xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 85f87cf491bec6f90948a85b10f5523ea24db9e3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ratelimit.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/priv.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #include <crypto/rijndael/rijndael.h>
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79 
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_clip.h"
86 #include "t4_ioctl.h"
87 #include "t4_l2t.h"
88 #include "t4_mp_ring.h"
89 #include "t4_if.h"
90 #include "t4_smt.h"
91 
92 /* T4 bus driver interface */
93 static int t4_probe(device_t);
94 static int t4_attach(device_t);
95 static int t4_detach(device_t);
96 static int t4_child_location_str(device_t, device_t, char *, size_t);
97 static int t4_ready(device_t);
98 static int t4_read_port_device(device_t, int, device_t *);
99 static device_method_t t4_methods[] = {
100 	DEVMETHOD(device_probe,		t4_probe),
101 	DEVMETHOD(device_attach,	t4_attach),
102 	DEVMETHOD(device_detach,	t4_detach),
103 
104 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
105 
106 	DEVMETHOD(t4_is_main_ready,	t4_ready),
107 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
108 
109 	DEVMETHOD_END
110 };
111 static driver_t t4_driver = {
112 	"t4nex",
113 	t4_methods,
114 	sizeof(struct adapter)
115 };
116 
117 
118 /* T4 port (cxgbe) interface */
119 static int cxgbe_probe(device_t);
120 static int cxgbe_attach(device_t);
121 static int cxgbe_detach(device_t);
122 device_method_t cxgbe_methods[] = {
123 	DEVMETHOD(device_probe,		cxgbe_probe),
124 	DEVMETHOD(device_attach,	cxgbe_attach),
125 	DEVMETHOD(device_detach,	cxgbe_detach),
126 	{ 0, 0 }
127 };
128 static driver_t cxgbe_driver = {
129 	"cxgbe",
130 	cxgbe_methods,
131 	sizeof(struct port_info)
132 };
133 
134 /* T4 VI (vcxgbe) interface */
135 static int vcxgbe_probe(device_t);
136 static int vcxgbe_attach(device_t);
137 static int vcxgbe_detach(device_t);
138 static device_method_t vcxgbe_methods[] = {
139 	DEVMETHOD(device_probe,		vcxgbe_probe),
140 	DEVMETHOD(device_attach,	vcxgbe_attach),
141 	DEVMETHOD(device_detach,	vcxgbe_detach),
142 	{ 0, 0 }
143 };
144 static driver_t vcxgbe_driver = {
145 	"vcxgbe",
146 	vcxgbe_methods,
147 	sizeof(struct vi_info)
148 };
149 
150 static d_ioctl_t t4_ioctl;
151 
152 static struct cdevsw t4_cdevsw = {
153        .d_version = D_VERSION,
154        .d_ioctl = t4_ioctl,
155        .d_name = "t4nex",
156 };
157 
158 /* T5 bus driver interface */
159 static int t5_probe(device_t);
160 static device_method_t t5_methods[] = {
161 	DEVMETHOD(device_probe,		t5_probe),
162 	DEVMETHOD(device_attach,	t4_attach),
163 	DEVMETHOD(device_detach,	t4_detach),
164 
165 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
166 
167 	DEVMETHOD(t4_is_main_ready,	t4_ready),
168 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
169 
170 	DEVMETHOD_END
171 };
172 static driver_t t5_driver = {
173 	"t5nex",
174 	t5_methods,
175 	sizeof(struct adapter)
176 };
177 
178 
179 /* T5 port (cxl) interface */
180 static driver_t cxl_driver = {
181 	"cxl",
182 	cxgbe_methods,
183 	sizeof(struct port_info)
184 };
185 
186 /* T5 VI (vcxl) interface */
187 static driver_t vcxl_driver = {
188 	"vcxl",
189 	vcxgbe_methods,
190 	sizeof(struct vi_info)
191 };
192 
193 /* T6 bus driver interface */
194 static int t6_probe(device_t);
195 static device_method_t t6_methods[] = {
196 	DEVMETHOD(device_probe,		t6_probe),
197 	DEVMETHOD(device_attach,	t4_attach),
198 	DEVMETHOD(device_detach,	t4_detach),
199 
200 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
201 
202 	DEVMETHOD(t4_is_main_ready,	t4_ready),
203 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
204 
205 	DEVMETHOD_END
206 };
207 static driver_t t6_driver = {
208 	"t6nex",
209 	t6_methods,
210 	sizeof(struct adapter)
211 };
212 
213 
214 /* T6 port (cc) interface */
215 static driver_t cc_driver = {
216 	"cc",
217 	cxgbe_methods,
218 	sizeof(struct port_info)
219 };
220 
221 /* T6 VI (vcc) interface */
222 static driver_t vcc_driver = {
223 	"vcc",
224 	vcxgbe_methods,
225 	sizeof(struct vi_info)
226 };
227 
228 /* ifnet interface */
229 static void cxgbe_init(void *);
230 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
231 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
232 static void cxgbe_qflush(struct ifnet *);
233 
234 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
235 
236 /*
237  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
238  * then ADAPTER_LOCK, then t4_uld_list_lock.
239  */
240 static struct sx t4_list_lock;
241 SLIST_HEAD(, adapter) t4_list;
242 #ifdef TCP_OFFLOAD
243 static struct sx t4_uld_list_lock;
244 SLIST_HEAD(, uld_info) t4_uld_list;
245 #endif
246 
247 /*
248  * Tunables.  See tweak_tunables() too.
249  *
250  * Each tunable is set to a default value here if it's known at compile-time.
251  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
252  * provide a reasonable default (upto n) when the driver is loaded.
253  *
254  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
255  * T5 are under hw.cxl.
256  */
257 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters");
258 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters");
259 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters");
260 
261 /*
262  * Number of queues for tx and rx, NIC and offload.
263  */
264 #define NTXQ 16
265 int t4_ntxq = -NTXQ;
266 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
267     "Number of TX queues per port");
268 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
269 
270 #define NRXQ 8
271 int t4_nrxq = -NRXQ;
272 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
273     "Number of RX queues per port");
274 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
275 
276 #define NTXQ_VI 1
277 static int t4_ntxq_vi = -NTXQ_VI;
278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
279     "Number of TX queues per VI");
280 
281 #define NRXQ_VI 1
282 static int t4_nrxq_vi = -NRXQ_VI;
283 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
284     "Number of RX queues per VI");
285 
286 static int t4_rsrv_noflowq = 0;
287 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
288     0, "Reserve TX queue 0 of each VI for non-flowid packets");
289 
290 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
291 #define NOFLDTXQ 8
292 static int t4_nofldtxq = -NOFLDTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
294     "Number of offload TX queues per port");
295 
296 #define NOFLDRXQ 2
297 static int t4_nofldrxq = -NOFLDRXQ;
298 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
299     "Number of offload RX queues per port");
300 
301 #define NOFLDTXQ_VI 1
302 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
304     "Number of offload TX queues per VI");
305 
306 #define NOFLDRXQ_VI 1
307 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
309     "Number of offload RX queues per VI");
310 
311 #define TMR_IDX_OFLD 1
312 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
313 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
314     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
315 
316 #define PKTC_IDX_OFLD (-1)
317 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
319     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
320 
321 /* 0 means chip/fw default, non-zero number is value in microseconds */
322 static u_long t4_toe_keepalive_idle = 0;
323 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
324     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
325 
326 /* 0 means chip/fw default, non-zero number is value in microseconds */
327 static u_long t4_toe_keepalive_interval = 0;
328 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
329     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
330 
331 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
332 static int t4_toe_keepalive_count = 0;
333 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
334     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
335 
336 /* 0 means chip/fw default, non-zero number is value in microseconds */
337 static u_long t4_toe_rexmt_min = 0;
338 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
339     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
340 
341 /* 0 means chip/fw default, non-zero number is value in microseconds */
342 static u_long t4_toe_rexmt_max = 0;
343 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
344     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
345 
346 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
347 static int t4_toe_rexmt_count = 0;
348 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
349     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
350 
351 /* -1 means chip/fw default, other values are raw backoff values to use */
352 static int t4_toe_rexmt_backoff[16] = {
353 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
354 };
355 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0,
356     "cxgbe(4) TOE retransmit backoff values");
357 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
358     &t4_toe_rexmt_backoff[0], 0, "");
359 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
360     &t4_toe_rexmt_backoff[1], 0, "");
361 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
362     &t4_toe_rexmt_backoff[2], 0, "");
363 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_backoff[3], 0, "");
365 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_backoff[4], 0, "");
367 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
368     &t4_toe_rexmt_backoff[5], 0, "");
369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
370     &t4_toe_rexmt_backoff[6], 0, "");
371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
372     &t4_toe_rexmt_backoff[7], 0, "");
373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_backoff[8], 0, "");
375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_backoff[9], 0, "");
377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
378     &t4_toe_rexmt_backoff[10], 0, "");
379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
380     &t4_toe_rexmt_backoff[11], 0, "");
381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
382     &t4_toe_rexmt_backoff[12], 0, "");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[13], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[14], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[15], 0, "");
389 #endif
390 
391 #ifdef DEV_NETMAP
392 #define NNMTXQ_VI 2
393 static int t4_nnmtxq_vi = -NNMTXQ_VI;
394 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
395     "Number of netmap TX queues per VI");
396 
397 #define NNMRXQ_VI 2
398 static int t4_nnmrxq_vi = -NNMRXQ_VI;
399 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
400     "Number of netmap RX queues per VI");
401 #endif
402 
403 /*
404  * Holdoff parameters for ports.
405  */
406 #define TMR_IDX 1
407 int t4_tmr_idx = TMR_IDX;
408 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
409     0, "Holdoff timer index");
410 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
411 
412 #define PKTC_IDX (-1)
413 int t4_pktc_idx = PKTC_IDX;
414 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
415     0, "Holdoff packet counter index");
416 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
417 
418 /*
419  * Size (# of entries) of each tx and rx queue.
420  */
421 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
422 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
423     "Number of descriptors in each TX queue");
424 
425 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
427     "Number of descriptors in each RX queue");
428 
429 /*
430  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
431  */
432 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
434     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
435 
436 /*
437  * Configuration file.  All the _CF names here are special.
438  */
439 #define DEFAULT_CF	"default"
440 #define BUILTIN_CF	"built-in"
441 #define FLASH_CF	"flash"
442 #define UWIRE_CF	"uwire"
443 #define FPGA_CF		"fpga"
444 static char t4_cfg_file[32] = DEFAULT_CF;
445 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
446     sizeof(t4_cfg_file), "Firmware configuration file");
447 
448 /*
449  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
450  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
451  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
452  *            mark or when signalled to do so, 0 to never emit PAUSE.
453  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
454  *                 negotiated settings will override rx_pause/tx_pause.
455  *                 Otherwise rx_pause/tx_pause are applied forcibly.
456  */
457 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
458 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
459     &t4_pause_settings, 0,
460     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
461 
462 /*
463  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
464  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
465  *  0 to disable FEC.
466  */
467 static int t4_fec = -1;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
469     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
470 
471 /*
472  * Link autonegotiation.
473  * -1 to run with the firmware default.
474  *  0 to disable.
475  *  1 to enable.
476  */
477 static int t4_autoneg = -1;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
479     "Link autonegotiation");
480 
481 /*
482  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
483  * encouraged respectively).  '-n' is the same as 'n' except the firmware
484  * version used in the checks is read from the firmware bundled with the driver.
485  */
486 static int t4_fw_install = 1;
487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
488     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
489 
490 /*
491  * ASIC features that will be used.  Disable the ones you don't want so that the
492  * chip resources aren't wasted on features that will not be used.
493  */
494 static int t4_nbmcaps_allowed = 0;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
496     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
497 
498 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
499 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
500     &t4_linkcaps_allowed, 0, "Default link capabilities");
501 
502 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
503     FW_CAPS_CONFIG_SWITCH_EGRESS;
504 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
505     &t4_switchcaps_allowed, 0, "Default switch capabilities");
506 
507 #ifdef RATELIMIT
508 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
509 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
510 #else
511 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
512 	FW_CAPS_CONFIG_NIC_HASHFILTER;
513 #endif
514 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
515     &t4_niccaps_allowed, 0, "Default NIC capabilities");
516 
517 static int t4_toecaps_allowed = -1;
518 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
519     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
520 
521 static int t4_rdmacaps_allowed = -1;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
523     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
524 
525 static int t4_cryptocaps_allowed = -1;
526 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
527     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
528 
529 static int t4_iscsicaps_allowed = -1;
530 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
531     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
532 
533 static int t4_fcoecaps_allowed = 0;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
535     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
536 
537 static int t5_write_combine = 0;
538 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
539     0, "Use WC instead of UC for BAR2");
540 
541 static int t4_num_vis = 1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
543     "Number of VIs per port");
544 
545 /*
546  * PCIe Relaxed Ordering.
547  * -1: driver should figure out a good value.
548  * 0: disable RO.
549  * 1: enable RO.
550  * 2: leave RO alone.
551  */
552 static int pcie_relaxed_ordering = -1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
554     &pcie_relaxed_ordering, 0,
555     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
556 
557 static int t4_panic_on_fatal_err = 0;
558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN,
559     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
560 
561 #ifdef TCP_OFFLOAD
562 /*
563  * TOE tunables.
564  */
565 static int t4_cop_managed_offloading = 0;
566 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
567     &t4_cop_managed_offloading, 0,
568     "COP (Connection Offload Policy) controls all TOE offload");
569 #endif
570 
571 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
572 static int vi_mac_funcs[] = {
573 	FW_VI_FUNC_ETH,
574 	FW_VI_FUNC_OFLD,
575 	FW_VI_FUNC_IWARP,
576 	FW_VI_FUNC_OPENISCSI,
577 	FW_VI_FUNC_OPENFCOE,
578 	FW_VI_FUNC_FOISCSI,
579 	FW_VI_FUNC_FOFCOE,
580 };
581 
582 struct intrs_and_queues {
583 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
584 	uint16_t num_vis;	/* number of VIs for each port */
585 	uint16_t nirq;		/* Total # of vectors */
586 	uint16_t ntxq;		/* # of NIC txq's for each port */
587 	uint16_t nrxq;		/* # of NIC rxq's for each port */
588 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
589 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
590 
591 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
592 	uint16_t ntxq_vi;	/* # of NIC txq's */
593 	uint16_t nrxq_vi;	/* # of NIC rxq's */
594 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
595 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
596 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
597 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
598 };
599 
600 static void setup_memwin(struct adapter *);
601 static void position_memwin(struct adapter *, int, uint32_t);
602 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
603 static int fwmtype_to_hwmtype(int);
604 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
605     uint32_t *);
606 static int fixup_devlog_params(struct adapter *);
607 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
608 static int contact_firmware(struct adapter *);
609 static int partition_resources(struct adapter *);
610 static int get_params__pre_init(struct adapter *);
611 static int set_params__pre_init(struct adapter *);
612 static int get_params__post_init(struct adapter *);
613 static int set_params__post_init(struct adapter *);
614 static void t4_set_desc(struct adapter *);
615 static bool fixed_ifmedia(struct port_info *);
616 static void build_medialist(struct port_info *);
617 static void init_link_config(struct port_info *);
618 static int fixup_link_config(struct port_info *);
619 static int apply_link_config(struct port_info *);
620 static int cxgbe_init_synchronized(struct vi_info *);
621 static int cxgbe_uninit_synchronized(struct vi_info *);
622 static void quiesce_txq(struct adapter *, struct sge_txq *);
623 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
624 static void quiesce_iq(struct adapter *, struct sge_iq *);
625 static void quiesce_fl(struct adapter *, struct sge_fl *);
626 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
627     driver_intr_t *, void *, char *);
628 static int t4_free_irq(struct adapter *, struct irq *);
629 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
630 static void vi_refresh_stats(struct adapter *, struct vi_info *);
631 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
632 static void cxgbe_tick(void *);
633 static void cxgbe_sysctls(struct port_info *);
634 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
635 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
636 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
637 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
638 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
639 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
640 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
641 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
642 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
643 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
644 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
645 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
646 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
647 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
648 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
649 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
650 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
651 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
652 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
653 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
654 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
655 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
656 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
657 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
658 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
659 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
660 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
661 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
662 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
663 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
664 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
665 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
666 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
667 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
668 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
669 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
670 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
671 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
672 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
673 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
674 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
675 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
676 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
677 #ifdef TCP_OFFLOAD
678 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
679 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
680 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
681 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
682 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
683 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
684 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
685 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
686 #endif
687 static int get_sge_context(struct adapter *, struct t4_sge_context *);
688 static int load_fw(struct adapter *, struct t4_data *);
689 static int load_cfg(struct adapter *, struct t4_data *);
690 static int load_boot(struct adapter *, struct t4_bootrom *);
691 static int load_bootcfg(struct adapter *, struct t4_data *);
692 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
693 static void free_offload_policy(struct t4_offload_policy *);
694 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
695 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
696 static int read_i2c(struct adapter *, struct t4_i2c_data *);
697 static int clear_stats(struct adapter *, u_int);
698 #ifdef TCP_OFFLOAD
699 static int toe_capability(struct vi_info *, int);
700 #endif
701 static int mod_event(module_t, int, void *);
702 static int notify_siblings(device_t, int);
703 
704 struct {
705 	uint16_t device;
706 	char *desc;
707 } t4_pciids[] = {
708 	{0xa000, "Chelsio Terminator 4 FPGA"},
709 	{0x4400, "Chelsio T440-dbg"},
710 	{0x4401, "Chelsio T420-CR"},
711 	{0x4402, "Chelsio T422-CR"},
712 	{0x4403, "Chelsio T440-CR"},
713 	{0x4404, "Chelsio T420-BCH"},
714 	{0x4405, "Chelsio T440-BCH"},
715 	{0x4406, "Chelsio T440-CH"},
716 	{0x4407, "Chelsio T420-SO"},
717 	{0x4408, "Chelsio T420-CX"},
718 	{0x4409, "Chelsio T420-BT"},
719 	{0x440a, "Chelsio T404-BT"},
720 	{0x440e, "Chelsio T440-LP-CR"},
721 }, t5_pciids[] = {
722 	{0xb000, "Chelsio Terminator 5 FPGA"},
723 	{0x5400, "Chelsio T580-dbg"},
724 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
725 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
726 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
727 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
728 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
729 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
730 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
731 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
732 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
733 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
734 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
735 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
736 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
737 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
738 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
739 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
740 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
741 
742 	/* Custom */
743 	{0x5483, "Custom T540-CR"},
744 	{0x5484, "Custom T540-BT"},
745 }, t6_pciids[] = {
746 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
747 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
748 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
749 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
750 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
751 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
752 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
753 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
754 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
755 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
756 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
757 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
758 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
759 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
760 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
761 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
762 
763 	/* Custom */
764 	{0x6480, "Custom T6225-CR"},
765 	{0x6481, "Custom T62100-CR"},
766 	{0x6482, "Custom T6225-CR"},
767 	{0x6483, "Custom T62100-CR"},
768 	{0x6484, "Custom T64100-CR"},
769 	{0x6485, "Custom T6240-SO"},
770 	{0x6486, "Custom T6225-SO-CR"},
771 	{0x6487, "Custom T6225-CR"},
772 };
773 
774 #ifdef TCP_OFFLOAD
775 /*
776  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
777  * be exactly the same for both rxq and ofld_rxq.
778  */
779 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
780 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
781 #endif
782 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
783 
784 static int
785 t4_probe(device_t dev)
786 {
787 	int i;
788 	uint16_t v = pci_get_vendor(dev);
789 	uint16_t d = pci_get_device(dev);
790 	uint8_t f = pci_get_function(dev);
791 
792 	if (v != PCI_VENDOR_ID_CHELSIO)
793 		return (ENXIO);
794 
795 	/* Attach only to PF0 of the FPGA */
796 	if (d == 0xa000 && f != 0)
797 		return (ENXIO);
798 
799 	for (i = 0; i < nitems(t4_pciids); i++) {
800 		if (d == t4_pciids[i].device) {
801 			device_set_desc(dev, t4_pciids[i].desc);
802 			return (BUS_PROBE_DEFAULT);
803 		}
804 	}
805 
806 	return (ENXIO);
807 }
808 
809 static int
810 t5_probe(device_t dev)
811 {
812 	int i;
813 	uint16_t v = pci_get_vendor(dev);
814 	uint16_t d = pci_get_device(dev);
815 	uint8_t f = pci_get_function(dev);
816 
817 	if (v != PCI_VENDOR_ID_CHELSIO)
818 		return (ENXIO);
819 
820 	/* Attach only to PF0 of the FPGA */
821 	if (d == 0xb000 && f != 0)
822 		return (ENXIO);
823 
824 	for (i = 0; i < nitems(t5_pciids); i++) {
825 		if (d == t5_pciids[i].device) {
826 			device_set_desc(dev, t5_pciids[i].desc);
827 			return (BUS_PROBE_DEFAULT);
828 		}
829 	}
830 
831 	return (ENXIO);
832 }
833 
834 static int
835 t6_probe(device_t dev)
836 {
837 	int i;
838 	uint16_t v = pci_get_vendor(dev);
839 	uint16_t d = pci_get_device(dev);
840 
841 	if (v != PCI_VENDOR_ID_CHELSIO)
842 		return (ENXIO);
843 
844 	for (i = 0; i < nitems(t6_pciids); i++) {
845 		if (d == t6_pciids[i].device) {
846 			device_set_desc(dev, t6_pciids[i].desc);
847 			return (BUS_PROBE_DEFAULT);
848 		}
849 	}
850 
851 	return (ENXIO);
852 }
853 
854 static void
855 t5_attribute_workaround(device_t dev)
856 {
857 	device_t root_port;
858 	uint32_t v;
859 
860 	/*
861 	 * The T5 chips do not properly echo the No Snoop and Relaxed
862 	 * Ordering attributes when replying to a TLP from a Root
863 	 * Port.  As a workaround, find the parent Root Port and
864 	 * disable No Snoop and Relaxed Ordering.  Note that this
865 	 * affects all devices under this root port.
866 	 */
867 	root_port = pci_find_pcie_root_port(dev);
868 	if (root_port == NULL) {
869 		device_printf(dev, "Unable to find parent root port\n");
870 		return;
871 	}
872 
873 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
874 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
875 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
876 	    0)
877 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
878 		    device_get_nameunit(root_port));
879 }
880 
881 static const struct devnames devnames[] = {
882 	{
883 		.nexus_name = "t4nex",
884 		.ifnet_name = "cxgbe",
885 		.vi_ifnet_name = "vcxgbe",
886 		.pf03_drv_name = "t4iov",
887 		.vf_nexus_name = "t4vf",
888 		.vf_ifnet_name = "cxgbev"
889 	}, {
890 		.nexus_name = "t5nex",
891 		.ifnet_name = "cxl",
892 		.vi_ifnet_name = "vcxl",
893 		.pf03_drv_name = "t5iov",
894 		.vf_nexus_name = "t5vf",
895 		.vf_ifnet_name = "cxlv"
896 	}, {
897 		.nexus_name = "t6nex",
898 		.ifnet_name = "cc",
899 		.vi_ifnet_name = "vcc",
900 		.pf03_drv_name = "t6iov",
901 		.vf_nexus_name = "t6vf",
902 		.vf_ifnet_name = "ccv"
903 	}
904 };
905 
906 void
907 t4_init_devnames(struct adapter *sc)
908 {
909 	int id;
910 
911 	id = chip_id(sc);
912 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
913 		sc->names = &devnames[id - CHELSIO_T4];
914 	else {
915 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
916 		sc->names = NULL;
917 	}
918 }
919 
920 static int
921 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
922 {
923 	const char *parent, *name;
924 	long value;
925 	int line, unit;
926 
927 	line = 0;
928 	parent = device_get_nameunit(sc->dev);
929 	name = sc->names->ifnet_name;
930 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
931 		if (resource_long_value(name, unit, "port", &value) == 0 &&
932 		    value == pi->port_id)
933 			return (unit);
934 	}
935 	return (-1);
936 }
937 
938 static int
939 t4_attach(device_t dev)
940 {
941 	struct adapter *sc;
942 	int rc = 0, i, j, rqidx, tqidx, nports;
943 	struct make_dev_args mda;
944 	struct intrs_and_queues iaq;
945 	struct sge *s;
946 	uint32_t *buf;
947 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
948 	int ofld_tqidx;
949 #endif
950 #ifdef TCP_OFFLOAD
951 	int ofld_rqidx;
952 #endif
953 #ifdef DEV_NETMAP
954 	int nm_rqidx, nm_tqidx;
955 #endif
956 	int num_vis;
957 
958 	sc = device_get_softc(dev);
959 	sc->dev = dev;
960 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
961 
962 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
963 		t5_attribute_workaround(dev);
964 	pci_enable_busmaster(dev);
965 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
966 		uint32_t v;
967 
968 		pci_set_max_read_req(dev, 4096);
969 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
970 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
971 		if (pcie_relaxed_ordering == 0 &&
972 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
973 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
974 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
975 		} else if (pcie_relaxed_ordering == 1 &&
976 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
977 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
978 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
979 		}
980 	}
981 
982 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
983 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
984 	sc->traceq = -1;
985 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
986 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
987 	    device_get_nameunit(dev));
988 
989 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
990 	    device_get_nameunit(dev));
991 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
992 	t4_add_adapter(sc);
993 
994 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
995 	TAILQ_INIT(&sc->sfl);
996 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
997 
998 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
999 
1000 	sc->policy = NULL;
1001 	rw_init(&sc->policy_lock, "connection offload policy");
1002 
1003 	rc = t4_map_bars_0_and_4(sc);
1004 	if (rc != 0)
1005 		goto done; /* error message displayed already */
1006 
1007 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1008 
1009 	/* Prepare the adapter for operation. */
1010 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1011 	rc = -t4_prep_adapter(sc, buf);
1012 	free(buf, M_CXGBE);
1013 	if (rc != 0) {
1014 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1015 		goto done;
1016 	}
1017 
1018 	/*
1019 	 * This is the real PF# to which we're attaching.  Works from within PCI
1020 	 * passthrough environments too, where pci_get_function() could return a
1021 	 * different PF# depending on the passthrough configuration.  We need to
1022 	 * use the real PF# in all our communication with the firmware.
1023 	 */
1024 	j = t4_read_reg(sc, A_PL_WHOAMI);
1025 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1026 	sc->mbox = sc->pf;
1027 
1028 	t4_init_devnames(sc);
1029 	if (sc->names == NULL) {
1030 		rc = ENOTSUP;
1031 		goto done; /* error message displayed already */
1032 	}
1033 
1034 	/*
1035 	 * Do this really early, with the memory windows set up even before the
1036 	 * character device.  The userland tool's register i/o and mem read
1037 	 * will work even in "recovery mode".
1038 	 */
1039 	setup_memwin(sc);
1040 	if (t4_init_devlog_params(sc, 0) == 0)
1041 		fixup_devlog_params(sc);
1042 	make_dev_args_init(&mda);
1043 	mda.mda_devsw = &t4_cdevsw;
1044 	mda.mda_uid = UID_ROOT;
1045 	mda.mda_gid = GID_WHEEL;
1046 	mda.mda_mode = 0600;
1047 	mda.mda_si_drv1 = sc;
1048 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1049 	if (rc != 0)
1050 		device_printf(dev, "failed to create nexus char device: %d.\n",
1051 		    rc);
1052 
1053 	/* Go no further if recovery mode has been requested. */
1054 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1055 		device_printf(dev, "recovery mode.\n");
1056 		goto done;
1057 	}
1058 
1059 #if defined(__i386__)
1060 	if ((cpu_feature & CPUID_CX8) == 0) {
1061 		device_printf(dev, "64 bit atomics not available.\n");
1062 		rc = ENOTSUP;
1063 		goto done;
1064 	}
1065 #endif
1066 
1067 	/* Contact the firmware and try to become the master driver. */
1068 	rc = contact_firmware(sc);
1069 	if (rc != 0)
1070 		goto done; /* error message displayed already */
1071 	MPASS(sc->flags & FW_OK);
1072 
1073 	rc = get_params__pre_init(sc);
1074 	if (rc != 0)
1075 		goto done; /* error message displayed already */
1076 
1077 	if (sc->flags & MASTER_PF) {
1078 		rc = partition_resources(sc);
1079 		if (rc != 0)
1080 			goto done; /* error message displayed already */
1081 		t4_intr_clear(sc);
1082 	}
1083 
1084 	rc = get_params__post_init(sc);
1085 	if (rc != 0)
1086 		goto done; /* error message displayed already */
1087 
1088 	rc = set_params__post_init(sc);
1089 	if (rc != 0)
1090 		goto done; /* error message displayed already */
1091 
1092 	rc = t4_map_bar_2(sc);
1093 	if (rc != 0)
1094 		goto done; /* error message displayed already */
1095 
1096 	rc = t4_create_dma_tag(sc);
1097 	if (rc != 0)
1098 		goto done; /* error message displayed already */
1099 
1100 	/*
1101 	 * First pass over all the ports - allocate VIs and initialize some
1102 	 * basic parameters like mac address, port type, etc.
1103 	 */
1104 	for_each_port(sc, i) {
1105 		struct port_info *pi;
1106 
1107 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1108 		sc->port[i] = pi;
1109 
1110 		/* These must be set before t4_port_init */
1111 		pi->adapter = sc;
1112 		pi->port_id = i;
1113 		/*
1114 		 * XXX: vi[0] is special so we can't delay this allocation until
1115 		 * pi->nvi's final value is known.
1116 		 */
1117 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1118 		    M_ZERO | M_WAITOK);
1119 
1120 		/*
1121 		 * Allocate the "main" VI and initialize parameters
1122 		 * like mac addr.
1123 		 */
1124 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1125 		if (rc != 0) {
1126 			device_printf(dev, "unable to initialize port %d: %d\n",
1127 			    i, rc);
1128 			free(pi->vi, M_CXGBE);
1129 			free(pi, M_CXGBE);
1130 			sc->port[i] = NULL;
1131 			goto done;
1132 		}
1133 
1134 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1135 		    device_get_nameunit(dev), i);
1136 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1137 		sc->chan_map[pi->tx_chan] = i;
1138 
1139 		/* All VIs on this port share this media. */
1140 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1141 		    cxgbe_media_status);
1142 
1143 		PORT_LOCK(pi);
1144 		init_link_config(pi);
1145 		fixup_link_config(pi);
1146 		build_medialist(pi);
1147 		if (fixed_ifmedia(pi))
1148 			pi->flags |= FIXED_IFMEDIA;
1149 		PORT_UNLOCK(pi);
1150 
1151 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1152 		    t4_ifnet_unit(sc, pi));
1153 		if (pi->dev == NULL) {
1154 			device_printf(dev,
1155 			    "failed to add device for port %d.\n", i);
1156 			rc = ENXIO;
1157 			goto done;
1158 		}
1159 		pi->vi[0].dev = pi->dev;
1160 		device_set_softc(pi->dev, pi);
1161 	}
1162 
1163 	/*
1164 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1165 	 */
1166 	nports = sc->params.nports;
1167 	rc = cfg_itype_and_nqueues(sc, &iaq);
1168 	if (rc != 0)
1169 		goto done; /* error message displayed already */
1170 
1171 	num_vis = iaq.num_vis;
1172 	sc->intr_type = iaq.intr_type;
1173 	sc->intr_count = iaq.nirq;
1174 
1175 	s = &sc->sge;
1176 	s->nrxq = nports * iaq.nrxq;
1177 	s->ntxq = nports * iaq.ntxq;
1178 	if (num_vis > 1) {
1179 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1180 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1181 	}
1182 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1183 	s->neq += nports;		/* ctrl queues: 1 per port */
1184 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1186 	if (is_offload(sc) || is_ethoffload(sc)) {
1187 		s->nofldtxq = nports * iaq.nofldtxq;
1188 		if (num_vis > 1)
1189 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1190 		s->neq += s->nofldtxq;
1191 
1192 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1193 		    M_CXGBE, M_ZERO | M_WAITOK);
1194 	}
1195 #endif
1196 #ifdef TCP_OFFLOAD
1197 	if (is_offload(sc)) {
1198 		s->nofldrxq = nports * iaq.nofldrxq;
1199 		if (num_vis > 1)
1200 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1201 		s->neq += s->nofldrxq;	/* free list */
1202 		s->niq += s->nofldrxq;
1203 
1204 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1205 		    M_CXGBE, M_ZERO | M_WAITOK);
1206 	}
1207 #endif
1208 #ifdef DEV_NETMAP
1209 	if (num_vis > 1) {
1210 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1211 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1212 	}
1213 	s->neq += s->nnmtxq + s->nnmrxq;
1214 	s->niq += s->nnmrxq;
1215 
1216 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1217 	    M_CXGBE, M_ZERO | M_WAITOK);
1218 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1219 	    M_CXGBE, M_ZERO | M_WAITOK);
1220 #endif
1221 
1222 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1223 	    M_ZERO | M_WAITOK);
1224 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1225 	    M_ZERO | M_WAITOK);
1226 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1227 	    M_ZERO | M_WAITOK);
1228 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1229 	    M_ZERO | M_WAITOK);
1230 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1231 	    M_ZERO | M_WAITOK);
1232 
1233 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1234 	    M_ZERO | M_WAITOK);
1235 
1236 	t4_init_l2t(sc, M_WAITOK);
1237 	t4_init_smt(sc, M_WAITOK);
1238 	t4_init_tx_sched(sc);
1239 #ifdef RATELIMIT
1240 	t4_init_etid_table(sc);
1241 #endif
1242 #ifdef INET6
1243 	t4_init_clip_table(sc);
1244 #endif
1245 	if (sc->vres.key.size != 0)
1246 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1247 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1248 
1249 	/*
1250 	 * Second pass over the ports.  This time we know the number of rx and
1251 	 * tx queues that each port should get.
1252 	 */
1253 	rqidx = tqidx = 0;
1254 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1255 	ofld_tqidx = 0;
1256 #endif
1257 #ifdef TCP_OFFLOAD
1258 	ofld_rqidx = 0;
1259 #endif
1260 #ifdef DEV_NETMAP
1261 	nm_rqidx = nm_tqidx = 0;
1262 #endif
1263 	for_each_port(sc, i) {
1264 		struct port_info *pi = sc->port[i];
1265 		struct vi_info *vi;
1266 
1267 		if (pi == NULL)
1268 			continue;
1269 
1270 		pi->nvi = num_vis;
1271 		for_each_vi(pi, j, vi) {
1272 			vi->pi = pi;
1273 			vi->qsize_rxq = t4_qsize_rxq;
1274 			vi->qsize_txq = t4_qsize_txq;
1275 
1276 			vi->first_rxq = rqidx;
1277 			vi->first_txq = tqidx;
1278 			vi->tmr_idx = t4_tmr_idx;
1279 			vi->pktc_idx = t4_pktc_idx;
1280 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1281 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1282 
1283 			rqidx += vi->nrxq;
1284 			tqidx += vi->ntxq;
1285 
1286 			if (j == 0 && vi->ntxq > 1)
1287 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1288 			else
1289 				vi->rsrv_noflowq = 0;
1290 
1291 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1292 			vi->first_ofld_txq = ofld_tqidx;
1293 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1294 			ofld_tqidx += vi->nofldtxq;
1295 #endif
1296 #ifdef TCP_OFFLOAD
1297 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1298 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1299 			vi->first_ofld_rxq = ofld_rqidx;
1300 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1301 
1302 			ofld_rqidx += vi->nofldrxq;
1303 #endif
1304 #ifdef DEV_NETMAP
1305 			if (j > 0) {
1306 				vi->first_nm_rxq = nm_rqidx;
1307 				vi->first_nm_txq = nm_tqidx;
1308 				vi->nnmrxq = iaq.nnmrxq_vi;
1309 				vi->nnmtxq = iaq.nnmtxq_vi;
1310 				nm_rqidx += vi->nnmrxq;
1311 				nm_tqidx += vi->nnmtxq;
1312 			}
1313 #endif
1314 		}
1315 	}
1316 
1317 	rc = t4_setup_intr_handlers(sc);
1318 	if (rc != 0) {
1319 		device_printf(dev,
1320 		    "failed to setup interrupt handlers: %d\n", rc);
1321 		goto done;
1322 	}
1323 
1324 	rc = bus_generic_probe(dev);
1325 	if (rc != 0) {
1326 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1327 		goto done;
1328 	}
1329 
1330 	/*
1331 	 * Ensure thread-safe mailbox access (in debug builds).
1332 	 *
1333 	 * So far this was the only thread accessing the mailbox but various
1334 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1335 	 * will access the mailbox from different threads.
