xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 8b238f4126d32df3e70056bc32536b7248ebffa0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_kern_tls.h"
37 #include "opt_ratelimit.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/priv.h>
43 #include <sys/kernel.h>
44 #include <sys/bus.h>
45 #include <sys/module.h>
46 #include <sys/malloc.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/pciio.h>
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 #include <dev/pci/pci_private.h>
53 #include <sys/firmware.h>
54 #include <sys/sbuf.h>
55 #include <sys/smp.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/sysctl.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_types.h>
62 #include <net/if_dl.h>
63 #include <net/if_vlan_var.h>
64 #ifdef RSS
65 #include <net/rss_config.h>
66 #endif
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #ifdef KERN_TLS
70 #include <netinet/tcp_seq.h>
71 #endif
72 #if defined(__i386__) || defined(__amd64__)
73 #include <machine/md_var.h>
74 #include <machine/cputypes.h>
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #endif
78 #ifdef DDB
79 #include <ddb/ddb.h>
80 #include <ddb/db_lex.h>
81 #endif
82 
83 #include "common/common.h"
84 #include "common/t4_msg.h"
85 #include "common/t4_regs.h"
86 #include "common/t4_regs_values.h"
87 #include "cudbg/cudbg.h"
88 #include "t4_clip.h"
89 #include "t4_ioctl.h"
90 #include "t4_l2t.h"
91 #include "t4_mp_ring.h"
92 #include "t4_if.h"
93 #include "t4_smt.h"
94 
95 /* T4 bus driver interface */
96 static int t4_probe(device_t);
97 static int t4_attach(device_t);
98 static int t4_detach(device_t);
99 static int t4_child_location_str(device_t, device_t, char *, size_t);
100 static int t4_ready(device_t);
101 static int t4_read_port_device(device_t, int, device_t *);
102 static device_method_t t4_methods[] = {
103 	DEVMETHOD(device_probe,		t4_probe),
104 	DEVMETHOD(device_attach,	t4_attach),
105 	DEVMETHOD(device_detach,	t4_detach),
106 
107 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
108 
109 	DEVMETHOD(t4_is_main_ready,	t4_ready),
110 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
111 
112 	DEVMETHOD_END
113 };
114 static driver_t t4_driver = {
115 	"t4nex",
116 	t4_methods,
117 	sizeof(struct adapter)
118 };
119 
120 
121 /* T4 port (cxgbe) interface */
122 static int cxgbe_probe(device_t);
123 static int cxgbe_attach(device_t);
124 static int cxgbe_detach(device_t);
125 device_method_t cxgbe_methods[] = {
126 	DEVMETHOD(device_probe,		cxgbe_probe),
127 	DEVMETHOD(device_attach,	cxgbe_attach),
128 	DEVMETHOD(device_detach,	cxgbe_detach),
129 	{ 0, 0 }
130 };
131 static driver_t cxgbe_driver = {
132 	"cxgbe",
133 	cxgbe_methods,
134 	sizeof(struct port_info)
135 };
136 
137 /* T4 VI (vcxgbe) interface */
138 static int vcxgbe_probe(device_t);
139 static int vcxgbe_attach(device_t);
140 static int vcxgbe_detach(device_t);
141 static device_method_t vcxgbe_methods[] = {
142 	DEVMETHOD(device_probe,		vcxgbe_probe),
143 	DEVMETHOD(device_attach,	vcxgbe_attach),
144 	DEVMETHOD(device_detach,	vcxgbe_detach),
145 	{ 0, 0 }
146 };
147 static driver_t vcxgbe_driver = {
148 	"vcxgbe",
149 	vcxgbe_methods,
150 	sizeof(struct vi_info)
151 };
152 
153 static d_ioctl_t t4_ioctl;
154 
155 static struct cdevsw t4_cdevsw = {
156        .d_version = D_VERSION,
157        .d_ioctl = t4_ioctl,
158        .d_name = "t4nex",
159 };
160 
161 /* T5 bus driver interface */
162 static int t5_probe(device_t);
163 static device_method_t t5_methods[] = {
164 	DEVMETHOD(device_probe,		t5_probe),
165 	DEVMETHOD(device_attach,	t4_attach),
166 	DEVMETHOD(device_detach,	t4_detach),
167 
168 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
169 
170 	DEVMETHOD(t4_is_main_ready,	t4_ready),
171 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
172 
173 	DEVMETHOD_END
174 };
175 static driver_t t5_driver = {
176 	"t5nex",
177 	t5_methods,
178 	sizeof(struct adapter)
179 };
180 
181 
182 /* T5 port (cxl) interface */
183 static driver_t cxl_driver = {
184 	"cxl",
185 	cxgbe_methods,
186 	sizeof(struct port_info)
187 };
188 
189 /* T5 VI (vcxl) interface */
190 static driver_t vcxl_driver = {
191 	"vcxl",
192 	vcxgbe_methods,
193 	sizeof(struct vi_info)
194 };
195 
196 /* T6 bus driver interface */
197 static int t6_probe(device_t);
198 static device_method_t t6_methods[] = {
199 	DEVMETHOD(device_probe,		t6_probe),
200 	DEVMETHOD(device_attach,	t4_attach),
201 	DEVMETHOD(device_detach,	t4_detach),
202 
203 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
204 
205 	DEVMETHOD(t4_is_main_ready,	t4_ready),
206 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
207 
208 	DEVMETHOD_END
209 };
210 static driver_t t6_driver = {
211 	"t6nex",
212 	t6_methods,
213 	sizeof(struct adapter)
214 };
215 
216 
217 /* T6 port (cc) interface */
218 static driver_t cc_driver = {
219 	"cc",
220 	cxgbe_methods,
221 	sizeof(struct port_info)
222 };
223 
224 /* T6 VI (vcc) interface */
225 static driver_t vcc_driver = {
226 	"vcc",
227 	vcxgbe_methods,
228 	sizeof(struct vi_info)
229 };
230 
231 /* ifnet interface */
232 static void cxgbe_init(void *);
233 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
234 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
235 static void cxgbe_qflush(struct ifnet *);
236 #if defined(KERN_TLS) || defined(RATELIMIT)
237 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *,
238     struct m_snd_tag **);
239 static int cxgbe_snd_tag_modify(struct m_snd_tag *,
240     union if_snd_tag_modify_params *);
241 static int cxgbe_snd_tag_query(struct m_snd_tag *,
242     union if_snd_tag_query_params *);
243 static void cxgbe_snd_tag_free(struct m_snd_tag *);
244 #endif
245 
246 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
247 
248 /*
249  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
250  * then ADAPTER_LOCK, then t4_uld_list_lock.
251  */
252 static struct sx t4_list_lock;
253 SLIST_HEAD(, adapter) t4_list;
254 #ifdef TCP_OFFLOAD
255 static struct sx t4_uld_list_lock;
256 SLIST_HEAD(, uld_info) t4_uld_list;
257 #endif
258 
259 /*
260  * Tunables.  See tweak_tunables() too.
261  *
262  * Each tunable is set to a default value here if it's known at compile-time.
263  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
264  * provide a reasonable default (upto n) when the driver is loaded.
265  *
266  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
267  * T5 are under hw.cxl.
268  */
269 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters");
270 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters");
271 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters");
272 
273 /*
274  * Number of queues for tx and rx, NIC and offload.
275  */
276 #define NTXQ 16
277 int t4_ntxq = -NTXQ;
278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
279     "Number of TX queues per port");
280 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
281 
282 #define NRXQ 8
283 int t4_nrxq = -NRXQ;
284 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
285     "Number of RX queues per port");
286 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
287 
288 #define NTXQ_VI 1
289 static int t4_ntxq_vi = -NTXQ_VI;
290 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
291     "Number of TX queues per VI");
292 
293 #define NRXQ_VI 1
294 static int t4_nrxq_vi = -NRXQ_VI;
295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
296     "Number of RX queues per VI");
297 
298 static int t4_rsrv_noflowq = 0;
299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
300     0, "Reserve TX queue 0 of each VI for non-flowid packets");
301 
302 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
303 #define NOFLDTXQ 8
304 static int t4_nofldtxq = -NOFLDTXQ;
305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
306     "Number of offload TX queues per port");
307 
308 #define NOFLDRXQ 2
309 static int t4_nofldrxq = -NOFLDRXQ;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
311     "Number of offload RX queues per port");
312 
313 #define NOFLDTXQ_VI 1
314 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
315 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
316     "Number of offload TX queues per VI");
317 
318 #define NOFLDRXQ_VI 1
319 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
321     "Number of offload RX queues per VI");
322 
323 #define TMR_IDX_OFLD 1
324 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
326     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
327 
328 #define PKTC_IDX_OFLD (-1)
329 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
331     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
332 
333 /* 0 means chip/fw default, non-zero number is value in microseconds */
334 static u_long t4_toe_keepalive_idle = 0;
335 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
336     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
337 
338 /* 0 means chip/fw default, non-zero number is value in microseconds */
339 static u_long t4_toe_keepalive_interval = 0;
340 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
341     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
342 
343 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
344 static int t4_toe_keepalive_count = 0;
345 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
346     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
347 
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_rexmt_min = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
351     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
352 
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_rexmt_max = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
356     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
357 
358 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
359 static int t4_toe_rexmt_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
361     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
362 
363 /* -1 means chip/fw default, other values are raw backoff values to use */
364 static int t4_toe_rexmt_backoff[16] = {
365 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
366 };
367 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0,
368     "cxgbe(4) TOE retransmit backoff values");
369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
370     &t4_toe_rexmt_backoff[0], 0, "");
371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
372     &t4_toe_rexmt_backoff[1], 0, "");
373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_backoff[2], 0, "");
375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_backoff[3], 0, "");
377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
378     &t4_toe_rexmt_backoff[4], 0, "");
379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
380     &t4_toe_rexmt_backoff[5], 0, "");
381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
382     &t4_toe_rexmt_backoff[6], 0, "");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[7], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[8], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[9], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[10], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[11], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[12], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[13], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[14], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[15], 0, "");
401 #endif
402 
403 #ifdef DEV_NETMAP
404 #define NNMTXQ_VI 2
405 static int t4_nnmtxq_vi = -NNMTXQ_VI;
406 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
407     "Number of netmap TX queues per VI");
408 
409 #define NNMRXQ_VI 2
410 static int t4_nnmrxq_vi = -NNMRXQ_VI;
411 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
412     "Number of netmap RX queues per VI");
413 #endif
414 
415 /*
416  * Holdoff parameters for ports.
417  */
418 #define TMR_IDX 1
419 int t4_tmr_idx = TMR_IDX;
420 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
421     0, "Holdoff timer index");
422 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
423 
424 #define PKTC_IDX (-1)
425 int t4_pktc_idx = PKTC_IDX;
426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
427     0, "Holdoff packet counter index");
428 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
429 
430 /*
431  * Size (# of entries) of each tx and rx queue.
432  */
433 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
434 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
435     "Number of descriptors in each TX queue");
436 
437 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
439     "Number of descriptors in each RX queue");
440 
441 /*
442  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
443  */
444 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
446     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
447 
448 /*
449  * Configuration file.  All the _CF names here are special.
450  */
451 #define DEFAULT_CF	"default"
452 #define BUILTIN_CF	"built-in"
453 #define FLASH_CF	"flash"
454 #define UWIRE_CF	"uwire"
455 #define FPGA_CF		"fpga"
456 static char t4_cfg_file[32] = DEFAULT_CF;
457 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
458     sizeof(t4_cfg_file), "Firmware configuration file");
459 
460 /*
461  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
462  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
463  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
464  *            mark or when signalled to do so, 0 to never emit PAUSE.
465  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
466  *                 negotiated settings will override rx_pause/tx_pause.
467  *                 Otherwise rx_pause/tx_pause are applied forcibly.
468  */
469 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
470 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
471     &t4_pause_settings, 0,
472     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
473 
474 /*
475  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
476  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
477  *  0 to disable FEC.
478  */
479 static int t4_fec = -1;
480 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
481     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
482 
483 /*
484  * Link autonegotiation.
485  * -1 to run with the firmware default.
486  *  0 to disable.
487  *  1 to enable.
488  */
489 static int t4_autoneg = -1;
490 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
491     "Link autonegotiation");
492 
493 /*
494  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
495  * encouraged respectively).  '-n' is the same as 'n' except the firmware
496  * version used in the checks is read from the firmware bundled with the driver.
497  */
498 static int t4_fw_install = 1;
499 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
500     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
501 
502 /*
503  * ASIC features that will be used.  Disable the ones you don't want so that the
504  * chip resources aren't wasted on features that will not be used.
505  */
506 static int t4_nbmcaps_allowed = 0;
507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
508     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
509 
510 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
512     &t4_linkcaps_allowed, 0, "Default link capabilities");
513 
514 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
515     FW_CAPS_CONFIG_SWITCH_EGRESS;
516 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
517     &t4_switchcaps_allowed, 0, "Default switch capabilities");
518 
519 #ifdef RATELIMIT
520 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
521 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
522 #else
523 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
524 	FW_CAPS_CONFIG_NIC_HASHFILTER;
525 #endif
526 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
527     &t4_niccaps_allowed, 0, "Default NIC capabilities");
528 
529 static int t4_toecaps_allowed = -1;
530 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
531     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
532 
533 static int t4_rdmacaps_allowed = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
535     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
536 
537 static int t4_cryptocaps_allowed = -1;
538 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
539     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
540 
541 static int t4_iscsicaps_allowed = -1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
543     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
544 
545 static int t4_fcoecaps_allowed = 0;
546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
547     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
548 
549 static int t5_write_combine = 0;
550 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
551     0, "Use WC instead of UC for BAR2");
552 
553 static int t4_num_vis = 1;
554 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
555     "Number of VIs per port");
556 
557 /*
558  * PCIe Relaxed Ordering.
559  * -1: driver should figure out a good value.
560  * 0: disable RO.
561  * 1: enable RO.
562  * 2: leave RO alone.
563  */
564 static int pcie_relaxed_ordering = -1;
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
566     &pcie_relaxed_ordering, 0,
567     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
568 
569 static int t4_panic_on_fatal_err = 0;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN,
571     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
572 
573 #ifdef TCP_OFFLOAD
574 /*
575  * TOE tunables.
576  */
577 static int t4_cop_managed_offloading = 0;
578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
579     &t4_cop_managed_offloading, 0,
580     "COP (Connection Offload Policy) controls all TOE offload");
581 #endif
582 
583 #ifdef KERN_TLS
584 /*
585  * This enables KERN_TLS for all adapters if set.
586  */
587 static int t4_kern_tls = 0;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
589     "Enable KERN_TLS mode for all supported adapters");
590 
591 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD, 0,
592     "cxgbe(4) KERN_TLS parameters");
593 
594 static int t4_tls_inline_keys = 0;
595 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
596     &t4_tls_inline_keys, 0,
597     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
598     "in card memory.");
599 
600 static int t4_tls_combo_wrs = 0;
601 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
602     0, "Attempt to combine TCB field updates with TLS record work requests.");
603 #endif
604 
605 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
606 static int vi_mac_funcs[] = {
607 	FW_VI_FUNC_ETH,
608 	FW_VI_FUNC_OFLD,
609 	FW_VI_FUNC_IWARP,
610 	FW_VI_FUNC_OPENISCSI,
611 	FW_VI_FUNC_OPENFCOE,
612 	FW_VI_FUNC_FOISCSI,
613 	FW_VI_FUNC_FOFCOE,
614 };
615 
616 struct intrs_and_queues {
617 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
618 	uint16_t num_vis;	/* number of VIs for each port */
619 	uint16_t nirq;		/* Total # of vectors */
620 	uint16_t ntxq;		/* # of NIC txq's for each port */
621 	uint16_t nrxq;		/* # of NIC rxq's for each port */
622 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
623 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
624 
625 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
626 	uint16_t ntxq_vi;	/* # of NIC txq's */
627 	uint16_t nrxq_vi;	/* # of NIC rxq's */
628 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
629 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
630 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
631 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
632 };
633 
634 static void setup_memwin(struct adapter *);
635 static void position_memwin(struct adapter *, int, uint32_t);
636 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
637 static int fwmtype_to_hwmtype(int);
638 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
639     uint32_t *);
640 static int fixup_devlog_params(struct adapter *);
641 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
642 static int contact_firmware(struct adapter *);
643 static int partition_resources(struct adapter *);
644 static int get_params__pre_init(struct adapter *);
645 static int set_params__pre_init(struct adapter *);
646 static int get_params__post_init(struct adapter *);
647 static int set_params__post_init(struct adapter *);
648 static void t4_set_desc(struct adapter *);
649 static bool fixed_ifmedia(struct port_info *);
650 static void build_medialist(struct port_info *);
651 static void init_link_config(struct port_info *);
652 static int fixup_link_config(struct port_info *);
653 static int apply_link_config(struct port_info *);
654 static int cxgbe_init_synchronized(struct vi_info *);
655 static int cxgbe_uninit_synchronized(struct vi_info *);
656 static void quiesce_txq(struct adapter *, struct sge_txq *);
657 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
658 static void quiesce_iq(struct adapter *, struct sge_iq *);
659 static void quiesce_fl(struct adapter *, struct sge_fl *);
660 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
661     driver_intr_t *, void *, char *);
662 static int t4_free_irq(struct adapter *, struct irq *);
663 static void t4_init_atid_table(struct adapter *);
664 static void t4_free_atid_table(struct adapter *);
665 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
666 static void vi_refresh_stats(struct adapter *, struct vi_info *);
667 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
668 static void cxgbe_tick(void *);
669 static void cxgbe_sysctls(struct port_info *);
670 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
671 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
672 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
673 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
674 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
675 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
676 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
677 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
678 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
679 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
680 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
681 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
682 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
683 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
684 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
685 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
686 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
687 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
688 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
689 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
690 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
691 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
692 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
693 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
694 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
695 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
696 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
697 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
698 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
699 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
700 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
701 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
702 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
703 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
704 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
705 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
706 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
707 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
708 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
709 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
710 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
711 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
712 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
713 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
714 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
715 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
716 #ifdef TCP_OFFLOAD
717 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
718 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
719 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
720 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
721 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
722 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
723 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
724 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
725 #endif
726 static int get_sge_context(struct adapter *, struct t4_sge_context *);
727 static int load_fw(struct adapter *, struct t4_data *);
728 static int load_cfg(struct adapter *, struct t4_data *);
729 static int load_boot(struct adapter *, struct t4_bootrom *);
730 static int load_bootcfg(struct adapter *, struct t4_data *);
731 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
732 static void free_offload_policy(struct t4_offload_policy *);
733 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
734 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
735 static int read_i2c(struct adapter *, struct t4_i2c_data *);
736 static int clear_stats(struct adapter *, u_int);
737 #ifdef TCP_OFFLOAD
738 static int toe_capability(struct vi_info *, int);
739 #endif
740 static int mod_event(module_t, int, void *);
741 static int notify_siblings(device_t, int);
742 
743 struct {
744 	uint16_t device;
745 	char *desc;
746 } t4_pciids[] = {
747 	{0xa000, "Chelsio Terminator 4 FPGA"},
748 	{0x4400, "Chelsio T440-dbg"},
749 	{0x4401, "Chelsio T420-CR"},
750 	{0x4402, "Chelsio T422-CR"},
751 	{0x4403, "Chelsio T440-CR"},
752 	{0x4404, "Chelsio T420-BCH"},
753 	{0x4405, "Chelsio T440-BCH"},
754 	{0x4406, "Chelsio T440-CH"},
755 	{0x4407, "Chelsio T420-SO"},
756 	{0x4408, "Chelsio T420-CX"},
757 	{0x4409, "Chelsio T420-BT"},
758 	{0x440a, "Chelsio T404-BT"},
759 	{0x440e, "Chelsio T440-LP-CR"},
760 }, t5_pciids[] = {
761 	{0xb000, "Chelsio Terminator 5 FPGA"},
762 	{0x5400, "Chelsio T580-dbg"},
763 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
764 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
765 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
766 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
767 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
768 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
769 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
770 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
771 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
772 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
773 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
774 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
775 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
776 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
777 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
778 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
779 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
780 
781 	/* Custom */
782 	{0x5483, "Custom T540-CR"},
783 	{0x5484, "Custom T540-BT"},
784 }, t6_pciids[] = {
785 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
786 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
787 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
788 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
789 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
790 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
791 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
792 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
793 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
794 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
795 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
796 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
797 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
798 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
799 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
800 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
801 
802 	/* Custom */
803 	{0x6480, "Custom T6225-CR"},
804 	{0x6481, "Custom T62100-CR"},
805 	{0x6482, "Custom T6225-CR"},
806 	{0x6483, "Custom T62100-CR"},
807 	{0x6484, "Custom T64100-CR"},
808 	{0x6485, "Custom T6240-SO"},
809 	{0x6486, "Custom T6225-SO-CR"},
810 	{0x6487, "Custom T6225-CR"},
811 };
812 
813 #ifdef TCP_OFFLOAD
814 /*
815  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
816  * be exactly the same for both rxq and ofld_rxq.
817  */
818 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
819 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
820 #endif
821 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
822 
823 static int
824 t4_probe(device_t dev)
825 {
826 	int i;
827 	uint16_t v = pci_get_vendor(dev);
828 	uint16_t d = pci_get_device(dev);
829 	uint8_t f = pci_get_function(dev);
830 
831 	if (v != PCI_VENDOR_ID_CHELSIO)
832 		return (ENXIO);
833 
834 	/* Attach only to PF0 of the FPGA */
835 	if (d == 0xa000 && f != 0)
836 		return (ENXIO);
837 
838 	for (i = 0; i < nitems(t4_pciids); i++) {
839 		if (d == t4_pciids[i].device) {
840 			device_set_desc(dev, t4_pciids[i].desc);
841 			return (BUS_PROBE_DEFAULT);
842 		}
843 	}
844 
845 	return (ENXIO);
846 }
847 
848 static int
849 t5_probe(device_t dev)
850 {
851 	int i;
852 	uint16_t v = pci_get_vendor(dev);
853 	uint16_t d = pci_get_device(dev);
854 	uint8_t f = pci_get_function(dev);
855 
856 	if (v != PCI_VENDOR_ID_CHELSIO)
857 		return (ENXIO);
858 
859 	/* Attach only to PF0 of the FPGA */
860 	if (d == 0xb000 && f != 0)
861 		return (ENXIO);
862 
863 	for (i = 0; i < nitems(t5_pciids); i++) {
864 		if (d == t5_pciids[i].device) {
865 			device_set_desc(dev, t5_pciids[i].desc);
866 			return (BUS_PROBE_DEFAULT);
867 		}
868 	}
869 
870 	return (ENXIO);
871 }
872 
873 static int
874 t6_probe(device_t dev)
875 {
876 	int i;
877 	uint16_t v = pci_get_vendor(dev);
878 	uint16_t d = pci_get_device(dev);
879 
880 	if (v != PCI_VENDOR_ID_CHELSIO)
881 		return (ENXIO);
882 
883 	for (i = 0; i < nitems(t6_pciids); i++) {
884 		if (d == t6_pciids[i].device) {
885 			device_set_desc(dev, t6_pciids[i].desc);
886 			return (BUS_PROBE_DEFAULT);
887 		}
888 	}
889 
890 	return (ENXIO);
891 }
892 
893 static void
894 t5_attribute_workaround(device_t dev)
895 {
896 	device_t root_port;
897 	uint32_t v;
898 
899 	/*
900 	 * The T5 chips do not properly echo the No Snoop and Relaxed
901 	 * Ordering attributes when replying to a TLP from a Root
902 	 * Port.  As a workaround, find the parent Root Port and
903 	 * disable No Snoop and Relaxed Ordering.  Note that this
904 	 * affects all devices under this root port.
905 	 */
906 	root_port = pci_find_pcie_root_port(dev);
907 	if (root_port == NULL) {
908 		device_printf(dev, "Unable to find parent root port\n");
909 		return;
910 	}
911 
912 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
913 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
914 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
915 	    0)
916 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
917 		    device_get_nameunit(root_port));
918 }
919 
920 static const struct devnames devnames[] = {
921 	{
922 		.nexus_name = "t4nex",
923 		.ifnet_name = "cxgbe",
924 		.vi_ifnet_name = "vcxgbe",
925 		.pf03_drv_name = "t4iov",
926 		.vf_nexus_name = "t4vf",
927 		.vf_ifnet_name = "cxgbev"
928 	}, {
929 		.nexus_name = "t5nex",
930 		.ifnet_name = "cxl",
931 		.vi_ifnet_name = "vcxl",
932 		.pf03_drv_name = "t5iov",
933 		.vf_nexus_name = "t5vf",
934 		.vf_ifnet_name = "cxlv"
935 	}, {
936 		.nexus_name = "t6nex",
937 		.ifnet_name = "cc",
938 		.vi_ifnet_name = "vcc",
939 		.pf03_drv_name = "t6iov",
940 		.vf_nexus_name = "t6vf",
941 		.vf_ifnet_name = "ccv"
942 	}
943 };
944 
945 void
946 t4_init_devnames(struct adapter *sc)
947 {
948 	int id;
949 
950 	id = chip_id(sc);
951 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
952 		sc->names = &devnames[id - CHELSIO_T4];
953 	else {
954 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
955 		sc->names = NULL;
956 	}
957 }
958 
959 static int
960 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
961 {
962 	const char *parent, *name;
963 	long value;
964 	int line, unit;
965 
966 	line = 0;
967 	parent = device_get_nameunit(sc->dev);
968 	name = sc->names->ifnet_name;
969 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
970 		if (resource_long_value(name, unit, "port", &value) == 0 &&
971 		    value == pi->port_id)
972 			return (unit);
973 	}
974 	return (-1);
975 }
976 
977 static int
978 t4_attach(device_t dev)
979 {
980 	struct adapter *sc;
981 	int rc = 0, i, j, rqidx, tqidx, nports;
982 	struct make_dev_args mda;
983 	struct intrs_and_queues iaq;
984 	struct sge *s;
985 	uint32_t *buf;
986 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
987 	int ofld_tqidx;
988 #endif
989 #ifdef TCP_OFFLOAD
990 	int ofld_rqidx;
991 #endif
992 #ifdef DEV_NETMAP
993 	int nm_rqidx, nm_tqidx;
994 #endif
995 	int num_vis;
996 
997 	sc = device_get_softc(dev);
998 	sc->dev = dev;
999 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1000 
1001 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1002 		t5_attribute_workaround(dev);
1003 	pci_enable_busmaster(dev);
1004 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1005 		uint32_t v;
1006 
1007 		pci_set_max_read_req(dev, 4096);
1008 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1009 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1010 		if (pcie_relaxed_ordering == 0 &&
1011 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1012 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1013 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1014 		} else if (pcie_relaxed_ordering == 1 &&
1015 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1016 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1017 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1018 		}
1019 	}
1020 
1021 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1022 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1023 	sc->traceq = -1;
1024 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1025 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1026 	    device_get_nameunit(dev));
1027 
1028 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1029 	    device_get_nameunit(dev));
1030 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1031 	t4_add_adapter(sc);
1032 
1033 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1034 	TAILQ_INIT(&sc->sfl);
1035 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1036 
1037 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1038 
1039 	sc->policy = NULL;
1040 	rw_init(&sc->policy_lock, "connection offload policy");
1041 
1042 	callout_init(&sc->ktls_tick, 1);
1043 
1044 	rc = t4_map_bars_0_and_4(sc);
1045 	if (rc != 0)
1046 		goto done; /* error message displayed already */
1047 
1048 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1049 
1050 	/* Prepare the adapter for operation. */
1051 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1052 	rc = -t4_prep_adapter(sc, buf);
1053 	free(buf, M_CXGBE);
1054 	if (rc != 0) {
1055 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1056 		goto done;
1057 	}
1058 
1059 	/*
1060 	 * This is the real PF# to which we're attaching.  Works from within PCI
1061 	 * passthrough environments too, where pci_get_function() could return a
1062 	 * different PF# depending on the passthrough configuration.  We need to
1063 	 * use the real PF# in all our communication with the firmware.
1064 	 */
1065 	j = t4_read_reg(sc, A_PL_WHOAMI);
1066 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1067 	sc->mbox = sc->pf;
1068 
1069 	t4_init_devnames(sc);
1070 	if (sc->names == NULL) {
1071 		rc = ENOTSUP;
1072 		goto done; /* error message displayed already */
1073 	}
1074 
1075 	/*
1076 	 * Do this really early, with the memory windows set up even before the
1077 	 * character device.  The userland tool's register i/o and mem read
1078 	 * will work even in "recovery mode".
1079 	 */
1080 	setup_memwin(sc);
1081 	if (t4_init_devlog_params(sc, 0) == 0)
1082 		fixup_devlog_params(sc);
1083 	make_dev_args_init(&mda);
1084 	mda.mda_devsw = &t4_cdevsw;
1085 	mda.mda_uid = UID_ROOT;
1086 	mda.mda_gid = GID_WHEEL;
1087 	mda.mda_mode = 0600;
1088 	mda.mda_si_drv1 = sc;
1089 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1090 	if (rc != 0)
1091 		device_printf(dev, "failed to create nexus char device: %d.\n",
1092 		    rc);
1093 
1094 	/* Go no further if recovery mode has been requested. */
1095 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1096 		device_printf(dev, "recovery mode.\n");
1097 		goto done;
1098 	}
1099 
1100 #if defined(__i386__)
1101 	if ((cpu_feature & CPUID_CX8) == 0) {
1102 		device_printf(dev, "64 bit atomics not available.\n");
1103 		rc = ENOTSUP;
1104 		goto done;
1105 	}
1106 #endif
1107 
1108 	/* Contact the firmware and try to become the master driver. */
1109 	rc = contact_firmware(sc);
1110 	if (rc != 0)
1111 		goto done; /* error message displayed already */
1112 	MPASS(sc->flags & FW_OK);
1113 
1114 	rc = get_params__pre_init(sc);
1115 	if (rc != 0)
1116 		goto done; /* error message displayed already */
1117 
1118 	if (sc->flags & MASTER_PF) {
1119 		rc = partition_resources(sc);
1120 		if (rc != 0)
1121 			goto done; /* error message displayed already */
1122 		t4_intr_clear(sc);
1123 	}
1124 
1125 	rc = get_params__post_init(sc);
1126 	if (rc != 0)
1127 		goto done; /* error message displayed already */
1128 
1129 	rc = set_params__post_init(sc);
1130 	if (rc != 0)
1131 		goto done; /* error message displayed already */
1132 
1133 	rc = t4_map_bar_2(sc);
1134 	if (rc != 0)
1135 		goto done; /* error message displayed already */
1136 
1137 	rc = t4_create_dma_tag(sc);
1138 	if (rc != 0)
1139 		goto done; /* error message displayed already */
1140 
1141 	/*
1142 	 * First pass over all the ports - allocate VIs and initialize some
1143 	 * basic parameters like mac address, port type, etc.
1144 	 */
1145 	for_each_port(sc, i) {
1146 		struct port_info *pi;
1147 
1148 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1149 		sc->port[i] = pi;
1150 
1151 		/* These must be set before t4_port_init */
1152 		pi->adapter = sc;
1153 		pi->port_id = i;
1154 		/*
1155 		 * XXX: vi[0] is special so we can't delay this allocation until
1156 		 * pi->nvi's final value is known.
1157 		 */
1158 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1159 		    M_ZERO | M_WAITOK);
1160 
1161 		/*
1162 		 * Allocate the "main" VI and initialize parameters
1163 		 * like mac addr.
1164 		 */
1165 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1166 		if (rc != 0) {
1167 			device_printf(dev, "unable to initialize port %d: %d\n",
1168 			    i, rc);
1169 			free(pi->vi, M_CXGBE);
1170 			free(pi, M_CXGBE);
1171 			sc->port[i] = NULL;
1172 			goto done;
1173 		}
1174 
1175 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1176 		    device_get_nameunit(dev), i);
1177 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1178 		sc->chan_map[pi->tx_chan] = i;
1179 
1180 		/* All VIs on this port share this media. */
1181 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1182 		    cxgbe_media_status);
1183 
1184 		PORT_LOCK(pi);
1185 		init_link_config(pi);
1186 		fixup_link_config(pi);
1187 		build_medialist(pi);
1188 		if (fixed_ifmedia(pi))
1189 			pi->flags |= FIXED_IFMEDIA;
1190 		PORT_UNLOCK(pi);
1191 
1192 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1193 		    t4_ifnet_unit(sc, pi));
1194 		if (pi->dev == NULL) {
1195 			device_printf(dev,
1196 			    "failed to add device for port %d.\n", i);
1197 			rc = ENXIO;
1198 			goto done;
1199 		}
1200 		pi->vi[0].dev = pi->dev;
1201 		device_set_softc(pi->dev, pi);
1202 	}
1203 
1204 	/*
1205 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1206 	 */
1207 	nports = sc->params.nports;
1208 	rc = cfg_itype_and_nqueues(sc, &iaq);
1209 	if (rc != 0)
1210 		goto done; /* error message displayed already */
1211 
1212 	num_vis = iaq.num_vis;
1213 	sc->intr_type = iaq.intr_type;
1214 	sc->intr_count = iaq.nirq;
1215 
1216 	s = &sc->sge;
1217 	s->nrxq = nports * iaq.nrxq;
1218 	s->ntxq = nports * iaq.ntxq;
1219 	if (num_vis > 1) {
1220 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1221 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1222 	}
1223 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1224 	s->neq += nports;		/* ctrl queues: 1 per port */
1225 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1226 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1227 	if (is_offload(sc) || is_ethoffload(sc)) {
1228 		s->nofldtxq = nports * iaq.nofldtxq;
1229 		if (num_vis > 1)
1230 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1231 		s->neq += s->nofldtxq;
1232 
1233 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1234 		    M_CXGBE, M_ZERO | M_WAITOK);
1235 	}
1236 #endif
1237 #ifdef TCP_OFFLOAD
1238 	if (is_offload(sc)) {
1239 		s->nofldrxq = nports * iaq.nofldrxq;
1240 		if (num_vis > 1)
1241 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1242 		s->neq += s->nofldrxq;	/* free list */
1243 		s->niq += s->nofldrxq;
1244 
1245 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1246 		    M_CXGBE, M_ZERO | M_WAITOK);
1247 	}
1248 #endif
1249 #ifdef DEV_NETMAP
1250 	if (num_vis > 1) {
1251 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1252 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1253 	}
1254 	s->neq += s->nnmtxq + s->nnmrxq;
1255 	s->niq += s->nnmrxq;
1256 
1257 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1258 	    M_CXGBE, M_ZERO | M_WAITOK);
1259 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1260 	    M_CXGBE, M_ZERO | M_WAITOK);
1261 #endif
1262 
1263 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1264 	    M_ZERO | M_WAITOK);
1265 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1266 	    M_ZERO | M_WAITOK);
1267 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1268 	    M_ZERO | M_WAITOK);
1269 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1270 	    M_ZERO | M_WAITOK);
1271 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1272 	    M_ZERO | M_WAITOK);
1273 
1274 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1275 	    M_ZERO | M_WAITOK);
1276 
1277 	t4_init_l2t(sc, M_WAITOK);
1278 	t4_init_smt(sc, M_WAITOK);
1279 	t4_init_tx_sched(sc);
1280 	t4_init_atid_table(sc);
1281 #ifdef RATELIMIT
1282 	t4_init_etid_table(sc);
1283 #endif
1284 #ifdef INET6
1285 	t4_init_clip_table(sc);
1286 #endif
1287 	if (sc->vres.key.size != 0)
1288 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1289 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1290 
1291 	/*
1292 	 * Second pass over the ports.  This time we know the number of rx and
1293 	 * tx queues that each port should get.
1294 	 */
1295 	rqidx = tqidx = 0;
1296 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1297 	ofld_tqidx = 0;
1298 #endif
1299 #ifdef TCP_OFFLOAD
1300 	ofld_rqidx = 0;
1301 #endif
1302 #ifdef DEV_NETMAP
1303 	nm_rqidx = nm_tqidx = 0;
1304 #endif
1305 	for_each_port(sc, i) {
1306 		struct port_info *pi = sc->port[i];
1307 		struct vi_info *vi;
1308 
1309 		if (pi == NULL)
1310 			continue;
1311 
1312 		pi->nvi = num_vis;
1313 		for_each_vi(pi, j, vi) {
1314 			vi->pi = pi;
1315 			vi->qsize_rxq = t4_qsize_rxq;
1316 			vi->qsize_txq = t4_qsize_txq;
1317 
1318 			vi->first_rxq = rqidx;
1319 			vi->first_txq = tqidx;
1320 			vi->tmr_idx = t4_tmr_idx;
1321 			vi->pktc_idx = t4_pktc_idx;
1322 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1323 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1324 
1325 			rqidx += vi->nrxq;
1326 			tqidx += vi->ntxq;
1327 
1328 			if (j == 0 && vi->ntxq > 1)
1329 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1330 			else
1331 				vi->rsrv_noflowq = 0;
1332 
1333 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1334 			vi->first_ofld_txq = ofld_tqidx;
1335 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1336 			ofld_tqidx += vi->nofldtxq;
1337 #endif
1338 #ifdef TCP_OFFLOAD
1339 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1340 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1341 			vi->first_ofld_rxq = ofld_rqidx;
1342 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1343 
1344 			ofld_rqidx += vi->nofldrxq;
1345 #endif
1346 #ifdef DEV_NETMAP
1347 			if (j > 0) {
1348 				vi->first_nm_rxq = nm_rqidx;
1349 				vi->first_nm_txq = nm_tqidx;
1350 				vi->nnmrxq = iaq.nnmrxq_vi;
1351 				vi->nnmtxq = iaq.nnmtxq_vi;
1352 				nm_rqidx += vi->nnmrxq;
1353 				nm_tqidx += vi->nnmtxq;
1354 			}
1355 #endif
1356 		}
1357 	}
1358 
1359 	rc = t4_setup_intr_handlers(sc);
1360 	if (rc != 0) {
1361 		device_printf(dev,
1362 		    "failed to setup interrupt handlers: %d\n", rc);
1363 		goto done;
1364 	}
1365 
1366 	rc = bus_generic_probe(dev);
1367 	if (rc != 0) {
1368 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1369 		goto done;
1370 	}
1371 
1372 	/*
1373 	 * Ensure thread-safe mailbox access (in debug builds).
1374 	 *
1375 	 * So far this was the only thread accessing the mailbox but various
1376 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1377 	 * will access the mailbox from different threads.
