1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_tx_vm_wr = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 631 "Use VM work requests to transmit packets."); 632 633 /* 634 * Set to non-zero to enable the attack filter. A packet that matches any of 635 * these conditions will get dropped on ingress: 636 * 1) IP && source address == destination address. 637 * 2) TCP/IP && source address is not a unicast address. 638 * 3) TCP/IP && destination address is not a unicast address. 639 * 4) IP && source address is loopback (127.x.y.z). 640 * 5) IP && destination address is loopback (127.x.y.z). 641 * 6) IPv6 && source address == destination address. 642 * 7) IPv6 && source address is not a unicast address. 643 * 8) IPv6 && source address is loopback (::1/128). 644 * 9) IPv6 && destination address is loopback (::1/128). 645 * 10) IPv6 && source address is unspecified (::/128). 646 * 11) IPv6 && destination address is unspecified (::/128). 647 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 648 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 649 */ 650 static int t4_attack_filter = 0; 651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 652 &t4_attack_filter, 0, "Drop suspicious traffic"); 653 654 static int t4_drop_ip_fragments = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 656 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 657 658 static int t4_drop_pkts_with_l2_errors = 1; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l2_errors, 0, 661 "Drop all frames with Layer 2 length or checksum errors"); 662 663 static int t4_drop_pkts_with_l3_errors = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 665 &t4_drop_pkts_with_l3_errors, 0, 666 "Drop all frames with IP version, length, or checksum errors"); 667 668 static int t4_drop_pkts_with_l4_errors = 0; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 670 &t4_drop_pkts_with_l4_errors, 0, 671 "Drop all frames with Layer 4 length, checksum, or other errors"); 672 673 #ifdef TCP_OFFLOAD 674 /* 675 * TOE tunables. 676 */ 677 static int t4_cop_managed_offloading = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 679 &t4_cop_managed_offloading, 0, 680 "COP (Connection Offload Policy) controls all TOE offload"); 681 #endif 682 683 #ifdef KERN_TLS 684 /* 685 * This enables KERN_TLS for all adapters if set. 686 */ 687 static int t4_kern_tls = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 689 "Enable KERN_TLS mode for all supported adapters"); 690 691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 692 "cxgbe(4) KERN_TLS parameters"); 693 694 static int t4_tls_inline_keys = 0; 695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 696 &t4_tls_inline_keys, 0, 697 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 698 "in card memory."); 699 700 static int t4_tls_combo_wrs = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 702 0, "Attempt to combine TCB field updates with TLS record work requests."); 703 #endif 704 705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 706 static int vi_mac_funcs[] = { 707 FW_VI_FUNC_ETH, 708 FW_VI_FUNC_OFLD, 709 FW_VI_FUNC_IWARP, 710 FW_VI_FUNC_OPENISCSI, 711 FW_VI_FUNC_OPENFCOE, 712 FW_VI_FUNC_FOISCSI, 713 FW_VI_FUNC_FOFCOE, 714 }; 715 716 struct intrs_and_queues { 717 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 718 uint16_t num_vis; /* number of VIs for each port */ 719 uint16_t nirq; /* Total # of vectors */ 720 uint16_t ntxq; /* # of NIC txq's for each port */ 721 uint16_t nrxq; /* # of NIC rxq's for each port */ 722 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 723 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 724 uint16_t nnmtxq; /* # of netmap txq's */ 725 uint16_t nnmrxq; /* # of netmap rxq's */ 726 727 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 728 uint16_t ntxq_vi; /* # of NIC txq's */ 729 uint16_t nrxq_vi; /* # of NIC rxq's */ 730 uint16_t nofldtxq_vi; /* # of TOE txq's */ 731 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 732 uint16_t nnmtxq_vi; /* # of netmap txq's */ 733 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 734 }; 735 736 static void setup_memwin(struct adapter *); 737 static void position_memwin(struct adapter *, int, uint32_t); 738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 739 static int fwmtype_to_hwmtype(int); 740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 741 uint32_t *); 742 static int fixup_devlog_params(struct adapter *); 743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 744 static int contact_firmware(struct adapter *); 745 static int partition_resources(struct adapter *); 746 static int get_params__pre_init(struct adapter *); 747 static int set_params__pre_init(struct adapter *); 748 static int get_params__post_init(struct adapter *); 749 static int set_params__post_init(struct adapter *); 750 static void t4_set_desc(struct adapter *); 751 static bool fixed_ifmedia(struct port_info *); 752 static void build_medialist(struct port_info *); 753 static void init_link_config(struct port_info *); 754 static int fixup_link_config(struct port_info *); 755 static int apply_link_config(struct port_info *); 756 static int cxgbe_init_synchronized(struct vi_info *); 757 static int cxgbe_uninit_synchronized(struct vi_info *); 758 static int adapter_full_init(struct adapter *); 759 static void adapter_full_uninit(struct adapter *); 760 static int vi_full_init(struct vi_info *); 761 static void vi_full_uninit(struct vi_info *); 762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 763 static void quiesce_txq(struct sge_txq *); 764 static void quiesce_wrq(struct sge_wrq *); 765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 766 static void quiesce_vi(struct vi_info *); 767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 768 driver_intr_t *, void *, char *); 769 static int t4_free_irq(struct adapter *, struct irq *); 770 static void t4_init_atid_table(struct adapter *); 771 static void t4_free_atid_table(struct adapter *); 772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 773 static void vi_refresh_stats(struct vi_info *); 774 static void cxgbe_refresh_stats(struct vi_info *); 775 static void cxgbe_tick(void *); 776 static void vi_tick(void *); 777 static void cxgbe_sysctls(struct port_info *); 778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 829 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 830 #ifdef TCP_OFFLOAD 831 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 841 #endif 842 static int get_sge_context(struct adapter *, struct t4_sge_context *); 843 static int load_fw(struct adapter *, struct t4_data *); 844 static int load_cfg(struct adapter *, struct t4_data *); 845 static int load_boot(struct adapter *, struct t4_bootrom *); 846 static int load_bootcfg(struct adapter *, struct t4_data *); 847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 848 static void free_offload_policy(struct t4_offload_policy *); 849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 851 static int read_i2c(struct adapter *, struct t4_i2c_data *); 852 static int clear_stats(struct adapter *, u_int); 853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 855 #ifdef TCP_OFFLOAD 856 static int toe_capability(struct vi_info *, bool); 857 static void t4_async_event(void *, int); 858 #endif 859 #ifdef KERN_TLS 860 static int ktls_capability(struct adapter *, bool); 861 #endif 862 static int mod_event(module_t, int, void *); 863 static int notify_siblings(device_t, int); 864 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 866 static void enable_vxlan_rx(struct adapter *); 867 static void reset_adapter(void *, int); 868 869 struct { 870 uint16_t device; 871 char *desc; 872 } t4_pciids[] = { 873 {0xa000, "Chelsio Terminator 4 FPGA"}, 874 {0x4400, "Chelsio T440-dbg"}, 875 {0x4401, "Chelsio T420-CR"}, 876 {0x4402, "Chelsio T422-CR"}, 877 {0x4403, "Chelsio T440-CR"}, 878 {0x4404, "Chelsio T420-BCH"}, 879 {0x4405, "Chelsio T440-BCH"}, 880 {0x4406, "Chelsio T440-CH"}, 881 {0x4407, "Chelsio T420-SO"}, 882 {0x4408, "Chelsio T420-CX"}, 883 {0x4409, "Chelsio T420-BT"}, 884 {0x440a, "Chelsio T404-BT"}, 885 {0x440e, "Chelsio T440-LP-CR"}, 886 }, t5_pciids[] = { 887 {0xb000, "Chelsio Terminator 5 FPGA"}, 888 {0x5400, "Chelsio T580-dbg"}, 889 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 890 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 891 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 892 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 893 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 894 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 895 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 896 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 897 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 898 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 899 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 900 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 901 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 902 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 903 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 904 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 905 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 906 907 /* Custom */ 908 {0x5483, "Custom T540-CR"}, 909 {0x5484, "Custom T540-BT"}, 910 }, t6_pciids[] = { 911 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 912 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 913 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 914 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 915 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 916 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 917 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 918 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 919 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 920 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 921 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 922 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 923 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 924 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 925 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 926 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 927 928 /* Custom */ 929 {0x6480, "Custom T6225-CR"}, 930 {0x6481, "Custom T62100-CR"}, 931 {0x6482, "Custom T6225-CR"}, 932 {0x6483, "Custom T62100-CR"}, 933 {0x6484, "Custom T64100-CR"}, 934 {0x6485, "Custom T6240-SO"}, 935 {0x6486, "Custom T6225-SO-CR"}, 936 {0x6487, "Custom T6225-CR"}, 937 }; 938 939 #ifdef TCP_OFFLOAD 940 /* 941 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 942 * be exactly the same for both rxq and ofld_rxq. 943 */ 944 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 945 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 946 #endif 947 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 948 949 static int 950 t4_probe(device_t dev) 951 { 952 int i; 953 uint16_t v = pci_get_vendor(dev); 954 uint16_t d = pci_get_device(dev); 955 uint8_t f = pci_get_function(dev); 956 957 if (v != PCI_VENDOR_ID_CHELSIO) 958 return (ENXIO); 959 960 /* Attach only to PF0 of the FPGA */ 961 if (d == 0xa000 && f != 0) 962 return (ENXIO); 963 964 for (i = 0; i < nitems(t4_pciids); i++) { 965 if (d == t4_pciids[i].device) { 966 device_set_desc(dev, t4_pciids[i].desc); 967 return (BUS_PROBE_DEFAULT); 968 } 969 } 970 971 return (ENXIO); 972 } 973 974 static int 975 t5_probe(device_t dev) 976 { 977 int i; 978 uint16_t v = pci_get_vendor(dev); 979 uint16_t d = pci_get_device(dev); 980 uint8_t f = pci_get_function(dev); 981 982 if (v != PCI_VENDOR_ID_CHELSIO) 983 return (ENXIO); 984 985 /* Attach only to PF0 of the FPGA */ 986 if (d == 0xb000 && f != 0) 987 return (ENXIO); 988 989 for (i = 0; i < nitems(t5_pciids); i++) { 990 if (d == t5_pciids[i].device) { 991 device_set_desc(dev, t5_pciids[i].desc); 992 return (BUS_PROBE_DEFAULT); 993 } 994 } 995 996 return (ENXIO); 997 } 998 999 static int 1000 t6_probe(device_t dev) 1001 { 1002 int i; 1003 uint16_t v = pci_get_vendor(dev); 1004 uint16_t d = pci_get_device(dev); 1005 1006 if (v != PCI_VENDOR_ID_CHELSIO) 1007 return (ENXIO); 1008 1009 for (i = 0; i < nitems(t6_pciids); i++) { 1010 if (d == t6_pciids[i].device) { 1011 device_set_desc(dev, t6_pciids[i].desc); 1012 return (BUS_PROBE_DEFAULT); 1013 } 1014 } 1015 1016 return (ENXIO); 1017 } 1018 1019 static void 1020 t5_attribute_workaround(device_t dev) 1021 { 1022 device_t root_port; 1023 uint32_t v; 1024 1025 /* 1026 * The T5 chips do not properly echo the No Snoop and Relaxed 1027 * Ordering attributes when replying to a TLP from a Root 1028 * Port. As a workaround, find the parent Root Port and 1029 * disable No Snoop and Relaxed Ordering. Note that this 1030 * affects all devices under this root port. 1031 */ 1032 root_port = pci_find_pcie_root_port(dev); 1033 if (root_port == NULL) { 1034 device_printf(dev, "Unable to find parent root port\n"); 1035 return; 1036 } 1037 1038 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1039 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1040 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1041 0) 1042 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1043 device_get_nameunit(root_port)); 1044 } 1045 1046 static const struct devnames devnames[] = { 1047 { 1048 .nexus_name = "t4nex", 1049 .ifnet_name = "cxgbe", 1050 .vi_ifnet_name = "vcxgbe", 1051 .pf03_drv_name = "t4iov", 1052 .vf_nexus_name = "t4vf", 1053 .vf_ifnet_name = "cxgbev" 1054 }, { 1055 .nexus_name = "t5nex", 1056 .ifnet_name = "cxl", 1057 .vi_ifnet_name = "vcxl", 1058 .pf03_drv_name = "t5iov", 1059 .vf_nexus_name = "t5vf", 1060 .vf_ifnet_name = "cxlv" 1061 }, { 1062 .nexus_name = "t6nex", 1063 .ifnet_name = "cc", 1064 .vi_ifnet_name = "vcc", 1065 .pf03_drv_name = "t6iov", 1066 .vf_nexus_name = "t6vf", 1067 .vf_ifnet_name = "ccv" 1068 } 1069 }; 1070 1071 void 1072 t4_init_devnames(struct adapter *sc) 1073 { 1074 int id; 1075 1076 id = chip_id(sc); 1077 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1078 sc->names = &devnames[id - CHELSIO_T4]; 1079 else { 1080 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1081 sc->names = NULL; 1082 } 1083 } 1084 1085 static int 1086 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1087 { 1088 const char *parent, *name; 1089 long value; 1090 int line, unit; 1091 1092 line = 0; 1093 parent = device_get_nameunit(sc->dev); 1094 name = sc->names->ifnet_name; 1095 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1096 if (resource_long_value(name, unit, "port", &value) == 0 && 1097 value == pi->port_id) 1098 return (unit); 1099 } 1100 return (-1); 1101 } 1102 1103 static int 1104 t4_attach(device_t dev) 1105 { 1106 struct adapter *sc; 1107 int rc = 0, i, j, rqidx, tqidx, nports; 1108 struct make_dev_args mda; 1109 struct intrs_and_queues iaq; 1110 struct sge *s; 1111 uint32_t *buf; 1112 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1113 int ofld_tqidx; 1114 #endif 1115 #ifdef TCP_OFFLOAD 1116 int ofld_rqidx; 1117 #endif 1118 #ifdef DEV_NETMAP 1119 int nm_rqidx, nm_tqidx; 1120 #endif 1121 int num_vis; 1122 1123 sc = device_get_softc(dev); 1124 sc->dev = dev; 1125 sysctl_ctx_init(&sc->ctx); 1126 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1127 1128 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1129 t5_attribute_workaround(dev); 1130 pci_enable_busmaster(dev); 1131 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1132 uint32_t v; 1133 1134 pci_set_max_read_req(dev, 4096); 1135 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1136 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1137 if (pcie_relaxed_ordering == 0 && 1138 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1139 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1140 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1141 } else if (pcie_relaxed_ordering == 1 && 1142 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1143 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1144 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1145 } 1146 } 1147 1148 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1149 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1150 sc->traceq = -1; 1151 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1152 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1153 device_get_nameunit(dev)); 1154 1155 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1156 device_get_nameunit(dev)); 1157 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1158 t4_add_adapter(sc); 1159 1160 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1161 TAILQ_INIT(&sc->sfl); 1162 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1163 1164 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1165 1166 sc->policy = NULL; 1167 rw_init(&sc->policy_lock, "connection offload policy"); 1168 1169 callout_init(&sc->ktls_tick, 1); 1170 1171 #ifdef TCP_OFFLOAD 1172 TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc); 1173 #endif 1174 1175 refcount_init(&sc->vxlan_refcount, 0); 1176 1177 TASK_INIT(&sc->reset_task, 0, reset_adapter, sc); 1178 1179 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1180 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1181 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1182 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1183 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1184 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1185 1186 rc = t4_map_bars_0_and_4(sc); 1187 if (rc != 0) 1188 goto done; /* error message displayed already */ 1189 1190 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1191 1192 /* Prepare the adapter for operation. */ 1193 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1194 rc = -t4_prep_adapter(sc, buf); 1195 free(buf, M_CXGBE); 1196 if (rc != 0) { 1197 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1198 goto done; 1199 } 1200 1201 /* 1202 * This is the real PF# to which we're attaching. Works from within PCI 1203 * passthrough environments too, where pci_get_function() could return a 1204 * different PF# depending on the passthrough configuration. We need to 1205 * use the real PF# in all our communication with the firmware. 1206 */ 1207 j = t4_read_reg(sc, A_PL_WHOAMI); 1208 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1209 sc->mbox = sc->pf; 1210 1211 t4_init_devnames(sc); 1212 if (sc->names == NULL) { 1213 rc = ENOTSUP; 1214 goto done; /* error message displayed already */ 1215 } 1216 1217 /* 1218 * Do this really early, with the memory windows set up even before the 1219 * character device. The userland tool's register i/o and mem read 1220 * will work even in "recovery mode". 1221 */ 1222 setup_memwin(sc); 1223 if (t4_init_devlog_params(sc, 0) == 0) 1224 fixup_devlog_params(sc); 1225 make_dev_args_init(&mda); 1226 mda.mda_devsw = &t4_cdevsw; 1227 mda.mda_uid = UID_ROOT; 1228 mda.mda_gid = GID_WHEEL; 1229 mda.mda_mode = 0600; 1230 mda.mda_si_drv1 = sc; 1231 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1232 if (rc != 0) 1233 device_printf(dev, "failed to create nexus char device: %d.\n", 1234 rc); 1235 1236 /* Go no further if recovery mode has been requested. */ 1237 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1238 device_printf(dev, "recovery mode.\n"); 1239 goto done; 1240 } 1241 1242 #if defined(__i386__) 1243 if ((cpu_feature & CPUID_CX8) == 0) { 1244 device_printf(dev, "64 bit atomics not available.\n"); 1245 rc = ENOTSUP; 1246 goto done; 1247 } 1248 #endif 1249 1250 /* Contact the firmware and try to become the master driver. */ 1251 rc = contact_firmware(sc); 1252 if (rc != 0) 1253 goto done; /* error message displayed already */ 1254 MPASS(sc->flags & FW_OK); 1255 1256 rc = get_params__pre_init(sc); 1257 if (rc != 0) 1258 goto done; /* error message displayed already */ 1259 1260 if (sc->flags & MASTER_PF) { 1261 rc = partition_resources(sc); 1262 if (rc != 0) 1263 goto done; /* error message displayed already */ 1264 t4_intr_clear(sc); 1265 } 1266 1267 rc = get_params__post_init(sc); 1268 if (rc != 0) 1269 goto done; /* error message displayed already */ 1270 1271 rc = set_params__post_init(sc); 1272 if (rc != 0) 1273 goto done; /* error message displayed already */ 1274 1275 rc = t4_map_bar_2(sc); 1276 if (rc != 0) 1277 goto done; /* error message displayed already */ 1278 1279 rc = t4_create_dma_tag(sc); 1280 if (rc != 0) 1281 goto done; /* error message displayed already */ 1282 1283 /* 1284 * First pass over all the ports - allocate VIs and initialize some 1285 * basic parameters like mac address, port type, etc. 1286 */ 1287 for_each_port(sc, i) { 1288 struct port_info *pi; 1289 1290 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1291 sc->port[i] = pi; 1292 1293 /* These must be set before t4_port_init */ 1294 pi->adapter = sc; 1295 pi->port_id = i; 1296 /* 1297 * XXX: vi[0] is special so we can't delay this allocation until 1298 * pi->nvi's final value is known. 1299 */ 1300 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1301 M_ZERO | M_WAITOK); 1302 1303 /* 1304 * Allocate the "main" VI and initialize parameters 1305 * like mac addr. 1306 */ 1307 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1308 if (rc != 0) { 1309 device_printf(dev, "unable to initialize port %d: %d\n", 1310 i, rc); 1311 free(pi->vi, M_CXGBE); 1312 free(pi, M_CXGBE); 1313 sc->port[i] = NULL; 1314 goto done; 1315 } 1316 1317 if (is_bt(pi->port_type)) 1318 setbit(&sc->bt_map, pi->tx_chan); 1319 else 1320 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1321 1322 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1323 device_get_nameunit(dev), i); 1324 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1325 sc->chan_map[pi->tx_chan] = i; 1326 1327 /* 1328 * The MPS counter for FCS errors doesn't work correctly on the 1329 * T6 so we use the MAC counter here. Which MAC is in use 1330 * depends on the link settings which will be known when the 1331 * link comes up. 1332 */ 1333 if (is_t6(sc)) { 1334 pi->fcs_reg = -1; 1335 } else if (is_t4(sc)) { 1336 pi->fcs_reg = PORT_REG(pi->tx_chan, 1337 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1338 } else { 1339 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1340 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1341 } 1342 pi->fcs_base = 0; 1343 1344 /* All VIs on this port share this media. */ 1345 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1346 cxgbe_media_status); 1347 1348 PORT_LOCK(pi); 1349 init_link_config(pi); 1350 fixup_link_config(pi); 1351 build_medialist(pi); 1352 if (fixed_ifmedia(pi)) 1353 pi->flags |= FIXED_IFMEDIA; 1354 PORT_UNLOCK(pi); 1355 1356 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1357 t4_ifnet_unit(sc, pi)); 1358 if (pi->dev == NULL) { 1359 device_printf(dev, 1360 "failed to add device for port %d.\n", i); 1361 rc = ENXIO; 1362 goto done; 1363 } 1364 pi->vi[0].dev = pi->dev; 1365 device_set_softc(pi->dev, pi); 1366 } 1367 1368 /* 1369 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1370 */ 1371 nports = sc->params.nports; 1372 rc = cfg_itype_and_nqueues(sc, &iaq); 1373 if (rc != 0) 1374 goto done; /* error message displayed already */ 1375 1376 num_vis = iaq.num_vis; 1377 sc->intr_type = iaq.intr_type; 1378 sc->intr_count = iaq.nirq; 1379 1380 s = &sc->sge; 1381 s->nrxq = nports * iaq.nrxq; 1382 s->ntxq = nports * iaq.ntxq; 1383 if (num_vis > 1) { 1384 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1385 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1386 } 1387 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1388 s->neq += nports; /* ctrl queues: 1 per port */ 1389 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1390 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1391 if (is_offload(sc) || is_ethoffload(sc)) { 1392 s->nofldtxq = nports * iaq.nofldtxq; 1393 if (num_vis > 1) 1394 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1395 s->neq += s->nofldtxq; 1396 1397 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1398 M_CXGBE, M_ZERO | M_WAITOK); 1399 } 1400 #endif 1401 #ifdef TCP_OFFLOAD 1402 if (is_offload(sc)) { 1403 s->nofldrxq = nports * iaq.nofldrxq; 1404 if (num_vis > 1) 1405 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1406 s->neq += s->nofldrxq; /* free list */ 1407 s->niq += s->nofldrxq; 1408 1409 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1410 M_CXGBE, M_ZERO | M_WAITOK); 1411 } 1412 #endif 1413 #ifdef DEV_NETMAP 1414 s->nnmrxq = 0; 1415 s->nnmtxq = 0; 1416 if (t4_native_netmap & NN_MAIN_VI) { 1417 s->nnmrxq += nports * iaq.nnmrxq; 1418 s->nnmtxq += nports * iaq.nnmtxq; 1419 } 1420 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1421 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1422 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1423 } 1424 s->neq += s->nnmtxq + s->nnmrxq; 1425 s->niq += s->nnmrxq; 1426 1427 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1428 M_CXGBE, M_ZERO | M_WAITOK); 1429 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1430 M_CXGBE, M_ZERO | M_WAITOK); 1431 #endif 1432 MPASS(s->niq <= s->iqmap_sz); 1433 MPASS(s->neq <= s->eqmap_sz); 1434 1435 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1436 M_ZERO | M_WAITOK); 1437 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1438 M_ZERO | M_WAITOK); 1439 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1440 M_ZERO | M_WAITOK); 1441 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1442 M_ZERO | M_WAITOK); 1443 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1444 M_ZERO | M_WAITOK); 1445 1446 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1447 M_ZERO | M_WAITOK); 1448 1449 t4_init_l2t(sc, M_WAITOK); 1450 t4_init_smt(sc, M_WAITOK); 1451 t4_init_tx_sched(sc); 1452 t4_init_atid_table(sc); 1453 #ifdef RATELIMIT 1454 t4_init_etid_table(sc); 1455 #endif 1456 #ifdef INET6 1457 t4_init_clip_table(sc); 1458 #endif 1459 if (sc->vres.key.size != 0) 1460 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1461 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1462 1463 /* 1464 * Second pass over the ports. This time we know the number of rx and 1465 * tx queues that each port should get. 1466 */ 1467 rqidx = tqidx = 0; 1468 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1469 ofld_tqidx = 0; 1470 #endif 1471 #ifdef TCP_OFFLOAD 1472 ofld_rqidx = 0; 1473 #endif 1474 #ifdef DEV_NETMAP 1475 nm_rqidx = nm_tqidx = 0; 1476 #endif 1477 for_each_port(sc, i) { 1478 struct port_info *pi = sc->port[i]; 1479 struct vi_info *vi; 1480 1481 if (pi == NULL) 1482 continue; 1483 1484 pi->nvi = num_vis; 1485 for_each_vi(pi, j, vi) { 1486 vi->pi = pi; 1487 vi->adapter = sc; 1488 vi->first_intr = -1; 1489 vi->qsize_rxq = t4_qsize_rxq; 1490 vi->qsize_txq = t4_qsize_txq; 1491 1492 vi->first_rxq = rqidx; 1493 vi->first_txq = tqidx; 1494 vi->tmr_idx = t4_tmr_idx; 1495 vi->pktc_idx = t4_pktc_idx; 1496 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1497 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1498 1499 rqidx += vi->nrxq; 1500 tqidx += vi->ntxq; 1501 1502 if (j == 0 && vi->ntxq > 1) 1503 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1504 else 1505 vi->rsrv_noflowq = 0; 1506 1507 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1508 vi->first_ofld_txq = ofld_tqidx; 1509 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1510 ofld_tqidx += vi->nofldtxq; 1511 #endif 1512 #ifdef TCP_OFFLOAD 1513 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1514 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1515 vi->first_ofld_rxq = ofld_rqidx; 1516 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1517 1518 ofld_rqidx += vi->nofldrxq; 1519 #endif 1520 #ifdef DEV_NETMAP 1521 vi->first_nm_rxq = nm_rqidx; 1522 vi->first_nm_txq = nm_tqidx; 1523 if (j == 0) { 1524 vi->nnmrxq = iaq.nnmrxq; 1525 vi->nnmtxq = iaq.nnmtxq; 1526 } else { 1527 vi->nnmrxq = iaq.nnmrxq_vi; 1528 vi->nnmtxq = iaq.nnmtxq_vi; 1529 } 1530 nm_rqidx += vi->nnmrxq; 1531 nm_tqidx += vi->nnmtxq; 1532 #endif 1533 } 1534 } 1535 1536 rc = t4_setup_intr_handlers(sc); 1537 if (rc != 0) { 1538 device_printf(dev, 1539 "failed to setup interrupt handlers: %d\n", rc); 1540 goto done; 1541 } 1542 1543 rc = bus_generic_probe(dev); 1544 if (rc != 0) { 1545 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1546 goto done; 1547 } 1548 1549 /* 1550 * Ensure thread-safe mailbox access (in debug builds). 1551 * 1552 * So far this was the only thread accessing the mailbox but various 1553 * ifnets and sysctls are about to be created and their handlers/ioctls 1554 * will access the mailbox from different threads. 1555 */ 1556 sc->flags |= CHK_MBOX_ACCESS; 1557 1558 rc = bus_generic_attach(dev); 1559 if (rc != 0) { 1560 device_printf(dev, 1561 "failed to attach all child ports: %d\n", rc); 1562 goto done; 1563 } 1564 1565 device_printf(dev, 1566 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1567 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1568 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1569 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1570 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1571 1572 t4_set_desc(sc); 1573 1574 notify_siblings(dev, 0); 1575 1576 done: 1577 if (rc != 0 && sc->cdev) { 1578 /* cdev was created and so cxgbetool works; recover that way. */ 1579 device_printf(dev, 1580 "error during attach, adapter is now in recovery mode.\n"); 1581 rc = 0; 1582 } 1583 1584 if (rc != 0) 1585 t4_detach_common(dev); 1586 else 1587 t4_sysctls(sc); 1588 1589 return (rc); 1590 } 1591 1592 static int 1593 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1594 { 1595 struct adapter *sc; 1596 struct port_info *pi; 1597 int i; 1598 1599 sc = device_get_softc(bus); 1600 for_each_port(sc, i) { 1601 pi = sc->port[i]; 1602 if (pi != NULL && pi->dev == dev) { 1603 sbuf_printf(sb, "port=%d", pi->port_id); 1604 break; 1605 } 1606 } 1607 return (0); 1608 } 1609 1610 static int 1611 t4_ready(device_t dev) 1612 { 1613 struct adapter *sc; 1614 1615 sc = device_get_softc(dev); 1616 if (sc->flags & FW_OK) 1617 return (0); 1618 return (ENXIO); 1619 } 1620 1621 static int 1622 t4_read_port_device(device_t dev, int port, device_t *child) 1623 { 1624 struct adapter *sc; 1625 struct port_info *pi; 1626 1627 sc = device_get_softc(dev); 1628 if (port < 0 || port >= MAX_NPORTS) 1629 return (EINVAL); 1630 pi = sc->port[port]; 1631 if (pi == NULL || pi->dev == NULL) 1632 return (ENXIO); 1633 *child = pi->dev; 1634 return (0); 1635 } 1636 1637 static int 1638 notify_siblings(device_t dev, int detaching) 1639 { 1640 device_t sibling; 1641 int error, i; 1642 1643 error = 0; 1644 for (i = 0; i < PCI_FUNCMAX; i++) { 1645 if (i == pci_get_function(dev)) 1646 continue; 1647 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1648 pci_get_slot(dev), i); 1649 if (sibling == NULL || !device_is_attached(sibling)) 1650 continue; 1651 if (detaching) 1652 error = T4_DETACH_CHILD(sibling); 1653 else 1654 (void)T4_ATTACH_CHILD(sibling); 1655 if (error) 1656 break; 1657 } 1658 return (error); 1659 } 1660 1661 /* 1662 * Idempotent 1663 */ 1664 static int 1665 t4_detach(device_t dev) 1666 { 1667 int rc; 1668 1669 rc = notify_siblings(dev, 1); 1670 if (rc) { 1671 device_printf(dev, 1672 "failed to detach sibling devices: %d\n", rc); 1673 return (rc); 1674 } 1675 1676 return (t4_detach_common(dev)); 1677 } 1678 1679 int 1680 t4_detach_common(device_t dev) 1681 { 1682 struct adapter *sc; 1683 struct port_info *pi; 1684 int i, rc; 1685 1686 sc = device_get_softc(dev); 1687 1688 if (sc->cdev) { 1689 destroy_dev(sc->cdev); 1690 sc->cdev = NULL; 1691 } 1692 1693 sx_xlock(&t4_list_lock); 1694 SLIST_REMOVE(&t4_list, sc, adapter, link); 1695 sx_xunlock(&t4_list_lock); 1696 1697 sc->flags &= ~CHK_MBOX_ACCESS; 1698 if (sc->flags & FULL_INIT_DONE) { 1699 if (!(sc->flags & IS_VF)) 1700 t4_intr_disable(sc); 1701 } 1702 1703 if (device_is_attached(dev)) { 1704 rc = bus_generic_detach(dev); 1705 if (rc) { 1706 device_printf(dev, 1707 "failed to detach child devices: %d\n", rc); 1708 return (rc); 1709 } 1710 } 1711 1712 #ifdef TCP_OFFLOAD 1713 taskqueue_drain(taskqueue_thread, &sc->async_event_task); 1714 #endif 1715 1716 for (i = 0; i < sc->intr_count; i++) 1717 t4_free_irq(sc, &sc->irq[i]); 1718 1719 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1720 t4_free_tx_sched(sc); 1721 1722 for (i = 0; i < MAX_NPORTS; i++) { 1723 pi = sc->port[i]; 1724 if (pi) { 1725 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1726 if (pi->dev) 1727 device_delete_child(dev, pi->dev); 1728 1729 mtx_destroy(&pi->pi_lock); 1730 free(pi->vi, M_CXGBE); 1731 free(pi, M_CXGBE); 1732 } 1733 } 1734 1735 device_delete_children(dev); 1736 sysctl_ctx_free(&sc->ctx); 1737 adapter_full_uninit(sc); 1738 1739 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1740 t4_fw_bye(sc, sc->mbox); 1741 1742 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1743 pci_release_msi(dev); 1744 1745 if (sc->regs_res) 1746 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1747 sc->regs_res); 1748 1749 if (sc->udbs_res) 1750 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1751 sc->udbs_res); 1752 1753 if (sc->msix_res) 1754 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1755 sc->msix_res); 1756 1757 if (sc->l2t) 1758 t4_free_l2t(sc->l2t); 1759 if (sc->smt) 1760 t4_free_smt(sc->smt); 1761 t4_free_atid_table(sc); 1762 #ifdef RATELIMIT 1763 t4_free_etid_table(sc); 1764 #endif 1765 if (sc->key_map) 1766 vmem_destroy(sc->key_map); 1767 #ifdef INET6 1768 t4_destroy_clip_table(sc); 1769 #endif 1770 1771 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1772 free(sc->sge.ofld_txq, M_CXGBE); 1773 #endif 1774 #ifdef TCP_OFFLOAD 1775 free(sc->sge.ofld_rxq, M_CXGBE); 1776 #endif 1777 #ifdef DEV_NETMAP 1778 free(sc->sge.nm_rxq, M_CXGBE); 1779 free(sc->sge.nm_txq, M_CXGBE); 1780 #endif 1781 free(sc->irq, M_CXGBE); 1782 free(sc->sge.rxq, M_CXGBE); 1783 free(sc->sge.txq, M_CXGBE); 1784 free(sc->sge.ctrlq, M_CXGBE); 1785 free(sc->sge.iqmap, M_CXGBE); 1786 free(sc->sge.eqmap, M_CXGBE); 1787 free(sc->tids.ftid_tab, M_CXGBE); 1788 free(sc->tids.hpftid_tab, M_CXGBE); 1789 free_hftid_hash(&sc->tids); 1790 free(sc->tids.tid_tab, M_CXGBE); 1791 free(sc->tt.tls_rx_ports, M_CXGBE); 1792 t4_destroy_dma_tag(sc); 1793 1794 callout_drain(&sc->ktls_tick); 1795 callout_drain(&sc->sfl_callout); 1796 if (mtx_initialized(&sc->tids.ftid_lock)) { 1797 mtx_destroy(&sc->tids.ftid_lock); 1798 cv_destroy(&sc->tids.ftid_cv); 1799 } 1800 if (mtx_initialized(&sc->tids.atid_lock)) 1801 mtx_destroy(&sc->tids.atid_lock); 1802 if (mtx_initialized(&sc->ifp_lock)) 1803 mtx_destroy(&sc->ifp_lock); 1804 1805 if (rw_initialized(&sc->policy_lock)) { 1806 rw_destroy(&sc->policy_lock); 1807 #ifdef TCP_OFFLOAD 1808 if (sc->policy != NULL) 1809 free_offload_policy(sc->policy); 1810 #endif 1811 } 1812 1813 for (i = 0; i < NUM_MEMWIN; i++) { 1814 struct memwin *mw = &sc->memwin[i]; 1815 1816 if (rw_initialized(&mw->mw_lock)) 1817 rw_destroy(&mw->mw_lock); 1818 } 1819 1820 mtx_destroy(&sc->sfl_lock); 1821 mtx_destroy(&sc->reg_lock); 1822 mtx_destroy(&sc->sc_lock); 1823 1824 bzero(sc, sizeof(*sc)); 1825 1826 return (0); 1827 } 1828 1829 static inline bool 1830 ok_to_reset(struct adapter *sc) 1831 { 1832 struct tid_info *t = &sc->tids; 1833 struct port_info *pi; 1834 struct vi_info *vi; 1835 int i, j; 1836 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1837 1838 ASSERT_SYNCHRONIZED_OP(sc); 1839 MPASS(!(sc->flags & IS_VF)); 1840 1841 for_each_port(sc, i) { 1842 pi = sc->port[i]; 1843 for_each_vi(pi, j, vi) { 1844 if (vi->ifp->if_capenable & caps) 1845 return (false); 1846 } 1847 } 1848 1849 if (atomic_load_int(&t->tids_in_use) > 0) 1850 return (false); 1851 if (atomic_load_int(&t->stids_in_use) > 0) 1852 return (false); 1853 if (atomic_load_int(&t->atids_in_use) > 0) 1854 return (false); 1855 if (atomic_load_int(&t->ftids_in_use) > 0) 1856 return (false); 1857 if (atomic_load_int(&t->hpftids_in_use) > 0) 1858 return (false); 1859 if (atomic_load_int(&t->etids_in_use) > 0) 1860 return (false); 1861 1862 return (true); 1863 } 1864 1865 static int 1866 t4_suspend(device_t dev) 1867 { 1868 struct adapter *sc = device_get_softc(dev); 1869 struct port_info *pi; 1870 struct vi_info *vi; 1871 struct ifnet *ifp; 1872 struct sge_rxq *rxq; 1873 struct sge_txq *txq; 1874 struct sge_wrq *wrq; 1875 #ifdef TCP_OFFLOAD 1876 struct sge_ofld_rxq *ofld_rxq; 1877 #endif 1878 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1879 struct sge_ofld_txq *ofld_txq; 1880 #endif 1881 int rc, i, j, k; 1882 1883 CH_ALERT(sc, "suspend requested\n"); 1884 1885 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1886 if (rc != 0) 1887 return (ENXIO); 1888 1889 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1890 MPASS(!hw_off_limits(sc)); 1891 1892 if (!ok_to_reset(sc)) { 1893 /* XXX: should list what resource is preventing suspend. */ 1894 CH_ERR(sc, "not safe to suspend.\n"); 1895 rc = EBUSY; 1896 goto done; 1897 } 1898 1899 /* No more DMA or interrupts. */ 1900 t4_shutdown_adapter(sc); 1901 1902 /* Quiesce all activity. */ 1903 for_each_port(sc, i) { 1904 pi = sc->port[i]; 1905 pi->vxlan_tcam_entry = false; 1906 1907 PORT_LOCK(pi); 1908 if (pi->up_vis > 0) { 1909 /* 1910 * t4_shutdown_adapter has already shut down all the 1911 * PHYs but it also disables interrupts and DMA so there 1912 * won't be a link interrupt. So we update the state 1913 * manually and inform the kernel. 1914 */ 1915 pi->link_cfg.link_ok = false; 1916 t4_os_link_changed(pi); 1917 } 1918 PORT_UNLOCK(pi); 1919 1920 for_each_vi(pi, j, vi) { 1921 vi->xact_addr_filt = -1; 1922 if (!(vi->flags & VI_INIT_DONE)) 1923 continue; 1924 1925 ifp = vi->ifp; 1926 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1927 mtx_lock(&vi->tick_mtx); 1928 vi->flags |= VI_SKIP_STATS; 1929 callout_stop(&vi->tick); 1930 mtx_unlock(&vi->tick_mtx); 1931 callout_drain(&vi->tick); 1932 } 1933 1934 /* 1935 * Note that the HW is not available. 1936 */ 1937 for_each_txq(vi, k, txq) { 1938 TXQ_LOCK(txq); 1939 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1940 TXQ_UNLOCK(txq); 1941 } 1942 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1943 for_each_ofld_txq(vi, k, ofld_txq) { 1944 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1945 } 1946 #endif 1947 for_each_rxq(vi, k, rxq) { 1948 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1949 } 1950 #if defined(TCP_OFFLOAD) 1951 for_each_ofld_rxq(vi, k, ofld_rxq) { 1952 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1953 } 1954 #endif 1955 1956 quiesce_vi(vi); 1957 } 1958 1959 if (sc->flags & FULL_INIT_DONE) { 1960 /* Control queue */ 1961 wrq = &sc->sge.ctrlq[i]; 1962 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1963 quiesce_wrq(wrq); 1964 } 1965 } 1966 if (sc->flags & FULL_INIT_DONE) { 1967 /* Firmware event queue */ 1968 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1969 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1970 } 1971 1972 /* Mark the adapter totally off limits. */ 1973 mtx_lock(&sc->reg_lock); 1974 sc->flags |= HW_OFF_LIMITS; 1975 sc->flags &= ~(FW_OK | MASTER_PF); 1976 sc->reset_thread = NULL; 1977 mtx_unlock(&sc->reg_lock); 1978 1979 sc->num_resets++; 1980 CH_ALERT(sc, "suspend completed.\n"); 1981 done: 1982 end_synchronized_op(sc, 0); 1983 return (rc); 1984 } 1985 1986 struct adapter_pre_reset_state { 1987 u_int flags; 1988 uint16_t nbmcaps; 1989 uint16_t linkcaps; 1990 uint16_t switchcaps; 1991 uint16_t niccaps; 1992 uint16_t toecaps; 1993 uint16_t rdmacaps; 1994 uint16_t cryptocaps; 1995 uint16_t iscsicaps; 1996 uint16_t fcoecaps; 1997 1998 u_int cfcsum; 1999 char cfg_file[32]; 2000 2001 struct adapter_params params; 2002 struct t4_virt_res vres; 2003 struct tid_info tids; 2004 struct sge sge; 2005 2006 int rawf_base; 2007 int nrawf; 2008 2009 }; 2010 2011 static void 2012 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2013 { 2014 2015 ASSERT_SYNCHRONIZED_OP(sc); 2016 2017 o->flags = sc->flags; 2018 2019 o->nbmcaps = sc->nbmcaps; 2020 o->linkcaps = sc->linkcaps; 2021 o->switchcaps = sc->switchcaps; 2022 o->niccaps = sc->niccaps; 2023 o->toecaps = sc->toecaps; 2024 o->rdmacaps = sc->rdmacaps; 2025 o->cryptocaps = sc->cryptocaps; 2026 o->iscsicaps = sc->iscsicaps; 2027 o->fcoecaps = sc->fcoecaps; 2028 2029 o->cfcsum = sc->cfcsum; 2030 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2031 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2032 2033 o->params = sc->params; 2034 o->vres = sc->vres; 2035 o->tids = sc->tids; 2036 o->sge = sc->sge; 2037 2038 o->rawf_base = sc->rawf_base; 2039 o->nrawf = sc->nrawf; 2040 } 2041 2042 static int 2043 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2044 { 2045 int rc = 0; 2046 2047 ASSERT_SYNCHRONIZED_OP(sc); 2048 2049 /* Capabilities */ 2050 #define COMPARE_CAPS(c) do { \ 2051 if (o->c##caps != sc->c##caps) { \ 2052 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2053 sc->c##caps); \ 2054 rc = EINVAL; \ 2055 } \ 2056 } while (0) 2057 COMPARE_CAPS(nbm); 2058 COMPARE_CAPS(link); 2059 COMPARE_CAPS(switch); 2060 COMPARE_CAPS(nic); 2061 COMPARE_CAPS(toe); 2062 COMPARE_CAPS(rdma); 2063 COMPARE_CAPS(crypto); 2064 COMPARE_CAPS(iscsi); 2065 COMPARE_CAPS(fcoe); 2066 #undef COMPARE_CAPS 2067 2068 /* Firmware config file */ 2069 if (o->cfcsum != sc->cfcsum) { 2070 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2071 o->cfcsum, sc->cfg_file, sc->cfcsum); 2072 rc = EINVAL; 2073 } 2074 2075 #define COMPARE_PARAM(p, name) do { \ 2076 if (o->p != sc->p) { \ 2077 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2078 rc = EINVAL; \ 2079 } \ 2080 } while (0) 2081 COMPARE_PARAM(sge.iq_start, iq_start); 2082 COMPARE_PARAM(sge.eq_start, eq_start); 2083 COMPARE_PARAM(tids.ftid_base, ftid_base); 2084 COMPARE_PARAM(tids.ftid_end, ftid_end); 2085 COMPARE_PARAM(tids.nftids, nftids); 2086 COMPARE_PARAM(vres.l2t.start, l2t_start); 2087 COMPARE_PARAM(vres.l2t.size, l2t_size); 2088 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2089 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2090 COMPARE_PARAM(tids.tid_base, tid_base); 2091 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2092 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2093 COMPARE_PARAM(tids.nhpftids, nhpftids); 2094 COMPARE_PARAM(rawf_base, rawf_base); 2095 COMPARE_PARAM(nrawf, nrawf); 2096 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2097 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2098 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2099 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2100 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2101 COMPARE_PARAM(tids.ntids, ntids); 2102 COMPARE_PARAM(tids.etid_base, etid_base); 2103 COMPARE_PARAM(tids.etid_end, etid_end); 2104 COMPARE_PARAM(tids.netids, netids); 2105 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2106 COMPARE_PARAM(params.ethoffload, ethoffload); 2107 COMPARE_PARAM(tids.natids, natids); 2108 COMPARE_PARAM(tids.stid_base, stid_base); 2109 COMPARE_PARAM(vres.ddp.start, ddp_start); 2110 COMPARE_PARAM(vres.ddp.size, ddp_size); 2111 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2112 COMPARE_PARAM(vres.stag.start, stag_start); 2113 COMPARE_PARAM(vres.stag.size, stag_size); 2114 COMPARE_PARAM(vres.rq.start, rq_start); 2115 COMPARE_PARAM(vres.rq.size, rq_size); 2116 COMPARE_PARAM(vres.pbl.start, pbl_start); 2117 COMPARE_PARAM(vres.pbl.size, pbl_size); 2118 COMPARE_PARAM(vres.qp.start, qp_start); 2119 COMPARE_PARAM(vres.qp.size, qp_size); 2120 COMPARE_PARAM(vres.cq.start, cq_start); 2121 COMPARE_PARAM(vres.cq.size, cq_size); 2122 COMPARE_PARAM(vres.ocq.start, ocq_start); 2123 COMPARE_PARAM(vres.ocq.size, ocq_size); 2124 COMPARE_PARAM(vres.srq.start, srq_start); 2125 COMPARE_PARAM(vres.srq.size, srq_size); 2126 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2127 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2128 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2129 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2130 COMPARE_PARAM(vres.key.start, key_start); 2131 COMPARE_PARAM(vres.key.size, key_size); 2132 #undef COMPARE_PARAM 2133 2134 return (rc); 2135 } 2136 2137 static int 2138 t4_resume(device_t dev) 2139 { 2140 struct adapter *sc = device_get_softc(dev); 2141 struct adapter_pre_reset_state *old_state = NULL; 2142 struct port_info *pi; 2143 struct vi_info *vi; 2144 struct ifnet *ifp; 2145 struct sge_txq *txq; 2146 int rc, i, j, k; 2147 2148 CH_ALERT(sc, "resume requested.\n"); 2149 2150 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2151 if (rc != 0) 2152 return (ENXIO); 2153 MPASS(hw_off_limits(sc)); 2154 MPASS((sc->flags & FW_OK) == 0); 2155 MPASS((sc->flags & MASTER_PF) == 0); 2156 MPASS(sc->reset_thread == NULL); 2157 sc->reset_thread = curthread; 2158 2159 /* Register access is expected to work by the time we're here. */ 2160 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2161 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2162 rc = ENXIO; 2163 goto done; 2164 } 2165 2166 /* Restore memory window. */ 2167 setup_memwin(sc); 2168 2169 /* Go no further if recovery mode has been requested. */ 2170 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2171 CH_ALERT(sc, "recovery mode on resume.