1336 	 */
1337 	sc->flags |= CHK_MBOX_ACCESS;
1338 
1339 	rc = bus_generic_attach(dev);
1340 	if (rc != 0) {
1341 		device_printf(dev,
1342 		    "failed to attach all child ports: %d\n", rc);
1343 		goto done;
1344 	}
1345 
1346 	device_printf(dev,
1347 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1348 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1349 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1350 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1351 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1352 
1353 	t4_set_desc(sc);
1354 
1355 	notify_siblings(dev, 0);
1356 
1357 done:
1358 	if (rc != 0 && sc->cdev) {
1359 		/* cdev was created and so cxgbetool works; recover that way. */
1360 		device_printf(dev,
1361 		    "error during attach, adapter is now in recovery mode.\n");
1362 		rc = 0;
1363 	}
1364 
1365 	if (rc != 0)
1366 		t4_detach_common(dev);
1367 	else
1368 		t4_sysctls(sc);
1369 
1370 	return (rc);
1371 }
1372 
1373 static int
1374 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen)
1375 {
1376 	struct adapter *sc;
1377 	struct port_info *pi;
1378 	int i;
1379 
1380 	sc = device_get_softc(bus);
1381 	buf[0] = '\0';
1382 	for_each_port(sc, i) {
1383 		pi = sc->port[i];
1384 		if (pi != NULL && pi->dev == dev) {
1385 			snprintf(buf, buflen, "port=%d", pi->port_id);
1386 			break;
1387 		}
1388 	}
1389 	return (0);
1390 }
1391 
1392 static int
1393 t4_ready(device_t dev)
1394 {
1395 	struct adapter *sc;
1396 
1397 	sc = device_get_softc(dev);
1398 	if (sc->flags & FW_OK)
1399 		return (0);
1400 	return (ENXIO);
1401 }
1402 
1403 static int
1404 t4_read_port_device(device_t dev, int port, device_t *child)
1405 {
1406 	struct adapter *sc;
1407 	struct port_info *pi;
1408 
1409 	sc = device_get_softc(dev);
1410 	if (port < 0 || port >= MAX_NPORTS)
1411 		return (EINVAL);
1412 	pi = sc->port[port];
1413 	if (pi == NULL || pi->dev == NULL)
1414 		return (ENXIO);
1415 	*child = pi->dev;
1416 	return (0);
1417 }
1418 
1419 static int
1420 notify_siblings(device_t dev, int detaching)
1421 {
1422 	device_t sibling;
1423 	int error, i;
1424 
1425 	error = 0;
1426 	for (i = 0; i < PCI_FUNCMAX; i++) {
1427 		if (i == pci_get_function(dev))
1428 			continue;
1429 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1430 		    pci_get_slot(dev), i);
1431 		if (sibling == NULL || !device_is_attached(sibling))
1432 			continue;
1433 		if (detaching)
1434 			error = T4_DETACH_CHILD(sibling);
1435 		else
1436 			(void)T4_ATTACH_CHILD(sibling);
1437 		if (error)
1438 			break;
1439 	}
1440 	return (error);
1441 }
1442 
1443 /*
1444  * Idempotent
1445  */
1446 static int
1447 t4_detach(device_t dev)
1448 {
1449 	struct adapter *sc;
1450 	int rc;
1451 
1452 	sc = device_get_softc(dev);
1453 
1454 	rc = notify_siblings(dev, 1);
1455 	if (rc) {
1456 		device_printf(dev,
1457 		    "failed to detach sibling devices: %d\n", rc);
1458 		return (rc);
1459 	}
1460 
1461 	return (t4_detach_common(dev));
1462 }
1463 
1464 int
1465 t4_detach_common(device_t dev)
1466 {
1467 	struct adapter *sc;
1468 	struct port_info *pi;
1469 	int i, rc;
1470 
1471 	sc = device_get_softc(dev);
1472 
1473 	if (sc->cdev) {
1474 		destroy_dev(sc->cdev);
1475 		sc->cdev = NULL;
1476 	}
1477 
1478 	sx_xlock(&t4_list_lock);
1479 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1480 	sx_xunlock(&t4_list_lock);
1481 
1482 	sc->flags &= ~CHK_MBOX_ACCESS;
1483 	if (sc->flags & FULL_INIT_DONE) {
1484 		if (!(sc->flags & IS_VF))
1485 			t4_intr_disable(sc);
1486 	}
1487 
1488 	if (device_is_attached(dev)) {
1489 		rc = bus_generic_detach(dev);
1490 		if (rc) {
1491 			device_printf(dev,
1492 			    "failed to detach child devices: %d\n", rc);
1493 			return (rc);
1494 		}
1495 	}
1496 
1497 	for (i = 0; i < sc->intr_count; i++)
1498 		t4_free_irq(sc, &sc->irq[i]);
1499 
1500 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1501 		t4_free_tx_sched(sc);
1502 
1503 	for (i = 0; i < MAX_NPORTS; i++) {
1504 		pi = sc->port[i];
1505 		if (pi) {
1506 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1507 			if (pi->dev)
1508 				device_delete_child(dev, pi->dev);
1509 
1510 			mtx_destroy(&pi->pi_lock);
1511 			free(pi->vi, M_CXGBE);
1512 			free(pi, M_CXGBE);
1513 		}
1514 	}
1515 
1516 	device_delete_children(dev);
1517 
1518 	if (sc->flags & FULL_INIT_DONE)
1519 		adapter_full_uninit(sc);
1520 
1521 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1522 		t4_fw_bye(sc, sc->mbox);
1523 
1524 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1525 		pci_release_msi(dev);
1526 
1527 	if (sc->regs_res)
1528 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1529 		    sc->regs_res);
1530 
1531 	if (sc->udbs_res)
1532 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1533 		    sc->udbs_res);
1534 
1535 	if (sc->msix_res)
1536 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1537 		    sc->msix_res);
1538 
1539 	if (sc->l2t)
1540 		t4_free_l2t(sc->l2t);
1541 	if (sc->smt)
1542 		t4_free_smt(sc->smt);
1543 #ifdef RATELIMIT
1544 	t4_free_etid_table(sc);
1545 #endif
1546 	if (sc->key_map)
1547 		vmem_destroy(sc->key_map);
1548 #ifdef INET6
1549 	t4_destroy_clip_table(sc);
1550 #endif
1551 
1552 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1553 	free(sc->sge.ofld_txq, M_CXGBE);
1554 #endif
1555 #ifdef TCP_OFFLOAD
1556 	free(sc->sge.ofld_rxq, M_CXGBE);
1557 #endif
1558 #ifdef DEV_NETMAP
1559 	free(sc->sge.nm_rxq, M_CXGBE);
1560 	free(sc->sge.nm_txq, M_CXGBE);
1561 #endif
1562 	free(sc->irq, M_CXGBE);
1563 	free(sc->sge.rxq, M_CXGBE);
1564 	free(sc->sge.txq, M_CXGBE);
1565 	free(sc->sge.ctrlq, M_CXGBE);
1566 	free(sc->sge.iqmap, M_CXGBE);
1567 	free(sc->sge.eqmap, M_CXGBE);
1568 	free(sc->tids.ftid_tab, M_CXGBE);
1569 	free(sc->tids.hpftid_tab, M_CXGBE);
1570 	free_hftid_hash(&sc->tids);
1571 	free(sc->tids.atid_tab, M_CXGBE);
1572 	free(sc->tids.tid_tab, M_CXGBE);
1573 	free(sc->tt.tls_rx_ports, M_CXGBE);
1574 	t4_destroy_dma_tag(sc);
1575 
1576 	callout_drain(&sc->sfl_callout);
1577 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1578 		mtx_destroy(&sc->tids.ftid_lock);
1579 		cv_destroy(&sc->tids.ftid_cv);
1580 	}
1581 	if (mtx_initialized(&sc->tids.atid_lock))
1582 		mtx_destroy(&sc->tids.atid_lock);
1583 	if (mtx_initialized(&sc->ifp_lock))
1584 		mtx_destroy(&sc->ifp_lock);
1585 
1586 	if (rw_initialized(&sc->policy_lock)) {
1587 		rw_destroy(&sc->policy_lock);
1588 #ifdef TCP_OFFLOAD
1589 		if (sc->policy != NULL)
1590 			free_offload_policy(sc->policy);
1591 #endif
1592 	}
1593 
1594 	for (i = 0; i < NUM_MEMWIN; i++) {
1595 		struct memwin *mw = &sc->memwin[i];
1596 
1597 		if (rw_initialized(&mw->mw_lock))
1598 			rw_destroy(&mw->mw_lock);
1599 	}
1600 
1601 	mtx_destroy(&sc->sfl_lock);
1602 	mtx_destroy(&sc->reg_lock);
1603 	mtx_destroy(&sc->sc_lock);
1604 
1605 	bzero(sc, sizeof(*sc));
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 cxgbe_probe(device_t dev)
1612 {
1613 	char buf[128];
1614 	struct port_info *pi = device_get_softc(dev);
1615 
1616 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1617 	device_set_desc_copy(dev, buf);
1618 
1619 	return (BUS_PROBE_DEFAULT);
1620 }
1621 
1622 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1623     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1624     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
1625     IFCAP_HWRXTSTMP | IFCAP_NOMAP)
1626 #define T4_CAP_ENABLE (T4_CAP)
1627 
1628 static int
1629 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1630 {
1631 	struct ifnet *ifp;
1632 	struct sbuf *sb;
1633 
1634 	vi->xact_addr_filt = -1;
1635 	callout_init(&vi->tick, 1);
1636 
1637 	/* Allocate an ifnet and set it up */
1638 	ifp = if_alloc_dev(IFT_ETHER, dev);
1639 	if (ifp == NULL) {
1640 		device_printf(dev, "Cannot allocate ifnet\n");
1641 		return (ENOMEM);
1642 	}
1643 	vi->ifp = ifp;
1644 	ifp->if_softc = vi;
1645 
1646 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1647 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1648 
1649 	ifp->if_init = cxgbe_init;
1650 	ifp->if_ioctl = cxgbe_ioctl;
1651 	ifp->if_transmit = cxgbe_transmit;
1652 	ifp->if_qflush = cxgbe_qflush;
1653 	ifp->if_get_counter = cxgbe_get_counter;
1654 #ifdef RATELIMIT
1655 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1656 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1657 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1658 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1659 	ifp->if_ratelimit_query = cxgbe_ratelimit_query;
1660 #endif
1661 
1662 	ifp->if_capabilities = T4_CAP;
1663 	ifp->if_capenable = T4_CAP_ENABLE;
1664 #ifdef TCP_OFFLOAD
1665 	if (vi->nofldrxq != 0)
1666 		ifp->if_capabilities |= IFCAP_TOE;
1667 #endif
1668 #ifdef RATELIMIT
1669 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) {
1670 		ifp->if_capabilities |= IFCAP_TXRTLMT;
1671 		ifp->if_capenable |= IFCAP_TXRTLMT;
1672 	}
1673 #endif
1674 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1675 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1676 
1677 	ifp->if_hw_tsomax = IP_MAXPACKET;
1678 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
1679 #ifdef RATELIMIT
1680 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0)
1681 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
1682 #endif
1683 	ifp->if_hw_tsomaxsegsize = 65536;
1684 
1685 	ether_ifattach(ifp, vi->hw_addr);
1686 #ifdef DEV_NETMAP
1687 	if (vi->nnmrxq != 0)
1688 		cxgbe_nm_attach(vi);
1689 #endif
1690 	sb = sbuf_new_auto();
1691 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1692 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1693 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
1694 	case IFCAP_TOE:
1695 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
1696 		break;
1697 	case IFCAP_TOE | IFCAP_TXRTLMT:
1698 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
1699 		break;
1700 	case IFCAP_TXRTLMT:
1701 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
1702 		break;
1703 	}
1704 #endif
1705 #ifdef TCP_OFFLOAD
1706 	if (ifp->if_capabilities & IFCAP_TOE)
1707 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
1708 #endif
1709 #ifdef DEV_NETMAP
1710 	if (ifp->if_capabilities & IFCAP_NETMAP)
1711 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1712 		    vi->nnmtxq, vi->nnmrxq);
1713 #endif
1714 	sbuf_finish(sb);
1715 	device_printf(dev, "%s\n", sbuf_data(sb));
1716 	sbuf_delete(sb);
1717 
1718 	vi_sysctls(vi);
1719 
1720 	return (0);
1721 }
1722 
1723 static int
1724 cxgbe_attach(device_t dev)
1725 {
1726 	struct port_info *pi = device_get_softc(dev);
1727 	struct adapter *sc = pi->adapter;
1728 	struct vi_info *vi;
1729 	int i, rc;
1730 
1731 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1732 
1733 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1734 	if (rc)
1735 		return (rc);
1736 
1737 	for_each_vi(pi, i, vi) {
1738 		if (i == 0)
1739 			continue;
1740 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1741 		if (vi->dev == NULL) {
1742 			device_printf(dev, "failed to add VI %d\n", i);
1743 			continue;
1744 		}
1745 		device_set_softc(vi->dev, vi);
1746 	}
1747 
1748 	cxgbe_sysctls(pi);
1749 
1750 	bus_generic_attach(dev);
1751 
1752 	return (0);
1753 }
1754 
1755 static void
1756 cxgbe_vi_detach(struct vi_info *vi)
1757 {
1758 	struct ifnet *ifp = vi->ifp;
1759 
1760 	ether_ifdetach(ifp);
1761 
1762 	/* Let detach proceed even if these fail. */
1763 #ifdef DEV_NETMAP
1764 	if (ifp->if_capabilities & IFCAP_NETMAP)
1765 		cxgbe_nm_detach(vi);
1766 #endif
1767 	cxgbe_uninit_synchronized(vi);
1768 	callout_drain(&vi->tick);
1769 	vi_full_uninit(vi);
1770 
1771 	if_free(vi->ifp);
1772 	vi->ifp = NULL;
1773 }
1774 
1775 static int
1776 cxgbe_detach(device_t dev)
1777 {
1778 	struct port_info *pi = device_get_softc(dev);
1779 	struct adapter *sc = pi->adapter;
1780 	int rc;
1781 
1782 	/* Detach the extra VIs first. */
1783 	rc = bus_generic_detach(dev);
1784 	if (rc)
1785 		return (rc);
1786 	device_delete_children(dev);
1787 
1788 	doom_vi(sc, &pi->vi[0]);
1789 
1790 	if (pi->flags & HAS_TRACEQ) {
1791 		sc->traceq = -1;	/* cloner should not create ifnet */
1792 		t4_tracer_port_detach(sc);
1793 	}
1794 
1795 	cxgbe_vi_detach(&pi->vi[0]);
1796 	callout_drain(&pi->tick);
1797 	ifmedia_removeall(&pi->media);
1798 
1799 	end_synchronized_op(sc, 0);
1800 
1801 	return (0);
1802 }
1803 
1804 static void
1805 cxgbe_init(void *arg)
1806 {
1807 	struct vi_info *vi = arg;
1808 	struct adapter *sc = vi->pi->adapter;
1809 
1810 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1811 		return;
1812 	cxgbe_init_synchronized(vi);
1813 	end_synchronized_op(sc, 0);
1814 }
1815 
1816 static int
1817 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1818 {
1819 	int rc = 0, mtu, flags;
1820 	struct vi_info *vi = ifp->if_softc;
1821 	struct port_info *pi = vi->pi;
1822 	struct adapter *sc = pi->adapter;
1823 	struct ifreq *ifr = (struct ifreq *)data;
1824 	uint32_t mask;
1825 
1826 	switch (cmd) {
1827 	case SIOCSIFMTU:
1828 		mtu = ifr->ifr_mtu;
1829 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1830 			return (EINVAL);
1831 
1832 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1833 		if (rc)
1834 			return (rc);
1835 		ifp->if_mtu = mtu;
1836 		if (vi->flags & VI_INIT_DONE) {
1837 			t4_update_fl_bufsize(ifp);
1838 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1839 				rc = update_mac_settings(ifp, XGMAC_MTU);
1840 		}
1841 		end_synchronized_op(sc, 0);
1842 		break;
1843 
1844 	case SIOCSIFFLAGS:
1845 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
1846 		if (rc)
1847 			return (rc);
1848 
1849 		if (ifp->if_flags & IFF_UP) {
1850 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1851 				flags = vi->if_flags;
1852 				if ((ifp->if_flags ^ flags) &
1853 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1854 					rc = update_mac_settings(ifp,
1855 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1856 				}
1857 			} else {
1858 				rc = cxgbe_init_synchronized(vi);
1859 			}
1860 			vi->if_flags = ifp->if_flags;
1861 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1862 			rc = cxgbe_uninit_synchronized(vi);
1863 		}
1864 		end_synchronized_op(sc, 0);
1865 		break;
1866 
1867 	case SIOCADDMULTI:
1868 	case SIOCDELMULTI:
1869 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
1870 		if (rc)
1871 			return (rc);
1872 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1873 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1874 		end_synchronized_op(sc, 0);
1875 		break;
1876 
1877 	case SIOCSIFCAP:
1878 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1879 		if (rc)
1880 			return (rc);
1881 
1882 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1883 		if (mask & IFCAP_TXCSUM) {
1884 			ifp->if_capenable ^= IFCAP_TXCSUM;
1885 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1886 
1887 			if (IFCAP_TSO4 & ifp->if_capenable &&
1888 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1889 				ifp->if_capenable &= ~IFCAP_TSO4;
1890 				if_printf(ifp,
1891 				    "tso4 disabled due to -txcsum.\n");
1892 			}
1893 		}
1894 		if (mask & IFCAP_TXCSUM_IPV6) {
1895 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1896 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1897 
1898 			if (IFCAP_TSO6 & ifp->if_capenable &&
1899 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1900 				ifp->if_capenable &= ~IFCAP_TSO6;
1901 				if_printf(ifp,
1902 				    "tso6 disabled due to -txcsum6.\n");
1903 			}
1904 		}
1905 		if (mask & IFCAP_RXCSUM)
1906 			ifp->if_capenable ^= IFCAP_RXCSUM;
1907 		if (mask & IFCAP_RXCSUM_IPV6)
1908 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1909 
1910 		/*
1911 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1912 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1913 		 * sending a TSO request our way, so it's sufficient to toggle
1914 		 * IFCAP_TSOx only.
1915 		 */
1916 		if (mask & IFCAP_TSO4) {
1917 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1918 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1919 				if_printf(ifp, "enable txcsum first.\n");
1920 				rc = EAGAIN;
1921 				goto fail;
1922 			}
1923 			ifp->if_capenable ^= IFCAP_TSO4;
1924 		}
1925 		if (mask & IFCAP_TSO6) {
1926 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1927 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1928 				if_printf(ifp, "enable txcsum6 first.\n");
1929 				rc = EAGAIN;
1930 				goto fail;
1931 			}
1932 			ifp->if_capenable ^= IFCAP_TSO6;
1933 		}
1934 		if (mask & IFCAP_LRO) {
1935 #if defined(INET) || defined(INET6)
1936 			int i;
1937 			struct sge_rxq *rxq;
1938 
1939 			ifp->if_capenable ^= IFCAP_LRO;
1940 			for_each_rxq(vi, i, rxq) {
1941 				if (ifp->if_capenable & IFCAP_LRO)
1942 					rxq->iq.flags |= IQ_LRO_ENABLED;
1943 				else
1944 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1945 			}
1946 #endif
1947 		}
1948 #ifdef TCP_OFFLOAD
1949 		if (mask & IFCAP_TOE) {
1950 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1951 
1952 			rc = toe_capability(vi, enable);
1953 			if (rc != 0)
1954 				goto fail;
1955 
1956 			ifp->if_capenable ^= mask;
1957 		}
1958 #endif
1959 		if (mask & IFCAP_VLAN_HWTAGGING) {
1960 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1961 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1962 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1963 		}
1964 		if (mask & IFCAP_VLAN_MTU) {
1965 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1966 
1967 			/* Need to find out how to disable auto-mtu-inflation */
1968 		}
1969 		if (mask & IFCAP_VLAN_HWTSO)
1970 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1971 		if (mask & IFCAP_VLAN_HWCSUM)
1972 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1973 #ifdef RATELIMIT
1974 		if (mask & IFCAP_TXRTLMT)
1975 			ifp->if_capenable ^= IFCAP_TXRTLMT;
1976 #endif
1977 		if (mask & IFCAP_HWRXTSTMP) {
1978 			int i;
1979 			struct sge_rxq *rxq;
1980 
1981 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
1982 			for_each_rxq(vi, i, rxq) {
1983 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
1984 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
1985 				else
1986 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
1987 			}
1988 		}
1989 		if (mask & IFCAP_NOMAP)
1990 			ifp->if_capenable ^= IFCAP_NOMAP;
1991 
1992 #ifdef VLAN_CAPABILITIES
1993 		VLAN_CAPABILITIES(ifp);
1994 #endif
1995 fail:
1996 		end_synchronized_op(sc, 0);
1997 		break;
1998 
1999 	case SIOCSIFMEDIA:
2000 	case SIOCGIFMEDIA:
2001 	case SIOCGIFXMEDIA:
2002 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2003 		break;
2004 
2005 	case SIOCGI2C: {
2006 		struct ifi2creq i2c;
2007 
2008 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2009 		if (rc != 0)
2010 			break;
2011 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2012 			rc = EPERM;
2013 			break;
2014 		}
2015 		if (i2c.len > sizeof(i2c.data)) {
2016 			rc = EINVAL;
2017 			break;
2018 		}
2019 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2020 		if (rc)
2021 			return (rc);
2022 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2023 		    i2c.offset, i2c.len, &i2c.data[0]);
2024 		end_synchronized_op(sc, 0);
2025 		if (rc == 0)
2026 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2027 		break;
2028 	}
2029 
2030 	default:
2031 		rc = ether_ioctl(ifp, cmd, data);
2032 	}
2033 
2034 	return (rc);
2035 }
2036 
2037 static int
2038 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2039 {
2040 	struct vi_info *vi = ifp->if_softc;
2041 	struct port_info *pi = vi->pi;
2042 	struct adapter *sc = pi->adapter;
2043 	struct sge_txq *txq;
2044 	void *items[1];
2045 	int rc;
2046 
2047 	M_ASSERTPKTHDR(m);
2048 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2049 
2050 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2051 		m_freem(m);
2052 		return (ENETDOWN);
2053 	}
2054 
2055 	rc = parse_pkt(sc, &m);
2056 	if (__predict_false(rc != 0)) {
2057 		MPASS(m == NULL);			/* was freed already */
2058 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2059 		return (rc);
2060 	}
2061 #ifdef RATELIMIT
2062 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2063 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2064 		return (ethofld_transmit(ifp, m));
2065 	}
2066 #endif
2067 
2068 	/* Select a txq. */
2069 	txq = &sc->sge.txq[vi->first_txq];
2070 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2071 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2072 		    vi->rsrv_noflowq);
2073 
2074 	items[0] = m;
2075 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
2076 	if (__predict_false(rc != 0))
2077 		m_freem(m);
2078 
2079 	return (rc);
2080 }
2081 
2082 static void
2083 cxgbe_qflush(struct ifnet *ifp)
2084 {
2085 	struct vi_info *vi = ifp->if_softc;
2086 	struct sge_txq *txq;
2087 	int i;
2088 
2089 	/* queues do not exist if !VI_INIT_DONE. */
2090 	if (vi->flags & VI_INIT_DONE) {
2091 		for_each_txq(vi, i, txq) {
2092 			TXQ_LOCK(txq);
2093 			txq->eq.flags |= EQ_QFLUSH;
2094 			TXQ_UNLOCK(txq);
2095 			while (!mp_ring_is_idle(txq->r)) {
2096 				mp_ring_check_drainage(txq->r, 0);
2097 				pause("qflush", 1);
2098 			}
2099 			TXQ_LOCK(txq);
2100 			txq->eq.flags &= ~EQ_QFLUSH;
2101 			TXQ_UNLOCK(txq);
2102 		}
2103 	}
2104 	if_qflush(ifp);
2105 }
2106 
2107 static uint64_t
2108 vi_get_counter(struct ifnet *ifp, ift_counter c)
2109 {
2110 	struct vi_info *vi = ifp->if_softc;
2111 	struct fw_vi_stats_vf *s = &vi->stats;
2112 
2113 	vi_refresh_stats(vi->pi->adapter, vi);
2114 
2115 	switch (c) {
2116 	case IFCOUNTER_IPACKETS:
2117 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2118 		    s->rx_ucast_frames);
2119 	case IFCOUNTER_IERRORS:
2120 		return (s->rx_err_frames);
2121 	case IFCOUNTER_OPACKETS:
2122 		return (s->tx_bcast_frames + s->tx_mcast_frames +
2123 		    s->tx_ucast_frames + s->tx_offload_frames);
2124 	case IFCOUNTER_OERRORS:
2125 		return (s->tx_drop_frames);
2126 	case IFCOUNTER_IBYTES:
2127 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
2128 		    s->rx_ucast_bytes);
2129 	case IFCOUNTER_OBYTES:
2130 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
2131 		    s->tx_ucast_bytes + s->tx_offload_bytes);
2132 	case IFCOUNTER_IMCASTS:
2133 		return (s->rx_mcast_frames);
2134 	case IFCOUNTER_OMCASTS:
2135 		return (s->tx_mcast_frames);
2136 	case IFCOUNTER_OQDROPS: {
2137 		uint64_t drops;
2138 
2139 		drops = 0;
2140 		if (vi->flags & VI_INIT_DONE) {
2141 			int i;
2142 			struct sge_txq *txq;
2143 
2144 			for_each_txq(vi, i, txq)
2145 				drops += counter_u64_fetch(txq->r->drops);
2146 		}
2147 
2148 		return (drops);
2149 
2150 	}
2151 
2152 	default:
2153 		return (if_get_counter_default(ifp, c));
2154 	}
2155 }
2156 
2157 uint64_t
2158 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
2159 {
2160 	struct vi_info *vi = ifp->if_softc;
2161 	struct port_info *pi = vi->pi;
2162 	struct adapter *sc = pi->adapter;
2163 	struct port_stats *s = &pi->stats;
2164 
2165 	if (pi->nvi > 1 || sc->flags & IS_VF)
2166 		return (vi_get_counter(ifp, c));
2167 
2168 	cxgbe_refresh_stats(sc, pi);
2169 
2170 	switch (c) {
2171 	case IFCOUNTER_IPACKETS:
2172 		return (s->rx_frames);
2173 
2174 	case IFCOUNTER_IERRORS:
2175 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2176 		    s->rx_fcs_err + s->rx_len_err);
2177 
2178 	case IFCOUNTER_OPACKETS:
2179 		return (s->tx_frames);
2180 
2181 	case IFCOUNTER_OERRORS:
2182 		return (s->tx_error_frames);
2183 
2184 	case IFCOUNTER_IBYTES:
2185 		return (s->rx_octets);
2186 
2187 	case IFCOUNTER_OBYTES:
2188 		return (s->tx_octets);
2189 
2190 	case IFCOUNTER_IMCASTS:
2191 		return (s->rx_mcast_frames);
2192 
2193 	case IFCOUNTER_OMCASTS:
2194 		return (s->tx_mcast_frames);
2195 
2196 	case IFCOUNTER_IQDROPS:
2197 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2198 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2199 		    s->rx_trunc3 + pi->tnl_cong_drops);
2200 
2201 	case IFCOUNTER_OQDROPS: {
2202 		uint64_t drops;
2203 
2204 		drops = s->tx_drop;
2205 		if (vi->flags & VI_INIT_DONE) {
2206 			int i;
2207 			struct sge_txq *txq;
2208 
2209 			for_each_txq(vi, i, txq)
2210 				drops += counter_u64_fetch(txq->r->drops);
2211 		}
2212 
2213 		return (drops);
2214 
2215 	}
2216 
2217 	default:
2218 		return (if_get_counter_default(ifp, c));
2219 	}
2220 }
2221 
2222 /*
2223  * The kernel picks a media from the list we had provided but we still validate
2224  * the requeste.
2225  */
2226 int
2227 cxgbe_media_change(struct ifnet *ifp)
2228 {
2229 	struct vi_info *vi = ifp->if_softc;
2230 	struct port_info *pi = vi->pi;
2231 	struct ifmedia *ifm = &pi->media;
2232 	struct link_config *lc = &pi->link_cfg;
2233 	struct adapter *sc = pi->adapter;
2234 	int rc;
2235 
2236 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
2237 	if (rc != 0)
2238 		return (rc);
2239 	PORT_LOCK(pi);
2240 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
2241 		/* ifconfig .. media autoselect */
2242 		if (!(lc->supported & FW_PORT_CAP32_ANEG)) {
2243 			rc = ENOTSUP; /* AN not supported by transceiver */
2244 			goto done;
2245 		}
2246 		lc->requested_aneg = AUTONEG_ENABLE;
2247 		lc->requested_speed = 0;
2248 		lc->requested_fc |= PAUSE_AUTONEG;
2249 	} else {
2250 		lc->requested_aneg = AUTONEG_DISABLE;
2251 		lc->requested_speed =
2252 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
2253 		lc->requested_fc = 0;
2254 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
2255 			lc->requested_fc |= PAUSE_RX;
2256 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
2257 			lc->requested_fc |= PAUSE_TX;
2258 	}
2259 	if (pi->up_vis > 0) {
2260 		fixup_link_config(pi);
2261 		rc = apply_link_config(pi);
2262 	}
2263 done:
2264 	PORT_UNLOCK(pi);
2265 	end_synchronized_op(sc, 0);
2266 	return (rc);
2267 }
2268 
2269 /*
2270  * Base media word (without ETHER, pause, link active, etc.) for the port at the
2271  * given speed.
2272  */
2273 static int
2274 port_mword(struct port_info *pi, uint32_t speed)
2275 {
2276 
2277 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
2278 	MPASS(powerof2(speed));
2279 
2280 	switch(pi->port_type) {
2281 	case FW_PORT_TYPE_BT_SGMII:
2282 	case FW_PORT_TYPE_BT_XFI:
2283 	case FW_PORT_TYPE_BT_XAUI:
2284 		/* BaseT */
2285 		switch (speed) {
2286 		case FW_PORT_CAP32_SPEED_100M:
2287 			return (IFM_100_T);
2288 		case FW_PORT_CAP32_SPEED_1G:
2289 			return (IFM_1000_T);
2290 		case FW_PORT_CAP32_SPEED_10G:
2291 			return (IFM_10G_T);
2292 		}
2293 		break;
2294 	case FW_PORT_TYPE_KX4:
2295 		if (speed == FW_PORT_CAP32_SPEED_10G)
2296 			return (IFM_10G_KX4);
2297 		break;
2298 	case FW_PORT_TYPE_CX4:
2299 		if (speed == FW_PORT_CAP32_SPEED_10G)
2300 			return (IFM_10G_CX4);
2301 		break;
2302 	case FW_PORT_TYPE_KX:
2303 		if (speed == FW_PORT_CAP32_SPEED_1G)
2304 			return (IFM_1000_KX);
2305 		break;
2306 	case FW_PORT_TYPE_KR:
2307 	case FW_PORT_TYPE_BP_AP:
2308 	case FW_PORT_TYPE_BP4_AP:
2309 	case FW_PORT_TYPE_BP40_BA:
2310 	case FW_PORT_TYPE_KR4_100G:
2311 	case FW_PORT_TYPE_KR_SFP28:
2312 	case FW_PORT_TYPE_KR_XLAUI:
2313 		switch (speed) {
2314 		case FW_PORT_CAP32_SPEED_1G:
2315 			return (IFM_1000_KX);
2316 		case FW_PORT_CAP32_SPEED_10G:
2317 			return (IFM_10G_KR);
2318 		case FW_PORT_CAP32_SPEED_25G:
2319 			return (IFM_25G_KR);
2320 		case FW_PORT_CAP32_SPEED_40G:
2321 			return (IFM_40G_KR4);
2322 		case FW_PORT_CAP32_SPEED_50G:
2323 			return (IFM_50G_KR2);
2324 		case FW_PORT_CAP32_SPEED_100G:
2325 			return (IFM_100G_KR4);
2326 		}
2327 		break;
2328 	case FW_PORT_TYPE_FIBER_XFI:
2329 	case FW_PORT_TYPE_FIBER_XAUI:
2330 	case FW_PORT_TYPE_SFP:
2331 	case FW_PORT_TYPE_QSFP_10G:
2332 	case FW_PORT_TYPE_QSA:
2333 	case FW_PORT_TYPE_QSFP:
2334 	case FW_PORT_TYPE_CR4_QSFP:
2335 	case FW_PORT_TYPE_CR_QSFP:
2336 	case FW_PORT_TYPE_CR2_QSFP:
2337 	case FW_PORT_TYPE_SFP28:
2338 		/* Pluggable transceiver */
2339 		switch (pi->mod_type) {
2340 		case FW_PORT_MOD_TYPE_LR:
2341 			switch (speed) {
2342 			case FW_PORT_CAP32_SPEED_1G:
2343 				return (IFM_1000_LX);
2344 			case FW_PORT_CAP32_SPEED_10G:
2345 				return (IFM_10G_LR);
2346 			case FW_PORT_CAP32_SPEED_25G:
2347 				return (IFM_25G_LR);
2348 			case FW_PORT_CAP32_SPEED_40G:
2349 				return (IFM_40G_LR4);
2350 			case FW_PORT_CAP32_SPEED_50G:
2351 				return (IFM_50G_LR2);
2352 			case FW_PORT_CAP32_SPEED_100G:
2353 				return (IFM_100G_LR4);
2354 			}
2355 			break;
2356 		case FW_PORT_MOD_TYPE_SR:
2357 			switch (speed) {
2358 			case FW_PORT_CAP32_SPEED_1G:
2359 				return (IFM_1000_SX);
2360 			case FW_PORT_CAP32_SPEED_10G:
2361 				return (IFM_10G_SR);
2362 			case FW_PORT_CAP32_SPEED_25G:
2363 				return (IFM_25G_SR);
2364 			case FW_PORT_CAP32_SPEED_40G:
2365 				return (IFM_40G_SR4);
2366 			case FW_PORT_CAP32_SPEED_50G:
2367 				return (IFM_50G_SR2);
2368 			case FW_PORT_CAP32_SPEED_100G:
2369 				return (IFM_100G_SR4);
2370 			}
2371 			break;
2372 		case FW_PORT_MOD_TYPE_ER:
2373 			if (speed == FW_PORT_CAP32_SPEED_10G)
2374 				return (IFM_10G_ER);
2375 			break;
2376 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
2377 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
2378 			switch (speed) {
2379 			case FW_PORT_CAP32_SPEED_1G:
2380 				return (IFM_1000_CX);
2381 			case FW_PORT_CAP32_SPEED_10G:
2382 				return (IFM_10G_TWINAX);
2383 			case FW_PORT_CAP32_SPEED_25G:
2384 				return (IFM_25G_CR);
2385 			case FW_PORT_CAP32_SPEED_40G:
2386 				return (IFM_40G_CR4);
2387 			case FW_PORT_CAP32_SPEED_50G:
2388 				return (IFM_50G_CR2);
2389 			case FW_PORT_CAP32_SPEED_100G:
2390 				return (IFM_100G_CR4);
2391 			}
2392 			break;
2393 		case FW_PORT_MOD_TYPE_LRM:
2394 			if (speed == FW_PORT_CAP32_SPEED_10G)
2395 				return (IFM_10G_LRM);
2396 			break;
2397 		case FW_PORT_MOD_TYPE_NA:
2398 			MPASS(0);	/* Not pluggable? */
2399 			/* fall throough */
2400 		case FW_PORT_MOD_TYPE_ERROR:
2401 		case FW_PORT_MOD_TYPE_UNKNOWN:
2402 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
2403 			break;
2404 		case FW_PORT_MOD_TYPE_NONE:
2405 			return (IFM_NONE);
2406 		}
2407 		break;
2408 	case FW_PORT_TYPE_NONE:
2409 		return (IFM_NONE);
2410 	}
2411 
2412 	return (IFM_UNKNOWN);
2413 }
2414 
2415 void
2416 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2417 {
2418 	struct vi_info *vi = ifp->if_softc;
2419 	struct port_info *pi = vi->pi;
2420 	struct adapter *sc = pi->adapter;
2421 	struct link_config *lc = &pi->link_cfg;
2422 
2423 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
2424 		return;
2425 	PORT_LOCK(pi);
2426 
2427 	if (pi->up_vis == 0) {
2428 		/*
2429 		 * If all the interfaces are administratively down the firmware
2430 		 * does not report transceiver changes.  Refresh port info here
2431 		 * so that ifconfig displays accurate ifmedia at all times.
2432 		 * This is the only reason we have a synchronized op in this
2433 		 * function.  Just PORT_LOCK would have been enough otherwise.
2434 		 */
2435 		t4_update_port_info(pi);
2436 		build_medialist(pi);
2437 	}
2438 
2439 	/* ifm_status */
2440 	ifmr->ifm_status = IFM_AVALID;
2441 	if (lc->link_ok == false)
2442 		goto done;
2443 	ifmr->ifm_status |= IFM_ACTIVE;
2444 
2445 	/* ifm_active */
2446 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2447 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2448 	if (lc->fc & PAUSE_RX)
2449 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2450 	if (lc->fc & PAUSE_TX)
2451 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2452 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
2453 done:
2454 	PORT_UNLOCK(pi);
2455 	end_synchronized_op(sc, 0);
2456 }
2457 
2458 static int
2459 vcxgbe_probe(device_t dev)
2460 {
2461 	char buf[128];
2462 	struct vi_info *vi = device_get_softc(dev);
2463 
2464 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2465 	    vi - vi->pi->vi);
2466 	device_set_desc_copy(dev, buf);
2467 
2468 	return (BUS_PROBE_DEFAULT);
2469 }
2470 
2471 static int
2472 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2473 {
2474 	int func, index, rc;
2475 	uint32_t param, val;
2476 
2477 	ASSERT_SYNCHRONIZED_OP(sc);
2478 
2479 	index = vi - pi->vi;
2480 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2481 	KASSERT(index < nitems(vi_mac_funcs),
2482 	    ("%s: VI %s doesn't have a MAC func", __func__,
2483 	    device_get_nameunit(vi->dev)));
2484 	func = vi_mac_funcs[index];
2485 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2486 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
2487 	if (rc < 0) {
2488 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2489 		    "for port %d: %d\n", index, pi->port_id, -rc);
2490 		return (-rc);
2491 	}
2492 	vi->viid = rc;
2493 
2494 	if (vi->rss_size == 1) {
2495 		/*
2496 		 * This VI didn't get a slice of the RSS table.  Reduce the
2497 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2498 		 * configuration file (nvi, rssnvi for this PF) if this is a
2499 		 * problem.
2500 		 */
2501 		device_printf(vi->dev, "RSS table not available.\n");
2502 		vi->rss_base = 0xffff;
2503 
2504 		return (0);
2505 	}
2506 
2507 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2508 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2509 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2510 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2511 	if (rc)
2512 		vi->rss_base = 0xffff;
2513 	else {
2514 		MPASS((val >> 16) == vi->rss_size);
2515 		vi->rss_base = val & 0xffff;
2516 	}
2517 
2518 	return (0);
2519 }
2520 
2521 static int
2522 vcxgbe_attach(device_t dev)
2523 {
2524 	struct vi_info *vi;
2525 	struct port_info *pi;
2526 	struct adapter *sc;
2527 	int rc;
2528 
2529 	vi = device_get_softc(dev);
2530 	pi = vi->pi;
2531 	sc = pi->adapter;
2532 
2533 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2534 	if (rc)
2535 		return (rc);
2536 	rc = alloc_extra_vi(sc, pi, vi);
2537 	end_synchronized_op(sc, 0);
2538 	if (rc)
2539 		return (rc);
2540 
2541 	rc = cxgbe_vi_attach(dev, vi);
2542 	if (rc) {
2543 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2544 		return (rc);
2545 	}
2546 	return (0);
2547 }
2548 
2549 static int
2550 vcxgbe_detach(device_t dev)
2551 {
2552 	struct vi_info *vi;
2553 	struct adapter *sc;
2554 
2555 	vi = device_get_softc(dev);
2556 	sc = vi->pi->adapter;
2557 
2558 	doom_vi(sc, vi);
2559 
2560 	cxgbe_vi_detach(vi);
2561 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2562 
2563 	end_synchronized_op(sc, 0);
2564 
2565 	return (0);
2566 }
2567 
2568 static struct callout fatal_callout;
2569 
2570 static void
2571 delayed_panic(void *arg)
2572 {
2573 	struct adapter *sc = arg;
2574 
2575 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
2576 }
2577 
2578 void
2579 t4_fatal_err(struct adapter *sc, bool fw_error)
2580 {
2581 
2582 	t4_shutdown_adapter(sc);
2583 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n",
2584 	    device_get_nameunit(sc->dev));
2585 	if (fw_error) {
2586 		ASSERT_SYNCHRONIZED_OP(sc);
2587 		sc->flags |= ADAP_ERR;
2588 	} else {
2589 		ADAPTER_LOCK(sc);
2590 		sc->flags |= ADAP_ERR;
2591 		ADAPTER_UNLOCK(sc);
2592 	}
2593 
2594 	if (t4_panic_on_fatal_err) {
2595 		log(LOG_ALERT, "%s: panic on fatal error after 30s",
2596 		    device_get_nameunit(sc->dev));
2597 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
2598 	}
2599 }
2600 
2601 void
2602 t4_add_adapter(struct adapter *sc)
2603 {
2604 	sx_xlock(&t4_list_lock);
2605 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2606 	sx_xunlock(&t4_list_lock);
2607 }
2608 
2609 int
2610 t4_map_bars_0_and_4(struct adapter *sc)
2611 {
2612 	sc->regs_rid = PCIR_BAR(0);
2613 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2614 	    &sc->regs_rid, RF_ACTIVE);
2615 	if (sc->regs_res == NULL) {
2616 		device_printf(sc->dev, "cannot map registers.\n");
2617 		return (ENXIO);
2618 	}
2619 	sc->bt = rman_get_bustag(sc->regs_res);
2620 	sc->bh = rman_get_bushandle(sc->regs_res);
2621 	sc->mmio_len = rman_get_size(sc->regs_res);
2622 	setbit(&sc->doorbells, DOORBELL_KDB);
2623 
2624 	sc->msix_rid = PCIR_BAR(4);
2625 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2626 	    &sc->msix_rid, RF_ACTIVE);
2627 	if (sc->msix_res == NULL) {
2628 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2629 		return (ENXIO);
2630 	}
2631 
2632 	return (0);
2633 }
2634 
2635 int
2636 t4_map_bar_2(struct adapter *sc)
2637 {
2638 
2639 	/*
2640 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2641 	 * to map it if RDMA is disabled.
2642 	 */
2643 	if (is_t4(sc) && sc->rdmacaps == 0)
2644 		return (0);
2645 
2646 	sc->udbs_rid = PCIR_BAR(2);
2647 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2648 	    &sc->udbs_rid, RF_ACTIVE);
2649 	if (sc->udbs_res == NULL) {
2650 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2651 		return (ENXIO);
2652 	}
2653 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2654 
2655 	if (chip_id(sc) >= CHELSIO_T5) {
2656 		setbit(&sc->doorbells, DOORBELL_UDB);
2657 #if defined(__i386__) || defined(__amd64__)
2658 		if (t5_write_combine) {
2659 			int rc, mode;
2660 
2661 			/*
2662 			 * Enable write combining on BAR2.  This is the
2663 			 * userspace doorbell BAR and is split into 128B
2664 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2665 			 * with an egress queue.  The first 64B has the doorbell
2666 			 * and the second 64B can be used to submit a tx work
2667 			 * request with an implicit doorbell.
