uld_list_lock); 13490 if (t4_uld_list[id] != NULL) 13491 rc = EEXIST; 13492 else { 13493 t4_uld_list[id] = ui; 13494 rc = 0; 13495 } 13496 sx_xunlock(&t4_uld_list_lock); 13497 return (rc); 13498 } 13499 13500 int 13501 t4_unregister_uld(struct uld_info *ui, int id) 13502 { 13503 13504 if (id < 0 || id > ULD_MAX) 13505 return (EINVAL); 13506 sx_xlock(&t4_uld_list_lock); 13507 MPASS(t4_uld_list[id] == ui); 13508 t4_uld_list[id] = NULL; 13509 sx_xunlock(&t4_uld_list_lock); 13510 return (0); 13511 } 13512 13513 int 13514 t4_activate_uld(struct adapter *sc, int id) 13515 { 13516 int rc; 13517 13518 ASSERT_SYNCHRONIZED_OP(sc); 13519 13520 if (id < 0 || id > ULD_MAX) 13521 return (EINVAL); 13522 13523 /* Adapter needs to be initialized before any ULD can be activated. */ 13524 if (!(sc->flags & FULL_INIT_DONE)) { 13525 rc = adapter_init(sc); 13526 if (rc != 0) 13527 return (rc); 13528 } 13529 13530 sx_slock(&t4_uld_list_lock); 13531 if (t4_uld_list[id] == NULL) 13532 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 13533 else { 13534 rc = t4_uld_list[id]->uld_activate(sc); 13535 if (rc == 0) 13536 setbit(&sc->active_ulds, id); 13537 } 13538 sx_sunlock(&t4_uld_list_lock); 13539 13540 return (rc); 13541 } 13542 13543 int 13544 t4_deactivate_uld(struct adapter *sc, int id) 13545 { 13546 int rc; 13547 13548 ASSERT_SYNCHRONIZED_OP(sc); 13549 13550 if (id < 0 || id > ULD_MAX) 13551 return (EINVAL); 13552 13553 sx_slock(&t4_uld_list_lock); 13554 if (t4_uld_list[id] == NULL) 13555 rc = ENXIO; 13556 else { 13557 rc = t4_uld_list[id]->uld_deactivate(sc); 13558 if (rc == 0) 13559 clrbit(&sc->active_ulds, id); 13560 } 13561 sx_sunlock(&t4_uld_list_lock); 13562 13563 return (rc); 13564 } 13565 13566 static int 13567 deactivate_all_uld(struct adapter *sc) 13568 { 13569 int i, rc; 13570 13571 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 13572 if (rc != 0) 13573 return (ENXIO); 13574 sx_slock(&t4_uld_list_lock); 13575 for (i = 0; i <= ULD_MAX; i++) { 13576 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 13577 continue; 13578 rc = t4_uld_list[i]->uld_deactivate(sc); 13579 if (rc != 0) 13580 break; 13581 clrbit(&sc->active_ulds, i); 13582 } 13583 sx_sunlock(&t4_uld_list_lock); 13584 end_synchronized_op(sc, 0); 13585 13586 return (rc); 13587 } 13588 13589 static void 13590 stop_all_uld(struct adapter *sc) 13591 { 13592 int i; 13593 13594 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 13595 return; 13596 sx_slock(&t4_uld_list_lock); 13597 for (i = 0; i <= ULD_MAX; i++) { 13598 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13599 t4_uld_list[i]->uld_stop == NULL) 13600 continue; 13601 (void) t4_uld_list[i]->uld_stop(sc); 13602 } 13603 sx_sunlock(&t4_uld_list_lock); 13604 end_synchronized_op(sc, 0); 13605 } 13606 13607 static void 13608 restart_all_uld(struct adapter *sc) 13609 { 13610 int i; 13611 13612 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 13613 return; 13614 sx_slock(&t4_uld_list_lock); 13615 for (i = 0; i <= ULD_MAX; i++) { 13616 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13617 t4_uld_list[i]->uld_restart == NULL) 13618 continue; 13619 (void) t4_uld_list[i]->uld_restart(sc); 13620 } 13621 sx_sunlock(&t4_uld_list_lock); 13622 end_synchronized_op(sc, 0); 13623 } 13624 13625 int 13626 uld_active(struct adapter *sc, int id) 13627 { 13628 13629 MPASS(id >= 0 && id <= ULD_MAX); 13630 13631 return (isset(&sc->active_ulds, id)); 13632 } 13633 #endif 13634 13635 #ifdef KERN_TLS 13636 static int 13637 ktls_capability(struct adapter *sc, bool enable) 13638 { 13639 ASSERT_SYNCHRONIZED_OP(sc); 13640 13641 if (!is_ktls(sc)) 13642 return (ENODEV); 13643 if (!is_t6(sc)) 13644 return (0); 13645 if (!hw_all_ok(sc)) 13646 return (ENXIO); 13647 13648 if (enable) { 13649 if (sc->flags & KERN_TLS_ON) 13650 return (0); /* already on */ 13651 if (sc->offload_map != 0) { 13652 CH_WARN(sc, 13653 "Disable TOE on all interfaces associated with " 13654 "this adapter before trying to enable NIC TLS.