xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 67ca7330cf34a789afbbff9ae7e4cdc4a4917ae3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ratelimit.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/priv.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #include <crypto/rijndael/rijndael.h>
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79 
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_clip.h"
86 #include "t4_ioctl.h"
87 #include "t4_l2t.h"
88 #include "t4_mp_ring.h"
89 #include "t4_if.h"
90 #include "t4_smt.h"
91 
92 /* T4 bus driver interface */
93 static int t4_probe(device_t);
94 static int t4_attach(device_t);
95 static int t4_detach(device_t);
96 static int t4_child_location_str(device_t, device_t, char *, size_t);
97 static int t4_ready(device_t);
98 static int t4_read_port_device(device_t, int, device_t *);
99 static device_method_t t4_methods[] = {
100 	DEVMETHOD(device_probe,		t4_probe),
101 	DEVMETHOD(device_attach,	t4_attach),
102 	DEVMETHOD(device_detach,	t4_detach),
103 
104 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
105 
106 	DEVMETHOD(t4_is_main_ready,	t4_ready),
107 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
108 
109 	DEVMETHOD_END
110 };
111 static driver_t t4_driver = {
112 	"t4nex",
113 	t4_methods,
114 	sizeof(struct adapter)
115 };
116 
117 
118 /* T4 port (cxgbe) interface */
119 static int cxgbe_probe(device_t);
120 static int cxgbe_attach(device_t);
121 static int cxgbe_detach(device_t);
122 device_method_t cxgbe_methods[] = {
123 	DEVMETHOD(device_probe,		cxgbe_probe),
124 	DEVMETHOD(device_attach,	cxgbe_attach),
125 	DEVMETHOD(device_detach,	cxgbe_detach),
126 	{ 0, 0 }
127 };
128 static driver_t cxgbe_driver = {
129 	"cxgbe",
130 	cxgbe_methods,
131 	sizeof(struct port_info)
132 };
133 
134 /* T4 VI (vcxgbe) interface */
135 static int vcxgbe_probe(device_t);
136 static int vcxgbe_attach(device_t);
137 static int vcxgbe_detach(device_t);
138 static device_method_t vcxgbe_methods[] = {
139 	DEVMETHOD(device_probe,		vcxgbe_probe),
140 	DEVMETHOD(device_attach,	vcxgbe_attach),
141 	DEVMETHOD(device_detach,	vcxgbe_detach),
142 	{ 0, 0 }
143 };
144 static driver_t vcxgbe_driver = {
145 	"vcxgbe",
146 	vcxgbe_methods,
147 	sizeof(struct vi_info)
148 };
149 
150 static d_ioctl_t t4_ioctl;
151 
152 static struct cdevsw t4_cdevsw = {
153        .d_version = D_VERSION,
154        .d_ioctl = t4_ioctl,
155        .d_name = "t4nex",
156 };
157 
158 /* T5 bus driver interface */
159 static int t5_probe(device_t);
160 static device_method_t t5_methods[] = {
161 	DEVMETHOD(device_probe,		t5_probe),
162 	DEVMETHOD(device_attach,	t4_attach),
163 	DEVMETHOD(device_detach,	t4_detach),
164 
165 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
166 
167 	DEVMETHOD(t4_is_main_ready,	t4_ready),
168 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
169 
170 	DEVMETHOD_END
171 };
172 static driver_t t5_driver = {
173 	"t5nex",
174 	t5_methods,
175 	sizeof(struct adapter)
176 };
177 
178 
179 /* T5 port (cxl) interface */
180 static driver_t cxl_driver = {
181 	"cxl",
182 	cxgbe_methods,
183 	sizeof(struct port_info)
184 };
185 
186 /* T5 VI (vcxl) interface */
187 static driver_t vcxl_driver = {
188 	"vcxl",
189 	vcxgbe_methods,
190 	sizeof(struct vi_info)
191 };
192 
193 /* T6 bus driver interface */
194 static int t6_probe(device_t);
195 static device_method_t t6_methods[] = {
196 	DEVMETHOD(device_probe,		t6_probe),
197 	DEVMETHOD(device_attach,	t4_attach),
198 	DEVMETHOD(device_detach,	t4_detach),
199 
200 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
201 
202 	DEVMETHOD(t4_is_main_ready,	t4_ready),
203 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
204 
205 	DEVMETHOD_END
206 };
207 static driver_t t6_driver = {
208 	"t6nex",
209 	t6_methods,
210 	sizeof(struct adapter)
211 };
212 
213 
214 /* T6 port (cc) interface */
215 static driver_t cc_driver = {
216 	"cc",
217 	cxgbe_methods,
218 	sizeof(struct port_info)
219 };
220 
221 /* T6 VI (vcc) interface */
222 static driver_t vcc_driver = {
223 	"vcc",
224 	vcxgbe_methods,
225 	sizeof(struct vi_info)
226 };
227 
228 /* ifnet interface */
229 static void cxgbe_init(void *);
230 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
231 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
232 static void cxgbe_qflush(struct ifnet *);
233 
234 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
235 
236 /*
237  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
238  * then ADAPTER_LOCK, then t4_uld_list_lock.
239  */
240 static struct sx t4_list_lock;
241 SLIST_HEAD(, adapter) t4_list;
242 #ifdef TCP_OFFLOAD
243 static struct sx t4_uld_list_lock;
244 SLIST_HEAD(, uld_info) t4_uld_list;
245 #endif
246 
247 /*
248  * Tunables.  See tweak_tunables() too.
249  *
250  * Each tunable is set to a default value here if it's known at compile-time.
251  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
252  * provide a reasonable default (upto n) when the driver is loaded.
253  *
254  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
255  * T5 are under hw.cxl.
256  */
257 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters");
258 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters");
259 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters");
260 
261 /*
262  * Number of queues for tx and rx, NIC and offload.
263  */
264 #define NTXQ 16
265 int t4_ntxq = -NTXQ;
266 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
267     "Number of TX queues per port");
268 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
269 
270 #define NRXQ 8
271 int t4_nrxq = -NRXQ;
272 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
273     "Number of RX queues per port");
274 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
275 
276 #define NTXQ_VI 1
277 static int t4_ntxq_vi = -NTXQ_VI;
278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
279     "Number of TX queues per VI");
280 
281 #define NRXQ_VI 1
282 static int t4_nrxq_vi = -NRXQ_VI;
283 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
284     "Number of RX queues per VI");
285 
286 static int t4_rsrv_noflowq = 0;
287 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
288     0, "Reserve TX queue 0 of each VI for non-flowid packets");
289 
290 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
291 #define NOFLDTXQ 8
292 static int t4_nofldtxq = -NOFLDTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
294     "Number of offload TX queues per port");
295 
296 #define NOFLDRXQ 2
297 static int t4_nofldrxq = -NOFLDRXQ;
298 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
299     "Number of offload RX queues per port");
300 
301 #define NOFLDTXQ_VI 1
302 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
304     "Number of offload TX queues per VI");
305 
306 #define NOFLDRXQ_VI 1
307 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
309     "Number of offload RX queues per VI");
310 
311 #define TMR_IDX_OFLD 1
312 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
313 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
314     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
315 
316 #define PKTC_IDX_OFLD (-1)
317 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
319     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
320 
321 /* 0 means chip/fw default, non-zero number is value in microseconds */
322 static u_long t4_toe_keepalive_idle = 0;
323 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
324     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
325 
326 /* 0 means chip/fw default, non-zero number is value in microseconds */
327 static u_long t4_toe_keepalive_interval = 0;
328 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
329     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
330 
331 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
332 static int t4_toe_keepalive_count = 0;
333 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
334     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
335 
336 /* 0 means chip/fw default, non-zero number is value in microseconds */
337 static u_long t4_toe_rexmt_min = 0;
338 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
339     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
340 
341 /* 0 means chip/fw default, non-zero number is value in microseconds */
342 static u_long t4_toe_rexmt_max = 0;
343 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
344     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
345 
346 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
347 static int t4_toe_rexmt_count = 0;
348 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
349     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
350 
351 /* -1 means chip/fw default, other values are raw backoff values to use */
352 static int t4_toe_rexmt_backoff[16] = {
353 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
354 };
355 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0,
356     "cxgbe(4) TOE retransmit backoff values");
357 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
358     &t4_toe_rexmt_backoff[0], 0, "");
359 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
360     &t4_toe_rexmt_backoff[1], 0, "");
361 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
362     &t4_toe_rexmt_backoff[2], 0, "");
363 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_backoff[3], 0, "");
365 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_backoff[4], 0, "");
367 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
368     &t4_toe_rexmt_backoff[5], 0, "");
369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
370     &t4_toe_rexmt_backoff[6], 0, "");
371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
372     &t4_toe_rexmt_backoff[7], 0, "");
373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_backoff[8], 0, "");
375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_backoff[9], 0, "");
377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
378     &t4_toe_rexmt_backoff[10], 0, "");
379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
380     &t4_toe_rexmt_backoff[11], 0, "");
381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
382     &t4_toe_rexmt_backoff[12], 0, "");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[13], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[14], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[15], 0, "");
389 #endif
390 
391 #ifdef DEV_NETMAP
392 #define NNMTXQ_VI 2
393 static int t4_nnmtxq_vi = -NNMTXQ_VI;
394 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
395     "Number of netmap TX queues per VI");
396 
397 #define NNMRXQ_VI 2
398 static int t4_nnmrxq_vi = -NNMRXQ_VI;
399 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
400     "Number of netmap RX queues per VI");
401 #endif
402 
403 /*
404  * Holdoff parameters for ports.
405  */
406 #define TMR_IDX 1
407 int t4_tmr_idx = TMR_IDX;
408 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
409     0, "Holdoff timer index");
410 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
411 
412 #define PKTC_IDX (-1)
413 int t4_pktc_idx = PKTC_IDX;
414 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
415     0, "Holdoff packet counter index");
416 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
417 
418 /*
419  * Size (# of entries) of each tx and rx queue.
420  */
421 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
422 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
423     "Number of descriptors in each TX queue");
424 
425 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
427     "Number of descriptors in each RX queue");
428 
429 /*
430  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
431  */
432 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
434     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
435 
436 /*
437  * Configuration file.  All the _CF names here are special.
438  */
439 #define DEFAULT_CF	"default"
440 #define BUILTIN_CF	"built-in"
441 #define FLASH_CF	"flash"
442 #define UWIRE_CF	"uwire"
443 #define FPGA_CF		"fpga"
444 static char t4_cfg_file[32] = DEFAULT_CF;
445 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
446     sizeof(t4_cfg_file), "Firmware configuration file");
447 
448 /*
449  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
450  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
451  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
452  *            mark or when signalled to do so, 0 to never emit PAUSE.
453  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
454  *                 negotiated settings will override rx_pause/tx_pause.
455  *                 Otherwise rx_pause/tx_pause are applied forcibly.
456  */
457 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
458 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
459     &t4_pause_settings, 0,
460     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
461 
462 /*
463  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
464  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
465  *  0 to disable FEC.
466  */
467 static int t4_fec = -1;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
469     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
470 
471 /*
472  * Link autonegotiation.
473  * -1 to run with the firmware default.
474  *  0 to disable.
475  *  1 to enable.
476  */
477 static int t4_autoneg = -1;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
479     "Link autonegotiation");
480 
481 /*
482  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
483  * encouraged respectively).  '-n' is the same as 'n' except the firmware
484  * version used in the checks is read from the firmware bundled with the driver.
485  */
486 static int t4_fw_install = 1;
487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
488     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
489 
490 /*
491  * ASIC features that will be used.  Disable the ones you don't want so that the
492  * chip resources aren't wasted on features that will not be used.
493  */
494 static int t4_nbmcaps_allowed = 0;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
496     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
497 
498 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
499 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
500     &t4_linkcaps_allowed, 0, "Default link capabilities");
501 
502 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
503     FW_CAPS_CONFIG_SWITCH_EGRESS;
504 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
505     &t4_switchcaps_allowed, 0, "Default switch capabilities");
506 
507 #ifdef RATELIMIT
508 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
509 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
510 #else
511 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
512 	FW_CAPS_CONFIG_NIC_HASHFILTER;
513 #endif
514 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
515     &t4_niccaps_allowed, 0, "Default NIC capabilities");
516 
517 static int t4_toecaps_allowed = -1;
518 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
519     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
520 
521 static int t4_rdmacaps_allowed = -1;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
523     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
524 
525 static int t4_cryptocaps_allowed = -1;
526 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
527     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
528 
529 static int t4_iscsicaps_allowed = -1;
530 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
531     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
532 
533 static int t4_fcoecaps_allowed = 0;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
535     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
536 
537 static int t5_write_combine = 0;
538 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
539     0, "Use WC instead of UC for BAR2");
540 
541 static int t4_num_vis = 1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
543     "Number of VIs per port");
544 
545 /*
546  * PCIe Relaxed Ordering.
547  * -1: driver should figure out a good value.
548  * 0: disable RO.
549  * 1: enable RO.
550  * 2: leave RO alone.
551  */
552 static int pcie_relaxed_ordering = -1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
554     &pcie_relaxed_ordering, 0,
555     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
556 
557 static int t4_panic_on_fatal_err = 0;
558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN,
559     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
560 
561 #ifdef TCP_OFFLOAD
562 /*
563  * TOE tunables.
564  */
565 static int t4_cop_managed_offloading = 0;
566 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
567     &t4_cop_managed_offloading, 0,
568     "COP (Connection Offload Policy) controls all TOE offload");
569 #endif
570 
571 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
572 static int vi_mac_funcs[] = {
573 	FW_VI_FUNC_ETH,
574 	FW_VI_FUNC_OFLD,
575 	FW_VI_FUNC_IWARP,
576 	FW_VI_FUNC_OPENISCSI,
577 	FW_VI_FUNC_OPENFCOE,
578 	FW_VI_FUNC_FOISCSI,
579 	FW_VI_FUNC_FOFCOE,
580 };
581 
582 struct intrs_and_queues {
583 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
584 	uint16_t num_vis;	/* number of VIs for each port */
585 	uint16_t nirq;		/* Total # of vectors */
586 	uint16_t ntxq;		/* # of NIC txq's for each port */
587 	uint16_t nrxq;		/* # of NIC rxq's for each port */
588 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
589 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
590 
591 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
592 	uint16_t ntxq_vi;	/* # of NIC txq's */
593 	uint16_t nrxq_vi;	/* # of NIC rxq's */
594 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
595 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
596 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
597 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
598 };
599 
600 static void setup_memwin(struct adapter *);
601 static void position_memwin(struct adapter *, int, uint32_t);
602 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
603 static int fwmtype_to_hwmtype(int);
604 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
605     uint32_t *);
606 static int fixup_devlog_params(struct adapter *);
607 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
608 static int contact_firmware(struct adapter *);
609 static int partition_resources(struct adapter *);
610 static int get_params__pre_init(struct adapter *);
611 static int set_params__pre_init(struct adapter *);
612 static int get_params__post_init(struct adapter *);
613 static int set_params__post_init(struct adapter *);
614 static void t4_set_desc(struct adapter *);
615 static bool fixed_ifmedia(struct port_info *);
616 static void build_medialist(struct port_info *);
617 static void init_link_config(struct port_info *);
618 static int fixup_link_config(struct port_info *);
619 static int apply_link_config(struct port_info *);
620 static int cxgbe_init_synchronized(struct vi_info *);
621 static int cxgbe_uninit_synchronized(struct vi_info *);
622 static void quiesce_txq(struct adapter *, struct sge_txq *);
623 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
624 static void quiesce_iq(struct adapter *, struct sge_iq *);
625 static void quiesce_fl(struct adapter *, struct sge_fl *);
626 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
627     driver_intr_t *, void *, char *);
628 static int t4_free_irq(struct adapter *, struct irq *);
629 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
630 static void vi_refresh_stats(struct adapter *, struct vi_info *);
631 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
632 static void cxgbe_tick(void *);
633 static void cxgbe_sysctls(struct port_info *);
634 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
635 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
636 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
637 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
638 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
639 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
640 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
641 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
642 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
643 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
644 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
645 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
646 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
647 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
648 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
649 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
650 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
651 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
652 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
653 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
654 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
655 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
656 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
657 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
658 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
659 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
660 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
661 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
662 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
663 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
664 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
665 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
666 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
667 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
668 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
669 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
670 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
671 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
672 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
673 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
674 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
675 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
676 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
677 #ifdef TCP_OFFLOAD
678 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
679 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
680 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
681 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
682 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
683 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
684 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
685 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
686 #endif
687 static int get_sge_context(struct adapter *, struct t4_sge_context *);
688 static int load_fw(struct adapter *, struct t4_data *);
689 static int load_cfg(struct adapter *, struct t4_data *);
690 static int load_boot(struct adapter *, struct t4_bootrom *);
691 static int load_bootcfg(struct adapter *, struct t4_data *);
692 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
693 static void free_offload_policy(struct t4_offload_policy *);
694 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
695 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
696 static int read_i2c(struct adapter *, struct t4_i2c_data *);
697 #ifdef TCP_OFFLOAD
698 static int toe_capability(struct vi_info *, int);
699 #endif
700 static int mod_event(module_t, int, void *);
701 static int notify_siblings(device_t, int);
702 
703 struct {
704 	uint16_t device;
705 	char *desc;
706 } t4_pciids[] = {
707 	{0xa000, "Chelsio Terminator 4 FPGA"},
708 	{0x4400, "Chelsio T440-dbg"},
709 	{0x4401, "Chelsio T420-CR"},
710 	{0x4402, "Chelsio T422-CR"},
711 	{0x4403, "Chelsio T440-CR"},
712 	{0x4404, "Chelsio T420-BCH"},
713 	{0x4405, "Chelsio T440-BCH"},
714 	{0x4406, "Chelsio T440-CH"},
715 	{0x4407, "Chelsio T420-SO"},
716 	{0x4408, "Chelsio T420-CX"},
717 	{0x4409, "Chelsio T420-BT"},
718 	{0x440a, "Chelsio T404-BT"},
719 	{0x440e, "Chelsio T440-LP-CR"},
720 }, t5_pciids[] = {
721 	{0xb000, "Chelsio Terminator 5 FPGA"},
722 	{0x5400, "Chelsio T580-dbg"},
723 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
724 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
725 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
726 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
727 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
728 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
729 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
730 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
731 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
732 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
733 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
734 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
735 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
736 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
737 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
738 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
739 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
740 
741 	/* Custom */
742 	{0x5483, "Custom T540-CR"},
743 	{0x5484, "Custom T540-BT"},
744 }, t6_pciids[] = {
745 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
746 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
747 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
748 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
749 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
750 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
751 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
752 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
753 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
754 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
755 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
756 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
757 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
758 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
759 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
760 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
761 
762 	/* Custom */
763 	{0x6480, "Custom T6225-CR"},
764 	{0x6481, "Custom T62100-CR"},
765 	{0x6482, "Custom T6225-CR"},
766 	{0x6483, "Custom T62100-CR"},
767 	{0x6484, "Custom T64100-CR"},
768 	{0x6485, "Custom T6240-SO"},
769 	{0x6486, "Custom T6225-SO-CR"},
770 	{0x6487, "Custom T6225-CR"},
771 };
772 
773 #ifdef TCP_OFFLOAD
774 /*
775  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
776  * be exactly the same for both rxq and ofld_rxq.
777  */
778 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
779 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
780 #endif
781 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
782 
783 static int
784 t4_probe(device_t dev)
785 {
786 	int i;
787 	uint16_t v = pci_get_vendor(dev);
788 	uint16_t d = pci_get_device(dev);
789 	uint8_t f = pci_get_function(dev);
790 
791 	if (v != PCI_VENDOR_ID_CHELSIO)
792 		return (ENXIO);
793 
794 	/* Attach only to PF0 of the FPGA */
795 	if (d == 0xa000 && f != 0)
796 		return (ENXIO);
797 
798 	for (i = 0; i < nitems(t4_pciids); i++) {
799 		if (d == t4_pciids[i].device) {
800 			device_set_desc(dev, t4_pciids[i].desc);
801 			return (BUS_PROBE_DEFAULT);
802 		}
803 	}
804 
805 	return (ENXIO);
806 }
807 
808 static int
809 t5_probe(device_t dev)
810 {
811 	int i;
812 	uint16_t v = pci_get_vendor(dev);
813 	uint16_t d = pci_get_device(dev);
814 	uint8_t f = pci_get_function(dev);
815 
816 	if (v != PCI_VENDOR_ID_CHELSIO)
817 		return (ENXIO);
818 
819 	/* Attach only to PF0 of the FPGA */
820 	if (d == 0xb000 && f != 0)
821 		return (ENXIO);
822 
823 	for (i = 0; i < nitems(t5_pciids); i++) {
824 		if (d == t5_pciids[i].device) {
825 			device_set_desc(dev, t5_pciids[i].desc);
826 			return (BUS_PROBE_DEFAULT);
827 		}
828 	}
829 
830 	return (ENXIO);
831 }
832 
833 static int
834 t6_probe(device_t dev)
835 {
836 	int i;
837 	uint16_t v = pci_get_vendor(dev);
838 	uint16_t d = pci_get_device(dev);
839 
840 	if (v != PCI_VENDOR_ID_CHELSIO)
841 		return (ENXIO);
842 
843 	for (i = 0; i < nitems(t6_pciids); i++) {
844 		if (d == t6_pciids[i].device) {
845 			device_set_desc(dev, t6_pciids[i].desc);
846 			return (BUS_PROBE_DEFAULT);
847 		}
848 	}
849 
850 	return (ENXIO);
851 }
852 
853 static void
854 t5_attribute_workaround(device_t dev)
855 {
856 	device_t root_port;
857 	uint32_t v;
858 
859 	/*
860 	 * The T5 chips do not properly echo the No Snoop and Relaxed
861 	 * Ordering attributes when replying to a TLP from a Root
862 	 * Port.  As a workaround, find the parent Root Port and
863 	 * disable No Snoop and Relaxed Ordering.  Note that this
864 	 * affects all devices under this root port.
865 	 */
866 	root_port = pci_find_pcie_root_port(dev);
867 	if (root_port == NULL) {
868 		device_printf(dev, "Unable to find parent root port\n");
869 		return;
870 	}
871 
872 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
873 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
874 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
875 	    0)
876 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
877 		    device_get_nameunit(root_port));
878 }
879 
880 static const struct devnames devnames[] = {
881 	{
882 		.nexus_name = "t4nex",
883 		.ifnet_name = "cxgbe",
884 		.vi_ifnet_name = "vcxgbe",
885 		.pf03_drv_name = "t4iov",
886 		.vf_nexus_name = "t4vf",
887 		.vf_ifnet_name = "cxgbev"
888 	}, {
889 		.nexus_name = "t5nex",
890 		.ifnet_name = "cxl",
891 		.vi_ifnet_name = "vcxl",
892 		.pf03_drv_name = "t5iov",
893 		.vf_nexus_name = "t5vf",
894 		.vf_ifnet_name = "cxlv"
895 	}, {
896 		.nexus_name = "t6nex",
897 		.ifnet_name = "cc",
898 		.vi_ifnet_name = "vcc",
899 		.pf03_drv_name = "t6iov",
900 		.vf_nexus_name = "t6vf",
901 		.vf_ifnet_name = "ccv"
902 	}
903 };
904 
905 void
906 t4_init_devnames(struct adapter *sc)
907 {
908 	int id;
909 
910 	id = chip_id(sc);
911 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
912 		sc->names = &devnames[id - CHELSIO_T4];
913 	else {
914 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
915 		sc->names = NULL;
916 	}
917 }
918 
919 static int
920 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
921 {
922 	const char *parent, *name;
923 	long value;
924 	int line, unit;
925 
926 	line = 0;
927 	parent = device_get_nameunit(sc->dev);
928 	name = sc->names->ifnet_name;
929 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
930 		if (resource_long_value(name, unit, "port", &value) == 0 &&
931 		    value == pi->port_id)
932 			return (unit);
933 	}
934 	return (-1);
935 }
936 
937 static int
938 t4_attach(device_t dev)
939 {
940 	struct adapter *sc;
941 	int rc = 0, i, j, rqidx, tqidx, nports;
942 	struct make_dev_args mda;
943 	struct intrs_and_queues iaq;
944 	struct sge *s;
945 	uint32_t *buf;
946 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
947 	int ofld_tqidx;
948 #endif
949 #ifdef TCP_OFFLOAD
950 	int ofld_rqidx;
951 #endif
952 #ifdef DEV_NETMAP
953 	int nm_rqidx, nm_tqidx;
954 #endif
955 	int num_vis;
956 
957 	sc = device_get_softc(dev);
958 	sc->dev = dev;
959 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
960 
961 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
962 		t5_attribute_workaround(dev);
963 	pci_enable_busmaster(dev);
964 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
965 		uint32_t v;
966 
967 		pci_set_max_read_req(dev, 4096);
968 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
969 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
970 		if (pcie_relaxed_ordering == 0 &&
971 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
972 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
973 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
974 		} else if (pcie_relaxed_ordering == 1 &&
975 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
976 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
977 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
978 		}
979 	}
980 
981 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
982 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
983 	sc->traceq = -1;
984 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
985 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
986 	    device_get_nameunit(dev));
987 
988 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
989 	    device_get_nameunit(dev));
990 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
991 	t4_add_adapter(sc);
992 
993 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
994 	TAILQ_INIT(&sc->sfl);
995 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
996 
997 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
998 
999 	sc->policy = NULL;
1000 	rw_init(&sc->policy_lock, "connection offload policy");
1001 
1002 	rc = t4_map_bars_0_and_4(sc);
1003 	if (rc != 0)
1004 		goto done; /* error message displayed already */
1005 
1006 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1007 
1008 	/* Prepare the adapter for operation. */
1009 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1010 	rc = -t4_prep_adapter(sc, buf);
1011 	free(buf, M_CXGBE);
1012 	if (rc != 0) {
1013 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1014 		goto done;
1015 	}
1016 
1017 	/*
1018 	 * This is the real PF# to which we're attaching.  Works from within PCI
1019 	 * passthrough environments too, where pci_get_function() could return a
1020 	 * different PF# depending on the passthrough configuration.  We need to
1021 	 * use the real PF# in all our communication with the firmware.