\n"); 2172 rc = 0; 2173 mtx_lock(&sc->reg_lock); 2174 sc->flags &= ~HW_OFF_LIMITS; 2175 mtx_unlock(&sc->reg_lock); 2176 goto done; 2177 } 2178 2179 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2180 save_caps_and_params(sc, old_state); 2181 2182 /* Reestablish contact with firmware and become the primary PF. */ 2183 rc = contact_firmware(sc); 2184 if (rc != 0) 2185 goto done; /* error message displayed already */ 2186 MPASS(sc->flags & FW_OK); 2187 2188 if (sc->flags & MASTER_PF) { 2189 rc = partition_resources(sc); 2190 if (rc != 0) 2191 goto done; /* error message displayed already */ 2192 t4_intr_clear(sc); 2193 } 2194 2195 rc = get_params__post_init(sc); 2196 if (rc != 0) 2197 goto done; /* error message displayed already */ 2198 2199 rc = set_params__post_init(sc); 2200 if (rc != 0) 2201 goto done; /* error message displayed already */ 2202 2203 rc = compare_caps_and_params(sc, old_state); 2204 if (rc != 0) 2205 goto done; /* error message displayed already */ 2206 2207 for_each_port(sc, i) { 2208 pi = sc->port[i]; 2209 MPASS(pi != NULL); 2210 MPASS(pi->vi != NULL); 2211 MPASS(pi->vi[0].dev == pi->dev); 2212 2213 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2214 if (rc != 0) { 2215 CH_ERR(sc, 2216 "failed to re-initialize port %d: %d\n", i, rc); 2217 goto done; 2218 } 2219 MPASS(sc->chan_map[pi->tx_chan] == i); 2220 2221 PORT_LOCK(pi); 2222 fixup_link_config(pi); 2223 build_medialist(pi); 2224 PORT_UNLOCK(pi); 2225 for_each_vi(pi, j, vi) { 2226 if (IS_MAIN_VI(vi)) 2227 continue; 2228 rc = alloc_extra_vi(sc, pi, vi); 2229 if (rc != 0) { 2230 CH_ERR(vi, 2231 "failed to re-allocate extra VI: %d\n", rc); 2232 goto done; 2233 } 2234 } 2235 } 2236 2237 /* 2238 * Interrupts and queues are about to be enabled and other threads will 2239 * want to access the hardware too. It is safe to do so. Note that 2240 * this thread is still in the middle of a synchronized_op. 2241 */ 2242 mtx_lock(&sc->reg_lock); 2243 sc->flags &= ~HW_OFF_LIMITS; 2244 mtx_unlock(&sc->reg_lock); 2245 2246 if (sc->flags & FULL_INIT_DONE) { 2247 rc = adapter_full_init(sc); 2248 if (rc != 0) { 2249 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2250 goto done; 2251 } 2252 2253 if (sc->vxlan_refcount > 0) 2254 enable_vxlan_rx(sc); 2255 2256 for_each_port(sc, i) { 2257 pi = sc->port[i]; 2258 for_each_vi(pi, j, vi) { 2259 if (!(vi->flags & VI_INIT_DONE)) 2260 continue; 2261 rc = vi_full_init(vi); 2262 if (rc != 0) { 2263 CH_ERR(vi, "failed to re-initialize " 2264 "interface: %d\n", rc); 2265 goto done; 2266 } 2267 2268 ifp = vi->ifp; 2269 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2270 continue; 2271 /* 2272 * Note that we do not setup multicast addresses 2273 * in the first pass. This ensures that the 2274 * unicast DMACs for all VIs on all ports get an 2275 * MPS TCAM entry. 2276 */ 2277 rc = update_mac_settings(ifp, XGMAC_ALL & 2278 ~XGMAC_MCADDRS); 2279 if (rc != 0) { 2280 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2281 goto done; 2282 } 2283 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2284 true); 2285 if (rc != 0) { 2286 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2287 goto done; 2288 } 2289 for_each_txq(vi, k, txq) { 2290 TXQ_LOCK(txq); 2291 txq->eq.flags |= EQ_ENABLED; 2292 TXQ_UNLOCK(txq); 2293 } 2294 mtx_lock(&vi->tick_mtx); 2295 vi->flags &= ~VI_SKIP_STATS; 2296 callout_schedule(&vi->tick, hz); 2297 mtx_unlock(&vi->tick_mtx); 2298 } 2299 PORT_LOCK(pi); 2300 if (pi->up_vis > 0) { 2301 t4_update_port_info(pi); 2302 fixup_link_config(pi); 2303 build_medialist(pi); 2304 apply_link_config(pi); 2305 if (pi->link_cfg.link_ok) 2306 t4_os_link_changed(pi); 2307 } 2308 PORT_UNLOCK(pi); 2309 } 2310 2311 /* Now reprogram the L2 multicast addresses. */ 2312 for_each_port(sc, i) { 2313 pi = sc->port[i]; 2314 for_each_vi(pi, j, vi) { 2315 if (!(vi->flags & VI_INIT_DONE)) 2316 continue; 2317 ifp = vi->ifp; 2318 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2319 continue; 2320 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2321 if (rc != 0) { 2322 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2323 rc = 0; /* carry on */ 2324 } 2325 } 2326 } 2327 } 2328 done: 2329 if (rc == 0) { 2330 sc->incarnation++; 2331 CH_ALERT(sc, "resume completed.\n"); 2332 } 2333 end_synchronized_op(sc, 0); 2334 free(old_state, M_CXGBE); 2335 return (rc); 2336 } 2337 2338 static int 2339 t4_reset_prepare(device_t dev, device_t child) 2340 { 2341 struct adapter *sc = device_get_softc(dev); 2342 2343 CH_ALERT(sc, "reset_prepare.\n"); 2344 return (0); 2345 } 2346 2347 static int 2348 t4_reset_post(device_t dev, device_t child) 2349 { 2350 struct adapter *sc = device_get_softc(dev); 2351 2352 CH_ALERT(sc, "reset_post.\n"); 2353 return (0); 2354 } 2355 2356 static void 2357 reset_adapter(void *arg, int pending) 2358 { 2359 struct adapter *sc = arg; 2360 int rc; 2361 2362 CH_ALERT(sc, "reset requested.\n"); 2363 2364 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2365 if (rc != 0) 2366 return; 2367 2368 if (hw_off_limits(sc)) { 2369 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2370 rc = ENXIO; 2371 goto done; 2372 } 2373 2374 if (!ok_to_reset(sc)) { 2375 /* XXX: should list what resource is preventing reset. */ 2376 CH_ERR(sc, "not safe to reset.\n"); 2377 rc = EBUSY; 2378 goto done; 2379 } 2380 2381 done: 2382 end_synchronized_op(sc, 0); 2383 if (rc != 0) 2384 return; /* Error logged already. */ 2385 2386 mtx_lock(&Giant); 2387 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2388 mtx_unlock(&Giant); 2389 if (rc != 0) 2390 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2391 else 2392 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2393 } 2394 2395 static int 2396 cxgbe_probe(device_t dev) 2397 { 2398 char buf[128]; 2399 struct port_info *pi = device_get_softc(dev); 2400 2401 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2402 device_set_desc_copy(dev, buf); 2403 2404 return (BUS_PROBE_DEFAULT); 2405 } 2406 2407 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2408 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2409 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2410 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2411 #define T4_CAP_ENABLE (T4_CAP) 2412 2413 static int 2414 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2415 { 2416 struct ifnet *ifp; 2417 struct sbuf *sb; 2418 struct sysctl_ctx_list *ctx = &vi->ctx; 2419 struct sysctl_oid_list *children; 2420 struct pfil_head_args pa; 2421 struct adapter *sc = vi->adapter; 2422 2423 sysctl_ctx_init(ctx); 2424 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2425 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2426 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2427 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2428 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2429 #ifdef DEV_NETMAP 2430 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2431 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2432 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2433 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2434 #endif 2435 #ifdef TCP_OFFLOAD 2436 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2437 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2438 #endif 2439 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2440 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2441 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2442 #endif 2443 2444 vi->xact_addr_filt = -1; 2445 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2446 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2447 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2448 vi->flags |= TX_USES_VM_WR; 2449 2450 /* Allocate an ifnet and set it up */ 2451 ifp = if_alloc_dev(IFT_ETHER, dev); 2452 if (ifp == NULL) { 2453 device_printf(dev, "Cannot allocate ifnet\n"); 2454 return (ENOMEM); 2455 } 2456 vi->ifp = ifp; 2457 ifp->if_softc = vi; 2458 2459 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2460 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2461 2462 ifp->if_init = cxgbe_init; 2463 ifp->if_ioctl = cxgbe_ioctl; 2464 ifp->if_transmit = cxgbe_transmit; 2465 ifp->if_qflush = cxgbe_qflush; 2466 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2467 ifp->if_get_counter = vi_get_counter; 2468 else 2469 ifp->if_get_counter = cxgbe_get_counter; 2470 #if defined(KERN_TLS) || defined(RATELIMIT) 2471 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2472 #endif 2473 #ifdef RATELIMIT 2474 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2475 #endif 2476 2477 ifp->if_capabilities = T4_CAP; 2478 ifp->if_capenable = T4_CAP_ENABLE; 2479 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2480 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2481 if (chip_id(sc) >= CHELSIO_T6) { 2482 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2483 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2484 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2485 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2486 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2487 } 2488 2489 #ifdef TCP_OFFLOAD 2490 if (vi->nofldrxq != 0) 2491 ifp->if_capabilities |= IFCAP_TOE; 2492 #endif 2493 #ifdef RATELIMIT 2494 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2495 ifp->if_capabilities |= IFCAP_TXRTLMT; 2496 ifp->if_capenable |= IFCAP_TXRTLMT; 2497 } 2498 #endif 2499 2500 ifp->if_hw_tsomax = IP_MAXPACKET; 2501 if (vi->flags & TX_USES_VM_WR) 2502 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2503 else 2504 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2505 #ifdef RATELIMIT 2506 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2507 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2508 #endif 2509 ifp->if_hw_tsomaxsegsize = 65536; 2510 #ifdef KERN_TLS 2511 if (is_ktls(sc)) { 2512 ifp->if_capabilities |= IFCAP_TXTLS; 2513 if (sc->flags & KERN_TLS_ON) 2514 ifp->if_capenable |= IFCAP_TXTLS; 2515 } 2516 #endif 2517 2518 ether_ifattach(ifp, vi->hw_addr); 2519 #ifdef DEV_NETMAP 2520 if (vi->nnmrxq != 0) 2521 cxgbe_nm_attach(vi); 2522 #endif 2523 sb = sbuf_new_auto(); 2524 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2525 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2526 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2527 case IFCAP_TOE: 2528 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2529 break; 2530 case IFCAP_TOE | IFCAP_TXRTLMT: 2531 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2532 break; 2533 case IFCAP_TXRTLMT: 2534 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2535 break; 2536 } 2537 #endif 2538 #ifdef TCP_OFFLOAD 2539 if (ifp->if_capabilities & IFCAP_TOE) 2540 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2541 #endif 2542 #ifdef DEV_NETMAP 2543 if (ifp->if_capabilities & IFCAP_NETMAP) 2544 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2545 vi->nnmtxq, vi->nnmrxq); 2546 #endif 2547 sbuf_finish(sb); 2548 device_printf(dev, "%s\n", sbuf_data(sb)); 2549 sbuf_delete(sb); 2550 2551 vi_sysctls(vi); 2552 2553 pa.pa_version = PFIL_VERSION; 2554 pa.pa_flags = PFIL_IN; 2555 pa.pa_type = PFIL_TYPE_ETHERNET; 2556 pa.pa_headname = ifp->if_xname; 2557 vi->pfil = pfil_head_register(&pa); 2558 2559 return (0); 2560 } 2561 2562 static int 2563 cxgbe_attach(device_t dev) 2564 { 2565 struct port_info *pi = device_get_softc(dev); 2566 struct adapter *sc = pi->adapter; 2567 struct vi_info *vi; 2568 int i, rc; 2569 2570 sysctl_ctx_init(&pi->ctx); 2571 2572 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2573 if (rc) 2574 return (rc); 2575 2576 for_each_vi(pi, i, vi) { 2577 if (i == 0) 2578 continue; 2579 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2580 if (vi->dev == NULL) { 2581 device_printf(dev, "failed to add VI %d\n", i); 2582 continue; 2583 } 2584 device_set_softc(vi->dev, vi); 2585 } 2586 2587 cxgbe_sysctls(pi); 2588 2589 bus_generic_attach(dev); 2590 2591 return (0); 2592 } 2593 2594 static void 2595 cxgbe_vi_detach(struct vi_info *vi) 2596 { 2597 struct ifnet *ifp = vi->ifp; 2598 2599 if (vi->pfil != NULL) { 2600 pfil_head_unregister(vi->pfil); 2601 vi->pfil = NULL; 2602 } 2603 2604 ether_ifdetach(ifp); 2605 2606 /* Let detach proceed even if these fail. */ 2607 #ifdef DEV_NETMAP 2608 if (ifp->if_capabilities & IFCAP_NETMAP) 2609 cxgbe_nm_detach(vi); 2610 #endif 2611 cxgbe_uninit_synchronized(vi); 2612 callout_drain(&vi->tick); 2613 sysctl_ctx_free(&vi->ctx); 2614 vi_full_uninit(vi); 2615 2616 if_free(vi->ifp); 2617 vi->ifp = NULL; 2618 } 2619 2620 static int 2621 cxgbe_detach(device_t dev) 2622 { 2623 struct port_info *pi = device_get_softc(dev); 2624 struct adapter *sc = pi->adapter; 2625 int rc; 2626 2627 /* Detach the extra VIs first. */ 2628 rc = bus_generic_detach(dev); 2629 if (rc) 2630 return (rc); 2631 device_delete_children(dev); 2632 2633 sysctl_ctx_free(&pi->ctx); 2634 doom_vi(sc, &pi->vi[0]); 2635 2636 if (pi->flags & HAS_TRACEQ) { 2637 sc->traceq = -1; /* cloner should not create ifnet */ 2638 t4_tracer_port_detach(sc); 2639 } 2640 2641 cxgbe_vi_detach(&pi->vi[0]); 2642 ifmedia_removeall(&pi->media); 2643 2644 end_synchronized_op(sc, 0); 2645 2646 return (0); 2647 } 2648 2649 static void 2650 cxgbe_init(void *arg) 2651 { 2652 struct vi_info *vi = arg; 2653 struct adapter *sc = vi->adapter; 2654 2655 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2656 return; 2657 cxgbe_init_synchronized(vi); 2658 end_synchronized_op(sc, 0); 2659 } 2660 2661 static int 2662 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2663 { 2664 int rc = 0, mtu, flags; 2665 struct vi_info *vi = ifp->if_softc; 2666 struct port_info *pi = vi->pi; 2667 struct adapter *sc = pi->adapter; 2668 struct ifreq *ifr = (struct ifreq *)data; 2669 uint32_t mask; 2670 2671 switch (cmd) { 2672 case SIOCSIFMTU: 2673 mtu = ifr->ifr_mtu; 2674 if (mtu < ETHERMIN || mtu > MAX_MTU) 2675 return (EINVAL); 2676 2677 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2678 if (rc) 2679 return (rc); 2680 ifp->if_mtu = mtu; 2681 if (vi->flags & VI_INIT_DONE) { 2682 t4_update_fl_bufsize(ifp); 2683 if (!hw_off_limits(sc) && 2684 ifp->if_drv_flags & IFF_DRV_RUNNING) 2685 rc = update_mac_settings(ifp, XGMAC_MTU); 2686 } 2687 end_synchronized_op(sc, 0); 2688 break; 2689 2690 case SIOCSIFFLAGS: 2691 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2692 if (rc) 2693 return (rc); 2694 2695 if (hw_off_limits(sc)) { 2696 rc = ENXIO; 2697 goto fail; 2698 } 2699 2700 if (ifp->if_flags & IFF_UP) { 2701 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2702 flags = vi->if_flags; 2703 if ((ifp->if_flags ^ flags) & 2704 (IFF_PROMISC | IFF_ALLMULTI)) { 2705 rc = update_mac_settings(ifp, 2706 XGMAC_PROMISC | XGMAC_ALLMULTI); 2707 } 2708 } else { 2709 rc = cxgbe_init_synchronized(vi); 2710 } 2711 vi->if_flags = ifp->if_flags; 2712 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2713 rc = cxgbe_uninit_synchronized(vi); 2714 } 2715 end_synchronized_op(sc, 0); 2716 break; 2717 2718 case SIOCADDMULTI: 2719 case SIOCDELMULTI: 2720 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2721 if (rc) 2722 return (rc); 2723 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2724 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2725 end_synchronized_op(sc, 0); 2726 break; 2727 2728 case SIOCSIFCAP: 2729 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2730 if (rc) 2731 return (rc); 2732 2733 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2734 if (mask & IFCAP_TXCSUM) { 2735 ifp->if_capenable ^= IFCAP_TXCSUM; 2736 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2737 2738 if (IFCAP_TSO4 & ifp->if_capenable && 2739 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2740 mask &= ~IFCAP_TSO4; 2741 ifp->if_capenable &= ~IFCAP_TSO4; 2742 if_printf(ifp, 2743 "tso4 disabled due to -txcsum.\n"); 2744 } 2745 } 2746 if (mask & IFCAP_TXCSUM_IPV6) { 2747 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2748 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2749 2750 if (IFCAP_TSO6 & ifp->if_capenable && 2751 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2752 mask &= ~IFCAP_TSO6; 2753 ifp->if_capenable &= ~IFCAP_TSO6; 2754 if_printf(ifp, 2755 "tso6 disabled due to -txcsum6.\n"); 2756 } 2757 } 2758 if (mask & IFCAP_RXCSUM) 2759 ifp->if_capenable ^= IFCAP_RXCSUM; 2760 if (mask & IFCAP_RXCSUM_IPV6) 2761 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2762 2763 /* 2764 * Note that we leave CSUM_TSO alone (it is always set). The 2765 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2766 * sending a TSO request our way, so it's sufficient to toggle 2767 * IFCAP_TSOx only. 2768 */ 2769 if (mask & IFCAP_TSO4) { 2770 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2771 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2772 if_printf(ifp, "enable txcsum first.\n"); 2773 rc = EAGAIN; 2774 goto fail; 2775 } 2776 ifp->if_capenable ^= IFCAP_TSO4; 2777 } 2778 if (mask & IFCAP_TSO6) { 2779 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2780 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2781 if_printf(ifp, "enable txcsum6 first.\n"); 2782 rc = EAGAIN; 2783 goto fail; 2784 } 2785 ifp->if_capenable ^= IFCAP_TSO6; 2786 } 2787 if (mask & IFCAP_LRO) { 2788 #if defined(INET) || defined(INET6) 2789 int i; 2790 struct sge_rxq *rxq; 2791 2792 ifp->if_capenable ^= IFCAP_LRO; 2793 for_each_rxq(vi, i, rxq) { 2794 if (ifp->if_capenable & IFCAP_LRO) 2795 rxq->iq.flags |= IQ_LRO_ENABLED; 2796 else 2797 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2798 } 2799 #endif 2800 } 2801 #ifdef TCP_OFFLOAD 2802 if (mask & IFCAP_TOE) { 2803 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2804 2805 rc = toe_capability(vi, enable); 2806 if (rc != 0) 2807 goto fail; 2808 2809 ifp->if_capenable ^= mask; 2810 } 2811 #endif 2812 if (mask & IFCAP_VLAN_HWTAGGING) { 2813 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2814 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2815 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2816 } 2817 if (mask & IFCAP_VLAN_MTU) { 2818 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2819 2820 /* Need to find out how to disable auto-mtu-inflation */ 2821 } 2822 if (mask & IFCAP_VLAN_HWTSO) 2823 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2824 if (mask & IFCAP_VLAN_HWCSUM) 2825 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2826 #ifdef RATELIMIT 2827 if (mask & IFCAP_TXRTLMT) 2828 ifp->if_capenable ^= IFCAP_TXRTLMT; 2829 #endif 2830 if (mask & IFCAP_HWRXTSTMP) { 2831 int i; 2832 struct sge_rxq *rxq; 2833 2834 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2835 for_each_rxq(vi, i, rxq) { 2836 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2837 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2838 else 2839 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2840 } 2841 } 2842 if (mask & IFCAP_MEXTPG) 2843 ifp->if_capenable ^= IFCAP_MEXTPG; 2844 2845 #ifdef KERN_TLS 2846 if (mask & IFCAP_TXTLS) { 2847 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2848 2849 rc = ktls_capability(sc, enable); 2850 if (rc != 0) 2851 goto fail; 2852 2853 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2854 } 2855 #endif 2856 if (mask & IFCAP_VXLAN_HWCSUM) { 2857 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2858 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2859 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2860 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2861 } 2862 if (mask & IFCAP_VXLAN_HWTSO) { 2863 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2864 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2865 CSUM_INNER_IP_TSO; 2866 } 2867 2868 #ifdef VLAN_CAPABILITIES 2869 VLAN_CAPABILITIES(ifp); 2870 #endif 2871 fail: 2872 end_synchronized_op(sc, 0); 2873 break; 2874 2875 case SIOCSIFMEDIA: 2876 case SIOCGIFMEDIA: 2877 case SIOCGIFXMEDIA: 2878 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2879 break; 2880 2881 case SIOCGI2C: { 2882 struct ifi2creq i2c; 2883 2884 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2885 if (rc != 0) 2886 break; 2887 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2888 rc = EPERM; 2889 break; 2890 } 2891 if (i2c.len > sizeof(i2c.data)) { 2892 rc = EINVAL; 2893 break; 2894 } 2895 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2896 if (rc) 2897 return (rc); 2898 if (hw_off_limits(sc)) 2899 rc = ENXIO; 2900 else 2901 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2902 i2c.offset, i2c.len, &i2c.data[0]); 2903 end_synchronized_op(sc, 0); 2904 if (rc == 0) 2905 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2906 break; 2907 } 2908 2909 default: 2910 rc = ether_ioctl(ifp, cmd, data); 2911 } 2912 2913 return (rc); 2914 } 2915 2916 static int 2917 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2918 { 2919 struct vi_info *vi = ifp->if_softc; 2920 struct port_info *pi = vi->pi; 2921 struct adapter *sc; 2922 struct sge_txq *txq; 2923 void *items[1]; 2924 int rc; 2925 2926 M_ASSERTPKTHDR(m); 2927 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2928 #if defined(KERN_TLS) || defined(RATELIMIT) 2929 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2930 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2931 #endif 2932 2933 if (__predict_false(pi->link_cfg.link_ok == false)) { 2934 m_freem(m); 2935 return (ENETDOWN); 2936 } 2937 2938 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2939 if (__predict_false(rc != 0)) { 2940 MPASS(m == NULL); /* was freed already */ 2941 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2942 return (rc); 2943 } 2944 #ifdef RATELIMIT 2945 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2946 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2947 return (ethofld_transmit(ifp, m)); 2948 } 2949 #endif 2950 2951 /* Select a txq. */ 2952 sc = vi->adapter; 2953 txq = &sc->sge.txq[vi->first_txq]; 2954 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2955 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2956 vi->rsrv_noflowq); 2957 2958 items[0] = m; 2959 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2960 if (__predict_false(rc != 0)) 2961 m_freem(m); 2962 2963 return (rc); 2964 } 2965 2966 static void 2967 cxgbe_qflush(struct ifnet *ifp) 2968 { 2969 struct vi_info *vi = ifp->if_softc; 2970 struct sge_txq *txq; 2971 int i; 2972 2973 /* queues do not exist if !VI_INIT_DONE. */ 2974 if (vi->flags & VI_INIT_DONE) { 2975 for_each_txq(vi, i, txq) { 2976 TXQ_LOCK(txq); 2977 txq->eq.flags |= EQ_QFLUSH; 2978 TXQ_UNLOCK(txq); 2979 while (!mp_ring_is_idle(txq->r)) { 2980 mp_ring_check_drainage(txq->r, 4096); 2981 pause("qflush", 1); 2982 } 2983 TXQ_LOCK(txq); 2984 txq->eq.flags &= ~EQ_QFLUSH; 2985 TXQ_UNLOCK(txq); 2986 } 2987 } 2988 if_qflush(ifp); 2989 } 2990 2991 static uint64_t 2992 vi_get_counter(struct ifnet *ifp, ift_counter c) 2993 { 2994 struct vi_info *vi = ifp->if_softc; 2995 struct fw_vi_stats_vf *s = &vi->stats; 2996 2997 mtx_lock(&vi->tick_mtx); 2998 vi_refresh_stats(vi); 2999 mtx_unlock(&vi->tick_mtx); 3000 3001 switch (c) { 3002 case IFCOUNTER_IPACKETS: 3003 return (s->rx_bcast_frames + s->rx_mcast_frames + 3004 s->rx_ucast_frames); 3005 case IFCOUNTER_IERRORS: 3006 return (s->rx_err_frames); 3007 case IFCOUNTER_OPACKETS: 3008 return (s->tx_bcast_frames + s->tx_mcast_frames + 3009 s->tx_ucast_frames + s->tx_offload_frames); 3010 case IFCOUNTER_OERRORS: 3011 return (s->tx_drop_frames); 3012 case IFCOUNTER_IBYTES: 3013 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3014 s->rx_ucast_bytes); 3015 case IFCOUNTER_OBYTES: 3016 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3017 s->tx_ucast_bytes + s->tx_offload_bytes); 3018 case IFCOUNTER_IMCASTS: 3019 return (s->rx_mcast_frames); 3020 case IFCOUNTER_OMCASTS: 3021 return (s->tx_mcast_frames); 3022 case IFCOUNTER_OQDROPS: { 3023 uint64_t drops; 3024 3025 drops = 0; 3026 if (vi->flags & VI_INIT_DONE) { 3027 int i; 3028 struct sge_txq *txq; 3029 3030 for_each_txq(vi, i, txq) 3031 drops += counter_u64_fetch(txq->r->dropped); 3032 } 3033 3034 return (drops); 3035 3036 } 3037 3038 default: 3039 return (if_get_counter_default(ifp, c)); 3040 } 3041 } 3042 3043 static uint64_t 3044 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3045 { 3046 struct vi_info *vi = ifp->if_softc; 3047 struct port_info *pi = vi->pi; 3048 struct port_stats *s = &pi->stats; 3049 3050 mtx_lock(&vi->tick_mtx); 3051 cxgbe_refresh_stats(vi); 3052 mtx_unlock(&vi->tick_mtx); 3053 3054 switch (c) { 3055 case IFCOUNTER_IPACKETS: 3056 return (s->rx_frames); 3057 3058 case IFCOUNTER_IERRORS: 3059 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3060 s->rx_fcs_err + s->rx_len_err); 3061 3062 case IFCOUNTER_OPACKETS: 3063 return (s->tx_frames); 3064 3065 case IFCOUNTER_OERRORS: 3066 return (s->tx_error_frames); 3067 3068 case IFCOUNTER_IBYTES: 3069 return (s->rx_octets); 3070 3071 case IFCOUNTER_OBYTES: 3072 return (s->tx_octets); 3073 3074 case IFCOUNTER_IMCASTS: 3075 return (s->rx_mcast_frames); 3076 3077 case IFCOUNTER_OMCASTS: 3078 return (s->tx_mcast_frames); 3079 3080 case IFCOUNTER_IQDROPS: 3081 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3082 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3083 s->rx_trunc3 + pi->tnl_cong_drops); 3084 3085 case IFCOUNTER_OQDROPS: { 3086 uint64_t drops; 3087 3088 drops = s->tx_drop; 3089 if (vi->flags & VI_INIT_DONE) { 3090 int i; 3091 struct sge_txq *txq; 3092 3093 for_each_txq(vi, i, txq) 3094 drops += counter_u64_fetch(txq->r->dropped); 3095 } 3096 3097 return (drops); 3098 3099 } 3100 3101 default: 3102 return (if_get_counter_default(ifp, c)); 3103 } 3104 } 3105 3106 #if defined(KERN_TLS) || defined(RATELIMIT) 3107 static int 3108 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3109 struct m_snd_tag **pt) 3110 { 3111 int error; 3112 3113 switch (params->hdr.type) { 3114 #ifdef RATELIMIT 3115 case IF_SND_TAG_TYPE_RATE_LIMIT: 3116 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3117 break; 3118 #endif 3119 #ifdef KERN_TLS 3120 case IF_SND_TAG_TYPE_TLS: 3121 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3122 break; 3123 #endif 3124 default: 3125 error = EOPNOTSUPP; 3126 } 3127 return (error); 3128 } 3129 #endif 3130 3131 /* 3132 * The kernel picks a media from the list we had provided but we still validate 3133 * the requeste. 3134 */ 3135 int 3136 cxgbe_media_change(struct ifnet *ifp) 3137 { 3138 struct vi_info *vi = ifp->if_softc; 3139 struct port_info *pi = vi->pi; 3140 struct ifmedia *ifm = &pi->media; 3141 struct link_config *lc = &pi->link_cfg; 3142 struct adapter *sc = pi->adapter; 3143 int rc; 3144 3145 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3146 if (rc != 0) 3147 return (rc); 3148 PORT_LOCK(pi); 3149 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3150 /* ifconfig .. media autoselect */ 3151 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3152 rc = ENOTSUP; /* AN not supported by transceiver */ 3153 goto done; 3154 } 3155 lc->requested_aneg = AUTONEG_ENABLE; 3156 lc->requested_speed = 0; 3157 lc->requested_fc |= PAUSE_AUTONEG; 3158 } else { 3159 lc->requested_aneg = AUTONEG_DISABLE; 3160 lc->requested_speed = 3161 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3162 lc->requested_fc = 0; 3163 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3164 lc->requested_fc |= PAUSE_RX; 3165 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3166 lc->requested_fc |= PAUSE_TX; 3167 } 3168 if (pi->up_vis > 0) { 3169 fixup_link_config(pi); 3170 rc = apply_link_config(pi); 3171 } 3172 done: 3173 PORT_UNLOCK(pi); 3174 end_synchronized_op(sc, 0); 3175 return (rc); 3176 } 3177 3178 /* 3179 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3180 * given speed. 3181 */ 3182 static int 3183 port_mword(struct port_info *pi, uint32_t speed) 3184 { 3185 3186 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3187 MPASS(powerof2(speed)); 3188 3189 switch(pi->port_type) { 3190 case FW_PORT_TYPE_BT_SGMII: 3191 case FW_PORT_TYPE_BT_XFI: 3192 case FW_PORT_TYPE_BT_XAUI: 3193 /* BaseT */ 3194 switch (speed) { 3195 case FW_PORT_CAP32_SPEED_100M: 3196 return (IFM_100_T); 3197 case FW_PORT_CAP32_SPEED_1G: 3198 return (IFM_1000_T); 3199 case FW_PORT_CAP32_SPEED_10G: 3200 return (IFM_10G_T); 3201 } 3202 break; 3203 case FW_PORT_TYPE_KX4: 3204 if (speed == FW_PORT_CAP32_SPEED_10G) 3205 return (IFM_10G_KX4); 3206 break; 3207 case FW_PORT_TYPE_CX4: 3208 if (speed == FW_PORT_CAP32_SPEED_10G) 3209 return (IFM_10G_CX4); 3210 break; 3211 case FW_PORT_TYPE_KX: 3212 if (speed == FW_PORT_CAP32_SPEED_1G) 3213 return (IFM_1000_KX); 3214 break; 3215 case FW_PORT_TYPE_KR: 3216 case FW_PORT_TYPE_BP_AP: 3217 case FW_PORT_TYPE_BP4_AP: 3218 case FW_PORT_TYPE_BP40_BA: 3219 case FW_PORT_TYPE_KR4_100G: 3220 case FW_PORT_TYPE_KR_SFP28: 3221 case FW_PORT_TYPE_KR_XLAUI: 3222 switch (speed) { 3223 case FW_PORT_CAP32_SPEED_1G: 3224 return (IFM_1000_KX); 3225 case FW_PORT_CAP32_SPEED_10G: 3226 return (IFM_10G_KR); 3227 case FW_PORT_CAP32_SPEED_25G: 3228 return (IFM_25G_KR); 3229 case FW_PORT_CAP32_SPEED_40G: 3230 return (IFM_40G_KR4); 3231 case FW_PORT_CAP32_SPEED_50G: 3232 return (IFM_50G_KR2); 3233 case FW_PORT_CAP32_SPEED_100G: 3234 return (IFM_100G_KR4); 3235 } 3236 break; 3237 case FW_PORT_TYPE_FIBER_XFI: 3238 case FW_PORT_TYPE_FIBER_XAUI: 3239 case FW_PORT_TYPE_SFP: 3240 case FW_PORT_TYPE_QSFP_10G: 3241 case FW_PORT_TYPE_QSA: 3242 case FW_PORT_TYPE_QSFP: 3243 case FW_PORT_TYPE_CR4_QSFP: 3244 case FW_PORT_TYPE_CR_QSFP: 3245 case FW_PORT_TYPE_CR2_QSFP: 3246 case FW_PORT_TYPE_SFP28: 3247 /* Pluggable transceiver */ 3248 switch (pi->mod_type) { 3249 case FW_PORT_MOD_TYPE_LR: 3250 switch (speed) { 3251 case FW_PORT_CAP32_SPEED_1G: 3252 return (IFM_1000_LX); 3253 case FW_PORT_CAP32_SPEED_10G: 3254 return (IFM_10G_LR); 3255 case FW_PORT_CAP32_SPEED_25G: 3256 return (IFM_25G_LR); 3257 case FW_PORT_CAP32_SPEED_40G: 3258 return (IFM_40G_LR4); 3259 case FW_PORT_CAP32_SPEED_50G: 3260 return (IFM_50G_LR2); 3261 case FW_PORT_CAP32_SPEED_100G: 3262 return (IFM_100G_LR4); 3263 } 3264 break; 3265 case FW_PORT_MOD_TYPE_SR: 3266 switch (speed) { 3267 case FW_PORT_CAP32_SPEED_1G: 3268 return (IFM_1000_SX); 3269 case FW_PORT_CAP32_SPEED_10G: 3270 return (IFM_10G_SR); 3271 case FW_PORT_CAP32_SPEED_25G: 3272 return (IFM_25G_SR); 3273 case FW_PORT_CAP32_SPEED_40G: 3274 return (IFM_40G_SR4); 3275 case FW_PORT_CAP32_SPEED_50G: 3276 return (IFM_50G_SR2); 3277 case FW_PORT_CAP32_SPEED_100G: 3278 return (IFM_100G_SR4); 3279 } 3280 break; 3281 case FW_PORT_MOD_TYPE_ER: 3282 if (speed == FW_PORT_CAP32_SPEED_10G) 3283 return (IFM_10G_ER); 3284 break; 3285 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3286 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3287 switch (speed) { 3288 case FW_PORT_CAP32_SPEED_1G: 3289 return (IFM_1000_CX); 3290 case FW_PORT_CAP32_SPEED_10G: 3291 return (IFM_10G_TWINAX); 3292 case FW_PORT_CAP32_SPEED_25G: 3293 return (IFM_25G_CR); 3294 case FW_PORT_CAP32_SPEED_40G: 3295 return (IFM_40G_CR4); 3296 case FW_PORT_CAP32_SPEED_50G: 3297 return (IFM_50G_CR2); 3298 case FW_PORT_CAP32_SPEED_100G: 3299 return (IFM_100G_CR4); 3300 } 3301 break; 3302 case FW_PORT_MOD_TYPE_LRM: 3303 if (speed == FW_PORT_CAP32_SPEED_10G) 3304 return (IFM_10G_LRM); 3305 break; 3306 case FW_PORT_MOD_TYPE_NA: 3307 MPASS(0); /* Not pluggable? */ 3308 /* fall throough */ 3309 case FW_PORT_MOD_TYPE_ERROR: 3310 case FW_PORT_MOD_TYPE_UNKNOWN: 3311 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3312 break; 3313 case FW_PORT_MOD_TYPE_NONE: 3314 return (IFM_NONE); 3315 } 3316 break; 3317 case FW_PORT_TYPE_NONE: 3318 return (IFM_NONE); 3319 } 3320 3321 return (IFM_UNKNOWN); 3322 } 3323 3324 void 3325 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3326 { 3327 struct vi_info *vi = ifp->if_softc; 3328 struct port_info *pi = vi->pi; 3329 struct adapter *sc = pi->adapter; 3330 struct link_config *lc = &pi->link_cfg; 3331 3332 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3333 return; 3334 PORT_LOCK(pi); 3335 3336 if (pi->up_vis == 0) { 3337 /* 3338 * If all the interfaces are administratively down the firmware 3339 * does not report transceiver changes. Refresh port info here 3340 * so that ifconfig displays accurate ifmedia at all times. 3341 * This is the only reason we have a synchronized op in this 3342 * function. Just PORT_LOCK would have been enough otherwise. 3343 */ 3344 t4_update_port_info(pi); 3345 build_medialist(pi); 3346 } 3347 3348 /* ifm_status */ 3349 ifmr->ifm_status = IFM_AVALID; 3350 if (lc->link_ok == false) 3351 goto done; 3352 ifmr->ifm_status |= IFM_ACTIVE; 3353 3354 /* ifm_active */ 3355 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3356 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3357 if (lc->fc & PAUSE_RX) 3358 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3359 if (lc->fc & PAUSE_TX) 3360 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3361 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3362 done: 3363 PORT_UNLOCK(pi); 3364 end_synchronized_op(sc, 0); 3365 } 3366 3367 static int 3368 vcxgbe_probe(device_t dev) 3369 { 3370 char buf[128]; 3371 struct vi_info *vi = device_get_softc(dev); 3372 3373 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3374 vi - vi->pi->vi); 3375 device_set_desc_copy(dev, buf); 3376 3377 return (BUS_PROBE_DEFAULT); 3378 } 3379 3380 static int 3381 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3382 { 3383 int func, index, rc; 3384 uint32_t param, val; 3385 3386 ASSERT_SYNCHRONIZED_OP(sc); 3387 3388 index = vi - pi->vi; 3389 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3390 KASSERT(index < nitems(vi_mac_funcs), 3391 ("%s: VI %s doesn't have a MAC func", __func__, 3392 device_get_nameunit(vi->dev))); 3393 func = vi_mac_funcs[index]; 3394 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3395 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3396 if (rc < 0) { 3397 CH_ERR(vi, "failed to allocate virtual interface %d" 3398 "for port %d: %d\n", index, pi->port_id, -rc); 3399 return (-rc); 3400 } 3401 vi->viid = rc; 3402 3403 if (vi->rss_size == 1) { 3404 /* 3405 * This VI didn't get a slice of the RSS table. Reduce the 3406 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3407 * configuration file (nvi, rssnvi for this PF) if this is a 3408 * problem. 3409 */ 3410 device_printf(vi->dev, "RSS table not available.\n"); 3411 vi->rss_base = 0xffff; 3412 3413 return (0); 3414 } 3415 3416 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3417 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3418 V_FW_PARAMS_PARAM_YZ(vi->viid); 3419 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3420 if (rc) 3421 vi->rss_base = 0xffff; 3422 else { 3423 MPASS((val >> 16) == vi->rss_size); 3424 vi->rss_base = val & 0xffff; 3425 } 3426 3427 return (0); 3428 } 3429 3430 static int 3431 vcxgbe_attach(device_t dev) 3432 { 3433 struct vi_info *vi; 3434 struct port_info *pi; 3435 struct adapter *sc; 3436 int rc; 3437 3438 vi = device_get_softc(dev); 3439 pi = vi->pi; 3440 sc = pi->adapter; 3441 3442 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3443 if (rc) 3444 return (rc); 3445 rc = alloc_extra_vi(sc, pi, vi); 3446 end_synchronized_op(sc, 0); 3447 if (rc) 3448 return (rc); 3449 3450 rc = cxgbe_vi_attach(dev, vi); 3451 if (rc) { 3452 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3453 return (rc); 3454 } 3455 return (0); 3456 } 3457 3458 static int 3459 vcxgbe_detach(device_t dev) 3460 { 3461 struct vi_info *vi; 3462 struct adapter *sc; 3463 3464 vi = device_get_softc(dev); 3465 sc = vi->adapter; 3466 3467 doom_vi(sc, vi); 3468 3469 cxgbe_vi_detach(vi); 3470 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3471 3472 end_synchronized_op(sc, 0); 3473 3474 return (0); 3475 } 3476 3477 static struct callout fatal_callout; 3478 static struct taskqueue *reset_tq; 3479 3480 static void 3481 delayed_panic(void *arg) 3482 { 3483 struct adapter *sc = arg; 3484 3485 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3486 } 3487 3488 void 3489 t4_fatal_err(struct adapter *sc, bool fw_error) 3490 { 3491 3492 t4_shutdown_adapter(sc); 3493 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 3494 device_get_nameunit(sc->dev)); 3495 if (fw_error) { 3496 if (sc->flags & CHK_MBOX_ACCESS) 3497 ASSERT_SYNCHRONIZED_OP(sc); 3498 sc->flags |= ADAP_ERR; 3499 } else { 3500 ADAPTER_LOCK(sc); 3501 sc->flags |= ADAP_ERR; 3502 ADAPTER_UNLOCK(sc); 3503 } 3504 #ifdef TCP_OFFLOAD 3505 taskqueue_enqueue(taskqueue_thread, &sc->async_event_task); 3506 #endif 3507 3508 if (t4_panic_on_fatal_err) { 3509 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3510 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3511 } else if (t4_reset_on_fatal_err) { 3512 CH_ALERT(sc, "resetting on fatal error.\n"); 3513 taskqueue_enqueue(reset_tq, &sc->reset_task); 3514 } 3515 } 3516 3517 void 3518 t4_add_adapter(struct adapter *sc) 3519 { 3520 sx_xlock(&t4_list_lock); 3521 SLIST_INSERT_HEAD(&t4_list, sc, link); 3522 sx_xunlock(&t4_list_lock); 3523 } 3524 3525 int 3526 t4_map_bars_0_and_4(struct adapter *sc) 3527 { 3528 sc->regs_rid = PCIR_BAR(0); 3529 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3530 &sc->regs_rid, RF_ACTIVE); 3531 if (sc->regs_res == NULL) { 3532 device_printf(sc->dev, "cannot map registers.\n"); 3533 return (ENXIO); 3534 } 3535 sc->bt = rman_get_bustag(sc->regs_res); 3536 sc->bh = rman_get_bushandle(sc->regs_res); 3537 sc->mmio_len = rman_get_size(sc->regs_res); 3538 setbit(&sc->doorbells, DOORBELL_KDB); 3539 3540 sc->msix_rid = PCIR_BAR(4); 3541 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3542 &sc->msix_rid, RF_ACTIVE); 3543 if (sc->msix_res == NULL) { 3544 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3545 return (ENXIO); 3546 } 3547 3548 return (0); 3549 } 3550 3551 int 3552 t4_map_bar_2(struct adapter *sc) 3553 { 3554 3555 /* 3556 * T4: only iWARP driver uses the userspace doorbells. There is no need 3557 * to map it if RDMA is disabled. 3558 */ 3559 if (is_t4(sc) && sc->rdmacaps == 0) 3560 return (0); 3561 3562 sc->udbs_rid = PCIR_BAR(2); 3563 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3564 &sc->udbs_rid, RF_ACTIVE); 3565 if (sc->udbs_res == NULL) { 3566 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3567 return (ENXIO); 3568 } 3569 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3570 3571 if (chip_id(sc) >= CHELSIO_T5) { 3572 setbit(&sc->doorbells, DOORBELL_UDB); 3573 #if defined(__i386__) || defined(__amd64__) 3574 if (t5_write_combine) { 3575 int rc, mode; 3576 3577 /* 3578 * Enable write combining on BAR2. This is the 3579 * userspace doorbell BAR and is split into 128B 3580 * (UDBS_SEG_SIZE) doorbell regions, each associated 3581 * with an egress queue. The first 64B has the doorbell 3582 * and the second 64B can be used to submit a tx work 3583 * request with an implicit doorbell. 3584 */ 3585 3586 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3587 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3588 if (rc == 0) { 3589 clrbit(&sc->doorbells, DOORBELL_UDB); 3590 setbit(&sc->doorbells, DOORBELL_WCWR); 3591 setbit(&sc->doorbells, DOORBELL_UDBWC); 3592 } else { 3593 device_printf(sc->dev, 3594 "couldn't enable write combining: %d\n", 3595 rc); 3596 } 3597 3598 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3599 t4_write_reg(sc, A_SGE_STAT_CFG, 3600 V_STATSOURCE_T5(7) | mode); 3601 } 3602 #endif 3603 } 3604 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3605 3606 return (0); 3607 } 3608 3609 struct memwin_init { 3610 uint32_t base; 3611 uint32_t aperture; 3612 }; 3613 3614 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3615 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3616 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3617 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3618 }; 3619 3620 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3621 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3622 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3623 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3624 }; 3625 3626 static void 3627 setup_memwin(struct adapter *sc) 3628 { 3629 const struct memwin_init *mw_init; 3630 struct memwin *mw; 3631 int i; 3632 uint32_t bar0; 3633 3634 if (is_t4(sc)) { 3635 /* 3636 * Read low 32b of bar0 indirectly via the hardware backdoor 3637 * mechanism. Works from within PCI passthrough environments 3638 * too, where rman_get_start() can return a different value. We 3639 * need to program the T4 memory window decoders with the actual 3640 * addresses that will be coming across the PCIe link. 3641 */ 3642 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3643 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3644 3645 mw_init = &t4_memwin[0]; 3646 } else { 3647 /* T5+ use the relative offset inside the PCIe BAR */ 3648 bar0 = 0; 3649 3650 mw_init = &t5_memwin[0]; 3651 } 3652 3653 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3654 if (!rw_initialized(&mw->mw_lock)) { 3655 rw_init(&mw->mw_lock, "memory window access"); 3656 mw->mw_base = mw_init->base; 3657 mw->mw_aperture = mw_init->aperture; 3658 mw->mw_curpos = 0; 3659 } 3660 t4_write_reg(sc, 3661 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3662 (mw->mw_base + bar0) | V_BIR(0) | 3663 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3664 rw_wlock(&mw->mw_lock); 3665 position_memwin(sc, i, mw->mw_curpos); 3666 rw_wunlock(&mw->mw_lock); 3667 } 3668 3669 /* flush */ 3670 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3671 } 3672 3673 /* 3674 * Positions the memory window at the given address in the card's address space. 3675 * There are some alignment requirements and the actual position may be at an 3676 * address prior to the requested address. mw->mw_curpos always has the actual 3677 * position of the window. 3678 */ 3679 static void 3680 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3681 { 3682 struct memwin *mw; 3683 uint32_t pf; 3684 uint32_t reg; 3685 3686 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3687 mw = &sc->memwin[idx]; 3688 rw_assert(&mw->mw_lock, RA_WLOCKED); 3689 3690 if (is_t4(sc)) { 3691 pf = 0; 3692 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3693 } else { 3694 pf = V_PFNUM(sc->pf); 3695 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3696 } 3697 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3698 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3699 t4_read_reg(sc, reg); /* flush */ 3700 } 3701 3702 int 3703 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3704 int len, int rw) 3705 { 3706 struct memwin *mw; 3707 uint32_t mw_end, v; 3708 3709 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3710 3711 /* Memory can only be accessed in naturally aligned 4 byte units */ 3712 if (addr & 3 || len & 3 || len <= 0) 3713 return (EINVAL); 3714 3715 mw = &sc->memwin[idx]; 3716 while (len > 0) { 3717 rw_rlock(&mw->mw_lock); 3718 mw_end = mw->mw_curpos + mw->mw_aperture; 3719 if (addr >= mw_end || addr < mw->mw_curpos) { 3720 /* Will need to reposition the window */ 3721 if (!rw_try_upgrade(&mw->mw_lock)) { 3722 rw_runlock(&mw->mw_lock); 3723 rw_wlock(&mw->mw_lock); 3724 } 3725 rw_assert(&mw->mw_lock, RA_WLOCKED); 3726 position_memwin(sc, idx, addr); 3727 rw_downgrade(&mw->mw_lock); 3728 mw_end = mw->mw_curpos + mw->mw_aperture; 3729 } 3730 rw_assert(&mw->mw_lock, RA_RLOCKED); 3731 while (addr < mw_end && len > 0) { 3732 if (rw == 0) { 3733 v = t4_read_reg(sc, mw->mw_base + addr - 3734 mw->mw_curpos); 3735 *val++ = le32toh(v); 3736 } else { 3737 v = *val++; 3738 t4_write_reg(sc, mw->mw_base + addr - 3739 mw->mw_curpos, htole32(v)); 3740 } 3741 addr += 4; 3742 len -= 4; 3743 } 3744 rw_runlock(&mw->mw_lock); 3745 } 3746 3747 return (0); 3748 } 3749 3750 static void 3751 t4_init_atid_table(struct adapter *sc) 3752 { 3753 struct tid_info *t; 3754 int i; 3755 3756 t = &sc->tids; 3757 if (t->natids == 0) 3758 return; 3759 3760 MPASS(t->atid_tab == NULL); 3761 3762 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3763 M_ZERO | M_WAITOK); 3764 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3765 t->afree = t->atid_tab; 3766 t->atids_in_use = 0; 3767 for (i = 1; i < t->natids; i++) 3768 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3769 t->atid_tab[t->natids - 1].next = NULL; 3770 } 3771 3772 static void 3773 t4_free_atid_table(struct adapter *sc) 3774 { 3775 struct tid_info *t; 3776 3777 t = &sc->tids; 3778 3779 KASSERT(t->atids_in_use == 0, 3780 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3781 3782 if (mtx_initialized(&t->atid_lock)) 3783 mtx_destroy(&t->atid_lock); 3784 free(t->atid_tab, M_CXGBE); 3785 t->atid_tab = NULL; 3786 } 3787 3788 int 3789 alloc_atid(struct adapter *sc, void *ctx) 3790 { 3791 struct tid_info *t = &sc->tids; 3792 int atid = -1; 3793 3794 mtx_lock(&t->atid_lock); 3795 if (t->afree) { 3796 union aopen_entry *p = t->afree; 3797 3798 atid = p - t->atid_tab; 3799 MPASS(atid <= M_TID_TID); 3800 t->afree = p->next; 3801 p->data = ctx; 3802 t->atids_in_use++; 3803 } 3804 mtx_unlock(&t->atid_lock); 3805 return (atid); 3806 } 3807 3808 void * 3809 lookup_atid(struct adapter *sc, int atid) 3810 { 3811 struct tid_info *t = &sc->tids; 3812 3813 return (t->atid_tab[atid].data); 3814 } 3815 3816 void 3817 free_atid(struct adapter *sc, int atid) 3818 { 3819 struct tid_info *t = &sc->tids; 3820 union aopen_entry *p = &t->atid_tab[atid]; 3821 3822 mtx_lock(&t->atid_lock); 3823 p->next = t->afree; 3824 t->afree = p; 3825 t->atids_in_use--; 3826 mtx_unlock(&t->atid_lock); 3827 } 3828 3829 static void 3830 queue_tid_release(struct adapter *sc, int tid) 3831 { 3832 3833 CXGBE_UNIMPLEMENTED("deferred tid release"); 3834 } 3835 3836 void 3837 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3838 { 3839 struct wrqe *wr; 3840 struct cpl_tid_release *req; 3841 3842 wr = alloc_wrqe(sizeof(*req), ctrlq); 3843 if (wr == NULL) { 3844 queue_tid_release(sc, tid); /* defer */ 3845 return; 3846 } 3847 req = wrtod(wr); 3848 3849 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3850 3851 t4_wrq_tx(sc, wr); 3852 } 3853 3854 static int 3855 t4_range_cmp(const void *a, const void *b) 3856 { 3857 return ((const struct t4_range *)a)->start - 3858 ((const struct t4_range *)b)->start; 3859 } 3860 3861 /* 3862 * Verify that the memory range specified by the addr/len pair is valid within 3863 * the card's address space. 