2668 			 */
2669 
2670 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2671 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2672 			if (rc == 0) {
2673 				clrbit(&sc->doorbells, DOORBELL_UDB);
2674 				setbit(&sc->doorbells, DOORBELL_WCWR);
2675 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2676 			} else {
2677 				device_printf(sc->dev,
2678 				    "couldn't enable write combining: %d\n",
2679 				    rc);
2680 			}
2681 
2682 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2683 			t4_write_reg(sc, A_SGE_STAT_CFG,
2684 			    V_STATSOURCE_T5(7) | mode);
2685 		}
2686 #endif
2687 	}
2688 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2689 
2690 	return (0);
2691 }
2692 
2693 struct memwin_init {
2694 	uint32_t base;
2695 	uint32_t aperture;
2696 };
2697 
2698 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2699 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2700 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2701 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2702 };
2703 
2704 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2705 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2706 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2707 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2708 };
2709 
2710 static void
2711 setup_memwin(struct adapter *sc)
2712 {
2713 	const struct memwin_init *mw_init;
2714 	struct memwin *mw;
2715 	int i;
2716 	uint32_t bar0;
2717 
2718 	if (is_t4(sc)) {
2719 		/*
2720 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2721 		 * mechanism.  Works from within PCI passthrough environments
2722 		 * too, where rman_get_start() can return a different value.  We
2723 		 * need to program the T4 memory window decoders with the actual
2724 		 * addresses that will be coming across the PCIe link.
2725 		 */
2726 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2727 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2728 
2729 		mw_init = &t4_memwin[0];
2730 	} else {
2731 		/* T5+ use the relative offset inside the PCIe BAR */
2732 		bar0 = 0;
2733 
2734 		mw_init = &t5_memwin[0];
2735 	}
2736 
2737 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2738 		rw_init(&mw->mw_lock, "memory window access");
2739 		mw->mw_base = mw_init->base;
2740 		mw->mw_aperture = mw_init->aperture;
2741 		mw->mw_curpos = 0;
2742 		t4_write_reg(sc,
2743 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2744 		    (mw->mw_base + bar0) | V_BIR(0) |
2745 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2746 		rw_wlock(&mw->mw_lock);
2747 		position_memwin(sc, i, 0);
2748 		rw_wunlock(&mw->mw_lock);
2749 	}
2750 
2751 	/* flush */
2752 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2753 }
2754 
2755 /*
2756  * Positions the memory window at the given address in the card's address space.
2757  * There are some alignment requirements and the actual position may be at an
2758  * address prior to the requested address.  mw->mw_curpos always has the actual
2759  * position of the window.
2760  */
2761 static void
2762 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2763 {
2764 	struct memwin *mw;
2765 	uint32_t pf;
2766 	uint32_t reg;
2767 
2768 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2769 	mw = &sc->memwin[idx];
2770 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2771 
2772 	if (is_t4(sc)) {
2773 		pf = 0;
2774 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2775 	} else {
2776 		pf = V_PFNUM(sc->pf);
2777 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2778 	}
2779 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2780 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2781 	t4_read_reg(sc, reg);	/* flush */
2782 }
2783 
2784 int
2785 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2786     int len, int rw)
2787 {
2788 	struct memwin *mw;
2789 	uint32_t mw_end, v;
2790 
2791 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2792 
2793 	/* Memory can only be accessed in naturally aligned 4 byte units */
2794 	if (addr & 3 || len & 3 || len <= 0)
2795 		return (EINVAL);
2796 
2797 	mw = &sc->memwin[idx];
2798 	while (len > 0) {
2799 		rw_rlock(&mw->mw_lock);
2800 		mw_end = mw->mw_curpos + mw->mw_aperture;
2801 		if (addr >= mw_end || addr < mw->mw_curpos) {
2802 			/* Will need to reposition the window */
2803 			if (!rw_try_upgrade(&mw->mw_lock)) {
2804 				rw_runlock(&mw->mw_lock);
2805 				rw_wlock(&mw->mw_lock);
2806 			}
2807 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2808 			position_memwin(sc, idx, addr);
2809 			rw_downgrade(&mw->mw_lock);
2810 			mw_end = mw->mw_curpos + mw->mw_aperture;
2811 		}
2812 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2813 		while (addr < mw_end && len > 0) {
2814 			if (rw == 0) {
2815 				v = t4_read_reg(sc, mw->mw_base + addr -
2816 				    mw->mw_curpos);
2817 				*val++ = le32toh(v);
2818 			} else {
2819 				v = *val++;
2820 				t4_write_reg(sc, mw->mw_base + addr -
2821 				    mw->mw_curpos, htole32(v));
2822 			}
2823 			addr += 4;
2824 			len -= 4;
2825 		}
2826 		rw_runlock(&mw->mw_lock);
2827 	}
2828 
2829 	return (0);
2830 }
2831 
2832 int
2833 alloc_atid_tab(struct tid_info *t, int flags)
2834 {
2835 	int i;
2836 
2837 	MPASS(t->natids > 0);
2838 	MPASS(t->atid_tab == NULL);
2839 
2840 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
2841 	    M_ZERO | flags);
2842 	if (t->atid_tab == NULL)
2843 		return (ENOMEM);
2844 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
2845 	t->afree = t->atid_tab;
2846 	t->atids_in_use = 0;
2847 	for (i = 1; i < t->natids; i++)
2848 		t->atid_tab[i - 1].next = &t->atid_tab[i];
2849 	t->atid_tab[t->natids - 1].next = NULL;
2850 
2851 	return (0);
2852 }
2853 
2854 void
2855 free_atid_tab(struct tid_info *t)
2856 {
2857 
2858 	KASSERT(t->atids_in_use == 0,
2859 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
2860 
2861 	if (mtx_initialized(&t->atid_lock))
2862 		mtx_destroy(&t->atid_lock);
2863 	free(t->atid_tab, M_CXGBE);
2864 	t->atid_tab = NULL;
2865 }
2866 
2867 int
2868 alloc_atid(struct adapter *sc, void *ctx)
2869 {
2870 	struct tid_info *t = &sc->tids;
2871 	int atid = -1;
2872 
2873 	mtx_lock(&t->atid_lock);
2874 	if (t->afree) {
2875 		union aopen_entry *p = t->afree;
2876 
2877 		atid = p - t->atid_tab;
2878 		MPASS(atid <= M_TID_TID);
2879 		t->afree = p->next;
2880 		p->data = ctx;
2881 		t->atids_in_use++;
2882 	}
2883 	mtx_unlock(&t->atid_lock);
2884 	return (atid);
2885 }
2886 
2887 void *
2888 lookup_atid(struct adapter *sc, int atid)
2889 {
2890 	struct tid_info *t = &sc->tids;
2891 
2892 	return (t->atid_tab[atid].data);
2893 }
2894 
2895 void
2896 free_atid(struct adapter *sc, int atid)
2897 {
2898 	struct tid_info *t = &sc->tids;
2899 	union aopen_entry *p = &t->atid_tab[atid];
2900 
2901 	mtx_lock(&t->atid_lock);
2902 	p->next = t->afree;
2903 	t->afree = p;
2904 	t->atids_in_use--;
2905 	mtx_unlock(&t->atid_lock);
2906 }
2907 
2908 static void
2909 queue_tid_release(struct adapter *sc, int tid)
2910 {
2911 
2912 	CXGBE_UNIMPLEMENTED("deferred tid release");
2913 }
2914 
2915 void
2916 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
2917 {
2918 	struct wrqe *wr;
2919 	struct cpl_tid_release *req;
2920 
2921 	wr = alloc_wrqe(sizeof(*req), ctrlq);
2922 	if (wr == NULL) {
2923 		queue_tid_release(sc, tid);	/* defer */
2924 		return;
2925 	}
2926 	req = wrtod(wr);
2927 
2928 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
2929 
2930 	t4_wrq_tx(sc, wr);
2931 }
2932 
2933 static int
2934 t4_range_cmp(const void *a, const void *b)
2935 {
2936 	return ((const struct t4_range *)a)->start -
2937 	       ((const struct t4_range *)b)->start;
2938 }
2939 
2940 /*
2941  * Verify that the memory range specified by the addr/len pair is valid within
2942  * the card's address space.
2943  */
2944 static int
2945 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
2946 {
2947 	struct t4_range mem_ranges[4], *r, *next;
2948 	uint32_t em, addr_len;
2949 	int i, n, remaining;
2950 
2951 	/* Memory can only be accessed in naturally aligned 4 byte units */
2952 	if (addr & 3 || len & 3 || len == 0)
2953 		return (EINVAL);
2954 
2955 	/* Enabled memories */
2956 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2957 
2958 	r = &mem_ranges[0];
2959 	n = 0;
2960 	bzero(r, sizeof(mem_ranges));
2961 	if (em & F_EDRAM0_ENABLE) {
2962 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2963 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2964 		if (r->size > 0) {
2965 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2966 			if (addr >= r->start &&
2967 			    addr + len <= r->start + r->size)
2968 				return (0);
2969 			r++;
2970 			n++;
2971 		}
2972 	}
2973 	if (em & F_EDRAM1_ENABLE) {
2974 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2975 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2976 		if (r->size > 0) {
2977 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2978 			if (addr >= r->start &&
2979 			    addr + len <= r->start + r->size)
2980 				return (0);
2981 			r++;
2982 			n++;
2983 		}
2984 	}
2985 	if (em & F_EXT_MEM_ENABLE) {
2986 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2987 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2988 		if (r->size > 0) {
2989 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2990 			if (addr >= r->start &&
2991 			    addr + len <= r->start + r->size)
2992 				return (0);
2993 			r++;
2994 			n++;
2995 		}
2996 	}
2997 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2998 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2999 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3000 		if (r->size > 0) {
3001 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3002 			if (addr >= r->start &&
3003 			    addr + len <= r->start + r->size)
3004 				return (0);
3005 			r++;
3006 			n++;
3007 		}
3008 	}
3009 	MPASS(n <= nitems(mem_ranges));
3010 
3011 	if (n > 1) {
3012 		/* Sort and merge the ranges. */
3013 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3014 
3015 		/* Start from index 0 and examine the next n - 1 entries. */
3016 		r = &mem_ranges[0];
3017 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
3018 
3019 			MPASS(r->size > 0);	/* r is a valid entry. */
3020 			next = r + 1;
3021 			MPASS(next->size > 0);	/* and so is the next one. */
3022 
3023 			while (r->start + r->size >= next->start) {
3024 				/* Merge the next one into the current entry. */
3025 				r->size = max(r->start + r->size,
3026 				    next->start + next->size) - r->start;
3027 				n--;	/* One fewer entry in total. */
3028 				if (--remaining == 0)
3029 					goto done;	/* short circuit */
3030 				next++;
3031 			}
3032 			if (next != r + 1) {
3033 				/*
3034 				 * Some entries were merged into r and next
3035 				 * points to the first valid entry that couldn't
3036 				 * be merged.
3037 				 */
3038 				MPASS(next->size > 0);	/* must be valid */
3039 				memcpy(r + 1, next, remaining * sizeof(*r));
3040 #ifdef INVARIANTS
3041 				/*
3042 				 * This so that the foo->size assertion in the
3043 				 * next iteration of the loop do the right
3044 				 * thing for entries that were pulled up and are
3045 				 * no longer valid.
3046 				 */
3047 				MPASS(n < nitems(mem_ranges));
3048 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
3049 				    sizeof(struct t4_range));
3050 #endif
3051 			}
3052 		}
3053 done:
3054 		/* Done merging the ranges. */
3055 		MPASS(n > 0);
3056 		r = &mem_ranges[0];
3057 		for (i = 0; i < n; i++, r++) {
3058 			if (addr >= r->start &&
3059 			    addr + len <= r->start + r->size)
3060 				return (0);
3061 		}
3062 	}
3063 
3064 	return (EFAULT);
3065 }
3066 
3067 static int
3068 fwmtype_to_hwmtype(int mtype)
3069 {
3070 
3071 	switch (mtype) {
3072 	case FW_MEMTYPE_EDC0:
3073 		return (MEM_EDC0);
3074 	case FW_MEMTYPE_EDC1:
3075 		return (MEM_EDC1);
3076 	case FW_MEMTYPE_EXTMEM:
3077 		return (MEM_MC0);
3078 	case FW_MEMTYPE_EXTMEM1:
3079 		return (MEM_MC1);
3080 	default:
3081 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
3082 	}
3083 }
3084 
3085 /*
3086  * Verify that the memory range specified by the memtype/offset/len pair is
3087  * valid and lies entirely within the memtype specified.  The global address of
3088  * the start of the range is returned in addr.
3089  */
3090 static int
3091 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
3092     uint32_t *addr)
3093 {
3094 	uint32_t em, addr_len, maddr;
3095 
3096 	/* Memory can only be accessed in naturally aligned 4 byte units */
3097 	if (off & 3 || len & 3 || len == 0)
3098 		return (EINVAL);
3099 
3100 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3101 	switch (fwmtype_to_hwmtype(mtype)) {
3102 	case MEM_EDC0:
3103 		if (!(em & F_EDRAM0_ENABLE))
3104 			return (EINVAL);
3105 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3106 		maddr = G_EDRAM0_BASE(addr_len) << 20;
3107 		break;
3108 	case MEM_EDC1:
3109 		if (!(em & F_EDRAM1_ENABLE))
3110 			return (EINVAL);
3111 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3112 		maddr = G_EDRAM1_BASE(addr_len) << 20;
3113 		break;
3114 	case MEM_MC:
3115 		if (!(em & F_EXT_MEM_ENABLE))
3116 			return (EINVAL);
3117 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3118 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
3119 		break;
3120 	case MEM_MC1:
3121 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
3122 			return (EINVAL);
3123 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3124 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
3125 		break;
3126 	default:
3127 		return (EINVAL);
3128 	}
3129 
3130 	*addr = maddr + off;	/* global address */
3131 	return (validate_mem_range(sc, *addr, len));
3132 }
3133 
3134 static int
3135 fixup_devlog_params(struct adapter *sc)
3136 {
3137 	struct devlog_params *dparams = &sc->params.devlog;
3138 	int rc;
3139 
3140 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
3141 	    dparams->size, &dparams->addr);
3142 
3143 	return (rc);
3144 }
3145 
3146 static void
3147 update_nirq(struct intrs_and_queues *iaq, int nports)
3148 {
3149 	int extra = T4_EXTRA_INTR;
3150 
3151 	iaq->nirq = extra;
3152 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
3153 	iaq->nirq += nports * (iaq->num_vis - 1) *
3154 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
3155 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
3156 }
3157 
3158 /*
3159  * Adjust requirements to fit the number of interrupts available.
3160  */
3161 static void
3162 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
3163     int navail)
3164 {
3165 	int old_nirq;
3166 	const int nports = sc->params.nports;
3167 
3168 	MPASS(nports > 0);
3169 	MPASS(navail > 0);
3170 
3171 	bzero(iaq, sizeof(*iaq));
3172 	iaq->intr_type = itype;
3173 	iaq->num_vis = t4_num_vis;
3174 	iaq->ntxq = t4_ntxq;
3175 	iaq->ntxq_vi = t4_ntxq_vi;
3176 	iaq->nrxq = t4_nrxq;
3177 	iaq->nrxq_vi = t4_nrxq_vi;
3178 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3179 	if (is_offload(sc) || is_ethoffload(sc)) {
3180 		iaq->nofldtxq = t4_nofldtxq;
3181 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
3182 	}
3183 #endif
3184 #ifdef TCP_OFFLOAD
3185 	if (is_offload(sc)) {
3186 		iaq->nofldrxq = t4_nofldrxq;
3187 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
3188 	}
3189 #endif
3190 #ifdef DEV_NETMAP
3191 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
3192 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
3193 #endif
3194 
3195 	update_nirq(iaq, nports);
3196 	if (iaq->nirq <= navail &&
3197 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3198 		/*
3199 		 * This is the normal case -- there are enough interrupts for
3200 		 * everything.
3201 		 */
3202 		goto done;
3203 	}
3204 
3205 	/*
3206 	 * If extra VIs have been configured try reducing their count and see if
3207 	 * that works.
3208 	 */
3209 	while (iaq->num_vis > 1) {
3210 		iaq->num_vis--;
3211 		update_nirq(iaq, nports);
3212 		if (iaq->nirq <= navail &&
3213 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3214 			device_printf(sc->dev, "virtual interfaces per port "
3215 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
3216 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
3217 			    "itype %d, navail %u, nirq %d.\n",
3218 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
3219 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
3220 			    itype, navail, iaq->nirq);
3221 			goto done;
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * Extra VIs will not be created.  Log a message if they were requested.
3227 	 */
3228 	MPASS(iaq->num_vis == 1);
3229 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
3230 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
3231 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
3232 	if (iaq->num_vis != t4_num_vis) {
3233 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
3234 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
3235 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
3236 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
3237 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
3238 	}
3239 
3240 	/*
3241 	 * Keep reducing the number of NIC rx queues to the next lower power of
3242 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
3243 	 * if that works.
3244 	 */
3245 	do {
3246 		if (iaq->nrxq > 1) {
3247 			do {
3248 				iaq->nrxq--;
3249 			} while (!powerof2(iaq->nrxq));
3250 		}
3251 		if (iaq->nofldrxq > 1)
3252 			iaq->nofldrxq >>= 1;
3253 
3254 		old_nirq = iaq->nirq;
3255 		update_nirq(iaq, nports);
3256 		if (iaq->nirq <= navail &&
3257 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3258 			device_printf(sc->dev, "running with reduced number of "
3259 			    "rx queues because of shortage of interrupts.  "
3260 			    "nrxq=%u, nofldrxq=%u.  "
3261 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
3262 			    iaq->nofldrxq, itype, navail, iaq->nirq);
3263 			goto done;
3264 		}
3265 	} while (old_nirq != iaq->nirq);
3266 
3267 	/* One interrupt for everything.  Ugh. */
3268 	device_printf(sc->dev, "running with minimal number of queues.  "
3269 	    "itype %d, navail %u.\n", itype, navail);
3270 	iaq->nirq = 1;
3271 	MPASS(iaq->nrxq == 1);
3272 	iaq->ntxq = 1;
3273 	if (iaq->nofldrxq > 1)
3274 		iaq->nofldtxq = 1;
3275 done:
3276 	MPASS(iaq->num_vis > 0);
3277 	if (iaq->num_vis > 1) {
3278 		MPASS(iaq->nrxq_vi > 0);
3279 		MPASS(iaq->ntxq_vi > 0);
3280 	}
3281 	MPASS(iaq->nirq > 0);
3282 	MPASS(iaq->nrxq > 0);
3283 	MPASS(iaq->ntxq > 0);
3284 	if (itype == INTR_MSI) {
3285 		MPASS(powerof2(iaq->nirq));
3286 	}
3287 }
3288 
3289 static int
3290 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
3291 {
3292 	int rc, itype, navail, nalloc;
3293 
3294 	for (itype = INTR_MSIX; itype; itype >>= 1) {
3295 
3296 		if ((itype & t4_intr_types) == 0)
3297 			continue;	/* not allowed */
3298 
3299 		if (itype == INTR_MSIX)
3300 			navail = pci_msix_count(sc->dev);
3301 		else if (itype == INTR_MSI)
3302 			navail = pci_msi_count(sc->dev);
3303 		else
3304 			navail = 1;
3305 restart:
3306 		if (navail == 0)
3307 			continue;
3308 
3309 		calculate_iaq(sc, iaq, itype, navail);
3310 		nalloc = iaq->nirq;
3311 		rc = 0;
3312 		if (itype == INTR_MSIX)
3313 			rc = pci_alloc_msix(sc->dev, &nalloc);
3314 		else if (itype == INTR_MSI)
3315 			rc = pci_alloc_msi(sc->dev, &nalloc);
3316 
3317 		if (rc == 0 && nalloc > 0) {
3318 			if (nalloc == iaq->nirq)
3319 				return (0);
3320 
3321 			/*
3322 			 * Didn't get the number requested.  Use whatever number
3323 			 * the kernel is willing to allocate.
3324 			 */
3325 			device_printf(sc->dev, "fewer vectors than requested, "
3326 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
3327 			    itype, iaq->nirq, nalloc);
3328 			pci_release_msi(sc->dev);
3329 			navail = nalloc;
3330 			goto restart;
3331 		}
3332 
3333 		device_printf(sc->dev,
3334 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
3335 		    itype, rc, iaq->nirq, nalloc);
3336 	}
3337 
3338 	device_printf(sc->dev,
3339 	    "failed to find a usable interrupt type.  "
3340 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
3341 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
3342 
3343 	return (ENXIO);
3344 }
3345 
3346 #define FW_VERSION(chip) ( \
3347     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
3348     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
3349     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
3350     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
3351 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
3352 
3353 /* Just enough of fw_hdr to cover all version info. */
3354 struct fw_h {
3355 	__u8	ver;
3356 	__u8	chip;
3357 	__be16	len512;
3358 	__be32	fw_ver;
3359 	__be32	tp_microcode_ver;
3360 	__u8	intfver_nic;
3361 	__u8	intfver_vnic;
3362 	__u8	intfver_ofld;
3363 	__u8	intfver_ri;
3364 	__u8	intfver_iscsipdu;
3365 	__u8	intfver_iscsi;
3366 	__u8	intfver_fcoepdu;
3367 	__u8	intfver_fcoe;
3368 };
3369 /* Spot check a couple of fields. */
3370 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
3371 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
3372 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
3373 
3374 struct fw_info {
3375 	uint8_t chip;
3376 	char *kld_name;
3377 	char *fw_mod_name;
3378 	struct fw_h fw_h;
3379 } fw_info[] = {
3380 	{
3381 		.chip = CHELSIO_T4,
3382 		.kld_name = "t4fw_cfg",
3383 		.fw_mod_name = "t4fw",
3384 		.fw_h = {
3385 			.chip = FW_HDR_CHIP_T4,
3386 			.fw_ver = htobe32(FW_VERSION(T4)),
3387 			.intfver_nic = FW_INTFVER(T4, NIC),
3388 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3389 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3390 			.intfver_ri = FW_INTFVER(T4, RI),
3391 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3392 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3393 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3394 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3395 		},
3396 	}, {
3397 		.chip = CHELSIO_T5,
3398 		.kld_name = "t5fw_cfg",
3399 		.fw_mod_name = "t5fw",
3400 		.fw_h = {
3401 			.chip = FW_HDR_CHIP_T5,
3402 			.fw_ver = htobe32(FW_VERSION(T5)),
3403 			.intfver_nic = FW_INTFVER(T5, NIC),
3404 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3405 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3406 			.intfver_ri = FW_INTFVER(T5, RI),
3407 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3408 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3409 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3410 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3411 		},
3412 	}, {
3413 		.chip = CHELSIO_T6,
3414 		.kld_name = "t6fw_cfg",
3415 		.fw_mod_name = "t6fw",
3416 		.fw_h = {
3417 			.chip = FW_HDR_CHIP_T6,
3418 			.fw_ver = htobe32(FW_VERSION(T6)),
3419 			.intfver_nic = FW_INTFVER(T6, NIC),
3420 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3421 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3422 			.intfver_ri = FW_INTFVER(T6, RI),
3423 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3424 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3425 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3426 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3427 		},
3428 	}
3429 };
3430 
3431 static struct fw_info *
3432 find_fw_info(int chip)
3433 {
3434 	int i;
3435 
3436 	for (i = 0; i < nitems(fw_info); i++) {
3437 		if (fw_info[i].chip == chip)
3438 			return (&fw_info[i]);
3439 	}
3440 	return (NULL);
3441 }
3442 
3443 /*
3444  * Is the given firmware API compatible with the one the driver was compiled
3445  * with?
3446  */
3447 static int
3448 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
3449 {
3450 
3451 	/* short circuit if it's the exact same firmware version */
3452 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3453 		return (1);
3454 
3455 	/*
3456 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3457 	 * features that are supported in the driver.
3458 	 */
3459 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3460 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3461 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3462 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3463 		return (1);
3464 #undef SAME_INTF
3465 
3466 	return (0);
3467 }
3468 
3469 static int
3470 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
3471     const struct firmware **fw)
3472 {
3473 	struct fw_info *fw_info;
3474 
3475 	*dcfg = NULL;
3476 	if (fw != NULL)
3477 		*fw = NULL;
3478 
3479 	fw_info = find_fw_info(chip_id(sc));
3480 	if (fw_info == NULL) {
3481 		device_printf(sc->dev,
3482 		    "unable to look up firmware information for chip %d.\n",
3483 		    chip_id(sc));
3484 		return (EINVAL);
3485 	}
3486 
3487 	*dcfg = firmware_get(fw_info->kld_name);
3488 	if (*dcfg != NULL) {
3489 		if (fw != NULL)
3490 			*fw = firmware_get(fw_info->fw_mod_name);
3491 		return (0);
3492 	}
3493 
3494 	return (ENOENT);
3495 }
3496 
3497 static void
3498 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
3499     const struct firmware *fw)
3500 {
3501 
3502 	if (fw != NULL)
3503 		firmware_put(fw, FIRMWARE_UNLOAD);
3504 	if (dcfg != NULL)
3505 		firmware_put(dcfg, FIRMWARE_UNLOAD);
3506 }
3507 
3508 /*
3509  * Return values:
3510  * 0 means no firmware install attempted.
3511  * ERESTART means a firmware install was attempted and was successful.
3512  * +ve errno means a firmware install was attempted but failed.
3513  */
3514 static int
3515 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
3516     const struct fw_h *drv_fw, const char *reason, int *already)
3517 {
3518 	const struct firmware *cfg, *fw;
3519 	const uint32_t c = be32toh(card_fw->fw_ver);
3520 	uint32_t d, k;
3521 	int rc, fw_install;
3522 	struct fw_h bundled_fw;
3523 	bool load_attempted;
3524 
3525 	cfg = fw = NULL;
3526 	load_attempted = false;
3527 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
3528 
3529 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
3530 	if (t4_fw_install < 0) {
3531 		rc = load_fw_module(sc, &cfg, &fw);
3532 		if (rc != 0 || fw == NULL) {
3533 			device_printf(sc->dev,
3534 			    "failed to load firmware module: %d. cfg %p, fw %p;"
3535 			    " will use compiled-in firmware version for"
3536 			    "hw.cxgbe.fw_install checks.\n",
3537 			    rc, cfg, fw);
3538 		} else {
3539 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
3540 		}
3541 		load_attempted = true;
3542 	}
3543 	d = be32toh(bundled_fw.fw_ver);
3544 
3545 	if (reason != NULL)
3546 		goto install;
3547 
3548 	if ((sc->flags & FW_OK) == 0) {
3549 
3550 		if (c == 0xffffffff) {
3551 			reason = "missing";
3552 			goto install;
3553 		}
3554 
3555 		rc = 0;
3556 		goto done;
3557 	}
3558 
3559 	if (!fw_compatible(card_fw, &bundled_fw)) {
3560 		reason = "incompatible or unusable";
3561 		goto install;
3562 	}
3563 
3564 	if (d > c) {
3565 		reason = "older than the version bundled with this driver";
3566 		goto install;
3567 	}
3568 
3569 	if (fw_install == 2 && d != c) {
3570 		reason = "different than the version bundled with this driver";
3571 		goto install;
3572 	}
3573 
3574 	/* No reason to do anything to the firmware already on the card. */
3575 	rc = 0;
3576 	goto done;
3577 
3578 install:
3579 	rc = 0;
3580 	if ((*already)++)
3581 		goto done;
3582 
3583 	if (fw_install == 0) {
3584 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3585 		    "but the driver is prohibited from installing a firmware "
3586 		    "on the card.\n",
3587 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3588 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3589 
3590 		goto done;
3591 	}
3592 
3593 	/*
3594 	 * We'll attempt to install a firmware.  Load the module first (if it
3595 	 * hasn't been loaded already).
3596 	 */
3597 	if (!load_attempted) {
3598 		rc = load_fw_module(sc, &cfg, &fw);
3599 		if (rc != 0 || fw == NULL) {
3600 			device_printf(sc->dev,
3601 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
3602 			    rc, cfg, fw);
3603 			/* carry on */
3604 		}
3605 	}
3606 	if (fw == NULL) {
3607 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3608 		    "but the driver cannot take corrective action because it "
3609 		    "is unable to load the firmware module.\n",
3610 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3611 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3612 		rc = sc->flags & FW_OK ? 0 : ENOENT;
3613 		goto done;
3614 	}
3615 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
3616 	if (k != d) {
3617 		MPASS(t4_fw_install > 0);
3618 		device_printf(sc->dev,
3619 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
3620 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
3621 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3622 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
3623 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3624 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3625 		rc = sc->flags & FW_OK ? 0 : EINVAL;
3626 		goto done;
3627 	}
3628 
3629 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3630 	    "installing firmware %u.%u.%u.%u on card.\n",
3631 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3632 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3633 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3634 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3635 
3636 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3637 	if (rc != 0) {
3638 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
3639 	} else {
3640 		/* Installed successfully, update the cached header too. */
3641 		rc = ERESTART;
3642 		memcpy(card_fw, fw->data, sizeof(*card_fw));
3643 	}
3644 done:
3645 	unload_fw_module(sc, cfg, fw);
3646 
3647 	return (rc);
3648 }
3649 
3650 /*
3651  * Establish contact with the firmware and attempt to become the master driver.
3652  *
3653  * A firmware will be installed to the card if needed (if the driver is allowed
3654  * to do so).
3655  */
3656 static int
3657 contact_firmware(struct adapter *sc)
3658 {
3659 	int rc, already = 0;
3660 	enum dev_state state;
3661 	struct fw_info *fw_info;
3662 	struct fw_hdr *card_fw;		/* fw on the card */
3663 	const struct fw_h *drv_fw;
3664 
3665 	fw_info = find_fw_info(chip_id(sc));
3666 	if (fw_info == NULL) {
3667 		device_printf(sc->dev,
3668 		    "unable to look up firmware information for chip %d.\n",
3669 		    chip_id(sc));
3670 		return (EINVAL);
3671 	}
3672 	drv_fw = &fw_info->fw_h;
3673 
3674 	/* Read the header of the firmware on the card */
3675 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3676 restart:
3677 	rc = -t4_get_fw_hdr(sc, card_fw);
3678 	if (rc != 0) {
3679 		device_printf(sc->dev,
3680 		    "unable to read firmware header from card's flash: %d\n",
3681 		    rc);
3682 		goto done;
3683 	}
3684 
3685 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
3686 	    &already);
3687 	if (rc == ERESTART)
3688 		goto restart;
3689 	if (rc != 0)
3690 		goto done;
3691 
3692 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3693 	if (rc < 0 || state == DEV_STATE_ERR) {
3694 		rc = -rc;
3695 		device_printf(sc->dev,
3696 		    "failed to connect to the firmware: %d, %d.  "
3697 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3698 #if 0
3699 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3700 		    "not responding properly to HELLO", &already) == ERESTART)
3701 			goto restart;
3702 #endif
3703 		goto done;
3704 	}
3705 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
3706 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
3707 
3708 	if (rc == sc->pf) {
3709 		sc->flags |= MASTER_PF;
3710 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3711 		    NULL, &already);
3712 		if (rc == ERESTART)
3713 			rc = 0;
3714 		else if (rc != 0)
3715 			goto done;
3716 	} else if (state == DEV_STATE_UNINIT) {
3717 		/*
3718 		 * We didn't get to be the master so we definitely won't be
3719 		 * configuring the chip.  It's a bug if someone else hasn't
3720 		 * configured it already.
3721 		 */
3722 		device_printf(sc->dev, "couldn't be master(%d), "
3723 		    "device not already initialized either(%d).  "
3724 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3725 		rc = EPROTO;
3726 		goto done;
3727 	} else {
3728 		/*
3729 		 * Some other PF is the master and has configured the chip.
3730 		 * This is allowed but untested.
3731 		 */
3732 		device_printf(sc->dev, "PF%d is master, device state %d.  "
3733 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3734 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
3735 		sc->cfcsum = 0;
3736 		rc = 0;
3737 	}
3738 done:
3739 	if (rc != 0 && sc->flags & FW_OK) {
3740 		t4_fw_bye(sc, sc->mbox);
3741 		sc->flags &= ~FW_OK;
3742 	}
3743 	free(card_fw, M_CXGBE);
3744 	return (rc);
3745 }
3746 
3747 static int
3748 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
3749     uint32_t mtype, uint32_t moff)
3750 {
3751 	struct fw_info *fw_info;
3752 	const struct firmware *dcfg, *rcfg = NULL;
3753 	const uint32_t *cfdata;
3754 	uint32_t cflen, addr;
3755 	int rc;
3756 
3757 	load_fw_module(sc, &dcfg, NULL);
3758 
3759 	/* Card specific interpretation of "default". */
3760 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3761 		if (pci_get_device(sc->dev) == 0x440a)
3762 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
3763 		if (is_fpga(sc))
3764 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
3765 	}
3766 
3767 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3768 		if (dcfg == NULL) {
3769 			device_printf(sc->dev,
3770 			    "KLD with default config is not available.\n");
3771 			rc = ENOENT;
3772 			goto done;
3773 		}
3774 		cfdata = dcfg->data;
3775 		cflen = dcfg->datasize & ~3;
3776 	} else {
3777 		char s[32];
3778 
3779 		fw_info = find_fw_info(chip_id(sc));
3780 		if (fw_info == NULL) {
3781 			device_printf(sc->dev,
3782 			    "unable to look up firmware information for chip %d.\n",
3783 			    chip_id(sc));
3784 			rc = EINVAL;
3785 			goto done;
3786 		}
3787 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
3788 
3789 		rcfg = firmware_get(s);
3790 		if (rcfg == NULL) {
3791 			device_printf(sc->dev,
3792 			    "unable to load module \"%s\" for configuration "
3793 			    "profile \"%s\".\n", s, cfg_file);
3794 			rc = ENOENT;
3795 			goto done;
3796 		}
3797 		cfdata = rcfg->data;
3798 		cflen = rcfg->datasize & ~3;
3799 	}
3800 
3801 	if (cflen > FLASH_CFG_MAX_SIZE) {
3802 		device_printf(sc->dev,
3803 		    "config file too long (%d, max allowed is %d).\n",
3804 		    cflen, FLASH_CFG_MAX_SIZE);
3805 		rc = EINVAL;
3806 		goto done;
3807 	}
3808 
3809 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3810 	if (rc != 0) {
3811 		device_printf(sc->dev,
3812 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
3813 		    __func__, mtype, moff, cflen, rc);
3814 		rc = EINVAL;
3815 		goto done;
3816 	}
3817 	write_via_memwin(sc, 2, addr, cfdata, cflen);
3818 done:
3819 	if (rcfg != NULL)
3820 		firmware_put(rcfg, FIRMWARE_UNLOAD);
3821 	unload_fw_module(sc, dcfg, NULL);
3822 	return (rc);
3823 }
3824 
3825 struct caps_allowed {
3826 	uint16_t nbmcaps;
3827 	uint16_t linkcaps;
3828 	uint16_t switchcaps;
3829 	uint16_t niccaps;
3830 	uint16_t toecaps;
3831 	uint16_t rdmacaps;
3832 	uint16_t cryptocaps;
3833 	uint16_t iscsicaps;
3834 	uint16_t fcoecaps;
3835 };
3836 
3837 #define FW_PARAM_DEV(param) \
3838 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3839 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3840 #define FW_PARAM_PFVF(param) \
3841 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3842 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3843 
3844 /*
3845  * Provide a configuration profile to the firmware and have it initialize the
3846  * chip accordingly.  This may involve uploading a configuration file to the
3847  * card.
3848  */
3849 static int
3850 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
3851     const struct caps_allowed *caps_allowed)
3852 {
3853 	int rc;
3854 	struct fw_caps_config_cmd caps;
3855 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
3856 
3857 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
3858 	if (rc != 0) {
3859 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3860 		return (rc);
3861 	}
3862 
3863 	bzero(&caps, sizeof(caps));
3864 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3865 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3866 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
3867 		mtype = 0;
3868 		moff = 0;
3869 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3870 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
3871 		mtype = FW_MEMTYPE_FLASH;
3872 		moff = t4_flash_cfg_addr(sc);
3873 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3874 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3875 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3876 		    FW_LEN16(caps));
3877 	} else {
3878 		/*
3879 		 * Ask the firmware where it wants us to upload the config file.
3880 		 */
3881 		param = FW_PARAM_DEV(CF);
3882 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3883 		if (rc != 0) {
3884 			/* No support for config file?  Shouldn't happen. */
3885 			device_printf(sc->dev,
3886 			    "failed to query config file location: %d.\n", rc);
3887 			goto done;
3888 		}
3889 		mtype = G_FW_PARAMS_PARAM_Y(val);
3890 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3891 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3892 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3893 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3894 		    FW_LEN16(caps));
3895 
3896 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
3897 		if (rc != 0) {
3898 			device_printf(sc->dev,
3899 			    "failed to upload config file to card: %d.\n", rc);
3900 			goto done;
3901 		}
3902 	}
3903 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3904 	if (rc != 0) {
3905 		device_printf(sc->dev, "failed to pre-process config file: %d "
3906 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3907 		goto done;
3908 	}
3909 
3910 	finicsum = be32toh(caps.finicsum);
3911 	cfcsum = be32toh(caps.cfcsum);	/* actual */
3912 	if (finicsum != cfcsum) {
3913 		device_printf(sc->dev,
3914 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3915 		    finicsum, cfcsum);
3916 	}
3917 	sc->cfcsum = cfcsum;
3918 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
3919 
3920 	/*
3921 	 * Let the firmware know what features will (not) be used so it can tune
3922 	 * things accordingly.
3923 	 */
3924 #define LIMIT_CAPS(x) do { \
3925 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
3926 } while (0)
3927 	LIMIT_CAPS(nbm);
3928 	LIMIT_CAPS(link);
3929 	LIMIT_CAPS(switch);
3930 	LIMIT_CAPS(nic);
3931 	LIMIT_CAPS(toe);
3932 	LIMIT_CAPS(rdma);
3933 	LIMIT_CAPS(crypto);
3934 	LIMIT_CAPS(iscsi);
3935 	LIMIT_CAPS(fcoe);
3936 #undef LIMIT_CAPS
3937 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
3938 		/*
3939 		 * TOE and hashfilters are mutually exclusive.  It is a config
3940 		 * file or firmware bug if both are reported as available.  Try
3941 		 * to cope with the situation in non-debug builds by disabling
3942 		 * TOE.
3943 		 */
3944 		MPASS(caps.toecaps == 0);
3945 
3946 		caps.toecaps = 0;
3947 		caps.rdmacaps = 0;
3948 		caps.iscsicaps = 0;
3949 	}
3950 
3951 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3952 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3953 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3954 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3955 	if (rc != 0) {
3956 		device_printf(sc->dev,
3957 		    "failed to process config file: %d.\n", rc);
3958 		goto done;
3959 	}
3960 
3961 	t4_tweak_chip_settings(sc);
3962 	set_params__pre_init(sc);
3963 
3964 	/* get basic stuff going */
3965 	rc = -t4_fw_initialize(sc, sc->mbox);
3966 	if (rc != 0) {
3967 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
3968 		goto done;
3969 	}
3970 done:
3971 	return (rc);
3972 }
3973 
3974 /*
3975  * Partition chip resources for use between various PFs, VFs, etc.