1022 	 */
1023 	j = t4_read_reg(sc, A_PL_WHOAMI);
1024 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1025 	sc->mbox = sc->pf;
1026 
1027 	t4_init_devnames(sc);
1028 	if (sc->names == NULL) {
1029 		rc = ENOTSUP;
1030 		goto done; /* error message displayed already */
1031 	}
1032 
1033 	/*
1034 	 * Do this really early, with the memory windows set up even before the
1035 	 * character device.  The userland tool's register i/o and mem read
1036 	 * will work even in "recovery mode".
1037 	 */
1038 	setup_memwin(sc);
1039 	if (t4_init_devlog_params(sc, 0) == 0)
1040 		fixup_devlog_params(sc);
1041 	make_dev_args_init(&mda);
1042 	mda.mda_devsw = &t4_cdevsw;
1043 	mda.mda_uid = UID_ROOT;
1044 	mda.mda_gid = GID_WHEEL;
1045 	mda.mda_mode = 0600;
1046 	mda.mda_si_drv1 = sc;
1047 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1048 	if (rc != 0)
1049 		device_printf(dev, "failed to create nexus char device: %d.\n",
1050 		    rc);
1051 
1052 	/* Go no further if recovery mode has been requested. */
1053 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1054 		device_printf(dev, "recovery mode.\n");
1055 		goto done;
1056 	}
1057 
1058 #if defined(__i386__)
1059 	if ((cpu_feature & CPUID_CX8) == 0) {
1060 		device_printf(dev, "64 bit atomics not available.\n");
1061 		rc = ENOTSUP;
1062 		goto done;
1063 	}
1064 #endif
1065 
1066 	/* Contact the firmware and try to become the master driver. */
1067 	rc = contact_firmware(sc);
1068 	if (rc != 0)
1069 		goto done; /* error message displayed already */
1070 	MPASS(sc->flags & FW_OK);
1071 
1072 	rc = get_params__pre_init(sc);
1073 	if (rc != 0)
1074 		goto done; /* error message displayed already */
1075 
1076 	if (sc->flags & MASTER_PF) {
1077 		rc = partition_resources(sc);
1078 		if (rc != 0)
1079 			goto done; /* error message displayed already */
1080 		t4_intr_clear(sc);
1081 	}
1082 
1083 	rc = get_params__post_init(sc);
1084 	if (rc != 0)
1085 		goto done; /* error message displayed already */
1086 
1087 	rc = set_params__post_init(sc);
1088 	if (rc != 0)
1089 		goto done; /* error message displayed already */
1090 
1091 	rc = t4_map_bar_2(sc);
1092 	if (rc != 0)
1093 		goto done; /* error message displayed already */
1094 
1095 	rc = t4_create_dma_tag(sc);
1096 	if (rc != 0)
1097 		goto done; /* error message displayed already */
1098 
1099 	/*
1100 	 * First pass over all the ports - allocate VIs and initialize some
1101 	 * basic parameters like mac address, port type, etc.
1102 	 */
1103 	for_each_port(sc, i) {
1104 		struct port_info *pi;
1105 
1106 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1107 		sc->port[i] = pi;
1108 
1109 		/* These must be set before t4_port_init */
1110 		pi->adapter = sc;
1111 		pi->port_id = i;
1112 		/*
1113 		 * XXX: vi[0] is special so we can't delay this allocation until
1114 		 * pi->nvi's final value is known.
1115 		 */
1116 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1117 		    M_ZERO | M_WAITOK);
1118 
1119 		/*
1120 		 * Allocate the "main" VI and initialize parameters
1121 		 * like mac addr.
1122 		 */
1123 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1124 		if (rc != 0) {
1125 			device_printf(dev, "unable to initialize port %d: %d\n",
1126 			    i, rc);
1127 			free(pi->vi, M_CXGBE);
1128 			free(pi, M_CXGBE);
1129 			sc->port[i] = NULL;
1130 			goto done;
1131 		}
1132 
1133 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1134 		    device_get_nameunit(dev), i);
1135 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1136 		sc->chan_map[pi->tx_chan] = i;
1137 
1138 		/* All VIs on this port share this media. */
1139 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1140 		    cxgbe_media_status);
1141 
1142 		PORT_LOCK(pi);
1143 		init_link_config(pi);
1144 		fixup_link_config(pi);
1145 		build_medialist(pi);
1146 		if (fixed_ifmedia(pi))
1147 			pi->flags |= FIXED_IFMEDIA;
1148 		PORT_UNLOCK(pi);
1149 
1150 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1151 		    t4_ifnet_unit(sc, pi));
1152 		if (pi->dev == NULL) {
1153 			device_printf(dev,
1154 			    "failed to add device for port %d.\n", i);
1155 			rc = ENXIO;
1156 			goto done;
1157 		}
1158 		pi->vi[0].dev = pi->dev;
1159 		device_set_softc(pi->dev, pi);
1160 	}
1161 
1162 	/*
1163 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1164 	 */
1165 	nports = sc->params.nports;
1166 	rc = cfg_itype_and_nqueues(sc, &iaq);
1167 	if (rc != 0)
1168 		goto done; /* error message displayed already */
1169 
1170 	num_vis = iaq.num_vis;
1171 	sc->intr_type = iaq.intr_type;
1172 	sc->intr_count = iaq.nirq;
1173 
1174 	s = &sc->sge;
1175 	s->nrxq = nports * iaq.nrxq;
1176 	s->ntxq = nports * iaq.ntxq;
1177 	if (num_vis > 1) {
1178 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1179 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1180 	}
1181 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1182 	s->neq += nports;		/* ctrl queues: 1 per port */
1183 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1184 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1185 	if (is_offload(sc) || is_ethoffload(sc)) {
1186 		s->nofldtxq = nports * iaq.nofldtxq;
1187 		if (num_vis > 1)
1188 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1189 		s->neq += s->nofldtxq;
1190 
1191 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1192 		    M_CXGBE, M_ZERO | M_WAITOK);
1193 	}
1194 #endif
1195 #ifdef TCP_OFFLOAD
1196 	if (is_offload(sc)) {
1197 		s->nofldrxq = nports * iaq.nofldrxq;
1198 		if (num_vis > 1)
1199 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1200 		s->neq += s->nofldrxq;	/* free list */
1201 		s->niq += s->nofldrxq;
1202 
1203 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1204 		    M_CXGBE, M_ZERO | M_WAITOK);
1205 	}
1206 #endif
1207 #ifdef DEV_NETMAP
1208 	if (num_vis > 1) {
1209 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1210 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1211 	}
1212 	s->neq += s->nnmtxq + s->nnmrxq;
1213 	s->niq += s->nnmrxq;
1214 
1215 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1216 	    M_CXGBE, M_ZERO | M_WAITOK);
1217 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1218 	    M_CXGBE, M_ZERO | M_WAITOK);
1219 #endif
1220 
1221 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1222 	    M_ZERO | M_WAITOK);
1223 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1224 	    M_ZERO | M_WAITOK);
1225 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1226 	    M_ZERO | M_WAITOK);
1227 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1228 	    M_ZERO | M_WAITOK);
1229 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1230 	    M_ZERO | M_WAITOK);
1231 
1232 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1233 	    M_ZERO | M_WAITOK);
1234 
1235 	t4_init_l2t(sc, M_WAITOK);
1236 	t4_init_smt(sc, M_WAITOK);
1237 	t4_init_tx_sched(sc);
1238 #ifdef RATELIMIT
1239 	t4_init_etid_table(sc);
1240 #endif
1241 #ifdef INET6
1242 	t4_init_clip_table(sc);
1243 #endif
1244 	if (sc->vres.key.size != 0)
1245 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1246 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1247 
1248 	/*
1249 	 * Second pass over the ports.  This time we know the number of rx and
1250 	 * tx queues that each port should get.
1251 	 */
1252 	rqidx = tqidx = 0;
1253 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1254 	ofld_tqidx = 0;
1255 #endif
1256 #ifdef TCP_OFFLOAD
1257 	ofld_rqidx = 0;
1258 #endif
1259 #ifdef DEV_NETMAP
1260 	nm_rqidx = nm_tqidx = 0;
1261 #endif
1262 	for_each_port(sc, i) {
1263 		struct port_info *pi = sc->port[i];
1264 		struct vi_info *vi;
1265 
1266 		if (pi == NULL)
1267 			continue;
1268 
1269 		pi->nvi = num_vis;
1270 		for_each_vi(pi, j, vi) {
1271 			vi->pi = pi;
1272 			vi->qsize_rxq = t4_qsize_rxq;
1273 			vi->qsize_txq = t4_qsize_txq;
1274 
1275 			vi->first_rxq = rqidx;
1276 			vi->first_txq = tqidx;
1277 			vi->tmr_idx = t4_tmr_idx;
1278 			vi->pktc_idx = t4_pktc_idx;
1279 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1280 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1281 
1282 			rqidx += vi->nrxq;
1283 			tqidx += vi->ntxq;
1284 
1285 			if (j == 0 && vi->ntxq > 1)
1286 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1287 			else
1288 				vi->rsrv_noflowq = 0;
1289 
1290 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1291 			vi->first_ofld_txq = ofld_tqidx;
1292 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1293 			ofld_tqidx += vi->nofldtxq;
1294 #endif
1295 #ifdef TCP_OFFLOAD
1296 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1297 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1298 			vi->first_ofld_rxq = ofld_rqidx;
1299 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1300 
1301 			ofld_rqidx += vi->nofldrxq;
1302 #endif
1303 #ifdef DEV_NETMAP
1304 			if (j > 0) {
1305 				vi->first_nm_rxq = nm_rqidx;
1306 				vi->first_nm_txq = nm_tqidx;
1307 				vi->nnmrxq = iaq.nnmrxq_vi;
1308 				vi->nnmtxq = iaq.nnmtxq_vi;
1309 				nm_rqidx += vi->nnmrxq;
1310 				nm_tqidx += vi->nnmtxq;
1311 			}
1312 #endif
1313 		}
1314 	}
1315 
1316 	rc = t4_setup_intr_handlers(sc);
1317 	if (rc != 0) {
1318 		device_printf(dev,
1319 		    "failed to setup interrupt handlers: %d\n", rc);
1320 		goto done;
1321 	}
1322 
1323 	rc = bus_generic_probe(dev);
1324 	if (rc != 0) {
1325 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1326 		goto done;
1327 	}
1328 
1329 	/*
1330 	 * Ensure thread-safe mailbox access (in debug builds).
1331 	 *
1332 	 * So far this was the only thread accessing the mailbox but various
1333 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1334 	 * will access the mailbox from different threads.
1335 	 */
1336 	sc->flags |= CHK_MBOX_ACCESS;
1337 
1338 	rc = bus_generic_attach(dev);
1339 	if (rc != 0) {
1340 		device_printf(dev,
1341 		    "failed to attach all child ports: %d\n", rc);
1342 		goto done;
1343 	}
1344 
1345 	device_printf(dev,
1346 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1347 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1348 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1349 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1350 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1351 
1352 	t4_set_desc(sc);
1353 
1354 	notify_siblings(dev, 0);
1355 
1356 done:
1357 	if (rc != 0 && sc->cdev) {
1358 		/* cdev was created and so cxgbetool works; recover that way. */
1359 		device_printf(dev,
1360 		    "error during attach, adapter is now in recovery mode.\n");
1361 		rc = 0;
1362 	}
1363 
1364 	if (rc != 0)
1365 		t4_detach_common(dev);
1366 	else
1367 		t4_sysctls(sc);
1368 
1369 	return (rc);
1370 }
1371 
1372 static int
1373 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen)
1374 {
1375 	struct adapter *sc;
1376 	struct port_info *pi;
1377 	int i;
1378 
1379 	sc = device_get_softc(bus);
1380 	buf[0] = '\0';
1381 	for_each_port(sc, i) {
1382 		pi = sc->port[i];
1383 		if (pi != NULL && pi->dev == dev) {
1384 			snprintf(buf, buflen, "port=%d", pi->port_id);
1385 			break;
1386 		}
1387 	}
1388 	return (0);
1389 }
1390 
1391 static int
1392 t4_ready(device_t dev)
1393 {
1394 	struct adapter *sc;
1395 
1396 	sc = device_get_softc(dev);
1397 	if (sc->flags & FW_OK)
1398 		return (0);
1399 	return (ENXIO);
1400 }
1401 
1402 static int
1403 t4_read_port_device(device_t dev, int port, device_t *child)
1404 {
1405 	struct adapter *sc;
1406 	struct port_info *pi;
1407 
1408 	sc = device_get_softc(dev);
1409 	if (port < 0 || port >= MAX_NPORTS)
1410 		return (EINVAL);
1411 	pi = sc->port[port];
1412 	if (pi == NULL || pi->dev == NULL)
1413 		return (ENXIO);
1414 	*child = pi->dev;
1415 	return (0);
1416 }
1417 
1418 static int
1419 notify_siblings(device_t dev, int detaching)
1420 {
1421 	device_t sibling;
1422 	int error, i;
1423 
1424 	error = 0;
1425 	for (i = 0; i < PCI_FUNCMAX; i++) {
1426 		if (i == pci_get_function(dev))
1427 			continue;
1428 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1429 		    pci_get_slot(dev), i);
1430 		if (sibling == NULL || !device_is_attached(sibling))
1431 			continue;
1432 		if (detaching)
1433 			error = T4_DETACH_CHILD(sibling);
1434 		else
1435 			(void)T4_ATTACH_CHILD(sibling);
1436 		if (error)
1437 			break;
1438 	}
1439 	return (error);
1440 }
1441 
1442 /*
1443  * Idempotent
1444  */
1445 static int
1446 t4_detach(device_t dev)
1447 {
1448 	struct adapter *sc;
1449 	int rc;
1450 
1451 	sc = device_get_softc(dev);
1452 
1453 	rc = notify_siblings(dev, 1);
1454 	if (rc) {
1455 		device_printf(dev,
1456 		    "failed to detach sibling devices: %d\n", rc);
1457 		return (rc);
1458 	}
1459 
1460 	return (t4_detach_common(dev));
1461 }
1462 
1463 int
1464 t4_detach_common(device_t dev)
1465 {
1466 	struct adapter *sc;
1467 	struct port_info *pi;
1468 	int i, rc;
1469 
1470 	sc = device_get_softc(dev);
1471 
1472 	if (sc->cdev) {
1473 		destroy_dev(sc->cdev);
1474 		sc->cdev = NULL;
1475 	}
1476 
1477 	sc->flags &= ~CHK_MBOX_ACCESS;
1478 	if (sc->flags & FULL_INIT_DONE) {
1479 		if (!(sc->flags & IS_VF))
1480 			t4_intr_disable(sc);
1481 	}
1482 
1483 	if (device_is_attached(dev)) {
1484 		rc = bus_generic_detach(dev);
1485 		if (rc) {
1486 			device_printf(dev,
1487 			    "failed to detach child devices: %d\n", rc);
1488 			return (rc);
1489 		}
1490 	}
1491 
1492 	for (i = 0; i < sc->intr_count; i++)
1493 		t4_free_irq(sc, &sc->irq[i]);
1494 
1495 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1496 		t4_free_tx_sched(sc);
1497 
1498 	for (i = 0; i < MAX_NPORTS; i++) {
1499 		pi = sc->port[i];
1500 		if (pi) {
1501 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1502 			if (pi->dev)
1503 				device_delete_child(dev, pi->dev);
1504 
1505 			mtx_destroy(&pi->pi_lock);
1506 			free(pi->vi, M_CXGBE);
1507 			free(pi, M_CXGBE);
1508 		}
1509 	}
1510 
1511 	device_delete_children(dev);
1512 
1513 	if (sc->flags & FULL_INIT_DONE)
1514 		adapter_full_uninit(sc);
1515 
1516 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1517 		t4_fw_bye(sc, sc->mbox);
1518 
1519 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1520 		pci_release_msi(dev);
1521 
1522 	if (sc->regs_res)
1523 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1524 		    sc->regs_res);
1525 
1526 	if (sc->udbs_res)
1527 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1528 		    sc->udbs_res);
1529 
1530 	if (sc->msix_res)
1531 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1532 		    sc->msix_res);
1533 
1534 	if (sc->l2t)
1535 		t4_free_l2t(sc->l2t);
1536 	if (sc->smt)
1537 		t4_free_smt(sc->smt);
1538 #ifdef RATELIMIT
1539 	t4_free_etid_table(sc);
1540 #endif
1541 	if (sc->key_map)
1542 		vmem_destroy(sc->key_map);
1543 #ifdef INET6
1544 	t4_destroy_clip_table(sc);
1545 #endif
1546 
1547 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1548 	free(sc->sge.ofld_txq, M_CXGBE);
1549 #endif
1550 #ifdef TCP_OFFLOAD
1551 	free(sc->sge.ofld_rxq, M_CXGBE);
1552 #endif
1553 #ifdef DEV_NETMAP
1554 	free(sc->sge.nm_rxq, M_CXGBE);
1555 	free(sc->sge.nm_txq, M_CXGBE);
1556 #endif
1557 	free(sc->irq, M_CXGBE);
1558 	free(sc->sge.rxq, M_CXGBE);
1559 	free(sc->sge.txq, M_CXGBE);
1560 	free(sc->sge.ctrlq, M_CXGBE);
1561 	free(sc->sge.iqmap, M_CXGBE);
1562 	free(sc->sge.eqmap, M_CXGBE);
1563 	free(sc->tids.ftid_tab, M_CXGBE);
1564 	free(sc->tids.hpftid_tab, M_CXGBE);
1565 	free_hftid_hash(&sc->tids);
1566 	free(sc->tids.atid_tab, M_CXGBE);
1567 	free(sc->tids.tid_tab, M_CXGBE);
1568 	free(sc->tt.tls_rx_ports, M_CXGBE);
1569 	t4_destroy_dma_tag(sc);
1570 	if (mtx_initialized(&sc->sc_lock)) {
1571 		sx_xlock(&t4_list_lock);
1572 		SLIST_REMOVE(&t4_list, sc, adapter, link);
1573 		sx_xunlock(&t4_list_lock);
1574 		mtx_destroy(&sc->sc_lock);
1575 	}
1576 
1577 	callout_drain(&sc->sfl_callout);
1578 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1579 		mtx_destroy(&sc->tids.ftid_lock);
1580 		cv_destroy(&sc->tids.ftid_cv);
1581 	}
1582 	if (mtx_initialized(&sc->tids.atid_lock))
1583 		mtx_destroy(&sc->tids.atid_lock);
1584 	if (mtx_initialized(&sc->sfl_lock))
1585 		mtx_destroy(&sc->sfl_lock);
1586 	if (mtx_initialized(&sc->ifp_lock))
1587 		mtx_destroy(&sc->ifp_lock);
1588 	if (mtx_initialized(&sc->reg_lock))
1589 		mtx_destroy(&sc->reg_lock);
1590 
1591 	if (rw_initialized(&sc->policy_lock)) {
1592 		rw_destroy(&sc->policy_lock);
1593 #ifdef TCP_OFFLOAD
1594 		if (sc->policy != NULL)
1595 			free_offload_policy(sc->policy);
1596 #endif
1597 	}
1598 
1599 	for (i = 0; i < NUM_MEMWIN; i++) {
1600 		struct memwin *mw = &sc->memwin[i];
1601 
1602 		if (rw_initialized(&mw->mw_lock))
1603 			rw_destroy(&mw->mw_lock);
1604 	}
1605 
1606 	bzero(sc, sizeof(*sc));
1607 
1608 	return (0);
1609 }
1610 
1611 static int
1612 cxgbe_probe(device_t dev)
1613 {
1614 	char buf[128];
1615 	struct port_info *pi = device_get_softc(dev);
1616 
1617 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1618 	device_set_desc_copy(dev, buf);
1619 
1620 	return (BUS_PROBE_DEFAULT);
1621 }
1622 
1623 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1624     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1625     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
1626     IFCAP_HWRXTSTMP)
1627 #define T4_CAP_ENABLE (T4_CAP)
1628 
1629 static int
1630 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1631 {
1632 	struct ifnet *ifp;
1633 	struct sbuf *sb;
1634 
1635 	vi->xact_addr_filt = -1;
1636 	callout_init(&vi->tick, 1);
1637 
1638 	/* Allocate an ifnet and set it up */
1639 	ifp = if_alloc_dev(IFT_ETHER, dev);
1640 	if (ifp == NULL) {
1641 		device_printf(dev, "Cannot allocate ifnet\n");
1642 		return (ENOMEM);
1643 	}
1644 	vi->ifp = ifp;
1645 	ifp->if_softc = vi;
1646 
1647 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1648 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1649 
1650 	ifp->if_init = cxgbe_init;
1651 	ifp->if_ioctl = cxgbe_ioctl;
1652 	ifp->if_transmit = cxgbe_transmit;
1653 	ifp->if_qflush = cxgbe_qflush;
1654 	ifp->if_get_counter = cxgbe_get_counter;
1655 #ifdef RATELIMIT
1656 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1657 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1658 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1659 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1660 #endif
1661 
1662 	ifp->if_capabilities = T4_CAP;
1663 	ifp->if_capenable = T4_CAP_ENABLE;
1664 #ifdef TCP_OFFLOAD
1665 	if (vi->nofldrxq != 0)
1666 		ifp->if_capabilities |= IFCAP_TOE;
1667 #endif
1668 #ifdef RATELIMIT
1669 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) {
1670 		ifp->if_capabilities |= IFCAP_TXRTLMT;
1671 		ifp->if_capenable |= IFCAP_TXRTLMT;
1672 	}
1673 #endif
1674 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1675 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1676 
1677 	ifp->if_hw_tsomax = IP_MAXPACKET;
1678 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
1679 #ifdef RATELIMIT
1680 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0)
1681 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
1682 #endif
1683 	ifp->if_hw_tsomaxsegsize = 65536;
1684 
1685 	ether_ifattach(ifp, vi->hw_addr);
1686 #ifdef DEV_NETMAP
1687 	if (vi->nnmrxq != 0)
1688 		cxgbe_nm_attach(vi);
1689 #endif
1690 	sb = sbuf_new_auto();
1691 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1692 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1693 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
1694 	case IFCAP_TOE:
1695 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
1696 		break;
1697 	case IFCAP_TOE | IFCAP_TXRTLMT:
1698 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
1699 		break;
1700 	case IFCAP_TXRTLMT:
1701 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
1702 		break;
1703 	}
1704 #endif
1705 #ifdef TCP_OFFLOAD
1706 	if (ifp->if_capabilities & IFCAP_TOE)
1707 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
1708 #endif
1709 #ifdef DEV_NETMAP
1710 	if (ifp->if_capabilities & IFCAP_NETMAP)
1711 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1712 		    vi->nnmtxq, vi->nnmrxq);
1713 #endif
1714 	sbuf_finish(sb);
1715 	device_printf(dev, "%s\n", sbuf_data(sb));
1716 	sbuf_delete(sb);
1717 
1718 	vi_sysctls(vi);
1719 
1720 	return (0);
1721 }
1722 
1723 static int
1724 cxgbe_attach(device_t dev)
1725 {
1726 	struct port_info *pi = device_get_softc(dev);
1727 	struct adapter *sc = pi->adapter;
1728 	struct vi_info *vi;
1729 	int i, rc;
1730 
1731 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1732 
1733 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1734 	if (rc)
1735 		return (rc);
1736 
1737 	for_each_vi(pi, i, vi) {
1738 		if (i == 0)
1739 			continue;
1740 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1741 		if (vi->dev == NULL) {
1742 			device_printf(dev, "failed to add VI %d\n", i);
1743 			continue;
1744 		}
1745 		device_set_softc(vi->dev, vi);
1746 	}
1747 
1748 	cxgbe_sysctls(pi);
1749 
1750 	bus_generic_attach(dev);
1751 
1752 	return (0);
1753 }
1754 
1755 static void
1756 cxgbe_vi_detach(struct vi_info *vi)
1757 {
1758 	struct ifnet *ifp = vi->ifp;
1759 
1760 	ether_ifdetach(ifp);
1761 
1762 	/* Let detach proceed even if these fail. */
1763 #ifdef DEV_NETMAP
1764 	if (ifp->if_capabilities & IFCAP_NETMAP)
1765 		cxgbe_nm_detach(vi);
1766 #endif
1767 	cxgbe_uninit_synchronized(vi);
1768 	callout_drain(&vi->tick);
1769 	vi_full_uninit(vi);
1770 
1771 	if_free(vi->ifp);
1772 	vi->ifp = NULL;
1773 }
1774 
1775 static int
1776 cxgbe_detach(device_t dev)
1777 {
1778 	struct port_info *pi = device_get_softc(dev);
1779 	struct adapter *sc = pi->adapter;
1780 	int rc;
1781 
1782 	/* Detach the extra VIs first. */
1783 	rc = bus_generic_detach(dev);
1784 	if (rc)
1785 		return (rc);
1786 	device_delete_children(dev);
1787 
1788 	doom_vi(sc, &pi->vi[0]);
1789 
1790 	if (pi->flags & HAS_TRACEQ) {
1791 		sc->traceq = -1;	/* cloner should not create ifnet */
1792 		t4_tracer_port_detach(sc);
1793 	}
1794 
1795 	cxgbe_vi_detach(&pi->vi[0]);
1796 	callout_drain(&pi->tick);
1797 	ifmedia_removeall(&pi->media);
1798 
1799 	end_synchronized_op(sc, 0);
1800 
1801 	return (0);
1802 }
1803 
1804 static void
1805 cxgbe_init(void *arg)
1806 {
1807 	struct vi_info *vi = arg;
1808 	struct adapter *sc = vi->pi->adapter;
1809 
1810 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1811 		return;
1812 	cxgbe_init_synchronized(vi);
1813 	end_synchronized_op(sc, 0);
1814 }
1815 
1816 static int
1817 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1818 {
1819 	int rc = 0, mtu, flags;
1820 	struct vi_info *vi = ifp->if_softc;
1821 	struct port_info *pi = vi->pi;
1822 	struct adapter *sc = pi->adapter;
1823 	struct ifreq *ifr = (struct ifreq *)data;
1824 	uint32_t mask;
1825 
1826 	switch (cmd) {
1827 	case SIOCSIFMTU:
1828 		mtu = ifr->ifr_mtu;
1829 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1830 			return (EINVAL);
1831 
1832 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1833 		if (rc)
1834 			return (rc);
1835 		ifp->if_mtu = mtu;
1836 		if (vi->flags & VI_INIT_DONE) {
1837 			t4_update_fl_bufsize(ifp);
1838 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1839 				rc = update_mac_settings(ifp, XGMAC_MTU);
1840 		}
1841 		end_synchronized_op(sc, 0);
1842 		break;
1843 
1844 	case SIOCSIFFLAGS:
1845 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
1846 		if (rc)
1847 			return (rc);
1848 
1849 		if (ifp->if_flags & IFF_UP) {
1850 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1851 				flags = vi->if_flags;
1852 				if ((ifp->if_flags ^ flags) &
1853 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1854 					rc = update_mac_settings(ifp,
1855 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1856 				}
1857 			} else {
1858 				rc = cxgbe_init_synchronized(vi);
1859 			}
1860 			vi->if_flags = ifp->if_flags;
1861 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1862 			rc = cxgbe_uninit_synchronized(vi);
1863 		}
1864 		end_synchronized_op(sc, 0);
1865 		break;
1866 
1867 	case SIOCADDMULTI:
1868 	case SIOCDELMULTI:
1869 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
1870 		if (rc)
1871 			return (rc);
1872 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1873 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1874 		end_synchronized_op(sc, 0);
1875 		break;
1876 
1877 	case SIOCSIFCAP:
1878 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1879 		if (rc)
1880 			return (rc);
1881 
1882 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1883 		if (mask & IFCAP_TXCSUM) {
1884 			ifp->if_capenable ^= IFCAP_TXCSUM;
1885 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1886 
1887 			if (IFCAP_TSO4 & ifp->if_capenable &&
1888 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1889 				ifp->if_capenable &= ~IFCAP_TSO4;
1890 				if_printf(ifp,
1891 				    "tso4 disabled due to -txcsum.\n");
1892 			}
1893 		}
1894 		if (mask & IFCAP_TXCSUM_IPV6) {
1895 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1896 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1897 
1898 			if (IFCAP_TSO6 & ifp->if_capenable &&
1899 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1900 				ifp->if_capenable &= ~IFCAP_TSO6;
1901 				if_printf(ifp,
1902 				    "tso6 disabled due to -txcsum6.\n");
1903 			}
1904 		}
1905 		if (mask & IFCAP_RXCSUM)
1906 			ifp->if_capenable ^= IFCAP_RXCSUM;
1907 		if (mask & IFCAP_RXCSUM_IPV6)
1908 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1909 
1910 		/*
1911 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1912 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1913 		 * sending a TSO request our way, so it's sufficient to toggle
1914 		 * IFCAP_TSOx only.