3864 */ 3865 static int 3866 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3867 { 3868 struct t4_range mem_ranges[4], *r, *next; 3869 uint32_t em, addr_len; 3870 int i, n, remaining; 3871 3872 /* Memory can only be accessed in naturally aligned 4 byte units */ 3873 if (addr & 3 || len & 3 || len == 0) 3874 return (EINVAL); 3875 3876 /* Enabled memories */ 3877 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3878 3879 r = &mem_ranges[0]; 3880 n = 0; 3881 bzero(r, sizeof(mem_ranges)); 3882 if (em & F_EDRAM0_ENABLE) { 3883 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3884 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3885 if (r->size > 0) { 3886 r->start = G_EDRAM0_BASE(addr_len) << 20; 3887 if (addr >= r->start && 3888 addr + len <= r->start + r->size) 3889 return (0); 3890 r++; 3891 n++; 3892 } 3893 } 3894 if (em & F_EDRAM1_ENABLE) { 3895 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3896 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3897 if (r->size > 0) { 3898 r->start = G_EDRAM1_BASE(addr_len) << 20; 3899 if (addr >= r->start && 3900 addr + len <= r->start + r->size) 3901 return (0); 3902 r++; 3903 n++; 3904 } 3905 } 3906 if (em & F_EXT_MEM_ENABLE) { 3907 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3908 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3909 if (r->size > 0) { 3910 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3911 if (addr >= r->start && 3912 addr + len <= r->start + r->size) 3913 return (0); 3914 r++; 3915 n++; 3916 } 3917 } 3918 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3919 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3920 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3921 if (r->size > 0) { 3922 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3923 if (addr >= r->start && 3924 addr + len <= r->start + r->size) 3925 return (0); 3926 r++; 3927 n++; 3928 } 3929 } 3930 MPASS(n <= nitems(mem_ranges)); 3931 3932 if (n > 1) { 3933 /* Sort and merge the ranges. */ 3934 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3935 3936 /* Start from index 0 and examine the next n - 1 entries. */ 3937 r = &mem_ranges[0]; 3938 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3939 3940 MPASS(r->size > 0); /* r is a valid entry. */ 3941 next = r + 1; 3942 MPASS(next->size > 0); /* and so is the next one. */ 3943 3944 while (r->start + r->size >= next->start) { 3945 /* Merge the next one into the current entry. */ 3946 r->size = max(r->start + r->size, 3947 next->start + next->size) - r->start; 3948 n--; /* One fewer entry in total. */ 3949 if (--remaining == 0) 3950 goto done; /* short circuit */ 3951 next++; 3952 } 3953 if (next != r + 1) { 3954 /* 3955 * Some entries were merged into r and next 3956 * points to the first valid entry that couldn't 3957 * be merged. 3958 */ 3959 MPASS(next->size > 0); /* must be valid */ 3960 memcpy(r + 1, next, remaining * sizeof(*r)); 3961 #ifdef INVARIANTS 3962 /* 3963 * This so that the foo->size assertion in the 3964 * next iteration of the loop do the right 3965 * thing for entries that were pulled up and are 3966 * no longer valid. 3967 */ 3968 MPASS(n < nitems(mem_ranges)); 3969 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 3970 sizeof(struct t4_range)); 3971 #endif 3972 } 3973 } 3974 done: 3975 /* Done merging the ranges. */ 3976 MPASS(n > 0); 3977 r = &mem_ranges[0]; 3978 for (i = 0; i < n; i++, r++) { 3979 if (addr >= r->start && 3980 addr + len <= r->start + r->size) 3981 return (0); 3982 } 3983 } 3984 3985 return (EFAULT); 3986 } 3987 3988 static int 3989 fwmtype_to_hwmtype(int mtype) 3990 { 3991 3992 switch (mtype) { 3993 case FW_MEMTYPE_EDC0: 3994 return (MEM_EDC0); 3995 case FW_MEMTYPE_EDC1: 3996 return (MEM_EDC1); 3997 case FW_MEMTYPE_EXTMEM: 3998 return (MEM_MC0); 3999 case FW_MEMTYPE_EXTMEM1: 4000 return (MEM_MC1); 4001 default: 4002 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4003 } 4004 } 4005 4006 /* 4007 * Verify that the memory range specified by the memtype/offset/len pair is 4008 * valid and lies entirely within the memtype specified. The global address of 4009 * the start of the range is returned in addr. 4010 */ 4011 static int 4012 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4013 uint32_t *addr) 4014 { 4015 uint32_t em, addr_len, maddr; 4016 4017 /* Memory can only be accessed in naturally aligned 4 byte units */ 4018 if (off & 3 || len & 3 || len == 0) 4019 return (EINVAL); 4020 4021 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4022 switch (fwmtype_to_hwmtype(mtype)) { 4023 case MEM_EDC0: 4024 if (!(em & F_EDRAM0_ENABLE)) 4025 return (EINVAL); 4026 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4027 maddr = G_EDRAM0_BASE(addr_len) << 20; 4028 break; 4029 case MEM_EDC1: 4030 if (!(em & F_EDRAM1_ENABLE)) 4031 return (EINVAL); 4032 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4033 maddr = G_EDRAM1_BASE(addr_len) << 20; 4034 break; 4035 case MEM_MC: 4036 if (!(em & F_EXT_MEM_ENABLE)) 4037 return (EINVAL); 4038 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4039 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4040 break; 4041 case MEM_MC1: 4042 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4043 return (EINVAL); 4044 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4045 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4046 break; 4047 default: 4048 return (EINVAL); 4049 } 4050 4051 *addr = maddr + off; /* global address */ 4052 return (validate_mem_range(sc, *addr, len)); 4053 } 4054 4055 static int 4056 fixup_devlog_params(struct adapter *sc) 4057 { 4058 struct devlog_params *dparams = &sc->params.devlog; 4059 int rc; 4060 4061 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4062 dparams->size, &dparams->addr); 4063 4064 return (rc); 4065 } 4066 4067 static void 4068 update_nirq(struct intrs_and_queues *iaq, int nports) 4069 { 4070 4071 iaq->nirq = T4_EXTRA_INTR; 4072 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4073 iaq->nirq += nports * iaq->nofldrxq; 4074 iaq->nirq += nports * (iaq->num_vis - 1) * 4075 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4076 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4077 } 4078 4079 /* 4080 * Adjust requirements to fit the number of interrupts available. 4081 */ 4082 static void 4083 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4084 int navail) 4085 { 4086 int old_nirq; 4087 const int nports = sc->params.nports; 4088 4089 MPASS(nports > 0); 4090 MPASS(navail > 0); 4091 4092 bzero(iaq, sizeof(*iaq)); 4093 iaq->intr_type = itype; 4094 iaq->num_vis = t4_num_vis; 4095 iaq->ntxq = t4_ntxq; 4096 iaq->ntxq_vi = t4_ntxq_vi; 4097 iaq->nrxq = t4_nrxq; 4098 iaq->nrxq_vi = t4_nrxq_vi; 4099 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4100 if (is_offload(sc) || is_ethoffload(sc)) { 4101 iaq->nofldtxq = t4_nofldtxq; 4102 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4103 } 4104 #endif 4105 #ifdef TCP_OFFLOAD 4106 if (is_offload(sc)) { 4107 iaq->nofldrxq = t4_nofldrxq; 4108 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4109 } 4110 #endif 4111 #ifdef DEV_NETMAP 4112 if (t4_native_netmap & NN_MAIN_VI) { 4113 iaq->nnmtxq = t4_nnmtxq; 4114 iaq->nnmrxq = t4_nnmrxq; 4115 } 4116 if (t4_native_netmap & NN_EXTRA_VI) { 4117 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4118 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4119 } 4120 #endif 4121 4122 update_nirq(iaq, nports); 4123 if (iaq->nirq <= navail && 4124 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4125 /* 4126 * This is the normal case -- there are enough interrupts for 4127 * everything. 4128 */ 4129 goto done; 4130 } 4131 4132 /* 4133 * If extra VIs have been configured try reducing their count and see if 4134 * that works. 4135 */ 4136 while (iaq->num_vis > 1) { 4137 iaq->num_vis--; 4138 update_nirq(iaq, nports); 4139 if (iaq->nirq <= navail && 4140 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4141 device_printf(sc->dev, "virtual interfaces per port " 4142 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4143 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4144 "itype %d, navail %u, nirq %d.\n", 4145 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4146 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4147 itype, navail, iaq->nirq); 4148 goto done; 4149 } 4150 } 4151 4152 /* 4153 * Extra VIs will not be created. Log a message if they were requested. 4154 */ 4155 MPASS(iaq->num_vis == 1); 4156 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4157 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4158 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4159 if (iaq->num_vis != t4_num_vis) { 4160 device_printf(sc->dev, "extra virtual interfaces disabled. " 4161 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4162 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4163 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4164 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4165 } 4166 4167 /* 4168 * Keep reducing the number of NIC rx queues to the next lower power of 4169 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4170 * if that works. 4171 */ 4172 do { 4173 if (iaq->nrxq > 1) { 4174 do { 4175 iaq->nrxq--; 4176 } while (!powerof2(iaq->nrxq)); 4177 if (iaq->nnmrxq > iaq->nrxq) 4178 iaq->nnmrxq = iaq->nrxq; 4179 } 4180 if (iaq->nofldrxq > 1) 4181 iaq->nofldrxq >>= 1; 4182 4183 old_nirq = iaq->nirq; 4184 update_nirq(iaq, nports); 4185 if (iaq->nirq <= navail && 4186 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4187 device_printf(sc->dev, "running with reduced number of " 4188 "rx queues because of shortage of interrupts. " 4189 "nrxq=%u, nofldrxq=%u. " 4190 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4191 iaq->nofldrxq, itype, navail, iaq->nirq); 4192 goto done; 4193 } 4194 } while (old_nirq != iaq->nirq); 4195 4196 /* One interrupt for everything. Ugh. */ 4197 device_printf(sc->dev, "running with minimal number of queues. " 4198 "itype %d, navail %u.\n", itype, navail); 4199 iaq->nirq = 1; 4200 iaq->nrxq = 1; 4201 iaq->ntxq = 1; 4202 if (iaq->nofldrxq > 0) { 4203 iaq->nofldrxq = 1; 4204 iaq->nofldtxq = 1; 4205 } 4206 iaq->nnmtxq = 0; 4207 iaq->nnmrxq = 0; 4208 done: 4209 MPASS(iaq->num_vis > 0); 4210 if (iaq->num_vis > 1) { 4211 MPASS(iaq->nrxq_vi > 0); 4212 MPASS(iaq->ntxq_vi > 0); 4213 } 4214 MPASS(iaq->nirq > 0); 4215 MPASS(iaq->nrxq > 0); 4216 MPASS(iaq->ntxq > 0); 4217 if (itype == INTR_MSI) { 4218 MPASS(powerof2(iaq->nirq)); 4219 } 4220 } 4221 4222 static int 4223 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4224 { 4225 int rc, itype, navail, nalloc; 4226 4227 for (itype = INTR_MSIX; itype; itype >>= 1) { 4228 4229 if ((itype & t4_intr_types) == 0) 4230 continue; /* not allowed */ 4231 4232 if (itype == INTR_MSIX) 4233 navail = pci_msix_count(sc->dev); 4234 else if (itype == INTR_MSI) 4235 navail = pci_msi_count(sc->dev); 4236 else 4237 navail = 1; 4238 restart: 4239 if (navail == 0) 4240 continue; 4241 4242 calculate_iaq(sc, iaq, itype, navail); 4243 nalloc = iaq->nirq; 4244 rc = 0; 4245 if (itype == INTR_MSIX) 4246 rc = pci_alloc_msix(sc->dev, &nalloc); 4247 else if (itype == INTR_MSI) 4248 rc = pci_alloc_msi(sc->dev, &nalloc); 4249 4250 if (rc == 0 && nalloc > 0) { 4251 if (nalloc == iaq->nirq) 4252 return (0); 4253 4254 /* 4255 * Didn't get the number requested. Use whatever number 4256 * the kernel is willing to allocate. 4257 */ 4258 device_printf(sc->dev, "fewer vectors than requested, " 4259 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4260 itype, iaq->nirq, nalloc); 4261 pci_release_msi(sc->dev); 4262 navail = nalloc; 4263 goto restart; 4264 } 4265 4266 device_printf(sc->dev, 4267 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4268 itype, rc, iaq->nirq, nalloc); 4269 } 4270 4271 device_printf(sc->dev, 4272 "failed to find a usable interrupt type. " 4273 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4274 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4275 4276 return (ENXIO); 4277 } 4278 4279 #define FW_VERSION(chip) ( \ 4280 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4281 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4282 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4283 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4284 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4285 4286 /* Just enough of fw_hdr to cover all version info. */ 4287 struct fw_h { 4288 __u8 ver; 4289 __u8 chip; 4290 __be16 len512; 4291 __be32 fw_ver; 4292 __be32 tp_microcode_ver; 4293 __u8 intfver_nic; 4294 __u8 intfver_vnic; 4295 __u8 intfver_ofld; 4296 __u8 intfver_ri; 4297 __u8 intfver_iscsipdu; 4298 __u8 intfver_iscsi; 4299 __u8 intfver_fcoepdu; 4300 __u8 intfver_fcoe; 4301 }; 4302 /* Spot check a couple of fields. */ 4303 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4304 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4305 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4306 4307 struct fw_info { 4308 uint8_t chip; 4309 char *kld_name; 4310 char *fw_mod_name; 4311 struct fw_h fw_h; 4312 } fw_info[] = { 4313 { 4314 .chip = CHELSIO_T4, 4315 .kld_name = "t4fw_cfg", 4316 .fw_mod_name = "t4fw", 4317 .fw_h = { 4318 .chip = FW_HDR_CHIP_T4, 4319 .fw_ver = htobe32(FW_VERSION(T4)), 4320 .intfver_nic = FW_INTFVER(T4, NIC), 4321 .intfver_vnic = FW_INTFVER(T4, VNIC), 4322 .intfver_ofld = FW_INTFVER(T4, OFLD), 4323 .intfver_ri = FW_INTFVER(T4, RI), 4324 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4325 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4326 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4327 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4328 }, 4329 }, { 4330 .chip = CHELSIO_T5, 4331 .kld_name = "t5fw_cfg", 4332 .fw_mod_name = "t5fw", 4333 .fw_h = { 4334 .chip = FW_HDR_CHIP_T5, 4335 .fw_ver = htobe32(FW_VERSION(T5)), 4336 .intfver_nic = FW_INTFVER(T5, NIC), 4337 .intfver_vnic = FW_INTFVER(T5, VNIC), 4338 .intfver_ofld = FW_INTFVER(T5, OFLD), 4339 .intfver_ri = FW_INTFVER(T5, RI), 4340 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4341 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4342 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4343 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4344 }, 4345 }, { 4346 .chip = CHELSIO_T6, 4347 .kld_name = "t6fw_cfg", 4348 .fw_mod_name = "t6fw", 4349 .fw_h = { 4350 .chip = FW_HDR_CHIP_T6, 4351 .fw_ver = htobe32(FW_VERSION(T6)), 4352 .intfver_nic = FW_INTFVER(T6, NIC), 4353 .intfver_vnic = FW_INTFVER(T6, VNIC), 4354 .intfver_ofld = FW_INTFVER(T6, OFLD), 4355 .intfver_ri = FW_INTFVER(T6, RI), 4356 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4357 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4358 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4359 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4360 }, 4361 } 4362 }; 4363 4364 static struct fw_info * 4365 find_fw_info(int chip) 4366 { 4367 int i; 4368 4369 for (i = 0; i < nitems(fw_info); i++) { 4370 if (fw_info[i].chip == chip) 4371 return (&fw_info[i]); 4372 } 4373 return (NULL); 4374 } 4375 4376 /* 4377 * Is the given firmware API compatible with the one the driver was compiled 4378 * with? 4379 */ 4380 static int 4381 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4382 { 4383 4384 /* short circuit if it's the exact same firmware version */ 4385 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4386 return (1); 4387 4388 /* 4389 * XXX: Is this too conservative? Perhaps I should limit this to the 4390 * features that are supported in the driver. 4391 */ 4392 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4393 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4394 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4395 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4396 return (1); 4397 #undef SAME_INTF 4398 4399 return (0); 4400 } 4401 4402 static int 4403 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4404 const struct firmware **fw) 4405 { 4406 struct fw_info *fw_info; 4407 4408 *dcfg = NULL; 4409 if (fw != NULL) 4410 *fw = NULL; 4411 4412 fw_info = find_fw_info(chip_id(sc)); 4413 if (fw_info == NULL) { 4414 device_printf(sc->dev, 4415 "unable to look up firmware information for chip %d.\n", 4416 chip_id(sc)); 4417 return (EINVAL); 4418 } 4419 4420 *dcfg = firmware_get(fw_info->kld_name); 4421 if (*dcfg != NULL) { 4422 if (fw != NULL) 4423 *fw = firmware_get(fw_info->fw_mod_name); 4424 return (0); 4425 } 4426 4427 return (ENOENT); 4428 } 4429 4430 static void 4431 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4432 const struct firmware *fw) 4433 { 4434 4435 if (fw != NULL) 4436 firmware_put(fw, FIRMWARE_UNLOAD); 4437 if (dcfg != NULL) 4438 firmware_put(dcfg, FIRMWARE_UNLOAD); 4439 } 4440 4441 /* 4442 * Return values: 4443 * 0 means no firmware install attempted. 4444 * ERESTART means a firmware install was attempted and was successful. 4445 * +ve errno means a firmware install was attempted but failed. 4446 */ 4447 static int 4448 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4449 const struct fw_h *drv_fw, const char *reason, int *already) 4450 { 4451 const struct firmware *cfg, *fw; 4452 const uint32_t c = be32toh(card_fw->fw_ver); 4453 uint32_t d, k; 4454 int rc, fw_install; 4455 struct fw_h bundled_fw; 4456 bool load_attempted; 4457 4458 cfg = fw = NULL; 4459 load_attempted = false; 4460 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4461 4462 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4463 if (t4_fw_install < 0) { 4464 rc = load_fw_module(sc, &cfg, &fw); 4465 if (rc != 0 || fw == NULL) { 4466 device_printf(sc->dev, 4467 "failed to load firmware module: %d. cfg %p, fw %p;" 4468 " will use compiled-in firmware version for" 4469 "hw.cxgbe.fw_install checks.\n", 4470 rc, cfg, fw); 4471 } else { 4472 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4473 } 4474 load_attempted = true; 4475 } 4476 d = be32toh(bundled_fw.fw_ver); 4477 4478 if (reason != NULL) 4479 goto install; 4480 4481 if ((sc->flags & FW_OK) == 0) { 4482 4483 if (c == 0xffffffff) { 4484 reason = "missing"; 4485 goto install; 4486 } 4487 4488 rc = 0; 4489 goto done; 4490 } 4491 4492 if (!fw_compatible(card_fw, &bundled_fw)) { 4493 reason = "incompatible or unusable"; 4494 goto install; 4495 } 4496 4497 if (d > c) { 4498 reason = "older than the version bundled with this driver"; 4499 goto install; 4500 } 4501 4502 if (fw_install == 2 && d != c) { 4503 reason = "different than the version bundled with this driver"; 4504 goto install; 4505 } 4506 4507 /* No reason to do anything to the firmware already on the card. */ 4508 rc = 0; 4509 goto done; 4510 4511 install: 4512 rc = 0; 4513 if ((*already)++) 4514 goto done; 4515 4516 if (fw_install == 0) { 4517 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4518 "but the driver is prohibited from installing a firmware " 4519 "on the card.\n", 4520 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4521 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4522 4523 goto done; 4524 } 4525 4526 /* 4527 * We'll attempt to install a firmware. Load the module first (if it 4528 * hasn't been loaded already). 4529 */ 4530 if (!load_attempted) { 4531 rc = load_fw_module(sc, &cfg, &fw); 4532 if (rc != 0 || fw == NULL) { 4533 device_printf(sc->dev, 4534 "failed to load firmware module: %d. cfg %p, fw %p\n", 4535 rc, cfg, fw); 4536 /* carry on */ 4537 } 4538 } 4539 if (fw == NULL) { 4540 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4541 "but the driver cannot take corrective action because it " 4542 "is unable to load the firmware module.\n", 4543 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4544 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4545 rc = sc->flags & FW_OK ? 0 : ENOENT; 4546 goto done; 4547 } 4548 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4549 if (k != d) { 4550 MPASS(t4_fw_install > 0); 4551 device_printf(sc->dev, 4552 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4553 "expecting (%u.%u.%u.%u) and will not be used.\n", 4554 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4555 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4556 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4557 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4558 rc = sc->flags & FW_OK ? 0 : EINVAL; 4559 goto done; 4560 } 4561 4562 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4563 "installing firmware %u.%u.%u.%u on card.\n", 4564 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4565 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4566 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4567 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4568 4569 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4570 if (rc != 0) { 4571 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4572 } else { 4573 /* Installed successfully, update the cached header too. */ 4574 rc = ERESTART; 4575 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4576 } 4577 done: 4578 unload_fw_module(sc, cfg, fw); 4579 4580 return (rc); 4581 } 4582 4583 /* 4584 * Establish contact with the firmware and attempt to become the master driver. 4585 * 4586 * A firmware will be installed to the card if needed (if the driver is allowed 4587 * to do so). 4588 */ 4589 static int 4590 contact_firmware(struct adapter *sc) 4591 { 4592 int rc, already = 0; 4593 enum dev_state state; 4594 struct fw_info *fw_info; 4595 struct fw_hdr *card_fw; /* fw on the card */ 4596 const struct fw_h *drv_fw; 4597 4598 fw_info = find_fw_info(chip_id(sc)); 4599 if (fw_info == NULL) { 4600 device_printf(sc->dev, 4601 "unable to look up firmware information for chip %d.\n", 4602 chip_id(sc)); 4603 return (EINVAL); 4604 } 4605 drv_fw = &fw_info->fw_h; 4606 4607 /* Read the header of the firmware on the card */ 4608 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4609 restart: 4610 rc = -t4_get_fw_hdr(sc, card_fw); 4611 if (rc != 0) { 4612 device_printf(sc->dev, 4613 "unable to read firmware header from card's flash: %d\n", 4614 rc); 4615 goto done; 4616 } 4617 4618 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4619 &already); 4620 if (rc == ERESTART) 4621 goto restart; 4622 if (rc != 0) 4623 goto done; 4624 4625 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4626 if (rc < 0 || state == DEV_STATE_ERR) { 4627 rc = -rc; 4628 device_printf(sc->dev, 4629 "failed to connect to the firmware: %d, %d. " 4630 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4631 #if 0 4632 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4633 "not responding properly to HELLO", &already) == ERESTART) 4634 goto restart; 4635 #endif 4636 goto done; 4637 } 4638 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4639 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4640 4641 if (rc == sc->pf) { 4642 sc->flags |= MASTER_PF; 4643 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4644 NULL, &already); 4645 if (rc == ERESTART) 4646 rc = 0; 4647 else if (rc != 0) 4648 goto done; 4649 } else if (state == DEV_STATE_UNINIT) { 4650 /* 4651 * We didn't get to be the master so we definitely won't be 4652 * configuring the chip. It's a bug if someone else hasn't 4653 * configured it already. 4654 */ 4655 device_printf(sc->dev, "couldn't be master(%d), " 4656 "device not already initialized either(%d). " 4657 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4658 rc = EPROTO; 4659 goto done; 4660 } else { 4661 /* 4662 * Some other PF is the master and has configured the chip. 4663 * This is allowed but untested. 4664 */ 4665 device_printf(sc->dev, "PF%d is master, device state %d. " 4666 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4667 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4668 sc->cfcsum = 0; 4669 rc = 0; 4670 } 4671 done: 4672 if (rc != 0 && sc->flags & FW_OK) { 4673 t4_fw_bye(sc, sc->mbox); 4674 sc->flags &= ~FW_OK; 4675 } 4676 free(card_fw, M_CXGBE); 4677 return (rc); 4678 } 4679 4680 static int 4681 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4682 uint32_t mtype, uint32_t moff) 4683 { 4684 struct fw_info *fw_info; 4685 const struct firmware *dcfg, *rcfg = NULL; 4686 const uint32_t *cfdata; 4687 uint32_t cflen, addr; 4688 int rc; 4689 4690 load_fw_module(sc, &dcfg, NULL); 4691 4692 /* Card specific interpretation of "default". */ 4693 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4694 if (pci_get_device(sc->dev) == 0x440a) 4695 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4696 if (is_fpga(sc)) 4697 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4698 } 4699 4700 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4701 if (dcfg == NULL) { 4702 device_printf(sc->dev, 4703 "KLD with default config is not available.\n"); 4704 rc = ENOENT; 4705 goto done; 4706 } 4707 cfdata = dcfg->data; 4708 cflen = dcfg->datasize & ~3; 4709 } else { 4710 char s[32]; 4711 4712 fw_info = find_fw_info(chip_id(sc)); 4713 if (fw_info == NULL) { 4714 device_printf(sc->dev, 4715 "unable to look up firmware information for chip %d.\n", 4716 chip_id(sc)); 4717 rc = EINVAL; 4718 goto done; 4719 } 4720 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4721 4722 rcfg = firmware_get(s); 4723 if (rcfg == NULL) { 4724 device_printf(sc->dev, 4725 "unable to load module \"%s\" for configuration " 4726 "profile \"%s\".\n", s, cfg_file); 4727 rc = ENOENT; 4728 goto done; 4729 } 4730 cfdata = rcfg->data; 4731 cflen = rcfg->datasize & ~3; 4732 } 4733 4734 if (cflen > FLASH_CFG_MAX_SIZE) { 4735 device_printf(sc->dev, 4736 "config file too long (%d, max allowed is %d).\n", 4737 cflen, FLASH_CFG_MAX_SIZE); 4738 rc = EINVAL; 4739 goto done; 4740 } 4741 4742 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4743 if (rc != 0) { 4744 device_printf(sc->dev, 4745 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4746 __func__, mtype, moff, cflen, rc); 4747 rc = EINVAL; 4748 goto done; 4749 } 4750 write_via_memwin(sc, 2, addr, cfdata, cflen); 4751 done: 4752 if (rcfg != NULL) 4753 firmware_put(rcfg, FIRMWARE_UNLOAD); 4754 unload_fw_module(sc, dcfg, NULL); 4755 return (rc); 4756 } 4757 4758 struct caps_allowed { 4759 uint16_t nbmcaps; 4760 uint16_t linkcaps; 4761 uint16_t switchcaps; 4762 uint16_t niccaps; 4763 uint16_t toecaps; 4764 uint16_t rdmacaps; 4765 uint16_t cryptocaps; 4766 uint16_t iscsicaps; 4767 uint16_t fcoecaps; 4768 }; 4769 4770 #define FW_PARAM_DEV(param) \ 4771 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4772 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4773 #define FW_PARAM_PFVF(param) \ 4774 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4775 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4776 4777 /* 4778 * Provide a configuration profile to the firmware and have it initialize the 4779 * chip accordingly. This may involve uploading a configuration file to the 4780 * card. 4781 */ 4782 static int 4783 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4784 const struct caps_allowed *caps_allowed) 4785 { 4786 int rc; 4787 struct fw_caps_config_cmd caps; 4788 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4789 4790 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4791 if (rc != 0) { 4792 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4793 return (rc); 4794 } 4795 4796 bzero(&caps, sizeof(caps)); 4797 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4798 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4799 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4800 mtype = 0; 4801 moff = 0; 4802 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4803 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4804 mtype = FW_MEMTYPE_FLASH; 4805 moff = t4_flash_cfg_addr(sc); 4806 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4807 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4808 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4809 FW_LEN16(caps)); 4810 } else { 4811 /* 4812 * Ask the firmware where it wants us to upload the config file. 4813 */ 4814 param = FW_PARAM_DEV(CF); 4815 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4816 if (rc != 0) { 4817 /* No support for config file? Shouldn't happen. */ 4818 device_printf(sc->dev, 4819 "failed to query config file location: %d.\n", rc); 4820 goto done; 4821 } 4822 mtype = G_FW_PARAMS_PARAM_Y(val); 4823 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4824 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4825 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4826 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4827 FW_LEN16(caps)); 4828 4829 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4830 if (rc != 0) { 4831 device_printf(sc->dev, 4832 "failed to upload config file to card: %d.\n", rc); 4833 goto done; 4834 } 4835 } 4836 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4837 if (rc != 0) { 4838 device_printf(sc->dev, "failed to pre-process config file: %d " 4839 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4840 goto done; 4841 } 4842 4843 finicsum = be32toh(caps.finicsum); 4844 cfcsum = be32toh(caps.cfcsum); /* actual */ 4845 if (finicsum != cfcsum) { 4846 device_printf(sc->dev, 4847 "WARNING: config file checksum mismatch: %08x %08x\n", 4848 finicsum, cfcsum); 4849 } 4850 sc->cfcsum = cfcsum; 4851 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4852 4853 /* 4854 * Let the firmware know what features will (not) be used so it can tune 4855 * things accordingly. 4856 */ 4857 #define LIMIT_CAPS(x) do { \ 4858 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4859 } while (0) 4860 LIMIT_CAPS(nbm); 4861 LIMIT_CAPS(link); 4862 LIMIT_CAPS(switch); 4863 LIMIT_CAPS(nic); 4864 LIMIT_CAPS(toe); 4865 LIMIT_CAPS(rdma); 4866 LIMIT_CAPS(crypto); 4867 LIMIT_CAPS(iscsi); 4868 LIMIT_CAPS(fcoe); 4869 #undef LIMIT_CAPS 4870 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4871 /* 4872 * TOE and hashfilters are mutually exclusive. It is a config 4873 * file or firmware bug if both are reported as available. Try 4874 * to cope with the situation in non-debug builds by disabling 4875 * TOE. 4876 */ 4877 MPASS(caps.toecaps == 0); 4878 4879 caps.toecaps = 0; 4880 caps.rdmacaps = 0; 4881 caps.iscsicaps = 0; 4882 } 4883 4884 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4885 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4886 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4887 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4888 if (rc != 0) { 4889 device_printf(sc->dev, 4890 "failed to process config file: %d.\n", rc); 4891 goto done; 4892 } 4893 4894 t4_tweak_chip_settings(sc); 4895 set_params__pre_init(sc); 4896 4897 /* get basic stuff going */ 4898 rc = -t4_fw_initialize(sc, sc->mbox); 4899 if (rc != 0) { 4900 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4901 goto done; 4902 } 4903 done: 4904 return (rc); 4905 } 4906 4907 /* 4908 * Partition chip resources for use between various PFs, VFs, etc. 4909 */ 4910 static int 4911 partition_resources(struct adapter *sc) 4912 { 4913 char cfg_file[sizeof(t4_cfg_file)]; 4914 struct caps_allowed caps_allowed; 4915 int rc; 4916 bool fallback; 4917 4918 /* Only the master driver gets to configure the chip resources. */ 4919 MPASS(sc->flags & MASTER_PF); 4920 4921 #define COPY_CAPS(x) do { \ 4922 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4923 } while (0) 4924 bzero(&caps_allowed, sizeof(caps_allowed)); 4925 COPY_CAPS(nbm); 4926 COPY_CAPS(link); 4927 COPY_CAPS(switch); 4928 COPY_CAPS(nic); 4929 COPY_CAPS(toe); 4930 COPY_CAPS(rdma); 4931 COPY_CAPS(crypto); 4932 COPY_CAPS(iscsi); 4933 COPY_CAPS(fcoe); 4934 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4935 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4936 retry: 4937 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4938 if (rc != 0 && fallback) { 4939 device_printf(sc->dev, 4940 "failed (%d) to configure card with \"%s\" profile, " 4941 "will fall back to a basic configuration and retry.\n", 4942 rc, cfg_file); 4943 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4944 bzero(&caps_allowed, sizeof(caps_allowed)); 4945 COPY_CAPS(switch); 4946 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4947 fallback = false; 4948 goto retry; 4949 } 4950 #undef COPY_CAPS 4951 return (rc); 4952 } 4953 4954 /* 4955 * Retrieve parameters that are needed (or nice to have) very early. 4956 */ 4957 static int 4958 get_params__pre_init(struct adapter *sc) 4959 { 4960 int rc; 4961 uint32_t param[2], val[2]; 4962 4963 t4_get_version_info(sc); 4964 4965 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4966 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 4967 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 4968 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 4969 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 4970 4971 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 4972 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 4973 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 4974 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 4975 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 4976 4977 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 4978 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 4979 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 4980 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 4981 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 4982 4983 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 4984 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 4985 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 4986 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 4987 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 4988 4989 param[0] = FW_PARAM_DEV(PORTVEC); 4990 param[1] = FW_PARAM_DEV(CCLK); 4991 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4992 if (rc != 0) { 4993 device_printf(sc->dev, 4994 "failed to query parameters (pre_init): %d.\n", rc); 4995 return (rc); 4996 } 4997 4998 sc->params.portvec = val[0]; 4999 sc->params.nports = bitcount32(val[0]); 5000 sc->params.vpd.cclk = val[1]; 5001 5002 /* Read device log parameters. */ 5003 rc = -t4_init_devlog_params(sc, 1); 5004 if (rc == 0) 5005 fixup_devlog_params(sc); 5006 else { 5007 device_printf(sc->dev, 5008 "failed to get devlog parameters: %d.\n", rc); 5009 rc = 0; /* devlog isn't critical for device operation */ 5010 } 5011 5012 return (rc); 5013 } 5014 5015 /* 5016 * Any params that need to be set before FW_INITIALIZE. 5017 */ 5018 static int 5019 set_params__pre_init(struct adapter *sc) 5020 { 5021 int rc = 0; 5022 uint32_t param, val; 5023 5024 if (chip_id(sc) >= CHELSIO_T6) { 5025 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5026 val = 1; 5027 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5028 /* firmwares < 1.20.1.0 do not have this param. */ 5029 if (rc == FW_EINVAL && 5030 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5031 rc = 0; 5032 } 5033 if (rc != 0) { 5034 device_printf(sc->dev, 5035 "failed to enable high priority filters :%d.\n", 5036 rc); 5037 } 5038 } 5039 5040 /* Enable opaque VIIDs with firmwares that support it. */ 5041 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5042 val = 1; 5043 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5044 if (rc == 0 && val == 1) 5045 sc->params.viid_smt_extn_support = true; 5046 else 5047 sc->params.viid_smt_extn_support = false; 5048 5049 return (rc); 5050 } 5051 5052 /* 5053 * Retrieve various parameters that are of interest to the driver. The device 5054 * has been initialized by the firmware at this point. 5055 */ 5056 static int 5057 get_params__post_init(struct adapter *sc) 5058 { 5059 int rc; 5060 uint32_t param[7], val[7]; 5061 struct fw_caps_config_cmd caps; 5062 5063 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5064 param[1] = FW_PARAM_PFVF(EQ_START); 5065 param[2] = FW_PARAM_PFVF(FILTER_START); 5066 param[3] = FW_PARAM_PFVF(FILTER_END); 5067 param[4] = FW_PARAM_PFVF(L2T_START); 5068 param[5] = FW_PARAM_PFVF(L2T_END); 5069 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5070 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5071 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5072 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5073 if (rc != 0) { 5074 device_printf(sc->dev, 5075 "failed to query parameters (post_init): %d.\n", rc); 5076 return (rc); 5077 } 5078 5079 sc->sge.iq_start = val[0]; 5080 sc->sge.eq_start = val[1]; 5081 if ((int)val[3] > (int)val[2]) { 5082 sc->tids.ftid_base = val[2]; 5083 sc->tids.ftid_end = val[3]; 5084 sc->tids.nftids = val[3] - val[2] + 1; 5085 } 5086 sc->vres.l2t.start = val[4]; 5087 sc->vres.l2t.size = val[5] - val[4] + 1; 5088 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5089 ("%s: L2 table size (%u) larger than expected (%u)", 5090 __func__, sc->vres.l2t.size, L2T_SIZE)); 5091 sc->params.core_vdd = val[6]; 5092 5093 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5094 param[1] = FW_PARAM_PFVF(EQ_END); 5095 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5096 if (rc != 0) { 5097 device_printf(sc->dev, 5098 "failed to query parameters (post_init2): %d.\n", rc); 5099 return (rc); 5100 } 5101 MPASS((int)val[0] >= sc->sge.iq_start); 5102 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5103 MPASS((int)val[1] >= sc->sge.eq_start); 5104 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5105 5106 if (chip_id(sc) >= CHELSIO_T6) { 5107 5108 sc->tids.tid_base = t4_read_reg(sc, 5109 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5110 5111 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5112 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5113 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5114 if (rc != 0) { 5115 device_printf(sc->dev, 5116 "failed to query hpfilter parameters: %d.\n", rc); 5117 return (rc); 5118 } 5119 if ((int)val[1] > (int)val[0]) { 5120 sc->tids.hpftid_base = val[0]; 5121 sc->tids.hpftid_end = val[1]; 5122 sc->tids.nhpftids = val[1] - val[0] + 1; 5123 5124 /* 5125 * These should go off if the layout changes and the 5126 * driver needs to catch up. 5127 */ 5128 MPASS(sc->tids.hpftid_base == 0); 5129 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5130 } 5131 5132 param[0] = FW_PARAM_PFVF(RAWF_START); 5133 param[1] = FW_PARAM_PFVF(RAWF_END); 5134 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5135 if (rc != 0) { 5136 device_printf(sc->dev, 5137 "failed to query rawf parameters: %d.\n", rc); 5138 return (rc); 5139 } 5140 if ((int)val[1] > (int)val[0]) { 5141 sc->rawf_base = val[0]; 5142 sc->nrawf = val[1] - val[0] + 1; 5143 } 5144 } 5145 5146 /* 5147 * MPSBGMAP is queried separately because only recent firmwares support 5148 * it as a parameter and we don't want the compound query above to fail 5149 * on older firmwares. 5150 */ 5151 param[0] = FW_PARAM_DEV(MPSBGMAP); 5152 val[0] = 0; 5153 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5154 if (rc == 0) 5155 sc->params.mps_bg_map = val[0]; 5156 else 5157 sc->params.mps_bg_map = 0; 5158 5159 /* 5160 * Determine whether the firmware supports the filter2 work request. 5161 * This is queried separately for the same reason as MPSBGMAP above. 5162 */ 5163 param[0] = FW_PARAM_DEV(FILTER2_WR); 5164 val[0] = 0; 5165 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5166 if (rc == 0) 5167 sc->params.filter2_wr_support = val[0] != 0; 5168 else 5169 sc->params.filter2_wr_support = 0; 5170 5171 /* 5172 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5173 * This is queried separately for the same reason as other params above. 5174 */ 5175 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5176 val[0] = 0; 5177 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5178 if (rc == 0) 5179 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5180 else 5181 sc->params.ulptx_memwrite_dsgl = false; 5182 5183 /* FW_RI_FR_NSMR_TPTE_WR support */ 5184 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5185 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5186 if (rc == 0) 5187 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5188 else 5189 sc->params.fr_nsmr_tpte_wr_support = false; 5190 5191 /* Support for 512 SGL entries per FR MR. */ 5192 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5193 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5194 if (rc == 0) 5195 sc->params.dev_512sgl_mr = val[0] != 0; 5196 else 5197 sc->params.dev_512sgl_mr = false; 5198 5199 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5200 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5201 if (rc == 0) 5202 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5203 else 5204 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5205 5206 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5207 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5208 if (rc == 0) { 5209 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5210 sc->params.nsched_cls = val[0]; 5211 } else 5212 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5213 5214 /* get capabilites */ 5215 bzero(&caps, sizeof(caps)); 5216 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5217 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5218 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5219 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5220 if (rc != 0) { 5221 device_printf(sc->dev, 5222 "failed to get card capabilities: %d.\n", rc); 5223 return (rc); 5224 } 5225 5226 #define READ_CAPS(x) do { \ 5227 sc->x = htobe16(caps.x); \ 5228 } while (0) 5229 READ_CAPS(nbmcaps); 5230 READ_CAPS(linkcaps); 5231 READ_CAPS(switchcaps); 5232 READ_CAPS(niccaps); 5233 READ_CAPS(toecaps); 5234 READ_CAPS(rdmacaps); 5235 READ_CAPS(cryptocaps); 5236 READ_CAPS(iscsicaps); 5237 READ_CAPS(fcoecaps); 5238 5239 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5240 MPASS(chip_id(sc) > CHELSIO_T4); 5241 MPASS(sc->toecaps == 0); 5242 sc->toecaps = 0; 5243 5244 param[0] = FW_PARAM_DEV(NTID); 5245 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5246 if (rc != 0) { 5247 device_printf(sc->dev, 5248 "failed to query HASHFILTER parameters: %d.\n", rc); 5249 return (rc); 5250 } 5251 sc->tids.ntids = val[0]; 5252 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5253 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5254 sc->tids.ntids -= sc->tids.nhpftids; 5255 } 5256 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5257 sc->params.hash_filter = 1; 5258 } 5259 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5260 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5261 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5262 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5263 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5264 if (rc != 0) { 5265 device_printf(sc->dev, 5266 "failed to query NIC parameters: %d.\n", rc); 5267 return (rc); 5268 } 5269 if ((int)val[1] > (int)val[0]) { 5270 sc->tids.etid_base = val[0]; 5271 sc->tids.etid_end = val[1]; 5272 sc->tids.netids = val[1] - val[0] + 1; 5273 sc->params.eo_wr_cred = val[2]; 5274 sc->params.ethoffload = 1; 5275 } 5276 } 5277 if (sc->toecaps) { 5278 /* query offload-related parameters */ 5279 param[0] = FW_PARAM_DEV(NTID); 5280 param[1] = FW_PARAM_PFVF(SERVER_START); 5281 param[2] = FW_PARAM_PFVF(SERVER_END); 5282 param[3] = FW_PARAM_PFVF(TDDP_START); 5283 param[4] = FW_PARAM_PFVF(TDDP_END); 5284 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5285 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5286 if (rc != 0) { 5287 device_printf(sc->dev, 5288 "failed to query TOE parameters: %d.\n", rc); 5289 return (rc); 5290 } 5291 sc->tids.ntids = val[0]; 5292 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5293 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5294 sc->tids.ntids -= sc->tids.nhpftids; 5295 } 5296 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5297 if ((int)val[2] > (int)val[1]) { 5298 sc->tids.stid_base = val[1]; 5299 sc->tids.nstids = val[2] - val[1] + 1; 5300 } 5301 sc->vres.ddp.start = val[3]; 5302 sc->vres.ddp.size = val[4] - val[3] + 1; 5303 sc->params.ofldq_wr_cred = val[5]; 5304 sc->params.offload = 1; 5305 } else { 5306 /* 5307 * The firmware attempts memfree TOE configuration for -SO cards 5308 * and will report toecaps=0 if it runs out of resources (this 5309 * depends on the config file). It may not report 0 for other 5310 * capabilities dependent on the TOE in this case. Set them to 5311 * 0 here so that the driver doesn't bother tracking resources 5312 * that will never be used. 5313 */ 5314 sc->iscsicaps = 0; 5315 sc->rdmacaps = 0; 5316 } 5317 if (sc->rdmacaps) { 5318 param[0] = FW_PARAM_PFVF(STAG_START); 5319 param[1] = FW_PARAM_PFVF(STAG_END); 5320 param[2] = FW_PARAM_PFVF(RQ_START); 5321 param[3] = FW_PARAM_PFVF(RQ_END); 5322 param[4] = FW_PARAM_PFVF(PBL_START); 5323 param[5] = FW_PARAM_PFVF(PBL_END); 5324 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5325 if (rc != 0) { 5326 device_printf(sc->dev, 5327 "failed to query RDMA parameters(1): %d.