1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 struct uld_info *t4_uld_list[ULD_MAX + 1]; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDTXQ_VI 1 322 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 324 "Number of offload TX queues per VI"); 325 #endif 326 327 #if defined(TCP_OFFLOAD) 328 #define NOFLDRXQ 2 329 static int t4_nofldrxq = -NOFLDRXQ; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 331 "Number of offload RX queues per port"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 int t4_ddp_rcvbuf_len = 256 * 1024; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 420 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 421 422 unsigned int t4_ddp_rcvbuf_cache = 4; 423 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 424 &t4_ddp_rcvbuf_cache, 0, 425 "maximum number of free DDP RX buffers to cache per connection"); 426 #endif 427 428 #ifdef DEV_NETMAP 429 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 430 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 431 static int t4_native_netmap = NN_EXTRA_VI; 432 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 433 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 434 435 #define NNMTXQ 8 436 static int t4_nnmtxq = -NNMTXQ; 437 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 438 "Number of netmap TX queues"); 439 440 #define NNMRXQ 8 441 static int t4_nnmrxq = -NNMRXQ; 442 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 443 "Number of netmap RX queues"); 444 445 #define NNMTXQ_VI 2 446 static int t4_nnmtxq_vi = -NNMTXQ_VI; 447 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 448 "Number of netmap TX queues per VI"); 449 450 #define NNMRXQ_VI 2 451 static int t4_nnmrxq_vi = -NNMRXQ_VI; 452 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 453 "Number of netmap RX queues per VI"); 454 #endif 455 456 /* 457 * Holdoff parameters for ports. 458 */ 459 #define TMR_IDX 1 460 int t4_tmr_idx = TMR_IDX; 461 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 462 0, "Holdoff timer index"); 463 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 464 465 #define PKTC_IDX (-1) 466 int t4_pktc_idx = PKTC_IDX; 467 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 468 0, "Holdoff packet counter index"); 469 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 470 471 /* 472 * Size (# of entries) of each tx and rx queue. 473 */ 474 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 476 "Number of descriptors in each TX queue"); 477 478 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 479 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 480 "Number of descriptors in each RX queue"); 481 482 /* 483 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 484 */ 485 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 487 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 488 489 /* 490 * Configuration file. All the _CF names here are special. 491 */ 492 #define DEFAULT_CF "default" 493 #define BUILTIN_CF "built-in" 494 #define FLASH_CF "flash" 495 #define UWIRE_CF "uwire" 496 #define FPGA_CF "fpga" 497 static char t4_cfg_file[32] = DEFAULT_CF; 498 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 499 sizeof(t4_cfg_file), "Firmware configuration file"); 500 501 /* 502 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 503 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 504 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 505 * mark or when signalled to do so, 0 to never emit PAUSE. 506 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 507 * negotiated settings will override rx_pause/tx_pause. 508 * Otherwise rx_pause/tx_pause are applied forcibly. 509 */ 510 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 512 &t4_pause_settings, 0, 513 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 514 515 /* 516 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 517 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 518 * 0 to disable FEC. 519 */ 520 static int t4_fec = -1; 521 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 522 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 523 524 /* 525 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 526 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 527 * driver runs as if this is set to 0. 528 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 529 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 530 * transceiver. Multiple FEC bits may not be okay but will be passed on to 531 * the firmware anyway (may result in l1cfg errors with old firmwares). 532 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 533 * means set all FEC bits that are valid for the speed. 534 */ 535 static int t4_force_fec = -1; 536 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 537 "Controls the use of FORCE_FEC bit in L1 configuration."); 538 539 /* 540 * Link autonegotiation. 541 * -1 to run with the firmware default. 542 * 0 to disable. 543 * 1 to enable. 544 */ 545 static int t4_autoneg = -1; 546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 547 "Link autonegotiation"); 548 549 /* 550 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 551 * encouraged respectively). '-n' is the same as 'n' except the firmware 552 * version used in the checks is read from the firmware bundled with the driver. 553 */ 554 static int t4_fw_install = 1; 555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 556 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 557 558 /* 559 * ASIC features that will be used. Disable the ones you don't want so that the 560 * chip resources aren't wasted on features that will not be used. 561 */ 562 static int t4_nbmcaps_allowed = 0; 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 564 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 565 566 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 567 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 568 &t4_linkcaps_allowed, 0, "Default link capabilities"); 569 570 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 571 FW_CAPS_CONFIG_SWITCH_EGRESS; 572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 573 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 574 575 #ifdef RATELIMIT 576 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 577 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 578 #else 579 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 580 FW_CAPS_CONFIG_NIC_HASHFILTER; 581 #endif 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 583 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 584 585 static int t4_toecaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 587 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 588 589 static int t4_rdmacaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 591 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 592 593 static int t4_cryptocaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 595 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 596 597 static int t4_iscsicaps_allowed = -1; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 599 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 600 601 static int t4_fcoecaps_allowed = 0; 602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 603 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 604 605 static int t5_write_combine = 0; 606 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 607 0, "Use WC instead of UC for BAR2"); 608 609 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 610 static int t4_doorbells_allowed = 0xf; 611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 612 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 613 614 static int t4_num_vis = 1; 615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 616 "Number of VIs per port"); 617 618 /* 619 * PCIe Relaxed Ordering. 620 * -1: driver should figure out a good value. 621 * 0: disable RO. 622 * 1: enable RO. 623 * 2: leave RO alone. 624 */ 625 static int pcie_relaxed_ordering = -1; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 627 &pcie_relaxed_ordering, 0, 628 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 629 630 static int t4_panic_on_fatal_err = 0; 631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 632 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 633 634 static int t4_reset_on_fatal_err = 0; 635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 636 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 637 638 static int t4_clock_gate_on_suspend = 0; 639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 640 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 641 642 static int t4_tx_vm_wr = 0; 643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 644 "Use VM work requests to transmit packets."); 645 646 /* 647 * Set to non-zero to enable the attack filter. A packet that matches any of 648 * these conditions will get dropped on ingress: 649 * 1) IP && source address == destination address. 650 * 2) TCP/IP && source address is not a unicast address. 651 * 3) TCP/IP && destination address is not a unicast address. 652 * 4) IP && source address is loopback (127.x.y.z). 653 * 5) IP && destination address is loopback (127.x.y.z). 654 * 6) IPv6 && source address == destination address. 655 * 7) IPv6 && source address is not a unicast address. 656 * 8) IPv6 && source address is loopback (::1/128). 657 * 9) IPv6 && destination address is loopback (::1/128). 658 * 10) IPv6 && source address is unspecified (::/128). 659 * 11) IPv6 && destination address is unspecified (::/128). 660 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 661 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 662 */ 663 static int t4_attack_filter = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 665 &t4_attack_filter, 0, "Drop suspicious traffic"); 666 667 static int t4_drop_ip_fragments = 0; 668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 669 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 670 671 static int t4_drop_pkts_with_l2_errors = 1; 672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 673 &t4_drop_pkts_with_l2_errors, 0, 674 "Drop all frames with Layer 2 length or checksum errors"); 675 676 static int t4_drop_pkts_with_l3_errors = 0; 677 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 678 &t4_drop_pkts_with_l3_errors, 0, 679 "Drop all frames with IP version, length, or checksum errors"); 680 681 static int t4_drop_pkts_with_l4_errors = 0; 682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 683 &t4_drop_pkts_with_l4_errors, 0, 684 "Drop all frames with Layer 4 length, checksum, or other errors"); 685 686 #ifdef TCP_OFFLOAD 687 /* 688 * TOE tunables. 689 */ 690 static int t4_cop_managed_offloading = 0; 691 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 692 &t4_cop_managed_offloading, 0, 693 "COP (Connection Offload Policy) controls all TOE offload"); 694 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 695 #endif 696 697 #ifdef KERN_TLS 698 /* 699 * This enables KERN_TLS for all adapters if set. 700 */ 701 static int t4_kern_tls = 0; 702 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 703 "Enable KERN_TLS mode for T6 adapters"); 704 705 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 706 "cxgbe(4) KERN_TLS parameters"); 707 708 static int t4_tls_inline_keys = 0; 709 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 710 &t4_tls_inline_keys, 0, 711 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 712 "in card memory."); 713 714 static int t4_tls_combo_wrs = 0; 715 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 716 0, "Attempt to combine TCB field updates with TLS record work requests."); 717 #endif 718 719 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 720 static int vi_mac_funcs[] = { 721 FW_VI_FUNC_ETH, 722 FW_VI_FUNC_OFLD, 723 FW_VI_FUNC_IWARP, 724 FW_VI_FUNC_OPENISCSI, 725 FW_VI_FUNC_OPENFCOE, 726 FW_VI_FUNC_FOISCSI, 727 FW_VI_FUNC_FOFCOE, 728 }; 729 730 struct intrs_and_queues { 731 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 732 uint16_t num_vis; /* number of VIs for each port */ 733 uint16_t nirq; /* Total # of vectors */ 734 uint16_t ntxq; /* # of NIC txq's for each port */ 735 uint16_t nrxq; /* # of NIC rxq's for each port */ 736 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 737 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 738 uint16_t nnmtxq; /* # of netmap txq's */ 739 uint16_t nnmrxq; /* # of netmap rxq's */ 740 741 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 742 uint16_t ntxq_vi; /* # of NIC txq's */ 743 uint16_t nrxq_vi; /* # of NIC rxq's */ 744 uint16_t nofldtxq_vi; /* # of TOE txq's */ 745 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 746 uint16_t nnmtxq_vi; /* # of netmap txq's */ 747 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 748 }; 749 750 static void setup_memwin(struct adapter *); 751 static void position_memwin(struct adapter *, int, uint32_t); 752 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 753 static int fwmtype_to_hwmtype(int); 754 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 755 uint32_t *); 756 static int fixup_devlog_params(struct adapter *); 757 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 758 static int contact_firmware(struct adapter *); 759 static int partition_resources(struct adapter *); 760 static int get_params__pre_init(struct adapter *); 761 static int set_params__pre_init(struct adapter *); 762 static int get_params__post_init(struct adapter *); 763 static int set_params__post_init(struct adapter *); 764 static void t4_set_desc(struct adapter *); 765 static bool fixed_ifmedia(struct port_info *); 766 static void build_medialist(struct port_info *); 767 static void init_link_config(struct port_info *); 768 static int fixup_link_config(struct port_info *); 769 static int apply_link_config(struct port_info *); 770 static int cxgbe_init_synchronized(struct vi_info *); 771 static int cxgbe_uninit_synchronized(struct vi_info *); 772 static int adapter_full_init(struct adapter *); 773 static void adapter_full_uninit(struct adapter *); 774 static int vi_full_init(struct vi_info *); 775 static void vi_full_uninit(struct vi_info *); 776 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 777 static void quiesce_txq(struct sge_txq *); 778 static void quiesce_wrq(struct sge_wrq *); 779 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 780 static void quiesce_vi(struct vi_info *); 781 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 782 driver_intr_t *, void *, char *); 783 static int t4_free_irq(struct adapter *, struct irq *); 784 static void t4_init_atid_table(struct adapter *); 785 static void t4_free_atid_table(struct adapter *); 786 static void stop_atid_allocator(struct adapter *); 787 static void restart_atid_allocator(struct adapter *); 788 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 789 static void vi_refresh_stats(struct vi_info *); 790 static void cxgbe_refresh_stats(struct vi_info *); 791 static void cxgbe_tick(void *); 792 static void vi_tick(void *); 793 static void cxgbe_sysctls(struct port_info *); 794 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 795 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 796 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 797 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 798 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 799 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 800 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 801 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 802 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 803 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 804 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 805 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 806 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 808 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 809 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 810 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 811 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 812 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 813 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 814 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 819 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 820 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 821 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 825 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 827 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 829 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 830 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 831 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 832 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 833 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 834 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 842 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 843 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 844 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 845 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 846 #ifdef TCP_OFFLOAD 847 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 850 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 851 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 852 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 853 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 854 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 855 #endif 856 static int get_sge_context(struct adapter *, struct t4_sge_context *); 857 static int load_fw(struct adapter *, struct t4_data *); 858 static int load_cfg(struct adapter *, struct t4_data *); 859 static int load_boot(struct adapter *, struct t4_bootrom *); 860 static int load_bootcfg(struct adapter *, struct t4_data *); 861 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 862 static void free_offload_policy(struct t4_offload_policy *); 863 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 864 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 865 static int read_i2c(struct adapter *, struct t4_i2c_data *); 866 static int clear_stats(struct adapter *, u_int); 867 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 868 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 869 static inline int stop_adapter(struct adapter *); 870 static inline void set_adapter_hwstatus(struct adapter *, const bool); 871 static int stop_lld(struct adapter *); 872 static inline int restart_adapter(struct adapter *); 873 static int restart_lld(struct adapter *); 874 #ifdef TCP_OFFLOAD 875 static int deactivate_all_uld(struct adapter *); 876 static void stop_all_uld(struct adapter *); 877 static void restart_all_uld(struct adapter *); 878 #endif 879 #ifdef KERN_TLS 880 static int ktls_capability(struct adapter *, bool); 881 #endif 882 static int mod_event(module_t, int, void *); 883 static int notify_siblings(device_t, int); 884 static uint64_t vi_get_counter(if_t, ift_counter); 885 static uint64_t cxgbe_get_counter(if_t, ift_counter); 886 static void enable_vxlan_rx(struct adapter *); 887 static void reset_adapter_task(void *, int); 888 static void fatal_error_task(void *, int); 889 static void dump_devlog(struct adapter *); 890 static void dump_cim_regs(struct adapter *); 891 static void dump_cimla(struct adapter *); 892 893 struct { 894 uint16_t device; 895 char *desc; 896 } t4_pciids[] = { 897 {0xa000, "Chelsio Terminator 4 FPGA"}, 898 {0x4400, "Chelsio T440-dbg"}, 899 {0x4401, "Chelsio T420-CR"}, 900 {0x4402, "Chelsio T422-CR"}, 901 {0x4403, "Chelsio T440-CR"}, 902 {0x4404, "Chelsio T420-BCH"}, 903 {0x4405, "Chelsio T440-BCH"}, 904 {0x4406, "Chelsio T440-CH"}, 905 {0x4407, "Chelsio T420-SO"}, 906 {0x4408, "Chelsio T420-CX"}, 907 {0x4409, "Chelsio T420-BT"}, 908 {0x440a, "Chelsio T404-BT"}, 909 {0x440e, "Chelsio T440-LP-CR"}, 910 }, t5_pciids[] = { 911 {0xb000, "Chelsio Terminator 5 FPGA"}, 912 {0x5400, "Chelsio T580-dbg"}, 913 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 914 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 915 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 916 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 917 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 918 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 919 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 920 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 921 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 922 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 923 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 924 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 925 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 926 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 927 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 928 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 929 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 930 931 /* Custom */ 932 {0x5483, "Custom T540-CR"}, 933 {0x5484, "Custom T540-BT"}, 934 }, t6_pciids[] = { 935 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 936 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 937 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 938 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 939 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 940 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 941 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 942 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 943 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 944 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 945 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 946 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 947 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 948 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 949 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 950 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 951 952 /* Custom */ 953 {0x6480, "Custom T6225-CR"}, 954 {0x6481, "Custom T62100-CR"}, 955 {0x6482, "Custom T6225-CR"}, 956 {0x6483, "Custom T62100-CR"}, 957 {0x6484, "Custom T64100-CR"}, 958 {0x6485, "Custom T6240-SO"}, 959 {0x6486, "Custom T6225-SO-CR"}, 960 {0x6487, "Custom T6225-CR"}, 961 }; 962 963 #ifdef TCP_OFFLOAD 964 /* 965 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 966 * be exactly the same for both rxq and ofld_rxq. 967 */ 968 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 969 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 970 #endif 971 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 972 973 static int 974 t4_probe(device_t dev) 975 { 976 int i; 977 uint16_t v = pci_get_vendor(dev); 978 uint16_t d = pci_get_device(dev); 979 uint8_t f = pci_get_function(dev); 980 981 if (v != PCI_VENDOR_ID_CHELSIO) 982 return (ENXIO); 983 984 /* Attach only to PF0 of the FPGA */ 985 if (d == 0xa000 && f != 0) 986 return (ENXIO); 987 988 for (i = 0; i < nitems(t4_pciids); i++) { 989 if (d == t4_pciids[i].device) { 990 device_set_desc(dev, t4_pciids[i].desc); 991 return (BUS_PROBE_DEFAULT); 992 } 993 } 994 995 return (ENXIO); 996 } 997 998 static int 999 t5_probe(device_t dev) 1000 { 1001 int i; 1002 uint16_t v = pci_get_vendor(dev); 1003 uint16_t d = pci_get_device(dev); 1004 uint8_t f = pci_get_function(dev); 1005 1006 if (v != PCI_VENDOR_ID_CHELSIO) 1007 return (ENXIO); 1008 1009 /* Attach only to PF0 of the FPGA */ 1010 if (d == 0xb000 && f != 0) 1011 return (ENXIO); 1012 1013 for (i = 0; i < nitems(t5_pciids); i++) { 1014 if (d == t5_pciids[i].device) { 1015 device_set_desc(dev, t5_pciids[i].desc); 1016 return (BUS_PROBE_DEFAULT); 1017 } 1018 } 1019 1020 return (ENXIO); 1021 } 1022 1023 static int 1024 t6_probe(device_t dev) 1025 { 1026 int i; 1027 uint16_t v = pci_get_vendor(dev); 1028 uint16_t d = pci_get_device(dev); 1029 1030 if (v != PCI_VENDOR_ID_CHELSIO) 1031 return (ENXIO); 1032 1033 for (i = 0; i < nitems(t6_pciids); i++) { 1034 if (d == t6_pciids[i].device) { 1035 device_set_desc(dev, t6_pciids[i].desc); 1036 return (BUS_PROBE_DEFAULT); 1037 } 1038 } 1039 1040 return (ENXIO); 1041 } 1042 1043 static void 1044 t5_attribute_workaround(device_t dev) 1045 { 1046 device_t root_port; 1047 uint32_t v; 1048 1049 /* 1050 * The T5 chips do not properly echo the No Snoop and Relaxed 1051 * Ordering attributes when replying to a TLP from a Root 1052 * Port. As a workaround, find the parent Root Port and 1053 * disable No Snoop and Relaxed Ordering. Note that this 1054 * affects all devices under this root port. 1055 */ 1056 root_port = pci_find_pcie_root_port(dev); 1057 if (root_port == NULL) { 1058 device_printf(dev, "Unable to find parent root port\n"); 1059 return; 1060 } 1061 1062 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1063 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1064 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1065 0) 1066 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1067 device_get_nameunit(root_port)); 1068 } 1069 1070 static const struct devnames devnames[] = { 1071 { 1072 .nexus_name = "t4nex", 1073 .ifnet_name = "cxgbe", 1074 .vi_ifnet_name = "vcxgbe", 1075 .pf03_drv_name = "t4iov", 1076 .vf_nexus_name = "t4vf", 1077 .vf_ifnet_name = "cxgbev" 1078 }, { 1079 .nexus_name = "t5nex", 1080 .ifnet_name = "cxl", 1081 .vi_ifnet_name = "vcxl", 1082 .pf03_drv_name = "t5iov", 1083 .vf_nexus_name = "t5vf", 1084 .vf_ifnet_name = "cxlv" 1085 }, { 1086 .nexus_name = "t6nex", 1087 .ifnet_name = "cc", 1088 .vi_ifnet_name = "vcc", 1089 .pf03_drv_name = "t6iov", 1090 .vf_nexus_name = "t6vf", 1091 .vf_ifnet_name = "ccv" 1092 } 1093 }; 1094 1095 void 1096 t4_init_devnames(struct adapter *sc) 1097 { 1098 int id; 1099 1100 id = chip_id(sc); 1101 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1102 sc->names = &devnames[id - CHELSIO_T4]; 1103 else { 1104 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1105 sc->names = NULL; 1106 } 1107 } 1108 1109 static int 1110 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1111 { 1112 const char *parent, *name; 1113 long value; 1114 int line, unit; 1115 1116 line = 0; 1117 parent = device_get_nameunit(sc->dev); 1118 name = sc->names->ifnet_name; 1119 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1120 if (resource_long_value(name, unit, "port", &value) == 0 && 1121 value == pi->port_id) 1122 return (unit); 1123 } 1124 return (-1); 1125 } 1126 1127 static void 1128 t4_calibration(void *arg) 1129 { 1130 struct adapter *sc; 1131 struct clock_sync *cur, *nex; 1132 uint64_t hw; 1133 sbintime_t sbt; 1134 int next_up; 1135 1136 sc = (struct adapter *)arg; 1137 1138 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1139 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1140 sbt = sbinuptime(); 1141 1142 cur = &sc->cal_info[sc->cal_current]; 1143 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1144 nex = &sc->cal_info[next_up]; 1145 if (__predict_false(sc->cal_count == 0)) { 1146 /* First time in, just get the values in */ 1147 cur->hw_cur = hw; 1148 cur->sbt_cur = sbt; 1149 sc->cal_count++; 1150 goto done; 1151 } 1152 1153 if (cur->hw_cur == hw) { 1154 /* The clock is not advancing? */ 1155 sc->cal_count = 0; 1156 atomic_store_rel_int(&cur->gen, 0); 1157 goto done; 1158 } 1159 1160 seqc_write_begin(&nex->gen); 1161 nex->hw_prev = cur->hw_cur; 1162 nex->sbt_prev = cur->sbt_cur; 1163 nex->hw_cur = hw; 1164 nex->sbt_cur = sbt; 1165 seqc_write_end(&nex->gen); 1166 sc->cal_current = next_up; 1167 done: 1168 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1169 sc, C_DIRECT_EXEC); 1170 } 1171 1172 static void 1173 t4_calibration_start(struct adapter *sc) 1174 { 1175 /* 1176 * Here if we have not done a calibration 1177 * then do so otherwise start the appropriate 1178 * timer. 1179 */ 1180 int i; 1181 1182 for (i = 0; i < CNT_CAL_INFO; i++) { 1183 sc->cal_info[i].gen = 0; 1184 } 1185 sc->cal_current = 0; 1186 sc->cal_count = 0; 1187 sc->cal_gen = 0; 1188 t4_calibration(sc); 1189 } 1190 1191 static int 1192 t4_attach(device_t dev) 1193 { 1194 struct adapter *sc; 1195 int rc = 0, i, j, rqidx, tqidx, nports; 1196 struct make_dev_args mda; 1197 struct intrs_and_queues iaq; 1198 struct sge *s; 1199 uint32_t *buf; 1200 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1201 int ofld_tqidx; 1202 #endif 1203 #ifdef TCP_OFFLOAD 1204 int ofld_rqidx; 1205 #endif 1206 #ifdef DEV_NETMAP 1207 int nm_rqidx, nm_tqidx; 1208 #endif 1209 int num_vis; 1210 1211 sc = device_get_softc(dev); 1212 sc->dev = dev; 1213 sysctl_ctx_init(&sc->ctx); 1214 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1215 1216 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1217 t5_attribute_workaround(dev); 1218 pci_enable_busmaster(dev); 1219 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1220 uint32_t v; 1221 1222 pci_set_max_read_req(dev, 4096); 1223 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1224 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1225 if (pcie_relaxed_ordering == 0 && 1226 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1227 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1228 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1229 } else if (pcie_relaxed_ordering == 1 && 1230 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1231 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1232 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1233 } 1234 } 1235 1236 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1237 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1238 sc->traceq = -1; 1239 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1240 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1241 device_get_nameunit(dev)); 1242 1243 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1244 device_get_nameunit(dev)); 1245 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1246 t4_add_adapter(sc); 1247 1248 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1249 TAILQ_INIT(&sc->sfl); 1250 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1251 1252 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1253 1254 sc->policy = NULL; 1255 rw_init(&sc->policy_lock, "connection offload policy"); 1256 1257 callout_init(&sc->ktls_tick, 1); 1258 1259 callout_init(&sc->cal_callout, 1); 1260 1261 refcount_init(&sc->vxlan_refcount, 0); 1262 1263 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1264 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1265 1266 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1269 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1270 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1271 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1272 1273 rc = t4_map_bars_0_and_4(sc); 1274 if (rc != 0) 1275 goto done; /* error message displayed already */ 1276 1277 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1278 1279 /* Prepare the adapter for operation. */ 1280 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1281 rc = -t4_prep_adapter(sc, buf); 1282 free(buf, M_CXGBE); 1283 if (rc != 0) { 1284 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1285 goto done; 1286 } 1287 1288 /* 1289 * This is the real PF# to which we're attaching. Works from within PCI 1290 * passthrough environments too, where pci_get_function() could return a 1291 * different PF# depending on the passthrough configuration. We need to 1292 * use the real PF# in all our communication with the firmware. 1293 */ 1294 j = t4_read_reg(sc, A_PL_WHOAMI); 1295 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1296 sc->mbox = sc->pf; 1297 1298 t4_init_devnames(sc); 1299 if (sc->names == NULL) { 1300 rc = ENOTSUP; 1301 goto done; /* error message displayed already */ 1302 } 1303 1304 /* 1305 * Do this really early, with the memory windows set up even before the 1306 * character device. The userland tool's register i/o and mem read 1307 * will work even in "recovery mode". 1308 */ 1309 setup_memwin(sc); 1310 if (t4_init_devlog_params(sc, 0) == 0) 1311 fixup_devlog_params(sc); 1312 make_dev_args_init(&mda); 1313 mda.mda_devsw = &t4_cdevsw; 1314 mda.mda_uid = UID_ROOT; 1315 mda.mda_gid = GID_WHEEL; 1316 mda.mda_mode = 0600; 1317 mda.mda_si_drv1 = sc; 1318 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1319 if (rc != 0) 1320 device_printf(dev, "failed to create nexus char device: %d.\n", 1321 rc); 1322 1323 /* Go no further if recovery mode has been requested. */ 1324 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1325 device_printf(dev, "recovery mode.\n"); 1326 goto done; 1327 } 1328 1329 #if defined(__i386__) 1330 if ((cpu_feature & CPUID_CX8) == 0) { 1331 device_printf(dev, "64 bit atomics not available.\n"); 1332 rc = ENOTSUP; 1333 goto done; 1334 } 1335 #endif 1336 1337 /* Contact the firmware and try to become the master driver. */ 1338 rc = contact_firmware(sc); 1339 if (rc != 0) 1340 goto done; /* error message displayed already */ 1341 MPASS(sc->flags & FW_OK); 1342 1343 rc = get_params__pre_init(sc); 1344 if (rc != 0) 1345 goto done; /* error message displayed already */ 1346 1347 if (sc->flags & MASTER_PF) { 1348 rc = partition_resources(sc); 1349 if (rc != 0) 1350 goto done; /* error message displayed already */ 1351 } 1352 1353 rc = get_params__post_init(sc); 1354 if (rc != 0) 1355 goto done; /* error message displayed already */ 1356 1357 rc = set_params__post_init(sc); 1358 if (rc != 0) 1359 goto done; /* error message displayed already */ 1360 1361 rc = t4_map_bar_2(sc); 1362 if (rc != 0) 1363 goto done; /* error message displayed already */ 1364 1365 rc = t4_adj_doorbells(sc); 1366 if (rc != 0) 1367 goto done; /* error message displayed already */ 1368 1369 rc = t4_create_dma_tag(sc); 1370 if (rc != 0) 1371 goto done; /* error message displayed already */ 1372 1373 /* 1374 * First pass over all the ports - allocate VIs and initialize some 1375 * basic parameters like mac address, port type, etc. 1376 */ 1377 for_each_port(sc, i) { 1378 struct port_info *pi; 1379 1380 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1381 sc->port[i] = pi; 1382 1383 /* These must be set before t4_port_init */ 1384 pi->adapter = sc; 1385 pi->port_id = i; 1386 /* 1387 * XXX: vi[0] is special so we can't delay this allocation until 1388 * pi->nvi's final value is known. 1389 */ 1390 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1391 M_ZERO | M_WAITOK); 1392 1393 /* 1394 * Allocate the "main" VI and initialize parameters 1395 * like mac addr. 1396 */ 1397 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1398 if (rc != 0) { 1399 device_printf(dev, "unable to initialize port %d: %d\n", 1400 i, rc); 1401 free(pi->vi, M_CXGBE); 1402 free(pi, M_CXGBE); 1403 sc->port[i] = NULL; 1404 goto done; 1405 } 1406 1407 if (is_bt(pi->port_type)) 1408 setbit(&sc->bt_map, pi->tx_chan); 1409 else 1410 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1411 1412 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1413 device_get_nameunit(dev), i); 1414 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1415 sc->chan_map[pi->tx_chan] = i; 1416 1417 /* 1418 * The MPS counter for FCS errors doesn't work correctly on the 1419 * T6 so we use the MAC counter here. Which MAC is in use 1420 * depends on the link settings which will be known when the 1421 * link comes up. 1422 */ 1423 if (is_t6(sc)) 1424 pi->fcs_reg = -1; 1425 else { 1426 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1427 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1428 } 1429 pi->fcs_base = 0; 1430 1431 /* All VIs on this port share this media. */ 1432 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1433 cxgbe_media_status); 1434 1435 PORT_LOCK(pi); 1436 init_link_config(pi); 1437 fixup_link_config(pi); 1438 build_medialist(pi); 1439 if (fixed_ifmedia(pi)) 1440 pi->flags |= FIXED_IFMEDIA; 1441 PORT_UNLOCK(pi); 1442 1443 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1444 t4_ifnet_unit(sc, pi)); 1445 if (pi->dev == NULL) { 1446 device_printf(dev, 1447 "failed to add device for port %d.\n", i); 1448 rc = ENXIO; 1449 goto done; 1450 } 1451 pi->vi[0].dev = pi->dev; 1452 device_set_softc(pi->dev, pi); 1453 } 1454 1455 /* 1456 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1457 */ 1458 nports = sc->params.nports; 1459 rc = cfg_itype_and_nqueues(sc, &iaq); 1460 if (rc != 0) 1461 goto done; /* error message displayed already */ 1462 1463 num_vis = iaq.num_vis; 1464 sc->intr_type = iaq.intr_type; 1465 sc->intr_count = iaq.nirq; 1466 1467 s = &sc->sge; 1468 s->nrxq = nports * iaq.nrxq; 1469 s->ntxq = nports * iaq.ntxq; 1470 if (num_vis > 1) { 1471 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1472 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1473 } 1474 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1475 s->neq += nports; /* ctrl queues: 1 per port */ 1476 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1477 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1478 if (is_offload(sc) || is_ethoffload(sc)) { 1479 s->nofldtxq = nports * iaq.nofldtxq; 1480 if (num_vis > 1) 1481 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1482 s->neq += s->nofldtxq; 1483 1484 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1485 M_CXGBE, M_ZERO | M_WAITOK); 1486 } 1487 #endif 1488 #ifdef TCP_OFFLOAD 1489 if (is_offload(sc)) { 1490 s->nofldrxq = nports * iaq.nofldrxq; 1491 if (num_vis > 1) 1492 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1493 s->neq += s->nofldrxq; /* free list */ 1494 s->niq += s->nofldrxq; 1495 1496 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1497 M_CXGBE, M_ZERO | M_WAITOK); 1498 } 1499 #endif 1500 #ifdef DEV_NETMAP 1501 s->nnmrxq = 0; 1502 s->nnmtxq = 0; 1503 if (t4_native_netmap & NN_MAIN_VI) { 1504 s->nnmrxq += nports * iaq.nnmrxq; 1505 s->nnmtxq += nports * iaq.nnmtxq; 1506 } 1507 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1508 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1509 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1510 } 1511 s->neq += s->nnmtxq + s->nnmrxq; 1512 s->niq += s->nnmrxq; 1513 1514 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1515 M_CXGBE, M_ZERO | M_WAITOK); 1516 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1517 M_CXGBE, M_ZERO | M_WAITOK); 1518 #endif 1519 MPASS(s->niq <= s->iqmap_sz); 1520 MPASS(s->neq <= s->eqmap_sz); 1521 1522 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1523 M_ZERO | M_WAITOK); 1524 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1525 M_ZERO | M_WAITOK); 1526 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1527 M_ZERO | M_WAITOK); 1528 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1529 M_ZERO | M_WAITOK); 1530 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1531 M_ZERO | M_WAITOK); 1532 1533 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1534 M_ZERO | M_WAITOK); 1535 1536 t4_init_l2t(sc, M_WAITOK); 1537 t4_init_smt(sc, M_WAITOK); 1538 t4_init_tx_sched(sc); 1539 t4_init_atid_table(sc); 1540 #ifdef RATELIMIT 1541 t4_init_etid_table(sc); 1542 #endif 1543 #ifdef INET6 1544 t4_init_clip_table(sc); 1545 #endif 1546 if (sc->vres.key.size != 0) 1547 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1548 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1549 1550 /* 1551 * Second pass over the ports. This time we know the number of rx and 1552 * tx queues that each port should get. 1553 */ 1554 rqidx = tqidx = 0; 1555 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1556 ofld_tqidx = 0; 1557 #endif 1558 #ifdef TCP_OFFLOAD 1559 ofld_rqidx = 0; 1560 #endif 1561 #ifdef DEV_NETMAP 1562 nm_rqidx = nm_tqidx = 0; 1563 #endif 1564 for_each_port(sc, i) { 1565 struct port_info *pi = sc->port[i]; 1566 struct vi_info *vi; 1567 1568 if (pi == NULL) 1569 continue; 1570 1571 pi->nvi = num_vis; 1572 for_each_vi(pi, j, vi) { 1573 vi->pi = pi; 1574 vi->adapter = sc; 1575 vi->first_intr = -1; 1576 vi->qsize_rxq = t4_qsize_rxq; 1577 vi->qsize_txq = t4_qsize_txq; 1578 1579 vi->first_rxq = rqidx; 1580 vi->first_txq = tqidx; 1581 vi->tmr_idx = t4_tmr_idx; 1582 vi->pktc_idx = t4_pktc_idx; 1583 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1584 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1585 1586 rqidx += vi->nrxq; 1587 tqidx += vi->ntxq; 1588 1589 if (j == 0 && vi->ntxq > 1) 1590 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1591 else 1592 vi->rsrv_noflowq = 0; 1593 1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1595 vi->first_ofld_txq = ofld_tqidx; 1596 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1597 ofld_tqidx += vi->nofldtxq; 1598 #endif 1599 #ifdef TCP_OFFLOAD 1600 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1601 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1602 vi->first_ofld_rxq = ofld_rqidx; 1603 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1604 1605 ofld_rqidx += vi->nofldrxq; 1606 #endif 1607 #ifdef DEV_NETMAP 1608 vi->first_nm_rxq = nm_rqidx; 1609 vi->first_nm_txq = nm_tqidx; 1610 if (j == 0) { 1611 vi->nnmrxq = iaq.nnmrxq; 1612 vi->nnmtxq = iaq.nnmtxq; 1613 } else { 1614 vi->nnmrxq = iaq.nnmrxq_vi; 1615 vi->nnmtxq = iaq.nnmtxq_vi; 1616 } 1617 nm_rqidx += vi->nnmrxq; 1618 nm_tqidx += vi->nnmtxq; 1619 #endif 1620 } 1621 } 1622 1623 rc = t4_setup_intr_handlers(sc); 1624 if (rc != 0) { 1625 device_printf(dev, 1626 "failed to setup interrupt handlers: %d\n", rc); 1627 goto done; 1628 } 1629 1630 bus_identify_children(dev); 1631 1632 /* 1633 * Ensure thread-safe mailbox access (in debug builds). 1634 * 1635 * So far this was the only thread accessing the mailbox but various 1636 * ifnets and sysctls are about to be created and their handlers/ioctls 1637 * will access the mailbox from different threads. 1638 */ 1639 sc->flags |= CHK_MBOX_ACCESS; 1640 1641 bus_attach_children(dev); 1642 t4_calibration_start(sc); 1643 1644 device_printf(dev, 1645 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1646 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1647 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1648 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1649 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1650 1651 t4_set_desc(sc); 1652 1653 notify_siblings(dev, 0); 1654 1655 done: 1656 if (rc != 0 && sc->cdev) { 1657 /* cdev was created and so cxgbetool works; recover that way. */ 1658 device_printf(dev, 1659 "error during attach, adapter is now in recovery mode.\n"); 1660 rc = 0; 1661 } 1662 1663 if (rc != 0) 1664 t4_detach_common(dev); 1665 else 1666 t4_sysctls(sc); 1667 1668 return (rc); 1669 } 1670 1671 static int 1672 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1673 { 1674 struct adapter *sc; 1675 struct port_info *pi; 1676 int i; 1677 1678 sc = device_get_softc(bus); 1679 for_each_port(sc, i) { 1680 pi = sc->port[i]; 1681 if (pi != NULL && pi->dev == dev) { 1682 sbuf_printf(sb, "port=%d", pi->port_id); 1683 break; 1684 } 1685 } 1686 return (0); 1687 } 1688 1689 static int 1690 t4_ready(device_t dev) 1691 { 1692 struct adapter *sc; 1693 1694 sc = device_get_softc(dev); 1695 if (sc->flags & FW_OK) 1696 return (0); 1697 return (ENXIO); 1698 } 1699 1700 static int 1701 t4_read_port_device(device_t dev, int port, device_t *child) 1702 { 1703 struct adapter *sc; 1704 struct port_info *pi; 1705 1706 sc = device_get_softc(dev); 1707 if (port < 0 || port >= MAX_NPORTS) 1708 return (EINVAL); 1709 pi = sc->port[port]; 1710 if (pi == NULL || pi->dev == NULL) 1711 return (ENXIO); 1712 *child = pi->dev; 1713 return (0); 1714 } 1715 1716 static int 1717 notify_siblings(device_t dev, int detaching) 1718 { 1719 device_t sibling; 1720 int error, i; 1721 1722 error = 0; 1723 for (i = 0; i < PCI_FUNCMAX; i++) { 1724 if (i == pci_get_function(dev)) 1725 continue; 1726 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1727 pci_get_slot(dev), i); 1728 if (sibling == NULL || !device_is_attached(sibling)) 1729 continue; 1730 if (detaching) 1731 error = T4_DETACH_CHILD(sibling); 1732 else 1733 (void)T4_ATTACH_CHILD(sibling); 1734 if (error) 1735 break; 1736 } 1737 return (error); 1738 } 1739 1740 /* 1741 * Idempotent 1742 */ 1743 static int 1744 t4_detach(device_t dev) 1745 { 1746 int rc; 1747 1748 rc = notify_siblings(dev, 1); 1749 if (rc) { 1750 device_printf(dev, 1751 "failed to detach sibling devices: %d\n", rc); 1752 return (rc); 1753 } 1754 1755 return (t4_detach_common(dev)); 1756 } 1757 1758 int 1759 t4_detach_common(device_t dev) 1760 { 1761 struct adapter *sc; 1762 struct port_info *pi; 1763 int i, rc; 1764 1765 sc = device_get_softc(dev); 1766 1767 #ifdef TCP_OFFLOAD 1768 rc = deactivate_all_uld(sc); 1769 if (rc) { 1770 device_printf(dev, 1771 "failed to detach upper layer drivers: %d\n", rc); 1772 return (rc); 1773 } 1774 #endif 1775 1776 if (sc->cdev) { 1777 destroy_dev(sc->cdev); 1778 sc->cdev = NULL; 1779 } 1780 1781 sx_xlock(&t4_list_lock); 1782 SLIST_REMOVE(&t4_list, sc, adapter, link); 1783 sx_xunlock(&t4_list_lock); 1784 1785 sc->flags &= ~CHK_MBOX_ACCESS; 1786 if (sc->flags & FULL_INIT_DONE) { 1787 if (!(sc->flags & IS_VF)) 1788 t4_intr_disable(sc); 1789 } 1790 1791 if (device_is_attached(dev)) { 1792 rc = bus_generic_detach(dev); 1793 if (rc) { 1794 device_printf(dev, 1795 "failed to detach child devices: %d\n", rc); 1796 return (rc); 1797 } 1798 } 1799 1800 for (i = 0; i < sc->intr_count; i++) 1801 t4_free_irq(sc, &sc->irq[i]); 1802 1803 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1804 t4_free_tx_sched(sc); 1805 1806 for (i = 0; i < MAX_NPORTS; i++) { 1807 pi = sc->port[i]; 1808 if (pi) { 1809 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1810 if (pi->dev) 1811 device_delete_child(dev, pi->dev); 1812 1813 mtx_destroy(&pi->pi_lock); 1814 free(pi->vi, M_CXGBE); 1815 free(pi, M_CXGBE); 1816 } 1817 } 1818 callout_stop(&sc->cal_callout); 1819 callout_drain(&sc->cal_callout); 1820 device_delete_children(dev); 1821 sysctl_ctx_free(&sc->ctx); 1822 adapter_full_uninit(sc); 1823 1824 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1825 t4_fw_bye(sc, sc->mbox); 1826 1827 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1828 pci_release_msi(dev); 1829 1830 if (sc->regs_res) 1831 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1832 sc->regs_res); 1833 1834 if (sc->udbs_res) 1835 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1836 sc->udbs_res); 1837 1838 if (sc->msix_res) 1839 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1840 sc->msix_res); 1841 1842 if (sc->l2t) 1843 t4_free_l2t(sc); 1844 if (sc->smt) 1845 t4_free_smt(sc->smt); 1846 t4_free_atid_table(sc); 1847 #ifdef RATELIMIT 1848 t4_free_etid_table(sc); 1849 #endif 1850 if (sc->key_map) 1851 vmem_destroy(sc->key_map); 1852 #ifdef INET6 1853 t4_destroy_clip_table(sc); 1854 #endif 1855 1856 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1857 free(sc->sge.ofld_txq, M_CXGBE); 1858 #endif 1859 #ifdef TCP_OFFLOAD 1860 free(sc->sge.ofld_rxq, M_CXGBE); 1861 #endif 1862 #ifdef DEV_NETMAP 1863 free(sc->sge.nm_rxq, M_CXGBE); 1864 free(sc->sge.nm_txq, M_CXGBE); 1865 #endif 1866 free(sc->irq, M_CXGBE); 1867 free(sc->sge.rxq, M_CXGBE); 1868 free(sc->sge.txq, M_CXGBE); 1869 free(sc->sge.ctrlq, M_CXGBE); 1870 free(sc->sge.iqmap, M_CXGBE); 1871 free(sc->sge.eqmap, M_CXGBE); 1872 free(sc->tids.ftid_tab, M_CXGBE); 1873 free(sc->tids.hpftid_tab, M_CXGBE); 1874 free_hftid_hash(&sc->tids); 1875 free(sc->tids.tid_tab, M_CXGBE); 1876 t4_destroy_dma_tag(sc); 1877 1878 callout_drain(&sc->ktls_tick); 1879 callout_drain(&sc->sfl_callout); 1880 if (mtx_initialized(&sc->tids.ftid_lock)) { 1881 mtx_destroy(&sc->tids.ftid_lock); 1882 cv_destroy(&sc->tids.ftid_cv); 1883 } 1884 if (mtx_initialized(&sc->tids.atid_lock)) 1885 mtx_destroy(&sc->tids.atid_lock); 1886 if (mtx_initialized(&sc->ifp_lock)) 1887 mtx_destroy(&sc->ifp_lock); 1888 1889 if (rw_initialized(&sc->policy_lock)) { 1890 rw_destroy(&sc->policy_lock); 1891 #ifdef TCP_OFFLOAD 1892 if (sc->policy != NULL) 1893 free_offload_policy(sc->policy); 1894 #endif 1895 } 1896 1897 for (i = 0; i < NUM_MEMWIN; i++) { 1898 struct memwin *mw = &sc->memwin[i]; 1899 1900 if (rw_initialized(&mw->mw_lock)) 1901 rw_destroy(&mw->mw_lock); 1902 } 1903 1904 mtx_destroy(&sc->sfl_lock); 1905 mtx_destroy(&sc->reg_lock); 1906 mtx_destroy(&sc->sc_lock); 1907 1908 bzero(sc, sizeof(*sc)); 1909 1910 return (0); 1911 } 1912 1913 static inline int 1914 stop_adapter(struct adapter *sc) 1915 { 1916 struct port_info *pi; 1917 int i; 1918 1919 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1920 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1921 __func__, curthread, sc->flags, sc->error_flags); 1922 return (EALREADY); 1923 } 1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1925 sc->flags, sc->error_flags); 1926 t4_shutdown_adapter(sc); 1927 for_each_port(sc, i) { 1928 pi = sc->port[i]; 1929 PORT_LOCK(pi); 1930 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 1931 /* 1932 * t4_shutdown_adapter has already shut down all the 1933 * PHYs but it also disables interrupts and DMA so there 1934 * won't be a link interrupt. Update the state manually 1935 * if the link was up previously and inform the kernel. 