1915 		 */
1916 		if (mask & IFCAP_TSO4) {
1917 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1918 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1919 				if_printf(ifp, "enable txcsum first.\n");
1920 				rc = EAGAIN;
1921 				goto fail;
1922 			}
1923 			ifp->if_capenable ^= IFCAP_TSO4;
1924 		}
1925 		if (mask & IFCAP_TSO6) {
1926 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1927 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1928 				if_printf(ifp, "enable txcsum6 first.\n");
1929 				rc = EAGAIN;
1930 				goto fail;
1931 			}
1932 			ifp->if_capenable ^= IFCAP_TSO6;
1933 		}
1934 		if (mask & IFCAP_LRO) {
1935 #if defined(INET) || defined(INET6)
1936 			int i;
1937 			struct sge_rxq *rxq;
1938 
1939 			ifp->if_capenable ^= IFCAP_LRO;
1940 			for_each_rxq(vi, i, rxq) {
1941 				if (ifp->if_capenable & IFCAP_LRO)
1942 					rxq->iq.flags |= IQ_LRO_ENABLED;
1943 				else
1944 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1945 			}
1946 #endif
1947 		}
1948 #ifdef TCP_OFFLOAD
1949 		if (mask & IFCAP_TOE) {
1950 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1951 
1952 			rc = toe_capability(vi, enable);
1953 			if (rc != 0)
1954 				goto fail;
1955 
1956 			ifp->if_capenable ^= mask;
1957 		}
1958 #endif
1959 		if (mask & IFCAP_VLAN_HWTAGGING) {
1960 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1961 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1962 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1963 		}
1964 		if (mask & IFCAP_VLAN_MTU) {
1965 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1966 
1967 			/* Need to find out how to disable auto-mtu-inflation */
1968 		}
1969 		if (mask & IFCAP_VLAN_HWTSO)
1970 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1971 		if (mask & IFCAP_VLAN_HWCSUM)
1972 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1973 #ifdef RATELIMIT
1974 		if (mask & IFCAP_TXRTLMT)
1975 			ifp->if_capenable ^= IFCAP_TXRTLMT;
1976 #endif
1977 		if (mask & IFCAP_HWRXTSTMP) {
1978 			int i;
1979 			struct sge_rxq *rxq;
1980 
1981 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
1982 			for_each_rxq(vi, i, rxq) {
1983 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
1984 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
1985 				else
1986 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
1987 			}
1988 		}
1989 
1990 #ifdef VLAN_CAPABILITIES
1991 		VLAN_CAPABILITIES(ifp);
1992 #endif
1993 fail:
1994 		end_synchronized_op(sc, 0);
1995 		break;
1996 
1997 	case SIOCSIFMEDIA:
1998 	case SIOCGIFMEDIA:
1999 	case SIOCGIFXMEDIA:
2000 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2001 		break;
2002 
2003 	case SIOCGI2C: {
2004 		struct ifi2creq i2c;
2005 
2006 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2007 		if (rc != 0)
2008 			break;
2009 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2010 			rc = EPERM;
2011 			break;
2012 		}
2013 		if (i2c.len > sizeof(i2c.data)) {
2014 			rc = EINVAL;
2015 			break;
2016 		}
2017 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2018 		if (rc)
2019 			return (rc);
2020 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2021 		    i2c.offset, i2c.len, &i2c.data[0]);
2022 		end_synchronized_op(sc, 0);
2023 		if (rc == 0)
2024 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2025 		break;
2026 	}
2027 
2028 	default:
2029 		rc = ether_ioctl(ifp, cmd, data);
2030 	}
2031 
2032 	return (rc);
2033 }
2034 
2035 static int
2036 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2037 {
2038 	struct vi_info *vi = ifp->if_softc;
2039 	struct port_info *pi = vi->pi;
2040 	struct adapter *sc = pi->adapter;
2041 	struct sge_txq *txq;
2042 	void *items[1];
2043 	int rc;
2044 
2045 	M_ASSERTPKTHDR(m);
2046 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2047 
2048 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2049 		m_freem(m);
2050 		return (ENETDOWN);
2051 	}
2052 
2053 	rc = parse_pkt(sc, &m);
2054 	if (__predict_false(rc != 0)) {
2055 		MPASS(m == NULL);			/* was freed already */
2056 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2057 		return (rc);
2058 	}
2059 #ifdef RATELIMIT
2060 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2061 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2062 		return (ethofld_transmit(ifp, m));
2063 	}
2064 #endif
2065 
2066 	/* Select a txq. */
2067 	txq = &sc->sge.txq[vi->first_txq];
2068 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2069 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2070 		    vi->rsrv_noflowq);
2071 
2072 	items[0] = m;
2073 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
2074 	if (__predict_false(rc != 0))
2075 		m_freem(m);
2076 
2077 	return (rc);
2078 }
2079 
2080 static void
2081 cxgbe_qflush(struct ifnet *ifp)
2082 {
2083 	struct vi_info *vi = ifp->if_softc;
2084 	struct sge_txq *txq;
2085 	int i;
2086 
2087 	/* queues do not exist if !VI_INIT_DONE. */
2088 	if (vi->flags & VI_INIT_DONE) {
2089 		for_each_txq(vi, i, txq) {
2090 			TXQ_LOCK(txq);
2091 			txq->eq.flags |= EQ_QFLUSH;
2092 			TXQ_UNLOCK(txq);
2093 			while (!mp_ring_is_idle(txq->r)) {
2094 				mp_ring_check_drainage(txq->r, 0);
2095 				pause("qflush", 1);
2096 			}
2097 			TXQ_LOCK(txq);
2098 			txq->eq.flags &= ~EQ_QFLUSH;
2099 			TXQ_UNLOCK(txq);
2100 		}
2101 	}
2102 	if_qflush(ifp);
2103 }
2104 
2105 static uint64_t
2106 vi_get_counter(struct ifnet *ifp, ift_counter c)
2107 {
2108 	struct vi_info *vi = ifp->if_softc;
2109 	struct fw_vi_stats_vf *s = &vi->stats;
2110 
2111 	vi_refresh_stats(vi->pi->adapter, vi);
2112 
2113 	switch (c) {
2114 	case IFCOUNTER_IPACKETS:
2115 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2116 		    s->rx_ucast_frames);
2117 	case IFCOUNTER_IERRORS:
2118 		return (s->rx_err_frames);
2119 	case IFCOUNTER_OPACKETS:
2120 		return (s->tx_bcast_frames + s->tx_mcast_frames +
2121 		    s->tx_ucast_frames + s->tx_offload_frames);
2122 	case IFCOUNTER_OERRORS:
2123 		return (s->tx_drop_frames);
2124 	case IFCOUNTER_IBYTES:
2125 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
2126 		    s->rx_ucast_bytes);
2127 	case IFCOUNTER_OBYTES:
2128 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
2129 		    s->tx_ucast_bytes + s->tx_offload_bytes);
2130 	case IFCOUNTER_IMCASTS:
2131 		return (s->rx_mcast_frames);
2132 	case IFCOUNTER_OMCASTS:
2133 		return (s->tx_mcast_frames);
2134 	case IFCOUNTER_OQDROPS: {
2135 		uint64_t drops;
2136 
2137 		drops = 0;
2138 		if (vi->flags & VI_INIT_DONE) {
2139 			int i;
2140 			struct sge_txq *txq;
2141 
2142 			for_each_txq(vi, i, txq)
2143 				drops += counter_u64_fetch(txq->r->drops);
2144 		}
2145 
2146 		return (drops);
2147 
2148 	}
2149 
2150 	default:
2151 		return (if_get_counter_default(ifp, c));
2152 	}
2153 }
2154 
2155 uint64_t
2156 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
2157 {
2158 	struct vi_info *vi = ifp->if_softc;
2159 	struct port_info *pi = vi->pi;
2160 	struct adapter *sc = pi->adapter;
2161 	struct port_stats *s = &pi->stats;
2162 
2163 	if (pi->nvi > 1 || sc->flags & IS_VF)
2164 		return (vi_get_counter(ifp, c));
2165 
2166 	cxgbe_refresh_stats(sc, pi);
2167 
2168 	switch (c) {
2169 	case IFCOUNTER_IPACKETS:
2170 		return (s->rx_frames);
2171 
2172 	case IFCOUNTER_IERRORS:
2173 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2174 		    s->rx_fcs_err + s->rx_len_err);
2175 
2176 	case IFCOUNTER_OPACKETS:
2177 		return (s->tx_frames);
2178 
2179 	case IFCOUNTER_OERRORS:
2180 		return (s->tx_error_frames);
2181 
2182 	case IFCOUNTER_IBYTES:
2183 		return (s->rx_octets);
2184 
2185 	case IFCOUNTER_OBYTES:
2186 		return (s->tx_octets);
2187 
2188 	case IFCOUNTER_IMCASTS:
2189 		return (s->rx_mcast_frames);
2190 
2191 	case IFCOUNTER_OMCASTS:
2192 		return (s->tx_mcast_frames);
2193 
2194 	case IFCOUNTER_IQDROPS:
2195 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2196 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2197 		    s->rx_trunc3 + pi->tnl_cong_drops);
2198 
2199 	case IFCOUNTER_OQDROPS: {
2200 		uint64_t drops;
2201 
2202 		drops = s->tx_drop;
2203 		if (vi->flags & VI_INIT_DONE) {
2204 			int i;
2205 			struct sge_txq *txq;
2206 
2207 			for_each_txq(vi, i, txq)
2208 				drops += counter_u64_fetch(txq->r->drops);
2209 		}
2210 
2211 		return (drops);
2212 
2213 	}
2214 
2215 	default:
2216 		return (if_get_counter_default(ifp, c));
2217 	}
2218 }
2219 
2220 /*
2221  * The kernel picks a media from the list we had provided but we still validate
2222  * the requeste.
2223  */
2224 int
2225 cxgbe_media_change(struct ifnet *ifp)
2226 {
2227 	struct vi_info *vi = ifp->if_softc;
2228 	struct port_info *pi = vi->pi;
2229 	struct ifmedia *ifm = &pi->media;
2230 	struct link_config *lc = &pi->link_cfg;
2231 	struct adapter *sc = pi->adapter;
2232 	int rc;
2233 
2234 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
2235 	if (rc != 0)
2236 		return (rc);
2237 	PORT_LOCK(pi);
2238 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
2239 		/* ifconfig .. media autoselect */
2240 		if (!(lc->supported & FW_PORT_CAP32_ANEG)) {
2241 			rc = ENOTSUP; /* AN not supported by transceiver */
2242 			goto done;
2243 		}
2244 		lc->requested_aneg = AUTONEG_ENABLE;
2245 		lc->requested_speed = 0;
2246 		lc->requested_fc |= PAUSE_AUTONEG;
2247 	} else {
2248 		lc->requested_aneg = AUTONEG_DISABLE;
2249 		lc->requested_speed =
2250 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
2251 		lc->requested_fc = 0;
2252 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
2253 			lc->requested_fc |= PAUSE_RX;
2254 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
2255 			lc->requested_fc |= PAUSE_TX;
2256 	}
2257 	if (pi->up_vis > 0) {
2258 		fixup_link_config(pi);
2259 		rc = apply_link_config(pi);
2260 	}
2261 done:
2262 	PORT_UNLOCK(pi);
2263 	end_synchronized_op(sc, 0);
2264 	return (rc);
2265 }
2266 
2267 /*
2268  * Base media word (without ETHER, pause, link active, etc.) for the port at the
2269  * given speed.
2270  */
2271 static int
2272 port_mword(struct port_info *pi, uint32_t speed)
2273 {
2274 
2275 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
2276 	MPASS(powerof2(speed));
2277 
2278 	switch(pi->port_type) {
2279 	case FW_PORT_TYPE_BT_SGMII:
2280 	case FW_PORT_TYPE_BT_XFI:
2281 	case FW_PORT_TYPE_BT_XAUI:
2282 		/* BaseT */
2283 		switch (speed) {
2284 		case FW_PORT_CAP32_SPEED_100M:
2285 			return (IFM_100_T);
2286 		case FW_PORT_CAP32_SPEED_1G:
2287 			return (IFM_1000_T);
2288 		case FW_PORT_CAP32_SPEED_10G:
2289 			return (IFM_10G_T);
2290 		}
2291 		break;
2292 	case FW_PORT_TYPE_KX4:
2293 		if (speed == FW_PORT_CAP32_SPEED_10G)
2294 			return (IFM_10G_KX4);
2295 		break;
2296 	case FW_PORT_TYPE_CX4:
2297 		if (speed == FW_PORT_CAP32_SPEED_10G)
2298 			return (IFM_10G_CX4);
2299 		break;
2300 	case FW_PORT_TYPE_KX:
2301 		if (speed == FW_PORT_CAP32_SPEED_1G)
2302 			return (IFM_1000_KX);
2303 		break;
2304 	case FW_PORT_TYPE_KR:
2305 	case FW_PORT_TYPE_BP_AP:
2306 	case FW_PORT_TYPE_BP4_AP:
2307 	case FW_PORT_TYPE_BP40_BA:
2308 	case FW_PORT_TYPE_KR4_100G:
2309 	case FW_PORT_TYPE_KR_SFP28:
2310 	case FW_PORT_TYPE_KR_XLAUI:
2311 		switch (speed) {
2312 		case FW_PORT_CAP32_SPEED_1G:
2313 			return (IFM_1000_KX);
2314 		case FW_PORT_CAP32_SPEED_10G:
2315 			return (IFM_10G_KR);
2316 		case FW_PORT_CAP32_SPEED_25G:
2317 			return (IFM_25G_KR);
2318 		case FW_PORT_CAP32_SPEED_40G:
2319 			return (IFM_40G_KR4);
2320 		case FW_PORT_CAP32_SPEED_50G:
2321 			return (IFM_50G_KR2);
2322 		case FW_PORT_CAP32_SPEED_100G:
2323 			return (IFM_100G_KR4);
2324 		}
2325 		break;
2326 	case FW_PORT_TYPE_FIBER_XFI:
2327 	case FW_PORT_TYPE_FIBER_XAUI:
2328 	case FW_PORT_TYPE_SFP:
2329 	case FW_PORT_TYPE_QSFP_10G:
2330 	case FW_PORT_TYPE_QSA:
2331 	case FW_PORT_TYPE_QSFP:
2332 	case FW_PORT_TYPE_CR4_QSFP:
2333 	case FW_PORT_TYPE_CR_QSFP:
2334 	case FW_PORT_TYPE_CR2_QSFP:
2335 	case FW_PORT_TYPE_SFP28:
2336 		/* Pluggable transceiver */
2337 		switch (pi->mod_type) {
2338 		case FW_PORT_MOD_TYPE_LR:
2339 			switch (speed) {
2340 			case FW_PORT_CAP32_SPEED_1G:
2341 				return (IFM_1000_LX);
2342 			case FW_PORT_CAP32_SPEED_10G:
2343 				return (IFM_10G_LR);
2344 			case FW_PORT_CAP32_SPEED_25G:
2345 				return (IFM_25G_LR);
2346 			case FW_PORT_CAP32_SPEED_40G:
2347 				return (IFM_40G_LR4);
2348 			case FW_PORT_CAP32_SPEED_50G:
2349 				return (IFM_50G_LR2);
2350 			case FW_PORT_CAP32_SPEED_100G:
2351 				return (IFM_100G_LR4);
2352 			}
2353 			break;
2354 		case FW_PORT_MOD_TYPE_SR:
2355 			switch (speed) {
2356 			case FW_PORT_CAP32_SPEED_1G:
2357 				return (IFM_1000_SX);
2358 			case FW_PORT_CAP32_SPEED_10G:
2359 				return (IFM_10G_SR);
2360 			case FW_PORT_CAP32_SPEED_25G:
2361 				return (IFM_25G_SR);
2362 			case FW_PORT_CAP32_SPEED_40G:
2363 				return (IFM_40G_SR4);
2364 			case FW_PORT_CAP32_SPEED_50G:
2365 				return (IFM_50G_SR2);
2366 			case FW_PORT_CAP32_SPEED_100G:
2367 				return (IFM_100G_SR4);
2368 			}
2369 			break;
2370 		case FW_PORT_MOD_TYPE_ER:
2371 			if (speed == FW_PORT_CAP32_SPEED_10G)
2372 				return (IFM_10G_ER);
2373 			break;
2374 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
2375 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
2376 			switch (speed) {
2377 			case FW_PORT_CAP32_SPEED_1G:
2378 				return (IFM_1000_CX);
2379 			case FW_PORT_CAP32_SPEED_10G:
2380 				return (IFM_10G_TWINAX);
2381 			case FW_PORT_CAP32_SPEED_25G:
2382 				return (IFM_25G_CR);
2383 			case FW_PORT_CAP32_SPEED_40G:
2384 				return (IFM_40G_CR4);
2385 			case FW_PORT_CAP32_SPEED_50G:
2386 				return (IFM_50G_CR2);
2387 			case FW_PORT_CAP32_SPEED_100G:
2388 				return (IFM_100G_CR4);
2389 			}
2390 			break;
2391 		case FW_PORT_MOD_TYPE_LRM:
2392 			if (speed == FW_PORT_CAP32_SPEED_10G)
2393 				return (IFM_10G_LRM);
2394 			break;
2395 		case FW_PORT_MOD_TYPE_NA:
2396 			MPASS(0);	/* Not pluggable? */
2397 			/* fall throough */
2398 		case FW_PORT_MOD_TYPE_ERROR:
2399 		case FW_PORT_MOD_TYPE_UNKNOWN:
2400 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
2401 			break;
2402 		case FW_PORT_MOD_TYPE_NONE:
2403 			return (IFM_NONE);
2404 		}
2405 		break;
2406 	case FW_PORT_TYPE_NONE:
2407 		return (IFM_NONE);
2408 	}
2409 
2410 	return (IFM_UNKNOWN);
2411 }
2412 
2413 void
2414 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2415 {
2416 	struct vi_info *vi = ifp->if_softc;
2417 	struct port_info *pi = vi->pi;
2418 	struct adapter *sc = pi->adapter;
2419 	struct link_config *lc = &pi->link_cfg;
2420 
2421 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
2422 		return;
2423 	PORT_LOCK(pi);
2424 
2425 	if (pi->up_vis == 0) {
2426 		/*
2427 		 * If all the interfaces are administratively down the firmware
2428 		 * does not report transceiver changes.  Refresh port info here
2429 		 * so that ifconfig displays accurate ifmedia at all times.
2430 		 * This is the only reason we have a synchronized op in this
2431 		 * function.  Just PORT_LOCK would have been enough otherwise.