1378 	 */
1379 	sc->flags |= CHK_MBOX_ACCESS;
1380 
1381 	rc = bus_generic_attach(dev);
1382 	if (rc != 0) {
1383 		device_printf(dev,
1384 		    "failed to attach all child ports: %d\n", rc);
1385 		goto done;
1386 	}
1387 
1388 	device_printf(dev,
1389 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1390 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1391 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1392 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1393 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1394 
1395 	t4_set_desc(sc);
1396 
1397 	notify_siblings(dev, 0);
1398 
1399 done:
1400 	if (rc != 0 && sc->cdev) {
1401 		/* cdev was created and so cxgbetool works; recover that way. */
1402 		device_printf(dev,
1403 		    "error during attach, adapter is now in recovery mode.\n");
1404 		rc = 0;
1405 	}
1406 
1407 	if (rc != 0)
1408 		t4_detach_common(dev);
1409 	else
1410 		t4_sysctls(sc);
1411 
1412 	return (rc);
1413 }
1414 
1415 static int
1416 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen)
1417 {
1418 	struct adapter *sc;
1419 	struct port_info *pi;
1420 	int i;
1421 
1422 	sc = device_get_softc(bus);
1423 	buf[0] = '\0';
1424 	for_each_port(sc, i) {
1425 		pi = sc->port[i];
1426 		if (pi != NULL && pi->dev == dev) {
1427 			snprintf(buf, buflen, "port=%d", pi->port_id);
1428 			break;
1429 		}
1430 	}
1431 	return (0);
1432 }
1433 
1434 static int
1435 t4_ready(device_t dev)
1436 {
1437 	struct adapter *sc;
1438 
1439 	sc = device_get_softc(dev);
1440 	if (sc->flags & FW_OK)
1441 		return (0);
1442 	return (ENXIO);
1443 }
1444 
1445 static int
1446 t4_read_port_device(device_t dev, int port, device_t *child)
1447 {
1448 	struct adapter *sc;
1449 	struct port_info *pi;
1450 
1451 	sc = device_get_softc(dev);
1452 	if (port < 0 || port >= MAX_NPORTS)
1453 		return (EINVAL);
1454 	pi = sc->port[port];
1455 	if (pi == NULL || pi->dev == NULL)
1456 		return (ENXIO);
1457 	*child = pi->dev;
1458 	return (0);
1459 }
1460 
1461 static int
1462 notify_siblings(device_t dev, int detaching)
1463 {
1464 	device_t sibling;
1465 	int error, i;
1466 
1467 	error = 0;
1468 	for (i = 0; i < PCI_FUNCMAX; i++) {
1469 		if (i == pci_get_function(dev))
1470 			continue;
1471 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1472 		    pci_get_slot(dev), i);
1473 		if (sibling == NULL || !device_is_attached(sibling))
1474 			continue;
1475 		if (detaching)
1476 			error = T4_DETACH_CHILD(sibling);
1477 		else
1478 			(void)T4_ATTACH_CHILD(sibling);
1479 		if (error)
1480 			break;
1481 	}
1482 	return (error);
1483 }
1484 
1485 /*
1486  * Idempotent
1487  */
1488 static int
1489 t4_detach(device_t dev)
1490 {
1491 	struct adapter *sc;
1492 	int rc;
1493 
1494 	sc = device_get_softc(dev);
1495 
1496 	rc = notify_siblings(dev, 1);
1497 	if (rc) {
1498 		device_printf(dev,
1499 		    "failed to detach sibling devices: %d\n", rc);
1500 		return (rc);
1501 	}
1502 
1503 	return (t4_detach_common(dev));
1504 }
1505 
1506 int
1507 t4_detach_common(device_t dev)
1508 {
1509 	struct adapter *sc;
1510 	struct port_info *pi;
1511 	int i, rc;
1512 
1513 	sc = device_get_softc(dev);
1514 
1515 	if (sc->cdev) {
1516 		destroy_dev(sc->cdev);
1517 		sc->cdev = NULL;
1518 	}
1519 
1520 	sx_xlock(&t4_list_lock);
1521 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1522 	sx_xunlock(&t4_list_lock);
1523 
1524 	sc->flags &= ~CHK_MBOX_ACCESS;
1525 	if (sc->flags & FULL_INIT_DONE) {
1526 		if (!(sc->flags & IS_VF))
1527 			t4_intr_disable(sc);
1528 	}
1529 
1530 	if (device_is_attached(dev)) {
1531 		rc = bus_generic_detach(dev);
1532 		if (rc) {
1533 			device_printf(dev,
1534 			    "failed to detach child devices: %d\n", rc);
1535 			return (rc);
1536 		}
1537 	}
1538 
1539 	for (i = 0; i < sc->intr_count; i++)
1540 		t4_free_irq(sc, &sc->irq[i]);
1541 
1542 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1543 		t4_free_tx_sched(sc);
1544 
1545 	for (i = 0; i < MAX_NPORTS; i++) {
1546 		pi = sc->port[i];
1547 		if (pi) {
1548 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1549 			if (pi->dev)
1550 				device_delete_child(dev, pi->dev);
1551 
1552 			mtx_destroy(&pi->pi_lock);
1553 			free(pi->vi, M_CXGBE);
1554 			free(pi, M_CXGBE);
1555 		}
1556 	}
1557 
1558 	device_delete_children(dev);
1559 
1560 	if (sc->flags & FULL_INIT_DONE)
1561 		adapter_full_uninit(sc);
1562 
1563 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1564 		t4_fw_bye(sc, sc->mbox);
1565 
1566 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1567 		pci_release_msi(dev);
1568 
1569 	if (sc->regs_res)
1570 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1571 		    sc->regs_res);
1572 
1573 	if (sc->udbs_res)
1574 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1575 		    sc->udbs_res);
1576 
1577 	if (sc->msix_res)
1578 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1579 		    sc->msix_res);
1580 
1581 	if (sc->l2t)
1582 		t4_free_l2t(sc->l2t);
1583 	if (sc->smt)
1584 		t4_free_smt(sc->smt);
1585 	t4_free_atid_table(sc);
1586 #ifdef RATELIMIT
1587 	t4_free_etid_table(sc);
1588 #endif
1589 	if (sc->key_map)
1590 		vmem_destroy(sc->key_map);
1591 #ifdef INET6
1592 	t4_destroy_clip_table(sc);
1593 #endif
1594 
1595 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1596 	free(sc->sge.ofld_txq, M_CXGBE);
1597 #endif
1598 #ifdef TCP_OFFLOAD
1599 	free(sc->sge.ofld_rxq, M_CXGBE);
1600 #endif
1601 #ifdef DEV_NETMAP
1602 	free(sc->sge.nm_rxq, M_CXGBE);
1603 	free(sc->sge.nm_txq, M_CXGBE);
1604 #endif
1605 	free(sc->irq, M_CXGBE);
1606 	free(sc->sge.rxq, M_CXGBE);
1607 	free(sc->sge.txq, M_CXGBE);
1608 	free(sc->sge.ctrlq, M_CXGBE);
1609 	free(sc->sge.iqmap, M_CXGBE);
1610 	free(sc->sge.eqmap, M_CXGBE);
1611 	free(sc->tids.ftid_tab, M_CXGBE);
1612 	free(sc->tids.hpftid_tab, M_CXGBE);
1613 	free_hftid_hash(&sc->tids);
1614 	free(sc->tids.tid_tab, M_CXGBE);
1615 	free(sc->tt.tls_rx_ports, M_CXGBE);
1616 	t4_destroy_dma_tag(sc);
1617 
1618 	callout_drain(&sc->ktls_tick);
1619 	callout_drain(&sc->sfl_callout);
1620 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1621 		mtx_destroy(&sc->tids.ftid_lock);
1622 		cv_destroy(&sc->tids.ftid_cv);
1623 	}
1624 	if (mtx_initialized(&sc->tids.atid_lock))
1625 		mtx_destroy(&sc->tids.atid_lock);
1626 	if (mtx_initialized(&sc->ifp_lock))
1627 		mtx_destroy(&sc->ifp_lock);
1628 
1629 	if (rw_initialized(&sc->policy_lock)) {
1630 		rw_destroy(&sc->policy_lock);
1631 #ifdef TCP_OFFLOAD
1632 		if (sc->policy != NULL)
1633 			free_offload_policy(sc->policy);
1634 #endif
1635 	}
1636 
1637 	for (i = 0; i < NUM_MEMWIN; i++) {
1638 		struct memwin *mw = &sc->memwin[i];
1639 
1640 		if (rw_initialized(&mw->mw_lock))
1641 			rw_destroy(&mw->mw_lock);
1642 	}
1643 
1644 	mtx_destroy(&sc->sfl_lock);
1645 	mtx_destroy(&sc->reg_lock);
1646 	mtx_destroy(&sc->sc_lock);
1647 
1648 	bzero(sc, sizeof(*sc));
1649 
1650 	return (0);
1651 }
1652 
1653 static int
1654 cxgbe_probe(device_t dev)
1655 {
1656 	char buf[128];
1657 	struct port_info *pi = device_get_softc(dev);
1658 
1659 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1660 	device_set_desc_copy(dev, buf);
1661 
1662 	return (BUS_PROBE_DEFAULT);
1663 }
1664 
1665 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1666     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1667     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
1668     IFCAP_HWRXTSTMP | IFCAP_NOMAP)
1669 #define T4_CAP_ENABLE (T4_CAP)
1670 
1671 static int
1672 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1673 {
1674 	struct ifnet *ifp;
1675 	struct sbuf *sb;
1676 
1677 	vi->xact_addr_filt = -1;
1678 	callout_init(&vi->tick, 1);
1679 
1680 	/* Allocate an ifnet and set it up */
1681 	ifp = if_alloc_dev(IFT_ETHER, dev);
1682 	if (ifp == NULL) {
1683 		device_printf(dev, "Cannot allocate ifnet\n");
1684 		return (ENOMEM);
1685 	}
1686 	vi->ifp = ifp;
1687 	ifp->if_softc = vi;
1688 
1689 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1690 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1691 
1692 	ifp->if_init = cxgbe_init;
1693 	ifp->if_ioctl = cxgbe_ioctl;
1694 	ifp->if_transmit = cxgbe_transmit;
1695 	ifp->if_qflush = cxgbe_qflush;
1696 	ifp->if_get_counter = cxgbe_get_counter;
1697 #if defined(KERN_TLS) || defined(RATELIMIT)
1698 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1699 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1700 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1701 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1702 #endif
1703 #ifdef RATELIMIT
1704 	ifp->if_ratelimit_query = cxgbe_ratelimit_query;
1705 #endif
1706 
1707 	ifp->if_capabilities = T4_CAP;
1708 	ifp->if_capenable = T4_CAP_ENABLE;
1709 #ifdef TCP_OFFLOAD
1710 	if (vi->nofldrxq != 0 && (vi->pi->adapter->flags & KERN_TLS_OK) == 0)
1711 		ifp->if_capabilities |= IFCAP_TOE;
1712 #endif
1713 #ifdef RATELIMIT
1714 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) {
1715 		ifp->if_capabilities |= IFCAP_TXRTLMT;
1716 		ifp->if_capenable |= IFCAP_TXRTLMT;
1717 	}
1718 #endif
1719 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1720 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1721 
1722 	ifp->if_hw_tsomax = IP_MAXPACKET;
1723 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
1724 #ifdef RATELIMIT
1725 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0)
1726 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
1727 #endif
1728 	ifp->if_hw_tsomaxsegsize = 65536;
1729 #ifdef KERN_TLS
1730 	if (vi->pi->adapter->flags & KERN_TLS_OK) {
1731 		ifp->if_capabilities |= IFCAP_TXTLS;
1732 		ifp->if_capenable |= IFCAP_TXTLS;
1733 	}
1734 #endif
1735 
1736 	ether_ifattach(ifp, vi->hw_addr);
1737 #ifdef DEV_NETMAP
1738 	if (vi->nnmrxq != 0)
1739 		cxgbe_nm_attach(vi);
1740 #endif
1741 	sb = sbuf_new_auto();
1742 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1743 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1744 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
1745 	case IFCAP_TOE:
1746 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
1747 		break;
1748 	case IFCAP_TOE | IFCAP_TXRTLMT:
1749 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
1750 		break;
1751 	case IFCAP_TXRTLMT:
1752 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
1753 		break;
1754 	}
1755 #endif
1756 #ifdef TCP_OFFLOAD
1757 	if (ifp->if_capabilities & IFCAP_TOE)
1758 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
1759 #endif
1760 #ifdef DEV_NETMAP
1761 	if (ifp->if_capabilities & IFCAP_NETMAP)
1762 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1763 		    vi->nnmtxq, vi->nnmrxq);
1764 #endif
1765 	sbuf_finish(sb);
1766 	device_printf(dev, "%s\n", sbuf_data(sb));
1767 	sbuf_delete(sb);
1768 
1769 	vi_sysctls(vi);
1770 
1771 	return (0);
1772 }
1773 
1774 static int
1775 cxgbe_attach(device_t dev)
1776 {
1777 	struct port_info *pi = device_get_softc(dev);
1778 	struct adapter *sc = pi->adapter;
1779 	struct vi_info *vi;
1780 	int i, rc;
1781 
1782 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1783 
1784 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1785 	if (rc)
1786 		return (rc);
1787 
1788 	for_each_vi(pi, i, vi) {
1789 		if (i == 0)
1790 			continue;
1791 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1792 		if (vi->dev == NULL) {
1793 			device_printf(dev, "failed to add VI %d\n", i);
1794 			continue;
1795 		}
1796 		device_set_softc(vi->dev, vi);
1797 	}
1798 
1799 	cxgbe_sysctls(pi);
1800 
1801 	bus_generic_attach(dev);
1802 
1803 	return (0);
1804 }
1805 
1806 static void
1807 cxgbe_vi_detach(struct vi_info *vi)
1808 {
1809 	struct ifnet *ifp = vi->ifp;
1810 
1811 	ether_ifdetach(ifp);
1812 
1813 	/* Let detach proceed even if these fail. */
1814 #ifdef DEV_NETMAP
1815 	if (ifp->if_capabilities & IFCAP_NETMAP)
1816 		cxgbe_nm_detach(vi);
1817 #endif
1818 	cxgbe_uninit_synchronized(vi);
1819 	callout_drain(&vi->tick);
1820 	vi_full_uninit(vi);
1821 
1822 	if_free(vi->ifp);
1823 	vi->ifp = NULL;
1824 }
1825 
1826 static int
1827 cxgbe_detach(device_t dev)
1828 {
1829 	struct port_info *pi = device_get_softc(dev);
1830 	struct adapter *sc = pi->adapter;
1831 	int rc;
1832 
1833 	/* Detach the extra VIs first. */
1834 	rc = bus_generic_detach(dev);
1835 	if (rc)
1836 		return (rc);
1837 	device_delete_children(dev);
1838 
1839 	doom_vi(sc, &pi->vi[0]);
1840 
1841 	if (pi->flags & HAS_TRACEQ) {
1842 		sc->traceq = -1;	/* cloner should not create ifnet */
1843 		t4_tracer_port_detach(sc);
1844 	}
1845 
1846 	cxgbe_vi_detach(&pi->vi[0]);
1847 	callout_drain(&pi->tick);
1848 	ifmedia_removeall(&pi->media);
1849 
1850 	end_synchronized_op(sc, 0);
1851 
1852 	return (0);
1853 }
1854 
1855 static void
1856 cxgbe_init(void *arg)
1857 {
1858 	struct vi_info *vi = arg;
1859 	struct adapter *sc = vi->pi->adapter;
1860 
1861 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1862 		return;
1863 	cxgbe_init_synchronized(vi);
1864 	end_synchronized_op(sc, 0);
1865 }
1866 
1867 static int
1868 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1869 {
1870 	int rc = 0, mtu, flags;
1871 	struct vi_info *vi = ifp->if_softc;
1872 	struct port_info *pi = vi->pi;
1873 	struct adapter *sc = pi->adapter;
1874 	struct ifreq *ifr = (struct ifreq *)data;
1875 	uint32_t mask;
1876 
1877 	switch (cmd) {
1878 	case SIOCSIFMTU:
1879 		mtu = ifr->ifr_mtu;
1880 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1881 			return (EINVAL);
1882 
1883 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1884 		if (rc)
1885 			return (rc);
1886 		ifp->if_mtu = mtu;
1887 		if (vi->flags & VI_INIT_DONE) {
1888 			t4_update_fl_bufsize(ifp);
1889 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1890 				rc = update_mac_settings(ifp, XGMAC_MTU);
1891 		}
1892 		end_synchronized_op(sc, 0);
1893 		break;
1894 
1895 	case SIOCSIFFLAGS:
1896 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
1897 		if (rc)
1898 			return (rc);
1899 
1900 		if (ifp->if_flags & IFF_UP) {
1901 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1902 				flags = vi->if_flags;
1903 				if ((ifp->if_flags ^ flags) &
1904 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1905 					rc = update_mac_settings(ifp,
1906 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1907 				}
1908 			} else {
1909 				rc = cxgbe_init_synchronized(vi);
1910 			}
1911 			vi->if_flags = ifp->if_flags;
1912 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1913 			rc = cxgbe_uninit_synchronized(vi);
1914 		}
1915 		end_synchronized_op(sc, 0);
1916 		break;
1917 
1918 	case SIOCADDMULTI:
1919 	case SIOCDELMULTI:
1920 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
1921 		if (rc)
1922 			return (rc);
1923 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1924 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1925 		end_synchronized_op(sc, 0);
1926 		break;
1927 
1928 	case SIOCSIFCAP:
1929 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1930 		if (rc)
1931 			return (rc);
1932 
1933 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1934 		if (mask & IFCAP_TXCSUM) {
1935 			ifp->if_capenable ^= IFCAP_TXCSUM;
1936 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1937 
1938 			if (IFCAP_TSO4 & ifp->if_capenable &&
1939 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1940 				ifp->if_capenable &= ~IFCAP_TSO4;
1941 				if_printf(ifp,
1942 				    "tso4 disabled due to -txcsum.\n");
1943 			}
1944 		}
1945 		if (mask & IFCAP_TXCSUM_IPV6) {
1946 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1947 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1948 
1949 			if (IFCAP_TSO6 & ifp->if_capenable &&
1950 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1951 				ifp->if_capenable &= ~IFCAP_TSO6;
1952 				if_printf(ifp,
1953 				    "tso6 disabled due to -txcsum6.\n");
1954 			}
1955 		}
1956 		if (mask & IFCAP_RXCSUM)
1957 			ifp->if_capenable ^= IFCAP_RXCSUM;
1958 		if (mask & IFCAP_RXCSUM_IPV6)
1959 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1960 
1961 		/*
1962 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1963 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1964 		 * sending a TSO request our way, so it's sufficient to toggle
1965 		 * IFCAP_TSOx only.
1966 		 */
1967 		if (mask & IFCAP_TSO4) {
1968 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1969 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1970 				if_printf(ifp, "enable txcsum first.\n");
1971 				rc = EAGAIN;
1972 				goto fail;
1973 			}
1974 			ifp->if_capenable ^= IFCAP_TSO4;
1975 		}
1976 		if (mask & IFCAP_TSO6) {
1977 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1978 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1979 				if_printf(ifp, "enable txcsum6 first.\n");
1980 				rc = EAGAIN;
1981 				goto fail;
1982 			}
1983 			ifp->if_capenable ^= IFCAP_TSO6;
1984 		}
1985 		if (mask & IFCAP_LRO) {
1986 #if defined(INET) || defined(INET6)
1987 			int i;
1988 			struct sge_rxq *rxq;
1989 
1990 			ifp->if_capenable ^= IFCAP_LRO;
1991 			for_each_rxq(vi, i, rxq) {
1992 				if (ifp->if_capenable & IFCAP_LRO)
1993 					rxq->iq.flags |= IQ_LRO_ENABLED;
1994 				else
1995 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1996 			}
1997 #endif
1998 		}
1999 #ifdef TCP_OFFLOAD
2000 		if (mask & IFCAP_TOE) {
2001 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
2002 
2003 			rc = toe_capability(vi, enable);
2004 			if (rc != 0)
2005 				goto fail;
2006 
2007 			ifp->if_capenable ^= mask;
2008 		}
2009 #endif
2010 		if (mask & IFCAP_VLAN_HWTAGGING) {
2011 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2012 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2013 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2014 		}
2015 		if (mask & IFCAP_VLAN_MTU) {
2016 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2017 
2018 			/* Need to find out how to disable auto-mtu-inflation */
2019 		}
2020 		if (mask & IFCAP_VLAN_HWTSO)
2021 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2022 		if (mask & IFCAP_VLAN_HWCSUM)
2023 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2024 #ifdef RATELIMIT
2025 		if (mask & IFCAP_TXRTLMT)
2026 			ifp->if_capenable ^= IFCAP_TXRTLMT;
2027 #endif
2028 		if (mask & IFCAP_HWRXTSTMP) {
2029 			int i;
2030 			struct sge_rxq *rxq;
2031 
2032 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
2033 			for_each_rxq(vi, i, rxq) {
2034 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
2035 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2036 				else
2037 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2038 			}
2039 		}
2040 		if (mask & IFCAP_NOMAP)
2041 			ifp->if_capenable ^= IFCAP_NOMAP;
2042 
2043 #ifdef KERN_TLS
2044 		if (mask & IFCAP_TXTLS)
2045 			ifp->if_capenable ^= (mask & IFCAP_TXTLS);
2046 #endif
2047 
2048 #ifdef VLAN_CAPABILITIES
2049 		VLAN_CAPABILITIES(ifp);
2050 #endif
2051 fail:
2052 		end_synchronized_op(sc, 0);
2053 		break;
2054 
2055 	case SIOCSIFMEDIA:
2056 	case SIOCGIFMEDIA:
2057 	case SIOCGIFXMEDIA:
2058 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2059 		break;
2060 
2061 	case SIOCGI2C: {
2062 		struct ifi2creq i2c;
2063 
2064 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2065 		if (rc != 0)
2066 			break;
2067 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2068 			rc = EPERM;
2069 			break;
2070 		}
2071 		if (i2c.len > sizeof(i2c.data)) {
2072 			rc = EINVAL;
2073 			break;
2074 		}
2075 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2076 		if (rc)
2077 			return (rc);
2078 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2079 		    i2c.offset, i2c.len, &i2c.data[0]);
2080 		end_synchronized_op(sc, 0);
2081 		if (rc == 0)
2082 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2083 		break;
2084 	}
2085 
2086 	default:
2087 		rc = ether_ioctl(ifp, cmd, data);
2088 	}
2089 
2090 	return (rc);
2091 }
2092 
2093 static int
2094 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2095 {
2096 	struct vi_info *vi = ifp->if_softc;
2097 	struct port_info *pi = vi->pi;
2098 	struct adapter *sc = pi->adapter;
2099 	struct sge_txq *txq;
2100 #ifdef RATELIMIT
2101 	struct cxgbe_snd_tag *cst;
2102 #endif
2103 	void *items[1];
2104 	int rc;
2105 
2106 	M_ASSERTPKTHDR(m);
2107 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2108 #if defined(KERN_TLS) || defined(RATELIMIT)
2109 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
2110 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2111 #endif
2112 
2113 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2114 		m_freem(m);
2115 		return (ENETDOWN);
2116 	}
2117 
2118 	rc = parse_pkt(sc, &m);
2119 	if (__predict_false(rc != 0)) {
2120 		MPASS(m == NULL);			/* was freed already */
2121 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2122 		return (rc);
2123 	}
2124 #ifdef RATELIMIT
2125 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2126 		cst = mst_to_cst(m->m_pkthdr.snd_tag);
2127 		if (cst->type == IF_SND_TAG_TYPE_RATE_LIMIT)
2128 			return (ethofld_transmit(ifp, m));
2129 	}
2130 #endif
2131 
2132 	/* Select a txq. */
2133 	txq = &sc->sge.txq[vi->first_txq];
2134 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2135 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2136 		    vi->rsrv_noflowq);
2137 
2138 	items[0] = m;
2139 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
2140 	if (__predict_false(rc != 0))
2141 		m_freem(m);
2142 
2143 	return (rc);
2144 }
2145 
2146 static void
2147 cxgbe_qflush(struct ifnet *ifp)
2148 {
2149 	struct vi_info *vi = ifp->if_softc;
2150 	struct sge_txq *txq;
2151 	int i;
2152 
2153 	/* queues do not exist if !VI_INIT_DONE. */
2154 	if (vi->flags & VI_INIT_DONE) {
2155 		for_each_txq(vi, i, txq) {
2156 			TXQ_LOCK(txq);
2157 			txq->eq.flags |= EQ_QFLUSH;
2158 			TXQ_UNLOCK(txq);
2159 			while (!mp_ring_is_idle(txq->r)) {
2160 				mp_ring_check_drainage(txq->r, 0);
2161 				pause("qflush", 1);
2162 			}
2163 			TXQ_LOCK(txq);
2164 			txq->eq.flags &= ~EQ_QFLUSH;
2165 			TXQ_UNLOCK(txq);
2166 		}
2167 	}
2168 	if_qflush(ifp);
2169 }
2170 
2171 static uint64_t
2172 vi_get_counter(struct ifnet *ifp, ift_counter c)
2173 {
2174 	struct vi_info *vi = ifp->if_softc;
2175 	struct fw_vi_stats_vf *s = &vi->stats;
2176 
2177 	vi_refresh_stats(vi->pi->adapter, vi);
2178 
2179 	switch (c) {
2180 	case IFCOUNTER_IPACKETS:
2181 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2182 		    s->rx_ucast_frames);
2183 	case IFCOUNTER_IERRORS:
2184 		return (s->rx_err_frames);
2185 	case IFCOUNTER_OPACKETS:
2186 		return (s->tx_bcast_frames + s->tx_mcast_frames +
2187 		    s->tx_ucast_frames + s->tx_offload_frames);
2188 	case IFCOUNTER_OERRORS:
2189 		return (s->tx_drop_frames);
2190 	case IFCOUNTER_IBYTES:
2191 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
2192 		    s->rx_ucast_bytes);
2193 	case IFCOUNTER_OBYTES:
2194 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
2195 		    s->tx_ucast_bytes + s->tx_offload_bytes);
2196 	case IFCOUNTER_IMCASTS:
2197 		return (s->rx_mcast_frames);
2198 	case IFCOUNTER_OMCASTS:
2199 		return (s->tx_mcast_frames);
2200 	case IFCOUNTER_OQDROPS: {
2201 		uint64_t drops;
2202 
2203 		drops = 0;
2204 		if (vi->flags & VI_INIT_DONE) {
2205 			int i;
2206 			struct sge_txq *txq;
2207 
2208 			for_each_txq(vi, i, txq)
2209 				drops += counter_u64_fetch(txq->r->drops);
2210 		}
2211 
2212 		return (drops);
2213 
2214 	}
2215 
2216 	default:
2217 		return (if_get_counter_default(ifp, c));
2218 	}
2219 }
2220 
2221 uint64_t
2222 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
2223 {
2224 	struct vi_info *vi = ifp->if_softc;
2225 	struct port_info *pi = vi->pi;
2226 	struct adapter *sc = pi->adapter;
2227 	struct port_stats *s = &pi->stats;
2228 
2229 	if (pi->nvi > 1 || sc->flags & IS_VF)
2230 		return (vi_get_counter(ifp, c));
2231 
2232 	cxgbe_refresh_stats(sc, pi);
2233 
2234 	switch (c) {
2235 	case IFCOUNTER_IPACKETS:
2236 		return (s->rx_frames);
2237 
2238 	case IFCOUNTER_IERRORS:
2239 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2240 		    s->rx_fcs_err + s->rx_len_err);
2241 
2242 	case IFCOUNTER_OPACKETS:
2243 		return (s->tx_frames);
2244 
2245 	case IFCOUNTER_OERRORS:
2246 		return (s->tx_error_frames);
2247 
2248 	case IFCOUNTER_IBYTES:
2249 		return (s->rx_octets);
2250 
2251 	case IFCOUNTER_OBYTES:
2252 		return (s->tx_octets);
2253 
2254 	case IFCOUNTER_IMCASTS:
2255 		return (s->rx_mcast_frames);
2256 
2257 	case IFCOUNTER_OMCASTS:
2258 		return (s->tx_mcast_frames);
2259 
2260 	case IFCOUNTER_IQDROPS:
2261 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2262 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2263 		    s->rx_trunc3 + pi->tnl_cong_drops);
2264 
2265 	case IFCOUNTER_OQDROPS: {
2266 		uint64_t drops;
2267 
2268 		drops = s->tx_drop;
2269 		if (vi->flags & VI_INIT_DONE) {
2270 			int i;
2271 			struct sge_txq *txq;
2272 
2273 			for_each_txq(vi, i, txq)
2274 				drops += counter_u64_fetch(txq->r->drops);
2275 		}
2276 
2277 		return (drops);
2278 
2279 	}
2280 
2281 	default:
2282 		return (if_get_counter_default(ifp, c));
2283 	}
2284 }
2285 
2286 #if defined(KERN_TLS) || defined(RATELIMIT)
2287 void
2288 cxgbe_snd_tag_init(struct cxgbe_snd_tag *cst, struct ifnet *ifp, int type)
2289 {
2290 
2291 	m_snd_tag_init(&cst->com, ifp);
2292 	cst->type = type;
2293 }
2294 
2295 static int
2296 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
2297     struct m_snd_tag **pt)
2298 {
2299 	int error;
2300 
2301 	switch (params->hdr.type) {
2302 #ifdef RATELIMIT
2303 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2304 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
2305 		break;
2306 #endif
2307 #ifdef KERN_TLS
2308 	case IF_SND_TAG_TYPE_TLS:
2309 		error = cxgbe_tls_tag_alloc(ifp, params, pt);
2310 		break;
2311 #endif
2312 	default:
2313 		error = EOPNOTSUPP;
2314 	}
2315 	if (error == 0)
2316 		MPASS(mst_to_cst(*pt)->type == params->hdr.type);
2317 	return (error);
2318 }
2319 
2320 static int
2321 cxgbe_snd_tag_modify(struct m_snd_tag *mst,
2322     union if_snd_tag_modify_params *params)
2323 {
2324 	struct cxgbe_snd_tag *cst;
2325 
2326 	cst = mst_to_cst(mst);
2327 	switch (cst->type) {
2328 #ifdef RATELIMIT
2329 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2330 		return (cxgbe_rate_tag_modify(mst, params));
2331 #endif
2332 	default:
2333 		return (EOPNOTSUPP);
2334 	}
2335 }
2336 
2337 static int
2338 cxgbe_snd_tag_query(struct m_snd_tag *mst,
2339     union if_snd_tag_query_params *params)
2340 {
2341 	struct cxgbe_snd_tag *cst;
2342 
2343 	cst = mst_to_cst(mst);
2344 	switch (cst->type) {
2345 #ifdef RATELIMIT
2346 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2347 		return (cxgbe_rate_tag_query(mst, params));
2348 #endif
2349 	default:
2350 		return (EOPNOTSUPP);
2351 	}
2352 }
2353 
2354 static void
2355 cxgbe_snd_tag_free(struct m_snd_tag *mst)
2356 {
2357 	struct cxgbe_snd_tag *cst;
2358 
2359 	cst = mst_to_cst(mst);
2360 	switch (cst->type) {
2361 #ifdef RATELIMIT
2362 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2363 		cxgbe_rate_tag_free(mst);
2364 		return;
2365 #endif
2366 #ifdef KERN_TLS
2367 	case IF_SND_TAG_TYPE_TLS:
2368 		cxgbe_tls_tag_free(mst);
2369 		return;
2370 #endif
2371 	default:
2372 		panic("shouldn't get here");
2373 	}
2374 }
2375 #endif
2376 
2377 /*
2378  * The kernel picks a media from the list we had provided but we still validate
2379  * the requeste.
2380  */
2381 int
2382 cxgbe_media_change(struct ifnet *ifp)
2383 {
2384 	struct vi_info *vi = ifp->if_softc;
2385 	struct port_info *pi = vi->pi;
2386 	struct ifmedia *ifm = &pi->media;
2387 	struct link_config *lc = &pi->link_cfg;
2388 	struct adapter *sc = pi->adapter;
2389 	int rc;
2390 
2391 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
2392 	if (rc != 0)
2393 		return (rc);
2394 	PORT_LOCK(pi);
2395 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
2396 		/* ifconfig .. media autoselect */
2397 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2398 			rc = ENOTSUP; /* AN not supported by transceiver */
2399 			goto done;
2400 		}
2401 		lc->requested_aneg = AUTONEG_ENABLE;
2402 		lc->requested_speed = 0;
2403 		lc->requested_fc |= PAUSE_AUTONEG;
2404 	} else {
2405 		lc->requested_aneg = AUTONEG_DISABLE;
2406 		lc->requested_speed =
2407 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
2408 		lc->requested_fc = 0;
2409 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
2410 			lc->requested_fc |= PAUSE_RX;
2411 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
2412 			lc->requested_fc |= PAUSE_TX;
2413 	}
2414 	if (pi->up_vis > 0) {
2415 		fixup_link_config(pi);
2416 		rc = apply_link_config(pi);
2417 	}
2418 done:
2419 	PORT_UNLOCK(pi);
2420 	end_synchronized_op(sc, 0);
2421 	return (rc);
2422 }
2423 
2424 /*
2425  * Base media word (without ETHER, pause, link active, etc.) for the port at the
2426  * given speed.
2427  */
2428 static int
2429 port_mword(struct port_info *pi, uint32_t speed)
2430 {
2431 
2432 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
2433 	MPASS(powerof2(speed));
2434 
2435 	switch(pi->port_type) {
2436 	case FW_PORT_TYPE_BT_SGMII:
2437 	case FW_PORT_TYPE_BT_XFI:
2438 	case FW_PORT_TYPE_BT_XAUI:
2439 		/* BaseT */
2440 		switch (speed) {
2441 		case FW_PORT_CAP32_SPEED_100M:
2442 			return (IFM_100_T);
2443 		case FW_PORT_CAP32_SPEED_1G:
2444 			return (IFM_1000_T);
2445 		case FW_PORT_CAP32_SPEED_10G:
2446 			return (IFM_10G_T);
2447 		}
2448 		break;
2449 	case FW_PORT_TYPE_KX4:
2450 		if (speed == FW_PORT_CAP32_SPEED_10G)
2451 			return (IFM_10G_KX4);
2452 		break;
2453 	case FW_PORT_TYPE_CX4:
2454 		if (speed == FW_PORT_CAP32_SPEED_10G)
2455 			return (IFM_10G_CX4);
2456 		break;
2457 	case FW_PORT_TYPE_KX:
2458 		if (speed == FW_PORT_CAP32_SPEED_1G)
2459 			return (IFM_1000_KX);
2460 		break;
2461 	case FW_PORT_TYPE_KR:
2462 	case FW_PORT_TYPE_BP_AP:
2463 	case FW_PORT_TYPE_BP4_AP:
2464 	case FW_PORT_TYPE_BP40_BA:
2465 	case FW_PORT_TYPE_KR4_100G:
2466 	case FW_PORT_TYPE_KR_SFP28:
2467 	case FW_PORT_TYPE_KR_XLAUI:
2468 		switch (speed) {
2469 		case FW_PORT_CAP32_SPEED_1G:
2470 			return (IFM_1000_KX);
2471 		case FW_PORT_CAP32_SPEED_10G:
2472 			return (IFM_10G_KR);
2473 		case FW_PORT_CAP32_SPEED_25G:
2474 			return (IFM_25G_KR);
2475 		case FW_PORT_CAP32_SPEED_40G:
2476 			return (IFM_40G_KR4);
2477 		case FW_PORT_CAP32_SPEED_50G:
2478 			return (IFM_50G_KR2);
2479 		case FW_PORT_CAP32_SPEED_100G:
2480 			return (IFM_100G_KR4);
2481 		}
2482 		break;
2483 	case FW_PORT_TYPE_FIBER_XFI:
2484 	case FW_PORT_TYPE_FIBER_XAUI:
2485 	case FW_PORT_TYPE_SFP:
2486 	case FW_PORT_TYPE_QSFP_10G:
2487 	case FW_PORT_TYPE_QSA:
2488 	case FW_PORT_TYPE_QSFP:
2489 	case FW_PORT_TYPE_CR4_QSFP:
2490 	case FW_PORT_TYPE_CR_QSFP:
2491 	case FW_PORT_TYPE_CR2_QSFP:
2492 	case FW_PORT_TYPE_SFP28:
2493 		/* Pluggable transceiver */
2494 		switch (pi->mod_type) {
2495 		case FW_PORT_MOD_TYPE_LR:
2496 			switch (speed) {
2497 			case FW_PORT_CAP32_SPEED_1G:
2498 				return (IFM_1000_LX);
2499 			case FW_PORT_CAP32_SPEED_10G:
2500 				return (IFM_10G_LR);
2501 			case FW_PORT_CAP32_SPEED_25G:
2502 				return (IFM_25G_LR);
2503 			case FW_PORT_CAP32_SPEED_40G:
2504 				return (IFM_40G_LR4);
2505 			case FW_PORT_CAP32_SPEED_50G:
2506 				return (IFM_50G_LR2);
2507 			case FW_PORT_CAP32_SPEED_100G:
2508 				return (IFM_100G_LR4);
2509 			}
2510 			break;
2511 		case FW_PORT_MOD_TYPE_SR:
2512 			switch (speed) {
2513 			case FW_PORT_CAP32_SPEED_1G:
2514 				return (IFM_1000_SX);
2515 			case FW_PORT_CAP32_SPEED_10G:
2516 				return (IFM_10G_SR);
2517 			case FW_PORT_CAP32_SPEED_25G:
2518 				return (IFM_25G_SR);
2519 			case FW_PORT_CAP32_SPEED_40G:
2520 				return (IFM_40G_SR4);
2521 			case FW_PORT_CAP32_SPEED_50G:
2522 				return (IFM_50G_SR2);
2523 			case FW_PORT_CAP32_SPEED_100G:
2524 				return (IFM_100G_SR4);
2525 			}
2526 			break;
2527 		case FW_PORT_MOD_TYPE_ER:
2528 			if (speed == FW_PORT_CAP32_SPEED_10G)
2529 				return (IFM_10G_ER);
2530 			break;
2531 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
2532 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
2533 			switch (speed) {
2534 			case FW_PORT_CAP32_SPEED_1G:
2535 				return (IFM_1000_CX);
2536 			case FW_PORT_CAP32_SPEED_10G:
2537 				return (IFM_10G_TWINAX);
2538 			case FW_PORT_CAP32_SPEED_25G:
2539 				return (IFM_25G_CR);
2540 			case FW_PORT_CAP32_SPEED_40G:
2541 				return (IFM_40G_CR4);
2542 			case FW_PORT_CAP32_SPEED_50G:
2543 				return (IFM_50G_CR2);
2544 			case FW_PORT_CAP32_SPEED_100G:
2545 				return (IFM_100G_CR4);
2546 			}
2547 			break;
2548 		case FW_PORT_MOD_TYPE_LRM:
2549 			if (speed == FW_PORT_CAP32_SPEED_10G)
2550 				return (IFM_10G_LRM);
2551 			break;
2552 		case FW_PORT_MOD_TYPE_NA:
2553 			MPASS(0);	/* Not pluggable? */
2554 			/* fall throough */
2555 		case FW_PORT_MOD_TYPE_ERROR:
2556 		case FW_PORT_MOD_TYPE_UNKNOWN:
2557 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
2558 			break;
2559 		case FW_PORT_MOD_TYPE_NONE:
2560 			return (IFM_NONE);
2561 		}
2562 		break;
2563 	case FW_PORT_TYPE_NONE:
2564 		return (IFM_NONE);
2565 	}
2566 
2567 	return (IFM_UNKNOWN);
2568 }
2569 
2570 void
2571 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2572 {
2573 	struct vi_info *vi = ifp->if_softc;
2574 	struct port_info *pi = vi->pi;
2575 	struct adapter *sc = pi->adapter;
2576 	struct link_config *lc = &pi->link_cfg;
2577 
2578 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
2579 		return;
2580 	PORT_LOCK(pi);
2581 
2582 	if (pi->up_vis == 0) {
2583 		/*
2584 		 * If all the interfaces are administratively down the firmware
2585 		 * does not report transceiver changes.  Refresh port info here
2586 		 * so that ifconfig displays accurate ifmedia at all times.
2587 		 * This is the only reason we have a synchronized op in this
2588 		 * function.  Just PORT_LOCK would have been enough otherwise.
2589 		 */
2590 		t4_update_port_info(pi);
2591 		build_medialist(pi);
2592 	}
2593 
2594 	/* ifm_status */
2595 	ifmr->ifm_status = IFM_AVALID;
2596 	if (lc->link_ok == false)
2597 		goto done;
2598 	ifmr->ifm_status |= IFM_ACTIVE;
2599 
2600 	/* ifm_active */
2601 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2602 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2603 	if (lc->fc & PAUSE_RX)
2604 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2605 	if (lc->fc & PAUSE_TX)
2606 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2607 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
2608 done:
2609 	PORT_UNLOCK(pi);
2610 	end_synchronized_op(sc, 0);
2611 }
2612 
2613 static int
2614 vcxgbe_probe(device_t dev)
2615 {
2616 	char buf[128];
2617 	struct vi_info *vi = device_get_softc(dev);
2618 
2619 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2620 	    vi - vi->pi->vi);
2621 	device_set_desc_copy(dev, buf);
2622 
2623 	return (BUS_PROBE_DEFAULT);
2624 }
2625 
2626 static int
2627 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2628 {
2629 	int func, index, rc;
2630 	uint32_t param, val;
2631 
2632 	ASSERT_SYNCHRONIZED_OP(sc);
2633 
2634 	index = vi - pi->vi;
2635 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2636 	KASSERT(index < nitems(vi_mac_funcs),
2637 	    ("%s: VI %s doesn't have a MAC func", __func__,
2638 	    device_get_nameunit(vi->dev)));
2639 	func = vi_mac_funcs[index];
2640 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2641 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
2642 	if (rc < 0) {
2643 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2644 		    "for port %d: %d\n", index, pi->port_id, -rc);
2645 		return (-rc);
2646 	}
2647 	vi->viid = rc;
2648 
2649 	if (vi->rss_size == 1) {
2650 		/*
2651 		 * This VI didn't get a slice of the RSS table.  Reduce the
2652 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2653 		 * configuration file (nvi, rssnvi for this PF) if this is a
2654 		 * problem.
2655 		 */
2656 		device_printf(vi->dev, "RSS table not available.\n");
2657 		vi->rss_base = 0xffff;
2658 
2659 		return (0);
2660 	}
2661 
2662 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2663 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2664 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2665 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2666 	if (rc)
2667 		vi->rss_base = 0xffff;
2668 	else {
2669 		MPASS((val >> 16) == vi->rss_size);
2670 		vi->rss_base = val & 0xffff;
2671 	}
2672 
2673 	return (0);
2674 }
2675 
2676 static int
2677 vcxgbe_attach(device_t dev)
2678 {
2679 	struct vi_info *vi;
2680 	struct port_info *pi;
2681 	struct adapter *sc;
2682 	int rc;
2683 
2684 	vi = device_get_softc(dev);
2685 	pi = vi->pi;
2686 	sc = pi->adapter;
2687 
2688 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2689 	if (rc)
2690 		return (rc);
2691 	rc = alloc_extra_vi(sc, pi, vi);
2692 	end_synchronized_op(sc, 0);
2693 	if (rc)
2694 		return (rc);
2695 
2696 	rc = cxgbe_vi_attach(dev, vi);
2697 	if (rc) {
2698 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2699 		return (rc);
2700 	}
2701 	return (0);
2702 }
2703 
2704 static int
2705 vcxgbe_detach(device_t dev)
2706 {
2707 	struct vi_info *vi;
2708 	struct adapter *sc;
2709 
2710 	vi = device_get_softc(dev);
2711 	sc = vi->pi->adapter;
2712 
2713 	doom_vi(sc, vi);
2714 
2715 	cxgbe_vi_detach(vi);
2716 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2717 
2718 	end_synchronized_op(sc, 0);
2719 
2720 	return (0);
2721 }
2722 
2723 static struct callout fatal_callout;
2724 
2725 static void
2726 delayed_panic(void *arg)
2727 {
2728 	struct adapter *sc = arg;
2729 
2730 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
2731 }
2732 
2733 void
2734 t4_fatal_err(struct adapter *sc, bool fw_error)
2735 {
2736 
2737 	t4_shutdown_adapter(sc);
2738 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n",
2739 	    device_get_nameunit(sc->dev));
2740 	if (fw_error) {
2741 		ASSERT_SYNCHRONIZED_OP(sc);
2742 		sc->flags |= ADAP_ERR;
2743 	} else {
2744 		ADAPTER_LOCK(sc);
2745 		sc->flags |= ADAP_ERR;
2746 		ADAPTER_UNLOCK(sc);
2747 	}
2748 
2749 	if (t4_panic_on_fatal_err) {
2750 		log(LOG_ALERT, "%s: panic on fatal error after 30s",
2751 		    device_get_nameunit(sc->dev));
2752 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
2753 	}
2754 }
2755 
2756 void
2757 t4_add_adapter(struct adapter *sc)
2758 {
2759 	sx_xlock(&t4_list_lock);
2760 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2761 	sx_xunlock(&t4_list_lock);
2762 }
2763 
2764 int
2765 t4_map_bars_0_and_4(struct adapter *sc)
2766 {
2767 	sc->regs_rid = PCIR_BAR(0);
2768 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2769 	    &sc->regs_rid, RF_ACTIVE);
2770 	if (sc->regs_res == NULL) {
2771 		device_printf(sc->dev, "cannot map registers.\n");
2772 		return (ENXIO);
2773 	}
2774 	sc->bt = rman_get_bustag(sc->regs_res);
2775 	sc->bh = rman_get_bushandle(sc->regs_res);
2776 	sc->mmio_len = rman_get_size(sc->regs_res);
2777 	setbit(&sc->doorbells, DOORBELL_KDB);
2778 
2779 	sc->msix_rid = PCIR_BAR(4);
2780 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2781 	    &sc->msix_rid, RF_ACTIVE);
2782 	if (sc->msix_res == NULL) {
2783 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2784 		return (ENXIO);
2785 	}
2786 
2787 	return (0);
2788 }
2789 
2790 int
2791 t4_map_bar_2(struct adapter *sc)
2792 {
2793 
2794 	/*
2795 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2796 	 * to map it if RDMA is disabled.