1936 */ 1937 pi->link_cfg.link_ok = false; 1938 t4_os_link_changed(pi); 1939 } 1940 PORT_UNLOCK(pi); 1941 } 1942 1943 return (0); 1944 } 1945 1946 static inline int 1947 restart_adapter(struct adapter *sc) 1948 { 1949 uint32_t val; 1950 1951 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1952 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1953 __func__, curthread, sc->flags, sc->error_flags); 1954 return (EALREADY); 1955 } 1956 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1957 sc->flags, sc->error_flags); 1958 1959 MPASS(hw_off_limits(sc)); 1960 MPASS((sc->flags & FW_OK) == 0); 1961 MPASS((sc->flags & MASTER_PF) == 0); 1962 MPASS(sc->reset_thread == NULL); 1963 1964 /* 1965 * The adapter is supposed to be back on PCIE with its config space and 1966 * BARs restored to their state before reset. Register access via 1967 * t4_read_reg BAR0 should just work. 1968 */ 1969 sc->reset_thread = curthread; 1970 val = t4_read_reg(sc, A_PL_WHOAMI); 1971 if (val == 0xffffffff || val == 0xeeeeeeee) { 1972 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1973 sc->reset_thread = NULL; 1974 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1975 return (ENXIO); 1976 } 1977 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1978 atomic_add_int(&sc->incarnation, 1); 1979 atomic_add_int(&sc->num_resets, 1); 1980 1981 return (0); 1982 } 1983 1984 static inline void 1985 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1986 { 1987 if (usable) { 1988 /* Must be marked reusable by the designated thread. */ 1989 ASSERT_SYNCHRONIZED_OP(sc); 1990 MPASS(sc->reset_thread == curthread); 1991 mtx_lock(&sc->reg_lock); 1992 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1993 mtx_unlock(&sc->reg_lock); 1994 } else { 1995 /* Mark the adapter totally off limits. */ 1996 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 1997 mtx_lock(&sc->reg_lock); 1998 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1999 mtx_unlock(&sc->reg_lock); 2000 sc->flags &= ~(FW_OK | MASTER_PF); 2001 sc->reset_thread = NULL; 2002 end_synchronized_op(sc, 0); 2003 } 2004 } 2005 2006 static int 2007 stop_lld(struct adapter *sc) 2008 { 2009 struct port_info *pi; 2010 struct vi_info *vi; 2011 if_t ifp; 2012 struct sge_rxq *rxq; 2013 struct sge_txq *txq; 2014 struct sge_wrq *wrq; 2015 #ifdef TCP_OFFLOAD 2016 struct sge_ofld_rxq *ofld_rxq; 2017 #endif 2018 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2019 struct sge_ofld_txq *ofld_txq; 2020 #endif 2021 int rc, i, j, k; 2022 2023 /* 2024 * XXX: Can there be a synch_op in progress that will hang because 2025 * hardware has been stopped? We'll hang too and the solution will be 2026 * to use a version of begin_synch_op that wakes up existing synch_op 2027 * with errors. Maybe stop_adapter should do this wakeup? 2028 * 2029 * I don't think any synch_op could get stranded waiting for DMA or 2030 * interrupt so I think we're okay here. Remove this comment block 2031 * after testing. 2032 */ 2033 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2034 if (rc != 0) 2035 return (ENXIO); 2036 2037 /* Quiesce all activity. */ 2038 for_each_port(sc, i) { 2039 pi = sc->port[i]; 2040 pi->vxlan_tcam_entry = false; 2041 for_each_vi(pi, j, vi) { 2042 vi->xact_addr_filt = -1; 2043 mtx_lock(&vi->tick_mtx); 2044 vi->flags |= VI_SKIP_STATS; 2045 mtx_unlock(&vi->tick_mtx); 2046 if (!(vi->flags & VI_INIT_DONE)) 2047 continue; 2048 2049 ifp = vi->ifp; 2050 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2051 mtx_lock(&vi->tick_mtx); 2052 callout_stop(&vi->tick); 2053 mtx_unlock(&vi->tick_mtx); 2054 callout_drain(&vi->tick); 2055 } 2056 2057 /* 2058 * Note that the HW is not available. 2059 */ 2060 for_each_txq(vi, k, txq) { 2061 TXQ_LOCK(txq); 2062 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2063 TXQ_UNLOCK(txq); 2064 } 2065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2066 for_each_ofld_txq(vi, k, ofld_txq) { 2067 TXQ_LOCK(&ofld_txq->wrq); 2068 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2069 TXQ_UNLOCK(&ofld_txq->wrq); 2070 } 2071 #endif 2072 for_each_rxq(vi, k, rxq) { 2073 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2074 } 2075 #if defined(TCP_OFFLOAD) 2076 for_each_ofld_rxq(vi, k, ofld_rxq) { 2077 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2078 } 2079 #endif 2080 2081 quiesce_vi(vi); 2082 } 2083 2084 if (sc->flags & FULL_INIT_DONE) { 2085 /* Control queue */ 2086 wrq = &sc->sge.ctrlq[i]; 2087 TXQ_LOCK(wrq); 2088 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2089 TXQ_UNLOCK(wrq); 2090 quiesce_wrq(wrq); 2091 } 2092 2093 if (pi->flags & HAS_TRACEQ) { 2094 pi->flags &= ~HAS_TRACEQ; 2095 sc->traceq = -1; 2096 sc->tracer_valid = 0; 2097 sc->tracer_enabled = 0; 2098 } 2099 } 2100 if (sc->flags & FULL_INIT_DONE) { 2101 /* Firmware event queue */ 2102 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2103 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2104 } 2105 2106 /* Stop calibration */ 2107 callout_stop(&sc->cal_callout); 2108 callout_drain(&sc->cal_callout); 2109 2110 if (t4_clock_gate_on_suspend) { 2111 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2112 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2113 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2114 } 2115 2116 end_synchronized_op(sc, 0); 2117 2118 stop_atid_allocator(sc); 2119 t4_stop_l2t(sc); 2120 2121 return (rc); 2122 } 2123 2124 int 2125 suspend_adapter(struct adapter *sc) 2126 { 2127 stop_adapter(sc); 2128 stop_lld(sc); 2129 #ifdef TCP_OFFLOAD 2130 stop_all_uld(sc); 2131 #endif 2132 set_adapter_hwstatus(sc, false); 2133 2134 return (0); 2135 } 2136 2137 static int 2138 t4_suspend(device_t dev) 2139 { 2140 struct adapter *sc = device_get_softc(dev); 2141 int rc; 2142 2143 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2144 rc = suspend_adapter(sc); 2145 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2146 2147 return (rc); 2148 } 2149 2150 struct adapter_pre_reset_state { 2151 u_int flags; 2152 uint16_t nbmcaps; 2153 uint16_t linkcaps; 2154 uint16_t switchcaps; 2155 uint16_t niccaps; 2156 uint16_t toecaps; 2157 uint16_t rdmacaps; 2158 uint16_t cryptocaps; 2159 uint16_t iscsicaps; 2160 uint16_t fcoecaps; 2161 2162 u_int cfcsum; 2163 char cfg_file[32]; 2164 2165 struct adapter_params params; 2166 struct t4_virt_res vres; 2167 struct tid_info tids; 2168 struct sge sge; 2169 2170 int rawf_base; 2171 int nrawf; 2172 2173 }; 2174 2175 static void 2176 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2177 { 2178 2179 ASSERT_SYNCHRONIZED_OP(sc); 2180 2181 o->flags = sc->flags; 2182 2183 o->nbmcaps = sc->nbmcaps; 2184 o->linkcaps = sc->linkcaps; 2185 o->switchcaps = sc->switchcaps; 2186 o->niccaps = sc->niccaps; 2187 o->toecaps = sc->toecaps; 2188 o->rdmacaps = sc->rdmacaps; 2189 o->cryptocaps = sc->cryptocaps; 2190 o->iscsicaps = sc->iscsicaps; 2191 o->fcoecaps = sc->fcoecaps; 2192 2193 o->cfcsum = sc->cfcsum; 2194 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2195 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2196 2197 o->params = sc->params; 2198 o->vres = sc->vres; 2199 o->tids = sc->tids; 2200 o->sge = sc->sge; 2201 2202 o->rawf_base = sc->rawf_base; 2203 o->nrawf = sc->nrawf; 2204 } 2205 2206 static int 2207 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2208 { 2209 int rc = 0; 2210 2211 ASSERT_SYNCHRONIZED_OP(sc); 2212 2213 /* Capabilities */ 2214 #define COMPARE_CAPS(c) do { \ 2215 if (o->c##caps != sc->c##caps) { \ 2216 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2217 sc->c##caps); \ 2218 rc = EINVAL; \ 2219 } \ 2220 } while (0) 2221 COMPARE_CAPS(nbm); 2222 COMPARE_CAPS(link); 2223 COMPARE_CAPS(switch); 2224 COMPARE_CAPS(nic); 2225 COMPARE_CAPS(toe); 2226 COMPARE_CAPS(rdma); 2227 COMPARE_CAPS(crypto); 2228 COMPARE_CAPS(iscsi); 2229 COMPARE_CAPS(fcoe); 2230 #undef COMPARE_CAPS 2231 2232 /* Firmware config file */ 2233 if (o->cfcsum != sc->cfcsum) { 2234 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2235 o->cfcsum, sc->cfg_file, sc->cfcsum); 2236 rc = EINVAL; 2237 } 2238 2239 #define COMPARE_PARAM(p, name) do { \ 2240 if (o->p != sc->p) { \ 2241 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2242 rc = EINVAL; \ 2243 } \ 2244 } while (0) 2245 COMPARE_PARAM(sge.iq_start, iq_start); 2246 COMPARE_PARAM(sge.eq_start, eq_start); 2247 COMPARE_PARAM(tids.ftid_base, ftid_base); 2248 COMPARE_PARAM(tids.ftid_end, ftid_end); 2249 COMPARE_PARAM(tids.nftids, nftids); 2250 COMPARE_PARAM(vres.l2t.start, l2t_start); 2251 COMPARE_PARAM(vres.l2t.size, l2t_size); 2252 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2253 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2254 COMPARE_PARAM(tids.tid_base, tid_base); 2255 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2256 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2257 COMPARE_PARAM(tids.nhpftids, nhpftids); 2258 COMPARE_PARAM(rawf_base, rawf_base); 2259 COMPARE_PARAM(nrawf, nrawf); 2260 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2261 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2262 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2263 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2264 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2265 COMPARE_PARAM(tids.ntids, ntids); 2266 COMPARE_PARAM(tids.etid_base, etid_base); 2267 COMPARE_PARAM(tids.etid_end, etid_end); 2268 COMPARE_PARAM(tids.netids, netids); 2269 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2270 COMPARE_PARAM(params.ethoffload, ethoffload); 2271 COMPARE_PARAM(tids.natids, natids); 2272 COMPARE_PARAM(tids.stid_base, stid_base); 2273 COMPARE_PARAM(vres.ddp.start, ddp_start); 2274 COMPARE_PARAM(vres.ddp.size, ddp_size); 2275 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2276 COMPARE_PARAM(vres.stag.start, stag_start); 2277 COMPARE_PARAM(vres.stag.size, stag_size); 2278 COMPARE_PARAM(vres.rq.start, rq_start); 2279 COMPARE_PARAM(vres.rq.size, rq_size); 2280 COMPARE_PARAM(vres.pbl.start, pbl_start); 2281 COMPARE_PARAM(vres.pbl.size, pbl_size); 2282 COMPARE_PARAM(vres.qp.start, qp_start); 2283 COMPARE_PARAM(vres.qp.size, qp_size); 2284 COMPARE_PARAM(vres.cq.start, cq_start); 2285 COMPARE_PARAM(vres.cq.size, cq_size); 2286 COMPARE_PARAM(vres.ocq.start, ocq_start); 2287 COMPARE_PARAM(vres.ocq.size, ocq_size); 2288 COMPARE_PARAM(vres.srq.start, srq_start); 2289 COMPARE_PARAM(vres.srq.size, srq_size); 2290 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2291 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2292 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2293 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2294 COMPARE_PARAM(vres.key.start, key_start); 2295 COMPARE_PARAM(vres.key.size, key_size); 2296 #undef COMPARE_PARAM 2297 2298 return (rc); 2299 } 2300 2301 static int 2302 restart_lld(struct adapter *sc) 2303 { 2304 struct adapter_pre_reset_state *old_state = NULL; 2305 struct port_info *pi; 2306 struct vi_info *vi; 2307 if_t ifp; 2308 struct sge_txq *txq; 2309 int rc, i, j, k; 2310 2311 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2312 if (rc != 0) 2313 return (ENXIO); 2314 2315 /* Restore memory window. */ 2316 setup_memwin(sc); 2317 2318 /* Go no further if recovery mode has been requested. */ 2319 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2320 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2321 rc = 0; 2322 set_adapter_hwstatus(sc, true); 2323 goto done; 2324 } 2325 2326 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2327 save_caps_and_params(sc, old_state); 2328 2329 /* Reestablish contact with firmware and become the primary PF. */ 2330 rc = contact_firmware(sc); 2331 if (rc != 0) 2332 goto done; /* error message displayed already */ 2333 MPASS(sc->flags & FW_OK); 2334 2335 if (sc->flags & MASTER_PF) { 2336 rc = partition_resources(sc); 2337 if (rc != 0) 2338 goto done; /* error message displayed already */ 2339 } 2340 2341 rc = get_params__post_init(sc); 2342 if (rc != 0) 2343 goto done; /* error message displayed already */ 2344 2345 rc = set_params__post_init(sc); 2346 if (rc != 0) 2347 goto done; /* error message displayed already */ 2348 2349 rc = compare_caps_and_params(sc, old_state); 2350 if (rc != 0) 2351 goto done; /* error message displayed already */ 2352 2353 for_each_port(sc, i) { 2354 pi = sc->port[i]; 2355 MPASS(pi != NULL); 2356 MPASS(pi->vi != NULL); 2357 MPASS(pi->vi[0].dev == pi->dev); 2358 2359 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2360 if (rc != 0) { 2361 CH_ERR(sc, 2362 "failed to re-initialize port %d: %d\n", i, rc); 2363 goto done; 2364 } 2365 MPASS(sc->chan_map[pi->tx_chan] == i); 2366 2367 PORT_LOCK(pi); 2368 fixup_link_config(pi); 2369 build_medialist(pi); 2370 PORT_UNLOCK(pi); 2371 for_each_vi(pi, j, vi) { 2372 if (IS_MAIN_VI(vi)) 2373 continue; 2374 rc = alloc_extra_vi(sc, pi, vi); 2375 if (rc != 0) { 2376 CH_ERR(vi, 2377 "failed to re-allocate extra VI: %d\n", rc); 2378 goto done; 2379 } 2380 } 2381 } 2382 2383 /* 2384 * Interrupts and queues are about to be enabled and other threads will 2385 * want to access the hardware too. It is safe to do so. Note that 2386 * this thread is still in the middle of a synchronized_op. 2387 */ 2388 set_adapter_hwstatus(sc, true); 2389 2390 if (sc->flags & FULL_INIT_DONE) { 2391 rc = adapter_full_init(sc); 2392 if (rc != 0) { 2393 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2394 goto done; 2395 } 2396 2397 if (sc->vxlan_refcount > 0) 2398 enable_vxlan_rx(sc); 2399 2400 for_each_port(sc, i) { 2401 pi = sc->port[i]; 2402 for_each_vi(pi, j, vi) { 2403 mtx_lock(&vi->tick_mtx); 2404 vi->flags &= ~VI_SKIP_STATS; 2405 mtx_unlock(&vi->tick_mtx); 2406 if (!(vi->flags & VI_INIT_DONE)) 2407 continue; 2408 rc = vi_full_init(vi); 2409 if (rc != 0) { 2410 CH_ERR(vi, "failed to re-initialize " 2411 "interface: %d\n", rc); 2412 goto done; 2413 } 2414 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2415 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2416 t4_write_reg(sc, is_t4(sc) ? 2417 A_MPS_TRC_RSS_CONTROL : 2418 A_MPS_T5_TRC_RSS_CONTROL, 2419 V_RSSCONTROL(pi->tx_chan) | 2420 V_QUEUENUMBER(sc->traceq)); 2421 pi->flags |= HAS_TRACEQ; 2422 } 2423 2424 ifp = vi->ifp; 2425 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2426 continue; 2427 /* 2428 * Note that we do not setup multicast addresses 2429 * in the first pass. This ensures that the 2430 * unicast DMACs for all VIs on all ports get an 2431 * MPS TCAM entry. 2432 */ 2433 rc = update_mac_settings(ifp, XGMAC_ALL & 2434 ~XGMAC_MCADDRS); 2435 if (rc != 0) { 2436 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2437 goto done; 2438 } 2439 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2440 true); 2441 if (rc != 0) { 2442 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2443 goto done; 2444 } 2445 for_each_txq(vi, k, txq) { 2446 TXQ_LOCK(txq); 2447 txq->eq.flags |= EQ_ENABLED; 2448 TXQ_UNLOCK(txq); 2449 } 2450 mtx_lock(&vi->tick_mtx); 2451 callout_schedule(&vi->tick, hz); 2452 mtx_unlock(&vi->tick_mtx); 2453 } 2454 PORT_LOCK(pi); 2455 if (pi->up_vis > 0) { 2456 t4_update_port_info(pi); 2457 fixup_link_config(pi); 2458 build_medialist(pi); 2459 apply_link_config(pi); 2460 if (pi->link_cfg.link_ok) 2461 t4_os_link_changed(pi); 2462 } 2463 PORT_UNLOCK(pi); 2464 } 2465 2466 /* Now reprogram the L2 multicast addresses. */ 2467 for_each_port(sc, i) { 2468 pi = sc->port[i]; 2469 for_each_vi(pi, j, vi) { 2470 if (!(vi->flags & VI_INIT_DONE)) 2471 continue; 2472 ifp = vi->ifp; 2473 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2474 continue; 2475 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2476 if (rc != 0) { 2477 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2478 rc = 0; /* carry on */ 2479 } 2480 } 2481 } 2482 } 2483 2484 /* Reset all calibration */ 2485 t4_calibration_start(sc); 2486 done: 2487 end_synchronized_op(sc, 0); 2488 free(old_state, M_CXGBE); 2489 2490 restart_atid_allocator(sc); 2491 t4_restart_l2t(sc); 2492 2493 return (rc); 2494 } 2495 2496 int 2497 resume_adapter(struct adapter *sc) 2498 { 2499 restart_adapter(sc); 2500 restart_lld(sc); 2501 #ifdef TCP_OFFLOAD 2502 restart_all_uld(sc); 2503 #endif 2504 return (0); 2505 } 2506 2507 static int 2508 t4_resume(device_t dev) 2509 { 2510 struct adapter *sc = device_get_softc(dev); 2511 int rc; 2512 2513 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2514 rc = resume_adapter(sc); 2515 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2516 2517 return (rc); 2518 } 2519 2520 static int 2521 t4_reset_prepare(device_t dev, device_t child) 2522 { 2523 struct adapter *sc = device_get_softc(dev); 2524 2525 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2526 return (0); 2527 } 2528 2529 static int 2530 t4_reset_post(device_t dev, device_t child) 2531 { 2532 struct adapter *sc = device_get_softc(dev); 2533 2534 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2535 return (0); 2536 } 2537 2538 static int 2539 reset_adapter_with_pci_bus_reset(struct adapter *sc) 2540 { 2541 int rc; 2542 2543 mtx_lock(&Giant); 2544 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2545 mtx_unlock(&Giant); 2546 return (rc); 2547 } 2548 2549 static int 2550 reset_adapter_with_pl_rst(struct adapter *sc) 2551 { 2552 suspend_adapter(sc); 2553 2554 /* This is a t4_write_reg without the hw_off_limits check. */ 2555 MPASS(sc->error_flags & HW_OFF_LIMITS); 2556 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2557 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2558 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2559 2560 resume_adapter(sc); 2561 2562 return (0); 2563 } 2564 2565 static inline int 2566 reset_adapter(struct adapter *sc) 2567 { 2568 if (vm_guest == 0) 2569 return (reset_adapter_with_pci_bus_reset(sc)); 2570 else 2571 return (reset_adapter_with_pl_rst(sc)); 2572 } 2573 2574 static void 2575 reset_adapter_task(void *arg, int pending) 2576 { 2577 struct adapter *sc = arg; 2578 const int flags = sc->flags; 2579 const int eflags = sc->error_flags; 2580 int rc; 2581 2582 if (pending > 1) 2583 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2584 rc = reset_adapter(sc); 2585 if (rc != 0) { 2586 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2587 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2588 rc, flags, sc->flags, eflags, sc->error_flags); 2589 } 2590 } 2591 2592 static int 2593 cxgbe_probe(device_t dev) 2594 { 2595 struct port_info *pi = device_get_softc(dev); 2596 2597 device_set_descf(dev, "port %d", pi->port_id); 2598 2599 return (BUS_PROBE_DEFAULT); 2600 } 2601 2602 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2603 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2604 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2605 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2606 #define T4_CAP_ENABLE (T4_CAP) 2607 2608 static void 2609 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2610 { 2611 if_t ifp; 2612 struct sbuf *sb; 2613 struct sysctl_ctx_list *ctx = &vi->ctx; 2614 struct sysctl_oid_list *children; 2615 struct pfil_head_args pa; 2616 struct adapter *sc = vi->adapter; 2617 2618 sysctl_ctx_init(ctx); 2619 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2620 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2621 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2622 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2623 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2624 #ifdef DEV_NETMAP 2625 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2626 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2627 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2628 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2629 #endif 2630 #ifdef TCP_OFFLOAD 2631 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2632 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2633 #endif 2634 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2635 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2636 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2637 #endif 2638 2639 vi->xact_addr_filt = -1; 2640 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2641 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2642 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2643 vi->flags |= TX_USES_VM_WR; 2644 2645 /* Allocate an ifnet and set it up */ 2646 ifp = if_alloc_dev(IFT_ETHER, dev); 2647 vi->ifp = ifp; 2648 if_setsoftc(ifp, vi); 2649 2650 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2651 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2652 2653 if_setinitfn(ifp, cxgbe_init); 2654 if_setioctlfn(ifp, cxgbe_ioctl); 2655 if_settransmitfn(ifp, cxgbe_transmit); 2656 if_setqflushfn(ifp, cxgbe_qflush); 2657 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2658 if_setgetcounterfn(ifp, vi_get_counter); 2659 else 2660 if_setgetcounterfn(ifp, cxgbe_get_counter); 2661 #if defined(KERN_TLS) || defined(RATELIMIT) 2662 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2663 #endif 2664 #ifdef RATELIMIT 2665 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2666 #endif 2667 2668 if_setcapabilities(ifp, T4_CAP); 2669 if_setcapenable(ifp, T4_CAP_ENABLE); 2670 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2671 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2672 if (chip_id(sc) >= CHELSIO_T6) { 2673 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2674 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2675 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2676 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2677 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2678 } 2679 2680 #ifdef TCP_OFFLOAD 2681 if (vi->nofldrxq != 0) 2682 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2683 #endif 2684 #ifdef RATELIMIT 2685 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2686 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2687 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2688 } 2689 #endif 2690 2691 if_sethwtsomax(ifp, IP_MAXPACKET); 2692 if (vi->flags & TX_USES_VM_WR) 2693 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2694 else 2695 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2696 #ifdef RATELIMIT 2697 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2698 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2699 #endif 2700 if_sethwtsomaxsegsize(ifp, 65536); 2701 #ifdef KERN_TLS 2702 if (is_ktls(sc)) { 2703 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2704 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2705 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2706 } 2707 #endif 2708 2709 ether_ifattach(ifp, vi->hw_addr); 2710 #ifdef DEV_NETMAP 2711 if (vi->nnmrxq != 0) 2712 cxgbe_nm_attach(vi); 2713 #endif 2714 sb = sbuf_new_auto(); 2715 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2716 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2717 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2718 case IFCAP_TOE: 2719 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2720 break; 2721 case IFCAP_TOE | IFCAP_TXRTLMT: 2722 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2723 break; 2724 case IFCAP_TXRTLMT: 2725 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2726 break; 2727 } 2728 #endif 2729 #ifdef TCP_OFFLOAD 2730 if (if_getcapabilities(ifp) & IFCAP_TOE) 2731 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2732 #endif 2733 #ifdef DEV_NETMAP 2734 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2735 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2736 vi->nnmtxq, vi->nnmrxq); 2737 #endif 2738 sbuf_finish(sb); 2739 device_printf(dev, "%s\n", sbuf_data(sb)); 2740 sbuf_delete(sb); 2741 2742 vi_sysctls(vi); 2743 2744 pa.pa_version = PFIL_VERSION; 2745 pa.pa_flags = PFIL_IN; 2746 pa.pa_type = PFIL_TYPE_ETHERNET; 2747 pa.pa_headname = if_name(ifp); 2748 vi->pfil = pfil_head_register(&pa); 2749 } 2750 2751 static int 2752 cxgbe_attach(device_t dev) 2753 { 2754 struct port_info *pi = device_get_softc(dev); 2755 struct adapter *sc = pi->adapter; 2756 struct vi_info *vi; 2757 int i; 2758 2759 sysctl_ctx_init(&pi->ctx); 2760 2761 cxgbe_vi_attach(dev, &pi->vi[0]); 2762 2763 for_each_vi(pi, i, vi) { 2764 if (i == 0) 2765 continue; 2766 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2767 if (vi->dev == NULL) { 2768 device_printf(dev, "failed to add VI %d\n", i); 2769 continue; 2770 } 2771 device_set_softc(vi->dev, vi); 2772 } 2773 2774 cxgbe_sysctls(pi); 2775 2776 bus_attach_children(dev); 2777 2778 return (0); 2779 } 2780 2781 static void 2782 cxgbe_vi_detach(struct vi_info *vi) 2783 { 2784 if_t ifp = vi->ifp; 2785 2786 if (vi->pfil != NULL) { 2787 pfil_head_unregister(vi->pfil); 2788 vi->pfil = NULL; 2789 } 2790 2791 ether_ifdetach(ifp); 2792 2793 /* Let detach proceed even if these fail. */ 2794 #ifdef DEV_NETMAP 2795 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2796 cxgbe_nm_detach(vi); 2797 #endif 2798 cxgbe_uninit_synchronized(vi); 2799 callout_drain(&vi->tick); 2800 mtx_destroy(&vi->tick_mtx); 2801 sysctl_ctx_free(&vi->ctx); 2802 vi_full_uninit(vi); 2803 2804 if_free(vi->ifp); 2805 vi->ifp = NULL; 2806 } 2807 2808 static int 2809 cxgbe_detach(device_t dev) 2810 { 2811 struct port_info *pi = device_get_softc(dev); 2812 struct adapter *sc = pi->adapter; 2813 int rc; 2814 2815 /* Detach the extra VIs first. */ 2816 rc = bus_generic_detach(dev); 2817 if (rc) 2818 return (rc); 2819 device_delete_children(dev); 2820 2821 sysctl_ctx_free(&pi->ctx); 2822 begin_vi_detach(sc, &pi->vi[0]); 2823 if (pi->flags & HAS_TRACEQ) { 2824 sc->traceq = -1; /* cloner should not create ifnet */ 2825 t4_tracer_port_detach(sc); 2826 } 2827 cxgbe_vi_detach(&pi->vi[0]); 2828 ifmedia_removeall(&pi->media); 2829 end_vi_detach(sc, &pi->vi[0]); 2830 2831 return (0); 2832 } 2833 2834 static void 2835 cxgbe_init(void *arg) 2836 { 2837 struct vi_info *vi = arg; 2838 struct adapter *sc = vi->adapter; 2839 2840 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2841 return; 2842 cxgbe_init_synchronized(vi); 2843 end_synchronized_op(sc, 0); 2844 } 2845 2846 static int 2847 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2848 { 2849 int rc = 0, mtu, flags; 2850 struct vi_info *vi = if_getsoftc(ifp); 2851 struct port_info *pi = vi->pi; 2852 struct adapter *sc = pi->adapter; 2853 struct ifreq *ifr = (struct ifreq *)data; 2854 uint32_t mask; 2855 2856 switch (cmd) { 2857 case SIOCSIFMTU: 2858 mtu = ifr->ifr_mtu; 2859 if (mtu < ETHERMIN || mtu > MAX_MTU) 2860 return (EINVAL); 2861 2862 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2863 if (rc) 2864 return (rc); 2865 if_setmtu(ifp, mtu); 2866 if (vi->flags & VI_INIT_DONE) { 2867 t4_update_fl_bufsize(ifp); 2868 if (!hw_off_limits(sc) && 2869 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2870 rc = update_mac_settings(ifp, XGMAC_MTU); 2871 } 2872 end_synchronized_op(sc, 0); 2873 break; 2874 2875 case SIOCSIFFLAGS: 2876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2877 if (rc) 2878 return (rc); 2879 2880 if (hw_off_limits(sc)) { 2881 rc = ENXIO; 2882 goto fail; 2883 } 2884 2885 if (if_getflags(ifp) & IFF_UP) { 2886 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2887 flags = vi->if_flags; 2888 if ((if_getflags(ifp) ^ flags) & 2889 (IFF_PROMISC | IFF_ALLMULTI)) { 2890 rc = update_mac_settings(ifp, 2891 XGMAC_PROMISC | XGMAC_ALLMULTI); 2892 } 2893 } else { 2894 rc = cxgbe_init_synchronized(vi); 2895 } 2896 vi->if_flags = if_getflags(ifp); 2897 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2898 rc = cxgbe_uninit_synchronized(vi); 2899 } 2900 end_synchronized_op(sc, 0); 2901 break; 2902 2903 case SIOCADDMULTI: 2904 case SIOCDELMULTI: 2905 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2906 if (rc) 2907 return (rc); 2908 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2909 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2910 end_synchronized_op(sc, 0); 2911 break; 2912 2913 case SIOCSIFCAP: 2914 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2915 if (rc) 2916 return (rc); 2917 2918 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2919 if (mask & IFCAP_TXCSUM) { 2920 if_togglecapenable(ifp, IFCAP_TXCSUM); 2921 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2922 2923 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2924 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2925 mask &= ~IFCAP_TSO4; 2926 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2927 if_printf(ifp, 2928 "tso4 disabled due to -txcsum.\n"); 2929 } 2930 } 2931 if (mask & IFCAP_TXCSUM_IPV6) { 2932 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2933 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2934 2935 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2936 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2937 mask &= ~IFCAP_TSO6; 2938 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2939 if_printf(ifp, 2940 "tso6 disabled due to -txcsum6.\n"); 2941 } 2942 } 2943 if (mask & IFCAP_RXCSUM) 2944 if_togglecapenable(ifp, IFCAP_RXCSUM); 2945 if (mask & IFCAP_RXCSUM_IPV6) 2946 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2947 2948 /* 2949 * Note that we leave CSUM_TSO alone (it is always set). The 2950 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2951 * sending a TSO request our way, so it's sufficient to toggle 2952 * IFCAP_TSOx only. 2953 */ 2954 if (mask & IFCAP_TSO4) { 2955 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2956 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2957 if_printf(ifp, "enable txcsum first.\n"); 2958 rc = EAGAIN; 2959 goto fail; 2960 } 2961 if_togglecapenable(ifp, IFCAP_TSO4); 2962 } 2963 if (mask & IFCAP_TSO6) { 2964 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2965 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2966 if_printf(ifp, "enable txcsum6 first.\n"); 2967 rc = EAGAIN; 2968 goto fail; 2969 } 2970 if_togglecapenable(ifp, IFCAP_TSO6); 2971 } 2972 if (mask & IFCAP_LRO) { 2973 #if defined(INET) || defined(INET6) 2974 int i; 2975 struct sge_rxq *rxq; 2976 2977 if_togglecapenable(ifp, IFCAP_LRO); 2978 for_each_rxq(vi, i, rxq) { 2979 if (if_getcapenable(ifp) & IFCAP_LRO) 2980 rxq->iq.flags |= IQ_LRO_ENABLED; 2981 else 2982 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2983 } 2984 #endif 2985 } 2986 #ifdef TCP_OFFLOAD 2987 if (mask & IFCAP_TOE) { 2988 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2989 2990 rc = toe_capability(vi, enable); 2991 if (rc != 0) 2992 goto fail; 2993 2994 if_togglecapenable(ifp, mask); 2995 } 2996 #endif 2997 if (mask & IFCAP_VLAN_HWTAGGING) { 2998 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2999 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3000 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3001 } 3002 if (mask & IFCAP_VLAN_MTU) { 3003 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3004 3005 /* Need to find out how to disable auto-mtu-inflation */ 3006 } 3007 if (mask & IFCAP_VLAN_HWTSO) 3008 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3009 if (mask & IFCAP_VLAN_HWCSUM) 3010 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3011 #ifdef RATELIMIT 3012 if (mask & IFCAP_TXRTLMT) 3013 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3014 #endif 3015 if (mask & IFCAP_HWRXTSTMP) { 3016 int i; 3017 struct sge_rxq *rxq; 3018 3019 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3020 for_each_rxq(vi, i, rxq) { 3021 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3022 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3023 else 3024 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3025 } 3026 } 3027 if (mask & IFCAP_MEXTPG) 3028 if_togglecapenable(ifp, IFCAP_MEXTPG); 3029 3030 #ifdef KERN_TLS 3031 if (mask & IFCAP_TXTLS) { 3032 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3033 3034 rc = ktls_capability(sc, enable); 3035 if (rc != 0) 3036 goto fail; 3037 3038 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3039 } 3040 #endif 3041 if (mask & IFCAP_VXLAN_HWCSUM) { 3042 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3043 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3044 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3045 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3046 } 3047 if (mask & IFCAP_VXLAN_HWTSO) { 3048 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3049 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3050 CSUM_INNER_IP_TSO); 3051 } 3052 3053 #ifdef VLAN_CAPABILITIES 3054 VLAN_CAPABILITIES(ifp); 3055 #endif 3056 fail: 3057 end_synchronized_op(sc, 0); 3058 break; 3059 3060 case SIOCSIFMEDIA: 3061 case SIOCGIFMEDIA: 3062 case SIOCGIFXMEDIA: 3063 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3064 break; 3065 3066 case SIOCGI2C: { 3067 struct ifi2creq i2c; 3068 3069 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3070 if (rc != 0) 3071 break; 3072 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3073 rc = EPERM; 3074 break; 3075 } 3076 if (i2c.len > sizeof(i2c.data)) { 3077 rc = EINVAL; 3078 break; 3079 } 3080 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3081 if (rc) 3082 return (rc); 3083 if (hw_off_limits(sc)) 3084 rc = ENXIO; 3085 else 3086 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3087 i2c.offset, i2c.len, &i2c.data[0]); 3088 end_synchronized_op(sc, 0); 3089 if (rc == 0) 3090 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3091 break; 3092 } 3093 3094 default: 3095 rc = ether_ioctl(ifp, cmd, data); 3096 } 3097 3098 return (rc); 3099 } 3100 3101 static int 3102 cxgbe_transmit(if_t ifp, struct mbuf *m) 3103 { 3104 struct vi_info *vi = if_getsoftc(ifp); 3105 struct port_info *pi = vi->pi; 3106 struct adapter *sc; 3107 struct sge_txq *txq; 3108 void *items[1]; 3109 int rc; 3110 3111 M_ASSERTPKTHDR(m); 3112 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3113 #if defined(KERN_TLS) || defined(RATELIMIT) 3114 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3115 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3116 #endif 3117 3118 if (__predict_false(pi->link_cfg.link_ok == false)) { 3119 m_freem(m); 3120 return (ENETDOWN); 3121 } 3122 3123 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3124 if (__predict_false(rc != 0)) { 3125 if (__predict_true(rc == EINPROGRESS)) { 3126 /* queued by parse_pkt */ 3127 MPASS(m != NULL); 3128 return (0); 3129 } 3130 3131 MPASS(m == NULL); /* was freed already */ 3132 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3133 return (rc); 3134 } 3135 3136 /* Select a txq. */ 3137 sc = vi->adapter; 3138 txq = &sc->sge.txq[vi->first_txq]; 3139 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3140 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3141 vi->rsrv_noflowq); 3142 3143 items[0] = m; 3144 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3145 if (__predict_false(rc != 0)) 3146 m_freem(m); 3147 3148 return (rc); 3149 } 3150 3151 static void 3152 cxgbe_qflush(if_t ifp) 3153 { 3154 struct vi_info *vi = if_getsoftc(ifp); 3155 struct sge_txq *txq; 3156 int i; 3157 3158 /* queues do not exist if !VI_INIT_DONE. */ 3159 if (vi->flags & VI_INIT_DONE) { 3160 for_each_txq(vi, i, txq) { 3161 TXQ_LOCK(txq); 3162 txq->eq.flags |= EQ_QFLUSH; 3163 TXQ_UNLOCK(txq); 3164 while (!mp_ring_is_idle(txq->r)) { 3165 mp_ring_check_drainage(txq->r, 4096); 3166 pause("qflush", 1); 3167 } 3168 TXQ_LOCK(txq); 3169 txq->eq.flags &= ~EQ_QFLUSH; 3170 TXQ_UNLOCK(txq); 3171 } 3172 } 3173 if_qflush(ifp); 3174 } 3175 3176 static uint64_t 3177 vi_get_counter(if_t ifp, ift_counter c) 3178 { 3179 struct vi_info *vi = if_getsoftc(ifp); 3180 struct fw_vi_stats_vf *s = &vi->stats; 3181 3182 mtx_lock(&vi->tick_mtx); 3183 vi_refresh_stats(vi); 3184 mtx_unlock(&vi->tick_mtx); 3185 3186 switch (c) { 3187 case IFCOUNTER_IPACKETS: 3188 return (s->rx_bcast_frames + s->rx_mcast_frames + 3189 s->rx_ucast_frames); 3190 case IFCOUNTER_IERRORS: 3191 return (s->rx_err_frames); 3192 case IFCOUNTER_OPACKETS: 3193 return (s->tx_bcast_frames + s->tx_mcast_frames + 3194 s->tx_ucast_frames + s->tx_offload_frames); 3195 case IFCOUNTER_OERRORS: 3196 return (s->tx_drop_frames); 3197 case IFCOUNTER_IBYTES: 3198 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3199 s->rx_ucast_bytes); 3200 case IFCOUNTER_OBYTES: 3201 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3202 s->tx_ucast_bytes + s->tx_offload_bytes); 3203 case IFCOUNTER_IMCASTS: 3204 return (s->rx_mcast_frames); 3205 case IFCOUNTER_OMCASTS: 3206 return (s->tx_mcast_frames); 3207 case IFCOUNTER_OQDROPS: { 3208 uint64_t drops; 3209 3210 drops = 0; 3211 if (vi->flags & VI_INIT_DONE) { 3212 int i; 3213 struct sge_txq *txq; 3214 3215 for_each_txq(vi, i, txq) 3216 drops += counter_u64_fetch(txq->r->dropped); 3217 } 3218 3219 return (drops); 3220 3221 } 3222 3223 default: 3224 return (if_get_counter_default(ifp, c)); 3225 } 3226 } 3227 3228 static uint64_t 3229 cxgbe_get_counter(if_t ifp, ift_counter c) 3230 { 3231 struct vi_info *vi = if_getsoftc(ifp); 3232 struct port_info *pi = vi->pi; 3233 struct port_stats *s = &pi->stats; 3234 3235 mtx_lock(&vi->tick_mtx); 3236 cxgbe_refresh_stats(vi); 3237 mtx_unlock(&vi->tick_mtx); 3238 3239 switch (c) { 3240 case IFCOUNTER_IPACKETS: 3241 return (s->rx_frames); 3242 3243 case IFCOUNTER_IERRORS: 3244 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3245 s->rx_fcs_err + s->rx_len_err); 3246 3247 case IFCOUNTER_OPACKETS: 3248 return (s->tx_frames); 3249 3250 case IFCOUNTER_OERRORS: 3251 return (s->tx_error_frames); 3252 3253 case IFCOUNTER_IBYTES: 3254 return (s->rx_octets); 3255 3256 case IFCOUNTER_OBYTES: 3257 return (s->tx_octets); 3258 3259 case IFCOUNTER_IMCASTS: 3260 return (s->rx_mcast_frames); 3261 3262 case IFCOUNTER_OMCASTS: 3263 return (s->tx_mcast_frames); 3264 3265 case IFCOUNTER_IQDROPS: 3266 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3267 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3268 s->rx_trunc3 + pi->tnl_cong_drops); 3269 3270 case IFCOUNTER_OQDROPS: { 3271 uint64_t drops; 3272 3273 drops = s->tx_drop; 3274 if (vi->flags & VI_INIT_DONE) { 3275 int i; 3276 struct sge_txq *txq; 3277 3278 for_each_txq(vi, i, txq) 3279 drops += counter_u64_fetch(txq->r->dropped); 3280 } 3281 3282 return (drops); 3283 3284 } 3285 3286 default: 3287 return (if_get_counter_default(ifp, c)); 3288 } 3289 } 3290 3291 #if defined(KERN_TLS) || defined(RATELIMIT) 3292 static int 3293 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3294 struct m_snd_tag **pt) 3295 { 3296 int error; 3297 3298 switch (params->hdr.type) { 3299 #ifdef RATELIMIT 3300 case IF_SND_TAG_TYPE_RATE_LIMIT: 3301 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3302 break; 3303 #endif 3304 #ifdef KERN_TLS 3305 case IF_SND_TAG_TYPE_TLS: 3306 { 3307 struct vi_info *vi = if_getsoftc(ifp); 3308 3309 if (is_t6(vi->pi->adapter)) 3310 error = t6_tls_tag_alloc(ifp, params, pt); 3311 else 3312 error = EOPNOTSUPP; 3313 break; 3314 } 3315 #endif 3316 default: 3317 error = EOPNOTSUPP; 3318 } 3319 return (error); 3320 } 3321 #endif 3322 3323 /* 3324 * The kernel picks a media from the list we had provided but we still validate 3325 * the requeste. 3326 */ 3327 int 3328 cxgbe_media_change(if_t ifp) 3329 { 3330 struct vi_info *vi = if_getsoftc(ifp); 3331 struct port_info *pi = vi->pi; 3332 struct ifmedia *ifm = &pi->media; 3333 struct link_config *lc = &pi->link_cfg; 3334 struct adapter *sc = pi->adapter; 3335 int rc; 3336 3337 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3338 if (rc != 0) 3339 return (rc); 3340 PORT_LOCK(pi); 3341 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3342 /* ifconfig .. media autoselect */ 3343 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3344 rc = ENOTSUP; /* AN not supported by transceiver */ 3345 goto done; 3346 } 3347 lc->requested_aneg = AUTONEG_ENABLE; 3348 lc->requested_speed = 0; 3349 lc->requested_fc |= PAUSE_AUTONEG; 3350 } else { 3351 lc->requested_aneg = AUTONEG_DISABLE; 3352 lc->requested_speed = 3353 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3354 lc->requested_fc = 0; 3355 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3356 lc->requested_fc |= PAUSE_RX; 3357 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3358 lc->requested_fc |= PAUSE_TX; 3359 } 3360 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3361 fixup_link_config(pi); 3362 rc = apply_link_config(pi); 3363 } 3364 done: 3365 PORT_UNLOCK(pi); 3366 end_synchronized_op(sc, 0); 3367 return (rc); 3368 } 3369 3370 /* 3371 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3372 * given speed. 3373 */ 3374 static int 3375 port_mword(struct port_info *pi, uint32_t speed) 3376 { 3377 3378 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3379 MPASS(powerof2(speed)); 3380 3381 switch(pi->port_type) { 3382 case FW_PORT_TYPE_BT_SGMII: 3383 case FW_PORT_TYPE_BT_XFI: 3384 case FW_PORT_TYPE_BT_XAUI: 3385 /* BaseT */ 3386 switch (speed) { 3387 case FW_PORT_CAP32_SPEED_100M: 3388 return (IFM_100_T); 3389 case FW_PORT_CAP32_SPEED_1G: 3390 return (IFM_1000_T); 3391 case FW_PORT_CAP32_SPEED_10G: 3392 return (IFM_10G_T); 3393 } 3394 break; 3395 case FW_PORT_TYPE_KX4: 3396 if (speed == FW_PORT_CAP32_SPEED_10G) 3397 return (IFM_10G_KX4); 3398 break; 3399 case FW_PORT_TYPE_CX4: 3400 if (speed == FW_PORT_CAP32_SPEED_10G) 3401 return (IFM_10G_CX4); 3402 break; 3403 case FW_PORT_TYPE_KX: 3404 if (speed == FW_PORT_CAP32_SPEED_1G) 3405 return (IFM_1000_KX); 3406 break; 3407 case FW_PORT_TYPE_KR: 3408 case FW_PORT_TYPE_BP_AP: 3409 case FW_PORT_TYPE_BP4_AP: 3410 case FW_PORT_TYPE_BP40_BA: 3411 case FW_PORT_TYPE_KR4_100G: 3412 case FW_PORT_TYPE_KR_SFP28: 3413 case FW_PORT_TYPE_KR_XLAUI: 3414 switch (speed) { 3415 case FW_PORT_CAP32_SPEED_1G: 3416 return (IFM_1000_KX); 3417 case FW_PORT_CAP32_SPEED_10G: 3418 return (IFM_10G_KR); 3419 case FW_PORT_CAP32_SPEED_25G: 3420 return (IFM_25G_KR); 3421 case FW_PORT_CAP32_SPEED_40G: 3422 return (IFM_40G_KR4); 3423 case FW_PORT_CAP32_SPEED_50G: 3424 return (IFM_50G_KR2); 3425 case FW_PORT_CAP32_SPEED_100G: 3426 return (IFM_100G_KR4); 3427 } 3428 break; 3429 case FW_PORT_TYPE_FIBER_XFI: 3430 case FW_PORT_TYPE_FIBER_XAUI: 3431 case FW_PORT_TYPE_SFP: 3432 case FW_PORT_TYPE_QSFP_10G: 3433 case FW_PORT_TYPE_QSA: 3434 case FW_PORT_TYPE_QSFP: 3435 case FW_PORT_TYPE_CR4_QSFP: 3436 case FW_PORT_TYPE_CR_QSFP: 3437 case FW_PORT_TYPE_CR2_QSFP: 3438 case FW_PORT_TYPE_SFP28: 3439 /* Pluggable transceiver */ 3440 switch (pi->mod_type) { 3441 case FW_PORT_MOD_TYPE_LR: 3442 switch (speed) { 3443 case FW_PORT_CAP32_SPEED_1G: 3444 return (IFM_1000_LX); 3445 case FW_PORT_CAP32_SPEED_10G: 3446 return (IFM_10G_LR); 3447 case FW_PORT_CAP32_SPEED_25G: 3448 return (IFM_25G_LR); 3449 case FW_PORT_CAP32_SPEED_40G: 3450 return (IFM_40G_LR4); 3451 case FW_PORT_CAP32_SPEED_50G: 3452 return (IFM_50G_LR2); 3453 case FW_PORT_CAP32_SPEED_100G: 3454 return (IFM_100G_LR4); 3455 } 3456 break; 3457 case FW_PORT_MOD_TYPE_SR: 3458 switch (speed) { 3459 case FW_PORT_CAP32_SPEED_1G: 3460 return (IFM_1000_SX); 3461 case FW_PORT_CAP32_SPEED_10G: 3462 return (IFM_10G_SR); 3463 case FW_PORT_CAP32_SPEED_25G: 3464 return (IFM_25G_SR); 3465 case FW_PORT_CAP32_SPEED_40G: 3466 return (IFM_40G_SR4); 3467 case FW_PORT_CAP32_SPEED_50G: 3468 return (IFM_50G_SR2); 3469 case FW_PORT_CAP32_SPEED_100G: 3470 return (IFM_100G_SR4); 3471 } 3472 break; 3473 case FW_PORT_MOD_TYPE_ER: 3474 if (speed == FW_PORT_CAP32_SPEED_10G) 3475 return (IFM_10G_ER); 3476 break; 3477 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3478 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3479 switch (speed) { 3480 case FW_PORT_CAP32_SPEED_1G: 3481 return (IFM_1000_CX); 3482 case FW_PORT_CAP32_SPEED_10G: 3483 return (IFM_10G_TWINAX); 3484 case FW_PORT_CAP32_SPEED_25G: 3485 return (IFM_25G_CR); 3486 case FW_PORT_CAP32_SPEED_40G: 3487 return (IFM_40G_CR4); 3488 case FW_PORT_CAP32_SPEED_50G: 3489 return (IFM_50G_CR2); 3490 case FW_PORT_CAP32_SPEED_100G: 3491 return (IFM_100G_CR4); 3492 } 3493 break; 3494 case FW_PORT_MOD_TYPE_LRM: 3495 if (speed == FW_PORT_CAP32_SPEED_10G) 3496 return (IFM_10G_LRM); 3497 break; 3498 case FW_PORT_MOD_TYPE_NA: 3499 MPASS(0); /* Not pluggable? */ 3500 /* fall throough */ 3501 case FW_PORT_MOD_TYPE_ERROR: 3502 case FW_PORT_MOD_TYPE_UNKNOWN: 3503 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3504 break; 3505 case FW_PORT_MOD_TYPE_NONE: 3506 return (IFM_NONE); 3507 } 3508 break; 3509 case FW_PORT_TYPE_NONE: 3510 return (IFM_NONE); 3511 } 3512 3513 return (IFM_UNKNOWN); 3514 } 3515 3516 void 3517 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3518 { 3519 struct vi_info *vi = if_getsoftc(ifp); 3520 struct port_info *pi = vi->pi; 3521 struct adapter *sc = pi->adapter; 3522 struct link_config *lc = &pi->link_cfg; 3523 3524 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3525 return; 3526 PORT_LOCK(pi); 3527 3528 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3529 /* 3530 * If all the interfaces are administratively down the firmware 3531 * does not report transceiver changes. Refresh port info here 3532 * so that ifconfig displays accurate ifmedia at all times. 3533 * This is the only reason we have a synchronized op in this 3534 * function. Just PORT_LOCK would have been enough otherwise. 3535 */ 3536 t4_update_port_info(pi); 3537 build_medialist(pi); 3538 } 3539 3540 /* ifm_status */ 3541 ifmr->ifm_status = IFM_AVALID; 3542 if (lc->link_ok == false) 3543 goto done; 3544 ifmr->ifm_status |= IFM_ACTIVE; 3545 3546 /* ifm_active */ 3547 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3548 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3549 if (lc->fc & PAUSE_RX) 3550 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3551 if (lc->fc & PAUSE_TX) 3552 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3553 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3554 done: 3555 PORT_UNLOCK(pi); 3556 end_synchronized_op(sc, 0); 3557 } 3558 3559 static int 3560 vcxgbe_probe(device_t dev) 3561 { 3562 struct vi_info *vi = device_get_softc(dev); 3563 3564 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3565 vi - vi->pi->vi); 3566 3567 return (BUS_PROBE_DEFAULT); 3568 } 3569 3570 static int 3571 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3572 { 3573 int func, index, rc; 3574 uint32_t param, val; 3575 3576 ASSERT_SYNCHRONIZED_OP(sc); 3577 3578 index = vi - pi->vi; 3579 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3580 KASSERT(index < nitems(vi_mac_funcs), 3581 ("%s: VI %s doesn't have a MAC func", __func__, 3582 device_get_nameunit(vi->dev))); 3583 func = vi_mac_funcs[index]; 3584 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3585 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3586 if (rc < 0) { 3587 CH_ERR(vi, "failed to allocate virtual interface %d" 3588 "for port %d: %d\n", index, pi->port_id, -rc); 3589 return (-rc); 3590 } 3591 vi->viid = rc; 3592 3593 if (vi->rss_size == 1) { 3594 /* 3595 * This VI didn't get a slice of the RSS table. Reduce the 3596 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3597 * configuration file (nvi, rssnvi for this PF) if this is a 3598 * problem. 