\n"); 13655 return (EAGAIN); 13656 } 13657 return (t6_config_kern_tls(sc, true)); 13658 } else { 13659 /* 13660 * Nothing to do for disable. If TOE is enabled sometime later 13661 * then toe_capability will reconfigure the hardware. 13662 */ 13663 return (0); 13664 } 13665 } 13666 #endif 13667 13668 /* 13669 * t = ptr to tunable. 13670 * nc = number of CPUs. 13671 * c = compiled in default for that tunable. 13672 */ 13673 static void 13674 calculate_nqueues(int *t, int nc, const int c) 13675 { 13676 int nq; 13677 13678 if (*t > 0) 13679 return; 13680 nq = *t < 0 ? -*t : c; 13681 *t = min(nc, nq); 13682 } 13683 13684 /* 13685 * Come up with reasonable defaults for some of the tunables, provided they're 13686 * not set by the user (in which case we'll use the values as is). 13687 */ 13688 static void 13689 tweak_tunables(void) 13690 { 13691 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 13692 13693 if (t4_ntxq < 1) { 13694 #ifdef RSS 13695 t4_ntxq = rss_getnumbuckets(); 13696 #else 13697 calculate_nqueues(&t4_ntxq, nc, NTXQ); 13698 #endif 13699 } 13700 13701 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 13702 13703 if (t4_nrxq < 1) { 13704 #ifdef RSS 13705 t4_nrxq = rss_getnumbuckets(); 13706 #else 13707 calculate_nqueues(&t4_nrxq, nc, NRXQ); 13708 #endif 13709 } 13710 13711 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 13712 13713 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13714 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 13715 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 13716 #endif 13717 #ifdef TCP_OFFLOAD 13718 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 13719 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 13720 #endif 13721 13722 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 13723 if (t4_toecaps_allowed == -1) 13724 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 13725 #else 13726 if (t4_toecaps_allowed == -1) 13727 t4_toecaps_allowed = 0; 13728 #endif 13729 13730 #ifdef TCP_OFFLOAD 13731 if (t4_rdmacaps_allowed == -1) { 13732 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 13733 FW_CAPS_CONFIG_RDMA_RDMAC; 13734 } 13735 13736 if (t4_iscsicaps_allowed == -1) { 13737 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 13738 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 13739 FW_CAPS_CONFIG_ISCSI_T10DIF; 13740 } 13741 13742 if (t4_nvmecaps_allowed == -1) 13743 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP; 13744 13745 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 13746 t4_tmr_idx_ofld = TMR_IDX_OFLD; 13747 13748 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 13749 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 13750 #else 13751 if (t4_rdmacaps_allowed == -1) 13752 t4_rdmacaps_allowed = 0; 13753 13754 if (t4_iscsicaps_allowed == -1) 13755 t4_iscsicaps_allowed = 0; 13756 13757 if (t4_nvmecaps_allowed == -1) 13758 t4_nvmecaps_allowed = 0; 13759 #endif 13760 13761 #ifdef DEV_NETMAP 13762 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 13763 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 13764 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 13765 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 13766 #endif 13767 13768 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 13769 t4_tmr_idx = TMR_IDX; 13770 13771 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 13772 t4_pktc_idx = PKTC_IDX; 13773 13774 if (t4_qsize_txq < 128) 13775 t4_qsize_txq = 128; 13776 13777 if (t4_qsize_rxq < 128) 13778 t4_qsize_rxq = 128; 13779 while (t4_qsize_rxq & 7) 13780 t4_qsize_rxq++; 13781 13782 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 13783 13784 /* 13785 * Number of VIs to create