2797 	 */
2798 	if (is_t4(sc) && sc->rdmacaps == 0)
2799 		return (0);
2800 
2801 	sc->udbs_rid = PCIR_BAR(2);
2802 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2803 	    &sc->udbs_rid, RF_ACTIVE);
2804 	if (sc->udbs_res == NULL) {
2805 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2806 		return (ENXIO);
2807 	}
2808 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2809 
2810 	if (chip_id(sc) >= CHELSIO_T5) {
2811 		setbit(&sc->doorbells, DOORBELL_UDB);
2812 #if defined(__i386__) || defined(__amd64__)
2813 		if (t5_write_combine) {
2814 			int rc, mode;
2815 
2816 			/*
2817 			 * Enable write combining on BAR2.  This is the
2818 			 * userspace doorbell BAR and is split into 128B
2819 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2820 			 * with an egress queue.  The first 64B has the doorbell
2821 			 * and the second 64B can be used to submit a tx work
2822 			 * request with an implicit doorbell.
2823 			 */
2824 
2825 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2826 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2827 			if (rc == 0) {
2828 				clrbit(&sc->doorbells, DOORBELL_UDB);
2829 				setbit(&sc->doorbells, DOORBELL_WCWR);
2830 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2831 			} else {
2832 				device_printf(sc->dev,
2833 				    "couldn't enable write combining: %d\n",
2834 				    rc);
2835 			}
2836 
2837 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2838 			t4_write_reg(sc, A_SGE_STAT_CFG,
2839 			    V_STATSOURCE_T5(7) | mode);
2840 		}
2841 #endif
2842 	}
2843 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2844 
2845 	return (0);
2846 }
2847 
2848 struct memwin_init {
2849 	uint32_t base;
2850 	uint32_t aperture;
2851 };
2852 
2853 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2854 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2855 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2856 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2857 };
2858 
2859 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2860 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2861 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2862 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2863 };
2864 
2865 static void
2866 setup_memwin(struct adapter *sc)
2867 {
2868 	const struct memwin_init *mw_init;
2869 	struct memwin *mw;
2870 	int i;
2871 	uint32_t bar0;
2872 
2873 	if (is_t4(sc)) {
2874 		/*
2875 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2876 		 * mechanism.  Works from within PCI passthrough environments
2877 		 * too, where rman_get_start() can return a different value.  We
2878 		 * need to program the T4 memory window decoders with the actual
2879 		 * addresses that will be coming across the PCIe link.
2880 		 */
2881 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2882 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2883 
2884 		mw_init = &t4_memwin[0];
2885 	} else {
2886 		/* T5+ use the relative offset inside the PCIe BAR */
2887 		bar0 = 0;
2888 
2889 		mw_init = &t5_memwin[0];
2890 	}
2891 
2892 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2893 		rw_init(&mw->mw_lock, "memory window access");
2894 		mw->mw_base = mw_init->base;
2895 		mw->mw_aperture = mw_init->aperture;
2896 		mw->mw_curpos = 0;
2897 		t4_write_reg(sc,
2898 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2899 		    (mw->mw_base + bar0) | V_BIR(0) |
2900 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2901 		rw_wlock(&mw->mw_lock);
2902 		position_memwin(sc, i, 0);
2903 		rw_wunlock(&mw->mw_lock);
2904 	}
2905 
2906 	/* flush */
2907 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2908 }
2909 
2910 /*
2911  * Positions the memory window at the given address in the card's address space.
2912  * There are some alignment requirements and the actual position may be at an
2913  * address prior to the requested address.  mw->mw_curpos always has the actual
2914  * position of the window.
2915  */
2916 static void
2917 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2918 {
2919 	struct memwin *mw;
2920 	uint32_t pf;
2921 	uint32_t reg;
2922 
2923 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2924 	mw = &sc->memwin[idx];
2925 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2926 
2927 	if (is_t4(sc)) {
2928 		pf = 0;
2929 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2930 	} else {
2931 		pf = V_PFNUM(sc->pf);
2932 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2933 	}
2934 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2935 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2936 	t4_read_reg(sc, reg);	/* flush */
2937 }
2938 
2939 int
2940 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2941     int len, int rw)
2942 {
2943 	struct memwin *mw;
2944 	uint32_t mw_end, v;
2945 
2946 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2947 
2948 	/* Memory can only be accessed in naturally aligned 4 byte units */
2949 	if (addr & 3 || len & 3 || len <= 0)
2950 		return (EINVAL);
2951 
2952 	mw = &sc->memwin[idx];
2953 	while (len > 0) {
2954 		rw_rlock(&mw->mw_lock);
2955 		mw_end = mw->mw_curpos + mw->mw_aperture;
2956 		if (addr >= mw_end || addr < mw->mw_curpos) {
2957 			/* Will need to reposition the window */
2958 			if (!rw_try_upgrade(&mw->mw_lock)) {
2959 				rw_runlock(&mw->mw_lock);
2960 				rw_wlock(&mw->mw_lock);
2961 			}
2962 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2963 			position_memwin(sc, idx, addr);
2964 			rw_downgrade(&mw->mw_lock);
2965 			mw_end = mw->mw_curpos + mw->mw_aperture;
2966 		}
2967 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2968 		while (addr < mw_end && len > 0) {
2969 			if (rw == 0) {
2970 				v = t4_read_reg(sc, mw->mw_base + addr -
2971 				    mw->mw_curpos);
2972 				*val++ = le32toh(v);
2973 			} else {
2974 				v = *val++;
2975 				t4_write_reg(sc, mw->mw_base + addr -
2976 				    mw->mw_curpos, htole32(v));
2977 			}
2978 			addr += 4;
2979 			len -= 4;
2980 		}
2981 		rw_runlock(&mw->mw_lock);
2982 	}
2983 
2984 	return (0);
2985 }
2986 
2987 static void
2988 t4_init_atid_table(struct adapter *sc)
2989 {
2990 	struct tid_info *t;
2991 	int i;
2992 
2993 	t = &sc->tids;
2994 	if (t->natids == 0)
2995 		return;
2996 
2997 	MPASS(t->atid_tab == NULL);
2998 
2999 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3000 	    M_ZERO | M_WAITOK);
3001 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3002 	t->afree = t->atid_tab;
3003 	t->atids_in_use = 0;
3004 	for (i = 1; i < t->natids; i++)
3005 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3006 	t->atid_tab[t->natids - 1].next = NULL;
3007 }
3008 
3009 static void
3010 t4_free_atid_table(struct adapter *sc)
3011 {
3012 	struct tid_info *t;
3013 
3014 	t = &sc->tids;
3015 
3016 	KASSERT(t->atids_in_use == 0,
3017 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3018 
3019 	if (mtx_initialized(&t->atid_lock))
3020 		mtx_destroy(&t->atid_lock);
3021 	free(t->atid_tab, M_CXGBE);
3022 	t->atid_tab = NULL;
3023 }
3024 
3025 int
3026 alloc_atid(struct adapter *sc, void *ctx)
3027 {
3028 	struct tid_info *t = &sc->tids;
3029 	int atid = -1;
3030 
3031 	mtx_lock(&t->atid_lock);
3032 	if (t->afree) {
3033 		union aopen_entry *p = t->afree;
3034 
3035 		atid = p - t->atid_tab;
3036 		MPASS(atid <= M_TID_TID);
3037 		t->afree = p->next;
3038 		p->data = ctx;
3039 		t->atids_in_use++;
3040 	}
3041 	mtx_unlock(&t->atid_lock);
3042 	return (atid);
3043 }
3044 
3045 void *
3046 lookup_atid(struct adapter *sc, int atid)
3047 {
3048 	struct tid_info *t = &sc->tids;
3049 
3050 	return (t->atid_tab[atid].data);
3051 }
3052 
3053 void
3054 free_atid(struct adapter *sc, int atid)
3055 {
3056 	struct tid_info *t = &sc->tids;
3057 	union aopen_entry *p = &t->atid_tab[atid];
3058 
3059 	mtx_lock(&t->atid_lock);
3060 	p->next = t->afree;
3061 	t->afree = p;
3062 	t->atids_in_use--;
3063 	mtx_unlock(&t->atid_lock);
3064 }
3065 
3066 static void
3067 queue_tid_release(struct adapter *sc, int tid)
3068 {
3069 
3070 	CXGBE_UNIMPLEMENTED("deferred tid release");
3071 }
3072 
3073 void
3074 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3075 {
3076 	struct wrqe *wr;
3077 	struct cpl_tid_release *req;
3078 
3079 	wr = alloc_wrqe(sizeof(*req), ctrlq);
3080 	if (wr == NULL) {
3081 		queue_tid_release(sc, tid);	/* defer */
3082 		return;
3083 	}
3084 	req = wrtod(wr);
3085 
3086 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
3087 
3088 	t4_wrq_tx(sc, wr);
3089 }
3090 
3091 static int
3092 t4_range_cmp(const void *a, const void *b)
3093 {
3094 	return ((const struct t4_range *)a)->start -
3095 	       ((const struct t4_range *)b)->start;
3096 }
3097 
3098 /*
3099  * Verify that the memory range specified by the addr/len pair is valid within
3100  * the card's address space.
3101  */
3102 static int
3103 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
3104 {
3105 	struct t4_range mem_ranges[4], *r, *next;
3106 	uint32_t em, addr_len;
3107 	int i, n, remaining;
3108 
3109 	/* Memory can only be accessed in naturally aligned 4 byte units */
3110 	if (addr & 3 || len & 3 || len == 0)
3111 		return (EINVAL);
3112 
3113 	/* Enabled memories */
3114 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3115 
3116 	r = &mem_ranges[0];
3117 	n = 0;
3118 	bzero(r, sizeof(mem_ranges));
3119 	if (em & F_EDRAM0_ENABLE) {
3120 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3121 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
3122 		if (r->size > 0) {
3123 			r->start = G_EDRAM0_BASE(addr_len) << 20;
3124 			if (addr >= r->start &&
3125 			    addr + len <= r->start + r->size)
3126 				return (0);
3127 			r++;
3128 			n++;
3129 		}
3130 	}
3131 	if (em & F_EDRAM1_ENABLE) {
3132 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3133 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
3134 		if (r->size > 0) {
3135 			r->start = G_EDRAM1_BASE(addr_len) << 20;
3136 			if (addr >= r->start &&
3137 			    addr + len <= r->start + r->size)
3138 				return (0);
3139 			r++;
3140 			n++;
3141 		}
3142 	}
3143 	if (em & F_EXT_MEM_ENABLE) {
3144 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3145 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
3146 		if (r->size > 0) {
3147 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
3148 			if (addr >= r->start &&
3149 			    addr + len <= r->start + r->size)
3150 				return (0);
3151 			r++;
3152 			n++;
3153 		}
3154 	}
3155 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
3156 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3157 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3158 		if (r->size > 0) {
3159 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3160 			if (addr >= r->start &&
3161 			    addr + len <= r->start + r->size)
3162 				return (0);
3163 			r++;
3164 			n++;
3165 		}
3166 	}
3167 	MPASS(n <= nitems(mem_ranges));
3168 
3169 	if (n > 1) {
3170 		/* Sort and merge the ranges. */
3171 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3172 
3173 		/* Start from index 0 and examine the next n - 1 entries. */
3174 		r = &mem_ranges[0];
3175 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
3176 
3177 			MPASS(r->size > 0);	/* r is a valid entry. */
3178 			next = r + 1;
3179 			MPASS(next->size > 0);	/* and so is the next one. */
3180 
3181 			while (r->start + r->size >= next->start) {
3182 				/* Merge the next one into the current entry. */
3183 				r->size = max(r->start + r->size,
3184 				    next->start + next->size) - r->start;
3185 				n--;	/* One fewer entry in total. */
3186 				if (--remaining == 0)
3187 					goto done;	/* short circuit */
3188 				next++;
3189 			}
3190 			if (next != r + 1) {
3191 				/*
3192 				 * Some entries were merged into r and next
3193 				 * points to the first valid entry that couldn't
3194 				 * be merged.
3195 				 */
3196 				MPASS(next->size > 0);	/* must be valid */
3197 				memcpy(r + 1, next, remaining * sizeof(*r));
3198 #ifdef INVARIANTS
3199 				/*
3200 				 * This so that the foo->size assertion in the
3201 				 * next iteration of the loop do the right
3202 				 * thing for entries that were pulled up and are
3203 				 * no longer valid.
3204 				 */
3205 				MPASS(n < nitems(mem_ranges));
3206 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
3207 				    sizeof(struct t4_range));
3208 #endif
3209 			}
3210 		}
3211 done:
3212 		/* Done merging the ranges. */
3213 		MPASS(n > 0);
3214 		r = &mem_ranges[0];
3215 		for (i = 0; i < n; i++, r++) {
3216 			if (addr >= r->start &&
3217 			    addr + len <= r->start + r->size)
3218 				return (0);
3219 		}
3220 	}
3221 
3222 	return (EFAULT);
3223 }
3224 
3225 static int
3226 fwmtype_to_hwmtype(int mtype)
3227 {
3228 
3229 	switch (mtype) {
3230 	case FW_MEMTYPE_EDC0:
3231 		return (MEM_EDC0);
3232 	case FW_MEMTYPE_EDC1:
3233 		return (MEM_EDC1);
3234 	case FW_MEMTYPE_EXTMEM:
3235 		return (MEM_MC0);
3236 	case FW_MEMTYPE_EXTMEM1:
3237 		return (MEM_MC1);
3238 	default:
3239 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
3240 	}
3241 }
3242 
3243 /*
3244  * Verify that the memory range specified by the memtype/offset/len pair is
3245  * valid and lies entirely within the memtype specified.  The global address of
3246  * the start of the range is returned in addr.
3247  */
3248 static int
3249 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
3250     uint32_t *addr)
3251 {
3252 	uint32_t em, addr_len, maddr;
3253 
3254 	/* Memory can only be accessed in naturally aligned 4 byte units */
3255 	if (off & 3 || len & 3 || len == 0)
3256 		return (EINVAL);
3257 
3258 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3259 	switch (fwmtype_to_hwmtype(mtype)) {
3260 	case MEM_EDC0:
3261 		if (!(em & F_EDRAM0_ENABLE))
3262 			return (EINVAL);
3263 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3264 		maddr = G_EDRAM0_BASE(addr_len) << 20;
3265 		break;
3266 	case MEM_EDC1:
3267 		if (!(em & F_EDRAM1_ENABLE))
3268 			return (EINVAL);
3269 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3270 		maddr = G_EDRAM1_BASE(addr_len) << 20;
3271 		break;
3272 	case MEM_MC:
3273 		if (!(em & F_EXT_MEM_ENABLE))
3274 			return (EINVAL);
3275 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3276 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
3277 		break;
3278 	case MEM_MC1:
3279 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
3280 			return (EINVAL);
3281 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3282 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
3283 		break;
3284 	default:
3285 		return (EINVAL);
3286 	}
3287 
3288 	*addr = maddr + off;	/* global address */
3289 	return (validate_mem_range(sc, *addr, len));
3290 }
3291 
3292 static int
3293 fixup_devlog_params(struct adapter *sc)
3294 {
3295 	struct devlog_params *dparams = &sc->params.devlog;
3296 	int rc;
3297 
3298 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
3299 	    dparams->size, &dparams->addr);
3300 
3301 	return (rc);
3302 }
3303 
3304 static void
3305 update_nirq(struct intrs_and_queues *iaq, int nports)
3306 {
3307 	int extra = T4_EXTRA_INTR;
3308 
3309 	iaq->nirq = extra;
3310 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
3311 	iaq->nirq += nports * (iaq->num_vis - 1) *
3312 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
3313 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
3314 }
3315 
3316 /*
3317  * Adjust requirements to fit the number of interrupts available.
3318  */
3319 static void
3320 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
3321     int navail)
3322 {
3323 	int old_nirq;
3324 	const int nports = sc->params.nports;
3325 
3326 	MPASS(nports > 0);
3327 	MPASS(navail > 0);
3328 
3329 	bzero(iaq, sizeof(*iaq));
3330 	iaq->intr_type = itype;
3331 	iaq->num_vis = t4_num_vis;
3332 	iaq->ntxq = t4_ntxq;
3333 	iaq->ntxq_vi = t4_ntxq_vi;
3334 	iaq->nrxq = t4_nrxq;
3335 	iaq->nrxq_vi = t4_nrxq_vi;
3336 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3337 	if (is_offload(sc) || is_ethoffload(sc)) {
3338 		iaq->nofldtxq = t4_nofldtxq;
3339 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
3340 	}
3341 #endif
3342 #ifdef TCP_OFFLOAD
3343 	if (is_offload(sc)) {
3344 		iaq->nofldrxq = t4_nofldrxq;
3345 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
3346 	}
3347 #endif
3348 #ifdef DEV_NETMAP
3349 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
3350 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
3351 #endif
3352 
3353 	update_nirq(iaq, nports);
3354 	if (iaq->nirq <= navail &&
3355 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3356 		/*
3357 		 * This is the normal case -- there are enough interrupts for
3358 		 * everything.
3359 		 */
3360 		goto done;
3361 	}
3362 
3363 	/*
3364 	 * If extra VIs have been configured try reducing their count and see if
3365 	 * that works.
3366 	 */
3367 	while (iaq->num_vis > 1) {
3368 		iaq->num_vis--;
3369 		update_nirq(iaq, nports);
3370 		if (iaq->nirq <= navail &&
3371 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3372 			device_printf(sc->dev, "virtual interfaces per port "
3373 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
3374 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
3375 			    "itype %d, navail %u, nirq %d.\n",
3376 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
3377 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
3378 			    itype, navail, iaq->nirq);
3379 			goto done;
3380 		}
3381 	}
3382 
3383 	/*
3384 	 * Extra VIs will not be created.  Log a message if they were requested.
3385 	 */
3386 	MPASS(iaq->num_vis == 1);
3387 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
3388 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
3389 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
3390 	if (iaq->num_vis != t4_num_vis) {
3391 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
3392 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
3393 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
3394 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
3395 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
3396 	}
3397 
3398 	/*
3399 	 * Keep reducing the number of NIC rx queues to the next lower power of
3400 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
3401 	 * if that works.
3402 	 */
3403 	do {
3404 		if (iaq->nrxq > 1) {
3405 			do {
3406 				iaq->nrxq--;
3407 			} while (!powerof2(iaq->nrxq));
3408 		}
3409 		if (iaq->nofldrxq > 1)
3410 			iaq->nofldrxq >>= 1;
3411 
3412 		old_nirq = iaq->nirq;
3413 		update_nirq(iaq, nports);
3414 		if (iaq->nirq <= navail &&
3415 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3416 			device_printf(sc->dev, "running with reduced number of "
3417 			    "rx queues because of shortage of interrupts.  "
3418 			    "nrxq=%u, nofldrxq=%u.  "
3419 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
3420 			    iaq->nofldrxq, itype, navail, iaq->nirq);
3421 			goto done;
3422 		}
3423 	} while (old_nirq != iaq->nirq);
3424 
3425 	/* One interrupt for everything.  Ugh. */
3426 	device_printf(sc->dev, "running with minimal number of queues.  "
3427 	    "itype %d, navail %u.\n", itype, navail);
3428 	iaq->nirq = 1;
3429 	MPASS(iaq->nrxq == 1);
3430 	iaq->ntxq = 1;
3431 	if (iaq->nofldrxq > 1)
3432 		iaq->nofldtxq = 1;
3433 done:
3434 	MPASS(iaq->num_vis > 0);
3435 	if (iaq->num_vis > 1) {
3436 		MPASS(iaq->nrxq_vi > 0);
3437 		MPASS(iaq->ntxq_vi > 0);
3438 	}
3439 	MPASS(iaq->nirq > 0);
3440 	MPASS(iaq->nrxq > 0);
3441 	MPASS(iaq->ntxq > 0);
3442 	if (itype == INTR_MSI) {
3443 		MPASS(powerof2(iaq->nirq));
3444 	}
3445 }
3446 
3447 static int
3448 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
3449 {
3450 	int rc, itype, navail, nalloc;
3451 
3452 	for (itype = INTR_MSIX; itype; itype >>= 1) {
3453 
3454 		if ((itype & t4_intr_types) == 0)
3455 			continue;	/* not allowed */
3456 
3457 		if (itype == INTR_MSIX)
3458 			navail = pci_msix_count(sc->dev);
3459 		else if (itype == INTR_MSI)
3460 			navail = pci_msi_count(sc->dev);
3461 		else
3462 			navail = 1;
3463 restart:
3464 		if (navail == 0)
3465 			continue;
3466 
3467 		calculate_iaq(sc, iaq, itype, navail);
3468 		nalloc = iaq->nirq;
3469 		rc = 0;
3470 		if (itype == INTR_MSIX)
3471 			rc = pci_alloc_msix(sc->dev, &nalloc);
3472 		else if (itype == INTR_MSI)
3473 			rc = pci_alloc_msi(sc->dev, &nalloc);
3474 
3475 		if (rc == 0 && nalloc > 0) {
3476 			if (nalloc == iaq->nirq)
3477 				return (0);
3478 
3479 			/*
3480 			 * Didn't get the number requested.  Use whatever number
3481 			 * the kernel is willing to allocate.
3482 			 */
3483 			device_printf(sc->dev, "fewer vectors than requested, "
3484 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
3485 			    itype, iaq->nirq, nalloc);
3486 			pci_release_msi(sc->dev);
3487 			navail = nalloc;
3488 			goto restart;
3489 		}
3490 
3491 		device_printf(sc->dev,
3492 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
3493 		    itype, rc, iaq->nirq, nalloc);
3494 	}
3495 
3496 	device_printf(sc->dev,
3497 	    "failed to find a usable interrupt type.  "
3498 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
3499 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
3500 
3501 	return (ENXIO);
3502 }
3503 
3504 #define FW_VERSION(chip) ( \
3505     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
3506     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
3507     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
3508     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
3509 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
3510 
3511 /* Just enough of fw_hdr to cover all version info. */
3512 struct fw_h {
3513 	__u8	ver;
3514 	__u8	chip;
3515 	__be16	len512;
3516 	__be32	fw_ver;
3517 	__be32	tp_microcode_ver;
3518 	__u8	intfver_nic;
3519 	__u8	intfver_vnic;
3520 	__u8	intfver_ofld;
3521 	__u8	intfver_ri;
3522 	__u8	intfver_iscsipdu;
3523 	__u8	intfver_iscsi;
3524 	__u8	intfver_fcoepdu;
3525 	__u8	intfver_fcoe;
3526 };
3527 /* Spot check a couple of fields. */
3528 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
3529 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
3530 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
3531 
3532 struct fw_info {
3533 	uint8_t chip;
3534 	char *kld_name;
3535 	char *fw_mod_name;
3536 	struct fw_h fw_h;
3537 } fw_info[] = {
3538 	{
3539 		.chip = CHELSIO_T4,
3540 		.kld_name = "t4fw_cfg",
3541 		.fw_mod_name = "t4fw",
3542 		.fw_h = {
3543 			.chip = FW_HDR_CHIP_T4,
3544 			.fw_ver = htobe32(FW_VERSION(T4)),
3545 			.intfver_nic = FW_INTFVER(T4, NIC),
3546 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3547 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3548 			.intfver_ri = FW_INTFVER(T4, RI),
3549 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3550 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3551 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3552 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3553 		},
3554 	}, {
3555 		.chip = CHELSIO_T5,
3556 		.kld_name = "t5fw_cfg",
3557 		.fw_mod_name = "t5fw",
3558 		.fw_h = {
3559 			.chip = FW_HDR_CHIP_T5,
3560 			.fw_ver = htobe32(FW_VERSION(T5)),
3561 			.intfver_nic = FW_INTFVER(T5, NIC),
3562 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3563 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3564 			.intfver_ri = FW_INTFVER(T5, RI),
3565 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3566 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3567 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3568 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3569 		},
3570 	}, {
3571 		.chip = CHELSIO_T6,
3572 		.kld_name = "t6fw_cfg",
3573 		.fw_mod_name = "t6fw",
3574 		.fw_h = {
3575 			.chip = FW_HDR_CHIP_T6,
3576 			.fw_ver = htobe32(FW_VERSION(T6)),
3577 			.intfver_nic = FW_INTFVER(T6, NIC),
3578 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3579 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3580 			.intfver_ri = FW_INTFVER(T6, RI),
3581 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3582 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3583 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3584 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3585 		},
3586 	}
3587 };
3588 
3589 static struct fw_info *
3590 find_fw_info(int chip)
3591 {
3592 	int i;
3593 
3594 	for (i = 0; i < nitems(fw_info); i++) {
3595 		if (fw_info[i].chip == chip)
3596 			return (&fw_info[i]);
3597 	}
3598 	return (NULL);
3599 }
3600 
3601 /*
3602  * Is the given firmware API compatible with the one the driver was compiled
3603  * with?
3604  */
3605 static int
3606 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
3607 {
3608 
3609 	/* short circuit if it's the exact same firmware version */
3610 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3611 		return (1);
3612 
3613 	/*
3614 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3615 	 * features that are supported in the driver.
3616 	 */
3617 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3618 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3619 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3620 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3621 		return (1);
3622 #undef SAME_INTF
3623 
3624 	return (0);
3625 }
3626 
3627 static int
3628 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
3629     const struct firmware **fw)
3630 {
3631 	struct fw_info *fw_info;
3632 
3633 	*dcfg = NULL;
3634 	if (fw != NULL)
3635 		*fw = NULL;
3636 
3637 	fw_info = find_fw_info(chip_id(sc));
3638 	if (fw_info == NULL) {
3639 		device_printf(sc->dev,
3640 		    "unable to look up firmware information for chip %d.\n",
3641 		    chip_id(sc));
3642 		return (EINVAL);
3643 	}
3644 
3645 	*dcfg = firmware_get(fw_info->kld_name);
3646 	if (*dcfg != NULL) {
3647 		if (fw != NULL)
3648 			*fw = firmware_get(fw_info->fw_mod_name);
3649 		return (0);
3650 	}
3651 
3652 	return (ENOENT);
3653 }
3654 
3655 static void
3656 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
3657     const struct firmware *fw)
3658 {
3659 
3660 	if (fw != NULL)
3661 		firmware_put(fw, FIRMWARE_UNLOAD);
3662 	if (dcfg != NULL)
3663 		firmware_put(dcfg, FIRMWARE_UNLOAD);
3664 }
3665 
3666 /*
3667  * Return values:
3668  * 0 means no firmware install attempted.
3669  * ERESTART means a firmware install was attempted and was successful.
3670  * +ve errno means a firmware install was attempted but failed.
3671  */
3672 static int
3673 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
3674     const struct fw_h *drv_fw, const char *reason, int *already)
3675 {
3676 	const struct firmware *cfg, *fw;
3677 	const uint32_t c = be32toh(card_fw->fw_ver);
3678 	uint32_t d, k;
3679 	int rc, fw_install;
3680 	struct fw_h bundled_fw;
3681 	bool load_attempted;
3682 
3683 	cfg = fw = NULL;
3684 	load_attempted = false;
3685 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
3686 
3687 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
3688 	if (t4_fw_install < 0) {
3689 		rc = load_fw_module(sc, &cfg, &fw);
3690 		if (rc != 0 || fw == NULL) {
3691 			device_printf(sc->dev,
3692 			    "failed to load firmware module: %d. cfg %p, fw %p;"
3693 			    " will use compiled-in firmware version for"
3694 			    "hw.cxgbe.fw_install checks.\n",
3695 			    rc, cfg, fw);
3696 		} else {
3697 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
3698 		}
3699 		load_attempted = true;
3700 	}
3701 	d = be32toh(bundled_fw.fw_ver);
3702 
3703 	if (reason != NULL)
3704 		goto install;
3705 
3706 	if ((sc->flags & FW_OK) == 0) {
3707 
3708 		if (c == 0xffffffff) {
3709 			reason = "missing";
3710 			goto install;
3711 		}
3712 
3713 		rc = 0;
3714 		goto done;
3715 	}
3716 
3717 	if (!fw_compatible(card_fw, &bundled_fw)) {
3718 		reason = "incompatible or unusable";
3719 		goto install;
3720 	}
3721 
3722 	if (d > c) {
3723 		reason = "older than the version bundled with this driver";
3724 		goto install;
3725 	}
3726 
3727 	if (fw_install == 2 && d != c) {
3728 		reason = "different than the version bundled with this driver";
3729 		goto install;
3730 	}
3731 
3732 	/* No reason to do anything to the firmware already on the card. */
3733 	rc = 0;
3734 	goto done;
3735 
3736 install:
3737 	rc = 0;
3738 	if ((*already)++)
3739 		goto done;
3740 
3741 	if (fw_install == 0) {
3742 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3743 		    "but the driver is prohibited from installing a firmware "
3744 		    "on the card.\n",
3745 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3746 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3747 
3748 		goto done;
3749 	}
3750 
3751 	/*
3752 	 * We'll attempt to install a firmware.  Load the module first (if it
3753 	 * hasn't been loaded already).
3754 	 */
3755 	if (!load_attempted) {
3756 		rc = load_fw_module(sc, &cfg, &fw);
3757 		if (rc != 0 || fw == NULL) {
3758 			device_printf(sc->dev,
3759 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
3760 			    rc, cfg, fw);
3761 			/* carry on */
3762 		}
3763 	}
3764 	if (fw == NULL) {
3765 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3766 		    "but the driver cannot take corrective action because it "
3767 		    "is unable to load the firmware module.\n",
3768 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3769 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3770 		rc = sc->flags & FW_OK ? 0 : ENOENT;
3771 		goto done;
3772 	}
3773 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
3774 	if (k != d) {
3775 		MPASS(t4_fw_install > 0);
3776 		device_printf(sc->dev,
3777 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
3778 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
3779 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3780 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
3781 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3782 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3783 		rc = sc->flags & FW_OK ? 0 : EINVAL;
3784 		goto done;
3785 	}
3786 
3787 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3788 	    "installing firmware %u.%u.%u.%u on card.\n",
3789 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3790 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3791 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3792 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3793 
3794 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3795 	if (rc != 0) {
3796 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
3797 	} else {
3798 		/* Installed successfully, update the cached header too. */
3799 		rc = ERESTART;
3800 		memcpy(card_fw, fw->data, sizeof(*card_fw));
3801 	}
3802 done:
3803 	unload_fw_module(sc, cfg, fw);
3804 
3805 	return (rc);
3806 }
3807 
3808 /*
3809  * Establish contact with the firmware and attempt to become the master driver.
3810  *
3811  * A firmware will be installed to the card if needed (if the driver is allowed
3812  * to do so).
3813  */
3814 static int
3815 contact_firmware(struct adapter *sc)
3816 {
3817 	int rc, already = 0;
3818 	enum dev_state state;
3819 	struct fw_info *fw_info;
3820 	struct fw_hdr *card_fw;		/* fw on the card */
3821 	const struct fw_h *drv_fw;
3822 
3823 	fw_info = find_fw_info(chip_id(sc));
3824 	if (fw_info == NULL) {
3825 		device_printf(sc->dev,
3826 		    "unable to look up firmware information for chip %d.\n",
3827 		    chip_id(sc));
3828 		return (EINVAL);
3829 	}
3830 	drv_fw = &fw_info->fw_h;
3831 
3832 	/* Read the header of the firmware on the card */
3833 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3834 restart:
3835 	rc = -t4_get_fw_hdr(sc, card_fw);
3836 	if (rc != 0) {
3837 		device_printf(sc->dev,
3838 		    "unable to read firmware header from card's flash: %d\n",
3839 		    rc);
3840 		goto done;
3841 	}
3842 
3843 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
3844 	    &already);
3845 	if (rc == ERESTART)
3846 		goto restart;
3847 	if (rc != 0)
3848 		goto done;
3849 
3850 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3851 	if (rc < 0 || state == DEV_STATE_ERR) {
3852 		rc = -rc;
3853 		device_printf(sc->dev,
3854 		    "failed to connect to the firmware: %d, %d.  "
3855 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3856 #if 0
3857 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3858 		    "not responding properly to HELLO", &already) == ERESTART)
3859 			goto restart;
3860 #endif
3861 		goto done;
3862 	}
3863 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
3864 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
3865 
3866 	if (rc == sc->pf) {
3867 		sc->flags |= MASTER_PF;
3868 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3869 		    NULL, &already);
3870 		if (rc == ERESTART)
3871 			rc = 0;
3872 		else if (rc != 0)
3873 			goto done;
3874 	} else if (state == DEV_STATE_UNINIT) {
3875 		/*
3876 		 * We didn't get to be the master so we definitely won't be
3877 		 * configuring the chip.  It's a bug if someone else hasn't
3878 		 * configured it already.
3879 		 */
3880 		device_printf(sc->dev, "couldn't be master(%d), "
3881 		    "device not already initialized either(%d).  "
3882 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3883 		rc = EPROTO;
3884 		goto done;
3885 	} else {
3886 		/*
3887 		 * Some other PF is the master and has configured the chip.
3888 		 * This is allowed but untested.
3889 		 */
3890 		device_printf(sc->dev, "PF%d is master, device state %d.  "
3891 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3892 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
3893 		sc->cfcsum = 0;
3894 		rc = 0;
3895 	}
3896 done:
3897 	if (rc != 0 && sc->flags & FW_OK) {
3898 		t4_fw_bye(sc, sc->mbox);
3899 		sc->flags &= ~FW_OK;
3900 	}
3901 	free(card_fw, M_CXGBE);
3902 	return (rc);
3903 }
3904 
3905 static int
3906 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
3907     uint32_t mtype, uint32_t moff)
3908 {
3909 	struct fw_info *fw_info;
3910 	const struct firmware *dcfg, *rcfg = NULL;
3911 	const uint32_t *cfdata;
3912 	uint32_t cflen, addr;
3913 	int rc;
3914 
3915 	load_fw_module(sc, &dcfg, NULL);
3916 
3917 	/* Card specific interpretation of "default". */
3918 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3919 		if (pci_get_device(sc->dev) == 0x440a)
3920 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
3921 		if (is_fpga(sc))
3922 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
3923 	}
3924 
3925 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3926 		if (dcfg == NULL) {
3927 			device_printf(sc->dev,
3928 			    "KLD with default config is not available.\n");
3929 			rc = ENOENT;
3930 			goto done;
3931 		}
3932 		cfdata = dcfg->data;
3933 		cflen = dcfg->datasize & ~3;
3934 	} else {
3935 		char s[32];
3936 
3937 		fw_info = find_fw_info(chip_id(sc));
3938 		if (fw_info == NULL) {
3939 			device_printf(sc->dev,
3940 			    "unable to look up firmware information for chip %d.\n",
3941 			    chip_id(sc));
3942 			rc = EINVAL;
3943 			goto done;
3944 		}
3945 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
3946 
3947 		rcfg = firmware_get(s);
3948 		if (rcfg == NULL) {
3949 			device_printf(sc->dev,
3950 			    "unable to load module \"%s\" for configuration "
3951 			    "profile \"%s\".\n", s, cfg_file);
3952 			rc = ENOENT;
3953 			goto done;
3954 		}
3955 		cfdata = rcfg->data;
3956 		cflen = rcfg->datasize & ~3;
3957 	}
3958 
3959 	if (cflen > FLASH_CFG_MAX_SIZE) {
3960 		device_printf(sc->dev,
3961 		    "config file too long (%d, max allowed is %d).\n",
3962 		    cflen, FLASH_CFG_MAX_SIZE);
3963 		rc = EINVAL;
3964 		goto done;
3965 	}
3966 
3967 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3968 	if (rc != 0) {
3969 		device_printf(sc->dev,
3970 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
3971 		    __func__, mtype, moff, cflen, rc);
3972 		rc = EINVAL;
3973 		goto done;
3974 	}
3975 	write_via_memwin(sc, 2, addr, cfdata, cflen);
3976 done:
3977 	if (rcfg != NULL)
3978 		firmware_put(rcfg, FIRMWARE_UNLOAD);
3979 	unload_fw_module(sc, dcfg, NULL);
3980 	return (rc);
3981 }
3982 
3983 struct caps_allowed {
3984 	uint16_t nbmcaps;
3985 	uint16_t linkcaps;
3986 	uint16_t switchcaps;
3987 	uint16_t niccaps;
3988 	uint16_t toecaps;
3989 	uint16_t rdmacaps;
3990 	uint16_t cryptocaps;
3991 	uint16_t iscsicaps;
3992 	uint16_t fcoecaps;
3993 };
3994 
3995 #define FW_PARAM_DEV(param) \
3996 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3997 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3998 #define FW_PARAM_PFVF(param) \
3999 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4000 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4001 
4002 /*
4003  * Provide a configuration profile to the firmware and have it initialize the
4004  * chip accordingly.  This may involve uploading a configuration file to the
4005  * card.
4006  */
4007 static int
4008 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4009     const struct caps_allowed *caps_allowed)
4010 {
4011 	int rc;
4012 	struct fw_caps_config_cmd caps;
4013 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4014 
4015 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4016 	if (rc != 0) {
4017 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4018 		return (rc);
4019 	}
4020 
4021 	bzero(&caps, sizeof(caps));
4022 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4023 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4024 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4025 		mtype = 0;
4026 		moff = 0;
4027 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4028 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4029 		mtype = FW_MEMTYPE_FLASH;
4030 		moff = t4_flash_cfg_addr(sc);
4031 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4032 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4033 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4034 		    FW_LEN16(caps));
4035 	} else {
4036 		/*
4037 		 * Ask the firmware where it wants us to upload the config file.
4038 		 */
4039 		param = FW_PARAM_DEV(CF);
4040 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4041 		if (rc != 0) {
4042 			/* No support for config file?  Shouldn't happen. */
4043 			device_printf(sc->dev,
4044 			    "failed to query config file location: %d.\n", rc);
4045 			goto done;
4046 		}
4047 		mtype = G_FW_PARAMS_PARAM_Y(val);
4048 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4049 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4050 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4051 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4052 		    FW_LEN16(caps));
4053 
4054 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4055 		if (rc != 0) {
4056 			device_printf(sc->dev,
4057 			    "failed to upload config file to card: %d.\n", rc);
4058 			goto done;
4059 		}
4060 	}
4061 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4062 	if (rc != 0) {
4063 		device_printf(sc->dev, "failed to pre-process config file: %d "
4064 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
4065 		goto done;
4066 	}
4067 
4068 	finicsum = be32toh(caps.finicsum);
4069 	cfcsum = be32toh(caps.cfcsum);	/* actual */
4070 	if (finicsum != cfcsum) {
4071 		device_printf(sc->dev,
4072 		    "WARNING: config file checksum mismatch: %08x %08x\n",
4073 		    finicsum, cfcsum);
4074 	}
4075 	sc->cfcsum = cfcsum;
4076 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
4077 
4078 	/*
4079 	 * Let the firmware know what features will (not) be used so it can tune
4080 	 * things accordingly.
4081 	 */
4082 #define LIMIT_CAPS(x) do { \
4083 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
4084 } while (0)
4085 	LIMIT_CAPS(nbm);
4086 	LIMIT_CAPS(link);
4087 	LIMIT_CAPS(switch);
4088 	LIMIT_CAPS(nic);
4089 	LIMIT_CAPS(toe);
4090 	LIMIT_CAPS(rdma);
4091 	LIMIT_CAPS(crypto);
4092 	LIMIT_CAPS(iscsi);
4093 	LIMIT_CAPS(fcoe);
4094 #undef LIMIT_CAPS
4095 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4096 		/*
4097 		 * TOE and hashfilters are mutually exclusive.  It is a config
4098 		 * file or firmware bug if both are reported as available.  Try
4099 		 * to cope with the situation in non-debug builds by disabling
4100 		 * TOE.