3599 */ 3600 device_printf(vi->dev, "RSS table not available.\n"); 3601 vi->rss_base = 0xffff; 3602 3603 return (0); 3604 } 3605 3606 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3607 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3608 V_FW_PARAMS_PARAM_YZ(vi->viid); 3609 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3610 if (rc) 3611 vi->rss_base = 0xffff; 3612 else { 3613 MPASS((val >> 16) == vi->rss_size); 3614 vi->rss_base = val & 0xffff; 3615 } 3616 3617 return (0); 3618 } 3619 3620 static int 3621 vcxgbe_attach(device_t dev) 3622 { 3623 struct vi_info *vi; 3624 struct port_info *pi; 3625 struct adapter *sc; 3626 int rc; 3627 3628 vi = device_get_softc(dev); 3629 pi = vi->pi; 3630 sc = pi->adapter; 3631 3632 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3633 if (rc) 3634 return (rc); 3635 rc = alloc_extra_vi(sc, pi, vi); 3636 end_synchronized_op(sc, 0); 3637 if (rc) 3638 return (rc); 3639 3640 cxgbe_vi_attach(dev, vi); 3641 3642 return (0); 3643 } 3644 3645 static int 3646 vcxgbe_detach(device_t dev) 3647 { 3648 struct vi_info *vi; 3649 struct adapter *sc; 3650 3651 vi = device_get_softc(dev); 3652 sc = vi->adapter; 3653 3654 begin_vi_detach(sc, vi); 3655 cxgbe_vi_detach(vi); 3656 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3657 end_vi_detach(sc, vi); 3658 3659 return (0); 3660 } 3661 3662 static struct callout fatal_callout; 3663 static struct taskqueue *reset_tq; 3664 3665 static void 3666 delayed_panic(void *arg) 3667 { 3668 struct adapter *sc = arg; 3669 3670 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3671 } 3672 3673 static void 3674 fatal_error_task(void *arg, int pending) 3675 { 3676 struct adapter *sc = arg; 3677 int rc; 3678 3679 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3680 dump_cim_regs(sc); 3681 dump_cimla(sc); 3682 dump_devlog(sc); 3683 } 3684 3685 if (t4_reset_on_fatal_err) { 3686 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3687 rc = reset_adapter(sc); 3688 if (rc == 0 && t4_panic_on_fatal_err) { 3689 CH_ALERT(sc, "reset was successful, " 3690 "system will NOT panic.\n"); 3691 return; 3692 } 3693 } 3694 3695 if (t4_panic_on_fatal_err) { 3696 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3697 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3698 } 3699 } 3700 3701 void 3702 t4_fatal_err(struct adapter *sc, bool fw_error) 3703 { 3704 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3705 3706 stop_adapter(sc); 3707 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3708 return; 3709 if (fw_error) { 3710 /* 3711 * We are here because of a firmware error/timeout and not 3712 * because of a hardware interrupt. It is possible (although 3713 * not very likely) that an error interrupt was also raised but 3714 * this thread ran first and inhibited t4_intr_err. We walk the 3715 * main INT_CAUSE registers here to make sure we haven't missed 3716 * anything interesting. 3717 */ 3718 t4_slow_intr_handler(sc, verbose); 3719 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3720 } 3721 t4_report_fw_error(sc); 3722 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3723 device_get_nameunit(sc->dev), fw_error); 3724 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3725 } 3726 3727 void 3728 t4_add_adapter(struct adapter *sc) 3729 { 3730 sx_xlock(&t4_list_lock); 3731 SLIST_INSERT_HEAD(&t4_list, sc, link); 3732 sx_xunlock(&t4_list_lock); 3733 } 3734 3735 int 3736 t4_map_bars_0_and_4(struct adapter *sc) 3737 { 3738 sc->regs_rid = PCIR_BAR(0); 3739 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3740 &sc->regs_rid, RF_ACTIVE); 3741 if (sc->regs_res == NULL) { 3742 device_printf(sc->dev, "cannot map registers.\n"); 3743 return (ENXIO); 3744 } 3745 sc->bt = rman_get_bustag(sc->regs_res); 3746 sc->bh = rman_get_bushandle(sc->regs_res); 3747 sc->mmio_len = rman_get_size(sc->regs_res); 3748 setbit(&sc->doorbells, DOORBELL_KDB); 3749 3750 sc->msix_rid = PCIR_BAR(4); 3751 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3752 &sc->msix_rid, RF_ACTIVE); 3753 if (sc->msix_res == NULL) { 3754 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3755 return (ENXIO); 3756 } 3757 3758 return (0); 3759 } 3760 3761 int 3762 t4_map_bar_2(struct adapter *sc) 3763 { 3764 3765 /* 3766 * T4: only iWARP driver uses the userspace doorbells. There is no need 3767 * to map it if RDMA is disabled. 3768 */ 3769 if (is_t4(sc) && sc->rdmacaps == 0) 3770 return (0); 3771 3772 sc->udbs_rid = PCIR_BAR(2); 3773 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3774 &sc->udbs_rid, RF_ACTIVE); 3775 if (sc->udbs_res == NULL) { 3776 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3777 return (ENXIO); 3778 } 3779 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3780 3781 if (chip_id(sc) >= CHELSIO_T5) { 3782 setbit(&sc->doorbells, DOORBELL_UDB); 3783 #if defined(__i386__) || defined(__amd64__) 3784 if (t5_write_combine) { 3785 int rc, mode; 3786 3787 /* 3788 * Enable write combining on BAR2. This is the 3789 * userspace doorbell BAR and is split into 128B 3790 * (UDBS_SEG_SIZE) doorbell regions, each associated 3791 * with an egress queue. The first 64B has the doorbell 3792 * and the second 64B can be used to submit a tx work 3793 * request with an implicit doorbell. 3794 */ 3795 3796 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3797 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3798 if (rc == 0) { 3799 clrbit(&sc->doorbells, DOORBELL_UDB); 3800 setbit(&sc->doorbells, DOORBELL_WCWR); 3801 setbit(&sc->doorbells, DOORBELL_UDBWC); 3802 } else { 3803 device_printf(sc->dev, 3804 "couldn't enable write combining: %d\n", 3805 rc); 3806 } 3807 3808 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3809 t4_write_reg(sc, A_SGE_STAT_CFG, 3810 V_STATSOURCE_T5(7) | mode); 3811 } 3812 #endif 3813 } 3814 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3815 3816 return (0); 3817 } 3818 3819 int 3820 t4_adj_doorbells(struct adapter *sc) 3821 { 3822 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3823 sc->doorbells &= t4_doorbells_allowed; 3824 return (0); 3825 } 3826 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3827 sc->doorbells, t4_doorbells_allowed); 3828 return (EINVAL); 3829 } 3830 3831 struct memwin_init { 3832 uint32_t base; 3833 uint32_t aperture; 3834 }; 3835 3836 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3837 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3838 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3839 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3840 }; 3841 3842 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3843 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3844 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3845 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3846 }; 3847 3848 static void 3849 setup_memwin(struct adapter *sc) 3850 { 3851 const struct memwin_init *mw_init; 3852 struct memwin *mw; 3853 int i; 3854 uint32_t bar0; 3855 3856 if (is_t4(sc)) { 3857 /* 3858 * Read low 32b of bar0 indirectly via the hardware backdoor 3859 * mechanism. Works from within PCI passthrough environments 3860 * too, where rman_get_start() can return a different value. We 3861 * need to program the T4 memory window decoders with the actual 3862 * addresses that will be coming across the PCIe link. 3863 */ 3864 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3865 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3866 3867 mw_init = &t4_memwin[0]; 3868 } else { 3869 /* T5+ use the relative offset inside the PCIe BAR */ 3870 bar0 = 0; 3871 3872 mw_init = &t5_memwin[0]; 3873 } 3874 3875 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3876 if (!rw_initialized(&mw->mw_lock)) { 3877 rw_init(&mw->mw_lock, "memory window access"); 3878 mw->mw_base = mw_init->base; 3879 mw->mw_aperture = mw_init->aperture; 3880 mw->mw_curpos = 0; 3881 } 3882 t4_write_reg(sc, 3883 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3884 (mw->mw_base + bar0) | V_BIR(0) | 3885 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3886 rw_wlock(&mw->mw_lock); 3887 position_memwin(sc, i, mw->mw_curpos); 3888 rw_wunlock(&mw->mw_lock); 3889 } 3890 3891 /* flush */ 3892 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3893 } 3894 3895 /* 3896 * Positions the memory window at the given address in the card's address space. 3897 * There are some alignment requirements and the actual position may be at an 3898 * address prior to the requested address. mw->mw_curpos always has the actual 3899 * position of the window. 3900 */ 3901 static void 3902 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3903 { 3904 struct memwin *mw; 3905 uint32_t pf; 3906 uint32_t reg; 3907 3908 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3909 mw = &sc->memwin[idx]; 3910 rw_assert(&mw->mw_lock, RA_WLOCKED); 3911 3912 if (is_t4(sc)) { 3913 pf = 0; 3914 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3915 } else { 3916 pf = V_PFNUM(sc->pf); 3917 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3918 } 3919 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3920 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3921 t4_read_reg(sc, reg); /* flush */ 3922 } 3923 3924 int 3925 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3926 int len, int rw) 3927 { 3928 struct memwin *mw; 3929 uint32_t mw_end, v; 3930 3931 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3932 3933 /* Memory can only be accessed in naturally aligned 4 byte units */ 3934 if (addr & 3 || len & 3 || len <= 0) 3935 return (EINVAL); 3936 3937 mw = &sc->memwin[idx]; 3938 while (len > 0) { 3939 rw_rlock(&mw->mw_lock); 3940 mw_end = mw->mw_curpos + mw->mw_aperture; 3941 if (addr >= mw_end || addr < mw->mw_curpos) { 3942 /* Will need to reposition the window */ 3943 if (!rw_try_upgrade(&mw->mw_lock)) { 3944 rw_runlock(&mw->mw_lock); 3945 rw_wlock(&mw->mw_lock); 3946 } 3947 rw_assert(&mw->mw_lock, RA_WLOCKED); 3948 position_memwin(sc, idx, addr); 3949 rw_downgrade(&mw->mw_lock); 3950 mw_end = mw->mw_curpos + mw->mw_aperture; 3951 } 3952 rw_assert(&mw->mw_lock, RA_RLOCKED); 3953 while (addr < mw_end && len > 0) { 3954 if (rw == 0) { 3955 v = t4_read_reg(sc, mw->mw_base + addr - 3956 mw->mw_curpos); 3957 *val++ = le32toh(v); 3958 } else { 3959 v = *val++; 3960 t4_write_reg(sc, mw->mw_base + addr - 3961 mw->mw_curpos, htole32(v)); 3962 } 3963 addr += 4; 3964 len -= 4; 3965 } 3966 rw_runlock(&mw->mw_lock); 3967 } 3968 3969 return (0); 3970 } 3971 3972 CTASSERT(M_TID_COOKIE == M_COOKIE); 3973 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3974 3975 static void 3976 t4_init_atid_table(struct adapter *sc) 3977 { 3978 struct tid_info *t; 3979 int i; 3980 3981 t = &sc->tids; 3982 if (t->natids == 0) 3983 return; 3984 3985 MPASS(t->atid_tab == NULL); 3986 3987 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3988 M_ZERO | M_WAITOK); 3989 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3990 t->afree = t->atid_tab; 3991 t->atids_in_use = 0; 3992 t->atid_alloc_stopped = false; 3993 for (i = 1; i < t->natids; i++) 3994 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3995 t->atid_tab[t->natids - 1].next = NULL; 3996 } 3997 3998 static void 3999 t4_free_atid_table(struct adapter *sc) 4000 { 4001 struct tid_info *t; 4002 4003 t = &sc->tids; 4004 4005 KASSERT(t->atids_in_use == 0, 4006 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4007 4008 if (mtx_initialized(&t->atid_lock)) 4009 mtx_destroy(&t->atid_lock); 4010 free(t->atid_tab, M_CXGBE); 4011 t->atid_tab = NULL; 4012 } 4013 4014 static void 4015 stop_atid_allocator(struct adapter *sc) 4016 { 4017 struct tid_info *t = &sc->tids; 4018 4019 mtx_lock(&t->atid_lock); 4020 t->atid_alloc_stopped = true; 4021 mtx_unlock(&t->atid_lock); 4022 } 4023 4024 static void 4025 restart_atid_allocator(struct adapter *sc) 4026 { 4027 struct tid_info *t = &sc->tids; 4028 4029 mtx_lock(&t->atid_lock); 4030 KASSERT(t->atids_in_use == 0, 4031 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4032 t->atid_alloc_stopped = false; 4033 mtx_unlock(&t->atid_lock); 4034 } 4035 4036 int 4037 alloc_atid(struct adapter *sc, void *ctx) 4038 { 4039 struct tid_info *t = &sc->tids; 4040 int atid = -1; 4041 4042 mtx_lock(&t->atid_lock); 4043 if (t->afree && !t->atid_alloc_stopped) { 4044 union aopen_entry *p = t->afree; 4045 4046 atid = p - t->atid_tab; 4047 MPASS(atid <= M_TID_TID); 4048 t->afree = p->next; 4049 p->data = ctx; 4050 t->atids_in_use++; 4051 } 4052 mtx_unlock(&t->atid_lock); 4053 return (atid); 4054 } 4055 4056 void * 4057 lookup_atid(struct adapter *sc, int atid) 4058 { 4059 struct tid_info *t = &sc->tids; 4060 4061 return (t->atid_tab[atid].data); 4062 } 4063 4064 void 4065 free_atid(struct adapter *sc, int atid) 4066 { 4067 struct tid_info *t = &sc->tids; 4068 union aopen_entry *p = &t->atid_tab[atid]; 4069 4070 mtx_lock(&t->atid_lock); 4071 p->next = t->afree; 4072 t->afree = p; 4073 t->atids_in_use--; 4074 mtx_unlock(&t->atid_lock); 4075 } 4076 4077 static void 4078 queue_tid_release(struct adapter *sc, int tid) 4079 { 4080 4081 CXGBE_UNIMPLEMENTED("deferred tid release"); 4082 } 4083 4084 void 4085 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4086 { 4087 struct wrqe *wr; 4088 struct cpl_tid_release *req; 4089 4090 wr = alloc_wrqe(sizeof(*req), ctrlq); 4091 if (wr == NULL) { 4092 queue_tid_release(sc, tid); /* defer */ 4093 return; 4094 } 4095 req = wrtod(wr); 4096 4097 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4098 4099 t4_wrq_tx(sc, wr); 4100 } 4101 4102 static int 4103 t4_range_cmp(const void *a, const void *b) 4104 { 4105 return ((const struct t4_range *)a)->start - 4106 ((const struct t4_range *)b)->start; 4107 } 4108 4109 /* 4110 * Verify that the memory range specified by the addr/len pair is valid within 4111 * the card's address space. 4112 */ 4113 static int 4114 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4115 { 4116 struct t4_range mem_ranges[4], *r, *next; 4117 uint32_t em, addr_len; 4118 int i, n, remaining; 4119 4120 /* Memory can only be accessed in naturally aligned 4 byte units */ 4121 if (addr & 3 || len & 3 || len == 0) 4122 return (EINVAL); 4123 4124 /* Enabled memories */ 4125 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4126 4127 r = &mem_ranges[0]; 4128 n = 0; 4129 bzero(r, sizeof(mem_ranges)); 4130 if (em & F_EDRAM0_ENABLE) { 4131 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4132 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4133 if (r->size > 0) { 4134 r->start = G_EDRAM0_BASE(addr_len) << 20; 4135 if (addr >= r->start && 4136 addr + len <= r->start + r->size) 4137 return (0); 4138 r++; 4139 n++; 4140 } 4141 } 4142 if (em & F_EDRAM1_ENABLE) { 4143 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4144 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4145 if (r->size > 0) { 4146 r->start = G_EDRAM1_BASE(addr_len) << 20; 4147 if (addr >= r->start && 4148 addr + len <= r->start + r->size) 4149 return (0); 4150 r++; 4151 n++; 4152 } 4153 } 4154 if (em & F_EXT_MEM_ENABLE) { 4155 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4156 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4157 if (r->size > 0) { 4158 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4159 if (addr >= r->start && 4160 addr + len <= r->start + r->size) 4161 return (0); 4162 r++; 4163 n++; 4164 } 4165 } 4166 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4167 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4168 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4169 if (r->size > 0) { 4170 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4171 if (addr >= r->start && 4172 addr + len <= r->start + r->size) 4173 return (0); 4174 r++; 4175 n++; 4176 } 4177 } 4178 MPASS(n <= nitems(mem_ranges)); 4179 4180 if (n > 1) { 4181 /* Sort and merge the ranges. */ 4182 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4183 4184 /* Start from index 0 and examine the next n - 1 entries. */ 4185 r = &mem_ranges[0]; 4186 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4187 4188 MPASS(r->size > 0); /* r is a valid entry. */ 4189 next = r + 1; 4190 MPASS(next->size > 0); /* and so is the next one. */ 4191 4192 while (r->start + r->size >= next->start) { 4193 /* Merge the next one into the current entry. */ 4194 r->size = max(r->start + r->size, 4195 next->start + next->size) - r->start; 4196 n--; /* One fewer entry in total. */ 4197 if (--remaining == 0) 4198 goto done; /* short circuit */ 4199 next++; 4200 } 4201 if (next != r + 1) { 4202 /* 4203 * Some entries were merged into r and next 4204 * points to the first valid entry that couldn't 4205 * be merged. 4206 */ 4207 MPASS(next->size > 0); /* must be valid */ 4208 memcpy(r + 1, next, remaining * sizeof(*r)); 4209 #ifdef INVARIANTS 4210 /* 4211 * This so that the foo->size assertion in the 4212 * next iteration of the loop do the right 4213 * thing for entries that were pulled up and are 4214 * no longer valid. 4215 */ 4216 MPASS(n < nitems(mem_ranges)); 4217 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4218 sizeof(struct t4_range)); 4219 #endif 4220 } 4221 } 4222 done: 4223 /* Done merging the ranges. */ 4224 MPASS(n > 0); 4225 r = &mem_ranges[0]; 4226 for (i = 0; i < n; i++, r++) { 4227 if (addr >= r->start && 4228 addr + len <= r->start + r->size) 4229 return (0); 4230 } 4231 } 4232 4233 return (EFAULT); 4234 } 4235 4236 static int 4237 fwmtype_to_hwmtype(int mtype) 4238 { 4239 4240 switch (mtype) { 4241 case FW_MEMTYPE_EDC0: 4242 return (MEM_EDC0); 4243 case FW_MEMTYPE_EDC1: 4244 return (MEM_EDC1); 4245 case FW_MEMTYPE_EXTMEM: 4246 return (MEM_MC0); 4247 case FW_MEMTYPE_EXTMEM1: 4248 return (MEM_MC1); 4249 default: 4250 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4251 } 4252 } 4253 4254 /* 4255 * Verify that the memory range specified by the memtype/offset/len pair is 4256 * valid and lies entirely within the memtype specified. The global address of 4257 * the start of the range is returned in addr. 4258 */ 4259 static int 4260 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4261 uint32_t *addr) 4262 { 4263 uint32_t em, addr_len, maddr; 4264 4265 /* Memory can only be accessed in naturally aligned 4 byte units */ 4266 if (off & 3 || len & 3 || len == 0) 4267 return (EINVAL); 4268 4269 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4270 switch (fwmtype_to_hwmtype(mtype)) { 4271 case MEM_EDC0: 4272 if (!(em & F_EDRAM0_ENABLE)) 4273 return (EINVAL); 4274 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4275 maddr = G_EDRAM0_BASE(addr_len) << 20; 4276 break; 4277 case MEM_EDC1: 4278 if (!(em & F_EDRAM1_ENABLE)) 4279 return (EINVAL); 4280 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4281 maddr = G_EDRAM1_BASE(addr_len) << 20; 4282 break; 4283 case MEM_MC: 4284 if (!(em & F_EXT_MEM_ENABLE)) 4285 return (EINVAL); 4286 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4287 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4288 break; 4289 case MEM_MC1: 4290 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4291 return (EINVAL); 4292 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4293 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4294 break; 4295 default: 4296 return (EINVAL); 4297 } 4298 4299 *addr = maddr + off; /* global address */ 4300 return (validate_mem_range(sc, *addr, len)); 4301 } 4302 4303 static int 4304 fixup_devlog_params(struct adapter *sc) 4305 { 4306 struct devlog_params *dparams = &sc->params.devlog; 4307 int rc; 4308 4309 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4310 dparams->size, &dparams->addr); 4311 4312 return (rc); 4313 } 4314 4315 static void 4316 update_nirq(struct intrs_and_queues *iaq, int nports) 4317 { 4318 4319 iaq->nirq = T4_EXTRA_INTR; 4320 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4321 iaq->nirq += nports * iaq->nofldrxq; 4322 iaq->nirq += nports * (iaq->num_vis - 1) * 4323 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4324 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4325 } 4326 4327 /* 4328 * Adjust requirements to fit the number of interrupts available. 4329 */ 4330 static void 4331 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4332 int navail) 4333 { 4334 int old_nirq; 4335 const int nports = sc->params.nports; 4336 4337 MPASS(nports > 0); 4338 MPASS(navail > 0); 4339 4340 bzero(iaq, sizeof(*iaq)); 4341 iaq->intr_type = itype; 4342 iaq->num_vis = t4_num_vis; 4343 iaq->ntxq = t4_ntxq; 4344 iaq->ntxq_vi = t4_ntxq_vi; 4345 iaq->nrxq = t4_nrxq; 4346 iaq->nrxq_vi = t4_nrxq_vi; 4347 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4348 if (is_offload(sc) || is_ethoffload(sc)) { 4349 iaq->nofldtxq = t4_nofldtxq; 4350 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4351 } 4352 #endif 4353 #ifdef TCP_OFFLOAD 4354 if (is_offload(sc)) { 4355 iaq->nofldrxq = t4_nofldrxq; 4356 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4357 } 4358 #endif 4359 #ifdef DEV_NETMAP 4360 if (t4_native_netmap & NN_MAIN_VI) { 4361 iaq->nnmtxq = t4_nnmtxq; 4362 iaq->nnmrxq = t4_nnmrxq; 4363 } 4364 if (t4_native_netmap & NN_EXTRA_VI) { 4365 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4366 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4367 } 4368 #endif 4369 4370 update_nirq(iaq, nports); 4371 if (iaq->nirq <= navail && 4372 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4373 /* 4374 * This is the normal case -- there are enough interrupts for 4375 * everything. 4376 */ 4377 goto done; 4378 } 4379 4380 /* 4381 * If extra VIs have been configured try reducing their count and see if 4382 * that works. 4383 */ 4384 while (iaq->num_vis > 1) { 4385 iaq->num_vis--; 4386 update_nirq(iaq, nports); 4387 if (iaq->nirq <= navail && 4388 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4389 device_printf(sc->dev, "virtual interfaces per port " 4390 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4391 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4392 "itype %d, navail %u, nirq %d.\n", 4393 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4394 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4395 itype, navail, iaq->nirq); 4396 goto done; 4397 } 4398 } 4399 4400 /* 4401 * Extra VIs will not be created. Log a message if they were requested. 4402 */ 4403 MPASS(iaq->num_vis == 1); 4404 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4405 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4406 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4407 if (iaq->num_vis != t4_num_vis) { 4408 device_printf(sc->dev, "extra virtual interfaces disabled. " 4409 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4410 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4411 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4412 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4413 } 4414 4415 /* 4416 * Keep reducing the number of NIC rx queues to the next lower power of 4417 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4418 * if that works. 4419 */ 4420 do { 4421 if (iaq->nrxq > 1) { 4422 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4423 if (iaq->nnmrxq > iaq->nrxq) 4424 iaq->nnmrxq = iaq->nrxq; 4425 } 4426 if (iaq->nofldrxq > 1) 4427 iaq->nofldrxq >>= 1; 4428 4429 old_nirq = iaq->nirq; 4430 update_nirq(iaq, nports); 4431 if (iaq->nirq <= navail && 4432 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4433 device_printf(sc->dev, "running with reduced number of " 4434 "rx queues because of shortage of interrupts. " 4435 "nrxq=%u, nofldrxq=%u. " 4436 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4437 iaq->nofldrxq, itype, navail, iaq->nirq); 4438 goto done; 4439 } 4440 } while (old_nirq != iaq->nirq); 4441 4442 /* One interrupt for everything. Ugh. */ 4443 device_printf(sc->dev, "running with minimal number of queues. " 4444 "itype %d, navail %u.\n", itype, navail); 4445 iaq->nirq = 1; 4446 iaq->nrxq = 1; 4447 iaq->ntxq = 1; 4448 if (iaq->nofldrxq > 0) { 4449 iaq->nofldrxq = 1; 4450 iaq->nofldtxq = 1; 4451 } 4452 iaq->nnmtxq = 0; 4453 iaq->nnmrxq = 0; 4454 done: 4455 MPASS(iaq->num_vis > 0); 4456 if (iaq->num_vis > 1) { 4457 MPASS(iaq->nrxq_vi > 0); 4458 MPASS(iaq->ntxq_vi > 0); 4459 } 4460 MPASS(iaq->nirq > 0); 4461 MPASS(iaq->nrxq > 0); 4462 MPASS(iaq->ntxq > 0); 4463 if (itype == INTR_MSI) { 4464 MPASS(powerof2(iaq->nirq)); 4465 } 4466 } 4467 4468 static int 4469 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4470 { 4471 int rc, itype, navail, nalloc; 4472 4473 for (itype = INTR_MSIX; itype; itype >>= 1) { 4474 4475 if ((itype & t4_intr_types) == 0) 4476 continue; /* not allowed */ 4477 4478 if (itype == INTR_MSIX) 4479 navail = pci_msix_count(sc->dev); 4480 else if (itype == INTR_MSI) 4481 navail = pci_msi_count(sc->dev); 4482 else 4483 navail = 1; 4484 restart: 4485 if (navail == 0) 4486 continue; 4487 4488 calculate_iaq(sc, iaq, itype, navail); 4489 nalloc = iaq->nirq; 4490 rc = 0; 4491 if (itype == INTR_MSIX) 4492 rc = pci_alloc_msix(sc->dev, &nalloc); 4493 else if (itype == INTR_MSI) 4494 rc = pci_alloc_msi(sc->dev, &nalloc); 4495 4496 if (rc == 0 && nalloc > 0) { 4497 if (nalloc == iaq->nirq) 4498 return (0); 4499 4500 /* 4501 * Didn't get the number requested. Use whatever number 4502 * the kernel is willing to allocate. 4503 */ 4504 device_printf(sc->dev, "fewer vectors than requested, " 4505 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4506 itype, iaq->nirq, nalloc); 4507 pci_release_msi(sc->dev); 4508 navail = nalloc; 4509 goto restart; 4510 } 4511 4512 device_printf(sc->dev, 4513 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4514 itype, rc, iaq->nirq, nalloc); 4515 } 4516 4517 device_printf(sc->dev, 4518 "failed to find a usable interrupt type. " 4519 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4520 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4521 4522 return (ENXIO); 4523 } 4524 4525 #define FW_VERSION(chip) ( \ 4526 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4527 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4528 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4529 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4530 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4531 4532 /* Just enough of fw_hdr to cover all version info. */ 4533 struct fw_h { 4534 __u8 ver; 4535 __u8 chip; 4536 __be16 len512; 4537 __be32 fw_ver; 4538 __be32 tp_microcode_ver; 4539 __u8 intfver_nic; 4540 __u8 intfver_vnic; 4541 __u8 intfver_ofld; 4542 __u8 intfver_ri; 4543 __u8 intfver_iscsipdu; 4544 __u8 intfver_iscsi; 4545 __u8 intfver_fcoepdu; 4546 __u8 intfver_fcoe; 4547 }; 4548 /* Spot check a couple of fields. */ 4549 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4550 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4551 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4552 4553 struct fw_info { 4554 uint8_t chip; 4555 char *kld_name; 4556 char *fw_mod_name; 4557 struct fw_h fw_h; 4558 } fw_info[] = { 4559 { 4560 .chip = CHELSIO_T4, 4561 .kld_name = "t4fw_cfg", 4562 .fw_mod_name = "t4fw", 4563 .fw_h = { 4564 .chip = FW_HDR_CHIP_T4, 4565 .fw_ver = htobe32(FW_VERSION(T4)), 4566 .intfver_nic = FW_INTFVER(T4, NIC), 4567 .intfver_vnic = FW_INTFVER(T4, VNIC), 4568 .intfver_ofld = FW_INTFVER(T4, OFLD), 4569 .intfver_ri = FW_INTFVER(T4, RI), 4570 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4571 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4572 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4573 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4574 }, 4575 }, { 4576 .chip = CHELSIO_T5, 4577 .kld_name = "t5fw_cfg", 4578 .fw_mod_name = "t5fw", 4579 .fw_h = { 4580 .chip = FW_HDR_CHIP_T5, 4581 .fw_ver = htobe32(FW_VERSION(T5)), 4582 .intfver_nic = FW_INTFVER(T5, NIC), 4583 .intfver_vnic = FW_INTFVER(T5, VNIC), 4584 .intfver_ofld = FW_INTFVER(T5, OFLD), 4585 .intfver_ri = FW_INTFVER(T5, RI), 4586 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4587 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4588 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4589 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4590 }, 4591 }, { 4592 .chip = CHELSIO_T6, 4593 .kld_name = "t6fw_cfg", 4594 .fw_mod_name = "t6fw", 4595 .fw_h = { 4596 .chip = FW_HDR_CHIP_T6, 4597 .fw_ver = htobe32(FW_VERSION(T6)), 4598 .intfver_nic = FW_INTFVER(T6, NIC), 4599 .intfver_vnic = FW_INTFVER(T6, VNIC), 4600 .intfver_ofld = FW_INTFVER(T6, OFLD), 4601 .intfver_ri = FW_INTFVER(T6, RI), 4602 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4603 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4604 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4605 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4606 }, 4607 } 4608 }; 4609 4610 static struct fw_info * 4611 find_fw_info(int chip) 4612 { 4613 int i; 4614 4615 for (i = 0; i < nitems(fw_info); i++) { 4616 if (fw_info[i].chip == chip) 4617 return (&fw_info[i]); 4618 } 4619 return (NULL); 4620 } 4621 4622 /* 4623 * Is the given firmware API compatible with the one the driver was compiled 4624 * with? 4625 */ 4626 static int 4627 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4628 { 4629 4630 /* short circuit if it's the exact same firmware version */ 4631 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4632 return (1); 4633 4634 /* 4635 * XXX: Is this too conservative? Perhaps I should limit this to the 4636 * features that are supported in the driver. 4637 */ 4638 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4639 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4640 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4641 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4642 return (1); 4643 #undef SAME_INTF 4644 4645 return (0); 4646 } 4647 4648 static int 4649 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4650 const struct firmware **fw) 4651 { 4652 struct fw_info *fw_info; 4653 4654 *dcfg = NULL; 4655 if (fw != NULL) 4656 *fw = NULL; 4657 4658 fw_info = find_fw_info(chip_id(sc)); 4659 if (fw_info == NULL) { 4660 device_printf(sc->dev, 4661 "unable to look up firmware information for chip %d.\n", 4662 chip_id(sc)); 4663 return (EINVAL); 4664 } 4665 4666 *dcfg = firmware_get(fw_info->kld_name); 4667 if (*dcfg != NULL) { 4668 if (fw != NULL) 4669 *fw = firmware_get(fw_info->fw_mod_name); 4670 return (0); 4671 } 4672 4673 return (ENOENT); 4674 } 4675 4676 static void 4677 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4678 const struct firmware *fw) 4679 { 4680 4681 if (fw != NULL) 4682 firmware_put(fw, FIRMWARE_UNLOAD); 4683 if (dcfg != NULL) 4684 firmware_put(dcfg, FIRMWARE_UNLOAD); 4685 } 4686 4687 /* 4688 * Return values: 4689 * 0 means no firmware install attempted. 4690 * ERESTART means a firmware install was attempted and was successful. 4691 * +ve errno means a firmware install was attempted but failed. 4692 */ 4693 static int 4694 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4695 const struct fw_h *drv_fw, const char *reason, int *already) 4696 { 4697 const struct firmware *cfg, *fw; 4698 const uint32_t c = be32toh(card_fw->fw_ver); 4699 uint32_t d, k; 4700 int rc, fw_install; 4701 struct fw_h bundled_fw; 4702 bool load_attempted; 4703 4704 cfg = fw = NULL; 4705 load_attempted = false; 4706 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4707 4708 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4709 if (t4_fw_install < 0) { 4710 rc = load_fw_module(sc, &cfg, &fw); 4711 if (rc != 0 || fw == NULL) { 4712 device_printf(sc->dev, 4713 "failed to load firmware module: %d. cfg %p, fw %p;" 4714 " will use compiled-in firmware version for" 4715 "hw.cxgbe.fw_install checks.\n", 4716 rc, cfg, fw); 4717 } else { 4718 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4719 } 4720 load_attempted = true; 4721 } 4722 d = be32toh(bundled_fw.fw_ver); 4723 4724 if (reason != NULL) 4725 goto install; 4726 4727 if ((sc->flags & FW_OK) == 0) { 4728 4729 if (c == 0xffffffff) { 4730 reason = "missing"; 4731 goto install; 4732 } 4733 4734 rc = 0; 4735 goto done; 4736 } 4737 4738 if (!fw_compatible(card_fw, &bundled_fw)) { 4739 reason = "incompatible or unusable"; 4740 goto install; 4741 } 4742 4743 if (d > c) { 4744 reason = "older than the version bundled with this driver"; 4745 goto install; 4746 } 4747 4748 if (fw_install == 2 && d != c) { 4749 reason = "different than the version bundled with this driver"; 4750 goto install; 4751 } 4752 4753 /* No reason to do anything to the firmware already on the card. */ 4754 rc = 0; 4755 goto done; 4756 4757 install: 4758 rc = 0; 4759 if ((*already)++) 4760 goto done; 4761 4762 if (fw_install == 0) { 4763 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4764 "but the driver is prohibited from installing a firmware " 4765 "on the card.\n", 4766 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4767 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4768 4769 goto done; 4770 } 4771 4772 /* 4773 * We'll attempt to install a firmware. Load the module first (if it 4774 * hasn't been loaded already). 4775 */ 4776 if (!load_attempted) { 4777 rc = load_fw_module(sc, &cfg, &fw); 4778 if (rc != 0 || fw == NULL) { 4779 device_printf(sc->dev, 4780 "failed to load firmware module: %d. cfg %p, fw %p\n", 4781 rc, cfg, fw); 4782 /* carry on */ 4783 } 4784 } 4785 if (fw == NULL) { 4786 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4787 "but the driver cannot take corrective action because it " 4788 "is unable to load the firmware module.\n", 4789 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4790 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4791 rc = sc->flags & FW_OK ? 0 : ENOENT; 4792 goto done; 4793 } 4794 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4795 if (k != d) { 4796 MPASS(t4_fw_install > 0); 4797 device_printf(sc->dev, 4798 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4799 "expecting (%u.%u.%u.%u) and will not be used.\n", 4800 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4801 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4802 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4803 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4804 rc = sc->flags & FW_OK ? 0 : EINVAL; 4805 goto done; 4806 } 4807 4808 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4809 "installing firmware %u.%u.%u.%u on card.\n", 4810 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4811 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4812 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4813 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4814 4815 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4816 if (rc != 0) { 4817 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4818 } else { 4819 /* Installed successfully, update the cached header too. */ 4820 rc = ERESTART; 4821 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4822 } 4823 done: 4824 unload_fw_module(sc, cfg, fw); 4825 4826 return (rc); 4827 } 4828 4829 /* 4830 * Establish contact with the firmware and attempt to become the master driver. 4831 * 4832 * A firmware will be installed to the card if needed (if the driver is allowed 4833 * to do so). 4834 */ 4835 static int 4836 contact_firmware(struct adapter *sc) 4837 { 4838 int rc, already = 0; 4839 enum dev_state state; 4840 struct fw_info *fw_info; 4841 struct fw_hdr *card_fw; /* fw on the card */ 4842 const struct fw_h *drv_fw; 4843 4844 fw_info = find_fw_info(chip_id(sc)); 4845 if (fw_info == NULL) { 4846 device_printf(sc->dev, 4847 "unable to look up firmware information for chip %d.\n", 4848 chip_id(sc)); 4849 return (EINVAL); 4850 } 4851 drv_fw = &fw_info->fw_h; 4852 4853 /* Read the header of the firmware on the card */ 4854 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4855 restart: 4856 rc = -t4_get_fw_hdr(sc, card_fw); 4857 if (rc != 0) { 4858 device_printf(sc->dev, 4859 "unable to read firmware header from card's flash: %d\n", 4860 rc); 4861 goto done; 4862 } 4863 4864 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4865 &already); 4866 if (rc == ERESTART) 4867 goto restart; 4868 if (rc != 0) 4869 goto done; 4870 4871 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4872 if (rc < 0 || state == DEV_STATE_ERR) { 4873 rc = -rc; 4874 device_printf(sc->dev, 4875 "failed to connect to the firmware: %d, %d. " 4876 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4877 #if 0 4878 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4879 "not responding properly to HELLO", &already) == ERESTART) 4880 goto restart; 4881 #endif 4882 goto done; 4883 } 4884 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4885 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4886 4887 if (rc == sc->pf) { 4888 sc->flags |= MASTER_PF; 4889 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4890 NULL, &already); 4891 if (rc == ERESTART) 4892 rc = 0; 4893 else if (rc != 0) 4894 goto done; 4895 } else if (state == DEV_STATE_UNINIT) { 4896 /* 4897 * We didn't get to be the master so we definitely won't be 4898 * configuring the chip. It's a bug if someone else hasn't 4899 * configured it already. 4900 */ 4901 device_printf(sc->dev, "couldn't be master(%d), " 4902 "device not already initialized either(%d). " 4903 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4904 rc = EPROTO; 4905 goto done; 4906 } else { 4907 /* 4908 * Some other PF is the master and has configured the chip. 4909 * This is allowed but untested. 4910 */ 4911 device_printf(sc->dev, "PF%d is master, device state %d. " 4912 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4913 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4914 sc->cfcsum = 0; 4915 rc = 0; 4916 } 4917 done: 4918 if (rc != 0 && sc->flags & FW_OK) { 4919 t4_fw_bye(sc, sc->mbox); 4920 sc->flags &= ~FW_OK; 4921 } 4922 free(card_fw, M_CXGBE); 4923 return (rc); 4924 } 4925 4926 static int 4927 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4928 uint32_t mtype, uint32_t moff) 4929 { 4930 struct fw_info *fw_info; 4931 const struct firmware *dcfg, *rcfg = NULL; 4932 const uint32_t *cfdata; 4933 uint32_t cflen, addr; 4934 int rc; 4935 4936 load_fw_module(sc, &dcfg, NULL); 4937 4938 /* Card specific interpretation of "default". */ 4939 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4940 if (pci_get_device(sc->dev) == 0x440a) 4941 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4942 if (is_fpga(sc)) 4943 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4944 } 4945 4946 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4947 if (dcfg == NULL) { 4948 device_printf(sc->dev, 4949 "KLD with default config is not available.\n"); 4950 rc = ENOENT; 4951 goto done; 4952 } 4953 cfdata = dcfg->data; 4954 cflen = dcfg->datasize & ~3; 4955 } else { 4956 char s[32]; 4957 4958 fw_info = find_fw_info(chip_id(sc)); 4959 if (fw_info == NULL) { 4960 device_printf(sc->dev, 4961 "unable to look up firmware information for chip %d.\n", 4962 chip_id(sc)); 4963 rc = EINVAL; 4964 goto done; 4965 } 4966 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4967 4968 rcfg = firmware_get(s); 4969 if (rcfg == NULL) { 4970 device_printf(sc->dev, 4971 "unable to load module \"%s\" for configuration " 4972 "profile \"%s\".\n", s, cfg_file); 4973 rc = ENOENT; 4974 goto done; 4975 } 4976 cfdata = rcfg->data; 4977 cflen = rcfg->datasize & ~3; 4978 } 4979 4980 if (cflen > FLASH_CFG_MAX_SIZE) { 4981 device_printf(sc->dev, 4982 "config file too long (%d, max allowed is %d).\n", 4983 cflen, FLASH_CFG_MAX_SIZE); 4984 rc = EINVAL; 4985 goto done; 4986 } 4987 4988 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4989 if (rc != 0) { 4990 device_printf(sc->dev, 4991 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4992 __func__, mtype, moff, cflen, rc); 4993 rc = EINVAL; 4994 goto done; 4995 } 4996 write_via_memwin(sc, 2, addr, cfdata, cflen); 4997 done: 4998 if (rcfg != NULL) 4999 firmware_put(rcfg, FIRMWARE_UNLOAD); 5000 unload_fw_module(sc, dcfg, NULL); 5001 return (rc); 5002 } 5003 5004 struct caps_allowed { 5005 uint16_t nbmcaps; 5006 uint16_t linkcaps; 5007 uint16_t switchcaps; 5008 uint16_t niccaps; 5009 uint16_t toecaps; 5010 uint16_t rdmacaps; 5011 uint16_t cryptocaps; 5012 uint16_t iscsicaps; 5013 uint16_t fcoecaps; 5014 }; 5015 5016 #define FW_PARAM_DEV(param) \ 5017 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5018 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5019 #define FW_PARAM_PFVF(param) \ 5020 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5021 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5022 5023 /* 5024 * Provide a configuration profile to the firmware and have it initialize the 5025 * chip accordingly. This may involve uploading a configuration file to the 5026 * card. 5027 */ 5028 static int 5029 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5030 const struct caps_allowed *caps_allowed) 5031 { 5032 int rc; 5033 struct fw_caps_config_cmd caps; 5034 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5035 5036 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5037 if (rc != 0) { 5038 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5039 return (rc); 5040 } 5041 5042 bzero(&caps, sizeof(caps)); 5043 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5044 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5045 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5046 mtype = 0; 5047 moff = 0; 5048 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5049 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5050 mtype = FW_MEMTYPE_FLASH; 5051 moff = t4_flash_cfg_addr(sc); 5052 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5053 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5054 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5055 FW_LEN16(caps)); 5056 } else { 5057 /* 5058 * Ask the firmware where it wants us to upload the config file. 5059 */ 5060 param = FW_PARAM_DEV(CF); 5061 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5062 if (rc != 0) { 5063 /* No support for config file? Shouldn't happen. */ 5064 device_printf(sc->dev, 5065 "failed to query config file location: %d.\n", rc); 5066 goto done; 5067 } 5068 mtype = G_FW_PARAMS_PARAM_Y(val); 5069 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5070 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5071 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5072 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5073 FW_LEN16(caps)); 5074 5075 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5076 if (rc != 0) { 5077 device_printf(sc->dev, 5078 "failed to upload config file to card: %d.\n", rc); 5079 goto done; 5080 } 5081 } 5082 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5083 if (rc != 0) { 5084 device_printf(sc->dev, "failed to pre-process config file: %d " 5085 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5086 goto done; 5087 } 5088 5089 finicsum = be32toh(caps.finicsum); 5090 cfcsum = be32toh(caps.cfcsum); /* actual */ 5091 if (finicsum != cfcsum) { 5092 device_printf(sc->dev, 5093 "WARNING: config file checksum mismatch: %08x %08x\n", 5094 finicsum, cfcsum); 5095 } 5096 sc->cfcsum = cfcsum; 5097 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5098 5099 /* 5100 * Let the firmware know what features will (not) be used so it can tune 5101 * things accordingly. 5102 */ 5103 #define LIMIT_CAPS(x) do { \ 5104 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5105 } while (0) 5106 LIMIT_CAPS(nbm); 5107 LIMIT_CAPS(link); 5108 LIMIT_CAPS(switch); 5109 LIMIT_CAPS(nic); 5110 LIMIT_CAPS(toe); 5111 LIMIT_CAPS(rdma); 5112 LIMIT_CAPS(crypto); 5113 LIMIT_CAPS(iscsi); 5114 LIMIT_CAPS(fcoe); 5115 #undef LIMIT_CAPS 5116 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5117 /* 5118 * TOE and hashfilters are mutually exclusive. It is a config 5119 * file or firmware bug if both are reported as available. Try 5120 * to cope with the situation in non-debug builds by disabling 5121 * TOE. 5122 */ 5123 MPASS(caps.toecaps == 0); 5124 5125 caps.toecaps = 0; 5126 caps.rdmacaps = 0; 5127 caps.iscsicaps = 0; 5128 } 5129 5130 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5131 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5132 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5133 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5134 if (rc != 0) { 5135 device_printf(sc->dev, 5136 "failed to process config file: %d.\n", rc); 5137 goto done; 5138 } 5139 5140 t4_tweak_chip_settings(sc); 5141 set_params__pre_init(sc); 5142 5143 /* get basic stuff going */ 5144 rc = -t4_fw_initialize(sc, sc->mbox); 5145 if (rc != 0) { 5146 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5147 goto done; 5148 } 5149 done: 5150 return (rc); 5151 } 5152 5153 /* 5154 * Partition chip resources for use between various PFs, VFs, etc. 5155 */ 5156 static int 5157 partition_resources(struct adapter *sc) 5158 { 5159 char cfg_file[sizeof(t4_cfg_file)]; 5160 struct caps_allowed caps_allowed; 5161 int rc; 5162 bool fallback; 5163 5164 /* Only the master driver gets to configure the chip resources. */ 5165 MPASS(sc->flags & MASTER_PF); 5166 5167 #define COPY_CAPS(x) do { \ 5168 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5169 } while (0) 5170 bzero(&caps_allowed, sizeof(caps_allowed)); 5171 COPY_CAPS(nbm); 5172 COPY_CAPS(link); 5173 COPY_CAPS(switch); 5174 COPY_CAPS(nic); 5175 COPY_CAPS(toe); 5176 COPY_CAPS(rdma); 5177 COPY_CAPS(crypto); 5178 COPY_CAPS(iscsi); 5179 COPY_CAPS(fcoe); 5180 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5181 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5182 retry: 5183 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5184 if (rc != 0 && fallback) { 5185 dump_devlog(sc); 5186 device_printf(sc->dev, 5187 "failed (%d) to configure card with \"%s\" profile, " 5188 "will fall back to a basic configuration and retry.\n", 5189 rc, cfg_file); 5190 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5191 bzero(&caps_allowed, sizeof(caps_allowed)); 5192 COPY_CAPS(switch); 5193 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5194 fallback = false; 5195 goto retry; 5196 } 5197 #undef COPY_CAPS 5198 return (rc); 5199 } 5200 5201 /* 5202 * Retrieve parameters that are needed (or nice to have) very early. 