3976  */
3977 static int
3978 partition_resources(struct adapter *sc)
3979 {
3980 	char cfg_file[sizeof(t4_cfg_file)];
3981 	struct caps_allowed caps_allowed;
3982 	int rc;
3983 	bool fallback;
3984 
3985 	/* Only the master driver gets to configure the chip resources. */
3986 	MPASS(sc->flags & MASTER_PF);
3987 
3988 #define COPY_CAPS(x) do { \
3989 	caps_allowed.x##caps = t4_##x##caps_allowed; \
3990 } while (0)
3991 	bzero(&caps_allowed, sizeof(caps_allowed));
3992 	COPY_CAPS(nbm);
3993 	COPY_CAPS(link);
3994 	COPY_CAPS(switch);
3995 	COPY_CAPS(nic);
3996 	COPY_CAPS(toe);
3997 	COPY_CAPS(rdma);
3998 	COPY_CAPS(crypto);
3999 	COPY_CAPS(iscsi);
4000 	COPY_CAPS(fcoe);
4001 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4002 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4003 retry:
4004 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
4005 	if (rc != 0 && fallback) {
4006 		device_printf(sc->dev,
4007 		    "failed (%d) to configure card with \"%s\" profile, "
4008 		    "will fall back to a basic configuration and retry.\n",
4009 		    rc, cfg_file);
4010 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
4011 		bzero(&caps_allowed, sizeof(caps_allowed));
4012 		COPY_CAPS(switch);
4013 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
4014 		fallback = false;
4015 		goto retry;
4016 	}
4017 #undef COPY_CAPS
4018 	return (rc);
4019 }
4020 
4021 /*
4022  * Retrieve parameters that are needed (or nice to have) very early.
4023  */
4024 static int
4025 get_params__pre_init(struct adapter *sc)
4026 {
4027 	int rc;
4028 	uint32_t param[2], val[2];
4029 
4030 	t4_get_version_info(sc);
4031 
4032 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
4033 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
4034 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
4035 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
4036 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
4037 
4038 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
4039 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
4040 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
4041 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
4042 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
4043 
4044 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
4045 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
4046 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
4047 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
4048 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
4049 
4050 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
4051 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
4052 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
4053 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
4054 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
4055 
4056 	param[0] = FW_PARAM_DEV(PORTVEC);
4057 	param[1] = FW_PARAM_DEV(CCLK);
4058 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4059 	if (rc != 0) {
4060 		device_printf(sc->dev,
4061 		    "failed to query parameters (pre_init): %d.\n", rc);
4062 		return (rc);
4063 	}
4064 
4065 	sc->params.portvec = val[0];
4066 	sc->params.nports = bitcount32(val[0]);
4067 	sc->params.vpd.cclk = val[1];
4068 
4069 	/* Read device log parameters. */
4070 	rc = -t4_init_devlog_params(sc, 1);
4071 	if (rc == 0)
4072 		fixup_devlog_params(sc);
4073 	else {
4074 		device_printf(sc->dev,
4075 		    "failed to get devlog parameters: %d.\n", rc);
4076 		rc = 0;	/* devlog isn't critical for device operation */
4077 	}
4078 
4079 	return (rc);
4080 }
4081 
4082 /*
4083  * Any params that need to be set before FW_INITIALIZE.
4084  */
4085 static int
4086 set_params__pre_init(struct adapter *sc)
4087 {
4088 	int rc = 0;
4089 	uint32_t param, val;
4090 
4091 	if (chip_id(sc) >= CHELSIO_T6) {
4092 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
4093 		val = 1;
4094 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4095 		/* firmwares < 1.20.1.0 do not have this param. */
4096 		if (rc == FW_EINVAL && sc->params.fw_vers <
4097 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4098 		    V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) {
4099 			rc = 0;
4100 		}
4101 		if (rc != 0) {
4102 			device_printf(sc->dev,
4103 			    "failed to enable high priority filters :%d.\n",
4104 			    rc);
4105 		}
4106 	}
4107 
4108 	/* Enable opaque VIIDs with firmwares that support it. */
4109 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4110 	val = 1;
4111 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4112 	if (rc == 0 && val == 1)
4113 		sc->params.viid_smt_extn_support = true;
4114 	else
4115 		sc->params.viid_smt_extn_support = false;
4116 
4117 	return (rc);
4118 }
4119 
4120 /*
4121  * Retrieve various parameters that are of interest to the driver.  The device
4122  * has been initialized by the firmware at this point.
4123  */
4124 static int
4125 get_params__post_init(struct adapter *sc)
4126 {
4127 	int rc;
4128 	uint32_t param[7], val[7];
4129 	struct fw_caps_config_cmd caps;
4130 
4131 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
4132 	param[1] = FW_PARAM_PFVF(EQ_START);
4133 	param[2] = FW_PARAM_PFVF(FILTER_START);
4134 	param[3] = FW_PARAM_PFVF(FILTER_END);
4135 	param[4] = FW_PARAM_PFVF(L2T_START);
4136 	param[5] = FW_PARAM_PFVF(L2T_END);
4137 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4138 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
4139 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
4140 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
4141 	if (rc != 0) {
4142 		device_printf(sc->dev,
4143 		    "failed to query parameters (post_init): %d.\n", rc);
4144 		return (rc);
4145 	}
4146 
4147 	sc->sge.iq_start = val[0];
4148 	sc->sge.eq_start = val[1];
4149 	if ((int)val[3] > (int)val[2]) {
4150 		sc->tids.ftid_base = val[2];
4151 		sc->tids.ftid_end = val[3];
4152 		sc->tids.nftids = val[3] - val[2] + 1;
4153 	}
4154 	sc->vres.l2t.start = val[4];
4155 	sc->vres.l2t.size = val[5] - val[4] + 1;
4156 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
4157 	    ("%s: L2 table size (%u) larger than expected (%u)",
4158 	    __func__, sc->vres.l2t.size, L2T_SIZE));
4159 	sc->params.core_vdd = val[6];
4160 
4161 	if (chip_id(sc) >= CHELSIO_T6) {
4162 
4163 		sc->tids.tid_base = t4_read_reg(sc,
4164 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
4165 
4166 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
4167 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
4168 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4169 		if (rc != 0) {
4170 			device_printf(sc->dev,
4171 			   "failed to query hpfilter parameters: %d.\n", rc);
4172 			return (rc);
4173 		}
4174 		if ((int)val[1] > (int)val[0]) {
4175 			sc->tids.hpftid_base = val[0];
4176 			sc->tids.hpftid_end = val[1];
4177 			sc->tids.nhpftids = val[1] - val[0] + 1;
4178 
4179 			/*
4180 			 * These should go off if the layout changes and the
4181 			 * driver needs to catch up.
4182 			 */
4183 			MPASS(sc->tids.hpftid_base == 0);
4184 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
4185 		}
4186 	}
4187 
4188 	/*
4189 	 * MPSBGMAP is queried separately because only recent firmwares support
4190 	 * it as a parameter and we don't want the compound query above to fail
4191 	 * on older firmwares.
4192 	 */
4193 	param[0] = FW_PARAM_DEV(MPSBGMAP);
4194 	val[0] = 0;
4195 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4196 	if (rc == 0)
4197 		sc->params.mps_bg_map = val[0];
4198 	else
4199 		sc->params.mps_bg_map = 0;
4200 
4201 	/*
4202 	 * Determine whether the firmware supports the filter2 work request.
4203 	 * This is queried separately for the same reason as MPSBGMAP above.
4204 	 */
4205 	param[0] = FW_PARAM_DEV(FILTER2_WR);
4206 	val[0] = 0;
4207 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4208 	if (rc == 0)
4209 		sc->params.filter2_wr_support = val[0] != 0;
4210 	else
4211 		sc->params.filter2_wr_support = 0;
4212 
4213 	/*
4214 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
4215 	 * This is queried separately for the same reason as other params above.
4216 	 */
4217 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4218 	val[0] = 0;
4219 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4220 	if (rc == 0)
4221 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
4222 	else
4223 		sc->params.ulptx_memwrite_dsgl = false;
4224 
4225 	/* get capabilites */
4226 	bzero(&caps, sizeof(caps));
4227 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4228 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4229 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4230 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4231 	if (rc != 0) {
4232 		device_printf(sc->dev,
4233 		    "failed to get card capabilities: %d.\n", rc);
4234 		return (rc);
4235 	}
4236 
4237 #define READ_CAPS(x) do { \
4238 	sc->x = htobe16(caps.x); \
4239 } while (0)
4240 	READ_CAPS(nbmcaps);
4241 	READ_CAPS(linkcaps);
4242 	READ_CAPS(switchcaps);
4243 	READ_CAPS(niccaps);
4244 	READ_CAPS(toecaps);
4245 	READ_CAPS(rdmacaps);
4246 	READ_CAPS(cryptocaps);
4247 	READ_CAPS(iscsicaps);
4248 	READ_CAPS(fcoecaps);
4249 
4250 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
4251 		MPASS(chip_id(sc) > CHELSIO_T4);
4252 		MPASS(sc->toecaps == 0);
4253 		sc->toecaps = 0;
4254 
4255 		param[0] = FW_PARAM_DEV(NTID);
4256 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4257 		if (rc != 0) {
4258 			device_printf(sc->dev,
4259 			    "failed to query HASHFILTER parameters: %d.\n", rc);
4260 			return (rc);
4261 		}
4262 		sc->tids.ntids = val[0];
4263 		if (sc->params.fw_vers <
4264 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4265 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4266 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4267 			sc->tids.ntids -= sc->tids.nhpftids;
4268 		}
4269 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4270 		sc->params.hash_filter = 1;
4271 	}
4272 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
4273 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
4274 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
4275 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4276 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
4277 		if (rc != 0) {
4278 			device_printf(sc->dev,
4279 			    "failed to query NIC parameters: %d.\n", rc);
4280 			return (rc);
4281 		}
4282 		if ((int)val[1] > (int)val[0]) {
4283 			sc->tids.etid_base = val[0];
4284 			sc->tids.etid_end = val[1];
4285 			sc->tids.netids = val[1] - val[0] + 1;
4286 			sc->params.eo_wr_cred = val[2];
4287 			sc->params.ethoffload = 1;
4288 		}
4289 	}
4290 	if (sc->toecaps) {
4291 		/* query offload-related parameters */
4292 		param[0] = FW_PARAM_DEV(NTID);
4293 		param[1] = FW_PARAM_PFVF(SERVER_START);
4294 		param[2] = FW_PARAM_PFVF(SERVER_END);
4295 		param[3] = FW_PARAM_PFVF(TDDP_START);
4296 		param[4] = FW_PARAM_PFVF(TDDP_END);
4297 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4298 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4299 		if (rc != 0) {
4300 			device_printf(sc->dev,
4301 			    "failed to query TOE parameters: %d.\n", rc);
4302 			return (rc);
4303 		}
4304 		sc->tids.ntids = val[0];
4305 		if (sc->params.fw_vers <
4306 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4307 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4308 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4309 			sc->tids.ntids -= sc->tids.nhpftids;
4310 		}
4311 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4312 		if ((int)val[2] > (int)val[1]) {
4313 			sc->tids.stid_base = val[1];
4314 			sc->tids.nstids = val[2] - val[1] + 1;
4315 		}
4316 		sc->vres.ddp.start = val[3];
4317 		sc->vres.ddp.size = val[4] - val[3] + 1;
4318 		sc->params.ofldq_wr_cred = val[5];
4319 		sc->params.offload = 1;
4320 	} else {
4321 		/*
4322 		 * The firmware attempts memfree TOE configuration for -SO cards
4323 		 * and will report toecaps=0 if it runs out of resources (this
4324 		 * depends on the config file).  It may not report 0 for other
4325 		 * capabilities dependent on the TOE in this case.  Set them to
4326 		 * 0 here so that the driver doesn't bother tracking resources
4327 		 * that will never be used.
4328 		 */
4329 		sc->iscsicaps = 0;
4330 		sc->rdmacaps = 0;
4331 	}
4332 	if (sc->rdmacaps) {
4333 		param[0] = FW_PARAM_PFVF(STAG_START);
4334 		param[1] = FW_PARAM_PFVF(STAG_END);
4335 		param[2] = FW_PARAM_PFVF(RQ_START);
4336 		param[3] = FW_PARAM_PFVF(RQ_END);
4337 		param[4] = FW_PARAM_PFVF(PBL_START);
4338 		param[5] = FW_PARAM_PFVF(PBL_END);
4339 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4340 		if (rc != 0) {
4341 			device_printf(sc->dev,
4342 			    "failed to query RDMA parameters(1): %d.\n", rc);
4343 			return (rc);
4344 		}
4345 		sc->vres.stag.start = val[0];
4346 		sc->vres.stag.size = val[1] - val[0] + 1;
4347 		sc->vres.rq.start = val[2];
4348 		sc->vres.rq.size = val[3] - val[2] + 1;
4349 		sc->vres.pbl.start = val[4];
4350 		sc->vres.pbl.size = val[5] - val[4] + 1;
4351 
4352 		param[0] = FW_PARAM_PFVF(SQRQ_START);
4353 		param[1] = FW_PARAM_PFVF(SQRQ_END);
4354 		param[2] = FW_PARAM_PFVF(CQ_START);
4355 		param[3] = FW_PARAM_PFVF(CQ_END);
4356 		param[4] = FW_PARAM_PFVF(OCQ_START);
4357 		param[5] = FW_PARAM_PFVF(OCQ_END);
4358 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4359 		if (rc != 0) {
4360 			device_printf(sc->dev,
4361 			    "failed to query RDMA parameters(2): %d.\n", rc);
4362 			return (rc);
4363 		}
4364 		sc->vres.qp.start = val[0];
4365 		sc->vres.qp.size = val[1] - val[0] + 1;
4366 		sc->vres.cq.start = val[2];
4367 		sc->vres.cq.size = val[3] - val[2] + 1;
4368 		sc->vres.ocq.start = val[4];
4369 		sc->vres.ocq.size = val[5] - val[4] + 1;
4370 
4371 		param[0] = FW_PARAM_PFVF(SRQ_START);
4372 		param[1] = FW_PARAM_PFVF(SRQ_END);
4373 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
4374 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4375 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
4376 		if (rc != 0) {
4377 			device_printf(sc->dev,
4378 			    "failed to query RDMA parameters(3): %d.\n", rc);
4379 			return (rc);
4380 		}
4381 		sc->vres.srq.start = val[0];
4382 		sc->vres.srq.size = val[1] - val[0] + 1;
4383 		sc->params.max_ordird_qp = val[2];
4384 		sc->params.max_ird_adapter = val[3];
4385 	}
4386 	if (sc->iscsicaps) {
4387 		param[0] = FW_PARAM_PFVF(ISCSI_START);
4388 		param[1] = FW_PARAM_PFVF(ISCSI_END);
4389 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4390 		if (rc != 0) {
4391 			device_printf(sc->dev,
4392 			    "failed to query iSCSI parameters: %d.\n", rc);
4393 			return (rc);
4394 		}
4395 		sc->vres.iscsi.start = val[0];
4396 		sc->vres.iscsi.size = val[1] - val[0] + 1;
4397 	}
4398 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
4399 		param[0] = FW_PARAM_PFVF(TLS_START);
4400 		param[1] = FW_PARAM_PFVF(TLS_END);
4401 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4402 		if (rc != 0) {
4403 			device_printf(sc->dev,
4404 			    "failed to query TLS parameters: %d.\n", rc);
4405 			return (rc);
4406 		}
4407 		sc->vres.key.start = val[0];
4408 		sc->vres.key.size = val[1] - val[0] + 1;
4409 	}
4410 
4411 	t4_init_sge_params(sc);
4412 
4413 	/*
4414 	 * We've got the params we wanted to query via the firmware.  Now grab
4415 	 * some others directly from the chip.
4416 	 */
4417 	rc = t4_read_chip_settings(sc);
4418 
4419 	return (rc);
4420 }
4421 
4422 static int
4423 set_params__post_init(struct adapter *sc)
4424 {
4425 	uint32_t param, val;
4426 #ifdef TCP_OFFLOAD
4427 	int i, v, shift;
4428 #endif
4429 
4430 	/* ask for encapsulated CPLs */
4431 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4432 	val = 1;
4433 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4434 
4435 	/* Enable 32b port caps if the firmware supports it. */
4436 	param = FW_PARAM_PFVF(PORT_CAPS32);
4437 	val = 1;
4438 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
4439 		sc->params.port_caps32 = 1;
4440 
4441 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
4442 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
4443 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
4444 	    V_MASKFILTER(val - 1));
4445 
4446 #ifdef TCP_OFFLOAD
4447 	/*
4448 	 * Override the TOE timers with user provided tunables.  This is not the
4449 	 * recommended way to change the timers (the firmware config file is) so
4450 	 * these tunables are not documented.
4451 	 *
4452 	 * All the timer tunables are in microseconds.
4453 	 */
4454 	if (t4_toe_keepalive_idle != 0) {
4455 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
4456 		v &= M_KEEPALIVEIDLE;
4457 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
4458 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
4459 	}
4460 	if (t4_toe_keepalive_interval != 0) {
4461 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
4462 		v &= M_KEEPALIVEINTVL;
4463 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
4464 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
4465 	}
4466 	if (t4_toe_keepalive_count != 0) {
4467 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
4468 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4469 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
4470 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
4471 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
4472 	}
4473 	if (t4_toe_rexmt_min != 0) {
4474 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
4475 		v &= M_RXTMIN;
4476 		t4_set_reg_field(sc, A_TP_RXT_MIN,
4477 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
4478 	}
4479 	if (t4_toe_rexmt_max != 0) {
4480 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
4481 		v &= M_RXTMAX;
4482 		t4_set_reg_field(sc, A_TP_RXT_MAX,
4483 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
4484 	}
4485 	if (t4_toe_rexmt_count != 0) {
4486 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
4487 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4488 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
4489 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
4490 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
4491 	}
4492 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
4493 		if (t4_toe_rexmt_backoff[i] != -1) {
4494 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
4495 			shift = (i & 3) << 3;
4496 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
4497 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
4498 		}
4499 	}
4500 #endif
4501 	return (0);
4502 }
4503 
4504 #undef FW_PARAM_PFVF
4505 #undef FW_PARAM_DEV
4506 
4507 static void
4508 t4_set_desc(struct adapter *sc)
4509 {
4510 	char buf[128];
4511 	struct adapter_params *p = &sc->params;
4512 
4513 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
4514 
4515 	device_set_desc_copy(sc->dev, buf);
4516 }
4517 
4518 static inline void
4519 ifmedia_add4(struct ifmedia *ifm, int m)
4520 {
4521 
4522 	ifmedia_add(ifm, m, 0, NULL);
4523 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
4524 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
4525 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
4526 }
4527 
4528 /*
4529  * This is the selected media, which is not quite the same as the active media.
4530  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
4531  * and active are not the same, and "media: Ethernet selected" otherwise.
4532  */
4533 static void
4534 set_current_media(struct port_info *pi)
4535 {
4536 	struct link_config *lc;
4537 	struct ifmedia *ifm;
4538 	int mword;
4539 	u_int speed;
4540 
4541 	PORT_LOCK_ASSERT_OWNED(pi);
4542 
4543 	/* Leave current media alone if it's already set to IFM_NONE. */
4544 	ifm = &pi->media;
4545 	if (ifm->ifm_cur != NULL &&
4546 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
4547 		return;
4548 
4549 	lc = &pi->link_cfg;
4550 	if (lc->requested_aneg != AUTONEG_DISABLE &&
4551 	    lc->supported & FW_PORT_CAP32_ANEG) {
4552 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
4553 		return;
4554 	}
4555 	mword = IFM_ETHER | IFM_FDX;
4556 	if (lc->requested_fc & PAUSE_TX)
4557 		mword |= IFM_ETH_TXPAUSE;
4558 	if (lc->requested_fc & PAUSE_RX)
4559 		mword |= IFM_ETH_RXPAUSE;
4560 	if (lc->requested_speed == 0)
4561 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
4562 	else
4563 		speed = lc->requested_speed;
4564 	mword |= port_mword(pi, speed_to_fwcap(speed));
4565 	ifmedia_set(ifm, mword);
4566 }
4567 
4568 /*
4569  * Returns true if the ifmedia list for the port cannot change.
4570  */
4571 static bool
4572 fixed_ifmedia(struct port_info *pi)
4573 {
4574 
4575 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
4576 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
4577 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
4578 	    pi->port_type == FW_PORT_TYPE_KX4 ||
4579 	    pi->port_type == FW_PORT_TYPE_KX ||
4580 	    pi->port_type == FW_PORT_TYPE_KR ||
4581 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
4582 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
4583 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
4584 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
4585 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
4586 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
4587 }
4588 
4589 static void
4590 build_medialist(struct port_info *pi)
4591 {
4592 	uint32_t ss, speed;
4593 	int unknown, mword, bit;
4594 	struct link_config *lc;
4595 	struct ifmedia *ifm;
4596 
4597 	PORT_LOCK_ASSERT_OWNED(pi);
4598 
4599 	if (pi->flags & FIXED_IFMEDIA)
4600 		return;
4601 
4602 	/*
4603 	 * Rebuild the ifmedia list.
4604 	 */
4605 	ifm = &pi->media;
4606 	ifmedia_removeall(ifm);
4607 	lc = &pi->link_cfg;
4608 	ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */
4609 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
4610 		MPASS(ss != 0);
4611 no_media:
4612 		MPASS(LIST_EMPTY(&ifm->ifm_list));
4613 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
4614 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
4615 		return;
4616 	}
4617 
4618 	unknown = 0;
4619 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
4620 		speed = 1 << bit;
4621 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
4622 		if (ss & speed) {
4623 			mword = port_mword(pi, speed);
4624 			if (mword == IFM_NONE) {
4625 				goto no_media;
4626 			} else if (mword == IFM_UNKNOWN)
4627 				unknown++;
4628 			else
4629 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
4630 		}
4631 	}
4632 	if (unknown > 0) /* Add one unknown for all unknown media types. */
4633 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
4634 	if (lc->supported & FW_PORT_CAP32_ANEG)
4635 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
4636 
4637 	set_current_media(pi);
4638 }
4639 
4640 /*
4641  * Initialize the requested fields in the link config based on driver tunables.
4642  */
4643 static void
4644 init_link_config(struct port_info *pi)
4645 {
4646 	struct link_config *lc = &pi->link_cfg;
4647 
4648 	PORT_LOCK_ASSERT_OWNED(pi);
4649 
4650 	lc->requested_speed = 0;
4651 
4652 	if (t4_autoneg == 0)
4653 		lc->requested_aneg = AUTONEG_DISABLE;
4654 	else if (t4_autoneg == 1)
4655 		lc->requested_aneg = AUTONEG_ENABLE;
4656 	else
4657 		lc->requested_aneg = AUTONEG_AUTO;
4658 
4659 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
4660 	    PAUSE_AUTONEG);
4661 
4662 	if (t4_fec == -1 || t4_fec & FEC_AUTO)
4663 		lc->requested_fec = FEC_AUTO;
4664 	else {
4665 		lc->requested_fec = FEC_NONE;
4666 		if (t4_fec & FEC_RS)
4667 			lc->requested_fec |= FEC_RS;
4668 		if (t4_fec & FEC_BASER_RS)
4669 			lc->requested_fec |= FEC_BASER_RS;
4670 	}
4671 }
4672 
4673 /*
4674  * Makes sure that all requested settings comply with what's supported by the
4675  * port.  Returns the number of settings that were invalid and had to be fixed.
4676  */
4677 static int
4678 fixup_link_config(struct port_info *pi)
4679 {
4680 	int n = 0;
4681 	struct link_config *lc = &pi->link_cfg;
4682 	uint32_t fwspeed;
4683 
4684 	PORT_LOCK_ASSERT_OWNED(pi);
4685 
4686 	/* Speed (when not autonegotiating) */
4687 	if (lc->requested_speed != 0) {
4688 		fwspeed = speed_to_fwcap(lc->requested_speed);
4689 		if ((fwspeed & lc->supported) == 0) {
4690 			n++;
4691 			lc->requested_speed = 0;
4692 		}
4693 	}
4694 
4695 	/* Link autonegotiation */
4696 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
4697 	    lc->requested_aneg == AUTONEG_DISABLE ||
4698 	    lc->requested_aneg == AUTONEG_AUTO);
4699 	if (lc->requested_aneg == AUTONEG_ENABLE &&
4700 	    !(lc->supported & FW_PORT_CAP32_ANEG)) {
4701 		n++;
4702 		lc->requested_aneg = AUTONEG_AUTO;
4703 	}
4704 
4705 	/* Flow control */
4706 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
4707 	if (lc->requested_fc & PAUSE_TX &&
4708 	    !(lc->supported & FW_PORT_CAP32_FC_TX)) {
4709 		n++;
4710 		lc->requested_fc &= ~PAUSE_TX;
4711 	}
4712 	if (lc->requested_fc & PAUSE_RX &&
4713 	    !(lc->supported & FW_PORT_CAP32_FC_RX)) {
4714 		n++;
4715 		lc->requested_fc &= ~PAUSE_RX;
4716 	}
4717 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
4718 	    !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) {
4719 		n++;
4720 		lc->requested_fc |= PAUSE_AUTONEG;
4721 	}
4722 
4723 	/* FEC */
4724 	if ((lc->requested_fec & FEC_RS &&
4725 	    !(lc->supported & FW_PORT_CAP32_FEC_RS)) ||
4726 	    (lc->requested_fec & FEC_BASER_RS &&
4727 	    !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) {
4728 		n++;
4729 		lc->requested_fec = FEC_AUTO;
4730 	}
4731 
4732 	return (n);
4733 }
4734 
4735 /*
4736  * Apply the requested L1 settings, which are expected to be valid, to the
4737  * hardware.
4738  */
4739 static int
4740 apply_link_config(struct port_info *pi)
4741 {
4742 	struct adapter *sc = pi->adapter;
4743 	struct link_config *lc = &pi->link_cfg;
4744 	int rc;
4745 
4746 #ifdef INVARIANTS
4747 	ASSERT_SYNCHRONIZED_OP(sc);
4748 	PORT_LOCK_ASSERT_OWNED(pi);
4749 
4750 	if (lc->requested_aneg == AUTONEG_ENABLE)
4751 		MPASS(lc->supported & FW_PORT_CAP32_ANEG);
4752 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4753 		MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE);
4754 	if (lc->requested_fc & PAUSE_TX)
4755 		MPASS(lc->supported & FW_PORT_CAP32_FC_TX);
4756 	if (lc->requested_fc & PAUSE_RX)
4757 		MPASS(lc->supported & FW_PORT_CAP32_FC_RX);
4758 	if (lc->requested_fec & FEC_RS)
4759 		MPASS(lc->supported & FW_PORT_CAP32_FEC_RS);
4760 	if (lc->requested_fec & FEC_BASER_RS)
4761 		MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS);
4762 #endif
4763 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4764 	if (rc != 0) {
4765 		/* Don't complain if the VF driver gets back an EPERM. */
4766 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
4767 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4768 	} else {
4769 		/*
4770 		 * An L1_CFG will almost always result in a link-change event if
4771 		 * the link is up, and the driver will refresh the actual
4772 		 * fec/fc/etc. when the notification is processed.  If the link
4773 		 * is down then the actual settings are meaningless.
4774 		 *
4775 		 * This takes care of the case where a change in the L1 settings
4776 		 * may not result in a notification.
4777 		 */
4778 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
4779 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
4780 	}
4781 	return (rc);
4782 }
4783 
4784 #define FW_MAC_EXACT_CHUNK	7
4785 
4786 /*
4787  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4788  * indicates which parameters should be programmed (the rest are left alone).
4789  */
4790 int
4791 update_mac_settings(struct ifnet *ifp, int flags)
4792 {
4793 	int rc = 0;
4794 	struct vi_info *vi = ifp->if_softc;
4795 	struct port_info *pi = vi->pi;
4796 	struct adapter *sc = pi->adapter;
4797 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4798 
4799 	ASSERT_SYNCHRONIZED_OP(sc);
4800 	KASSERT(flags, ("%s: not told what to update.", __func__));
4801 
4802 	if (flags & XGMAC_MTU)
4803 		mtu = ifp->if_mtu;
4804 
4805 	if (flags & XGMAC_PROMISC)
4806 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4807 
4808 	if (flags & XGMAC_ALLMULTI)
4809 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4810 
4811 	if (flags & XGMAC_VLANEX)
4812 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4813 
4814 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4815 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4816 		    allmulti, 1, vlanex, false);
4817 		if (rc) {
4818 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4819 			    rc);
4820 			return (rc);
4821 		}
4822 	}
4823 
4824 	if (flags & XGMAC_UCADDR) {
4825 		uint8_t ucaddr[ETHER_ADDR_LEN];
4826 
4827 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4828 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4829 		    ucaddr, true, &vi->smt_idx);
4830 		if (rc < 0) {
4831 			rc = -rc;
4832 			if_printf(ifp, "change_mac failed: %d\n", rc);
4833 			return (rc);
4834 		} else {
4835 			vi->xact_addr_filt = rc;
4836 			rc = 0;
4837 		}
4838 	}
4839 
4840 	if (flags & XGMAC_MCADDRS) {
4841 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4842 		int del = 1;
4843 		uint64_t hash = 0;
4844 		struct ifmultiaddr *ifma;
4845 		int i = 0, j;
4846 
4847 		if_maddr_rlock(ifp);
4848 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4849 			if (ifma->ifma_addr->sa_family != AF_LINK)
4850 				continue;
4851 			mcaddr[i] =
4852 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4853 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4854 			i++;
4855 
4856 			if (i == FW_MAC_EXACT_CHUNK) {
4857 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4858 				    del, i, mcaddr, NULL, &hash, 0);
4859 				if (rc < 0) {
4860 					rc = -rc;
4861 					for (j = 0; j < i; j++) {
4862 						if_printf(ifp,
4863 						    "failed to add mc address"
4864 						    " %02x:%02x:%02x:"
4865 						    "%02x:%02x:%02x rc=%d\n",
4866 						    mcaddr[j][0], mcaddr[j][1],
4867 						    mcaddr[j][2], mcaddr[j][3],
4868 						    mcaddr[j][4], mcaddr[j][5],
4869 						    rc);
4870 					}
4871 					goto mcfail;
4872 				}
4873 				del = 0;
4874 				i = 0;
4875 			}
4876 		}
4877 		if (i > 0) {
4878 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4879 			    mcaddr, NULL, &hash, 0);
4880 			if (rc < 0) {
4881 				rc = -rc;
4882 				for (j = 0; j < i; j++) {
4883 					if_printf(ifp,
4884 					    "failed to add mc address"
4885 					    " %02x:%02x:%02x:"
4886 					    "%02x:%02x:%02x rc=%d\n",
4887 					    mcaddr[j][0], mcaddr[j][1],
4888 					    mcaddr[j][2], mcaddr[j][3],
4889 					    mcaddr[j][4], mcaddr[j][5],
4890 					    rc);
4891 				}
4892 				goto mcfail;
4893 			}
4894 		}
4895 
4896 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4897 		if (rc != 0)
4898 			if_printf(ifp, "failed to set mc address hash: %d", rc);
4899 mcfail:
4900 		if_maddr_runlock(ifp);
4901 	}
4902 
4903 	return (rc);
4904 }
4905 
4906 /*
4907  * {begin|end}_synchronized_op must be called from the same thread.
4908  */
4909 int
4910 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4911     char *wmesg)
4912 {
4913 	int rc, pri;
4914 
4915 #ifdef WITNESS
4916 	/* the caller thinks it's ok to sleep, but is it really? */
4917 	if (flags & SLEEP_OK)
4918 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4919 		    "begin_synchronized_op");
4920 #endif
4921 
4922 	if (INTR_OK)
4923 		pri = PCATCH;
4924 	else
4925 		pri = 0;
4926 
4927 	ADAPTER_LOCK(sc);
4928 	for (;;) {
4929 
4930 		if (vi && IS_DOOMED(vi)) {
4931 			rc = ENXIO;
4932 			goto done;
4933 		}
4934 
4935 		if (!IS_BUSY(sc)) {
4936 			rc = 0;
4937 			break;
4938 		}
4939 
4940 		if (!(flags & SLEEP_OK)) {
4941 			rc = EBUSY;
4942 			goto done;
4943 		}
4944 
4945 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4946 			rc = EINTR;
4947 			goto done;
4948 		}
4949 	}
4950 
4951 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4952 	SET_BUSY(sc);
4953 #ifdef INVARIANTS
4954 	sc->last_op = wmesg;
4955 	sc->last_op_thr = curthread;
4956 	sc->last_op_flags = flags;
4957 #endif
4958 
4959 done:
4960 	if (!(flags & HOLD_LOCK) || rc)
4961 		ADAPTER_UNLOCK(sc);
4962 
4963 	return (rc);
4964 }
4965 
4966 /*
4967  * Tell if_ioctl and if_init that the VI is going away.  This is
4968  * special variant of begin_synchronized_op and must be paired with a
4969  * call to end_synchronized_op.
4970  */
4971 void
4972 doom_vi(struct adapter *sc, struct vi_info *vi)
4973 {
4974 
4975 	ADAPTER_LOCK(sc);
4976 	SET_DOOMED(vi);
4977 	wakeup(&sc->flags);
4978 	while (IS_BUSY(sc))
4979 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4980 	SET_BUSY(sc);
4981 #ifdef INVARIANTS
4982 	sc->last_op = "t4detach";
4983 	sc->last_op_thr = curthread;
4984 	sc->last_op_flags = 0;
4985 #endif
4986 	ADAPTER_UNLOCK(sc);
4987 }
4988 
4989 /*
4990  * {begin|end}_synchronized_op must be called from the same thread.
4991  */
4992 void
4993 end_synchronized_op(struct adapter *sc, int flags)
4994 {
4995 
4996 	if (flags & LOCK_HELD)
4997 		ADAPTER_LOCK_ASSERT_OWNED(sc);
4998 	else
4999 		ADAPTER_LOCK(sc);
5000 
5001 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
5002 	CLR_BUSY(sc);
5003 	wakeup(&sc->flags);
5004 	ADAPTER_UNLOCK(sc);
5005 }
5006 
5007 static int
5008 cxgbe_init_synchronized(struct vi_info *vi)
5009 {
5010 	struct port_info *pi = vi->pi;
5011 	struct adapter *sc = pi->adapter;
5012 	struct ifnet *ifp = vi->ifp;
5013 	int rc = 0, i;
5014 	struct sge_txq *txq;
5015 
5016 	ASSERT_SYNCHRONIZED_OP(sc);
5017 
5018 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5019 		return (0);	/* already running */
5020 
5021 	if (!(sc->flags & FULL_INIT_DONE) &&
5022 	    ((rc = adapter_full_init(sc)) != 0))
5023 		return (rc);	/* error message displayed already */
5024 
5025 	if (!(vi->flags & VI_INIT_DONE) &&
5026 	    ((rc = vi_full_init(vi)) != 0))
5027 		return (rc); /* error message displayed already */
5028 
5029 	rc = update_mac_settings(ifp, XGMAC_ALL);
5030 	if (rc)
5031 		goto done;	/* error message displayed already */
5032 
5033 	PORT_LOCK(pi);
5034 	if (pi->up_vis == 0) {
5035 		t4_update_port_info(pi);
5036 		fixup_link_config(pi);
5037 		build_medialist(pi);
5038 		apply_link_config(pi);
5039 	}
5040 
5041 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
5042 	if (rc != 0) {
5043 		if_printf(ifp, "enable_vi failed: %d\n", rc);
5044 		PORT_UNLOCK(pi);
5045 		goto done;
5046 	}
5047 
5048 	/*
5049 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
5050 	 * if this changes.
5051 	 */
5052 
5053 	for_each_txq(vi, i, txq) {
5054 		TXQ_LOCK(txq);
5055 		txq->eq.flags |= EQ_ENABLED;
5056 		TXQ_UNLOCK(txq);
5057 	}
5058 
5059 	/*
5060 	 * The first iq of the first port to come up is used for tracing.
5061 	 */
5062 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
5063 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
5064 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
5065 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
5066 		    V_QUEUENUMBER(sc->traceq));
5067 		pi->flags |= HAS_TRACEQ;
5068 	}
5069 
5070 	/* all ok */
5071 	pi->up_vis++;
5072 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5073 
5074 	if (pi->nvi > 1 || sc->flags & IS_VF)
5075 		callout_reset(&vi->tick, hz, vi_tick, vi);
5076 	else
5077 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
5078 	if (pi->link_cfg.link_ok)
5079 		t4_os_link_changed(pi);
5080 	PORT_UNLOCK(pi);
5081 done:
5082 	if (rc != 0)
5083 		cxgbe_uninit_synchronized(vi);
5084 
5085 	return (rc);
5086 }
5087 
5088 /*
5089  * Idempotent.
5090  */
5091 static int
5092 cxgbe_uninit_synchronized(struct vi_info *vi)
5093 {
5094 	struct port_info *pi = vi->pi;
5095 	struct adapter *sc = pi->adapter;
5096 	struct ifnet *ifp = vi->ifp;
5097 	int rc, i;
5098 	struct sge_txq *txq;
5099 
5100 	ASSERT_SYNCHRONIZED_OP(sc);
5101 
5102 	if (!(vi->flags & VI_INIT_DONE)) {
5103 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5104 			KASSERT(0, ("uninited VI is running"));
5105 			if_printf(ifp, "uninited VI with running ifnet.  "
5106 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
5107 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
5108 			    ifp->if_drv_flags);
5109 		}
5110 		return (0);
5111 	}
5112 
5113 	/*
5114 	 * Disable the VI so that all its data in either direction is discarded
5115 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
5116 	 * tick) intact as the TP can deliver negative advice or data that it's
5117 	 * holding in its RAM (for an offloaded connection) even after the VI is
5118 	 * disabled.
5119 	 */
5120 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
5121 	if (rc) {
5122 		if_printf(ifp, "disable_vi failed: %d\n", rc);
5123 		return (rc);
5124 	}
5125 
5126 	for_each_txq(vi, i, txq) {
5127 		TXQ_LOCK(txq);
5128 		txq->eq.flags &= ~EQ_ENABLED;
5129 		TXQ_UNLOCK(txq);
5130 	}
5131 
5132 	PORT_LOCK(pi);
5133 	if (pi->nvi > 1 || sc->flags & IS_VF)
5134 		callout_stop(&vi->tick);
5135 	else
5136 		callout_stop(&pi->tick);
5137 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5138 		PORT_UNLOCK(pi);
5139 		return (0);
5140 	}
5141 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5142 	pi->up_vis--;
5143 	if (pi->up_vis > 0) {
5144 		PORT_UNLOCK(pi);
5145 		return (0);
5146 	}
5147 
5148 	pi->link_cfg.link_ok = false;
5149 	pi->link_cfg.speed = 0;
5150 	pi->link_cfg.link_down_rc = 255;
5151 	t4_os_link_changed(pi);
5152 	PORT_UNLOCK(pi);
5153 
5154 	return (0);
5155 }
5156 
5157 /*
5158  * It is ok for this function to fail midway and return right away.  t4_detach
5159  * will walk the entire sc->irq list and clean up whatever is valid.
5160  */
5161 int
5162 t4_setup_intr_handlers(struct adapter *sc)
5163 {
5164 	int rc, rid, p, q, v;
5165 	char s[8];
5166 	struct irq *irq;
5167 	struct port_info *pi;
5168 	struct vi_info *vi;
5169 	struct sge *sge = &sc->sge;
5170 	struct sge_rxq *rxq;
5171 #ifdef TCP_OFFLOAD
5172 	struct sge_ofld_rxq *ofld_rxq;
5173 #endif
5174 #ifdef DEV_NETMAP
5175 	struct sge_nm_rxq *nm_rxq;
5176 #endif
5177 #ifdef RSS
5178 	int nbuckets = rss_getnumbuckets();
5179 #endif
5180 
5181 	/*
5182 	 * Setup interrupts.