4101 		 */
4102 		MPASS(caps.toecaps == 0);
4103 
4104 		caps.toecaps = 0;
4105 		caps.rdmacaps = 0;
4106 		caps.iscsicaps = 0;
4107 	}
4108 
4109 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4110 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4111 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4112 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
4113 	if (rc != 0) {
4114 		device_printf(sc->dev,
4115 		    "failed to process config file: %d.\n", rc);
4116 		goto done;
4117 	}
4118 
4119 	t4_tweak_chip_settings(sc);
4120 	set_params__pre_init(sc);
4121 
4122 	/* get basic stuff going */
4123 	rc = -t4_fw_initialize(sc, sc->mbox);
4124 	if (rc != 0) {
4125 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
4126 		goto done;
4127 	}
4128 done:
4129 	return (rc);
4130 }
4131 
4132 /*
4133  * Partition chip resources for use between various PFs, VFs, etc.
4134  */
4135 static int
4136 partition_resources(struct adapter *sc)
4137 {
4138 	char cfg_file[sizeof(t4_cfg_file)];
4139 	struct caps_allowed caps_allowed;
4140 	int rc;
4141 	bool fallback;
4142 
4143 	/* Only the master driver gets to configure the chip resources. */
4144 	MPASS(sc->flags & MASTER_PF);
4145 
4146 #define COPY_CAPS(x) do { \
4147 	caps_allowed.x##caps = t4_##x##caps_allowed; \
4148 } while (0)
4149 	bzero(&caps_allowed, sizeof(caps_allowed));
4150 	COPY_CAPS(nbm);
4151 	COPY_CAPS(link);
4152 	COPY_CAPS(switch);
4153 	COPY_CAPS(nic);
4154 	COPY_CAPS(toe);
4155 	COPY_CAPS(rdma);
4156 	COPY_CAPS(crypto);
4157 	COPY_CAPS(iscsi);
4158 	COPY_CAPS(fcoe);
4159 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4160 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4161 retry:
4162 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
4163 	if (rc != 0 && fallback) {
4164 		device_printf(sc->dev,
4165 		    "failed (%d) to configure card with \"%s\" profile, "
4166 		    "will fall back to a basic configuration and retry.\n",
4167 		    rc, cfg_file);
4168 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
4169 		bzero(&caps_allowed, sizeof(caps_allowed));
4170 		COPY_CAPS(switch);
4171 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
4172 		fallback = false;
4173 		goto retry;
4174 	}
4175 #undef COPY_CAPS
4176 	return (rc);
4177 }
4178 
4179 /*
4180  * Retrieve parameters that are needed (or nice to have) very early.
4181  */
4182 static int
4183 get_params__pre_init(struct adapter *sc)
4184 {
4185 	int rc;
4186 	uint32_t param[2], val[2];
4187 
4188 	t4_get_version_info(sc);
4189 
4190 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
4191 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
4192 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
4193 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
4194 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
4195 
4196 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
4197 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
4198 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
4199 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
4200 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
4201 
4202 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
4203 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
4204 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
4205 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
4206 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
4207 
4208 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
4209 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
4210 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
4211 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
4212 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
4213 
4214 	param[0] = FW_PARAM_DEV(PORTVEC);
4215 	param[1] = FW_PARAM_DEV(CCLK);
4216 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4217 	if (rc != 0) {
4218 		device_printf(sc->dev,
4219 		    "failed to query parameters (pre_init): %d.\n", rc);
4220 		return (rc);
4221 	}
4222 
4223 	sc->params.portvec = val[0];
4224 	sc->params.nports = bitcount32(val[0]);
4225 	sc->params.vpd.cclk = val[1];
4226 
4227 	/* Read device log parameters. */
4228 	rc = -t4_init_devlog_params(sc, 1);
4229 	if (rc == 0)
4230 		fixup_devlog_params(sc);
4231 	else {
4232 		device_printf(sc->dev,
4233 		    "failed to get devlog parameters: %d.\n", rc);
4234 		rc = 0;	/* devlog isn't critical for device operation */
4235 	}
4236 
4237 	return (rc);
4238 }
4239 
4240 /*
4241  * Any params that need to be set before FW_INITIALIZE.
4242  */
4243 static int
4244 set_params__pre_init(struct adapter *sc)
4245 {
4246 	int rc = 0;
4247 	uint32_t param, val;
4248 
4249 	if (chip_id(sc) >= CHELSIO_T6) {
4250 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
4251 		val = 1;
4252 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4253 		/* firmwares < 1.20.1.0 do not have this param. */
4254 		if (rc == FW_EINVAL &&
4255 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
4256 			rc = 0;
4257 		}
4258 		if (rc != 0) {
4259 			device_printf(sc->dev,
4260 			    "failed to enable high priority filters :%d.\n",
4261 			    rc);
4262 		}
4263 	}
4264 
4265 	/* Enable opaque VIIDs with firmwares that support it. */
4266 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4267 	val = 1;
4268 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4269 	if (rc == 0 && val == 1)
4270 		sc->params.viid_smt_extn_support = true;
4271 	else
4272 		sc->params.viid_smt_extn_support = false;
4273 
4274 	return (rc);
4275 }
4276 
4277 /*
4278  * Retrieve various parameters that are of interest to the driver.  The device
4279  * has been initialized by the firmware at this point.
4280  */
4281 static int
4282 get_params__post_init(struct adapter *sc)
4283 {
4284 	int rc;
4285 	uint32_t param[7], val[7];
4286 	struct fw_caps_config_cmd caps;
4287 
4288 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
4289 	param[1] = FW_PARAM_PFVF(EQ_START);
4290 	param[2] = FW_PARAM_PFVF(FILTER_START);
4291 	param[3] = FW_PARAM_PFVF(FILTER_END);
4292 	param[4] = FW_PARAM_PFVF(L2T_START);
4293 	param[5] = FW_PARAM_PFVF(L2T_END);
4294 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4295 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
4296 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
4297 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
4298 	if (rc != 0) {
4299 		device_printf(sc->dev,
4300 		    "failed to query parameters (post_init): %d.\n", rc);
4301 		return (rc);
4302 	}
4303 
4304 	sc->sge.iq_start = val[0];
4305 	sc->sge.eq_start = val[1];
4306 	if ((int)val[3] > (int)val[2]) {
4307 		sc->tids.ftid_base = val[2];
4308 		sc->tids.ftid_end = val[3];
4309 		sc->tids.nftids = val[3] - val[2] + 1;
4310 	}
4311 	sc->vres.l2t.start = val[4];
4312 	sc->vres.l2t.size = val[5] - val[4] + 1;
4313 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
4314 	    ("%s: L2 table size (%u) larger than expected (%u)",
4315 	    __func__, sc->vres.l2t.size, L2T_SIZE));
4316 	sc->params.core_vdd = val[6];
4317 
4318 	if (chip_id(sc) >= CHELSIO_T6) {
4319 
4320 		sc->tids.tid_base = t4_read_reg(sc,
4321 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
4322 
4323 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
4324 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
4325 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4326 		if (rc != 0) {
4327 			device_printf(sc->dev,
4328 			   "failed to query hpfilter parameters: %d.\n", rc);
4329 			return (rc);
4330 		}
4331 		if ((int)val[1] > (int)val[0]) {
4332 			sc->tids.hpftid_base = val[0];
4333 			sc->tids.hpftid_end = val[1];
4334 			sc->tids.nhpftids = val[1] - val[0] + 1;
4335 
4336 			/*
4337 			 * These should go off if the layout changes and the
4338 			 * driver needs to catch up.
4339 			 */
4340 			MPASS(sc->tids.hpftid_base == 0);
4341 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
4342 		}
4343 	}
4344 
4345 	/*
4346 	 * MPSBGMAP is queried separately because only recent firmwares support
4347 	 * it as a parameter and we don't want the compound query above to fail
4348 	 * on older firmwares.
4349 	 */
4350 	param[0] = FW_PARAM_DEV(MPSBGMAP);
4351 	val[0] = 0;
4352 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4353 	if (rc == 0)
4354 		sc->params.mps_bg_map = val[0];
4355 	else
4356 		sc->params.mps_bg_map = 0;
4357 
4358 	/*
4359 	 * Determine whether the firmware supports the filter2 work request.
4360 	 * This is queried separately for the same reason as MPSBGMAP above.
4361 	 */
4362 	param[0] = FW_PARAM_DEV(FILTER2_WR);
4363 	val[0] = 0;
4364 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4365 	if (rc == 0)
4366 		sc->params.filter2_wr_support = val[0] != 0;
4367 	else
4368 		sc->params.filter2_wr_support = 0;
4369 
4370 	/*
4371 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
4372 	 * This is queried separately for the same reason as other params above.
4373 	 */
4374 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4375 	val[0] = 0;
4376 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4377 	if (rc == 0)
4378 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
4379 	else
4380 		sc->params.ulptx_memwrite_dsgl = false;
4381 
4382 	/* get capabilites */
4383 	bzero(&caps, sizeof(caps));
4384 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4385 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4386 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4387 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4388 	if (rc != 0) {
4389 		device_printf(sc->dev,
4390 		    "failed to get card capabilities: %d.\n", rc);
4391 		return (rc);
4392 	}
4393 
4394 #define READ_CAPS(x) do { \
4395 	sc->x = htobe16(caps.x); \
4396 } while (0)
4397 	READ_CAPS(nbmcaps);
4398 	READ_CAPS(linkcaps);
4399 	READ_CAPS(switchcaps);
4400 	READ_CAPS(niccaps);
4401 	READ_CAPS(toecaps);
4402 	READ_CAPS(rdmacaps);
4403 	READ_CAPS(cryptocaps);
4404 	READ_CAPS(iscsicaps);
4405 	READ_CAPS(fcoecaps);
4406 
4407 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
4408 		MPASS(chip_id(sc) > CHELSIO_T4);
4409 		MPASS(sc->toecaps == 0);
4410 		sc->toecaps = 0;
4411 
4412 		param[0] = FW_PARAM_DEV(NTID);
4413 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4414 		if (rc != 0) {
4415 			device_printf(sc->dev,
4416 			    "failed to query HASHFILTER parameters: %d.\n", rc);
4417 			return (rc);
4418 		}
4419 		sc->tids.ntids = val[0];
4420 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
4421 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4422 			sc->tids.ntids -= sc->tids.nhpftids;
4423 		}
4424 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4425 		sc->params.hash_filter = 1;
4426 	}
4427 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
4428 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
4429 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
4430 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4431 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
4432 		if (rc != 0) {
4433 			device_printf(sc->dev,
4434 			    "failed to query NIC parameters: %d.\n", rc);
4435 			return (rc);
4436 		}
4437 		if ((int)val[1] > (int)val[0]) {
4438 			sc->tids.etid_base = val[0];
4439 			sc->tids.etid_end = val[1];
4440 			sc->tids.netids = val[1] - val[0] + 1;
4441 			sc->params.eo_wr_cred = val[2];
4442 			sc->params.ethoffload = 1;
4443 		}
4444 	}
4445 	if (sc->toecaps) {
4446 		/* query offload-related parameters */
4447 		param[0] = FW_PARAM_DEV(NTID);
4448 		param[1] = FW_PARAM_PFVF(SERVER_START);
4449 		param[2] = FW_PARAM_PFVF(SERVER_END);
4450 		param[3] = FW_PARAM_PFVF(TDDP_START);
4451 		param[4] = FW_PARAM_PFVF(TDDP_END);
4452 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4453 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4454 		if (rc != 0) {
4455 			device_printf(sc->dev,
4456 			    "failed to query TOE parameters: %d.\n", rc);
4457 			return (rc);
4458 		}
4459 		sc->tids.ntids = val[0];
4460 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
4461 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4462 			sc->tids.ntids -= sc->tids.nhpftids;
4463 		}
4464 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4465 		if ((int)val[2] > (int)val[1]) {
4466 			sc->tids.stid_base = val[1];
4467 			sc->tids.nstids = val[2] - val[1] + 1;
4468 		}
4469 		sc->vres.ddp.start = val[3];
4470 		sc->vres.ddp.size = val[4] - val[3] + 1;
4471 		sc->params.ofldq_wr_cred = val[5];
4472 		sc->params.offload = 1;
4473 	} else {
4474 		/*
4475 		 * The firmware attempts memfree TOE configuration for -SO cards
4476 		 * and will report toecaps=0 if it runs out of resources (this
4477 		 * depends on the config file).  It may not report 0 for other
4478 		 * capabilities dependent on the TOE in this case.  Set them to
4479 		 * 0 here so that the driver doesn't bother tracking resources
4480 		 * that will never be used.
4481 		 */
4482 		sc->iscsicaps = 0;
4483 		sc->rdmacaps = 0;
4484 	}
4485 	if (sc->rdmacaps) {
4486 		param[0] = FW_PARAM_PFVF(STAG_START);
4487 		param[1] = FW_PARAM_PFVF(STAG_END);
4488 		param[2] = FW_PARAM_PFVF(RQ_START);
4489 		param[3] = FW_PARAM_PFVF(RQ_END);
4490 		param[4] = FW_PARAM_PFVF(PBL_START);
4491 		param[5] = FW_PARAM_PFVF(PBL_END);
4492 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4493 		if (rc != 0) {
4494 			device_printf(sc->dev,
4495 			    "failed to query RDMA parameters(1): %d.\n", rc);
4496 			return (rc);
4497 		}
4498 		sc->vres.stag.start = val[0];
4499 		sc->vres.stag.size = val[1] - val[0] + 1;
4500 		sc->vres.rq.start = val[2];
4501 		sc->vres.rq.size = val[3] - val[2] + 1;
4502 		sc->vres.pbl.start = val[4];
4503 		sc->vres.pbl.size = val[5] - val[4] + 1;
4504 
4505 		param[0] = FW_PARAM_PFVF(SQRQ_START);
4506 		param[1] = FW_PARAM_PFVF(SQRQ_END);
4507 		param[2] = FW_PARAM_PFVF(CQ_START);
4508 		param[3] = FW_PARAM_PFVF(CQ_END);
4509 		param[4] = FW_PARAM_PFVF(OCQ_START);
4510 		param[5] = FW_PARAM_PFVF(OCQ_END);
4511 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4512 		if (rc != 0) {
4513 			device_printf(sc->dev,
4514 			    "failed to query RDMA parameters(2): %d.\n", rc);
4515 			return (rc);
4516 		}
4517 		sc->vres.qp.start = val[0];
4518 		sc->vres.qp.size = val[1] - val[0] + 1;
4519 		sc->vres.cq.start = val[2];
4520 		sc->vres.cq.size = val[3] - val[2] + 1;
4521 		sc->vres.ocq.start = val[4];
4522 		sc->vres.ocq.size = val[5] - val[4] + 1;
4523 
4524 		param[0] = FW_PARAM_PFVF(SRQ_START);
4525 		param[1] = FW_PARAM_PFVF(SRQ_END);
4526 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
4527 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4528 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
4529 		if (rc != 0) {
4530 			device_printf(sc->dev,
4531 			    "failed to query RDMA parameters(3): %d.\n", rc);
4532 			return (rc);
4533 		}
4534 		sc->vres.srq.start = val[0];
4535 		sc->vres.srq.size = val[1] - val[0] + 1;
4536 		sc->params.max_ordird_qp = val[2];
4537 		sc->params.max_ird_adapter = val[3];
4538 	}
4539 	if (sc->iscsicaps) {
4540 		param[0] = FW_PARAM_PFVF(ISCSI_START);
4541 		param[1] = FW_PARAM_PFVF(ISCSI_END);
4542 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4543 		if (rc != 0) {
4544 			device_printf(sc->dev,
4545 			    "failed to query iSCSI parameters: %d.\n", rc);
4546 			return (rc);
4547 		}
4548 		sc->vres.iscsi.start = val[0];
4549 		sc->vres.iscsi.size = val[1] - val[0] + 1;
4550 	}
4551 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
4552 		param[0] = FW_PARAM_PFVF(TLS_START);
4553 		param[1] = FW_PARAM_PFVF(TLS_END);
4554 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4555 		if (rc != 0) {
4556 			device_printf(sc->dev,
4557 			    "failed to query TLS parameters: %d.\n", rc);
4558 			return (rc);
4559 		}
4560 		sc->vres.key.start = val[0];
4561 		sc->vres.key.size = val[1] - val[0] + 1;
4562 	}
4563 
4564 	t4_init_sge_params(sc);
4565 
4566 	/*
4567 	 * We've got the params we wanted to query via the firmware.  Now grab
4568 	 * some others directly from the chip.
4569 	 */
4570 	rc = t4_read_chip_settings(sc);
4571 
4572 	return (rc);
4573 }
4574 
4575 #ifdef KERN_TLS
4576 static void
4577 ktls_tick(void *arg)
4578 {
4579 	struct adapter *sc;
4580 	uint32_t tstamp;
4581 
4582 	sc = arg;
4583 
4584 	tstamp = tcp_ts_getticks();
4585 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
4586 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
4587 
4588 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
4589 }
4590 
4591 static void
4592 t4_enable_kern_tls(struct adapter *sc)
4593 {
4594 	uint32_t m, v;
4595 
4596 	m = F_ENABLECBYP;
4597 	v = F_ENABLECBYP;
4598 	t4_set_reg_field(sc, A_TP_PARA_REG6, m, v);
4599 
4600 	m = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN;
4601 	v = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN;
4602 	t4_set_reg_field(sc, A_ULP_TX_CONFIG, m, v);
4603 
4604 	m = F_NICMODE;
4605 	v = F_NICMODE;
4606 	t4_set_reg_field(sc, A_TP_IN_CONFIG, m, v);
4607 
4608 	m = F_LOOKUPEVERYPKT;
4609 	v = 0;
4610 	t4_set_reg_field(sc, A_TP_INGRESS_CONFIG, m, v);
4611 
4612 	m = F_TXDEFERENABLE | F_DISABLEWINDOWPSH | F_DISABLESEPPSHFLAG;
4613 	v = F_DISABLEWINDOWPSH;
4614 	t4_set_reg_field(sc, A_TP_PC_CONFIG, m, v);
4615 
4616 	m = V_TIMESTAMPRESOLUTION(M_TIMESTAMPRESOLUTION);
4617 	v = V_TIMESTAMPRESOLUTION(0x1f);
4618 	t4_set_reg_field(sc, A_TP_TIMER_RESOLUTION, m, v);
4619 
4620 	sc->flags |= KERN_TLS_OK;
4621 
4622 	sc->tlst.inline_keys = t4_tls_inline_keys;
4623 	sc->tlst.combo_wrs = t4_tls_combo_wrs;
4624 }
4625 #endif
4626 
4627 static int
4628 set_params__post_init(struct adapter *sc)
4629 {
4630 	uint32_t param, val;
4631 #ifdef TCP_OFFLOAD
4632 	int i, v, shift;
4633 #endif
4634 
4635 	/* ask for encapsulated CPLs */
4636 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4637 	val = 1;
4638 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4639 
4640 	/* Enable 32b port caps if the firmware supports it. */
4641 	param = FW_PARAM_PFVF(PORT_CAPS32);
4642 	val = 1;
4643 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
4644 		sc->params.port_caps32 = 1;
4645 
4646 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
4647 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
4648 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
4649 	    V_MASKFILTER(val - 1));
4650 
4651 #ifdef TCP_OFFLOAD
4652 	/*
4653 	 * Override the TOE timers with user provided tunables.  This is not the
4654 	 * recommended way to change the timers (the firmware config file is) so
4655 	 * these tunables are not documented.
4656 	 *
4657 	 * All the timer tunables are in microseconds.
4658 	 */
4659 	if (t4_toe_keepalive_idle != 0) {
4660 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
4661 		v &= M_KEEPALIVEIDLE;
4662 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
4663 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
4664 	}
4665 	if (t4_toe_keepalive_interval != 0) {
4666 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
4667 		v &= M_KEEPALIVEINTVL;
4668 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
4669 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
4670 	}
4671 	if (t4_toe_keepalive_count != 0) {
4672 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
4673 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4674 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
4675 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
4676 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
4677 	}
4678 	if (t4_toe_rexmt_min != 0) {
4679 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
4680 		v &= M_RXTMIN;
4681 		t4_set_reg_field(sc, A_TP_RXT_MIN,
4682 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
4683 	}
4684 	if (t4_toe_rexmt_max != 0) {
4685 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
4686 		v &= M_RXTMAX;
4687 		t4_set_reg_field(sc, A_TP_RXT_MAX,
4688 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
4689 	}
4690 	if (t4_toe_rexmt_count != 0) {
4691 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
4692 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4693 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
4694 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
4695 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
4696 	}
4697 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
4698 		if (t4_toe_rexmt_backoff[i] != -1) {
4699 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
4700 			shift = (i & 3) << 3;
4701 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
4702 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
4703 		}
4704 	}
4705 #endif
4706 
4707 #ifdef KERN_TLS
4708 	if (t4_kern_tls != 0 && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
4709 	    sc->toecaps & FW_CAPS_CONFIG_TOE)
4710 		t4_enable_kern_tls(sc);
4711 #endif
4712 	return (0);
4713 }
4714 
4715 #undef FW_PARAM_PFVF
4716 #undef FW_PARAM_DEV
4717 
4718 static void
4719 t4_set_desc(struct adapter *sc)
4720 {
4721 	char buf[128];
4722 	struct adapter_params *p = &sc->params;
4723 
4724 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
4725 
4726 	device_set_desc_copy(sc->dev, buf);
4727 }
4728 
4729 static inline void
4730 ifmedia_add4(struct ifmedia *ifm, int m)
4731 {
4732 
4733 	ifmedia_add(ifm, m, 0, NULL);
4734 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
4735 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
4736 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
4737 }
4738 
4739 /*
4740  * This is the selected media, which is not quite the same as the active media.
4741  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
4742  * and active are not the same, and "media: Ethernet selected" otherwise.
4743  */
4744 static void
4745 set_current_media(struct port_info *pi)
4746 {
4747 	struct link_config *lc;
4748 	struct ifmedia *ifm;
4749 	int mword;
4750 	u_int speed;
4751 
4752 	PORT_LOCK_ASSERT_OWNED(pi);
4753 
4754 	/* Leave current media alone if it's already set to IFM_NONE. */
4755 	ifm = &pi->media;
4756 	if (ifm->ifm_cur != NULL &&
4757 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
4758 		return;
4759 
4760 	lc = &pi->link_cfg;
4761 	if (lc->requested_aneg != AUTONEG_DISABLE &&
4762 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
4763 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
4764 		return;
4765 	}
4766 	mword = IFM_ETHER | IFM_FDX;
4767 	if (lc->requested_fc & PAUSE_TX)
4768 		mword |= IFM_ETH_TXPAUSE;
4769 	if (lc->requested_fc & PAUSE_RX)
4770 		mword |= IFM_ETH_RXPAUSE;
4771 	if (lc->requested_speed == 0)
4772 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
4773 	else
4774 		speed = lc->requested_speed;
4775 	mword |= port_mword(pi, speed_to_fwcap(speed));
4776 	ifmedia_set(ifm, mword);
4777 }
4778 
4779 /*
4780  * Returns true if the ifmedia list for the port cannot change.
4781  */
4782 static bool
4783 fixed_ifmedia(struct port_info *pi)
4784 {
4785 
4786 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
4787 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
4788 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
4789 	    pi->port_type == FW_PORT_TYPE_KX4 ||
4790 	    pi->port_type == FW_PORT_TYPE_KX ||
4791 	    pi->port_type == FW_PORT_TYPE_KR ||
4792 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
4793 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
4794 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
4795 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
4796 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
4797 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
4798 }
4799 
4800 static void
4801 build_medialist(struct port_info *pi)
4802 {
4803 	uint32_t ss, speed;
4804 	int unknown, mword, bit;
4805 	struct link_config *lc;
4806 	struct ifmedia *ifm;
4807 
4808 	PORT_LOCK_ASSERT_OWNED(pi);
4809 
4810 	if (pi->flags & FIXED_IFMEDIA)
4811 		return;
4812 
4813 	/*
4814 	 * Rebuild the ifmedia list.
4815 	 */
4816 	ifm = &pi->media;
4817 	ifmedia_removeall(ifm);
4818 	lc = &pi->link_cfg;
4819 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
4820 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
4821 		MPASS(ss != 0);
4822 no_media:
4823 		MPASS(LIST_EMPTY(&ifm->ifm_list));
4824 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
4825 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
4826 		return;
4827 	}
4828 
4829 	unknown = 0;
4830 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
4831 		speed = 1 << bit;
4832 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
4833 		if (ss & speed) {
4834 			mword = port_mword(pi, speed);
4835 			if (mword == IFM_NONE) {
4836 				goto no_media;
4837 			} else if (mword == IFM_UNKNOWN)
4838 				unknown++;
4839 			else
4840 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
4841 		}
4842 	}
4843 	if (unknown > 0) /* Add one unknown for all unknown media types. */
4844 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
4845 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
4846 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
4847 
4848 	set_current_media(pi);
4849 }
4850 
4851 /*
4852  * Initialize the requested fields in the link config based on driver tunables.
4853  */
4854 static void
4855 init_link_config(struct port_info *pi)
4856 {
4857 	struct link_config *lc = &pi->link_cfg;
4858 
4859 	PORT_LOCK_ASSERT_OWNED(pi);
4860 
4861 	lc->requested_speed = 0;
4862 
4863 	if (t4_autoneg == 0)
4864 		lc->requested_aneg = AUTONEG_DISABLE;
4865 	else if (t4_autoneg == 1)
4866 		lc->requested_aneg = AUTONEG_ENABLE;
4867 	else
4868 		lc->requested_aneg = AUTONEG_AUTO;
4869 
4870 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
4871 	    PAUSE_AUTONEG);
4872 
4873 	if (t4_fec & FEC_AUTO)
4874 		lc->requested_fec = FEC_AUTO;
4875 	else if (t4_fec == 0)
4876 		lc->requested_fec = FEC_NONE;
4877 	else {
4878 		/* -1 is handled by the FEC_AUTO block above and not here. */
4879 		lc->requested_fec = t4_fec &
4880 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
4881 		if (lc->requested_fec == 0)
4882 			lc->requested_fec = FEC_AUTO;
4883 	}
4884 }
4885 
4886 /*
4887  * Makes sure that all requested settings comply with what's supported by the
4888  * port.  Returns the number of settings that were invalid and had to be fixed.
4889  */
4890 static int
4891 fixup_link_config(struct port_info *pi)
4892 {
4893 	int n = 0;
4894 	struct link_config *lc = &pi->link_cfg;
4895 	uint32_t fwspeed;
4896 
4897 	PORT_LOCK_ASSERT_OWNED(pi);
4898 
4899 	/* Speed (when not autonegotiating) */
4900 	if (lc->requested_speed != 0) {
4901 		fwspeed = speed_to_fwcap(lc->requested_speed);
4902 		if ((fwspeed & lc->pcaps) == 0) {
4903 			n++;
4904 			lc->requested_speed = 0;
4905 		}
4906 	}
4907 
4908 	/* Link autonegotiation */
4909 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
4910 	    lc->requested_aneg == AUTONEG_DISABLE ||
4911 	    lc->requested_aneg == AUTONEG_AUTO);
4912 	if (lc->requested_aneg == AUTONEG_ENABLE &&
4913 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4914 		n++;
4915 		lc->requested_aneg = AUTONEG_AUTO;
4916 	}
4917 
4918 	/* Flow control */
4919 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
4920 	if (lc->requested_fc & PAUSE_TX &&
4921 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
4922 		n++;
4923 		lc->requested_fc &= ~PAUSE_TX;
4924 	}
4925 	if (lc->requested_fc & PAUSE_RX &&
4926 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
4927 		n++;
4928 		lc->requested_fc &= ~PAUSE_RX;
4929 	}
4930 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
4931 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
4932 		n++;
4933 		lc->requested_fc |= PAUSE_AUTONEG;
4934 	}
4935 
4936 	/* FEC */
4937 	if ((lc->requested_fec & FEC_RS &&
4938 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
4939 	    (lc->requested_fec & FEC_BASER_RS &&
4940 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
4941 		n++;
4942 		lc->requested_fec = FEC_AUTO;
4943 	}
4944 
4945 	return (n);
4946 }
4947 
4948 /*
4949  * Apply the requested L1 settings, which are expected to be valid, to the
4950  * hardware.
4951  */
4952 static int
4953 apply_link_config(struct port_info *pi)
4954 {
4955 	struct adapter *sc = pi->adapter;
4956 	struct link_config *lc = &pi->link_cfg;
4957 	int rc;
4958 
4959 #ifdef INVARIANTS
4960 	ASSERT_SYNCHRONIZED_OP(sc);
4961 	PORT_LOCK_ASSERT_OWNED(pi);
4962 
4963 	if (lc->requested_aneg == AUTONEG_ENABLE)
4964 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
4965 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4966 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
4967 	if (lc->requested_fc & PAUSE_TX)
4968 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
4969 	if (lc->requested_fc & PAUSE_RX)
4970 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
4971 	if (lc->requested_fec & FEC_RS)
4972 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
4973 	if (lc->requested_fec & FEC_BASER_RS)
4974 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
4975 #endif
4976 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4977 	if (rc != 0) {
4978 		/* Don't complain if the VF driver gets back an EPERM. */
4979 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
4980 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4981 	} else {
4982 		/*
4983 		 * An L1_CFG will almost always result in a link-change event if
4984 		 * the link is up, and the driver will refresh the actual
4985 		 * fec/fc/etc. when the notification is processed.  If the link
4986 		 * is down then the actual settings are meaningless.
4987 		 *
4988 		 * This takes care of the case where a change in the L1 settings
4989 		 * may not result in a notification.
4990 		 */
4991 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
4992 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
4993 	}
4994 	return (rc);
4995 }
4996 
4997 #define FW_MAC_EXACT_CHUNK	7
4998 struct mcaddr_ctx {
4999 	struct ifnet *ifp;
5000 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
5001 	uint64_t hash;
5002 	int i;
5003 	int del;
5004 	int rc;
5005 };
5006 
5007 static u_int
5008 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
5009 {
5010 	struct mcaddr_ctx *ctx = arg;
5011 	struct vi_info *vi = ctx->ifp->if_softc;
5012 	struct port_info *pi = vi->pi;
5013 	struct adapter *sc = pi->adapter;
5014 
5015 	if (ctx->rc < 0)
5016 		return (0);
5017 
5018 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
5019 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
5020 	ctx->i++;
5021 
5022 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
5023 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
5024 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
5025 		if (ctx->rc < 0) {
5026 			int j;
5027 
5028 			for (j = 0; j < ctx->i; j++) {
5029 				if_printf(ctx->ifp,
5030 				    "failed to add mc address"
5031 				    " %02x:%02x:%02x:"
5032 				    "%02x:%02x:%02x rc=%d\n",
5033 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
5034 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
5035 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
5036 				    -ctx->rc);
5037 			}
5038 			return (0);
5039 		}
5040 		ctx->del = 0;
5041 		ctx->i = 0;
5042 	}
5043 
5044 	return (1);
5045 }
5046 
5047 /*
5048  * Program the port's XGMAC based on parameters in ifnet.  The caller also
5049  * indicates which parameters should be programmed (the rest are left alone).
5050  */
5051 int
5052 update_mac_settings(struct ifnet *ifp, int flags)
5053 {
5054 	int rc = 0;
5055 	struct vi_info *vi = ifp->if_softc;
5056 	struct port_info *pi = vi->pi;
5057 	struct adapter *sc = pi->adapter;
5058 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
5059 
5060 	ASSERT_SYNCHRONIZED_OP(sc);
5061 	KASSERT(flags, ("%s: not told what to update.", __func__));
5062 
5063 	if (flags & XGMAC_MTU)
5064 		mtu = ifp->if_mtu;
5065 
5066 	if (flags & XGMAC_PROMISC)
5067 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
5068 
5069 	if (flags & XGMAC_ALLMULTI)
5070 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
5071 
5072 	if (flags & XGMAC_VLANEX)
5073 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
5074 
5075 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
5076 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
5077 		    allmulti, 1, vlanex, false);
5078 		if (rc) {
5079 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
5080 			    rc);
5081 			return (rc);
5082 		}
5083 	}
5084 
5085 	if (flags & XGMAC_UCADDR) {
5086 		uint8_t ucaddr[ETHER_ADDR_LEN];
5087 
5088 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
5089 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
5090 		    ucaddr, true, &vi->smt_idx);
5091 		if (rc < 0) {
5092 			rc = -rc;
5093 			if_printf(ifp, "change_mac failed: %d\n", rc);
5094 			return (rc);
5095 		} else {
5096 			vi->xact_addr_filt = rc;
5097 			rc = 0;
5098 		}
5099 	}
5100 
5101 	if (flags & XGMAC_MCADDRS) {
5102 		struct epoch_tracker et;
5103 		struct mcaddr_ctx ctx;
5104 		int j;
5105 
5106 		ctx.ifp = ifp;
5107 		ctx.hash = 0;
5108 		ctx.i = 0;
5109 		ctx.del = 1;
5110 		ctx.rc = 0;
5111 		/*
5112 		 * Unlike other drivers, we accumulate list of pointers into
5113 		 * interface address lists and we need to keep it safe even
5114 		 * after if_foreach_llmaddr() returns, thus we must enter the
5115 		 * network epoch.
5116 		 */
5117 		NET_EPOCH_ENTER(et);
5118 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
5119 		if (ctx.rc < 0) {
5120 			NET_EPOCH_EXIT(et);
5121 			rc = -ctx.rc;
5122 			return (rc);
5123 		}
5124 		if (ctx.i > 0) {
5125 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
5126 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
5127 			NET_EPOCH_EXIT(et);
5128 			if (rc < 0) {
5129 				rc = -rc;
5130 				for (j = 0; j < ctx.i; j++) {
5131 					if_printf(ifp,
5132 					    "failed to add mc address"
5133 					    " %02x:%02x:%02x:"
5134 					    "%02x:%02x:%02x rc=%d\n",
5135 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
5136 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
5137 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
5138 					    rc);
5139 				}
5140 				return (rc);
5141 			}
5142 		} else
5143 			NET_EPOCH_EXIT(et);
5144 
5145 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
5146 		if (rc != 0)
5147 			if_printf(ifp, "failed to set mc address hash: %d", rc);
5148 	}
5149 
5150 	return (rc);
5151 }
5152 
5153 /*
5154  * {begin|end}_synchronized_op must be called from the same thread.
5155  */
5156 int
5157 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
5158     char *wmesg)
5159 {
5160 	int rc, pri;
5161 
5162 #ifdef WITNESS
5163 	/* the caller thinks it's ok to sleep, but is it really? */
5164 	if (flags & SLEEP_OK)
5165 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
5166 		    "begin_synchronized_op");
5167 #endif
5168 
5169 	if (INTR_OK)
5170 		pri = PCATCH;
5171 	else
5172 		pri = 0;
5173 
5174 	ADAPTER_LOCK(sc);
5175 	for (;;) {
5176 
5177 		if (vi && IS_DOOMED(vi)) {
5178 			rc = ENXIO;
5179 			goto done;
5180 		}
5181 
5182 		if (!IS_BUSY(sc)) {
5183 			rc = 0;
5184 			break;
5185 		}
5186 
5187 		if (!(flags & SLEEP_OK)) {
5188 			rc = EBUSY;
5189 			goto done;
5190 		}
5191 
5192 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
5193 			rc = EINTR;
5194 			goto done;
5195 		}
5196 	}
5197 
5198 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
5199 	SET_BUSY(sc);
5200 #ifdef INVARIANTS
5201 	sc->last_op = wmesg;
5202 	sc->last_op_thr = curthread;
5203 	sc->last_op_flags = flags;
5204 #endif
5205 
5206 done:
5207 	if (!(flags & HOLD_LOCK) || rc)
5208 		ADAPTER_UNLOCK(sc);
5209 
5210 	return (rc);
5211 }
5212 
5213 /*
5214  * Tell if_ioctl and if_init that the VI is going away.  This is
5215  * special variant of begin_synchronized_op and must be paired with a
5216  * call to end_synchronized_op.
5217  */
5218 void
5219 doom_vi(struct adapter *sc, struct vi_info *vi)
5220 {
5221 
5222 	ADAPTER_LOCK(sc);
5223 	SET_DOOMED(vi);
5224 	wakeup(&sc->flags);
5225 	while (IS_BUSY(sc))
5226 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
5227 	SET_BUSY(sc);
5228 #ifdef INVARIANTS
5229 	sc->last_op = "t4detach";
5230 	sc->last_op_thr = curthread;
5231 	sc->last_op_flags = 0;
5232 #endif
5233 	ADAPTER_UNLOCK(sc);
5234 }
5235 
5236 /*
5237  * {begin|end}_synchronized_op must be called from the same thread.
5238  */
5239 void
5240 end_synchronized_op(struct adapter *sc, int flags)
5241 {
5242 
5243 	if (flags & LOCK_HELD)
5244 		ADAPTER_LOCK_ASSERT_OWNED(sc);
5245 	else
5246 		ADAPTER_LOCK(sc);
5247 
5248 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
5249 	CLR_BUSY(sc);
5250 	wakeup(&sc->flags);
5251 	ADAPTER_UNLOCK(sc);
5252 }
5253 
5254 static int
5255 cxgbe_init_synchronized(struct vi_info *vi)
5256 {
5257 	struct port_info *pi = vi->pi;
5258 	struct adapter *sc = pi->adapter;
5259 	struct ifnet *ifp = vi->ifp;
5260 	int rc = 0, i;
5261 	struct sge_txq *txq;
5262 
5263 	ASSERT_SYNCHRONIZED_OP(sc);
5264 
5265 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5266 		return (0);	/* already running */
5267 
5268 	if (!(sc->flags & FULL_INIT_DONE) &&
5269 	    ((rc = adapter_full_init(sc)) != 0))
5270 		return (rc);	/* error message displayed already */
5271 
5272 	if (!(vi->flags & VI_INIT_DONE) &&
5273 	    ((rc = vi_full_init(vi)) != 0))
5274 		return (rc); /* error message displayed already */
5275 
5276 	rc = update_mac_settings(ifp, XGMAC_ALL);
5277 	if (rc)
5278 		goto done;	/* error message displayed already */
5279 
5280 	PORT_LOCK(pi);
5281 	if (pi->up_vis == 0) {
5282 		t4_update_port_info(pi);
5283 		fixup_link_config(pi);
5284 		build_medialist(pi);
5285 		apply_link_config(pi);
5286 	}
5287 
5288 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
5289 	if (rc != 0) {
5290 		if_printf(ifp, "enable_vi failed: %d\n", rc);
5291 		PORT_UNLOCK(pi);
5292 		goto done;
5293 	}
5294 
5295 	/*
5296 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
5297 	 * if this changes.
5298 	 */
5299 
5300 	for_each_txq(vi, i, txq) {
5301 		TXQ_LOCK(txq);
5302 		txq->eq.flags |= EQ_ENABLED;
5303 		TXQ_UNLOCK(txq);
5304 	}
5305 
5306 	/*
5307 	 * The first iq of the first port to come up is used for tracing.
5308 	 */
5309 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
5310 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
5311 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
5312 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
5313 		    V_QUEUENUMBER(sc->traceq));
5314 		pi->flags |= HAS_TRACEQ;
5315 	}
5316 
5317 	/* all ok */
5318 	pi->up_vis++;
5319 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5320 
5321 	if (pi->nvi > 1 || sc->flags & IS_VF)
5322 		callout_reset(&vi->tick, hz, vi_tick, vi);
5323 	else
5324 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
5325 	if (pi->link_cfg.link_ok)
5326 		t4_os_link_changed(pi);
5327 	PORT_UNLOCK(pi);
5328 done:
5329 	if (rc != 0)
5330 		cxgbe_uninit_synchronized(vi);
5331 
5332 	return (rc);
5333 }
5334 
5335 /*
5336  * Idempotent.
5337  */
5338 static int
5339 cxgbe_uninit_synchronized(struct vi_info *vi)
5340 {
5341 	struct port_info *pi = vi->pi;
5342 	struct adapter *sc = pi->adapter;
5343 	struct ifnet *ifp = vi->ifp;
5344 	int rc, i;
5345 	struct sge_txq *txq;
5346 
5347 	ASSERT_SYNCHRONIZED_OP(sc);
5348 
5349 	if (!(vi->flags & VI_INIT_DONE)) {
5350 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5351 			KASSERT(0, ("uninited VI is running"));
5352 			if_printf(ifp, "uninited VI with running ifnet.  "
5353 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
5354 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
5355 			    ifp->if_drv_flags);
5356 		}
5357 		return (0);
5358 	}
5359 
5360 	/*
5361 	 * Disable the VI so that all its data in either direction is discarded
5362 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
5363 	 * tick) intact as the TP can deliver negative advice or data that it's
5364 	 * holding in its RAM (for an offloaded connection) even after the VI is
5365 	 * disabled.