5203 */ 5204 static int 5205 get_params__pre_init(struct adapter *sc) 5206 { 5207 int rc; 5208 uint32_t param[2], val[2]; 5209 5210 t4_get_version_info(sc); 5211 5212 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5213 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5214 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5215 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5216 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5217 5218 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5219 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5220 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5221 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5222 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5223 5224 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5225 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5226 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5227 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5228 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5229 5230 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5231 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5232 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5233 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5234 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5235 5236 param[0] = FW_PARAM_DEV(PORTVEC); 5237 param[1] = FW_PARAM_DEV(CCLK); 5238 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5239 if (rc != 0) { 5240 device_printf(sc->dev, 5241 "failed to query parameters (pre_init): %d.\n", rc); 5242 return (rc); 5243 } 5244 5245 sc->params.portvec = val[0]; 5246 sc->params.nports = bitcount32(val[0]); 5247 sc->params.vpd.cclk = val[1]; 5248 5249 /* Read device log parameters. */ 5250 rc = -t4_init_devlog_params(sc, 1); 5251 if (rc == 0) 5252 fixup_devlog_params(sc); 5253 else { 5254 device_printf(sc->dev, 5255 "failed to get devlog parameters: %d.\n", rc); 5256 rc = 0; /* devlog isn't critical for device operation */ 5257 } 5258 5259 return (rc); 5260 } 5261 5262 /* 5263 * Any params that need to be set before FW_INITIALIZE. 5264 */ 5265 static int 5266 set_params__pre_init(struct adapter *sc) 5267 { 5268 int rc = 0; 5269 uint32_t param, val; 5270 5271 if (chip_id(sc) >= CHELSIO_T6) { 5272 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5273 val = 1; 5274 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5275 /* firmwares < 1.20.1.0 do not have this param. */ 5276 if (rc == FW_EINVAL && 5277 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5278 rc = 0; 5279 } 5280 if (rc != 0) { 5281 device_printf(sc->dev, 5282 "failed to enable high priority filters :%d.\n", 5283 rc); 5284 } 5285 5286 param = FW_PARAM_DEV(PPOD_EDRAM); 5287 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5288 if (rc == 0 && val == 1) { 5289 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5290 &val); 5291 if (rc != 0) { 5292 device_printf(sc->dev, 5293 "failed to set PPOD_EDRAM: %d.\n", rc); 5294 } 5295 } 5296 } 5297 5298 /* Enable opaque VIIDs with firmwares that support it. */ 5299 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5300 val = 1; 5301 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5302 if (rc == 0 && val == 1) 5303 sc->params.viid_smt_extn_support = true; 5304 else 5305 sc->params.viid_smt_extn_support = false; 5306 5307 return (rc); 5308 } 5309 5310 /* 5311 * Retrieve various parameters that are of interest to the driver. The device 5312 * has been initialized by the firmware at this point. 5313 */ 5314 static int 5315 get_params__post_init(struct adapter *sc) 5316 { 5317 int rc; 5318 uint32_t param[7], val[7]; 5319 struct fw_caps_config_cmd caps; 5320 5321 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5322 param[1] = FW_PARAM_PFVF(EQ_START); 5323 param[2] = FW_PARAM_PFVF(FILTER_START); 5324 param[3] = FW_PARAM_PFVF(FILTER_END); 5325 param[4] = FW_PARAM_PFVF(L2T_START); 5326 param[5] = FW_PARAM_PFVF(L2T_END); 5327 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5328 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5329 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5330 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5331 if (rc != 0) { 5332 device_printf(sc->dev, 5333 "failed to query parameters (post_init): %d.\n", rc); 5334 return (rc); 5335 } 5336 5337 sc->sge.iq_start = val[0]; 5338 sc->sge.eq_start = val[1]; 5339 if ((int)val[3] > (int)val[2]) { 5340 sc->tids.ftid_base = val[2]; 5341 sc->tids.ftid_end = val[3]; 5342 sc->tids.nftids = val[3] - val[2] + 1; 5343 } 5344 sc->vres.l2t.start = val[4]; 5345 sc->vres.l2t.size = val[5] - val[4] + 1; 5346 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5347 if (sc->vres.l2t.size > 0) 5348 MPASS(fls(val[5]) <= S_SYNC_WR); 5349 sc->params.core_vdd = val[6]; 5350 5351 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5352 param[1] = FW_PARAM_PFVF(EQ_END); 5353 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5354 if (rc != 0) { 5355 device_printf(sc->dev, 5356 "failed to query parameters (post_init2): %d.\n", rc); 5357 return (rc); 5358 } 5359 MPASS((int)val[0] >= sc->sge.iq_start); 5360 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5361 MPASS((int)val[1] >= sc->sge.eq_start); 5362 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5363 5364 if (chip_id(sc) >= CHELSIO_T6) { 5365 5366 sc->tids.tid_base = t4_read_reg(sc, 5367 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5368 5369 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5370 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5371 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5372 if (rc != 0) { 5373 device_printf(sc->dev, 5374 "failed to query hpfilter parameters: %d.\n", rc); 5375 return (rc); 5376 } 5377 if ((int)val[1] > (int)val[0]) { 5378 sc->tids.hpftid_base = val[0]; 5379 sc->tids.hpftid_end = val[1]; 5380 sc->tids.nhpftids = val[1] - val[0] + 1; 5381 5382 /* 5383 * These should go off if the layout changes and the 5384 * driver needs to catch up. 5385 */ 5386 MPASS(sc->tids.hpftid_base == 0); 5387 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5388 } 5389 5390 param[0] = FW_PARAM_PFVF(RAWF_START); 5391 param[1] = FW_PARAM_PFVF(RAWF_END); 5392 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5393 if (rc != 0) { 5394 device_printf(sc->dev, 5395 "failed to query rawf parameters: %d.\n", rc); 5396 return (rc); 5397 } 5398 if ((int)val[1] > (int)val[0]) { 5399 sc->rawf_base = val[0]; 5400 sc->nrawf = val[1] - val[0] + 1; 5401 } 5402 } 5403 5404 /* 5405 * The parameters that follow may not be available on all firmwares. We 5406 * query them individually rather than in a compound query because old 5407 * firmwares fail the entire query if an unknown parameter is queried. 5408 */ 5409 5410 /* 5411 * MPS buffer group configuration. 5412 */ 5413 param[0] = FW_PARAM_DEV(MPSBGMAP); 5414 val[0] = 0; 5415 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5416 if (rc == 0) 5417 sc->params.mps_bg_map = val[0]; 5418 else 5419 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5420 5421 param[0] = FW_PARAM_DEV(TPCHMAP); 5422 val[0] = 0; 5423 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5424 if (rc == 0) 5425 sc->params.tp_ch_map = val[0]; 5426 else 5427 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5428 5429 /* 5430 * Determine whether the firmware supports the filter2 work request. 5431 */ 5432 param[0] = FW_PARAM_DEV(FILTER2_WR); 5433 val[0] = 0; 5434 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5435 if (rc == 0) 5436 sc->params.filter2_wr_support = val[0] != 0; 5437 else 5438 sc->params.filter2_wr_support = 0; 5439 5440 /* 5441 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5442 */ 5443 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5444 val[0] = 0; 5445 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5446 if (rc == 0) 5447 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5448 else 5449 sc->params.ulptx_memwrite_dsgl = false; 5450 5451 /* FW_RI_FR_NSMR_TPTE_WR support */ 5452 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5453 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5454 if (rc == 0) 5455 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5456 else 5457 sc->params.fr_nsmr_tpte_wr_support = false; 5458 5459 /* Support for 512 SGL entries per FR MR. */ 5460 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5461 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5462 if (rc == 0) 5463 sc->params.dev_512sgl_mr = val[0] != 0; 5464 else 5465 sc->params.dev_512sgl_mr = false; 5466 5467 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5468 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5469 if (rc == 0) 5470 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5471 else 5472 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5473 5474 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5475 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5476 if (rc == 0) { 5477 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5478 sc->params.nsched_cls = val[0]; 5479 } else 5480 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5481 5482 /* get capabilites */ 5483 bzero(&caps, sizeof(caps)); 5484 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5485 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5486 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5487 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5488 if (rc != 0) { 5489 device_printf(sc->dev, 5490 "failed to get card capabilities: %d.\n", rc); 5491 return (rc); 5492 } 5493 5494 #define READ_CAPS(x) do { \ 5495 sc->x = htobe16(caps.x); \ 5496 } while (0) 5497 READ_CAPS(nbmcaps); 5498 READ_CAPS(linkcaps); 5499 READ_CAPS(switchcaps); 5500 READ_CAPS(niccaps); 5501 READ_CAPS(toecaps); 5502 READ_CAPS(rdmacaps); 5503 READ_CAPS(cryptocaps); 5504 READ_CAPS(iscsicaps); 5505 READ_CAPS(fcoecaps); 5506 5507 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5508 MPASS(chip_id(sc) > CHELSIO_T4); 5509 MPASS(sc->toecaps == 0); 5510 sc->toecaps = 0; 5511 5512 param[0] = FW_PARAM_DEV(NTID); 5513 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5514 if (rc != 0) { 5515 device_printf(sc->dev, 5516 "failed to query HASHFILTER parameters: %d.\n", rc); 5517 return (rc); 5518 } 5519 sc->tids.ntids = val[0]; 5520 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5521 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5522 sc->tids.ntids -= sc->tids.nhpftids; 5523 } 5524 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5525 sc->params.hash_filter = 1; 5526 } 5527 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5528 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5529 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5530 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5531 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5532 if (rc != 0) { 5533 device_printf(sc->dev, 5534 "failed to query NIC parameters: %d.\n", rc); 5535 return (rc); 5536 } 5537 if ((int)val[1] > (int)val[0]) { 5538 sc->tids.etid_base = val[0]; 5539 sc->tids.etid_end = val[1]; 5540 sc->tids.netids = val[1] - val[0] + 1; 5541 sc->params.eo_wr_cred = val[2]; 5542 sc->params.ethoffload = 1; 5543 } 5544 } 5545 if (sc->toecaps) { 5546 /* query offload-related parameters */ 5547 param[0] = FW_PARAM_DEV(NTID); 5548 param[1] = FW_PARAM_PFVF(SERVER_START); 5549 param[2] = FW_PARAM_PFVF(SERVER_END); 5550 param[3] = FW_PARAM_PFVF(TDDP_START); 5551 param[4] = FW_PARAM_PFVF(TDDP_END); 5552 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5553 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5554 if (rc != 0) { 5555 device_printf(sc->dev, 5556 "failed to query TOE parameters: %d.\n", rc); 5557 return (rc); 5558 } 5559 sc->tids.ntids = val[0]; 5560 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5561 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5562 sc->tids.ntids -= sc->tids.nhpftids; 5563 } 5564 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5565 if ((int)val[2] > (int)val[1]) { 5566 sc->tids.stid_base = val[1]; 5567 sc->tids.nstids = val[2] - val[1] + 1; 5568 } 5569 sc->vres.ddp.start = val[3]; 5570 sc->vres.ddp.size = val[4] - val[3] + 1; 5571 sc->params.ofldq_wr_cred = val[5]; 5572 sc->params.offload = 1; 5573 } else { 5574 /* 5575 * The firmware attempts memfree TOE configuration for -SO cards 5576 * and will report toecaps=0 if it runs out of resources (this 5577 * depends on the config file). It may not report 0 for other 5578 * capabilities dependent on the TOE in this case. Set them to 5579 * 0 here so that the driver doesn't bother tracking resources 5580 * that will never be used. 5581 */ 5582 sc->iscsicaps = 0; 5583 sc->rdmacaps = 0; 5584 } 5585 if (sc->rdmacaps) { 5586 param[0] = FW_PARAM_PFVF(STAG_START); 5587 param[1] = FW_PARAM_PFVF(STAG_END); 5588 param[2] = FW_PARAM_PFVF(RQ_START); 5589 param[3] = FW_PARAM_PFVF(RQ_END); 5590 param[4] = FW_PARAM_PFVF(PBL_START); 5591 param[5] = FW_PARAM_PFVF(PBL_END); 5592 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5593 if (rc != 0) { 5594 device_printf(sc->dev, 5595 "failed to query RDMA parameters(1): %d.\n", rc); 5596 return (rc); 5597 } 5598 sc->vres.stag.start = val[0]; 5599 sc->vres.stag.size = val[1] - val[0] + 1; 5600 sc->vres.rq.start = val[2]; 5601 sc->vres.rq.size = val[3] - val[2] + 1; 5602 sc->vres.pbl.start = val[4]; 5603 sc->vres.pbl.size = val[5] - val[4] + 1; 5604 5605 param[0] = FW_PARAM_PFVF(SQRQ_START); 5606 param[1] = FW_PARAM_PFVF(SQRQ_END); 5607 param[2] = FW_PARAM_PFVF(CQ_START); 5608 param[3] = FW_PARAM_PFVF(CQ_END); 5609 param[4] = FW_PARAM_PFVF(OCQ_START); 5610 param[5] = FW_PARAM_PFVF(OCQ_END); 5611 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5612 if (rc != 0) { 5613 device_printf(sc->dev, 5614 "failed to query RDMA parameters(2): %d.\n", rc); 5615 return (rc); 5616 } 5617 sc->vres.qp.start = val[0]; 5618 sc->vres.qp.size = val[1] - val[0] + 1; 5619 sc->vres.cq.start = val[2]; 5620 sc->vres.cq.size = val[3] - val[2] + 1; 5621 sc->vres.ocq.start = val[4]; 5622 sc->vres.ocq.size = val[5] - val[4] + 1; 5623 5624 param[0] = FW_PARAM_PFVF(SRQ_START); 5625 param[1] = FW_PARAM_PFVF(SRQ_END); 5626 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5627 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5629 if (rc != 0) { 5630 device_printf(sc->dev, 5631 "failed to query RDMA parameters(3): %d.\n", rc); 5632 return (rc); 5633 } 5634 sc->vres.srq.start = val[0]; 5635 sc->vres.srq.size = val[1] - val[0] + 1; 5636 sc->params.max_ordird_qp = val[2]; 5637 sc->params.max_ird_adapter = val[3]; 5638 } 5639 if (sc->iscsicaps) { 5640 param[0] = FW_PARAM_PFVF(ISCSI_START); 5641 param[1] = FW_PARAM_PFVF(ISCSI_END); 5642 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5643 if (rc != 0) { 5644 device_printf(sc->dev, 5645 "failed to query iSCSI parameters: %d.\n", rc); 5646 return (rc); 5647 } 5648 sc->vres.iscsi.start = val[0]; 5649 sc->vres.iscsi.size = val[1] - val[0] + 1; 5650 } 5651 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5652 param[0] = FW_PARAM_PFVF(TLS_START); 5653 param[1] = FW_PARAM_PFVF(TLS_END); 5654 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5655 if (rc != 0) { 5656 device_printf(sc->dev, 5657 "failed to query TLS parameters: %d.\n", rc); 5658 return (rc); 5659 } 5660 sc->vres.key.start = val[0]; 5661 sc->vres.key.size = val[1] - val[0] + 1; 5662 } 5663 5664 /* 5665 * We've got the params we wanted to query directly from the firmware. 5666 * Grab some others via other means. 5667 */ 5668 t4_init_sge_params(sc); 5669 t4_init_tp_params(sc); 5670 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5671 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5672 5673 rc = t4_verify_chip_settings(sc); 5674 if (rc != 0) 5675 return (rc); 5676 t4_init_rx_buf_info(sc); 5677 5678 return (rc); 5679 } 5680 5681 #ifdef KERN_TLS 5682 static void 5683 ktls_tick(void *arg) 5684 { 5685 struct adapter *sc; 5686 uint32_t tstamp; 5687 5688 sc = arg; 5689 tstamp = tcp_ts_getticks(); 5690 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5691 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5692 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5693 } 5694 5695 static int 5696 t6_config_kern_tls(struct adapter *sc, bool enable) 5697 { 5698 int rc; 5699 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5700 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5701 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5702 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5703 5704 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5705 if (rc != 0) { 5706 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5707 enable ? "enable" : "disable", rc); 5708 return (rc); 5709 } 5710 5711 if (enable) { 5712 sc->flags |= KERN_TLS_ON; 5713 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5714 C_HARDCLOCK); 5715 } else { 5716 sc->flags &= ~KERN_TLS_ON; 5717 callout_stop(&sc->ktls_tick); 5718 } 5719 5720 return (rc); 5721 } 5722 #endif 5723 5724 static int 5725 set_params__post_init(struct adapter *sc) 5726 { 5727 uint32_t mask, param, val; 5728 #ifdef TCP_OFFLOAD 5729 int i, v, shift; 5730 #endif 5731 5732 /* ask for encapsulated CPLs */ 5733 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5734 val = 1; 5735 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5736 5737 /* Enable 32b port caps if the firmware supports it. */ 5738 param = FW_PARAM_PFVF(PORT_CAPS32); 5739 val = 1; 5740 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5741 sc->params.port_caps32 = 1; 5742 5743 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5744 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5745 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5746 V_MASKFILTER(val - 1)); 5747 5748 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5749 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5750 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5751 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5752 val = 0; 5753 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5754 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5755 F_ATTACKFILTERENABLE); 5756 val |= F_DROPERRORATTACK; 5757 } 5758 if (t4_drop_ip_fragments != 0) { 5759 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5760 F_FRAGMENTDROP); 5761 val |= F_DROPERRORFRAG; 5762 } 5763 if (t4_drop_pkts_with_l2_errors != 0) 5764 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5765 if (t4_drop_pkts_with_l3_errors != 0) { 5766 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5767 F_DROPERRORCSUMIP; 5768 } 5769 if (t4_drop_pkts_with_l4_errors != 0) { 5770 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5771 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5772 } 5773 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5774 5775 #ifdef TCP_OFFLOAD 5776 /* 5777 * Override the TOE timers with user provided tunables. This is not the 5778 * recommended way to change the timers (the firmware config file is) so 5779 * these tunables are not documented. 5780 * 5781 * All the timer tunables are in microseconds. 5782 */ 5783 if (t4_toe_keepalive_idle != 0) { 5784 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5785 v &= M_KEEPALIVEIDLE; 5786 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5787 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5788 } 5789 if (t4_toe_keepalive_interval != 0) { 5790 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5791 v &= M_KEEPALIVEINTVL; 5792 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5793 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5794 } 5795 if (t4_toe_keepalive_count != 0) { 5796 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5797 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5798 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5799 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5800 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5801 } 5802 if (t4_toe_rexmt_min != 0) { 5803 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5804 v &= M_RXTMIN; 5805 t4_set_reg_field(sc, A_TP_RXT_MIN, 5806 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5807 } 5808 if (t4_toe_rexmt_max != 0) { 5809 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5810 v &= M_RXTMAX; 5811 t4_set_reg_field(sc, A_TP_RXT_MAX, 5812 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5813 } 5814 if (t4_toe_rexmt_count != 0) { 5815 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5816 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5817 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5818 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5819 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5820 } 5821 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5822 if (t4_toe_rexmt_backoff[i] != -1) { 5823 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5824 shift = (i & 3) << 3; 5825 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5826 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5827 } 5828 } 5829 #endif 5830 5831 /* 5832 * Limit TOE connections to 2 reassembly "islands". This is 5833 * required to permit migrating TOE connections to either 5834 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5835 */ 5836 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5837 V_PASSMODE(2)); 5838 5839 #ifdef KERN_TLS 5840 if (is_ktls(sc)) { 5841 sc->tlst.inline_keys = t4_tls_inline_keys; 5842 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5843 if (t4_kern_tls != 0 && is_t6(sc)) 5844 t6_config_kern_tls(sc, true); 5845 } 5846 #endif 5847 return (0); 5848 } 5849 5850 #undef FW_PARAM_PFVF 5851 #undef FW_PARAM_DEV 5852 5853 static void 5854 t4_set_desc(struct adapter *sc) 5855 { 5856 struct adapter_params *p = &sc->params; 5857 5858 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5859 } 5860 5861 static inline void 5862 ifmedia_add4(struct ifmedia *ifm, int m) 5863 { 5864 5865 ifmedia_add(ifm, m, 0, NULL); 5866 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5867 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5868 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5869 } 5870 5871 /* 5872 * This is the selected media, which is not quite the same as the active media. 5873 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5874 * and active are not the same, and "media: Ethernet selected" otherwise. 5875 */ 5876 static void 5877 set_current_media(struct port_info *pi) 5878 { 5879 struct link_config *lc; 5880 struct ifmedia *ifm; 5881 int mword; 5882 u_int speed; 5883 5884 PORT_LOCK_ASSERT_OWNED(pi); 5885 5886 /* Leave current media alone if it's already set to IFM_NONE. */ 5887 ifm = &pi->media; 5888 if (ifm->ifm_cur != NULL && 5889 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5890 return; 5891 5892 lc = &pi->link_cfg; 5893 if (lc->requested_aneg != AUTONEG_DISABLE && 5894 lc->pcaps & FW_PORT_CAP32_ANEG) { 5895 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5896 return; 5897 } 5898 mword = IFM_ETHER | IFM_FDX; 5899 if (lc->requested_fc & PAUSE_TX) 5900 mword |= IFM_ETH_TXPAUSE; 5901 if (lc->requested_fc & PAUSE_RX) 5902 mword |= IFM_ETH_RXPAUSE; 5903 if (lc->requested_speed == 0) 5904 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5905 else 5906 speed = lc->requested_speed; 5907 mword |= port_mword(pi, speed_to_fwcap(speed)); 5908 ifmedia_set(ifm, mword); 5909 } 5910 5911 /* 5912 * Returns true if the ifmedia list for the port cannot change. 5913 */ 5914 static bool 5915 fixed_ifmedia(struct port_info *pi) 5916 { 5917 5918 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5919 pi->port_type == FW_PORT_TYPE_BT_XFI || 5920 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5921 pi->port_type == FW_PORT_TYPE_KX4 || 5922 pi->port_type == FW_PORT_TYPE_KX || 5923 pi->port_type == FW_PORT_TYPE_KR || 5924 pi->port_type == FW_PORT_TYPE_BP_AP || 5925 pi->port_type == FW_PORT_TYPE_BP4_AP || 5926 pi->port_type == FW_PORT_TYPE_BP40_BA || 5927 pi->port_type == FW_PORT_TYPE_KR4_100G || 5928 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5929 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5930 } 5931 5932 static void 5933 build_medialist(struct port_info *pi) 5934 { 5935 uint32_t ss, speed; 5936 int unknown, mword, bit; 5937 struct link_config *lc; 5938 struct ifmedia *ifm; 5939 5940 PORT_LOCK_ASSERT_OWNED(pi); 5941 5942 if (pi->flags & FIXED_IFMEDIA) 5943 return; 5944 5945 /* 5946 * Rebuild the ifmedia list. 5947 */ 5948 ifm = &pi->media; 5949 ifmedia_removeall(ifm); 5950 lc = &pi->link_cfg; 5951 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5952 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5953 MPASS(ss != 0); 5954 no_media: 5955 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5956 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5957 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5958 return; 5959 } 5960 5961 unknown = 0; 5962 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5963 speed = 1 << bit; 5964 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5965 if (ss & speed) { 5966 mword = port_mword(pi, speed); 5967 if (mword == IFM_NONE) { 5968 goto no_media; 5969 } else if (mword == IFM_UNKNOWN) 5970 unknown++; 5971 else 5972 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5973 } 5974 } 5975 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5976 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5977 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5978 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5979 5980 set_current_media(pi); 5981 } 5982 5983 /* 5984 * Initialize the requested fields in the link config based on driver tunables. 5985 */ 5986 static void 5987 init_link_config(struct port_info *pi) 5988 { 5989 struct link_config *lc = &pi->link_cfg; 5990 5991 PORT_LOCK_ASSERT_OWNED(pi); 5992 5993 lc->requested_caps = 0; 5994 lc->requested_speed = 0; 5995 5996 if (t4_autoneg == 0) 5997 lc->requested_aneg = AUTONEG_DISABLE; 5998 else if (t4_autoneg == 1) 5999 lc->requested_aneg = AUTONEG_ENABLE; 6000 else 6001 lc->requested_aneg = AUTONEG_AUTO; 6002 6003 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6004 PAUSE_AUTONEG); 6005 6006 if (t4_fec & FEC_AUTO) 6007 lc->requested_fec = FEC_AUTO; 6008 else if (t4_fec == 0) 6009 lc->requested_fec = FEC_NONE; 6010 else { 6011 /* -1 is handled by the FEC_AUTO block above and not here. */ 6012 lc->requested_fec = t4_fec & 6013 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6014 if (lc->requested_fec == 0) 6015 lc->requested_fec = FEC_AUTO; 6016 } 6017 if (t4_force_fec < 0) 6018 lc->force_fec = -1; 6019 else if (t4_force_fec > 0) 6020 lc->force_fec = 1; 6021 else 6022 lc->force_fec = 0; 6023 } 6024 6025 /* 6026 * Makes sure that all requested settings comply with what's supported by the 6027 * port. Returns the number of settings that were invalid and had to be fixed. 6028 */ 6029 static int 6030 fixup_link_config(struct port_info *pi) 6031 { 6032 int n = 0; 6033 struct link_config *lc = &pi->link_cfg; 6034 uint32_t fwspeed; 6035 6036 PORT_LOCK_ASSERT_OWNED(pi); 6037 6038 /* Speed (when not autonegotiating) */ 6039 if (lc->requested_speed != 0) { 6040 fwspeed = speed_to_fwcap(lc->requested_speed); 6041 if ((fwspeed & lc->pcaps) == 0) { 6042 n++; 6043 lc->requested_speed = 0; 6044 } 6045 } 6046 6047 /* Link autonegotiation */ 6048 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6049 lc->requested_aneg == AUTONEG_DISABLE || 6050 lc->requested_aneg == AUTONEG_AUTO); 6051 if (lc->requested_aneg == AUTONEG_ENABLE && 6052 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6053 n++; 6054 lc->requested_aneg = AUTONEG_AUTO; 6055 } 6056 6057 /* Flow control */ 6058 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6059 if (lc->requested_fc & PAUSE_TX && 6060 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6061 n++; 6062 lc->requested_fc &= ~PAUSE_TX; 6063 } 6064 if (lc->requested_fc & PAUSE_RX && 6065 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6066 n++; 6067 lc->requested_fc &= ~PAUSE_RX; 6068 } 6069 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6070 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6071 n++; 6072 lc->requested_fc |= PAUSE_AUTONEG; 6073 } 6074 6075 /* FEC */ 6076 if ((lc->requested_fec & FEC_RS && 6077 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6078 (lc->requested_fec & FEC_BASER_RS && 6079 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6080 n++; 6081 lc->requested_fec = FEC_AUTO; 6082 } 6083 6084 return (n); 6085 } 6086 6087 /* 6088 * Apply the requested L1 settings, which are expected to be valid, to the 6089 * hardware. 6090 */ 6091 static int 6092 apply_link_config(struct port_info *pi) 6093 { 6094 struct adapter *sc = pi->adapter; 6095 struct link_config *lc = &pi->link_cfg; 6096 int rc; 6097 6098 #ifdef INVARIANTS 6099 ASSERT_SYNCHRONIZED_OP(sc); 6100 PORT_LOCK_ASSERT_OWNED(pi); 6101 6102 if (lc->requested_aneg == AUTONEG_ENABLE) 6103 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6104 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6105 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6106 if (lc->requested_fc & PAUSE_TX) 6107 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6108 if (lc->requested_fc & PAUSE_RX) 6109 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6110 if (lc->requested_fec & FEC_RS) 6111 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6112 if (lc->requested_fec & FEC_BASER_RS) 6113 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6114 #endif 6115 if (!(sc->flags & IS_VF)) { 6116 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6117 if (rc != 0) { 6118 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6119 return (rc); 6120 } 6121 } 6122 6123 /* 6124 * An L1_CFG will almost always result in a link-change event if the 6125 * link is up, and the driver will refresh the actual fec/fc/etc. when 6126 * the notification is processed. If the link is down then the actual 6127 * settings are meaningless. 6128 * 6129 * This takes care of the case where a change in the L1 settings may not 6130 * result in a notification. 6131 */ 6132 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6133 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6134 6135 return (0); 6136 } 6137 6138 #define FW_MAC_EXACT_CHUNK 7 6139 struct mcaddr_ctx { 6140 if_t ifp; 6141 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6142 uint64_t hash; 6143 int i; 6144 int del; 6145 int rc; 6146 }; 6147 6148 static u_int 6149 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6150 { 6151 struct mcaddr_ctx *ctx = arg; 6152 struct vi_info *vi = if_getsoftc(ctx->ifp); 6153 struct port_info *pi = vi->pi; 6154 struct adapter *sc = pi->adapter; 6155 6156 if (ctx->rc < 0) 6157 return (0); 6158 6159 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6160 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6161 ctx->i++; 6162 6163 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6164 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6165 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6166 if (ctx->rc < 0) { 6167 int j; 6168 6169 for (j = 0; j < ctx->i; j++) { 6170 if_printf(ctx->ifp, 6171 "failed to add mc address" 6172 " %02x:%02x:%02x:" 6173 "%02x:%02x:%02x rc=%d\n", 6174 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6175 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6176 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6177 -ctx->rc); 6178 } 6179 return (0); 6180 } 6181 ctx->del = 0; 6182 ctx->i = 0; 6183 } 6184 6185 return (1); 6186 } 6187 6188 /* 6189 * Program the port's XGMAC based on parameters in ifnet. The caller also 6190 * indicates which parameters should be programmed (the rest are left alone). 6191 */ 6192 int 6193 update_mac_settings(if_t ifp, int flags) 6194 { 6195 int rc = 0; 6196 struct vi_info *vi = if_getsoftc(ifp); 6197 struct port_info *pi = vi->pi; 6198 struct adapter *sc = pi->adapter; 6199 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6200 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6201 6202 ASSERT_SYNCHRONIZED_OP(sc); 6203 KASSERT(flags, ("%s: not told what to update.", __func__)); 6204 6205 if (flags & XGMAC_MTU) 6206 mtu = if_getmtu(ifp); 6207 6208 if (flags & XGMAC_PROMISC) 6209 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6210 6211 if (flags & XGMAC_ALLMULTI) 6212 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6213 6214 if (flags & XGMAC_VLANEX) 6215 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6216 6217 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6218 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6219 allmulti, 1, vlanex, false); 6220 if (rc) { 6221 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6222 rc); 6223 return (rc); 6224 } 6225 } 6226 6227 if (flags & XGMAC_UCADDR) { 6228 uint8_t ucaddr[ETHER_ADDR_LEN]; 6229 6230 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6231 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6232 ucaddr, true, &vi->smt_idx); 6233 if (rc < 0) { 6234 rc = -rc; 6235 if_printf(ifp, "change_mac failed: %d\n", rc); 6236 return (rc); 6237 } else { 6238 vi->xact_addr_filt = rc; 6239 rc = 0; 6240 } 6241 } 6242 6243 if (flags & XGMAC_MCADDRS) { 6244 struct epoch_tracker et; 6245 struct mcaddr_ctx ctx; 6246 int j; 6247 6248 ctx.ifp = ifp; 6249 ctx.hash = 0; 6250 ctx.i = 0; 6251 ctx.del = 1; 6252 ctx.rc = 0; 6253 /* 6254 * Unlike other drivers, we accumulate list of pointers into 6255 * interface address lists and we need to keep it safe even 6256 * after if_foreach_llmaddr() returns, thus we must enter the 6257 * network epoch. 6258 */ 6259 NET_EPOCH_ENTER(et); 6260 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6261 if (ctx.rc < 0) { 6262 NET_EPOCH_EXIT(et); 6263 rc = -ctx.rc; 6264 return (rc); 6265 } 6266 if (ctx.i > 0) { 6267 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6268 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6269 NET_EPOCH_EXIT(et); 6270 if (rc < 0) { 6271 rc = -rc; 6272 for (j = 0; j < ctx.i; j++) { 6273 if_printf(ifp, 6274 "failed to add mcast address" 6275 " %02x:%02x:%02x:" 6276 "%02x:%02x:%02x rc=%d\n", 6277 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6278 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6279 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6280 rc); 6281 } 6282 return (rc); 6283 } 6284 ctx.del = 0; 6285 } else 6286 NET_EPOCH_EXIT(et); 6287 6288 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6289 if (rc != 0) 6290 if_printf(ifp, "failed to set mcast address hash: %d\n", 6291 rc); 6292 if (ctx.del == 0) { 6293 /* We clobbered the VXLAN entry if there was one. */ 6294 pi->vxlan_tcam_entry = false; 6295 } 6296 } 6297 6298 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6299 pi->vxlan_tcam_entry == false) { 6300 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6301 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6302 true); 6303 if (rc < 0) { 6304 rc = -rc; 6305 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6306 rc); 6307 } else { 6308 MPASS(rc == sc->rawf_base + pi->port_id); 6309 rc = 0; 6310 pi->vxlan_tcam_entry = true; 6311 } 6312 } 6313 6314 return (rc); 6315 } 6316 6317 /* 6318 * {begin|end}_synchronized_op must be called from the same thread. 6319 */ 6320 int 6321 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6322 char *wmesg) 6323 { 6324 int rc, pri; 6325 6326 #ifdef WITNESS 6327 /* the caller thinks it's ok to sleep, but is it really? */ 6328 if (flags & SLEEP_OK) 6329 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6330 "begin_synchronized_op"); 6331 #endif 6332 6333 if (INTR_OK) 6334 pri = PCATCH; 6335 else 6336 pri = 0; 6337 6338 ADAPTER_LOCK(sc); 6339 for (;;) { 6340 6341 if (vi && IS_DETACHING(vi)) { 6342 rc = ENXIO; 6343 goto done; 6344 } 6345 6346 if (!IS_BUSY(sc)) { 6347 rc = 0; 6348 break; 6349 } 6350 6351 if (!(flags & SLEEP_OK)) { 6352 rc = EBUSY; 6353 goto done; 6354 } 6355 6356 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6357 rc = EINTR; 6358 goto done; 6359 } 6360 } 6361 6362 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6363 SET_BUSY(sc); 6364 #ifdef INVARIANTS 6365 sc->last_op = wmesg; 6366 sc->last_op_thr = curthread; 6367 sc->last_op_flags = flags; 6368 #endif 6369 6370 done: 6371 if (!(flags & HOLD_LOCK) || rc) 6372 ADAPTER_UNLOCK(sc); 6373 6374 return (rc); 6375 } 6376 6377 /* 6378 * Tell if_ioctl and if_init that the VI is going away. This is 6379 * special variant of begin_synchronized_op and must be paired with a 6380 * call to end_vi_detach. 6381 */ 6382 void 6383 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6384 { 6385 ADAPTER_LOCK(sc); 6386 SET_DETACHING(vi); 6387 wakeup(&sc->flags); 6388 while (IS_BUSY(sc)) 6389 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6390 SET_BUSY(sc); 6391 #ifdef INVARIANTS 6392 sc->last_op = "t4detach"; 6393 sc->last_op_thr = curthread; 6394 sc->last_op_flags = 0; 6395 #endif 6396 ADAPTER_UNLOCK(sc); 6397 } 6398 6399 void 6400 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6401 { 6402 ADAPTER_LOCK(sc); 6403 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6404 CLR_BUSY(sc); 6405 CLR_DETACHING(vi); 6406 wakeup(&sc->flags); 6407 ADAPTER_UNLOCK(sc); 6408 } 6409 6410 /* 6411 * {begin|end}_synchronized_op must be called from the same thread. 6412 */ 6413 void 6414 end_synchronized_op(struct adapter *sc, int flags) 6415 { 6416 6417 if (flags & LOCK_HELD) 6418 ADAPTER_LOCK_ASSERT_OWNED(sc); 6419 else 6420 ADAPTER_LOCK(sc); 6421 6422 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6423 CLR_BUSY(sc); 6424 wakeup(&sc->flags); 6425 ADAPTER_UNLOCK(sc); 6426 } 6427 6428 static int 6429 cxgbe_init_synchronized(struct vi_info *vi) 6430 { 6431 struct port_info *pi = vi->pi; 6432 struct adapter *sc = pi->adapter; 6433 if_t ifp = vi->ifp; 6434 int rc = 0, i; 6435 struct sge_txq *txq; 6436 6437 ASSERT_SYNCHRONIZED_OP(sc); 6438 6439 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6440 return (0); /* already running */ 6441 6442 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6443 return (rc); /* error message displayed already */ 6444 6445 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6446 return (rc); /* error message displayed already */ 6447 6448 rc = update_mac_settings(ifp, XGMAC_ALL); 6449 if (rc) 6450 goto done; /* error message displayed already */ 6451 6452 PORT_LOCK(pi); 6453 if (pi->up_vis == 0) { 6454 t4_update_port_info(pi); 6455 fixup_link_config(pi); 6456 build_medialist(pi); 6457 apply_link_config(pi); 6458 } 6459 6460 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6461 if (rc != 0) { 6462 if_printf(ifp, "enable_vi failed: %d\n", rc); 6463 PORT_UNLOCK(pi); 6464 goto done; 6465 } 6466 6467 /* 6468 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6469 * if this changes. 6470 */ 6471 6472 for_each_txq(vi, i, txq) { 6473 TXQ_LOCK(txq); 6474 txq->eq.flags |= EQ_ENABLED; 6475 TXQ_UNLOCK(txq); 6476 } 6477 6478 /* 6479 * The first iq of the first port to come up is used for tracing. 6480 */ 6481 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6482 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6483 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6484 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6485 V_QUEUENUMBER(sc->traceq)); 6486 pi->flags |= HAS_TRACEQ; 6487 } 6488 6489 /* all ok */ 6490 pi->up_vis++; 6491 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6492 if (pi->link_cfg.link_ok) 6493 t4_os_link_changed(pi); 6494 PORT_UNLOCK(pi); 6495 6496 mtx_lock(&vi->tick_mtx); 6497 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6498 callout_reset(&vi->tick, hz, vi_tick, vi); 6499 else 6500 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6501 mtx_unlock(&vi->tick_mtx); 6502 done: 6503 if (rc != 0) 6504 cxgbe_uninit_synchronized(vi); 6505 6506 return (rc); 6507 } 6508 6509 /* 6510 * Idempotent. 6511 */ 6512 static int 6513 cxgbe_uninit_synchronized(struct vi_info *vi) 6514 { 6515 struct port_info *pi = vi->pi; 6516 struct adapter *sc = pi->adapter; 6517 if_t ifp = vi->ifp; 6518 int rc, i; 6519 struct sge_txq *txq; 6520 6521 ASSERT_SYNCHRONIZED_OP(sc); 6522 6523 if (!(vi->flags & VI_INIT_DONE)) { 6524 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6525 KASSERT(0, ("uninited VI is running")); 6526 if_printf(ifp, "uninited VI with running ifnet. " 6527 "vi->flags 0x%016lx, if_flags 0x%08x, " 6528 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6529 if_getdrvflags(ifp)); 6530 } 6531 return (0); 6532 } 6533 6534 /* 6535 * Disable the VI so that all its data in either direction is discarded 6536 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6537 * tick) intact as the TP can deliver negative advice or data that it's 6538 * holding in its RAM (for an offloaded connection) even after the VI is 6539 * disabled. 6540 */ 6541 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6542 if (rc) { 6543 if_printf(ifp, "disable_vi failed: %d\n", rc); 6544 return (rc); 6545 } 6546 6547 for_each_txq(vi, i, txq) { 6548 TXQ_LOCK(txq); 6549 txq->eq.flags &= ~EQ_ENABLED; 6550 TXQ_UNLOCK(txq); 6551 } 6552 6553 mtx_lock(&vi->tick_mtx); 6554 callout_stop(&vi->tick); 6555 mtx_unlock(&vi->tick_mtx); 6556 6557 PORT_LOCK(pi); 6558 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6559 PORT_UNLOCK(pi); 6560 return (0); 6561 } 6562 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6563 pi->up_vis--; 6564 if (pi->up_vis > 0) { 6565 PORT_UNLOCK(pi); 6566 return (0); 6567 } 6568 6569 pi->link_cfg.link_ok = false; 6570 pi->link_cfg.speed = 0; 6571 pi->link_cfg.link_down_rc = 255; 6572 t4_os_link_changed(pi); 6573 PORT_UNLOCK(pi); 6574 6575 return (0); 6576 } 6577 6578 /* 6579 * It is ok for this function to fail midway and return right away. t4_detach 6580 * will walk the entire sc->irq list and clean up whatever is valid. 6581 */ 6582 int 6583 t4_setup_intr_handlers(struct adapter *sc) 6584 { 6585 int rc, rid, p, q, v; 6586 char s[8]; 6587 struct irq *irq; 6588 struct port_info *pi; 6589 struct vi_info *vi; 6590 struct sge *sge = &sc->sge; 6591 struct sge_rxq *rxq; 6592 #ifdef TCP_OFFLOAD 6593 struct sge_ofld_rxq *ofld_rxq; 6594 #endif 6595 #ifdef DEV_NETMAP 6596 struct sge_nm_rxq *nm_rxq; 6597 #endif 6598 #ifdef RSS 6599 int nbuckets = rss_getnumbuckets(); 6600 #endif 6601 6602 /* 6603 * Setup interrupts. 6604 */ 6605 irq = &sc->irq[0]; 6606 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6607 if (forwarding_intr_to_fwq(sc)) 6608 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6609 6610 /* Multiple interrupts. */ 6611 if (sc->flags & IS_VF) 6612 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6613 ("%s: too few intr.", __func__)); 6614 else 6615 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6616 ("%s: too few intr.", __func__)); 6617 6618 /* The first one is always error intr on PFs */ 6619 if (!(sc->flags & IS_VF)) { 6620 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6621 if (rc != 0) 6622 return (rc); 6623 irq++; 6624 rid++; 6625 } 6626 6627 /* The second one is always the firmware event queue (first on VFs) */ 6628 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6629 if (rc != 0) 6630 return (rc); 6631 irq++; 6632 rid++; 6633 6634 for_each_port(sc, p) { 6635 pi = sc->port[p]; 6636 for_each_vi(pi, v, vi) { 6637 vi->first_intr = rid - 1; 6638 6639 if (vi->nnmrxq > 0) { 6640 int n = max(vi->nrxq, vi->nnmrxq); 6641 6642 rxq = &sge->rxq[vi->first_rxq]; 6643 #ifdef DEV_NETMAP 6644 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6645 #endif 6646 for (q = 0; q < n; q++) { 6647 snprintf(s, sizeof(s), "%x%c%x", p, 6648 'a' + v, q); 6649 if (q < vi->nrxq) 6650 irq->rxq = rxq++; 6651 #ifdef DEV_NETMAP 6652 if (q < vi->nnmrxq) 6653 irq->nm_rxq = nm_rxq++; 6654 6655 if (irq->nm_rxq != NULL && 6656 irq->rxq == NULL) { 6657 /* Netmap rx only */ 6658 rc = t4_alloc_irq(sc, irq, rid, 6659 t4_nm_intr, irq->nm_rxq, s); 6660 } 6661 if (irq->nm_rxq != NULL && 6662 irq->rxq != NULL) { 6663 /* NIC and Netmap rx */ 6664 rc = t4_alloc_irq(sc, irq, rid, 6665 t4_vi_intr, irq, s); 6666 } 6667 #endif 6668 if (irq->rxq != NULL && 6669 irq->nm_rxq == NULL) { 6670 /* NIC rx only */ 6671 rc = t4_alloc_irq(sc, irq, rid, 6672 t4_intr, irq->rxq, s); 6673 } 6674 if (rc != 0) 6675 return (rc); 6676 #ifdef RSS 6677 if (q < vi->nrxq) { 6678 bus_bind_intr(sc->dev, irq->res, 6679 rss_getcpu(q % nbuckets)); 6680 } 6681 #endif 6682 irq++; 6683 rid++; 6684 vi->nintr++; 6685 } 6686 } else { 6687 for_each_rxq(vi, q, rxq) { 6688 snprintf(s, sizeof(s), "%x%c%x", p, 6689 'a' + v, q); 6690 rc = t4_alloc_irq(sc, irq, rid, 6691 t4_intr, rxq, s); 6692 if (rc != 0) 6693 return (rc); 6694 #ifdef RSS 6695 bus_bind_intr(sc->dev, irq->res, 6696 rss_getcpu(q % nbuckets)); 6697 #endif 6698 irq++; 6699 rid++; 6700 vi->nintr++; 6701 } 6702 } 6703 #ifdef TCP_OFFLOAD 6704 for_each_ofld_rxq(vi, q, ofld_rxq) { 6705 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6706 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6707 ofld_rxq, s); 6708 if (rc != 0) 6709 return (rc); 6710 irq++; 6711 rid++; 6712 vi->nintr++; 6713 } 6714 #endif 6715 } 6716 } 6717 MPASS(irq == &sc->irq[sc->intr_count]); 6718 6719 return (0); 6720 } 6721 6722 static void 6723 write_global_rss_key(struct adapter *sc) 6724 { 6725 #ifdef RSS 6726 int i; 6727 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6728 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6729 6730 CTASSERT(RSS_KEYSIZE == 40); 6731 6732 rss_getkey((void *)&raw_rss_key[0]); 6733 for (i = 0; i < nitems(rss_key); i++) { 6734 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6735 } 6736 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6737 #endif 6738 } 6739 6740 /* 6741 * Idempotent. 6742 */ 6743 static int 6744 adapter_full_init(struct adapter *sc) 6745 { 6746 int rc, i; 6747 6748 ASSERT_SYNCHRONIZED_OP(sc); 6749 6750 /* 6751 * queues that belong to the adapter (not any particular port). 6752 */ 6753 rc = t4_setup_adapter_queues(sc); 6754 if (rc != 0) 6755 return (rc); 6756 6757 MPASS(sc->params.nports <= nitems(sc->tq)); 6758 for (i = 0; i < sc->params.nports; i++) { 6759 if (sc->tq[i] != NULL) 6760 continue; 6761 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6762 taskqueue_thread_enqueue, &sc->tq[i]); 6763 if (sc->tq[i] == NULL) { 6764 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6765 return (ENOMEM); 6766 } 6767 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6768 device_get_nameunit(sc->dev), i); 6769 } 6770 6771 if (!(sc->flags & IS_VF)) { 6772 write_global_rss_key(sc); 6773 t4_intr_enable(sc); 6774 } 6775 return (0); 6776 } 6777 6778 int 6779 adapter_init(struct adapter *sc) 6780 { 6781 int rc; 6782 6783 ASSERT_SYNCHRONIZED_OP(sc); 6784 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6785 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6786 ("%s: FULL_INIT_DONE already", __func__)); 6787 6788 rc = adapter_full_init(sc); 6789 if (rc != 0) 6790 adapter_full_uninit(sc); 6791 else 6792 sc->flags |= FULL_INIT_DONE; 6793 6794 return (rc); 6795 } 6796 6797 /* 6798 * Idempotent. 6799 */ 6800 static void 6801 adapter_full_uninit(struct adapter *sc) 6802 { 6803 int i; 6804 6805 t4_teardown_adapter_queues(sc); 6806 6807 for (i = 0; i < nitems(sc->tq); i++) { 6808 if (sc->tq[i] == NULL) 6809 continue; 6810 taskqueue_free(sc->tq[i]); 6811 sc->tq[i] = NULL; 6812 } 6813 6814 sc->flags &= ~FULL_INIT_DONE; 6815 } 6816 6817 #ifdef RSS 6818 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6819 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6820 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6821 RSS_HASHTYPE_RSS_UDP_IPV6) 6822 6823 /* Translates kernel hash types to hardware. */ 6824 static int 6825 hashconfig_to_hashen(int hashconfig) 6826 { 6827 int hashen = 0; 6828 6829 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6830 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6831 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6832 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6833 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6834 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6835 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6836 } 6837 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6838 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6839 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6840 } 6841 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6842 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6843 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6844 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6845 6846 return (hashen); 6847 } 6848 6849 /* Translates hardware hash types to kernel. */ 6850 static int 6851 hashen_to_hashconfig(int hashen) 6852 { 6853 int hashconfig = 0; 6854 6855 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6856 /* 6857 * If UDP hashing was enabled it must have been enabled for 6858 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6859 * enabling any 4-tuple hash is nonsense configuration. 