2432 		 */
2433 		t4_update_port_info(pi);
2434 		build_medialist(pi);
2435 	}
2436 
2437 	/* ifm_status */
2438 	ifmr->ifm_status = IFM_AVALID;
2439 	if (lc->link_ok == false)
2440 		goto done;
2441 	ifmr->ifm_status |= IFM_ACTIVE;
2442 
2443 	/* ifm_active */
2444 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2445 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2446 	if (lc->fc & PAUSE_RX)
2447 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2448 	if (lc->fc & PAUSE_TX)
2449 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2450 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
2451 done:
2452 	PORT_UNLOCK(pi);
2453 	end_synchronized_op(sc, 0);
2454 }
2455 
2456 static int
2457 vcxgbe_probe(device_t dev)
2458 {
2459 	char buf[128];
2460 	struct vi_info *vi = device_get_softc(dev);
2461 
2462 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2463 	    vi - vi->pi->vi);
2464 	device_set_desc_copy(dev, buf);
2465 
2466 	return (BUS_PROBE_DEFAULT);
2467 }
2468 
2469 static int
2470 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2471 {
2472 	int func, index, rc;
2473 	uint32_t param, val;
2474 
2475 	ASSERT_SYNCHRONIZED_OP(sc);
2476 
2477 	index = vi - pi->vi;
2478 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2479 	KASSERT(index < nitems(vi_mac_funcs),
2480 	    ("%s: VI %s doesn't have a MAC func", __func__,
2481 	    device_get_nameunit(vi->dev)));
2482 	func = vi_mac_funcs[index];
2483 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2484 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
2485 	if (rc < 0) {
2486 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2487 		    "for port %d: %d\n", index, pi->port_id, -rc);
2488 		return (-rc);
2489 	}
2490 	vi->viid = rc;
2491 
2492 	if (vi->rss_size == 1) {
2493 		/*
2494 		 * This VI didn't get a slice of the RSS table.  Reduce the
2495 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2496 		 * configuration file (nvi, rssnvi for this PF) if this is a
2497 		 * problem.
2498 		 */
2499 		device_printf(vi->dev, "RSS table not available.\n");
2500 		vi->rss_base = 0xffff;
2501 
2502 		return (0);
2503 	}
2504 
2505 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2506 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2507 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2508 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2509 	if (rc)
2510 		vi->rss_base = 0xffff;
2511 	else {
2512 		MPASS((val >> 16) == vi->rss_size);
2513 		vi->rss_base = val & 0xffff;
2514 	}
2515 
2516 	return (0);
2517 }
2518 
2519 static int
2520 vcxgbe_attach(device_t dev)
2521 {
2522 	struct vi_info *vi;
2523 	struct port_info *pi;
2524 	struct adapter *sc;
2525 	int rc;
2526 
2527 	vi = device_get_softc(dev);
2528 	pi = vi->pi;
2529 	sc = pi->adapter;
2530 
2531 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2532 	if (rc)
2533 		return (rc);
2534 	rc = alloc_extra_vi(sc, pi, vi);
2535 	end_synchronized_op(sc, 0);
2536 	if (rc)
2537 		return (rc);
2538 
2539 	rc = cxgbe_vi_attach(dev, vi);
2540 	if (rc) {
2541 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2542 		return (rc);
2543 	}
2544 	return (0);
2545 }
2546 
2547 static int
2548 vcxgbe_detach(device_t dev)
2549 {
2550 	struct vi_info *vi;
2551 	struct adapter *sc;
2552 
2553 	vi = device_get_softc(dev);
2554 	sc = vi->pi->adapter;
2555 
2556 	doom_vi(sc, vi);
2557 
2558 	cxgbe_vi_detach(vi);
2559 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2560 
2561 	end_synchronized_op(sc, 0);
2562 
2563 	return (0);
2564 }
2565 
2566 static struct callout fatal_callout;
2567 
2568 static void
2569 delayed_panic(void *arg)
2570 {
2571 	struct adapter *sc = arg;
2572 
2573 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
2574 }
2575 
2576 void
2577 t4_fatal_err(struct adapter *sc, bool fw_error)
2578 {
2579 
2580 	t4_shutdown_adapter(sc);
2581 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n",
2582 	    device_get_nameunit(sc->dev));
2583 	if (fw_error) {
2584 		ASSERT_SYNCHRONIZED_OP(sc);
2585 		sc->flags |= ADAP_ERR;
2586 	} else {
2587 		ADAPTER_LOCK(sc);
2588 		sc->flags |= ADAP_ERR;
2589 		ADAPTER_UNLOCK(sc);
2590 	}
2591 
2592 	if (t4_panic_on_fatal_err) {
2593 		log(LOG_ALERT, "%s: panic on fatal error after 30s",
2594 		    device_get_nameunit(sc->dev));
2595 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
2596 	}
2597 }
2598 
2599 void
2600 t4_add_adapter(struct adapter *sc)
2601 {
2602 	sx_xlock(&t4_list_lock);
2603 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2604 	sx_xunlock(&t4_list_lock);
2605 }
2606 
2607 int
2608 t4_map_bars_0_and_4(struct adapter *sc)
2609 {
2610 	sc->regs_rid = PCIR_BAR(0);
2611 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2612 	    &sc->regs_rid, RF_ACTIVE);
2613 	if (sc->regs_res == NULL) {
2614 		device_printf(sc->dev, "cannot map registers.\n");
2615 		return (ENXIO);
2616 	}
2617 	sc->bt = rman_get_bustag(sc->regs_res);
2618 	sc->bh = rman_get_bushandle(sc->regs_res);
2619 	sc->mmio_len = rman_get_size(sc->regs_res);
2620 	setbit(&sc->doorbells, DOORBELL_KDB);
2621 
2622 	sc->msix_rid = PCIR_BAR(4);
2623 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2624 	    &sc->msix_rid, RF_ACTIVE);
2625 	if (sc->msix_res == NULL) {
2626 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2627 		return (ENXIO);
2628 	}
2629 
2630 	return (0);
2631 }
2632 
2633 int
2634 t4_map_bar_2(struct adapter *sc)
2635 {
2636 
2637 	/*
2638 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2639 	 * to map it if RDMA is disabled.
2640 	 */
2641 	if (is_t4(sc) && sc->rdmacaps == 0)
2642 		return (0);
2643 
2644 	sc->udbs_rid = PCIR_BAR(2);
2645 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2646 	    &sc->udbs_rid, RF_ACTIVE);
2647 	if (sc->udbs_res == NULL) {
2648 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2649 		return (ENXIO);
2650 	}
2651 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2652 
2653 	if (chip_id(sc) >= CHELSIO_T5) {
2654 		setbit(&sc->doorbells, DOORBELL_UDB);
2655 #if defined(__i386__) || defined(__amd64__)
2656 		if (t5_write_combine) {
2657 			int rc, mode;
2658 
2659 			/*
2660 			 * Enable write combining on BAR2.  This is the
2661 			 * userspace doorbell BAR and is split into 128B
2662 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2663 			 * with an egress queue.  The first 64B has the doorbell
2664 			 * and the second 64B can be used to submit a tx work
2665 			 * request with an implicit doorbell.
2666 			 */
2667 
2668 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2669 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2670 			if (rc == 0) {
2671 				clrbit(&sc->doorbells, DOORBELL_UDB);
2672 				setbit(&sc->doorbells, DOORBELL_WCWR);
2673 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2674 			} else {
2675 				device_printf(sc->dev,
2676 				    "couldn't enable write combining: %d\n",
2677 				    rc);
2678 			}
2679 
2680 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2681 			t4_write_reg(sc, A_SGE_STAT_CFG,
2682 			    V_STATSOURCE_T5(7) | mode);
2683 		}
2684 #endif
2685 	}
2686 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2687 
2688 	return (0);
2689 }
2690 
2691 struct memwin_init {
2692 	uint32_t base;
2693 	uint32_t aperture;
2694 };
2695 
2696 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2697 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2698 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2699 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2700 };
2701 
2702 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2703 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2704 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2705 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2706 };
2707 
2708 static void
2709 setup_memwin(struct adapter *sc)
2710 {
2711 	const struct memwin_init *mw_init;
2712 	struct memwin *mw;
2713 	int i;
2714 	uint32_t bar0;
2715 
2716 	if (is_t4(sc)) {
2717 		/*
2718 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2719 		 * mechanism.  Works from within PCI passthrough environments
2720 		 * too, where rman_get_start() can return a different value.  We
2721 		 * need to program the T4 memory window decoders with the actual
2722 		 * addresses that will be coming across the PCIe link.
2723 		 */
2724 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2725 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2726 
2727 		mw_init = &t4_memwin[0];
2728 	} else {
2729 		/* T5+ use the relative offset inside the PCIe BAR */
2730 		bar0 = 0;
2731 
2732 		mw_init = &t5_memwin[0];
2733 	}
2734 
2735 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2736 		rw_init(&mw->mw_lock, "memory window access");
2737 		mw->mw_base = mw_init->base;
2738 		mw->mw_aperture = mw_init->aperture;
2739 		mw->mw_curpos = 0;
2740 		t4_write_reg(sc,
2741 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2742 		    (mw->mw_base + bar0) | V_BIR(0) |
2743 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2744 		rw_wlock(&mw->mw_lock);
2745 		position_memwin(sc, i, 0);
2746 		rw_wunlock(&mw->mw_lock);
2747 	}
2748 
2749 	/* flush */
2750 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2751 }
2752 
2753 /*
2754  * Positions the memory window at the given address in the card's address space.
2755  * There are some alignment requirements and the actual position may be at an
2756  * address prior to the requested address.  mw->mw_curpos always has the actual
2757  * position of the window.
2758  */
2759 static void
2760 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2761 {
2762 	struct memwin *mw;
2763 	uint32_t pf;
2764 	uint32_t reg;
2765 
2766 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2767 	mw = &sc->memwin[idx];
2768 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2769 
2770 	if (is_t4(sc)) {
2771 		pf = 0;
2772 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2773 	} else {
2774 		pf = V_PFNUM(sc->pf);
2775 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2776 	}
2777 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2778 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2779 	t4_read_reg(sc, reg);	/* flush */
2780 }
2781 
2782 int
2783 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2784     int len, int rw)
2785 {
2786 	struct memwin *mw;
2787 	uint32_t mw_end, v;
2788 
2789 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2790 
2791 	/* Memory can only be accessed in naturally aligned 4 byte units */
2792 	if (addr & 3 || len & 3 || len <= 0)
2793 		return (EINVAL);
2794 
2795 	mw = &sc->memwin[idx];
2796 	while (len > 0) {
2797 		rw_rlock(&mw->mw_lock);
2798 		mw_end = mw->mw_curpos + mw->mw_aperture;
2799 		if (addr >= mw_end || addr < mw->mw_curpos) {
2800 			/* Will need to reposition the window */
2801 			if (!rw_try_upgrade(&mw->mw_lock)) {
2802 				rw_runlock(&mw->mw_lock);
2803 				rw_wlock(&mw->mw_lock);
2804 			}
2805 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2806 			position_memwin(sc, idx, addr);
2807 			rw_downgrade(&mw->mw_lock);
2808 			mw_end = mw->mw_curpos + mw->mw_aperture;
2809 		}
2810 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2811 		while (addr < mw_end && len > 0) {
2812 			if (rw == 0) {
2813 				v = t4_read_reg(sc, mw->mw_base + addr -
2814 				    mw->mw_curpos);
2815 				*val++ = le32toh(v);
2816 			} else {
2817 				v = *val++;
2818 				t4_write_reg(sc, mw->mw_base + addr -
2819 				    mw->mw_curpos, htole32(v));
2820 			}
2821 			addr += 4;
2822 			len -= 4;
2823 		}
2824 		rw_runlock(&mw->mw_lock);
2825 	}
2826 
2827 	return (0);
2828 }
2829 
2830 int
2831 alloc_atid_tab(struct tid_info *t, int flags)
2832 {
2833 	int i;
2834 
2835 	MPASS(t->natids > 0);
2836 	MPASS(t->atid_tab == NULL);
2837 
2838 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
2839 	    M_ZERO | flags);
2840 	if (t->atid_tab == NULL)
2841 		return (ENOMEM);
2842 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
2843 	t->afree = t->atid_tab;
2844 	t->atids_in_use = 0;
2845 	for (i = 1; i < t->natids; i++)
2846 		t->atid_tab[i - 1].next = &t->atid_tab[i];
2847 	t->atid_tab[t->natids - 1].next = NULL;
2848 
2849 	return (0);
2850 }
2851 
2852 void
2853 free_atid_tab(struct tid_info *t)
2854 {
2855 
2856 	KASSERT(t->atids_in_use == 0,
2857 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
2858 
2859 	if (mtx_initialized(&t->atid_lock))
2860 		mtx_destroy(&t->atid_lock);
2861 	free(t->atid_tab, M_CXGBE);
2862 	t->atid_tab = NULL;
2863 }
2864 
2865 int
2866 alloc_atid(struct adapter *sc, void *ctx)
2867 {
2868 	struct tid_info *t = &sc->tids;
2869 	int atid = -1;
2870 
2871 	mtx_lock(&t->atid_lock);
2872 	if (t->afree) {
2873 		union aopen_entry *p = t->afree;
2874 
2875 		atid = p - t->atid_tab;
2876 		MPASS(atid <= M_TID_TID);
2877 		t->afree = p->next;
2878 		p->data = ctx;
2879 		t->atids_in_use++;
2880 	}
2881 	mtx_unlock(&t->atid_lock);
2882 	return (atid);
2883 }
2884 
2885 void *
2886 lookup_atid(struct adapter *sc, int atid)
2887 {
2888 	struct tid_info *t = &sc->tids;
2889 
2890 	return (t->atid_tab[atid].data);
2891 }
2892 
2893 void
2894 free_atid(struct adapter *sc, int atid)
2895 {
2896 	struct tid_info *t = &sc->tids;
2897 	union aopen_entry *p = &t->atid_tab[atid];
2898 
2899 	mtx_lock(&t->atid_lock);
2900 	p->next = t->afree;
2901 	t->afree = p;
2902 	t->atids_in_use--;
2903 	mtx_unlock(&t->atid_lock);
2904 }
2905 
2906 static void
2907 queue_tid_release(struct adapter *sc, int tid)
2908 {
2909 
2910 	CXGBE_UNIMPLEMENTED("deferred tid release");
2911 }
2912 
2913 void
2914 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
2915 {
2916 	struct wrqe *wr;
2917 	struct cpl_tid_release *req;
2918 
2919 	wr = alloc_wrqe(sizeof(*req), ctrlq);
2920 	if (wr == NULL) {
2921 		queue_tid_release(sc, tid);	/* defer */
2922 		return;
2923 	}
2924 	req = wrtod(wr);
2925 
2926 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
2927 
2928 	t4_wrq_tx(sc, wr);
2929 }
2930 
2931 static int
2932 t4_range_cmp(const void *a, const void *b)
2933 {
2934 	return ((const struct t4_range *)a)->start -
2935 	       ((const struct t4_range *)b)->start;
2936 }
2937 
2938 /*
2939  * Verify that the memory range specified by the addr/len pair is valid within
2940  * the card's address space.
2941  */
2942 static int
2943 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
2944 {
2945 	struct t4_range mem_ranges[4], *r, *next;
2946 	uint32_t em, addr_len;
2947 	int i, n, remaining;
2948 
2949 	/* Memory can only be accessed in naturally aligned 4 byte units */
2950 	if (addr & 3 || len & 3 || len == 0)
2951 		return (EINVAL);
2952 
2953 	/* Enabled memories */
2954 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2955 
2956 	r = &mem_ranges[0];
2957 	n = 0;
2958 	bzero(r, sizeof(mem_ranges));
2959 	if (em & F_EDRAM0_ENABLE) {
2960 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2961 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2962 		if (r->size > 0) {
2963 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2964 			if (addr >= r->start &&
2965 			    addr + len <= r->start + r->size)
2966 				return (0);
2967 			r++;
2968 			n++;
2969 		}
2970 	}
2971 	if (em & F_EDRAM1_ENABLE) {
2972 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2973 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2974 		if (r->size > 0) {
2975 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2976 			if (addr >= r->start &&
2977 			    addr + len <= r->start + r->size)
2978 				return (0);
2979 			r++;
2980 			n++;
2981 		}
2982 	}
2983 	if (em & F_EXT_MEM_ENABLE) {
2984 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2985 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2986 		if (r->size > 0) {
2987 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2988 			if (addr >= r->start &&
2989 			    addr + len <= r->start + r->size)
2990 				return (0);
2991 			r++;
2992 			n++;
2993 		}
2994 	}
2995 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2996 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2997 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2998 		if (r->size > 0) {
2999 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3000 			if (addr >= r->start &&
3001 			    addr + len <= r->start + r->size)
3002 				return (0);
3003 			r++;
3004 			n++;
3005 		}
3006 	}
3007 	MPASS(n <= nitems(mem_ranges));
3008 
3009 	if (n > 1) {
3010 		/* Sort and merge the ranges. */
3011 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3012 
3013 		/* Start from index 0 and examine the next n - 1 entries. */
3014 		r = &mem_ranges[0];
3015 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
3016 
3017 			MPASS(r->size > 0);	/* r is a valid entry. */
3018 			next = r + 1;
3019 			MPASS(next->size > 0);	/* and so is the next one. */
3020 
3021 			while (r->start + r->size >= next->start) {
3022 				/* Merge the next one into the current entry. */
3023 				r->size = max(r->start + r->size,
3024 				    next->start + next->size) - r->start;
3025 				n--;	/* One fewer entry in total. */
3026 				if (--remaining == 0)
3027 					goto done;	/* short circuit */
3028 				next++;
3029 			}
3030 			if (next != r + 1) {
3031 				/*
3032 				 * Some entries were merged into r and next
3033 				 * points to the first valid entry that couldn't
3034 				 * be merged.
3035 				 */
3036 				MPASS(next->size > 0);	/* must be valid */
3037 				memcpy(r + 1, next, remaining * sizeof(*r));
3038 #ifdef INVARIANTS
3039 				/*
3040 				 * This so that the foo->size assertion in the
3041 				 * next iteration of the loop do the right
3042 				 * thing for entries that were pulled up and are
3043 				 * no longer valid.
3044 				 */
3045 				MPASS(n < nitems(mem_ranges));
3046 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
3047 				    sizeof(struct t4_range));
3048 #endif
3049 			}
3050 		}
3051 done:
3052 		/* Done merging the ranges. */
3053 		MPASS(n > 0);
3054 		r = &mem_ranges[0];
3055 		for (i = 0; i < n; i++, r++) {
3056 			if (addr >= r->start &&
3057 			    addr + len <= r->start + r->size)
3058 				return (0);
3059 		}
3060 	}
3061 
3062 	return (EFAULT);
3063 }
3064 
3065 static int
3066 fwmtype_to_hwmtype(int mtype)
3067 {
3068 
3069 	switch (mtype) {
3070 	case FW_MEMTYPE_EDC0:
3071 		return (MEM_EDC0);
3072 	case FW_MEMTYPE_EDC1:
3073 		return (MEM_EDC1);
3074 	case FW_MEMTYPE_EXTMEM:
3075 		return (MEM_MC0);
3076 	case FW_MEMTYPE_EXTMEM1:
3077 		return (MEM_MC1);
3078 	default:
3079 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
3080 	}
3081 }
3082 
3083 /*
3084  * Verify that the memory range specified by the memtype/offset/len pair is
3085  * valid and lies entirely within the memtype specified.  The global address of
3086  * the start of the range is returned in addr.
3087  */
3088 static int
3089 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
3090     uint32_t *addr)
3091 {
3092 	uint32_t em, addr_len, maddr;
3093 
3094 	/* Memory can only be accessed in naturally aligned 4 byte units */
3095 	if (off & 3 || len & 3 || len == 0)
3096 		return (EINVAL);
3097 
3098 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3099 	switch (fwmtype_to_hwmtype(mtype)) {
3100 	case MEM_EDC0:
3101 		if (!(em & F_EDRAM0_ENABLE))
3102 			return (EINVAL);
3103 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3104 		maddr = G_EDRAM0_BASE(addr_len) << 20;
3105 		break;
3106 	case MEM_EDC1:
3107 		if (!(em & F_EDRAM1_ENABLE))
3108 			return (EINVAL);
3109 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3110 		maddr = G_EDRAM1_BASE(addr_len) << 20;
3111 		break;
3112 	case MEM_MC:
3113 		if (!(em & F_EXT_MEM_ENABLE))
3114 			return (EINVAL);
3115 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3116 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
3117 		break;
3118 	case MEM_MC1:
3119 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
3120 			return (EINVAL);
3121 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3122 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
3123 		break;
3124 	default:
3125 		return (EINVAL);
3126 	}
3127 
3128 	*addr = maddr + off;	/* global address */
3129 	return (validate_mem_range(sc, *addr, len));
3130 }
3131 
3132 static int
3133 fixup_devlog_params(struct adapter *sc)
3134 {
3135 	struct devlog_params *dparams = &sc->params.devlog;
3136 	int rc;
3137 
3138 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
3139 	    dparams->size, &dparams->addr);
3140 
3141 	return (rc);
3142 }
3143 
3144 static void
3145 update_nirq(struct intrs_and_queues *iaq, int nports)
3146 {
3147 	int extra = T4_EXTRA_INTR;
3148 
3149 	iaq->nirq = extra;
3150 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
3151 	iaq->nirq += nports * (iaq->num_vis - 1) *
3152 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
3153 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
3154 }
3155 
3156 /*
3157  * Adjust requirements to fit the number of interrupts available.
3158  */
3159 static void
3160 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
3161     int navail)
3162 {
3163 	int old_nirq;
3164 	const int nports = sc->params.nports;
3165 
3166 	MPASS(nports > 0);
3167 	MPASS(navail > 0);
3168 
3169 	bzero(iaq, sizeof(*iaq));
3170 	iaq->intr_type = itype;
3171 	iaq->num_vis = t4_num_vis;
3172 	iaq->ntxq = t4_ntxq;
3173 	iaq->ntxq_vi = t4_ntxq_vi;
3174 	iaq->nrxq = t4_nrxq;
3175 	iaq->nrxq_vi = t4_nrxq_vi;
3176 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3177 	if (is_offload(sc) || is_ethoffload(sc)) {
3178 		iaq->nofldtxq = t4_nofldtxq;
3179 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
3180 	}
3181 #endif
3182 #ifdef TCP_OFFLOAD
3183 	if (is_offload(sc)) {
3184 		iaq->nofldrxq = t4_nofldrxq;
3185 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
3186 	}
3187 #endif
3188 #ifdef DEV_NETMAP
3189 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
3190 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
3191 #endif
3192 
3193 	update_nirq(iaq, nports);
3194 	if (iaq->nirq <= navail &&
3195 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3196 		/*
3197 		 * This is the normal case -- there are enough interrupts for
3198 		 * everything.
3199 		 */
3200 		goto done;
3201 	}
3202 
3203 	/*
3204 	 * If extra VIs have been configured try reducing their count and see if
3205 	 * that works.
3206 	 */
3207 	while (iaq->num_vis > 1) {
3208 		iaq->num_vis--;
3209 		update_nirq(iaq, nports);
3210 		if (iaq->nirq <= navail &&
3211 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3212 			device_printf(sc->dev, "virtual interfaces per port "
3213 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
3214 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
3215 			    "itype %d, navail %u, nirq %d.\n",
3216 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
3217 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
3218 			    itype, navail, iaq->nirq);
3219 			goto done;
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * Extra VIs will not be created.  Log a message if they were requested.
3225 	 */
3226 	MPASS(iaq->num_vis == 1);
3227 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
3228 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
3229 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
3230 	if (iaq->num_vis != t4_num_vis) {
3231 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
3232 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
3233 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
3234 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
3235 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
3236 	}
3237 
3238 	/*
3239 	 * Keep reducing the number of NIC rx queues to the next lower power of
3240 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
3241 	 * if that works.
3242 	 */
3243 	do {
3244 		if (iaq->nrxq > 1) {
3245 			do {
3246 				iaq->nrxq--;
3247 			} while (!powerof2(iaq->nrxq));
3248 		}
3249 		if (iaq->nofldrxq > 1)
3250 			iaq->nofldrxq >>= 1;
3251 
3252 		old_nirq = iaq->nirq;
3253 		update_nirq(iaq, nports);
3254 		if (iaq->nirq <= navail &&
3255 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3256 			device_printf(sc->dev, "running with reduced number of "
3257 			    "rx queues because of shortage of interrupts.  "
3258 			    "nrxq=%u, nofldrxq=%u.  "
3259 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
3260 			    iaq->nofldrxq, itype, navail, iaq->nirq);
3261 			goto done;
3262 		}
3263 	} while (old_nirq != iaq->nirq);
3264 
3265 	/* One interrupt for everything.  Ugh. */
3266 	device_printf(sc->dev, "running with minimal number of queues.  "
3267 	    "itype %d, navail %u.\n", itype, navail);
3268 	iaq->nirq = 1;
3269 	MPASS(iaq->nrxq == 1);
3270 	iaq->ntxq = 1;
3271 	if (iaq->nofldrxq > 1)
3272 		iaq->nofldtxq = 1;
3273 done:
3274 	MPASS(iaq->num_vis > 0);
3275 	if (iaq->num_vis > 1) {
3276 		MPASS(iaq->nrxq_vi > 0);
3277 		MPASS(iaq->ntxq_vi > 0);
3278 	}
3279 	MPASS(iaq->nirq > 0);
3280 	MPASS(iaq->nrxq > 0);
3281 	MPASS(iaq->ntxq > 0);
3282 	if (itype == INTR_MSI) {
3283 		MPASS(powerof2(iaq->nirq));
3284 	}
3285 }
3286 
3287 static int
3288 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
3289 {
3290 	int rc, itype, navail, nalloc;
3291 
3292 	for (itype = INTR_MSIX; itype; itype >>= 1) {
3293 
3294 		if ((itype & t4_intr_types) == 0)
3295 			continue;	/* not allowed */
3296 
3297 		if (itype == INTR_MSIX)
3298 			navail = pci_msix_count(sc->dev);
3299 		else if (itype == INTR_MSI)
3300 			navail = pci_msi_count(sc->dev);
3301 		else
3302 			navail = 1;
3303 restart:
3304 		if (navail == 0)
3305 			continue;
3306 
3307 		calculate_iaq(sc, iaq, itype, navail);
3308 		nalloc = iaq->nirq;
3309 		rc = 0;
3310 		if (itype == INTR_MSIX)
3311 			rc = pci_alloc_msix(sc->dev, &nalloc);
3312 		else if (itype == INTR_MSI)
3313 			rc = pci_alloc_msi(sc->dev, &nalloc);
3314 
3315 		if (rc == 0 && nalloc > 0) {
3316 			if (nalloc == iaq->nirq)
3317 				return (0);
3318 
3319 			/*
3320 			 * Didn't get the number requested.  Use whatever number
3321 			 * the kernel is willing to allocate.