5366 	 */
5367 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
5368 	if (rc) {
5369 		if_printf(ifp, "disable_vi failed: %d\n", rc);
5370 		return (rc);
5371 	}
5372 
5373 	for_each_txq(vi, i, txq) {
5374 		TXQ_LOCK(txq);
5375 		txq->eq.flags &= ~EQ_ENABLED;
5376 		TXQ_UNLOCK(txq);
5377 	}
5378 
5379 	PORT_LOCK(pi);
5380 	if (pi->nvi > 1 || sc->flags & IS_VF)
5381 		callout_stop(&vi->tick);
5382 	else
5383 		callout_stop(&pi->tick);
5384 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5385 		PORT_UNLOCK(pi);
5386 		return (0);
5387 	}
5388 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5389 	pi->up_vis--;
5390 	if (pi->up_vis > 0) {
5391 		PORT_UNLOCK(pi);
5392 		return (0);
5393 	}
5394 
5395 	pi->link_cfg.link_ok = false;
5396 	pi->link_cfg.speed = 0;
5397 	pi->link_cfg.link_down_rc = 255;
5398 	t4_os_link_changed(pi);
5399 	PORT_UNLOCK(pi);
5400 
5401 	return (0);
5402 }
5403 
5404 /*
5405  * It is ok for this function to fail midway and return right away.  t4_detach
5406  * will walk the entire sc->irq list and clean up whatever is valid.
5407  */
5408 int
5409 t4_setup_intr_handlers(struct adapter *sc)
5410 {
5411 	int rc, rid, p, q, v;
5412 	char s[8];
5413 	struct irq *irq;
5414 	struct port_info *pi;
5415 	struct vi_info *vi;
5416 	struct sge *sge = &sc->sge;
5417 	struct sge_rxq *rxq;
5418 #ifdef TCP_OFFLOAD
5419 	struct sge_ofld_rxq *ofld_rxq;
5420 #endif
5421 #ifdef DEV_NETMAP
5422 	struct sge_nm_rxq *nm_rxq;
5423 #endif
5424 #ifdef RSS
5425 	int nbuckets = rss_getnumbuckets();
5426 #endif
5427 
5428 	/*
5429 	 * Setup interrupts.
5430 	 */
5431 	irq = &sc->irq[0];
5432 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
5433 	if (forwarding_intr_to_fwq(sc))
5434 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
5435 
5436 	/* Multiple interrupts. */
5437 	if (sc->flags & IS_VF)
5438 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
5439 		    ("%s: too few intr.", __func__));
5440 	else
5441 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
5442 		    ("%s: too few intr.", __func__));
5443 
5444 	/* The first one is always error intr on PFs */
5445 	if (!(sc->flags & IS_VF)) {
5446 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
5447 		if (rc != 0)
5448 			return (rc);
5449 		irq++;
5450 		rid++;
5451 	}
5452 
5453 	/* The second one is always the firmware event queue (first on VFs) */
5454 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
5455 	if (rc != 0)
5456 		return (rc);
5457 	irq++;
5458 	rid++;
5459 
5460 	for_each_port(sc, p) {
5461 		pi = sc->port[p];
5462 		for_each_vi(pi, v, vi) {
5463 			vi->first_intr = rid - 1;
5464 
5465 			if (vi->nnmrxq > 0) {
5466 				int n = max(vi->nrxq, vi->nnmrxq);
5467 
5468 				rxq = &sge->rxq[vi->first_rxq];
5469 #ifdef DEV_NETMAP
5470 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
5471 #endif
5472 				for (q = 0; q < n; q++) {
5473 					snprintf(s, sizeof(s), "%x%c%x", p,
5474 					    'a' + v, q);
5475 					if (q < vi->nrxq)
5476 						irq->rxq = rxq++;
5477 #ifdef DEV_NETMAP
5478 					if (q < vi->nnmrxq)
5479 						irq->nm_rxq = nm_rxq++;
5480 
5481 					if (irq->nm_rxq != NULL &&
5482 					    irq->rxq == NULL) {
5483 						/* Netmap rx only */
5484 						rc = t4_alloc_irq(sc, irq, rid,
5485 						    t4_nm_intr, irq->nm_rxq, s);
5486 					}
5487 					if (irq->nm_rxq != NULL &&
5488 					    irq->rxq != NULL) {
5489 						/* NIC and Netmap rx */
5490 						rc = t4_alloc_irq(sc, irq, rid,
5491 						    t4_vi_intr, irq, s);
5492 					}
5493 #endif
5494 					if (irq->rxq != NULL &&
5495 					    irq->nm_rxq == NULL) {
5496 						/* NIC rx only */
5497 						rc = t4_alloc_irq(sc, irq, rid,
5498 						    t4_intr, irq->rxq, s);
5499 					}
5500 					if (rc != 0)
5501 						return (rc);
5502 #ifdef RSS
5503 					if (q < vi->nrxq) {
5504 						bus_bind_intr(sc->dev, irq->res,
5505 						    rss_getcpu(q % nbuckets));
5506 					}
5507 #endif
5508 					irq++;
5509 					rid++;
5510 					vi->nintr++;
5511 				}
5512 			} else {
5513 				for_each_rxq(vi, q, rxq) {
5514 					snprintf(s, sizeof(s), "%x%c%x", p,
5515 					    'a' + v, q);
5516 					rc = t4_alloc_irq(sc, irq, rid,
5517 					    t4_intr, rxq, s);
5518 					if (rc != 0)
5519 						return (rc);
5520 #ifdef RSS
5521 					bus_bind_intr(sc->dev, irq->res,
5522 					    rss_getcpu(q % nbuckets));
5523 #endif
5524 					irq++;
5525 					rid++;
5526 					vi->nintr++;
5527 				}
5528 			}
5529 #ifdef TCP_OFFLOAD
5530 			for_each_ofld_rxq(vi, q, ofld_rxq) {
5531 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
5532 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
5533 				    ofld_rxq, s);
5534 				if (rc != 0)
5535 					return (rc);
5536 				irq++;
5537 				rid++;
5538 				vi->nintr++;
5539 			}
5540 #endif
5541 		}
5542 	}
5543 	MPASS(irq == &sc->irq[sc->intr_count]);
5544 
5545 	return (0);
5546 }
5547 
5548 int
5549 adapter_full_init(struct adapter *sc)
5550 {
5551 	int rc, i;
5552 #ifdef RSS
5553 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5554 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5555 #endif
5556 
5557 	ASSERT_SYNCHRONIZED_OP(sc);
5558 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5559 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
5560 	    ("%s: FULL_INIT_DONE already", __func__));
5561 
5562 	/*
5563 	 * queues that belong to the adapter (not any particular port).
5564 	 */
5565 	rc = t4_setup_adapter_queues(sc);
5566 	if (rc != 0)
5567 		goto done;
5568 
5569 	for (i = 0; i < nitems(sc->tq); i++) {
5570 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
5571 		    taskqueue_thread_enqueue, &sc->tq[i]);
5572 		if (sc->tq[i] == NULL) {
5573 			device_printf(sc->dev,
5574 			    "failed to allocate task queue %d\n", i);
5575 			rc = ENOMEM;
5576 			goto done;
5577 		}
5578 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
5579 		    device_get_nameunit(sc->dev), i);
5580 	}
5581 #ifdef RSS
5582 	MPASS(RSS_KEYSIZE == 40);
5583 	rss_getkey((void *)&raw_rss_key[0]);
5584 	for (i = 0; i < nitems(rss_key); i++) {
5585 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
5586 	}
5587 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
5588 #endif
5589 
5590 	if (!(sc->flags & IS_VF))
5591 		t4_intr_enable(sc);
5592 #ifdef KERN_TLS
5593 	if (sc->flags & KERN_TLS_OK)
5594 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5595 		    C_HARDCLOCK);
5596 #endif
5597 	sc->flags |= FULL_INIT_DONE;
5598 done:
5599 	if (rc != 0)
5600 		adapter_full_uninit(sc);
5601 
5602 	return (rc);
5603 }
5604 
5605 int
5606 adapter_full_uninit(struct adapter *sc)
5607 {
5608 	int i;
5609 
5610 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5611 
5612 	t4_teardown_adapter_queues(sc);
5613 
5614 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
5615 		taskqueue_free(sc->tq[i]);
5616 		sc->tq[i] = NULL;
5617 	}
5618 
5619 	sc->flags &= ~FULL_INIT_DONE;
5620 
5621 	return (0);
5622 }
5623 
5624 #ifdef RSS
5625 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
5626     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
5627     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
5628     RSS_HASHTYPE_RSS_UDP_IPV6)
5629 
5630 /* Translates kernel hash types to hardware. */
5631 static int
5632 hashconfig_to_hashen(int hashconfig)
5633 {
5634 	int hashen = 0;
5635 
5636 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
5637 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
5638 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
5639 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
5640 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
5641 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5642 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5643 	}
5644 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
5645 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5646 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5647 	}
5648 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
5649 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5650 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
5651 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5652 
5653 	return (hashen);
5654 }
5655 
5656 /* Translates hardware hash types to kernel. */
5657 static int
5658 hashen_to_hashconfig(int hashen)
5659 {
5660 	int hashconfig = 0;
5661 
5662 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
5663 		/*
5664 		 * If UDP hashing was enabled it must have been enabled for
5665 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
5666 		 * enabling any 4-tuple hash is nonsense configuration.
5667 		 */
5668 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5669 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
5670 
5671 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5672 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
5673 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5674 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
5675 	}
5676 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5677 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
5678 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5679 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
5680 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
5681 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
5682 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
5683 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
5684 
5685 	return (hashconfig);
5686 }
5687 #endif
5688 
5689 int
5690 vi_full_init(struct vi_info *vi)
5691 {
5692 	struct adapter *sc = vi->pi->adapter;
5693 	struct ifnet *ifp = vi->ifp;
5694 	uint16_t *rss;
5695 	struct sge_rxq *rxq;
5696 	int rc, i, j;
5697 #ifdef RSS
5698 	int nbuckets = rss_getnumbuckets();
5699 	int hashconfig = rss_gethashconfig();
5700 	int extra;
5701 #endif
5702 
5703 	ASSERT_SYNCHRONIZED_OP(sc);
5704 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
5705 	    ("%s: VI_INIT_DONE already", __func__));
5706 
5707 	sysctl_ctx_init(&vi->ctx);
5708 	vi->flags |= VI_SYSCTL_CTX;
5709 
5710 	/*
5711 	 * Allocate tx/rx/fl queues for this VI.
5712 	 */
5713 	rc = t4_setup_vi_queues(vi);
5714 	if (rc != 0)
5715 		goto done;	/* error message displayed already */
5716 
5717 	/*
5718 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
5719 	 */
5720 	if (vi->nrxq > vi->rss_size) {
5721 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
5722 		    "some queues will never receive traffic.\n", vi->nrxq,
5723 		    vi->rss_size);
5724 	} else if (vi->rss_size % vi->nrxq) {
5725 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
5726 		    "expect uneven traffic distribution.\n", vi->nrxq,
5727 		    vi->rss_size);
5728 	}
5729 #ifdef RSS
5730 	if (vi->nrxq != nbuckets) {
5731 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
5732 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
5733 	}
5734 #endif
5735 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
5736 	for (i = 0; i < vi->rss_size;) {
5737 #ifdef RSS
5738 		j = rss_get_indirection_to_bucket(i);
5739 		j %= vi->nrxq;
5740 		rxq = &sc->sge.rxq[vi->first_rxq + j];
5741 		rss[i++] = rxq->iq.abs_id;
5742 #else
5743 		for_each_rxq(vi, j, rxq) {
5744 			rss[i++] = rxq->iq.abs_id;
5745 			if (i == vi->rss_size)
5746 				break;
5747 		}
5748 #endif
5749 	}
5750 
5751 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
5752 	    vi->rss_size);
5753 	if (rc != 0) {
5754 		free(rss, M_CXGBE);
5755 		if_printf(ifp, "rss_config failed: %d\n", rc);
5756 		goto done;
5757 	}
5758 
5759 #ifdef RSS
5760 	vi->hashen = hashconfig_to_hashen(hashconfig);
5761 
5762 	/*
5763 	 * We may have had to enable some hashes even though the global config
5764 	 * wants them disabled.  This is a potential problem that must be
5765 	 * reported to the user.
5766 	 */
5767 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
5768 
5769 	/*
5770 	 * If we consider only the supported hash types, then the enabled hashes
5771 	 * are a superset of the requested hashes.  In other words, there cannot
5772 	 * be any supported hash that was requested but not enabled, but there
5773 	 * can be hashes that were not requested but had to be enabled.
5774 	 */
5775 	extra &= SUPPORTED_RSS_HASHTYPES;
5776 	MPASS((extra & hashconfig) == 0);
5777 
5778 	if (extra) {
5779 		if_printf(ifp,
5780 		    "global RSS config (0x%x) cannot be accommodated.\n",
5781 		    hashconfig);
5782 	}
5783 	if (extra & RSS_HASHTYPE_RSS_IPV4)
5784 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
5785 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
5786 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
5787 	if (extra & RSS_HASHTYPE_RSS_IPV6)
5788 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
5789 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
5790 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
5791 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
5792 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
5793 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
5794 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
5795 #else
5796 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
5797 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
5798 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5799 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
5800 #endif
5801 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0);
5802 	if (rc != 0) {
5803 		free(rss, M_CXGBE);
5804 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
5805 		goto done;
5806 	}
5807 
5808 	vi->rss = rss;
5809 	vi->flags |= VI_INIT_DONE;
5810 done:
5811 	if (rc != 0)
5812 		vi_full_uninit(vi);
5813 
5814 	return (rc);
5815 }
5816 
5817 /*
5818  * Idempotent.
5819  */
5820 int
5821 vi_full_uninit(struct vi_info *vi)
5822 {
5823 	struct port_info *pi = vi->pi;
5824 	struct adapter *sc = pi->adapter;
5825 	int i;
5826 	struct sge_rxq *rxq;
5827 	struct sge_txq *txq;
5828 #ifdef TCP_OFFLOAD
5829 	struct sge_ofld_rxq *ofld_rxq;
5830 #endif
5831 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5832 	struct sge_wrq *ofld_txq;
5833 #endif
5834 
5835 	if (vi->flags & VI_INIT_DONE) {
5836 
5837 		/* Need to quiesce queues.  */
5838 
5839 		/* XXX: Only for the first VI? */
5840 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
5841 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
5842 
5843 		for_each_txq(vi, i, txq) {
5844 			quiesce_txq(sc, txq);
5845 		}
5846 
5847 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5848 		for_each_ofld_txq(vi, i, ofld_txq) {
5849 			quiesce_wrq(sc, ofld_txq);
5850 		}
5851 #endif
5852 
5853 		for_each_rxq(vi, i, rxq) {
5854 			quiesce_iq(sc, &rxq->iq);
5855 			quiesce_fl(sc, &rxq->fl);
5856 		}
5857 
5858 #ifdef TCP_OFFLOAD
5859 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5860 			quiesce_iq(sc, &ofld_rxq->iq);
5861 			quiesce_fl(sc, &ofld_rxq->fl);
5862 		}
5863 #endif
5864 		free(vi->rss, M_CXGBE);
5865 		free(vi->nm_rss, M_CXGBE);
5866 	}
5867 
5868 	t4_teardown_vi_queues(vi);
5869 	vi->flags &= ~VI_INIT_DONE;
5870 
5871 	return (0);
5872 }
5873 
5874 static void
5875 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5876 {
5877 	struct sge_eq *eq = &txq->eq;
5878 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5879 
5880 	(void) sc;	/* unused */
5881 
5882 #ifdef INVARIANTS
5883 	TXQ_LOCK(txq);
5884 	MPASS((eq->flags & EQ_ENABLED) == 0);
5885 	TXQ_UNLOCK(txq);
5886 #endif
5887 
5888 	/* Wait for the mp_ring to empty. */
5889 	while (!mp_ring_is_idle(txq->r)) {
5890 		mp_ring_check_drainage(txq->r, 0);
5891 		pause("rquiesce", 1);
5892 	}
5893 
5894 	/* Then wait for the hardware to finish. */
5895 	while (spg->cidx != htobe16(eq->pidx))
5896 		pause("equiesce", 1);
5897 
5898 	/* Finally, wait for the driver to reclaim all descriptors. */
5899 	while (eq->cidx != eq->pidx)
5900 		pause("dquiesce", 1);
5901 }
5902 
5903 static void
5904 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5905 {
5906 
5907 	/* XXXTX */
5908 }
5909 
5910 static void
5911 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5912 {
5913 	(void) sc;	/* unused */
5914 
5915 	/* Synchronize with the interrupt handler */
5916 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5917 		pause("iqfree", 1);
5918 }
5919 
5920 static void
5921 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5922 {
5923 	mtx_lock(&sc->sfl_lock);
5924 	FL_LOCK(fl);
5925 	fl->flags |= FL_DOOMED;
5926 	FL_UNLOCK(fl);
5927 	callout_stop(&sc->sfl_callout);
5928 	mtx_unlock(&sc->sfl_lock);
5929 
5930 	KASSERT((fl->flags & FL_STARVING) == 0,
5931 	    ("%s: still starving", __func__));
5932 }
5933 
5934 static int
5935 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5936     driver_intr_t *handler, void *arg, char *name)
5937 {
5938 	int rc;
5939 
5940 	irq->rid = rid;
5941 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5942 	    RF_SHAREABLE | RF_ACTIVE);
5943 	if (irq->res == NULL) {
5944 		device_printf(sc->dev,
5945 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5946 		return (ENOMEM);
5947 	}
5948 
5949 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5950 	    NULL, handler, arg, &irq->tag);
5951 	if (rc != 0) {
5952 		device_printf(sc->dev,
5953 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5954 		    rid, name, rc);
5955 	} else if (name)
5956 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5957 
5958 	return (rc);
5959 }
5960 
5961 static int
5962 t4_free_irq(struct adapter *sc, struct irq *irq)
5963 {
5964 	if (irq->tag)
5965 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5966 	if (irq->res)
5967 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5968 
5969 	bzero(irq, sizeof(*irq));
5970 
5971 	return (0);
5972 }
5973 
5974 static void
5975 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5976 {
5977 
5978 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5979 	t4_get_regs(sc, buf, regs->len);
5980 }
5981 
5982 #define	A_PL_INDIR_CMD	0x1f8
5983 
5984 #define	S_PL_AUTOINC	31
5985 #define	M_PL_AUTOINC	0x1U
5986 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5987 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5988 
5989 #define	S_PL_VFID	20
5990 #define	M_PL_VFID	0xffU
5991 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5992 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5993 
5994 #define	S_PL_ADDR	0
5995 #define	M_PL_ADDR	0xfffffU
5996 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5997 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5998 
5999 #define	A_PL_INDIR_DATA	0x1fc
6000 
6001 static uint64_t
6002 read_vf_stat(struct adapter *sc, u_int vin, int reg)
6003 {
6004 	u32 stats[2];
6005 
6006 	mtx_assert(&sc->reg_lock, MA_OWNED);
6007 	if (sc->flags & IS_VF) {
6008 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
6009 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
6010 	} else {
6011 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
6012 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
6013 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
6014 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
6015 	}
6016 	return (((uint64_t)stats[1]) << 32 | stats[0]);
6017 }
6018 
6019 static void
6020 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
6021 {
6022 
6023 #define GET_STAT(name) \
6024 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
6025 
6026 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
6027 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
6028 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
6029 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
6030 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
6031 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
6032 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
6033 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
6034 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
6035 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
6036 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
6037 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
6038 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
6039 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
6040 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
6041 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
6042 
6043 #undef GET_STAT
6044 }
6045 
6046 static void
6047 t4_clr_vi_stats(struct adapter *sc, u_int vin)
6048 {
6049 	int reg;
6050 
6051 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
6052 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
6053 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
6054 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
6055 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
6056 }
6057 
6058 static void
6059 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
6060 {
6061 	struct timeval tv;
6062 	const struct timeval interval = {0, 250000};	/* 250ms */
6063 
6064 	if (!(vi->flags & VI_INIT_DONE))
6065 		return;
6066 
6067 	getmicrotime(&tv);
6068 	timevalsub(&tv, &interval);
6069 	if (timevalcmp(&tv, &vi->last_refreshed, <))
6070 		return;
6071 
6072 	mtx_lock(&sc->reg_lock);
6073 	t4_get_vi_stats(sc, vi->vin, &vi->stats);
6074 	getmicrotime(&vi->last_refreshed);
6075 	mtx_unlock(&sc->reg_lock);
6076 }
6077 
6078 static void
6079 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
6080 {
6081 	u_int i, v, tnl_cong_drops, bg_map;
6082 	struct timeval tv;
6083 	const struct timeval interval = {0, 250000};	/* 250ms */
6084 
6085 	getmicrotime(&tv);
6086 	timevalsub(&tv, &interval);
6087 	if (timevalcmp(&tv, &pi->last_refreshed, <))
6088 		return;
6089 
6090 	tnl_cong_drops = 0;
6091 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
6092 	bg_map = pi->mps_bg_map;
6093 	while (bg_map) {
6094 		i = ffs(bg_map) - 1;
6095 		mtx_lock(&sc->reg_lock);
6096 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
6097 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
6098 		mtx_unlock(&sc->reg_lock);
6099 		tnl_cong_drops += v;
6100 		bg_map &= ~(1 << i);
6101 	}
6102 	pi->tnl_cong_drops = tnl_cong_drops;
6103 	getmicrotime(&pi->last_refreshed);
6104 }
6105 
6106 static void
6107 cxgbe_tick(void *arg)
6108 {
6109 	struct port_info *pi = arg;
6110 	struct adapter *sc = pi->adapter;
6111 
6112 	PORT_LOCK_ASSERT_OWNED(pi);
6113 	cxgbe_refresh_stats(sc, pi);
6114 
6115 	callout_schedule(&pi->tick, hz);
6116 }
6117 
6118 void
6119 vi_tick(void *arg)
6120 {
6121 	struct vi_info *vi = arg;
6122 	struct adapter *sc = vi->pi->adapter;
6123 
6124 	vi_refresh_stats(sc, vi);
6125 
6126 	callout_schedule(&vi->tick, hz);
6127 }
6128 
6129 /*
6130  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
6131  */
6132 static char *caps_decoder[] = {
6133 	"\20\001IPMI\002NCSI",				/* 0: NBM */
6134 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
6135 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
6136 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
6137 	    "\006HASHFILTER\007ETHOFLD",
6138 	"\20\001TOE",					/* 4: TOE */
6139 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
6140 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
6141 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
6142 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
6143 	    "\007T10DIF"
6144 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
6145 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
6146 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
6147 		    "\004PO_INITIATOR\005PO_TARGET",
6148 };
6149 
6150 void
6151 t4_sysctls(struct adapter *sc)
6152 {
6153 	struct sysctl_ctx_list *ctx;
6154 	struct sysctl_oid *oid;
6155 	struct sysctl_oid_list *children, *c0;
6156 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
6157 
6158 	ctx = device_get_sysctl_ctx(sc->dev);
6159 
6160 	/*
6161 	 * dev.t4nex.X.
6162 	 */
6163 	oid = device_get_sysctl_tree(sc->dev);
6164 	c0 = children = SYSCTL_CHILDREN(oid);
6165 
6166 	sc->sc_do_rxcopy = 1;
6167 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
6168 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
6169 
6170 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
6171 	    sc->params.nports, "# of ports");
6172 
6173 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
6174 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells,
6175 	    sysctl_bitfield_8b, "A", "available doorbells");
6176 
6177 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
6178 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
6179 
6180 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
6181 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
6182 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
6183 	    "interrupt holdoff timer values (us)");
6184 
6185 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
6186 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
6187 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
6188 	    "interrupt holdoff packet counter values");
6189 
6190 	t4_sge_sysctls(sc, ctx, children);
6191 
6192 	sc->lro_timeout = 100;
6193 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
6194 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
6195 
6196 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
6197 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
6198 
6199 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
6200 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
6201 
6202 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
6203 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
6204 
6205 	if (sc->flags & IS_VF)
6206 		return;
6207 
6208 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
6209 	    NULL, chip_rev(sc), "chip hardware revision");
6210 
6211 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
6212 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
6213 
6214 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
6215 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
6216 
6217 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
6218 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
6219 
6220 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
6221 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
6222 
6223 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
6224 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
6225 
6226 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
6227 	    sc->er_version, 0, "expansion ROM version");
6228 
6229 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
6230 	    sc->bs_version, 0, "bootstrap firmware version");
6231 
6232 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
6233 	    NULL, sc->params.scfg_vers, "serial config version");
6234 
6235 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
6236 	    NULL, sc->params.vpd_vers, "VPD version");
6237 
6238 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
6239 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
6240 
6241 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
6242 	    sc->cfcsum, "config file checksum");
6243 
6244 #define SYSCTL_CAP(name, n, text) \
6245 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
6246 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \
6247 	    sysctl_bitfield_16b, "A", "available " text " capabilities")
6248 
6249 	SYSCTL_CAP(nbmcaps, 0, "NBM");
6250 	SYSCTL_CAP(linkcaps, 1, "link");
6251 	SYSCTL_CAP(switchcaps, 2, "switch");
6252 	SYSCTL_CAP(niccaps, 3, "NIC");
6253 	SYSCTL_CAP(toecaps, 4, "TCP offload");
6254 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
6255 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
6256 	SYSCTL_CAP(cryptocaps, 7, "crypto");
6257 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
6258 #undef SYSCTL_CAP
6259 
6260 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
6261 	    NULL, sc->tids.nftids, "number of filters");
6262 
6263 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
6264 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
6265 	    "chip temperature (in Celsius)");
6266 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", CTLTYPE_INT |
6267 	    CTLFLAG_RW, sc, 0, sysctl_reset_sensor, "I",
6268 	    "reset the chip's temperature sensor.");
6269 
6270 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING |
6271 	    CTLFLAG_RD, sc, 0, sysctl_loadavg, "A",
6272 	    "microprocessor load averages (debug firmwares only)");
6273 
6274 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", CTLTYPE_INT |
6275 	    CTLFLAG_RD, sc, 0, sysctl_vdd, "I", "core Vdd (in mV)");
6276 
6277 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
6278 	    CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS,
6279 	    sysctl_cpus, "A", "local CPUs");
6280 
6281 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
6282 	    CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS,
6283 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
6284 
6285 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
6286 	    &sc->swintr, 0, "software triggered interrupts");
6287 
6288 	/*
6289 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
6290 	 */
6291 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
6292 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
6293 	    "logs and miscellaneous information");
6294 	children = SYSCTL_CHILDREN(oid);
6295 
6296 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
6297 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6298 	    sysctl_cctrl, "A", "congestion control");
6299 
6300 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
6301 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6302 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
6303 
6304 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
6305 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
6306 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
6307 
6308 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
6309 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
6310 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
6311 
6312 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
6313 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
6314 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
6315 
6316 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
6317 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
6318 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
6319 
6320 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
6321 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
6322 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
6323 
6324 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
6325 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la,
6326 	    "A", "CIM logic analyzer");
6327 
6328 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
6329 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6330 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
6331 
6332 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
6333 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
6334 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
6335 
6336 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
6337 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
6338 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
6339 
6340 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
6341 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
6342 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
6343 
6344 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
6345 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
6346 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
6347 
6348 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
6349 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
6350 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
6351 
6352 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
6353 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
6354 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
6355 
6356 	if (chip_id(sc) > CHELSIO_T4) {
6357 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
6358 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
6359 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
6360 
6361 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
6362 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
6363 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
6364 	}
6365 
6366 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
6367 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6368 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
6369 
6370 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
6371 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6372 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
6373 
6374 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
6375 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6376 	    sysctl_cpl_stats, "A", "CPL statistics");
6377 
6378 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
6379 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6380 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
6381 
6382 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
6383 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6384 	    sysctl_devlog, "A", "firmware's device log");
6385 
6386 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
6387 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6388 	    sysctl_fcoe_stats, "A", "FCoE statistics");
6389 
6390 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
6391 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6392 	    sysctl_hw_sched, "A", "hardware scheduler ");
6393 
6394 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
6395 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6396 	    sysctl_l2t, "A", "hardware L2 table");
6397 
6398 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
6399 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6400 	    sysctl_smt, "A", "hardware source MAC table");
6401 
6402 #ifdef INET6
6403 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
6404 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6405 	    sysctl_clip, "A", "active CLIP table entries");
6406 #endif
6407 
6408 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
6409 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6410 	    sysctl_lb_stats, "A", "loopback statistics");
6411 
6412 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
6413 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6414 	    sysctl_meminfo, "A", "memory regions");
6415 
6416 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
6417 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6418 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
6419 	    "A", "MPS TCAM entries");
6420 
6421 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
6422 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6423 	    sysctl_path_mtus, "A", "path MTUs");
6424 
6425 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
6426 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6427 	    sysctl_pm_stats, "A", "PM statistics");
6428 
6429 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
6430 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6431 	    sysctl_rdma_stats, "A", "RDMA statistics");
6432 
6433 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
6434 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6435 	    sysctl_tcp_stats, "A", "TCP statistics");
6436 
6437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
6438 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6439 	    sysctl_tids, "A", "TID information");
6440 
6441 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
6442 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6443 	    sysctl_tp_err_stats, "A", "TP error statistics");
6444 
6445 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
6446 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
6447 	    "TP logic analyzer event capture mask");
6448 
6449 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
6450 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6451 	    sysctl_tp_la, "A", "TP logic analyzer");
6452 
6453 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
6454 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6455 	    sysctl_tx_rate, "A", "Tx rate");
6456 
6457 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
6458 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6459 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
6460 
6461 	if (chip_id(sc) >= CHELSIO_T5) {
6462 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
6463 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6464 		    sysctl_wcwr_stats, "A", "write combined work requests");
6465 	}
6466 
6467 #ifdef KERN_TLS
6468 	if (sc->flags & KERN_TLS_OK) {
6469 		/*
6470 		 * dev.t4nex.0.tls.
6471 		 */
6472 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", CTLFLAG_RD,
6473 		    NULL, "KERN_TLS parameters");
6474 		children = SYSCTL_CHILDREN(oid);
6475 
6476 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
6477 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
6478 		    "keys in work requests (1) or attempt to store TLS keys "
6479 		    "in card memory.");
6480 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
6481 		    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine "
6482 		    "TCB field updates with TLS record work requests.");
6483 	}
6484 #endif
6485 
6486 #ifdef TCP_OFFLOAD
6487 	if (is_offload(sc)) {
6488 		int i;
6489 		char s[4];
6490 
6491 		/*
6492 		 * dev.t4nex.X.toe.
6493 		 */
6494 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
6495 		    NULL, "TOE parameters");
6496 		children = SYSCTL_CHILDREN(oid);
6497 
6498 		sc->tt.cong_algorithm = -1;
6499 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
6500 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
6501 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
6502 		    "3 = highspeed)");
6503 
6504 		sc->tt.sndbuf = -1;
6505 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
6506 		    &sc->tt.sndbuf, 0, "hardware send buffer");
6507 
6508 		sc->tt.ddp = 0;
6509 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
6510 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
6511 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
6512 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
6513 
6514 		sc->tt.rx_coalesce = -1;
6515 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
6516 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
6517 
6518 		sc->tt.tls = 0;
6519 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
6520 		    &sc->tt.tls, 0, "Inline TLS allowed");
6521 
6522 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
6523 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
6524 		    "I", "TCP ports that use inline TLS+TOE RX");
6525 
6526 		sc->tt.tx_align = -1;
6527 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
6528 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
6529 
6530 		sc->tt.tx_zcopy = 0;
6531 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
6532 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
6533 		    "Enable zero-copy aio_write(2)");
6534 
6535 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
6536 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6537 		    "cop_managed_offloading", CTLFLAG_RW,
6538 		    &sc->tt.cop_managed_offloading, 0,
6539 		    "COP (Connection Offload Policy) controls all TOE offload");
6540 
6541 		sc->tt.autorcvbuf_inc = 16 * 1024;
6542 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
6543 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
6544 		    "autorcvbuf increment");
6545 
6546 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
6547 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
6548 		    "TP timer tick (us)");
6549 
6550 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
6551 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
6552 		    "TCP timestamp tick (us)");
6553 
6554 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
6555 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
6556 		    "DACK tick (us)");
6557 
6558 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
6559 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
6560 		    "IU", "DACK timer (us)");
6561 
6562 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
6563 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
6564 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
6565 
6566 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
6567 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
6568 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
6569 
6570 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
6571 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
6572 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
6573 
6574 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
6575 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
6576 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
6577 
6578 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
6579 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
6580 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
6581 
6582 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
6583 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
6584 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
6585 
6586 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
6587 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
6588 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
6589 
6590 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
6591 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
6592 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
6593 
6594 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
6595 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
6596 		    sysctl_tp_shift_cnt, "IU",
6597 		    "Number of SYN retransmissions before abort");
6598 
6599 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
6600 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
6601 		    sysctl_tp_shift_cnt, "IU",
6602 		    "Number of retransmissions before abort");
6603 
6604 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
6605 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
6606 		    sysctl_tp_shift_cnt, "IU",
6607 		    "Number of keepalive probes before abort");
6608 
6609 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
6610 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
6611 		children = SYSCTL_CHILDREN(oid);
6612 		for (i = 0; i < 16; i++) {
6613 			snprintf(s, sizeof(s), "%u", i);
6614 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
6615 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
6616 			    "IU", "TOE retransmit backoff");
6617 		}
6618 	}
6619 #endif
6620 }
6621 
6622 void
6623 vi_sysctls(struct vi_info *vi)
6624 {
6625 	struct sysctl_ctx_list *ctx;
6626 	struct sysctl_oid *oid;
6627 	struct sysctl_oid_list *children;
6628 
6629 	ctx = device_get_sysctl_ctx(vi->dev);
6630 
6631 	/*
6632 	 * dev.v?(cxgbe|cxl).X.
6633 	 */
6634 	oid = device_get_sysctl_tree(vi->dev);
6635 	children = SYSCTL_CHILDREN(oid);
6636 
6637 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
6638 	    vi->viid, "VI identifer");
6639 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
6640 	    &vi->nrxq, 0, "# of rx queues");
6641 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
6642 	    &vi->ntxq, 0, "# of tx queues");
6643 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
6644 	    &vi->first_rxq, 0, "index of first rx queue");
6645 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
6646 	    &vi->first_txq, 0, "index of first tx queue");
6647 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
6648 	    vi->rss_base, "start of RSS indirection table");
6649 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
6650 	    vi->rss_size, "size of RSS indirection table");
6651 
6652 	if (IS_MAIN_VI(vi)) {
6653 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
6654 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
6655 		    "Reserve queue 0 for non-flowid packets");
6656 	}
6657 
6658 #ifdef TCP_OFFLOAD
6659 	if (vi->nofldrxq != 0) {
6660 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
6661 		    &vi->nofldrxq, 0,
6662 		    "# of rx queues for offloaded TCP connections");
6663 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
6664 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
6665 		    "index of first TOE rx queue");
6666 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
6667 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6668 		    sysctl_holdoff_tmr_idx_ofld, "I",
6669 		    "holdoff timer index for TOE queues");
6670 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
6671 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6672 		    sysctl_holdoff_pktc_idx_ofld, "I",
6673 		    "holdoff packet counter index for TOE queues");
6674 	}
6675 #endif
6676 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6677 	if (vi->nofldtxq != 0) {
6678 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
6679 		    &vi->nofldtxq, 0,
6680 		    "# of tx queues for TOE/ETHOFLD");
6681 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
6682 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
6683 		    "index of first TOE/ETHOFLD tx queue");
6684 	}
6685 #endif
6686 #ifdef DEV_NETMAP
6687 	if (vi->nnmrxq != 0) {
6688 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
6689 		    &vi->nnmrxq, 0, "# of netmap rx queues");
6690 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
6691 		    &vi->nnmtxq, 0, "# of netmap tx queues");
6692 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
6693 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
6694 		    "index of first netmap rx queue");
6695 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
6696 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
6697 		    "index of first netmap tx queue");
6698 	}
6699 #endif
6700 
6701 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
6702 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
6703 	    "holdoff timer index");
6704 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
6705 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
6706 	    "holdoff packet counter index");
6707 
6708 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
6709 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
6710 	    "rx queue size");
6711 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
6712 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
6713 	    "tx queue size");
6714 }
6715 
6716 static void
6717 cxgbe_sysctls(struct port_info *pi)
6718 {
6719 	struct sysctl_ctx_list *ctx;
6720 	struct sysctl_oid *oid;
6721 	struct sysctl_oid_list *children, *children2;
6722 	struct adapter *sc = pi->adapter;
6723 	int i;
6724 	char name[16];
6725 	static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"};
6726 
6727 	ctx = device_get_sysctl_ctx(pi->dev);
6728 
6729 	/*
6730 	 * dev.cxgbe.X.
6731 	 */
6732 	oid = device_get_sysctl_tree(pi->dev);
6733 	children = SYSCTL_CHILDREN(oid);
6734 
6735 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
6736 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
6737 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
6738 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
6739 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
6740 		    "PHY temperature (in Celsius)");
6741 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
6742 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
6743 		    "PHY firmware version");
6744 	}
6745 
6746 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
6747 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
6748     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
6749 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
6750 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
6751 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
6752 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
6753 	    CTLTYPE_STRING, pi, 0, sysctl_module_fec, "A",
6754 	    "FEC recommended by the cable/transceiver");
6755 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
6756 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
6757 	    "autonegotiation (-1 = not supported)");
6758 
6759 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
6760 	    &pi->link_cfg.pcaps, 0, "port capabilities");
6761 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
6762 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
6763 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
6764 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
6765 
6766 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
6767 	    port_top_speed(pi), "max speed (in Gbps)");
6768 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
6769 	    pi->mps_bg_map, "MPS buffer group map");
6770 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
6771 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
6772 
6773 	if (sc->flags & IS_VF)
6774 		return;
6775 
6776 	/*
6777 	 * dev.(cxgbe|cxl).X.tc.
6778 	 */
6779 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
6780 	    "Tx scheduler traffic classes (cl_rl)");
6781 	children2 = SYSCTL_CHILDREN(oid);
6782 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
6783 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
6784 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
6785 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
6786 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
6787 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
6788 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
6789 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
6790 
6791 		snprintf(name, sizeof(name), "%d", i);
6792 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
6793 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
6794 		    "traffic class"));
6795 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
6796 		    CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags,
6797 		    sysctl_bitfield_8b, "A", "flags");
6798 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
6799 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
6800 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
6801 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
6802 		    sysctl_tc_params, "A", "traffic class parameters");
6803 	}
6804 
6805 	/*
6806 	 * dev.cxgbe.X.stats.