6860 */ 6861 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6862 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6863 6864 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6865 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6866 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6867 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6868 } 6869 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6870 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6871 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6872 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6873 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6874 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6875 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6876 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6877 6878 return (hashconfig); 6879 } 6880 #endif 6881 6882 /* 6883 * Idempotent. 6884 */ 6885 static int 6886 vi_full_init(struct vi_info *vi) 6887 { 6888 struct adapter *sc = vi->adapter; 6889 struct sge_rxq *rxq; 6890 int rc, i, j; 6891 #ifdef RSS 6892 int nbuckets = rss_getnumbuckets(); 6893 int hashconfig = rss_gethashconfig(); 6894 int extra; 6895 #endif 6896 6897 ASSERT_SYNCHRONIZED_OP(sc); 6898 6899 /* 6900 * Allocate tx/rx/fl queues for this VI. 6901 */ 6902 rc = t4_setup_vi_queues(vi); 6903 if (rc != 0) 6904 return (rc); 6905 6906 /* 6907 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6908 */ 6909 if (vi->nrxq > vi->rss_size) { 6910 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6911 "some queues will never receive traffic.\n", vi->nrxq, 6912 vi->rss_size); 6913 } else if (vi->rss_size % vi->nrxq) { 6914 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6915 "expect uneven traffic distribution.\n", vi->nrxq, 6916 vi->rss_size); 6917 } 6918 #ifdef RSS 6919 if (vi->nrxq != nbuckets) { 6920 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6921 "performance will be impacted.\n", vi->nrxq, nbuckets); 6922 } 6923 #endif 6924 if (vi->rss == NULL) 6925 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6926 M_ZERO | M_WAITOK); 6927 for (i = 0; i < vi->rss_size;) { 6928 #ifdef RSS 6929 j = rss_get_indirection_to_bucket(i); 6930 j %= vi->nrxq; 6931 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6932 vi->rss[i++] = rxq->iq.abs_id; 6933 #else 6934 for_each_rxq(vi, j, rxq) { 6935 vi->rss[i++] = rxq->iq.abs_id; 6936 if (i == vi->rss_size) 6937 break; 6938 } 6939 #endif 6940 } 6941 6942 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6943 vi->rss, vi->rss_size); 6944 if (rc != 0) { 6945 CH_ERR(vi, "rss_config failed: %d\n", rc); 6946 return (rc); 6947 } 6948 6949 #ifdef RSS 6950 vi->hashen = hashconfig_to_hashen(hashconfig); 6951 6952 /* 6953 * We may have had to enable some hashes even though the global config 6954 * wants them disabled. This is a potential problem that must be 6955 * reported to the user. 6956 */ 6957 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6958 6959 /* 6960 * If we consider only the supported hash types, then the enabled hashes 6961 * are a superset of the requested hashes. In other words, there cannot 6962 * be any supported hash that was requested but not enabled, but there 6963 * can be hashes that were not requested but had to be enabled. 6964 */ 6965 extra &= SUPPORTED_RSS_HASHTYPES; 6966 MPASS((extra & hashconfig) == 0); 6967 6968 if (extra) { 6969 CH_ALERT(vi, 6970 "global RSS config (0x%x) cannot be accommodated.\n", 6971 hashconfig); 6972 } 6973 if (extra & RSS_HASHTYPE_RSS_IPV4) 6974 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6975 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6976 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6977 if (extra & RSS_HASHTYPE_RSS_IPV6) 6978 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6979 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6980 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6981 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6982 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6983 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6984 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6985 #else 6986 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6987 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6988 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6989 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6990 #endif 6991 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6992 0, 0); 6993 if (rc != 0) { 6994 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6995 return (rc); 6996 } 6997 6998 return (0); 6999 } 7000 7001 int 7002 vi_init(struct vi_info *vi) 7003 { 7004 int rc; 7005 7006 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7007 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7008 ("%s: VI_INIT_DONE already", __func__)); 7009 7010 rc = vi_full_init(vi); 7011 if (rc != 0) 7012 vi_full_uninit(vi); 7013 else 7014 vi->flags |= VI_INIT_DONE; 7015 7016 return (rc); 7017 } 7018 7019 /* 7020 * Idempotent. 7021 */ 7022 static void 7023 vi_full_uninit(struct vi_info *vi) 7024 { 7025 7026 if (vi->flags & VI_INIT_DONE) { 7027 quiesce_vi(vi); 7028 free(vi->rss, M_CXGBE); 7029 free(vi->nm_rss, M_CXGBE); 7030 } 7031 7032 t4_teardown_vi_queues(vi); 7033 vi->flags &= ~VI_INIT_DONE; 7034 } 7035 7036 static void 7037 quiesce_txq(struct sge_txq *txq) 7038 { 7039 struct sge_eq *eq = &txq->eq; 7040 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7041 7042 MPASS(eq->flags & EQ_SW_ALLOCATED); 7043 MPASS(!(eq->flags & EQ_ENABLED)); 7044 7045 /* Wait for the mp_ring to empty. */ 7046 while (!mp_ring_is_idle(txq->r)) { 7047 mp_ring_check_drainage(txq->r, 4096); 7048 pause("rquiesce", 1); 7049 } 7050 MPASS(txq->txp.npkt == 0); 7051 7052 if (eq->flags & EQ_HW_ALLOCATED) { 7053 /* 7054 * Hardware is alive and working normally. Wait for it to 7055 * finish and then wait for the driver to catch up and reclaim 7056 * all descriptors. 7057 */ 7058 while (spg->cidx != htobe16(eq->pidx)) 7059 pause("equiesce", 1); 7060 while (eq->cidx != eq->pidx) 7061 pause("dquiesce", 1); 7062 } else { 7063 /* 7064 * Hardware is unavailable. Discard all pending tx and reclaim 7065 * descriptors directly. 7066 */ 7067 TXQ_LOCK(txq); 7068 while (eq->cidx != eq->pidx) { 7069 struct mbuf *m, *nextpkt; 7070 struct tx_sdesc *txsd; 7071 7072 txsd = &txq->sdesc[eq->cidx]; 7073 for (m = txsd->m; m != NULL; m = nextpkt) { 7074 nextpkt = m->m_nextpkt; 7075 m->m_nextpkt = NULL; 7076 m_freem(m); 7077 } 7078 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7079 } 7080 spg->pidx = spg->cidx = htobe16(eq->cidx); 7081 TXQ_UNLOCK(txq); 7082 } 7083 } 7084 7085 static void 7086 quiesce_wrq(struct sge_wrq *wrq) 7087 { 7088 struct wrqe *wr; 7089 7090 TXQ_LOCK(wrq); 7091 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7092 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7093 #ifdef INVARIANTS 7094 wrq->nwr_pending--; 7095 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7096 #endif 7097 free(wr, M_CXGBE); 7098 } 7099 MPASS(wrq->nwr_pending == 0); 7100 MPASS(wrq->ndesc_needed == 0); 7101 wrq->nwr_pending = 0; 7102 wrq->ndesc_needed = 0; 7103 TXQ_UNLOCK(wrq); 7104 } 7105 7106 static void 7107 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7108 { 7109 /* Synchronize with the interrupt handler */ 7110 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7111 pause("iqfree", 1); 7112 7113 if (fl != NULL) { 7114 MPASS(iq->flags & IQ_HAS_FL); 7115 7116 mtx_lock(&sc->sfl_lock); 7117 FL_LOCK(fl); 7118 fl->flags |= FL_DOOMED; 7119 FL_UNLOCK(fl); 7120 callout_stop(&sc->sfl_callout); 7121 mtx_unlock(&sc->sfl_lock); 7122 7123 KASSERT((fl->flags & FL_STARVING) == 0, 7124 ("%s: still starving", __func__)); 7125 7126 /* Release all buffers if hardware is no longer available. */ 7127 if (!(iq->flags & IQ_HW_ALLOCATED)) 7128 free_fl_buffers(sc, fl); 7129 } 7130 } 7131 7132 /* 7133 * Wait for all activity on all the queues of the VI to complete. It is assumed 7134 * that no new work is being enqueued by the hardware or the driver. That part 7135 * should be arranged before calling this function. 7136 */ 7137 static void 7138 quiesce_vi(struct vi_info *vi) 7139 { 7140 int i; 7141 struct adapter *sc = vi->adapter; 7142 struct sge_rxq *rxq; 7143 struct sge_txq *txq; 7144 #ifdef TCP_OFFLOAD 7145 struct sge_ofld_rxq *ofld_rxq; 7146 #endif 7147 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7148 struct sge_ofld_txq *ofld_txq; 7149 #endif 7150 7151 if (!(vi->flags & VI_INIT_DONE)) 7152 return; 7153 7154 for_each_txq(vi, i, txq) { 7155 quiesce_txq(txq); 7156 } 7157 7158 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7159 for_each_ofld_txq(vi, i, ofld_txq) { 7160 quiesce_wrq(&ofld_txq->wrq); 7161 } 7162 #endif 7163 7164 for_each_rxq(vi, i, rxq) { 7165 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7166 } 7167 7168 #ifdef TCP_OFFLOAD 7169 for_each_ofld_rxq(vi, i, ofld_rxq) { 7170 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7171 } 7172 #endif 7173 } 7174 7175 static int 7176 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7177 driver_intr_t *handler, void *arg, char *name) 7178 { 7179 int rc; 7180 7181 irq->rid = rid; 7182 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7183 RF_SHAREABLE | RF_ACTIVE); 7184 if (irq->res == NULL) { 7185 device_printf(sc->dev, 7186 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7187 return (ENOMEM); 7188 } 7189 7190 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7191 NULL, handler, arg, &irq->tag); 7192 if (rc != 0) { 7193 device_printf(sc->dev, 7194 "failed to setup interrupt for rid %d, name %s: %d\n", 7195 rid, name, rc); 7196 } else if (name) 7197 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7198 7199 return (rc); 7200 } 7201 7202 static int 7203 t4_free_irq(struct adapter *sc, struct irq *irq) 7204 { 7205 if (irq->tag) 7206 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7207 if (irq->res) 7208 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7209 7210 bzero(irq, sizeof(*irq)); 7211 7212 return (0); 7213 } 7214 7215 static void 7216 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7217 { 7218 7219 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7220 t4_get_regs(sc, buf, regs->len); 7221 } 7222 7223 #define A_PL_INDIR_CMD 0x1f8 7224 7225 #define S_PL_AUTOINC 31 7226 #define M_PL_AUTOINC 0x1U 7227 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7228 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7229 7230 #define S_PL_VFID 20 7231 #define M_PL_VFID 0xffU 7232 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7233 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7234 7235 #define S_PL_ADDR 0 7236 #define M_PL_ADDR 0xfffffU 7237 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7238 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7239 7240 #define A_PL_INDIR_DATA 0x1fc 7241 7242 static uint64_t 7243 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7244 { 7245 u32 stats[2]; 7246 7247 if (sc->flags & IS_VF) { 7248 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7249 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7250 } else { 7251 mtx_assert(&sc->reg_lock, MA_OWNED); 7252 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7253 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7254 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7255 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7256 } 7257 return (((uint64_t)stats[1]) << 32 | stats[0]); 7258 } 7259 7260 static void 7261 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7262 { 7263 7264 #define GET_STAT(name) \ 7265 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7266 7267 if (!(sc->flags & IS_VF)) 7268 mtx_lock(&sc->reg_lock); 7269 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7270 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7271 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7272 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7273 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7274 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7275 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7276 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7277 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7278 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7279 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7280 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7281 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7282 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7283 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7284 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7285 if (!(sc->flags & IS_VF)) 7286 mtx_unlock(&sc->reg_lock); 7287 7288 #undef GET_STAT 7289 } 7290 7291 static void 7292 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7293 { 7294 int reg; 7295 7296 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7297 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7298 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7299 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7300 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7301 } 7302 7303 static void 7304 vi_refresh_stats(struct vi_info *vi) 7305 { 7306 struct timeval tv; 7307 const struct timeval interval = {0, 250000}; /* 250ms */ 7308 7309 mtx_assert(&vi->tick_mtx, MA_OWNED); 7310 7311 if (vi->flags & VI_SKIP_STATS) 7312 return; 7313 7314 getmicrotime(&tv); 7315 timevalsub(&tv, &interval); 7316 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7317 return; 7318 7319 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7320 getmicrotime(&vi->last_refreshed); 7321 } 7322 7323 static void 7324 cxgbe_refresh_stats(struct vi_info *vi) 7325 { 7326 u_int i, v, tnl_cong_drops, chan_map; 7327 struct timeval tv; 7328 const struct timeval interval = {0, 250000}; /* 250ms */ 7329 struct port_info *pi; 7330 struct adapter *sc; 7331 7332 mtx_assert(&vi->tick_mtx, MA_OWNED); 7333 7334 if (vi->flags & VI_SKIP_STATS) 7335 return; 7336 7337 getmicrotime(&tv); 7338 timevalsub(&tv, &interval); 7339 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7340 return; 7341 7342 pi = vi->pi; 7343 sc = vi->adapter; 7344 tnl_cong_drops = 0; 7345 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7346 chan_map = pi->rx_e_chan_map; 7347 while (chan_map) { 7348 i = ffs(chan_map) - 1; 7349 mtx_lock(&sc->reg_lock); 7350 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7351 A_TP_MIB_TNL_CNG_DROP_0 + i); 7352 mtx_unlock(&sc->reg_lock); 7353 tnl_cong_drops += v; 7354 chan_map &= ~(1 << i); 7355 } 7356 pi->tnl_cong_drops = tnl_cong_drops; 7357 getmicrotime(&vi->last_refreshed); 7358 } 7359 7360 static void 7361 cxgbe_tick(void *arg) 7362 { 7363 struct vi_info *vi = arg; 7364 7365 MPASS(IS_MAIN_VI(vi)); 7366 mtx_assert(&vi->tick_mtx, MA_OWNED); 7367 7368 cxgbe_refresh_stats(vi); 7369 callout_schedule(&vi->tick, hz); 7370 } 7371 7372 static void 7373 vi_tick(void *arg) 7374 { 7375 struct vi_info *vi = arg; 7376 7377 mtx_assert(&vi->tick_mtx, MA_OWNED); 7378 7379 vi_refresh_stats(vi); 7380 callout_schedule(&vi->tick, hz); 7381 } 7382 7383 /* 7384 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7385 */ 7386 static char *caps_decoder[] = { 7387 "\20\001IPMI\002NCSI", /* 0: NBM */ 7388 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7389 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7390 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7391 "\006HASHFILTER\007ETHOFLD", 7392 "\20\001TOE", /* 4: TOE */ 7393 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7394 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7395 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7396 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7397 "\007T10DIF" 7398 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7399 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7400 "\004TLS_HW", 7401 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7402 "\004PO_INITIATOR\005PO_TARGET", 7403 }; 7404 7405 void 7406 t4_sysctls(struct adapter *sc) 7407 { 7408 struct sysctl_ctx_list *ctx = &sc->ctx; 7409 struct sysctl_oid *oid; 7410 struct sysctl_oid_list *children, *c0; 7411 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7412 7413 /* 7414 * dev.t4nex.X. 7415 */ 7416 oid = device_get_sysctl_tree(sc->dev); 7417 c0 = children = SYSCTL_CHILDREN(oid); 7418 7419 sc->sc_do_rxcopy = 1; 7420 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7421 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7422 7423 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7424 sc->params.nports, "# of ports"); 7425 7426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7428 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7429 "available doorbells"); 7430 7431 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7432 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7433 7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7435 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7436 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7437 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7438 7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7440 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7441 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7442 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7443 7444 t4_sge_sysctls(sc, ctx, children); 7445 7446 sc->lro_timeout = 100; 7447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7448 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7449 7450 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7451 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7452 7453 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7454 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7455 7456 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7457 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7458 7459 if (sc->flags & IS_VF) 7460 return; 7461 7462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7463 NULL, chip_rev(sc), "chip hardware revision"); 7464 7465 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7466 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7467 7468 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7469 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7470 7471 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7472 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7473 7474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7475 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7476 7477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7478 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7479 7480 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7481 sc->er_version, 0, "expansion ROM version"); 7482 7483 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7484 sc->bs_version, 0, "bootstrap firmware version"); 7485 7486 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7487 NULL, sc->params.scfg_vers, "serial config version"); 7488 7489 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7490 NULL, sc->params.vpd_vers, "VPD version"); 7491 7492 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7493 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7494 7495 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7496 sc->cfcsum, "config file checksum"); 7497 7498 #define SYSCTL_CAP(name, n, text) \ 7499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7500 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7501 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7502 "available " text " capabilities") 7503 7504 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7505 SYSCTL_CAP(linkcaps, 1, "link"); 7506 SYSCTL_CAP(switchcaps, 2, "switch"); 7507 SYSCTL_CAP(niccaps, 3, "NIC"); 7508 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7509 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7510 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7511 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7512 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7513 #undef SYSCTL_CAP 7514 7515 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7516 NULL, sc->tids.nftids, "number of filters"); 7517 7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7519 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7520 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7521 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7522 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7523 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7524 7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7526 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7527 sysctl_loadavg, "A", 7528 "microprocessor load averages (debug firmwares only)"); 7529 7530 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7531 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7532 "I", "core Vdd (in mV)"); 7533 7534 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7535 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7536 sysctl_cpus, "A", "local CPUs"); 7537 7538 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7539 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7540 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7541 7542 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7543 &sc->swintr, 0, "software triggered interrupts"); 7544 7545 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7546 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7547 "1 = reset adapter, 0 = zero reset counter"); 7548 7549 /* 7550 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7551 */ 7552 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7553 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7554 "logs and miscellaneous information"); 7555 children = SYSCTL_CHILDREN(oid); 7556 7557 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7558 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7559 sysctl_cctrl, "A", "congestion control"); 7560 7561 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7562 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7563 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7564 7565 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7566 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7567 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7568 7569 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7570 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7571 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7572 7573 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7574 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7575 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7576 7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7578 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7579 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7580 7581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7582 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7583 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7584 7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7587 sysctl_cim_la, "A", "CIM logic analyzer"); 7588 7589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7590 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7591 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7592 7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7595 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7599 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7603 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7606 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7607 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7611 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7615 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7616 7617 if (chip_id(sc) > CHELSIO_T4) { 7618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7619 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7620 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7621 "CIM OBQ 6 (SGE0-RX)"); 7622 7623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7624 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7625 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7626 "CIM OBQ 7 (SGE1-RX)"); 7627 } 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7631 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7632 7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7634 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7635 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7636 7637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7638 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7639 sysctl_cpl_stats, "A", "CPL statistics"); 7640 7641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7642 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7643 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7644 7645 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7646 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7647 sysctl_tid_stats, "A", "tid stats"); 7648 7649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7650 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7651 sysctl_devlog, "A", "firmware's device log"); 7652 7653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7654 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7655 sysctl_fcoe_stats, "A", "FCoE statistics"); 7656 7657 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7658 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7659 sysctl_hw_sched, "A", "hardware scheduler "); 7660 7661 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7662 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7663 sysctl_l2t, "A", "hardware L2 table"); 7664 7665 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7666 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7667 sysctl_smt, "A", "hardware source MAC table"); 7668 7669 #ifdef INET6 7670 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7671 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7672 sysctl_clip, "A", "active CLIP table entries"); 7673 #endif 7674 7675 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7676 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7677 sysctl_lb_stats, "A", "loopback statistics"); 7678 7679 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7680 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7681 sysctl_meminfo, "A", "memory regions"); 7682 7683 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7684 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7685 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7686 "A", "MPS TCAM entries"); 7687 7688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7689 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7690 sysctl_path_mtus, "A", "path MTUs"); 7691 7692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7693 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7694 sysctl_pm_stats, "A", "PM statistics"); 7695 7696 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7697 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7698 sysctl_rdma_stats, "A", "RDMA statistics"); 7699 7700 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7701 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7702 sysctl_tcp_stats, "A", "TCP statistics"); 7703 7704 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7705 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7706 sysctl_tids, "A", "TID information"); 7707 7708 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7709 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7710 sysctl_tp_err_stats, "A", "TP error statistics"); 7711 7712 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7713 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7714 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7715 7716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7717 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7718 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7719 7720 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7721 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7722 sysctl_tp_la, "A", "TP logic analyzer"); 7723 7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7725 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7726 sysctl_tx_rate, "A", "Tx rate"); 7727 7728 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7729 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7730 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7731 7732 if (chip_id(sc) >= CHELSIO_T5) { 7733 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7734 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7735 sysctl_wcwr_stats, "A", "write combined work requests"); 7736 } 7737 7738 #ifdef KERN_TLS 7739 if (is_ktls(sc)) { 7740 /* 7741 * dev.t4nex.0.tls. 7742 */ 7743 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7744 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7745 children = SYSCTL_CHILDREN(oid); 7746 7747 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7748 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7749 "keys in work requests (1) or attempt to store TLS keys " 7750 "in card memory."); 7751 7752 if (is_t6(sc)) 7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7754 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7755 "combine TCB field updates with TLS record work " 7756 "requests."); 7757 } 7758 #endif 7759 7760 #ifdef TCP_OFFLOAD 7761 if (is_offload(sc)) { 7762 int i; 7763 char s[4]; 7764 7765 /* 7766 * dev.t4nex.X.toe. 7767 */ 7768 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7769 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7770 children = SYSCTL_CHILDREN(oid); 7771 7772 sc->tt.cong_algorithm = -1; 7773 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7774 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7775 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7776 "3 = highspeed)"); 7777 7778 sc->tt.sndbuf = -1; 7779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7780 &sc->tt.sndbuf, 0, "hardware send buffer"); 7781 7782 sc->tt.ddp = 0; 7783 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7784 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7786 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7787 7788 sc->tt.rx_coalesce = -1; 7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7790 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7791 7792 sc->tt.tls = 1; 7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7794 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7795 "Inline TLS allowed"); 7796 7797 sc->tt.tx_align = -1; 7798 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7799 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7800 7801 sc->tt.tx_zcopy = 0; 7802 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7803 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7804 "Enable zero-copy aio_write(2)"); 7805 7806 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7807 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7808 "cop_managed_offloading", CTLFLAG_RW, 7809 &sc->tt.cop_managed_offloading, 0, 7810 "COP (Connection Offload Policy) controls all TOE offload"); 7811 7812 sc->tt.autorcvbuf_inc = 16 * 1024; 7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7814 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7815 "autorcvbuf increment"); 7816 7817 sc->tt.update_hc_on_pmtu_change = 1; 7818 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7819 "update_hc_on_pmtu_change", CTLFLAG_RW, 7820 &sc->tt.update_hc_on_pmtu_change, 0, 7821 "Update hostcache entry if the PMTU changes"); 7822 7823 sc->tt.iso = 1; 7824 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7825 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7826 7827 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7828 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7829 sysctl_tp_tick, "A", "TP timer tick (us)"); 7830 7831 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7832 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7833 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7834 7835 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7836 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7837 sysctl_tp_tick, "A", "DACK tick (us)"); 7838 7839 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7840 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7841 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7842 7843 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7844 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7845 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7846 "Minimum retransmit interval (us)"); 7847 7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7849 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7850 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7851 "Maximum retransmit interval (us)"); 7852 7853 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7854 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7855 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7856 "Persist timer min (us)"); 7857 7858 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7859 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7860 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7861 "Persist timer max (us)"); 7862 7863 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7864 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7865 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7866 "Keepalive idle timer (us)"); 7867 7868 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7869 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7870 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7871 "Keepalive interval timer (us)"); 7872 7873 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7874 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7875 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7876 7877 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7878 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7879 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7880 "FINWAIT2 timer (us)"); 7881 7882 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7883 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7884 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7885 "Number of SYN retransmissions before abort"); 7886 7887 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7888 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7889 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7890 "Number of retransmissions before abort"); 7891 7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7893 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7894 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7895 "Number of keepalive probes before abort"); 7896 7897 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7898 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7899 "TOE retransmit backoffs"); 7900 children = SYSCTL_CHILDREN(oid); 7901 for (i = 0; i < 16; i++) { 7902 snprintf(s, sizeof(s), "%u", i); 7903 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7904 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7905 i, sysctl_tp_backoff, "IU", 7906 "TOE retransmit backoff"); 7907 } 7908 } 7909 #endif 7910 } 7911 7912 void 7913 vi_sysctls(struct vi_info *vi) 7914 { 7915 struct sysctl_ctx_list *ctx = &vi->ctx; 7916 struct sysctl_oid *oid; 7917 struct sysctl_oid_list *children; 7918 7919 /* 7920 * dev.v?(cxgbe|cxl).X. 7921 */ 7922 oid = device_get_sysctl_tree(vi->dev); 7923 children = SYSCTL_CHILDREN(oid); 7924 7925 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7926 vi->viid, "VI identifer"); 7927 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7928 &vi->nrxq, 0, "# of rx queues"); 7929 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7930 &vi->ntxq, 0, "# of tx queues"); 7931 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7932 &vi->first_rxq, 0, "index of first rx queue"); 7933 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7934 &vi->first_txq, 0, "index of first tx queue"); 7935 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7936 vi->rss_base, "start of RSS indirection table"); 7937 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7938 vi->rss_size, "size of RSS indirection table"); 7939 7940 if (IS_MAIN_VI(vi)) { 7941 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7942 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7943 sysctl_noflowq, "IU", 7944 "Reserve queue 0 for non-flowid packets"); 7945 } 7946 7947 if (vi->adapter->flags & IS_VF) { 7948 MPASS(vi->flags & TX_USES_VM_WR); 7949 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7950 NULL, 1, "use VM work requests for transmit"); 7951 } else { 7952 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7953 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7954 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7955 } 7956 7957 #ifdef TCP_OFFLOAD 7958 if (vi->nofldrxq != 0) { 7959 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7960 &vi->nofldrxq, 0, 7961 "# of rx queues for offloaded TCP connections"); 7962 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7963 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7964 "index of first TOE rx queue"); 7965 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7966 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7967 sysctl_holdoff_tmr_idx_ofld, "I", 7968 "holdoff timer index for TOE queues"); 7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7970 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7971 sysctl_holdoff_pktc_idx_ofld, "I", 7972 "holdoff packet counter index for TOE queues"); 7973 } 7974 #endif 7975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7976 if (vi->nofldtxq != 0) { 7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7978 &vi->nofldtxq, 0, 7979 "# of tx queues for TOE/ETHOFLD"); 7980 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7981 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7982 "index of first TOE/ETHOFLD tx queue"); 7983 } 7984 #endif 7985 #ifdef DEV_NETMAP 7986 if (vi->nnmrxq != 0) { 7987 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7988 &vi->nnmrxq, 0, "# of netmap rx queues"); 7989 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7990 &vi->nnmtxq, 0, "# of netmap tx queues"); 7991 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7992 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7993 "index of first netmap rx queue"); 7994 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7995 CTLFLAG_RD, &vi->first_nm_txq, 0, 7996 "index of first netmap tx queue"); 7997 } 7998 #endif 7999 8000 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8002 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8004 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8005 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8006 8007 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8008 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8009 sysctl_qsize_rxq, "I", "rx queue size"); 8010 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8011 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8012 sysctl_qsize_txq, "I", "tx queue size"); 8013 } 8014 8015 static void 8016 cxgbe_sysctls(struct port_info *pi) 8017 { 8018 struct sysctl_ctx_list *ctx = &pi->ctx; 8019 struct sysctl_oid *oid; 8020 struct sysctl_oid_list *children, *children2; 8021 struct adapter *sc = pi->adapter; 8022 int i; 8023 char name[16]; 8024 static char *tc_flags = {"\20\1USER"}; 8025 8026 /* 8027 * dev.cxgbe.X. 8028 */ 8029 oid = device_get_sysctl_tree(pi->dev); 8030 children = SYSCTL_CHILDREN(oid); 8031 8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8034 sysctl_linkdnrc, "A", "reason why link is down"); 8035 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8037 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8038 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8039 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8040 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8041 sysctl_btphy, "I", "PHY firmware version"); 8042 } 8043 8044 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8045 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8046 sysctl_pause_settings, "A", 8047 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8049 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8050 "FEC in use on the link"); 8051 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8052 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8053 sysctl_requested_fec, "A", 8054 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8056 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8057 "FEC recommended by the cable/transceiver"); 8058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8059 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8060 sysctl_autoneg, "I", 8061 "autonegotiation (-1 = not supported)"); 8062 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8063 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8064 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8065 8066 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8067 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8068 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8069 &pi->link_cfg.pcaps, 0, "port capabilities"); 8070 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8071 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8073 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8074 8075 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8076 port_top_speed(pi), "max speed (in Gbps)"); 8077 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8078 pi->mps_bg_map, "MPS buffer group map"); 8079 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8080 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8082 pi->tx_chan, "TP tx c-channel"); 8083 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8084 pi->rx_chan, "TP rx c-channel"); 8085 8086 if (sc->flags & IS_VF) 8087 return; 8088 8089 /* 8090 * dev.(cxgbe|cxl).X.tc. 8091 */ 8092 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8093 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8094 "Tx scheduler traffic classes (cl_rl)"); 8095 children2 = SYSCTL_CHILDREN(oid); 8096 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8097 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8098 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8099 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8100 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8101 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8102 for (i = 0; i < sc->params.nsched_cls; i++) { 8103 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8104 8105 snprintf(name, sizeof(name), "%d", i); 8106 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8107 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8108 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8109 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8110 CTLFLAG_RD, &tc->state, 0, "current state"); 8111 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8112 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8113 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8114 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8115 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8116 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8117 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8118 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8119 "traffic class parameters"); 8120 } 8121 8122 /* 8123 * dev.cxgbe.X.stats. 8124 */ 8125 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8126 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8127 children = SYSCTL_CHILDREN(oid); 8128 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8129 &pi->tx_parse_error, 0, 8130 "# of tx packets with invalid length or # of segments"); 8131 8132 #define T4_REGSTAT(name, stat, desc) \ 8133 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8134 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8135 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8136 sysctl_handle_t4_reg64, "QU", desc) 8137 8138 /* We get these from port_stats and they may be stale by up to 1s */ 8139 #define T4_PORTSTAT(name, desc) \ 8140 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8141 &pi->stats.name, desc) 8142 8143 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8144 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8145 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8146 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8147 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8148 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8149 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8150 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8151 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8152 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8153 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8154 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8155 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8156 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8157 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8158 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8159 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8160 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8161 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8162 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8163 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8164 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8165 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8166 8167 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8168 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8169 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8170 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8171 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8172 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8173 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8174 if (is_t6(sc)) { 8175 T4_PORTSTAT(rx_fcs_err, 8176 "# of frames received with bad FCS since last link up"); 8177 } else { 8178 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8179 "# of frames received with bad FCS"); 8180 } 8181 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8182 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8183 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8184 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8185 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8186 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8187 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8188 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8189 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8190 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8191 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8192 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8193 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8194 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8195 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8196 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8197 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8198 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8199 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8200 8201 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8202 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8203 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8204 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8205 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8206 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8207 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8208 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8209 8210 #undef T4_REGSTAT 8211 #undef T4_PORTSTAT 8212 } 8213 8214 static int 8215 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8216 { 8217 int rc, *i, space = 0; 8218 struct sbuf sb; 8219 8220 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8221 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8222 if (space) 8223 sbuf_printf(&sb, " "); 8224 sbuf_printf(&sb, "%d", *i); 8225 space = 1; 8226 } 8227 rc = sbuf_finish(&sb); 8228 sbuf_delete(&sb); 8229 return (rc); 8230 } 8231 8232 static int 8233 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8234 { 8235 int rc; 8236 struct sbuf *sb; 8237 8238 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8239 if (sb == NULL) 8240 return (ENOMEM); 8241 8242 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8243 rc = sbuf_finish(sb); 8244 sbuf_delete(sb); 8245 8246 return (rc); 8247 } 8248 8249 static int 8250 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8251 { 8252 int rc; 8253 struct sbuf *sb; 8254 8255 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8256 if (sb == NULL) 8257 return (ENOMEM); 8258 8259 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8260 rc = sbuf_finish(sb); 8261 sbuf_delete(sb); 8262 8263 return (rc); 8264 } 8265 8266 static int 8267 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8268 { 8269 struct port_info *pi = arg1; 8270 int op = arg2; 8271 struct adapter *sc = pi->adapter; 8272 u_int v; 8273 int rc; 8274 8275 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8276 if (rc) 8277 return (rc); 8278 if (hw_off_limits(sc)) 8279 rc = ENXIO; 8280 else { 8281 /* XXX: magic numbers */ 8282 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8283 op ? 