\n", rc); 5328 return (rc); 5329 } 5330 sc->vres.stag.start = val[0]; 5331 sc->vres.stag.size = val[1] - val[0] + 1; 5332 sc->vres.rq.start = val[2]; 5333 sc->vres.rq.size = val[3] - val[2] + 1; 5334 sc->vres.pbl.start = val[4]; 5335 sc->vres.pbl.size = val[5] - val[4] + 1; 5336 5337 param[0] = FW_PARAM_PFVF(SQRQ_START); 5338 param[1] = FW_PARAM_PFVF(SQRQ_END); 5339 param[2] = FW_PARAM_PFVF(CQ_START); 5340 param[3] = FW_PARAM_PFVF(CQ_END); 5341 param[4] = FW_PARAM_PFVF(OCQ_START); 5342 param[5] = FW_PARAM_PFVF(OCQ_END); 5343 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5344 if (rc != 0) { 5345 device_printf(sc->dev, 5346 "failed to query RDMA parameters(2): %d.\n", rc); 5347 return (rc); 5348 } 5349 sc->vres.qp.start = val[0]; 5350 sc->vres.qp.size = val[1] - val[0] + 1; 5351 sc->vres.cq.start = val[2]; 5352 sc->vres.cq.size = val[3] - val[2] + 1; 5353 sc->vres.ocq.start = val[4]; 5354 sc->vres.ocq.size = val[5] - val[4] + 1; 5355 5356 param[0] = FW_PARAM_PFVF(SRQ_START); 5357 param[1] = FW_PARAM_PFVF(SRQ_END); 5358 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5359 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5360 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5361 if (rc != 0) { 5362 device_printf(sc->dev, 5363 "failed to query RDMA parameters(3): %d.\n", rc); 5364 return (rc); 5365 } 5366 sc->vres.srq.start = val[0]; 5367 sc->vres.srq.size = val[1] - val[0] + 1; 5368 sc->params.max_ordird_qp = val[2]; 5369 sc->params.max_ird_adapter = val[3]; 5370 } 5371 if (sc->iscsicaps) { 5372 param[0] = FW_PARAM_PFVF(ISCSI_START); 5373 param[1] = FW_PARAM_PFVF(ISCSI_END); 5374 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5375 if (rc != 0) { 5376 device_printf(sc->dev, 5377 "failed to query iSCSI parameters: %d.\n", rc); 5378 return (rc); 5379 } 5380 sc->vres.iscsi.start = val[0]; 5381 sc->vres.iscsi.size = val[1] - val[0] + 1; 5382 } 5383 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5384 param[0] = FW_PARAM_PFVF(TLS_START); 5385 param[1] = FW_PARAM_PFVF(TLS_END); 5386 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5387 if (rc != 0) { 5388 device_printf(sc->dev, 5389 "failed to query TLS parameters: %d.\n", rc); 5390 return (rc); 5391 } 5392 sc->vres.key.start = val[0]; 5393 sc->vres.key.size = val[1] - val[0] + 1; 5394 } 5395 5396 /* 5397 * We've got the params we wanted to query directly from the firmware. 5398 * Grab some others via other means. 5399 */ 5400 t4_init_sge_params(sc); 5401 t4_init_tp_params(sc); 5402 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5403 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5404 5405 rc = t4_verify_chip_settings(sc); 5406 if (rc != 0) 5407 return (rc); 5408 t4_init_rx_buf_info(sc); 5409 5410 return (rc); 5411 } 5412 5413 #ifdef KERN_TLS 5414 static void 5415 ktls_tick(void *arg) 5416 { 5417 struct adapter *sc; 5418 uint32_t tstamp; 5419 5420 sc = arg; 5421 tstamp = tcp_ts_getticks(); 5422 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5423 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5424 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5425 } 5426 5427 static int 5428 t4_config_kern_tls(struct adapter *sc, bool enable) 5429 { 5430 int rc; 5431 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5432 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5433 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5434 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5435 5436 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5437 if (rc != 0) { 5438 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5439 enable ? "enable" : "disable", rc); 5440 return (rc); 5441 } 5442 5443 if (enable) { 5444 sc->flags |= KERN_TLS_ON; 5445 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5446 C_HARDCLOCK); 5447 } else { 5448 sc->flags &= ~KERN_TLS_ON; 5449 callout_stop(&sc->ktls_tick); 5450 } 5451 5452 return (rc); 5453 } 5454 #endif 5455 5456 static int 5457 set_params__post_init(struct adapter *sc) 5458 { 5459 uint32_t mask, param, val; 5460 #ifdef TCP_OFFLOAD 5461 int i, v, shift; 5462 #endif 5463 5464 /* ask for encapsulated CPLs */ 5465 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5466 val = 1; 5467 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5468 5469 /* Enable 32b port caps if the firmware supports it. */ 5470 param = FW_PARAM_PFVF(PORT_CAPS32); 5471 val = 1; 5472 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5473 sc->params.port_caps32 = 1; 5474 5475 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5476 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5477 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5478 V_MASKFILTER(val - 1)); 5479 5480 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5481 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5482 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5483 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5484 val = 0; 5485 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5486 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5487 F_ATTACKFILTERENABLE); 5488 val |= F_DROPERRORATTACK; 5489 } 5490 if (t4_drop_ip_fragments != 0) { 5491 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5492 F_FRAGMENTDROP); 5493 val |= F_DROPERRORFRAG; 5494 } 5495 if (t4_drop_pkts_with_l2_errors != 0) 5496 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5497 if (t4_drop_pkts_with_l3_errors != 0) { 5498 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5499 F_DROPERRORCSUMIP; 5500 } 5501 if (t4_drop_pkts_with_l4_errors != 0) { 5502 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5503 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5504 } 5505 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5506 5507 #ifdef TCP_OFFLOAD 5508 /* 5509 * Override the TOE timers with user provided tunables. This is not the 5510 * recommended way to change the timers (the firmware config file is) so 5511 * these tunables are not documented. 5512 * 5513 * All the timer tunables are in microseconds. 5514 */ 5515 if (t4_toe_keepalive_idle != 0) { 5516 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5517 v &= M_KEEPALIVEIDLE; 5518 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5519 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5520 } 5521 if (t4_toe_keepalive_interval != 0) { 5522 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5523 v &= M_KEEPALIVEINTVL; 5524 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5525 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5526 } 5527 if (t4_toe_keepalive_count != 0) { 5528 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5529 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5530 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5531 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5532 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5533 } 5534 if (t4_toe_rexmt_min != 0) { 5535 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5536 v &= M_RXTMIN; 5537 t4_set_reg_field(sc, A_TP_RXT_MIN, 5538 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5539 } 5540 if (t4_toe_rexmt_max != 0) { 5541 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5542 v &= M_RXTMAX; 5543 t4_set_reg_field(sc, A_TP_RXT_MAX, 5544 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5545 } 5546 if (t4_toe_rexmt_count != 0) { 5547 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5548 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5549 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5550 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5551 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5552 } 5553 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5554 if (t4_toe_rexmt_backoff[i] != -1) { 5555 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5556 shift = (i & 3) << 3; 5557 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5558 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5559 } 5560 } 5561 #endif 5562 5563 #ifdef KERN_TLS 5564 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5565 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5566 /* 5567 * Limit TOE connections to 2 reassembly "islands". This is 5568 * required for TOE TLS connections to downgrade to plain TOE 5569 * connections if an unsupported TLS version or ciphersuite is 5570 * used. 5571 */ 5572 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5573 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5574 if (is_ktls(sc)) { 5575 sc->tlst.inline_keys = t4_tls_inline_keys; 5576 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5577 if (t4_kern_tls != 0) 5578 t4_config_kern_tls(sc, true); 5579 } 5580 } 5581 #endif 5582 return (0); 5583 } 5584 5585 #undef FW_PARAM_PFVF 5586 #undef FW_PARAM_DEV 5587 5588 static void 5589 t4_set_desc(struct adapter *sc) 5590 { 5591 char buf[128]; 5592 struct adapter_params *p = &sc->params; 5593 5594 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5595 5596 device_set_desc_copy(sc->dev, buf); 5597 } 5598 5599 static inline void 5600 ifmedia_add4(struct ifmedia *ifm, int m) 5601 { 5602 5603 ifmedia_add(ifm, m, 0, NULL); 5604 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5605 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5606 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5607 } 5608 5609 /* 5610 * This is the selected media, which is not quite the same as the active media. 5611 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5612 * and active are not the same, and "media: Ethernet selected" otherwise. 5613 */ 5614 static void 5615 set_current_media(struct port_info *pi) 5616 { 5617 struct link_config *lc; 5618 struct ifmedia *ifm; 5619 int mword; 5620 u_int speed; 5621 5622 PORT_LOCK_ASSERT_OWNED(pi); 5623 5624 /* Leave current media alone if it's already set to IFM_NONE. */ 5625 ifm = &pi->media; 5626 if (ifm->ifm_cur != NULL && 5627 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5628 return; 5629 5630 lc = &pi->link_cfg; 5631 if (lc->requested_aneg != AUTONEG_DISABLE && 5632 lc->pcaps & FW_PORT_CAP32_ANEG) { 5633 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5634 return; 5635 } 5636 mword = IFM_ETHER | IFM_FDX; 5637 if (lc->requested_fc & PAUSE_TX) 5638 mword |= IFM_ETH_TXPAUSE; 5639 if (lc->requested_fc & PAUSE_RX) 5640 mword |= IFM_ETH_RXPAUSE; 5641 if (lc->requested_speed == 0) 5642 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5643 else 5644 speed = lc->requested_speed; 5645 mword |= port_mword(pi, speed_to_fwcap(speed)); 5646 ifmedia_set(ifm, mword); 5647 } 5648 5649 /* 5650 * Returns true if the ifmedia list for the port cannot change. 5651 */ 5652 static bool 5653 fixed_ifmedia(struct port_info *pi) 5654 { 5655 5656 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5657 pi->port_type == FW_PORT_TYPE_BT_XFI || 5658 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5659 pi->port_type == FW_PORT_TYPE_KX4 || 5660 pi->port_type == FW_PORT_TYPE_KX || 5661 pi->port_type == FW_PORT_TYPE_KR || 5662 pi->port_type == FW_PORT_TYPE_BP_AP || 5663 pi->port_type == FW_PORT_TYPE_BP4_AP || 5664 pi->port_type == FW_PORT_TYPE_BP40_BA || 5665 pi->port_type == FW_PORT_TYPE_KR4_100G || 5666 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5667 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5668 } 5669 5670 static void 5671 build_medialist(struct port_info *pi) 5672 { 5673 uint32_t ss, speed; 5674 int unknown, mword, bit; 5675 struct link_config *lc; 5676 struct ifmedia *ifm; 5677 5678 PORT_LOCK_ASSERT_OWNED(pi); 5679 5680 if (pi->flags & FIXED_IFMEDIA) 5681 return; 5682 5683 /* 5684 * Rebuild the ifmedia list. 5685 */ 5686 ifm = &pi->media; 5687 ifmedia_removeall(ifm); 5688 lc = &pi->link_cfg; 5689 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5690 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5691 MPASS(ss != 0); 5692 no_media: 5693 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5694 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5695 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5696 return; 5697 } 5698 5699 unknown = 0; 5700 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5701 speed = 1 << bit; 5702 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5703 if (ss & speed) { 5704 mword = port_mword(pi, speed); 5705 if (mword == IFM_NONE) { 5706 goto no_media; 5707 } else if (mword == IFM_UNKNOWN) 5708 unknown++; 5709 else 5710 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5711 } 5712 } 5713 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5714 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5715 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5716 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5717 5718 set_current_media(pi); 5719 } 5720 5721 /* 5722 * Initialize the requested fields in the link config based on driver tunables. 5723 */ 5724 static void 5725 init_link_config(struct port_info *pi) 5726 { 5727 struct link_config *lc = &pi->link_cfg; 5728 5729 PORT_LOCK_ASSERT_OWNED(pi); 5730 MPASS(lc->pcaps != 0); 5731 5732 lc->requested_caps = 0; 5733 lc->requested_speed = 0; 5734 5735 if (t4_autoneg == 0) 5736 lc->requested_aneg = AUTONEG_DISABLE; 5737 else if (t4_autoneg == 1) 5738 lc->requested_aneg = AUTONEG_ENABLE; 5739 else 5740 lc->requested_aneg = AUTONEG_AUTO; 5741 5742 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5743 PAUSE_AUTONEG); 5744 5745 if (t4_fec & FEC_AUTO) 5746 lc->requested_fec = FEC_AUTO; 5747 else if (t4_fec == 0) 5748 lc->requested_fec = FEC_NONE; 5749 else { 5750 /* -1 is handled by the FEC_AUTO block above and not here. */ 5751 lc->requested_fec = t4_fec & 5752 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5753 if (lc->requested_fec == 0) 5754 lc->requested_fec = FEC_AUTO; 5755 } 5756 lc->force_fec = 0; 5757 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 5758 if (t4_force_fec < 0) 5759 lc->force_fec = -1; 5760 else if (t4_force_fec > 0) 5761 lc->force_fec = 1; 5762 } 5763 } 5764 5765 /* 5766 * Makes sure that all requested settings comply with what's supported by the 5767 * port. Returns the number of settings that were invalid and had to be fixed. 5768 */ 5769 static int 5770 fixup_link_config(struct port_info *pi) 5771 { 5772 int n = 0; 5773 struct link_config *lc = &pi->link_cfg; 5774 uint32_t fwspeed; 5775 5776 PORT_LOCK_ASSERT_OWNED(pi); 5777 5778 /* Speed (when not autonegotiating) */ 5779 if (lc->requested_speed != 0) { 5780 fwspeed = speed_to_fwcap(lc->requested_speed); 5781 if ((fwspeed & lc->pcaps) == 0) { 5782 n++; 5783 lc->requested_speed = 0; 5784 } 5785 } 5786 5787 /* Link autonegotiation */ 5788 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5789 lc->requested_aneg == AUTONEG_DISABLE || 5790 lc->requested_aneg == AUTONEG_AUTO); 5791 if (lc->requested_aneg == AUTONEG_ENABLE && 5792 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5793 n++; 5794 lc->requested_aneg = AUTONEG_AUTO; 5795 } 5796 5797 /* Flow control */ 5798 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5799 if (lc->requested_fc & PAUSE_TX && 5800 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5801 n++; 5802 lc->requested_fc &= ~PAUSE_TX; 5803 } 5804 if (lc->requested_fc & PAUSE_RX && 5805 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5806 n++; 5807 lc->requested_fc &= ~PAUSE_RX; 5808 } 5809 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5810 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5811 n++; 5812 lc->requested_fc |= PAUSE_AUTONEG; 5813 } 5814 5815 /* FEC */ 5816 if ((lc->requested_fec & FEC_RS && 5817 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5818 (lc->requested_fec & FEC_BASER_RS && 5819 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5820 n++; 5821 lc->requested_fec = FEC_AUTO; 5822 } 5823 5824 return (n); 5825 } 5826 5827 /* 5828 * Apply the requested L1 settings, which are expected to be valid, to the 5829 * hardware. 5830 */ 5831 static int 5832 apply_link_config(struct port_info *pi) 5833 { 5834 struct adapter *sc = pi->adapter; 5835 struct link_config *lc = &pi->link_cfg; 5836 int rc; 5837 5838 #ifdef INVARIANTS 5839 ASSERT_SYNCHRONIZED_OP(sc); 5840 PORT_LOCK_ASSERT_OWNED(pi); 5841 5842 if (lc->requested_aneg == AUTONEG_ENABLE) 5843 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5844 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5845 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5846 if (lc->requested_fc & PAUSE_TX) 5847 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5848 if (lc->requested_fc & PAUSE_RX) 5849 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5850 if (lc->requested_fec & FEC_RS) 5851 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5852 if (lc->requested_fec & FEC_BASER_RS) 5853 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5854 #endif 5855 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5856 if (rc != 0) { 5857 /* Don't complain if the VF driver gets back an EPERM. */ 5858 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5859 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5860 } else { 5861 /* 5862 * An L1_CFG will almost always result in a link-change event if 5863 * the link is up, and the driver will refresh the actual 5864 * fec/fc/etc. when the notification is processed. If the link 5865 * is down then the actual settings are meaningless. 5866 * 5867 * This takes care of the case where a change in the L1 settings 5868 * may not result in a notification. 5869 */ 5870 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5871 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5872 } 5873 return (rc); 5874 } 5875 5876 #define FW_MAC_EXACT_CHUNK 7 5877 struct mcaddr_ctx { 5878 struct ifnet *ifp; 5879 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5880 uint64_t hash; 5881 int i; 5882 int del; 5883 int rc; 5884 }; 5885 5886 static u_int 5887 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5888 { 5889 struct mcaddr_ctx *ctx = arg; 5890 struct vi_info *vi = ctx->ifp->if_softc; 5891 struct port_info *pi = vi->pi; 5892 struct adapter *sc = pi->adapter; 5893 5894 if (ctx->rc < 0) 5895 return (0); 5896 5897 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5898 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5899 ctx->i++; 5900 5901 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5902 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5903 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5904 if (ctx->rc < 0) { 5905 int j; 5906 5907 for (j = 0; j < ctx->i; j++) { 5908 if_printf(ctx->ifp, 5909 "failed to add mc address" 5910 " %02x:%02x:%02x:" 5911 "%02x:%02x:%02x rc=%d\n", 5912 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5913 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5914 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5915 -ctx->rc); 5916 } 5917 return (0); 5918 } 5919 ctx->del = 0; 5920 ctx->i = 0; 5921 } 5922 5923 return (1); 5924 } 5925 5926 /* 5927 * Program the port's XGMAC based on parameters in ifnet. The caller also 5928 * indicates which parameters should be programmed (the rest are left alone). 5929 */ 5930 int 5931 update_mac_settings(struct ifnet *ifp, int flags) 5932 { 5933 int rc = 0; 5934 struct vi_info *vi = ifp->if_softc; 5935 struct port_info *pi = vi->pi; 5936 struct adapter *sc = pi->adapter; 5937 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5938 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 5939 5940 ASSERT_SYNCHRONIZED_OP(sc); 5941 KASSERT(flags, ("%s: not told what to update.", __func__)); 5942 5943 if (flags & XGMAC_MTU) 5944 mtu = ifp->if_mtu; 5945 5946 if (flags & XGMAC_PROMISC) 5947 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5948 5949 if (flags & XGMAC_ALLMULTI) 5950 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5951 5952 if (flags & XGMAC_VLANEX) 5953 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5954 5955 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5956 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5957 allmulti, 1, vlanex, false); 5958 if (rc) { 5959 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5960 rc); 5961 return (rc); 5962 } 5963 } 5964 5965 if (flags & XGMAC_UCADDR) { 5966 uint8_t ucaddr[ETHER_ADDR_LEN]; 5967 5968 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5969 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5970 ucaddr, true, &vi->smt_idx); 5971 if (rc < 0) { 5972 rc = -rc; 5973 if_printf(ifp, "change_mac failed: %d\n", rc); 5974 return (rc); 5975 } else { 5976 vi->xact_addr_filt = rc; 5977 rc = 0; 5978 } 5979 } 5980 5981 if (flags & XGMAC_MCADDRS) { 5982 struct epoch_tracker et; 5983 struct mcaddr_ctx ctx; 5984 int j; 5985 5986 ctx.ifp = ifp; 5987 ctx.hash = 0; 5988 ctx.i = 0; 5989 ctx.del = 1; 5990 ctx.rc = 0; 5991 /* 5992 * Unlike other drivers, we accumulate list of pointers into 5993 * interface address lists and we need to keep it safe even 5994 * after if_foreach_llmaddr() returns, thus we must enter the 5995 * network epoch. 5996 */ 5997 NET_EPOCH_ENTER(et); 5998 if_foreach_llmaddr(ifp, add_maddr, &ctx); 5999 if (ctx.rc < 0) { 6000 NET_EPOCH_EXIT(et); 6001 rc = -ctx.rc; 6002 return (rc); 6003 } 6004 if (ctx.i > 0) { 6005 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6006 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6007 NET_EPOCH_EXIT(et); 6008 if (rc < 0) { 6009 rc = -rc; 6010 for (j = 0; j < ctx.i; j++) { 6011 if_printf(ifp, 6012 "failed to add mcast address" 6013 " %02x:%02x:%02x:" 6014 "%02x:%02x:%02x rc=%d\n", 6015 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6016 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6017 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6018 rc); 6019 } 6020 return (rc); 6021 } 6022 ctx.del = 0; 6023 } else 6024 NET_EPOCH_EXIT(et); 6025 6026 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6027 if (rc != 0) 6028 if_printf(ifp, "failed to set mcast address hash: %d\n", 6029 rc); 6030 if (ctx.del == 0) { 6031 /* We clobbered the VXLAN entry if there was one. */ 6032 pi->vxlan_tcam_entry = false; 6033 } 6034 } 6035 6036 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6037 pi->vxlan_tcam_entry == false) { 6038 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6039 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6040 true); 6041 if (rc < 0) { 6042 rc = -rc; 6043 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6044 rc); 6045 } else { 6046 MPASS(rc == sc->rawf_base + pi->port_id); 6047 rc = 0; 6048 pi->vxlan_tcam_entry = true; 6049 } 6050 } 6051 6052 return (rc); 6053 } 6054 6055 /* 6056 * {begin|end}_synchronized_op must be called from the same thread. 6057 */ 6058 int 6059 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6060 char *wmesg) 6061 { 6062 int rc, pri; 6063 6064 #ifdef WITNESS 6065 /* the caller thinks it's ok to sleep, but is it really? */ 6066 if (flags & SLEEP_OK) 6067 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6068 "begin_synchronized_op"); 6069 #endif 6070 6071 if (INTR_OK) 6072 pri = PCATCH; 6073 else 6074 pri = 0; 6075 6076 ADAPTER_LOCK(sc); 6077 for (;;) { 6078 6079 if (vi && IS_DOOMED(vi)) { 6080 rc = ENXIO; 6081 goto done; 6082 } 6083 6084 if (!IS_BUSY(sc)) { 6085 rc = 0; 6086 break; 6087 } 6088 6089 if (!(flags & SLEEP_OK)) { 6090 rc = EBUSY; 6091 goto done; 6092 } 6093 6094 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6095 rc = EINTR; 6096 goto done; 6097 } 6098 } 6099 6100 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6101 SET_BUSY(sc); 6102 #ifdef INVARIANTS 6103 sc->last_op = wmesg; 6104 sc->last_op_thr = curthread; 6105 sc->last_op_flags = flags; 6106 #endif 6107 6108 done: 6109 if (!(flags & HOLD_LOCK) || rc) 6110 ADAPTER_UNLOCK(sc); 6111 6112 return (rc); 6113 } 6114 6115 /* 6116 * Tell if_ioctl and if_init that the VI is going away. This is 6117 * special variant of begin_synchronized_op and must be paired with a 6118 * call to end_synchronized_op. 6119 */ 6120 void 6121 doom_vi(struct adapter *sc, struct vi_info *vi) 6122 { 6123 6124 ADAPTER_LOCK(sc); 6125 SET_DOOMED(vi); 6126 wakeup(&sc->flags); 6127 while (IS_BUSY(sc)) 6128 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6129 SET_BUSY(sc); 6130 #ifdef INVARIANTS 6131 sc->last_op = "t4detach"; 6132 sc->last_op_thr = curthread; 6133 sc->last_op_flags = 0; 6134 #endif 6135 ADAPTER_UNLOCK(sc); 6136 } 6137 6138 /* 6139 * {begin|end}_synchronized_op must be called from the same thread. 6140 */ 6141 void 6142 end_synchronized_op(struct adapter *sc, int flags) 6143 { 6144 6145 if (flags & LOCK_HELD) 6146 ADAPTER_LOCK_ASSERT_OWNED(sc); 6147 else 6148 ADAPTER_LOCK(sc); 6149 6150 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6151 CLR_BUSY(sc); 6152 wakeup(&sc->flags); 6153 ADAPTER_UNLOCK(sc); 6154 } 6155 6156 static int 6157 cxgbe_init_synchronized(struct vi_info *vi) 6158 { 6159 struct port_info *pi = vi->pi; 6160 struct adapter *sc = pi->adapter; 6161 struct ifnet *ifp = vi->ifp; 6162 int rc = 0, i; 6163 struct sge_txq *txq; 6164 6165 ASSERT_SYNCHRONIZED_OP(sc); 6166 6167 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6168 return (0); /* already running */ 6169 6170 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6171 return (rc); /* error message displayed already */ 6172 6173 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6174 return (rc); /* error message displayed already */ 6175 6176 rc = update_mac_settings(ifp, XGMAC_ALL); 6177 if (rc) 6178 goto done; /* error message displayed already */ 6179 6180 PORT_LOCK(pi); 6181 if (pi->up_vis == 0) { 6182 t4_update_port_info(pi); 6183 fixup_link_config(pi); 6184 build_medialist(pi); 6185 apply_link_config(pi); 6186 } 6187 6188 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6189 if (rc != 0) { 6190 if_printf(ifp, "enable_vi failed: %d\n", rc); 6191 PORT_UNLOCK(pi); 6192 goto done; 6193 } 6194 6195 /* 6196 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6197 * if this changes. 6198 */ 6199 6200 for_each_txq(vi, i, txq) { 6201 TXQ_LOCK(txq); 6202 txq->eq.flags |= EQ_ENABLED; 6203 TXQ_UNLOCK(txq); 6204 } 6205 6206 /* 6207 * The first iq of the first port to come up is used for tracing. 6208 */ 6209 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6210 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6211 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6212 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6213 V_QUEUENUMBER(sc->traceq)); 6214 pi->flags |= HAS_TRACEQ; 6215 } 6216 6217 /* all ok */ 6218 pi->up_vis++; 6219 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6220 if (pi->link_cfg.link_ok) 6221 t4_os_link_changed(pi); 6222 PORT_UNLOCK(pi); 6223 6224 mtx_lock(&vi->tick_mtx); 6225 if (ifp->if_get_counter == vi_get_counter) 6226 callout_reset(&vi->tick, hz, vi_tick, vi); 6227 else 6228 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6229 mtx_unlock(&vi->tick_mtx); 6230 done: 6231 if (rc != 0) 6232 cxgbe_uninit_synchronized(vi); 6233 6234 return (rc); 6235 } 6236 6237 /* 6238 * Idempotent. 6239 */ 6240 static int 6241 cxgbe_uninit_synchronized(struct vi_info *vi) 6242 { 6243 struct port_info *pi = vi->pi; 6244 struct adapter *sc = pi->adapter; 6245 struct ifnet *ifp = vi->ifp; 6246 int rc, i; 6247 struct sge_txq *txq; 6248 6249 ASSERT_SYNCHRONIZED_OP(sc); 6250 6251 if (!(vi->flags & VI_INIT_DONE)) { 6252 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6253 KASSERT(0, ("uninited VI is running")); 6254 if_printf(ifp, "uninited VI with running ifnet. " 6255 "vi->flags 0x%016lx, if_flags 0x%08x, " 6256 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6257 ifp->if_drv_flags); 6258 } 6259 return (0); 6260 } 6261 6262 /* 6263 * Disable the VI so that all its data in either direction is discarded 6264 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6265 * tick) intact as the TP can deliver negative advice or data that it's 6266 * holding in its RAM (for an offloaded connection) even after the VI is 6267 * disabled. 6268 */ 6269 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6270 if (rc) { 6271 if_printf(ifp, "disable_vi failed: %d\n", rc); 6272 return (rc); 6273 } 6274 6275 for_each_txq(vi, i, txq) { 6276 TXQ_LOCK(txq); 6277 txq->eq.flags &= ~EQ_ENABLED; 6278 TXQ_UNLOCK(txq); 6279 } 6280 6281 mtx_lock(&vi->tick_mtx); 6282 callout_stop(&vi->tick); 6283 mtx_unlock(&vi->tick_mtx); 6284 6285 PORT_LOCK(pi); 6286 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6287 PORT_UNLOCK(pi); 6288 return (0); 6289 } 6290 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6291 pi->up_vis--; 6292 if (pi->up_vis > 0) { 6293 PORT_UNLOCK(pi); 6294 return (0); 6295 } 6296 6297 pi->link_cfg.link_ok = false; 6298 pi->link_cfg.speed = 0; 6299 pi->link_cfg.link_down_rc = 255; 6300 t4_os_link_changed(pi); 6301 PORT_UNLOCK(pi); 6302 6303 return (0); 6304 } 6305 6306 /* 6307 * It is ok for this function to fail midway and return right away. t4_detach 6308 * will walk the entire sc->irq list and clean up whatever is valid. 6309 */ 6310 int 6311 t4_setup_intr_handlers(struct adapter *sc) 6312 { 6313 int rc, rid, p, q, v; 6314 char s[8]; 6315 struct irq *irq; 6316 struct port_info *pi; 6317 struct vi_info *vi; 6318 struct sge *sge = &sc->sge; 6319 struct sge_rxq *rxq; 6320 #ifdef TCP_OFFLOAD 6321 struct sge_ofld_rxq *ofld_rxq; 6322 #endif 6323 #ifdef DEV_NETMAP 6324 struct sge_nm_rxq *nm_rxq; 6325 #endif 6326 #ifdef RSS 6327 int nbuckets = rss_getnumbuckets(); 6328 #endif 6329 6330 /* 6331 * Setup interrupts. 6332 */ 6333 irq = &sc->irq[0]; 6334 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6335 if (forwarding_intr_to_fwq(sc)) 6336 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6337 6338 /* Multiple interrupts. */ 6339 if (sc->flags & IS_VF) 6340 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6341 ("%s: too few intr.", __func__)); 6342 else 6343 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6344 ("%s: too few intr.", __func__)); 6345 6346 /* The first one is always error intr on PFs */ 6347 if (!(sc->flags & IS_VF)) { 6348 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6349 if (rc != 0) 6350 return (rc); 6351 irq++; 6352 rid++; 6353 } 6354 6355 /* The second one is always the firmware event queue (first on VFs) */ 6356 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6357 if (rc != 0) 6358 return (rc); 6359 irq++; 6360 rid++; 6361 6362 for_each_port(sc, p) { 6363 pi = sc->port[p]; 6364 for_each_vi(pi, v, vi) { 6365 vi->first_intr = rid - 1; 6366 6367 if (vi->nnmrxq > 0) { 6368 int n = max(vi->nrxq, vi->nnmrxq); 6369 6370 rxq = &sge->rxq[vi->first_rxq]; 6371 #ifdef DEV_NETMAP 6372 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6373 #endif 6374 for (q = 0; q < n; q++) { 6375 snprintf(s, sizeof(s), "%x%c%x", p, 6376 'a' + v, q); 6377 if (q < vi->nrxq) 6378 irq->rxq = rxq++; 6379 #ifdef DEV_NETMAP 6380 if (q < vi->nnmrxq) 6381 irq->nm_rxq = nm_rxq++; 6382 6383 if (irq->nm_rxq != NULL && 6384 irq->rxq == NULL) { 6385 /* Netmap rx only */ 6386 rc = t4_alloc_irq(sc, irq, rid, 6387 t4_nm_intr, irq->nm_rxq, s); 6388 } 6389 if (irq->nm_rxq != NULL && 6390 irq->rxq != NULL) { 6391 /* NIC and Netmap rx */ 6392 rc = t4_alloc_irq(sc, irq, rid, 6393 t4_vi_intr, irq, s); 6394 } 6395 #endif 6396 if (irq->rxq != NULL && 6397 irq->nm_rxq == NULL) { 6398 /* NIC rx only */ 6399 rc = t4_alloc_irq(sc, irq, rid, 6400 t4_intr, irq->rxq, s); 6401 } 6402 if (rc != 0) 6403 return (rc); 6404 #ifdef RSS 6405 if (q < vi->nrxq) { 6406 bus_bind_intr(sc->dev, irq->res, 6407 rss_getcpu(q % nbuckets)); 6408 } 6409 #endif 6410 irq++; 6411 rid++; 6412 vi->nintr++; 6413 } 6414 } else { 6415 for_each_rxq(vi, q, rxq) { 6416 snprintf(s, sizeof(s), "%x%c%x", p, 6417 'a' + v, q); 6418 rc = t4_alloc_irq(sc, irq, rid, 6419 t4_intr, rxq, s); 6420 if (rc != 0) 6421 return (rc); 6422 #ifdef RSS 6423 bus_bind_intr(sc->dev, irq->res, 6424 rss_getcpu(q % nbuckets)); 6425 #endif 6426 irq++; 6427 rid++; 6428 vi->nintr++; 6429 } 6430 } 6431 #ifdef TCP_OFFLOAD 6432 for_each_ofld_rxq(vi, q, ofld_rxq) { 6433 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6434 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6435 ofld_rxq, s); 6436 if (rc != 0) 6437 return (rc); 6438 irq++; 6439 rid++; 6440 vi->nintr++; 6441 } 6442 #endif 6443 } 6444 } 6445 MPASS(irq == &sc->irq[sc->intr_count]); 6446 6447 return (0); 6448 } 6449 6450 static void 6451 write_global_rss_key(struct adapter *sc) 6452 { 6453 #ifdef RSS 6454 int i; 6455 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6456 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6457 6458 CTASSERT(RSS_KEYSIZE == 40); 6459 6460 rss_getkey((void *)&raw_rss_key[0]); 6461 for (i = 0; i < nitems(rss_key); i++) { 6462 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6463 } 6464 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6465 #endif 6466 } 6467 6468 /* 6469 * Idempotent. 6470 */ 6471 static int 6472 adapter_full_init(struct adapter *sc) 6473 { 6474 int rc, i; 6475 6476 ASSERT_SYNCHRONIZED_OP(sc); 6477 6478 /* 6479 * queues that belong to the adapter (not any particular port). 6480 */ 6481 rc = t4_setup_adapter_queues(sc); 6482 if (rc != 0) 6483 return (rc); 6484 6485 for (i = 0; i < nitems(sc->tq); i++) { 6486 if (sc->tq[i] != NULL) 6487 continue; 6488 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6489 taskqueue_thread_enqueue, &sc->tq[i]); 6490 if (sc->tq[i] == NULL) { 6491 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6492 return (ENOMEM); 6493 } 6494 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6495 device_get_nameunit(sc->dev), i); 6496 } 6497 6498 if (!(sc->flags & IS_VF)) { 6499 write_global_rss_key(sc); 6500 t4_intr_enable(sc); 6501 } 6502 return (0); 6503 } 6504 6505 int 6506 adapter_init(struct adapter *sc) 6507 { 6508 int rc; 6509 6510 ASSERT_SYNCHRONIZED_OP(sc); 6511 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6512 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6513 ("%s: FULL_INIT_DONE already", __func__)); 6514 6515 rc = adapter_full_init(sc); 6516 if (rc != 0) 6517 adapter_full_uninit(sc); 6518 else 6519 sc->flags |= FULL_INIT_DONE; 6520 6521 return (rc); 6522 } 6523 6524 /* 6525 * Idempotent. 6526 */ 6527 static void 6528 adapter_full_uninit(struct adapter *sc) 6529 { 6530 int i; 6531 6532 t4_teardown_adapter_queues(sc); 6533 6534 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6535 taskqueue_free(sc->tq[i]); 6536 sc->tq[i] = NULL; 6537 } 6538 6539 sc->flags &= ~FULL_INIT_DONE; 6540 } 6541 6542 #ifdef RSS 6543 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6544 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6545 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6546 RSS_HASHTYPE_RSS_UDP_IPV6) 6547 6548 /* Translates kernel hash types to hardware. */ 6549 static int 6550 hashconfig_to_hashen(int hashconfig) 6551 { 6552 int hashen = 0; 6553 6554 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6555 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6556 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6557 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6558 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6559 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6560 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6561 } 6562 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6563 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6564 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6565 } 6566 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6567 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6568 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6569 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6570 6571 return (hashen); 6572 } 6573 6574 /* Translates hardware hash types to kernel. */ 6575 static int 6576 hashen_to_hashconfig(int hashen) 6577 { 6578 int hashconfig = 0; 6579 6580 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6581 /* 6582 * If UDP hashing was enabled it must have been enabled for 6583 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6584 * enabling any 4-tuple hash is nonsense configuration. 6585 */ 6586 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6587 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6588 6589 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6590 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6591 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6592 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6593 } 6594 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6595 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6596 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6597 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6598 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6599 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6600 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6601 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6602 6603 return (hashconfig); 6604 } 6605 #endif 6606 6607 /* 6608 * Idempotent. 6609 */ 6610 static int 6611 vi_full_init(struct vi_info *vi) 6612 { 6613 struct adapter *sc = vi->adapter; 6614 struct sge_rxq *rxq; 6615 int rc, i, j; 6616 #ifdef RSS 6617 int nbuckets = rss_getnumbuckets(); 6618 int hashconfig = rss_gethashconfig(); 6619 int extra; 6620 #endif 6621 6622 ASSERT_SYNCHRONIZED_OP(sc); 6623 6624 /* 6625 * Allocate tx/rx/fl queues for this VI. 6626 */ 6627 rc = t4_setup_vi_queues(vi); 6628 if (rc != 0) 6629 return (rc); 6630 6631 /* 6632 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6633 */ 6634 if (vi->nrxq > vi->rss_size) { 6635 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6636 "some queues will never receive traffic.\n", vi->nrxq, 6637 vi->rss_size); 6638 } else if (vi->rss_size % vi->nrxq) { 6639 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6640 "expect uneven traffic distribution.\n", vi->nrxq, 6641 vi->rss_size); 6642 } 6643 #ifdef RSS 6644 if (vi->nrxq != nbuckets) { 6645 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6646 "performance will be impacted.\n", vi->nrxq, nbuckets); 6647 } 6648 #endif 6649 if (vi->rss == NULL) 6650 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6651 M_ZERO | M_WAITOK); 6652 for (i = 0; i < vi->rss_size;) { 6653 #ifdef RSS 6654 j = rss_get_indirection_to_bucket(i); 6655 j %= vi->nrxq; 6656 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6657 vi->rss[i++] = rxq->iq.abs_id; 6658 #else 6659 for_each_rxq(vi, j, rxq) { 6660 vi->rss[i++] = rxq->iq.abs_id; 6661 if (i == vi->rss_size) 6662 break; 6663 } 6664 #endif 6665 } 6666 6667 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6668 vi->rss, vi->rss_size); 6669 if (rc != 0) { 6670 CH_ERR(vi, "rss_config failed: %d\n", rc); 6671 return (rc); 6672 } 6673 6674 #ifdef RSS 6675 vi->hashen = hashconfig_to_hashen(hashconfig); 6676 6677 /* 6678 * We may have had to enable some hashes even though the global config 6679 * wants them disabled. This is a potential problem that must be 6680 * reported to the user. 6681 */ 6682 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6683 6684 /* 6685 * If we consider only the supported hash types, then the enabled hashes 6686 * are a superset of the requested hashes. In other words, there cannot 6687 * be any supported hash that was requested but not enabled, but there 6688 * can be hashes that were not requested but had to be enabled. 6689 */ 6690 extra &= SUPPORTED_RSS_HASHTYPES; 6691 MPASS((extra & hashconfig) == 0); 6692 6693 if (extra) { 6694 CH_ALERT(vi, 6695 "global RSS config (0x%x) cannot be accommodated.\n", 6696 hashconfig); 6697 } 6698 if (extra & RSS_HASHTYPE_RSS_IPV4) 6699 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6700 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6701 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6702 if (extra & RSS_HASHTYPE_RSS_IPV6) 6703 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6704 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6705 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6706 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6707 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6708 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6709 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6710 #else 6711 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6712 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6713 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6714 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6715 #endif 6716 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6717 0, 0); 6718 if (rc != 0) { 6719 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6720 return (rc); 6721 } 6722 6723 return (0); 6724 } 6725 6726 int 6727 vi_init(struct vi_info *vi) 6728 { 6729 int rc; 6730 6731 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6732 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6733 ("%s: VI_INIT_DONE already", __func__)); 6734 6735 rc = vi_full_init(vi); 6736 if (rc != 0) 6737 vi_full_uninit(vi); 6738 else 6739 vi->flags |= VI_INIT_DONE; 6740 6741 return (rc); 6742 } 6743 6744 /* 6745 * Idempotent. 6746 */ 6747 static void 6748 vi_full_uninit(struct vi_info *vi) 6749 { 6750 6751 if (vi->flags & VI_INIT_DONE) { 6752 quiesce_vi(vi); 6753 free(vi->rss, M_CXGBE); 6754 free(vi->nm_rss, M_CXGBE); 6755 } 6756 6757 t4_teardown_vi_queues(vi); 6758 vi->flags &= ~VI_INIT_DONE; 6759 } 6760 6761 static void 6762 quiesce_txq(struct sge_txq *txq) 6763 { 6764 struct sge_eq *eq = &txq->eq; 6765 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6766 6767 MPASS(eq->flags & EQ_SW_ALLOCATED); 6768 MPASS(!(eq->flags & EQ_ENABLED)); 6769 6770 /* Wait for the mp_ring to empty. */ 6771 while (!mp_ring_is_idle(txq->r)) { 6772 mp_ring_check_drainage(txq->r, 4096); 6773 pause("rquiesce", 1); 6774 } 6775 MPASS(txq->txp.npkt == 0); 6776 6777 if (eq->flags & EQ_HW_ALLOCATED) { 6778 /* 6779 * Hardware is alive and working normally. Wait for it to 6780 * finish and then wait for the driver to catch up and reclaim 6781 * all descriptors. 6782 */ 6783 while (spg->cidx != htobe16(eq->pidx)) 6784 pause("equiesce", 1); 6785 while (eq->cidx != eq->pidx) 6786 pause("dquiesce", 1); 6787 } else { 6788 /* 6789 * Hardware is unavailable. Discard all pending tx and reclaim 6790 * descriptors directly. 6791 */ 6792 TXQ_LOCK(txq); 6793 while (eq->cidx != eq->pidx) { 6794 struct mbuf *m, *nextpkt; 6795 struct tx_sdesc *txsd; 6796 6797 txsd = &txq->sdesc[eq->cidx]; 6798 for (m = txsd->m; m != NULL; m = nextpkt) { 6799 nextpkt = m->m_nextpkt; 6800 m->m_nextpkt = NULL; 6801 m_freem(m); 6802 } 6803 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6804 } 6805 spg->pidx = spg->cidx = htobe16(eq->cidx); 6806 TXQ_UNLOCK(txq); 6807 } 6808 } 6809 6810 static void 6811 quiesce_wrq(struct sge_wrq *wrq) 6812 { 6813 6814 /* XXXTX */ 6815 } 6816 6817 static void 6818 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6819 { 6820 /* Synchronize with the interrupt handler */ 6821 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6822 pause("iqfree", 1); 6823 6824 if (fl != NULL) { 6825 MPASS(iq->flags & IQ_HAS_FL); 6826 6827 mtx_lock(&sc->sfl_lock); 6828 FL_LOCK(fl); 6829 fl->flags |= FL_DOOMED; 6830 FL_UNLOCK(fl); 6831 callout_stop(&sc->sfl_callout); 6832 mtx_unlock(&sc->sfl_lock); 6833 6834 KASSERT((fl->flags & FL_STARVING) == 0, 6835 ("%s: still starving", __func__)); 6836 6837 /* Release all buffers if hardware is no longer available. */ 6838 if (!(iq->flags & IQ_HW_ALLOCATED)) 6839 free_fl_buffers(sc, fl); 6840 } 6841 } 6842 6843 /* 6844 * Wait for all activity on all the queues of the VI to complete. It is assumed 6845 * that no new work is being enqueued by the hardware or the driver. That part 6846 * should be arranged before calling this function. 6847 */ 6848 static void 6849 quiesce_vi(struct vi_info *vi) 6850 { 6851 int i; 6852 struct adapter *sc = vi->adapter; 6853 struct sge_rxq *rxq; 6854 struct sge_txq *txq; 6855 #ifdef TCP_OFFLOAD 6856 struct sge_ofld_rxq *ofld_rxq; 6857 #endif 6858 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6859 struct sge_ofld_txq *ofld_txq; 6860 #endif 6861 6862 if (!(vi->flags & VI_INIT_DONE)) 6863 return; 6864 6865 for_each_txq(vi, i, txq) { 6866 quiesce_txq(txq); 6867 } 6868 6869 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6870 for_each_ofld_txq(vi, i, ofld_txq) { 6871 quiesce_wrq(&ofld_txq->wrq); 6872 } 6873 #endif 6874 6875 for_each_rxq(vi, i, rxq) { 6876 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6877 } 6878 6879 #ifdef TCP_OFFLOAD 6880 for_each_ofld_rxq(vi, i, ofld_rxq) { 6881 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6882 } 6883 #endif 6884 } 6885 6886 static int 6887 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6888 driver_intr_t *handler, void *arg, char *name) 6889 { 6890 int rc; 6891 6892 irq->rid = rid; 6893 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6894 RF_SHAREABLE | RF_ACTIVE); 6895 if (irq->res == NULL) { 6896 device_printf(sc->dev, 6897 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6898 return (ENOMEM); 6899 } 6900 6901 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6902 NULL, handler, arg, &irq->tag); 6903 if (rc != 0) { 6904 device_printf(sc->dev, 6905 "failed to setup interrupt for rid %d, name %s: %d\n", 6906 rid, name, rc); 6907 } else if (name) 6908 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6909 6910 return (rc); 6911 } 6912 6913 static int 6914 t4_free_irq(struct adapter *sc, struct irq *irq) 6915 { 6916 if (irq->tag) 6917 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6918 if (irq->res) 6919 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6920 6921 bzero(irq, sizeof(*irq)); 6922 6923 return (0); 6924 } 6925 6926 static void 6927 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6928 { 6929 6930 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6931 t4_get_regs(sc, buf, regs->len); 6932 } 6933 6934 #define A_PL_INDIR_CMD 0x1f8 6935 6936 #define S_PL_AUTOINC 31 6937 #define M_PL_AUTOINC 0x1U 6938 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6939 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6940 6941 #define S_PL_VFID 20 6942 #define M_PL_VFID 0xffU 6943 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6944 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6945 6946 #define S_PL_ADDR 0 6947 #define M_PL_ADDR 0xfffffU 6948 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6949 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6950 6951 #define A_PL_INDIR_DATA 0x1fc 6952 6953 static uint64_t 6954 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6955 { 6956 u32 stats[2]; 6957 6958 if (sc->flags & IS_VF) { 6959 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 6960 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 6961 } else { 6962 mtx_assert(&sc->reg_lock, MA_OWNED); 6963 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 6964 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 6965 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 6966 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 6967 } 6968 return (((uint64_t)stats[1]) << 32 | stats[0]); 6969 } 6970 6971 static void 6972 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 6973 { 6974 6975 #define GET_STAT(name) \ 6976 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 6977 6978 if (!