6807 	 */
6808 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
6809 	    NULL, "port statistics");
6810 	children = SYSCTL_CHILDREN(oid);
6811 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
6812 	    &pi->tx_parse_error, 0,
6813 	    "# of tx packets with invalid length or # of segments");
6814 
6815 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
6816 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
6817 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
6818 	    sysctl_handle_t4_reg64, "QU", desc)
6819 
6820 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
6821 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
6822 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
6823 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
6824 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
6825 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
6826 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
6827 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
6828 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
6829 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
6830 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
6831 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
6832 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
6833 	    "# of tx frames in this range",
6834 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
6835 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
6836 	    "# of tx frames in this range",
6837 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
6838 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
6839 	    "# of tx frames in this range",
6840 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
6841 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
6842 	    "# of tx frames in this range",
6843 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
6844 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
6845 	    "# of tx frames in this range",
6846 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
6847 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
6848 	    "# of tx frames in this range",
6849 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
6850 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
6851 	    "# of tx frames in this range",
6852 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
6853 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
6854 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
6855 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
6856 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
6857 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
6858 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
6859 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
6860 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
6861 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
6862 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
6863 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
6864 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
6865 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
6866 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
6867 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
6868 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
6869 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
6870 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
6871 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
6872 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
6873 
6874 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
6875 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
6876 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
6877 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
6878 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
6879 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
6880 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
6881 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
6882 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
6883 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
6884 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
6885 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
6886 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
6887 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
6888 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
6889 	    "# of frames received with bad FCS",
6890 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
6891 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
6892 	    "# of frames received with length error",
6893 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
6894 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
6895 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
6896 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
6897 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
6898 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
6899 	    "# of rx frames in this range",
6900 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
6901 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
6902 	    "# of rx frames in this range",
6903 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
6904 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
6905 	    "# of rx frames in this range",
6906 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
6907 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
6908 	    "# of rx frames in this range",
6909 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
6910 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
6911 	    "# of rx frames in this range",
6912 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
6913 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
6914 	    "# of rx frames in this range",
6915 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6916 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6917 	    "# of rx frames in this range",
6918 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6919 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6920 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6921 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6922 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6923 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6924 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6925 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6926 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6927 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6928 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6929 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6930 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6931 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6932 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6933 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6934 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6935 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6936 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6937 
6938 #undef SYSCTL_ADD_T4_REG64
6939 
6940 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6941 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6942 	    &pi->stats.name, desc)
6943 
6944 	/* We get these from port_stats and they may be stale by up to 1s */
6945 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6946 	    "# drops due to buffer-group 0 overflows");
6947 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6948 	    "# drops due to buffer-group 1 overflows");
6949 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6950 	    "# drops due to buffer-group 2 overflows");
6951 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6952 	    "# drops due to buffer-group 3 overflows");
6953 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6954 	    "# of buffer-group 0 truncated packets");
6955 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6956 	    "# of buffer-group 1 truncated packets");
6957 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6958 	    "# of buffer-group 2 truncated packets");
6959 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6960 	    "# of buffer-group 3 truncated packets");
6961 
6962 #undef SYSCTL_ADD_T4_PORTSTAT
6963 
6964 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6965 	    CTLFLAG_RD, &pi->tx_tls_records,
6966 	    "# of TOE TLS records transmitted");
6967 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6968 	    CTLFLAG_RD, &pi->tx_tls_octets,
6969 	    "# of payload octets in transmitted TOE TLS records");
6970 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6971 	    CTLFLAG_RD, &pi->rx_tls_records,
6972 	    "# of TOE TLS records received");
6973 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6974 	    CTLFLAG_RD, &pi->rx_tls_octets,
6975 	    "# of payload octets in received TOE TLS records");
6976 }
6977 
6978 static int
6979 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6980 {
6981 	int rc, *i, space = 0;
6982 	struct sbuf sb;
6983 
6984 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6985 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6986 		if (space)
6987 			sbuf_printf(&sb, " ");
6988 		sbuf_printf(&sb, "%d", *i);
6989 		space = 1;
6990 	}
6991 	rc = sbuf_finish(&sb);
6992 	sbuf_delete(&sb);
6993 	return (rc);
6994 }
6995 
6996 static int
6997 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
6998 {
6999 	int rc;
7000 	struct sbuf *sb;
7001 
7002 	rc = sysctl_wire_old_buffer(req, 0);
7003 	if (rc != 0)
7004 		return(rc);
7005 
7006 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7007 	if (sb == NULL)
7008 		return (ENOMEM);
7009 
7010 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
7011 	rc = sbuf_finish(sb);
7012 	sbuf_delete(sb);
7013 
7014 	return (rc);
7015 }
7016 
7017 static int
7018 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
7019 {
7020 	int rc;
7021 	struct sbuf *sb;
7022 
7023 	rc = sysctl_wire_old_buffer(req, 0);
7024 	if (rc != 0)
7025 		return(rc);
7026 
7027 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7028 	if (sb == NULL)
7029 		return (ENOMEM);
7030 
7031 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
7032 	rc = sbuf_finish(sb);
7033 	sbuf_delete(sb);
7034 
7035 	return (rc);
7036 }
7037 
7038 static int
7039 sysctl_btphy(SYSCTL_HANDLER_ARGS)
7040 {
7041 	struct port_info *pi = arg1;
7042 	int op = arg2;
7043 	struct adapter *sc = pi->adapter;
7044 	u_int v;
7045 	int rc;
7046 
7047 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
7048 	if (rc)
7049 		return (rc);
7050 	/* XXX: magic numbers */
7051 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
7052 	    &v);
7053 	end_synchronized_op(sc, 0);
7054 	if (rc)
7055 		return (rc);
7056 	if (op == 0)
7057 		v /= 256;
7058 
7059 	rc = sysctl_handle_int(oidp, &v, 0, req);
7060 	return (rc);
7061 }
7062 
7063 static int
7064 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
7065 {
7066 	struct vi_info *vi = arg1;
7067 	int rc, val;
7068 
7069 	val = vi->rsrv_noflowq;
7070 	rc = sysctl_handle_int(oidp, &val, 0, req);
7071 	if (rc != 0 || req->newptr == NULL)
7072 		return (rc);
7073 
7074 	if ((val >= 1) && (vi->ntxq > 1))
7075 		vi->rsrv_noflowq = 1;
7076 	else
7077 		vi->rsrv_noflowq = 0;
7078 
7079 	return (rc);
7080 }
7081 
7082 static int
7083 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
7084 {
7085 	struct vi_info *vi = arg1;
7086 	struct adapter *sc = vi->pi->adapter;
7087 	int idx, rc, i;
7088 	struct sge_rxq *rxq;
7089 	uint8_t v;
7090 
7091 	idx = vi->tmr_idx;
7092 
7093 	rc = sysctl_handle_int(oidp, &idx, 0, req);
7094 	if (rc != 0 || req->newptr == NULL)
7095 		return (rc);
7096 
7097 	if (idx < 0 || idx >= SGE_NTIMERS)
7098 		return (EINVAL);
7099 
7100 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
7101 	    "t4tmr");
7102 	if (rc)
7103 		return (rc);
7104 
7105 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
7106 	for_each_rxq(vi, i, rxq) {
7107 #ifdef atomic_store_rel_8
7108 		atomic_store_rel_8(&rxq->iq.intr_params, v);
7109 #else
7110 		rxq->iq.intr_params = v;
7111 #endif
7112 	}
7113 	vi->tmr_idx = idx;
7114 
7115 	end_synchronized_op(sc, LOCK_HELD);
7116 	return (0);
7117 }
7118 
7119 static int
7120 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
7121 {
7122 	struct vi_info *vi = arg1;
7123 	struct adapter *sc = vi->pi->adapter;
7124 	int idx, rc;
7125 
7126 	idx = vi->pktc_idx;
7127 
7128 	rc = sysctl_handle_int(oidp, &idx, 0, req);
7129 	if (rc != 0 || req->newptr == NULL)
7130 		return (rc);
7131 
7132 	if (idx < -1 || idx >= SGE_NCOUNTERS)
7133 		return (EINVAL);
7134 
7135 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
7136 	    "t4pktc");
7137 	if (rc)
7138 		return (rc);
7139 
7140 	if (vi->flags & VI_INIT_DONE)
7141 		rc = EBUSY; /* cannot be changed once the queues are created */
7142 	else
7143 		vi->pktc_idx = idx;
7144 
7145 	end_synchronized_op(sc, LOCK_HELD);
7146 	return (rc);
7147 }
7148 
7149 static int
7150 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
7151 {
7152 	struct vi_info *vi = arg1;
7153 	struct adapter *sc = vi->pi->adapter;
7154 	int qsize, rc;
7155 
7156 	qsize = vi->qsize_rxq;
7157 
7158 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
7159 	if (rc != 0 || req->newptr == NULL)
7160 		return (rc);
7161 
7162 	if (qsize < 128 || (qsize & 7))
7163 		return (EINVAL);
7164 
7165 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
7166 	    "t4rxqs");
7167 	if (rc)
7168 		return (rc);
7169 
7170 	if (vi->flags & VI_INIT_DONE)
7171 		rc = EBUSY; /* cannot be changed once the queues are created */
7172 	else
7173 		vi->qsize_rxq = qsize;
7174 
7175 	end_synchronized_op(sc, LOCK_HELD);
7176 	return (rc);
7177 }
7178 
7179 static int
7180 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
7181 {
7182 	struct vi_info *vi = arg1;
7183 	struct adapter *sc = vi->pi->adapter;
7184 	int qsize, rc;
7185 
7186 	qsize = vi->qsize_txq;
7187 
7188 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
7189 	if (rc != 0 || req->newptr == NULL)
7190 		return (rc);
7191 
7192 	if (qsize < 128 || qsize > 65536)
7193 		return (EINVAL);
7194 
7195 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
7196 	    "t4txqs");
7197 	if (rc)
7198 		return (rc);
7199 
7200 	if (vi->flags & VI_INIT_DONE)
7201 		rc = EBUSY; /* cannot be changed once the queues are created */
7202 	else
7203 		vi->qsize_txq = qsize;
7204 
7205 	end_synchronized_op(sc, LOCK_HELD);
7206 	return (rc);
7207 }
7208 
7209 static int
7210 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
7211 {
7212 	struct port_info *pi = arg1;
7213 	struct adapter *sc = pi->adapter;
7214 	struct link_config *lc = &pi->link_cfg;
7215 	int rc;
7216 
7217 	if (req->newptr == NULL) {
7218 		struct sbuf *sb;
7219 		static char *bits = "\20\1RX\2TX\3AUTO";
7220 
7221 		rc = sysctl_wire_old_buffer(req, 0);
7222 		if (rc != 0)
7223 			return(rc);
7224 
7225 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7226 		if (sb == NULL)
7227 			return (ENOMEM);
7228 
7229 		if (lc->link_ok) {
7230 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
7231 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
7232 		} else {
7233 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
7234 			    PAUSE_RX | PAUSE_AUTONEG), bits);
7235 		}
7236 		rc = sbuf_finish(sb);
7237 		sbuf_delete(sb);
7238 	} else {
7239 		char s[2];
7240 		int n;
7241 
7242 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
7243 		    PAUSE_AUTONEG));
7244 		s[1] = 0;
7245 
7246 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
7247 		if (rc != 0)
7248 			return(rc);
7249 
7250 		if (s[1] != 0)
7251 			return (EINVAL);
7252 		if (s[0] < '0' || s[0] > '9')
7253 			return (EINVAL);	/* not a number */
7254 		n = s[0] - '0';
7255 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
7256 			return (EINVAL);	/* some other bit is set too */
7257 
7258 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7259 		    "t4PAUSE");
7260 		if (rc)
7261 			return (rc);
7262 		PORT_LOCK(pi);
7263 		lc->requested_fc = n;
7264 		fixup_link_config(pi);
7265 		if (pi->up_vis > 0)
7266 			rc = apply_link_config(pi);
7267 		set_current_media(pi);
7268 		PORT_UNLOCK(pi);
7269 		end_synchronized_op(sc, 0);
7270 	}
7271 
7272 	return (rc);
7273 }
7274 
7275 static int
7276 sysctl_fec(SYSCTL_HANDLER_ARGS)
7277 {
7278 	struct port_info *pi = arg1;
7279 	struct adapter *sc = pi->adapter;
7280 	struct link_config *lc = &pi->link_cfg;
7281 	int rc;
7282 	int8_t old;
7283 
7284 	if (req->newptr == NULL) {
7285 		struct sbuf *sb;
7286 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
7287 		    "\5RSVD3\6auto\7module";
7288 
7289 		rc = sysctl_wire_old_buffer(req, 0);
7290 		if (rc != 0)
7291 			return(rc);
7292 
7293 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7294 		if (sb == NULL)
7295 			return (ENOMEM);
7296 
7297 		/*
7298 		 * Display the requested_fec when the link is down -- the actual
7299 		 * FEC makes sense only when the link is up.
7300 		 */
7301 		if (lc->link_ok) {
7302 			sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) |
7303 			    (lc->requested_fec & (FEC_AUTO | FEC_MODULE)),
7304 			    bits);
7305 		} else {
7306 			sbuf_printf(sb, "%b", lc->requested_fec, bits);
7307 		}
7308 		rc = sbuf_finish(sb);
7309 		sbuf_delete(sb);
7310 	} else {
7311 		char s[8];
7312 		int n;
7313 
7314 		snprintf(s, sizeof(s), "%d",
7315 		    lc->requested_fec == FEC_AUTO ? -1 :
7316 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
7317 
7318 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
7319 		if (rc != 0)
7320 			return(rc);
7321 
7322 		n = strtol(&s[0], NULL, 0);
7323 		if (n < 0 || n & FEC_AUTO)
7324 			n = FEC_AUTO;
7325 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
7326 			return (EINVAL);/* some other bit is set too */
7327 
7328 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7329 		    "t4fec");
7330 		if (rc)
7331 			return (rc);
7332 		PORT_LOCK(pi);
7333 		old = lc->requested_fec;
7334 		if (n == FEC_AUTO)
7335 			lc->requested_fec = FEC_AUTO;
7336 		else if (n == 0 || n == FEC_NONE)
7337 			lc->requested_fec = FEC_NONE;
7338 		else {
7339 			if ((lc->pcaps |
7340 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
7341 			    lc->pcaps) {
7342 				rc = ENOTSUP;
7343 				goto done;
7344 			}
7345 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
7346 			    FEC_MODULE);
7347 		}
7348 		fixup_link_config(pi);
7349 		if (pi->up_vis > 0) {
7350 			rc = apply_link_config(pi);
7351 			if (rc != 0) {
7352 				lc->requested_fec = old;
7353 				if (rc == FW_EPROTO)
7354 					rc = ENOTSUP;
7355 			}
7356 		}
7357 done:
7358 		PORT_UNLOCK(pi);
7359 		end_synchronized_op(sc, 0);
7360 	}
7361 
7362 	return (rc);
7363 }
7364 
7365 static int
7366 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
7367 {
7368 	struct port_info *pi = arg1;
7369 	struct adapter *sc = pi->adapter;
7370 	struct link_config *lc = &pi->link_cfg;
7371 	int rc;
7372 	int8_t fec;
7373 	struct sbuf *sb;
7374 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
7375 
7376 	rc = sysctl_wire_old_buffer(req, 0);
7377 	if (rc != 0)
7378 		return (rc);
7379 
7380 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7381 	if (sb == NULL)
7382 		return (ENOMEM);
7383 
7384 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0)
7385 		return (EBUSY);
7386 	PORT_LOCK(pi);
7387 	if (pi->up_vis == 0) {
7388 		/*
7389 		 * If all the interfaces are administratively down the firmware
7390 		 * does not report transceiver changes.  Refresh port info here.
7391 		 * This is the only reason we have a synchronized op in this
7392 		 * function.  Just PORT_LOCK would have been enough otherwise.
7393 		 */
7394 		t4_update_port_info(pi);
7395 	}
7396 
7397 	fec = lc->fec_hint;
7398 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
7399 	    !fec_supported(lc->pcaps)) {
7400 		sbuf_printf(sb, "n/a");
7401 	} else {
7402 		if (fec == 0)
7403 			fec = FEC_NONE;
7404 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
7405 	}
7406 	rc = sbuf_finish(sb);
7407 	sbuf_delete(sb);
7408 
7409 	PORT_UNLOCK(pi);
7410 	end_synchronized_op(sc, 0);
7411 
7412 	return (rc);
7413 }
7414 
7415 static int
7416 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
7417 {
7418 	struct port_info *pi = arg1;
7419 	struct adapter *sc = pi->adapter;
7420 	struct link_config *lc = &pi->link_cfg;
7421 	int rc, val;
7422 
7423 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
7424 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
7425 	else
7426 		val = -1;
7427 	rc = sysctl_handle_int(oidp, &val, 0, req);
7428 	if (rc != 0 || req->newptr == NULL)
7429 		return (rc);
7430 	if (val == 0)
7431 		val = AUTONEG_DISABLE;
7432 	else if (val == 1)
7433 		val = AUTONEG_ENABLE;
7434 	else
7435 		val = AUTONEG_AUTO;
7436 
7437 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7438 	    "t4aneg");
7439 	if (rc)
7440 		return (rc);
7441 	PORT_LOCK(pi);
7442 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
7443 		rc = ENOTSUP;
7444 		goto done;
7445 	}
7446 	lc->requested_aneg = val;
7447 	fixup_link_config(pi);
7448 	if (pi->up_vis > 0)
7449 		rc = apply_link_config(pi);
7450 	set_current_media(pi);
7451 done:
7452 	PORT_UNLOCK(pi);
7453 	end_synchronized_op(sc, 0);
7454 	return (rc);
7455 }
7456 
7457 static int
7458 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
7459 {
7460 	struct adapter *sc = arg1;
7461 	int reg = arg2;
7462 	uint64_t val;
7463 
7464 	val = t4_read_reg64(sc, reg);
7465 
7466 	return (sysctl_handle_64(oidp, &val, 0, req));
7467 }
7468 
7469 static int
7470 sysctl_temperature(SYSCTL_HANDLER_ARGS)
7471 {
7472 	struct adapter *sc = arg1;
7473 	int rc, t;
7474 	uint32_t param, val;
7475 
7476 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
7477 	if (rc)
7478 		return (rc);
7479 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7480 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7481 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
7482 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7483 	end_synchronized_op(sc, 0);
7484 	if (rc)
7485 		return (rc);
7486 
7487 	/* unknown is returned as 0 but we display -1 in that case */
7488 	t = val == 0 ? -1 : val;
7489 
7490 	rc = sysctl_handle_int(oidp, &t, 0, req);
7491 	return (rc);
7492 }
7493 
7494 static int
7495 sysctl_vdd(SYSCTL_HANDLER_ARGS)
7496 {
7497 	struct adapter *sc = arg1;
7498 	int rc;
7499 	uint32_t param, val;
7500 
7501 	if (sc->params.core_vdd == 0) {
7502 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7503 		    "t4vdd");
7504 		if (rc)
7505 			return (rc);
7506 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7507 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7508 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
7509 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7510 		end_synchronized_op(sc, 0);
7511 		if (rc)
7512 			return (rc);
7513 		sc->params.core_vdd = val;
7514 	}
7515 
7516 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
7517 }
7518 
7519 static int
7520 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
7521 {
7522 	struct adapter *sc = arg1;
7523 	int rc, v;
7524 	uint32_t param, val;
7525 
7526 	v = sc->sensor_resets;
7527 	rc = sysctl_handle_int(oidp, &v, 0, req);
7528 	if (rc != 0 || req->newptr == NULL || v <= 0)
7529 		return (rc);
7530 
7531 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
7532 	    chip_id(sc) < CHELSIO_T5)
7533 		return (ENOTSUP);
7534 
7535 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
7536 	if (rc)
7537 		return (rc);
7538 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7539 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7540 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
7541 	val = 1;
7542 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7543 	end_synchronized_op(sc, 0);
7544 	if (rc == 0)
7545 		sc->sensor_resets++;
7546 	return (rc);
7547 }
7548 
7549 static int
7550 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
7551 {
7552 	struct adapter *sc = arg1;
7553 	struct sbuf *sb;
7554 	int rc;
7555 	uint32_t param, val;
7556 
7557 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
7558 	if (rc)
7559 		return (rc);
7560 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7561 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
7562 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7563 	end_synchronized_op(sc, 0);
7564 	if (rc)
7565 		return (rc);
7566 
7567 	rc = sysctl_wire_old_buffer(req, 0);
7568 	if (rc != 0)
7569 		return (rc);
7570 
7571 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7572 	if (sb == NULL)
7573 		return (ENOMEM);
7574 
7575 	if (val == 0xffffffff) {
7576 		/* Only debug and custom firmwares report load averages. */
7577 		sbuf_printf(sb, "not available");
7578 	} else {
7579 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
7580 		    (val >> 16) & 0xff);
7581 	}
7582 	rc = sbuf_finish(sb);
7583 	sbuf_delete(sb);
7584 
7585 	return (rc);
7586 }
7587 
7588 static int
7589 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
7590 {
7591 	struct adapter *sc = arg1;
7592 	struct sbuf *sb;
7593 	int rc, i;
7594 	uint16_t incr[NMTUS][NCCTRL_WIN];
7595 	static const char *dec_fac[] = {
7596 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
7597 		"0.9375"
7598 	};
7599 
7600 	rc = sysctl_wire_old_buffer(req, 0);
7601 	if (rc != 0)
7602 		return (rc);
7603 
7604 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7605 	if (sb == NULL)
7606 		return (ENOMEM);
7607 
7608 	t4_read_cong_tbl(sc, incr);
7609 
7610 	for (i = 0; i < NCCTRL_WIN; ++i) {
7611 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
7612 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
7613 		    incr[5][i], incr[6][i], incr[7][i]);
7614 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
7615 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
7616 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
7617 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
7618 	}
7619 
7620 	rc = sbuf_finish(sb);
7621 	sbuf_delete(sb);
7622 
7623 	return (rc);
7624 }
7625 
7626 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
7627 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
7628 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
7629 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
7630 };
7631 
7632 static int
7633 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
7634 {
7635 	struct adapter *sc = arg1;
7636 	struct sbuf *sb;
7637 	int rc, i, n, qid = arg2;
7638 	uint32_t *buf, *p;
7639 	char *qtype;
7640 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
7641 
7642 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
7643 	    ("%s: bad qid %d\n", __func__, qid));
7644 
7645 	if (qid < CIM_NUM_IBQ) {
7646 		/* inbound queue */
7647 		qtype = "IBQ";
7648 		n = 4 * CIM_IBQ_SIZE;
7649 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7650 		rc = t4_read_cim_ibq(sc, qid, buf, n);
7651 	} else {
7652 		/* outbound queue */
7653 		qtype = "OBQ";
7654 		qid -= CIM_NUM_IBQ;
7655 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
7656 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7657 		rc = t4_read_cim_obq(sc, qid, buf, n);
7658 	}
7659 
7660 	if (rc < 0) {
7661 		rc = -rc;
7662 		goto done;
7663 	}
7664 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
7665 
7666 	rc = sysctl_wire_old_buffer(req, 0);
7667 	if (rc != 0)
7668 		goto done;
7669 
7670 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7671 	if (sb == NULL) {
7672 		rc = ENOMEM;
7673 		goto done;
7674 	}
7675 
7676 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
7677 	for (i = 0, p = buf; i < n; i += 16, p += 4)
7678 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
7679 		    p[2], p[3]);
7680 
7681 	rc = sbuf_finish(sb);
7682 	sbuf_delete(sb);
7683 done:
7684 	free(buf, M_CXGBE);
7685 	return (rc);
7686 }
7687 
7688 static void
7689 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7690 {
7691 	uint32_t *p;
7692 
7693 	sbuf_printf(sb, "Status   Data      PC%s",
7694 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7695 	    "     LS0Stat  LS0Addr             LS0Data");
7696 
7697 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
7698 		if (cfg & F_UPDBGLACAPTPCONLY) {
7699 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
7700 			    p[6], p[7]);
7701 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
7702 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
7703 			    p[4] & 0xff, p[5] >> 8);
7704 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
7705 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7706 			    p[1] & 0xf, p[2] >> 4);
7707 		} else {
7708 			sbuf_printf(sb,
7709 			    "\n  %02x   %x%07x %x%07x %08x %08x "
7710 			    "%08x%08x%08x%08x",
7711 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7712 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
7713 			    p[6], p[7]);
7714 		}
7715 	}
7716 }
7717 
7718 static void
7719 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7720 {
7721 	uint32_t *p;
7722 
7723 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
7724 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7725 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
7726 
7727 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
7728 		if (cfg & F_UPDBGLACAPTPCONLY) {
7729 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
7730 			    p[3] & 0xff, p[2], p[1], p[0]);
7731 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
7732 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
7733 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
7734 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
7735 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
7736 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
7737 			    p[6] >> 16);
7738 		} else {
7739 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
7740 			    "%08x %08x %08x %08x %08x %08x",
7741 			    (p[9] >> 16) & 0xff,
7742 			    p[9] & 0xffff, p[8] >> 16,
7743 			    p[8] & 0xffff, p[7] >> 16,
7744 			    p[7] & 0xffff, p[6] >> 16,
7745 			    p[2], p[1], p[0], p[5], p[4], p[3]);
7746 		}
7747 	}
7748 }
7749 
7750 static int
7751 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
7752 {
7753 	uint32_t cfg, *buf;
7754 	int rc;
7755 
7756 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7757 	if (rc != 0)
7758 		return (rc);
7759 
7760 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7761 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7762 	    M_ZERO | flags);
7763 	if (buf == NULL)
7764 		return (ENOMEM);
7765 
7766 	rc = -t4_cim_read_la(sc, buf, NULL);
7767 	if (rc != 0)
7768 		goto done;
7769 	if (chip_id(sc) < CHELSIO_T6)
7770 		sbuf_cim_la4(sc, sb, buf, cfg);
7771 	else
7772 		sbuf_cim_la6(sc, sb, buf, cfg);
7773 
7774 done:
7775 	free(buf, M_CXGBE);
7776 	return (rc);
7777 }
7778 
7779 static int
7780 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
7781 {
7782 	struct adapter *sc = arg1;
7783 	struct sbuf *sb;
7784 	int rc;
7785 
7786 	rc = sysctl_wire_old_buffer(req, 0);
7787 	if (rc != 0)
7788 		return (rc);
7789 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7790 	if (sb == NULL)
7791 		return (ENOMEM);
7792 
7793 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
7794 	if (rc == 0)
7795 		rc = sbuf_finish(sb);
7796 	sbuf_delete(sb);
7797 	return (rc);
7798 }
7799 
7800 bool
7801 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose)
7802 {
7803 	struct sbuf sb;
7804 	int rc;
7805 
7806 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7807 		return (false);
7808 	rc = sbuf_cim_la(sc, &sb, M_NOWAIT);
7809 	if (rc == 0) {
7810 		rc = sbuf_finish(&sb);
7811 		if (rc == 0) {
7812 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s",
7813 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7814 		}
7815 	}
7816 	sbuf_delete(&sb);
7817 	return (false);
7818 }
7819 
7820 static int
7821 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
7822 {
7823 	struct adapter *sc = arg1;
7824 	u_int i;
7825 	struct sbuf *sb;
7826 	uint32_t *buf, *p;
7827 	int rc;
7828 
7829 	rc = sysctl_wire_old_buffer(req, 0);
7830 	if (rc != 0)
7831 		return (rc);
7832 
7833 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7834 	if (sb == NULL)
7835 		return (ENOMEM);
7836 
7837 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
7838 	    M_ZERO | M_WAITOK);
7839 
7840 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
7841 	p = buf;
7842 
7843 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7844 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
7845 		    p[1], p[0]);
7846 	}
7847 
7848 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
7849 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7850 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
7851 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
7852 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
7853 		    (p[1] >> 2) | ((p[2] & 3) << 30),
7854 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
7855 		    p[0] & 1);
7856 	}
7857 
7858 	rc = sbuf_finish(sb);
7859 	sbuf_delete(sb);
7860 	free(buf, M_CXGBE);
7861 	return (rc);
7862 }
7863 
7864 static int
7865 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
7866 {
7867 	struct adapter *sc = arg1;
7868 	u_int i;
7869 	struct sbuf *sb;
7870 	uint32_t *buf, *p;
7871 	int rc;
7872 
7873 	rc = sysctl_wire_old_buffer(req, 0);
7874 	if (rc != 0)
7875 		return (rc);
7876 
7877 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7878 	if (sb == NULL)
7879 		return (ENOMEM);
7880 
7881 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
7882 	    M_ZERO | M_WAITOK);
7883 
7884 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
7885 	p = buf;
7886 
7887 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
7888 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7889 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
7890 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
7891 		    p[4], p[3], p[2], p[1], p[0]);
7892 	}
7893 
7894 	sbuf_printf(sb, "\n\nCntl ID               Data");
7895 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7896 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
7897 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
7898 	}
7899 
7900 	rc = sbuf_finish(sb);
7901 	sbuf_delete(sb);
7902 	free(buf, M_CXGBE);
7903 	return (rc);
7904 }
7905 
7906 static int
7907 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
7908 {
7909 	struct adapter *sc = arg1;
7910 	struct sbuf *sb;
7911 	int rc, i;
7912 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7913 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7914 	uint16_t thres[CIM_NUM_IBQ];
7915 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
7916 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
7917 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
7918 
7919 	cim_num_obq = sc->chip_params->cim_num_obq;
7920 	if (is_t4(sc)) {
7921 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
7922 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
7923 	} else {
7924 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
7925 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
7926 	}
7927 	nq = CIM_NUM_IBQ + cim_num_obq;
7928 
7929 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
7930 	if (rc == 0)
7931 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
7932 	if (rc != 0)
7933 		return (rc);
7934 
7935 	t4_read_cimq_cfg(sc, base, size, thres);
7936 
7937 	rc = sysctl_wire_old_buffer(req, 0);
7938 	if (rc != 0)
7939 		return (rc);
7940 
7941 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7942 	if (sb == NULL)
7943 		return (ENOMEM);
7944 
7945 	sbuf_printf(sb,
7946 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
7947 
7948 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
7949 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
7950 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
7951 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7952 		    G_QUEREMFLITS(p[2]) * 16);
7953 	for ( ; i < nq; i++, p += 4, wr += 2)
7954 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
7955 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
7956 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7957 		    G_QUEREMFLITS(p[2]) * 16);
7958 
7959 	rc = sbuf_finish(sb);
7960 	sbuf_delete(sb);
7961 
7962 	return (rc);
7963 }
7964 
7965 static int
7966 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
7967 {
7968 	struct adapter *sc = arg1;
7969 	struct sbuf *sb;
7970 	int rc;
7971 	struct tp_cpl_stats stats;
7972 
7973 	rc = sysctl_wire_old_buffer(req, 0);
7974 	if (rc != 0)
7975 		return (rc);
7976 
7977 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7978 	if (sb == NULL)
7979 		return (ENOMEM);
7980 
7981 	mtx_lock(&sc->reg_lock);
7982 	t4_tp_get_cpl_stats(sc, &stats, 0);
7983 	mtx_unlock(&sc->reg_lock);
7984 
7985 	if (sc->chip_params->nchan > 2) {
7986 		sbuf_printf(sb, "                 channel 0  channel 1"
7987 		    "  channel 2  channel 3");
7988 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
7989 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
7990 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
7991 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
7992 	} else {
7993 		sbuf_printf(sb, "                 channel 0  channel 1");
7994 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
7995 		    stats.req[0], stats.req[1]);
7996 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
7997 		    stats.rsp[0], stats.rsp[1]);
7998 	}
7999 
8000 	rc = sbuf_finish(sb);
8001 	sbuf_delete(sb);
8002 
8003 	return (rc);
8004 }
8005 
8006 static int
8007 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
8008 {
8009 	struct adapter *sc = arg1;
8010 	struct sbuf *sb;
8011 	int rc;
8012 	struct tp_usm_stats stats;
8013 
8014 	rc = sysctl_wire_old_buffer(req, 0);
8015 	if (rc != 0)
8016 		return(rc);
8017 
8018 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8019 	if (sb == NULL)
8020 		return (ENOMEM);
8021 
8022 	t4_get_usm_stats(sc, &stats, 1);
8023 
8024 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
8025 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
8026 	sbuf_printf(sb, "Drops:  %u", stats.drops);
8027 
8028 	rc = sbuf_finish(sb);
8029 	sbuf_delete(sb);
8030 
8031 	return (rc);
8032 }
8033 
8034 static const char * const devlog_level_strings[] = {
8035 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
8036 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
8037 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
8038 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
8039 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
8040 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
8041 };
8042 
8043 static const char * const devlog_facility_strings[] = {
8044 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
8045 	[FW_DEVLOG_FACILITY_CF]		= "CF",
8046 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
8047 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
8048 	[FW_DEVLOG_FACILITY_RES]	= "RES",
8049 	[FW_DEVLOG_FACILITY_HW]		= "HW",
8050 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
8051 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
8052 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
8053 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
8054 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
8055 	[FW_DEVLOG_FACILITY_VI]		= "VI",
8056 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
8057 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
8058 	[FW_DEVLOG_FACILITY_TM]		= "TM",
8059 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
8060 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
8061 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
8062 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
8063 	[FW_DEVLOG_FACILITY_RI]		= "RI",
8064 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
8065 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
8066 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
8067 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
8068 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
8069 };
8070 
8071 static int
8072 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
8073 {
8074 	int i, j, rc, nentries, first = 0;
8075 	struct devlog_params *dparams = &sc->params.devlog;
8076 	struct fw_devlog_e *buf, *e;
8077 	uint64_t ftstamp = UINT64_MAX;
8078 
8079 	if (dparams->addr == 0)
8080 		return (ENXIO);
8081 
8082 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
8083 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
8084 	if (buf == NULL)
8085 		return (ENOMEM);
8086 
8087 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
8088 	if (rc != 0)
8089 		goto done;
8090 
8091 	nentries = dparams->size / sizeof(struct fw_devlog_e);
8092 	for (i = 0; i < nentries; i++) {
8093 		e = &buf[i];
8094 
8095 		if (e->timestamp == 0)
8096 			break;	/* end */
8097 
8098 		e->timestamp = be64toh(e->timestamp);
8099 		e->seqno = be32toh(e->seqno);
8100 		for (j = 0; j < 8; j++)
8101 			e->params[j] = be32toh(e->params[j]);
8102 
8103 		if (e->timestamp < ftstamp) {
8104 			ftstamp = e->timestamp;
8105 			first = i;
8106 		}
8107 	}
8108 
8109 	if (buf[first].timestamp == 0)
8110 		goto done;	/* nothing in the log */
8111 
8112 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
8113 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
8114 
8115 	i = first;
8116 	do {
8117 		e = &buf[i];
8118 		if (e->timestamp == 0)
8119 			break;	/* end */
8120 
8121 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
8122 		    e->seqno, e->timestamp,
8123 		    (e->level < nitems(devlog_level_strings) ?
8124 			devlog_level_strings[e->level] : "UNKNOWN"),
8125 		    (e->facility < nitems(devlog_facility_strings) ?