0x20 : 0xc820, &v); 8284 } 8285 end_synchronized_op(sc, 0); 8286 if (rc) 8287 return (rc); 8288 if (op == 0) 8289 v /= 256; 8290 8291 rc = sysctl_handle_int(oidp, &v, 0, req); 8292 return (rc); 8293 } 8294 8295 static int 8296 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8297 { 8298 struct vi_info *vi = arg1; 8299 int rc, val; 8300 8301 val = vi->rsrv_noflowq; 8302 rc = sysctl_handle_int(oidp, &val, 0, req); 8303 if (rc != 0 || req->newptr == NULL) 8304 return (rc); 8305 8306 if ((val >= 1) && (vi->ntxq > 1)) 8307 vi->rsrv_noflowq = 1; 8308 else 8309 vi->rsrv_noflowq = 0; 8310 8311 return (rc); 8312 } 8313 8314 static int 8315 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8316 { 8317 struct vi_info *vi = arg1; 8318 struct adapter *sc = vi->adapter; 8319 int rc, val, i; 8320 8321 MPASS(!(sc->flags & IS_VF)); 8322 8323 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8324 rc = sysctl_handle_int(oidp, &val, 0, req); 8325 if (rc != 0 || req->newptr == NULL) 8326 return (rc); 8327 8328 if (val != 0 && val != 1) 8329 return (EINVAL); 8330 8331 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8332 "t4txvm"); 8333 if (rc) 8334 return (rc); 8335 if (hw_off_limits(sc)) 8336 rc = ENXIO; 8337 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8338 /* 8339 * We don't want parse_pkt to run with one setting (VF or PF) 8340 * and then eth_tx to see a different setting but still use 8341 * stale information calculated by parse_pkt. 8342 */ 8343 rc = EBUSY; 8344 } else { 8345 struct port_info *pi = vi->pi; 8346 struct sge_txq *txq; 8347 uint32_t ctrl0; 8348 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8349 8350 if (val) { 8351 vi->flags |= TX_USES_VM_WR; 8352 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8353 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8354 V_TXPKT_INTF(pi->tx_chan)); 8355 if (!(sc->flags & IS_VF)) 8356 npkt--; 8357 } else { 8358 vi->flags &= ~TX_USES_VM_WR; 8359 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8360 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8361 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8362 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8363 } 8364 for_each_txq(vi, i, txq) { 8365 txq->cpl_ctrl0 = ctrl0; 8366 txq->txp.max_npkt = npkt; 8367 } 8368 } 8369 end_synchronized_op(sc, LOCK_HELD); 8370 return (rc); 8371 } 8372 8373 static int 8374 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8375 { 8376 struct vi_info *vi = arg1; 8377 struct adapter *sc = vi->adapter; 8378 int idx, rc, i; 8379 struct sge_rxq *rxq; 8380 uint8_t v; 8381 8382 idx = vi->tmr_idx; 8383 8384 rc = sysctl_handle_int(oidp, &idx, 0, req); 8385 if (rc != 0 || req->newptr == NULL) 8386 return (rc); 8387 8388 if (idx < 0 || idx >= SGE_NTIMERS) 8389 return (EINVAL); 8390 8391 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8392 "t4tmr"); 8393 if (rc) 8394 return (rc); 8395 8396 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8397 for_each_rxq(vi, i, rxq) { 8398 #ifdef atomic_store_rel_8 8399 atomic_store_rel_8(&rxq->iq.intr_params, v); 8400 #else 8401 rxq->iq.intr_params = v; 8402 #endif 8403 } 8404 vi->tmr_idx = idx; 8405 8406 end_synchronized_op(sc, LOCK_HELD); 8407 return (0); 8408 } 8409 8410 static int 8411 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8412 { 8413 struct vi_info *vi = arg1; 8414 struct adapter *sc = vi->adapter; 8415 int idx, rc; 8416 8417 idx = vi->pktc_idx; 8418 8419 rc = sysctl_handle_int(oidp, &idx, 0, req); 8420 if (rc != 0 || req->newptr == NULL) 8421 return (rc); 8422 8423 if (idx < -1 || idx >= SGE_NCOUNTERS) 8424 return (EINVAL); 8425 8426 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8427 "t4pktc"); 8428 if (rc) 8429 return (rc); 8430 8431 if (vi->flags & VI_INIT_DONE) 8432 rc = EBUSY; /* cannot be changed once the queues are created */ 8433 else 8434 vi->pktc_idx = idx; 8435 8436 end_synchronized_op(sc, LOCK_HELD); 8437 return (rc); 8438 } 8439 8440 static int 8441 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8442 { 8443 struct vi_info *vi = arg1; 8444 struct adapter *sc = vi->adapter; 8445 int qsize, rc; 8446 8447 qsize = vi->qsize_rxq; 8448 8449 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8450 if (rc != 0 || req->newptr == NULL) 8451 return (rc); 8452 8453 if (qsize < 128 || (qsize & 7)) 8454 return (EINVAL); 8455 8456 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8457 "t4rxqs"); 8458 if (rc) 8459 return (rc); 8460 8461 if (vi->flags & VI_INIT_DONE) 8462 rc = EBUSY; /* cannot be changed once the queues are created */ 8463 else 8464 vi->qsize_rxq = qsize; 8465 8466 end_synchronized_op(sc, LOCK_HELD); 8467 return (rc); 8468 } 8469 8470 static int 8471 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8472 { 8473 struct vi_info *vi = arg1; 8474 struct adapter *sc = vi->adapter; 8475 int qsize, rc; 8476 8477 qsize = vi->qsize_txq; 8478 8479 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8480 if (rc != 0 || req->newptr == NULL) 8481 return (rc); 8482 8483 if (qsize < 128 || qsize > 65536) 8484 return (EINVAL); 8485 8486 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8487 "t4txqs"); 8488 if (rc) 8489 return (rc); 8490 8491 if (vi->flags & VI_INIT_DONE) 8492 rc = EBUSY; /* cannot be changed once the queues are created */ 8493 else 8494 vi->qsize_txq = qsize; 8495 8496 end_synchronized_op(sc, LOCK_HELD); 8497 return (rc); 8498 } 8499 8500 static int 8501 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8502 { 8503 struct port_info *pi = arg1; 8504 struct adapter *sc = pi->adapter; 8505 struct link_config *lc = &pi->link_cfg; 8506 int rc; 8507 8508 if (req->newptr == NULL) { 8509 struct sbuf *sb; 8510 static char *bits = "\20\1RX\2TX\3AUTO"; 8511 8512 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8513 if (sb == NULL) 8514 return (ENOMEM); 8515 8516 if (lc->link_ok) { 8517 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8518 (lc->requested_fc & PAUSE_AUTONEG), bits); 8519 } else { 8520 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8521 PAUSE_RX | PAUSE_AUTONEG), bits); 8522 } 8523 rc = sbuf_finish(sb); 8524 sbuf_delete(sb); 8525 } else { 8526 char s[2]; 8527 int n; 8528 8529 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8530 PAUSE_AUTONEG)); 8531 s[1] = 0; 8532 8533 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8534 if (rc != 0) 8535 return(rc); 8536 8537 if (s[1] != 0) 8538 return (EINVAL); 8539 if (s[0] < '0' || s[0] > '9') 8540 return (EINVAL); /* not a number */ 8541 n = s[0] - '0'; 8542 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8543 return (EINVAL); /* some other bit is set too */ 8544 8545 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8546 "t4PAUSE"); 8547 if (rc) 8548 return (rc); 8549 if (!hw_off_limits(sc)) { 8550 PORT_LOCK(pi); 8551 lc->requested_fc = n; 8552 fixup_link_config(pi); 8553 if (pi->up_vis > 0) 8554 rc = apply_link_config(pi); 8555 set_current_media(pi); 8556 PORT_UNLOCK(pi); 8557 } 8558 end_synchronized_op(sc, 0); 8559 } 8560 8561 return (rc); 8562 } 8563 8564 static int 8565 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8566 { 8567 struct port_info *pi = arg1; 8568 struct link_config *lc = &pi->link_cfg; 8569 int rc; 8570 struct sbuf *sb; 8571 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8572 8573 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8574 if (sb == NULL) 8575 return (ENOMEM); 8576 if (lc->link_ok) 8577 sbuf_printf(sb, "%b", lc->fec, bits); 8578 else 8579 sbuf_printf(sb, "no link"); 8580 rc = sbuf_finish(sb); 8581 sbuf_delete(sb); 8582 8583 return (rc); 8584 } 8585 8586 static int 8587 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8588 { 8589 struct port_info *pi = arg1; 8590 struct adapter *sc = pi->adapter; 8591 struct link_config *lc = &pi->link_cfg; 8592 int rc; 8593 int8_t old; 8594 8595 if (req->newptr == NULL) { 8596 struct sbuf *sb; 8597 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8598 "\5RSVD3\6auto\7module"; 8599 8600 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8601 if (sb == NULL) 8602 return (ENOMEM); 8603 8604 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8605 rc = sbuf_finish(sb); 8606 sbuf_delete(sb); 8607 } else { 8608 char s[8]; 8609 int n; 8610 8611 snprintf(s, sizeof(s), "%d", 8612 lc->requested_fec == FEC_AUTO ? -1 : 8613 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8614 8615 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8616 if (rc != 0) 8617 return(rc); 8618 8619 n = strtol(&s[0], NULL, 0); 8620 if (n < 0 || n & FEC_AUTO) 8621 n = FEC_AUTO; 8622 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8623 return (EINVAL);/* some other bit is set too */ 8624 8625 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8626 "t4reqf"); 8627 if (rc) 8628 return (rc); 8629 PORT_LOCK(pi); 8630 old = lc->requested_fec; 8631 if (n == FEC_AUTO) 8632 lc->requested_fec = FEC_AUTO; 8633 else if (n == 0 || n == FEC_NONE) 8634 lc->requested_fec = FEC_NONE; 8635 else { 8636 if ((lc->pcaps | 8637 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8638 lc->pcaps) { 8639 rc = ENOTSUP; 8640 goto done; 8641 } 8642 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8643 FEC_MODULE); 8644 } 8645 if (!hw_off_limits(sc)) { 8646 fixup_link_config(pi); 8647 if (pi->up_vis > 0) { 8648 rc = apply_link_config(pi); 8649 if (rc != 0) { 8650 lc->requested_fec = old; 8651 if (rc == FW_EPROTO) 8652 rc = ENOTSUP; 8653 } 8654 } 8655 } 8656 done: 8657 PORT_UNLOCK(pi); 8658 end_synchronized_op(sc, 0); 8659 } 8660 8661 return (rc); 8662 } 8663 8664 static int 8665 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8666 { 8667 struct port_info *pi = arg1; 8668 struct adapter *sc = pi->adapter; 8669 struct link_config *lc = &pi->link_cfg; 8670 int rc; 8671 int8_t fec; 8672 struct sbuf *sb; 8673 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8674 8675 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8676 if (sb == NULL) 8677 return (ENOMEM); 8678 8679 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8680 rc = EBUSY; 8681 goto done; 8682 } 8683 if (hw_off_limits(sc)) { 8684 rc = ENXIO; 8685 goto done; 8686 } 8687 PORT_LOCK(pi); 8688 if (pi->up_vis == 0) { 8689 /* 8690 * If all the interfaces are administratively down the firmware 8691 * does not report transceiver changes. Refresh port info here. 8692 * This is the only reason we have a synchronized op in this 8693 * function. Just PORT_LOCK would have been enough otherwise. 8694 */ 8695 t4_update_port_info(pi); 8696 } 8697 8698 fec = lc->fec_hint; 8699 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8700 !fec_supported(lc->pcaps)) { 8701 PORT_UNLOCK(pi); 8702 sbuf_printf(sb, "n/a"); 8703 } else { 8704 if (fec == 0) 8705 fec = FEC_NONE; 8706 PORT_UNLOCK(pi); 8707 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8708 } 8709 rc = sbuf_finish(sb); 8710 done: 8711 sbuf_delete(sb); 8712 end_synchronized_op(sc, 0); 8713 8714 return (rc); 8715 } 8716 8717 static int 8718 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8719 { 8720 struct port_info *pi = arg1; 8721 struct adapter *sc = pi->adapter; 8722 struct link_config *lc = &pi->link_cfg; 8723 int rc, val; 8724 8725 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8726 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8727 else 8728 val = -1; 8729 rc = sysctl_handle_int(oidp, &val, 0, req); 8730 if (rc != 0 || req->newptr == NULL) 8731 return (rc); 8732 if (val == 0) 8733 val = AUTONEG_DISABLE; 8734 else if (val == 1) 8735 val = AUTONEG_ENABLE; 8736 else 8737 val = AUTONEG_AUTO; 8738 8739 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8740 "t4aneg"); 8741 if (rc) 8742 return (rc); 8743 PORT_LOCK(pi); 8744 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8745 rc = ENOTSUP; 8746 goto done; 8747 } 8748 lc->requested_aneg = val; 8749 if (!hw_off_limits(sc)) { 8750 fixup_link_config(pi); 8751 if (pi->up_vis > 0) 8752 rc = apply_link_config(pi); 8753 set_current_media(pi); 8754 } 8755 done: 8756 PORT_UNLOCK(pi); 8757 end_synchronized_op(sc, 0); 8758 return (rc); 8759 } 8760 8761 static int 8762 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8763 { 8764 struct port_info *pi = arg1; 8765 struct adapter *sc = pi->adapter; 8766 struct link_config *lc = &pi->link_cfg; 8767 int rc, val; 8768 8769 val = lc->force_fec; 8770 MPASS(val >= -1 && val <= 1); 8771 rc = sysctl_handle_int(oidp, &val, 0, req); 8772 if (rc != 0 || req->newptr == NULL) 8773 return (rc); 8774 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8775 return (ENOTSUP); 8776 if (val < -1 || val > 1) 8777 return (EINVAL); 8778 8779 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8780 if (rc) 8781 return (rc); 8782 PORT_LOCK(pi); 8783 lc->force_fec = val; 8784 if (!hw_off_limits(sc)) { 8785 fixup_link_config(pi); 8786 if (pi->up_vis > 0) 8787 rc = apply_link_config(pi); 8788 } 8789 PORT_UNLOCK(pi); 8790 end_synchronized_op(sc, 0); 8791 return (rc); 8792 } 8793 8794 static int 8795 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8796 { 8797 struct adapter *sc = arg1; 8798 int rc, reg = arg2; 8799 uint64_t val; 8800 8801 mtx_lock(&sc->reg_lock); 8802 if (hw_off_limits(sc)) 8803 rc = ENXIO; 8804 else { 8805 rc = 0; 8806 val = t4_read_reg64(sc, reg); 8807 } 8808 mtx_unlock(&sc->reg_lock); 8809 if (rc == 0) 8810 rc = sysctl_handle_64(oidp, &val, 0, req); 8811 return (rc); 8812 } 8813 8814 static int 8815 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8816 { 8817 struct adapter *sc = arg1; 8818 int rc, t; 8819 uint32_t param, val; 8820 8821 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8822 if (rc) 8823 return (rc); 8824 if (hw_off_limits(sc)) 8825 rc = ENXIO; 8826 else { 8827 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8828 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8829 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8830 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8831 } 8832 end_synchronized_op(sc, 0); 8833 if (rc) 8834 return (rc); 8835 8836 /* unknown is returned as 0 but we display -1 in that case */ 8837 t = val == 0 ? -1 : val; 8838 8839 rc = sysctl_handle_int(oidp, &t, 0, req); 8840 return (rc); 8841 } 8842 8843 static int 8844 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8845 { 8846 struct adapter *sc = arg1; 8847 int rc; 8848 uint32_t param, val; 8849 8850 if (sc->params.core_vdd == 0) { 8851 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8852 "t4vdd"); 8853 if (rc) 8854 return (rc); 8855 if (hw_off_limits(sc)) 8856 rc = ENXIO; 8857 else { 8858 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8859 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8860 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8861 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8862 ¶m, &val); 8863 } 8864 end_synchronized_op(sc, 0); 8865 if (rc) 8866 return (rc); 8867 sc->params.core_vdd = val; 8868 } 8869 8870 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8871 } 8872 8873 static int 8874 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8875 { 8876 struct adapter *sc = arg1; 8877 int rc, v; 8878 uint32_t param, val; 8879 8880 v = sc->sensor_resets; 8881 rc = sysctl_handle_int(oidp, &v, 0, req); 8882 if (rc != 0 || req->newptr == NULL || v <= 0) 8883 return (rc); 8884 8885 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8886 chip_id(sc) < CHELSIO_T5) 8887 return (ENOTSUP); 8888 8889 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8890 if (rc) 8891 return (rc); 8892 if (hw_off_limits(sc)) 8893 rc = ENXIO; 8894 else { 8895 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8896 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8897 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8898 val = 1; 8899 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8900 } 8901 end_synchronized_op(sc, 0); 8902 if (rc == 0) 8903 sc->sensor_resets++; 8904 return (rc); 8905 } 8906 8907 static int 8908 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8909 { 8910 struct adapter *sc = arg1; 8911 struct sbuf *sb; 8912 int rc; 8913 uint32_t param, val; 8914 8915 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8916 if (rc) 8917 return (rc); 8918 if (hw_off_limits(sc)) 8919 rc = ENXIO; 8920 else { 8921 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8922 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8923 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8924 } 8925 end_synchronized_op(sc, 0); 8926 if (rc) 8927 return (rc); 8928 8929 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8930 if (sb == NULL) 8931 return (ENOMEM); 8932 8933 if (val == 0xffffffff) { 8934 /* Only debug and custom firmwares report load averages. */ 8935 sbuf_printf(sb, "not available"); 8936 } else { 8937 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8938 (val >> 16) & 0xff); 8939 } 8940 rc = sbuf_finish(sb); 8941 sbuf_delete(sb); 8942 8943 return (rc); 8944 } 8945 8946 static int 8947 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8948 { 8949 struct adapter *sc = arg1; 8950 struct sbuf *sb; 8951 int rc, i; 8952 uint16_t incr[NMTUS][NCCTRL_WIN]; 8953 static const char *dec_fac[] = { 8954 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8955 "0.9375" 8956 }; 8957 8958 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8959 if (sb == NULL) 8960 return (ENOMEM); 8961 8962 rc = 0; 8963 mtx_lock(&sc->reg_lock); 8964 if (hw_off_limits(sc)) 8965 rc = ENXIO; 8966 else 8967 t4_read_cong_tbl(sc, incr); 8968 mtx_unlock(&sc->reg_lock); 8969 if (rc) 8970 goto done; 8971 8972 for (i = 0; i < NCCTRL_WIN; ++i) { 8973 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8974 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8975 incr[5][i], incr[6][i], incr[7][i]); 8976 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8977 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8978 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8979 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8980 } 8981 8982 rc = sbuf_finish(sb); 8983 done: 8984 sbuf_delete(sb); 8985 return (rc); 8986 } 8987 8988 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8989 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8990 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8991 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8992 }; 8993 8994 static int 8995 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8996 { 8997 struct adapter *sc = arg1; 8998 struct sbuf *sb; 8999 int rc, i, n, qid = arg2; 9000 uint32_t *buf, *p; 9001 char *qtype; 9002 u_int cim_num_obq = sc->chip_params->cim_num_obq; 9003 9004 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 9005 ("%s: bad qid %d\n", __func__, qid)); 9006 9007 if (qid < CIM_NUM_IBQ) { 9008 /* inbound queue */ 9009 qtype = "IBQ"; 9010 n = 4 * CIM_IBQ_SIZE; 9011 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9012 mtx_lock(&sc->reg_lock); 9013 if (hw_off_limits(sc)) 9014 rc = -ENXIO; 9015 else 9016 rc = t4_read_cim_ibq(sc, qid, buf, n); 9017 mtx_unlock(&sc->reg_lock); 9018 } else { 9019 /* outbound queue */ 9020 qtype = "OBQ"; 9021 qid -= CIM_NUM_IBQ; 9022 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 9023 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9024 mtx_lock(&sc->reg_lock); 9025 if (hw_off_limits(sc)) 9026 rc = -ENXIO; 9027 else 9028 rc = t4_read_cim_obq(sc, qid, buf, n); 9029 mtx_unlock(&sc->reg_lock); 9030 } 9031 9032 if (rc < 0) { 9033 rc = -rc; 9034 goto done; 9035 } 9036 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9037 9038 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9039 if (sb == NULL) { 9040 rc = ENOMEM; 9041 goto done; 9042 } 9043 9044 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 9045 for (i = 0, p = buf; i < n; i += 16, p += 4) 9046 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9047 p[2], p[3]); 9048 9049 rc = sbuf_finish(sb); 9050 sbuf_delete(sb); 9051 done: 9052 free(buf, M_CXGBE); 9053 return (rc); 9054 } 9055 9056 static void 9057 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9058 { 9059 uint32_t *p; 9060 9061 sbuf_printf(sb, "Status Data PC%s", 9062 cfg & F_UPDBGLACAPTPCONLY ? "" : 9063 " LS0Stat LS0Addr LS0Data"); 9064 9065 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9066 if (cfg & F_UPDBGLACAPTPCONLY) { 9067 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9068 p[6], p[7]); 9069 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9070 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9071 p[4] & 0xff, p[5] >> 8); 9072 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9073 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9074 p[1] & 0xf, p[2] >> 4); 9075 } else { 9076 sbuf_printf(sb, 9077 "\n %02x %x%07x %x%07x %08x %08x " 9078 "%08x%08x%08x%08x", 9079 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9080 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9081 p[6], p[7]); 9082 } 9083 } 9084 } 9085 9086 static void 9087 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9088 { 9089 uint32_t *p; 9090 9091 sbuf_printf(sb, "Status Inst Data PC%s", 9092 cfg & F_UPDBGLACAPTPCONLY ? "" : 9093 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9094 9095 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9096 if (cfg & F_UPDBGLACAPTPCONLY) { 9097 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9098 p[3] & 0xff, p[2], p[1], p[0]); 9099 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9100 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9101 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9102 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9103 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9104 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9105 p[6] >> 16); 9106 } else { 9107 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9108 "%08x %08x %08x %08x %08x %08x", 9109 (p[9] >> 16) & 0xff, 9110 p[9] & 0xffff, p[8] >> 16, 9111 p[8] & 0xffff, p[7] >> 16, 9112 p[7] & 0xffff, p[6] >> 16, 9113 p[2], p[1], p[0], p[5], p[4], p[3]); 9114 } 9115 } 9116 } 9117 9118 static int 9119 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9120 { 9121 uint32_t cfg, *buf; 9122 int rc; 9123 9124 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9125 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9126 M_ZERO | flags); 9127 if (buf == NULL) 9128 return (ENOMEM); 9129 9130 mtx_lock(&sc->reg_lock); 9131 if (hw_off_limits(sc)) 9132 rc = ENXIO; 9133 else { 9134 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9135 if (rc == 0) 9136 rc = -t4_cim_read_la(sc, buf, NULL); 9137 } 9138 mtx_unlock(&sc->reg_lock); 9139 if (rc == 0) { 9140 if (chip_id(sc) < CHELSIO_T6) 9141 sbuf_cim_la4(sc, sb, buf, cfg); 9142 else 9143 sbuf_cim_la6(sc, sb, buf, cfg); 9144 } 9145 free(buf, M_CXGBE); 9146 return (rc); 9147 } 9148 9149 static int 9150 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9151 { 9152 struct adapter *sc = arg1; 9153 struct sbuf *sb; 9154 int rc; 9155 9156 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9157 if (sb == NULL) 9158 return (ENOMEM); 9159 9160 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9161 if (rc == 0) 9162 rc = sbuf_finish(sb); 9163 sbuf_delete(sb); 9164 return (rc); 9165 } 9166 9167 static void 9168 dump_cim_regs(struct adapter *sc) 9169 { 9170 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9171 device_get_nameunit(sc->dev), 9172 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9173 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9174 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9175 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9176 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9177 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9178 device_get_nameunit(sc->dev), 9179 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9180 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9181 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9182 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9183 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9184 } 9185 9186 static void 9187 dump_cimla(struct adapter *sc) 9188 { 9189 struct sbuf sb; 9190 int rc; 9191 9192 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9193 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9194 device_get_nameunit(sc->dev)); 9195 return; 9196 } 9197 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9198 if (rc == 0) { 9199 rc = sbuf_finish(&sb); 9200 if (rc == 0) { 9201 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9202 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9203 } 9204 } 9205 sbuf_delete(&sb); 9206 } 9207 9208 void 9209 t4_os_cim_err(struct adapter *sc) 9210 { 9211 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9212 } 9213 9214 static int 9215 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9216 { 9217 struct adapter *sc = arg1; 9218 u_int i; 9219 struct sbuf *sb; 9220 uint32_t *buf, *p; 9221 int rc; 9222 9223 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9224 if (sb == NULL) 9225 return (ENOMEM); 9226 9227 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9228 M_ZERO | M_WAITOK); 9229 9230 rc = 0; 9231 mtx_lock(&sc->reg_lock); 9232 if (hw_off_limits(sc)) 9233 rc = ENXIO; 9234 else 9235 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9236 mtx_unlock(&sc->reg_lock); 9237 if (rc) 9238 goto done; 9239 9240 p = buf; 9241 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9242 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9243 p[1], p[0]); 9244 } 9245 9246 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9247 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9248 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9249 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9250 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9251 (p[1] >> 2) | ((p[2] & 3) << 30), 9252 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9253 p[0] & 1); 9254 } 9255 rc = sbuf_finish(sb); 9256 done: 9257 sbuf_delete(sb); 9258 free(buf, M_CXGBE); 9259 return (rc); 9260 } 9261 9262 static int 9263 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9264 { 9265 struct adapter *sc = arg1; 9266 u_int i; 9267 struct sbuf *sb; 9268 uint32_t *buf, *p; 9269 int rc; 9270 9271 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9272 if (sb == NULL) 9273 return (ENOMEM); 9274 9275 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9276 M_ZERO | M_WAITOK); 9277 9278 rc = 0; 9279 mtx_lock(&sc->reg_lock); 9280 if (hw_off_limits(sc)) 9281 rc = ENXIO; 9282 else 9283 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9284 mtx_unlock(&sc->reg_lock); 9285 if (rc) 9286 goto done; 9287 9288 p = buf; 9289 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9290 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9291 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9292 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9293 p[4], p[3], p[2], p[1], p[0]); 9294 } 9295 9296 sbuf_printf(sb, "\n\nCntl ID Data"); 9297 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9298 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9299 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9300 } 9301 9302 rc = sbuf_finish(sb); 9303 done: 9304 sbuf_delete(sb); 9305 free(buf, M_CXGBE); 9306 return (rc); 9307 } 9308 9309 static int 9310 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9311 { 9312 struct adapter *sc = arg1; 9313 struct sbuf *sb; 9314 int rc, i; 9315 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9316 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9317 uint16_t thres[CIM_NUM_IBQ]; 9318 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9319 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9320 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9321 9322 cim_num_obq = sc->chip_params->cim_num_obq; 9323 if (is_t4(sc)) { 9324 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9325 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9326 } else { 9327 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9328 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9329 } 9330 nq = CIM_NUM_IBQ + cim_num_obq; 9331 9332 mtx_lock(&sc->reg_lock); 9333 if (hw_off_limits(sc)) 9334 rc = ENXIO; 9335 else { 9336 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9337 if (rc == 0) { 9338 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9339 obq_wr); 9340 if (rc == 0) 9341 t4_read_cimq_cfg(sc, base, size, thres); 9342 } 9343 } 9344 mtx_unlock(&sc->reg_lock); 9345 if (rc) 9346 return (rc); 9347 9348 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9349 if (sb == NULL) 9350 return (ENOMEM); 9351 9352 sbuf_printf(sb, 9353 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9354 9355 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9356 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9357 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9358 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9359 G_QUEREMFLITS(p[2]) * 16); 9360 for ( ; i < nq; i++, p += 4, wr += 2) 9361 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9362 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9363 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9364 G_QUEREMFLITS(p[2]) * 16); 9365 9366 rc = sbuf_finish(sb); 9367 sbuf_delete(sb); 9368 9369 return (rc); 9370 } 9371 9372 static int 9373 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9374 { 9375 struct adapter *sc = arg1; 9376 struct sbuf *sb; 9377 int rc; 9378 struct tp_cpl_stats stats; 9379 9380 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9381 if (sb == NULL) 9382 return (ENOMEM); 9383 9384 rc = 0; 9385 mtx_lock(&sc->reg_lock); 9386 if (hw_off_limits(sc)) 9387 rc = ENXIO; 9388 else 9389 t4_tp_get_cpl_stats(sc, &stats, 0); 9390 mtx_unlock(&sc->reg_lock); 9391 if (rc) 9392 goto done; 9393 9394 if (sc->chip_params->nchan > 2) { 9395 sbuf_printf(sb, " channel 0 channel 1" 9396 " channel 2 channel 3"); 9397 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9398 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9399 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9400 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9401 } else { 9402 sbuf_printf(sb, " channel 0 channel 1"); 9403 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9404 stats.req[0], stats.req[1]); 9405 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9406 stats.rsp[0], stats.rsp[1]); 9407 } 9408 9409 rc = sbuf_finish(sb); 9410 done: 9411 sbuf_delete(sb); 9412 return (rc); 9413 } 9414 9415 static int 9416 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9417 { 9418 struct adapter *sc = arg1; 9419 struct sbuf *sb; 9420 int rc; 9421 struct tp_usm_stats stats; 9422 9423 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9424 if (sb == NULL) 9425 return (ENOMEM); 9426 9427 rc = 0; 9428 mtx_lock(&sc->reg_lock); 9429 if (hw_off_limits(sc)) 9430 rc = ENXIO; 9431 else 9432 t4_get_usm_stats(sc, &stats, 1); 9433 mtx_unlock(&sc->reg_lock); 9434 if (rc == 0) { 9435 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9436 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9437 sbuf_printf(sb, "Drops: %u", stats.drops); 9438 rc = sbuf_finish(sb); 9439 } 9440 sbuf_delete(sb); 9441 9442 return (rc); 9443 } 9444 9445 static int 9446 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9447 { 9448 struct adapter *sc = arg1; 9449 struct sbuf *sb; 9450 int rc; 9451 struct tp_tid_stats stats; 9452 9453 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9454 if (sb == NULL) 9455 return (ENOMEM); 9456 9457 rc = 0; 9458 mtx_lock(&sc->reg_lock); 9459 if (hw_off_limits(sc)) 9460 rc = ENXIO; 9461 else 9462 t4_tp_get_tid_stats(sc, &stats, 1); 9463 mtx_unlock(&sc->reg_lock); 9464 if (rc == 0) { 9465 sbuf_printf(sb, "Delete: %u\n", stats.del); 9466 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9467 sbuf_printf(sb, "Active: %u\n", stats.act); 9468 sbuf_printf(sb, "Passive: %u", stats.pas); 9469 rc = sbuf_finish(sb); 9470 } 9471 sbuf_delete(sb); 9472 9473 return (rc); 9474 } 9475 9476 static const char * const devlog_level_strings[] = { 9477 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9478 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9479 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9480 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9481 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9482 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9483 }; 9484 9485 static const char * const devlog_facility_strings[] = { 9486 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9487 [FW_DEVLOG_FACILITY_CF] = "CF", 9488 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9489 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9490 [FW_DEVLOG_FACILITY_RES] = "RES", 9491 [FW_DEVLOG_FACILITY_HW] = "HW", 9492 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9493 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9494 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9495 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9496 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9497 [FW_DEVLOG_FACILITY_VI] = "VI", 9498 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9499 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9500 [FW_DEVLOG_FACILITY_TM] = "TM", 9501 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9502 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9503 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9504 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9505 [FW_DEVLOG_FACILITY_RI] = "RI", 9506 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9507 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9508 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9509 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9510 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9511 }; 9512 9513 static int 9514 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9515 { 9516 int i, j, rc, nentries, first = 0; 9517 struct devlog_params *dparams = &sc->params.devlog; 9518 struct fw_devlog_e *buf, *e; 9519 uint64_t ftstamp = UINT64_MAX; 9520 9521 if (dparams->addr == 0) 9522 return (ENXIO); 9523 9524 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9525 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9526 if (buf == NULL) 9527 return (ENOMEM); 9528 9529 mtx_lock(&sc->reg_lock); 9530 if (hw_off_limits(sc)) 9531 rc = ENXIO; 9532 else 9533 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9534 dparams->size); 9535 mtx_unlock(&sc->reg_lock); 9536 if (rc != 0) 9537 goto done; 9538 9539 nentries = dparams->size / sizeof(struct fw_devlog_e); 9540 for (i = 0; i < nentries; i++) { 9541 e = &buf[i]; 9542 9543 if (e->timestamp == 0) 9544 break; /* end */ 9545 9546 e->timestamp = be64toh(e->timestamp); 9547 e->seqno = be32toh(e->seqno); 9548 for (j = 0; j < 8; j++) 9549 e->params[j] = be32toh(e->params[j]); 9550 9551 if (e->timestamp < ftstamp) { 9552 ftstamp = e->timestamp; 9553 first = i; 9554 } 9555 } 9556 9557 if (buf[first].timestamp == 0) 9558 goto done; /* nothing in the log */ 9559 9560 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9561 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9562 9563 i = first; 9564 do { 9565 e = &buf[i]; 9566 if (e->timestamp == 0) 9567 break; /* end */ 9568 9569 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9570 e->seqno, e->timestamp, 9571 (e->level < nitems(devlog_level_strings) ? 9572 devlog_level_strings[e->level] : "UNKNOWN"), 9573 (e->facility < nitems(devlog_facility_strings) ? 9574 devlog_facility_strings[e->facility] : "UNKNOWN")); 9575 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9576 e->params[2], e->params[3], e->params[4], 9577 e->params[5], e->params[6], e->params[7]); 9578 9579 if (++i == nentries) 9580 i = 0; 9581 } while (i != first); 9582 done: 9583 free(buf, M_CXGBE); 9584 return (rc); 9585 } 9586 9587 static int 9588 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9589 { 9590 struct adapter *sc = arg1; 9591 int rc; 9592 struct sbuf *sb; 9593 9594 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9595 if (sb == NULL) 9596 return (ENOMEM); 9597 9598 rc = sbuf_devlog(sc, sb, M_WAITOK); 9599 if (rc == 0) 9600 rc = sbuf_finish(sb); 9601 sbuf_delete(sb); 9602 return (rc); 9603 } 9604 9605 static void 9606 dump_devlog(struct adapter *sc) 9607 { 9608 int rc; 9609 struct sbuf sb; 9610 9611 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9612 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9613 device_get_nameunit(sc->dev)); 9614 return; 9615 } 9616 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9617 if (rc == 0) { 9618 rc = sbuf_finish(&sb); 9619 if (rc == 0) { 9620 log(LOG_DEBUG, "%s: device log follows.\n%s", 9621 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9622 } 9623 } 9624 sbuf_delete(&sb); 9625 } 9626 9627 static int 9628 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9629 { 9630 struct adapter *sc = arg1; 9631 struct sbuf *sb; 9632 int rc; 9633 struct tp_fcoe_stats stats[MAX_NCHAN]; 9634 int i, nchan = sc->chip_params->nchan; 9635 9636 rc = 0; 9637 mtx_lock(&sc->reg_lock); 9638 if (hw_off_limits(sc)) 9639 rc = ENXIO; 9640 else { 9641 for (i = 0; i < nchan; i++) 9642 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9643 } 9644 mtx_unlock(&sc->reg_lock); 9645 if (rc != 0) 9646 return (rc); 9647 9648 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9649 if (sb == NULL) 9650 return (ENOMEM); 9651 9652 if (nchan > 2) { 9653 sbuf_printf(sb, " channel 0 channel 1" 9654 " channel 2 channel 3"); 9655 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9656 stats[0].octets_ddp, stats[1].octets_ddp, 9657 stats[2].octets_ddp, stats[3].octets_ddp); 9658 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9659 stats[0].frames_ddp, stats[1].frames_ddp, 9660 stats[2].frames_ddp, stats[3].frames_ddp); 9661 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9662 stats[0].frames_drop, stats[1].frames_drop, 9663 stats[2].frames_drop, stats[3].frames_drop); 9664 } else { 9665 sbuf_printf(sb, " channel 0 channel 1"); 9666 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9667 stats[0].octets_ddp, stats[1].octets_ddp); 9668 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9669 stats[0].frames_ddp, stats[1].frames_ddp); 9670 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9671 stats[0].frames_drop, stats[1].frames_drop); 9672 } 9673 9674 rc = sbuf_finish(sb); 9675 sbuf_delete(sb); 9676 9677 return (rc); 9678 } 9679 9680 static int 9681 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9682 { 9683 struct adapter *sc = arg1; 9684 struct sbuf *sb; 9685 int rc, i; 9686 unsigned int map, kbps, ipg, mode; 9687 unsigned int pace_tab[NTX_SCHED]; 9688 9689 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9690 if (sb == NULL) 9691 return (ENOMEM); 9692 9693 mtx_lock(&sc->reg_lock); 9694 if (hw_off_limits(sc)) { 9695 mtx_unlock(&sc->reg_lock); 9696 rc = ENXIO; 9697 goto done; 9698 } 9699 9700 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9701 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9702 t4_read_pace_tbl(sc, pace_tab); 9703 mtx_unlock(&sc->reg_lock); 9704 9705 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9706 "Class IPG (0.1 ns) Flow IPG (us)"); 9707 9708 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9709 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9710 sbuf_printf(sb, "\n %u %-5s %u ", i, 9711 (mode & (1 << i)) ? "flow" : "class", map & 3); 9712 if (kbps) 9713 sbuf_printf(sb, "%9u ", kbps); 9714 else 9715 sbuf_printf(sb, " disabled "); 9716 9717 if (ipg) 9718 sbuf_printf(sb, "%13u ", ipg); 9719 else 9720 sbuf_printf(sb, " disabled "); 9721 9722 if (pace_tab[i]) 9723 sbuf_printf(sb, "%10u", pace_tab[i]); 9724 else 9725 sbuf_printf(sb, " disabled"); 9726 } 9727 rc = sbuf_finish(sb); 9728 done: 9729 sbuf_delete(sb); 9730 return (rc); 9731 } 9732 9733 static int 9734 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9735 { 9736 struct adapter *sc = arg1; 9737 struct sbuf *sb; 9738 int rc, i, j; 9739 uint64_t *p0, *p1; 9740 struct lb_port_stats s[2]; 9741 static const char *stat_name[] = { 9742 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9743 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9744 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9745 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9746 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9747 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9748 "BG2FramesTrunc:", "BG3FramesTrunc:" 9749 }; 9750 9751 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9752 if (sb == NULL) 9753 return (ENOMEM); 9754 9755 memset(s, 0, sizeof(s)); 9756 9757 rc = 0; 9758 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9759 mtx_lock(&sc->reg_lock); 9760 if (hw_off_limits(sc)) 9761 rc = ENXIO; 9762 else { 9763 t4_get_lb_stats(sc, i, &s[0]); 9764 t4_get_lb_stats(sc, i + 1, &s[1]); 9765 } 9766 mtx_unlock(&sc->reg_lock); 9767 if (rc != 0) 9768 break; 9769 9770 p0 = &s[0].octets; 9771 p1 = &s[1].octets; 9772 sbuf_printf(sb, "%s Loopback %u" 9773 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9774 9775 for (j = 0; j < nitems(stat_name); j++) 9776 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9777 *p0++, *p1++); 9778 } 9779 9780 if (rc == 0) 9781 rc = sbuf_finish(sb); 9782 sbuf_delete(sb); 9783 9784 return (rc); 9785 } 9786 9787 static int 9788 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9789 { 9790 int rc = 0; 9791 struct port_info *pi = arg1; 9792 struct link_config *lc = &pi->link_cfg; 9793 struct sbuf *sb; 9794 9795 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9796 if (sb == NULL) 9797 return (ENOMEM); 9798 9799 if (lc->link_ok || lc->link_down_rc == 255) 9800 sbuf_printf(sb, "n/a"); 9801 else 9802 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9803 9804 rc = sbuf_finish(sb); 9805 sbuf_delete(sb); 9806 9807 return (rc); 9808 } 9809 9810 struct mem_desc { 9811 u_int base; 9812 u_int limit; 9813 u_int idx; 9814 }; 9815 9816 static int 9817 mem_desc_cmp(const void *a, const void *b) 9818 { 9819 const u_int v1 = ((const struct mem_desc *)a)->base; 9820 const u_int v2 = ((const struct mem_desc *)b)->base; 9821 9822 if (v1 < v2) 9823 return (-1); 9824 else if (v1 > v2) 9825 return (1); 9826 9827 return (0); 9828 } 9829 9830 static void 9831 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9832 unsigned int to) 9833 { 9834 unsigned int size; 9835 9836 if (from == to) 9837 return; 9838 9839 size = to - from + 1; 9840 if (size == 0) 9841 return; 9842 9843 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9844 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9845 } 9846 9847 static int 9848 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9849 { 9850 struct adapter *sc = arg1; 9851 struct sbuf *sb; 9852 int rc, i, n; 9853 uint32_t lo, hi, used, free, alloc; 9854 static const char *memory[] = { 9855 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9856 }; 9857 static const char *region[] = { 9858 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9859 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9860 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9861 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9862 "RQUDP region:", "PBL region:", "TXPBL region:", 9863 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9864 "ULPTX state:", "On-chip queues:", 9865 }; 9866 struct mem_desc avail[4]; 9867 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9868 struct mem_desc *md = mem; 9869 9870 rc = sysctl_wire_old_buffer(req, 0); 9871 if (rc != 0) 9872 return (rc); 9873 9874 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9875 if (sb == NULL) 9876 return (ENOMEM); 9877 9878 for (i = 0; i < nitems(mem); i++) { 9879 mem[i].limit = 0; 9880 mem[i].idx = i; 9881 } 9882 9883 mtx_lock(&sc->reg_lock); 9884 if (hw_off_limits(sc)) { 9885 rc = ENXIO; 9886 goto done; 9887 } 9888 9889 /* Find and sort the populated memory ranges */ 9890 i = 0; 9891 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9892 if (lo & F_EDRAM0_ENABLE) { 9893 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9894 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9895 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9896 avail[i].idx = 0; 9897 i++; 9898 } 9899 if (lo & F_EDRAM1_ENABLE) { 9900 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9901 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9902 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9903 avail[i].idx = 1; 9904 i++; 9905 } 9906 if (lo & F_EXT_MEM_ENABLE) { 9907 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9908 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9909 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9910 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9911 i++; 9912 } 9913 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9914 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9915 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9916 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9917 avail[i].idx = 4; 9918 i++; 9919 } 9920 if (is_t6(sc) && lo & F_HMA_MUX) { 9921 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9922 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9923 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9924 avail[i].idx = 5; 9925 i++; 9926 } 9927 MPASS(i <= nitems(avail)); 9928 if (!i) /* no memory available */ 9929 goto done; 9930 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9931 9932 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9933 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9934 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9935 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9936 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9937 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9938 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9939 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9940 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9941 9942 /* the next few have explicit upper bounds */ 9943 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9944 md->limit = md->base - 1 + 9945 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9946 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9947 md++; 9948 9949 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9950 md->limit = md->base - 1 + 9951 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9952 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9953 md++; 9954 9955 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9956 if (chip_id(sc) <= CHELSIO_T5) 9957 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9958 else 9959 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9960 md->limit = 0; 9961 } else { 9962 md->base = 0; 9963 md->idx = nitems(region); /* hide it */ 9964 } 9965 md++; 9966 9967 #define ulp_region(reg) \ 9968 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9969 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9970 9971 ulp_region(RX_ISCSI); 9972 ulp_region(RX_TDDP); 9973 ulp_region(TX_TPT); 9974 ulp_region(RX_STAG); 9975 ulp_region(RX_RQ); 9976 ulp_region(RX_RQUDP); 9977 ulp_region(RX_PBL); 9978 ulp_region(TX_PBL); 9979 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9980 ulp_region(RX_TLS_KEY); 9981 } 9982 #undef ulp_region 9983 9984 md->base = 0; 9985 if (is_t4(sc)) 9986 md->idx = nitems(region); 9987 else { 9988 uint32_t size = 0; 9989 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9990 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9991 9992 if (is_t5(sc)) { 9993 if (sge_ctrl & F_VFIFO_ENABLE) 9994 size = fifo_size << 2; 9995 } else 9996 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9997 9998 if (size) { 9999 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10000 md->limit = md->base + size - 1; 10001 } else 10002 md->idx = nitems(region); 10003 } 10004 md++; 10005 10006 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10007 md->limit = 0; 10008 md++; 10009 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10010 md->limit = 0; 10011 md++; 10012 10013 md->base = sc->vres.ocq.start; 10014 if (sc->vres.ocq.size) 10015 md->limit = md->base + sc->vres.ocq.size - 1; 10016 else 10017 md->idx = nitems(region); /* hide it */ 10018 md++; 10019 10020 /* add any address-space holes, there can be up to 3 */ 10021 for (n = 0; n < i - 1; n++) 10022 if (avail[n].limit < avail[n + 1].base) 10023 (md++)->base = avail[n].limit; 10024 if (avail[n].limit) 10025 (md++)->base = avail[n].limit; 10026 10027 n = md - mem; 10028 MPASS(n <= nitems(mem)); 10029 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10030 10031 for (lo = 0; lo < i; lo++) 10032 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10033 avail[lo].limit - 1); 10034 10035 sbuf_printf(sb, "\n"); 10036 for (i = 0; i < n; i++) { 10037 if (mem[i].idx >= nitems(region)) 10038 continue; /* skip holes */ 10039 if (!mem[i].limit) 10040 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10041 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10042 mem[i].limit); 10043 } 10044 10045 sbuf_printf(sb, "\n"); 10046 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10047 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10048 mem_region_show(sb, "uP RAM:", lo, hi); 10049 10050 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10051 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10052 mem_region_show(sb, "uP Extmem2:", lo, hi); 10053 10054 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10055 for (i = 0, free = 0; i < 2; i++) 10056 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10057 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10058 G_PMRXMAXPAGE(lo), free, 10059 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10060 (lo & F_PMRXNUMCHN) ? 