5183 	 */
5184 	irq = &sc->irq[0];
5185 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
5186 	if (forwarding_intr_to_fwq(sc))
5187 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
5188 
5189 	/* Multiple interrupts. */
5190 	if (sc->flags & IS_VF)
5191 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
5192 		    ("%s: too few intr.", __func__));
5193 	else
5194 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
5195 		    ("%s: too few intr.", __func__));
5196 
5197 	/* The first one is always error intr on PFs */
5198 	if (!(sc->flags & IS_VF)) {
5199 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
5200 		if (rc != 0)
5201 			return (rc);
5202 		irq++;
5203 		rid++;
5204 	}
5205 
5206 	/* The second one is always the firmware event queue (first on VFs) */
5207 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
5208 	if (rc != 0)
5209 		return (rc);
5210 	irq++;
5211 	rid++;
5212 
5213 	for_each_port(sc, p) {
5214 		pi = sc->port[p];
5215 		for_each_vi(pi, v, vi) {
5216 			vi->first_intr = rid - 1;
5217 
5218 			if (vi->nnmrxq > 0) {
5219 				int n = max(vi->nrxq, vi->nnmrxq);
5220 
5221 				rxq = &sge->rxq[vi->first_rxq];
5222 #ifdef DEV_NETMAP
5223 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
5224 #endif
5225 				for (q = 0; q < n; q++) {
5226 					snprintf(s, sizeof(s), "%x%c%x", p,
5227 					    'a' + v, q);
5228 					if (q < vi->nrxq)
5229 						irq->rxq = rxq++;
5230 #ifdef DEV_NETMAP
5231 					if (q < vi->nnmrxq)
5232 						irq->nm_rxq = nm_rxq++;
5233 
5234 					if (irq->nm_rxq != NULL &&
5235 					    irq->rxq == NULL) {
5236 						/* Netmap rx only */
5237 						rc = t4_alloc_irq(sc, irq, rid,
5238 						    t4_nm_intr, irq->nm_rxq, s);
5239 					}
5240 					if (irq->nm_rxq != NULL &&
5241 					    irq->rxq != NULL) {
5242 						/* NIC and Netmap rx */
5243 						rc = t4_alloc_irq(sc, irq, rid,
5244 						    t4_vi_intr, irq, s);
5245 					}
5246 #endif
5247 					if (irq->rxq != NULL &&
5248 					    irq->nm_rxq == NULL) {
5249 						/* NIC rx only */
5250 						rc = t4_alloc_irq(sc, irq, rid,
5251 						    t4_intr, irq->rxq, s);
5252 					}
5253 					if (rc != 0)
5254 						return (rc);
5255 #ifdef RSS
5256 					if (q < vi->nrxq) {
5257 						bus_bind_intr(sc->dev, irq->res,
5258 						    rss_getcpu(q % nbuckets));
5259 					}
5260 #endif
5261 					irq++;
5262 					rid++;
5263 					vi->nintr++;
5264 				}
5265 			} else {
5266 				for_each_rxq(vi, q, rxq) {
5267 					snprintf(s, sizeof(s), "%x%c%x", p,
5268 					    'a' + v, q);
5269 					rc = t4_alloc_irq(sc, irq, rid,
5270 					    t4_intr, rxq, s);
5271 					if (rc != 0)
5272 						return (rc);
5273 #ifdef RSS
5274 					bus_bind_intr(sc->dev, irq->res,
5275 					    rss_getcpu(q % nbuckets));
5276 #endif
5277 					irq++;
5278 					rid++;
5279 					vi->nintr++;
5280 				}
5281 			}
5282 #ifdef TCP_OFFLOAD
5283 			for_each_ofld_rxq(vi, q, ofld_rxq) {
5284 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
5285 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
5286 				    ofld_rxq, s);
5287 				if (rc != 0)
5288 					return (rc);
5289 				irq++;
5290 				rid++;
5291 				vi->nintr++;
5292 			}
5293 #endif
5294 		}
5295 	}
5296 	MPASS(irq == &sc->irq[sc->intr_count]);
5297 
5298 	return (0);
5299 }
5300 
5301 int
5302 adapter_full_init(struct adapter *sc)
5303 {
5304 	int rc, i;
5305 #ifdef RSS
5306 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5307 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5308 #endif
5309 
5310 	ASSERT_SYNCHRONIZED_OP(sc);
5311 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5312 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
5313 	    ("%s: FULL_INIT_DONE already", __func__));
5314 
5315 	/*
5316 	 * queues that belong to the adapter (not any particular port).
5317 	 */
5318 	rc = t4_setup_adapter_queues(sc);
5319 	if (rc != 0)
5320 		goto done;
5321 
5322 	for (i = 0; i < nitems(sc->tq); i++) {
5323 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
5324 		    taskqueue_thread_enqueue, &sc->tq[i]);
5325 		if (sc->tq[i] == NULL) {
5326 			device_printf(sc->dev,
5327 			    "failed to allocate task queue %d\n", i);
5328 			rc = ENOMEM;
5329 			goto done;
5330 		}
5331 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
5332 		    device_get_nameunit(sc->dev), i);
5333 	}
5334 #ifdef RSS
5335 	MPASS(RSS_KEYSIZE == 40);
5336 	rss_getkey((void *)&raw_rss_key[0]);
5337 	for (i = 0; i < nitems(rss_key); i++) {
5338 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
5339 	}
5340 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
5341 #endif
5342 
5343 	if (!(sc->flags & IS_VF))
5344 		t4_intr_enable(sc);
5345 	sc->flags |= FULL_INIT_DONE;
5346 done:
5347 	if (rc != 0)
5348 		adapter_full_uninit(sc);
5349 
5350 	return (rc);
5351 }
5352 
5353 int
5354 adapter_full_uninit(struct adapter *sc)
5355 {
5356 	int i;
5357 
5358 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5359 
5360 	t4_teardown_adapter_queues(sc);
5361 
5362 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
5363 		taskqueue_free(sc->tq[i]);
5364 		sc->tq[i] = NULL;
5365 	}
5366 
5367 	sc->flags &= ~FULL_INIT_DONE;
5368 
5369 	return (0);
5370 }
5371 
5372 #ifdef RSS
5373 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
5374     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
5375     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
5376     RSS_HASHTYPE_RSS_UDP_IPV6)
5377 
5378 /* Translates kernel hash types to hardware. */
5379 static int
5380 hashconfig_to_hashen(int hashconfig)
5381 {
5382 	int hashen = 0;
5383 
5384 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
5385 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
5386 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
5387 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
5388 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
5389 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5390 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5391 	}
5392 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
5393 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5394 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5395 	}
5396 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
5397 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5398 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
5399 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5400 
5401 	return (hashen);
5402 }
5403 
5404 /* Translates hardware hash types to kernel. */
5405 static int
5406 hashen_to_hashconfig(int hashen)
5407 {
5408 	int hashconfig = 0;
5409 
5410 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
5411 		/*
5412 		 * If UDP hashing was enabled it must have been enabled for
5413 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
5414 		 * enabling any 4-tuple hash is nonsense configuration.
5415 		 */
5416 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5417 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
5418 
5419 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5420 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
5421 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5422 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
5423 	}
5424 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5425 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
5426 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5427 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
5428 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
5429 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
5430 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
5431 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
5432 
5433 	return (hashconfig);
5434 }
5435 #endif
5436 
5437 int
5438 vi_full_init(struct vi_info *vi)
5439 {
5440 	struct adapter *sc = vi->pi->adapter;
5441 	struct ifnet *ifp = vi->ifp;
5442 	uint16_t *rss;
5443 	struct sge_rxq *rxq;
5444 	int rc, i, j;
5445 #ifdef RSS
5446 	int nbuckets = rss_getnumbuckets();
5447 	int hashconfig = rss_gethashconfig();
5448 	int extra;
5449 #endif
5450 
5451 	ASSERT_SYNCHRONIZED_OP(sc);
5452 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
5453 	    ("%s: VI_INIT_DONE already", __func__));
5454 
5455 	sysctl_ctx_init(&vi->ctx);
5456 	vi->flags |= VI_SYSCTL_CTX;
5457 
5458 	/*
5459 	 * Allocate tx/rx/fl queues for this VI.
5460 	 */
5461 	rc = t4_setup_vi_queues(vi);
5462 	if (rc != 0)
5463 		goto done;	/* error message displayed already */
5464 
5465 	/*
5466 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
5467 	 */
5468 	if (vi->nrxq > vi->rss_size) {
5469 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
5470 		    "some queues will never receive traffic.\n", vi->nrxq,
5471 		    vi->rss_size);
5472 	} else if (vi->rss_size % vi->nrxq) {
5473 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
5474 		    "expect uneven traffic distribution.\n", vi->nrxq,
5475 		    vi->rss_size);
5476 	}
5477 #ifdef RSS
5478 	if (vi->nrxq != nbuckets) {
5479 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
5480 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
5481 	}
5482 #endif
5483 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
5484 	for (i = 0; i < vi->rss_size;) {
5485 #ifdef RSS
5486 		j = rss_get_indirection_to_bucket(i);
5487 		j %= vi->nrxq;
5488 		rxq = &sc->sge.rxq[vi->first_rxq + j];
5489 		rss[i++] = rxq->iq.abs_id;
5490 #else
5491 		for_each_rxq(vi, j, rxq) {
5492 			rss[i++] = rxq->iq.abs_id;
5493 			if (i == vi->rss_size)
5494 				break;
5495 		}
5496 #endif
5497 	}
5498 
5499 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
5500 	    vi->rss_size);
5501 	if (rc != 0) {
5502 		free(rss, M_CXGBE);
5503 		if_printf(ifp, "rss_config failed: %d\n", rc);
5504 		goto done;
5505 	}
5506 
5507 #ifdef RSS
5508 	vi->hashen = hashconfig_to_hashen(hashconfig);
5509 
5510 	/*
5511 	 * We may have had to enable some hashes even though the global config
5512 	 * wants them disabled.  This is a potential problem that must be
5513 	 * reported to the user.
5514 	 */
5515 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
5516 
5517 	/*
5518 	 * If we consider only the supported hash types, then the enabled hashes
5519 	 * are a superset of the requested hashes.  In other words, there cannot
5520 	 * be any supported hash that was requested but not enabled, but there
5521 	 * can be hashes that were not requested but had to be enabled.
5522 	 */
5523 	extra &= SUPPORTED_RSS_HASHTYPES;
5524 	MPASS((extra & hashconfig) == 0);
5525 
5526 	if (extra) {
5527 		if_printf(ifp,
5528 		    "global RSS config (0x%x) cannot be accommodated.\n",
5529 		    hashconfig);
5530 	}
5531 	if (extra & RSS_HASHTYPE_RSS_IPV4)
5532 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
5533 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
5534 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
5535 	if (extra & RSS_HASHTYPE_RSS_IPV6)
5536 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
5537 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
5538 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
5539 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
5540 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
5541 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
5542 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
5543 #else
5544 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
5545 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
5546 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5547 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
5548 #endif
5549 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0);
5550 	if (rc != 0) {
5551 		free(rss, M_CXGBE);
5552 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
5553 		goto done;
5554 	}
5555 
5556 	vi->rss = rss;
5557 	vi->flags |= VI_INIT_DONE;
5558 done:
5559 	if (rc != 0)
5560 		vi_full_uninit(vi);
5561 
5562 	return (rc);
5563 }
5564 
5565 /*
5566  * Idempotent.
5567  */
5568 int
5569 vi_full_uninit(struct vi_info *vi)
5570 {
5571 	struct port_info *pi = vi->pi;
5572 	struct adapter *sc = pi->adapter;
5573 	int i;
5574 	struct sge_rxq *rxq;
5575 	struct sge_txq *txq;
5576 #ifdef TCP_OFFLOAD
5577 	struct sge_ofld_rxq *ofld_rxq;
5578 #endif
5579 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5580 	struct sge_wrq *ofld_txq;
5581 #endif
5582 
5583 	if (vi->flags & VI_INIT_DONE) {
5584 
5585 		/* Need to quiesce queues.  */
5586 
5587 		/* XXX: Only for the first VI? */
5588 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
5589 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
5590 
5591 		for_each_txq(vi, i, txq) {
5592 			quiesce_txq(sc, txq);
5593 		}
5594 
5595 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5596 		for_each_ofld_txq(vi, i, ofld_txq) {
5597 			quiesce_wrq(sc, ofld_txq);
5598 		}
5599 #endif
5600 
5601 		for_each_rxq(vi, i, rxq) {
5602 			quiesce_iq(sc, &rxq->iq);
5603 			quiesce_fl(sc, &rxq->fl);
5604 		}
5605 
5606 #ifdef TCP_OFFLOAD
5607 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5608 			quiesce_iq(sc, &ofld_rxq->iq);
5609 			quiesce_fl(sc, &ofld_rxq->fl);
5610 		}
5611 #endif
5612 		free(vi->rss, M_CXGBE);
5613 		free(vi->nm_rss, M_CXGBE);
5614 	}
5615 
5616 	t4_teardown_vi_queues(vi);
5617 	vi->flags &= ~VI_INIT_DONE;
5618 
5619 	return (0);
5620 }
5621 
5622 static void
5623 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5624 {
5625 	struct sge_eq *eq = &txq->eq;
5626 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5627 
5628 	(void) sc;	/* unused */
5629 
5630 #ifdef INVARIANTS
5631 	TXQ_LOCK(txq);
5632 	MPASS((eq->flags & EQ_ENABLED) == 0);
5633 	TXQ_UNLOCK(txq);
5634 #endif
5635 
5636 	/* Wait for the mp_ring to empty. */
5637 	while (!mp_ring_is_idle(txq->r)) {
5638 		mp_ring_check_drainage(txq->r, 0);
5639 		pause("rquiesce", 1);
5640 	}
5641 
5642 	/* Then wait for the hardware to finish. */
5643 	while (spg->cidx != htobe16(eq->pidx))
5644 		pause("equiesce", 1);
5645 
5646 	/* Finally, wait for the driver to reclaim all descriptors. */
5647 	while (eq->cidx != eq->pidx)
5648 		pause("dquiesce", 1);
5649 }
5650 
5651 static void
5652 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5653 {
5654 
5655 	/* XXXTX */
5656 }
5657 
5658 static void
5659 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5660 {
5661 	(void) sc;	/* unused */
5662 
5663 	/* Synchronize with the interrupt handler */
5664 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5665 		pause("iqfree", 1);
5666 }
5667 
5668 static void
5669 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5670 {
5671 	mtx_lock(&sc->sfl_lock);
5672 	FL_LOCK(fl);
5673 	fl->flags |= FL_DOOMED;
5674 	FL_UNLOCK(fl);
5675 	callout_stop(&sc->sfl_callout);
5676 	mtx_unlock(&sc->sfl_lock);
5677 
5678 	KASSERT((fl->flags & FL_STARVING) == 0,
5679 	    ("%s: still starving", __func__));
5680 }
5681 
5682 static int
5683 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5684     driver_intr_t *handler, void *arg, char *name)
5685 {
5686 	int rc;
5687 
5688 	irq->rid = rid;
5689 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5690 	    RF_SHAREABLE | RF_ACTIVE);
5691 	if (irq->res == NULL) {
5692 		device_printf(sc->dev,
5693 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5694 		return (ENOMEM);
5695 	}
5696 
5697 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5698 	    NULL, handler, arg, &irq->tag);
5699 	if (rc != 0) {
5700 		device_printf(sc->dev,
5701 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5702 		    rid, name, rc);
5703 	} else if (name)
5704 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5705 
5706 	return (rc);
5707 }
5708 
5709 static int
5710 t4_free_irq(struct adapter *sc, struct irq *irq)
5711 {
5712 	if (irq->tag)
5713 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5714 	if (irq->res)
5715 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5716 
5717 	bzero(irq, sizeof(*irq));
5718 
5719 	return (0);
5720 }
5721 
5722 static void
5723 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5724 {
5725 
5726 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5727 	t4_get_regs(sc, buf, regs->len);
5728 }
5729 
5730 #define	A_PL_INDIR_CMD	0x1f8
5731 
5732 #define	S_PL_AUTOINC	31
5733 #define	M_PL_AUTOINC	0x1U
5734 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5735 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5736 
5737 #define	S_PL_VFID	20
5738 #define	M_PL_VFID	0xffU
5739 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5740 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5741 
5742 #define	S_PL_ADDR	0
5743 #define	M_PL_ADDR	0xfffffU
5744 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5745 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5746 
5747 #define	A_PL_INDIR_DATA	0x1fc
5748 
5749 static uint64_t
5750 read_vf_stat(struct adapter *sc, u_int vin, int reg)
5751 {
5752 	u32 stats[2];
5753 
5754 	mtx_assert(&sc->reg_lock, MA_OWNED);
5755 	if (sc->flags & IS_VF) {
5756 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5757 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5758 	} else {
5759 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5760 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
5761 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5762 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5763 	}
5764 	return (((uint64_t)stats[1]) << 32 | stats[0]);
5765 }
5766 
5767 static void
5768 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
5769 {
5770 
5771 #define GET_STAT(name) \
5772 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
5773 
5774 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5775 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5776 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5777 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5778 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5779 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5780 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5781 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5782 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5783 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5784 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5785 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5786 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5787 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5788 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5789 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5790 
5791 #undef GET_STAT
5792 }
5793 
5794 static void
5795 t4_clr_vi_stats(struct adapter *sc, u_int vin)
5796 {
5797 	int reg;
5798 
5799 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
5800 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5801 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5802 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5803 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5804 }
5805 
5806 static void
5807 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5808 {
5809 	struct timeval tv;
5810 	const struct timeval interval = {0, 250000};	/* 250ms */
5811 
5812 	if (!(vi->flags & VI_INIT_DONE))
5813 		return;
5814 
5815 	getmicrotime(&tv);
5816 	timevalsub(&tv, &interval);
5817 	if (timevalcmp(&tv, &vi->last_refreshed, <))
5818 		return;
5819 
5820 	mtx_lock(&sc->reg_lock);
5821 	t4_get_vi_stats(sc, vi->vin, &vi->stats);
5822 	getmicrotime(&vi->last_refreshed);
5823 	mtx_unlock(&sc->reg_lock);
5824 }
5825 
5826 static void
5827 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5828 {
5829 	u_int i, v, tnl_cong_drops, bg_map;
5830 	struct timeval tv;
5831 	const struct timeval interval = {0, 250000};	/* 250ms */
5832 
5833 	getmicrotime(&tv);
5834 	timevalsub(&tv, &interval);
5835 	if (timevalcmp(&tv, &pi->last_refreshed, <))
5836 		return;
5837 
5838 	tnl_cong_drops = 0;
5839 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5840 	bg_map = pi->mps_bg_map;
5841 	while (bg_map) {
5842 		i = ffs(bg_map) - 1;
5843 		mtx_lock(&sc->reg_lock);
5844 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5845 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
5846 		mtx_unlock(&sc->reg_lock);
5847 		tnl_cong_drops += v;
5848 		bg_map &= ~(1 << i);
5849 	}
5850 	pi->tnl_cong_drops = tnl_cong_drops;
5851 	getmicrotime(&pi->last_refreshed);
5852 }
5853 
5854 static void
5855 cxgbe_tick(void *arg)
5856 {
5857 	struct port_info *pi = arg;
5858 	struct adapter *sc = pi->adapter;
5859 
5860 	PORT_LOCK_ASSERT_OWNED(pi);
5861 	cxgbe_refresh_stats(sc, pi);
5862 
5863 	callout_schedule(&pi->tick, hz);
5864 }
5865 
5866 void
5867 vi_tick(void *arg)
5868 {
5869 	struct vi_info *vi = arg;
5870 	struct adapter *sc = vi->pi->adapter;
5871 
5872 	vi_refresh_stats(sc, vi);
5873 
5874 	callout_schedule(&vi->tick, hz);
5875 }
5876 
5877 /*
5878  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5879  */
5880 static char *caps_decoder[] = {
5881 	"\20\001IPMI\002NCSI",				/* 0: NBM */
5882 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
5883 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
5884 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
5885 	    "\006HASHFILTER\007ETHOFLD",
5886 	"\20\001TOE",					/* 4: TOE */
5887 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
5888 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
5889 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5890 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5891 	    "\007T10DIF"
5892 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5893 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
5894 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
5895 		    "\004PO_INITIATOR\005PO_TARGET",
5896 };
5897 
5898 void
5899 t4_sysctls(struct adapter *sc)
5900 {
5901 	struct sysctl_ctx_list *ctx;
5902 	struct sysctl_oid *oid;
5903 	struct sysctl_oid_list *children, *c0;
5904 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5905 
5906 	ctx = device_get_sysctl_ctx(sc->dev);
5907 
5908 	/*
5909 	 * dev.t4nex.X.
5910 	 */
5911 	oid = device_get_sysctl_tree(sc->dev);
5912 	c0 = children = SYSCTL_CHILDREN(oid);
5913 
5914 	sc->sc_do_rxcopy = 1;
5915 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5916 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5917 
5918 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5919 	    sc->params.nports, "# of ports");
5920 
5921 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5922 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells,
5923 	    sysctl_bitfield_8b, "A", "available doorbells");
5924 
5925 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5926 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
5927 
5928 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5929 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5930 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5931 	    "interrupt holdoff timer values (us)");
5932 
5933 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5934 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5935 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5936 	    "interrupt holdoff packet counter values");
5937 
5938 	t4_sge_sysctls(sc, ctx, children);
5939 
5940 	sc->lro_timeout = 100;
5941 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5942 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5943 
5944 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5945 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
5946 
5947 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5948 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5949 
5950 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5951 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5952 
5953 	if (sc->flags & IS_VF)
5954 		return;
5955 
5956 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5957 	    NULL, chip_rev(sc), "chip hardware revision");
5958 
5959 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5960 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5961 
5962 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5963 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5964 
5965 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5966 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5967 
5968 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5969 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5970 
5971 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5972 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5973 
5974 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5975 	    sc->er_version, 0, "expansion ROM version");
5976 
5977 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5978 	    sc->bs_version, 0, "bootstrap firmware version");
5979 
5980 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5981 	    NULL, sc->params.scfg_vers, "serial config version");
5982 
5983 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5984 	    NULL, sc->params.vpd_vers, "VPD version");
5985 
5986 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5987 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5988 
5989 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5990 	    sc->cfcsum, "config file checksum");
5991 
5992 #define SYSCTL_CAP(name, n, text) \
5993 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5994 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \
5995 	    sysctl_bitfield_16b, "A", "available " text " capabilities")
5996 
5997 	SYSCTL_CAP(nbmcaps, 0, "NBM");
5998 	SYSCTL_CAP(linkcaps, 1, "link");
5999 	SYSCTL_CAP(switchcaps, 2, "switch");
6000 	SYSCTL_CAP(niccaps, 3, "NIC");
6001 	SYSCTL_CAP(toecaps, 4, "TCP offload");
6002 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
6003 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
6004 	SYSCTL_CAP(cryptocaps, 7, "crypto");
6005 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
6006 #undef SYSCTL_CAP
6007 
6008 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
6009 	    NULL, sc->tids.nftids, "number of filters");
6010 
6011 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
6012 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
6013 	    "chip temperature (in Celsius)");
6014 
6015 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING |
6016 	    CTLFLAG_RD, sc, 0, sysctl_loadavg, "A",
6017 	    "microprocessor load averages (debug firmwares only)");
6018 
6019 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
6020 	    &sc->params.core_vdd, 0, "core Vdd (in mV)");
6021 
6022 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
6023 	    CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS,
6024 	    sysctl_cpus, "A", "local CPUs");
6025 
6026 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
6027 	    CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS,
6028 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
6029 
6030 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
6031 	    &sc->swintr, 0, "software triggered interrupts");
6032 
6033 	/*
6034 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
6035 	 */
6036 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
6037 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
6038 	    "logs and miscellaneous information");
6039 	children = SYSCTL_CHILDREN(oid);
6040 
6041 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
6042 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6043 	    sysctl_cctrl, "A", "congestion control");
6044 
6045 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
6046 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6047 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
6048 
6049 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
6050 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
6051 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
6052 
6053 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
6054 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
6055 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
6056 
6057 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
6058 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
6059 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
6060 
6061 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
6062 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
6063 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
6064 
6065 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
6066 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
6067 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
6068 
6069 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
6070 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la,
6071 	    "A", "CIM logic analyzer");
6072 
6073 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
6074 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6075 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
6076 
6077 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
6078 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
6079 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
6080 
6081 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
6082 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
6083 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
6084 
6085 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
6086 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
6087 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
6088 
6089 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
6090 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
6091 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
6092 
6093 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
6094 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
6095 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
6096 
6097 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
6098 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
6099 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
6100 
6101 	if (chip_id(sc) > CHELSIO_T4) {
6102 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
6103 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
6104 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
6105 
6106 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
6107 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
6108 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
6109 	}
6110 
6111 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
6112 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6113 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
6114 
6115 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
6116 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6117 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
6118 
6119 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
6120 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6121 	    sysctl_cpl_stats, "A", "CPL statistics");
6122 
6123 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
6124 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6125 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
6126 
6127 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
6128 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6129 	    sysctl_devlog, "A", "firmware's device log");
6130 
6131 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
6132 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6133 	    sysctl_fcoe_stats, "A", "FCoE statistics");
6134 
6135 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
6136 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6137 	    sysctl_hw_sched, "A", "hardware scheduler ");
6138 
6139 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
6140 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6141 	    sysctl_l2t, "A", "hardware L2 table");
6142 
6143 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
6144 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6145 	    sysctl_smt, "A", "hardware source MAC table");
6146 
6147 #ifdef INET6
6148 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
6149 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6150 	    sysctl_clip, "A", "active CLIP table entries");
6151 #endif
6152 
6153 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
6154 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6155 	    sysctl_lb_stats, "A", "loopback statistics");
6156 
6157 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
6158 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6159 	    sysctl_meminfo, "A", "memory regions");
6160 
6161 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
6162 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6163 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
6164 	    "A", "MPS TCAM entries");
6165 
6166 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
6167 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6168 	    sysctl_path_mtus, "A", "path MTUs");
6169 
6170 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
6171 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6172 	    sysctl_pm_stats, "A", "PM statistics");
6173 
6174 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
6175 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6176 	    sysctl_rdma_stats, "A", "RDMA statistics");
6177 
6178 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
6179 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6180 	    sysctl_tcp_stats, "A", "TCP statistics");
6181 
6182 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
6183 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6184 	    sysctl_tids, "A", "TID information");
6185 
6186 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
6187 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6188 	    sysctl_tp_err_stats, "A", "TP error statistics");
6189 
6190 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
6191 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
6192 	    "TP logic analyzer event capture mask");
6193 
6194 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
6195 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6196 	    sysctl_tp_la, "A", "TP logic analyzer");
6197 
6198 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
6199 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6200 	    sysctl_tx_rate, "A", "Tx rate");
6201 
6202 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
6203 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6204 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
6205 
6206 	if (chip_id(sc) >= CHELSIO_T5) {
6207 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
6208 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6209 		    sysctl_wcwr_stats, "A", "write combined work requests");
6210 	}
6211 
6212 #ifdef TCP_OFFLOAD
6213 	if (is_offload(sc)) {
6214 		int i;
6215 		char s[4];
6216 
6217 		/*
6218 		 * dev.t4nex.X.toe.
6219 		 */
6220 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
6221 		    NULL, "TOE parameters");
6222 		children = SYSCTL_CHILDREN(oid);
6223 
6224 		sc->tt.cong_algorithm = -1;
6225 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
6226 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
6227 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
6228 		    "3 = highspeed)");
6229 
6230 		sc->tt.sndbuf = -1;
6231 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
6232 		    &sc->tt.sndbuf, 0, "hardware send buffer");
6233 
6234 		sc->tt.ddp = 0;
6235 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
6236 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
6237 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
6238 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
6239 
6240 		sc->tt.rx_coalesce = -1;
6241 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
6242 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
6243 
6244 		sc->tt.tls = 0;
6245 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
6246 		    &sc->tt.tls, 0, "Inline TLS allowed");
6247 
6248 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
6249 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
6250 		    "I", "TCP ports that use inline TLS+TOE RX");
6251 
6252 		sc->tt.tx_align = -1;
6253 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
6254 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
6255 
6256 		sc->tt.tx_zcopy = 0;
6257 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
6258 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
6259 		    "Enable zero-copy aio_write(2)");
6260 
6261 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
6262 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6263 		    "cop_managed_offloading", CTLFLAG_RW,
6264 		    &sc->tt.cop_managed_offloading, 0,
6265 		    "COP (Connection Offload Policy) controls all TOE offload");
6266 
6267 		sc->tt.autorcvbuf_inc = 16 * 1024;
6268 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
6269 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
6270 		    "autorcvbuf increment");
6271 
6272 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
6273 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
6274 		    "TP timer tick (us)");
6275 
6276 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
6277 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
6278 		    "TCP timestamp tick (us)");
6279 
6280 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
6281 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
6282 		    "DACK tick (us)");
6283 
6284 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
6285 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
6286 		    "IU", "DACK timer (us)");
6287 
6288 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
6289 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
6290 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
6291 
6292 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
6293 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
6294 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
6295 
6296 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
6297 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
6298 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
6299 
6300 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
6301 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
6302 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
6303 
6304 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
6305 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
6306 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
6307 
6308 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
6309 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
6310 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
6311 
6312 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
6313 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
6314 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
6315 
6316 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
6317 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
6318 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
6319 
6320 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
6321 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
6322 		    sysctl_tp_shift_cnt, "IU",
6323 		    "Number of SYN retransmissions before abort");
6324 
6325 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
6326 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
6327 		    sysctl_tp_shift_cnt, "IU",
6328 		    "Number of retransmissions before abort");
6329 
6330 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
6331 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
6332 		    sysctl_tp_shift_cnt, "IU",
6333 		    "Number of keepalive probes before abort");
6334 
6335 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
6336 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
6337 		children = SYSCTL_CHILDREN(oid);
6338 		for (i = 0; i < 16; i++) {
6339 			snprintf(s, sizeof(s), "%u", i);
6340 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
6341 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
6342 			    "IU", "TOE retransmit backoff");
6343 		}
6344 	}
6345 #endif
6346 }
6347 
6348 void
6349 vi_sysctls(struct vi_info *vi)
6350 {
6351 	struct sysctl_ctx_list *ctx;
6352 	struct sysctl_oid *oid;
6353 	struct sysctl_oid_list *children;
6354 
6355 	ctx = device_get_sysctl_ctx(vi->dev);
6356 
6357 	/*
6358 	 * dev.v?(cxgbe|cxl).X.
6359 	 */
6360 	oid = device_get_sysctl_tree(vi->dev);
6361 	children = SYSCTL_CHILDREN(oid);
6362 
6363 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
6364 	    vi->viid, "VI identifer");
6365 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
6366 	    &vi->nrxq, 0, "# of rx queues");
6367 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
6368 	    &vi->ntxq, 0, "# of tx queues");
6369 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
6370 	    &vi->first_rxq, 0, "index of first rx queue");
6371 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
6372 	    &vi->first_txq, 0, "index of first tx queue");
6373 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
6374 	    vi->rss_base, "start of RSS indirection table");
6375 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
6376 	    vi->rss_size, "size of RSS indirection table");
6377 
6378 	if (IS_MAIN_VI(vi)) {
6379 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
6380 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
6381 		    "Reserve queue 0 for non-flowid packets");
6382 	}
6383 
6384 #ifdef TCP_OFFLOAD
6385 	if (vi->nofldrxq != 0) {
6386 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
6387 		    &vi->nofldrxq, 0,
6388 		    "# of rx queues for offloaded TCP connections");
6389 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
6390 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
6391 		    "index of first TOE rx queue");
6392 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
6393 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6394 		    sysctl_holdoff_tmr_idx_ofld, "I",
6395 		    "holdoff timer index for TOE queues");
6396 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
6397 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6398 		    sysctl_holdoff_pktc_idx_ofld, "I",
6399 		    "holdoff packet counter index for TOE queues");
6400 	}
6401 #endif
6402 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6403 	if (vi->nofldtxq != 0) {
6404 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
6405 		    &vi->nofldtxq, 0,
6406 		    "# of tx queues for TOE/ETHOFLD");
6407 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
6408 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
6409 		    "index of first TOE/ETHOFLD tx queue");
6410 	}
6411 #endif
6412 #ifdef DEV_NETMAP
6413 	if (vi->nnmrxq != 0) {
6414 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
6415 		    &vi->nnmrxq, 0, "# of netmap rx queues");
6416 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
6417 		    &vi->nnmtxq, 0, "# of netmap tx queues");
6418 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
6419 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
6420 		    "index of first netmap rx queue");
6421 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
6422 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
6423 		    "index of first netmap tx queue");
6424 	}
6425 #endif
6426 
6427 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
6428 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
6429 	    "holdoff timer index");
6430 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
6431 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
6432 	    "holdoff packet counter index");
6433 
6434 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
6435 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
6436 	    "rx queue size");
6437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
6438 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
6439 	    "tx queue size");
6440 }
6441 
6442 static void
6443 cxgbe_sysctls(struct port_info *pi)
6444 {
6445 	struct sysctl_ctx_list *ctx;
6446 	struct sysctl_oid *oid;
6447 	struct sysctl_oid_list *children, *children2;
6448 	struct adapter *sc = pi->adapter;
6449 	int i;
6450 	char name[16];
6451 	static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"};
6452 
6453 	ctx = device_get_sysctl_ctx(pi->dev);
6454 
6455 	/*
6456 	 * dev.cxgbe.X.
6457 	 */
6458 	oid = device_get_sysctl_tree(pi->dev);
6459 	children = SYSCTL_CHILDREN(oid);
6460 
6461 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
6462 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
6463 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
6464 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
6465 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
6466 		    "PHY temperature (in Celsius)");
6467 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
6468 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
6469 		    "PHY firmware version");
6470 	}
6471 
6472 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
6473 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
6474     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
6475 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
6476 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
6477 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
6478 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
6479 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
6480 	    "autonegotiation (-1 = not supported)");
6481 
6482 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
6483 	    port_top_speed(pi), "max speed (in Gbps)");
6484 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
6485 	    pi->mps_bg_map, "MPS buffer group map");
6486 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
6487 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
6488 
6489 	if (sc->flags & IS_VF)
6490 		return;
6491 
6492 	/*
6493 	 * dev.(cxgbe|cxl).X.tc.
6494 	 */
6495 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
6496 	    "Tx scheduler traffic classes (cl_rl)");
6497 	children2 = SYSCTL_CHILDREN(oid);
6498 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
6499 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
6500 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
6501 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
6502 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
6503 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
6504 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
6505 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
6506 
6507 		snprintf(name, sizeof(name), "%d", i);
6508 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
6509 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
6510 		    "traffic class"));
6511 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
6512 		    CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags,
6513 		    sysctl_bitfield_8b, "A", "flags");
6514 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
6515 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
6516 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
6517 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
6518 		    sysctl_tc_params, "A", "traffic class parameters");
6519 	}
6520 
6521 	/*
6522 	 * dev.cxgbe.X.stats.