(sc->flags & IS_VF)) 6979 mtx_lock(&sc->reg_lock); 6980 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 6981 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 6982 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 6983 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 6984 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 6985 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 6986 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 6987 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 6988 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 6989 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 6990 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 6991 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 6992 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 6993 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 6994 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 6995 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 6996 if (!(sc->flags & IS_VF)) 6997 mtx_unlock(&sc->reg_lock); 6998 6999 #undef GET_STAT 7000 } 7001 7002 static void 7003 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7004 { 7005 int reg; 7006 7007 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7008 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7009 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7010 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7011 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7012 } 7013 7014 static void 7015 vi_refresh_stats(struct vi_info *vi) 7016 { 7017 struct timeval tv; 7018 const struct timeval interval = {0, 250000}; /* 250ms */ 7019 7020 mtx_assert(&vi->tick_mtx, MA_OWNED); 7021 7022 if (!(vi->flags & VI_INIT_DONE) || vi->flags & VI_SKIP_STATS) 7023 return; 7024 7025 getmicrotime(&tv); 7026 timevalsub(&tv, &interval); 7027 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7028 return; 7029 7030 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7031 getmicrotime(&vi->last_refreshed); 7032 } 7033 7034 static void 7035 cxgbe_refresh_stats(struct vi_info *vi) 7036 { 7037 u_int i, v, tnl_cong_drops, chan_map; 7038 struct timeval tv; 7039 const struct timeval interval = {0, 250000}; /* 250ms */ 7040 struct port_info *pi; 7041 struct adapter *sc; 7042 7043 mtx_assert(&vi->tick_mtx, MA_OWNED); 7044 7045 if (vi->flags & VI_SKIP_STATS) 7046 return; 7047 7048 getmicrotime(&tv); 7049 timevalsub(&tv, &interval); 7050 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7051 return; 7052 7053 pi = vi->pi; 7054 sc = vi->adapter; 7055 tnl_cong_drops = 0; 7056 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7057 chan_map = pi->rx_e_chan_map; 7058 while (chan_map) { 7059 i = ffs(chan_map) - 1; 7060 mtx_lock(&sc->reg_lock); 7061 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7062 A_TP_MIB_TNL_CNG_DROP_0 + i); 7063 mtx_unlock(&sc->reg_lock); 7064 tnl_cong_drops += v; 7065 chan_map &= ~(1 << i); 7066 } 7067 pi->tnl_cong_drops = tnl_cong_drops; 7068 getmicrotime(&vi->last_refreshed); 7069 } 7070 7071 static void 7072 cxgbe_tick(void *arg) 7073 { 7074 struct vi_info *vi = arg; 7075 7076 MPASS(IS_MAIN_VI(vi)); 7077 mtx_assert(&vi->tick_mtx, MA_OWNED); 7078 7079 cxgbe_refresh_stats(vi); 7080 callout_schedule(&vi->tick, hz); 7081 } 7082 7083 static void 7084 vi_tick(void *arg) 7085 { 7086 struct vi_info *vi = arg; 7087 7088 mtx_assert(&vi->tick_mtx, MA_OWNED); 7089 7090 vi_refresh_stats(vi); 7091 callout_schedule(&vi->tick, hz); 7092 } 7093 7094 /* 7095 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7096 */ 7097 static char *caps_decoder[] = { 7098 "\20\001IPMI\002NCSI", /* 0: NBM */ 7099 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7100 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7101 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7102 "\006HASHFILTER\007ETHOFLD", 7103 "\20\001TOE", /* 4: TOE */ 7104 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7105 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7106 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7107 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7108 "\007T10DIF" 7109 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7110 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7111 "\004TLS_HW", 7112 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7113 "\004PO_INITIATOR\005PO_TARGET", 7114 }; 7115 7116 void 7117 t4_sysctls(struct adapter *sc) 7118 { 7119 struct sysctl_ctx_list *ctx = &sc->ctx; 7120 struct sysctl_oid *oid; 7121 struct sysctl_oid_list *children, *c0; 7122 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7123 7124 /* 7125 * dev.t4nex.X. 7126 */ 7127 oid = device_get_sysctl_tree(sc->dev); 7128 c0 = children = SYSCTL_CHILDREN(oid); 7129 7130 sc->sc_do_rxcopy = 1; 7131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7132 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7133 7134 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7135 sc->params.nports, "# of ports"); 7136 7137 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7138 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7139 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7140 "available doorbells"); 7141 7142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7143 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7144 7145 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7146 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7147 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7148 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7149 7150 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7151 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7152 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7153 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7154 7155 t4_sge_sysctls(sc, ctx, children); 7156 7157 sc->lro_timeout = 100; 7158 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7159 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7160 7161 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7162 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7163 7164 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7165 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7166 7167 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7168 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7169 7170 if (sc->flags & IS_VF) 7171 return; 7172 7173 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7174 NULL, chip_rev(sc), "chip hardware revision"); 7175 7176 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7177 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7178 7179 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7180 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7181 7182 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7183 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7184 7185 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7186 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7187 7188 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7189 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7190 7191 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7192 sc->er_version, 0, "expansion ROM version"); 7193 7194 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7195 sc->bs_version, 0, "bootstrap firmware version"); 7196 7197 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7198 NULL, sc->params.scfg_vers, "serial config version"); 7199 7200 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7201 NULL, sc->params.vpd_vers, "VPD version"); 7202 7203 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7204 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7205 7206 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7207 sc->cfcsum, "config file checksum"); 7208 7209 #define SYSCTL_CAP(name, n, text) \ 7210 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7211 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7212 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7213 "available " text " capabilities") 7214 7215 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7216 SYSCTL_CAP(linkcaps, 1, "link"); 7217 SYSCTL_CAP(switchcaps, 2, "switch"); 7218 SYSCTL_CAP(niccaps, 3, "NIC"); 7219 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7220 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7221 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7222 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7223 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7224 #undef SYSCTL_CAP 7225 7226 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7227 NULL, sc->tids.nftids, "number of filters"); 7228 7229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7230 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7231 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7232 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7233 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7234 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7235 7236 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7237 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7238 sysctl_loadavg, "A", 7239 "microprocessor load averages (debug firmwares only)"); 7240 7241 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7242 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7243 "I", "core Vdd (in mV)"); 7244 7245 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7246 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7247 sysctl_cpus, "A", "local CPUs"); 7248 7249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7250 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7251 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7252 7253 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7254 &sc->swintr, 0, "software triggered interrupts"); 7255 7256 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7257 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7258 "1 = reset adapter, 0 = zero reset counter"); 7259 7260 /* 7261 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7262 */ 7263 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7264 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7265 "logs and miscellaneous information"); 7266 children = SYSCTL_CHILDREN(oid); 7267 7268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7269 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7270 sysctl_cctrl, "A", "congestion control"); 7271 7272 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7273 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7274 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7275 7276 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7277 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7278 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7279 7280 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7281 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7282 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7283 7284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7285 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7286 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7287 7288 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7289 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7290 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7291 7292 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7293 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7294 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7295 7296 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7297 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7298 sysctl_cim_la, "A", "CIM logic analyzer"); 7299 7300 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7301 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7302 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7303 7304 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7305 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7306 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7307 7308 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7309 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7310 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7311 7312 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7313 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7314 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7315 7316 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7317 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7318 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7319 7320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7321 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7322 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7323 7324 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7325 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7326 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7327 7328 if (chip_id(sc) > CHELSIO_T4) { 7329 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7330 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7331 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7332 "CIM OBQ 6 (SGE0-RX)"); 7333 7334 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7335 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7336 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7337 "CIM OBQ 7 (SGE1-RX)"); 7338 } 7339 7340 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7341 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7342 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7343 7344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7345 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7346 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7347 7348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7349 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7350 sysctl_cpl_stats, "A", "CPL statistics"); 7351 7352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7353 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7354 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7355 7356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7357 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7358 sysctl_tid_stats, "A", "tid stats"); 7359 7360 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7361 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7362 sysctl_devlog, "A", "firmware's device log"); 7363 7364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7366 sysctl_fcoe_stats, "A", "FCoE statistics"); 7367 7368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7369 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7370 sysctl_hw_sched, "A", "hardware scheduler "); 7371 7372 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7373 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7374 sysctl_l2t, "A", "hardware L2 table"); 7375 7376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7377 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7378 sysctl_smt, "A", "hardware source MAC table"); 7379 7380 #ifdef INET6 7381 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7382 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7383 sysctl_clip, "A", "active CLIP table entries"); 7384 #endif 7385 7386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7387 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7388 sysctl_lb_stats, "A", "loopback statistics"); 7389 7390 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7391 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7392 sysctl_meminfo, "A", "memory regions"); 7393 7394 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7395 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7396 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7397 "A", "MPS TCAM entries"); 7398 7399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7400 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7401 sysctl_path_mtus, "A", "path MTUs"); 7402 7403 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7404 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7405 sysctl_pm_stats, "A", "PM statistics"); 7406 7407 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7408 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7409 sysctl_rdma_stats, "A", "RDMA statistics"); 7410 7411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7412 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7413 sysctl_tcp_stats, "A", "TCP statistics"); 7414 7415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7416 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7417 sysctl_tids, "A", "TID information"); 7418 7419 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7420 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7421 sysctl_tp_err_stats, "A", "TP error statistics"); 7422 7423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7424 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7425 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7428 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7429 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7430 7431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7432 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7433 sysctl_tp_la, "A", "TP logic analyzer"); 7434 7435 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7436 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7437 sysctl_tx_rate, "A", "Tx rate"); 7438 7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7440 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7441 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7442 7443 if (chip_id(sc) >= CHELSIO_T5) { 7444 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7445 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7446 sysctl_wcwr_stats, "A", "write combined work requests"); 7447 } 7448 7449 #ifdef KERN_TLS 7450 if (is_ktls(sc)) { 7451 /* 7452 * dev.t4nex.0.tls. 7453 */ 7454 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7455 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7456 children = SYSCTL_CHILDREN(oid); 7457 7458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7459 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7460 "keys in work requests (1) or attempt to store TLS keys " 7461 "in card memory."); 7462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7463 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7464 "TCB field updates with TLS record work requests."); 7465 } 7466 #endif 7467 7468 #ifdef TCP_OFFLOAD 7469 if (is_offload(sc)) { 7470 int i; 7471 char s[4]; 7472 7473 /* 7474 * dev.t4nex.X.toe. 7475 */ 7476 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7477 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7478 children = SYSCTL_CHILDREN(oid); 7479 7480 sc->tt.cong_algorithm = -1; 7481 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7482 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7483 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7484 "3 = highspeed)"); 7485 7486 sc->tt.sndbuf = -1; 7487 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7488 &sc->tt.sndbuf, 0, "hardware send buffer"); 7489 7490 sc->tt.ddp = 0; 7491 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7492 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7493 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7494 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7495 7496 sc->tt.rx_coalesce = -1; 7497 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7498 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7499 7500 sc->tt.tls = 0; 7501 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7502 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7503 "Inline TLS allowed"); 7504 7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7506 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7507 sysctl_tls_rx_ports, "I", 7508 "TCP ports that use inline TLS+TOE RX"); 7509 7510 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7511 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7512 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7513 sysctl_tls_rx_timeout, "I", 7514 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7515 7516 sc->tt.tx_align = -1; 7517 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7518 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7519 7520 sc->tt.tx_zcopy = 0; 7521 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7522 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7523 "Enable zero-copy aio_write(2)"); 7524 7525 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7526 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7527 "cop_managed_offloading", CTLFLAG_RW, 7528 &sc->tt.cop_managed_offloading, 0, 7529 "COP (Connection Offload Policy) controls all TOE offload"); 7530 7531 sc->tt.autorcvbuf_inc = 16 * 1024; 7532 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7533 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7534 "autorcvbuf increment"); 7535 7536 sc->tt.update_hc_on_pmtu_change = 1; 7537 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7538 "update_hc_on_pmtu_change", CTLFLAG_RW, 7539 &sc->tt.update_hc_on_pmtu_change, 0, 7540 "Update hostcache entry if the PMTU changes"); 7541 7542 sc->tt.iso = 1; 7543 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7544 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7545 7546 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7547 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7548 sysctl_tp_tick, "A", "TP timer tick (us)"); 7549 7550 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7551 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7552 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7553 7554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7555 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7556 sysctl_tp_tick, "A", "DACK tick (us)"); 7557 7558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7559 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7560 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7561 7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7563 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7564 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7565 "Minimum retransmit interval (us)"); 7566 7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7568 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7569 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7570 "Maximum retransmit interval (us)"); 7571 7572 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7573 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7574 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7575 "Persist timer min (us)"); 7576 7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7578 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7579 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7580 "Persist timer max (us)"); 7581 7582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7583 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7584 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7585 "Keepalive idle timer (us)"); 7586 7587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7588 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7589 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7590 "Keepalive interval timer (us)"); 7591 7592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7593 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7594 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7595 7596 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7597 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7598 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7599 "FINWAIT2 timer (us)"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7602 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7603 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7604 "Number of SYN retransmissions before abort"); 7605 7606 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7607 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7608 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7609 "Number of retransmissions before abort"); 7610 7611 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7612 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7613 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7614 "Number of keepalive probes before abort"); 7615 7616 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7617 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7618 "TOE retransmit backoffs"); 7619 children = SYSCTL_CHILDREN(oid); 7620 for (i = 0; i < 16; i++) { 7621 snprintf(s, sizeof(s), "%u", i); 7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7623 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7624 i, sysctl_tp_backoff, "IU", 7625 "TOE retransmit backoff"); 7626 } 7627 } 7628 #endif 7629 } 7630 7631 void 7632 vi_sysctls(struct vi_info *vi) 7633 { 7634 struct sysctl_ctx_list *ctx = &vi->ctx; 7635 struct sysctl_oid *oid; 7636 struct sysctl_oid_list *children; 7637 7638 /* 7639 * dev.v?(cxgbe|cxl).X. 7640 */ 7641 oid = device_get_sysctl_tree(vi->dev); 7642 children = SYSCTL_CHILDREN(oid); 7643 7644 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7645 vi->viid, "VI identifer"); 7646 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7647 &vi->nrxq, 0, "# of rx queues"); 7648 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7649 &vi->ntxq, 0, "# of tx queues"); 7650 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7651 &vi->first_rxq, 0, "index of first rx queue"); 7652 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7653 &vi->first_txq, 0, "index of first tx queue"); 7654 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7655 vi->rss_base, "start of RSS indirection table"); 7656 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7657 vi->rss_size, "size of RSS indirection table"); 7658 7659 if (IS_MAIN_VI(vi)) { 7660 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7661 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7662 sysctl_noflowq, "IU", 7663 "Reserve queue 0 for non-flowid packets"); 7664 } 7665 7666 if (vi->adapter->flags & IS_VF) { 7667 MPASS(vi->flags & TX_USES_VM_WR); 7668 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7669 NULL, 1, "use VM work requests for transmit"); 7670 } else { 7671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7672 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7673 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7674 } 7675 7676 #ifdef TCP_OFFLOAD 7677 if (vi->nofldrxq != 0) { 7678 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7679 &vi->nofldrxq, 0, 7680 "# of rx queues for offloaded TCP connections"); 7681 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7682 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7683 "index of first TOE rx queue"); 7684 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7685 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7686 sysctl_holdoff_tmr_idx_ofld, "I", 7687 "holdoff timer index for TOE queues"); 7688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7689 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7690 sysctl_holdoff_pktc_idx_ofld, "I", 7691 "holdoff packet counter index for TOE queues"); 7692 } 7693 #endif 7694 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7695 if (vi->nofldtxq != 0) { 7696 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7697 &vi->nofldtxq, 0, 7698 "# of tx queues for TOE/ETHOFLD"); 7699 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7700 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7701 "index of first TOE/ETHOFLD tx queue"); 7702 } 7703 #endif 7704 #ifdef DEV_NETMAP 7705 if (vi->nnmrxq != 0) { 7706 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7707 &vi->nnmrxq, 0, "# of netmap rx queues"); 7708 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7709 &vi->nnmtxq, 0, "# of netmap tx queues"); 7710 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7711 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7712 "index of first netmap rx queue"); 7713 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7714 CTLFLAG_RD, &vi->first_nm_txq, 0, 7715 "index of first netmap tx queue"); 7716 } 7717 #endif 7718 7719 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7720 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7721 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7723 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7724 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7725 7726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7727 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7728 sysctl_qsize_rxq, "I", "rx queue size"); 7729 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7730 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7731 sysctl_qsize_txq, "I", "tx queue size"); 7732 } 7733 7734 static void 7735 cxgbe_sysctls(struct port_info *pi) 7736 { 7737 struct sysctl_ctx_list *ctx = &pi->ctx; 7738 struct sysctl_oid *oid; 7739 struct sysctl_oid_list *children, *children2; 7740 struct adapter *sc = pi->adapter; 7741 int i; 7742 char name[16]; 7743 static char *tc_flags = {"\20\1USER"}; 7744 7745 /* 7746 * dev.cxgbe.X. 7747 */ 7748 oid = device_get_sysctl_tree(pi->dev); 7749 children = SYSCTL_CHILDREN(oid); 7750 7751 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7752 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7753 sysctl_linkdnrc, "A", "reason why link is down"); 7754 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7755 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7756 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7757 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7758 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7759 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7760 sysctl_btphy, "I", "PHY firmware version"); 7761 } 7762 7763 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7764 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7765 sysctl_pause_settings, "A", 7766 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7767 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7768 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7769 "FEC in use on the link"); 7770 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7771 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7772 sysctl_requested_fec, "A", 7773 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7774 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7775 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7776 "FEC recommended by the cable/transceiver"); 7777 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7778 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7779 sysctl_autoneg, "I", 7780 "autonegotiation (-1 = not supported)"); 7781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7782 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7783 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7784 7785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7786 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7787 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7788 &pi->link_cfg.pcaps, 0, "port capabilities"); 7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7790 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7791 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7792 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7793 7794 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7795 port_top_speed(pi), "max speed (in Gbps)"); 7796 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7797 pi->mps_bg_map, "MPS buffer group map"); 7798 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7799 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7800 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7801 pi->rx_c_chan, "TP rx c-channel"); 7802 7803 if (sc->flags & IS_VF) 7804 return; 7805 7806 /* 7807 * dev.(cxgbe|cxl).X.tc. 7808 */ 7809 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7810 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7811 "Tx scheduler traffic classes (cl_rl)"); 7812 children2 = SYSCTL_CHILDREN(oid); 7813 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7814 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7815 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7816 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7817 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7818 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7819 for (i = 0; i < sc->params.nsched_cls; i++) { 7820 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7821 7822 snprintf(name, sizeof(name), "%d", i); 7823 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7824 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7825 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7826 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7827 CTLFLAG_RD, &tc->state, 0, "current state"); 7828 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7829 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7830 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7831 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7832 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7833 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7835 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7836 "traffic class parameters"); 7837 } 7838 7839 /* 7840 * dev.cxgbe.X.stats. 7841 */ 7842 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7844 children = SYSCTL_CHILDREN(oid); 7845 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7846 &pi->tx_parse_error, 0, 7847 "# of tx packets with invalid length or # of segments"); 7848 7849 #define T4_REGSTAT(name, stat, desc) \ 7850 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7851 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7852 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7853 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7854 sysctl_handle_t4_reg64, "QU", desc) 7855 7856 /* We get these from port_stats and they may be stale by up to 1s */ 7857 #define T4_PORTSTAT(name, desc) \ 7858 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7859 &pi->stats.name, desc) 7860 7861 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7862 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7863 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7864 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7865 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7866 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7867 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7868 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7869 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7870 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7871 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7872 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7873 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7874 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7875 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7876 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7877 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7878 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7879 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7880 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7881 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7882 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7883 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7884 7885 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7886 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7887 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7888 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7889 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7890 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7891 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7892 if (is_t6(sc)) { 7893 T4_PORTSTAT(rx_fcs_err, 7894 "# of frames received with bad FCS since last link up"); 7895 } else { 7896 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7897 "# of frames received with bad FCS"); 7898 } 7899 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7900 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7901 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7902 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7903 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7904 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7905 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7906 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7907 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7908 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7909 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7910 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7911 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7912 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7913 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7914 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7915 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7916 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7917 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7918 7919 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7920 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7921 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7922 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7923 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7924 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7925 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7926 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7927 7928 #undef T4_REGSTAT 7929 #undef T4_PORTSTAT 7930 } 7931 7932 static int 7933 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7934 { 7935 int rc, *i, space = 0; 7936 struct sbuf sb; 7937 7938 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7939 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7940 if (space) 7941 sbuf_printf(&sb, " "); 7942 sbuf_printf(&sb, "%d", *i); 7943 space = 1; 7944 } 7945 rc = sbuf_finish(&sb); 7946 sbuf_delete(&sb); 7947 return (rc); 7948 } 7949 7950 static int 7951 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7952 { 7953 int rc; 7954 struct sbuf *sb; 7955 7956 rc = sysctl_wire_old_buffer(req, 0); 7957 if (rc != 0) 7958 return(rc); 7959 7960 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7961 if (sb == NULL) 7962 return (ENOMEM); 7963 7964 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7965 rc = sbuf_finish(sb); 7966 sbuf_delete(sb); 7967 7968 return (rc); 7969 } 7970 7971 static int 7972 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 7973 { 7974 int rc; 7975 struct sbuf *sb; 7976 7977 rc = sysctl_wire_old_buffer(req, 0); 7978 if (rc != 0) 7979 return(rc); 7980 7981 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7982 if (sb == NULL) 7983 return (ENOMEM); 7984 7985 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 7986 rc = sbuf_finish(sb); 7987 sbuf_delete(sb); 7988 7989 return (rc); 7990 } 7991 7992 static int 7993 sysctl_btphy(SYSCTL_HANDLER_ARGS) 7994 { 7995 struct port_info *pi = arg1; 7996 int op = arg2; 7997 struct adapter *sc = pi->adapter; 7998 u_int v; 7999 int rc; 8000 8001 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8002 if (rc) 8003 return (rc); 8004 if (hw_off_limits(sc)) 8005 rc = ENXIO; 8006 else { 8007 /* XXX: magic numbers */ 8008 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8009 op ? 0x20 : 0xc820, &v); 8010 } 8011 end_synchronized_op(sc, 0); 8012 if (rc) 8013 return (rc); 8014 if (op == 0) 8015 v /= 256; 8016 8017 rc = sysctl_handle_int(oidp, &v, 0, req); 8018 return (rc); 8019 } 8020 8021 static int 8022 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8023 { 8024 struct vi_info *vi = arg1; 8025 int rc, val; 8026 8027 val = vi->rsrv_noflowq; 8028 rc = sysctl_handle_int(oidp, &val, 0, req); 8029 if (rc != 0 || req->newptr == NULL) 8030 return (rc); 8031 8032 if ((val >= 1) && (vi->ntxq > 1)) 8033 vi->rsrv_noflowq = 1; 8034 else 8035 vi->rsrv_noflowq = 0; 8036 8037 return (rc); 8038 } 8039 8040 static int 8041 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8042 { 8043 struct vi_info *vi = arg1; 8044 struct adapter *sc = vi->adapter; 8045 int rc, val, i; 8046 8047 MPASS(!(sc->flags & IS_VF)); 8048 8049 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8050 rc = sysctl_handle_int(oidp, &val, 0, req); 8051 if (rc != 0 || req->newptr == NULL) 8052 return (rc); 8053 8054 if (val != 0 && val != 1) 8055 return (EINVAL); 8056 8057 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8058 "t4txvm"); 8059 if (rc) 8060 return (rc); 8061 if (hw_off_limits(sc)) 8062 rc = ENXIO; 8063 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8064 /* 8065 * We don't want parse_pkt to run with one setting (VF or PF) 8066 * and then eth_tx to see a different setting but still use 8067 * stale information calculated by parse_pkt. 8068 */ 8069 rc = EBUSY; 8070 } else { 8071 struct port_info *pi = vi->pi; 8072 struct sge_txq *txq; 8073 uint32_t ctrl0; 8074 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8075 8076 if (val) { 8077 vi->flags |= TX_USES_VM_WR; 8078 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8079 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8080 V_TXPKT_INTF(pi->tx_chan)); 8081 if (!