per-port. The first VI is the "main" regular 13786 * VI for the port. The rest are additional virtual interfaces on the 13787 * same physical port. Note that the main VI does not have native 13788 * netmap support but the extra VIs do. 13789 * 13790 * Limit the number of VIs per port to the number of available 13791 * MAC addresses per port. 13792 */ 13793 if (t4_num_vis < 1) 13794 t4_num_vis = 1; 13795 if (t4_num_vis > nitems(vi_mac_funcs)) { 13796 t4_num_vis = nitems(vi_mac_funcs); 13797 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 13798 } 13799 13800 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 13801 pcie_relaxed_ordering = 1; 13802 #if defined(__i386__) || defined(__amd64__) 13803 if (cpu_vendor_id == CPU_VENDOR_INTEL) 13804 pcie_relaxed_ordering = 0; 13805 #endif 13806 } 13807 } 13808 13809 #ifdef DDB 13810 static void 13811 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 13812 { 13813 uint32_t base, j, off, pf, reg, save, win_pos; 13814 13815 reg = chip_id(sc) > CHELSIO_T6 ? 13816 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) : 13817 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 13818 save = t4_read_reg(sc, reg); 13819 base = sc->memwin[2].mw_base; 13820 13821 if (is_t4(sc)) { 13822 pf = 0; 13823 win_pos = addr & ~0xf; /* start must be 16B aligned */ 13824 } else { 13825 pf = V_PFNUM(sc->pf); 13826 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 13827 } 13828 off = addr - win_pos; 13829 if (chip_id(sc) > CHELSIO_T6) 13830 win_pos >>= X_T7_MEMOFST_SHIFT; 13831 t4_write_reg(sc, reg, win_pos | pf); 13832 t4_read_reg(sc, reg); 13833 13834 while (len > 0 && !db_pager_quit) { 13835 uint32_t buf[8]; 13836 for (j = 0; j < 8; j++, off += 4) 13837 buf[j] = htonl(t4_read_reg(sc, base + off)); 13838 13839 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 13840 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 13841 buf[7]); 13842 if (len <= sizeof(buf)) 13843 len = 0; 13844 else 13845 len -= sizeof(buf); 13846 } 13847 13848 t4_write_reg(sc, reg, save); 13849 t4_read_reg(sc, reg); 13850 } 13851 13852 static void 13853 t4_dump_tcb(struct adapter *sc, int tid) 13854 { 13855 uint32_t tcb_addr; 13856 13857 /* Dump TCB for the tid */ 13858 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 13859 tcb_addr += tid * TCB_SIZE; 13860 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 13861 } 13862 13863 static void 13864 t4_dump_devlog(struct adapter *sc) 13865 { 13866 struct devlog_params *dparams = &sc->params.devlog; 13867 struct fw_devlog_e e; 13868 int i, first, j, m, nentries, rc; 13869 uint64_t ftstamp = UINT64_MAX; 13870 13871 if (dparams->start == 0) { 13872 db_printf("devlog params not valid\n"); 13873 return; 13874 } 13875 13876 nentries = dparams->size / sizeof(struct fw_devlog_e); 13877 m = fwmtype_to_hwmtype(dparams->memtype); 13878 13879 /* Find the first entry. */ 13880 first = -1; 13881 for (i = 0; i < nentries && !db_pager_quit; i++) { 13882 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13883 sizeof(e), (void *)&e); 13884 if (rc != 0) 13885 break; 13886 13887 if (e.timestamp == 0) 13888 break; 13889 13890 e.timestamp = be64toh(e.timestamp); 13891 if (e.timestamp < ftstamp) { 13892 ftstamp = e.timestamp; 13893 first = i; 13894 } 13895 } 13896 13897 if (first == -1) 13898 return; 13899 13900 i = first; 13901 do { 13902 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13903 sizeof(e), (void *)&e); 13904 if (rc != 0) 13905 return; 13906 13907 if (e.timestamp == 0) 13908 return; 13909 13910 e.timestamp = be64toh(e.timestamp); 13911 e.seqno = be32toh(e.seqno); 13912 for (j = 0; j < 8; j++) 13913 e.params[j] = be32toh(e.params[j]); 13914 13915 db_printf("%10d %15ju %8s %8s ", 13916 e.seqno, e.timestamp, 13917 (e.level < nitems(devlog_level_strings) ? 