6523 	 */
6524 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
6525 	    NULL, "port statistics");
6526 	children = SYSCTL_CHILDREN(oid);
6527 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
6528 	    &pi->tx_parse_error, 0,
6529 	    "# of tx packets with invalid length or # of segments");
6530 
6531 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
6532 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
6533 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
6534 	    sysctl_handle_t4_reg64, "QU", desc)
6535 
6536 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
6537 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
6538 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
6539 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
6540 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
6541 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
6542 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
6543 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
6544 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
6545 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
6546 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
6547 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
6548 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
6549 	    "# of tx frames in this range",
6550 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
6551 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
6552 	    "# of tx frames in this range",
6553 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
6554 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
6555 	    "# of tx frames in this range",
6556 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
6557 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
6558 	    "# of tx frames in this range",
6559 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
6560 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
6561 	    "# of tx frames in this range",
6562 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
6563 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
6564 	    "# of tx frames in this range",
6565 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
6566 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
6567 	    "# of tx frames in this range",
6568 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
6569 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
6570 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
6571 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
6572 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
6573 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
6574 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
6575 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
6576 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
6577 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
6578 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
6579 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
6580 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
6581 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
6582 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
6583 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
6584 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
6585 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
6586 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
6587 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
6588 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
6589 
6590 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
6591 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
6592 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
6593 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
6594 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
6595 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
6596 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
6597 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
6598 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
6599 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
6600 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
6601 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
6602 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
6603 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
6604 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
6605 	    "# of frames received with bad FCS",
6606 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
6607 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
6608 	    "# of frames received with length error",
6609 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
6610 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
6611 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
6612 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
6613 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
6614 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
6615 	    "# of rx frames in this range",
6616 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
6617 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
6618 	    "# of rx frames in this range",
6619 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
6620 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
6621 	    "# of rx frames in this range",
6622 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
6623 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
6624 	    "# of rx frames in this range",
6625 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
6626 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
6627 	    "# of rx frames in this range",
6628 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
6629 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
6630 	    "# of rx frames in this range",
6631 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6632 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6633 	    "# of rx frames in this range",
6634 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6635 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6636 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6637 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6638 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6639 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6640 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6641 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6642 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6643 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6644 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6645 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6646 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6647 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6648 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6649 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6650 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6651 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6652 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6653 
6654 #undef SYSCTL_ADD_T4_REG64
6655 
6656 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6657 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6658 	    &pi->stats.name, desc)
6659 
6660 	/* We get these from port_stats and they may be stale by up to 1s */
6661 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6662 	    "# drops due to buffer-group 0 overflows");
6663 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6664 	    "# drops due to buffer-group 1 overflows");
6665 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6666 	    "# drops due to buffer-group 2 overflows");
6667 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6668 	    "# drops due to buffer-group 3 overflows");
6669 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6670 	    "# of buffer-group 0 truncated packets");
6671 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6672 	    "# of buffer-group 1 truncated packets");
6673 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6674 	    "# of buffer-group 2 truncated packets");
6675 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6676 	    "# of buffer-group 3 truncated packets");
6677 
6678 #undef SYSCTL_ADD_T4_PORTSTAT
6679 
6680 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6681 	    CTLFLAG_RD, &pi->tx_tls_records,
6682 	    "# of TLS records transmitted");
6683 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6684 	    CTLFLAG_RD, &pi->tx_tls_octets,
6685 	    "# of payload octets in transmitted TLS records");
6686 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6687 	    CTLFLAG_RD, &pi->rx_tls_records,
6688 	    "# of TLS records received");
6689 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6690 	    CTLFLAG_RD, &pi->rx_tls_octets,
6691 	    "# of payload octets in received TLS records");
6692 }
6693 
6694 static int
6695 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6696 {
6697 	int rc, *i, space = 0;
6698 	struct sbuf sb;
6699 
6700 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6701 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6702 		if (space)
6703 			sbuf_printf(&sb, " ");
6704 		sbuf_printf(&sb, "%d", *i);
6705 		space = 1;
6706 	}
6707 	rc = sbuf_finish(&sb);
6708 	sbuf_delete(&sb);
6709 	return (rc);
6710 }
6711 
6712 static int
6713 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
6714 {
6715 	int rc;
6716 	struct sbuf *sb;
6717 
6718 	rc = sysctl_wire_old_buffer(req, 0);
6719 	if (rc != 0)
6720 		return(rc);
6721 
6722 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6723 	if (sb == NULL)
6724 		return (ENOMEM);
6725 
6726 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
6727 	rc = sbuf_finish(sb);
6728 	sbuf_delete(sb);
6729 
6730 	return (rc);
6731 }
6732 
6733 static int
6734 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
6735 {
6736 	int rc;
6737 	struct sbuf *sb;
6738 
6739 	rc = sysctl_wire_old_buffer(req, 0);
6740 	if (rc != 0)
6741 		return(rc);
6742 
6743 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6744 	if (sb == NULL)
6745 		return (ENOMEM);
6746 
6747 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
6748 	rc = sbuf_finish(sb);
6749 	sbuf_delete(sb);
6750 
6751 	return (rc);
6752 }
6753 
6754 static int
6755 sysctl_btphy(SYSCTL_HANDLER_ARGS)
6756 {
6757 	struct port_info *pi = arg1;
6758 	int op = arg2;
6759 	struct adapter *sc = pi->adapter;
6760 	u_int v;
6761 	int rc;
6762 
6763 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
6764 	if (rc)
6765 		return (rc);
6766 	/* XXX: magic numbers */
6767 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
6768 	    &v);
6769 	end_synchronized_op(sc, 0);
6770 	if (rc)
6771 		return (rc);
6772 	if (op == 0)
6773 		v /= 256;
6774 
6775 	rc = sysctl_handle_int(oidp, &v, 0, req);
6776 	return (rc);
6777 }
6778 
6779 static int
6780 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
6781 {
6782 	struct vi_info *vi = arg1;
6783 	int rc, val;
6784 
6785 	val = vi->rsrv_noflowq;
6786 	rc = sysctl_handle_int(oidp, &val, 0, req);
6787 	if (rc != 0 || req->newptr == NULL)
6788 		return (rc);
6789 
6790 	if ((val >= 1) && (vi->ntxq > 1))
6791 		vi->rsrv_noflowq = 1;
6792 	else
6793 		vi->rsrv_noflowq = 0;
6794 
6795 	return (rc);
6796 }
6797 
6798 static int
6799 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
6800 {
6801 	struct vi_info *vi = arg1;
6802 	struct adapter *sc = vi->pi->adapter;
6803 	int idx, rc, i;
6804 	struct sge_rxq *rxq;
6805 	uint8_t v;
6806 
6807 	idx = vi->tmr_idx;
6808 
6809 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6810 	if (rc != 0 || req->newptr == NULL)
6811 		return (rc);
6812 
6813 	if (idx < 0 || idx >= SGE_NTIMERS)
6814 		return (EINVAL);
6815 
6816 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6817 	    "t4tmr");
6818 	if (rc)
6819 		return (rc);
6820 
6821 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
6822 	for_each_rxq(vi, i, rxq) {
6823 #ifdef atomic_store_rel_8
6824 		atomic_store_rel_8(&rxq->iq.intr_params, v);
6825 #else
6826 		rxq->iq.intr_params = v;
6827 #endif
6828 	}
6829 	vi->tmr_idx = idx;
6830 
6831 	end_synchronized_op(sc, LOCK_HELD);
6832 	return (0);
6833 }
6834 
6835 static int
6836 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6837 {
6838 	struct vi_info *vi = arg1;
6839 	struct adapter *sc = vi->pi->adapter;
6840 	int idx, rc;
6841 
6842 	idx = vi->pktc_idx;
6843 
6844 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6845 	if (rc != 0 || req->newptr == NULL)
6846 		return (rc);
6847 
6848 	if (idx < -1 || idx >= SGE_NCOUNTERS)
6849 		return (EINVAL);
6850 
6851 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6852 	    "t4pktc");
6853 	if (rc)
6854 		return (rc);
6855 
6856 	if (vi->flags & VI_INIT_DONE)
6857 		rc = EBUSY; /* cannot be changed once the queues are created */
6858 	else
6859 		vi->pktc_idx = idx;
6860 
6861 	end_synchronized_op(sc, LOCK_HELD);
6862 	return (rc);
6863 }
6864 
6865 static int
6866 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6867 {
6868 	struct vi_info *vi = arg1;
6869 	struct adapter *sc = vi->pi->adapter;
6870 	int qsize, rc;
6871 
6872 	qsize = vi->qsize_rxq;
6873 
6874 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6875 	if (rc != 0 || req->newptr == NULL)
6876 		return (rc);
6877 
6878 	if (qsize < 128 || (qsize & 7))
6879 		return (EINVAL);
6880 
6881 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6882 	    "t4rxqs");
6883 	if (rc)
6884 		return (rc);
6885 
6886 	if (vi->flags & VI_INIT_DONE)
6887 		rc = EBUSY; /* cannot be changed once the queues are created */
6888 	else
6889 		vi->qsize_rxq = qsize;
6890 
6891 	end_synchronized_op(sc, LOCK_HELD);
6892 	return (rc);
6893 }
6894 
6895 static int
6896 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6897 {
6898 	struct vi_info *vi = arg1;
6899 	struct adapter *sc = vi->pi->adapter;
6900 	int qsize, rc;
6901 
6902 	qsize = vi->qsize_txq;
6903 
6904 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6905 	if (rc != 0 || req->newptr == NULL)
6906 		return (rc);
6907 
6908 	if (qsize < 128 || qsize > 65536)
6909 		return (EINVAL);
6910 
6911 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6912 	    "t4txqs");
6913 	if (rc)
6914 		return (rc);
6915 
6916 	if (vi->flags & VI_INIT_DONE)
6917 		rc = EBUSY; /* cannot be changed once the queues are created */
6918 	else
6919 		vi->qsize_txq = qsize;
6920 
6921 	end_synchronized_op(sc, LOCK_HELD);
6922 	return (rc);
6923 }
6924 
6925 static int
6926 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6927 {
6928 	struct port_info *pi = arg1;
6929 	struct adapter *sc = pi->adapter;
6930 	struct link_config *lc = &pi->link_cfg;
6931 	int rc;
6932 
6933 	if (req->newptr == NULL) {
6934 		struct sbuf *sb;
6935 		static char *bits = "\20\1RX\2TX\3AUTO";
6936 
6937 		rc = sysctl_wire_old_buffer(req, 0);
6938 		if (rc != 0)
6939 			return(rc);
6940 
6941 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6942 		if (sb == NULL)
6943 			return (ENOMEM);
6944 
6945 		if (lc->link_ok) {
6946 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
6947 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
6948 		} else {
6949 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
6950 			    PAUSE_RX | PAUSE_AUTONEG), bits);
6951 		}
6952 		rc = sbuf_finish(sb);
6953 		sbuf_delete(sb);
6954 	} else {
6955 		char s[2];
6956 		int n;
6957 
6958 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
6959 		    PAUSE_AUTONEG));
6960 		s[1] = 0;
6961 
6962 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6963 		if (rc != 0)
6964 			return(rc);
6965 
6966 		if (s[1] != 0)
6967 			return (EINVAL);
6968 		if (s[0] < '0' || s[0] > '9')
6969 			return (EINVAL);	/* not a number */
6970 		n = s[0] - '0';
6971 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
6972 			return (EINVAL);	/* some other bit is set too */
6973 
6974 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6975 		    "t4PAUSE");
6976 		if (rc)
6977 			return (rc);
6978 		PORT_LOCK(pi);
6979 		lc->requested_fc = n;
6980 		fixup_link_config(pi);
6981 		if (pi->up_vis > 0)
6982 			rc = apply_link_config(pi);
6983 		set_current_media(pi);
6984 		PORT_UNLOCK(pi);
6985 		end_synchronized_op(sc, 0);
6986 	}
6987 
6988 	return (rc);
6989 }
6990 
6991 static int
6992 sysctl_fec(SYSCTL_HANDLER_ARGS)
6993 {
6994 	struct port_info *pi = arg1;
6995 	struct adapter *sc = pi->adapter;
6996 	struct link_config *lc = &pi->link_cfg;
6997 	int rc;
6998 	int8_t old;
6999 
7000 	if (req->newptr == NULL) {
7001 		struct sbuf *sb;
7002 		static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO";
7003 
7004 		rc = sysctl_wire_old_buffer(req, 0);
7005 		if (rc != 0)
7006 			return(rc);
7007 
7008 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7009 		if (sb == NULL)
7010 			return (ENOMEM);
7011 
7012 		/*
7013 		 * Display the requested_fec when the link is down -- the actual
7014 		 * FEC makes sense only when the link is up.
7015 		 */
7016 		if (lc->link_ok) {
7017 			sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) |
7018 			    (lc->requested_fec & FEC_AUTO), bits);
7019 		} else {
7020 			sbuf_printf(sb, "%b", lc->requested_fec, bits);
7021 		}
7022 		rc = sbuf_finish(sb);
7023 		sbuf_delete(sb);
7024 	} else {
7025 		char s[3];
7026 		int n;
7027 
7028 		snprintf(s, sizeof(s), "%d",
7029 		    lc->requested_fec == FEC_AUTO ? -1 :
7030 		    lc->requested_fec & M_FW_PORT_CAP32_FEC);
7031 
7032 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
7033 		if (rc != 0)
7034 			return(rc);
7035 
7036 		n = strtol(&s[0], NULL, 0);
7037 		if (n < 0 || n & FEC_AUTO)
7038 			n = FEC_AUTO;
7039 		else {
7040 			if (n & ~M_FW_PORT_CAP32_FEC)
7041 				return (EINVAL);/* some other bit is set too */
7042 			if (!powerof2(n))
7043 				return (EINVAL);/* one bit can be set at most */
7044 		}
7045 
7046 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7047 		    "t4fec");
7048 		if (rc)
7049 			return (rc);
7050 		PORT_LOCK(pi);
7051 		old = lc->requested_fec;
7052 		if (n == FEC_AUTO)
7053 			lc->requested_fec = FEC_AUTO;
7054 		else if (n == 0)
7055 			lc->requested_fec = FEC_NONE;
7056 		else {
7057 			if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) !=
7058 			    lc->supported) {
7059 				rc = ENOTSUP;
7060 				goto done;
7061 			}
7062 			lc->requested_fec = n;
7063 		}
7064 		fixup_link_config(pi);
7065 		if (pi->up_vis > 0) {
7066 			rc = apply_link_config(pi);
7067 			if (rc != 0) {
7068 				lc->requested_fec = old;
7069 				if (rc == FW_EPROTO)
7070 					rc = ENOTSUP;
7071 			}
7072 		}
7073 done:
7074 		PORT_UNLOCK(pi);
7075 		end_synchronized_op(sc, 0);
7076 	}
7077 
7078 	return (rc);
7079 }
7080 
7081 static int
7082 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
7083 {
7084 	struct port_info *pi = arg1;
7085 	struct adapter *sc = pi->adapter;
7086 	struct link_config *lc = &pi->link_cfg;
7087 	int rc, val;
7088 
7089 	if (lc->supported & FW_PORT_CAP32_ANEG)
7090 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
7091 	else
7092 		val = -1;
7093 	rc = sysctl_handle_int(oidp, &val, 0, req);
7094 	if (rc != 0 || req->newptr == NULL)
7095 		return (rc);
7096 	if (val == 0)
7097 		val = AUTONEG_DISABLE;
7098 	else if (val == 1)
7099 		val = AUTONEG_ENABLE;
7100 	else
7101 		val = AUTONEG_AUTO;
7102 
7103 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7104 	    "t4aneg");
7105 	if (rc)
7106 		return (rc);
7107 	PORT_LOCK(pi);
7108 	if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) {
7109 		rc = ENOTSUP;
7110 		goto done;
7111 	}
7112 	lc->requested_aneg = val;
7113 	fixup_link_config(pi);
7114 	if (pi->up_vis > 0)
7115 		rc = apply_link_config(pi);
7116 	set_current_media(pi);
7117 done:
7118 	PORT_UNLOCK(pi);
7119 	end_synchronized_op(sc, 0);
7120 	return (rc);
7121 }
7122 
7123 static int
7124 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
7125 {
7126 	struct adapter *sc = arg1;
7127 	int reg = arg2;
7128 	uint64_t val;
7129 
7130 	val = t4_read_reg64(sc, reg);
7131 
7132 	return (sysctl_handle_64(oidp, &val, 0, req));
7133 }
7134 
7135 static int
7136 sysctl_temperature(SYSCTL_HANDLER_ARGS)
7137 {
7138 	struct adapter *sc = arg1;
7139 	int rc, t;
7140 	uint32_t param, val;
7141 
7142 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
7143 	if (rc)
7144 		return (rc);
7145 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7146 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7147 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
7148 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7149 	end_synchronized_op(sc, 0);
7150 	if (rc)
7151 		return (rc);
7152 
7153 	/* unknown is returned as 0 but we display -1 in that case */
7154 	t = val == 0 ? -1 : val;
7155 
7156 	rc = sysctl_handle_int(oidp, &t, 0, req);
7157 	return (rc);
7158 }
7159 
7160 static int
7161 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
7162 {
7163 	struct adapter *sc = arg1;
7164 	struct sbuf *sb;
7165 	int rc;
7166 	uint32_t param, val;
7167 
7168 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
7169 	if (rc)
7170 		return (rc);
7171 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7172 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
7173 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7174 	end_synchronized_op(sc, 0);
7175 	if (rc)
7176 		return (rc);
7177 
7178 	rc = sysctl_wire_old_buffer(req, 0);
7179 	if (rc != 0)
7180 		return (rc);
7181 
7182 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7183 	if (sb == NULL)
7184 		return (ENOMEM);
7185 
7186 	if (val == 0xffffffff) {
7187 		/* Only debug and custom firmwares report load averages. */
7188 		sbuf_printf(sb, "not available");
7189 	} else {
7190 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
7191 		    (val >> 16) & 0xff);
7192 	}
7193 	rc = sbuf_finish(sb);
7194 	sbuf_delete(sb);
7195 
7196 	return (rc);
7197 }
7198 
7199 static int
7200 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
7201 {
7202 	struct adapter *sc = arg1;
7203 	struct sbuf *sb;
7204 	int rc, i;
7205 	uint16_t incr[NMTUS][NCCTRL_WIN];
7206 	static const char *dec_fac[] = {
7207 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
7208 		"0.9375"
7209 	};
7210 
7211 	rc = sysctl_wire_old_buffer(req, 0);
7212 	if (rc != 0)
7213 		return (rc);
7214 
7215 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7216 	if (sb == NULL)
7217 		return (ENOMEM);
7218 
7219 	t4_read_cong_tbl(sc, incr);
7220 
7221 	for (i = 0; i < NCCTRL_WIN; ++i) {
7222 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
7223 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
7224 		    incr[5][i], incr[6][i], incr[7][i]);
7225 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
7226 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
7227 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
7228 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
7229 	}
7230 
7231 	rc = sbuf_finish(sb);
7232 	sbuf_delete(sb);
7233 
7234 	return (rc);
7235 }
7236 
7237 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
7238 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
7239 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
7240 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
7241 };
7242 
7243 static int
7244 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
7245 {
7246 	struct adapter *sc = arg1;
7247 	struct sbuf *sb;
7248 	int rc, i, n, qid = arg2;
7249 	uint32_t *buf, *p;
7250 	char *qtype;
7251 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
7252 
7253 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
7254 	    ("%s: bad qid %d\n", __func__, qid));
7255 
7256 	if (qid < CIM_NUM_IBQ) {
7257 		/* inbound queue */
7258 		qtype = "IBQ";
7259 		n = 4 * CIM_IBQ_SIZE;
7260 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7261 		rc = t4_read_cim_ibq(sc, qid, buf, n);
7262 	} else {
7263 		/* outbound queue */
7264 		qtype = "OBQ";
7265 		qid -= CIM_NUM_IBQ;
7266 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
7267 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7268 		rc = t4_read_cim_obq(sc, qid, buf, n);
7269 	}
7270 
7271 	if (rc < 0) {
7272 		rc = -rc;
7273 		goto done;
7274 	}
7275 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
7276 
7277 	rc = sysctl_wire_old_buffer(req, 0);
7278 	if (rc != 0)
7279 		goto done;
7280 
7281 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7282 	if (sb == NULL) {
7283 		rc = ENOMEM;
7284 		goto done;
7285 	}
7286 
7287 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
7288 	for (i = 0, p = buf; i < n; i += 16, p += 4)
7289 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
7290 		    p[2], p[3]);
7291 
7292 	rc = sbuf_finish(sb);
7293 	sbuf_delete(sb);
7294 done:
7295 	free(buf, M_CXGBE);
7296 	return (rc);
7297 }
7298 
7299 static void
7300 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7301 {
7302 	uint32_t *p;
7303 
7304 	sbuf_printf(sb, "Status   Data      PC%s",
7305 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7306 	    "     LS0Stat  LS0Addr             LS0Data");
7307 
7308 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
7309 		if (cfg & F_UPDBGLACAPTPCONLY) {
7310 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
7311 			    p[6], p[7]);
7312 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
7313 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
7314 			    p[4] & 0xff, p[5] >> 8);
7315 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
7316 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7317 			    p[1] & 0xf, p[2] >> 4);
7318 		} else {
7319 			sbuf_printf(sb,
7320 			    "\n  %02x   %x%07x %x%07x %08x %08x "
7321 			    "%08x%08x%08x%08x",
7322 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7323 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
7324 			    p[6], p[7]);
7325 		}
7326 	}
7327 }
7328 
7329 static void
7330 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7331 {
7332 	uint32_t *p;
7333 
7334 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
7335 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7336 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
7337 
7338 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
7339 		if (cfg & F_UPDBGLACAPTPCONLY) {
7340 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
7341 			    p[3] & 0xff, p[2], p[1], p[0]);
7342 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
7343 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
7344 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
7345 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
7346 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
7347 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
7348 			    p[6] >> 16);
7349 		} else {
7350 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
7351 			    "%08x %08x %08x %08x %08x %08x",
7352 			    (p[9] >> 16) & 0xff,
7353 			    p[9] & 0xffff, p[8] >> 16,
7354 			    p[8] & 0xffff, p[7] >> 16,
7355 			    p[7] & 0xffff, p[6] >> 16,
7356 			    p[2], p[1], p[0], p[5], p[4], p[3]);
7357 		}
7358 	}
7359 }
7360 
7361 static int
7362 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
7363 {
7364 	uint32_t cfg, *buf;
7365 	int rc;
7366 
7367 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7368 	if (rc != 0)
7369 		return (rc);
7370 
7371 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7372 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7373 	    M_ZERO | flags);
7374 	if (buf == NULL)
7375 		return (ENOMEM);
7376 
7377 	rc = -t4_cim_read_la(sc, buf, NULL);
7378 	if (rc != 0)
7379 		goto done;
7380 	if (chip_id(sc) < CHELSIO_T6)
7381 		sbuf_cim_la4(sc, sb, buf, cfg);
7382 	else
7383 		sbuf_cim_la6(sc, sb, buf, cfg);
7384 
7385 done:
7386 	free(buf, M_CXGBE);
7387 	return (rc);
7388 }
7389 
7390 static int
7391 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
7392 {
7393 	struct adapter *sc = arg1;
7394 	struct sbuf *sb;
7395 	int rc;
7396 
7397 	rc = sysctl_wire_old_buffer(req, 0);
7398 	if (rc != 0)
7399 		return (rc);
7400 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7401 	if (sb == NULL)
7402 		return (ENOMEM);
7403 
7404 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
7405 	if (rc == 0)
7406 		rc = sbuf_finish(sb);
7407 	sbuf_delete(sb);
7408 	return (rc);
7409 }
7410 
7411 bool
7412 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose)
7413 {
7414 	struct sbuf sb;
7415 	int rc;
7416 
7417 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7418 		return (false);
7419 	rc = sbuf_cim_la(sc, &sb, M_NOWAIT);
7420 	if (rc == 0) {
7421 		rc = sbuf_finish(&sb);
7422 		if (rc == 0) {
7423 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s",
7424 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7425 		}
7426 	}
7427 	sbuf_delete(&sb);
7428 	return (false);
7429 }
7430 
7431 static int
7432 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
7433 {
7434 	struct adapter *sc = arg1;
7435 	u_int i;
7436 	struct sbuf *sb;
7437 	uint32_t *buf, *p;
7438 	int rc;
7439 
7440 	rc = sysctl_wire_old_buffer(req, 0);
7441 	if (rc != 0)
7442 		return (rc);
7443 
7444 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7445 	if (sb == NULL)
7446 		return (ENOMEM);
7447 
7448 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
7449 	    M_ZERO | M_WAITOK);
7450 
7451 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
7452 	p = buf;
7453 
7454 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7455 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
7456 		    p[1], p[0]);
7457 	}
7458 
7459 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
7460 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7461 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
7462 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
7463 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
7464 		    (p[1] >> 2) | ((p[2] & 3) << 30),
7465 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
7466 		    p[0] & 1);
7467 	}
7468 
7469 	rc = sbuf_finish(sb);
7470 	sbuf_delete(sb);
7471 	free(buf, M_CXGBE);
7472 	return (rc);
7473 }
7474 
7475 static int
7476 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
7477 {
7478 	struct adapter *sc = arg1;
7479 	u_int i;
7480 	struct sbuf *sb;
7481 	uint32_t *buf, *p;
7482 	int rc;
7483 
7484 	rc = sysctl_wire_old_buffer(req, 0);
7485 	if (rc != 0)
7486 		return (rc);
7487 
7488 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7489 	if (sb == NULL)
7490 		return (ENOMEM);
7491 
7492 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
7493 	    M_ZERO | M_WAITOK);
7494 
7495 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
7496 	p = buf;
7497 
7498 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
7499 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7500 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
7501 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
7502 		    p[4], p[3], p[2], p[1], p[0]);
7503 	}
7504 
7505 	sbuf_printf(sb, "\n\nCntl ID               Data");
7506 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7507 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
7508 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
7509 	}
7510 
7511 	rc = sbuf_finish(sb);
7512 	sbuf_delete(sb);
7513 	free(buf, M_CXGBE);
7514 	return (rc);
7515 }
7516 
7517 static int
7518 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
7519 {
7520 	struct adapter *sc = arg1;
7521 	struct sbuf *sb;
7522 	int rc, i;
7523 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7524 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7525 	uint16_t thres[CIM_NUM_IBQ];
7526 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
7527 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
7528 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
7529 
7530 	cim_num_obq = sc->chip_params->cim_num_obq;
7531 	if (is_t4(sc)) {
7532 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
7533 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
7534 	} else {
7535 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
7536 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
7537 	}
7538 	nq = CIM_NUM_IBQ + cim_num_obq;
7539 
7540 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
7541 	if (rc == 0)
7542 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
7543 	if (rc != 0)
7544 		return (rc);
7545 
7546 	t4_read_cimq_cfg(sc, base, size, thres);
7547 
7548 	rc = sysctl_wire_old_buffer(req, 0);
7549 	if (rc != 0)
7550 		return (rc);
7551 
7552 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7553 	if (sb == NULL)
7554 		return (ENOMEM);
7555 
7556 	sbuf_printf(sb,
7557 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
7558 
7559 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
7560 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
7561 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
7562 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7563 		    G_QUEREMFLITS(p[2]) * 16);
7564 	for ( ; i < nq; i++, p += 4, wr += 2)
7565 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
7566 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
7567 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7568 		    G_QUEREMFLITS(p[2]) * 16);
7569 
7570 	rc = sbuf_finish(sb);
7571 	sbuf_delete(sb);
7572 
7573 	return (rc);
7574 }
7575 
7576 static int
7577 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
7578 {
7579 	struct adapter *sc = arg1;
7580 	struct sbuf *sb;
7581 	int rc;
7582 	struct tp_cpl_stats stats;
7583 
7584 	rc = sysctl_wire_old_buffer(req, 0);
7585 	if (rc != 0)
7586 		return (rc);
7587 
7588 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7589 	if (sb == NULL)
7590 		return (ENOMEM);
7591 
7592 	mtx_lock(&sc->reg_lock);
7593 	t4_tp_get_cpl_stats(sc, &stats, 0);
7594 	mtx_unlock(&sc->reg_lock);
7595 
7596 	if (sc->chip_params->nchan > 2) {
7597 		sbuf_printf(sb, "                 channel 0  channel 1"
7598 		    "  channel 2  channel 3");
7599 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
7600 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
7601 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
7602 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
7603 	} else {
7604 		sbuf_printf(sb, "                 channel 0  channel 1");
7605 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
7606 		    stats.req[0], stats.req[1]);
7607 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
7608 		    stats.rsp[0], stats.rsp[1]);
7609 	}
7610 
7611 	rc = sbuf_finish(sb);
7612 	sbuf_delete(sb);
7613 
7614 	return (rc);
7615 }
7616 
7617 static int
7618 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
7619 {
7620 	struct adapter *sc = arg1;
7621 	struct sbuf *sb;
7622 	int rc;
7623 	struct tp_usm_stats stats;
7624 
7625 	rc = sysctl_wire_old_buffer(req, 0);
7626 	if (rc != 0)
7627 		return(rc);
7628 
7629 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7630 	if (sb == NULL)
7631 		return (ENOMEM);
7632 
7633 	t4_get_usm_stats(sc, &stats, 1);
7634 
7635 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
7636 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
7637 	sbuf_printf(sb, "Drops:  %u", stats.drops);
7638 
7639 	rc = sbuf_finish(sb);
7640 	sbuf_delete(sb);
7641 
7642 	return (rc);
7643 }
7644 
7645 static const char * const devlog_level_strings[] = {
7646 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
7647 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
7648 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
7649 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
7650 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
7651 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
7652 };
7653 
7654 static const char * const devlog_facility_strings[] = {
7655 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
7656 	[FW_DEVLOG_FACILITY_CF]		= "CF",
7657 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
7658 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
7659 	[FW_DEVLOG_FACILITY_RES]	= "RES",
7660 	[FW_DEVLOG_FACILITY_HW]		= "HW",
7661 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
7662 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
7663 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
7664 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
7665 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
7666 	[FW_DEVLOG_FACILITY_VI]		= "VI",
7667 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
7668 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
7669 	[FW_DEVLOG_FACILITY_TM]		= "TM",
7670 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
7671 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
7672 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
7673 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
7674 	[FW_DEVLOG_FACILITY_RI]		= "RI",
7675 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
7676 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
7677 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
7678 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
7679 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
7680 };
7681 
7682 static int
7683 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
7684 {
7685 	int i, j, rc, nentries, first = 0;
7686 	struct devlog_params *dparams = &sc->params.devlog;
7687 	struct fw_devlog_e *buf, *e;
7688 	uint64_t ftstamp = UINT64_MAX;
7689 
7690 	if (dparams->addr == 0)
7691 		return (ENXIO);
7692 
7693 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7694 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
7695 	if (buf == NULL)
7696 		return (ENOMEM);
7697 
7698 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
7699 	if (rc != 0)
7700 		goto done;
7701 
7702 	nentries = dparams->size / sizeof(struct fw_devlog_e);
7703 	for (i = 0; i < nentries; i++) {
7704 		e = &buf[i];
7705 
7706 		if (e->timestamp == 0)
7707 			break;	/* end */
7708 
7709 		e->timestamp = be64toh(e->timestamp);
7710 		e->seqno = be32toh(e->seqno);
7711 		for (j = 0; j < 8; j++)
7712 			e->params[j] = be32toh(e->params[j]);
7713 
7714 		if (e->timestamp < ftstamp) {
7715 			ftstamp = e->timestamp;
7716 			first = i;
7717 		}
7718 	}
7719 
7720 	if (buf[first].timestamp == 0)
7721 		goto done;	/* nothing in the log */
7722 
7723 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
7724 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
7725 
7726 	i = first;
7727 	do {
7728 		e = &buf[i];
7729 		if (e->timestamp == 0)
7730 			break;	/* end */
7731 
7732 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
7733 		    e->seqno, e->timestamp,
7734 		    (e->level < nitems(devlog_level_strings) ?
7735 			devlog_level_strings[e->level] : "UNKNOWN"),
7736 		    (e->facility < nitems(devlog_facility_strings) ?
7737 			devlog_facility_strings[e->facility] : "UNKNOWN"));
7738 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
7739 		    e->params[2], e->params[3], e->params[4],
7740 		    e->params[5], e->params[6], e->params[7]);
7741 
7742 		if (++i == nentries)
7743 			i = 0;
7744 	} while (i != first);
7745 done:
7746 	free(buf, M_CXGBE);
7747 	return (rc);
7748 }
7749 
7750 static int
7751 sysctl_devlog(SYSCTL_HANDLER_ARGS)
7752 {
7753 	struct adapter *sc = arg1;
7754 	int rc;
7755 	struct sbuf *sb;
7756 
7757 	rc = sysctl_wire_old_buffer(req, 0);
7758 	if (rc != 0)
7759 		return (rc);
7760 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7761 	if (sb == NULL)
7762 		return (ENOMEM);
7763 
7764 	rc = sbuf_devlog(sc, sb, M_WAITOK);
7765 	if (rc == 0)
7766 		rc = sbuf_finish(sb);
7767 	sbuf_delete(sb);
7768 	return (rc);
7769 }
7770 
7771 void
7772 t4_os_dump_devlog(struct adapter *sc)
7773 {
7774 	int rc;
7775 	struct sbuf sb;
7776 
7777 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7778 		return;
7779 	rc = sbuf_devlog(sc, &sb, M_NOWAIT);
7780 	if (rc == 0) {
7781 		rc = sbuf_finish(&sb);
7782 		if (rc == 0) {
7783 			log(LOG_DEBUG, "%s: device log follows.\n%s",
7784 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7785 		}
7786 	}
7787 	sbuf_delete(&sb);
7788 }
7789 
7790 static int
7791 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
7792 {
7793 	struct adapter *sc = arg1;
7794 	struct sbuf *sb;
7795 	int rc;
7796 	struct tp_fcoe_stats stats[MAX_NCHAN];
7797 	int i, nchan = sc->chip_params->nchan;
7798 
7799 	rc = sysctl_wire_old_buffer(req, 0);
7800 	if (rc != 0)
7801 		return (rc);
7802 
7803 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7804 	if (sb == NULL)
7805 		return (ENOMEM);
7806 
7807 	for (i = 0; i < nchan; i++)
7808 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
7809 
7810 	if (nchan > 2) {
7811 		sbuf_printf(sb, "                   channel 0        channel 1"
7812 		    "        channel 2        channel 3");
7813 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
7814 		    stats[0].octets_ddp, stats[1].octets_ddp,
7815 		    stats[2].octets_ddp, stats[3].octets_ddp);
7816 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
7817 		    stats[0].frames_ddp, stats[1].frames_ddp,
7818 		    stats[2].frames_ddp, stats[3].frames_ddp);
7819 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
7820 		    stats[0].frames_drop, stats[1].frames_drop,
7821 		    stats[2].frames_drop, stats[3].frames_drop);
7822 	} else {
7823 		sbuf_printf(sb, "                   channel 0        channel 1");
7824 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
7825 		    stats[0].octets_ddp, stats[1].octets_ddp);
7826 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
7827 		    stats[0].frames_ddp, stats[1].frames_ddp);
7828 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
7829 		    stats[0].frames_drop, stats[1].frames_drop);
7830 	}
7831 
7832 	rc = sbuf_finish(sb);
7833 	sbuf_delete(sb);
7834 
7835 	return (rc);
7836 }
7837 
7838 static int
7839 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
7840 {
7841 	struct adapter *sc = arg1;
7842 	struct sbuf *sb;
7843 	int rc, i;
7844 	unsigned int map, kbps, ipg, mode;
7845 	unsigned int pace_tab[NTX_SCHED];
7846 
7847 	rc = sysctl_wire_old_buffer(req, 0);
7848 	if (rc != 0)
7849 		return (rc);
7850 
7851 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7852 	if (sb == NULL)
7853 		return (ENOMEM);
7854 
7855 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
7856 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
7857 	t4_read_pace_tbl(sc, pace_tab);
7858 
7859 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
7860 	    "Class IPG (0.1 ns)   Flow IPG (us)");
7861 
7862 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
7863 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
7864 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
7865 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
7866 		if (kbps)
7867 			sbuf_printf(sb, "%9u     ", kbps);
7868 		else
7869 			sbuf_printf(sb, " disabled     ");
7870 
7871 		if (ipg)
7872 			sbuf_printf(sb, "%13u        ", ipg);
7873 		else
7874 			sbuf_printf(sb, "     disabled        ");
7875 
7876 		if (pace_tab[i])
7877 			sbuf_printf(sb, "%10u", pace_tab[i]);
7878 		else
7879 			sbuf_printf(sb, "  disabled");
7880 	}
7881 
7882 	rc = sbuf_finish(sb);
7883 	sbuf_delete(sb);
7884 
7885 	return (rc);
7886 }
7887 
7888 static int
7889 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
7890 {
7891 	struct adapter *sc = arg1;
7892 	struct sbuf *sb;
7893 	int rc, i, j;
7894 	uint64_t *p0, *p1;
7895 	struct lb_port_stats s[2];
7896 	static const char *stat_name[] = {
7897 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
7898 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
7899 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
7900 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
7901 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
7902 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
7903 		"BG2FramesTrunc:", "BG3FramesTrunc:"
7904 	};
7905 
7906 	rc = sysctl_wire_old_buffer(req, 0);
7907 	if (rc != 0)
7908 		return (rc);
7909 
7910 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7911 	if (sb == NULL)
7912 		return (ENOMEM);
7913 
7914 	memset(s, 0, sizeof(s));
7915 
7916 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
7917 		t4_get_lb_stats(sc, i, &s[0]);
7918 		t4_get_lb_stats(sc, i + 1, &s[1]);
7919 
7920 		p0 = &s[0].octets;
7921 		p1 = &s[1].octets;
7922 		sbuf_printf(sb, "%s                       Loopback %u"
7923 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
7924 
7925 		for (j = 0; j < nitems(stat_name); j++)
7926 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
7927 				   *p0++, *p1++);
7928 	}
7929 
7930 	rc = sbuf_finish(sb);
7931 	sbuf_delete(sb);
7932 
7933 	return (rc);
7934 }
7935 
7936 static int
7937 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
7938 {
7939 	int rc = 0;
7940 	struct port_info *pi = arg1;
7941 	struct link_config *lc = &pi->link_cfg;
7942 	struct sbuf *sb;
7943 
7944 	rc = sysctl_wire_old_buffer(req, 0);
7945 	if (rc != 0)
7946 		return(rc);
7947 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7948 	if (sb == NULL)
7949 		return (ENOMEM);
7950 
7951 	if (lc->link_ok || lc->link_down_rc == 255)
7952 		sbuf_printf(sb, "n/a");
7953 	else
7954 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7955 
7956 	rc = sbuf_finish(sb);
7957 	sbuf_delete(sb);
7958 
7959 	return (rc);
7960 }
7961 
7962 struct mem_desc {
7963 	unsigned int base;
7964 	unsigned int limit;
7965 	unsigned int idx;
7966 };
7967 
7968 static int
7969 mem_desc_cmp(const void *a, const void *b)
7970 {
7971 	return ((const struct mem_desc *)a)->base -
7972 	       ((const struct mem_desc *)b)->base;
7973 }
7974 
7975 static void
7976 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7977     unsigned int to)
7978 {
7979 	unsigned int size;
7980 
7981 	if (from == to)
7982 		return;
7983 
7984 	size = to - from + 1;
7985 	if (size == 0)
7986 		return;
7987 