3322 			 */
3323 			device_printf(sc->dev, "fewer vectors than requested, "
3324 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
3325 			    itype, iaq->nirq, nalloc);
3326 			pci_release_msi(sc->dev);
3327 			navail = nalloc;
3328 			goto restart;
3329 		}
3330 
3331 		device_printf(sc->dev,
3332 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
3333 		    itype, rc, iaq->nirq, nalloc);
3334 	}
3335 
3336 	device_printf(sc->dev,
3337 	    "failed to find a usable interrupt type.  "
3338 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
3339 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
3340 
3341 	return (ENXIO);
3342 }
3343 
3344 #define FW_VERSION(chip) ( \
3345     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
3346     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
3347     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
3348     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
3349 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
3350 
3351 /* Just enough of fw_hdr to cover all version info. */
3352 struct fw_h {
3353 	__u8	ver;
3354 	__u8	chip;
3355 	__be16	len512;
3356 	__be32	fw_ver;
3357 	__be32	tp_microcode_ver;
3358 	__u8	intfver_nic;
3359 	__u8	intfver_vnic;
3360 	__u8	intfver_ofld;
3361 	__u8	intfver_ri;
3362 	__u8	intfver_iscsipdu;
3363 	__u8	intfver_iscsi;
3364 	__u8	intfver_fcoepdu;
3365 	__u8	intfver_fcoe;
3366 };
3367 /* Spot check a couple of fields. */
3368 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
3369 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
3370 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
3371 
3372 struct fw_info {
3373 	uint8_t chip;
3374 	char *kld_name;
3375 	char *fw_mod_name;
3376 	struct fw_h fw_h;
3377 } fw_info[] = {
3378 	{
3379 		.chip = CHELSIO_T4,
3380 		.kld_name = "t4fw_cfg",
3381 		.fw_mod_name = "t4fw",
3382 		.fw_h = {
3383 			.chip = FW_HDR_CHIP_T4,
3384 			.fw_ver = htobe32(FW_VERSION(T4)),
3385 			.intfver_nic = FW_INTFVER(T4, NIC),
3386 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3387 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3388 			.intfver_ri = FW_INTFVER(T4, RI),
3389 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3390 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3391 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3392 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3393 		},
3394 	}, {
3395 		.chip = CHELSIO_T5,
3396 		.kld_name = "t5fw_cfg",
3397 		.fw_mod_name = "t5fw",
3398 		.fw_h = {
3399 			.chip = FW_HDR_CHIP_T5,
3400 			.fw_ver = htobe32(FW_VERSION(T5)),
3401 			.intfver_nic = FW_INTFVER(T5, NIC),
3402 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3403 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3404 			.intfver_ri = FW_INTFVER(T5, RI),
3405 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3406 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3407 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3408 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3409 		},
3410 	}, {
3411 		.chip = CHELSIO_T6,
3412 		.kld_name = "t6fw_cfg",
3413 		.fw_mod_name = "t6fw",
3414 		.fw_h = {
3415 			.chip = FW_HDR_CHIP_T6,
3416 			.fw_ver = htobe32(FW_VERSION(T6)),
3417 			.intfver_nic = FW_INTFVER(T6, NIC),
3418 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3419 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3420 			.intfver_ri = FW_INTFVER(T6, RI),
3421 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3422 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3423 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3424 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3425 		},
3426 	}
3427 };
3428 
3429 static struct fw_info *
3430 find_fw_info(int chip)
3431 {
3432 	int i;
3433 
3434 	for (i = 0; i < nitems(fw_info); i++) {
3435 		if (fw_info[i].chip == chip)
3436 			return (&fw_info[i]);
3437 	}
3438 	return (NULL);
3439 }
3440 
3441 /*
3442  * Is the given firmware API compatible with the one the driver was compiled
3443  * with?
3444  */
3445 static int
3446 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
3447 {
3448 
3449 	/* short circuit if it's the exact same firmware version */
3450 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3451 		return (1);
3452 
3453 	/*
3454 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3455 	 * features that are supported in the driver.
3456 	 */
3457 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3458 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3459 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3460 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3461 		return (1);
3462 #undef SAME_INTF
3463 
3464 	return (0);
3465 }
3466 
3467 static int
3468 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
3469     const struct firmware **fw)
3470 {
3471 	struct fw_info *fw_info;
3472 
3473 	*dcfg = NULL;
3474 	if (fw != NULL)
3475 		*fw = NULL;
3476 
3477 	fw_info = find_fw_info(chip_id(sc));
3478 	if (fw_info == NULL) {
3479 		device_printf(sc->dev,
3480 		    "unable to look up firmware information for chip %d.\n",
3481 		    chip_id(sc));
3482 		return (EINVAL);
3483 	}
3484 
3485 	*dcfg = firmware_get(fw_info->kld_name);
3486 	if (*dcfg != NULL) {
3487 		if (fw != NULL)
3488 			*fw = firmware_get(fw_info->fw_mod_name);
3489 		return (0);
3490 	}
3491 
3492 	return (ENOENT);
3493 }
3494 
3495 static void
3496 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
3497     const struct firmware *fw)
3498 {
3499 
3500 	if (fw != NULL)
3501 		firmware_put(fw, FIRMWARE_UNLOAD);
3502 	if (dcfg != NULL)
3503 		firmware_put(dcfg, FIRMWARE_UNLOAD);
3504 }
3505 
3506 /*
3507  * Return values:
3508  * 0 means no firmware install attempted.
3509  * ERESTART means a firmware install was attempted and was successful.
3510  * +ve errno means a firmware install was attempted but failed.
3511  */
3512 static int
3513 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
3514     const struct fw_h *drv_fw, const char *reason, int *already)
3515 {
3516 	const struct firmware *cfg, *fw;
3517 	const uint32_t c = be32toh(card_fw->fw_ver);
3518 	uint32_t d, k;
3519 	int rc, fw_install;
3520 	struct fw_h bundled_fw;
3521 	bool load_attempted;
3522 
3523 	cfg = fw = NULL;
3524 	load_attempted = false;
3525 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
3526 
3527 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
3528 	if (t4_fw_install < 0) {
3529 		rc = load_fw_module(sc, &cfg, &fw);
3530 		if (rc != 0 || fw == NULL) {
3531 			device_printf(sc->dev,
3532 			    "failed to load firmware module: %d. cfg %p, fw %p;"
3533 			    " will use compiled-in firmware version for"
3534 			    "hw.cxgbe.fw_install checks.\n",
3535 			    rc, cfg, fw);
3536 		} else {
3537 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
3538 		}
3539 		load_attempted = true;
3540 	}
3541 	d = be32toh(bundled_fw.fw_ver);
3542 
3543 	if (reason != NULL)
3544 		goto install;
3545 
3546 	if ((sc->flags & FW_OK) == 0) {
3547 
3548 		if (c == 0xffffffff) {
3549 			reason = "missing";
3550 			goto install;
3551 		}
3552 
3553 		rc = 0;
3554 		goto done;
3555 	}
3556 
3557 	if (!fw_compatible(card_fw, &bundled_fw)) {
3558 		reason = "incompatible or unusable";
3559 		goto install;
3560 	}
3561 
3562 	if (d > c) {
3563 		reason = "older than the version bundled with this driver";
3564 		goto install;
3565 	}
3566 
3567 	if (fw_install == 2 && d != c) {
3568 		reason = "different than the version bundled with this driver";
3569 		goto install;
3570 	}
3571 
3572 	/* No reason to do anything to the firmware already on the card. */
3573 	rc = 0;
3574 	goto done;
3575 
3576 install:
3577 	rc = 0;
3578 	if ((*already)++)
3579 		goto done;
3580 
3581 	if (fw_install == 0) {
3582 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3583 		    "but the driver is prohibited from installing a firmware "
3584 		    "on the card.\n",
3585 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3586 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3587 
3588 		goto done;
3589 	}
3590 
3591 	/*
3592 	 * We'll attempt to install a firmware.  Load the module first (if it
3593 	 * hasn't been loaded already).
3594 	 */
3595 	if (!load_attempted) {
3596 		rc = load_fw_module(sc, &cfg, &fw);
3597 		if (rc != 0 || fw == NULL) {
3598 			device_printf(sc->dev,
3599 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
3600 			    rc, cfg, fw);
3601 			/* carry on */
3602 		}
3603 	}
3604 	if (fw == NULL) {
3605 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3606 		    "but the driver cannot take corrective action because it "
3607 		    "is unable to load the firmware module.\n",
3608 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3609 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3610 		rc = sc->flags & FW_OK ? 0 : ENOENT;
3611 		goto done;
3612 	}
3613 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
3614 	if (k != d) {
3615 		MPASS(t4_fw_install > 0);
3616 		device_printf(sc->dev,
3617 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
3618 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
3619 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3620 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
3621 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3622 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3623 		rc = sc->flags & FW_OK ? 0 : EINVAL;
3624 		goto done;
3625 	}
3626 
3627 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3628 	    "installing firmware %u.%u.%u.%u on card.\n",
3629 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3630 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3631 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3632 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3633 
3634 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3635 	if (rc != 0) {
3636 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
3637 	} else {
3638 		/* Installed successfully, update the cached header too. */
3639 		rc = ERESTART;
3640 		memcpy(card_fw, fw->data, sizeof(*card_fw));
3641 	}
3642 done:
3643 	unload_fw_module(sc, cfg, fw);
3644 
3645 	return (rc);
3646 }
3647 
3648 /*
3649  * Establish contact with the firmware and attempt to become the master driver.
3650  *
3651  * A firmware will be installed to the card if needed (if the driver is allowed
3652  * to do so).
3653  */
3654 static int
3655 contact_firmware(struct adapter *sc)
3656 {
3657 	int rc, already = 0;
3658 	enum dev_state state;
3659 	struct fw_info *fw_info;
3660 	struct fw_hdr *card_fw;		/* fw on the card */
3661 	const struct fw_h *drv_fw;
3662 
3663 	fw_info = find_fw_info(chip_id(sc));
3664 	if (fw_info == NULL) {
3665 		device_printf(sc->dev,
3666 		    "unable to look up firmware information for chip %d.\n",
3667 		    chip_id(sc));
3668 		return (EINVAL);
3669 	}
3670 	drv_fw = &fw_info->fw_h;
3671 
3672 	/* Read the header of the firmware on the card */
3673 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3674 restart:
3675 	rc = -t4_get_fw_hdr(sc, card_fw);
3676 	if (rc != 0) {
3677 		device_printf(sc->dev,
3678 		    "unable to read firmware header from card's flash: %d\n",
3679 		    rc);
3680 		goto done;
3681 	}
3682 
3683 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
3684 	    &already);
3685 	if (rc == ERESTART)
3686 		goto restart;
3687 	if (rc != 0)
3688 		goto done;
3689 
3690 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3691 	if (rc < 0 || state == DEV_STATE_ERR) {
3692 		rc = -rc;
3693 		device_printf(sc->dev,
3694 		    "failed to connect to the firmware: %d, %d.  "
3695 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3696 #if 0
3697 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3698 		    "not responding properly to HELLO", &already) == ERESTART)
3699 			goto restart;
3700 #endif
3701 		goto done;
3702 	}
3703 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
3704 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
3705 
3706 	if (rc == sc->pf) {
3707 		sc->flags |= MASTER_PF;
3708 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3709 		    NULL, &already);
3710 		if (rc == ERESTART)
3711 			rc = 0;
3712 		else if (rc != 0)
3713 			goto done;
3714 	} else if (state == DEV_STATE_UNINIT) {
3715 		/*
3716 		 * We didn't get to be the master so we definitely won't be
3717 		 * configuring the chip.  It's a bug if someone else hasn't
3718 		 * configured it already.
3719 		 */
3720 		device_printf(sc->dev, "couldn't be master(%d), "
3721 		    "device not already initialized either(%d).  "
3722 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3723 		rc = EPROTO;
3724 		goto done;
3725 	} else {
3726 		/*
3727 		 * Some other PF is the master and has configured the chip.
3728 		 * This is allowed but untested.
3729 		 */
3730 		device_printf(sc->dev, "PF%d is master, device state %d.  "
3731 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3732 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
3733 		sc->cfcsum = 0;
3734 		rc = 0;
3735 	}
3736 done:
3737 	if (rc != 0 && sc->flags & FW_OK) {
3738 		t4_fw_bye(sc, sc->mbox);
3739 		sc->flags &= ~FW_OK;
3740 	}
3741 	free(card_fw, M_CXGBE);
3742 	return (rc);
3743 }
3744 
3745 static int
3746 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
3747     uint32_t mtype, uint32_t moff)
3748 {
3749 	struct fw_info *fw_info;
3750 	const struct firmware *dcfg, *rcfg = NULL;
3751 	const uint32_t *cfdata;
3752 	uint32_t cflen, addr;
3753 	int rc;
3754 
3755 	load_fw_module(sc, &dcfg, NULL);
3756 
3757 	/* Card specific interpretation of "default". */
3758 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3759 		if (pci_get_device(sc->dev) == 0x440a)
3760 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
3761 		if (is_fpga(sc))
3762 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
3763 	}
3764 
3765 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3766 		if (dcfg == NULL) {
3767 			device_printf(sc->dev,
3768 			    "KLD with default config is not available.\n");
3769 			rc = ENOENT;
3770 			goto done;
3771 		}
3772 		cfdata = dcfg->data;
3773 		cflen = dcfg->datasize & ~3;
3774 	} else {
3775 		char s[32];
3776 
3777 		fw_info = find_fw_info(chip_id(sc));
3778 		if (fw_info == NULL) {
3779 			device_printf(sc->dev,
3780 			    "unable to look up firmware information for chip %d.\n",
3781 			    chip_id(sc));
3782 			rc = EINVAL;
3783 			goto done;
3784 		}
3785 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
3786 
3787 		rcfg = firmware_get(s);
3788 		if (rcfg == NULL) {
3789 			device_printf(sc->dev,
3790 			    "unable to load module \"%s\" for configuration "
3791 			    "profile \"%s\".\n", s, cfg_file);
3792 			rc = ENOENT;
3793 			goto done;
3794 		}
3795 		cfdata = rcfg->data;
3796 		cflen = rcfg->datasize & ~3;
3797 	}
3798 
3799 	if (cflen > FLASH_CFG_MAX_SIZE) {
3800 		device_printf(sc->dev,
3801 		    "config file too long (%d, max allowed is %d).\n",
3802 		    cflen, FLASH_CFG_MAX_SIZE);
3803 		rc = EINVAL;
3804 		goto done;
3805 	}
3806 
3807 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3808 	if (rc != 0) {
3809 		device_printf(sc->dev,
3810 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
3811 		    __func__, mtype, moff, cflen, rc);
3812 		rc = EINVAL;
3813 		goto done;
3814 	}
3815 	write_via_memwin(sc, 2, addr, cfdata, cflen);
3816 done:
3817 	if (rcfg != NULL)
3818 		firmware_put(rcfg, FIRMWARE_UNLOAD);
3819 	unload_fw_module(sc, dcfg, NULL);
3820 	return (rc);
3821 }
3822 
3823 struct caps_allowed {
3824 	uint16_t nbmcaps;
3825 	uint16_t linkcaps;
3826 	uint16_t switchcaps;
3827 	uint16_t niccaps;
3828 	uint16_t toecaps;
3829 	uint16_t rdmacaps;
3830 	uint16_t cryptocaps;
3831 	uint16_t iscsicaps;
3832 	uint16_t fcoecaps;
3833 };
3834 
3835 #define FW_PARAM_DEV(param) \
3836 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3837 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3838 #define FW_PARAM_PFVF(param) \
3839 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3840 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3841 
3842 /*
3843  * Provide a configuration profile to the firmware and have it initialize the
3844  * chip accordingly.  This may involve uploading a configuration file to the
3845  * card.
3846  */
3847 static int
3848 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
3849     const struct caps_allowed *caps_allowed)
3850 {
3851 	int rc;
3852 	struct fw_caps_config_cmd caps;
3853 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
3854 
3855 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
3856 	if (rc != 0) {
3857 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3858 		return (rc);
3859 	}
3860 
3861 	bzero(&caps, sizeof(caps));
3862 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3863 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3864 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
3865 		mtype = 0;
3866 		moff = 0;
3867 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3868 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
3869 		mtype = FW_MEMTYPE_FLASH;
3870 		moff = t4_flash_cfg_addr(sc);
3871 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3872 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3873 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3874 		    FW_LEN16(caps));
3875 	} else {
3876 		/*
3877 		 * Ask the firmware where it wants us to upload the config file.
3878 		 */
3879 		param = FW_PARAM_DEV(CF);
3880 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3881 		if (rc != 0) {
3882 			/* No support for config file?  Shouldn't happen. */
3883 			device_printf(sc->dev,
3884 			    "failed to query config file location: %d.\n", rc);
3885 			goto done;
3886 		}
3887 		mtype = G_FW_PARAMS_PARAM_Y(val);
3888 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3889 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3890 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3891 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3892 		    FW_LEN16(caps));
3893 
3894 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
3895 		if (rc != 0) {
3896 			device_printf(sc->dev,
3897 			    "failed to upload config file to card: %d.\n", rc);
3898 			goto done;
3899 		}
3900 	}
3901 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3902 	if (rc != 0) {
3903 		device_printf(sc->dev, "failed to pre-process config file: %d "
3904 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3905 		goto done;
3906 	}
3907 
3908 	finicsum = be32toh(caps.finicsum);
3909 	cfcsum = be32toh(caps.cfcsum);	/* actual */
3910 	if (finicsum != cfcsum) {
3911 		device_printf(sc->dev,
3912 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3913 		    finicsum, cfcsum);
3914 	}
3915 	sc->cfcsum = cfcsum;
3916 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
3917 
3918 	/*
3919 	 * Let the firmware know what features will (not) be used so it can tune
3920 	 * things accordingly.
3921 	 */
3922 #define LIMIT_CAPS(x) do { \
3923 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
3924 } while (0)
3925 	LIMIT_CAPS(nbm);
3926 	LIMIT_CAPS(link);
3927 	LIMIT_CAPS(switch);
3928 	LIMIT_CAPS(nic);
3929 	LIMIT_CAPS(toe);
3930 	LIMIT_CAPS(rdma);
3931 	LIMIT_CAPS(crypto);
3932 	LIMIT_CAPS(iscsi);
3933 	LIMIT_CAPS(fcoe);
3934 #undef LIMIT_CAPS
3935 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
3936 		/*
3937 		 * TOE and hashfilters are mutually exclusive.  It is a config
3938 		 * file or firmware bug if both are reported as available.  Try
3939 		 * to cope with the situation in non-debug builds by disabling
3940 		 * TOE.
3941 		 */
3942 		MPASS(caps.toecaps == 0);
3943 
3944 		caps.toecaps = 0;
3945 		caps.rdmacaps = 0;
3946 		caps.iscsicaps = 0;
3947 	}
3948 
3949 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3950 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3951 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3952 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3953 	if (rc != 0) {
3954 		device_printf(sc->dev,
3955 		    "failed to process config file: %d.\n", rc);
3956 		goto done;
3957 	}
3958 
3959 	t4_tweak_chip_settings(sc);
3960 	set_params__pre_init(sc);
3961 
3962 	/* get basic stuff going */
3963 	rc = -t4_fw_initialize(sc, sc->mbox);
3964 	if (rc != 0) {
3965 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
3966 		goto done;
3967 	}
3968 done:
3969 	return (rc);
3970 }
3971 
3972 /*
3973  * Partition chip resources for use between various PFs, VFs, etc.
3974  */
3975 static int
3976 partition_resources(struct adapter *sc)
3977 {
3978 	char cfg_file[sizeof(t4_cfg_file)];
3979 	struct caps_allowed caps_allowed;
3980 	int rc;
3981 	bool fallback;
3982 
3983 	/* Only the master driver gets to configure the chip resources. */
3984 	MPASS(sc->flags & MASTER_PF);
3985 
3986 #define COPY_CAPS(x) do { \
3987 	caps_allowed.x##caps = t4_##x##caps_allowed; \
3988 } while (0)
3989 	bzero(&caps_allowed, sizeof(caps_allowed));
3990 	COPY_CAPS(nbm);
3991 	COPY_CAPS(link);
3992 	COPY_CAPS(switch);
3993 	COPY_CAPS(nic);
3994 	COPY_CAPS(toe);
3995 	COPY_CAPS(rdma);
3996 	COPY_CAPS(crypto);
3997 	COPY_CAPS(iscsi);
3998 	COPY_CAPS(fcoe);
3999 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4000 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4001 retry:
4002 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
4003 	if (rc != 0 && fallback) {
4004 		device_printf(sc->dev,
4005 		    "failed (%d) to configure card with \"%s\" profile, "
4006 		    "will fall back to a basic configuration and retry.\n",
4007 		    rc, cfg_file);
4008 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
4009 		bzero(&caps_allowed, sizeof(caps_allowed));
4010 		COPY_CAPS(nbm);
4011 		COPY_CAPS(link);
4012 		COPY_CAPS(switch);
4013 		COPY_CAPS(nic);
4014 		fallback = false;
4015 		goto retry;
4016 	}
4017 #undef COPY_CAPS
4018 	return (rc);
4019 }
4020 
4021 /*
4022  * Retrieve parameters that are needed (or nice to have) very early.
4023  */
4024 static int
4025 get_params__pre_init(struct adapter *sc)
4026 {
4027 	int rc;
4028 	uint32_t param[2], val[2];
4029 
4030 	t4_get_version_info(sc);
4031 
4032 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
4033 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
4034 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
4035 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
4036 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
4037 
4038 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
4039 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
4040 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
4041 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
4042 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
4043 
4044 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
4045 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
4046 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
4047 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
4048 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
4049 
4050 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
4051 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
4052 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
4053 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
4054 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
4055 
4056 	param[0] = FW_PARAM_DEV(PORTVEC);
4057 	param[1] = FW_PARAM_DEV(CCLK);
4058 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4059 	if (rc != 0) {
4060 		device_printf(sc->dev,
4061 		    "failed to query parameters (pre_init): %d.\n", rc);
4062 		return (rc);
4063 	}
4064 
4065 	sc->params.portvec = val[0];
4066 	sc->params.nports = bitcount32(val[0]);
4067 	sc->params.vpd.cclk = val[1];
4068 
4069 	/* Read device log parameters. */
4070 	rc = -t4_init_devlog_params(sc, 1);
4071 	if (rc == 0)
4072 		fixup_devlog_params(sc);
4073 	else {
4074 		device_printf(sc->dev,
4075 		    "failed to get devlog parameters: %d.\n", rc);
4076 		rc = 0;	/* devlog isn't critical for device operation */
4077 	}
4078 
4079 	return (rc);
4080 }
4081 
4082 /*
4083  * Any params that need to be set before FW_INITIALIZE.
4084  */
4085 static int
4086 set_params__pre_init(struct adapter *sc)
4087 {
4088 	int rc = 0;
4089 	uint32_t param, val;
4090 
4091 	if (chip_id(sc) >= CHELSIO_T6) {
4092 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
4093 		val = 1;
4094 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4095 		/* firmwares < 1.20.1.0 do not have this param. */
4096 		if (rc == FW_EINVAL && sc->params.fw_vers <
4097 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4098 		    V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) {
4099 			rc = 0;
4100 		}
4101 		if (rc != 0) {
4102 			device_printf(sc->dev,
4103 			    "failed to enable high priority filters :%d.\n",
4104 			    rc);
4105 		}
4106 	}
4107 
4108 	/* Enable opaque VIIDs with firmwares that support it. */
4109 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4110 	val = 1;
4111 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4112 	if (rc == 0 && val == 1)
4113 		sc->params.viid_smt_extn_support = true;
4114 	else
4115 		sc->params.viid_smt_extn_support = false;
4116 
4117 	return (rc);
4118 }
4119 
4120 /*
4121  * Retrieve various parameters that are of interest to the driver.  The device
4122  * has been initialized by the firmware at this point.