(sc->flags & IS_VF)) 8082 npkt--; 8083 } else { 8084 vi->flags &= ~TX_USES_VM_WR; 8085 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8086 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8087 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8088 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8089 } 8090 for_each_txq(vi, i, txq) { 8091 txq->cpl_ctrl0 = ctrl0; 8092 txq->txp.max_npkt = npkt; 8093 } 8094 } 8095 end_synchronized_op(sc, LOCK_HELD); 8096 return (rc); 8097 } 8098 8099 static int 8100 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8101 { 8102 struct vi_info *vi = arg1; 8103 struct adapter *sc = vi->adapter; 8104 int idx, rc, i; 8105 struct sge_rxq *rxq; 8106 uint8_t v; 8107 8108 idx = vi->tmr_idx; 8109 8110 rc = sysctl_handle_int(oidp, &idx, 0, req); 8111 if (rc != 0 || req->newptr == NULL) 8112 return (rc); 8113 8114 if (idx < 0 || idx >= SGE_NTIMERS) 8115 return (EINVAL); 8116 8117 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8118 "t4tmr"); 8119 if (rc) 8120 return (rc); 8121 8122 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8123 for_each_rxq(vi, i, rxq) { 8124 #ifdef atomic_store_rel_8 8125 atomic_store_rel_8(&rxq->iq.intr_params, v); 8126 #else 8127 rxq->iq.intr_params = v; 8128 #endif 8129 } 8130 vi->tmr_idx = idx; 8131 8132 end_synchronized_op(sc, LOCK_HELD); 8133 return (0); 8134 } 8135 8136 static int 8137 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8138 { 8139 struct vi_info *vi = arg1; 8140 struct adapter *sc = vi->adapter; 8141 int idx, rc; 8142 8143 idx = vi->pktc_idx; 8144 8145 rc = sysctl_handle_int(oidp, &idx, 0, req); 8146 if (rc != 0 || req->newptr == NULL) 8147 return (rc); 8148 8149 if (idx < -1 || idx >= SGE_NCOUNTERS) 8150 return (EINVAL); 8151 8152 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8153 "t4pktc"); 8154 if (rc) 8155 return (rc); 8156 8157 if (vi->flags & VI_INIT_DONE) 8158 rc = EBUSY; /* cannot be changed once the queues are created */ 8159 else 8160 vi->pktc_idx = idx; 8161 8162 end_synchronized_op(sc, LOCK_HELD); 8163 return (rc); 8164 } 8165 8166 static int 8167 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8168 { 8169 struct vi_info *vi = arg1; 8170 struct adapter *sc = vi->adapter; 8171 int qsize, rc; 8172 8173 qsize = vi->qsize_rxq; 8174 8175 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8176 if (rc != 0 || req->newptr == NULL) 8177 return (rc); 8178 8179 if (qsize < 128 || (qsize & 7)) 8180 return (EINVAL); 8181 8182 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8183 "t4rxqs"); 8184 if (rc) 8185 return (rc); 8186 8187 if (vi->flags & VI_INIT_DONE) 8188 rc = EBUSY; /* cannot be changed once the queues are created */ 8189 else 8190 vi->qsize_rxq = qsize; 8191 8192 end_synchronized_op(sc, LOCK_HELD); 8193 return (rc); 8194 } 8195 8196 static int 8197 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8198 { 8199 struct vi_info *vi = arg1; 8200 struct adapter *sc = vi->adapter; 8201 int qsize, rc; 8202 8203 qsize = vi->qsize_txq; 8204 8205 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8206 if (rc != 0 || req->newptr == NULL) 8207 return (rc); 8208 8209 if (qsize < 128 || qsize > 65536) 8210 return (EINVAL); 8211 8212 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8213 "t4txqs"); 8214 if (rc) 8215 return (rc); 8216 8217 if (vi->flags & VI_INIT_DONE) 8218 rc = EBUSY; /* cannot be changed once the queues are created */ 8219 else 8220 vi->qsize_txq = qsize; 8221 8222 end_synchronized_op(sc, LOCK_HELD); 8223 return (rc); 8224 } 8225 8226 static int 8227 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8228 { 8229 struct port_info *pi = arg1; 8230 struct adapter *sc = pi->adapter; 8231 struct link_config *lc = &pi->link_cfg; 8232 int rc; 8233 8234 if (req->newptr == NULL) { 8235 struct sbuf *sb; 8236 static char *bits = "\20\1RX\2TX\3AUTO"; 8237 8238 rc = sysctl_wire_old_buffer(req, 0); 8239 if (rc != 0) 8240 return(rc); 8241 8242 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8243 if (sb == NULL) 8244 return (ENOMEM); 8245 8246 if (lc->link_ok) { 8247 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8248 (lc->requested_fc & PAUSE_AUTONEG), bits); 8249 } else { 8250 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8251 PAUSE_RX | PAUSE_AUTONEG), bits); 8252 } 8253 rc = sbuf_finish(sb); 8254 sbuf_delete(sb); 8255 } else { 8256 char s[2]; 8257 int n; 8258 8259 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8260 PAUSE_AUTONEG)); 8261 s[1] = 0; 8262 8263 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8264 if (rc != 0) 8265 return(rc); 8266 8267 if (s[1] != 0) 8268 return (EINVAL); 8269 if (s[0] < '0' || s[0] > '9') 8270 return (EINVAL); /* not a number */ 8271 n = s[0] - '0'; 8272 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8273 return (EINVAL); /* some other bit is set too */ 8274 8275 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8276 "t4PAUSE"); 8277 if (rc) 8278 return (rc); 8279 if (!hw_off_limits(sc)) { 8280 PORT_LOCK(pi); 8281 lc->requested_fc = n; 8282 fixup_link_config(pi); 8283 if (pi->up_vis > 0) 8284 rc = apply_link_config(pi); 8285 set_current_media(pi); 8286 PORT_UNLOCK(pi); 8287 } 8288 end_synchronized_op(sc, 0); 8289 } 8290 8291 return (rc); 8292 } 8293 8294 static int 8295 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8296 { 8297 struct port_info *pi = arg1; 8298 struct link_config *lc = &pi->link_cfg; 8299 int rc; 8300 struct sbuf *sb; 8301 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8302 8303 rc = sysctl_wire_old_buffer(req, 0); 8304 if (rc != 0) 8305 return(rc); 8306 8307 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8308 if (sb == NULL) 8309 return (ENOMEM); 8310 if (lc->link_ok) 8311 sbuf_printf(sb, "%b", lc->fec, bits); 8312 else 8313 sbuf_printf(sb, "no link"); 8314 rc = sbuf_finish(sb); 8315 sbuf_delete(sb); 8316 8317 return (rc); 8318 } 8319 8320 static int 8321 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8322 { 8323 struct port_info *pi = arg1; 8324 struct adapter *sc = pi->adapter; 8325 struct link_config *lc = &pi->link_cfg; 8326 int rc; 8327 int8_t old; 8328 8329 if (req->newptr == NULL) { 8330 struct sbuf *sb; 8331 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8332 "\5RSVD3\6auto\7module"; 8333 8334 rc = sysctl_wire_old_buffer(req, 0); 8335 if (rc != 0) 8336 return(rc); 8337 8338 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8339 if (sb == NULL) 8340 return (ENOMEM); 8341 8342 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8343 rc = sbuf_finish(sb); 8344 sbuf_delete(sb); 8345 } else { 8346 char s[8]; 8347 int n; 8348 8349 snprintf(s, sizeof(s), "%d", 8350 lc->requested_fec == FEC_AUTO ? -1 : 8351 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8352 8353 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8354 if (rc != 0) 8355 return(rc); 8356 8357 n = strtol(&s[0], NULL, 0); 8358 if (n < 0 || n & FEC_AUTO) 8359 n = FEC_AUTO; 8360 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8361 return (EINVAL);/* some other bit is set too */ 8362 8363 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8364 "t4reqf"); 8365 if (rc) 8366 return (rc); 8367 PORT_LOCK(pi); 8368 old = lc->requested_fec; 8369 if (n == FEC_AUTO) 8370 lc->requested_fec = FEC_AUTO; 8371 else if (n == 0 || n == FEC_NONE) 8372 lc->requested_fec = FEC_NONE; 8373 else { 8374 if ((lc->pcaps | 8375 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8376 lc->pcaps) { 8377 rc = ENOTSUP; 8378 goto done; 8379 } 8380 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8381 FEC_MODULE); 8382 } 8383 if (!hw_off_limits(sc)) { 8384 fixup_link_config(pi); 8385 if (pi->up_vis > 0) { 8386 rc = apply_link_config(pi); 8387 if (rc != 0) { 8388 lc->requested_fec = old; 8389 if (rc == FW_EPROTO) 8390 rc = ENOTSUP; 8391 } 8392 } 8393 } 8394 done: 8395 PORT_UNLOCK(pi); 8396 end_synchronized_op(sc, 0); 8397 } 8398 8399 return (rc); 8400 } 8401 8402 static int 8403 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8404 { 8405 struct port_info *pi = arg1; 8406 struct adapter *sc = pi->adapter; 8407 struct link_config *lc = &pi->link_cfg; 8408 int rc; 8409 int8_t fec; 8410 struct sbuf *sb; 8411 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8412 8413 rc = sysctl_wire_old_buffer(req, 0); 8414 if (rc != 0) 8415 return (rc); 8416 8417 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8418 if (sb == NULL) 8419 return (ENOMEM); 8420 8421 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8422 rc = EBUSY; 8423 goto done; 8424 } 8425 if (hw_off_limits(sc)) { 8426 rc = ENXIO; 8427 goto done; 8428 } 8429 PORT_LOCK(pi); 8430 if (pi->up_vis == 0) { 8431 /* 8432 * If all the interfaces are administratively down the firmware 8433 * does not report transceiver changes. Refresh port info here. 8434 * This is the only reason we have a synchronized op in this 8435 * function. Just PORT_LOCK would have been enough otherwise. 8436 */ 8437 t4_update_port_info(pi); 8438 } 8439 8440 fec = lc->fec_hint; 8441 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8442 !fec_supported(lc->pcaps)) { 8443 sbuf_printf(sb, "n/a"); 8444 } else { 8445 if (fec == 0) 8446 fec = FEC_NONE; 8447 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8448 } 8449 rc = sbuf_finish(sb); 8450 PORT_UNLOCK(pi); 8451 done: 8452 sbuf_delete(sb); 8453 end_synchronized_op(sc, 0); 8454 8455 return (rc); 8456 } 8457 8458 static int 8459 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8460 { 8461 struct port_info *pi = arg1; 8462 struct adapter *sc = pi->adapter; 8463 struct link_config *lc = &pi->link_cfg; 8464 int rc, val; 8465 8466 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8467 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8468 else 8469 val = -1; 8470 rc = sysctl_handle_int(oidp, &val, 0, req); 8471 if (rc != 0 || req->newptr == NULL) 8472 return (rc); 8473 if (val == 0) 8474 val = AUTONEG_DISABLE; 8475 else if (val == 1) 8476 val = AUTONEG_ENABLE; 8477 else 8478 val = AUTONEG_AUTO; 8479 8480 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8481 "t4aneg"); 8482 if (rc) 8483 return (rc); 8484 PORT_LOCK(pi); 8485 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8486 rc = ENOTSUP; 8487 goto done; 8488 } 8489 lc->requested_aneg = val; 8490 if (!hw_off_limits(sc)) { 8491 fixup_link_config(pi); 8492 if (pi->up_vis > 0) 8493 rc = apply_link_config(pi); 8494 set_current_media(pi); 8495 } 8496 done: 8497 PORT_UNLOCK(pi); 8498 end_synchronized_op(sc, 0); 8499 return (rc); 8500 } 8501 8502 static int 8503 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8504 { 8505 struct port_info *pi = arg1; 8506 struct adapter *sc = pi->adapter; 8507 struct link_config *lc = &pi->link_cfg; 8508 int rc, val; 8509 8510 val = lc->force_fec; 8511 MPASS(val >= -1 && val <= 1); 8512 rc = sysctl_handle_int(oidp, &val, 0, req); 8513 if (rc != 0 || req->newptr == NULL) 8514 return (rc); 8515 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8516 return (ENOTSUP); 8517 if (val < -1 || val > 1) 8518 return (EINVAL); 8519 8520 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8521 if (rc) 8522 return (rc); 8523 PORT_LOCK(pi); 8524 lc->force_fec = val; 8525 if (!hw_off_limits(sc)) { 8526 fixup_link_config(pi); 8527 if (pi->up_vis > 0) 8528 rc = apply_link_config(pi); 8529 } 8530 PORT_UNLOCK(pi); 8531 end_synchronized_op(sc, 0); 8532 return (rc); 8533 } 8534 8535 static int 8536 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8537 { 8538 struct adapter *sc = arg1; 8539 int rc, reg = arg2; 8540 uint64_t val; 8541 8542 mtx_lock(&sc->reg_lock); 8543 if (hw_off_limits(sc)) 8544 rc = ENXIO; 8545 else { 8546 rc = 0; 8547 val = t4_read_reg64(sc, reg); 8548 } 8549 mtx_unlock(&sc->reg_lock); 8550 if (rc == 0) 8551 rc = sysctl_handle_64(oidp, &val, 0, req); 8552 return (rc); 8553 } 8554 8555 static int 8556 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8557 { 8558 struct adapter *sc = arg1; 8559 int rc, t; 8560 uint32_t param, val; 8561 8562 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8563 if (rc) 8564 return (rc); 8565 if (hw_off_limits(sc)) 8566 rc = ENXIO; 8567 else { 8568 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8569 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8570 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8571 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8572 } 8573 end_synchronized_op(sc, 0); 8574 if (rc) 8575 return (rc); 8576 8577 /* unknown is returned as 0 but we display -1 in that case */ 8578 t = val == 0 ? -1 : val; 8579 8580 rc = sysctl_handle_int(oidp, &t, 0, req); 8581 return (rc); 8582 } 8583 8584 static int 8585 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8586 { 8587 struct adapter *sc = arg1; 8588 int rc; 8589 uint32_t param, val; 8590 8591 if (sc->params.core_vdd == 0) { 8592 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8593 "t4vdd"); 8594 if (rc) 8595 return (rc); 8596 if (hw_off_limits(sc)) 8597 rc = ENXIO; 8598 else { 8599 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8600 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8601 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8602 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8603 ¶m, &val); 8604 } 8605 end_synchronized_op(sc, 0); 8606 if (rc) 8607 return (rc); 8608 sc->params.core_vdd = val; 8609 } 8610 8611 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8612 } 8613 8614 static int 8615 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8616 { 8617 struct adapter *sc = arg1; 8618 int rc, v; 8619 uint32_t param, val; 8620 8621 v = sc->sensor_resets; 8622 rc = sysctl_handle_int(oidp, &v, 0, req); 8623 if (rc != 0 || req->newptr == NULL || v <= 0) 8624 return (rc); 8625 8626 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8627 chip_id(sc) < CHELSIO_T5) 8628 return (ENOTSUP); 8629 8630 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8631 if (rc) 8632 return (rc); 8633 if (hw_off_limits(sc)) 8634 rc = ENXIO; 8635 else { 8636 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8637 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8638 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8639 val = 1; 8640 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8641 } 8642 end_synchronized_op(sc, 0); 8643 if (rc == 0) 8644 sc->sensor_resets++; 8645 return (rc); 8646 } 8647 8648 static int 8649 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8650 { 8651 struct adapter *sc = arg1; 8652 struct sbuf *sb; 8653 int rc; 8654 uint32_t param, val; 8655 8656 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8657 if (rc) 8658 return (rc); 8659 if (hw_off_limits(sc)) 8660 rc = ENXIO; 8661 else { 8662 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8663 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8664 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8665 } 8666 end_synchronized_op(sc, 0); 8667 if (rc) 8668 return (rc); 8669 8670 rc = sysctl_wire_old_buffer(req, 0); 8671 if (rc != 0) 8672 return (rc); 8673 8674 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8675 if (sb == NULL) 8676 return (ENOMEM); 8677 8678 if (val == 0xffffffff) { 8679 /* Only debug and custom firmwares report load averages. */ 8680 sbuf_printf(sb, "not available"); 8681 } else { 8682 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8683 (val >> 16) & 0xff); 8684 } 8685 rc = sbuf_finish(sb); 8686 sbuf_delete(sb); 8687 8688 return (rc); 8689 } 8690 8691 static int 8692 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8693 { 8694 struct adapter *sc = arg1; 8695 struct sbuf *sb; 8696 int rc, i; 8697 uint16_t incr[NMTUS][NCCTRL_WIN]; 8698 static const char *dec_fac[] = { 8699 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8700 "0.9375" 8701 }; 8702 8703 rc = sysctl_wire_old_buffer(req, 0); 8704 if (rc != 0) 8705 return (rc); 8706 8707 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8708 if (sb == NULL) 8709 return (ENOMEM); 8710 8711 mtx_lock(&sc->reg_lock); 8712 if (hw_off_limits(sc)) 8713 rc = ENXIO; 8714 else 8715 t4_read_cong_tbl(sc, incr); 8716 mtx_unlock(&sc->reg_lock); 8717 if (rc) 8718 goto done; 8719 8720 for (i = 0; i < NCCTRL_WIN; ++i) { 8721 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8722 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8723 incr[5][i], incr[6][i], incr[7][i]); 8724 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8725 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8726 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8727 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8728 } 8729 8730 rc = sbuf_finish(sb); 8731 done: 8732 sbuf_delete(sb); 8733 return (rc); 8734 } 8735 8736 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8737 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8738 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8739 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8740 }; 8741 8742 static int 8743 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8744 { 8745 struct adapter *sc = arg1; 8746 struct sbuf *sb; 8747 int rc, i, n, qid = arg2; 8748 uint32_t *buf, *p; 8749 char *qtype; 8750 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8751 8752 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8753 ("%s: bad qid %d\n", __func__, qid)); 8754 8755 if (qid < CIM_NUM_IBQ) { 8756 /* inbound queue */ 8757 qtype = "IBQ"; 8758 n = 4 * CIM_IBQ_SIZE; 8759 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8760 mtx_lock(&sc->reg_lock); 8761 if (hw_off_limits(sc)) 8762 rc = -ENXIO; 8763 else 8764 rc = t4_read_cim_ibq(sc, qid, buf, n); 8765 mtx_unlock(&sc->reg_lock); 8766 } else { 8767 /* outbound queue */ 8768 qtype = "OBQ"; 8769 qid -= CIM_NUM_IBQ; 8770 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8771 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8772 mtx_lock(&sc->reg_lock); 8773 if (hw_off_limits(sc)) 8774 rc = -ENXIO; 8775 else 8776 rc = t4_read_cim_obq(sc, qid, buf, n); 8777 mtx_unlock(&sc->reg_lock); 8778 } 8779 8780 if (rc < 0) { 8781 rc = -rc; 8782 goto done; 8783 } 8784 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8785 8786 rc = sysctl_wire_old_buffer(req, 0); 8787 if (rc != 0) 8788 goto done; 8789 8790 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8791 if (sb == NULL) { 8792 rc = ENOMEM; 8793 goto done; 8794 } 8795 8796 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8797 for (i = 0, p = buf; i < n; i += 16, p += 4) 8798 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8799 p[2], p[3]); 8800 8801 rc = sbuf_finish(sb); 8802 sbuf_delete(sb); 8803 done: 8804 free(buf, M_CXGBE); 8805 return (rc); 8806 } 8807 8808 static void 8809 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8810 { 8811 uint32_t *p; 8812 8813 sbuf_printf(sb, "Status Data PC%s", 8814 cfg & F_UPDBGLACAPTPCONLY ? "" : 8815 " LS0Stat LS0Addr LS0Data"); 8816 8817 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8818 if (cfg & F_UPDBGLACAPTPCONLY) { 8819 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8820 p[6], p[7]); 8821 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8822 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8823 p[4] & 0xff, p[5] >> 8); 8824 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8825 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8826 p[1] & 0xf, p[2] >> 4); 8827 } else { 8828 sbuf_printf(sb, 8829 "\n %02x %x%07x %x%07x %08x %08x " 8830 "%08x%08x%08x%08x", 8831 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8832 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8833 p[6], p[7]); 8834 } 8835 } 8836 } 8837 8838 static void 8839 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8840 { 8841 uint32_t *p; 8842 8843 sbuf_printf(sb, "Status Inst Data PC%s", 8844 cfg & F_UPDBGLACAPTPCONLY ? "" : 8845 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8846 8847 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8848 if (cfg & F_UPDBGLACAPTPCONLY) { 8849 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8850 p[3] & 0xff, p[2], p[1], p[0]); 8851 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8852 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8853 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8854 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8855 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8856 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8857 p[6] >> 16); 8858 } else { 8859 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8860 "%08x %08x %08x %08x %08x %08x", 8861 (p[9] >> 16) & 0xff, 8862 p[9] & 0xffff, p[8] >> 16, 8863 p[8] & 0xffff, p[7] >> 16, 8864 p[7] & 0xffff, p[6] >> 16, 8865 p[2], p[1], p[0], p[5], p[4], p[3]); 8866 } 8867 } 8868 } 8869 8870 static int 8871 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8872 { 8873 uint32_t cfg, *buf; 8874 int rc; 8875 8876 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8877 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8878 M_ZERO | flags); 8879 if (buf == NULL) 8880 return (ENOMEM); 8881 8882 mtx_lock(&sc->reg_lock); 8883 if (hw_off_limits(sc)) 8884 rc = ENXIO; 8885 else { 8886 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8887 if (rc == 0) 8888 rc = -t4_cim_read_la(sc, buf, NULL); 8889 } 8890 mtx_unlock(&sc->reg_lock); 8891 if (rc == 0) { 8892 if (chip_id(sc) < CHELSIO_T6) 8893 sbuf_cim_la4(sc, sb, buf, cfg); 8894 else 8895 sbuf_cim_la6(sc, sb, buf, cfg); 8896 } 8897 free(buf, M_CXGBE); 8898 return (rc); 8899 } 8900 8901 static int 8902 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8903 { 8904 struct adapter *sc = arg1; 8905 struct sbuf *sb; 8906 int rc; 8907 8908 rc = sysctl_wire_old_buffer(req, 0); 8909 if (rc != 0) 8910 return (rc); 8911 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8912 if (sb == NULL) 8913 return (ENOMEM); 8914 8915 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8916 if (rc == 0) 8917 rc = sbuf_finish(sb); 8918 sbuf_delete(sb); 8919 return (rc); 8920 } 8921 8922 bool 8923 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 8924 { 8925 struct sbuf sb; 8926 int rc; 8927 8928 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8929 return (false); 8930 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 8931 if (rc == 0) { 8932 rc = sbuf_finish(&sb); 8933 if (rc == 0) { 8934 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 8935 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8936 } 8937 } 8938 sbuf_delete(&sb); 8939 return (false); 8940 } 8941 8942 static int 8943 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 8944 { 8945 struct adapter *sc = arg1; 8946 u_int i; 8947 struct sbuf *sb; 8948 uint32_t *buf, *p; 8949 int rc; 8950 8951 rc = sysctl_wire_old_buffer(req, 0); 8952 if (rc != 0) 8953 return (rc); 8954 8955 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8956 if (sb == NULL) 8957 return (ENOMEM); 8958 8959 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 8960 M_ZERO | M_WAITOK); 8961 8962 mtx_lock(&sc->reg_lock); 8963 if (hw_off_limits(sc)) 8964 rc = ENXIO; 8965 else 8966 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 8967 mtx_unlock(&sc->reg_lock); 8968 if (rc) 8969 goto done; 8970 8971 p = buf; 8972 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8973 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 8974 p[1], p[0]); 8975 } 8976 8977 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 8978 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8979 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 8980 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 8981 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 8982 (p[1] >> 2) | ((p[2] & 3) << 30), 8983 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 8984 p[0] & 1); 8985 } 8986 rc = sbuf_finish(sb); 8987 done: 8988 sbuf_delete(sb); 8989 free(buf, M_CXGBE); 8990 return (rc); 8991 } 8992 8993 static int 8994 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 8995 { 8996 struct adapter *sc = arg1; 8997 u_int i; 8998 struct sbuf *sb; 8999 uint32_t *buf, *p; 9000 int rc; 9001 9002 rc = sysctl_wire_old_buffer(req, 0); 9003 if (rc != 0) 9004 return (rc); 9005 9006 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9007 if (sb == NULL) 9008 return (ENOMEM); 9009 9010 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9011 M_ZERO | M_WAITOK); 9012 9013 mtx_lock(&sc->reg_lock); 9014 if (hw_off_limits(sc)) 9015 rc = ENXIO; 9016 else 9017 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9018 mtx_unlock(&sc->reg_lock); 9019 if (rc) 9020 goto done; 9021 9022 p = buf; 9023 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9024 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9025 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9026 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9027 p[4], p[3], p[2], p[1], p[0]); 9028 } 9029 9030 sbuf_printf(sb, "\n\nCntl ID Data"); 9031 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9032 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9033 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9034 } 9035 9036 rc = sbuf_finish(sb); 9037 done: 9038 sbuf_delete(sb); 9039 free(buf, M_CXGBE); 9040 return (rc); 9041 } 9042 9043 static int 9044 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9045 { 9046 struct adapter *sc = arg1; 9047 struct sbuf *sb; 9048 int rc, i; 9049 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9050 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9051 uint16_t thres[CIM_NUM_IBQ]; 9052 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9053 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9054 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9055 9056 cim_num_obq = sc->chip_params->cim_num_obq; 9057 if (is_t4(sc)) { 9058 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9059 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9060 } else { 9061 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9062 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9063 } 9064 nq = CIM_NUM_IBQ + cim_num_obq; 9065 9066 mtx_lock(&sc->reg_lock); 9067 if (hw_off_limits(sc)) 9068 rc = ENXIO; 9069 else { 9070 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9071 if (rc == 0) { 9072 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9073 obq_wr); 9074 if (rc == 0) 9075 t4_read_cimq_cfg(sc, base, size, thres); 9076 } 9077 } 9078 mtx_unlock(&sc->reg_lock); 9079 if (rc) 9080 return (rc); 9081 9082 rc = sysctl_wire_old_buffer(req, 0); 9083 if (rc != 0) 9084 return (rc); 9085 9086 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9087 if (sb == NULL) 9088 return (ENOMEM); 9089 9090 sbuf_printf(sb, 9091 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9092 9093 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9094 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9095 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9096 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9097 G_QUEREMFLITS(p[2]) * 16); 9098 for ( ; i < nq; i++, p += 4, wr += 2) 9099 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9100 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9101 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9102 G_QUEREMFLITS(p[2]) * 16); 9103 9104 rc = sbuf_finish(sb); 9105 sbuf_delete(sb); 9106 9107 return (rc); 9108 } 9109 9110 static int 9111 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9112 { 9113 struct adapter *sc = arg1; 9114 struct sbuf *sb; 9115 int rc; 9116 struct tp_cpl_stats stats; 9117 9118 rc = sysctl_wire_old_buffer(req, 0); 9119 if (rc != 0) 9120 return (rc); 9121 9122 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9123 if (sb == NULL) 9124 return (ENOMEM); 9125 9126 mtx_lock(&sc->reg_lock); 9127 if (hw_off_limits(sc)) 9128 rc = ENXIO; 9129 else 9130 t4_tp_get_cpl_stats(sc, &stats, 0); 9131 mtx_unlock(&sc->reg_lock); 9132 if (rc) 9133 goto done; 9134 9135 if (sc->chip_params->nchan > 2) { 9136 sbuf_printf(sb, " channel 0 channel 1" 9137 " channel 2 channel 3"); 9138 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9139 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9140 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9141 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9142 } else { 9143 sbuf_printf(sb, " channel 0 channel 1"); 9144 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9145 stats.req[0], stats.req[1]); 9146 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9147 stats.rsp[0], stats.rsp[1]); 9148 } 9149 9150 rc = sbuf_finish(sb); 9151 done: 9152 sbuf_delete(sb); 9153 return (rc); 9154 } 9155 9156 static int 9157 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9158 { 9159 struct adapter *sc = arg1; 9160 struct sbuf *sb; 9161 int rc; 9162 struct tp_usm_stats stats; 9163 9164 rc = sysctl_wire_old_buffer(req, 0); 9165 if (rc != 0) 9166 return(rc); 9167 9168 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9169 if (sb == NULL) 9170 return (ENOMEM); 9171 9172 mtx_lock(&sc->reg_lock); 9173 if (hw_off_limits(sc)) 9174 rc = ENXIO; 9175 else 9176 t4_get_usm_stats(sc, &stats, 1); 9177 mtx_unlock(&sc->reg_lock); 9178 if (rc == 0) { 9179 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9180 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9181 sbuf_printf(sb, "Drops: %u", stats.drops); 9182 rc = sbuf_finish(sb); 9183 } 9184 sbuf_delete(sb); 9185 9186 return (rc); 9187 } 9188 9189 static int 9190 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9191 { 9192 struct adapter *sc = arg1; 9193 struct sbuf *sb; 9194 int rc; 9195 struct tp_tid_stats stats; 9196 9197 rc = sysctl_wire_old_buffer(req, 0); 9198 if (rc != 0) 9199 return(rc); 9200 9201 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9202 if (sb == NULL) 9203 return (ENOMEM); 9204 9205 mtx_lock(&sc->reg_lock); 9206 if (hw_off_limits(sc)) 9207 rc = ENXIO; 9208 else 9209 t4_tp_get_tid_stats(sc, &stats, 1); 9210 mtx_unlock(&sc->reg_lock); 9211 if (rc == 0) { 9212 sbuf_printf(sb, "Delete: %u\n", stats.del); 9213 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9214 sbuf_printf(sb, "Active: %u\n", stats.act); 9215 sbuf_printf(sb, "Passive: %u", stats.pas); 9216 rc = sbuf_finish(sb); 9217 } 9218 sbuf_delete(sb); 9219 9220 return (rc); 9221 } 9222 9223 static const char * const devlog_level_strings[] = { 9224 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9225 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9226 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9227 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9228 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9229 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9230 }; 9231 9232 static const char * const devlog_facility_strings[] = { 9233 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9234 [FW_DEVLOG_FACILITY_CF] = "CF", 9235 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9236 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9237 [FW_DEVLOG_FACILITY_RES] = "RES", 9238 [FW_DEVLOG_FACILITY_HW] = "HW", 9239 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9240 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9241 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9242 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9243 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9244 [FW_DEVLOG_FACILITY_VI] = "VI", 9245 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9246 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9247 [FW_DEVLOG_FACILITY_TM] = "TM", 9248 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9249 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9250 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9251 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9252 [FW_DEVLOG_FACILITY_RI] = "RI", 9253 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9254 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9255 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9256 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9257 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9258 }; 9259 9260 static int 9261 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9262 { 9263 int i, j, rc, nentries, first = 0; 9264 struct devlog_params *dparams = &sc->params.devlog; 9265 struct fw_devlog_e *buf, *e; 9266 uint64_t ftstamp = UINT64_MAX; 9267 9268 if (dparams->addr == 0) 9269 return (ENXIO); 9270 9271 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9272 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9273 if (buf == NULL) 9274 return (ENOMEM); 9275 9276 mtx_lock(&sc->reg_lock); 9277 if (hw_off_limits(sc)) 9278 rc = ENXIO; 9279 else 9280 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9281 dparams->size); 9282 mtx_unlock(&sc->reg_lock); 9283 if (rc != 0) 9284 goto done; 9285 9286 nentries = dparams->size / sizeof(struct fw_devlog_e); 9287 for (i = 0; i < nentries; i++) { 9288 e = &buf[i]; 9289 9290 if (e->timestamp == 0) 9291 break; /* end */ 9292 9293 e->timestamp = be64toh(e->timestamp); 9294 e->seqno = be32toh(e->seqno); 9295 for (j = 0; j < 8; j++) 9296 e->params[j] = be32toh(e->params[j]); 9297 9298 if (e->timestamp < ftstamp) { 9299 ftstamp = e->timestamp; 9300 first = i; 9301 } 9302 } 9303 9304 if (buf[first].timestamp == 0) 9305 goto done; /* nothing in the log */ 9306 9307 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9308 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9309 9310 i = first; 9311 do { 9312 e = &buf[i]; 9313 if (e->timestamp == 0) 9314 break; /* end */ 9315 9316 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9317 e->seqno, e->timestamp, 9318 (e->level < nitems(devlog_level_strings) ? 9319 devlog_level_strings[e->level] : "UNKNOWN"), 9320 (e->facility < nitems(devlog_facility_strings) ? 9321 devlog_facility_strings[e->facility] : "UNKNOWN")); 9322 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9323 e->params[2], e->params[3], e->params[4], 9324 e->params[5], e->params[6], e->params[7]); 9325 9326 if (++i == nentries) 9327 i = 0; 9328 } while (i != first); 9329 done: 9330 free(buf, M_CXGBE); 9331 return (rc); 9332 } 9333 9334 static int 9335 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9336 { 9337 struct adapter *sc = arg1; 9338 int rc; 9339 struct sbuf *sb; 9340 9341 rc = sysctl_wire_old_buffer(req, 0); 9342 if (rc != 0) 9343 return (rc); 9344 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9345 if (sb == NULL) 9346 return (ENOMEM); 9347 9348 rc = sbuf_devlog(sc, sb, M_WAITOK); 9349 if (rc == 0) 9350 rc = sbuf_finish(sb); 9351 sbuf_delete(sb); 9352 return (rc); 9353 } 9354 9355 void 9356 t4_os_dump_devlog(struct adapter *sc) 9357 { 9358 int rc; 9359 struct sbuf sb; 9360 9361 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 9362 return; 9363 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 9364 if (rc == 0) { 9365 rc = sbuf_finish(&sb); 9366 if (rc == 0) { 9367 log(LOG_DEBUG, "%s: device log follows.\n%s", 9368 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9369 } 9370 } 9371 sbuf_delete(&sb); 9372 } 9373 9374 static int 9375 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9376 { 9377 struct adapter *sc = arg1; 9378 struct sbuf *sb; 9379 int rc; 9380 struct tp_fcoe_stats stats[MAX_NCHAN]; 9381 int i, nchan = sc->chip_params->nchan; 9382 9383 rc = sysctl_wire_old_buffer(req, 0); 9384 if (rc != 0) 9385 return (rc); 9386 9387 mtx_lock(&sc->reg_lock); 9388 if (hw_off_limits(sc)) 9389 rc = ENXIO; 9390 else { 9391 for (i = 0; i < nchan; i++) 9392 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9393 } 9394 mtx_unlock(&sc->reg_lock); 9395 if (rc != 0) 9396 return (rc); 9397 9398 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9399 if (sb == NULL) 9400 return (ENOMEM); 9401 9402 if (nchan > 2) { 9403 sbuf_printf(sb, " channel 0 channel 1" 9404 " channel 2 channel 3"); 9405 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9406 stats[0].octets_ddp, stats[1].octets_ddp, 9407 stats[2].octets_ddp, stats[3].octets_ddp); 9408 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9409 stats[0].frames_ddp, stats[1].frames_ddp, 9410 stats[2].frames_ddp, stats[3].frames_ddp); 9411 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9412 stats[0].frames_drop, stats[1].frames_drop, 9413 stats[2].frames_drop, stats[3].frames_drop); 9414 } else { 9415 sbuf_printf(sb, " channel 0 channel 1"); 9416 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9417 stats[0].octets_ddp, stats[1].octets_ddp); 9418 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9419 stats[0].frames_ddp, stats[1].frames_ddp); 9420 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9421 stats[0].frames_drop, stats[1].frames_drop); 9422 } 9423 9424 rc = sbuf_finish(sb); 9425 sbuf_delete(sb); 9426 9427 return (rc); 9428 } 9429 9430 static int 9431 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9432 { 9433 struct adapter *sc = arg1; 9434 struct sbuf *sb; 9435 int rc, i; 9436 unsigned int map, kbps, ipg, mode; 9437 unsigned int pace_tab[NTX_SCHED]; 9438 9439 rc = sysctl_wire_old_buffer(req, 0); 9440 if (rc != 0) 9441 return (rc); 9442 9443 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9444 if (sb == NULL) 9445 return (ENOMEM); 9446 9447 mtx_lock(&sc->reg_lock); 9448 if (hw_off_limits(sc)) { 9449 rc = ENXIO; 9450 goto done; 9451 } 9452 9453 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9454 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9455 t4_read_pace_tbl(sc, pace_tab); 9456 9457 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9458 "Class IPG (0.1 ns) Flow IPG (us)"); 9459 9460 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9461 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9462 sbuf_printf(sb, "\n %u %-5s %u ", i, 9463 (mode & (1 << i)) ? "flow" : "class", map & 3); 9464 if (kbps) 9465 sbuf_printf(sb, "%9u ", kbps); 9466 else 9467 sbuf_printf(sb, " disabled "); 9468 9469 if (ipg) 9470 sbuf_printf(sb, "%13u ", ipg); 9471 else 9472 sbuf_printf(sb, " disabled "); 9473 9474 if (pace_tab[i]) 9475 sbuf_printf(sb, "%10u", pace_tab[i]); 9476 else 9477 sbuf_printf(sb, " disabled"); 9478 } 9479 rc = sbuf_finish(sb); 9480 done: 9481 mtx_unlock(&sc->reg_lock); 9482 sbuf_delete(sb); 9483 return (rc); 9484 } 9485 9486 static int 9487 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9488 { 9489 struct adapter *sc = arg1; 9490 struct sbuf *sb; 9491 int rc, i, j; 9492 uint64_t *p0, *p1; 9493 struct lb_port_stats s[2]; 9494 static const char *stat_name[] = { 9495 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9496 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9497 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9498 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9499 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9500 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9501 "BG2FramesTrunc:", "BG3FramesTrunc:" 9502 }; 9503 9504 rc = sysctl_wire_old_buffer(req, 0); 9505 if (rc != 0) 9506 return (rc); 9507 9508 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9509 if (sb == NULL) 9510 return (ENOMEM); 9511 9512 memset(s, 0, sizeof(s)); 9513 9514 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9515 mtx_lock(&sc->reg_lock); 9516 if (hw_off_limits(sc)) 9517 rc = ENXIO; 9518 else { 9519 t4_get_lb_stats(sc, i, &s[0]); 9520 t4_get_lb_stats(sc, i + 1, &s[1]); 9521 } 9522 mtx_unlock(&sc->reg_lock); 9523 if (rc != 0) 9524 break; 9525 9526 p0 = &s[0].octets; 9527 p1 = &s[1].octets; 9528 sbuf_printf(sb, "%s Loopback %u" 9529 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9530 9531 for (j = 0; j < nitems(stat_name); j++) 9532 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9533 *p0++, *p1++); 9534 } 9535 9536 rc = sbuf_finish(sb); 9537 sbuf_delete(sb); 9538 9539 return (rc); 9540 } 9541 9542 static int 9543 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9544 { 9545 int rc = 0; 9546 struct port_info *pi = arg1; 9547 struct link_config *lc = &pi->link_cfg; 9548 struct sbuf *sb; 9549 9550 rc = sysctl_wire_old_buffer(req, 0); 9551 if (rc != 0) 9552 return(rc); 9553 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9554 if (sb == NULL) 9555 return (ENOMEM); 9556 9557 if (lc->link_ok || lc->link_down_rc == 255) 9558 sbuf_printf(sb, "n/a"); 9559 else 9560 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9561 9562 rc = sbuf_finish(sb); 9563 sbuf_delete(sb); 9564 9565 return (rc); 9566 } 9567 9568 struct mem_desc { 9569 unsigned int base; 9570 unsigned int limit; 9571 unsigned int idx; 9572 }; 9573 9574 static int 9575 mem_desc_cmp(const void *a, const void *b) 9576 { 9577 return ((const struct mem_desc *)a)->base - 9578 ((const struct mem_desc *)b)->base; 9579 } 9580 9581 static void 9582 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9583 unsigned int to) 9584 { 9585 unsigned int size; 9586 9587 if (from == to) 9588 return; 9589 9590 size = to - from + 1; 9591 if (size == 0) 9592 return; 9593 9594 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9595 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9596 } 9597 9598 static int 9599 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9600 { 9601 struct adapter *sc = arg1; 9602 struct sbuf *sb; 9603 int rc, i, n; 9604 uint32_t lo, hi, used, alloc; 9605 static const char *memory[] = { 9606 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9607 }; 9608 static const char *region[] = { 9609 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9610 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9611 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9612 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9613 "RQUDP region:", "PBL region:", "TXPBL region:", 9614 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 9615 "On-chip queues:", "TLS keys:", 9616 }; 9617 struct mem_desc avail[4]; 9618 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9619 struct mem_desc *md = mem; 9620 9621 rc = sysctl_wire_old_buffer(req, 0); 9622 if (rc != 0) 9623 return (rc); 9624 9625 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9626 if (sb == NULL) 9627 return (ENOMEM); 9628 9629 for (i = 0; i < nitems(mem); i++) { 9630 mem[i].limit = 0; 9631 mem[i].idx = i; 9632 } 9633 9634 mtx_lock(&sc->reg_lock); 9635 if (hw_off_limits(sc)) { 9636 rc = ENXIO; 9637 goto done; 9638 } 9639 9640 /* Find and sort the populated memory ranges */ 9641 i = 0; 9642 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9643 if (lo & F_EDRAM0_ENABLE) { 9644 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9645 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9646 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9647 avail[i].idx = 0; 9648 i++; 9649 } 9650 if (lo & F_EDRAM1_ENABLE) { 9651 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9652 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9653 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9654 avail[i].idx = 1; 9655 i++; 9656 } 9657 if (lo & F_EXT_MEM_ENABLE) { 9658 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9659 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9660 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9661 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9662 i++; 9663 } 9664 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9665 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9666 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9667 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9668 avail[i].idx = 4; 9669 i++; 9670 } 9671 if (is_t6(sc) && lo & F_HMA_MUX) { 9672 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9673 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9674 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9675 avail[i].idx = 5; 9676 i++; 9677 } 9678 MPASS(i <= nitems(avail)); 9679 if (!i) /* no memory available */ 9680 goto done; 9681 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9682 9683 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9684 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9685 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9686 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9687 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9688 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9689 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9690 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9691 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9692 9693 /* the next few have explicit upper bounds */ 9694 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9695 md->limit = md->base - 1 + 9696 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9697 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9698 md++; 9699 9700 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9701 md->limit = md->base - 1 + 9702 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9703 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9704 md++; 9705 9706 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9707 if (chip_id(sc) <= CHELSIO_T5) 9708 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9709 else 9710 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9711 md->limit = 0; 9712 } else { 9713 md->base = 0; 9714 md->idx = nitems(region); /* hide it */ 9715 } 9716 md++; 9717 9718 #define ulp_region(reg) \ 9719 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9720 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9721 9722 ulp_region(RX_ISCSI); 9723 ulp_region(RX_TDDP); 9724 ulp_region(TX_TPT); 9725 ulp_region(RX_STAG); 9726 ulp_region(RX_RQ); 9727 ulp_region(RX_RQUDP); 9728 ulp_region(RX_PBL); 9729 ulp_region(TX_PBL); 9730 #undef ulp_region 9731 9732 md->base = 0; 9733 if (is_t4(sc)) 9734 md->idx = nitems(region); 9735 else { 9736 uint32_t size = 0; 9737 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9738 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9739 9740 if (is_t5(sc)) { 9741 if (sge_ctrl & F_VFIFO_ENABLE) 9742 size = fifo_size << 2; 9743 } else 9744 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9745 9746 if (size) { 9747 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9748 md->limit = md->base + size - 1; 9749 } else 9750 md->idx = nitems(region); 9751 } 9752 md++; 9753 9754 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9755 md->limit = 0; 9756 md++; 9757 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9758 md->limit = 0; 9759 md++; 9760 9761 md->base = sc->vres.ocq.start; 9762 if (sc->vres.ocq.size) 9763 md->limit = md->base + sc->vres.ocq.size - 1; 9764 else 9765 md->idx = nitems(region); /* hide it */ 9766 md++; 9767 9768 md->base = sc->vres.key.start; 9769 if (sc->vres.key.size) 9770 md->limit = md->base + sc->vres.key.size - 1; 9771 else 9772 md->idx = nitems(region); /* hide it */ 9773 md++; 9774 9775 /* add any address-space holes, there can be up to 3 */ 9776 for (n = 0; n < i - 1; n++) 9777 if (avail[n].limit < avail[n + 1].base) 9778 (md++)->base = avail[n].limit; 9779 if (avail[n].limit) 9780 (md++)->base = avail[n].limit; 9781 9782 n = md - mem; 9783 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9784 9785 for (lo = 0; lo < i; lo++) 9786 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9787 avail[lo].limit - 1); 9788 9789 sbuf_printf(sb, "\n"); 9790 for (i = 0; i < n; i++) { 9791 if (mem[i].idx >= nitems(region)) 9792 continue; /* skip holes */ 9793 if (!mem[i].limit) 9794 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9795 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9796 mem[i].limit); 9797 } 9798 9799 sbuf_printf(sb, "\n"); 9800 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9801 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9802 mem_region_show(sb, "uP RAM:", lo, hi); 9803 9804 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9805 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9806 mem_region_show(sb, "uP Extmem2:", lo, hi); 9807 9808 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9809 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 9810 G_PMRXMAXPAGE(lo), 9811 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9812 (lo & F_PMRXNUMCHN) ? 