8126 			devlog_facility_strings[e->facility] : "UNKNOWN"));
8127 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
8128 		    e->params[2], e->params[3], e->params[4],
8129 		    e->params[5], e->params[6], e->params[7]);
8130 
8131 		if (++i == nentries)
8132 			i = 0;
8133 	} while (i != first);
8134 done:
8135 	free(buf, M_CXGBE);
8136 	return (rc);
8137 }
8138 
8139 static int
8140 sysctl_devlog(SYSCTL_HANDLER_ARGS)
8141 {
8142 	struct adapter *sc = arg1;
8143 	int rc;
8144 	struct sbuf *sb;
8145 
8146 	rc = sysctl_wire_old_buffer(req, 0);
8147 	if (rc != 0)
8148 		return (rc);
8149 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8150 	if (sb == NULL)
8151 		return (ENOMEM);
8152 
8153 	rc = sbuf_devlog(sc, sb, M_WAITOK);
8154 	if (rc == 0)
8155 		rc = sbuf_finish(sb);
8156 	sbuf_delete(sb);
8157 	return (rc);
8158 }
8159 
8160 void
8161 t4_os_dump_devlog(struct adapter *sc)
8162 {
8163 	int rc;
8164 	struct sbuf sb;
8165 
8166 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
8167 		return;
8168 	rc = sbuf_devlog(sc, &sb, M_NOWAIT);
8169 	if (rc == 0) {
8170 		rc = sbuf_finish(&sb);
8171 		if (rc == 0) {
8172 			log(LOG_DEBUG, "%s: device log follows.\n%s",
8173 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
8174 		}
8175 	}
8176 	sbuf_delete(&sb);
8177 }
8178 
8179 static int
8180 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
8181 {
8182 	struct adapter *sc = arg1;
8183 	struct sbuf *sb;
8184 	int rc;
8185 	struct tp_fcoe_stats stats[MAX_NCHAN];
8186 	int i, nchan = sc->chip_params->nchan;
8187 
8188 	rc = sysctl_wire_old_buffer(req, 0);
8189 	if (rc != 0)
8190 		return (rc);
8191 
8192 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8193 	if (sb == NULL)
8194 		return (ENOMEM);
8195 
8196 	for (i = 0; i < nchan; i++)
8197 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
8198 
8199 	if (nchan > 2) {
8200 		sbuf_printf(sb, "                   channel 0        channel 1"
8201 		    "        channel 2        channel 3");
8202 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
8203 		    stats[0].octets_ddp, stats[1].octets_ddp,
8204 		    stats[2].octets_ddp, stats[3].octets_ddp);
8205 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
8206 		    stats[0].frames_ddp, stats[1].frames_ddp,
8207 		    stats[2].frames_ddp, stats[3].frames_ddp);
8208 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
8209 		    stats[0].frames_drop, stats[1].frames_drop,
8210 		    stats[2].frames_drop, stats[3].frames_drop);
8211 	} else {
8212 		sbuf_printf(sb, "                   channel 0        channel 1");
8213 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
8214 		    stats[0].octets_ddp, stats[1].octets_ddp);
8215 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
8216 		    stats[0].frames_ddp, stats[1].frames_ddp);
8217 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
8218 		    stats[0].frames_drop, stats[1].frames_drop);
8219 	}
8220 
8221 	rc = sbuf_finish(sb);
8222 	sbuf_delete(sb);
8223 
8224 	return (rc);
8225 }
8226 
8227 static int
8228 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
8229 {
8230 	struct adapter *sc = arg1;
8231 	struct sbuf *sb;
8232 	int rc, i;
8233 	unsigned int map, kbps, ipg, mode;
8234 	unsigned int pace_tab[NTX_SCHED];
8235 
8236 	rc = sysctl_wire_old_buffer(req, 0);
8237 	if (rc != 0)
8238 		return (rc);
8239 
8240 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8241 	if (sb == NULL)
8242 		return (ENOMEM);
8243 
8244 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
8245 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
8246 	t4_read_pace_tbl(sc, pace_tab);
8247 
8248 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
8249 	    "Class IPG (0.1 ns)   Flow IPG (us)");
8250 
8251 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
8252 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
8253 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
8254 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
8255 		if (kbps)
8256 			sbuf_printf(sb, "%9u     ", kbps);
8257 		else
8258 			sbuf_printf(sb, " disabled     ");
8259 
8260 		if (ipg)
8261 			sbuf_printf(sb, "%13u        ", ipg);
8262 		else
8263 			sbuf_printf(sb, "     disabled        ");
8264 
8265 		if (pace_tab[i])
8266 			sbuf_printf(sb, "%10u", pace_tab[i]);
8267 		else
8268 			sbuf_printf(sb, "  disabled");
8269 	}
8270 
8271 	rc = sbuf_finish(sb);
8272 	sbuf_delete(sb);
8273 
8274 	return (rc);
8275 }
8276 
8277 static int
8278 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
8279 {
8280 	struct adapter *sc = arg1;
8281 	struct sbuf *sb;
8282 	int rc, i, j;
8283 	uint64_t *p0, *p1;
8284 	struct lb_port_stats s[2];
8285 	static const char *stat_name[] = {
8286 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
8287 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
8288 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
8289 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
8290 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
8291 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
8292 		"BG2FramesTrunc:", "BG3FramesTrunc:"
8293 	};
8294 
8295 	rc = sysctl_wire_old_buffer(req, 0);
8296 	if (rc != 0)
8297 		return (rc);
8298 
8299 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8300 	if (sb == NULL)
8301 		return (ENOMEM);
8302 
8303 	memset(s, 0, sizeof(s));
8304 
8305 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
8306 		t4_get_lb_stats(sc, i, &s[0]);
8307 		t4_get_lb_stats(sc, i + 1, &s[1]);
8308 
8309 		p0 = &s[0].octets;
8310 		p1 = &s[1].octets;
8311 		sbuf_printf(sb, "%s                       Loopback %u"
8312 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
8313 
8314 		for (j = 0; j < nitems(stat_name); j++)
8315 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
8316 				   *p0++, *p1++);
8317 	}
8318 
8319 	rc = sbuf_finish(sb);
8320 	sbuf_delete(sb);
8321 
8322 	return (rc);
8323 }
8324 
8325 static int
8326 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
8327 {
8328 	int rc = 0;
8329 	struct port_info *pi = arg1;
8330 	struct link_config *lc = &pi->link_cfg;
8331 	struct sbuf *sb;
8332 
8333 	rc = sysctl_wire_old_buffer(req, 0);
8334 	if (rc != 0)
8335 		return(rc);
8336 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
8337 	if (sb == NULL)
8338 		return (ENOMEM);
8339 
8340 	if (lc->link_ok || lc->link_down_rc == 255)
8341 		sbuf_printf(sb, "n/a");
8342 	else
8343 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
8344 
8345 	rc = sbuf_finish(sb);
8346 	sbuf_delete(sb);
8347 
8348 	return (rc);
8349 }
8350 
8351 struct mem_desc {
8352 	unsigned int base;
8353 	unsigned int limit;
8354 	unsigned int idx;
8355 };
8356 
8357 static int
8358 mem_desc_cmp(const void *a, const void *b)
8359 {
8360 	return ((const struct mem_desc *)a)->base -
8361 	       ((const struct mem_desc *)b)->base;
8362 }
8363 
8364 static void
8365 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
8366     unsigned int to)
8367 {
8368 	unsigned int size;
8369 
8370 	if (from == to)
8371 		return;
8372 
8373 	size = to - from + 1;
8374 	if (size == 0)
8375 		return;
8376 
8377 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
8378 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
8379 }
8380 
8381 static int
8382 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
8383 {
8384 	struct adapter *sc = arg1;
8385 	struct sbuf *sb;
8386 	int rc, i, n;
8387 	uint32_t lo, hi, used, alloc;
8388 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
8389 	static const char *region[] = {
8390 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
8391 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
8392 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
8393 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
8394 		"RQUDP region:", "PBL region:", "TXPBL region:",
8395 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
8396 		"On-chip queues:", "TLS keys:",
8397 	};
8398 	struct mem_desc avail[4];
8399 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
8400 	struct mem_desc *md = mem;
8401 
8402 	rc = sysctl_wire_old_buffer(req, 0);
8403 	if (rc != 0)
8404 		return (rc);
8405 
8406 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8407 	if (sb == NULL)
8408 		return (ENOMEM);
8409 
8410 	for (i = 0; i < nitems(mem); i++) {
8411 		mem[i].limit = 0;
8412 		mem[i].idx = i;
8413 	}
8414 
8415 	/* Find and sort the populated memory ranges */
8416 	i = 0;
8417 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
8418 	if (lo & F_EDRAM0_ENABLE) {
8419 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
8420 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
8421 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
8422 		avail[i].idx = 0;
8423 		i++;
8424 	}
8425 	if (lo & F_EDRAM1_ENABLE) {
8426 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
8427 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
8428 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
8429 		avail[i].idx = 1;
8430 		i++;
8431 	}
8432 	if (lo & F_EXT_MEM_ENABLE) {
8433 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
8434 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
8435 		avail[i].limit = avail[i].base +
8436 		    (G_EXT_MEM_SIZE(hi) << 20);
8437 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
8438 		i++;
8439 	}
8440 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
8441 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
8442 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
8443 		avail[i].limit = avail[i].base +
8444 		    (G_EXT_MEM1_SIZE(hi) << 20);
8445 		avail[i].idx = 4;
8446 		i++;
8447 	}
8448 	if (!i)                                    /* no memory available */
8449 		return 0;
8450 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
8451 
8452 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
8453 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
8454 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
8455 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
8456 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
8457 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
8458 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
8459 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
8460 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
8461 
8462 	/* the next few have explicit upper bounds */
8463 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
8464 	md->limit = md->base - 1 +
8465 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
8466 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
8467 	md++;
8468 
8469 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
8470 	md->limit = md->base - 1 +
8471 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
8472 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
8473 	md++;
8474 
8475 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8476 		if (chip_id(sc) <= CHELSIO_T5)
8477 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
8478 		else
8479 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
8480 		md->limit = 0;
8481 	} else {
8482 		md->base = 0;
8483 		md->idx = nitems(region);  /* hide it */
8484 	}
8485 	md++;
8486 
8487 #define ulp_region(reg) \
8488 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
8489 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
8490 
8491 	ulp_region(RX_ISCSI);
8492 	ulp_region(RX_TDDP);
8493 	ulp_region(TX_TPT);
8494 	ulp_region(RX_STAG);
8495 	ulp_region(RX_RQ);
8496 	ulp_region(RX_RQUDP);
8497 	ulp_region(RX_PBL);
8498 	ulp_region(TX_PBL);
8499 #undef ulp_region
8500 
8501 	md->base = 0;
8502 	md->idx = nitems(region);
8503 	if (!is_t4(sc)) {
8504 		uint32_t size = 0;
8505 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
8506 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
8507 
8508 		if (is_t5(sc)) {
8509 			if (sge_ctrl & F_VFIFO_ENABLE)
8510 				size = G_DBVFIFO_SIZE(fifo_size);
8511 		} else
8512 			size = G_T6_DBVFIFO_SIZE(fifo_size);
8513 
8514 		if (size) {
8515 			md->base = G_BASEADDR(t4_read_reg(sc,
8516 			    A_SGE_DBVFIFO_BADDR));
8517 			md->limit = md->base + (size << 2) - 1;
8518 		}
8519 	}
8520 	md++;
8521 
8522 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
8523 	md->limit = 0;
8524 	md++;
8525 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
8526 	md->limit = 0;
8527 	md++;
8528 
8529 	md->base = sc->vres.ocq.start;
8530 	if (sc->vres.ocq.size)
8531 		md->limit = md->base + sc->vres.ocq.size - 1;
8532 	else
8533 		md->idx = nitems(region);  /* hide it */
8534 	md++;
8535 
8536 	md->base = sc->vres.key.start;
8537 	if (sc->vres.key.size)
8538 		md->limit = md->base + sc->vres.key.size - 1;
8539 	else
8540 		md->idx = nitems(region);  /* hide it */
8541 	md++;
8542 
8543 	/* add any address-space holes, there can be up to 3 */
8544 	for (n = 0; n < i - 1; n++)
8545 		if (avail[n].limit < avail[n + 1].base)
8546 			(md++)->base = avail[n].limit;
8547 	if (avail[n].limit)
8548 		(md++)->base = avail[n].limit;
8549 
8550 	n = md - mem;
8551 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
8552 
8553 	for (lo = 0; lo < i; lo++)
8554 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
8555 				avail[lo].limit - 1);
8556 
8557 	sbuf_printf(sb, "\n");
8558 	for (i = 0; i < n; i++) {
8559 		if (mem[i].idx >= nitems(region))
8560 			continue;                        /* skip holes */
8561 		if (!mem[i].limit)
8562 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
8563 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
8564 				mem[i].limit);
8565 	}
8566 
8567 	sbuf_printf(sb, "\n");
8568 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
8569 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
8570 	mem_region_show(sb, "uP RAM:", lo, hi);
8571 
8572 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
8573 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
8574 	mem_region_show(sb, "uP Extmem2:", lo, hi);
8575 
8576 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
8577 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
8578 		   G_PMRXMAXPAGE(lo),
8579 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
8580 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
8581 
8582 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
8583 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
8584 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
8585 		   G_PMTXMAXPAGE(lo),
8586 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
8587 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
8588 	sbuf_printf(sb, "%u p-structs\n",
8589 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
8590 
8591 	for (i = 0; i < 4; i++) {
8592 		if (chip_id(sc) > CHELSIO_T5)
8593 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
8594 		else
8595 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
8596 		if (is_t5(sc)) {
8597 			used = G_T5_USED(lo);
8598 			alloc = G_T5_ALLOC(lo);
8599 		} else {
8600 			used = G_USED(lo);
8601 			alloc = G_ALLOC(lo);
8602 		}
8603 		/* For T6 these are MAC buffer groups */
8604 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
8605 		    i, used, alloc);
8606 	}
8607 	for (i = 0; i < sc->chip_params->nchan; i++) {
8608 		if (chip_id(sc) > CHELSIO_T5)
8609 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
8610 		else
8611 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
8612 		if (is_t5(sc)) {
8613 			used = G_T5_USED(lo);
8614 			alloc = G_T5_ALLOC(lo);
8615 		} else {
8616 			used = G_USED(lo);
8617 			alloc = G_ALLOC(lo);
8618 		}
8619 		/* For T6 these are MAC buffer groups */
8620 		sbuf_printf(sb,
8621 		    "\nLoopback %d using %u pages out of %u allocated",
8622 		    i, used, alloc);
8623 	}
8624 
8625 	rc = sbuf_finish(sb);
8626 	sbuf_delete(sb);
8627 
8628 	return (rc);
8629 }
8630 
8631 static inline void
8632 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
8633 {
8634 	*mask = x | y;
8635 	y = htobe64(y);
8636 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
8637 }
8638 
8639 static int
8640 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
8641 {
8642 	struct adapter *sc = arg1;
8643 	struct sbuf *sb;
8644 	int rc, i;
8645 
8646 	MPASS(chip_id(sc) <= CHELSIO_T5);
8647 
8648 	rc = sysctl_wire_old_buffer(req, 0);
8649 	if (rc != 0)
8650 		return (rc);
8651 
8652 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8653 	if (sb == NULL)
8654 		return (ENOMEM);
8655 
8656 	sbuf_printf(sb,
8657 	    "Idx  Ethernet address     Mask     Vld Ports PF"
8658 	    "  VF              Replication             P0 P1 P2 P3  ML");
8659 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8660 		uint64_t tcamx, tcamy, mask;
8661 		uint32_t cls_lo, cls_hi;
8662 		uint8_t addr[ETHER_ADDR_LEN];
8663 
8664 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
8665 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
8666 		if (tcamx & tcamy)
8667 			continue;
8668 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8669 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8670 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8671 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
8672 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
8673 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
8674 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
8675 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
8676 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
8677 
8678 		if (cls_lo & F_REPLICATE) {
8679 			struct fw_ldst_cmd ldst_cmd;
8680 
8681 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8682 			ldst_cmd.op_to_addrspace =
8683 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8684 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8685 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8686 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8687 			ldst_cmd.u.mps.rplc.fid_idx =
8688 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8689 				V_FW_LDST_CMD_IDX(i));
8690 
8691 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8692 			    "t4mps");
8693 			if (rc)
8694 				break;
8695 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8696 			    sizeof(ldst_cmd), &ldst_cmd);
8697 			end_synchronized_op(sc, 0);
8698 
8699 			if (rc != 0) {
8700 				sbuf_printf(sb, "%36d", rc);
8701 				rc = 0;
8702 			} else {
8703 				sbuf_printf(sb, " %08x %08x %08x %08x",
8704 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8705 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8706 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8707 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8708 			}
8709 		} else
8710 			sbuf_printf(sb, "%36s", "");
8711 
8712 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
8713 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
8714 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
8715 	}
8716 
8717 	if (rc)
8718 		(void) sbuf_finish(sb);
8719 	else
8720 		rc = sbuf_finish(sb);
8721 	sbuf_delete(sb);
8722 
8723 	return (rc);
8724 }
8725 
8726 static int
8727 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
8728 {
8729 	struct adapter *sc = arg1;
8730 	struct sbuf *sb;
8731 	int rc, i;
8732 
8733 	MPASS(chip_id(sc) > CHELSIO_T5);
8734 
8735 	rc = sysctl_wire_old_buffer(req, 0);
8736 	if (rc != 0)
8737 		return (rc);
8738 
8739 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8740 	if (sb == NULL)
8741 		return (ENOMEM);
8742 
8743 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
8744 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
8745 	    "                           Replication"
8746 	    "                                    P0 P1 P2 P3  ML\n");
8747 
8748 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8749 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
8750 		uint16_t ivlan;
8751 		uint64_t tcamx, tcamy, val, mask;
8752 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
8753 		uint8_t addr[ETHER_ADDR_LEN];
8754 
8755 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
8756 		if (i < 256)
8757 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
8758 		else
8759 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
8760 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8761 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8762 		tcamy = G_DMACH(val) << 32;
8763 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8764 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8765 		lookup_type = G_DATALKPTYPE(data2);
8766 		port_num = G_DATAPORTNUM(data2);
8767 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8768 			/* Inner header VNI */
8769 			vniy = ((data2 & F_DATAVIDH2) << 23) |
8770 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8771 			dip_hit = data2 & F_DATADIPHIT;
8772 			vlan_vld = 0;
8773 		} else {
8774 			vniy = 0;
8775 			dip_hit = 0;
8776 			vlan_vld = data2 & F_DATAVIDH2;
8777 			ivlan = G_VIDL(val);
8778 		}
8779 
8780 		ctl |= V_CTLXYBITSEL(1);
8781 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8782 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8783 		tcamx = G_DMACH(val) << 32;
8784 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8785 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8786 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8787 			/* Inner header VNI mask */
8788 			vnix = ((data2 & F_DATAVIDH2) << 23) |
8789 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8790 		} else
8791 			vnix = 0;
8792 
8793 		if (tcamx & tcamy)
8794 			continue;
8795 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8796 
8797 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8798 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8799 
8800 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8801 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8802 			    "%012jx %06x %06x    -    -   %3c"
8803 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
8804 			    addr[1], addr[2], addr[3], addr[4], addr[5],
8805 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
8806 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8807 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8808 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8809 		} else {
8810 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8811 			    "%012jx    -       -   ", i, addr[0], addr[1],
8812 			    addr[2], addr[3], addr[4], addr[5],
8813 			    (uintmax_t)mask);
8814 
8815 			if (vlan_vld)
8816 				sbuf_printf(sb, "%4u   Y     ", ivlan);
8817 			else
8818 				sbuf_printf(sb, "  -    N     ");
8819 
8820 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
8821 			    lookup_type ? 'I' : 'O', port_num,
8822 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8823 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8824 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8825 		}
8826 
8827 
8828 		if (cls_lo & F_T6_REPLICATE) {
8829 			struct fw_ldst_cmd ldst_cmd;
8830 
8831 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8832 			ldst_cmd.op_to_addrspace =
8833 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8834 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8835 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8836 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8837 			ldst_cmd.u.mps.rplc.fid_idx =
8838 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8839 				V_FW_LDST_CMD_IDX(i));
8840 
8841 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8842 			    "t6mps");
8843 			if (rc)
8844 				break;
8845 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8846 			    sizeof(ldst_cmd), &ldst_cmd);
8847 			end_synchronized_op(sc, 0);
8848 
8849 			if (rc != 0) {
8850 				sbuf_printf(sb, "%72d", rc);
8851 				rc = 0;
8852 			} else {
8853 				sbuf_printf(sb, " %08x %08x %08x %08x"
8854 				    " %08x %08x %08x %08x",
8855 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
8856 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
8857 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
8858 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
8859 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8860 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8861 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8862 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8863 			}
8864 		} else
8865 			sbuf_printf(sb, "%72s", "");
8866 
8867 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
8868 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
8869 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
8870 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
8871 	}
8872 
8873 	if (rc)
8874 		(void) sbuf_finish(sb);
8875 	else
8876 		rc = sbuf_finish(sb);
8877 	sbuf_delete(sb);
8878 
8879 	return (rc);
8880 }
8881 
8882 static int
8883 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
8884 {
8885 	struct adapter *sc = arg1;
8886 	struct sbuf *sb;
8887 	int rc;
8888 	uint16_t mtus[NMTUS];
8889 
8890 	rc = sysctl_wire_old_buffer(req, 0);
8891 	if (rc != 0)
8892 		return (rc);
8893 
8894 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8895 	if (sb == NULL)
8896 		return (ENOMEM);
8897 
8898 	t4_read_mtu_tbl(sc, mtus, NULL);
8899 
8900 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
8901 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
8902 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
8903 	    mtus[14], mtus[15]);
8904 
8905 	rc = sbuf_finish(sb);
8906 	sbuf_delete(sb);
8907 
8908 	return (rc);
8909 }
8910 
8911 static int
8912 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
8913 {
8914 	struct adapter *sc = arg1;
8915 	struct sbuf *sb;
8916 	int rc, i;
8917 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
8918 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
8919 	static const char *tx_stats[MAX_PM_NSTATS] = {
8920 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
8921 		"Tx FIFO wait", NULL, "Tx latency"
8922 	};
8923 	static const char *rx_stats[MAX_PM_NSTATS] = {
8924 		"Read:", "Write bypass:", "Write mem:", "Flush:",
8925 		"Rx FIFO wait", NULL, "Rx latency"
8926 	};
8927 
8928 	rc = sysctl_wire_old_buffer(req, 0);
8929 	if (rc != 0)
8930 		return (rc);
8931 
8932 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8933 	if (sb == NULL)
8934 		return (ENOMEM);
8935 
8936 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
8937 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
8938 
8939 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
8940 	for (i = 0; i < 4; i++) {
8941 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8942 		    tx_cyc[i]);
8943 	}
8944 
8945 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
8946 	for (i = 0; i < 4; i++) {
8947 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8948 		    rx_cyc[i]);
8949 	}
8950 
8951 	if (chip_id(sc) > CHELSIO_T5) {
8952 		sbuf_printf(sb,
8953 		    "\n              Total wait      Total occupancy");
8954 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8955 		    tx_cyc[i]);
8956 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8957 		    rx_cyc[i]);
8958 
8959 		i += 2;
8960 		MPASS(i < nitems(tx_stats));
8961 
8962 		sbuf_printf(sb,
8963 		    "\n                   Reads           Total wait");
8964 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8965 		    tx_cyc[i]);
8966 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8967 		    rx_cyc[i]);
8968 	}
8969 
8970 	rc = sbuf_finish(sb);
8971 	sbuf_delete(sb);
8972 
8973 	return (rc);
8974 }
8975 
8976 static int
8977 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
8978 {
8979 	struct adapter *sc = arg1;
8980 	struct sbuf *sb;
8981 	int rc;
8982 	struct tp_rdma_stats stats;
8983 
8984 	rc = sysctl_wire_old_buffer(req, 0);
8985 	if (rc != 0)
8986 		return (rc);
8987 
8988 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8989 	if (sb == NULL)
8990 		return (ENOMEM);
8991 
8992 	mtx_lock(&sc->reg_lock);
8993 	t4_tp_get_rdma_stats(sc, &stats, 0);
8994 	mtx_unlock(&sc->reg_lock);
8995 
8996 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
8997 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
8998 
8999 	rc = sbuf_finish(sb);
9000 	sbuf_delete(sb);
9001 
9002 	return (rc);
9003 }
9004 
9005 static int
9006 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
9007 {
9008 	struct adapter *sc = arg1;
9009 	struct sbuf *sb;
9010 	int rc;
9011 	struct tp_tcp_stats v4, v6;
9012 
9013 	rc = sysctl_wire_old_buffer(req, 0);
9014 	if (rc != 0)
9015 		return (rc);
9016 
9017 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9018 	if (sb == NULL)
9019 		return (ENOMEM);
9020 
9021 	mtx_lock(&sc->reg_lock);
9022 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
9023 	mtx_unlock(&sc->reg_lock);
9024 
9025 	sbuf_printf(sb,
9026 	    "                                IP                 IPv6\n");
9027 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
9028 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
9029 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
9030 	    v4.tcp_in_segs, v6.tcp_in_segs);
9031 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
9032 	    v4.tcp_out_segs, v6.tcp_out_segs);
9033 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
9034 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
9035 
9036 	rc = sbuf_finish(sb);
9037 	sbuf_delete(sb);
9038 
9039 	return (rc);
9040 }
9041 
9042 static int
9043 sysctl_tids(SYSCTL_HANDLER_ARGS)
9044 {
9045 	struct adapter *sc = arg1;
9046 	struct sbuf *sb;
9047 	int rc;
9048 	struct tid_info *t = &sc->tids;
9049 
9050 	rc = sysctl_wire_old_buffer(req, 0);
9051 	if (rc != 0)
9052 		return (rc);
9053 
9054 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9055 	if (sb == NULL)
9056 		return (ENOMEM);
9057 
9058 	if (t->natids) {
9059 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
9060 		    t->atids_in_use);
9061 	}
9062 
9063 	if (t->nhpftids) {
9064 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
9065 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
9066 	}
9067 
9068 	if (t->ntids) {
9069 		sbuf_printf(sb, "TID range: ");
9070 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9071 			uint32_t b, hb;
9072 
9073 			if (chip_id(sc) <= CHELSIO_T5) {
9074 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
9075 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
9076 			} else {
9077 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
9078 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
9079 			}
9080 
9081 			if (b)
9082 				sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1);
9083 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
9084 		} else
9085 			sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1);
9086 		sbuf_printf(sb, ", in use: %u\n",
9087 		    atomic_load_acq_int(&t->tids_in_use));
9088 	}
9089 
9090 	if (t->nstids) {
9091 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
9092 		    t->stid_base + t->nstids - 1, t->stids_in_use);
9093 	}
9094 
9095 	if (t->nftids) {
9096 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
9097 		    t->ftid_end, t->ftids_in_use);
9098 	}
9099 
9100 	if (t->netids) {
9101 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
9102 		    t->etid_base + t->netids - 1, t->etids_in_use);
9103 	}
9104 
9105 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
9106 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
9107 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
9108 
9109 	rc = sbuf_finish(sb);
9110 	sbuf_delete(sb);
9111 
9112 	return (rc);
9113 }
9114 
9115 static int
9116 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
9117 {
9118 	struct adapter *sc = arg1;
9119 	struct sbuf *sb;
9120 	int rc;
9121 	struct tp_err_stats stats;
9122 
9123 	rc = sysctl_wire_old_buffer(req, 0);
9124 	if (rc != 0)
9125 		return (rc);
9126 
9127 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9128 	if (sb == NULL)
9129 		return (ENOMEM);
9130 
9131 	mtx_lock(&sc->reg_lock);
9132 	t4_tp_get_err_stats(sc, &stats, 0);
9133 	mtx_unlock(&sc->reg_lock);
9134 
9135 	if (sc->chip_params->nchan > 2) {
9136 		sbuf_printf(sb, "                 channel 0  channel 1"
9137 		    "  channel 2  channel 3\n");
9138 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
9139 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
9140 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
9141 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
9142 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
9143 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
9144 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
9145 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
9146 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
9147 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
9148 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
9149 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
9150 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
9151 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
9152 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
9153 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
9154 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
9155 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
9156 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
9157 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
9158 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
9159 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
9160 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
9161 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
9162 	} else {
9163 		sbuf_printf(sb, "                 channel 0  channel 1\n");
9164 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
9165 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
9166 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
9167 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
9168 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
9169 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
9170 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
9171 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
9172 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
9173 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
9174 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
9175 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
9176 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
9177 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
9178 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
9179 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
9180 	}
9181 
9182 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
9183 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
9184 
9185 	rc = sbuf_finish(sb);
9186 	sbuf_delete(sb);
9187 
9188 	return (rc);
9189 }
9190 
9191 static int
9192 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
9193 {
9194 	struct adapter *sc = arg1;
9195 	struct tp_params *tpp = &sc->params.tp;
9196 	u_int mask;
9197 	int rc;
9198 
9199 	mask = tpp->la_mask >> 16;
9200 	rc = sysctl_handle_int(oidp, &mask, 0, req);
9201 	if (rc != 0 || req->newptr == NULL)
9202 		return (rc);
9203 	if (mask > 0xffff)
9204 		return (EINVAL);
9205 	tpp->la_mask = mask << 16;
9206 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
9207 
9208 	return (0);
9209 }
9210 
9211 struct field_desc {
9212 	const char *name;
9213 	u_int start;
9214 	u_int width;
9215 };
9216 
9217 static void
9218 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
9219 {
9220 	char buf[32];
9221 	int line_size = 0;
9222 
9223 	while (f->name) {
9224 		uint64_t mask = (1ULL << f->width) - 1;
9225 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
9226 		    ((uintmax_t)v >> f->start) & mask);
9227 
9228 		if (line_size + len >= 79) {
9229 			line_size = 8;
9230 			sbuf_printf(sb, "\n        ");
9231 		}
9232 		sbuf_printf(sb, "%s ", buf);
9233 		line_size += len + 1;
9234 		f++;
9235 	}
9236 	sbuf_printf(sb, "\n");
9237 }
9238 
9239 static const struct field_desc tp_la0[] = {
9240 	{ "RcfOpCodeOut", 60, 4 },
9241 	{ "State", 56, 4 },
9242 	{ "WcfState", 52, 4 },
9243 	{ "RcfOpcSrcOut", 50, 2 },
9244 	{ "CRxError", 49, 1 },
9245 	{ "ERxError", 48, 1 },
9246 	{ "SanityFailed", 47, 1 },
9247 	{ "SpuriousMsg", 46, 1 },
9248 	{ "FlushInputMsg", 45, 1 },
9249 	{ "FlushInputCpl", 44, 1 },
9250 	{ "RssUpBit", 43, 1 },
9251 	{ "RssFilterHit", 42, 1 },
9252 	{ "Tid", 32, 10 },
9253 	{ "InitTcb", 31, 1 },
9254 	{ "LineNumber", 24, 7 },
9255 	{ "Emsg", 23, 1 },
9256 	{ "EdataOut", 22, 1 },
9257 	{ "Cmsg", 21, 1 },
9258 	{ "CdataOut", 20, 1 },
9259 	{ "EreadPdu", 19, 1 },
9260 	{ "CreadPdu", 18, 1 },
9261 	{ "TunnelPkt", 17, 1 },
9262 	{ "RcfPeerFin", 16, 1 },
9263 	{ "RcfReasonOut", 12, 4 },
9264 	{ "TxCchannel", 10, 2 },
9265 	{ "RcfTxChannel", 8, 2 },
9266 	{ "RxEchannel", 6, 2 },
9267 	{ "RcfRxChannel", 5, 1 },
9268 	{ "RcfDataOutSrdy", 4, 1 },
9269 	{ "RxDvld", 3, 1 },
9270 	{ "RxOoDvld", 2, 1 },
9271 	{ "RxCongestion", 1, 1 },
9272 	{ "TxCongestion", 0, 1 },
9273 	{ NULL }
9274 };
9275 
9276 static const struct field_desc tp_la1[] = {
9277 	{ "CplCmdIn", 56, 8 },
9278 	{ "CplCmdOut", 48, 8 },
9279 	{ "ESynOut", 47, 1 },
9280 	{ "EAckOut", 46, 1 },
9281 	{ "EFinOut", 45, 1 },
9282 	{ "ERstOut", 44, 1 },
9283 	{ "SynIn", 43, 1 },
9284 	{ "AckIn", 42, 1 },
9285 	{ "FinIn", 41, 1 },
9286 	{ "RstIn", 40, 1 },
9287 	{ "DataIn", 39, 1 },
9288 	{ "DataInVld", 38, 1 },
9289 	{ "PadIn", 37, 1 },
9290 	{ "RxBufEmpty", 36, 1 },
9291 	{ "RxDdp", 35, 1 },
9292 	{ "RxFbCongestion", 34, 1 },
9293 	{ "TxFbCongestion", 33, 1 },
9294 	{ "TxPktSumSrdy", 32, 1 },
9295 	{ "RcfUlpType", 28, 4 },
9296 	{ "Eread", 27, 1 },
9297 	{ "Ebypass", 26, 1 },
9298 	{ "Esave", 25, 1 },
9299 	{ "Static0", 24, 1 },
9300 	{ "Cread", 23, 1 },
9301 	{ "Cbypass", 22, 1 },
9302 	{ "Csave", 21, 1 },
9303 	{ "CPktOut", 20, 1 },
9304 	{ "RxPagePoolFull", 18, 2 },
9305 	{ "RxLpbkPkt", 17, 1 },
9306 	{ "TxLpbkPkt", 16, 1 },
9307 	{ "RxVfValid", 15, 1 },
9308 	{ "SynLearned", 14, 1 },
9309 	{ "SetDelEntry", 13, 1 },
9310 	{ "SetInvEntry", 12, 1 },
9311 	{ "CpcmdDvld", 11, 1 },
9312 	{ "CpcmdSave", 10, 1 },
9313 	{ "RxPstructsFull", 8, 2 },
9314 	{ "EpcmdDvld", 7, 1 },
9315 	{ "EpcmdFlush", 6, 1 },
9316 	{ "EpcmdTrimPrefix", 5, 1 },
9317 	{ "EpcmdTrimPostfix", 4, 1 },
9318 	{ "ERssIp4Pkt", 3, 1 },
9319 	{ "ERssIp6Pkt", 2, 1 },
9320 	{ "ERssTcpUdpPkt", 1, 1 },
9321 	{ "ERssFceFipPkt", 0, 1 },
9322 	{ NULL }
9323 };
9324 
9325 static const struct field_desc tp_la2[] = {
9326 	{ "CplCmdIn", 56, 8 },
9327 	{ "MpsVfVld", 55, 1 },
9328 	{ "MpsPf", 52, 3 },
9329 	{ "MpsVf", 44, 8 },
9330 	{ "SynIn", 43, 1 },
9331 	{ "AckIn", 42, 1 },
9332 	{ "FinIn", 41, 1 },
9333 	{ "RstIn", 40, 1 },
9334 	{ "DataIn", 39, 1 },
9335 	{ "DataInVld", 38, 1 },
9336 	{ "PadIn", 37, 1 },
9337 	{ "RxBufEmpty", 36, 1 },
9338 	{ "RxDdp", 35, 1 },
9339 	{ "RxFbCongestion", 34, 1 },
9340 	{ "TxFbCongestion", 33, 1 },
9341 	{ "TxPktSumSrdy", 32, 1 },
9342 	{ "RcfUlpType", 28, 4 },
9343 	{ "Eread", 27, 1 },
9344 	{ "Ebypass", 26, 1 },
9345 	{ "Esave", 25, 1 },
9346 	{ "Static0", 24, 1 },
9347 	{ "Cread", 23, 1 },
9348 	{ "Cbypass", 22, 1 },
9349 	{ "Csave", 21, 1 },
9350 	{ "CPktOut", 20, 1 },
9351 	{ "RxPagePoolFull", 18, 2 },
9352 	{ "RxLpbkPkt", 17, 1 },
9353 	{ "TxLpbkPkt", 16, 1 },
9354 	{ "RxVfValid", 15, 1 },
9355 	{ "SynLearned", 14, 1 },
9356 	{ "SetDelEntry", 13, 1 },
9357 	{ "SetInvEntry", 12, 1 },
9358 	{ "CpcmdDvld", 11, 1 },
9359 	{ "CpcmdSave", 10, 1 },
9360 	{ "RxPstructsFull", 8, 2 },
9361 	{ "EpcmdDvld", 7, 1 },
9362 	{ "EpcmdFlush", 6, 1 },
9363 	{ "EpcmdTrimPrefix", 5, 1 },
9364 	{ "EpcmdTrimPostfix", 4, 1 },
9365 	{ "ERssIp4Pkt", 3, 1 },
9366 	{ "ERssIp6Pkt", 2, 1 },
9367 	{ "ERssTcpUdpPkt", 1, 1 },
9368 	{ "ERssFceFipPkt", 0, 1 },
9369 	{ NULL }
9370 };
9371 
9372 static void
9373 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
9374 {
9375 
9376 	field_desc_show(sb, *p, tp_la0);
9377 }
9378 
9379 static void
9380 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
9381 {
9382 
9383 	if (idx)
9384 		sbuf_printf(sb, "\n");
9385 	field_desc_show(sb, p[0], tp_la0);
9386 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
9387 		field_desc_show(sb, p[1], tp_la0);
9388 }
9389 
9390 static void
9391 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
9392 {
9393 
9394 	if (idx)
9395 		sbuf_printf(sb, "\n");
9396 	field_desc_show(sb, p[0], tp_la0);
9397 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
9398 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
9399 }
9400 
9401 static int
9402 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
9403 {
9404 	struct adapter *sc = arg1;
9405 	struct sbuf *sb;
9406 	uint64_t *buf, *p;
9407 	int rc;
9408 	u_int i, inc;
9409 	void (*show_func)(struct sbuf *, uint64_t *, int);
9410 
9411 	rc = sysctl_wire_old_buffer(req, 0);
9412 	if (rc != 0)
9413 		return (rc);
9414 
9415 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9416 	if (sb == NULL)
9417 		return (ENOMEM);
9418 
9419 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
9420 
9421 	t4_tp_read_la(sc, buf, NULL);
9422 	p = buf;
9423 
9424 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
9425 	case 2:
9426 		inc = 2;
9427 		show_func = tp_la_show2;
9428 		break;
9429 	case 3:
9430 		inc = 2;
9431 		show_func = tp_la_show3;
9432 		break;
9433 	default:
9434 		inc = 1;
9435 		show_func = tp_la_show;
9436 	}
9437 
9438 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
9439 		(*show_func)(sb, p, i);
9440 
9441 	rc = sbuf_finish(sb);
9442 	sbuf_delete(sb);
9443 	free(buf, M_CXGBE);
9444 	return (rc);
9445 }
9446 
9447 static int
9448 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
9449 {
9450 	struct adapter *sc = arg1;
9451 	struct sbuf *sb;
9452 	int rc;
9453 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
9454 
9455 	rc = sysctl_wire_old_buffer(req, 0);
9456 	if (rc != 0)
9457 		return (rc);
9458 
9459 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9460 	if (sb == NULL)
9461 		return (ENOMEM);
9462 
9463 	t4_get_chan_txrate(sc, nrate, orate);
9464 
9465 	if (sc->chip_params->nchan > 2) {
9466 		sbuf_printf(sb, "              channel 0   channel 1"
9467 		    "   channel 2   channel 3\n");
9468 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
9469 		    nrate[0], nrate[1], nrate[2], nrate[3]);
9470 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
9471 		    orate[0], orate[1], orate[2], orate[3]);
9472 	} else {
9473 		sbuf_printf(sb, "              channel 0   channel 1\n");
9474 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
9475 		    nrate[0], nrate[1]);
9476 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
9477 		    orate[0], orate[1]);
9478 	}
9479 
9480 	rc = sbuf_finish(sb);
9481 	sbuf_delete(sb);
9482 
9483 	return (rc);
9484 }
9485 
9486 static int
9487 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
9488 {
9489 	struct adapter *sc = arg1;
9490 	struct sbuf *sb;
9491 	uint32_t *buf, *p;
9492 	int rc, i;
9493 
9494 	rc = sysctl_wire_old_buffer(req, 0);
9495 	if (rc != 0)
9496 		return (rc);
9497 
9498 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9499 	if (sb == NULL)
9500 		return (ENOMEM);
9501 
9502 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
9503 	    M_ZERO | M_WAITOK);
9504 
9505 	t4_ulprx_read_la(sc, buf);
9506 	p = buf;
9507 
9508 	sbuf_printf(sb, "      Pcmd        Type   Message"
9509 	    "                Data");
9510 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
9511 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
9512 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
9513 	}
9514 
9515 	rc = sbuf_finish(sb);
9516 	sbuf_delete(sb);
9517 	free(buf, M_CXGBE);
9518 	return (rc);
9519 }
9520 
9521 static int
9522 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
9523 {
9524 	struct adapter *sc = arg1;
9525 	struct sbuf *sb;
9526 	int rc, v;
9527 
9528 	MPASS(chip_id(sc) >= CHELSIO_T5);
9529 
9530 	rc = sysctl_wire_old_buffer(req, 0);
9531 	if (rc != 0)
9532 		return (rc);
9533 
9534 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9535 	if (sb == NULL)
9536 		return (ENOMEM);
9537 
9538 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
9539 	if (G_STATSOURCE_T5(v) == 7) {
9540 		int mode;
9541 
9542 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
9543 		if (mode == 0) {
9544 			sbuf_printf(sb, "total %d, incomplete %d",
9545 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9546 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9547 		} else if (mode == 1) {
9548 			sbuf_printf(sb, "total %d, data overflow %d",
9549 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9550 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9551 		} else {
9552 			sbuf_printf(sb, "unknown mode %d", mode);
9553 		}
9554 	}
9555 	rc = sbuf_finish(sb);
9556 	sbuf_delete(sb);
9557 
9558 	return (rc);
9559 }
9560 
9561 static int
9562 sysctl_cpus(SYSCTL_HANDLER_ARGS)
9563 {
9564 	struct adapter *sc = arg1;
9565 	enum cpu_sets op = arg2;
9566 	cpuset_t cpuset;
9567 	struct sbuf *sb;
9568 	int i, rc;
9569 
9570 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
9571 
9572 	CPU_ZERO(&cpuset);
9573 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
9574 	if (rc != 0)
9575 		return (rc);
9576 
9577 	rc = sysctl_wire_old_buffer(req, 0);
9578 	if (rc != 0)
9579 		return (rc);
9580 
9581 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9582 	if (sb == NULL)
9583 		return (ENOMEM);
9584 
9585 	CPU_FOREACH(i)
9586 		sbuf_printf(sb, "%d ", i);
9587 	rc = sbuf_finish(sb);
9588 	sbuf_delete(sb);
9589 
9590 	return (rc);
9591 }
9592 
9593 #ifdef TCP_OFFLOAD
9594 static int
9595 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
9596 {
9597 	struct adapter *sc = arg1;
9598 	int *old_ports, *new_ports;
9599 	int i, new_count, rc;
9600 
9601 	if (req->newptr == NULL && req->oldptr == NULL)
9602 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
9603 		    sizeof(sc->tt.tls_rx_ports[0])));
9604 
9605 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
9606 	if (rc)
9607 		return (rc);
9608 
9609 	if (sc->tt.num_tls_rx_ports == 0) {
9610 		i = -1;
9611 		rc = SYSCTL_OUT(req, &i, sizeof(i));
9612 	} else
9613 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
9614 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
9615 	if (rc == 0 && req->newptr != NULL) {
9616 		new_count = req->newlen / sizeof(new_ports[0]);
9617 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
9618 		    M_WAITOK);
9619 		rc = SYSCTL_IN(req, new_ports, new_count *
9620 		    sizeof(new_ports[0]));
9621 		if (rc)
9622 			goto err;
9623 
9624 		/* Allow setting to a single '-1' to clear the list. */
9625 		if (new_count == 1 && new_ports[0] == -1) {
9626 			ADAPTER_LOCK(sc);
9627 			old_ports = sc->tt.tls_rx_ports;
9628 			sc->tt.tls_rx_ports = NULL;
9629 			sc->tt.num_tls_rx_ports = 0;
9630 			ADAPTER_UNLOCK(sc);
9631 			free(old_ports, M_CXGBE);
9632 		} else {
9633 			for (i = 0; i < new_count; i++) {
9634 				if (new_ports[i] < 1 ||
9635 				    new_ports[i] > IPPORT_MAX) {
9636 					rc = EINVAL;
9637 					goto err;
9638 				}
9639 			}
9640 
9641 			ADAPTER_LOCK(sc);
9642 			old_ports = sc->tt.tls_rx_ports;
9643 			sc->tt.tls_rx_ports = new_ports;
9644 			sc->tt.num_tls_rx_ports = new_count;
9645 			ADAPTER_UNLOCK(sc);
9646 			free(old_ports, M_CXGBE);
9647 			new_ports = NULL;
9648 		}
9649 	err:
9650 		free(new_ports, M_CXGBE);
9651 	}
9652 	end_synchronized_op(sc, 0);
9653 	return (rc);
9654 }
9655 
9656 static void
9657 unit_conv(char *buf, size_t len, u_int val, u_int factor)
9658 {
9659 	u_int rem = val % factor;
9660 
9661 	if (rem == 0)
9662 		snprintf(buf, len, "%u", val / factor);
9663 	else {
9664 		while (rem % 10 == 0)
9665 			rem /= 10;
9666 		snprintf(buf, len, "%u.%u", val / factor, rem);
9667 	}
9668 }
9669 
9670 static int
9671 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
9672 {
9673 	struct adapter *sc = arg1;
9674 	char buf[16];
9675 	u_int res, re;
9676 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9677 
9678 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9679 	switch (arg2) {
9680 	case 0:
9681 		/* timer_tick */
9682 		re = G_TIMERRESOLUTION(res);
9683 		break;
9684 	case 1:
9685 		/* TCP timestamp tick */
9686 		re = G_TIMESTAMPRESOLUTION(res);
9687 		break;
9688 	case 2:
9689 		/* DACK tick */
9690 		re = G_DELAYEDACKRESOLUTION(res);
9691 		break;
9692 	default:
9693 		return (EDOOFUS);
9694 	}
9695 
9696 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
9697 
9698 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
9699 }
9700 
9701 static int
9702 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
9703 {
9704 	struct adapter *sc = arg1;
9705 	u_int res, dack_re, v;
9706 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9707 
9708 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9709 	dack_re = G_DELAYEDACKRESOLUTION(res);
9710 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
9711 
9712 	return (sysctl_handle_int(oidp, &v, 0, req));
9713 }
9714 
9715 static int
9716 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
9717 {
9718 	struct adapter *sc = arg1;
9719 	int reg = arg2;
9720 	u_int tre;
9721 	u_long tp_tick_us, v;
9722 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9723 
9724 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
9725 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
9726 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
9727 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
9728 
9729 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
9730 	tp_tick_us = (cclk_ps << tre) / 1000000;
9731 
9732 	if (reg == A_TP_INIT_SRTT)
9733 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
9734 	else
9735 		v = tp_tick_us * t4_read_reg(sc, reg);
9736 
9737 	return (sysctl_handle_long(oidp, &v, 0, req));
9738 }
9739 
9740 /*
9741  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
9742  * passed to this function.
9743  */
9744 static int
9745 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
9746 {
9747 	struct adapter *sc = arg1;
9748 	int idx = arg2;
9749 	u_int v;
9750 
9751 	MPASS(idx >= 0 && idx <= 24);
9752 
9753 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
9754 
9755 	return (sysctl_handle_int(oidp, &v, 0, req));
9756 }
9757 
9758 static int
9759 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
9760 {
9761 	struct adapter *sc = arg1;
9762 	int idx = arg2;
9763 	u_int shift, v, r;
9764 
9765 	MPASS(idx >= 0 && idx < 16);
9766 
9767 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
9768 	shift = (idx & 3) << 3;
9769 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
9770 
9771 	return (sysctl_handle_int(oidp, &v, 0, req));
9772 }
9773 
9774 static int
9775 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
9776 {
9777 	struct vi_info *vi = arg1;
9778 	struct adapter *sc = vi->pi->adapter;
9779 	int idx, rc, i;
9780 	struct sge_ofld_rxq *ofld_rxq;
9781 	uint8_t v;
9782 
9783 	idx = vi->ofld_tmr_idx;
9784 
9785 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9786 	if (rc != 0 || req->newptr == NULL)
9787 		return (rc);
9788 
9789 	if (idx < 0 || idx >= SGE_NTIMERS)
9790 		return (EINVAL);
9791 
9792 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9793 	    "t4otmr");
9794 	if (rc)
9795 		return (rc);
9796 
9797 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
9798 	for_each_ofld_rxq(vi, i, ofld_rxq) {
9799 #ifdef atomic_store_rel_8
9800 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
9801 #else
9802 		ofld_rxq->iq.intr_params = v;
9803 #endif
9804 	}
9805 	vi->ofld_tmr_idx = idx;
9806 
9807 	end_synchronized_op(sc, LOCK_HELD);
9808 	return (0);
9809 }
9810 
9811 static int
9812 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
9813 {
9814 	struct vi_info *vi = arg1;
9815 	struct adapter *sc = vi->pi->adapter;
9816 	int idx, rc;
9817 
9818 	idx = vi->ofld_pktc_idx;
9819 
9820 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9821 	if (rc != 0 || req->newptr == NULL)
9822 		return (rc);
9823 
9824 	if (idx < -1 || idx >= SGE_NCOUNTERS)
9825 		return (EINVAL);
9826 
9827 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9828 	    "t4opktc");
9829 	if (rc)
9830 		return (rc);
9831 
9832 	if (vi->flags & VI_INIT_DONE)
9833 		rc = EBUSY; /* cannot be changed once the queues are created */
9834 	else
9835 		vi->ofld_pktc_idx = idx;
9836 
9837 	end_synchronized_op(sc, LOCK_HELD);
9838 	return (rc);
9839 }
9840 #endif
9841 
9842 static int
9843 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9844 {
9845 	int rc;
9846 
9847 	if (cntxt->cid > M_CTXTQID)
9848 		return (EINVAL);
9849 
9850 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9851 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9852 		return (EINVAL);
9853 
9854 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9855 	if (rc)
9856 		return (rc);
9857 
9858 	if (sc->flags & FW_OK) {
9859 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9860 		    &cntxt->data[0]);
9861 		if (rc == 0)
9862 			goto done;
9863 	}
9864 
9865 	/*
9866 	 * Read via firmware failed or wasn't even attempted.  Read directly via
9867 	 * the backdoor.