4123  */
4124 static int
4125 get_params__post_init(struct adapter *sc)
4126 {
4127 	int rc;
4128 	uint32_t param[7], val[7];
4129 	struct fw_caps_config_cmd caps;
4130 
4131 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
4132 	param[1] = FW_PARAM_PFVF(EQ_START);
4133 	param[2] = FW_PARAM_PFVF(FILTER_START);
4134 	param[3] = FW_PARAM_PFVF(FILTER_END);
4135 	param[4] = FW_PARAM_PFVF(L2T_START);
4136 	param[5] = FW_PARAM_PFVF(L2T_END);
4137 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4138 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
4139 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
4140 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
4141 	if (rc != 0) {
4142 		device_printf(sc->dev,
4143 		    "failed to query parameters (post_init): %d.\n", rc);
4144 		return (rc);
4145 	}
4146 
4147 	sc->sge.iq_start = val[0];
4148 	sc->sge.eq_start = val[1];
4149 	if ((int)val[3] > (int)val[2]) {
4150 		sc->tids.ftid_base = val[2];
4151 		sc->tids.ftid_end = val[3];
4152 		sc->tids.nftids = val[3] - val[2] + 1;
4153 	}
4154 	sc->vres.l2t.start = val[4];
4155 	sc->vres.l2t.size = val[5] - val[4] + 1;
4156 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
4157 	    ("%s: L2 table size (%u) larger than expected (%u)",
4158 	    __func__, sc->vres.l2t.size, L2T_SIZE));
4159 	sc->params.core_vdd = val[6];
4160 
4161 	if (chip_id(sc) >= CHELSIO_T6) {
4162 
4163 		sc->tids.tid_base = t4_read_reg(sc,
4164 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
4165 
4166 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
4167 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
4168 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4169 		if (rc != 0) {
4170 			device_printf(sc->dev,
4171 			   "failed to query hpfilter parameters: %d.\n", rc);
4172 			return (rc);
4173 		}
4174 		if ((int)val[1] > (int)val[0]) {
4175 			sc->tids.hpftid_base = val[0];
4176 			sc->tids.hpftid_end = val[1];
4177 			sc->tids.nhpftids = val[1] - val[0] + 1;
4178 
4179 			/*
4180 			 * These should go off if the layout changes and the
4181 			 * driver needs to catch up.
4182 			 */
4183 			MPASS(sc->tids.hpftid_base == 0);
4184 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
4185 		}
4186 	}
4187 
4188 	/*
4189 	 * MPSBGMAP is queried separately because only recent firmwares support
4190 	 * it as a parameter and we don't want the compound query above to fail
4191 	 * on older firmwares.
4192 	 */
4193 	param[0] = FW_PARAM_DEV(MPSBGMAP);
4194 	val[0] = 0;
4195 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4196 	if (rc == 0)
4197 		sc->params.mps_bg_map = val[0];
4198 	else
4199 		sc->params.mps_bg_map = 0;
4200 
4201 	/*
4202 	 * Determine whether the firmware supports the filter2 work request.
4203 	 * This is queried separately for the same reason as MPSBGMAP above.
4204 	 */
4205 	param[0] = FW_PARAM_DEV(FILTER2_WR);
4206 	val[0] = 0;
4207 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4208 	if (rc == 0)
4209 		sc->params.filter2_wr_support = val[0] != 0;
4210 	else
4211 		sc->params.filter2_wr_support = 0;
4212 
4213 	/*
4214 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
4215 	 * This is queried separately for the same reason as other params above.
4216 	 */
4217 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4218 	val[0] = 0;
4219 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4220 	if (rc == 0)
4221 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
4222 	else
4223 		sc->params.ulptx_memwrite_dsgl = false;
4224 
4225 	/* get capabilites */
4226 	bzero(&caps, sizeof(caps));
4227 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4228 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4229 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4230 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4231 	if (rc != 0) {
4232 		device_printf(sc->dev,
4233 		    "failed to get card capabilities: %d.\n", rc);
4234 		return (rc);
4235 	}
4236 
4237 #define READ_CAPS(x) do { \
4238 	sc->x = htobe16(caps.x); \
4239 } while (0)
4240 	READ_CAPS(nbmcaps);
4241 	READ_CAPS(linkcaps);
4242 	READ_CAPS(switchcaps);
4243 	READ_CAPS(niccaps);
4244 	READ_CAPS(toecaps);
4245 	READ_CAPS(rdmacaps);
4246 	READ_CAPS(cryptocaps);
4247 	READ_CAPS(iscsicaps);
4248 	READ_CAPS(fcoecaps);
4249 
4250 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
4251 		MPASS(chip_id(sc) > CHELSIO_T4);
4252 		MPASS(sc->toecaps == 0);
4253 		sc->toecaps = 0;
4254 
4255 		param[0] = FW_PARAM_DEV(NTID);
4256 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4257 		if (rc != 0) {
4258 			device_printf(sc->dev,
4259 			    "failed to query HASHFILTER parameters: %d.\n", rc);
4260 			return (rc);
4261 		}
4262 		sc->tids.ntids = val[0];
4263 		if (sc->params.fw_vers <
4264 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4265 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4266 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4267 			sc->tids.ntids -= sc->tids.nhpftids;
4268 		}
4269 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4270 		sc->params.hash_filter = 1;
4271 	}
4272 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
4273 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
4274 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
4275 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4276 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
4277 		if (rc != 0) {
4278 			device_printf(sc->dev,
4279 			    "failed to query NIC parameters: %d.\n", rc);
4280 			return (rc);
4281 		}
4282 		if ((int)val[1] > (int)val[0]) {
4283 			sc->tids.etid_base = val[0];
4284 			sc->tids.etid_end = val[1];
4285 			sc->tids.netids = val[1] - val[0] + 1;
4286 			sc->params.eo_wr_cred = val[2];
4287 			sc->params.ethoffload = 1;
4288 		}
4289 	}
4290 	if (sc->toecaps) {
4291 		/* query offload-related parameters */
4292 		param[0] = FW_PARAM_DEV(NTID);
4293 		param[1] = FW_PARAM_PFVF(SERVER_START);
4294 		param[2] = FW_PARAM_PFVF(SERVER_END);
4295 		param[3] = FW_PARAM_PFVF(TDDP_START);
4296 		param[4] = FW_PARAM_PFVF(TDDP_END);
4297 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4298 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4299 		if (rc != 0) {
4300 			device_printf(sc->dev,
4301 			    "failed to query TOE parameters: %d.\n", rc);
4302 			return (rc);
4303 		}
4304 		sc->tids.ntids = val[0];
4305 		if (sc->params.fw_vers <
4306 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4307 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4308 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4309 			sc->tids.ntids -= sc->tids.nhpftids;
4310 		}
4311 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4312 		if ((int)val[2] > (int)val[1]) {
4313 			sc->tids.stid_base = val[1];
4314 			sc->tids.nstids = val[2] - val[1] + 1;
4315 		}
4316 		sc->vres.ddp.start = val[3];
4317 		sc->vres.ddp.size = val[4] - val[3] + 1;
4318 		sc->params.ofldq_wr_cred = val[5];
4319 		sc->params.offload = 1;
4320 	} else {
4321 		/*
4322 		 * The firmware attempts memfree TOE configuration for -SO cards
4323 		 * and will report toecaps=0 if it runs out of resources (this
4324 		 * depends on the config file).  It may not report 0 for other
4325 		 * capabilities dependent on the TOE in this case.  Set them to
4326 		 * 0 here so that the driver doesn't bother tracking resources
4327 		 * that will never be used.
4328 		 */
4329 		sc->iscsicaps = 0;
4330 		sc->rdmacaps = 0;
4331 	}
4332 	if (sc->rdmacaps) {
4333 		param[0] = FW_PARAM_PFVF(STAG_START);
4334 		param[1] = FW_PARAM_PFVF(STAG_END);
4335 		param[2] = FW_PARAM_PFVF(RQ_START);
4336 		param[3] = FW_PARAM_PFVF(RQ_END);
4337 		param[4] = FW_PARAM_PFVF(PBL_START);
4338 		param[5] = FW_PARAM_PFVF(PBL_END);
4339 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4340 		if (rc != 0) {
4341 			device_printf(sc->dev,
4342 			    "failed to query RDMA parameters(1): %d.\n", rc);
4343 			return (rc);
4344 		}
4345 		sc->vres.stag.start = val[0];
4346 		sc->vres.stag.size = val[1] - val[0] + 1;
4347 		sc->vres.rq.start = val[2];
4348 		sc->vres.rq.size = val[3] - val[2] + 1;
4349 		sc->vres.pbl.start = val[4];
4350 		sc->vres.pbl.size = val[5] - val[4] + 1;
4351 
4352 		param[0] = FW_PARAM_PFVF(SQRQ_START);
4353 		param[1] = FW_PARAM_PFVF(SQRQ_END);
4354 		param[2] = FW_PARAM_PFVF(CQ_START);
4355 		param[3] = FW_PARAM_PFVF(CQ_END);
4356 		param[4] = FW_PARAM_PFVF(OCQ_START);
4357 		param[5] = FW_PARAM_PFVF(OCQ_END);
4358 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4359 		if (rc != 0) {
4360 			device_printf(sc->dev,
4361 			    "failed to query RDMA parameters(2): %d.\n", rc);
4362 			return (rc);
4363 		}
4364 		sc->vres.qp.start = val[0];
4365 		sc->vres.qp.size = val[1] - val[0] + 1;
4366 		sc->vres.cq.start = val[2];
4367 		sc->vres.cq.size = val[3] - val[2] + 1;
4368 		sc->vres.ocq.start = val[4];
4369 		sc->vres.ocq.size = val[5] - val[4] + 1;
4370 
4371 		param[0] = FW_PARAM_PFVF(SRQ_START);
4372 		param[1] = FW_PARAM_PFVF(SRQ_END);
4373 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
4374 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4375 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
4376 		if (rc != 0) {
4377 			device_printf(sc->dev,
4378 			    "failed to query RDMA parameters(3): %d.\n", rc);
4379 			return (rc);
4380 		}
4381 		sc->vres.srq.start = val[0];
4382 		sc->vres.srq.size = val[1] - val[0] + 1;
4383 		sc->params.max_ordird_qp = val[2];
4384 		sc->params.max_ird_adapter = val[3];
4385 	}
4386 	if (sc->iscsicaps) {
4387 		param[0] = FW_PARAM_PFVF(ISCSI_START);
4388 		param[1] = FW_PARAM_PFVF(ISCSI_END);
4389 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4390 		if (rc != 0) {
4391 			device_printf(sc->dev,
4392 			    "failed to query iSCSI parameters: %d.\n", rc);
4393 			return (rc);
4394 		}
4395 		sc->vres.iscsi.start = val[0];
4396 		sc->vres.iscsi.size = val[1] - val[0] + 1;
4397 	}
4398 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
4399 		param[0] = FW_PARAM_PFVF(TLS_START);
4400 		param[1] = FW_PARAM_PFVF(TLS_END);
4401 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4402 		if (rc != 0) {
4403 			device_printf(sc->dev,
4404 			    "failed to query TLS parameters: %d.\n", rc);
4405 			return (rc);
4406 		}
4407 		sc->vres.key.start = val[0];
4408 		sc->vres.key.size = val[1] - val[0] + 1;
4409 	}
4410 
4411 	t4_init_sge_params(sc);
4412 
4413 	/*
4414 	 * We've got the params we wanted to query via the firmware.  Now grab
4415 	 * some others directly from the chip.
4416 	 */
4417 	rc = t4_read_chip_settings(sc);
4418 
4419 	return (rc);
4420 }
4421 
4422 static int
4423 set_params__post_init(struct adapter *sc)
4424 {
4425 	uint32_t param, val;
4426 #ifdef TCP_OFFLOAD
4427 	int i, v, shift;
4428 #endif
4429 
4430 	/* ask for encapsulated CPLs */
4431 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4432 	val = 1;
4433 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4434 
4435 	/* Enable 32b port caps if the firmware supports it. */
4436 	param = FW_PARAM_PFVF(PORT_CAPS32);
4437 	val = 1;
4438 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
4439 		sc->params.port_caps32 = 1;
4440 
4441 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
4442 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
4443 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
4444 	    V_MASKFILTER(val - 1));
4445 
4446 #ifdef TCP_OFFLOAD
4447 	/*
4448 	 * Override the TOE timers with user provided tunables.  This is not the
4449 	 * recommended way to change the timers (the firmware config file is) so
4450 	 * these tunables are not documented.
4451 	 *
4452 	 * All the timer tunables are in microseconds.
4453 	 */
4454 	if (t4_toe_keepalive_idle != 0) {
4455 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
4456 		v &= M_KEEPALIVEIDLE;
4457 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
4458 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
4459 	}
4460 	if (t4_toe_keepalive_interval != 0) {
4461 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
4462 		v &= M_KEEPALIVEINTVL;
4463 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
4464 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
4465 	}
4466 	if (t4_toe_keepalive_count != 0) {
4467 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
4468 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4469 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
4470 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
4471 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
4472 	}
4473 	if (t4_toe_rexmt_min != 0) {
4474 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
4475 		v &= M_RXTMIN;
4476 		t4_set_reg_field(sc, A_TP_RXT_MIN,
4477 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
4478 	}
4479 	if (t4_toe_rexmt_max != 0) {
4480 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
4481 		v &= M_RXTMAX;
4482 		t4_set_reg_field(sc, A_TP_RXT_MAX,
4483 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
4484 	}
4485 	if (t4_toe_rexmt_count != 0) {
4486 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
4487 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4488 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
4489 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
4490 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
4491 	}
4492 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
4493 		if (t4_toe_rexmt_backoff[i] != -1) {
4494 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
4495 			shift = (i & 3) << 3;
4496 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
4497 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
4498 		}
4499 	}
4500 #endif
4501 	return (0);
4502 }
4503 
4504 #undef FW_PARAM_PFVF
4505 #undef FW_PARAM_DEV
4506 
4507 static void
4508 t4_set_desc(struct adapter *sc)
4509 {
4510 	char buf[128];
4511 	struct adapter_params *p = &sc->params;
4512 
4513 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
4514 
4515 	device_set_desc_copy(sc->dev, buf);
4516 }
4517 
4518 static inline void
4519 ifmedia_add4(struct ifmedia *ifm, int m)
4520 {
4521 
4522 	ifmedia_add(ifm, m, 0, NULL);
4523 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
4524 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
4525 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
4526 }
4527 
4528 /*
4529  * This is the selected media, which is not quite the same as the active media.
4530  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
4531  * and active are not the same, and "media: Ethernet selected" otherwise.
4532  */
4533 static void
4534 set_current_media(struct port_info *pi)
4535 {
4536 	struct link_config *lc;
4537 	struct ifmedia *ifm;
4538 	int mword;
4539 	u_int speed;
4540 
4541 	PORT_LOCK_ASSERT_OWNED(pi);
4542 
4543 	/* Leave current media alone if it's already set to IFM_NONE. */
4544 	ifm = &pi->media;
4545 	if (ifm->ifm_cur != NULL &&
4546 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
4547 		return;
4548 
4549 	lc = &pi->link_cfg;
4550 	if (lc->requested_aneg != AUTONEG_DISABLE &&
4551 	    lc->supported & FW_PORT_CAP32_ANEG) {
4552 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
4553 		return;
4554 	}
4555 	mword = IFM_ETHER | IFM_FDX;
4556 	if (lc->requested_fc & PAUSE_TX)
4557 		mword |= IFM_ETH_TXPAUSE;
4558 	if (lc->requested_fc & PAUSE_RX)
4559 		mword |= IFM_ETH_RXPAUSE;
4560 	if (lc->requested_speed == 0)
4561 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
4562 	else
4563 		speed = lc->requested_speed;
4564 	mword |= port_mword(pi, speed_to_fwcap(speed));
4565 	ifmedia_set(ifm, mword);
4566 }
4567 
4568 /*
4569  * Returns true if the ifmedia list for the port cannot change.
4570  */
4571 static bool
4572 fixed_ifmedia(struct port_info *pi)
4573 {
4574 
4575 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
4576 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
4577 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
4578 	    pi->port_type == FW_PORT_TYPE_KX4 ||
4579 	    pi->port_type == FW_PORT_TYPE_KX ||
4580 	    pi->port_type == FW_PORT_TYPE_KR ||
4581 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
4582 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
4583 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
4584 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
4585 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
4586 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
4587 }
4588 
4589 static void
4590 build_medialist(struct port_info *pi)
4591 {
4592 	uint32_t ss, speed;
4593 	int unknown, mword, bit;
4594 	struct link_config *lc;
4595 	struct ifmedia *ifm;
4596 
4597 	PORT_LOCK_ASSERT_OWNED(pi);
4598 
4599 	if (pi->flags & FIXED_IFMEDIA)
4600 		return;
4601 
4602 	/*
4603 	 * Rebuild the ifmedia list.
4604 	 */
4605 	ifm = &pi->media;
4606 	ifmedia_removeall(ifm);
4607 	lc = &pi->link_cfg;
4608 	ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */
4609 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
4610 		MPASS(ss != 0);
4611 no_media:
4612 		MPASS(LIST_EMPTY(&ifm->ifm_list));
4613 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
4614 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
4615 		return;
4616 	}
4617 
4618 	unknown = 0;
4619 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
4620 		speed = 1 << bit;
4621 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
4622 		if (ss & speed) {
4623 			mword = port_mword(pi, speed);
4624 			if (mword == IFM_NONE) {
4625 				goto no_media;
4626 			} else if (mword == IFM_UNKNOWN)
4627 				unknown++;
4628 			else
4629 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
4630 		}
4631 	}
4632 	if (unknown > 0) /* Add one unknown for all unknown media types. */
4633 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
4634 	if (lc->supported & FW_PORT_CAP32_ANEG)
4635 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
4636 
4637 	set_current_media(pi);
4638 }
4639 
4640 /*
4641  * Initialize the requested fields in the link config based on driver tunables.
4642  */
4643 static void
4644 init_link_config(struct port_info *pi)
4645 {
4646 	struct link_config *lc = &pi->link_cfg;
4647 
4648 	PORT_LOCK_ASSERT_OWNED(pi);
4649 
4650 	lc->requested_speed = 0;
4651 
4652 	if (t4_autoneg == 0)
4653 		lc->requested_aneg = AUTONEG_DISABLE;
4654 	else if (t4_autoneg == 1)
4655 		lc->requested_aneg = AUTONEG_ENABLE;
4656 	else
4657 		lc->requested_aneg = AUTONEG_AUTO;
4658 
4659 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
4660 	    PAUSE_AUTONEG);
4661 
4662 	if (t4_fec == -1 || t4_fec & FEC_AUTO)
4663 		lc->requested_fec = FEC_AUTO;
4664 	else {
4665 		lc->requested_fec = FEC_NONE;
4666 		if (t4_fec & FEC_RS)
4667 			lc->requested_fec |= FEC_RS;
4668 		if (t4_fec & FEC_BASER_RS)
4669 			lc->requested_fec |= FEC_BASER_RS;
4670 	}
4671 }
4672 
4673 /*
4674  * Makes sure that all requested settings comply with what's supported by the
4675  * port.  Returns the number of settings that were invalid and had to be fixed.
4676  */
4677 static int
4678 fixup_link_config(struct port_info *pi)
4679 {
4680 	int n = 0;
4681 	struct link_config *lc = &pi->link_cfg;
4682 	uint32_t fwspeed;
4683 
4684 	PORT_LOCK_ASSERT_OWNED(pi);
4685 
4686 	/* Speed (when not autonegotiating) */
4687 	if (lc->requested_speed != 0) {
4688 		fwspeed = speed_to_fwcap(lc->requested_speed);
4689 		if ((fwspeed & lc->supported) == 0) {
4690 			n++;
4691 			lc->requested_speed = 0;
4692 		}
4693 	}
4694 
4695 	/* Link autonegotiation */
4696 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
4697 	    lc->requested_aneg == AUTONEG_DISABLE ||
4698 	    lc->requested_aneg == AUTONEG_AUTO);
4699 	if (lc->requested_aneg == AUTONEG_ENABLE &&
4700 	    !(lc->supported & FW_PORT_CAP32_ANEG)) {
4701 		n++;
4702 		lc->requested_aneg = AUTONEG_AUTO;
4703 	}
4704 
4705 	/* Flow control */
4706 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
4707 	if (lc->requested_fc & PAUSE_TX &&
4708 	    !(lc->supported & FW_PORT_CAP32_FC_TX)) {
4709 		n++;
4710 		lc->requested_fc &= ~PAUSE_TX;
4711 	}
4712 	if (lc->requested_fc & PAUSE_RX &&
4713 	    !(lc->supported & FW_PORT_CAP32_FC_RX)) {
4714 		n++;
4715 		lc->requested_fc &= ~PAUSE_RX;
4716 	}
4717 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
4718 	    !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) {
4719 		n++;
4720 		lc->requested_fc |= PAUSE_AUTONEG;
4721 	}
4722 
4723 	/* FEC */
4724 	if ((lc->requested_fec & FEC_RS &&
4725 	    !(lc->supported & FW_PORT_CAP32_FEC_RS)) ||
4726 	    (lc->requested_fec & FEC_BASER_RS &&
4727 	    !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) {
4728 		n++;
4729 		lc->requested_fec = FEC_AUTO;
4730 	}
4731 
4732 	return (n);
4733 }
4734 
4735 /*
4736  * Apply the requested L1 settings, which are expected to be valid, to the
4737  * hardware.
4738  */
4739 static int
4740 apply_link_config(struct port_info *pi)
4741 {
4742 	struct adapter *sc = pi->adapter;
4743 	struct link_config *lc = &pi->link_cfg;
4744 	int rc;
4745 
4746 #ifdef INVARIANTS
4747 	ASSERT_SYNCHRONIZED_OP(sc);
4748 	PORT_LOCK_ASSERT_OWNED(pi);
4749 
4750 	if (lc->requested_aneg == AUTONEG_ENABLE)
4751 		MPASS(lc->supported & FW_PORT_CAP32_ANEG);
4752 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4753 		MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE);
4754 	if (lc->requested_fc & PAUSE_TX)
4755 		MPASS(lc->supported & FW_PORT_CAP32_FC_TX);
4756 	if (lc->requested_fc & PAUSE_RX)
4757 		MPASS(lc->supported & FW_PORT_CAP32_FC_RX);
4758 	if (lc->requested_fec & FEC_RS)
4759 		MPASS(lc->supported & FW_PORT_CAP32_FEC_RS);
4760 	if (lc->requested_fec & FEC_BASER_RS)
4761 		MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS);
4762 #endif
4763 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4764 	if (rc != 0) {
4765 		/* Don't complain if the VF driver gets back an EPERM. */
4766 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
4767 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4768 	} else {
4769 		/*
4770 		 * An L1_CFG will almost always result in a link-change event if
4771 		 * the link is up, and the driver will refresh the actual
4772 		 * fec/fc/etc. when the notification is processed.  If the link
4773 		 * is down then the actual settings are meaningless.
4774 		 *
4775 		 * This takes care of the case where a change in the L1 settings
4776 		 * may not result in a notification.
4777 		 */
4778 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
4779 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
4780 	}
4781 	return (rc);
4782 }
4783 
4784 #define FW_MAC_EXACT_CHUNK	7
4785 
4786 /*
4787  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4788  * indicates which parameters should be programmed (the rest are left alone).