2 : 1); 9813 9814 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9815 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9816 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 9817 G_PMTXMAXPAGE(lo), 9818 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9819 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9820 sbuf_printf(sb, "%u p-structs\n", 9821 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 9822 9823 for (i = 0; i < 4; i++) { 9824 if (chip_id(sc) > CHELSIO_T5) 9825 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9826 else 9827 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9828 if (is_t5(sc)) { 9829 used = G_T5_USED(lo); 9830 alloc = G_T5_ALLOC(lo); 9831 } else { 9832 used = G_USED(lo); 9833 alloc = G_ALLOC(lo); 9834 } 9835 /* For T6 these are MAC buffer groups */ 9836 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9837 i, used, alloc); 9838 } 9839 for (i = 0; i < sc->chip_params->nchan; i++) { 9840 if (chip_id(sc) > CHELSIO_T5) 9841 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9842 else 9843 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9844 if (is_t5(sc)) { 9845 used = G_T5_USED(lo); 9846 alloc = G_T5_ALLOC(lo); 9847 } else { 9848 used = G_USED(lo); 9849 alloc = G_ALLOC(lo); 9850 } 9851 /* For T6 these are MAC buffer groups */ 9852 sbuf_printf(sb, 9853 "\nLoopback %d using %u pages out of %u allocated", 9854 i, used, alloc); 9855 } 9856 done: 9857 mtx_unlock(&sc->reg_lock); 9858 if (rc == 0) 9859 rc = sbuf_finish(sb); 9860 sbuf_delete(sb); 9861 return (rc); 9862 } 9863 9864 static inline void 9865 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9866 { 9867 *mask = x | y; 9868 y = htobe64(y); 9869 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9870 } 9871 9872 static int 9873 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9874 { 9875 struct adapter *sc = arg1; 9876 struct sbuf *sb; 9877 int rc, i; 9878 9879 MPASS(chip_id(sc) <= CHELSIO_T5); 9880 9881 rc = sysctl_wire_old_buffer(req, 0); 9882 if (rc != 0) 9883 return (rc); 9884 9885 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9886 if (sb == NULL) 9887 return (ENOMEM); 9888 9889 sbuf_printf(sb, 9890 "Idx Ethernet address Mask Vld Ports PF" 9891 " VF Replication P0 P1 P2 P3 ML"); 9892 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9893 uint64_t tcamx, tcamy, mask; 9894 uint32_t cls_lo, cls_hi; 9895 uint8_t addr[ETHER_ADDR_LEN]; 9896 9897 mtx_lock(&sc->reg_lock); 9898 if (hw_off_limits(sc)) 9899 rc = ENXIO; 9900 else { 9901 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 9902 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 9903 } 9904 mtx_unlock(&sc->reg_lock); 9905 if (rc != 0) 9906 break; 9907 if (tcamx & tcamy) 9908 continue; 9909 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9910 mtx_lock(&sc->reg_lock); 9911 if (hw_off_limits(sc)) 9912 rc = ENXIO; 9913 else { 9914 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 9915 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 9916 } 9917 mtx_unlock(&sc->reg_lock); 9918 if (rc != 0) 9919 break; 9920 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 9921 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 9922 addr[3], addr[4], addr[5], (uintmax_t)mask, 9923 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 9924 G_PORTMAP(cls_hi), G_PF(cls_lo), 9925 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 9926 9927 if (cls_lo & F_REPLICATE) { 9928 struct fw_ldst_cmd ldst_cmd; 9929 9930 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9931 ldst_cmd.op_to_addrspace = 9932 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 9933 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9934 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 9935 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 9936 ldst_cmd.u.mps.rplc.fid_idx = 9937 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 9938 V_FW_LDST_CMD_IDX(i)); 9939 9940 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9941 "t4mps"); 9942 if (rc) 9943 break; 9944 if (hw_off_limits(sc)) 9945 rc = ENXIO; 9946 else 9947 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 9948 sizeof(ldst_cmd), &ldst_cmd); 9949 end_synchronized_op(sc, 0); 9950 if (rc != 0) 9951 break; 9952 else { 9953 sbuf_printf(sb, " %08x %08x %08x %08x", 9954 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 9955 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 9956 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 9957 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 9958 } 9959 } else 9960 sbuf_printf(sb, "%36s", ""); 9961 9962 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 9963 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 9964 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 9965 } 9966 9967 if (rc) 9968 (void) sbuf_finish(sb); 9969 else 9970 rc = sbuf_finish(sb); 9971 sbuf_delete(sb); 9972 9973 return (rc); 9974 } 9975 9976 static int 9977 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 9978 { 9979 struct adapter *sc = arg1; 9980 struct sbuf *sb; 9981 int rc, i; 9982 9983 MPASS(chip_id(sc) > CHELSIO_T5); 9984 9985 rc = sysctl_wire_old_buffer(req, 0); 9986 if (rc != 0) 9987 return (rc); 9988 9989 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9990 if (sb == NULL) 9991 return (ENOMEM); 9992 9993 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 9994 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 9995 " Replication" 9996 " P0 P1 P2 P3 ML\n"); 9997 9998 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9999 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10000 uint16_t ivlan; 10001 uint64_t tcamx, tcamy, val, mask; 10002 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10003 uint8_t addr[ETHER_ADDR_LEN]; 10004 10005 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10006 if (i < 256) 10007 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10008 else 10009 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10010 mtx_lock(&sc->reg_lock); 10011 if (hw_off_limits(sc)) 10012 rc = ENXIO; 10013 else { 10014 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10015 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10016 tcamy = G_DMACH(val) << 32; 10017 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10018 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10019 } 10020 mtx_unlock(&sc->reg_lock); 10021 if (rc != 0) 10022 break; 10023 10024 lookup_type = G_DATALKPTYPE(data2); 10025 port_num = G_DATAPORTNUM(data2); 10026 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10027 /* Inner header VNI */ 10028 vniy = ((data2 & F_DATAVIDH2) << 23) | 10029 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10030 dip_hit = data2 & F_DATADIPHIT; 10031 vlan_vld = 0; 10032 } else { 10033 vniy = 0; 10034 dip_hit = 0; 10035 vlan_vld = data2 & F_DATAVIDH2; 10036 ivlan = G_VIDL(val); 10037 } 10038 10039 ctl |= V_CTLXYBITSEL(1); 10040 mtx_lock(&sc->reg_lock); 10041 if (hw_off_limits(sc)) 10042 rc = ENXIO; 10043 else { 10044 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10045 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10046 tcamx = G_DMACH(val) << 32; 10047 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10048 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10049 } 10050 mtx_unlock(&sc->reg_lock); 10051 if (rc != 0) 10052 break; 10053 10054 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10055 /* Inner header VNI mask */ 10056 vnix = ((data2 & F_DATAVIDH2) << 23) | 10057 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10058 } else 10059 vnix = 0; 10060 10061 if (tcamx & tcamy) 10062 continue; 10063 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10064 10065 mtx_lock(&sc->reg_lock); 10066 if (hw_off_limits(sc)) 10067 rc = ENXIO; 10068 else { 10069 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10070 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10071 } 10072 mtx_unlock(&sc->reg_lock); 10073 if (rc != 0) 10074 break; 10075 10076 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10077 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10078 "%012jx %06x %06x - - %3c" 10079 " I %4x %3c %#x%4u%4d", i, addr[0], 10080 addr[1], addr[2], addr[3], addr[4], addr[5], 10081 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10082 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10083 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10084 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10085 } else { 10086 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10087 "%012jx - - ", i, addr[0], addr[1], 10088 addr[2], addr[3], addr[4], addr[5], 10089 (uintmax_t)mask); 10090 10091 if (vlan_vld) 10092 sbuf_printf(sb, "%4u Y ", ivlan); 10093 else 10094 sbuf_printf(sb, " - N "); 10095 10096 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10097 lookup_type ? 'I' : 'O', port_num, 10098 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10099 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10100 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10101 } 10102 10103 10104 if (cls_lo & F_T6_REPLICATE) { 10105 struct fw_ldst_cmd ldst_cmd; 10106 10107 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10108 ldst_cmd.op_to_addrspace = 10109 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10110 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10111 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10112 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10113 ldst_cmd.u.mps.rplc.fid_idx = 10114 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10115 V_FW_LDST_CMD_IDX(i)); 10116 10117 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10118 "t6mps"); 10119 if (rc) 10120 break; 10121 if (hw_off_limits(sc)) 10122 rc = ENXIO; 10123 else 10124 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10125 sizeof(ldst_cmd), &ldst_cmd); 10126 end_synchronized_op(sc, 0); 10127 if (rc != 0) 10128 break; 10129 else { 10130 sbuf_printf(sb, " %08x %08x %08x %08x" 10131 " %08x %08x %08x %08x", 10132 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10133 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10134 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10135 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10136 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10137 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10138 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10139 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10140 } 10141 } else 10142 sbuf_printf(sb, "%72s", ""); 10143 10144 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10145 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10146 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10147 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10148 } 10149 10150 if (rc) 10151 (void) sbuf_finish(sb); 10152 else 10153 rc = sbuf_finish(sb); 10154 sbuf_delete(sb); 10155 10156 return (rc); 10157 } 10158 10159 static int 10160 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10161 { 10162 struct adapter *sc = arg1; 10163 struct sbuf *sb; 10164 int rc; 10165 uint16_t mtus[NMTUS]; 10166 10167 rc = sysctl_wire_old_buffer(req, 0); 10168 if (rc != 0) 10169 return (rc); 10170 10171 mtx_lock(&sc->reg_lock); 10172 if (hw_off_limits(sc)) 10173 rc = ENXIO; 10174 else 10175 t4_read_mtu_tbl(sc, mtus, NULL); 10176 mtx_unlock(&sc->reg_lock); 10177 if (rc != 0) 10178 return (rc); 10179 10180 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10181 if (sb == NULL) 10182 return (ENOMEM); 10183 10184 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10185 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10186 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10187 mtus[14], mtus[15]); 10188 10189 rc = sbuf_finish(sb); 10190 sbuf_delete(sb); 10191 10192 return (rc); 10193 } 10194 10195 static int 10196 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10197 { 10198 struct adapter *sc = arg1; 10199 struct sbuf *sb; 10200 int rc, i; 10201 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10202 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10203 static const char *tx_stats[MAX_PM_NSTATS] = { 10204 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10205 "Tx FIFO wait", NULL, "Tx latency" 10206 }; 10207 static const char *rx_stats[MAX_PM_NSTATS] = { 10208 "Read:", "Write bypass:", "Write mem:", "Flush:", 10209 "Rx FIFO wait", NULL, "Rx latency" 10210 }; 10211 10212 rc = sysctl_wire_old_buffer(req, 0); 10213 if (rc != 0) 10214 return (rc); 10215 10216 mtx_lock(&sc->reg_lock); 10217 if (hw_off_limits(sc)) 10218 rc = ENXIO; 10219 else { 10220 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10221 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10222 } 10223 mtx_unlock(&sc->reg_lock); 10224 if (rc != 0) 10225 return (rc); 10226 10227 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10228 if (sb == NULL) 10229 return (ENOMEM); 10230 10231 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10232 for (i = 0; i < 4; i++) { 10233 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10234 tx_cyc[i]); 10235 } 10236 10237 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10238 for (i = 0; i < 4; i++) { 10239 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10240 rx_cyc[i]); 10241 } 10242 10243 if (chip_id(sc) > CHELSIO_T5) { 10244 sbuf_printf(sb, 10245 "\n Total wait Total occupancy"); 10246 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10247 tx_cyc[i]); 10248 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10249 rx_cyc[i]); 10250 10251 i += 2; 10252 MPASS(i < nitems(tx_stats)); 10253 10254 sbuf_printf(sb, 10255 "\n Reads Total wait"); 10256 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10257 tx_cyc[i]); 10258 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10259 rx_cyc[i]); 10260 } 10261 10262 rc = sbuf_finish(sb); 10263 sbuf_delete(sb); 10264 10265 return (rc); 10266 } 10267 10268 static int 10269 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10270 { 10271 struct adapter *sc = arg1; 10272 struct sbuf *sb; 10273 int rc; 10274 struct tp_rdma_stats stats; 10275 10276 rc = sysctl_wire_old_buffer(req, 0); 10277 if (rc != 0) 10278 return (rc); 10279 10280 mtx_lock(&sc->reg_lock); 10281 if (hw_off_limits(sc)) 10282 rc = ENXIO; 10283 else 10284 t4_tp_get_rdma_stats(sc, &stats, 0); 10285 mtx_unlock(&sc->reg_lock); 10286 if (rc != 0) 10287 return (rc); 10288 10289 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10290 if (sb == NULL) 10291 return (ENOMEM); 10292 10293 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10294 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10295 10296 rc = sbuf_finish(sb); 10297 sbuf_delete(sb); 10298 10299 return (rc); 10300 } 10301 10302 static int 10303 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10304 { 10305 struct adapter *sc = arg1; 10306 struct sbuf *sb; 10307 int rc; 10308 struct tp_tcp_stats v4, v6; 10309 10310 rc = sysctl_wire_old_buffer(req, 0); 10311 if (rc != 0) 10312 return (rc); 10313 10314 mtx_lock(&sc->reg_lock); 10315 if (hw_off_limits(sc)) 10316 rc = ENXIO; 10317 else 10318 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10319 mtx_unlock(&sc->reg_lock); 10320 if (rc != 0) 10321 return (rc); 10322 10323 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10324 if (sb == NULL) 10325 return (ENOMEM); 10326 10327 sbuf_printf(sb, 10328 " IP IPv6\n"); 10329 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10330 v4.tcp_out_rsts, v6.tcp_out_rsts); 10331 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10332 v4.tcp_in_segs, v6.tcp_in_segs); 10333 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10334 v4.tcp_out_segs, v6.tcp_out_segs); 10335 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10336 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10337 10338 rc = sbuf_finish(sb); 10339 sbuf_delete(sb); 10340 10341 return (rc); 10342 } 10343 10344 static int 10345 sysctl_tids(SYSCTL_HANDLER_ARGS) 10346 { 10347 struct adapter *sc = arg1; 10348 struct sbuf *sb; 10349 int rc; 10350 uint32_t x, y; 10351 struct tid_info *t = &sc->tids; 10352 10353 rc = sysctl_wire_old_buffer(req, 0); 10354 if (rc != 0) 10355 return (rc); 10356 10357 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10358 if (sb == NULL) 10359 return (ENOMEM); 10360 10361 if (t->natids) { 10362 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10363 t->atids_in_use); 10364 } 10365 10366 if (t->nhpftids) { 10367 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10368 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10369 } 10370 10371 if (t->ntids) { 10372 bool hashen = false; 10373 10374 mtx_lock(&sc->reg_lock); 10375 if (hw_off_limits(sc)) 10376 rc = ENXIO; 10377 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10378 hashen = true; 10379 if (chip_id(sc) <= CHELSIO_T5) { 10380 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10381 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10382 } else { 10383 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10384 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10385 } 10386 } 10387 mtx_unlock(&sc->reg_lock); 10388 if (rc != 0) 10389 goto done; 10390 10391 sbuf_printf(sb, "TID range: "); 10392 if (hashen) { 10393 if (x) 10394 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10395 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10396 } else { 10397 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10398 t->ntids - 1); 10399 } 10400 sbuf_printf(sb, ", in use: %u\n", 10401 atomic_load_acq_int(&t->tids_in_use)); 10402 } 10403 10404 if (t->nstids) { 10405 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10406 t->stid_base + t->nstids - 1, t->stids_in_use); 10407 } 10408 10409 if (t->nftids) { 10410 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10411 t->ftid_end, t->ftids_in_use); 10412 } 10413 10414 if (t->netids) { 10415 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10416 t->etid_base + t->netids - 1, t->etids_in_use); 10417 } 10418 10419 mtx_lock(&sc->reg_lock); 10420 if (hw_off_limits(sc)) 10421 rc = ENXIO; 10422 else { 10423 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10424 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10425 } 10426 mtx_unlock(&sc->reg_lock); 10427 if (rc != 0) 10428 goto done; 10429 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10430 done: 10431 if (rc == 0) 10432 rc = sbuf_finish(sb); 10433 else 10434 (void)sbuf_finish(sb); 10435 sbuf_delete(sb); 10436 10437 return (rc); 10438 } 10439 10440 static int 10441 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10442 { 10443 struct adapter *sc = arg1; 10444 struct sbuf *sb; 10445 int rc; 10446 struct tp_err_stats stats; 10447 10448 rc = sysctl_wire_old_buffer(req, 0); 10449 if (rc != 0) 10450 return (rc); 10451 10452 mtx_lock(&sc->reg_lock); 10453 if (hw_off_limits(sc)) 10454 rc = ENXIO; 10455 else 10456 t4_tp_get_err_stats(sc, &stats, 0); 10457 mtx_unlock(&sc->reg_lock); 10458 if (rc != 0) 10459 return (rc); 10460 10461 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10462 if (sb == NULL) 10463 return (ENOMEM); 10464 10465 if (sc->chip_params->nchan > 2) { 10466 sbuf_printf(sb, " channel 0 channel 1" 10467 " channel 2 channel 3\n"); 10468 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10469 stats.mac_in_errs[0], stats.mac_in_errs[1], 10470 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10471 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10472 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10473 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10474 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10475 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10476 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10477 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10478 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10479 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10480 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10481 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10482 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10483 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10484 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10485 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10486 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10487 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10488 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10489 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10490 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10491 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10492 } else { 10493 sbuf_printf(sb, " channel 0 channel 1\n"); 10494 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10495 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10496 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10497 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10498 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10499 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10500 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10501 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10502 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10503 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10504 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10505 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10506 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10507 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10508 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10509 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10510 } 10511 10512 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10513 stats.ofld_no_neigh, stats.ofld_cong_defer); 10514 10515 rc = sbuf_finish(sb); 10516 sbuf_delete(sb); 10517 10518 return (rc); 10519 } 10520 10521 static int 10522 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10523 { 10524 struct adapter *sc = arg1; 10525 struct sbuf *sb; 10526 int rc; 10527 struct tp_tnl_stats stats; 10528 10529 rc = sysctl_wire_old_buffer(req, 0); 10530 if (rc != 0) 10531 return(rc); 10532 10533 mtx_lock(&sc->reg_lock); 10534 if (hw_off_limits(sc)) 10535 rc = ENXIO; 10536 else 10537 t4_tp_get_tnl_stats(sc, &stats, 1); 10538 mtx_unlock(&sc->reg_lock); 10539 if (rc != 0) 10540 return (rc); 10541 10542 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10543 if (sb == NULL) 10544 return (ENOMEM); 10545 10546 if (sc->chip_params->nchan > 2) { 10547 sbuf_printf(sb, " channel 0 channel 1" 10548 " channel 2 channel 3\n"); 10549 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10550 stats.out_pkt[0], stats.out_pkt[1], 10551 stats.out_pkt[2], stats.out_pkt[3]); 10552 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10553 stats.in_pkt[0], stats.in_pkt[1], 10554 stats.in_pkt[2], stats.in_pkt[3]); 10555 } else { 10556 sbuf_printf(sb, " channel 0 channel 1\n"); 10557 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10558 stats.out_pkt[0], stats.out_pkt[1]); 10559 sbuf_printf(sb, "InPkts: %10u %10u", 10560 stats.in_pkt[0], stats.in_pkt[1]); 10561 } 10562 10563 rc = sbuf_finish(sb); 10564 sbuf_delete(sb); 10565 10566 return (rc); 10567 } 10568 10569 static int 10570 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10571 { 10572 struct adapter *sc = arg1; 10573 struct tp_params *tpp = &sc->params.tp; 10574 u_int mask; 10575 int rc; 10576 10577 mask = tpp->la_mask >> 16; 10578 rc = sysctl_handle_int(oidp, &mask, 0, req); 10579 if (rc != 0 || req->newptr == NULL) 10580 return (rc); 10581 if (mask > 0xffff) 10582 return (EINVAL); 10583 mtx_lock(&sc->reg_lock); 10584 if (hw_off_limits(sc)) 10585 rc = ENXIO; 10586 else { 10587 tpp->la_mask = mask << 16; 10588 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10589 tpp->la_mask); 10590 } 10591 mtx_unlock(&sc->reg_lock); 10592 10593 return (rc); 10594 } 10595 10596 struct field_desc { 10597 const char *name; 10598 u_int start; 10599 u_int width; 10600 }; 10601 10602 static void 10603 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10604 { 10605 char buf[32]; 10606 int line_size = 0; 10607 10608 while (f->name) { 10609 uint64_t mask = (1ULL << f->width) - 1; 10610 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10611 ((uintmax_t)v >> f->start) & mask); 10612 10613 if (line_size + len >= 79) { 10614 line_size = 8; 10615 sbuf_printf(sb, "\n "); 10616 } 10617 sbuf_printf(sb, "%s ", buf); 10618 line_size += len + 1; 10619 f++; 10620 } 10621 sbuf_printf(sb, "\n"); 10622 } 10623 10624 static const struct field_desc tp_la0[] = { 10625 { "RcfOpCodeOut", 60, 4 }, 10626 { "State", 56, 4 }, 10627 { "WcfState", 52, 4 }, 10628 { "RcfOpcSrcOut", 50, 2 }, 10629 { "CRxError", 49, 1 }, 10630 { "ERxError", 48, 1 }, 10631 { "SanityFailed", 47, 1 }, 10632 { "SpuriousMsg", 46, 1 }, 10633 { "FlushInputMsg", 45, 1 }, 10634 { "FlushInputCpl", 44, 1 }, 10635 { "RssUpBit", 43, 1 }, 10636 { "RssFilterHit", 42, 1 }, 10637 { "Tid", 32, 10 }, 10638 { "InitTcb", 31, 1 }, 10639 { "LineNumber", 24, 7 }, 10640 { "Emsg", 23, 1 }, 10641 { "EdataOut", 22, 1 }, 10642 { "Cmsg", 21, 1 }, 10643 { "CdataOut", 20, 1 }, 10644 { "EreadPdu", 19, 1 }, 10645 { "CreadPdu", 18, 1 }, 10646 { "TunnelPkt", 17, 1 }, 10647 { "RcfPeerFin", 16, 1 }, 10648 { "RcfReasonOut", 12, 4 }, 10649 { "TxCchannel", 10, 2 }, 10650 { "RcfTxChannel", 8, 2 }, 10651 { "RxEchannel", 6, 2 }, 10652 { "RcfRxChannel", 5, 1 }, 10653 { "RcfDataOutSrdy", 4, 1 }, 10654 { "RxDvld", 3, 1 }, 10655 { "RxOoDvld", 2, 1 }, 10656 { "RxCongestion", 1, 1 }, 10657 { "TxCongestion", 0, 1 }, 10658 { NULL } 10659 }; 10660 10661 static const struct field_desc tp_la1[] = { 10662 { "CplCmdIn", 56, 8 }, 10663 { "CplCmdOut", 48, 8 }, 10664 { "ESynOut", 47, 1 }, 10665 { "EAckOut", 46, 1 }, 10666 { "EFinOut", 45, 1 }, 10667 { "ERstOut", 44, 1 }, 10668 { "SynIn", 43, 1 }, 10669 { "AckIn", 42, 1 }, 10670 { "FinIn", 41, 1 }, 10671 { "RstIn", 40, 1 }, 10672 { "DataIn", 39, 1 }, 10673 { "DataInVld", 38, 1 }, 10674 { "PadIn", 37, 1 }, 10675 { "RxBufEmpty", 36, 1 }, 10676 { "RxDdp", 35, 1 }, 10677 { "RxFbCongestion", 34, 1 }, 10678 { "TxFbCongestion", 33, 1 }, 10679 { "TxPktSumSrdy", 32, 1 }, 10680 { "RcfUlpType", 28, 4 }, 10681 { "Eread", 27, 1 }, 10682 { "Ebypass", 26, 1 }, 10683 { "Esave", 25, 1 }, 10684 { "Static0", 24, 1 }, 10685 { "Cread", 23, 1 }, 10686 { "Cbypass", 22, 1 }, 10687 { "Csave", 21, 1 }, 10688 { "CPktOut", 20, 1 }, 10689 { "RxPagePoolFull", 18, 2 }, 10690 { "RxLpbkPkt", 17, 1 }, 10691 { "TxLpbkPkt", 16, 1 }, 10692 { "RxVfValid", 15, 1 }, 10693 { "SynLearned", 14, 1 }, 10694 { "SetDelEntry", 13, 1 }, 10695 { "SetInvEntry", 12, 1 }, 10696 { "CpcmdDvld", 11, 1 }, 10697 { "CpcmdSave", 10, 1 }, 10698 { "RxPstructsFull", 8, 2 }, 10699 { "EpcmdDvld", 7, 1 }, 10700 { "EpcmdFlush", 6, 1 }, 10701 { "EpcmdTrimPrefix", 5, 1 }, 10702 { "EpcmdTrimPostfix", 4, 1 }, 10703 { "ERssIp4Pkt", 3, 1 }, 10704 { "ERssIp6Pkt", 2, 1 }, 10705 { "ERssTcpUdpPkt", 1, 1 }, 10706 { "ERssFceFipPkt", 0, 1 }, 10707 { NULL } 10708 }; 10709 10710 static const struct field_desc tp_la2[] = { 10711 { "CplCmdIn", 56, 8 }, 10712 { "MpsVfVld", 55, 1 }, 10713 { "MpsPf", 52, 3 }, 10714 { "MpsVf", 44, 8 }, 10715 { "SynIn", 43, 1 }, 10716 { "AckIn", 42, 1 }, 10717 { "FinIn", 41, 1 }, 10718 { "RstIn", 40, 1 }, 10719 { "DataIn", 39, 1 }, 10720 { "DataInVld", 38, 1 }, 10721 { "PadIn", 37, 1 }, 10722 { "RxBufEmpty", 36, 1 }, 10723 { "RxDdp", 35, 1 }, 10724 { "RxFbCongestion", 34, 1 }, 10725 { "TxFbCongestion", 33, 1 }, 10726 { "TxPktSumSrdy", 32, 1 }, 10727 { "RcfUlpType", 28, 4 }, 10728 { "Eread", 27, 1 }, 10729 { "Ebypass", 26, 1 }, 10730 { "Esave", 25, 1 }, 10731 { "Static0", 24, 1 }, 10732 { "Cread", 23, 1 }, 10733 { "Cbypass", 22, 1 }, 10734 { "Csave", 21, 1 }, 10735 { "CPktOut", 20, 1 }, 10736 { "RxPagePoolFull", 18, 2 }, 10737 { "RxLpbkPkt", 17, 1 }, 10738 { "TxLpbkPkt", 16, 1 }, 10739 { "RxVfValid", 15, 1 }, 10740 { "SynLearned", 14, 1 }, 10741 { "SetDelEntry", 13, 1 }, 10742 { "SetInvEntry", 12, 1 }, 10743 { "CpcmdDvld", 11, 1 }, 10744 { "CpcmdSave", 10, 1 }, 10745 { "RxPstructsFull", 8, 2 }, 10746 { "EpcmdDvld", 7, 1 }, 10747 { "EpcmdFlush", 6, 1 }, 10748 { "EpcmdTrimPrefix", 5, 1 }, 10749 { "EpcmdTrimPostfix", 4, 1 }, 10750 { "ERssIp4Pkt", 3, 1 }, 10751 { "ERssIp6Pkt", 2, 1 }, 10752 { "ERssTcpUdpPkt", 1, 1 }, 10753 { "ERssFceFipPkt", 0, 1 }, 10754 { NULL } 10755 }; 10756 10757 static void 10758 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10759 { 10760 10761 field_desc_show(sb, *p, tp_la0); 10762 } 10763 10764 static void 10765 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10766 { 10767 10768 if (idx) 10769 sbuf_printf(sb, "\n"); 10770 field_desc_show(sb, p[0], tp_la0); 10771 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10772 field_desc_show(sb, p[1], tp_la0); 10773 } 10774 10775 static void 10776 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10777 { 10778 10779 if (idx) 10780 sbuf_printf(sb, "\n"); 10781 field_desc_show(sb, p[0], tp_la0); 10782 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10783 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10784 } 10785 10786 static int 10787 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10788 { 10789 struct adapter *sc = arg1; 10790 struct sbuf *sb; 10791 uint64_t *buf, *p; 10792 int rc; 10793 u_int i, inc; 10794 void (*show_func)(struct sbuf *, uint64_t *, int); 10795 10796 rc = sysctl_wire_old_buffer(req, 0); 10797 if (rc != 0) 10798 return (rc); 10799 10800 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10801 if (sb == NULL) 10802 return (ENOMEM); 10803 10804 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10805 10806 mtx_lock(&sc->reg_lock); 10807 if (hw_off_limits(sc)) 10808 rc = ENXIO; 10809 else { 10810 t4_tp_read_la(sc, buf, NULL); 10811 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10812 case 2: 10813 inc = 2; 10814 show_func = tp_la_show2; 10815 break; 10816 case 3: 10817 inc = 2; 10818 show_func = tp_la_show3; 10819 break; 10820 default: 10821 inc = 1; 10822 show_func = tp_la_show; 10823 } 10824 } 10825 mtx_unlock(&sc->reg_lock); 10826 if (rc != 0) 10827 goto done; 10828 10829 p = buf; 10830 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10831 (*show_func)(sb, p, i); 10832 rc = sbuf_finish(sb); 10833 done: 10834 sbuf_delete(sb); 10835 free(buf, M_CXGBE); 10836 return (rc); 10837 } 10838 10839 static int 10840 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10841 { 10842 struct adapter *sc = arg1; 10843 struct sbuf *sb; 10844 int rc; 10845 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10846 10847 rc = sysctl_wire_old_buffer(req, 0); 10848 if (rc != 0) 10849 return (rc); 10850 10851 mtx_lock(&sc->reg_lock); 10852 if (hw_off_limits(sc)) 10853 rc = ENXIO; 10854 else 10855 t4_get_chan_txrate(sc, nrate, orate); 10856 mtx_unlock(&sc->reg_lock); 10857 if (rc != 0) 10858 return (rc); 10859 10860 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10861 if (sb == NULL) 10862 return (ENOMEM); 10863 10864 if (sc->chip_params->nchan > 2) { 10865 sbuf_printf(sb, " channel 0 channel 1" 10866 " channel 2 channel 3\n"); 10867 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10868 nrate[0], nrate[1], nrate[2], nrate[3]); 10869 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10870 orate[0], orate[1], orate[2], orate[3]); 10871 } else { 10872 sbuf_printf(sb, " channel 0 channel 1\n"); 10873 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10874 nrate[0], nrate[1]); 10875 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10876 orate[0], orate[1]); 10877 } 10878 10879 rc = sbuf_finish(sb); 10880 sbuf_delete(sb); 10881 10882 return (rc); 10883 } 10884 10885 static int 10886 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10887 { 10888 struct adapter *sc = arg1; 10889 struct sbuf *sb; 10890 uint32_t *buf, *p; 10891 int rc, i; 10892 10893 rc = sysctl_wire_old_buffer(req, 0); 10894 if (rc != 0) 10895 return (rc); 10896 10897 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10898 if (sb == NULL) 10899 return (ENOMEM); 10900 10901 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 10902 M_ZERO | M_WAITOK); 10903 10904 mtx_lock(&sc->reg_lock); 10905 if (hw_off_limits(sc)) 10906 rc = ENXIO; 10907 else 10908 t4_ulprx_read_la(sc, buf); 10909 mtx_unlock(&sc->reg_lock); 10910 if (rc != 0) 10911 goto done; 10912 10913 p = buf; 10914 sbuf_printf(sb, " Pcmd Type Message" 10915 " Data"); 10916 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 10917 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 10918 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 10919 } 10920 rc = sbuf_finish(sb); 10921 done: 10922 sbuf_delete(sb); 10923 free(buf, M_CXGBE); 10924 return (rc); 10925 } 10926 10927 static int 10928 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 10929 { 10930 struct adapter *sc = arg1; 10931 struct sbuf *sb; 10932 int rc; 10933 uint32_t cfg, s1, s2; 10934 10935 MPASS(chip_id(sc) >= CHELSIO_T5); 10936 10937 rc = sysctl_wire_old_buffer(req, 0); 10938 if (rc != 0) 10939 return (rc); 10940 10941 mtx_lock(&sc->reg_lock); 10942 if (hw_off_limits(sc)) 10943 rc = ENXIO; 10944 else { 10945 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 10946 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 10947 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 10948 } 10949 mtx_unlock(&sc->reg_lock); 10950 if (rc != 0) 10951 return (rc); 10952 10953 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10954 if (sb == NULL) 10955 return (ENOMEM); 10956 10957 if (G_STATSOURCE_T5(cfg) == 7) { 10958 int mode; 10959 10960 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 10961 if (mode == 0) 10962 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 10963 else if (mode == 1) 10964 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 10965 else 10966 sbuf_printf(sb, "unknown mode %d", mode); 10967 } 10968 rc = sbuf_finish(sb); 10969 sbuf_delete(sb); 10970 10971 return (rc); 10972 } 10973 10974 static int 10975 sysctl_cpus(SYSCTL_HANDLER_ARGS) 10976 { 10977 struct adapter *sc = arg1; 10978 enum cpu_sets op = arg2; 10979 cpuset_t cpuset; 10980 struct sbuf *sb; 10981 int i, rc; 10982 10983 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 10984 10985 CPU_ZERO(&cpuset); 10986 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 10987 if (rc != 0) 10988 return (rc); 10989 10990 rc = sysctl_wire_old_buffer(req, 0); 10991 if (rc != 0) 10992 return (rc); 10993 10994 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10995 if (sb == NULL) 10996 return (ENOMEM); 10997 10998 CPU_FOREACH(i) 10999 sbuf_printf(sb, "%d ", i); 11000 rc = sbuf_finish(sb); 11001 sbuf_delete(sb); 11002 11003 return (rc); 11004 } 11005 11006 static int 11007 sysctl_reset(SYSCTL_HANDLER_ARGS) 11008 { 11009 struct adapter *sc = arg1; 11010 u_int val; 11011 int rc; 11012 11013 val = sc->num_resets; 11014 rc = sysctl_handle_int(oidp, &val, 0, req); 11015 if (rc != 0 || req->newptr == NULL) 11016 return (rc); 11017 11018 if (val == 0) { 11019 /* Zero out the counter that tracks reset. */ 11020 sc->num_resets = 0; 11021 return (0); 11022 } 11023 11024 if (val != 1) 11025 return (EINVAL); /* 0 or 1 are the only legal values */ 11026 11027 if (hw_off_limits(sc)) /* harmless race */ 11028 return (EALREADY); 11029 11030 taskqueue_enqueue(reset_tq, &sc->reset_task); 11031 return (0); 11032 } 11033 11034 #ifdef TCP_OFFLOAD 11035 static int 11036 sysctl_tls(SYSCTL_HANDLER_ARGS) 11037 { 11038 struct adapter *sc = arg1; 11039 int i, j, v, rc; 11040 struct vi_info *vi; 11041 11042 v = sc->tt.tls; 11043 rc = sysctl_handle_int(oidp, &v, 0, req); 11044 if (rc != 0 || req->newptr == NULL) 11045 return (rc); 11046 11047 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11048 return (ENOTSUP); 11049 11050 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11051 if (rc) 11052 return (rc); 11053 if (hw_off_limits(sc)) 11054 rc = ENXIO; 11055 else { 11056 sc->tt.tls = !!v; 11057 for_each_port(sc, i) { 11058 for_each_vi(sc->port[i], j, vi) { 11059 if (vi->flags & VI_INIT_DONE) 11060 t4_update_fl_bufsize(vi->ifp); 11061 } 11062 } 11063 } 11064 end_synchronized_op(sc, 0); 11065 11066 return (rc); 11067 11068 } 11069 11070 static int 11071 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11072 { 11073 struct adapter *sc = arg1; 11074 int *old_ports, *new_ports; 11075 int i, new_count, rc; 11076 11077 if (req->newptr == NULL && req->oldptr == NULL) 11078 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11079 sizeof(sc->tt.tls_rx_ports[0]))); 11080 11081 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11082 if (rc) 11083 return (rc); 11084 11085 if (hw_off_limits(sc)) { 11086 rc = ENXIO; 11087 goto done; 11088 } 11089 11090 if (sc->tt.num_tls_rx_ports == 0) { 11091 i = -1; 11092 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11093 } else 11094 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11095 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11096 if (rc == 0 && req->newptr != NULL) { 11097 new_count = req->newlen / sizeof(new_ports[0]); 11098 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11099 M_WAITOK); 11100 rc = SYSCTL_IN(req, new_ports, new_count * 11101 sizeof(new_ports[0])); 11102 if (rc) 11103 goto err; 11104 11105 /* Allow setting to a single '-1' to clear the list. */ 11106 if (new_count == 1 && new_ports[0] == -1) { 11107 ADAPTER_LOCK(sc); 11108 old_ports = sc->tt.tls_rx_ports; 11109 sc->tt.tls_rx_ports = NULL; 11110 sc->tt.num_tls_rx_ports = 0; 11111 ADAPTER_UNLOCK(sc); 11112 free(old_ports, M_CXGBE); 11113 } else { 11114 for (i = 0; i < new_count; i++) { 11115 if (new_ports[i] < 1 || 11116 new_ports[i] > IPPORT_MAX) { 11117 rc = EINVAL; 11118 goto err; 11119 } 11120 } 11121 11122 ADAPTER_LOCK(sc); 11123 old_ports = sc->tt.tls_rx_ports; 11124 sc->tt.tls_rx_ports = new_ports; 11125 sc->tt.num_tls_rx_ports = new_count; 11126 ADAPTER_UNLOCK(sc); 11127 free(old_ports, M_CXGBE); 11128 new_ports = NULL; 11129 } 11130 err: 11131 free(new_ports, M_CXGBE); 11132 } 11133 done: 11134 end_synchronized_op(sc, 0); 11135 return (rc); 11136 } 11137 11138 static int 11139 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11140 { 11141 struct adapter *sc = arg1; 11142 int v, rc; 11143 11144 v = sc->tt.tls_rx_timeout; 11145 rc = sysctl_handle_int(oidp, &v, 0, req); 11146 if (rc != 0 || req->newptr == NULL) 11147 return (rc); 11148 11149 if (v < 0) 11150 return (EINVAL); 11151 11152 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11153 return (ENOTSUP); 11154 11155 sc->tt.tls_rx_timeout = v; 11156 11157 return (0); 11158 11159 } 11160 11161 static void 11162 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11163 { 11164 u_int rem = val % factor; 11165 11166 if (rem == 0) 11167 snprintf(buf, len, "%u", val / factor); 11168 else { 11169 while (rem % 10 == 0) 11170 rem /= 10; 11171 snprintf(buf, len, "%u.%u", val / factor, rem); 11172 } 11173 } 11174 11175 static int 11176 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11177 { 11178 struct adapter *sc = arg1; 11179 char buf[16]; 11180 u_int res, re; 11181 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11182 11183 mtx_lock(&sc->reg_lock); 11184 if (hw_off_limits(sc)) 11185 res = (u_int)-1; 11186 else 11187 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11188 mtx_unlock(&sc->reg_lock); 11189 if (res == (u_int)-1) 11190 return (ENXIO); 11191 11192 switch (arg2) { 11193 case 0: 11194 /* timer_tick */ 11195 re = G_TIMERRESOLUTION(res); 11196 break; 11197 case 1: 11198 /* TCP timestamp tick */ 11199 re = G_TIMESTAMPRESOLUTION(res); 11200 break; 11201 case 2: 11202 /* DACK tick */ 11203 re = G_DELAYEDACKRESOLUTION(res); 11204 break; 11205 default: 11206 return (EDOOFUS); 11207 } 11208 11209 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11210 11211 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11212 } 11213 11214 static int 11215 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11216 { 11217 struct adapter *sc = arg1; 11218 int rc; 11219 u_int dack_tmr, dack_re, v; 11220 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11221 11222 mtx_lock(&sc->reg_lock); 11223 if (hw_off_limits(sc)) 11224 rc = ENXIO; 11225 else { 11226 rc = 0; 11227 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11228 A_TP_TIMER_RESOLUTION)); 11229 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11230 } 11231 mtx_unlock(&sc->reg_lock); 11232 if (rc != 0) 11233 return (rc); 11234 11235 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11236 11237 return (sysctl_handle_int(oidp, &v, 0, req)); 11238 } 11239 11240 static int 11241 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11242 { 11243 struct adapter *sc = arg1; 11244 int rc, reg = arg2; 11245 u_int tre; 11246 u_long tp_tick_us, v; 11247 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11248 11249 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11250 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11251 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11252 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11253 11254 mtx_lock(&sc->reg_lock); 11255 if (hw_off_limits(sc)) 11256 rc = ENXIO; 11257 else { 11258 rc = 0; 11259 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11260 tp_tick_us = (cclk_ps << tre) / 1000000; 11261 if (reg == A_TP_INIT_SRTT) 11262 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11263 else 11264 v = tp_tick_us * t4_read_reg(sc, reg); 11265 } 11266 mtx_unlock(&sc->reg_lock); 11267 if (rc != 0) 11268 return (rc); 11269 else 11270 return (sysctl_handle_long(oidp, &v, 0, req)); 11271 } 11272 11273 /* 11274 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11275 * passed to this function. 11276 */ 11277 static int 11278 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11279 { 11280 struct adapter *sc = arg1; 11281 int rc, idx = arg2; 11282 u_int v; 11283 11284 MPASS(idx >= 0 && idx <= 24); 11285 11286 mtx_lock(&sc->reg_lock); 11287 if (hw_off_limits(sc)) 11288 rc = ENXIO; 11289 else { 11290 rc = 0; 11291 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11292 } 11293 mtx_unlock(&sc->reg_lock); 11294 if (rc != 0) 11295 return (rc); 11296 else 11297 return (sysctl_handle_int(oidp, &v, 0, req)); 11298 } 11299 11300 static int 11301 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11302 { 11303 struct adapter *sc = arg1; 11304 int rc, idx = arg2; 11305 u_int shift, v, r; 11306 11307 MPASS(idx >= 0 && idx < 16); 11308 11309 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11310 shift = (idx & 3) << 3; 11311 mtx_lock(&sc->reg_lock); 11312 if (hw_off_limits(sc)) 11313 rc = ENXIO; 11314 else { 11315 rc = 0; 11316 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11317 } 11318 mtx_unlock(&sc->reg_lock); 11319 if (rc != 0) 11320 return (rc); 11321 else 11322 return (sysctl_handle_int(oidp, &v, 0, req)); 11323 } 11324 11325 static int 11326 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11327 { 11328 struct vi_info *vi = arg1; 11329 struct adapter *sc = vi->adapter; 11330 int idx, rc, i; 11331 struct sge_ofld_rxq *ofld_rxq; 11332 uint8_t v; 11333 11334 idx = vi->ofld_tmr_idx; 11335 11336 rc = sysctl_handle_int(oidp, &idx, 0, req); 11337 if (rc != 0 || req->newptr == NULL) 11338 return (rc); 11339 11340 if (idx < 0 || idx >= SGE_NTIMERS) 11341 return (EINVAL); 11342 11343 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11344 "t4otmr"); 11345 if (rc) 11346 return (rc); 11347 11348 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11349 for_each_ofld_rxq(vi, i, ofld_rxq) { 11350 #ifdef atomic_store_rel_8 11351 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11352 #else 11353 ofld_rxq->iq.intr_params = v; 11354 #endif 11355 } 11356 vi->ofld_tmr_idx = idx; 11357 11358 end_synchronized_op(sc, LOCK_HELD); 11359 return (0); 11360 } 11361 11362 static int 11363 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11364 { 11365 struct vi_info *vi = arg1; 11366 struct adapter *sc = vi->adapter; 11367 int idx, rc; 11368 11369 idx = vi->ofld_pktc_idx; 11370 11371 rc = sysctl_handle_int(oidp, &idx, 0, req); 11372 if (rc != 0 || req->newptr == NULL) 11373 return (rc); 11374 11375 if (idx < -1 || idx >= SGE_NCOUNTERS) 11376 return (EINVAL); 11377 11378 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11379 "t4opktc"); 11380 if (rc) 11381 return (rc); 11382 11383 if (vi->flags & VI_INIT_DONE) 11384 rc = EBUSY; /* cannot be changed once the queues are created */ 11385 else 11386 vi->ofld_pktc_idx = idx; 11387 11388 end_synchronized_op(sc, LOCK_HELD); 11389 return (rc); 11390 } 11391 #endif 11392 11393 static int 11394 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11395 { 11396 int rc; 11397 11398 if (cntxt->cid > M_CTXTQID) 11399 return (EINVAL); 11400 11401 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11402 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11403 return (EINVAL); 11404 11405 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11406 if (rc) 11407 return (rc); 11408 11409 if (hw_off_limits(sc)) { 11410 rc = ENXIO; 11411 goto done; 11412 } 11413 11414 if (sc->flags & FW_OK) { 11415 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11416 &cntxt->data[0]); 11417 if (rc == 0) 11418 goto done; 11419 } 11420 11421 /* 11422 * Read via firmware failed or wasn't even attempted. Read directly via 11423 * the backdoor. 