9868 	 */
9869 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9870 done:
9871 	end_synchronized_op(sc, 0);
9872 	return (rc);
9873 }
9874 
9875 static int
9876 load_fw(struct adapter *sc, struct t4_data *fw)
9877 {
9878 	int rc;
9879 	uint8_t *fw_data;
9880 
9881 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9882 	if (rc)
9883 		return (rc);
9884 
9885 	/*
9886 	 * The firmware, with the sole exception of the memory parity error
9887 	 * handler, runs from memory and not flash.  It is almost always safe to
9888 	 * install a new firmware on a running system.  Just set bit 1 in
9889 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9890 	 */
9891 	if (sc->flags & FULL_INIT_DONE &&
9892 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9893 		rc = EBUSY;
9894 		goto done;
9895 	}
9896 
9897 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9898 	if (fw_data == NULL) {
9899 		rc = ENOMEM;
9900 		goto done;
9901 	}
9902 
9903 	rc = copyin(fw->data, fw_data, fw->len);
9904 	if (rc == 0)
9905 		rc = -t4_load_fw(sc, fw_data, fw->len);
9906 
9907 	free(fw_data, M_CXGBE);
9908 done:
9909 	end_synchronized_op(sc, 0);
9910 	return (rc);
9911 }
9912 
9913 static int
9914 load_cfg(struct adapter *sc, struct t4_data *cfg)
9915 {
9916 	int rc;
9917 	uint8_t *cfg_data = NULL;
9918 
9919 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9920 	if (rc)
9921 		return (rc);
9922 
9923 	if (cfg->len == 0) {
9924 		/* clear */
9925 		rc = -t4_load_cfg(sc, NULL, 0);
9926 		goto done;
9927 	}
9928 
9929 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9930 	if (cfg_data == NULL) {
9931 		rc = ENOMEM;
9932 		goto done;
9933 	}
9934 
9935 	rc = copyin(cfg->data, cfg_data, cfg->len);
9936 	if (rc == 0)
9937 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9938 
9939 	free(cfg_data, M_CXGBE);
9940 done:
9941 	end_synchronized_op(sc, 0);
9942 	return (rc);
9943 }
9944 
9945 static int
9946 load_boot(struct adapter *sc, struct t4_bootrom *br)
9947 {
9948 	int rc;
9949 	uint8_t *br_data = NULL;
9950 	u_int offset;
9951 
9952 	if (br->len > 1024 * 1024)
9953 		return (EFBIG);
9954 
9955 	if (br->pf_offset == 0) {
9956 		/* pfidx */
9957 		if (br->pfidx_addr > 7)
9958 			return (EINVAL);
9959 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9960 		    A_PCIE_PF_EXPROM_OFST)));
9961 	} else if (br->pf_offset == 1) {
9962 		/* offset */
9963 		offset = G_OFFSET(br->pfidx_addr);
9964 	} else {
9965 		return (EINVAL);
9966 	}
9967 
9968 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9969 	if (rc)
9970 		return (rc);
9971 
9972 	if (br->len == 0) {
9973 		/* clear */
9974 		rc = -t4_load_boot(sc, NULL, offset, 0);
9975 		goto done;
9976 	}
9977 
9978 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9979 	if (br_data == NULL) {
9980 		rc = ENOMEM;
9981 		goto done;
9982 	}
9983 
9984 	rc = copyin(br->data, br_data, br->len);
9985 	if (rc == 0)
9986 		rc = -t4_load_boot(sc, br_data, offset, br->len);
9987 
9988 	free(br_data, M_CXGBE);
9989 done:
9990 	end_synchronized_op(sc, 0);
9991 	return (rc);
9992 }
9993 
9994 static int
9995 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9996 {
9997 	int rc;
9998 	uint8_t *bc_data = NULL;
9999 
10000 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
10001 	if (rc)
10002 		return (rc);
10003 
10004 	if (bc->len == 0) {
10005 		/* clear */
10006 		rc = -t4_load_bootcfg(sc, NULL, 0);
10007 		goto done;
10008 	}
10009 
10010 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
10011 	if (bc_data == NULL) {
10012 		rc = ENOMEM;
10013 		goto done;
10014 	}
10015 
10016 	rc = copyin(bc->data, bc_data, bc->len);
10017 	if (rc == 0)
10018 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
10019 
10020 	free(bc_data, M_CXGBE);
10021 done:
10022 	end_synchronized_op(sc, 0);
10023 	return (rc);
10024 }
10025 
10026 static int
10027 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
10028 {
10029 	int rc;
10030 	struct cudbg_init *cudbg;
10031 	void *handle, *buf;
10032 
10033 	/* buf is large, don't block if no memory is available */
10034 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
10035 	if (buf == NULL)
10036 		return (ENOMEM);
10037 
10038 	handle = cudbg_alloc_handle();
10039 	if (handle == NULL) {
10040 		rc = ENOMEM;
10041 		goto done;
10042 	}
10043 
10044 	cudbg = cudbg_get_init(handle);
10045 	cudbg->adap = sc;
10046 	cudbg->print = (cudbg_print_cb)printf;
10047 
10048 #ifndef notyet
10049 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
10050 	    __func__, dump->wr_flash, dump->len, dump->data);
10051 #endif
10052 
10053 	if (dump->wr_flash)
10054 		cudbg->use_flash = 1;
10055 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
10056 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
10057 
10058 	rc = cudbg_collect(handle, buf, &dump->len);
10059 	if (rc != 0)
10060 		goto done;
10061 
10062 	rc = copyout(buf, dump->data, dump->len);
10063 done:
10064 	cudbg_free_handle(handle);
10065 	free(buf, M_CXGBE);
10066 	return (rc);
10067 }
10068 
10069 static void
10070 free_offload_policy(struct t4_offload_policy *op)
10071 {
10072 	struct offload_rule *r;
10073 	int i;
10074 
10075 	if (op == NULL)
10076 		return;
10077 
10078 	r = &op->rule[0];
10079 	for (i = 0; i < op->nrules; i++, r++) {
10080 		free(r->bpf_prog.bf_insns, M_CXGBE);
10081 	}
10082 	free(op->rule, M_CXGBE);
10083 	free(op, M_CXGBE);
10084 }
10085 
10086 static int
10087 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
10088 {
10089 	int i, rc, len;
10090 	struct t4_offload_policy *op, *old;
10091 	struct bpf_program *bf;
10092 	const struct offload_settings *s;
10093 	struct offload_rule *r;
10094 	void *u;
10095 
10096 	if (!is_offload(sc))
10097 		return (ENODEV);
10098 
10099 	if (uop->nrules == 0) {
10100 		/* Delete installed policies. */
10101 		op = NULL;
10102 		goto set_policy;
10103 	} else if (uop->nrules > 256) { /* arbitrary */
10104 		return (E2BIG);
10105 	}
10106 
10107 	/* Copy userspace offload policy to kernel */
10108 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
10109 	op->nrules = uop->nrules;
10110 	len = op->nrules * sizeof(struct offload_rule);
10111 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
10112 	rc = copyin(uop->rule, op->rule, len);
10113 	if (rc) {
10114 		free(op->rule, M_CXGBE);
10115 		free(op, M_CXGBE);
10116 		return (rc);
10117 	}
10118 
10119 	r = &op->rule[0];
10120 	for (i = 0; i < op->nrules; i++, r++) {
10121 
10122 		/* Validate open_type */
10123 		if (r->open_type != OPEN_TYPE_LISTEN &&
10124 		    r->open_type != OPEN_TYPE_ACTIVE &&
10125 		    r->open_type != OPEN_TYPE_PASSIVE &&
10126 		    r->open_type != OPEN_TYPE_DONTCARE) {
10127 error:
10128 			/*
10129 			 * Rules 0 to i have malloc'd filters that need to be
10130 			 * freed.  Rules i+1 to nrules have userspace pointers
10131 			 * and should be left alone.
10132 			 */
10133 			op->nrules = i;
10134 			free_offload_policy(op);
10135 			return (rc);
10136 		}
10137 
10138 		/* Validate settings */
10139 		s = &r->settings;
10140 		if ((s->offload != 0 && s->offload != 1) ||
10141 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
10142 		    s->sched_class < -1 ||
10143 		    s->sched_class >= sc->chip_params->nsched_cls) {
10144 			rc = EINVAL;
10145 			goto error;
10146 		}
10147 
10148 		bf = &r->bpf_prog;
10149 		u = bf->bf_insns;	/* userspace ptr */
10150 		bf->bf_insns = NULL;
10151 		if (bf->bf_len == 0) {
10152 			/* legal, matches everything */
10153 			continue;
10154 		}
10155 		len = bf->bf_len * sizeof(*bf->bf_insns);
10156 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
10157 		rc = copyin(u, bf->bf_insns, len);
10158 		if (rc != 0)
10159 			goto error;
10160 
10161 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
10162 			rc = EINVAL;
10163 			goto error;
10164 		}
10165 	}
10166 set_policy:
10167 	rw_wlock(&sc->policy_lock);
10168 	old = sc->policy;
10169 	sc->policy = op;
10170 	rw_wunlock(&sc->policy_lock);
10171 	free_offload_policy(old);
10172 
10173 	return (0);
10174 }
10175 
10176 #define MAX_READ_BUF_SIZE (128 * 1024)
10177 static int
10178 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
10179 {
10180 	uint32_t addr, remaining, n;
10181 	uint32_t *buf;
10182 	int rc;
10183 	uint8_t *dst;
10184 
10185 	rc = validate_mem_range(sc, mr->addr, mr->len);
10186 	if (rc != 0)
10187 		return (rc);
10188 
10189 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
10190 	addr = mr->addr;
10191 	remaining = mr->len;
10192 	dst = (void *)mr->data;
10193 
10194 	while (remaining) {
10195 		n = min(remaining, MAX_READ_BUF_SIZE);
10196 		read_via_memwin(sc, 2, addr, buf, n);
10197 
10198 		rc = copyout(buf, dst, n);
10199 		if (rc != 0)
10200 			break;
10201 
10202 		dst += n;
10203 		remaining -= n;
10204 		addr += n;
10205 	}
10206 
10207 	free(buf, M_CXGBE);
10208 	return (rc);
10209 }
10210 #undef MAX_READ_BUF_SIZE
10211 
10212 static int
10213 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
10214 {
10215 	int rc;
10216 
10217 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
10218 		return (EINVAL);
10219 
10220 	if (i2cd->len > sizeof(i2cd->data))
10221 		return (EFBIG);
10222 
10223 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
10224 	if (rc)
10225 		return (rc);
10226 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
10227 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
10228 	end_synchronized_op(sc, 0);
10229 
10230 	return (rc);
10231 }
10232 
10233 static int
10234 clear_stats(struct adapter *sc, u_int port_id)
10235 {
10236 	int i, v, bg_map;
10237 	struct port_info *pi;
10238 	struct vi_info *vi;
10239 	struct sge_rxq *rxq;
10240 	struct sge_txq *txq;
10241 	struct sge_wrq *wrq;
10242 #ifdef TCP_OFFLOAD
10243 	struct sge_ofld_rxq *ofld_rxq;
10244 #endif
10245 
10246 	if (port_id >= sc->params.nports)
10247 		return (EINVAL);
10248 	pi = sc->port[port_id];
10249 	if (pi == NULL)
10250 		return (EIO);
10251 
10252 	/* MAC stats */
10253 	t4_clr_port_stats(sc, pi->tx_chan);
10254 	pi->tx_parse_error = 0;
10255 	pi->tnl_cong_drops = 0;
10256 	mtx_lock(&sc->reg_lock);
10257 	for_each_vi(pi, v, vi) {
10258 		if (vi->flags & VI_INIT_DONE)
10259 			t4_clr_vi_stats(sc, vi->vin);
10260 	}
10261 	bg_map = pi->mps_bg_map;
10262 	v = 0;	/* reuse */
10263 	while (bg_map) {
10264 		i = ffs(bg_map) - 1;
10265 		t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
10266 		    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
10267 		bg_map &= ~(1 << i);
10268 	}
10269 	mtx_unlock(&sc->reg_lock);
10270 
10271 	/*
10272 	 * Since this command accepts a port, clear stats for
10273 	 * all VIs on this port.
10274 	 */
10275 	for_each_vi(pi, v, vi) {
10276 		if (vi->flags & VI_INIT_DONE) {
10277 
10278 			for_each_rxq(vi, i, rxq) {
10279 #if defined(INET) || defined(INET6)
10280 				rxq->lro.lro_queued = 0;
10281 				rxq->lro.lro_flushed = 0;
10282 #endif
10283 				rxq->rxcsum = 0;
10284 				rxq->vlan_extraction = 0;
10285 
10286 				rxq->fl.mbuf_allocated = 0;
10287 				rxq->fl.mbuf_inlined = 0;
10288 				rxq->fl.cl_allocated = 0;
10289 				rxq->fl.cl_recycled = 0;
10290 				rxq->fl.cl_fast_recycled = 0;
10291 			}
10292 
10293 			for_each_txq(vi, i, txq) {
10294 				txq->txcsum = 0;
10295 				txq->tso_wrs = 0;
10296 				txq->vlan_insertion = 0;
10297 				txq->imm_wrs = 0;
10298 				txq->sgl_wrs = 0;
10299 				txq->txpkt_wrs = 0;
10300 				txq->txpkts0_wrs = 0;
10301 				txq->txpkts1_wrs = 0;
10302 				txq->txpkts0_pkts = 0;
10303 				txq->txpkts1_pkts = 0;
10304 				txq->raw_wrs = 0;
10305 				txq->tls_wrs = 0;
10306 				txq->kern_tls_records = 0;
10307 				txq->kern_tls_short = 0;
10308 				txq->kern_tls_partial = 0;
10309 				txq->kern_tls_full = 0;
10310 				txq->kern_tls_octets = 0;
10311 				txq->kern_tls_waste = 0;
10312 				txq->kern_tls_options = 0;
10313 				txq->kern_tls_header = 0;
10314 				txq->kern_tls_fin = 0;
10315 				txq->kern_tls_fin_short = 0;
10316 				txq->kern_tls_cbc = 0;
10317 				txq->kern_tls_gcm = 0;
10318 				mp_ring_reset_stats(txq->r);
10319 			}
10320 
10321 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10322 			for_each_ofld_txq(vi, i, wrq) {
10323 				wrq->tx_wrs_direct = 0;
10324 				wrq->tx_wrs_copied = 0;
10325 			}
10326 #endif
10327 #ifdef TCP_OFFLOAD
10328 			for_each_ofld_rxq(vi, i, ofld_rxq) {
10329 				ofld_rxq->fl.mbuf_allocated = 0;
10330 				ofld_rxq->fl.mbuf_inlined = 0;
10331 				ofld_rxq->fl.cl_allocated = 0;
10332 				ofld_rxq->fl.cl_recycled = 0;
10333 				ofld_rxq->fl.cl_fast_recycled = 0;
10334 			}
10335 #endif
10336 
10337 			if (IS_MAIN_VI(vi)) {
10338 				wrq = &sc->sge.ctrlq[pi->port_id];
10339 				wrq->tx_wrs_direct = 0;
10340 				wrq->tx_wrs_copied = 0;
10341 			}
10342 		}
10343 	}
10344 
10345 	return (0);
10346 }
10347 
10348 int
10349 t4_os_find_pci_capability(struct adapter *sc, int cap)
10350 {
10351 	int i;
10352 
10353 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
10354 }
10355 
10356 int
10357 t4_os_pci_save_state(struct adapter *sc)
10358 {
10359 	device_t dev;
10360 	struct pci_devinfo *dinfo;
10361 
10362 	dev = sc->dev;
10363 	dinfo = device_get_ivars(dev);
10364 
10365 	pci_cfg_save(dev, dinfo, 0);
10366 	return (0);
10367 }
10368 
10369 int
10370 t4_os_pci_restore_state(struct adapter *sc)
10371 {
10372 	device_t dev;
10373 	struct pci_devinfo *dinfo;
10374 
10375 	dev = sc->dev;
10376 	dinfo = device_get_ivars(dev);
10377 
10378 	pci_cfg_restore(dev, dinfo);
10379 	return (0);
10380 }
10381 
10382 void
10383 t4_os_portmod_changed(struct port_info *pi)
10384 {
10385 	struct adapter *sc = pi->adapter;
10386 	struct vi_info *vi;
10387 	struct ifnet *ifp;
10388 	static const char *mod_str[] = {
10389 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
10390 	};
10391 
10392 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
10393 	    ("%s: port_type %u", __func__, pi->port_type));
10394 
10395 	vi = &pi->vi[0];
10396 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
10397 		PORT_LOCK(pi);
10398 		build_medialist(pi);
10399 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
10400 			fixup_link_config(pi);
10401 			apply_link_config(pi);
10402 		}
10403 		PORT_UNLOCK(pi);
10404 		end_synchronized_op(sc, LOCK_HELD);
10405 	}
10406 
10407 	ifp = vi->ifp;
10408 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
10409 		if_printf(ifp, "transceiver unplugged.\n");
10410 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
10411 		if_printf(ifp, "unknown transceiver inserted.\n");
10412 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
10413 		if_printf(ifp, "unsupported transceiver inserted.\n");
10414 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
10415 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
10416 		    port_top_speed(pi), mod_str[pi->mod_type]);
10417 	} else {
10418 		if_printf(ifp, "transceiver (type %d) inserted.\n",
10419 		    pi->mod_type);
10420 	}
10421 }
10422 
10423 void
10424 t4_os_link_changed(struct port_info *pi)
10425 {
10426 	struct vi_info *vi;
10427 	struct ifnet *ifp;
10428 	struct link_config *lc;
10429 	int v;
10430 
10431 	PORT_LOCK_ASSERT_OWNED(pi);
10432 
10433 	for_each_vi(pi, v, vi) {
10434 		ifp = vi->ifp;
10435 		if (ifp == NULL)
10436 			continue;
10437 
10438 		lc = &pi->link_cfg;
10439 		if (lc->link_ok) {
10440 			ifp->if_baudrate = IF_Mbps(lc->speed);
10441 			if_link_state_change(ifp, LINK_STATE_UP);
10442 		} else {
10443 			if_link_state_change(ifp, LINK_STATE_DOWN);
10444 		}
10445 	}
10446 }
10447 
10448 void
10449 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
10450 {
10451 	struct adapter *sc;
10452 
10453 	sx_slock(&t4_list_lock);
10454 	SLIST_FOREACH(sc, &t4_list, link) {
10455 		/*
10456 		 * func should not make any assumptions about what state sc is
10457 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
10458 		 */
10459 		func(sc, arg);
10460 	}
10461 	sx_sunlock(&t4_list_lock);
10462 }
10463 
10464 static int
10465 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
10466     struct thread *td)
10467 {
10468 	int rc;
10469 	struct adapter *sc = dev->si_drv1;
10470 
10471 	rc = priv_check(td, PRIV_DRIVER);
10472 	if (rc != 0)
10473 		return (rc);
10474 
10475 	switch (cmd) {
10476 	case CHELSIO_T4_GETREG: {
10477 		struct t4_reg *edata = (struct t4_reg *)data;
10478 
10479 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10480 			return (EFAULT);
10481 
10482 		if (edata->size == 4)
10483 			edata->val = t4_read_reg(sc, edata->addr);
10484 		else if (edata->size == 8)
10485 			edata->val = t4_read_reg64(sc, edata->addr);
10486 		else
10487 			return (EINVAL);
10488 
10489 		break;
10490 	}
10491 	case CHELSIO_T4_SETREG: {
10492 		struct t4_reg *edata = (struct t4_reg *)data;
10493 
10494 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10495 			return (EFAULT);
10496 
10497 		if (edata->size == 4) {
10498 			if (edata->val & 0xffffffff00000000)
10499 				return (EINVAL);
10500 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
10501 		} else if (edata->size == 8)
10502 			t4_write_reg64(sc, edata->addr, edata->val);
10503 		else
10504 			return (EINVAL);
10505 		break;
10506 	}
10507 	case CHELSIO_T4_REGDUMP: {
10508 		struct t4_regdump *regs = (struct t4_regdump *)data;
10509 		int reglen = t4_get_regs_len(sc);
10510 		uint8_t *buf;
10511 
10512 		if (regs->len < reglen) {
10513 			regs->len = reglen; /* hint to the caller */
10514 			return (ENOBUFS);
10515 		}
10516 
10517 		regs->len = reglen;
10518 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
10519 		get_regs(sc, regs, buf);
10520 		rc = copyout(buf, regs->data, reglen);
10521 		free(buf, M_CXGBE);
10522 		break;
10523 	}
10524 	case CHELSIO_T4_GET_FILTER_MODE:
10525 		rc = get_filter_mode(sc, (uint32_t *)data);
10526 		break;
10527 	case CHELSIO_T4_SET_FILTER_MODE:
10528 		rc = set_filter_mode(sc, *(uint32_t *)data);
10529 		break;
10530 	case CHELSIO_T4_GET_FILTER:
10531 		rc = get_filter(sc, (struct t4_filter *)data);
10532 		break;
10533 	case CHELSIO_T4_SET_FILTER:
10534 		rc = set_filter(sc, (struct t4_filter *)data);
10535 		break;
10536 	case CHELSIO_T4_DEL_FILTER:
10537 		rc = del_filter(sc, (struct t4_filter *)data);
10538 		break;
10539 	case CHELSIO_T4_GET_SGE_CONTEXT:
10540 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
10541 		break;
10542 	case CHELSIO_T4_LOAD_FW:
10543 		rc = load_fw(sc, (struct t4_data *)data);
10544 		break;
10545 	case CHELSIO_T4_GET_MEM:
10546 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
10547 		break;
10548 	case CHELSIO_T4_GET_I2C:
10549 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
10550 		break;
10551 	case CHELSIO_T4_CLEAR_STATS:
10552 		rc = clear_stats(sc, *(uint32_t *)data);
10553 		break;
10554 	case CHELSIO_T4_SCHED_CLASS:
10555 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
10556 		break;
10557 	case CHELSIO_T4_SCHED_QUEUE:
10558 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
10559 		break;
10560 	case CHELSIO_T4_GET_TRACER:
10561 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
10562 		break;
10563 	case CHELSIO_T4_SET_TRACER:
10564 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
10565 		break;
10566 	case CHELSIO_T4_LOAD_CFG:
10567 		rc = load_cfg(sc, (struct t4_data *)data);
10568 		break;
10569 	case CHELSIO_T4_LOAD_BOOT:
10570 		rc = load_boot(sc, (struct t4_bootrom *)data);
10571 		break;
10572 	case CHELSIO_T4_LOAD_BOOTCFG:
10573 		rc = load_bootcfg(sc, (struct t4_data *)data);
10574 		break;
10575 	case CHELSIO_T4_CUDBG_DUMP:
10576 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
10577 		break;
10578 	case CHELSIO_T4_SET_OFLD_POLICY:
10579 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
10580 		break;
10581 	default:
10582 		rc = ENOTTY;
10583 	}
10584 
10585 	return (rc);
10586 }
10587 
10588 #ifdef TCP_OFFLOAD
10589 static int
10590 toe_capability(struct vi_info *vi, int enable)
10591 {
10592 	int rc;
10593 	struct port_info *pi = vi->pi;
10594 	struct adapter *sc = pi->adapter;
10595 
10596 	ASSERT_SYNCHRONIZED_OP(sc);
10597 
10598 	if (!is_offload(sc))
10599 		return (ENODEV);
10600 
10601 	if (enable) {
10602 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
10603 			/* TOE is already enabled. */
10604 			return (0);
10605 		}
10606 
10607 		/*
10608 		 * We need the port's queues around so that we're able to send
10609 		 * and receive CPLs to/from the TOE even if the ifnet for this
10610 		 * port has never been UP'd administratively.
10611 		 */
10612 		if (!(vi->flags & VI_INIT_DONE)) {
10613 			rc = vi_full_init(vi);
10614 			if (rc)
10615 				return (rc);
10616 		}
10617 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
10618 			rc = vi_full_init(&pi->vi[0]);
10619 			if (rc)
10620 				return (rc);
10621 		}
10622 
10623 		if (isset(&sc->offload_map, pi->port_id)) {
10624 			/* TOE is enabled on another VI of this port. */
10625 			pi->uld_vis++;
10626 			return (0);
10627 		}
10628 
10629 		if (!uld_active(sc, ULD_TOM)) {
10630 			rc = t4_activate_uld(sc, ULD_TOM);
10631 			if (rc == EAGAIN) {
10632 				log(LOG_WARNING,
10633 				    "You must kldload t4_tom.ko before trying "
10634 				    "to enable TOE on a cxgbe interface.\n");
10635 			}
10636 			if (rc != 0)
10637 				return (rc);
10638 			KASSERT(sc->tom_softc != NULL,
10639 			    ("%s: TOM activated but softc NULL", __func__));
10640 			KASSERT(uld_active(sc, ULD_TOM),
10641 			    ("%s: TOM activated but flag not set", __func__));
10642 		}
10643 
10644 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
10645 		if (!uld_active(sc, ULD_IWARP))
10646 			(void) t4_activate_uld(sc, ULD_IWARP);
10647 		if (!uld_active(sc, ULD_ISCSI))
10648 			(void) t4_activate_uld(sc, ULD_ISCSI);
10649 
10650 		pi->uld_vis++;
10651 		setbit(&sc->offload_map, pi->port_id);
10652 	} else {
10653 		pi->uld_vis--;
10654 
10655 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
10656 			return (0);
10657 
10658 		KASSERT(uld_active(sc, ULD_TOM),
10659 		    ("%s: TOM never initialized?", __func__));
10660 		clrbit(&sc->offload_map, pi->port_id);
10661 	}
10662 
10663 	return (0);
10664 }
10665 
10666 /*
10667  * Add an upper layer driver to the global list.
10668  */
10669 int
10670 t4_register_uld(struct uld_info *ui)
10671 {
10672 	int rc = 0;
10673 	struct uld_info *u;
10674 
10675 	sx_xlock(&t4_uld_list_lock);
10676 	SLIST_FOREACH(u, &t4_uld_list, link) {
10677 	    if (u->uld_id == ui->uld_id) {
10678 		    rc = EEXIST;
10679 		    goto done;
10680 	    }
10681 	}
10682 
10683 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
10684 	ui->refcount = 0;
10685 done:
10686 	sx_xunlock(&t4_uld_list_lock);
10687 	return (rc);
10688 }
10689 
10690 int
10691 t4_unregister_uld(struct uld_info *ui)
10692 {
10693 	int rc = EINVAL;
10694 	struct uld_info *u;
10695 
10696 	sx_xlock(&t4_uld_list_lock);
10697 
10698 	SLIST_FOREACH(u, &t4_uld_list, link) {
10699 	    if (u == ui) {
10700 		    if (ui->refcount > 0) {
10701 			    rc = EBUSY;
10702 			    goto done;
10703 		    }
10704 
10705 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
10706 		    rc = 0;
10707 		    goto done;
10708 	    }
10709 	}
10710 done:
10711 	sx_xunlock(&t4_uld_list_lock);
10712 	return (rc);
10713 }
10714 
10715 int
10716 t4_activate_uld(struct adapter *sc, int id)
10717 {
10718 	int rc;
10719 	struct uld_info *ui;
10720 
10721 	ASSERT_SYNCHRONIZED_OP(sc);
10722 
10723 	if (id < 0 || id > ULD_MAX)
10724 		return (EINVAL);
10725 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
10726 
10727 	sx_slock(&t4_uld_list_lock);
10728 
10729 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10730 		if (ui->uld_id == id) {
10731 			if (!(sc->flags & FULL_INIT_DONE)) {
10732 				rc = adapter_full_init(sc);
10733 				if (rc != 0)
10734 					break;
10735 			}
10736 
10737 			rc = ui->activate(sc);
10738 			if (rc == 0) {
10739 				setbit(&sc->active_ulds, id);
10740 				ui->refcount++;
10741 			}
10742 			break;
10743 		}
10744 	}
10745 
10746 	sx_sunlock(&t4_uld_list_lock);
10747 
10748 	return (rc);
10749 }
10750 
10751 int
10752 t4_deactivate_uld(struct adapter *sc, int id)
10753 {
10754 	int rc;
10755 	struct uld_info *ui;
10756 
10757 	ASSERT_SYNCHRONIZED_OP(sc);
10758 
10759 	if (id < 0 || id > ULD_MAX)
10760 		return (EINVAL);
10761 	rc = ENXIO;
10762 
10763 	sx_slock(&t4_uld_list_lock);
10764 
10765 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10766 		if (ui->uld_id == id) {
10767 			rc = ui->deactivate(sc);
10768 			if (rc == 0) {
10769 				clrbit(&sc->active_ulds, id);
10770 				ui->refcount--;
10771 			}
10772 			break;
10773 		}
10774 	}
10775 
10776 	sx_sunlock(&t4_uld_list_lock);
10777 
10778 	return (rc);
10779 }
10780 
10781 int
10782 uld_active(struct adapter *sc, int uld_id)
10783 {
10784 
10785 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
10786 
10787 	return (isset(&sc->active_ulds, uld_id));
10788 }
10789 #endif
10790 
10791 /*
10792  * t  = ptr to tunable.
10793  * nc = number of CPUs.
10794  * c  = compiled in default for that tunable.
10795  */
10796 static void
10797 calculate_nqueues(int *t, int nc, const int c)
10798 {
10799 	int nq;
10800 
10801 	if (*t > 0)
10802 		return;
10803 	nq = *t < 0 ? -*t : c;
10804 	*t = min(nc, nq);
10805 }
10806 
10807 /*
10808  * Come up with reasonable defaults for some of the tunables, provided they're
10809  * not set by the user (in which case we'll use the values as is).
10810  */
10811 static void
10812 tweak_tunables(void)
10813 {
10814 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
10815 
10816 	if (t4_ntxq < 1) {
10817 #ifdef RSS
10818 		t4_ntxq = rss_getnumbuckets();
10819 #else
10820 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
10821 #endif
10822 	}
10823 
10824 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
10825 
10826 	if (t4_nrxq < 1) {
10827 #ifdef RSS
10828 		t4_nrxq = rss_getnumbuckets();
10829 #else
10830 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
10831 #endif
10832 	}
10833 
10834 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
10835 
10836 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10837 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
10838 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
10839 #endif
10840 #ifdef TCP_OFFLOAD
10841 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
10842 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
10843 #endif
10844 
10845 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
10846 	if (t4_toecaps_allowed == -1)
10847 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
10848 #else
10849 	if (t4_toecaps_allowed == -1)
10850 		t4_toecaps_allowed = 0;
10851 #endif
10852 
10853 #ifdef TCP_OFFLOAD
10854 	if (t4_rdmacaps_allowed == -1) {
10855 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
10856 		    FW_CAPS_CONFIG_RDMA_RDMAC;
10857 	}
10858 
10859 	if (t4_iscsicaps_allowed == -1) {
10860 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10861 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10862 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
10863 	}
10864 
10865 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10866 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
10867 
10868 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10869 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10870 #else
10871 	if (t4_rdmacaps_allowed == -1)
10872 		t4_rdmacaps_allowed = 0;
10873 
10874 	if (t4_iscsicaps_allowed == -1)
10875 		t4_iscsicaps_allowed = 0;
10876 #endif
10877 
10878 #ifdef DEV_NETMAP
10879 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10880 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10881 #endif
10882 
10883 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
10884 		t4_tmr_idx = TMR_IDX;
10885 
10886 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
10887 		t4_pktc_idx = PKTC_IDX;
10888 
10889 	if (t4_qsize_txq < 128)
10890 		t4_qsize_txq = 128;
10891 
10892 	if (t4_qsize_rxq < 128)
10893 		t4_qsize_rxq = 128;
10894 	while (t4_qsize_rxq & 7)
10895 		t4_qsize_rxq++;
10896 
10897 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10898 
10899 	/*
10900 	 * Number of VIs to create per-port.  The first VI is the "main" regular
10901 	 * VI for the port.  The rest are additional virtual interfaces on the
10902 	 * same physical port.  Note that the main VI does not have native
10903 	 * netmap support but the extra VIs do.
10904 	 *
10905 	 * Limit the number of VIs per port to the number of available
10906 	 * MAC addresses per port.
10907 	 */
10908 	if (t4_num_vis < 1)
10909 		t4_num_vis = 1;
10910 	if (t4_num_vis > nitems(vi_mac_funcs)) {
10911 		t4_num_vis = nitems(vi_mac_funcs);
10912 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10913 	}
10914 
10915 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10916 		pcie_relaxed_ordering = 1;
10917 #if defined(__i386__) || defined(__amd64__)
10918 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
10919 			pcie_relaxed_ordering = 0;
10920 #endif
10921 	}
10922 }
10923 
10924 #ifdef DDB
10925 static void
10926 t4_dump_tcb(struct adapter *sc, int tid)
10927 {
10928 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10929 
10930 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10931 	save = t4_read_reg(sc, reg);
10932 	base = sc->memwin[2].mw_base;
10933 
10934 	/* Dump TCB for the tid */
10935 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10936 	tcb_addr += tid * TCB_SIZE;
10937 
10938 	if (is_t4(sc)) {
10939 		pf = 0;
10940 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
10941 	} else {
10942 		pf = V_PFNUM(sc->pf);
10943 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
10944 	}
10945 	t4_write_reg(sc, reg, win_pos | pf);
10946 	t4_read_reg(sc, reg);
10947 
10948 	off = tcb_addr - win_pos;
10949 	for (i = 0; i < 4; i++) {
10950 		uint32_t buf[8];
10951 		for (j = 0; j < 8; j++, off += 4)
10952 			buf[j] = htonl(t4_read_reg(sc, base + off));
10953 
10954 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10955 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10956 		    buf[7]);
10957 	}
10958 
10959 	t4_write_reg(sc, reg, save);
10960 	t4_read_reg(sc, reg);
10961 }
10962 
10963 static void
10964 t4_dump_devlog(struct adapter *sc)
10965 {
10966 	struct devlog_params *dparams = &sc->params.devlog;
10967 	struct fw_devlog_e e;
10968 	int i, first, j, m, nentries, rc;
10969 	uint64_t ftstamp = UINT64_MAX;
10970 
10971 	if (dparams->start == 0) {
10972 		db_printf("devlog params not valid\n");
10973 		return;
10974 	}
10975 
10976 	nentries = dparams->size / sizeof(struct fw_devlog_e);
10977 	m = fwmtype_to_hwmtype(dparams->memtype);
10978 
10979 	/* Find the first entry. */
10980 	first = -1;
10981 	for (i = 0; i < nentries && !db_pager_quit; i++) {
10982 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10983 		    sizeof(e), (void *)&e);
10984 		if (rc != 0)
10985 			break;
10986 
10987 		if (e.timestamp == 0)
10988 			break;
10989 
10990 		e.timestamp = be64toh(e.timestamp);
10991 		if (e.timestamp < ftstamp) {
10992 			ftstamp = e.timestamp;
10993 			first = i;
10994 		}
10995 	}
10996 
10997 	if (first == -1)
10998 		return;
10999 
11000 	i = first;
11001 	do {
11002 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
11003 		    sizeof(e), (void *)&e);
11004 		if (rc != 0)
11005 			return;
11006 
11007 		if (e.timestamp == 0)
11008 			return;
11009 
11010 		e.timestamp = be64toh(e.timestamp);
11011 		e.seqno = be32toh(e.seqno);
11012 		for (j = 0; j < 8; j++)
11013 			e.params[j] = be32toh(e.params[j]);
11014 
11015 		db_printf("%10d  %15ju  %8s  %8s  ",
11016 		    e.seqno, e.timestamp,
11017 		    (e.level < nitems(devlog_level_strings) ?
11018 			devlog_level_strings[e.level] : "UNKNOWN"),
11019 		    (e.facility < nitems(devlog_facility_strings) ?
11020 			devlog_facility_strings[e.facility] : "UNKNOWN"));
11021 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
11022 		    e.params[3], e.params[4], e.params[5], e.params[6],
11023 		    e.params[7]);
11024 
11025 		if (++i == nentries)
11026 			i = 0;
11027 	} while (i != first && !db_pager_quit);
11028 }
11029 
11030 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
11031 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
11032 
11033 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
11034 {
11035 	device_t dev;
11036 	int t;
11037 	bool valid;
11038 
11039 	valid = false;
11040 	t = db_read_token();
11041 	if (t == tIDENT) {
11042 		dev = device_lookup_by_name(db_tok_string);
11043 		valid = true;
11044 	}
11045 	db_skip_to_eol();
11046 	if (!valid) {
11047 		db_printf("usage: show t4 devlog <nexus>\n");
11048 		return;
11049 	}
11050 
11051 	if (dev == NULL) {
11052 		db_printf("device not found\n");
11053 		return;
11054 	}
11055 
11056 	t4_dump_devlog(device_get_softc(dev));
11057 }
11058 
11059 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
11060 {
11061 	device_t dev;
11062 	int radix, tid, t;
11063 	bool valid;
11064 
11065 	valid = false;
11066 	radix = db_radix;
11067 	db_radix = 10;
11068 	t = db_read_token();
11069 	if (t == tIDENT) {
11070 		dev = device_lookup_by_name(db_tok_string);
11071 		t = db_read_token();
11072 		if (t == tNUMBER) {
11073 			tid = db_tok_number;
11074 			valid = true;
11075 		}
11076 	}
11077 	db_radix = radix;
11078 	db_skip_to_eol();
11079 	if (!valid) {
11080 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
11081 		return;
11082 	}
11083 
11084 	if (dev == NULL) {
11085 		db_printf("device not found\n");
11086 		return;
11087 	}
11088 	if (tid < 0) {
11089 		db_printf("invalid tid\n");
11090 		return;
11091 	}
11092 
11093 	t4_dump_tcb(device_get_softc(dev), tid);
11094 }
11095 #endif
11096 
11097 static struct sx mlu;	/* mod load unload */
11098 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
11099 
11100 static int
11101 mod_event(module_t mod, int cmd, void *arg)
11102 {
11103 	int rc = 0;
11104 	static int loaded = 0;
11105 
11106 	switch (cmd) {
11107 	case MOD_LOAD:
11108 		sx_xlock(&mlu);
11109 		if (loaded++ == 0) {
11110 			t4_sge_modload();
11111 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
11112 			    t4_filter_rpl, CPL_COOKIE_FILTER);
11113 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
11114 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
11115 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
11116 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
11117 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
11118 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
11119 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
11120 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
11121 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
11122 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
11123 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
11124 			    do_smt_write_rpl);
11125 			sx_init(&t4_list_lock, "T4/T5 adapters");
11126 			SLIST_INIT(&t4_list);
11127 			callout_init(&fatal_callout, 1);
11128 #ifdef TCP_OFFLOAD
11129 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
11130 			SLIST_INIT(&t4_uld_list);
11131 #endif
11132 #ifdef INET6
11133 			t4_clip_modload();
11134 #endif
11135 #ifdef KERN_TLS
11136 			t6_ktls_modload();
11137 #endif
11138 			t4_tracer_modload();
11139 			tweak_tunables();
11140 		}
11141 		sx_xunlock(&mlu);
11142 		break;
11143 
11144 	case MOD_UNLOAD:
11145 		sx_xlock(&mlu);
11146 		if (--loaded == 0) {
11147 			int tries;
11148 
11149 			sx_slock(&t4_list_lock);
11150 			if (!SLIST_EMPTY(&t4_list)) {
11151 				rc = EBUSY;
11152 				sx_sunlock(&t4_list_lock);
11153 				goto done_unload;
11154 			}
11155 #ifdef TCP_OFFLOAD
11156 			sx_slock(&t4_uld_list_lock);
11157 			if (!SLIST_EMPTY(&t4_uld_list)) {
11158 				rc = EBUSY;
11159 				sx_sunlock(&t4_uld_list_lock);
11160 				sx_sunlock(&t4_list_lock);
11161 				goto done_unload;
11162 			}
11163 #endif
11164 			tries = 0;
11165 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
11166 				uprintf("%ju clusters with custom free routine "
11167 				    "still is use.\n", t4_sge_extfree_refs());
11168 				pause("t4unload", 2 * hz);
11169 			}
11170 #ifdef TCP_OFFLOAD
11171 			sx_sunlock(&t4_uld_list_lock);
11172 #endif
11173 			sx_sunlock(&t4_list_lock);
11174 
11175 			if (t4_sge_extfree_refs() == 0) {
11176 				t4_tracer_modunload();
11177 #ifdef KERN_TLS
11178 				t6_ktls_modunload();
11179 #endif
11180 #ifdef INET6
11181 				t4_clip_modunload();
11182 #endif
11183 #ifdef TCP_OFFLOAD
11184 				sx_destroy(&t4_uld_list_lock);
11185 #endif
11186 				sx_destroy(&t4_list_lock);
11187 				t4_sge_modunload();
11188 				loaded = 0;
11189 			} else {
11190 				rc = EBUSY;
11191 				loaded++;	/* undo earlier decrement */
11192 			}
11193 		}
11194 done_unload:
11195 		sx_xunlock(&mlu);
11196 		break;
11197 	}
11198 
11199 	return (rc);
11200 }
11201 
11202 static devclass_t t4_devclass, t5_devclass, t6_devclass;
11203 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
11204 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
11205 
11206 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
11207 MODULE_VERSION(t4nex, 1);
11208 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
11209 #ifdef DEV_NETMAP
11210 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
11211 #endif /* DEV_NETMAP */
11212 
11213 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
11214 MODULE_VERSION(t5nex, 1);
11215 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
11216 #ifdef DEV_NETMAP
11217 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
11218 #endif /* DEV_NETMAP */
11219 
11220 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
11221 MODULE_VERSION(t6nex, 1);
11222 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
11223 #ifdef DEV_NETMAP
11224 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
11225 #endif /* DEV_NETMAP */
11226 
11227 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
11228 MODULE_VERSION(cxgbe, 1);
11229 
11230 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
11231 MODULE_VERSION(cxl, 1);
11232 
11233 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
11234 MODULE_VERSION(cc, 1);
11235 
11236 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
11237 MODULE_VERSION(vcxgbe, 1);
11238 
11239 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
11240 MODULE_VERSION(vcxl, 1);
11241 
11242 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
11243 MODULE_VERSION(vcc, 1);
11244