4789  */
4790 int
4791 update_mac_settings(struct ifnet *ifp, int flags)
4792 {
4793 	int rc = 0;
4794 	struct vi_info *vi = ifp->if_softc;
4795 	struct port_info *pi = vi->pi;
4796 	struct adapter *sc = pi->adapter;
4797 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4798 
4799 	ASSERT_SYNCHRONIZED_OP(sc);
4800 	KASSERT(flags, ("%s: not told what to update.", __func__));
4801 
4802 	if (flags & XGMAC_MTU)
4803 		mtu = ifp->if_mtu;
4804 
4805 	if (flags & XGMAC_PROMISC)
4806 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4807 
4808 	if (flags & XGMAC_ALLMULTI)
4809 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4810 
4811 	if (flags & XGMAC_VLANEX)
4812 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4813 
4814 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4815 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4816 		    allmulti, 1, vlanex, false);
4817 		if (rc) {
4818 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4819 			    rc);
4820 			return (rc);
4821 		}
4822 	}
4823 
4824 	if (flags & XGMAC_UCADDR) {
4825 		uint8_t ucaddr[ETHER_ADDR_LEN];
4826 
4827 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4828 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4829 		    ucaddr, true, &vi->smt_idx);
4830 		if (rc < 0) {
4831 			rc = -rc;
4832 			if_printf(ifp, "change_mac failed: %d\n", rc);
4833 			return (rc);
4834 		} else {
4835 			vi->xact_addr_filt = rc;
4836 			rc = 0;
4837 		}
4838 	}
4839 
4840 	if (flags & XGMAC_MCADDRS) {
4841 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4842 		int del = 1;
4843 		uint64_t hash = 0;
4844 		struct ifmultiaddr *ifma;
4845 		int i = 0, j;
4846 
4847 		if_maddr_rlock(ifp);
4848 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4849 			if (ifma->ifma_addr->sa_family != AF_LINK)
4850 				continue;
4851 			mcaddr[i] =
4852 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4853 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4854 			i++;
4855 
4856 			if (i == FW_MAC_EXACT_CHUNK) {
4857 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4858 				    del, i, mcaddr, NULL, &hash, 0);
4859 				if (rc < 0) {
4860 					rc = -rc;
4861 					for (j = 0; j < i; j++) {
4862 						if_printf(ifp,
4863 						    "failed to add mc address"
4864 						    " %02x:%02x:%02x:"
4865 						    "%02x:%02x:%02x rc=%d\n",
4866 						    mcaddr[j][0], mcaddr[j][1],
4867 						    mcaddr[j][2], mcaddr[j][3],
4868 						    mcaddr[j][4], mcaddr[j][5],
4869 						    rc);
4870 					}
4871 					goto mcfail;
4872 				}
4873 				del = 0;
4874 				i = 0;
4875 			}
4876 		}
4877 		if (i > 0) {
4878 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4879 			    mcaddr, NULL, &hash, 0);
4880 			if (rc < 0) {
4881 				rc = -rc;
4882 				for (j = 0; j < i; j++) {
4883 					if_printf(ifp,
4884 					    "failed to add mc address"
4885 					    " %02x:%02x:%02x:"
4886 					    "%02x:%02x:%02x rc=%d\n",
4887 					    mcaddr[j][0], mcaddr[j][1],
4888 					    mcaddr[j][2], mcaddr[j][3],
4889 					    mcaddr[j][4], mcaddr[j][5],
4890 					    rc);
4891 				}
4892 				goto mcfail;
4893 			}
4894 		}
4895 
4896 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4897 		if (rc != 0)
4898 			if_printf(ifp, "failed to set mc address hash: %d", rc);
4899 mcfail:
4900 		if_maddr_runlock(ifp);
4901 	}
4902 
4903 	return (rc);
4904 }
4905 
4906 /*
4907  * {begin|end}_synchronized_op must be called from the same thread.
4908  */
4909 int
4910 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4911     char *wmesg)
4912 {
4913 	int rc, pri;
4914 
4915 #ifdef WITNESS
4916 	/* the caller thinks it's ok to sleep, but is it really? */
4917 	if (flags & SLEEP_OK)
4918 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4919 		    "begin_synchronized_op");
4920 #endif
4921 
4922 	if (INTR_OK)
4923 		pri = PCATCH;
4924 	else
4925 		pri = 0;
4926 
4927 	ADAPTER_LOCK(sc);
4928 	for (;;) {
4929 
4930 		if (vi && IS_DOOMED(vi)) {
4931 			rc = ENXIO;
4932 			goto done;
4933 		}
4934 
4935 		if (!IS_BUSY(sc)) {
4936 			rc = 0;
4937 			break;
4938 		}
4939 
4940 		if (!(flags & SLEEP_OK)) {
4941 			rc = EBUSY;
4942 			goto done;
4943 		}
4944 
4945 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4946 			rc = EINTR;
4947 			goto done;
4948 		}
4949 	}
4950 
4951 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4952 	SET_BUSY(sc);
4953 #ifdef INVARIANTS
4954 	sc->last_op = wmesg;
4955 	sc->last_op_thr = curthread;
4956 	sc->last_op_flags = flags;
4957 #endif
4958 
4959 done:
4960 	if (!(flags & HOLD_LOCK) || rc)
4961 		ADAPTER_UNLOCK(sc);
4962 
4963 	return (rc);
4964 }
4965 
4966 /*
4967  * Tell if_ioctl and if_init that the VI is going away.  This is
4968  * special variant of begin_synchronized_op and must be paired with a
4969  * call to end_synchronized_op.
4970  */
4971 void
4972 doom_vi(struct adapter *sc, struct vi_info *vi)
4973 {
4974 
4975 	ADAPTER_LOCK(sc);
4976 	SET_DOOMED(vi);
4977 	wakeup(&sc->flags);
4978 	while (IS_BUSY(sc))
4979 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4980 	SET_BUSY(sc);
4981 #ifdef INVARIANTS
4982 	sc->last_op = "t4detach";
4983 	sc->last_op_thr = curthread;
4984 	sc->last_op_flags = 0;
4985 #endif
4986 	ADAPTER_UNLOCK(sc);
4987 }
4988 
4989 /*
4990  * {begin|end}_synchronized_op must be called from the same thread.
4991  */
4992 void
4993 end_synchronized_op(struct adapter *sc, int flags)
4994 {
4995 
4996 	if (flags & LOCK_HELD)
4997 		ADAPTER_LOCK_ASSERT_OWNED(sc);
4998 	else
4999 		ADAPTER_LOCK(sc);
5000 
5001 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
5002 	CLR_BUSY(sc);
5003 	wakeup(&sc->flags);
5004 	ADAPTER_UNLOCK(sc);
5005 }
5006 
5007 static int
5008 cxgbe_init_synchronized(struct vi_info *vi)
5009 {
5010 	struct port_info *pi = vi->pi;
5011 	struct adapter *sc = pi->adapter;
5012 	struct ifnet *ifp = vi->ifp;
5013 	int rc = 0, i;
5014 	struct sge_txq *txq;
5015 
5016 	ASSERT_SYNCHRONIZED_OP(sc);
5017 
5018 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5019 		return (0);	/* already running */
5020 
5021 	if (!(sc->flags & FULL_INIT_DONE) &&
5022 	    ((rc = adapter_full_init(sc)) != 0))
5023 		return (rc);	/* error message displayed already */
5024 
5025 	if (!(vi->flags & VI_INIT_DONE) &&
5026 	    ((rc = vi_full_init(vi)) != 0))
5027 		return (rc); /* error message displayed already */
5028 
5029 	rc = update_mac_settings(ifp, XGMAC_ALL);
5030 	if (rc)
5031 		goto done;	/* error message displayed already */
5032 
5033 	PORT_LOCK(pi);
5034 	if (pi->up_vis == 0) {
5035 		t4_update_port_info(pi);
5036 		fixup_link_config(pi);
5037 		build_medialist(pi);
5038 		apply_link_config(pi);
5039 	}
5040 
5041 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
5042 	if (rc != 0) {
5043 		if_printf(ifp, "enable_vi failed: %d\n", rc);
5044 		PORT_UNLOCK(pi);
5045 		goto done;
5046 	}
5047 
5048 	/*
5049 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
5050 	 * if this changes.
5051 	 */
5052 
5053 	for_each_txq(vi, i, txq) {
5054 		TXQ_LOCK(txq);
5055 		txq->eq.flags |= EQ_ENABLED;
5056 		TXQ_UNLOCK(txq);
5057 	}
5058 
5059 	/*
5060 	 * The first iq of the first port to come up is used for tracing.
5061 	 */
5062 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
5063 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
5064 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
5065 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
5066 		    V_QUEUENUMBER(sc->traceq));
5067 		pi->flags |= HAS_TRACEQ;
5068 	}
5069 
5070 	/* all ok */
5071 	pi->up_vis++;
5072 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5073 
5074 	if (pi->nvi > 1 || sc->flags & IS_VF)
5075 		callout_reset(&vi->tick, hz, vi_tick, vi);
5076 	else
5077 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
5078 	if (pi->link_cfg.link_ok)
5079 		t4_os_link_changed(pi);
5080 	PORT_UNLOCK(pi);
5081 done:
5082 	if (rc != 0)
5083 		cxgbe_uninit_synchronized(vi);
5084 
5085 	return (rc);
5086 }
5087 
5088 /*
5089  * Idempotent.
5090  */
5091 static int
5092 cxgbe_uninit_synchronized(struct vi_info *vi)
5093 {
5094 	struct port_info *pi = vi->pi;
5095 	struct adapter *sc = pi->adapter;
5096 	struct ifnet *ifp = vi->ifp;
5097 	int rc, i;
5098 	struct sge_txq *txq;
5099 
5100 	ASSERT_SYNCHRONIZED_OP(sc);
5101 
5102 	if (!(vi->flags & VI_INIT_DONE)) {
5103 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5104 			KASSERT(0, ("uninited VI is running"));
5105 			if_printf(ifp, "uninited VI with running ifnet.  "
5106 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
5107 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
5108 			    ifp->if_drv_flags);
5109 		}
5110 		return (0);
5111 	}
5112 
5113 	/*
5114 	 * Disable the VI so that all its data in either direction is discarded
5115 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
5116 	 * tick) intact as the TP can deliver negative advice or data that it's
5117 	 * holding in its RAM (for an offloaded connection) even after the VI is
5118 	 * disabled.
5119 	 */
5120 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
5121 	if (rc) {
5122 		if_printf(ifp, "disable_vi failed: %d\n", rc);
5123 		return (rc);
5124 	}
5125 
5126 	for_each_txq(vi, i, txq) {
5127 		TXQ_LOCK(txq);
5128 		txq->eq.flags &= ~EQ_ENABLED;
5129 		TXQ_UNLOCK(txq);
5130 	}
5131 
5132 	PORT_LOCK(pi);
5133 	if (pi->nvi > 1 || sc->flags & IS_VF)
5134 		callout_stop(&vi->tick);
5135 	else
5136 		callout_stop(&pi->tick);
5137 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5138 		PORT_UNLOCK(pi);
5139 		return (0);
5140 	}
5141 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5142 	pi->up_vis--;
5143 	if (pi->up_vis > 0) {
5144 		PORT_UNLOCK(pi);
5145 		return (0);
5146 	}
5147 
5148 	pi->link_cfg.link_ok = false;
5149 	pi->link_cfg.speed = 0;
5150 	pi->link_cfg.link_down_rc = 255;
5151 	t4_os_link_changed(pi);
5152 	PORT_UNLOCK(pi);
5153 
5154 	return (0);
5155 }
5156 
5157 /*
5158  * It is ok for this function to fail midway and return right away.  t4_detach
5159  * will walk the entire sc->irq list and clean up whatever is valid.
5160  */
5161 int
5162 t4_setup_intr_handlers(struct adapter *sc)
5163 {
5164 	int rc, rid, p, q, v;
5165 	char s[8];
5166 	struct irq *irq;
5167 	struct port_info *pi;
5168 	struct vi_info *vi;
5169 	struct sge *sge = &sc->sge;
5170 	struct sge_rxq *rxq;
5171 #ifdef TCP_OFFLOAD
5172 	struct sge_ofld_rxq *ofld_rxq;
5173 #endif
5174 #ifdef DEV_NETMAP
5175 	struct sge_nm_rxq *nm_rxq;
5176 #endif
5177 #ifdef RSS
5178 	int nbuckets = rss_getnumbuckets();
5179 #endif
5180 
5181 	/*
5182 	 * Setup interrupts.
5183 	 */
5184 	irq = &sc->irq[0];
5185 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
5186 	if (forwarding_intr_to_fwq(sc))
5187 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
5188 
5189 	/* Multiple interrupts. */
5190 	if (sc->flags & IS_VF)
5191 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
5192 		    ("%s: too few intr.", __func__));
5193 	else
5194 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
5195 		    ("%s: too few intr.", __func__));
5196 
5197 	/* The first one is always error intr on PFs */
5198 	if (!(sc->flags & IS_VF)) {
5199 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
5200 		if (rc != 0)
5201 			return (rc);
5202 		irq++;
5203 		rid++;
5204 	}
5205 
5206 	/* The second one is always the firmware event queue (first on VFs) */
5207 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
5208 	if (rc != 0)
5209 		return (rc);
5210 	irq++;
5211 	rid++;
5212 
5213 	for_each_port(sc, p) {
5214 		pi = sc->port[p];
5215 		for_each_vi(pi, v, vi) {
5216 			vi->first_intr = rid - 1;
5217 
5218 			if (vi->nnmrxq > 0) {
5219 				int n = max(vi->nrxq, vi->nnmrxq);
5220 
5221 				rxq = &sge->rxq[vi->first_rxq];
5222 #ifdef DEV_NETMAP
5223 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
5224 #endif
5225 				for (q = 0; q < n; q++) {
5226 					snprintf(s, sizeof(s), "%x%c%x", p,
5227 					    'a' + v, q);
5228 					if (q < vi->nrxq)
5229 						irq->rxq = rxq++;
5230 #ifdef DEV_NETMAP
5231 					if (q < vi->nnmrxq)
5232 						irq->nm_rxq = nm_rxq++;
5233 
5234 					if (irq->nm_rxq != NULL &&
5235 					    irq->rxq == NULL) {
5236 						/* Netmap rx only */
5237 						rc = t4_alloc_irq(sc, irq, rid,
5238 						    t4_nm_intr, irq->nm_rxq, s);
5239 					}
5240 					if (irq->nm_rxq != NULL &&
5241 					    irq->rxq != NULL) {
5242 						/* NIC and Netmap rx */
5243 						rc = t4_alloc_irq(sc, irq, rid,
5244 						    t4_vi_intr, irq, s);
5245 					}
5246 #endif
5247 					if (irq->rxq != NULL &&
5248 					    irq->nm_rxq == NULL) {
5249 						/* NIC rx only */
5250 						rc = t4_alloc_irq(sc, irq, rid,
5251 						    t4_intr, irq->rxq, s);
5252 					}
5253 					if (rc != 0)
5254 						return (rc);
5255 #ifdef RSS
5256 					if (q < vi->nrxq) {
5257 						bus_bind_intr(sc->dev, irq->res,
5258 						    rss_getcpu(q % nbuckets));
5259 					}
5260 #endif
5261 					irq++;
5262 					rid++;
5263 					vi->nintr++;
5264 				}
5265 			} else {
5266 				for_each_rxq(vi, q, rxq) {
5267 					snprintf(s, sizeof(s), "%x%c%x", p,
5268 					    'a' + v, q);
5269 					rc = t4_alloc_irq(sc, irq, rid,
5270 					    t4_intr, rxq, s);
5271 					if (rc != 0)
5272 						return (rc);
5273 #ifdef RSS
5274 					bus_bind_intr(sc->dev, irq->res,
5275 					    rss_getcpu(q % nbuckets));
5276 #endif
5277 					irq++;
5278 					rid++;
5279 					vi->nintr++;
5280 				}
5281 			}
5282 #ifdef TCP_OFFLOAD
5283 			for_each_ofld_rxq(vi, q, ofld_rxq) {
5284 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
5285 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
5286 				    ofld_rxq, s);
5287 				if (rc != 0)
5288 					return (rc);
5289 				irq++;
5290 				rid++;
5291 				vi->nintr++;
5292 			}
5293 #endif
5294 		}
5295 	}
5296 	MPASS(irq == &sc->irq[sc->intr_count]);
5297 
5298 	return (0);
5299 }
5300 
5301 int
5302 adapter_full_init(struct adapter *sc)
5303 {
5304 	int rc, i;
5305 #ifdef RSS
5306 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5307 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5308 #endif
5309 
5310 	ASSERT_SYNCHRONIZED_OP(sc);
5311 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5312 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
5313 	    ("%s: FULL_INIT_DONE already", __func__));
5314 
5315 	/*
5316 	 * queues that belong to the adapter (not any particular port).
5317 	 */
5318 	rc = t4_setup_adapter_queues(sc);
5319 	if (rc != 0)
5320 		goto done;
5321 
5322 	for (i = 0; i < nitems(sc->tq); i++) {
5323 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
5324 		    taskqueue_thread_enqueue, &sc->tq[i]);
5325 		if (sc->tq[i] == NULL) {
5326 			device_printf(sc->dev,
5327 			    "failed to allocate task queue %d\n", i);
5328 			rc = ENOMEM;
5329 			goto done;
5330 		}
5331 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
5332 		    device_get_nameunit(sc->dev), i);
5333 	}
5334 #ifdef RSS
5335 	MPASS(RSS_KEYSIZE == 40);
5336 	rss_getkey((void *)&raw_rss_key[0]);
5337 	for (i = 0; i < nitems(rss_key); i++) {
5338 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
5339 	}
5340 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
5341 #endif
5342 
5343 	if (!(sc->flags & IS_VF))
5344 		t4_intr_enable(sc);
5345 	sc->flags |= FULL_INIT_DONE;
5346 done:
5347 	if (rc != 0)
5348 		adapter_full_uninit(sc);
5349 
5350 	return (rc);
5351 }
5352 
5353 int
5354 adapter_full_uninit(struct adapter *sc)
5355 {
5356 	int i;
5357 
5358 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5359 
5360 	t4_teardown_adapter_queues(sc);
5361 
5362 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
5363 		taskqueue_free(sc->tq[i]);
5364 		sc->tq[i] = NULL;
5365 	}
5366 
5367 	sc->flags &= ~FULL_INIT_DONE;
5368 
5369 	return (0);
5370 }
5371 
5372 #ifdef RSS
5373 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
5374     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
5375     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
5376     RSS_HASHTYPE_RSS_UDP_IPV6)
5377 
5378 /* Translates kernel hash types to hardware. */
5379 static int
5380 hashconfig_to_hashen(int hashconfig)
5381 {
5382 	int hashen = 0;
5383 
5384 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
5385 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
5386 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
5387 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
5388 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
5389 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5390 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5391 	}
5392 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
5393 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5394 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5395 	}
5396 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
5397 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5398 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
5399 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5400 
5401 	return (hashen);
5402 }
5403 
5404 /* Translates hardware hash types to kernel. */
5405 static int
5406 hashen_to_hashconfig(int hashen)
5407 {
5408 	int hashconfig = 0;
5409 
5410 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
5411 		/*
5412 		 * If UDP hashing was enabled it must have been enabled for
5413 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
5414 		 * enabling any 4-tuple hash is nonsense configuration.
5415 		 */
5416 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5417 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
5418 
5419 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5420 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
5421 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5422 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
5423 	}
5424 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5425 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
5426 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5427 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
5428 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
5429 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
5430 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
5431 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
5432 
5433 	return (hashconfig);
5434 }
5435 #endif
5436 
5437 int
5438 vi_full_init(struct vi_info *vi)
5439 {
5440 	struct adapter *sc = vi->pi->adapter;
5441 	struct ifnet *ifp = vi->ifp;
5442 	uint16_t *rss;
5443 	struct sge_rxq *rxq;
5444 	int rc, i, j;
5445 #ifdef RSS
5446 	int nbuckets = rss_getnumbuckets();
5447 	int hashconfig = rss_gethashconfig();
5448 	int extra;
5449 #endif
5450 
5451 	ASSERT_SYNCHRONIZED_OP(sc);
5452 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
5453 	    ("%s: VI_INIT_DONE already", __func__));
5454 
5455 	sysctl_ctx_init(&vi->ctx);
5456 	vi->flags |= VI_SYSCTL_CTX;
5457 
5458 	/*
5459 	 * Allocate tx/rx/fl queues for this VI.
5460 	 */
5461 	rc = t4_setup_vi_queues(vi);
5462 	if (rc != 0)
5463 		goto done;	/* error message displayed already */
5464 
5465 	/*
5466 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
5467 	 */
5468 	if (vi->nrxq > vi->rss_size) {
5469 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
5470 		    "some queues will never receive traffic.\n", vi->nrxq,
5471 		    vi->rss_size);
5472 	} else if (vi->rss_size % vi->nrxq) {
5473 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
5474 		    "expect uneven traffic distribution.\n", vi->nrxq,
5475 		    vi->rss_size);
5476 	}
5477 #ifdef RSS
5478 	if (vi->nrxq != nbuckets) {
5479 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
5480 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
5481 	}
5482 #endif
5483 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
5484 	for (i = 0; i < vi->rss_size;) {
5485 #ifdef RSS
5486 		j = rss_get_indirection_to_bucket(i);
5487 		j %= vi->nrxq;
5488 		rxq = &sc->sge.rxq[vi->first_rxq + j];
5489 		rss[i++] = rxq->iq.abs_id;
5490 #else
5491 		for_each_rxq(vi, j, rxq) {
5492 			rss[i++] = rxq->iq.abs_id;
5493 			if (i == vi->rss_size)
5494 				break;
5495 		}
5496 #endif
5497 	}
5498 
5499 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
5500 	    vi->rss_size);
5501 	if (rc != 0) {
5502 		free(rss, M_CXGBE);
5503 		if_printf(ifp, "rss_config failed: %d\n", rc);
5504 		goto done;
5505 	}
5506 
5507 #ifdef RSS
5508 	vi->hashen = hashconfig_to_hashen(hashconfig);
5509 
5510 	/*
5511 	 * We may have had to enable some hashes even though the global config
5512 	 * wants them disabled.  This is a potential problem that must be
5513 	 * reported to the user.
5514 	 */
5515 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
5516 
5517 	/*
5518 	 * If we consider only the supported hash types, then the enabled hashes
5519 	 * are a superset of the requested hashes.  In other words, there cannot
5520 	 * be any supported hash that was requested but not enabled, but there
5521 	 * can be hashes that were not requested but had to be enabled.
5522 	 */
5523 	extra &= SUPPORTED_RSS_HASHTYPES;
5524 	MPASS((extra & hashconfig) == 0);
5525 
5526 	if (extra) {
5527 		if_printf(ifp,
5528 		    "global RSS config (0x%x) cannot be accommodated.\n",
5529 		    hashconfig);
5530 	}
5531 	if (extra & RSS_HASHTYPE_RSS_IPV4)
5532 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
5533 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
5534 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
5535 	if (extra & RSS_HASHTYPE_RSS_IPV6)
5536 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
5537 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
5538 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
5539 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
5540 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
5541 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
5542 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
5543 #else
5544 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
5545 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
5546 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5547 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
5548 #endif
5549 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0);
5550 	if (rc != 0) {
5551 		free(rss, M_CXGBE);
5552 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
5553 		goto done;
5554 	}
5555 
5556 	vi->rss = rss;
5557 	vi->flags |= VI_INIT_DONE;
5558 done:
5559 	if (rc != 0)
5560 		vi_full_uninit(vi);
5561 
5562 	return (rc);
5563 }
5564 
5565 /*
5566  * Idempotent.