7988 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7989 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7990 }
7991 
7992 static int
7993 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7994 {
7995 	struct adapter *sc = arg1;
7996 	struct sbuf *sb;
7997 	int rc, i, n;
7998 	uint32_t lo, hi, used, alloc;
7999 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
8000 	static const char *region[] = {
8001 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
8002 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
8003 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
8004 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
8005 		"RQUDP region:", "PBL region:", "TXPBL region:",
8006 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
8007 		"On-chip queues:", "TLS keys:",
8008 	};
8009 	struct mem_desc avail[4];
8010 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
8011 	struct mem_desc *md = mem;
8012 
8013 	rc = sysctl_wire_old_buffer(req, 0);
8014 	if (rc != 0)
8015 		return (rc);
8016 
8017 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8018 	if (sb == NULL)
8019 		return (ENOMEM);
8020 
8021 	for (i = 0; i < nitems(mem); i++) {
8022 		mem[i].limit = 0;
8023 		mem[i].idx = i;
8024 	}
8025 
8026 	/* Find and sort the populated memory ranges */
8027 	i = 0;
8028 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
8029 	if (lo & F_EDRAM0_ENABLE) {
8030 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
8031 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
8032 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
8033 		avail[i].idx = 0;
8034 		i++;
8035 	}
8036 	if (lo & F_EDRAM1_ENABLE) {
8037 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
8038 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
8039 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
8040 		avail[i].idx = 1;
8041 		i++;
8042 	}
8043 	if (lo & F_EXT_MEM_ENABLE) {
8044 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
8045 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
8046 		avail[i].limit = avail[i].base +
8047 		    (G_EXT_MEM_SIZE(hi) << 20);
8048 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
8049 		i++;
8050 	}
8051 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
8052 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
8053 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
8054 		avail[i].limit = avail[i].base +
8055 		    (G_EXT_MEM1_SIZE(hi) << 20);
8056 		avail[i].idx = 4;
8057 		i++;
8058 	}
8059 	if (!i)                                    /* no memory available */
8060 		return 0;
8061 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
8062 
8063 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
8064 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
8065 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
8066 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
8067 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
8068 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
8069 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
8070 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
8071 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
8072 
8073 	/* the next few have explicit upper bounds */
8074 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
8075 	md->limit = md->base - 1 +
8076 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
8077 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
8078 	md++;
8079 
8080 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
8081 	md->limit = md->base - 1 +
8082 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
8083 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
8084 	md++;
8085 
8086 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8087 		if (chip_id(sc) <= CHELSIO_T5)
8088 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
8089 		else
8090 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
8091 		md->limit = 0;
8092 	} else {
8093 		md->base = 0;
8094 		md->idx = nitems(region);  /* hide it */
8095 	}
8096 	md++;
8097 
8098 #define ulp_region(reg) \
8099 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
8100 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
8101 
8102 	ulp_region(RX_ISCSI);
8103 	ulp_region(RX_TDDP);
8104 	ulp_region(TX_TPT);
8105 	ulp_region(RX_STAG);
8106 	ulp_region(RX_RQ);
8107 	ulp_region(RX_RQUDP);
8108 	ulp_region(RX_PBL);
8109 	ulp_region(TX_PBL);
8110 #undef ulp_region
8111 
8112 	md->base = 0;
8113 	md->idx = nitems(region);
8114 	if (!is_t4(sc)) {
8115 		uint32_t size = 0;
8116 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
8117 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
8118 
8119 		if (is_t5(sc)) {
8120 			if (sge_ctrl & F_VFIFO_ENABLE)
8121 				size = G_DBVFIFO_SIZE(fifo_size);
8122 		} else
8123 			size = G_T6_DBVFIFO_SIZE(fifo_size);
8124 
8125 		if (size) {
8126 			md->base = G_BASEADDR(t4_read_reg(sc,
8127 			    A_SGE_DBVFIFO_BADDR));
8128 			md->limit = md->base + (size << 2) - 1;
8129 		}
8130 	}
8131 	md++;
8132 
8133 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
8134 	md->limit = 0;
8135 	md++;
8136 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
8137 	md->limit = 0;
8138 	md++;
8139 
8140 	md->base = sc->vres.ocq.start;
8141 	if (sc->vres.ocq.size)
8142 		md->limit = md->base + sc->vres.ocq.size - 1;
8143 	else
8144 		md->idx = nitems(region);  /* hide it */
8145 	md++;
8146 
8147 	md->base = sc->vres.key.start;
8148 	if (sc->vres.key.size)
8149 		md->limit = md->base + sc->vres.key.size - 1;
8150 	else
8151 		md->idx = nitems(region);  /* hide it */
8152 	md++;
8153 
8154 	/* add any address-space holes, there can be up to 3 */
8155 	for (n = 0; n < i - 1; n++)
8156 		if (avail[n].limit < avail[n + 1].base)
8157 			(md++)->base = avail[n].limit;
8158 	if (avail[n].limit)
8159 		(md++)->base = avail[n].limit;
8160 
8161 	n = md - mem;
8162 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
8163 
8164 	for (lo = 0; lo < i; lo++)
8165 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
8166 				avail[lo].limit - 1);
8167 
8168 	sbuf_printf(sb, "\n");
8169 	for (i = 0; i < n; i++) {
8170 		if (mem[i].idx >= nitems(region))
8171 			continue;                        /* skip holes */
8172 		if (!mem[i].limit)
8173 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
8174 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
8175 				mem[i].limit);
8176 	}
8177 
8178 	sbuf_printf(sb, "\n");
8179 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
8180 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
8181 	mem_region_show(sb, "uP RAM:", lo, hi);
8182 
8183 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
8184 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
8185 	mem_region_show(sb, "uP Extmem2:", lo, hi);
8186 
8187 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
8188 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
8189 		   G_PMRXMAXPAGE(lo),
8190 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
8191 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
8192 
8193 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
8194 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
8195 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
8196 		   G_PMTXMAXPAGE(lo),
8197 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
8198 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
8199 	sbuf_printf(sb, "%u p-structs\n",
8200 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
8201 
8202 	for (i = 0; i < 4; i++) {
8203 		if (chip_id(sc) > CHELSIO_T5)
8204 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
8205 		else
8206 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
8207 		if (is_t5(sc)) {
8208 			used = G_T5_USED(lo);
8209 			alloc = G_T5_ALLOC(lo);
8210 		} else {
8211 			used = G_USED(lo);
8212 			alloc = G_ALLOC(lo);
8213 		}
8214 		/* For T6 these are MAC buffer groups */
8215 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
8216 		    i, used, alloc);
8217 	}
8218 	for (i = 0; i < sc->chip_params->nchan; i++) {
8219 		if (chip_id(sc) > CHELSIO_T5)
8220 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
8221 		else
8222 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
8223 		if (is_t5(sc)) {
8224 			used = G_T5_USED(lo);
8225 			alloc = G_T5_ALLOC(lo);
8226 		} else {
8227 			used = G_USED(lo);
8228 			alloc = G_ALLOC(lo);
8229 		}
8230 		/* For T6 these are MAC buffer groups */
8231 		sbuf_printf(sb,
8232 		    "\nLoopback %d using %u pages out of %u allocated",
8233 		    i, used, alloc);
8234 	}
8235 
8236 	rc = sbuf_finish(sb);
8237 	sbuf_delete(sb);
8238 
8239 	return (rc);
8240 }
8241 
8242 static inline void
8243 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
8244 {
8245 	*mask = x | y;
8246 	y = htobe64(y);
8247 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
8248 }
8249 
8250 static int
8251 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
8252 {
8253 	struct adapter *sc = arg1;
8254 	struct sbuf *sb;
8255 	int rc, i;
8256 
8257 	MPASS(chip_id(sc) <= CHELSIO_T5);
8258 
8259 	rc = sysctl_wire_old_buffer(req, 0);
8260 	if (rc != 0)
8261 		return (rc);
8262 
8263 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8264 	if (sb == NULL)
8265 		return (ENOMEM);
8266 
8267 	sbuf_printf(sb,
8268 	    "Idx  Ethernet address     Mask     Vld Ports PF"
8269 	    "  VF              Replication             P0 P1 P2 P3  ML");
8270 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8271 		uint64_t tcamx, tcamy, mask;
8272 		uint32_t cls_lo, cls_hi;
8273 		uint8_t addr[ETHER_ADDR_LEN];
8274 
8275 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
8276 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
8277 		if (tcamx & tcamy)
8278 			continue;
8279 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8280 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8281 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8282 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
8283 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
8284 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
8285 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
8286 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
8287 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
8288 
8289 		if (cls_lo & F_REPLICATE) {
8290 			struct fw_ldst_cmd ldst_cmd;
8291 
8292 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8293 			ldst_cmd.op_to_addrspace =
8294 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8295 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8296 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8297 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8298 			ldst_cmd.u.mps.rplc.fid_idx =
8299 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8300 				V_FW_LDST_CMD_IDX(i));
8301 
8302 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8303 			    "t4mps");
8304 			if (rc)
8305 				break;
8306 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8307 			    sizeof(ldst_cmd), &ldst_cmd);
8308 			end_synchronized_op(sc, 0);
8309 
8310 			if (rc != 0) {
8311 				sbuf_printf(sb, "%36d", rc);
8312 				rc = 0;
8313 			} else {
8314 				sbuf_printf(sb, " %08x %08x %08x %08x",
8315 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8316 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8317 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8318 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8319 			}
8320 		} else
8321 			sbuf_printf(sb, "%36s", "");
8322 
8323 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
8324 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
8325 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
8326 	}
8327 
8328 	if (rc)
8329 		(void) sbuf_finish(sb);
8330 	else
8331 		rc = sbuf_finish(sb);
8332 	sbuf_delete(sb);
8333 
8334 	return (rc);
8335 }
8336 
8337 static int
8338 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
8339 {
8340 	struct adapter *sc = arg1;
8341 	struct sbuf *sb;
8342 	int rc, i;
8343 
8344 	MPASS(chip_id(sc) > CHELSIO_T5);
8345 
8346 	rc = sysctl_wire_old_buffer(req, 0);
8347 	if (rc != 0)
8348 		return (rc);
8349 
8350 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8351 	if (sb == NULL)
8352 		return (ENOMEM);
8353 
8354 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
8355 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
8356 	    "                           Replication"
8357 	    "                                    P0 P1 P2 P3  ML\n");
8358 
8359 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8360 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
8361 		uint16_t ivlan;
8362 		uint64_t tcamx, tcamy, val, mask;
8363 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
8364 		uint8_t addr[ETHER_ADDR_LEN];
8365 
8366 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
8367 		if (i < 256)
8368 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
8369 		else
8370 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
8371 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8372 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8373 		tcamy = G_DMACH(val) << 32;
8374 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8375 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8376 		lookup_type = G_DATALKPTYPE(data2);
8377 		port_num = G_DATAPORTNUM(data2);
8378 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8379 			/* Inner header VNI */
8380 			vniy = ((data2 & F_DATAVIDH2) << 23) |
8381 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8382 			dip_hit = data2 & F_DATADIPHIT;
8383 			vlan_vld = 0;
8384 		} else {
8385 			vniy = 0;
8386 			dip_hit = 0;
8387 			vlan_vld = data2 & F_DATAVIDH2;
8388 			ivlan = G_VIDL(val);
8389 		}
8390 
8391 		ctl |= V_CTLXYBITSEL(1);
8392 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8393 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8394 		tcamx = G_DMACH(val) << 32;
8395 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8396 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8397 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8398 			/* Inner header VNI mask */
8399 			vnix = ((data2 & F_DATAVIDH2) << 23) |
8400 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8401 		} else
8402 			vnix = 0;
8403 
8404 		if (tcamx & tcamy)
8405 			continue;
8406 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8407 
8408 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8409 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8410 
8411 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8412 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8413 			    "%012jx %06x %06x    -    -   %3c"
8414 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
8415 			    addr[1], addr[2], addr[3], addr[4], addr[5],
8416 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
8417 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8418 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8419 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8420 		} else {
8421 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8422 			    "%012jx    -       -   ", i, addr[0], addr[1],
8423 			    addr[2], addr[3], addr[4], addr[5],
8424 			    (uintmax_t)mask);
8425 
8426 			if (vlan_vld)
8427 				sbuf_printf(sb, "%4u   Y     ", ivlan);
8428 			else
8429 				sbuf_printf(sb, "  -    N     ");
8430 
8431 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
8432 			    lookup_type ? 'I' : 'O', port_num,
8433 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8434 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8435 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8436 		}
8437 
8438 
8439 		if (cls_lo & F_T6_REPLICATE) {
8440 			struct fw_ldst_cmd ldst_cmd;
8441 
8442 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8443 			ldst_cmd.op_to_addrspace =
8444 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8445 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8446 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8447 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8448 			ldst_cmd.u.mps.rplc.fid_idx =
8449 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8450 				V_FW_LDST_CMD_IDX(i));
8451 
8452 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8453 			    "t6mps");
8454 			if (rc)
8455 				break;
8456 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8457 			    sizeof(ldst_cmd), &ldst_cmd);
8458 			end_synchronized_op(sc, 0);
8459 
8460 			if (rc != 0) {
8461 				sbuf_printf(sb, "%72d", rc);
8462 				rc = 0;
8463 			} else {
8464 				sbuf_printf(sb, " %08x %08x %08x %08x"
8465 				    " %08x %08x %08x %08x",
8466 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
8467 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
8468 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
8469 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
8470 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8471 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8472 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8473 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8474 			}
8475 		} else
8476 			sbuf_printf(sb, "%72s", "");
8477 
8478 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
8479 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
8480 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
8481 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
8482 	}
8483 
8484 	if (rc)
8485 		(void) sbuf_finish(sb);
8486 	else
8487 		rc = sbuf_finish(sb);
8488 	sbuf_delete(sb);
8489 
8490 	return (rc);
8491 }
8492 
8493 static int
8494 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
8495 {
8496 	struct adapter *sc = arg1;
8497 	struct sbuf *sb;
8498 	int rc;
8499 	uint16_t mtus[NMTUS];
8500 
8501 	rc = sysctl_wire_old_buffer(req, 0);
8502 	if (rc != 0)
8503 		return (rc);
8504 
8505 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8506 	if (sb == NULL)
8507 		return (ENOMEM);
8508 
8509 	t4_read_mtu_tbl(sc, mtus, NULL);
8510 
8511 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
8512 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
8513 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
8514 	    mtus[14], mtus[15]);
8515 
8516 	rc = sbuf_finish(sb);
8517 	sbuf_delete(sb);
8518 
8519 	return (rc);
8520 }
8521 
8522 static int
8523 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
8524 {
8525 	struct adapter *sc = arg1;
8526 	struct sbuf *sb;
8527 	int rc, i;
8528 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
8529 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
8530 	static const char *tx_stats[MAX_PM_NSTATS] = {
8531 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
8532 		"Tx FIFO wait", NULL, "Tx latency"
8533 	};
8534 	static const char *rx_stats[MAX_PM_NSTATS] = {
8535 		"Read:", "Write bypass:", "Write mem:", "Flush:",
8536 		"Rx FIFO wait", NULL, "Rx latency"
8537 	};
8538 
8539 	rc = sysctl_wire_old_buffer(req, 0);
8540 	if (rc != 0)
8541 		return (rc);
8542 
8543 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8544 	if (sb == NULL)
8545 		return (ENOMEM);
8546 
8547 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
8548 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
8549 
8550 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
8551 	for (i = 0; i < 4; i++) {
8552 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8553 		    tx_cyc[i]);
8554 	}
8555 
8556 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
8557 	for (i = 0; i < 4; i++) {
8558 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8559 		    rx_cyc[i]);
8560 	}
8561 
8562 	if (chip_id(sc) > CHELSIO_T5) {
8563 		sbuf_printf(sb,
8564 		    "\n              Total wait      Total occupancy");
8565 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8566 		    tx_cyc[i]);
8567 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8568 		    rx_cyc[i]);
8569 
8570 		i += 2;
8571 		MPASS(i < nitems(tx_stats));
8572 
8573 		sbuf_printf(sb,
8574 		    "\n                   Reads           Total wait");
8575 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8576 		    tx_cyc[i]);
8577 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8578 		    rx_cyc[i]);
8579 	}
8580 
8581 	rc = sbuf_finish(sb);
8582 	sbuf_delete(sb);
8583 
8584 	return (rc);
8585 }
8586 
8587 static int
8588 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
8589 {
8590 	struct adapter *sc = arg1;
8591 	struct sbuf *sb;
8592 	int rc;
8593 	struct tp_rdma_stats stats;
8594 
8595 	rc = sysctl_wire_old_buffer(req, 0);
8596 	if (rc != 0)
8597 		return (rc);
8598 
8599 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8600 	if (sb == NULL)
8601 		return (ENOMEM);
8602 
8603 	mtx_lock(&sc->reg_lock);
8604 	t4_tp_get_rdma_stats(sc, &stats, 0);
8605 	mtx_unlock(&sc->reg_lock);
8606 
8607 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
8608 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
8609 
8610 	rc = sbuf_finish(sb);
8611 	sbuf_delete(sb);
8612 
8613 	return (rc);
8614 }
8615 
8616 static int
8617 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
8618 {
8619 	struct adapter *sc = arg1;
8620 	struct sbuf *sb;
8621 	int rc;
8622 	struct tp_tcp_stats v4, v6;
8623 
8624 	rc = sysctl_wire_old_buffer(req, 0);
8625 	if (rc != 0)
8626 		return (rc);
8627 
8628 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8629 	if (sb == NULL)
8630 		return (ENOMEM);
8631 
8632 	mtx_lock(&sc->reg_lock);
8633 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
8634 	mtx_unlock(&sc->reg_lock);
8635 
8636 	sbuf_printf(sb,
8637 	    "                                IP                 IPv6\n");
8638 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
8639 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
8640 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
8641 	    v4.tcp_in_segs, v6.tcp_in_segs);
8642 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
8643 	    v4.tcp_out_segs, v6.tcp_out_segs);
8644 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
8645 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
8646 
8647 	rc = sbuf_finish(sb);
8648 	sbuf_delete(sb);
8649 
8650 	return (rc);
8651 }
8652 
8653 static int
8654 sysctl_tids(SYSCTL_HANDLER_ARGS)
8655 {
8656 	struct adapter *sc = arg1;
8657 	struct sbuf *sb;
8658 	int rc;
8659 	struct tid_info *t = &sc->tids;
8660 
8661 	rc = sysctl_wire_old_buffer(req, 0);
8662 	if (rc != 0)
8663 		return (rc);
8664 
8665 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8666 	if (sb == NULL)
8667 		return (ENOMEM);
8668 
8669 	if (t->natids) {
8670 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
8671 		    t->atids_in_use);
8672 	}
8673 
8674 	if (t->nhpftids) {
8675 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
8676 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
8677 	}
8678 
8679 	if (t->ntids) {
8680 		sbuf_printf(sb, "TID range: ");
8681 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8682 			uint32_t b, hb;
8683 
8684 			if (chip_id(sc) <= CHELSIO_T5) {
8685 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
8686 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
8687 			} else {
8688 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
8689 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
8690 			}
8691 
8692 			if (b)
8693 				sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1);
8694 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
8695 		} else
8696 			sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1);
8697 		sbuf_printf(sb, ", in use: %u\n",
8698 		    atomic_load_acq_int(&t->tids_in_use));
8699 	}
8700 
8701 	if (t->nstids) {
8702 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
8703 		    t->stid_base + t->nstids - 1, t->stids_in_use);
8704 	}
8705 
8706 	if (t->nftids) {
8707 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
8708 		    t->ftid_end, t->ftids_in_use);
8709 	}
8710 
8711 	if (t->netids) {
8712 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
8713 		    t->etid_base + t->netids - 1, t->etids_in_use);
8714 	}
8715 
8716 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
8717 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
8718 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
8719 
8720 	rc = sbuf_finish(sb);
8721 	sbuf_delete(sb);
8722 
8723 	return (rc);
8724 }
8725 
8726 static int
8727 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
8728 {
8729 	struct adapter *sc = arg1;
8730 	struct sbuf *sb;
8731 	int rc;
8732 	struct tp_err_stats stats;
8733 
8734 	rc = sysctl_wire_old_buffer(req, 0);
8735 	if (rc != 0)
8736 		return (rc);
8737 
8738 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8739 	if (sb == NULL)
8740 		return (ENOMEM);
8741 
8742 	mtx_lock(&sc->reg_lock);
8743 	t4_tp_get_err_stats(sc, &stats, 0);
8744 	mtx_unlock(&sc->reg_lock);
8745 
8746 	if (sc->chip_params->nchan > 2) {
8747 		sbuf_printf(sb, "                 channel 0  channel 1"
8748 		    "  channel 2  channel 3\n");
8749 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
8750 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
8751 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
8752 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
8753 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
8754 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
8755 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
8756 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
8757 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
8758 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
8759 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
8760 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
8761 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
8762 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
8763 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
8764 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
8765 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
8766 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
8767 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
8768 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
8769 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
8770 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
8771 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
8772 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
8773 	} else {
8774 		sbuf_printf(sb, "                 channel 0  channel 1\n");
8775 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
8776 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
8777 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
8778 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
8779 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
8780 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
8781 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
8782 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
8783 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
8784 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
8785 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
8786 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
8787 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
8788 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
8789 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
8790 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
8791 	}
8792 
8793 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
8794 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
8795 
8796 	rc = sbuf_finish(sb);
8797 	sbuf_delete(sb);
8798 
8799 	return (rc);
8800 }
8801 
8802 static int
8803 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
8804 {
8805 	struct adapter *sc = arg1;
8806 	struct tp_params *tpp = &sc->params.tp;
8807 	u_int mask;
8808 	int rc;
8809 
8810 	mask = tpp->la_mask >> 16;
8811 	rc = sysctl_handle_int(oidp, &mask, 0, req);
8812 	if (rc != 0 || req->newptr == NULL)
8813 		return (rc);
8814 	if (mask > 0xffff)
8815 		return (EINVAL);
8816 	tpp->la_mask = mask << 16;
8817 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
8818 
8819 	return (0);
8820 }
8821 
8822 struct field_desc {
8823 	const char *name;
8824 	u_int start;
8825 	u_int width;
8826 };
8827 
8828 static void
8829 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
8830 {
8831 	char buf[32];
8832 	int line_size = 0;
8833 
8834 	while (f->name) {
8835 		uint64_t mask = (1ULL << f->width) - 1;
8836 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
8837 		    ((uintmax_t)v >> f->start) & mask);
8838 
8839 		if (line_size + len >= 79) {
8840 			line_size = 8;
8841 			sbuf_printf(sb, "\n        ");
8842 		}
8843 		sbuf_printf(sb, "%s ", buf);
8844 		line_size += len + 1;
8845 		f++;
8846 	}
8847 	sbuf_printf(sb, "\n");
8848 }
8849 
8850 static const struct field_desc tp_la0[] = {
8851 	{ "RcfOpCodeOut", 60, 4 },
8852 	{ "State", 56, 4 },
8853 	{ "WcfState", 52, 4 },
8854 	{ "RcfOpcSrcOut", 50, 2 },
8855 	{ "CRxError", 49, 1 },
8856 	{ "ERxError", 48, 1 },
8857 	{ "SanityFailed", 47, 1 },
8858 	{ "SpuriousMsg", 46, 1 },
8859 	{ "FlushInputMsg", 45, 1 },
8860 	{ "FlushInputCpl", 44, 1 },
8861 	{ "RssUpBit", 43, 1 },
8862 	{ "RssFilterHit", 42, 1 },
8863 	{ "Tid", 32, 10 },
8864 	{ "InitTcb", 31, 1 },
8865 	{ "LineNumber", 24, 7 },
8866 	{ "Emsg", 23, 1 },
8867 	{ "EdataOut", 22, 1 },
8868 	{ "Cmsg", 21, 1 },
8869 	{ "CdataOut", 20, 1 },
8870 	{ "EreadPdu", 19, 1 },
8871 	{ "CreadPdu", 18, 1 },
8872 	{ "TunnelPkt", 17, 1 },
8873 	{ "RcfPeerFin", 16, 1 },
8874 	{ "RcfReasonOut", 12, 4 },
8875 	{ "TxCchannel", 10, 2 },
8876 	{ "RcfTxChannel", 8, 2 },
8877 	{ "RxEchannel", 6, 2 },
8878 	{ "RcfRxChannel", 5, 1 },
8879 	{ "RcfDataOutSrdy", 4, 1 },
8880 	{ "RxDvld", 3, 1 },
8881 	{ "RxOoDvld", 2, 1 },
8882 	{ "RxCongestion", 1, 1 },
8883 	{ "TxCongestion", 0, 1 },
8884 	{ NULL }
8885 };
8886 
8887 static const struct field_desc tp_la1[] = {
8888 	{ "CplCmdIn", 56, 8 },
8889 	{ "CplCmdOut", 48, 8 },
8890 	{ "ESynOut", 47, 1 },
8891 	{ "EAckOut", 46, 1 },
8892 	{ "EFinOut", 45, 1 },
8893 	{ "ERstOut", 44, 1 },
8894 	{ "SynIn", 43, 1 },
8895 	{ "AckIn", 42, 1 },
8896 	{ "FinIn", 41, 1 },
8897 	{ "RstIn", 40, 1 },
8898 	{ "DataIn", 39, 1 },
8899 	{ "DataInVld", 38, 1 },
8900 	{ "PadIn", 37, 1 },
8901 	{ "RxBufEmpty", 36, 1 },
8902 	{ "RxDdp", 35, 1 },
8903 	{ "RxFbCongestion", 34, 1 },
8904 	{ "TxFbCongestion", 33, 1 },
8905 	{ "TxPktSumSrdy", 32, 1 },
8906 	{ "RcfUlpType", 28, 4 },
8907 	{ "Eread", 27, 1 },
8908 	{ "Ebypass", 26, 1 },
8909 	{ "Esave", 25, 1 },
8910 	{ "Static0", 24, 1 },
8911 	{ "Cread", 23, 1 },
8912 	{ "Cbypass", 22, 1 },
8913 	{ "Csave", 21, 1 },
8914 	{ "CPktOut", 20, 1 },
8915 	{ "RxPagePoolFull", 18, 2 },
8916 	{ "RxLpbkPkt", 17, 1 },
8917 	{ "TxLpbkPkt", 16, 1 },
8918 	{ "RxVfValid", 15, 1 },
8919 	{ "SynLearned", 14, 1 },
8920 	{ "SetDelEntry", 13, 1 },
8921 	{ "SetInvEntry", 12, 1 },
8922 	{ "CpcmdDvld", 11, 1 },
8923 	{ "CpcmdSave", 10, 1 },
8924 	{ "RxPstructsFull", 8, 2 },
8925 	{ "EpcmdDvld", 7, 1 },
8926 	{ "EpcmdFlush", 6, 1 },
8927 	{ "EpcmdTrimPrefix", 5, 1 },
8928 	{ "EpcmdTrimPostfix", 4, 1 },
8929 	{ "ERssIp4Pkt", 3, 1 },
8930 	{ "ERssIp6Pkt", 2, 1 },
8931 	{ "ERssTcpUdpPkt", 1, 1 },
8932 	{ "ERssFceFipPkt", 0, 1 },
8933 	{ NULL }
8934 };
8935 
8936 static const struct field_desc tp_la2[] = {
8937 	{ "CplCmdIn", 56, 8 },
8938 	{ "MpsVfVld", 55, 1 },
8939 	{ "MpsPf", 52, 3 },
8940 	{ "MpsVf", 44, 8 },
8941 	{ "SynIn", 43, 1 },
8942 	{ "AckIn", 42, 1 },
8943 	{ "FinIn", 41, 1 },
8944 	{ "RstIn", 40, 1 },
8945 	{ "DataIn", 39, 1 },
8946 	{ "DataInVld", 38, 1 },
8947 	{ "PadIn", 37, 1 },
8948 	{ "RxBufEmpty", 36, 1 },
8949 	{ "RxDdp", 35, 1 },
8950 	{ "RxFbCongestion", 34, 1 },
8951 	{ "TxFbCongestion", 33, 1 },
8952 	{ "TxPktSumSrdy", 32, 1 },
8953 	{ "RcfUlpType", 28, 4 },
8954 	{ "Eread", 27, 1 },
8955 	{ "Ebypass", 26, 1 },
8956 	{ "Esave", 25, 1 },
8957 	{ "Static0", 24, 1 },
8958 	{ "Cread", 23, 1 },
8959 	{ "Cbypass", 22, 1 },
8960 	{ "Csave", 21, 1 },
8961 	{ "CPktOut", 20, 1 },
8962 	{ "RxPagePoolFull", 18, 2 },
8963 	{ "RxLpbkPkt", 17, 1 },
8964 	{ "TxLpbkPkt", 16, 1 },
8965 	{ "RxVfValid", 15, 1 },
8966 	{ "SynLearned", 14, 1 },
8967 	{ "SetDelEntry", 13, 1 },
8968 	{ "SetInvEntry", 12, 1 },
8969 	{ "CpcmdDvld", 11, 1 },
8970 	{ "CpcmdSave", 10, 1 },
8971 	{ "RxPstructsFull", 8, 2 },
8972 	{ "EpcmdDvld", 7, 1 },
8973 	{ "EpcmdFlush", 6, 1 },
8974 	{ "EpcmdTrimPrefix", 5, 1 },
8975 	{ "EpcmdTrimPostfix", 4, 1 },
8976 	{ "ERssIp4Pkt", 3, 1 },
8977 	{ "ERssIp6Pkt", 2, 1 },
8978 	{ "ERssTcpUdpPkt", 1, 1 },
8979 	{ "ERssFceFipPkt", 0, 1 },
8980 	{ NULL }
8981 };
8982 
8983 static void
8984 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8985 {
8986 
8987 	field_desc_show(sb, *p, tp_la0);
8988 }
8989 
8990 static void
8991 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8992 {
8993 
8994 	if (idx)
8995 		sbuf_printf(sb, "\n");
8996 	field_desc_show(sb, p[0], tp_la0);
8997 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8998 		field_desc_show(sb, p[1], tp_la0);
8999 }
9000 
9001 static void
9002 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
9003 {
9004 
9005 	if (idx)
9006 		sbuf_printf(sb, "\n");
9007 	field_desc_show(sb, p[0], tp_la0);
9008 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
9009 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
9010 }
9011 
9012 static int
9013 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
9014 {
9015 	struct adapter *sc = arg1;
9016 	struct sbuf *sb;
9017 	uint64_t *buf, *p;
9018 	int rc;
9019 	u_int i, inc;
9020 	void (*show_func)(struct sbuf *, uint64_t *, int);
9021 
9022 	rc = sysctl_wire_old_buffer(req, 0);
9023 	if (rc != 0)
9024 		return (rc);
9025 
9026 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9027 	if (sb == NULL)
9028 		return (ENOMEM);
9029 
9030 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
9031 
9032 	t4_tp_read_la(sc, buf, NULL);
9033 	p = buf;
9034 
9035 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
9036 	case 2:
9037 		inc = 2;
9038 		show_func = tp_la_show2;
9039 		break;
9040 	case 3:
9041 		inc = 2;
9042 		show_func = tp_la_show3;
9043 		break;
9044 	default:
9045 		inc = 1;
9046 		show_func = tp_la_show;
9047 	}
9048 
9049 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
9050 		(*show_func)(sb, p, i);
9051 
9052 	rc = sbuf_finish(sb);
9053 	sbuf_delete(sb);
9054 	free(buf, M_CXGBE);
9055 	return (rc);
9056 }
9057 
9058 static int
9059 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
9060 {
9061 	struct adapter *sc = arg1;
9062 	struct sbuf *sb;
9063 	int rc;
9064 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
9065 
9066 	rc = sysctl_wire_old_buffer(req, 0);
9067 	if (rc != 0)
9068 		return (rc);
9069 
9070 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9071 	if (sb == NULL)
9072 		return (ENOMEM);
9073 
9074 	t4_get_chan_txrate(sc, nrate, orate);
9075 
9076 	if (sc->chip_params->nchan > 2) {
9077 		sbuf_printf(sb, "              channel 0   channel 1"
9078 		    "   channel 2   channel 3\n");
9079 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
9080 		    nrate[0], nrate[1], nrate[2], nrate[3]);
9081 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
9082 		    orate[0], orate[1], orate[2], orate[3]);
9083 	} else {
9084 		sbuf_printf(sb, "              channel 0   channel 1\n");
9085 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
9086 		    nrate[0], nrate[1]);
9087 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
9088 		    orate[0], orate[1]);
9089 	}
9090 
9091 	rc = sbuf_finish(sb);
9092 	sbuf_delete(sb);
9093 
9094 	return (rc);
9095 }
9096 
9097 static int
9098 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
9099 {
9100 	struct adapter *sc = arg1;
9101 	struct sbuf *sb;
9102 	uint32_t *buf, *p;
9103 	int rc, i;
9104 
9105 	rc = sysctl_wire_old_buffer(req, 0);
9106 	if (rc != 0)
9107 		return (rc);
9108 
9109 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9110 	if (sb == NULL)
9111 		return (ENOMEM);
9112 
9113 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
9114 	    M_ZERO | M_WAITOK);
9115 
9116 	t4_ulprx_read_la(sc, buf);
9117 	p = buf;
9118 
9119 	sbuf_printf(sb, "      Pcmd        Type   Message"
9120 	    "                Data");
9121 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
9122 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
9123 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
9124 	}
9125 
9126 	rc = sbuf_finish(sb);
9127 	sbuf_delete(sb);
9128 	free(buf, M_CXGBE);
9129 	return (rc);
9130 }
9131 
9132 static int
9133 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
9134 {
9135 	struct adapter *sc = arg1;
9136 	struct sbuf *sb;
9137 	int rc, v;
9138 
9139 	MPASS(chip_id(sc) >= CHELSIO_T5);
9140 
9141 	rc = sysctl_wire_old_buffer(req, 0);
9142 	if (rc != 0)
9143 		return (rc);
9144 
9145 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9146 	if (sb == NULL)
9147 		return (ENOMEM);
9148 
9149 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
9150 	if (G_STATSOURCE_T5(v) == 7) {
9151 		int mode;
9152 
9153 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
9154 		if (mode == 0) {
9155 			sbuf_printf(sb, "total %d, incomplete %d",
9156 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9157 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9158 		} else if (mode == 1) {
9159 			sbuf_printf(sb, "total %d, data overflow %d",
9160 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9161 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9162 		} else {
9163 			sbuf_printf(sb, "unknown mode %d", mode);
9164 		}
9165 	}
9166 	rc = sbuf_finish(sb);
9167 	sbuf_delete(sb);
9168 
9169 	return (rc);
9170 }
9171 
9172 static int
9173 sysctl_cpus(SYSCTL_HANDLER_ARGS)
9174 {
9175 	struct adapter *sc = arg1;
9176 	enum cpu_sets op = arg2;
9177 	cpuset_t cpuset;
9178 	struct sbuf *sb;
9179 	int i, rc;
9180 
9181 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
9182 
9183 	CPU_ZERO(&cpuset);
9184 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
9185 	if (rc != 0)
9186 		return (rc);
9187 
9188 	rc = sysctl_wire_old_buffer(req, 0);
9189 	if (rc != 0)
9190 		return (rc);
9191 
9192 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9193 	if (sb == NULL)
9194 		return (ENOMEM);
9195 
9196 	CPU_FOREACH(i)
9197 		sbuf_printf(sb, "%d ", i);
9198 	rc = sbuf_finish(sb);
9199 	sbuf_delete(sb);
9200 
9201 	return (rc);
9202 }
9203 
9204 #ifdef TCP_OFFLOAD
9205 static int
9206 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
9207 {
9208 	struct adapter *sc = arg1;
9209 	int *old_ports, *new_ports;
9210 	int i, new_count, rc;
9211 
9212 	if (req->newptr == NULL && req->oldptr == NULL)
9213 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
9214 		    sizeof(sc->tt.tls_rx_ports[0])));
9215 
9216 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
9217 	if (rc)
9218 		return (rc);
9219 
9220 	if (sc->tt.num_tls_rx_ports == 0) {
9221 		i = -1;
9222 		rc = SYSCTL_OUT(req, &i, sizeof(i));
9223 	} else
9224 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
9225 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
9226 	if (rc == 0 && req->newptr != NULL) {
9227 		new_count = req->newlen / sizeof(new_ports[0]);
9228 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
9229 		    M_WAITOK);
9230 		rc = SYSCTL_IN(req, new_ports, new_count *
9231 		    sizeof(new_ports[0]));
9232 		if (rc)
9233 			goto err;
9234 
9235 		/* Allow setting to a single '-1' to clear the list. */
9236 		if (new_count == 1 && new_ports[0] == -1) {
9237 			ADAPTER_LOCK(sc);
9238 			old_ports = sc->tt.tls_rx_ports;
9239 			sc->tt.tls_rx_ports = NULL;
9240 			sc->tt.num_tls_rx_ports = 0;
9241 			ADAPTER_UNLOCK(sc);
9242 			free(old_ports, M_CXGBE);
9243 		} else {
9244 			for (i = 0; i < new_count; i++) {
9245 				if (new_ports[i] < 1 ||
9246 				    new_ports[i] > IPPORT_MAX) {
9247 					rc = EINVAL;
9248 					goto err;
9249 				}
9250 			}
9251 
9252 			ADAPTER_LOCK(sc);
9253 			old_ports = sc->tt.tls_rx_ports;
9254 			sc->tt.tls_rx_ports = new_ports;
9255 			sc->tt.num_tls_rx_ports = new_count;
9256 			ADAPTER_UNLOCK(sc);
9257 			free(old_ports, M_CXGBE);
9258 			new_ports = NULL;
9259 		}
9260 	err:
9261 		free(new_ports, M_CXGBE);
9262 	}
9263 	end_synchronized_op(sc, 0);
9264 	return (rc);
9265 }
9266 
9267 static void
9268 unit_conv(char *buf, size_t len, u_int val, u_int factor)
9269 {
9270 	u_int rem = val % factor;
9271 
9272 	if (rem == 0)
9273 		snprintf(buf, len, "%u", val / factor);
9274 	else {
9275 		while (rem % 10 == 0)
9276 			rem /= 10;
9277 		snprintf(buf, len, "%u.%u", val / factor, rem);
9278 	}
9279 }
9280 
9281 static int
9282 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
9283 {
9284 	struct adapter *sc = arg1;
9285 	char buf[16];
9286 	u_int res, re;
9287 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9288 
9289 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9290 	switch (arg2) {
9291 	case 0:
9292 		/* timer_tick */
9293 		re = G_TIMERRESOLUTION(res);
9294 		break;
9295 	case 1:
9296 		/* TCP timestamp tick */
9297 		re = G_TIMESTAMPRESOLUTION(res);
9298 		break;
9299 	case 2:
9300 		/* DACK tick */
9301 		re = G_DELAYEDACKRESOLUTION(res);
9302 		break;
9303 	default:
9304 		return (EDOOFUS);
9305 	}
9306 
9307 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
9308 
9309 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
9310 }
9311 
9312 static int
9313 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
9314 {
9315 	struct adapter *sc = arg1;
9316 	u_int res, dack_re, v;
9317 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9318 
9319 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9320 	dack_re = G_DELAYEDACKRESOLUTION(res);
9321 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
9322 
9323 	return (sysctl_handle_int(oidp, &v, 0, req));
9324 }
9325 
9326 static int
9327 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
9328 {
9329 	struct adapter *sc = arg1;
9330 	int reg = arg2;
9331 	u_int tre;
9332 	u_long tp_tick_us, v;
9333 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9334 
9335 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
9336 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
9337 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
9338 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
9339 
9340 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
9341 	tp_tick_us = (cclk_ps << tre) / 1000000;
9342 
9343 	if (reg == A_TP_INIT_SRTT)
9344 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
9345 	else
9346 		v = tp_tick_us * t4_read_reg(sc, reg);
9347 
9348 	return (sysctl_handle_long(oidp, &v, 0, req));
9349 }
9350 
9351 /*
9352  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
9353  * passed to this function.
9354  */
9355 static int
9356 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
9357 {
9358 	struct adapter *sc = arg1;
9359 	int idx = arg2;
9360 	u_int v;
9361 
9362 	MPASS(idx >= 0 && idx <= 24);
9363 
9364 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
9365 
9366 	return (sysctl_handle_int(oidp, &v, 0, req));
9367 }
9368 
9369 static int
9370 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
9371 {
9372 	struct adapter *sc = arg1;
9373 	int idx = arg2;
9374 	u_int shift, v, r;
9375 
9376 	MPASS(idx >= 0 && idx < 16);
9377 
9378 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
9379 	shift = (idx & 3) << 3;
9380 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
9381 
9382 	return (sysctl_handle_int(oidp, &v, 0, req));
9383 }
9384 
9385 static int
9386 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
9387 {
9388 	struct vi_info *vi = arg1;
9389 	struct adapter *sc = vi->pi->adapter;
9390 	int idx, rc, i;
9391 	struct sge_ofld_rxq *ofld_rxq;
9392 	uint8_t v;
9393 
9394 	idx = vi->ofld_tmr_idx;
9395 
9396 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9397 	if (rc != 0 || req->newptr == NULL)
9398 		return (rc);
9399 
9400 	if (idx < 0 || idx >= SGE_NTIMERS)
9401 		return (EINVAL);
9402 
9403 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9404 	    "t4otmr");
9405 	if (rc)
9406 		return (rc);
9407 
9408 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
9409 	for_each_ofld_rxq(vi, i, ofld_rxq) {
9410 #ifdef atomic_store_rel_8
9411 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
9412 #else
9413 		ofld_rxq->iq.intr_params = v;
9414 #endif
9415 	}
9416 	vi->ofld_tmr_idx = idx;
9417 
9418 	end_synchronized_op(sc, LOCK_HELD);
9419 	return (0);
9420 }
9421 
9422 static int
9423 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
9424 {
9425 	struct vi_info *vi = arg1;
9426 	struct adapter *sc = vi->pi->adapter;
9427 	int idx, rc;
9428 
9429 	idx = vi->ofld_pktc_idx;
9430 
9431 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9432 	if (rc != 0 || req->newptr == NULL)
9433 		return (rc);
9434 
9435 	if (idx < -1 || idx >= SGE_NCOUNTERS)
9436 		return (EINVAL);
9437 
9438 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9439 	    "t4opktc");
9440 	if (rc)
9441 		return (rc);
9442 
9443 	if (vi->flags & VI_INIT_DONE)
9444 		rc = EBUSY; /* cannot be changed once the queues are created */
9445 	else
9446 		vi->ofld_pktc_idx = idx;
9447 
9448 	end_synchronized_op(sc, LOCK_HELD);
9449 	return (rc);
9450 }
9451 #endif
9452 
9453 static int
9454 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9455 {
9456 	int rc;
9457 
9458 	if (cntxt->cid > M_CTXTQID)
9459 		return (EINVAL);
9460 
9461 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9462 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9463 		return (EINVAL);
9464 
9465 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9466 	if (rc)
9467 		return (rc);
9468 
9469 	if (sc->flags & FW_OK) {
9470 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9471 		    &cntxt->data[0]);
9472 		if (rc == 0)
9473 			goto done;
9474 	}
9475 
9476 	/*
9477 	 * Read via firmware failed or wasn't even attempted.  Read directly via
9478 	 * the backdoor.