2 : 1); 10061 10062 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10063 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10064 for (i = 0, free = 0; i < 4; i++) 10065 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10066 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10067 G_PMTXMAXPAGE(lo), free, 10068 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10069 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10070 sbuf_printf(sb, "%u p-structs (%u free)\n", 10071 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10072 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10073 10074 for (i = 0; i < 4; i++) { 10075 if (chip_id(sc) > CHELSIO_T5) 10076 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10077 else 10078 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10079 if (is_t5(sc)) { 10080 used = G_T5_USED(lo); 10081 alloc = G_T5_ALLOC(lo); 10082 } else { 10083 used = G_USED(lo); 10084 alloc = G_ALLOC(lo); 10085 } 10086 /* For T6 these are MAC buffer groups */ 10087 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10088 i, used, alloc); 10089 } 10090 for (i = 0; i < sc->chip_params->nchan; i++) { 10091 if (chip_id(sc) > CHELSIO_T5) 10092 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10093 else 10094 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10095 if (is_t5(sc)) { 10096 used = G_T5_USED(lo); 10097 alloc = G_T5_ALLOC(lo); 10098 } else { 10099 used = G_USED(lo); 10100 alloc = G_ALLOC(lo); 10101 } 10102 /* For T6 these are MAC buffer groups */ 10103 sbuf_printf(sb, 10104 "\nLoopback %d using %u pages out of %u allocated", 10105 i, used, alloc); 10106 } 10107 done: 10108 mtx_unlock(&sc->reg_lock); 10109 if (rc == 0) 10110 rc = sbuf_finish(sb); 10111 sbuf_delete(sb); 10112 return (rc); 10113 } 10114 10115 static inline void 10116 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10117 { 10118 *mask = x | y; 10119 y = htobe64(y); 10120 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10121 } 10122 10123 static int 10124 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10125 { 10126 struct adapter *sc = arg1; 10127 struct sbuf *sb; 10128 int rc, i; 10129 10130 MPASS(chip_id(sc) <= CHELSIO_T5); 10131 10132 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10133 if (sb == NULL) 10134 return (ENOMEM); 10135 10136 sbuf_printf(sb, 10137 "Idx Ethernet address Mask Vld Ports PF" 10138 " VF Replication P0 P1 P2 P3 ML"); 10139 rc = 0; 10140 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10141 uint64_t tcamx, tcamy, mask; 10142 uint32_t cls_lo, cls_hi; 10143 uint8_t addr[ETHER_ADDR_LEN]; 10144 10145 mtx_lock(&sc->reg_lock); 10146 if (hw_off_limits(sc)) 10147 rc = ENXIO; 10148 else { 10149 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10150 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10151 } 10152 mtx_unlock(&sc->reg_lock); 10153 if (rc != 0) 10154 break; 10155 if (tcamx & tcamy) 10156 continue; 10157 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10158 mtx_lock(&sc->reg_lock); 10159 if (hw_off_limits(sc)) 10160 rc = ENXIO; 10161 else { 10162 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10163 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10164 } 10165 mtx_unlock(&sc->reg_lock); 10166 if (rc != 0) 10167 break; 10168 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10169 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10170 addr[3], addr[4], addr[5], (uintmax_t)mask, 10171 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10172 G_PORTMAP(cls_hi), G_PF(cls_lo), 10173 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10174 10175 if (cls_lo & F_REPLICATE) { 10176 struct fw_ldst_cmd ldst_cmd; 10177 10178 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10179 ldst_cmd.op_to_addrspace = 10180 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10181 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10182 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10183 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10184 ldst_cmd.u.mps.rplc.fid_idx = 10185 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10186 V_FW_LDST_CMD_IDX(i)); 10187 10188 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10189 "t4mps"); 10190 if (rc) 10191 break; 10192 if (hw_off_limits(sc)) 10193 rc = ENXIO; 10194 else 10195 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10196 sizeof(ldst_cmd), &ldst_cmd); 10197 end_synchronized_op(sc, 0); 10198 if (rc != 0) 10199 break; 10200 else { 10201 sbuf_printf(sb, " %08x %08x %08x %08x", 10202 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10203 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10204 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10205 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10206 } 10207 } else 10208 sbuf_printf(sb, "%36s", ""); 10209 10210 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10211 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10212 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10213 } 10214 10215 if (rc) 10216 (void) sbuf_finish(sb); 10217 else 10218 rc = sbuf_finish(sb); 10219 sbuf_delete(sb); 10220 10221 return (rc); 10222 } 10223 10224 static int 10225 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10226 { 10227 struct adapter *sc = arg1; 10228 struct sbuf *sb; 10229 int rc, i; 10230 10231 MPASS(chip_id(sc) > CHELSIO_T5); 10232 10233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10234 if (sb == NULL) 10235 return (ENOMEM); 10236 10237 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10238 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10239 " Replication" 10240 " P0 P1 P2 P3 ML\n"); 10241 10242 rc = 0; 10243 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10244 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10245 uint16_t ivlan; 10246 uint64_t tcamx, tcamy, val, mask; 10247 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10248 uint8_t addr[ETHER_ADDR_LEN]; 10249 10250 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10251 if (i < 256) 10252 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10253 else 10254 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10255 mtx_lock(&sc->reg_lock); 10256 if (hw_off_limits(sc)) 10257 rc = ENXIO; 10258 else { 10259 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10260 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10261 tcamy = G_DMACH(val) << 32; 10262 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10263 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10264 } 10265 mtx_unlock(&sc->reg_lock); 10266 if (rc != 0) 10267 break; 10268 10269 lookup_type = G_DATALKPTYPE(data2); 10270 port_num = G_DATAPORTNUM(data2); 10271 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10272 /* Inner header VNI */ 10273 vniy = ((data2 & F_DATAVIDH2) << 23) | 10274 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10275 dip_hit = data2 & F_DATADIPHIT; 10276 vlan_vld = 0; 10277 } else { 10278 vniy = 0; 10279 dip_hit = 0; 10280 vlan_vld = data2 & F_DATAVIDH2; 10281 ivlan = G_VIDL(val); 10282 } 10283 10284 ctl |= V_CTLXYBITSEL(1); 10285 mtx_lock(&sc->reg_lock); 10286 if (hw_off_limits(sc)) 10287 rc = ENXIO; 10288 else { 10289 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10290 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10291 tcamx = G_DMACH(val) << 32; 10292 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10293 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10294 } 10295 mtx_unlock(&sc->reg_lock); 10296 if (rc != 0) 10297 break; 10298 10299 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10300 /* Inner header VNI mask */ 10301 vnix = ((data2 & F_DATAVIDH2) << 23) | 10302 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10303 } else 10304 vnix = 0; 10305 10306 if (tcamx & tcamy) 10307 continue; 10308 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10309 10310 mtx_lock(&sc->reg_lock); 10311 if (hw_off_limits(sc)) 10312 rc = ENXIO; 10313 else { 10314 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10315 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10316 } 10317 mtx_unlock(&sc->reg_lock); 10318 if (rc != 0) 10319 break; 10320 10321 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10322 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10323 "%012jx %06x %06x - - %3c" 10324 " I %4x %3c %#x%4u%4d", i, addr[0], 10325 addr[1], addr[2], addr[3], addr[4], addr[5], 10326 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10327 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10328 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10329 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10330 } else { 10331 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10332 "%012jx - - ", i, addr[0], addr[1], 10333 addr[2], addr[3], addr[4], addr[5], 10334 (uintmax_t)mask); 10335 10336 if (vlan_vld) 10337 sbuf_printf(sb, "%4u Y ", ivlan); 10338 else 10339 sbuf_printf(sb, " - N "); 10340 10341 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10342 lookup_type ? 'I' : 'O', port_num, 10343 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10344 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10345 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10346 } 10347 10348 10349 if (cls_lo & F_T6_REPLICATE) { 10350 struct fw_ldst_cmd ldst_cmd; 10351 10352 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10353 ldst_cmd.op_to_addrspace = 10354 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10355 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10356 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10357 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10358 ldst_cmd.u.mps.rplc.fid_idx = 10359 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10360 V_FW_LDST_CMD_IDX(i)); 10361 10362 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10363 "t6mps"); 10364 if (rc) 10365 break; 10366 if (hw_off_limits(sc)) 10367 rc = ENXIO; 10368 else 10369 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10370 sizeof(ldst_cmd), &ldst_cmd); 10371 end_synchronized_op(sc, 0); 10372 if (rc != 0) 10373 break; 10374 else { 10375 sbuf_printf(sb, " %08x %08x %08x %08x" 10376 " %08x %08x %08x %08x", 10377 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10378 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10379 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10380 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10381 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10382 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10383 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10384 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10385 } 10386 } else 10387 sbuf_printf(sb, "%72s", ""); 10388 10389 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10390 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10391 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10392 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10393 } 10394 10395 if (rc) 10396 (void) sbuf_finish(sb); 10397 else 10398 rc = sbuf_finish(sb); 10399 sbuf_delete(sb); 10400 10401 return (rc); 10402 } 10403 10404 static int 10405 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10406 { 10407 struct adapter *sc = arg1; 10408 struct sbuf *sb; 10409 int rc; 10410 uint16_t mtus[NMTUS]; 10411 10412 rc = 0; 10413 mtx_lock(&sc->reg_lock); 10414 if (hw_off_limits(sc)) 10415 rc = ENXIO; 10416 else 10417 t4_read_mtu_tbl(sc, mtus, NULL); 10418 mtx_unlock(&sc->reg_lock); 10419 if (rc != 0) 10420 return (rc); 10421 10422 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10423 if (sb == NULL) 10424 return (ENOMEM); 10425 10426 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10427 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10428 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10429 mtus[14], mtus[15]); 10430 10431 rc = sbuf_finish(sb); 10432 sbuf_delete(sb); 10433 10434 return (rc); 10435 } 10436 10437 static int 10438 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10439 { 10440 struct adapter *sc = arg1; 10441 struct sbuf *sb; 10442 int rc, i; 10443 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10444 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10445 static const char *tx_stats[MAX_PM_NSTATS] = { 10446 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10447 "Tx FIFO wait", NULL, "Tx latency" 10448 }; 10449 static const char *rx_stats[MAX_PM_NSTATS] = { 10450 "Read:", "Write bypass:", "Write mem:", "Flush:", 10451 "Rx FIFO wait", NULL, "Rx latency" 10452 }; 10453 10454 rc = 0; 10455 mtx_lock(&sc->reg_lock); 10456 if (hw_off_limits(sc)) 10457 rc = ENXIO; 10458 else { 10459 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10460 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10461 } 10462 mtx_unlock(&sc->reg_lock); 10463 if (rc != 0) 10464 return (rc); 10465 10466 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10467 if (sb == NULL) 10468 return (ENOMEM); 10469 10470 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10471 for (i = 0; i < 4; i++) { 10472 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10473 tx_cyc[i]); 10474 } 10475 10476 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10477 for (i = 0; i < 4; i++) { 10478 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10479 rx_cyc[i]); 10480 } 10481 10482 if (chip_id(sc) > CHELSIO_T5) { 10483 sbuf_printf(sb, 10484 "\n Total wait Total occupancy"); 10485 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10486 tx_cyc[i]); 10487 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10488 rx_cyc[i]); 10489 10490 i += 2; 10491 MPASS(i < nitems(tx_stats)); 10492 10493 sbuf_printf(sb, 10494 "\n Reads Total wait"); 10495 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10496 tx_cyc[i]); 10497 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10498 rx_cyc[i]); 10499 } 10500 10501 rc = sbuf_finish(sb); 10502 sbuf_delete(sb); 10503 10504 return (rc); 10505 } 10506 10507 static int 10508 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10509 { 10510 struct adapter *sc = arg1; 10511 struct sbuf *sb; 10512 int rc; 10513 struct tp_rdma_stats stats; 10514 10515 rc = 0; 10516 mtx_lock(&sc->reg_lock); 10517 if (hw_off_limits(sc)) 10518 rc = ENXIO; 10519 else 10520 t4_tp_get_rdma_stats(sc, &stats, 0); 10521 mtx_unlock(&sc->reg_lock); 10522 if (rc != 0) 10523 return (rc); 10524 10525 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10526 if (sb == NULL) 10527 return (ENOMEM); 10528 10529 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10530 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10531 10532 rc = sbuf_finish(sb); 10533 sbuf_delete(sb); 10534 10535 return (rc); 10536 } 10537 10538 static int 10539 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10540 { 10541 struct adapter *sc = arg1; 10542 struct sbuf *sb; 10543 int rc; 10544 struct tp_tcp_stats v4, v6; 10545 10546 rc = 0; 10547 mtx_lock(&sc->reg_lock); 10548 if (hw_off_limits(sc)) 10549 rc = ENXIO; 10550 else 10551 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10552 mtx_unlock(&sc->reg_lock); 10553 if (rc != 0) 10554 return (rc); 10555 10556 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10557 if (sb == NULL) 10558 return (ENOMEM); 10559 10560 sbuf_printf(sb, 10561 " IP IPv6\n"); 10562 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10563 v4.tcp_out_rsts, v6.tcp_out_rsts); 10564 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10565 v4.tcp_in_segs, v6.tcp_in_segs); 10566 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10567 v4.tcp_out_segs, v6.tcp_out_segs); 10568 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10569 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10570 10571 rc = sbuf_finish(sb); 10572 sbuf_delete(sb); 10573 10574 return (rc); 10575 } 10576 10577 static int 10578 sysctl_tids(SYSCTL_HANDLER_ARGS) 10579 { 10580 struct adapter *sc = arg1; 10581 struct sbuf *sb; 10582 int rc; 10583 uint32_t x, y; 10584 struct tid_info *t = &sc->tids; 10585 10586 rc = 0; 10587 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10588 if (sb == NULL) 10589 return (ENOMEM); 10590 10591 if (t->natids) { 10592 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10593 t->atids_in_use); 10594 } 10595 10596 if (t->nhpftids) { 10597 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10598 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10599 } 10600 10601 if (t->ntids) { 10602 bool hashen = false; 10603 10604 mtx_lock(&sc->reg_lock); 10605 if (hw_off_limits(sc)) 10606 rc = ENXIO; 10607 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10608 hashen = true; 10609 if (chip_id(sc) <= CHELSIO_T5) { 10610 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10611 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10612 } else { 10613 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10614 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10615 } 10616 } 10617 mtx_unlock(&sc->reg_lock); 10618 if (rc != 0) 10619 goto done; 10620 10621 sbuf_printf(sb, "TID range: "); 10622 if (hashen) { 10623 if (x) 10624 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10625 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10626 } else { 10627 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10628 t->ntids - 1); 10629 } 10630 sbuf_printf(sb, ", in use: %u\n", 10631 atomic_load_acq_int(&t->tids_in_use)); 10632 } 10633 10634 if (t->nstids) { 10635 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10636 t->stid_base + t->nstids - 1, t->stids_in_use); 10637 } 10638 10639 if (t->nftids) { 10640 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10641 t->ftid_end, t->ftids_in_use); 10642 } 10643 10644 if (t->netids) { 10645 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10646 t->etid_base + t->netids - 1, t->etids_in_use); 10647 } 10648 10649 mtx_lock(&sc->reg_lock); 10650 if (hw_off_limits(sc)) 10651 rc = ENXIO; 10652 else { 10653 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10654 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10655 } 10656 mtx_unlock(&sc->reg_lock); 10657 if (rc != 0) 10658 goto done; 10659 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10660 done: 10661 if (rc == 0) 10662 rc = sbuf_finish(sb); 10663 else 10664 (void)sbuf_finish(sb); 10665 sbuf_delete(sb); 10666 10667 return (rc); 10668 } 10669 10670 static int 10671 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10672 { 10673 struct adapter *sc = arg1; 10674 struct sbuf *sb; 10675 int rc; 10676 struct tp_err_stats stats; 10677 10678 rc = 0; 10679 mtx_lock(&sc->reg_lock); 10680 if (hw_off_limits(sc)) 10681 rc = ENXIO; 10682 else 10683 t4_tp_get_err_stats(sc, &stats, 0); 10684 mtx_unlock(&sc->reg_lock); 10685 if (rc != 0) 10686 return (rc); 10687 10688 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10689 if (sb == NULL) 10690 return (ENOMEM); 10691 10692 if (sc->chip_params->nchan > 2) { 10693 sbuf_printf(sb, " channel 0 channel 1" 10694 " channel 2 channel 3\n"); 10695 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10696 stats.mac_in_errs[0], stats.mac_in_errs[1], 10697 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10698 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10699 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10700 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10701 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10702 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10703 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10704 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10705 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10706 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10707 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10708 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10709 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10710 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10711 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10712 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10713 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10714 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10715 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10716 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10717 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10718 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10719 } else { 10720 sbuf_printf(sb, " channel 0 channel 1\n"); 10721 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10722 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10723 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10724 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10725 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10726 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10727 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10728 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10729 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10730 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10731 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10732 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10733 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10734 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10735 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10736 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10737 } 10738 10739 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10740 stats.ofld_no_neigh, stats.ofld_cong_defer); 10741 10742 rc = sbuf_finish(sb); 10743 sbuf_delete(sb); 10744 10745 return (rc); 10746 } 10747 10748 static int 10749 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10750 { 10751 struct adapter *sc = arg1; 10752 struct sbuf *sb; 10753 int rc; 10754 struct tp_tnl_stats stats; 10755 10756 rc = 0; 10757 mtx_lock(&sc->reg_lock); 10758 if (hw_off_limits(sc)) 10759 rc = ENXIO; 10760 else 10761 t4_tp_get_tnl_stats(sc, &stats, 1); 10762 mtx_unlock(&sc->reg_lock); 10763 if (rc != 0) 10764 return (rc); 10765 10766 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10767 if (sb == NULL) 10768 return (ENOMEM); 10769 10770 if (sc->chip_params->nchan > 2) { 10771 sbuf_printf(sb, " channel 0 channel 1" 10772 " channel 2 channel 3\n"); 10773 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10774 stats.out_pkt[0], stats.out_pkt[1], 10775 stats.out_pkt[2], stats.out_pkt[3]); 10776 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10777 stats.in_pkt[0], stats.in_pkt[1], 10778 stats.in_pkt[2], stats.in_pkt[3]); 10779 } else { 10780 sbuf_printf(sb, " channel 0 channel 1\n"); 10781 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10782 stats.out_pkt[0], stats.out_pkt[1]); 10783 sbuf_printf(sb, "InPkts: %10u %10u", 10784 stats.in_pkt[0], stats.in_pkt[1]); 10785 } 10786 10787 rc = sbuf_finish(sb); 10788 sbuf_delete(sb); 10789 10790 return (rc); 10791 } 10792 10793 static int 10794 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10795 { 10796 struct adapter *sc = arg1; 10797 struct tp_params *tpp = &sc->params.tp; 10798 u_int mask; 10799 int rc; 10800 10801 mask = tpp->la_mask >> 16; 10802 rc = sysctl_handle_int(oidp, &mask, 0, req); 10803 if (rc != 0 || req->newptr == NULL) 10804 return (rc); 10805 if (mask > 0xffff) 10806 return (EINVAL); 10807 mtx_lock(&sc->reg_lock); 10808 if (hw_off_limits(sc)) 10809 rc = ENXIO; 10810 else { 10811 tpp->la_mask = mask << 16; 10812 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10813 tpp->la_mask); 10814 } 10815 mtx_unlock(&sc->reg_lock); 10816 10817 return (rc); 10818 } 10819 10820 struct field_desc { 10821 const char *name; 10822 u_int start; 10823 u_int width; 10824 }; 10825 10826 static void 10827 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10828 { 10829 char buf[32]; 10830 int line_size = 0; 10831 10832 while (f->name) { 10833 uint64_t mask = (1ULL << f->width) - 1; 10834 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10835 ((uintmax_t)v >> f->start) & mask); 10836 10837 if (line_size + len >= 79) { 10838 line_size = 8; 10839 sbuf_printf(sb, "\n "); 10840 } 10841 sbuf_printf(sb, "%s ", buf); 10842 line_size += len + 1; 10843 f++; 10844 } 10845 sbuf_printf(sb, "\n"); 10846 } 10847 10848 static const struct field_desc tp_la0[] = { 10849 { "RcfOpCodeOut", 60, 4 }, 10850 { "State", 56, 4 }, 10851 { "WcfState", 52, 4 }, 10852 { "RcfOpcSrcOut", 50, 2 }, 10853 { "CRxError", 49, 1 }, 10854 { "ERxError", 48, 1 }, 10855 { "SanityFailed", 47, 1 }, 10856 { "SpuriousMsg", 46, 1 }, 10857 { "FlushInputMsg", 45, 1 }, 10858 { "FlushInputCpl", 44, 1 }, 10859 { "RssUpBit", 43, 1 }, 10860 { "RssFilterHit", 42, 1 }, 10861 { "Tid", 32, 10 }, 10862 { "InitTcb", 31, 1 }, 10863 { "LineNumber", 24, 7 }, 10864 { "Emsg", 23, 1 }, 10865 { "EdataOut", 22, 1 }, 10866 { "Cmsg", 21, 1 }, 10867 { "CdataOut", 20, 1 }, 10868 { "EreadPdu", 19, 1 }, 10869 { "CreadPdu", 18, 1 }, 10870 { "TunnelPkt", 17, 1 }, 10871 { "RcfPeerFin", 16, 1 }, 10872 { "RcfReasonOut", 12, 4 }, 10873 { "TxCchannel", 10, 2 }, 10874 { "RcfTxChannel", 8, 2 }, 10875 { "RxEchannel", 6, 2 }, 10876 { "RcfRxChannel", 5, 1 }, 10877 { "RcfDataOutSrdy", 4, 1 }, 10878 { "RxDvld", 3, 1 }, 10879 { "RxOoDvld", 2, 1 }, 10880 { "RxCongestion", 1, 1 }, 10881 { "TxCongestion", 0, 1 }, 10882 { NULL } 10883 }; 10884 10885 static const struct field_desc tp_la1[] = { 10886 { "CplCmdIn", 56, 8 }, 10887 { "CplCmdOut", 48, 8 }, 10888 { "ESynOut", 47, 1 }, 10889 { "EAckOut", 46, 1 }, 10890 { "EFinOut", 45, 1 }, 10891 { "ERstOut", 44, 1 }, 10892 { "SynIn", 43, 1 }, 10893 { "AckIn", 42, 1 }, 10894 { "FinIn", 41, 1 }, 10895 { "RstIn", 40, 1 }, 10896 { "DataIn", 39, 1 }, 10897 { "DataInVld", 38, 1 }, 10898 { "PadIn", 37, 1 }, 10899 { "RxBufEmpty", 36, 1 }, 10900 { "RxDdp", 35, 1 }, 10901 { "RxFbCongestion", 34, 1 }, 10902 { "TxFbCongestion", 33, 1 }, 10903 { "TxPktSumSrdy", 32, 1 }, 10904 { "RcfUlpType", 28, 4 }, 10905 { "Eread", 27, 1 }, 10906 { "Ebypass", 26, 1 }, 10907 { "Esave", 25, 1 }, 10908 { "Static0", 24, 1 }, 10909 { "Cread", 23, 1 }, 10910 { "Cbypass", 22, 1 }, 10911 { "Csave", 21, 1 }, 10912 { "CPktOut", 20, 1 }, 10913 { "RxPagePoolFull", 18, 2 }, 10914 { "RxLpbkPkt", 17, 1 }, 10915 { "TxLpbkPkt", 16, 1 }, 10916 { "RxVfValid", 15, 1 }, 10917 { "SynLearned", 14, 1 }, 10918 { "SetDelEntry", 13, 1 }, 10919 { "SetInvEntry", 12, 1 }, 10920 { "CpcmdDvld", 11, 1 }, 10921 { "CpcmdSave", 10, 1 }, 10922 { "RxPstructsFull", 8, 2 }, 10923 { "EpcmdDvld", 7, 1 }, 10924 { "EpcmdFlush", 6, 1 }, 10925 { "EpcmdTrimPrefix", 5, 1 }, 10926 { "EpcmdTrimPostfix", 4, 1 }, 10927 { "ERssIp4Pkt", 3, 1 }, 10928 { "ERssIp6Pkt", 2, 1 }, 10929 { "ERssTcpUdpPkt", 1, 1 }, 10930 { "ERssFceFipPkt", 0, 1 }, 10931 { NULL } 10932 }; 10933 10934 static const struct field_desc tp_la2[] = { 10935 { "CplCmdIn", 56, 8 }, 10936 { "MpsVfVld", 55, 1 }, 10937 { "MpsPf", 52, 3 }, 10938 { "MpsVf", 44, 8 }, 10939 { "SynIn", 43, 1 }, 10940 { "AckIn", 42, 1 }, 10941 { "FinIn", 41, 1 }, 10942 { "RstIn", 40, 1 }, 10943 { "DataIn", 39, 1 }, 10944 { "DataInVld", 38, 1 }, 10945 { "PadIn", 37, 1 }, 10946 { "RxBufEmpty", 36, 1 }, 10947 { "RxDdp", 35, 1 }, 10948 { "RxFbCongestion", 34, 1 }, 10949 { "TxFbCongestion", 33, 1 }, 10950 { "TxPktSumSrdy", 32, 1 }, 10951 { "RcfUlpType", 28, 4 }, 10952 { "Eread", 27, 1 }, 10953 { "Ebypass", 26, 1 }, 10954 { "Esave", 25, 1 }, 10955 { "Static0", 24, 1 }, 10956 { "Cread", 23, 1 }, 10957 { "Cbypass", 22, 1 }, 10958 { "Csave", 21, 1 }, 10959 { "CPktOut", 20, 1 }, 10960 { "RxPagePoolFull", 18, 2 }, 10961 { "RxLpbkPkt", 17, 1 }, 10962 { "TxLpbkPkt", 16, 1 }, 10963 { "RxVfValid", 15, 1 }, 10964 { "SynLearned", 14, 1 }, 10965 { "SetDelEntry", 13, 1 }, 10966 { "SetInvEntry", 12, 1 }, 10967 { "CpcmdDvld", 11, 1 }, 10968 { "CpcmdSave", 10, 1 }, 10969 { "RxPstructsFull", 8, 2 }, 10970 { "EpcmdDvld", 7, 1 }, 10971 { "EpcmdFlush", 6, 1 }, 10972 { "EpcmdTrimPrefix", 5, 1 }, 10973 { "EpcmdTrimPostfix", 4, 1 }, 10974 { "ERssIp4Pkt", 3, 1 }, 10975 { "ERssIp6Pkt", 2, 1 }, 10976 { "ERssTcpUdpPkt", 1, 1 }, 10977 { "ERssFceFipPkt", 0, 1 }, 10978 { NULL } 10979 }; 10980 10981 static void 10982 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10983 { 10984 10985 field_desc_show(sb, *p, tp_la0); 10986 } 10987 10988 static void 10989 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10990 { 10991 10992 if (idx) 10993 sbuf_printf(sb, "\n"); 10994 field_desc_show(sb, p[0], tp_la0); 10995 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10996 field_desc_show(sb, p[1], tp_la0); 10997 } 10998 10999 static void 11000 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11001 { 11002 11003 if (idx) 11004 sbuf_printf(sb, "\n"); 11005 field_desc_show(sb, p[0], tp_la0); 11006 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11007 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11008 } 11009 11010 static int 11011 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11012 { 11013 struct adapter *sc = arg1; 11014 struct sbuf *sb; 11015 uint64_t *buf, *p; 11016 int rc; 11017 u_int i, inc; 11018 void (*show_func)(struct sbuf *, uint64_t *, int); 11019 11020 rc = 0; 11021 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11022 if (sb == NULL) 11023 return (ENOMEM); 11024 11025 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11026 11027 mtx_lock(&sc->reg_lock); 11028 if (hw_off_limits(sc)) 11029 rc = ENXIO; 11030 else { 11031 t4_tp_read_la(sc, buf, NULL); 11032 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11033 case 2: 11034 inc = 2; 11035 show_func = tp_la_show2; 11036 break; 11037 case 3: 11038 inc = 2; 11039 show_func = tp_la_show3; 11040 break; 11041 default: 11042 inc = 1; 11043 show_func = tp_la_show; 11044 } 11045 } 11046 mtx_unlock(&sc->reg_lock); 11047 if (rc != 0) 11048 goto done; 11049 11050 p = buf; 11051 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11052 (*show_func)(sb, p, i); 11053 rc = sbuf_finish(sb); 11054 done: 11055 sbuf_delete(sb); 11056 free(buf, M_CXGBE); 11057 return (rc); 11058 } 11059 11060 static int 11061 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11062 { 11063 struct adapter *sc = arg1; 11064 struct sbuf *sb; 11065 int rc; 11066 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11067 11068 rc = 0; 11069 mtx_lock(&sc->reg_lock); 11070 if (hw_off_limits(sc)) 11071 rc = ENXIO; 11072 else 11073 t4_get_chan_txrate(sc, nrate, orate); 11074 mtx_unlock(&sc->reg_lock); 11075 if (rc != 0) 11076 return (rc); 11077 11078 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11079 if (sb == NULL) 11080 return (ENOMEM); 11081 11082 if (sc->chip_params->nchan > 2) { 11083 sbuf_printf(sb, " channel 0 channel 1" 11084 " channel 2 channel 3\n"); 11085 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11086 nrate[0], nrate[1], nrate[2], nrate[3]); 11087 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11088 orate[0], orate[1], orate[2], orate[3]); 11089 } else { 11090 sbuf_printf(sb, " channel 0 channel 1\n"); 11091 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11092 nrate[0], nrate[1]); 11093 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11094 orate[0], orate[1]); 11095 } 11096 11097 rc = sbuf_finish(sb); 11098 sbuf_delete(sb); 11099 11100 return (rc); 11101 } 11102 11103 static int 11104 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11105 { 11106 struct adapter *sc = arg1; 11107 struct sbuf *sb; 11108 uint32_t *buf, *p; 11109 int rc, i; 11110 11111 rc = 0; 11112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11113 if (sb == NULL) 11114 return (ENOMEM); 11115 11116 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11117 M_ZERO | M_WAITOK); 11118 11119 mtx_lock(&sc->reg_lock); 11120 if (hw_off_limits(sc)) 11121 rc = ENXIO; 11122 else 11123 t4_ulprx_read_la(sc, buf); 11124 mtx_unlock(&sc->reg_lock); 11125 if (rc != 0) 11126 goto done; 11127 11128 p = buf; 11129 sbuf_printf(sb, " Pcmd Type Message" 11130 " Data"); 11131 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11132 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11133 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11134 } 11135 rc = sbuf_finish(sb); 11136 done: 11137 sbuf_delete(sb); 11138 free(buf, M_CXGBE); 11139 return (rc); 11140 } 11141 11142 static int 11143 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11144 { 11145 struct adapter *sc = arg1; 11146 struct sbuf *sb; 11147 int rc; 11148 uint32_t cfg, s1, s2; 11149 11150 MPASS(chip_id(sc) >= CHELSIO_T5); 11151 11152 rc = 0; 11153 mtx_lock(&sc->reg_lock); 11154 if (hw_off_limits(sc)) 11155 rc = ENXIO; 11156 else { 11157 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11158 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11159 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11160 } 11161 mtx_unlock(&sc->reg_lock); 11162 if (rc != 0) 11163 return (rc); 11164 11165 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11166 if (sb == NULL) 11167 return (ENOMEM); 11168 11169 if (G_STATSOURCE_T5(cfg) == 7) { 11170 int mode; 11171 11172 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11173 if (mode == 0) 11174 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11175 else if (mode == 1) 11176 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11177 else 11178 sbuf_printf(sb, "unknown mode %d", mode); 11179 } 11180 rc = sbuf_finish(sb); 11181 sbuf_delete(sb); 11182 11183 return (rc); 11184 } 11185 11186 static int 11187 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11188 { 11189 struct adapter *sc = arg1; 11190 enum cpu_sets op = arg2; 11191 cpuset_t cpuset; 11192 struct sbuf *sb; 11193 int i, rc; 11194 11195 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11196 11197 CPU_ZERO(&cpuset); 11198 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11199 if (rc != 0) 11200 return (rc); 11201 11202 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11203 if (sb == NULL) 11204 return (ENOMEM); 11205 11206 CPU_FOREACH(i) 11207 sbuf_printf(sb, "%d ", i); 11208 rc = sbuf_finish(sb); 11209 sbuf_delete(sb); 11210 11211 return (rc); 11212 } 11213 11214 static int 11215 sysctl_reset(SYSCTL_HANDLER_ARGS) 11216 { 11217 struct adapter *sc = arg1; 11218 u_int val; 11219 int rc; 11220 11221 val = atomic_load_int(&sc->num_resets); 11222 rc = sysctl_handle_int(oidp, &val, 0, req); 11223 if (rc != 0 || req->newptr == NULL) 11224 return (rc); 11225 11226 if (val == 0) { 11227 /* Zero out the counter that tracks reset. */ 11228 atomic_store_int(&sc->num_resets, 0); 11229 return (0); 11230 } 11231 11232 if (val != 1) 11233 return (EINVAL); /* 0 or 1 are the only legal values */ 11234 11235 if (hw_off_limits(sc)) /* harmless race */ 11236 return (EALREADY); 11237 11238 taskqueue_enqueue(reset_tq, &sc->reset_task); 11239 return (0); 11240 } 11241 11242 #ifdef TCP_OFFLOAD 11243 static int 11244 sysctl_tls(SYSCTL_HANDLER_ARGS) 11245 { 11246 struct adapter *sc = arg1; 11247 int i, j, v, rc; 11248 struct vi_info *vi; 11249 11250 v = sc->tt.tls; 11251 rc = sysctl_handle_int(oidp, &v, 0, req); 11252 if (rc != 0 || req->newptr == NULL) 11253 return (rc); 11254 11255 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11256 return (ENOTSUP); 11257 11258 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11259 if (rc) 11260 return (rc); 11261 if (hw_off_limits(sc)) 11262 rc = ENXIO; 11263 else { 11264 sc->tt.tls = !!v; 11265 for_each_port(sc, i) { 11266 for_each_vi(sc->port[i], j, vi) { 11267 if (vi->flags & VI_INIT_DONE) 11268 t4_update_fl_bufsize(vi->ifp); 11269 } 11270 } 11271 } 11272 end_synchronized_op(sc, 0); 11273 11274 return (rc); 11275 11276 } 11277 11278 static void 11279 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11280 { 11281 u_int rem = val % factor; 11282 11283 if (rem == 0) 11284 snprintf(buf, len, "%u", val / factor); 11285 else { 11286 while (rem % 10 == 0) 11287 rem /= 10; 11288 snprintf(buf, len, "%u.%u", val / factor, rem); 11289 } 11290 } 11291 11292 static int 11293 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11294 { 11295 struct adapter *sc = arg1; 11296 char buf[16]; 11297 u_int res, re; 11298 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11299 11300 mtx_lock(&sc->reg_lock); 11301 if (hw_off_limits(sc)) 11302 res = (u_int)-1; 11303 else 11304 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11305 mtx_unlock(&sc->reg_lock); 11306 if (res == (u_int)-1) 11307 return (ENXIO); 11308 11309 switch (arg2) { 11310 case 0: 11311 /* timer_tick */ 11312 re = G_TIMERRESOLUTION(res); 11313 break; 11314 case 1: 11315 /* TCP timestamp tick */ 11316 re = G_TIMESTAMPRESOLUTION(res); 11317 break; 11318 case 2: 11319 /* DACK tick */ 11320 re = G_DELAYEDACKRESOLUTION(res); 11321 break; 11322 default: 11323 return (EDOOFUS); 11324 } 11325 11326 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11327 11328 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11329 } 11330 11331 static int 11332 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11333 { 11334 struct adapter *sc = arg1; 11335 int rc; 11336 u_int dack_tmr, dack_re, v; 11337 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11338 11339 mtx_lock(&sc->reg_lock); 11340 if (hw_off_limits(sc)) 11341 rc = ENXIO; 11342 else { 11343 rc = 0; 11344 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11345 A_TP_TIMER_RESOLUTION)); 11346 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11347 } 11348 mtx_unlock(&sc->reg_lock); 11349 if (rc != 0) 11350 return (rc); 11351 11352 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11353 11354 return (sysctl_handle_int(oidp, &v, 0, req)); 11355 } 11356 11357 static int 11358 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11359 { 11360 struct adapter *sc = arg1; 11361 int rc, reg = arg2; 11362 u_int tre; 11363 u_long tp_tick_us, v; 11364 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11365 11366 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11367 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11368 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11369 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11370 11371 mtx_lock(&sc->reg_lock); 11372 if (hw_off_limits(sc)) 11373 rc = ENXIO; 11374 else { 11375 rc = 0; 11376 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11377 tp_tick_us = (cclk_ps << tre) / 1000000; 11378 if (reg == A_TP_INIT_SRTT) 11379 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11380 else 11381 v = tp_tick_us * t4_read_reg(sc, reg); 11382 } 11383 mtx_unlock(&sc->reg_lock); 11384 if (rc != 0) 11385 return (rc); 11386 else 11387 return (sysctl_handle_long(oidp, &v, 0, req)); 11388 } 11389 11390 /* 11391 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11392 * passed to this function. 11393 */ 11394 static int 11395 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11396 { 11397 struct adapter *sc = arg1; 11398 int rc, idx = arg2; 11399 u_int v; 11400 11401 MPASS(idx >= 0 && idx <= 24); 11402 11403 mtx_lock(&sc->reg_lock); 11404 if (hw_off_limits(sc)) 11405 rc = ENXIO; 11406 else { 11407 rc = 0; 11408 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11409 } 11410 mtx_unlock(&sc->reg_lock); 11411 if (rc != 0) 11412 return (rc); 11413 else 11414 return (sysctl_handle_int(oidp, &v, 0, req)); 11415 } 11416 11417 static int 11418 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11419 { 11420 struct adapter *sc = arg1; 11421 int rc, idx = arg2; 11422 u_int shift, v, r; 11423 11424 MPASS(idx >= 0 && idx < 16); 11425 11426 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11427 shift = (idx & 3) << 3; 11428 mtx_lock(&sc->reg_lock); 11429 if (hw_off_limits(sc)) 11430 rc = ENXIO; 11431 else { 11432 rc = 0; 11433 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11434 } 11435 mtx_unlock(&sc->reg_lock); 11436 if (rc != 0) 11437 return (rc); 11438 else 11439 return (sysctl_handle_int(oidp, &v, 0, req)); 11440 } 11441 11442 static int 11443 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11444 { 11445 struct vi_info *vi = arg1; 11446 struct adapter *sc = vi->adapter; 11447 int idx, rc, i; 11448 struct sge_ofld_rxq *ofld_rxq; 11449 uint8_t v; 11450 11451 idx = vi->ofld_tmr_idx; 11452 11453 rc = sysctl_handle_int(oidp, &idx, 0, req); 11454 if (rc != 0 || req->newptr == NULL) 11455 return (rc); 11456 11457 if (idx < 0 || idx >= SGE_NTIMERS) 11458 return (EINVAL); 11459 11460 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11461 "t4otmr"); 11462 if (rc) 11463 return (rc); 11464 11465 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11466 for_each_ofld_rxq(vi, i, ofld_rxq) { 11467 #ifdef atomic_store_rel_8 11468 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11469 #else 11470 ofld_rxq->iq.intr_params = v; 11471 #endif 11472 } 11473 vi->ofld_tmr_idx = idx; 11474 11475 end_synchronized_op(sc, LOCK_HELD); 11476 return (0); 11477 } 11478 11479 static int 11480 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11481 { 11482 struct vi_info *vi = arg1; 11483 struct adapter *sc = vi->adapter; 11484 int idx, rc; 11485 11486 idx = vi->ofld_pktc_idx; 11487 11488 rc = sysctl_handle_int(oidp, &idx, 0, req); 11489 if (rc != 0 || req->newptr == NULL) 11490 return (rc); 11491 11492 if (idx < -1 || idx >= SGE_NCOUNTERS) 11493 return (EINVAL); 11494 11495 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11496 "t4opktc"); 11497 if (rc) 11498 return (rc); 11499 11500 if (vi->flags & VI_INIT_DONE) 11501 rc = EBUSY; /* cannot be changed once the queues are created */ 11502 else 11503 vi->ofld_pktc_idx = idx; 11504 11505 end_synchronized_op(sc, LOCK_HELD); 11506 return (rc); 11507 } 11508 #endif 11509 11510 static int 11511 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11512 { 11513 int rc; 11514 11515 if (cntxt->cid > M_CTXTQID) 11516 return (EINVAL); 11517 11518 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11519 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11520 return (EINVAL); 11521 11522 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11523 if (rc) 11524 return (rc); 11525 11526 if (hw_off_limits(sc)) { 11527 rc = ENXIO; 11528 goto done; 11529 } 11530 11531 if (sc->flags & FW_OK) { 11532 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11533 &cntxt->data[0]); 11534 if (rc == 0) 11535 goto done; 11536 } 11537 11538 /* 11539 * Read via firmware failed or wasn't even attempted. Read directly via 11540 * the backdoor. 