13918 devlog_level_strings[e.level] : "UNKNOWN"), 13919 (e.facility < nitems(devlog_facility_strings) ? 13920 devlog_facility_strings[e.facility] : "UNKNOWN")); 13921 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13922 e.params[3], e.params[4], e.params[5], e.params[6], 13923 e.params[7]); 13924 13925 if (++i == nentries) 13926 i = 0; 13927 } while (i != first && !db_pager_quit); 13928 } 13929 13930 static DB_DEFINE_TABLE(show, t4, show_t4); 13931 13932 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13933 { 13934 device_t dev; 13935 int t; 13936 bool valid; 13937 13938 valid = false; 13939 t = db_read_token(); 13940 if (t == tIDENT) { 13941 dev = device_lookup_by_name(db_tok_string); 13942 valid = true; 13943 } 13944 db_skip_to_eol(); 13945 if (!valid) { 13946 db_printf("usage: show t4 devlog <nexus>\n"); 13947 return; 13948 } 13949 13950 if (dev == NULL) { 13951 db_printf("device not found\n"); 13952 return; 13953 } 13954 13955 t4_dump_devlog(device_get_softc(dev)); 13956 } 13957 13958 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13959 { 13960 device_t dev; 13961 int radix, tid, t; 13962 bool valid; 13963 13964 valid = false; 13965 radix = db_radix; 13966 db_radix = 10; 13967 t = db_read_token(); 13968 if (t == tIDENT) { 13969 dev = device_lookup_by_name(db_tok_string); 13970 t = db_read_token(); 13971 if (t == tNUMBER) { 13972 tid = db_tok_number; 13973 valid = true; 13974 } 13975 } 13976 db_radix = radix; 13977 db_skip_to_eol(); 13978 if (!valid) { 13979 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13980 return; 13981 } 13982 13983 if (dev == NULL) { 13984 db_printf("device not found\n"); 13985 return; 13986 } 13987 if (tid < 0) { 13988 db_printf("invalid tid\n"); 13989 return; 13990 } 13991 13992 t4_dump_tcb(device_get_softc(dev), tid); 13993 } 13994 13995 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13996 { 13997 device_t dev; 13998 int radix, t; 13999 bool valid; 14000 14001 valid = false; 14002 radix = db_radix; 14003 db_radix = 10; 14004 t = db_read_token(); 14005 if (t == tIDENT) { 14006 dev = device_lookup_by_name(db_tok_string); 14007 t = db_read_token(); 14008 if (t == tNUMBER) { 14009 addr = db_tok_number; 14010 t = db_read_token(); 14011 if (t == tNUMBER) { 14012 count = db_tok_number; 14013 valid = true; 14014 } 14015 } 14016 } 14017 db_radix = radix; 14018 db_skip_to_eol(); 14019 if (!valid) { 14020 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 14021 return; 14022 } 14023 14024 if (dev == NULL) { 14025 db_printf("device not found\n"); 14026 return; 14027 } 14028 if (addr < 0) { 14029 db_printf("invalid address\n"); 14030 return; 14031 } 14032 if (count <= 0) { 14033 db_printf("invalid length\n"); 14034 return; 14035 } 14036 14037 t4_dump_mem(device_get_softc(dev), addr, count); 14038 } 14039 #endif 14040 14041 static eventhandler_tag vxlan_start_evtag; 14042 static eventhandler_tag vxlan_stop_evtag; 14043 14044 struct vxlan_evargs { 14045 if_t ifp; 14046 uint16_t port; 14047 }; 14048 14049 static void 14050 enable_vxlan_rx(struct adapter *sc) 14051 { 14052 int i, rc; 14053 struct port_info *pi; 14054 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 14055 14056 ASSERT_SYNCHRONIZED_OP(sc); 14057 14058 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 14059 F_VXLAN_EN); 14060 for_each_port(sc, i) { 14061 pi = sc->port[i]; 14062 if (pi->vxlan_tcam_entry == true) 14063 continue; 14064 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 14065 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 14066 true); 14067 if (rc < 0) { 14068 rc = -rc; 14069 CH_ERR(&pi->vi[0], 14070 "failed to add VXLAN TCAM entry: %d.