11424 */ 11425 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11426 done: 11427 end_synchronized_op(sc, 0); 11428 return (rc); 11429 } 11430 11431 static int 11432 load_fw(struct adapter *sc, struct t4_data *fw) 11433 { 11434 int rc; 11435 uint8_t *fw_data; 11436 11437 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11438 if (rc) 11439 return (rc); 11440 11441 if (hw_off_limits(sc)) { 11442 rc = ENXIO; 11443 goto done; 11444 } 11445 11446 /* 11447 * The firmware, with the sole exception of the memory parity error 11448 * handler, runs from memory and not flash. It is almost always safe to 11449 * install a new firmware on a running system. Just set bit 1 in 11450 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11451 */ 11452 if (sc->flags & FULL_INIT_DONE && 11453 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11454 rc = EBUSY; 11455 goto done; 11456 } 11457 11458 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11459 11460 rc = copyin(fw->data, fw_data, fw->len); 11461 if (rc == 0) 11462 rc = -t4_load_fw(sc, fw_data, fw->len); 11463 11464 free(fw_data, M_CXGBE); 11465 done: 11466 end_synchronized_op(sc, 0); 11467 return (rc); 11468 } 11469 11470 static int 11471 load_cfg(struct adapter *sc, struct t4_data *cfg) 11472 { 11473 int rc; 11474 uint8_t *cfg_data = NULL; 11475 11476 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11477 if (rc) 11478 return (rc); 11479 11480 if (hw_off_limits(sc)) { 11481 rc = ENXIO; 11482 goto done; 11483 } 11484 11485 if (cfg->len == 0) { 11486 /* clear */ 11487 rc = -t4_load_cfg(sc, NULL, 0); 11488 goto done; 11489 } 11490 11491 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11492 11493 rc = copyin(cfg->data, cfg_data, cfg->len); 11494 if (rc == 0) 11495 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11496 11497 free(cfg_data, M_CXGBE); 11498 done: 11499 end_synchronized_op(sc, 0); 11500 return (rc); 11501 } 11502 11503 static int 11504 load_boot(struct adapter *sc, struct t4_bootrom *br) 11505 { 11506 int rc; 11507 uint8_t *br_data = NULL; 11508 u_int offset; 11509 11510 if (br->len > 1024 * 1024) 11511 return (EFBIG); 11512 11513 if (br->pf_offset == 0) { 11514 /* pfidx */ 11515 if (br->pfidx_addr > 7) 11516 return (EINVAL); 11517 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11518 A_PCIE_PF_EXPROM_OFST))); 11519 } else if (br->pf_offset == 1) { 11520 /* offset */ 11521 offset = G_OFFSET(br->pfidx_addr); 11522 } else { 11523 return (EINVAL); 11524 } 11525 11526 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11527 if (rc) 11528 return (rc); 11529 11530 if (hw_off_limits(sc)) { 11531 rc = ENXIO; 11532 goto done; 11533 } 11534 11535 if (br->len == 0) { 11536 /* clear */ 11537 rc = -t4_load_boot(sc, NULL, offset, 0); 11538 goto done; 11539 } 11540 11541 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11542 11543 rc = copyin(br->data, br_data, br->len); 11544 if (rc == 0) 11545 rc = -t4_load_boot(sc, br_data, offset, br->len); 11546 11547 free(br_data, M_CXGBE); 11548 done: 11549 end_synchronized_op(sc, 0); 11550 return (rc); 11551 } 11552 11553 static int 11554 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11555 { 11556 int rc; 11557 uint8_t *bc_data = NULL; 11558 11559 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11560 if (rc) 11561 return (rc); 11562 11563 if (hw_off_limits(sc)) { 11564 rc = ENXIO; 11565 goto done; 11566 } 11567 11568 if (bc->len == 0) { 11569 /* clear */ 11570 rc = -t4_load_bootcfg(sc, NULL, 0); 11571 goto done; 11572 } 11573 11574 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11575 11576 rc = copyin(bc->data, bc_data, bc->len); 11577 if (rc == 0) 11578 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11579 11580 free(bc_data, M_CXGBE); 11581 done: 11582 end_synchronized_op(sc, 0); 11583 return (rc); 11584 } 11585 11586 static int 11587 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11588 { 11589 int rc; 11590 struct cudbg_init *cudbg; 11591 void *handle, *buf; 11592 11593 /* buf is large, don't block if no memory is available */ 11594 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11595 if (buf == NULL) 11596 return (ENOMEM); 11597 11598 handle = cudbg_alloc_handle(); 11599 if (handle == NULL) { 11600 rc = ENOMEM; 11601 goto done; 11602 } 11603 11604 cudbg = cudbg_get_init(handle); 11605 cudbg->adap = sc; 11606 cudbg->print = (cudbg_print_cb)printf; 11607 11608 #ifndef notyet 11609 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11610 __func__, dump->wr_flash, dump->len, dump->data); 11611 #endif 11612 11613 if (dump->wr_flash) 11614 cudbg->use_flash = 1; 11615 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11616 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11617 11618 rc = cudbg_collect(handle, buf, &dump->len); 11619 if (rc != 0) 11620 goto done; 11621 11622 rc = copyout(buf, dump->data, dump->len); 11623 done: 11624 cudbg_free_handle(handle); 11625 free(buf, M_CXGBE); 11626 return (rc); 11627 } 11628 11629 static void 11630 free_offload_policy(struct t4_offload_policy *op) 11631 { 11632 struct offload_rule *r; 11633 int i; 11634 11635 if (op == NULL) 11636 return; 11637 11638 r = &op->rule[0]; 11639 for (i = 0; i < op->nrules; i++, r++) { 11640 free(r->bpf_prog.bf_insns, M_CXGBE); 11641 } 11642 free(op->rule, M_CXGBE); 11643 free(op, M_CXGBE); 11644 } 11645 11646 static int 11647 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11648 { 11649 int i, rc, len; 11650 struct t4_offload_policy *op, *old; 11651 struct bpf_program *bf; 11652 const struct offload_settings *s; 11653 struct offload_rule *r; 11654 void *u; 11655 11656 if (!is_offload(sc)) 11657 return (ENODEV); 11658 11659 if (uop->nrules == 0) { 11660 /* Delete installed policies. */ 11661 op = NULL; 11662 goto set_policy; 11663 } else if (uop->nrules > 256) { /* arbitrary */ 11664 return (E2BIG); 11665 } 11666 11667 /* Copy userspace offload policy to kernel */ 11668 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11669 op->nrules = uop->nrules; 11670 len = op->nrules * sizeof(struct offload_rule); 11671 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11672 rc = copyin(uop->rule, op->rule, len); 11673 if (rc) { 11674 free(op->rule, M_CXGBE); 11675 free(op, M_CXGBE); 11676 return (rc); 11677 } 11678 11679 r = &op->rule[0]; 11680 for (i = 0; i < op->nrules; i++, r++) { 11681 11682 /* Validate open_type */ 11683 if (r->open_type != OPEN_TYPE_LISTEN && 11684 r->open_type != OPEN_TYPE_ACTIVE && 11685 r->open_type != OPEN_TYPE_PASSIVE && 11686 r->open_type != OPEN_TYPE_DONTCARE) { 11687 error: 11688 /* 11689 * Rules 0 to i have malloc'd filters that need to be 11690 * freed. Rules i+1 to nrules have userspace pointers 11691 * and should be left alone. 11692 */ 11693 op->nrules = i; 11694 free_offload_policy(op); 11695 return (rc); 11696 } 11697 11698 /* Validate settings */ 11699 s = &r->settings; 11700 if ((s->offload != 0 && s->offload != 1) || 11701 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11702 s->sched_class < -1 || 11703 s->sched_class >= sc->params.nsched_cls) { 11704 rc = EINVAL; 11705 goto error; 11706 } 11707 11708 bf = &r->bpf_prog; 11709 u = bf->bf_insns; /* userspace ptr */ 11710 bf->bf_insns = NULL; 11711 if (bf->bf_len == 0) { 11712 /* legal, matches everything */ 11713 continue; 11714 } 11715 len = bf->bf_len * sizeof(*bf->bf_insns); 11716 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11717 rc = copyin(u, bf->bf_insns, len); 11718 if (rc != 0) 11719 goto error; 11720 11721 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11722 rc = EINVAL; 11723 goto error; 11724 } 11725 } 11726 set_policy: 11727 rw_wlock(&sc->policy_lock); 11728 old = sc->policy; 11729 sc->policy = op; 11730 rw_wunlock(&sc->policy_lock); 11731 free_offload_policy(old); 11732 11733 return (0); 11734 } 11735 11736 #define MAX_READ_BUF_SIZE (128 * 1024) 11737 static int 11738 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11739 { 11740 uint32_t addr, remaining, n; 11741 uint32_t *buf; 11742 int rc; 11743 uint8_t *dst; 11744 11745 mtx_lock(&sc->reg_lock); 11746 if (hw_off_limits(sc)) 11747 rc = ENXIO; 11748 else 11749 rc = validate_mem_range(sc, mr->addr, mr->len); 11750 mtx_unlock(&sc->reg_lock); 11751 if (rc != 0) 11752 return (rc); 11753 11754 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11755 addr = mr->addr; 11756 remaining = mr->len; 11757 dst = (void *)mr->data; 11758 11759 while (remaining) { 11760 n = min(remaining, MAX_READ_BUF_SIZE); 11761 mtx_lock(&sc->reg_lock); 11762 if (hw_off_limits(sc)) 11763 rc = ENXIO; 11764 else 11765 read_via_memwin(sc, 2, addr, buf, n); 11766 mtx_unlock(&sc->reg_lock); 11767 if (rc != 0) 11768 break; 11769 11770 rc = copyout(buf, dst, n); 11771 if (rc != 0) 11772 break; 11773 11774 dst += n; 11775 remaining -= n; 11776 addr += n; 11777 } 11778 11779 free(buf, M_CXGBE); 11780 return (rc); 11781 } 11782 #undef MAX_READ_BUF_SIZE 11783 11784 static int 11785 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11786 { 11787 int rc; 11788 11789 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11790 return (EINVAL); 11791 11792 if (i2cd->len > sizeof(i2cd->data)) 11793 return (EFBIG); 11794 11795 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11796 if (rc) 11797 return (rc); 11798 if (hw_off_limits(sc)) 11799 rc = ENXIO; 11800 else 11801 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11802 i2cd->offset, i2cd->len, &i2cd->data[0]); 11803 end_synchronized_op(sc, 0); 11804 11805 return (rc); 11806 } 11807 11808 static int 11809 clear_stats(struct adapter *sc, u_int port_id) 11810 { 11811 int i, v, chan_map; 11812 struct port_info *pi; 11813 struct vi_info *vi; 11814 struct sge_rxq *rxq; 11815 struct sge_txq *txq; 11816 struct sge_wrq *wrq; 11817 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11818 struct sge_ofld_txq *ofld_txq; 11819 #endif 11820 #ifdef TCP_OFFLOAD 11821 struct sge_ofld_rxq *ofld_rxq; 11822 #endif 11823 11824 if (port_id >= sc->params.nports) 11825 return (EINVAL); 11826 pi = sc->port[port_id]; 11827 if (pi == NULL) 11828 return (EIO); 11829 11830 mtx_lock(&sc->reg_lock); 11831 if (!hw_off_limits(sc)) { 11832 /* MAC stats */ 11833 t4_clr_port_stats(sc, pi->tx_chan); 11834 if (is_t6(sc)) { 11835 if (pi->fcs_reg != -1) 11836 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11837 else 11838 pi->stats.rx_fcs_err = 0; 11839 } 11840 for_each_vi(pi, v, vi) { 11841 if (vi->flags & VI_INIT_DONE) 11842 t4_clr_vi_stats(sc, vi->vin); 11843 } 11844 chan_map = pi->rx_e_chan_map; 11845 v = 0; /* reuse */ 11846 while (chan_map) { 11847 i = ffs(chan_map) - 1; 11848 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11849 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11850 chan_map &= ~(1 << i); 11851 } 11852 } 11853 mtx_unlock(&sc->reg_lock); 11854 pi->tx_parse_error = 0; 11855 pi->tnl_cong_drops = 0; 11856 11857 /* 11858 * Since this command accepts a port, clear stats for 11859 * all VIs on this port. 11860 */ 11861 for_each_vi(pi, v, vi) { 11862 if (vi->flags & VI_INIT_DONE) { 11863 11864 for_each_rxq(vi, i, rxq) { 11865 #if defined(INET) || defined(INET6) 11866 rxq->lro.lro_queued = 0; 11867 rxq->lro.lro_flushed = 0; 11868 #endif 11869 rxq->rxcsum = 0; 11870 rxq->vlan_extraction = 0; 11871 rxq->vxlan_rxcsum = 0; 11872 11873 rxq->fl.cl_allocated = 0; 11874 rxq->fl.cl_recycled = 0; 11875 rxq->fl.cl_fast_recycled = 0; 11876 } 11877 11878 for_each_txq(vi, i, txq) { 11879 txq->txcsum = 0; 11880 txq->tso_wrs = 0; 11881 txq->vlan_insertion = 0; 11882 txq->imm_wrs = 0; 11883 txq->sgl_wrs = 0; 11884 txq->txpkt_wrs = 0; 11885 txq->txpkts0_wrs = 0; 11886 txq->txpkts1_wrs = 0; 11887 txq->txpkts0_pkts = 0; 11888 txq->txpkts1_pkts = 0; 11889 txq->txpkts_flush = 0; 11890 txq->raw_wrs = 0; 11891 txq->vxlan_tso_wrs = 0; 11892 txq->vxlan_txcsum = 0; 11893 txq->kern_tls_records = 0; 11894 txq->kern_tls_short = 0; 11895 txq->kern_tls_partial = 0; 11896 txq->kern_tls_full = 0; 11897 txq->kern_tls_octets = 0; 11898 txq->kern_tls_waste = 0; 11899 txq->kern_tls_options = 0; 11900 txq->kern_tls_header = 0; 11901 txq->kern_tls_fin = 0; 11902 txq->kern_tls_fin_short = 0; 11903 txq->kern_tls_cbc = 0; 11904 txq->kern_tls_gcm = 0; 11905 mp_ring_reset_stats(txq->r); 11906 } 11907 11908 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11909 for_each_ofld_txq(vi, i, ofld_txq) { 11910 ofld_txq->wrq.tx_wrs_direct = 0; 11911 ofld_txq->wrq.tx_wrs_copied = 0; 11912 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 11913 counter_u64_zero(ofld_txq->tx_iscsi_octets); 11914 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 11915 counter_u64_zero(ofld_txq->tx_toe_tls_records); 11916 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 11917 } 11918 #endif 11919 #ifdef TCP_OFFLOAD 11920 for_each_ofld_rxq(vi, i, ofld_rxq) { 11921 ofld_rxq->fl.cl_allocated = 0; 11922 ofld_rxq->fl.cl_recycled = 0; 11923 ofld_rxq->fl.cl_fast_recycled = 0; 11924 counter_u64_zero( 11925 ofld_rxq->rx_iscsi_ddp_setup_ok); 11926 counter_u64_zero( 11927 ofld_rxq->rx_iscsi_ddp_setup_error); 11928 ofld_rxq->rx_iscsi_ddp_pdus = 0; 11929 ofld_rxq->rx_iscsi_ddp_octets = 0; 11930 ofld_rxq->rx_iscsi_fl_pdus = 0; 11931 ofld_rxq->rx_iscsi_fl_octets = 0; 11932 ofld_rxq->rx_toe_tls_records = 0; 11933 ofld_rxq->rx_toe_tls_octets = 0; 11934 } 11935 #endif 11936 11937 if (IS_MAIN_VI(vi)) { 11938 wrq = &sc->sge.ctrlq[pi->port_id]; 11939 wrq->tx_wrs_direct = 0; 11940 wrq->tx_wrs_copied = 0; 11941 } 11942 } 11943 } 11944 11945 return (0); 11946 } 11947 11948 static int 11949 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11950 { 11951 #ifdef INET6 11952 struct in6_addr in6; 11953 11954 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11955 if (t4_get_clip_entry(sc, &in6, true) != NULL) 11956 return (0); 11957 else 11958 return (EIO); 11959 #else 11960 return (ENOTSUP); 11961 #endif 11962 } 11963 11964 static int 11965 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11966 { 11967 #ifdef INET6 11968 struct in6_addr in6; 11969 11970 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11971 return (t4_release_clip_addr(sc, &in6)); 11972 #else 11973 return (ENOTSUP); 11974 #endif 11975 } 11976 11977 int 11978 t4_os_find_pci_capability(struct adapter *sc, int cap) 11979 { 11980 int i; 11981 11982 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 11983 } 11984 11985 int 11986 t4_os_pci_save_state(struct adapter *sc) 11987 { 11988 device_t dev; 11989 struct pci_devinfo *dinfo; 11990 11991 dev = sc->dev; 11992 dinfo = device_get_ivars(dev); 11993 11994 pci_cfg_save(dev, dinfo, 0); 11995 return (0); 11996 } 11997 11998 int 11999 t4_os_pci_restore_state(struct adapter *sc) 12000 { 12001 device_t dev; 12002 struct pci_devinfo *dinfo; 12003 12004 dev = sc->dev; 12005 dinfo = device_get_ivars(dev); 12006 12007 pci_cfg_restore(dev, dinfo); 12008 return (0); 12009 } 12010 12011 void 12012 t4_os_portmod_changed(struct port_info *pi) 12013 { 12014 struct adapter *sc = pi->adapter; 12015 struct vi_info *vi; 12016 struct ifnet *ifp; 12017 static const char *mod_str[] = { 12018 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12019 }; 12020 12021 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12022 ("%s: port_type %u", __func__, pi->port_type)); 12023 12024 vi = &pi->vi[0]; 12025 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12026 PORT_LOCK(pi); 12027 build_medialist(pi); 12028 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12029 fixup_link_config(pi); 12030 apply_link_config(pi); 12031 } 12032 PORT_UNLOCK(pi); 12033 end_synchronized_op(sc, LOCK_HELD); 12034 } 12035 12036 ifp = vi->ifp; 12037 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12038 if_printf(ifp, "transceiver unplugged.\n"); 12039 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12040 if_printf(ifp, "unknown transceiver inserted.\n"); 12041 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12042 if_printf(ifp, "unsupported transceiver inserted.\n"); 12043 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12044 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12045 port_top_speed(pi), mod_str[pi->mod_type]); 12046 } else { 12047 if_printf(ifp, "transceiver (type %d) inserted.\n", 12048 pi->mod_type); 12049 } 12050 } 12051 12052 void 12053 t4_os_link_changed(struct port_info *pi) 12054 { 12055 struct vi_info *vi; 12056 struct ifnet *ifp; 12057 struct link_config *lc = &pi->link_cfg; 12058 struct adapter *sc = pi->adapter; 12059 int v; 12060 12061 PORT_LOCK_ASSERT_OWNED(pi); 12062 12063 if (is_t6(sc)) { 12064 if (lc->link_ok) { 12065 if (lc->speed > 25000 || 12066 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12067 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12068 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12069 } else { 12070 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12071 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12072 } 12073 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12074 pi->stats.rx_fcs_err = 0; 12075 } else { 12076 pi->fcs_reg = -1; 12077 } 12078 } else { 12079 MPASS(pi->fcs_reg != -1); 12080 MPASS(pi->fcs_base == 0); 12081 } 12082 12083 for_each_vi(pi, v, vi) { 12084 ifp = vi->ifp; 12085 if (ifp == NULL) 12086 continue; 12087 12088 if (lc->link_ok) { 12089 ifp->if_baudrate = IF_Mbps(lc->speed); 12090 if_link_state_change(ifp, LINK_STATE_UP); 12091 } else { 12092 if_link_state_change(ifp, LINK_STATE_DOWN); 12093 } 12094 } 12095 } 12096 12097 void 12098 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12099 { 12100 struct adapter *sc; 12101 12102 sx_slock(&t4_list_lock); 12103 SLIST_FOREACH(sc, &t4_list, link) { 12104 /* 12105 * func should not make any assumptions about what state sc is 12106 * in - the only guarantee is that sc->sc_lock is a valid lock. 12107 */ 12108 func(sc, arg); 12109 } 12110 sx_sunlock(&t4_list_lock); 12111 } 12112 12113 static int 12114 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12115 struct thread *td) 12116 { 12117 int rc; 12118 struct adapter *sc = dev->si_drv1; 12119 12120 rc = priv_check(td, PRIV_DRIVER); 12121 if (rc != 0) 12122 return (rc); 12123 12124 switch (cmd) { 12125 case CHELSIO_T4_GETREG: { 12126 struct t4_reg *edata = (struct t4_reg *)data; 12127 12128 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12129 return (EFAULT); 12130 12131 mtx_lock(&sc->reg_lock); 12132 if (hw_off_limits(sc)) 12133 rc = ENXIO; 12134 else if (edata->size == 4) 12135 edata->val = t4_read_reg(sc, edata->addr); 12136 else if (edata->size == 8) 12137 edata->val = t4_read_reg64(sc, edata->addr); 12138 else 12139 rc = EINVAL; 12140 mtx_unlock(&sc->reg_lock); 12141 12142 break; 12143 } 12144 case CHELSIO_T4_SETREG: { 12145 struct t4_reg *edata = (struct t4_reg *)data; 12146 12147 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12148 return (EFAULT); 12149 12150 mtx_lock(&sc->reg_lock); 12151 if (hw_off_limits(sc)) 12152 rc = ENXIO; 12153 else if (edata->size == 4) { 12154 if (edata->val & 0xffffffff00000000) 12155 rc = EINVAL; 12156 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12157 } else if (edata->size == 8) 12158 t4_write_reg64(sc, edata->addr, edata->val); 12159 else 12160 rc = EINVAL; 12161 mtx_unlock(&sc->reg_lock); 12162 12163 break; 12164 } 12165 case CHELSIO_T4_REGDUMP: { 12166 struct t4_regdump *regs = (struct t4_regdump *)data; 12167 int reglen = t4_get_regs_len(sc); 12168 uint8_t *buf; 12169 12170 if (regs->len < reglen) { 12171 regs->len = reglen; /* hint to the caller */ 12172 return (ENOBUFS); 12173 } 12174 12175 regs->len = reglen; 12176 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12177 mtx_lock(&sc->reg_lock); 12178 if (hw_off_limits(sc)) 12179 rc = ENXIO; 12180 else 12181 get_regs(sc, regs, buf); 12182 mtx_unlock(&sc->reg_lock); 12183 if (rc == 0) 12184 rc = copyout(buf, regs->data, reglen); 12185 free(buf, M_CXGBE); 12186 break; 12187 } 12188 case CHELSIO_T4_GET_FILTER_MODE: 12189 rc = get_filter_mode(sc, (uint32_t *)data); 12190 break; 12191 case CHELSIO_T4_SET_FILTER_MODE: 12192 rc = set_filter_mode(sc, *(uint32_t *)data); 12193 break; 12194 case CHELSIO_T4_SET_FILTER_MASK: 12195 rc = set_filter_mask(sc, *(uint32_t *)data); 12196 break; 12197 case CHELSIO_T4_GET_FILTER: 12198 rc = get_filter(sc, (struct t4_filter *)data); 12199 break; 12200 case CHELSIO_T4_SET_FILTER: 12201 rc = set_filter(sc, (struct t4_filter *)data); 12202 break; 12203 case CHELSIO_T4_DEL_FILTER: 12204 rc = del_filter(sc, (struct t4_filter *)data); 12205 break; 12206 case CHELSIO_T4_GET_SGE_CONTEXT: 12207 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12208 break; 12209 case CHELSIO_T4_LOAD_FW: 12210 rc = load_fw(sc, (struct t4_data *)data); 12211 break; 12212 case CHELSIO_T4_GET_MEM: 12213 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12214 break; 12215 case CHELSIO_T4_GET_I2C: 12216 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12217 break; 12218 case CHELSIO_T4_CLEAR_STATS: 12219 rc = clear_stats(sc, *(uint32_t *)data); 12220 break; 12221 case CHELSIO_T4_SCHED_CLASS: 12222 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12223 break; 12224 case CHELSIO_T4_SCHED_QUEUE: 12225 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12226 break; 12227 case CHELSIO_T4_GET_TRACER: 12228 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12229 break; 12230 case CHELSIO_T4_SET_TRACER: 12231 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12232 break; 12233 case CHELSIO_T4_LOAD_CFG: 12234 rc = load_cfg(sc, (struct t4_data *)data); 12235 break; 12236 case CHELSIO_T4_LOAD_BOOT: 12237 rc = load_boot(sc, (struct t4_bootrom *)data); 12238 break; 12239 case CHELSIO_T4_LOAD_BOOTCFG: 12240 rc = load_bootcfg(sc, (struct t4_data *)data); 12241 break; 12242 case CHELSIO_T4_CUDBG_DUMP: 12243 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12244 break; 12245 case CHELSIO_T4_SET_OFLD_POLICY: 12246 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12247 break; 12248 case CHELSIO_T4_HOLD_CLIP_ADDR: 12249 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12250 break; 12251 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12252 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12253 break; 12254 default: 12255 rc = ENOTTY; 12256 } 12257 12258 return (rc); 12259 } 12260 12261 #ifdef TCP_OFFLOAD 12262 static int 12263 toe_capability(struct vi_info *vi, bool enable) 12264 { 12265 int rc; 12266 struct port_info *pi = vi->pi; 12267 struct adapter *sc = pi->adapter; 12268 12269 ASSERT_SYNCHRONIZED_OP(sc); 12270 12271 if (!is_offload(sc)) 12272 return (ENODEV); 12273 if (hw_off_limits(sc)) 12274 return (ENXIO); 12275 12276 if (enable) { 12277 #ifdef KERN_TLS 12278 if (sc->flags & KERN_TLS_ON) { 12279 int i, j, n; 12280 struct port_info *p; 12281 struct vi_info *v; 12282 12283 /* 12284 * Reconfigure hardware for TOE if TXTLS is not enabled 12285 * on any ifnet. 12286 */ 12287 n = 0; 12288 for_each_port(sc, i) { 12289 p = sc->port[i]; 12290 for_each_vi(p, j, v) { 12291 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12292 CH_WARN(sc, 12293 "%s has NIC TLS enabled.\n", 12294 device_get_nameunit(v->dev)); 12295 n++; 12296 } 12297 } 12298 } 12299 if (n > 0) { 12300 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12301 "associated with this adapter before " 12302 "trying to enable TOE.\n"); 12303 return (EAGAIN); 12304 } 12305 rc = t4_config_kern_tls(sc, false); 12306 if (rc) 12307 return (rc); 12308 } 12309 #endif 12310 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12311 /* TOE is already enabled. */ 12312 return (0); 12313 } 12314 12315 /* 12316 * We need the port's queues around so that we're able to send 12317 * and receive CPLs to/from the TOE even if the ifnet for this 12318 * port has never been UP'd administratively. 12319 */ 12320 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12321 return (rc); 12322 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12323 ((rc = vi_init(&pi->vi[0])) != 0)) 12324 return (rc); 12325 12326 if (isset(&sc->offload_map, pi->port_id)) { 12327 /* TOE is enabled on another VI of this port. */ 12328 pi->uld_vis++; 12329 return (0); 12330 } 12331 12332 if (!uld_active(sc, ULD_TOM)) { 12333 rc = t4_activate_uld(sc, ULD_TOM); 12334 if (rc == EAGAIN) { 12335 log(LOG_WARNING, 12336 "You must kldload t4_tom.ko before trying " 12337 "to enable TOE on a cxgbe interface.\n"); 12338 } 12339 if (rc != 0) 12340 return (rc); 12341 KASSERT(sc->tom_softc != NULL, 12342 ("%s: TOM activated but softc NULL", __func__)); 12343 KASSERT(uld_active(sc, ULD_TOM), 12344 ("%s: TOM activated but flag not set", __func__)); 12345 } 12346 12347 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12348 if (!uld_active(sc, ULD_IWARP)) 12349 (void) t4_activate_uld(sc, ULD_IWARP); 12350 if (!uld_active(sc, ULD_ISCSI)) 12351 (void) t4_activate_uld(sc, ULD_ISCSI); 12352 12353 pi->uld_vis++; 12354 setbit(&sc->offload_map, pi->port_id); 12355 } else { 12356 pi->uld_vis--; 12357 12358 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12359 return (0); 12360 12361 KASSERT(uld_active(sc, ULD_TOM), 12362 ("%s: TOM never initialized?", __func__)); 12363 clrbit(&sc->offload_map, pi->port_id); 12364 } 12365 12366 return (0); 12367 } 12368 12369 /* 12370 * Add an upper layer driver to the global list. 12371 */ 12372 int 12373 t4_register_uld(struct uld_info *ui) 12374 { 12375 int rc = 0; 12376 struct uld_info *u; 12377 12378 sx_xlock(&t4_uld_list_lock); 12379 SLIST_FOREACH(u, &t4_uld_list, link) { 12380 if (u->uld_id == ui->uld_id) { 12381 rc = EEXIST; 12382 goto done; 12383 } 12384 } 12385 12386 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12387 ui->refcount = 0; 12388 done: 12389 sx_xunlock(&t4_uld_list_lock); 12390 return (rc); 12391 } 12392 12393 int 12394 t4_unregister_uld(struct uld_info *ui) 12395 { 12396 int rc = EINVAL; 12397 struct uld_info *u; 12398 12399 sx_xlock(&t4_uld_list_lock); 12400 12401 SLIST_FOREACH(u, &t4_uld_list, link) { 12402 if (u == ui) { 12403 if (ui->refcount > 0) { 12404 rc = EBUSY; 12405 goto done; 12406 } 12407 12408 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12409 rc = 0; 12410 goto done; 12411 } 12412 } 12413 done: 12414 sx_xunlock(&t4_uld_list_lock); 12415 return (rc); 12416 } 12417 12418 int 12419 t4_activate_uld(struct adapter *sc, int id) 12420 { 12421 int rc; 12422 struct uld_info *ui; 12423 12424 ASSERT_SYNCHRONIZED_OP(sc); 12425 12426 if (id < 0 || id > ULD_MAX) 12427 return (EINVAL); 12428 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12429 12430 sx_slock(&t4_uld_list_lock); 12431 12432 SLIST_FOREACH(ui, &t4_uld_list, link) { 12433 if (ui->uld_id == id) { 12434 if (!(sc->flags & FULL_INIT_DONE)) { 12435 rc = adapter_init(sc); 12436 if (rc != 0) 12437 break; 12438 } 12439 12440 rc = ui->activate(sc); 12441 if (rc == 0) { 12442 setbit(&sc->active_ulds, id); 12443 ui->refcount++; 12444 } 12445 break; 12446 } 12447 } 12448 12449 sx_sunlock(&t4_uld_list_lock); 12450 12451 return (rc); 12452 } 12453 12454 int 12455 t4_deactivate_uld(struct adapter *sc, int id) 12456 { 12457 int rc; 12458 struct uld_info *ui; 12459 12460 ASSERT_SYNCHRONIZED_OP(sc); 12461 12462 if (id < 0 || id > ULD_MAX) 12463 return (EINVAL); 12464 rc = ENXIO; 12465 12466 sx_slock(&t4_uld_list_lock); 12467 12468 SLIST_FOREACH(ui, &t4_uld_list, link) { 12469 if (ui->uld_id == id) { 12470 rc = ui->deactivate(sc); 12471 if (rc == 0) { 12472 clrbit(&sc->active_ulds, id); 12473 ui->refcount--; 12474 } 12475 break; 12476 } 12477 } 12478 12479 sx_sunlock(&t4_uld_list_lock); 12480 12481 return (rc); 12482 } 12483 12484 static void 12485 t4_async_event(void *arg, int n) 12486 { 12487 struct uld_info *ui; 12488 struct adapter *sc = (struct adapter *)arg; 12489 12490 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12491 return; 12492 sx_slock(&t4_uld_list_lock); 12493 SLIST_FOREACH(ui, &t4_uld_list, link) { 12494 if (ui->uld_id == ULD_IWARP) { 12495 ui->async_event(sc); 12496 break; 12497 } 12498 } 12499 sx_sunlock(&t4_uld_list_lock); 12500 end_synchronized_op(sc, 0); 12501 } 12502 12503 int 12504 uld_active(struct adapter *sc, int uld_id) 12505 { 12506 12507 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12508 12509 return (isset(&sc->active_ulds, uld_id)); 12510 } 12511 #endif 12512 12513 #ifdef KERN_TLS 12514 static int 12515 ktls_capability(struct adapter *sc, bool enable) 12516 { 12517 ASSERT_SYNCHRONIZED_OP(sc); 12518 12519 if (!is_ktls(sc)) 12520 return (ENODEV); 12521 if (hw_off_limits(sc)) 12522 return (ENXIO); 12523 12524 if (enable) { 12525 if (sc->flags & KERN_TLS_ON) 12526 return (0); /* already on */ 12527 if (sc->offload_map != 0) { 12528 CH_WARN(sc, 12529 "Disable TOE on all interfaces associated with " 12530 "this adapter before trying to enable NIC TLS.\n"); 12531 return (EAGAIN); 12532 } 12533 return (t4_config_kern_tls(sc, true)); 12534 } else { 12535 /* 12536 * Nothing to do for disable. If TOE is enabled sometime later 12537 * then toe_capability will reconfigure the hardware. 12538 */ 12539 return (0); 12540 } 12541 } 12542 #endif 12543 12544 /* 12545 * t = ptr to tunable. 12546 * nc = number of CPUs. 12547 * c = compiled in default for that tunable. 12548 */ 12549 static void 12550 calculate_nqueues(int *t, int nc, const int c) 12551 { 12552 int nq; 12553 12554 if (*t > 0) 12555 return; 12556 nq = *t < 0 ? -*t : c; 12557 *t = min(nc, nq); 12558 } 12559 12560 /* 12561 * Come up with reasonable defaults for some of the tunables, provided they're 12562 * not set by the user (in which case we'll use the values as is). 12563 */ 12564 static void 12565 tweak_tunables(void) 12566 { 12567 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12568 12569 if (t4_ntxq < 1) { 12570 #ifdef RSS 12571 t4_ntxq = rss_getnumbuckets(); 12572 #else 12573 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12574 #endif 12575 } 12576 12577 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12578 12579 if (t4_nrxq < 1) { 12580 #ifdef RSS 12581 t4_nrxq = rss_getnumbuckets(); 12582 #else 12583 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12584 #endif 12585 } 12586 12587 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12588 12589 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12590 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12591 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12592 #endif 12593 #ifdef TCP_OFFLOAD 12594 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12595 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12596 #endif 12597 12598 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12599 if (t4_toecaps_allowed == -1) 12600 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12601 #else 12602 if (t4_toecaps_allowed == -1) 12603 t4_toecaps_allowed = 0; 12604 #endif 12605 12606 #ifdef TCP_OFFLOAD 12607 if (t4_rdmacaps_allowed == -1) { 12608 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12609 FW_CAPS_CONFIG_RDMA_RDMAC; 12610 } 12611 12612 if (t4_iscsicaps_allowed == -1) { 12613 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12614 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12615 FW_CAPS_CONFIG_ISCSI_T10DIF; 12616 } 12617 12618 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12619 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12620 12621 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12622 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12623 12624 if (t4_toe_tls_rx_timeout < 0) 12625 t4_toe_tls_rx_timeout = 0; 12626 #else 12627 if (t4_rdmacaps_allowed == -1) 12628 t4_rdmacaps_allowed = 0; 12629 12630 if (t4_iscsicaps_allowed == -1) 12631 t4_iscsicaps_allowed = 0; 12632 #endif 12633 12634 #ifdef DEV_NETMAP 12635 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12636 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12637 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12638 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12639 #endif 12640 12641 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12642 t4_tmr_idx = TMR_IDX; 12643 12644 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12645 t4_pktc_idx = PKTC_IDX; 12646 12647 if (t4_qsize_txq < 128) 12648 t4_qsize_txq = 128; 12649 12650 if (t4_qsize_rxq < 128) 12651 t4_qsize_rxq = 128; 12652 while (t4_qsize_rxq & 7) 12653 t4_qsize_rxq++; 12654 12655 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12656 12657 /* 12658 * Number of VIs to create per-port. The first VI is the "main" regular 12659 * VI for the port. The rest are additional virtual interfaces on the 12660 * same physical port. Note that the main VI does not have native 12661 * netmap support but the extra VIs do. 12662 * 12663 * Limit the number of VIs per port to the number of available 12664 * MAC addresses per port. 12665 */ 12666 if (t4_num_vis < 1) 12667 t4_num_vis = 1; 12668 if (t4_num_vis > nitems(vi_mac_funcs)) { 12669 t4_num_vis = nitems(vi_mac_funcs); 12670 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12671 } 12672 12673 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12674 pcie_relaxed_ordering = 1; 12675 #if defined(__i386__) || defined(__amd64__) 12676 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12677 pcie_relaxed_ordering = 0; 12678 #endif 12679 } 12680 } 12681 12682 #ifdef DDB 12683 static void 12684 t4_dump_tcb(struct adapter *sc, int tid) 12685 { 12686 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12687 12688 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12689 save = t4_read_reg(sc, reg); 12690 base = sc->memwin[2].mw_base; 12691 12692 /* Dump TCB for the tid */ 12693 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12694 tcb_addr += tid * TCB_SIZE; 12695 12696 if (is_t4(sc)) { 12697 pf = 0; 12698 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12699 } else { 12700 pf = V_PFNUM(sc->pf); 12701 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12702 } 12703 t4_write_reg(sc, reg, win_pos | pf); 12704 t4_read_reg(sc, reg); 12705 12706 off = tcb_addr - win_pos; 12707 for (i = 0; i < 4; i++) { 12708 uint32_t buf[8]; 12709 for (j = 0; j < 8; j++, off += 4) 12710 buf[j] = htonl(t4_read_reg(sc, base + off)); 12711 12712 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12713 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12714 buf[7]); 12715 } 12716 12717 t4_write_reg(sc, reg, save); 12718 t4_read_reg(sc, reg); 12719 } 12720 12721 static void 12722 t4_dump_devlog(struct adapter *sc) 12723 { 12724 struct devlog_params *dparams = &sc->params.devlog; 12725 struct fw_devlog_e e; 12726 int i, first, j, m, nentries, rc; 12727 uint64_t ftstamp = UINT64_MAX; 12728 12729 if (dparams->start == 0) { 12730 db_printf("devlog params not valid\n"); 12731 return; 12732 } 12733 12734 nentries = dparams->size / sizeof(struct fw_devlog_e); 12735 m = fwmtype_to_hwmtype(dparams->memtype); 12736 12737 /* Find the first entry. */ 12738 first = -1; 12739 for (i = 0; i < nentries && !db_pager_quit; i++) { 12740 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12741 sizeof(e), (void *)&e); 12742 if (rc != 0) 12743 break; 12744 12745 if (e.timestamp == 0) 12746 break; 12747 12748 e.timestamp = be64toh(e.timestamp); 12749 if (e.timestamp < ftstamp) { 12750 ftstamp = e.timestamp; 12751 first = i; 12752 } 12753 } 12754 12755 if (first == -1) 12756 return; 12757 12758 i = first; 12759 do { 12760 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12761 sizeof(e), (void *)&e); 12762 if (rc != 0) 12763 return; 12764 12765 if (e.timestamp == 0) 12766 return; 12767 12768 e.timestamp = be64toh(e.timestamp); 12769 e.seqno = be32toh(e.seqno); 12770 for (j = 0; j < 8; j++) 12771 e.params[j] = be32toh(e.params[j]); 12772 12773 db_printf("%10d %15ju %8s %8s ", 12774 e.seqno, e.timestamp, 12775 (e.level < nitems(devlog_level_strings) ? 12776 devlog_level_strings[e.level] : "UNKNOWN"), 12777 (e.facility < nitems(devlog_facility_strings) ? 12778 devlog_facility_strings[e.facility] : "UNKNOWN")); 12779 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12780 e.params[3], e.params[4], e.params[5], e.params[6], 12781 e.params[7]); 12782 12783 if (++i == nentries) 12784 i = 0; 12785 } while (i != first && !db_pager_quit); 12786 } 12787 12788 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12789 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12790 12791 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12792 { 12793 device_t dev; 12794 int t; 12795 bool valid; 12796 12797 valid = false; 12798 t = db_read_token(); 12799 if (t == tIDENT) { 12800 dev = device_lookup_by_name(db_tok_string); 12801 valid = true; 12802 } 12803 db_skip_to_eol(); 12804 if (!valid) { 12805 db_printf("usage: show t4 devlog <nexus>\n"); 12806 return; 12807 } 12808 12809 if (dev == NULL) { 12810 db_printf("device not found\n"); 12811 return; 12812 } 12813 12814 t4_dump_devlog(device_get_softc(dev)); 12815 } 12816 12817 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12818 { 12819 device_t dev; 12820 int radix, tid, t; 12821 bool valid; 12822 12823 valid = false; 12824 radix = db_radix; 12825 db_radix = 10; 12826 t = db_read_token(); 12827 if (t == tIDENT) { 12828 dev = device_lookup_by_name(db_tok_string); 12829 t = db_read_token(); 12830 if (t == tNUMBER) { 12831 tid = db_tok_number; 12832 valid = true; 12833 } 12834 } 12835 db_radix = radix; 12836 db_skip_to_eol(); 12837 if (!valid) { 12838 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12839 return; 12840 } 12841 12842 if (dev == NULL) { 12843 db_printf("device not found\n"); 12844 return; 12845 } 12846 if (tid < 0) { 12847 db_printf("invalid tid\n"); 12848 return; 12849 } 12850 12851 t4_dump_tcb(device_get_softc(dev), tid); 12852 } 12853 #endif 12854 12855 static eventhandler_tag vxlan_start_evtag; 12856 static eventhandler_tag vxlan_stop_evtag; 12857 12858 struct vxlan_evargs { 12859 struct ifnet *ifp; 12860 uint16_t port; 12861 }; 12862 12863 static void 12864 enable_vxlan_rx(struct adapter *sc) 12865 { 12866 int i, rc; 12867 struct port_info *pi; 12868 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12869 12870 ASSERT_SYNCHRONIZED_OP(sc); 12871 12872 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12873 F_VXLAN_EN); 12874 for_each_port(sc, i) { 12875 pi = sc->port[i]; 12876 if (pi->vxlan_tcam_entry == true) 12877 continue; 12878 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12879 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12880 true); 12881 if (rc < 0) { 12882 rc = -rc; 12883 CH_ERR(&pi->vi[0], 12884 "failed to add VXLAN TCAM entry: %d.\n", rc); 12885 } else { 12886 MPASS(rc == sc->rawf_base + pi->port_id); 12887 pi->vxlan_tcam_entry = true; 12888 } 12889 } 12890 } 12891 12892 static void 12893 t4_vxlan_start(struct adapter *sc, void *arg) 12894 { 12895 struct vxlan_evargs *v = arg; 12896 12897 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12898 return; 12899 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 12900 return; 12901 12902 if (sc->vxlan_refcount == 0) { 12903 sc->vxlan_port = v->port; 12904 sc->vxlan_refcount = 1; 12905 if (!hw_off_limits(sc)) 12906 enable_vxlan_rx(sc); 12907 } else if (sc->vxlan_port == v->port) { 12908 sc->vxlan_refcount++; 12909 } else { 12910 CH_ERR(sc, "VXLAN already configured on port %d; " 12911 "ignoring attempt to configure it on port %d\n", 12912 sc->vxlan_port, v->port); 12913 } 12914 end_synchronized_op(sc, 0); 12915 } 12916 12917 static void 12918 t4_vxlan_stop(struct adapter *sc, void *arg) 12919 { 12920 struct vxlan_evargs *v = arg; 12921 12922 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12923 return; 12924 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 12925 return; 12926 12927 /* 12928 * VXLANs may have been configured before the driver was loaded so we 12929 * may see more stops than starts. This is not handled cleanly but at 12930 * least we keep the refcount sane. 12931 */ 12932 if (sc->vxlan_port != v->port) 12933 goto done; 12934 if (sc->vxlan_refcount == 0) { 12935 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 12936 "ignoring attempt to stop it again.\n", sc->vxlan_port); 12937 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 12938 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 12939 done: 12940 end_synchronized_op(sc, 0); 12941 } 12942 12943 static void 12944 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 12945 sa_family_t family, u_int port) 12946 { 12947 struct vxlan_evargs v; 12948 12949 MPASS(family == AF_INET || family == AF_INET6); 12950 v.ifp = ifp; 12951 v.port = port; 12952 12953 t4_iterate(t4_vxlan_start, &v); 12954 } 12955 12956 static void 12957 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 12958 u_int port) 12959 { 12960 struct vxlan_evargs v; 12961 12962 MPASS(family == AF_INET || family == AF_INET6); 12963 v.ifp = ifp; 12964 v.port = port; 12965 12966 t4_iterate(t4_vxlan_stop, &v); 12967 } 12968 12969 12970 static struct sx mlu; /* mod load unload */ 12971 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 12972 12973 static int 12974 mod_event(module_t mod, int cmd, void *arg) 12975 { 12976 int rc = 0; 12977 static int loaded = 0; 12978 12979 switch (cmd) { 12980 case MOD_LOAD: 12981 sx_xlock(&mlu); 12982 if (loaded++ == 0) { 12983 t4_sge_modload(); 12984 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12985 t4_filter_rpl, CPL_COOKIE_FILTER); 12986 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 12987 do_l2t_write_rpl, CPL_COOKIE_FILTER); 12988 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 12989 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 12990 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12991 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 12992 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 12993 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 12994 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 12995 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 12996 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 12997 do_smt_write_rpl); 12998 sx_init(&t4_list_lock, "T4/T5 adapters"); 12999 SLIST_INIT(&t4_list); 13000 callout_init(&fatal_callout, 1); 13001 #ifdef TCP_OFFLOAD 13002 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13003 SLIST_INIT(&t4_uld_list); 13004 #endif 13005 #ifdef INET6 13006 t4_clip_modload(); 13007 #endif 13008 #ifdef KERN_TLS 13009 t6_ktls_modload(); 13010 #endif 13011 t4_tracer_modload(); 13012 tweak_tunables(); 13013 vxlan_start_evtag = 13014 EVENTHANDLER_REGISTER(vxlan_start, 13015 t4_vxlan_start_handler, NULL, 13016 EVENTHANDLER_PRI_ANY); 13017 vxlan_stop_evtag = 13018 EVENTHANDLER_REGISTER(vxlan_stop, 13019 t4_vxlan_stop_handler, NULL, 13020 EVENTHANDLER_PRI_ANY); 13021 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13022 taskqueue_thread_enqueue, &reset_tq); 13023 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13024 "t4_rst_thr"); 13025 } 13026 sx_xunlock(&mlu); 13027 break; 13028 13029 case MOD_UNLOAD: 13030 sx_xlock(&mlu); 13031 if (--loaded == 0) { 13032 int tries; 13033 13034 taskqueue_free(reset_tq); 13035 sx_slock(&t4_list_lock); 13036 if (!SLIST_EMPTY(&t4_list)) { 13037 rc = EBUSY; 13038 sx_sunlock(&t4_list_lock); 13039 goto done_unload; 13040 } 13041 #ifdef TCP_OFFLOAD 13042 sx_slock(&t4_uld_list_lock); 13043 if (!SLIST_EMPTY(&t4_uld_list)) { 13044 rc = EBUSY; 13045 sx_sunlock(&t4_uld_list_lock); 13046 sx_sunlock(&t4_list_lock); 13047 goto done_unload; 13048 } 13049 #endif 13050 tries = 0; 13051 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13052 uprintf("%ju clusters with custom free routine " 13053 "still is use.\n", t4_sge_extfree_refs()); 13054 pause("t4unload", 2 * hz); 13055 } 13056 #ifdef TCP_OFFLOAD 13057 sx_sunlock(&t4_uld_list_lock); 13058 #endif 13059 sx_sunlock(&t4_list_lock); 13060 13061 if (t4_sge_extfree_refs() == 0) { 13062 EVENTHANDLER_DEREGISTER(vxlan_start, 13063 vxlan_start_evtag); 13064 EVENTHANDLER_DEREGISTER(vxlan_stop, 13065 vxlan_stop_evtag); 13066 t4_tracer_modunload(); 13067 #ifdef KERN_TLS 13068 t6_ktls_modunload(); 13069 #endif 13070 #ifdef INET6 13071 t4_clip_modunload(); 13072 #endif 13073 #ifdef TCP_OFFLOAD 13074 sx_destroy(&t4_uld_list_lock); 13075 #endif 13076 sx_destroy(&t4_list_lock); 13077 t4_sge_modunload(); 13078 loaded = 0; 13079 } else { 13080 rc = EBUSY; 13081 loaded++; /* undo earlier decrement */ 13082 } 13083 } 13084 done_unload: 13085 sx_xunlock(&mlu); 13086 break; 13087 } 13088 13089 return (rc); 13090 } 13091 13092 static devclass_t t4_devclass, t5_devclass, t6_devclass; 13093 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 13094 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 13095 13096 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 13097 MODULE_VERSION(t4nex, 1); 13098 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13099 #ifdef DEV_NETMAP 13100 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13101 #endif /* DEV_NETMAP */ 13102 13103 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 13104 MODULE_VERSION(t5nex, 1); 13105 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13106 #ifdef DEV_NETMAP 13107 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13108 #endif /* DEV_NETMAP */ 13109 13110 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 13111 MODULE_VERSION(t6nex, 1); 13112 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13113 #ifdef DEV_NETMAP 13114 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13115 #endif /* DEV_NETMAP */ 13116 13117 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 13118 MODULE_VERSION(cxgbe, 1); 13119 13120 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 13121 MODULE_VERSION(cxl, 1); 13122 13123 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 13124 MODULE_VERSION(cc, 1); 13125 13126 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 13127 MODULE_VERSION(vcxgbe, 1); 13128 13129 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 13130 MODULE_VERSION(vcxl, 1); 13131 13132 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 13133 MODULE_VERSION(vcc, 1); 13134