11541 */ 11542 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11543 done: 11544 end_synchronized_op(sc, 0); 11545 return (rc); 11546 } 11547 11548 static int 11549 load_fw(struct adapter *sc, struct t4_data *fw) 11550 { 11551 int rc; 11552 uint8_t *fw_data; 11553 11554 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11555 if (rc) 11556 return (rc); 11557 11558 if (hw_off_limits(sc)) { 11559 rc = ENXIO; 11560 goto done; 11561 } 11562 11563 /* 11564 * The firmware, with the sole exception of the memory parity error 11565 * handler, runs from memory and not flash. It is almost always safe to 11566 * install a new firmware on a running system. Just set bit 1 in 11567 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11568 */ 11569 if (sc->flags & FULL_INIT_DONE && 11570 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11571 rc = EBUSY; 11572 goto done; 11573 } 11574 11575 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11576 11577 rc = copyin(fw->data, fw_data, fw->len); 11578 if (rc == 0) 11579 rc = -t4_load_fw(sc, fw_data, fw->len); 11580 11581 free(fw_data, M_CXGBE); 11582 done: 11583 end_synchronized_op(sc, 0); 11584 return (rc); 11585 } 11586 11587 static int 11588 load_cfg(struct adapter *sc, struct t4_data *cfg) 11589 { 11590 int rc; 11591 uint8_t *cfg_data = NULL; 11592 11593 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11594 if (rc) 11595 return (rc); 11596 11597 if (hw_off_limits(sc)) { 11598 rc = ENXIO; 11599 goto done; 11600 } 11601 11602 if (cfg->len == 0) { 11603 /* clear */ 11604 rc = -t4_load_cfg(sc, NULL, 0); 11605 goto done; 11606 } 11607 11608 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11609 11610 rc = copyin(cfg->data, cfg_data, cfg->len); 11611 if (rc == 0) 11612 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11613 11614 free(cfg_data, M_CXGBE); 11615 done: 11616 end_synchronized_op(sc, 0); 11617 return (rc); 11618 } 11619 11620 static int 11621 load_boot(struct adapter *sc, struct t4_bootrom *br) 11622 { 11623 int rc; 11624 uint8_t *br_data = NULL; 11625 u_int offset; 11626 11627 if (br->len > 1024 * 1024) 11628 return (EFBIG); 11629 11630 if (br->pf_offset == 0) { 11631 /* pfidx */ 11632 if (br->pfidx_addr > 7) 11633 return (EINVAL); 11634 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11635 A_PCIE_PF_EXPROM_OFST))); 11636 } else if (br->pf_offset == 1) { 11637 /* offset */ 11638 offset = G_OFFSET(br->pfidx_addr); 11639 } else { 11640 return (EINVAL); 11641 } 11642 11643 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11644 if (rc) 11645 return (rc); 11646 11647 if (hw_off_limits(sc)) { 11648 rc = ENXIO; 11649 goto done; 11650 } 11651 11652 if (br->len == 0) { 11653 /* clear */ 11654 rc = -t4_load_boot(sc, NULL, offset, 0); 11655 goto done; 11656 } 11657 11658 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11659 11660 rc = copyin(br->data, br_data, br->len); 11661 if (rc == 0) 11662 rc = -t4_load_boot(sc, br_data, offset, br->len); 11663 11664 free(br_data, M_CXGBE); 11665 done: 11666 end_synchronized_op(sc, 0); 11667 return (rc); 11668 } 11669 11670 static int 11671 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11672 { 11673 int rc; 11674 uint8_t *bc_data = NULL; 11675 11676 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11677 if (rc) 11678 return (rc); 11679 11680 if (hw_off_limits(sc)) { 11681 rc = ENXIO; 11682 goto done; 11683 } 11684 11685 if (bc->len == 0) { 11686 /* clear */ 11687 rc = -t4_load_bootcfg(sc, NULL, 0); 11688 goto done; 11689 } 11690 11691 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11692 11693 rc = copyin(bc->data, bc_data, bc->len); 11694 if (rc == 0) 11695 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11696 11697 free(bc_data, M_CXGBE); 11698 done: 11699 end_synchronized_op(sc, 0); 11700 return (rc); 11701 } 11702 11703 static int 11704 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11705 { 11706 int rc; 11707 struct cudbg_init *cudbg; 11708 void *handle, *buf; 11709 11710 /* buf is large, don't block if no memory is available */ 11711 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11712 if (buf == NULL) 11713 return (ENOMEM); 11714 11715 handle = cudbg_alloc_handle(); 11716 if (handle == NULL) { 11717 rc = ENOMEM; 11718 goto done; 11719 } 11720 11721 cudbg = cudbg_get_init(handle); 11722 cudbg->adap = sc; 11723 cudbg->print = (cudbg_print_cb)printf; 11724 11725 #ifndef notyet 11726 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11727 __func__, dump->wr_flash, dump->len, dump->data); 11728 #endif 11729 11730 if (dump->wr_flash) 11731 cudbg->use_flash = 1; 11732 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11733 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11734 11735 rc = cudbg_collect(handle, buf, &dump->len); 11736 if (rc != 0) 11737 goto done; 11738 11739 rc = copyout(buf, dump->data, dump->len); 11740 done: 11741 cudbg_free_handle(handle); 11742 free(buf, M_CXGBE); 11743 return (rc); 11744 } 11745 11746 static void 11747 free_offload_policy(struct t4_offload_policy *op) 11748 { 11749 struct offload_rule *r; 11750 int i; 11751 11752 if (op == NULL) 11753 return; 11754 11755 r = &op->rule[0]; 11756 for (i = 0; i < op->nrules; i++, r++) { 11757 free(r->bpf_prog.bf_insns, M_CXGBE); 11758 } 11759 free(op->rule, M_CXGBE); 11760 free(op, M_CXGBE); 11761 } 11762 11763 static int 11764 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11765 { 11766 int i, rc, len; 11767 struct t4_offload_policy *op, *old; 11768 struct bpf_program *bf; 11769 const struct offload_settings *s; 11770 struct offload_rule *r; 11771 void *u; 11772 11773 if (!is_offload(sc)) 11774 return (ENODEV); 11775 11776 if (uop->nrules == 0) { 11777 /* Delete installed policies. */ 11778 op = NULL; 11779 goto set_policy; 11780 } else if (uop->nrules > 256) { /* arbitrary */ 11781 return (E2BIG); 11782 } 11783 11784 /* Copy userspace offload policy to kernel */ 11785 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11786 op->nrules = uop->nrules; 11787 len = op->nrules * sizeof(struct offload_rule); 11788 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11789 rc = copyin(uop->rule, op->rule, len); 11790 if (rc) { 11791 free(op->rule, M_CXGBE); 11792 free(op, M_CXGBE); 11793 return (rc); 11794 } 11795 11796 r = &op->rule[0]; 11797 for (i = 0; i < op->nrules; i++, r++) { 11798 11799 /* Validate open_type */ 11800 if (r->open_type != OPEN_TYPE_LISTEN && 11801 r->open_type != OPEN_TYPE_ACTIVE && 11802 r->open_type != OPEN_TYPE_PASSIVE && 11803 r->open_type != OPEN_TYPE_DONTCARE) { 11804 error: 11805 /* 11806 * Rules 0 to i have malloc'd filters that need to be 11807 * freed. Rules i+1 to nrules have userspace pointers 11808 * and should be left alone. 11809 */ 11810 op->nrules = i; 11811 free_offload_policy(op); 11812 return (rc); 11813 } 11814 11815 /* Validate settings */ 11816 s = &r->settings; 11817 if ((s->offload != 0 && s->offload != 1) || 11818 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11819 s->sched_class < -1 || 11820 s->sched_class >= sc->params.nsched_cls) { 11821 rc = EINVAL; 11822 goto error; 11823 } 11824 11825 bf = &r->bpf_prog; 11826 u = bf->bf_insns; /* userspace ptr */ 11827 bf->bf_insns = NULL; 11828 if (bf->bf_len == 0) { 11829 /* legal, matches everything */ 11830 continue; 11831 } 11832 len = bf->bf_len * sizeof(*bf->bf_insns); 11833 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11834 rc = copyin(u, bf->bf_insns, len); 11835 if (rc != 0) 11836 goto error; 11837 11838 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11839 rc = EINVAL; 11840 goto error; 11841 } 11842 } 11843 set_policy: 11844 rw_wlock(&sc->policy_lock); 11845 old = sc->policy; 11846 sc->policy = op; 11847 rw_wunlock(&sc->policy_lock); 11848 free_offload_policy(old); 11849 11850 return (0); 11851 } 11852 11853 #define MAX_READ_BUF_SIZE (128 * 1024) 11854 static int 11855 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11856 { 11857 uint32_t addr, remaining, n; 11858 uint32_t *buf; 11859 int rc; 11860 uint8_t *dst; 11861 11862 mtx_lock(&sc->reg_lock); 11863 if (hw_off_limits(sc)) 11864 rc = ENXIO; 11865 else 11866 rc = validate_mem_range(sc, mr->addr, mr->len); 11867 mtx_unlock(&sc->reg_lock); 11868 if (rc != 0) 11869 return (rc); 11870 11871 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11872 addr = mr->addr; 11873 remaining = mr->len; 11874 dst = (void *)mr->data; 11875 11876 while (remaining) { 11877 n = min(remaining, MAX_READ_BUF_SIZE); 11878 mtx_lock(&sc->reg_lock); 11879 if (hw_off_limits(sc)) 11880 rc = ENXIO; 11881 else 11882 read_via_memwin(sc, 2, addr, buf, n); 11883 mtx_unlock(&sc->reg_lock); 11884 if (rc != 0) 11885 break; 11886 11887 rc = copyout(buf, dst, n); 11888 if (rc != 0) 11889 break; 11890 11891 dst += n; 11892 remaining -= n; 11893 addr += n; 11894 } 11895 11896 free(buf, M_CXGBE); 11897 return (rc); 11898 } 11899 #undef MAX_READ_BUF_SIZE 11900 11901 static int 11902 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11903 { 11904 int rc; 11905 11906 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11907 return (EINVAL); 11908 11909 if (i2cd->len > sizeof(i2cd->data)) 11910 return (EFBIG); 11911 11912 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11913 if (rc) 11914 return (rc); 11915 if (hw_off_limits(sc)) 11916 rc = ENXIO; 11917 else 11918 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11919 i2cd->offset, i2cd->len, &i2cd->data[0]); 11920 end_synchronized_op(sc, 0); 11921 11922 return (rc); 11923 } 11924 11925 static int 11926 clear_stats(struct adapter *sc, u_int port_id) 11927 { 11928 int i, v, chan_map; 11929 struct port_info *pi; 11930 struct vi_info *vi; 11931 struct sge_rxq *rxq; 11932 struct sge_txq *txq; 11933 struct sge_wrq *wrq; 11934 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11935 struct sge_ofld_txq *ofld_txq; 11936 #endif 11937 #ifdef TCP_OFFLOAD 11938 struct sge_ofld_rxq *ofld_rxq; 11939 #endif 11940 11941 if (port_id >= sc->params.nports) 11942 return (EINVAL); 11943 pi = sc->port[port_id]; 11944 if (pi == NULL) 11945 return (EIO); 11946 11947 mtx_lock(&sc->reg_lock); 11948 if (!hw_off_limits(sc)) { 11949 /* MAC stats */ 11950 t4_clr_port_stats(sc, pi->tx_chan); 11951 if (is_t6(sc)) { 11952 if (pi->fcs_reg != -1) 11953 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11954 else 11955 pi->stats.rx_fcs_err = 0; 11956 } 11957 for_each_vi(pi, v, vi) { 11958 if (vi->flags & VI_INIT_DONE) 11959 t4_clr_vi_stats(sc, vi->vin); 11960 } 11961 chan_map = pi->rx_e_chan_map; 11962 v = 0; /* reuse */ 11963 while (chan_map) { 11964 i = ffs(chan_map) - 1; 11965 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11966 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11967 chan_map &= ~(1 << i); 11968 } 11969 } 11970 mtx_unlock(&sc->reg_lock); 11971 pi->tx_parse_error = 0; 11972 pi->tnl_cong_drops = 0; 11973 11974 /* 11975 * Since this command accepts a port, clear stats for 11976 * all VIs on this port. 11977 */ 11978 for_each_vi(pi, v, vi) { 11979 if (vi->flags & VI_INIT_DONE) { 11980 11981 for_each_rxq(vi, i, rxq) { 11982 #if defined(INET) || defined(INET6) 11983 rxq->lro.lro_queued = 0; 11984 rxq->lro.lro_flushed = 0; 11985 #endif 11986 rxq->rxcsum = 0; 11987 rxq->vlan_extraction = 0; 11988 rxq->vxlan_rxcsum = 0; 11989 11990 rxq->fl.cl_allocated = 0; 11991 rxq->fl.cl_recycled = 0; 11992 rxq->fl.cl_fast_recycled = 0; 11993 } 11994 11995 for_each_txq(vi, i, txq) { 11996 txq->txcsum = 0; 11997 txq->tso_wrs = 0; 11998 txq->vlan_insertion = 0; 11999 txq->imm_wrs = 0; 12000 txq->sgl_wrs = 0; 12001 txq->txpkt_wrs = 0; 12002 txq->txpkts0_wrs = 0; 12003 txq->txpkts1_wrs = 0; 12004 txq->txpkts0_pkts = 0; 12005 txq->txpkts1_pkts = 0; 12006 txq->txpkts_flush = 0; 12007 txq->raw_wrs = 0; 12008 txq->vxlan_tso_wrs = 0; 12009 txq->vxlan_txcsum = 0; 12010 txq->kern_tls_records = 0; 12011 txq->kern_tls_short = 0; 12012 txq->kern_tls_partial = 0; 12013 txq->kern_tls_full = 0; 12014 txq->kern_tls_octets = 0; 12015 txq->kern_tls_waste = 0; 12016 txq->kern_tls_options = 0; 12017 txq->kern_tls_header = 0; 12018 txq->kern_tls_fin = 0; 12019 txq->kern_tls_fin_short = 0; 12020 txq->kern_tls_cbc = 0; 12021 txq->kern_tls_gcm = 0; 12022 mp_ring_reset_stats(txq->r); 12023 } 12024 12025 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12026 for_each_ofld_txq(vi, i, ofld_txq) { 12027 ofld_txq->wrq.tx_wrs_direct = 0; 12028 ofld_txq->wrq.tx_wrs_copied = 0; 12029 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12030 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12031 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12032 counter_u64_zero(ofld_txq->tx_aio_jobs); 12033 counter_u64_zero(ofld_txq->tx_aio_octets); 12034 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12035 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12036 } 12037 #endif 12038 #ifdef TCP_OFFLOAD 12039 for_each_ofld_rxq(vi, i, ofld_rxq) { 12040 ofld_rxq->fl.cl_allocated = 0; 12041 ofld_rxq->fl.cl_recycled = 0; 12042 ofld_rxq->fl.cl_fast_recycled = 0; 12043 counter_u64_zero( 12044 ofld_rxq->rx_iscsi_ddp_setup_ok); 12045 counter_u64_zero( 12046 ofld_rxq->rx_iscsi_ddp_setup_error); 12047 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12048 ofld_rxq->rx_iscsi_ddp_octets = 0; 12049 ofld_rxq->rx_iscsi_fl_pdus = 0; 12050 ofld_rxq->rx_iscsi_fl_octets = 0; 12051 ofld_rxq->rx_aio_ddp_jobs = 0; 12052 ofld_rxq->rx_aio_ddp_octets = 0; 12053 ofld_rxq->rx_toe_tls_records = 0; 12054 ofld_rxq->rx_toe_tls_octets = 0; 12055 ofld_rxq->rx_toe_ddp_octets = 0; 12056 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12057 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12058 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12059 } 12060 #endif 12061 12062 if (IS_MAIN_VI(vi)) { 12063 wrq = &sc->sge.ctrlq[pi->port_id]; 12064 wrq->tx_wrs_direct = 0; 12065 wrq->tx_wrs_copied = 0; 12066 } 12067 } 12068 } 12069 12070 return (0); 12071 } 12072 12073 static int 12074 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12075 { 12076 #ifdef INET6 12077 struct in6_addr in6; 12078 12079 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12080 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12081 return (0); 12082 else 12083 return (EIO); 12084 #else 12085 return (ENOTSUP); 12086 #endif 12087 } 12088 12089 static int 12090 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12091 { 12092 #ifdef INET6 12093 struct in6_addr in6; 12094 12095 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12096 return (t4_release_clip_addr(sc, &in6)); 12097 #else 12098 return (ENOTSUP); 12099 #endif 12100 } 12101 12102 int 12103 t4_os_find_pci_capability(struct adapter *sc, int cap) 12104 { 12105 int i; 12106 12107 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12108 } 12109 12110 int 12111 t4_os_pci_save_state(struct adapter *sc) 12112 { 12113 device_t dev; 12114 struct pci_devinfo *dinfo; 12115 12116 dev = sc->dev; 12117 dinfo = device_get_ivars(dev); 12118 12119 pci_cfg_save(dev, dinfo, 0); 12120 return (0); 12121 } 12122 12123 int 12124 t4_os_pci_restore_state(struct adapter *sc) 12125 { 12126 device_t dev; 12127 struct pci_devinfo *dinfo; 12128 12129 dev = sc->dev; 12130 dinfo = device_get_ivars(dev); 12131 12132 pci_cfg_restore(dev, dinfo); 12133 return (0); 12134 } 12135 12136 void 12137 t4_os_portmod_changed(struct port_info *pi) 12138 { 12139 struct adapter *sc = pi->adapter; 12140 struct vi_info *vi; 12141 if_t ifp; 12142 static const char *mod_str[] = { 12143 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12144 }; 12145 12146 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12147 ("%s: port_type %u", __func__, pi->port_type)); 12148 12149 vi = &pi->vi[0]; 12150 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12151 PORT_LOCK(pi); 12152 build_medialist(pi); 12153 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12154 fixup_link_config(pi); 12155 apply_link_config(pi); 12156 } 12157 PORT_UNLOCK(pi); 12158 end_synchronized_op(sc, LOCK_HELD); 12159 } 12160 12161 ifp = vi->ifp; 12162 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12163 if_printf(ifp, "transceiver unplugged.\n"); 12164 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12165 if_printf(ifp, "unknown transceiver inserted.\n"); 12166 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12167 if_printf(ifp, "unsupported transceiver inserted.\n"); 12168 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12169 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12170 port_top_speed(pi), mod_str[pi->mod_type]); 12171 } else { 12172 if_printf(ifp, "transceiver (type %d) inserted.\n", 12173 pi->mod_type); 12174 } 12175 } 12176 12177 void 12178 t4_os_link_changed(struct port_info *pi) 12179 { 12180 struct vi_info *vi; 12181 if_t ifp; 12182 struct link_config *lc = &pi->link_cfg; 12183 struct adapter *sc = pi->adapter; 12184 int v; 12185 12186 PORT_LOCK_ASSERT_OWNED(pi); 12187 12188 if (is_t6(sc)) { 12189 if (lc->link_ok) { 12190 if (lc->speed > 25000 || 12191 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12192 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12193 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12194 } else { 12195 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12196 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12197 } 12198 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12199 pi->stats.rx_fcs_err = 0; 12200 } else { 12201 pi->fcs_reg = -1; 12202 } 12203 } else { 12204 MPASS(pi->fcs_reg != -1); 12205 MPASS(pi->fcs_base == 0); 12206 } 12207 12208 for_each_vi(pi, v, vi) { 12209 ifp = vi->ifp; 12210 if (ifp == NULL || IS_DETACHING(vi)) 12211 continue; 12212 12213 if (lc->link_ok) { 12214 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12215 if_link_state_change(ifp, LINK_STATE_UP); 12216 } else { 12217 if_link_state_change(ifp, LINK_STATE_DOWN); 12218 } 12219 } 12220 } 12221 12222 void 12223 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12224 { 12225 struct adapter *sc; 12226 12227 sx_slock(&t4_list_lock); 12228 SLIST_FOREACH(sc, &t4_list, link) { 12229 /* 12230 * func should not make any assumptions about what state sc is 12231 * in - the only guarantee is that sc->sc_lock is a valid lock. 12232 */ 12233 func(sc, arg); 12234 } 12235 sx_sunlock(&t4_list_lock); 12236 } 12237 12238 static int 12239 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12240 struct thread *td) 12241 { 12242 int rc; 12243 struct adapter *sc = dev->si_drv1; 12244 12245 rc = priv_check(td, PRIV_DRIVER); 12246 if (rc != 0) 12247 return (rc); 12248 12249 switch (cmd) { 12250 case CHELSIO_T4_GETREG: { 12251 struct t4_reg *edata = (struct t4_reg *)data; 12252 12253 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12254 return (EFAULT); 12255 12256 mtx_lock(&sc->reg_lock); 12257 if (hw_off_limits(sc)) 12258 rc = ENXIO; 12259 else if (edata->size == 4) 12260 edata->val = t4_read_reg(sc, edata->addr); 12261 else if (edata->size == 8) 12262 edata->val = t4_read_reg64(sc, edata->addr); 12263 else 12264 rc = EINVAL; 12265 mtx_unlock(&sc->reg_lock); 12266 12267 break; 12268 } 12269 case CHELSIO_T4_SETREG: { 12270 struct t4_reg *edata = (struct t4_reg *)data; 12271 12272 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12273 return (EFAULT); 12274 12275 mtx_lock(&sc->reg_lock); 12276 if (hw_off_limits(sc)) 12277 rc = ENXIO; 12278 else if (edata->size == 4) { 12279 if (edata->val & 0xffffffff00000000) 12280 rc = EINVAL; 12281 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12282 } else if (edata->size == 8) 12283 t4_write_reg64(sc, edata->addr, edata->val); 12284 else 12285 rc = EINVAL; 12286 mtx_unlock(&sc->reg_lock); 12287 12288 break; 12289 } 12290 case CHELSIO_T4_REGDUMP: { 12291 struct t4_regdump *regs = (struct t4_regdump *)data; 12292 int reglen = t4_get_regs_len(sc); 12293 uint8_t *buf; 12294 12295 if (regs->len < reglen) { 12296 regs->len = reglen; /* hint to the caller */ 12297 return (ENOBUFS); 12298 } 12299 12300 regs->len = reglen; 12301 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12302 mtx_lock(&sc->reg_lock); 12303 if (hw_off_limits(sc)) 12304 rc = ENXIO; 12305 else 12306 get_regs(sc, regs, buf); 12307 mtx_unlock(&sc->reg_lock); 12308 if (rc == 0) 12309 rc = copyout(buf, regs->data, reglen); 12310 free(buf, M_CXGBE); 12311 break; 12312 } 12313 case CHELSIO_T4_GET_FILTER_MODE: 12314 rc = get_filter_mode(sc, (uint32_t *)data); 12315 break; 12316 case CHELSIO_T4_SET_FILTER_MODE: 12317 rc = set_filter_mode(sc, *(uint32_t *)data); 12318 break; 12319 case CHELSIO_T4_SET_FILTER_MASK: 12320 rc = set_filter_mask(sc, *(uint32_t *)data); 12321 break; 12322 case CHELSIO_T4_GET_FILTER: 12323 rc = get_filter(sc, (struct t4_filter *)data); 12324 break; 12325 case CHELSIO_T4_SET_FILTER: 12326 rc = set_filter(sc, (struct t4_filter *)data); 12327 break; 12328 case CHELSIO_T4_DEL_FILTER: 12329 rc = del_filter(sc, (struct t4_filter *)data); 12330 break; 12331 case CHELSIO_T4_GET_SGE_CONTEXT: 12332 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12333 break; 12334 case CHELSIO_T4_LOAD_FW: 12335 rc = load_fw(sc, (struct t4_data *)data); 12336 break; 12337 case CHELSIO_T4_GET_MEM: 12338 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12339 break; 12340 case CHELSIO_T4_GET_I2C: 12341 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12342 break; 12343 case CHELSIO_T4_CLEAR_STATS: 12344 rc = clear_stats(sc, *(uint32_t *)data); 12345 break; 12346 case CHELSIO_T4_SCHED_CLASS: 12347 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12348 break; 12349 case CHELSIO_T4_SCHED_QUEUE: 12350 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12351 break; 12352 case CHELSIO_T4_GET_TRACER: 12353 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12354 break; 12355 case CHELSIO_T4_SET_TRACER: 12356 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12357 break; 12358 case CHELSIO_T4_LOAD_CFG: 12359 rc = load_cfg(sc, (struct t4_data *)data); 12360 break; 12361 case CHELSIO_T4_LOAD_BOOT: 12362 rc = load_boot(sc, (struct t4_bootrom *)data); 12363 break; 12364 case CHELSIO_T4_LOAD_BOOTCFG: 12365 rc = load_bootcfg(sc, (struct t4_data *)data); 12366 break; 12367 case CHELSIO_T4_CUDBG_DUMP: 12368 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12369 break; 12370 case CHELSIO_T4_SET_OFLD_POLICY: 12371 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12372 break; 12373 case CHELSIO_T4_HOLD_CLIP_ADDR: 12374 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12375 break; 12376 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12377 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12378 break; 12379 default: 12380 rc = ENOTTY; 12381 } 12382 12383 return (rc); 12384 } 12385 12386 #ifdef TCP_OFFLOAD 12387 int 12388 toe_capability(struct vi_info *vi, bool enable) 12389 { 12390 int rc; 12391 struct port_info *pi = vi->pi; 12392 struct adapter *sc = pi->adapter; 12393 12394 ASSERT_SYNCHRONIZED_OP(sc); 12395 12396 if (!is_offload(sc)) 12397 return (ENODEV); 12398 if (hw_off_limits(sc)) 12399 return (ENXIO); 12400 12401 if (enable) { 12402 #ifdef KERN_TLS 12403 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12404 int i, j, n; 12405 struct port_info *p; 12406 struct vi_info *v; 12407 12408 /* 12409 * Reconfigure hardware for TOE if TXTLS is not enabled 12410 * on any ifnet. 12411 */ 12412 n = 0; 12413 for_each_port(sc, i) { 12414 p = sc->port[i]; 12415 for_each_vi(p, j, v) { 12416 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12417 CH_WARN(sc, 12418 "%s has NIC TLS enabled.\n", 12419 device_get_nameunit(v->dev)); 12420 n++; 12421 } 12422 } 12423 } 12424 if (n > 0) { 12425 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12426 "associated with this adapter before " 12427 "trying to enable TOE.\n"); 12428 return (EAGAIN); 12429 } 12430 rc = t6_config_kern_tls(sc, false); 12431 if (rc) 12432 return (rc); 12433 } 12434 #endif 12435 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12436 /* TOE is already enabled. */ 12437 return (0); 12438 } 12439 12440 /* 12441 * We need the port's queues around so that we're able to send 12442 * and receive CPLs to/from the TOE even if the ifnet for this 12443 * port has never been UP'd administratively. 12444 */ 12445 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12446 return (rc); 12447 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12448 ((rc = vi_init(&pi->vi[0])) != 0)) 12449 return (rc); 12450 12451 if (isset(&sc->offload_map, pi->port_id)) { 12452 /* TOE is enabled on another VI of this port. */ 12453 MPASS(pi->uld_vis > 0); 12454 pi->uld_vis++; 12455 return (0); 12456 } 12457 12458 if (!uld_active(sc, ULD_TOM)) { 12459 rc = t4_activate_uld(sc, ULD_TOM); 12460 if (rc == EAGAIN) { 12461 log(LOG_WARNING, 12462 "You must kldload t4_tom.ko before trying " 12463 "to enable TOE on a cxgbe interface.\n"); 12464 } 12465 if (rc != 0) 12466 return (rc); 12467 KASSERT(sc->tom_softc != NULL, 12468 ("%s: TOM activated but softc NULL", __func__)); 12469 KASSERT(uld_active(sc, ULD_TOM), 12470 ("%s: TOM activated but flag not set", __func__)); 12471 } 12472 12473 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12474 if (!uld_active(sc, ULD_IWARP)) 12475 (void) t4_activate_uld(sc, ULD_IWARP); 12476 if (!uld_active(sc, ULD_ISCSI)) 12477 (void) t4_activate_uld(sc, ULD_ISCSI); 12478 12479 if (pi->uld_vis++ == 0) 12480 setbit(&sc->offload_map, pi->port_id); 12481 } else { 12482 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 12483 /* TOE is already disabled. */ 12484 return (0); 12485 } 12486 MPASS(isset(&sc->offload_map, pi->port_id)); 12487 MPASS(pi->uld_vis > 0); 12488 if (--pi->uld_vis == 0) 12489 clrbit(&sc->offload_map, pi->port_id); 12490 } 12491 12492 return (0); 12493 } 12494 12495 /* 12496 * Add an upper layer driver to the global list. 12497 */ 12498 int 12499 t4_register_uld(struct uld_info *ui, int id) 12500 { 12501 int rc; 12502 12503 if (id < 0 || id > ULD_MAX) 12504 return (EINVAL); 12505 sx_xlock(&t4_uld_list_lock); 12506 if (t4_uld_list[id] != NULL) 12507 rc = EEXIST; 12508 else { 12509 t4_uld_list[id] = ui; 12510 rc = 0; 12511 } 12512 sx_xunlock(&t4_uld_list_lock); 12513 return (rc); 12514 } 12515 12516 int 12517 t4_unregister_uld(struct uld_info *ui, int id) 12518 { 12519 12520 if (id < 0 || id > ULD_MAX) 12521 return (EINVAL); 12522 sx_xlock(&t4_uld_list_lock); 12523 MPASS(t4_uld_list[id] == ui); 12524 t4_uld_list[id] = NULL; 12525 sx_xunlock(&t4_uld_list_lock); 12526 return (0); 12527 } 12528 12529 int 12530 t4_activate_uld(struct adapter *sc, int id) 12531 { 12532 int rc; 12533 12534 ASSERT_SYNCHRONIZED_OP(sc); 12535 12536 if (id < 0 || id > ULD_MAX) 12537 return (EINVAL); 12538 12539 /* Adapter needs to be initialized before any ULD can be activated. */ 12540 if (!(sc->flags & FULL_INIT_DONE)) { 12541 rc = adapter_init(sc); 12542 if (rc != 0) 12543 return (rc); 12544 } 12545 12546 sx_slock(&t4_uld_list_lock); 12547 if (t4_uld_list[id] == NULL) 12548 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12549 else { 12550 rc = t4_uld_list[id]->uld_activate(sc); 12551 if (rc == 0) 12552 setbit(&sc->active_ulds, id); 12553 } 12554 sx_sunlock(&t4_uld_list_lock); 12555 12556 return (rc); 12557 } 12558 12559 int 12560 t4_deactivate_uld(struct adapter *sc, int id) 12561 { 12562 int rc; 12563 12564 ASSERT_SYNCHRONIZED_OP(sc); 12565 12566 if (id < 0 || id > ULD_MAX) 12567 return (EINVAL); 12568 12569 sx_slock(&t4_uld_list_lock); 12570 if (t4_uld_list[id] == NULL) 12571 rc = ENXIO; 12572 else { 12573 rc = t4_uld_list[id]->uld_deactivate(sc); 12574 if (rc == 0) 12575 clrbit(&sc->active_ulds, id); 12576 } 12577 sx_sunlock(&t4_uld_list_lock); 12578 12579 return (rc); 12580 } 12581 12582 static int 12583 deactivate_all_uld(struct adapter *sc) 12584 { 12585 int i, rc; 12586 12587 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12588 if (rc != 0) 12589 return (ENXIO); 12590 sx_slock(&t4_uld_list_lock); 12591 for (i = 0; i <= ULD_MAX; i++) { 12592 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12593 continue; 12594 rc = t4_uld_list[i]->uld_deactivate(sc); 12595 if (rc != 0) 12596 break; 12597 clrbit(&sc->active_ulds, i); 12598 } 12599 sx_sunlock(&t4_uld_list_lock); 12600 end_synchronized_op(sc, 0); 12601 12602 return (rc); 12603 } 12604 12605 static void 12606 stop_all_uld(struct adapter *sc) 12607 { 12608 int i; 12609 12610 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12611 return; 12612 sx_slock(&t4_uld_list_lock); 12613 for (i = 0; i <= ULD_MAX; i++) { 12614 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12615 t4_uld_list[i]->uld_stop == NULL) 12616 continue; 12617 (void) t4_uld_list[i]->uld_stop(sc); 12618 } 12619 sx_sunlock(&t4_uld_list_lock); 12620 end_synchronized_op(sc, 0); 12621 } 12622 12623 static void 12624 restart_all_uld(struct adapter *sc) 12625 { 12626 int i; 12627 12628 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12629 return; 12630 sx_slock(&t4_uld_list_lock); 12631 for (i = 0; i <= ULD_MAX; i++) { 12632 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12633 t4_uld_list[i]->uld_restart == NULL) 12634 continue; 12635 (void) t4_uld_list[i]->uld_restart(sc); 12636 } 12637 sx_sunlock(&t4_uld_list_lock); 12638 end_synchronized_op(sc, 0); 12639 } 12640 12641 int 12642 uld_active(struct adapter *sc, int id) 12643 { 12644 12645 MPASS(id >= 0 && id <= ULD_MAX); 12646 12647 return (isset(&sc->active_ulds, id)); 12648 } 12649 #endif 12650 12651 #ifdef KERN_TLS 12652 static int 12653 ktls_capability(struct adapter *sc, bool enable) 12654 { 12655 ASSERT_SYNCHRONIZED_OP(sc); 12656 12657 if (!is_ktls(sc)) 12658 return (ENODEV); 12659 if (!is_t6(sc)) 12660 return (0); 12661 if (hw_off_limits(sc)) 12662 return (ENXIO); 12663 12664 if (enable) { 12665 if (sc->flags & KERN_TLS_ON) 12666 return (0); /* already on */ 12667 if (sc->offload_map != 0) { 12668 CH_WARN(sc, 12669 "Disable TOE on all interfaces associated with " 12670 "this adapter before trying to enable NIC TLS.\n"); 12671 return (EAGAIN); 12672 } 12673 return (t6_config_kern_tls(sc, true)); 12674 } else { 12675 /* 12676 * Nothing to do for disable. If TOE is enabled sometime later 12677 * then toe_capability will reconfigure the hardware. 12678 */ 12679 return (0); 12680 } 12681 } 12682 #endif 12683 12684 /* 12685 * t = ptr to tunable. 12686 * nc = number of CPUs. 12687 * c = compiled in default for that tunable. 12688 */ 12689 static void 12690 calculate_nqueues(int *t, int nc, const int c) 12691 { 12692 int nq; 12693 12694 if (*t > 0) 12695 return; 12696 nq = *t < 0 ? -*t : c; 12697 *t = min(nc, nq); 12698 } 12699 12700 /* 12701 * Come up with reasonable defaults for some of the tunables, provided they're 12702 * not set by the user (in which case we'll use the values as is). 12703 */ 12704 static void 12705 tweak_tunables(void) 12706 { 12707 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12708 12709 if (t4_ntxq < 1) { 12710 #ifdef RSS 12711 t4_ntxq = rss_getnumbuckets(); 12712 #else 12713 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12714 #endif 12715 } 12716 12717 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12718 12719 if (t4_nrxq < 1) { 12720 #ifdef RSS 12721 t4_nrxq = rss_getnumbuckets(); 12722 #else 12723 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12724 #endif 12725 } 12726 12727 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12728 12729 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12730 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12731 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12732 #endif 12733 #ifdef TCP_OFFLOAD 12734 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12735 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12736 #endif 12737 12738 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12739 if (t4_toecaps_allowed == -1) 12740 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12741 #else 12742 if (t4_toecaps_allowed == -1) 12743 t4_toecaps_allowed = 0; 12744 #endif 12745 12746 #ifdef TCP_OFFLOAD 12747 if (t4_rdmacaps_allowed == -1) { 12748 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12749 FW_CAPS_CONFIG_RDMA_RDMAC; 12750 } 12751 12752 if (t4_iscsicaps_allowed == -1) { 12753 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12754 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12755 FW_CAPS_CONFIG_ISCSI_T10DIF; 12756 } 12757 12758 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12759 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12760 12761 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12762 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12763 #else 12764 if (t4_rdmacaps_allowed == -1) 12765 t4_rdmacaps_allowed = 0; 12766 12767 if (t4_iscsicaps_allowed == -1) 12768 t4_iscsicaps_allowed = 0; 12769 #endif 12770 12771 #ifdef DEV_NETMAP 12772 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12773 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12774 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12775 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12776 #endif 12777 12778 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12779 t4_tmr_idx = TMR_IDX; 12780 12781 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12782 t4_pktc_idx = PKTC_IDX; 12783 12784 if (t4_qsize_txq < 128) 12785 t4_qsize_txq = 128; 12786 12787 if (t4_qsize_rxq < 128) 12788 t4_qsize_rxq = 128; 12789 while (t4_qsize_rxq & 7) 12790 t4_qsize_rxq++; 12791 12792 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12793 12794 /* 12795 * Number of VIs to create per-port. The first VI is the "main" regular 12796 * VI for the port. The rest are additional virtual interfaces on the 12797 * same physical port. Note that the main VI does not have native 12798 * netmap support but the extra VIs do. 12799 * 12800 * Limit the number of VIs per port to the number of available 12801 * MAC addresses per port. 12802 */ 12803 if (t4_num_vis < 1) 12804 t4_num_vis = 1; 12805 if (t4_num_vis > nitems(vi_mac_funcs)) { 12806 t4_num_vis = nitems(vi_mac_funcs); 12807 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12808 } 12809 12810 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12811 pcie_relaxed_ordering = 1; 12812 #if defined(__i386__) || defined(__amd64__) 12813 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12814 pcie_relaxed_ordering = 0; 12815 #endif 12816 } 12817 } 12818 12819 #ifdef DDB 12820 static void 12821 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12822 { 12823 uint32_t base, j, off, pf, reg, save, win_pos; 12824 12825 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12826 save = t4_read_reg(sc, reg); 12827 base = sc->memwin[2].mw_base; 12828 12829 if (is_t4(sc)) { 12830 pf = 0; 12831 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12832 } else { 12833 pf = V_PFNUM(sc->pf); 12834 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12835 } 12836 off = addr - win_pos; 12837 t4_write_reg(sc, reg, win_pos | pf); 12838 t4_read_reg(sc, reg); 12839 12840 while (len > 0 && !db_pager_quit) { 12841 uint32_t buf[8]; 12842 for (j = 0; j < 8; j++, off += 4) 12843 buf[j] = htonl(t4_read_reg(sc, base + off)); 12844 12845 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12846 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12847 buf[7]); 12848 if (len <= sizeof(buf)) 12849 len = 0; 12850 else 12851 len -= sizeof(buf); 12852 } 12853 12854 t4_write_reg(sc, reg, save); 12855 t4_read_reg(sc, reg); 12856 } 12857 12858 static void 12859 t4_dump_tcb(struct adapter *sc, int tid) 12860 { 12861 uint32_t tcb_addr; 12862 12863 /* Dump TCB for the tid */ 12864 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12865 tcb_addr += tid * TCB_SIZE; 12866 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12867 } 12868 12869 static void 12870 t4_dump_devlog(struct adapter *sc) 12871 { 12872 struct devlog_params *dparams = &sc->params.devlog; 12873 struct fw_devlog_e e; 12874 int i, first, j, m, nentries, rc; 12875 uint64_t ftstamp = UINT64_MAX; 12876 12877 if (dparams->start == 0) { 12878 db_printf("devlog params not valid\n"); 12879 return; 12880 } 12881 12882 nentries = dparams->size / sizeof(struct fw_devlog_e); 12883 m = fwmtype_to_hwmtype(dparams->memtype); 12884 12885 /* Find the first entry. */ 12886 first = -1; 12887 for (i = 0; i < nentries && !db_pager_quit; i++) { 12888 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12889 sizeof(e), (void *)&e); 12890 if (rc != 0) 12891 break; 12892 12893 if (e.timestamp == 0) 12894 break; 12895 12896 e.timestamp = be64toh(e.timestamp); 12897 if (e.timestamp < ftstamp) { 12898 ftstamp = e.timestamp; 12899 first = i; 12900 } 12901 } 12902 12903 if (first == -1) 12904 return; 12905 12906 i = first; 12907 do { 12908 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12909 sizeof(e), (void *)&e); 12910 if (rc != 0) 12911 return; 12912 12913 if (e.timestamp == 0) 12914 return; 12915 12916 e.timestamp = be64toh(e.timestamp); 12917 e.seqno = be32toh(e.seqno); 12918 for (j = 0; j < 8; j++) 12919 e.params[j] = be32toh(e.params[j]); 12920 12921 db_printf("%10d %15ju %8s %8s ", 12922 e.seqno, e.timestamp, 12923 (e.level < nitems(devlog_level_strings) ? 12924 devlog_level_strings[e.level] : "UNKNOWN"), 12925 (e.facility < nitems(devlog_facility_strings) ? 12926 devlog_facility_strings[e.facility] : "UNKNOWN")); 12927 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12928 e.params[3], e.params[4], e.params[5], e.params[6], 12929 e.params[7]); 12930 12931 if (++i == nentries) 12932 i = 0; 12933 } while (i != first && !db_pager_quit); 12934 } 12935 12936 static DB_DEFINE_TABLE(show, t4, show_t4); 12937 12938 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12939 { 12940 device_t dev; 12941 int t; 12942 bool valid; 12943 12944 valid = false; 12945 t = db_read_token(); 12946 if (t == tIDENT) { 12947 dev = device_lookup_by_name(db_tok_string); 12948 valid = true; 12949 } 12950 db_skip_to_eol(); 12951 if (!valid) { 12952 db_printf("usage: show t4 devlog <nexus>\n"); 12953 return; 12954 } 12955 12956 if (dev == NULL) { 12957 db_printf("device not found\n"); 12958 return; 12959 } 12960 12961 t4_dump_devlog(device_get_softc(dev)); 12962 } 12963 12964 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12965 { 12966 device_t dev; 12967 int radix, tid, t; 12968 bool valid; 12969 12970 valid = false; 12971 radix = db_radix; 12972 db_radix = 10; 12973 t = db_read_token(); 12974 if (t == tIDENT) { 12975 dev = device_lookup_by_name(db_tok_string); 12976 t = db_read_token(); 12977 if (t == tNUMBER) { 12978 tid = db_tok_number; 12979 valid = true; 12980 } 12981 } 12982 db_radix = radix; 12983 db_skip_to_eol(); 12984 if (!valid) { 12985 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12986 return; 12987 } 12988 12989 if (dev == NULL) { 12990 db_printf("device not found\n"); 12991 return; 12992 } 12993 if (tid < 0) { 12994 db_printf("invalid tid\n"); 12995 return; 12996 } 12997 12998 t4_dump_tcb(device_get_softc(dev), tid); 12999 } 13000 13001 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13002 { 13003 device_t dev; 13004 int radix, t; 13005 bool valid; 13006 13007 valid = false; 13008 radix = db_radix; 13009 db_radix = 10; 13010 t = db_read_token(); 13011 if (t == tIDENT) { 13012 dev = device_lookup_by_name(db_tok_string); 13013 t = db_read_token(); 13014 if (t == tNUMBER) { 13015 addr = db_tok_number; 13016 t = db_read_token(); 13017 if (t == tNUMBER) { 13018 count = db_tok_number; 13019 valid = true; 13020 } 13021 } 13022 } 13023 db_radix = radix; 13024 db_skip_to_eol(); 13025 if (!valid) { 13026 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 13027 return; 13028 } 13029 13030 if (dev == NULL) { 13031 db_printf("device not found\n"); 13032 return; 13033 } 13034 if (addr < 0) { 13035 db_printf("invalid address\n"); 13036 return; 13037 } 13038 if (count <= 0) { 13039 db_printf("invalid length\n"); 13040 return; 13041 } 13042 13043 t4_dump_mem(device_get_softc(dev), addr, count); 13044 } 13045 #endif 13046 13047 static eventhandler_tag vxlan_start_evtag; 13048 static eventhandler_tag vxlan_stop_evtag; 13049 13050 struct vxlan_evargs { 13051 if_t ifp; 13052 uint16_t port; 13053 }; 13054 13055 static void 13056 enable_vxlan_rx(struct adapter *sc) 13057 { 13058 int i, rc; 13059 struct port_info *pi; 13060 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13061 13062 ASSERT_SYNCHRONIZED_OP(sc); 13063 13064 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13065 F_VXLAN_EN); 13066 for_each_port(sc, i) { 13067 pi = sc->port[i]; 13068 if (pi->vxlan_tcam_entry == true) 13069 continue; 13070 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13071 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13072 true); 13073 if (rc < 0) { 13074 rc = -rc; 13075 CH_ERR(&pi->vi[0], 13076 "failed to add VXLAN TCAM entry: %d.\n", rc); 13077 } else { 13078 MPASS(rc == sc->rawf_base + pi->port_id); 13079 pi->vxlan_tcam_entry = true; 13080 } 13081 } 13082 } 13083 13084 static void 13085 t4_vxlan_start(struct adapter *sc, void *arg) 13086 { 13087 struct vxlan_evargs *v = arg; 13088 13089 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13090 return; 13091 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13092 return; 13093 13094 if (sc->vxlan_refcount == 0) { 13095 sc->vxlan_port = v->port; 13096 sc->vxlan_refcount = 1; 13097 if (!hw_off_limits(sc)) 13098 enable_vxlan_rx(sc); 13099 } else if (sc->vxlan_port == v->port) { 13100 sc->vxlan_refcount++; 13101 } else { 13102 CH_ERR(sc, "VXLAN already configured on port %d; " 13103 "ignoring attempt to configure it on port %d\n", 13104 sc->vxlan_port, v->port); 13105 } 13106 end_synchronized_op(sc, 0); 13107 } 13108 13109 static void 13110 t4_vxlan_stop(struct adapter *sc, void *arg) 13111 { 13112 struct vxlan_evargs *v = arg; 13113 13114 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13115 return; 13116 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13117 return; 13118 13119 /* 13120 * VXLANs may have been configured before the driver was loaded so we 13121 * may see more stops than starts. This is not handled cleanly but at 13122 * least we keep the refcount sane. 13123 */ 13124 if (sc->vxlan_port != v->port) 13125 goto done; 13126 if (sc->vxlan_refcount == 0) { 13127 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13128 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13129 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13130 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13131 done: 13132 end_synchronized_op(sc, 0); 13133 } 13134 13135 static void 13136 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13137 sa_family_t family, u_int port) 13138 { 13139 struct vxlan_evargs v; 13140 13141 MPASS(family == AF_INET || family == AF_INET6); 13142 v.ifp = ifp; 13143 v.port = port; 13144 13145 t4_iterate(t4_vxlan_start, &v); 13146 } 13147 13148 static void 13149 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13150 u_int port) 13151 { 13152 struct vxlan_evargs v; 13153 13154 MPASS(family == AF_INET || family == AF_INET6); 13155 v.ifp = ifp; 13156 v.port = port; 13157 13158 t4_iterate(t4_vxlan_stop, &v); 13159 } 13160 13161 13162 static struct sx mlu; /* mod load unload */ 13163 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13164 13165 static int 13166 mod_event(module_t mod, int cmd, void *arg) 13167 { 13168 int rc = 0; 13169 static int loaded = 0; 13170 13171 switch (cmd) { 13172 case MOD_LOAD: 13173 sx_xlock(&mlu); 13174 if (loaded++ == 0) { 13175 t4_sge_modload(); 13176 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13177 t4_filter_rpl, CPL_COOKIE_FILTER); 13178 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13179 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13180 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13181 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13182 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13183 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13184 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13185 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13186 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13187 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13188 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13189 do_smt_write_rpl); 13190 sx_init(&t4_list_lock, "T4/T5 adapters"); 13191 SLIST_INIT(&t4_list); 13192 callout_init(&fatal_callout, 1); 13193 #ifdef TCP_OFFLOAD 13194 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13195 #endif 13196 #ifdef INET6 13197 t4_clip_modload(); 13198 #endif 13199 #ifdef KERN_TLS 13200 t6_ktls_modload(); 13201 #endif 13202 t4_tracer_modload(); 13203 tweak_tunables(); 13204 vxlan_start_evtag = 13205 EVENTHANDLER_REGISTER(vxlan_start, 13206 t4_vxlan_start_handler, NULL, 13207 EVENTHANDLER_PRI_ANY); 13208 vxlan_stop_evtag = 13209 EVENTHANDLER_REGISTER(vxlan_stop, 13210 t4_vxlan_stop_handler, NULL, 13211 EVENTHANDLER_PRI_ANY); 13212 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13213 taskqueue_thread_enqueue, &reset_tq); 13214 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13215 "t4_rst_thr"); 13216 } 13217 sx_xunlock(&mlu); 13218 break; 13219 13220 case MOD_UNLOAD: 13221 sx_xlock(&mlu); 13222 if (--loaded == 0) { 13223 #ifdef TCP_OFFLOAD 13224 int i; 13225 #endif 13226 int tries; 13227 13228 taskqueue_free(reset_tq); 13229 13230 tries = 0; 13231 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13232 uprintf("%ju clusters with custom free routine " 13233 "still is use.\n", t4_sge_extfree_refs()); 13234 pause("t4unload", 2 * hz); 13235 } 13236 13237 sx_slock(&t4_list_lock); 13238 if (!SLIST_EMPTY(&t4_list)) { 13239 rc = EBUSY; 13240 sx_sunlock(&t4_list_lock); 13241 goto done_unload; 13242 } 13243 #ifdef TCP_OFFLOAD 13244 sx_slock(&t4_uld_list_lock); 13245 for (i = 0; i <= ULD_MAX; i++) { 13246 if (t4_uld_list[i] != NULL) { 13247 rc = EBUSY; 13248 sx_sunlock(&t4_uld_list_lock); 13249 sx_sunlock(&t4_list_lock); 13250 goto done_unload; 13251 } 13252 } 13253 sx_sunlock(&t4_uld_list_lock); 13254 #endif 13255 sx_sunlock(&t4_list_lock); 13256 13257 if (t4_sge_extfree_refs() == 0) { 13258 EVENTHANDLER_DEREGISTER(vxlan_start, 13259 vxlan_start_evtag); 13260 EVENTHANDLER_DEREGISTER(vxlan_stop, 13261 vxlan_stop_evtag); 13262 t4_tracer_modunload(); 13263 #ifdef KERN_TLS 13264 t6_ktls_modunload(); 13265 #endif 13266 #ifdef INET6 13267 t4_clip_modunload(); 13268 #endif 13269 #ifdef TCP_OFFLOAD 13270 sx_destroy(&t4_uld_list_lock); 13271 #endif 13272 sx_destroy(&t4_list_lock); 13273 t4_sge_modunload(); 13274 loaded = 0; 13275 } else { 13276 rc = EBUSY; 13277 loaded++; /* undo earlier decrement */ 13278 } 13279 } 13280 done_unload: 13281 sx_xunlock(&mlu); 13282 break; 13283 } 13284 13285 return (rc); 13286 } 13287 13288 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13289 MODULE_VERSION(t4nex, 1); 13290 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13291 #ifdef DEV_NETMAP 13292 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13293 #endif /* DEV_NETMAP */ 13294 13295 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13296 MODULE_VERSION(t5nex, 1); 13297 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13298 #ifdef DEV_NETMAP 13299 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13300 #endif /* DEV_NETMAP */ 13301 13302 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13303 MODULE_VERSION(t6nex, 1); 13304 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13305 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13306 #ifdef DEV_NETMAP 13307 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13308 #endif /* DEV_NETMAP */ 13309 13310 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13311 MODULE_VERSION(cxgbe, 1); 13312 13313 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13314 MODULE_VERSION(cxl, 1); 13315 13316 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13317 MODULE_VERSION(cc, 1); 13318 13319 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13320 MODULE_VERSION(vcxgbe, 1); 13321 13322 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13323 MODULE_VERSION(vcxl, 1); 13324 13325 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13326 MODULE_VERSION(vcc, 1); 13327