\n", rc); 14071 } else { 14072 MPASS(rc == sc->rawf_base + pi->port_id); 14073 pi->vxlan_tcam_entry = true; 14074 } 14075 } 14076 } 14077 14078 static void 14079 t4_vxlan_start(struct adapter *sc, void *arg) 14080 { 14081 struct vxlan_evargs *v = arg; 14082 14083 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14084 return; 14085 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 14086 return; 14087 14088 if (sc->vxlan_refcount == 0) { 14089 sc->vxlan_port = v->port; 14090 sc->vxlan_refcount = 1; 14091 if (!hw_off_limits(sc)) 14092 enable_vxlan_rx(sc); 14093 } else if (sc->vxlan_port == v->port) { 14094 sc->vxlan_refcount++; 14095 } else { 14096 CH_ERR(sc, "VXLAN already configured on port %d; " 14097 "ignoring attempt to configure it on port %d\n", 14098 sc->vxlan_port, v->port); 14099 } 14100 end_synchronized_op(sc, 0); 14101 } 14102 14103 static void 14104 t4_vxlan_stop(struct adapter *sc, void *arg) 14105 { 14106 struct vxlan_evargs *v = arg; 14107 14108 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14109 return; 14110 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 14111 return; 14112 14113 /* 14114 * VXLANs may have been configured before the driver was loaded so we 14115 * may see more stops than starts. This is not handled cleanly but at 14116 * least we keep the refcount sane. 14117 */ 14118 if (sc->vxlan_port != v->port) 14119 goto done; 14120 if (sc->vxlan_refcount == 0) { 14121 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 14122 "ignoring attempt to stop it again.\n", sc->vxlan_port); 14123 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 14124 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 14125 done: 14126 end_synchronized_op(sc, 0); 14127 } 14128 14129 static void 14130 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 14131 sa_family_t family, u_int port) 14132 { 14133 struct vxlan_evargs v; 14134 14135 MPASS(family == AF_INET || family == AF_INET6); 14136 v.ifp = ifp; 14137 v.port = port; 14138 14139 t4_iterate(t4_vxlan_start, &v); 14140 } 14141 14142 static void 14143 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 14144 u_int port) 14145 { 14146 struct vxlan_evargs v; 14147 14148 MPASS(family == AF_INET || family == AF_INET6); 14149 v.ifp = ifp; 14150 v.port = port; 14151 14152 t4_iterate(t4_vxlan_stop, &v); 14153 } 14154 14155 14156 static struct sx mlu; /* mod load unload */ 14157 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 14158 14159 static int 14160 mod_event(module_t mod, int cmd, void *arg) 14161 { 14162 int rc = 0; 14163 static int loaded = 0; 14164 14165 switch (cmd) { 14166 case MOD_LOAD: 14167 sx_xlock(&mlu); 14168 if (loaded++ == 0) { 14169 t4_sge_modload(); 14170 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14171 t4_filter_rpl, CPL_COOKIE_FILTER); 14172 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 14173 do_l2t_write_rpl, CPL_COOKIE_FILTER); 14174 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 14175 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 14176 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14177 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 14178 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 14179 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 14180 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 14181 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 14182 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 14183 do_smt_write_rpl); 14184 sx_init(&t4_list_lock, "T4/T5 adapters"); 14185 SLIST_INIT(&t4_list); 14186 callout_init(&fatal_callout, 1); 14187 #ifdef TCP_OFFLOAD 14188 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 14189 #endif 14190 #ifdef INET6 14191 t4_clip_modload(); 14192 #endif 14193 #ifdef KERN_TLS 14194 t6_ktls_modload(); 14195 t7_ktls_modload(); 14196 #endif 14197 t4_tracer_modload(); 14198 tweak_tunables(); 14199 vxlan_start_evtag = 14200 EVENTHANDLER_REGISTER(vxlan_start, 14201 t4_vxlan_start_handler, NULL, 14202 EVENTHANDLER_PRI_ANY); 14203 vxlan_stop_evtag = 14204 EVENTHANDLER_REGISTER(vxlan_stop, 14205 