9479 	 */
9480 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9481 done:
9482 	end_synchronized_op(sc, 0);
9483 	return (rc);
9484 }
9485 
9486 static int
9487 load_fw(struct adapter *sc, struct t4_data *fw)
9488 {
9489 	int rc;
9490 	uint8_t *fw_data;
9491 
9492 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9493 	if (rc)
9494 		return (rc);
9495 
9496 	/*
9497 	 * The firmware, with the sole exception of the memory parity error
9498 	 * handler, runs from memory and not flash.  It is almost always safe to
9499 	 * install a new firmware on a running system.  Just set bit 1 in
9500 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9501 	 */
9502 	if (sc->flags & FULL_INIT_DONE &&
9503 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9504 		rc = EBUSY;
9505 		goto done;
9506 	}
9507 
9508 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9509 	if (fw_data == NULL) {
9510 		rc = ENOMEM;
9511 		goto done;
9512 	}
9513 
9514 	rc = copyin(fw->data, fw_data, fw->len);
9515 	if (rc == 0)
9516 		rc = -t4_load_fw(sc, fw_data, fw->len);
9517 
9518 	free(fw_data, M_CXGBE);
9519 done:
9520 	end_synchronized_op(sc, 0);
9521 	return (rc);
9522 }
9523 
9524 static int
9525 load_cfg(struct adapter *sc, struct t4_data *cfg)
9526 {
9527 	int rc;
9528 	uint8_t *cfg_data = NULL;
9529 
9530 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9531 	if (rc)
9532 		return (rc);
9533 
9534 	if (cfg->len == 0) {
9535 		/* clear */
9536 		rc = -t4_load_cfg(sc, NULL, 0);
9537 		goto done;
9538 	}
9539 
9540 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9541 	if (cfg_data == NULL) {
9542 		rc = ENOMEM;
9543 		goto done;
9544 	}
9545 
9546 	rc = copyin(cfg->data, cfg_data, cfg->len);
9547 	if (rc == 0)
9548 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9549 
9550 	free(cfg_data, M_CXGBE);
9551 done:
9552 	end_synchronized_op(sc, 0);
9553 	return (rc);
9554 }
9555 
9556 static int
9557 load_boot(struct adapter *sc, struct t4_bootrom *br)
9558 {
9559 	int rc;
9560 	uint8_t *br_data = NULL;
9561 	u_int offset;
9562 
9563 	if (br->len > 1024 * 1024)
9564 		return (EFBIG);
9565 
9566 	if (br->pf_offset == 0) {
9567 		/* pfidx */
9568 		if (br->pfidx_addr > 7)
9569 			return (EINVAL);
9570 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9571 		    A_PCIE_PF_EXPROM_OFST)));
9572 	} else if (br->pf_offset == 1) {
9573 		/* offset */
9574 		offset = G_OFFSET(br->pfidx_addr);
9575 	} else {
9576 		return (EINVAL);
9577 	}
9578 
9579 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9580 	if (rc)
9581 		return (rc);
9582 
9583 	if (br->len == 0) {
9584 		/* clear */
9585 		rc = -t4_load_boot(sc, NULL, offset, 0);
9586 		goto done;
9587 	}
9588 
9589 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9590 	if (br_data == NULL) {
9591 		rc = ENOMEM;
9592 		goto done;
9593 	}
9594 
9595 	rc = copyin(br->data, br_data, br->len);
9596 	if (rc == 0)
9597 		rc = -t4_load_boot(sc, br_data, offset, br->len);
9598 
9599 	free(br_data, M_CXGBE);
9600 done:
9601 	end_synchronized_op(sc, 0);
9602 	return (rc);
9603 }
9604 
9605 static int
9606 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9607 {
9608 	int rc;
9609 	uint8_t *bc_data = NULL;
9610 
9611 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9612 	if (rc)
9613 		return (rc);
9614 
9615 	if (bc->len == 0) {
9616 		/* clear */
9617 		rc = -t4_load_bootcfg(sc, NULL, 0);
9618 		goto done;
9619 	}
9620 
9621 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9622 	if (bc_data == NULL) {
9623 		rc = ENOMEM;
9624 		goto done;
9625 	}
9626 
9627 	rc = copyin(bc->data, bc_data, bc->len);
9628 	if (rc == 0)
9629 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9630 
9631 	free(bc_data, M_CXGBE);
9632 done:
9633 	end_synchronized_op(sc, 0);
9634 	return (rc);
9635 }
9636 
9637 static int
9638 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9639 {
9640 	int rc;
9641 	struct cudbg_init *cudbg;
9642 	void *handle, *buf;
9643 
9644 	/* buf is large, don't block if no memory is available */
9645 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9646 	if (buf == NULL)
9647 		return (ENOMEM);
9648 
9649 	handle = cudbg_alloc_handle();
9650 	if (handle == NULL) {
9651 		rc = ENOMEM;
9652 		goto done;
9653 	}
9654 
9655 	cudbg = cudbg_get_init(handle);
9656 	cudbg->adap = sc;
9657 	cudbg->print = (cudbg_print_cb)printf;
9658 
9659 #ifndef notyet
9660 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9661 	    __func__, dump->wr_flash, dump->len, dump->data);
9662 #endif
9663 
9664 	if (dump->wr_flash)
9665 		cudbg->use_flash = 1;
9666 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9667 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9668 
9669 	rc = cudbg_collect(handle, buf, &dump->len);
9670 	if (rc != 0)
9671 		goto done;
9672 
9673 	rc = copyout(buf, dump->data, dump->len);
9674 done:
9675 	cudbg_free_handle(handle);
9676 	free(buf, M_CXGBE);
9677 	return (rc);
9678 }
9679 
9680 static void
9681 free_offload_policy(struct t4_offload_policy *op)
9682 {
9683 	struct offload_rule *r;
9684 	int i;
9685 
9686 	if (op == NULL)
9687 		return;
9688 
9689 	r = &op->rule[0];
9690 	for (i = 0; i < op->nrules; i++, r++) {
9691 		free(r->bpf_prog.bf_insns, M_CXGBE);
9692 	}
9693 	free(op->rule, M_CXGBE);
9694 	free(op, M_CXGBE);
9695 }
9696 
9697 static int
9698 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
9699 {
9700 	int i, rc, len;
9701 	struct t4_offload_policy *op, *old;
9702 	struct bpf_program *bf;
9703 	const struct offload_settings *s;
9704 	struct offload_rule *r;
9705 	void *u;
9706 
9707 	if (!is_offload(sc))
9708 		return (ENODEV);
9709 
9710 	if (uop->nrules == 0) {
9711 		/* Delete installed policies. */
9712 		op = NULL;
9713 		goto set_policy;
9714 	} else if (uop->nrules > 256) { /* arbitrary */
9715 		return (E2BIG);
9716 	}
9717 
9718 	/* Copy userspace offload policy to kernel */
9719 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
9720 	op->nrules = uop->nrules;
9721 	len = op->nrules * sizeof(struct offload_rule);
9722 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9723 	rc = copyin(uop->rule, op->rule, len);
9724 	if (rc) {
9725 		free(op->rule, M_CXGBE);
9726 		free(op, M_CXGBE);
9727 		return (rc);
9728 	}
9729 
9730 	r = &op->rule[0];
9731 	for (i = 0; i < op->nrules; i++, r++) {
9732 
9733 		/* Validate open_type */
9734 		if (r->open_type != OPEN_TYPE_LISTEN &&
9735 		    r->open_type != OPEN_TYPE_ACTIVE &&
9736 		    r->open_type != OPEN_TYPE_PASSIVE &&
9737 		    r->open_type != OPEN_TYPE_DONTCARE) {
9738 error:
9739 			/*
9740 			 * Rules 0 to i have malloc'd filters that need to be
9741 			 * freed.  Rules i+1 to nrules have userspace pointers
9742 			 * and should be left alone.
9743 			 */
9744 			op->nrules = i;
9745 			free_offload_policy(op);
9746 			return (rc);
9747 		}
9748 
9749 		/* Validate settings */
9750 		s = &r->settings;
9751 		if ((s->offload != 0 && s->offload != 1) ||
9752 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
9753 		    s->sched_class < -1 ||
9754 		    s->sched_class >= sc->chip_params->nsched_cls) {
9755 			rc = EINVAL;
9756 			goto error;
9757 		}
9758 
9759 		bf = &r->bpf_prog;
9760 		u = bf->bf_insns;	/* userspace ptr */
9761 		bf->bf_insns = NULL;
9762 		if (bf->bf_len == 0) {
9763 			/* legal, matches everything */
9764 			continue;
9765 		}
9766 		len = bf->bf_len * sizeof(*bf->bf_insns);
9767 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9768 		rc = copyin(u, bf->bf_insns, len);
9769 		if (rc != 0)
9770 			goto error;
9771 
9772 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
9773 			rc = EINVAL;
9774 			goto error;
9775 		}
9776 	}
9777 set_policy:
9778 	rw_wlock(&sc->policy_lock);
9779 	old = sc->policy;
9780 	sc->policy = op;
9781 	rw_wunlock(&sc->policy_lock);
9782 	free_offload_policy(old);
9783 
9784 	return (0);
9785 }
9786 
9787 #define MAX_READ_BUF_SIZE (128 * 1024)
9788 static int
9789 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9790 {
9791 	uint32_t addr, remaining, n;
9792 	uint32_t *buf;
9793 	int rc;
9794 	uint8_t *dst;
9795 
9796 	rc = validate_mem_range(sc, mr->addr, mr->len);
9797 	if (rc != 0)
9798 		return (rc);
9799 
9800 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9801 	addr = mr->addr;
9802 	remaining = mr->len;
9803 	dst = (void *)mr->data;
9804 
9805 	while (remaining) {
9806 		n = min(remaining, MAX_READ_BUF_SIZE);
9807 		read_via_memwin(sc, 2, addr, buf, n);
9808 
9809 		rc = copyout(buf, dst, n);
9810 		if (rc != 0)
9811 			break;
9812 
9813 		dst += n;
9814 		remaining -= n;
9815 		addr += n;
9816 	}
9817 
9818 	free(buf, M_CXGBE);
9819 	return (rc);
9820 }
9821 #undef MAX_READ_BUF_SIZE
9822 
9823 static int
9824 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9825 {
9826 	int rc;
9827 
9828 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9829 		return (EINVAL);
9830 
9831 	if (i2cd->len > sizeof(i2cd->data))
9832 		return (EFBIG);
9833 
9834 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9835 	if (rc)
9836 		return (rc);
9837 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9838 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
9839 	end_synchronized_op(sc, 0);
9840 
9841 	return (rc);
9842 }
9843 
9844 static int
9845 clear_stats(struct adapter *sc, u_int port_id)
9846 {
9847 	int i, v, bg_map;
9848 	struct port_info *pi;
9849 	struct vi_info *vi;
9850 	struct sge_rxq *rxq;
9851 	struct sge_txq *txq;
9852 	struct sge_wrq *wrq;
9853 #ifdef TCP_OFFLOAD
9854 	struct sge_ofld_rxq *ofld_rxq;
9855 #endif
9856 
9857 	if (port_id >= sc->params.nports)
9858 		return (EINVAL);
9859 	pi = sc->port[port_id];
9860 	if (pi == NULL)
9861 		return (EIO);
9862 
9863 	/* MAC stats */
9864 	t4_clr_port_stats(sc, pi->tx_chan);
9865 	pi->tx_parse_error = 0;
9866 	pi->tnl_cong_drops = 0;
9867 	mtx_lock(&sc->reg_lock);
9868 	for_each_vi(pi, v, vi) {
9869 		if (vi->flags & VI_INIT_DONE)
9870 			t4_clr_vi_stats(sc, vi->vin);
9871 	}
9872 	bg_map = pi->mps_bg_map;
9873 	v = 0;	/* reuse */
9874 	while (bg_map) {
9875 		i = ffs(bg_map) - 1;
9876 		t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
9877 		    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
9878 		bg_map &= ~(1 << i);
9879 	}
9880 	mtx_unlock(&sc->reg_lock);
9881 
9882 	/*
9883 	 * Since this command accepts a port, clear stats for
9884 	 * all VIs on this port.
9885 	 */
9886 	for_each_vi(pi, v, vi) {
9887 		if (vi->flags & VI_INIT_DONE) {
9888 
9889 			for_each_rxq(vi, i, rxq) {
9890 #if defined(INET) || defined(INET6)
9891 				rxq->lro.lro_queued = 0;
9892 				rxq->lro.lro_flushed = 0;
9893 #endif
9894 				rxq->rxcsum = 0;
9895 				rxq->vlan_extraction = 0;
9896 
9897 				rxq->fl.mbuf_allocated = 0;
9898 				rxq->fl.mbuf_inlined = 0;
9899 				rxq->fl.cl_allocated = 0;
9900 				rxq->fl.cl_recycled = 0;
9901 				rxq->fl.cl_fast_recycled = 0;
9902 			}
9903 
9904 			for_each_txq(vi, i, txq) {
9905 				txq->txcsum = 0;
9906 				txq->tso_wrs = 0;
9907 				txq->vlan_insertion = 0;
9908 				txq->imm_wrs = 0;
9909 				txq->sgl_wrs = 0;
9910 				txq->txpkt_wrs = 0;
9911 				txq->txpkts0_wrs = 0;
9912 				txq->txpkts1_wrs = 0;
9913 				txq->txpkts0_pkts = 0;
9914 				txq->txpkts1_pkts = 0;
9915 				txq->raw_wrs = 0;
9916 				mp_ring_reset_stats(txq->r);
9917 			}
9918 
9919 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
9920 			for_each_ofld_txq(vi, i, wrq) {
9921 				wrq->tx_wrs_direct = 0;
9922 				wrq->tx_wrs_copied = 0;
9923 			}
9924 #endif
9925 #ifdef TCP_OFFLOAD
9926 			for_each_ofld_rxq(vi, i, ofld_rxq) {
9927 				ofld_rxq->fl.mbuf_allocated = 0;
9928 				ofld_rxq->fl.mbuf_inlined = 0;
9929 				ofld_rxq->fl.cl_allocated = 0;
9930 				ofld_rxq->fl.cl_recycled = 0;
9931 				ofld_rxq->fl.cl_fast_recycled = 0;
9932 			}
9933 #endif
9934 
9935 			if (IS_MAIN_VI(vi)) {
9936 				wrq = &sc->sge.ctrlq[pi->port_id];
9937 				wrq->tx_wrs_direct = 0;
9938 				wrq->tx_wrs_copied = 0;
9939 			}
9940 		}
9941 	}
9942 
9943 	return (0);
9944 }
9945 
9946 int
9947 t4_os_find_pci_capability(struct adapter *sc, int cap)
9948 {
9949 	int i;
9950 
9951 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9952 }
9953 
9954 int
9955 t4_os_pci_save_state(struct adapter *sc)
9956 {
9957 	device_t dev;
9958 	struct pci_devinfo *dinfo;
9959 
9960 	dev = sc->dev;
9961 	dinfo = device_get_ivars(dev);
9962 
9963 	pci_cfg_save(dev, dinfo, 0);
9964 	return (0);
9965 }
9966 
9967 int
9968 t4_os_pci_restore_state(struct adapter *sc)
9969 {
9970 	device_t dev;
9971 	struct pci_devinfo *dinfo;
9972 
9973 	dev = sc->dev;
9974 	dinfo = device_get_ivars(dev);
9975 
9976 	pci_cfg_restore(dev, dinfo);
9977 	return (0);
9978 }
9979 
9980 void
9981 t4_os_portmod_changed(struct port_info *pi)
9982 {
9983 	struct adapter *sc = pi->adapter;
9984 	struct vi_info *vi;
9985 	struct ifnet *ifp;
9986 	static const char *mod_str[] = {
9987 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9988 	};
9989 
9990 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
9991 	    ("%s: port_type %u", __func__, pi->port_type));
9992 
9993 	vi = &pi->vi[0];
9994 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9995 		PORT_LOCK(pi);
9996 		build_medialist(pi);
9997 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
9998 			fixup_link_config(pi);
9999 			apply_link_config(pi);
10000 		}
10001 		PORT_UNLOCK(pi);
10002 		end_synchronized_op(sc, LOCK_HELD);
10003 	}
10004 
10005 	ifp = vi->ifp;
10006 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
10007 		if_printf(ifp, "transceiver unplugged.\n");
10008 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
10009 		if_printf(ifp, "unknown transceiver inserted.\n");
10010 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
10011 		if_printf(ifp, "unsupported transceiver inserted.\n");
10012 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
10013 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
10014 		    port_top_speed(pi), mod_str[pi->mod_type]);
10015 	} else {
10016 		if_printf(ifp, "transceiver (type %d) inserted.\n",
10017 		    pi->mod_type);
10018 	}
10019 }
10020 
10021 void
10022 t4_os_link_changed(struct port_info *pi)
10023 {
10024 	struct vi_info *vi;
10025 	struct ifnet *ifp;
10026 	struct link_config *lc;
10027 	int v;
10028 
10029 	PORT_LOCK_ASSERT_OWNED(pi);
10030 
10031 	for_each_vi(pi, v, vi) {
10032 		ifp = vi->ifp;
10033 		if (ifp == NULL)
10034 			continue;
10035 
10036 		lc = &pi->link_cfg;
10037 		if (lc->link_ok) {
10038 			ifp->if_baudrate = IF_Mbps(lc->speed);
10039 			if_link_state_change(ifp, LINK_STATE_UP);
10040 		} else {
10041 			if_link_state_change(ifp, LINK_STATE_DOWN);
10042 		}
10043 	}
10044 }
10045 
10046 void
10047 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
10048 {
10049 	struct adapter *sc;
10050 
10051 	sx_slock(&t4_list_lock);
10052 	SLIST_FOREACH(sc, &t4_list, link) {
10053 		/*
10054 		 * func should not make any assumptions about what state sc is
10055 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
10056 		 */
10057 		func(sc, arg);
10058 	}
10059 	sx_sunlock(&t4_list_lock);
10060 }
10061 
10062 static int
10063 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
10064     struct thread *td)
10065 {
10066 	int rc;
10067 	struct adapter *sc = dev->si_drv1;
10068 
10069 	rc = priv_check(td, PRIV_DRIVER);
10070 	if (rc != 0)
10071 		return (rc);
10072 
10073 	switch (cmd) {
10074 	case CHELSIO_T4_GETREG: {
10075 		struct t4_reg *edata = (struct t4_reg *)data;
10076 
10077 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10078 			return (EFAULT);
10079 
10080 		if (edata->size == 4)
10081 			edata->val = t4_read_reg(sc, edata->addr);
10082 		else if (edata->size == 8)
10083 			edata->val = t4_read_reg64(sc, edata->addr);
10084 		else
10085 			return (EINVAL);
10086 
10087 		break;
10088 	}
10089 	case CHELSIO_T4_SETREG: {
10090 		struct t4_reg *edata = (struct t4_reg *)data;
10091 
10092 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10093 			return (EFAULT);
10094 
10095 		if (edata->size == 4) {
10096 			if (edata->val & 0xffffffff00000000)
10097 				return (EINVAL);
10098 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
10099 		} else if (edata->size == 8)
10100 			t4_write_reg64(sc, edata->addr, edata->val);
10101 		else
10102 			return (EINVAL);
10103 		break;
10104 	}
10105 	case CHELSIO_T4_REGDUMP: {
10106 		struct t4_regdump *regs = (struct t4_regdump *)data;
10107 		int reglen = t4_get_regs_len(sc);
10108 		uint8_t *buf;
10109 
10110 		if (regs->len < reglen) {
10111 			regs->len = reglen; /* hint to the caller */
10112 			return (ENOBUFS);
10113 		}
10114 
10115 		regs->len = reglen;
10116 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
10117 		get_regs(sc, regs, buf);
10118 		rc = copyout(buf, regs->data, reglen);
10119 		free(buf, M_CXGBE);
10120 		break;
10121 	}
10122 	case CHELSIO_T4_GET_FILTER_MODE:
10123 		rc = get_filter_mode(sc, (uint32_t *)data);
10124 		break;
10125 	case CHELSIO_T4_SET_FILTER_MODE:
10126 		rc = set_filter_mode(sc, *(uint32_t *)data);
10127 		break;
10128 	case CHELSIO_T4_GET_FILTER:
10129 		rc = get_filter(sc, (struct t4_filter *)data);
10130 		break;
10131 	case CHELSIO_T4_SET_FILTER:
10132 		rc = set_filter(sc, (struct t4_filter *)data);
10133 		break;
10134 	case CHELSIO_T4_DEL_FILTER:
10135 		rc = del_filter(sc, (struct t4_filter *)data);
10136 		break;
10137 	case CHELSIO_T4_GET_SGE_CONTEXT:
10138 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
10139 		break;
10140 	case CHELSIO_T4_LOAD_FW:
10141 		rc = load_fw(sc, (struct t4_data *)data);
10142 		break;
10143 	case CHELSIO_T4_GET_MEM:
10144 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
10145 		break;
10146 	case CHELSIO_T4_GET_I2C:
10147 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
10148 		break;
10149 	case CHELSIO_T4_CLEAR_STATS:
10150 		rc = clear_stats(sc, *(uint32_t *)data);
10151 		break;
10152 	case CHELSIO_T4_SCHED_CLASS:
10153 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
10154 		break;
10155 	case CHELSIO_T4_SCHED_QUEUE:
10156 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
10157 		break;
10158 	case CHELSIO_T4_GET_TRACER:
10159 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
10160 		break;
10161 	case CHELSIO_T4_SET_TRACER:
10162 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
10163 		break;
10164 	case CHELSIO_T4_LOAD_CFG:
10165 		rc = load_cfg(sc, (struct t4_data *)data);
10166 		break;
10167 	case CHELSIO_T4_LOAD_BOOT:
10168 		rc = load_boot(sc, (struct t4_bootrom *)data);
10169 		break;
10170 	case CHELSIO_T4_LOAD_BOOTCFG:
10171 		rc = load_bootcfg(sc, (struct t4_data *)data);
10172 		break;
10173 	case CHELSIO_T4_CUDBG_DUMP:
10174 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
10175 		break;
10176 	case CHELSIO_T4_SET_OFLD_POLICY:
10177 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
10178 		break;
10179 	default:
10180 		rc = ENOTTY;
10181 	}
10182 
10183 	return (rc);
10184 }
10185 
10186 #ifdef TCP_OFFLOAD
10187 static int
10188 toe_capability(struct vi_info *vi, int enable)
10189 {
10190 	int rc;
10191 	struct port_info *pi = vi->pi;
10192 	struct adapter *sc = pi->adapter;
10193 
10194 	ASSERT_SYNCHRONIZED_OP(sc);
10195 
10196 	if (!is_offload(sc))
10197 		return (ENODEV);
10198 
10199 	if (enable) {
10200 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
10201 			/* TOE is already enabled. */
10202 			return (0);
10203 		}
10204 
10205 		/*
10206 		 * We need the port's queues around so that we're able to send
10207 		 * and receive CPLs to/from the TOE even if the ifnet for this
10208 		 * port has never been UP'd administratively.
10209 		 */
10210 		if (!(vi->flags & VI_INIT_DONE)) {
10211 			rc = vi_full_init(vi);
10212 			if (rc)
10213 				return (rc);
10214 		}
10215 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
10216 			rc = vi_full_init(&pi->vi[0]);
10217 			if (rc)
10218 				return (rc);
10219 		}
10220 
10221 		if (isset(&sc->offload_map, pi->port_id)) {
10222 			/* TOE is enabled on another VI of this port. */
10223 			pi->uld_vis++;
10224 			return (0);
10225 		}
10226 
10227 		if (!uld_active(sc, ULD_TOM)) {
10228 			rc = t4_activate_uld(sc, ULD_TOM);
10229 			if (rc == EAGAIN) {
10230 				log(LOG_WARNING,
10231 				    "You must kldload t4_tom.ko before trying "
10232 				    "to enable TOE on a cxgbe interface.\n");
10233 			}
10234 			if (rc != 0)
10235 				return (rc);
10236 			KASSERT(sc->tom_softc != NULL,
10237 			    ("%s: TOM activated but softc NULL", __func__));
10238 			KASSERT(uld_active(sc, ULD_TOM),
10239 			    ("%s: TOM activated but flag not set", __func__));
10240 		}
10241 
10242 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
10243 		if (!uld_active(sc, ULD_IWARP))
10244 			(void) t4_activate_uld(sc, ULD_IWARP);
10245 		if (!uld_active(sc, ULD_ISCSI))
10246 			(void) t4_activate_uld(sc, ULD_ISCSI);
10247 
10248 		pi->uld_vis++;
10249 		setbit(&sc->offload_map, pi->port_id);
10250 	} else {
10251 		pi->uld_vis--;
10252 
10253 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
10254 			return (0);
10255 
10256 		KASSERT(uld_active(sc, ULD_TOM),
10257 		    ("%s: TOM never initialized?", __func__));
10258 		clrbit(&sc->offload_map, pi->port_id);
10259 	}
10260 
10261 	return (0);
10262 }
10263 
10264 /*
10265  * Add an upper layer driver to the global list.
10266  */
10267 int
10268 t4_register_uld(struct uld_info *ui)
10269 {
10270 	int rc = 0;
10271 	struct uld_info *u;
10272 
10273 	sx_xlock(&t4_uld_list_lock);
10274 	SLIST_FOREACH(u, &t4_uld_list, link) {
10275 	    if (u->uld_id == ui->uld_id) {
10276 		    rc = EEXIST;
10277 		    goto done;
10278 	    }
10279 	}
10280 
10281 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
10282 	ui->refcount = 0;
10283 done:
10284 	sx_xunlock(&t4_uld_list_lock);
10285 	return (rc);
10286 }
10287 
10288 int
10289 t4_unregister_uld(struct uld_info *ui)
10290 {
10291 	int rc = EINVAL;
10292 	struct uld_info *u;
10293 
10294 	sx_xlock(&t4_uld_list_lock);
10295 
10296 	SLIST_FOREACH(u, &t4_uld_list, link) {
10297 	    if (u == ui) {
10298 		    if (ui->refcount > 0) {
10299 			    rc = EBUSY;
10300 			    goto done;
10301 		    }
10302 
10303 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
10304 		    rc = 0;
10305 		    goto done;
10306 	    }
10307 	}
10308 done:
10309 	sx_xunlock(&t4_uld_list_lock);
10310 	return (rc);
10311 }
10312 
10313 int
10314 t4_activate_uld(struct adapter *sc, int id)
10315 {
10316 	int rc;
10317 	struct uld_info *ui;
10318 
10319 	ASSERT_SYNCHRONIZED_OP(sc);
10320 
10321 	if (id < 0 || id > ULD_MAX)
10322 		return (EINVAL);
10323 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
10324 
10325 	sx_slock(&t4_uld_list_lock);
10326 
10327 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10328 		if (ui->uld_id == id) {
10329 			if (!(sc->flags & FULL_INIT_DONE)) {
10330 				rc = adapter_full_init(sc);
10331 				if (rc != 0)
10332 					break;
10333 			}
10334 
10335 			rc = ui->activate(sc);
10336 			if (rc == 0) {
10337 				setbit(&sc->active_ulds, id);
10338 				ui->refcount++;
10339 			}
10340 			break;
10341 		}
10342 	}
10343 
10344 	sx_sunlock(&t4_uld_list_lock);
10345 
10346 	return (rc);
10347 }
10348 
10349 int
10350 t4_deactivate_uld(struct adapter *sc, int id)
10351 {
10352 	int rc;
10353 	struct uld_info *ui;
10354 
10355 	ASSERT_SYNCHRONIZED_OP(sc);
10356 
10357 	if (id < 0 || id > ULD_MAX)
10358 		return (EINVAL);
10359 	rc = ENXIO;
10360 
10361 	sx_slock(&t4_uld_list_lock);
10362 
10363 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10364 		if (ui->uld_id == id) {
10365 			rc = ui->deactivate(sc);
10366 			if (rc == 0) {
10367 				clrbit(&sc->active_ulds, id);
10368 				ui->refcount--;
10369 			}
10370 			break;
10371 		}
10372 	}
10373 
10374 	sx_sunlock(&t4_uld_list_lock);
10375 
10376 	return (rc);
10377 }
10378 
10379 int
10380 uld_active(struct adapter *sc, int uld_id)
10381 {
10382 
10383 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
10384 
10385 	return (isset(&sc->active_ulds, uld_id));
10386 }
10387 #endif
10388 
10389 /*
10390  * t  = ptr to tunable.
10391  * nc = number of CPUs.
10392  * c  = compiled in default for that tunable.
10393  */
10394 static void
10395 calculate_nqueues(int *t, int nc, const int c)
10396 {
10397 	int nq;
10398 
10399 	if (*t > 0)
10400 		return;
10401 	nq = *t < 0 ? -*t : c;
10402 	*t = min(nc, nq);
10403 }
10404 
10405 /*
10406  * Come up with reasonable defaults for some of the tunables, provided they're
10407  * not set by the user (in which case we'll use the values as is).
10408  */
10409 static void
10410 tweak_tunables(void)
10411 {
10412 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
10413 
10414 	if (t4_ntxq < 1) {
10415 #ifdef RSS
10416 		t4_ntxq = rss_getnumbuckets();
10417 #else
10418 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
10419 #endif
10420 	}
10421 
10422 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
10423 
10424 	if (t4_nrxq < 1) {
10425 #ifdef RSS
10426 		t4_nrxq = rss_getnumbuckets();
10427 #else
10428 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
10429 #endif
10430 	}
10431 
10432 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
10433 
10434 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10435 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
10436 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
10437 #endif
10438 #ifdef TCP_OFFLOAD
10439 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
10440 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
10441 
10442 	if (t4_toecaps_allowed == -1)
10443 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
10444 
10445 	if (t4_rdmacaps_allowed == -1) {
10446 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
10447 		    FW_CAPS_CONFIG_RDMA_RDMAC;
10448 	}
10449 
10450 	if (t4_iscsicaps_allowed == -1) {
10451 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10452 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10453 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
10454 	}
10455 
10456 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10457 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
10458 
10459 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10460 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10461 #else
10462 	if (t4_toecaps_allowed == -1)
10463 		t4_toecaps_allowed = 0;
10464 
10465 	if (t4_rdmacaps_allowed == -1)
10466 		t4_rdmacaps_allowed = 0;
10467 
10468 	if (t4_iscsicaps_allowed == -1)
10469 		t4_iscsicaps_allowed = 0;
10470 #endif
10471 
10472 #ifdef DEV_NETMAP
10473 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10474 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10475 #endif
10476 
10477 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
10478 		t4_tmr_idx = TMR_IDX;
10479 
10480 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
10481 		t4_pktc_idx = PKTC_IDX;
10482 
10483 	if (t4_qsize_txq < 128)
10484 		t4_qsize_txq = 128;
10485 
10486 	if (t4_qsize_rxq < 128)
10487 		t4_qsize_rxq = 128;
10488 	while (t4_qsize_rxq & 7)
10489 		t4_qsize_rxq++;
10490 
10491 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10492 
10493 	/*
10494 	 * Number of VIs to create per-port.  The first VI is the "main" regular
10495 	 * VI for the port.  The rest are additional virtual interfaces on the
10496 	 * same physical port.  Note that the main VI does not have native
10497 	 * netmap support but the extra VIs do.
10498 	 *
10499 	 * Limit the number of VIs per port to the number of available
10500 	 * MAC addresses per port.
10501 	 */
10502 	if (t4_num_vis < 1)
10503 		t4_num_vis = 1;
10504 	if (t4_num_vis > nitems(vi_mac_funcs)) {
10505 		t4_num_vis = nitems(vi_mac_funcs);
10506 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10507 	}
10508 
10509 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10510 		pcie_relaxed_ordering = 1;
10511 #if defined(__i386__) || defined(__amd64__)
10512 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
10513 			pcie_relaxed_ordering = 0;
10514 #endif
10515 	}
10516 }
10517 
10518 #ifdef DDB
10519 static void
10520 t4_dump_tcb(struct adapter *sc, int tid)
10521 {
10522 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10523 
10524 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10525 	save = t4_read_reg(sc, reg);
10526 	base = sc->memwin[2].mw_base;
10527 
10528 	/* Dump TCB for the tid */
10529 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10530 	tcb_addr += tid * TCB_SIZE;
10531 
10532 	if (is_t4(sc)) {
10533 		pf = 0;
10534 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
10535 	} else {
10536 		pf = V_PFNUM(sc->pf);
10537 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
10538 	}
10539 	t4_write_reg(sc, reg, win_pos | pf);
10540 	t4_read_reg(sc, reg);
10541 
10542 	off = tcb_addr - win_pos;
10543 	for (i = 0; i < 4; i++) {
10544 		uint32_t buf[8];
10545 		for (j = 0; j < 8; j++, off += 4)
10546 			buf[j] = htonl(t4_read_reg(sc, base + off));
10547 
10548 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10549 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10550 		    buf[7]);
10551 	}
10552 
10553 	t4_write_reg(sc, reg, save);
10554 	t4_read_reg(sc, reg);
10555 }
10556 
10557 static void
10558 t4_dump_devlog(struct adapter *sc)
10559 {
10560 	struct devlog_params *dparams = &sc->params.devlog;
10561 	struct fw_devlog_e e;
10562 	int i, first, j, m, nentries, rc;
10563 	uint64_t ftstamp = UINT64_MAX;
10564 
10565 	if (dparams->start == 0) {
10566 		db_printf("devlog params not valid\n");
10567 		return;
10568 	}
10569 
10570 	nentries = dparams->size / sizeof(struct fw_devlog_e);
10571 	m = fwmtype_to_hwmtype(dparams->memtype);
10572 
10573 	/* Find the first entry. */
10574 	first = -1;
10575 	for (i = 0; i < nentries && !db_pager_quit; i++) {
10576 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10577 		    sizeof(e), (void *)&e);
10578 		if (rc != 0)
10579 			break;
10580 
10581 		if (e.timestamp == 0)
10582 			break;
10583 
10584 		e.timestamp = be64toh(e.timestamp);
10585 		if (e.timestamp < ftstamp) {
10586 			ftstamp = e.timestamp;
10587 			first = i;
10588 		}
10589 	}
10590 
10591 	if (first == -1)
10592 		return;
10593 
10594 	i = first;
10595 	do {
10596 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10597 		    sizeof(e), (void *)&e);
10598 		if (rc != 0)
10599 			return;
10600 
10601 		if (e.timestamp == 0)
10602 			return;
10603 
10604 		e.timestamp = be64toh(e.timestamp);
10605 		e.seqno = be32toh(e.seqno);
10606 		for (j = 0; j < 8; j++)
10607 			e.params[j] = be32toh(e.params[j]);
10608 
10609 		db_printf("%10d  %15ju  %8s  %8s  ",
10610 		    e.seqno, e.timestamp,
10611 		    (e.level < nitems(devlog_level_strings) ?
10612 			devlog_level_strings[e.level] : "UNKNOWN"),
10613 		    (e.facility < nitems(devlog_facility_strings) ?
10614 			devlog_facility_strings[e.facility] : "UNKNOWN"));
10615 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10616 		    e.params[3], e.params[4], e.params[5], e.params[6],
10617 		    e.params[7]);
10618 
10619 		if (++i == nentries)
10620 			i = 0;
10621 	} while (i != first && !db_pager_quit);
10622 }
10623 
10624 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10625 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10626 
10627 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10628 {
10629 	device_t dev;
10630 	int t;
10631 	bool valid;
10632 
10633 	valid = false;
10634 	t = db_read_token();
10635 	if (t == tIDENT) {
10636 		dev = device_lookup_by_name(db_tok_string);
10637 		valid = true;
10638 	}
10639 	db_skip_to_eol();
10640 	if (!valid) {
10641 		db_printf("usage: show t4 devlog <nexus>\n");
10642 		return;
10643 	}
10644 
10645 	if (dev == NULL) {
10646 		db_printf("device not found\n");
10647 		return;
10648 	}
10649 
10650 	t4_dump_devlog(device_get_softc(dev));
10651 }
10652 
10653 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10654 {
10655 	device_t dev;
10656 	int radix, tid, t;
10657 	bool valid;
10658 
10659 	valid = false;
10660 	radix = db_radix;
10661 	db_radix = 10;
10662 	t = db_read_token();
10663 	if (t == tIDENT) {
10664 		dev = device_lookup_by_name(db_tok_string);
10665 		t = db_read_token();
10666 		if (t == tNUMBER) {
10667 			tid = db_tok_number;
10668 			valid = true;
10669 		}
10670 	}
10671 	db_radix = radix;
10672 	db_skip_to_eol();
10673 	if (!valid) {
10674 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
10675 		return;
10676 	}
10677 
10678 	if (dev == NULL) {
10679 		db_printf("device not found\n");
10680 		return;
10681 	}
10682 	if (tid < 0) {
10683 		db_printf("invalid tid\n");
10684 		return;
10685 	}
10686 
10687 	t4_dump_tcb(device_get_softc(dev), tid);
10688 }
10689 #endif
10690 
10691 /*
10692  * Borrowed from cesa_prep_aes_key().
10693  *
10694  * NB: The crypto engine wants the words in the decryption key in reverse
10695  * order.
10696  */
10697 void
10698 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
10699 {
10700 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
10701 	uint32_t *dkey;
10702 	int i;
10703 
10704 	rijndaelKeySetupEnc(ek, enc_key, kbits);
10705 	dkey = dec_key;
10706 	dkey += (kbits / 8) / 4;
10707 
10708 	switch (kbits) {
10709 	case 128:
10710 		for (i = 0; i < 4; i++)
10711 			*--dkey = htobe32(ek[4 * 10 + i]);
10712 		break;
10713 	case 192:
10714 		for (i = 0; i < 2; i++)
10715 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
10716 		for (i = 0; i < 4; i++)
10717 			*--dkey = htobe32(ek[4 * 12 + i]);
10718 		break;
10719 	case 256:
10720 		for (i = 0; i < 4; i++)
10721 			*--dkey = htobe32(ek[4 * 13 + i]);
10722 		for (i = 0; i < 4; i++)
10723 			*--dkey = htobe32(ek[4 * 14 + i]);
10724 		break;
10725 	}
10726 	MPASS(dkey == dec_key);
10727 }
10728 
10729 static struct sx mlu;	/* mod load unload */
10730 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10731 
10732 static int
10733 mod_event(module_t mod, int cmd, void *arg)
10734 {
10735 	int rc = 0;
10736 	static int loaded = 0;
10737 
10738 	switch (cmd) {
10739 	case MOD_LOAD:
10740 		sx_xlock(&mlu);
10741 		if (loaded++ == 0) {
10742 			t4_sge_modload();
10743 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10744 			    t4_filter_rpl, CPL_COOKIE_FILTER);
10745 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
10746 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
10747 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
10748 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
10749 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10750 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
10751 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
10752 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
10753 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10754 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10755 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
10756 			    do_smt_write_rpl);
10757 			sx_init(&t4_list_lock, "T4/T5 adapters");
10758 			SLIST_INIT(&t4_list);
10759 			callout_init(&fatal_callout, 1);
10760 #ifdef TCP_OFFLOAD
10761 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10762 			SLIST_INIT(&t4_uld_list);
10763 #endif
10764 #ifdef INET6
10765 			t4_clip_modload();
10766 #endif
10767 			t4_tracer_modload();
10768 			tweak_tunables();
10769 		}
10770 		sx_xunlock(&mlu);
10771 		break;
10772 
10773 	case MOD_UNLOAD:
10774 		sx_xlock(&mlu);
10775 		if (--loaded == 0) {
10776 			int tries;
10777 
10778 			sx_slock(&t4_list_lock);
10779 			if (!SLIST_EMPTY(&t4_list)) {
10780 				rc = EBUSY;
10781 				sx_sunlock(&t4_list_lock);
10782 				goto done_unload;
10783 			}
10784 #ifdef TCP_OFFLOAD
10785 			sx_slock(&t4_uld_list_lock);
10786 			if (!SLIST_EMPTY(&t4_uld_list)) {
10787 				rc = EBUSY;
10788 				sx_sunlock(&t4_uld_list_lock);
10789 				sx_sunlock(&t4_list_lock);
10790 				goto done_unload;
10791 			}
10792 #endif
10793 			tries = 0;
10794 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10795 				uprintf("%ju clusters with custom free routine "
10796 				    "still is use.\n", t4_sge_extfree_refs());
10797 				pause("t4unload", 2 * hz);
10798 			}
10799 #ifdef TCP_OFFLOAD
10800 			sx_sunlock(&t4_uld_list_lock);
10801 #endif
10802 			sx_sunlock(&t4_list_lock);
10803 
10804 			if (t4_sge_extfree_refs() == 0) {
10805 				t4_tracer_modunload();
10806 #ifdef INET6
10807 				t4_clip_modunload();
10808 #endif
10809 #ifdef TCP_OFFLOAD
10810 				sx_destroy(&t4_uld_list_lock);
10811 #endif
10812 				sx_destroy(&t4_list_lock);
10813 				t4_sge_modunload();
10814 				loaded = 0;
10815 			} else {
10816 				rc = EBUSY;
10817 				loaded++;	/* undo earlier decrement */
10818 			}
10819 		}
10820 done_unload:
10821 		sx_xunlock(&mlu);
10822 		break;
10823 	}
10824 
10825 	return (rc);
10826 }
10827 
10828 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10829 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10830 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10831 
10832 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10833 MODULE_VERSION(t4nex, 1);
10834 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10835 #ifdef DEV_NETMAP
10836 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10837 #endif /* DEV_NETMAP */
10838 
10839 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10840 MODULE_VERSION(t5nex, 1);
10841 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10842 #ifdef DEV_NETMAP
10843 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10844 #endif /* DEV_NETMAP */
10845 
10846 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10847 MODULE_VERSION(t6nex, 1);
10848 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10849 #ifdef DEV_NETMAP
10850 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10851 #endif /* DEV_NETMAP */
10852 
10853 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10854 MODULE_VERSION(cxgbe, 1);
10855 
10856 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10857 MODULE_VERSION(cxl, 1);
10858 
10859 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10860 MODULE_VERSION(cc, 1);
10861 
10862 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10863 MODULE_VERSION(vcxgbe, 1);
10864 
10865 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10866 MODULE_VERSION(vcxl, 1);
10867 
10868 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10869 MODULE_VERSION(vcc, 1);
10870