t4_vxlan_stop_handler, NULL, 14206 EVENTHANDLER_PRI_ANY); 14207 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 14208 taskqueue_thread_enqueue, &reset_tq); 14209 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 14210 "t4_rst_thr"); 14211 } 14212 sx_xunlock(&mlu); 14213 break; 14214 14215 case MOD_UNLOAD: 14216 sx_xlock(&mlu); 14217 if (--loaded == 0) { 14218 #ifdef TCP_OFFLOAD 14219 int i; 14220 #endif 14221 int tries; 14222 14223 taskqueue_free(reset_tq); 14224 14225 tries = 0; 14226 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 14227 uprintf("%ju clusters with custom free routine " 14228 "still is use.\n", t4_sge_extfree_refs()); 14229 pause("t4unload", 2 * hz); 14230 } 14231 14232 sx_slock(&t4_list_lock); 14233 if (!SLIST_EMPTY(&t4_list)) { 14234 rc = EBUSY; 14235 sx_sunlock(&t4_list_lock); 14236 goto done_unload; 14237 } 14238 #ifdef TCP_OFFLOAD 14239 sx_slock(&t4_uld_list_lock); 14240 for (i = 0; i <= ULD_MAX; i++) { 14241 if (t4_uld_list[i] != NULL) { 14242 rc = EBUSY; 14243 sx_sunlock(&t4_uld_list_lock); 14244 sx_sunlock(&t4_list_lock); 14245 goto done_unload; 14246 } 14247 } 14248 sx_sunlock(&t4_uld_list_lock); 14249 #endif 14250 sx_sunlock(&t4_list_lock); 14251 14252 if (t4_sge_extfree_refs() == 0) { 14253 EVENTHANDLER_DEREGISTER(vxlan_start, 14254 vxlan_start_evtag); 14255 EVENTHANDLER_DEREGISTER(vxlan_stop, 14256 vxlan_stop_evtag); 14257 t4_tracer_modunload(); 14258 #ifdef KERN_TLS 14259 t7_ktls_modunload(); 14260 t6_ktls_modunload(); 14261 #endif 14262 #ifdef INET6 14263 t4_clip_modunload(); 14264 #endif 14265 #ifdef TCP_OFFLOAD 14266 sx_destroy(&t4_uld_list_lock); 14267 #endif 14268 sx_destroy(&t4_list_lock); 14269 t4_sge_modunload(); 14270 loaded = 0; 14271 } else { 14272 rc = EBUSY; 14273 loaded++; /* undo earlier decrement */ 14274 } 14275 } 14276 done_unload: 14277 sx_xunlock(&mlu); 14278 break; 14279 } 14280 14281 return (rc); 14282 } 14283 14284 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 14285 MODULE_VERSION(t4nex, 1); 14286 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 14287 #ifdef DEV_NETMAP 14288 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 14289 #endif /* DEV_NETMAP */ 14290 14291 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 14292 MODULE_VERSION(t5nex, 1); 14293 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 14294 #ifdef DEV_NETMAP 14295 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 14296 #endif /* DEV_NETMAP */ 14297 14298 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 14299 MODULE_VERSION(t6nex, 1); 14300 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 14301 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 14302 #ifdef DEV_NETMAP 14303 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 14304 #endif /* DEV_NETMAP */ 14305 14306 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0); 14307 MODULE_VERSION(chnex, 1); 14308 MODULE_DEPEND(chnex, crypto, 1, 1, 1); 14309 MODULE_DEPEND(chnex, firmware, 1, 1, 1); 14310 #ifdef DEV_NETMAP 14311 MODULE_DEPEND(chnex, netmap, 1, 1, 1); 14312 #endif /* DEV_NETMAP */ 14313 14314 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 14315 MODULE_VERSION(cxgbe, 1); 14316 14317 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 14318 MODULE_VERSION(cxl, 1); 14319 14320 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 14321 MODULE_VERSION(cc, 1); 14322 14323 DRIVER_MODULE(che, chnex, che_driver, 0, 0); 14324 MODULE_VERSION(che, 1); 14325 14326 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 14327 MODULE_VERSION(vcxgbe, 1); 14328 14329 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 14330 MODULE_VERSION(vcxl, 1); 14331 14332 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 14333 MODULE_VERSION(vcc, 1); 14334 14335 DRIVER_MODULE(vche, che, vche_driver, 0, 0); 14336 MODULE_VERSION(vche, 1); 14337