5567  */
5568 int
5569 vi_full_uninit(struct vi_info *vi)
5570 {
5571 	struct port_info *pi = vi->pi;
5572 	struct adapter *sc = pi->adapter;
5573 	int i;
5574 	struct sge_rxq *rxq;
5575 	struct sge_txq *txq;
5576 #ifdef TCP_OFFLOAD
5577 	struct sge_ofld_rxq *ofld_rxq;
5578 #endif
5579 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5580 	struct sge_wrq *ofld_txq;
5581 #endif
5582 
5583 	if (vi->flags & VI_INIT_DONE) {
5584 
5585 		/* Need to quiesce queues.  */
5586 
5587 		/* XXX: Only for the first VI? */
5588 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
5589 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
5590 
5591 		for_each_txq(vi, i, txq) {
5592 			quiesce_txq(sc, txq);
5593 		}
5594 
5595 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5596 		for_each_ofld_txq(vi, i, ofld_txq) {
5597 			quiesce_wrq(sc, ofld_txq);
5598 		}
5599 #endif
5600 
5601 		for_each_rxq(vi, i, rxq) {
5602 			quiesce_iq(sc, &rxq->iq);
5603 			quiesce_fl(sc, &rxq->fl);
5604 		}
5605 
5606 #ifdef TCP_OFFLOAD
5607 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5608 			quiesce_iq(sc, &ofld_rxq->iq);
5609 			quiesce_fl(sc, &ofld_rxq->fl);
5610 		}
5611 #endif
5612 		free(vi->rss, M_CXGBE);
5613 		free(vi->nm_rss, M_CXGBE);
5614 	}
5615 
5616 	t4_teardown_vi_queues(vi);
5617 	vi->flags &= ~VI_INIT_DONE;
5618 
5619 	return (0);
5620 }
5621 
5622 static void
5623 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5624 {
5625 	struct sge_eq *eq = &txq->eq;
5626 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5627 
5628 	(void) sc;	/* unused */
5629 
5630 #ifdef INVARIANTS
5631 	TXQ_LOCK(txq);
5632 	MPASS((eq->flags & EQ_ENABLED) == 0);
5633 	TXQ_UNLOCK(txq);
5634 #endif
5635 
5636 	/* Wait for the mp_ring to empty. */
5637 	while (!mp_ring_is_idle(txq->r)) {
5638 		mp_ring_check_drainage(txq->r, 0);
5639 		pause("rquiesce", 1);
5640 	}
5641 
5642 	/* Then wait for the hardware to finish. */
5643 	while (spg->cidx != htobe16(eq->pidx))
5644 		pause("equiesce", 1);
5645 
5646 	/* Finally, wait for the driver to reclaim all descriptors. */
5647 	while (eq->cidx != eq->pidx)
5648 		pause("dquiesce", 1);
5649 }
5650 
5651 static void
5652 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5653 {
5654 
5655 	/* XXXTX */
5656 }
5657 
5658 static void
5659 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5660 {
5661 	(void) sc;	/* unused */
5662 
5663 	/* Synchronize with the interrupt handler */
5664 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5665 		pause("iqfree", 1);
5666 }
5667 
5668 static void
5669 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5670 {
5671 	mtx_lock(&sc->sfl_lock);
5672 	FL_LOCK(fl);
5673 	fl->flags |= FL_DOOMED;
5674 	FL_UNLOCK(fl);
5675 	callout_stop(&sc->sfl_callout);
5676 	mtx_unlock(&sc->sfl_lock);
5677 
5678 	KASSERT((fl->flags & FL_STARVING) == 0,
5679 	    ("%s: still starving", __func__));
5680 }
5681 
5682 static int
5683 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5684     driver_intr_t *handler, void *arg, char *name)
5685 {
5686 	int rc;
5687 
5688 	irq->rid = rid;
5689 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5690 	    RF_SHAREABLE | RF_ACTIVE);
5691 	if (irq->res == NULL) {
5692 		device_printf(sc->dev,
5693 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5694 		return (ENOMEM);
5695 	}
5696 
5697 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5698 	    NULL, handler, arg, &irq->tag);
5699 	if (rc != 0) {
5700 		device_printf(sc->dev,
5701 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5702 		    rid, name, rc);
5703 	} else if (name)
5704 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5705 
5706 	return (rc);
5707 }
5708 
5709 static int
5710 t4_free_irq(struct adapter *sc, struct irq *irq)
5711 {
5712 	if (irq->tag)
5713 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5714 	if (irq->res)
5715 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5716 
5717 	bzero(irq, sizeof(*irq));
5718 
5719 	return (0);
5720 }
5721 
5722 static void
5723 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5724 {
5725 
5726 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5727 	t4_get_regs(sc, buf, regs->len);
5728 }
5729 
5730 #define	A_PL_INDIR_CMD	0x1f8
5731 
5732 #define	S_PL_AUTOINC	31
5733 #define	M_PL_AUTOINC	0x1U
5734 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5735 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5736 
5737 #define	S_PL_VFID	20
5738 #define	M_PL_VFID	0xffU
5739 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5740 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5741 
5742 #define	S_PL_ADDR	0
5743 #define	M_PL_ADDR	0xfffffU
5744 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5745 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5746 
5747 #define	A_PL_INDIR_DATA	0x1fc
5748 
5749 static uint64_t
5750 read_vf_stat(struct adapter *sc, u_int vin, int reg)
5751 {
5752 	u32 stats[2];
5753 
5754 	mtx_assert(&sc->reg_lock, MA_OWNED);
5755 	if (sc->flags & IS_VF) {
5756 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5757 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5758 	} else {
5759 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5760 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
5761 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5762 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5763 	}
5764 	return (((uint64_t)stats[1]) << 32 | stats[0]);
5765 }
5766 
5767 static void
5768 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
5769 {
5770 
5771 #define GET_STAT(name) \
5772 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
5773 
5774 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5775 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5776 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5777 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5778 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5779 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5780 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5781 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5782 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5783 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5784 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5785 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5786 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5787 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5788 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5789 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5790 
5791 #undef GET_STAT
5792 }
5793 
5794 static void
5795 t4_clr_vi_stats(struct adapter *sc, u_int vin)
5796 {
5797 	int reg;
5798 
5799 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
5800 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5801 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5802 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5803 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5804 }
5805 
5806 static void
5807 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5808 {
5809 	struct timeval tv;
5810 	const struct timeval interval = {0, 250000};	/* 250ms */
5811 
5812 	if (!(vi->flags & VI_INIT_DONE))
5813 		return;
5814 
5815 	getmicrotime(&tv);
5816 	timevalsub(&tv, &interval);
5817 	if (timevalcmp(&tv, &vi->last_refreshed, <))
5818 		return;
5819 
5820 	mtx_lock(&sc->reg_lock);
5821 	t4_get_vi_stats(sc, vi->vin, &vi->stats);
5822 	getmicrotime(&vi->last_refreshed);
5823 	mtx_unlock(&sc->reg_lock);
5824 }
5825 
5826 static void
5827 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5828 {
5829 	u_int i, v, tnl_cong_drops, bg_map;
5830 	struct timeval tv;
5831 	const struct timeval interval = {0, 250000};	/* 250ms */
5832 
5833 	getmicrotime(&tv);
5834 	timevalsub(&tv, &interval);
5835 	if (timevalcmp(&tv, &pi->last_refreshed, <))
5836 		return;
5837 
5838 	tnl_cong_drops = 0;
5839 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5840 	bg_map = pi->mps_bg_map;
5841 	while (bg_map) {
5842 		i = ffs(bg_map) - 1;
5843 		mtx_lock(&sc->reg_lock);
5844 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5845 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
5846 		mtx_unlock(&sc->reg_lock);
5847 		tnl_cong_drops += v;
5848 		bg_map &= ~(1 << i);
5849 	}
5850 	pi->tnl_cong_drops = tnl_cong_drops;
5851 	getmicrotime(&pi->last_refreshed);
5852 }
5853 
5854 static void
5855 cxgbe_tick(void *arg)
5856 {
5857 	struct port_info *pi = arg;
5858 	struct adapter *sc = pi->adapter;
5859 
5860 	PORT_LOCK_ASSERT_OWNED(pi);
5861 	cxgbe_refresh_stats(sc, pi);
5862 
5863 	callout_schedule(&pi->tick, hz);
5864 }
5865 
5866 void
5867 vi_tick(void *arg)
5868 {
5869 	struct vi_info *vi = arg;
5870 	struct adapter *sc = vi->pi->adapter;
5871 
5872 	vi_refresh_stats(sc, vi);
5873 
5874 	callout_schedule(&vi->tick, hz);
5875 }
5876 
5877 /*
5878  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5879  */
5880 static char *caps_decoder[] = {
5881 	"\20\001IPMI\002NCSI",				/* 0: NBM */
5882 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
5883 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
5884 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
5885 	    "\006HASHFILTER\007ETHOFLD",
5886 	"\20\001TOE",					/* 4: TOE */
5887 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
5888 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
5889 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5890 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5891 	    "\007T10DIF"
5892 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5893 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
5894 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
5895 		    "\004PO_INITIATOR\005PO_TARGET",
5896 };
5897 
5898 void
5899 t4_sysctls(struct adapter *sc)
5900 {
5901 	struct sysctl_ctx_list *ctx;
5902 	struct sysctl_oid *oid;
5903 	struct sysctl_oid_list *children, *c0;
5904 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5905 
5906 	ctx = device_get_sysctl_ctx(sc->dev);
5907 
5908 	/*
5909 	 * dev.t4nex.X.
5910 	 */
5911 	oid = device_get_sysctl_tree(sc->dev);
5912 	c0 = children = SYSCTL_CHILDREN(oid);
5913 
5914 	sc->sc_do_rxcopy = 1;
5915 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5916 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5917 
5918 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5919 	    sc->params.nports, "# of ports");
5920 
5921 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5922 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells,
5923 	    sysctl_bitfield_8b, "A", "available doorbells");
5924 
5925 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5926 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
5927 
5928 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5929 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5930 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5931 	    "interrupt holdoff timer values (us)");
5932 
5933 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5934 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5935 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5936 	    "interrupt holdoff packet counter values");
5937 
5938 	t4_sge_sysctls(sc, ctx, children);
5939 
5940 	sc->lro_timeout = 100;
5941 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5942 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5943 
5944 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5945 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
5946 
5947 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5948 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5949 
5950 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5951 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5952 
5953 	if (sc->flags & IS_VF)
5954 		return;
5955 
5956 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5957 	    NULL, chip_rev(sc), "chip hardware revision");
5958 
5959 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5960 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5961 
5962 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5963 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5964 
5965 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5966 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5967 
5968 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5969 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5970 
5971 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5972 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5973 
5974 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5975 	    sc->er_version, 0, "expansion ROM version");
5976 
5977 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5978 	    sc->bs_version, 0, "bootstrap firmware version");
5979 
5980 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5981 	    NULL, sc->params.scfg_vers, "serial config version");
5982 
5983 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5984 	    NULL, sc->params.vpd_vers, "VPD version");
5985 
5986 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5987 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5988 
5989 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5990 	    sc->cfcsum, "config file checksum");
5991 
5992 #define SYSCTL_CAP(name, n, text) \
5993 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5994 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \
5995 	    sysctl_bitfield_16b, "A", "available " text " capabilities")
5996 
5997 	SYSCTL_CAP(nbmcaps, 0, "NBM");
5998 	SYSCTL_CAP(linkcaps, 1, "link");
5999 	SYSCTL_CAP(switchcaps, 2, "switch");
6000 	SYSCTL_CAP(niccaps, 3, "NIC");
6001 	SYSCTL_CAP(toecaps, 4, "TCP offload");
6002 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
6003 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
6004 	SYSCTL_CAP(cryptocaps, 7, "crypto");
6005 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
6006 #undef SYSCTL_CAP
6007 
6008 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
6009 	    NULL, sc->tids.nftids, "number of filters");
6010 
6011 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
6012 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
6013 	    "chip temperature (in Celsius)");
6014 
6015 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING |
6016 	    CTLFLAG_RD, sc, 0, sysctl_loadavg, "A",
6017 	    "microprocessor load averages (debug firmwares only)");
6018 
6019 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
6020 	    &sc->params.core_vdd, 0, "core Vdd (in mV)");
6021 
6022 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
6023 	    CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS,
6024 	    sysctl_cpus, "A", "local CPUs");
6025 
6026 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
6027 	    CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS,
6028 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
6029 
6030 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
6031 	    &sc->swintr, 0, "software triggered interrupts");
6032 
6033 	/*
6034 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
6035 	 */
6036 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
6037 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
6038 	    "logs and miscellaneous information");
6039 	children = SYSCTL_CHILDREN(oid);
6040 
6041 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
6042 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6043 	    sysctl_cctrl, "A", "congestion control");
6044 
6045 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
6046 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6047 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
6048 
6049 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
6050 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
6051 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
6052 
6053 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
6054 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
6055 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
6056 
6057 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
6058 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
6059 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
6060 
6061 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
6062 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
6063 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
6064 
6065 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
6066 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
6067 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
6068 
6069 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
6070 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la,
6071 	    "A", "CIM logic analyzer");
6072 
6073 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
6074 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6075 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
6076 
6077 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
6078 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
6079 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
6080 
6081 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
6082 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
6083 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
6084 
6085 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
6086 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
6087 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
6088 
6089 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
6090 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
6091 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
6092 
6093 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
6094 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
6095 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
6096 
6097 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
6098 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
6099 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
6100 
6101 	if (chip_id(sc) > CHELSIO_T4) {
6102 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
6103 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
6104 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
6105 
6106 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
6107 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
6108 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
6109 	}
6110 
6111 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
6112 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6113 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
6114 
6115 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
6116 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6117 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
6118 
6119 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
6120 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6121 	    sysctl_cpl_stats, "A", "CPL statistics");
6122 
6123 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
6124 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6125 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
6126 
6127 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
6128 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6129 	    sysctl_devlog, "A", "firmware's device log");
6130 
6131 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
6132 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6133 	    sysctl_fcoe_stats, "A", "FCoE statistics");
6134 
6135 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
6136 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6137 	    sysctl_hw_sched, "A", "hardware scheduler ");
6138 
6139 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
6140 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6141 	    sysctl_l2t, "A", "hardware L2 table");
6142 
6143 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
6144 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6145 	    sysctl_smt, "A", "hardware source MAC table");
6146 
6147 #ifdef INET6
6148 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
6149 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6150 	    sysctl_clip, "A", "active CLIP table entries");
6151 #endif
6152 
6153 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
6154 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6155 	    sysctl_lb_stats, "A", "loopback statistics");
6156 
6157 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
6158 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6159 	    sysctl_meminfo, "A", "memory regions");
6160 
6161 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
6162 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6163 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
6164 	    "A", "MPS TCAM entries");
6165 
6166 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
6167 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6168 	    sysctl_path_mtus, "A", "path MTUs");
6169 
6170 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
6171 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6172 	    sysctl_pm_stats, "A", "PM statistics");
6173 
6174 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
6175 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6176 	    sysctl_rdma_stats, "A", "RDMA statistics");
6177 
6178 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
6179 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6180 	    sysctl_tcp_stats, "A", "TCP statistics");
6181 
6182 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
6183 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6184 	    sysctl_tids, "A", "TID information");
6185 
6186 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
6187 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6188 	    sysctl_tp_err_stats, "A", "TP error statistics");
6189 
6190 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
6191 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
6192 	    "TP logic analyzer event capture mask");
6193 
6194 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
6195 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6196 	    sysctl_tp_la, "A", "TP logic analyzer");
6197 
6198 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
6199 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6200 	    sysctl_tx_rate, "A", "Tx rate");
6201 
6202 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
6203 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6204 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
6205 
6206 	if (chip_id(sc) >= CHELSIO_T5) {
6207 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
6208 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6209 		    sysctl_wcwr_stats, "A", "write combined work requests");
6210 	}
6211 
6212 #ifdef TCP_OFFLOAD
6213 	if (is_offload(sc)) {
6214 		int i;
6215 		char s[4];
6216 
6217 		/*
6218 		 * dev.t4nex.X.toe.
6219 		 */
6220 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
6221 		    NULL, "TOE parameters");
6222 		children = SYSCTL_CHILDREN(oid);
6223 
6224 		sc->tt.cong_algorithm = -1;
6225 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
6226 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
6227 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
6228 		    "3 = highspeed)");
6229 
6230 		sc->tt.sndbuf = 256 * 1024;
6231 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
6232 		    &sc->tt.sndbuf, 0, "max hardware send buffer size");
6233 
6234 		sc->tt.ddp = 0;
6235 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
6236 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
6237 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
6238 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
6239 
6240 		sc->tt.rx_coalesce = 1;
6241 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
6242 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
6243 
6244 		sc->tt.tls = 0;
6245 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
6246 		    &sc->tt.tls, 0, "Inline TLS allowed");
6247 
6248 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
6249 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
6250 		    "I", "TCP ports that use inline TLS+TOE RX");
6251 
6252 		sc->tt.tx_align = 1;
6253 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
6254 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
6255 
6256 		sc->tt.tx_zcopy = 0;
6257 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
6258 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
6259 		    "Enable zero-copy aio_write(2)");
6260 
6261 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
6262 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6263 		    "cop_managed_offloading", CTLFLAG_RW,
6264 		    &sc->tt.cop_managed_offloading, 0,
6265 		    "COP (Connection Offload Policy) controls all TOE offload");
6266 
6267 		sc->tt.autorcvbuf_inc = 16 * 1024;
6268 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
6269 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
6270 		    "autorcvbuf increment");
6271 
6272 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
6273 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
6274 		    "TP timer tick (us)");
6275 
6276 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
6277 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
6278 		    "TCP timestamp tick (us)");
6279 
6280 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
6281 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
6282 		    "DACK tick (us)");
6283 
6284 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
6285 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
6286 		    "IU", "DACK timer (us)");
6287 
6288 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
6289 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
6290 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
6291 
6292 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
6293 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
6294 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
6295 
6296 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
6297 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
6298 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
6299 
6300 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
6301 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
6302 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
6303 
6304 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
6305 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
6306 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
6307 
6308 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
6309 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
6310 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
6311 
6312 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
6313 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
6314 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
6315 
6316 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
6317 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
6318 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
6319 
6320 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
6321 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
6322 		    sysctl_tp_shift_cnt, "IU",
6323 		    "Number of SYN retransmissions before abort");
6324 
6325 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
6326 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
6327 		    sysctl_tp_shift_cnt, "IU",
6328 		    "Number of retransmissions before abort");
6329 
6330 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
6331 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
6332 		    sysctl_tp_shift_cnt, "IU",
6333 		    "Number of keepalive probes before abort");
6334 
6335 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
6336 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
6337 		children = SYSCTL_CHILDREN(oid);
6338 		for (i = 0; i < 16; i++) {
6339 			snprintf(s, sizeof(s), "%u", i);
6340 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
6341 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
6342 			    "IU", "TOE retransmit backoff");
6343 		}
6344 	}
6345 #endif
6346 }
6347 
6348 void
6349 vi_sysctls(struct vi_info *vi)
6350 {
6351 	struct sysctl_ctx_list *ctx;
6352 	struct sysctl_oid *oid;
6353 	struct sysctl_oid_list *children;
6354 
6355 	ctx = device_get_sysctl_ctx(vi->dev);
6356 
6357 	/*
6358 	 * dev.v?(cxgbe|cxl).X.
6359 	 */
6360 	oid = device_get_sysctl_tree(vi->dev);
6361 	children = SYSCTL_CHILDREN(oid);
6362 
6363 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
6364 	    vi->viid, "VI identifer");
6365 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
6366 	    &vi->nrxq, 0, "# of rx queues");
6367 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
6368 	    &vi->ntxq, 0, "# of tx queues");
6369 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
6370 	    &vi->first_rxq, 0, "index of first rx queue");
6371 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
6372 	    &vi->first_txq, 0, "index of first tx queue");
6373 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
6374 	    vi->rss_base, "start of RSS indirection table");
6375 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
6376 	    vi->rss_size, "size of RSS indirection table");
6377 
6378 	if (IS_MAIN_VI(vi)) {
6379 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
6380 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
6381 		    "Reserve queue 0 for non-flowid packets");
6382 	}
6383 
6384 #ifdef TCP_OFFLOAD
6385 	if (vi->nofldrxq != 0) {
6386 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
6387 		    &vi->nofldrxq, 0,
6388 		    "# of rx queues for offloaded TCP connections");
6389 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
6390 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
6391 		    "index of first TOE rx queue");
6392 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
6393 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6394 		    sysctl_holdoff_tmr_idx_ofld, "I",
6395 		    "holdoff timer index for TOE queues");
6396 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
6397 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6398 		    sysctl_holdoff_pktc_idx_ofld, "I",
6399 		    "holdoff packet counter index for TOE queues");
6400 	}
6401 #endif
6402 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6403 	if (vi->nofldtxq != 0) {
6404 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
6405 		    &vi->nofldtxq, 0,
6406 		    "# of tx queues for TOE/ETHOFLD");
6407 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
6408 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
6409 		    "index of first TOE/ETHOFLD tx queue");
6410 	}
6411 #endif
6412 #ifdef DEV_NETMAP
6413 	if (vi->nnmrxq != 0) {
6414 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
6415 		    &vi->nnmrxq, 0, "# of netmap rx queues");
6416 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
6417 		    &vi->nnmtxq, 0, "# of netmap tx queues");
6418 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
6419 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
6420 		    "index of first netmap rx queue");
6421 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
6422 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
6423 		    "index of first netmap tx queue");
6424 	}
6425 #endif
6426 
6427 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
6428 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
6429 	    "holdoff timer index");
6430 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
6431 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
6432 	    "holdoff packet counter index");
6433 
6434 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
6435 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
6436 	    "rx queue size");
6437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
6438 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
6439 	    "tx queue size");
6440 }
6441 
6442 static void
6443 cxgbe_sysctls(struct port_info *pi)
6444 {
6445 	struct sysctl_ctx_list *ctx;
6446 	struct sysctl_oid *oid;
6447 	struct sysctl_oid_list *children, *children2;
6448 	struct adapter *sc = pi->adapter;
6449 	int i;
6450 	char name[16];
6451 	static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"};
6452 
6453 	ctx = device_get_sysctl_ctx(pi->dev);
6454 
6455 	/*
6456 	 * dev.cxgbe.X.
6457 	 */
6458 	oid = device_get_sysctl_tree(pi->dev);
6459 	children = SYSCTL_CHILDREN(oid);
6460 
6461 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
6462 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
6463 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
6464 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
6465 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
6466 		    "PHY temperature (in Celsius)");
6467 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
6468 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
6469 		    "PHY firmware version");
6470 	}
6471 
6472 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
6473 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
6474     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
6475 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
6476 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
6477 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
6478 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
6479 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
6480 	    "autonegotiation (-1 = not supported)");
6481 
6482 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
6483 	    port_top_speed(pi), "max speed (in Gbps)");
6484 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
6485 	    pi->mps_bg_map, "MPS buffer group map");
6486 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
6487 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
6488 
6489 	if (sc->flags & IS_VF)
6490 		return;
6491 
6492 	/*
6493 	 * dev.(cxgbe|cxl).X.tc.
6494 	 */
6495 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
6496 	    "Tx scheduler traffic classes (cl_rl)");
6497 	children2 = SYSCTL_CHILDREN(oid);
6498 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
6499 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
6500 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
6501 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
6502 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
6503 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
6504 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
6505 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
6506 
6507 		snprintf(name, sizeof(name), "%d", i);
6508 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
6509 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
6510 		    "traffic class"));
6511 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
6512 		    CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags,
6513 		    sysctl_bitfield_8b, "A", "flags");
6514 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
6515 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
6516 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
6517 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
6518 		    sysctl_tc_params, "A", "traffic class parameters");
6519 	}
6520 
6521 	/*
6522 	 * dev.cxgbe.X.stats.
6523 	 */
6524 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
6525 	    NULL, "port statistics");
6526 	children = SYSCTL_CHILDREN(oid);
6527 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
6528 	    &pi->tx_parse_error, 0,
6529 	    "# of tx packets with invalid length or # of segments");
6530 
6531 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
6532 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
6533 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
6534 	    sysctl_handle_t4_reg64, "QU", desc)
6535 
6536 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
6537 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
6538 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
6539 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
6540 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
6541 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
6542 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
6543 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
6544 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
6545 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
6546 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
6547 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
6548 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
6549 	    "# of tx frames in this range",
6550 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
6551 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
6552 	    "# of tx frames in this range",
6553 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
6554 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
6555 	    "# of tx frames in this range",
6556 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
6557 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
6558 	    "# of tx frames in this range",
6559 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
6560 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
6561 	    "# of tx frames in this range",
6562 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
6563 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
6564 	    "# of tx frames in this range",
6565 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
6566 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
6567 	    "# of tx frames in this range",
6568 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
6569 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
6570 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
6571 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
6572 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
6573 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
6574 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
6575 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
6576 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
6577 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
6578 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
6579 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
6580 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
6581 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
6582 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
6583 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
6584 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
6585 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
6586 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
6587 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
6588 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
6589 
6590 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
6591 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
6592 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
6593 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
6594 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
6595 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
6596 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
6597 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
6598 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
6599 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
6600 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
6601 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
6602 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
6603 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
6604 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
6605 	    "# of frames received with bad FCS",
6606 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
6607 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
6608 	    "# of frames received with length error",
6609 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
6610 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
6611 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
6612 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
6613 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
6614 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
6615 	    "# of rx frames in this range",
6616 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
6617 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
6618 	    "# of rx frames in this range",
6619 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
6620 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
6621 	    "# of rx frames in this range",
6622 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
6623 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
6624 	    "# of rx frames in this range",
6625 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
6626 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
6627 	    "# of rx frames in this range",
6628 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
6629 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
6630 	    "# of rx frames in this range",
6631 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6632 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6633 	    "# of rx frames in this range",
6634 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6635 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6636 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6637 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6638 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6639 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6640 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6641 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6642 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6643 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6644 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6645 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6646 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6647 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6648 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6649 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6650 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6651 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6652 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6653 
6654 #undef SYSCTL_ADD_T4_REG64
6655 
6656 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6657 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6658 	    &pi->stats.name, desc)
6659 
6660 	/* We get these from port_stats and they may be stale by up to 1s */
6661 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6662 	    "# drops due to buffer-group 0 overflows");
6663 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6664 	    "# drops due to buffer-group 1 overflows");
6665 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6666 	    "# drops due to buffer-group 2 overflows");
6667 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6668 	    "# drops due to buffer-group 3 overflows");
6669 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6670 	    "# of buffer-group 0 truncated packets");
6671 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6672 	    "# of buffer-group 1 truncated packets");
6673 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6674 	    "# of buffer-group 2 truncated packets");
6675 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6676 	    "# of buffer-group 3 truncated packets");
6677 
6678 #undef SYSCTL_ADD_T4_PORTSTAT
6679 
6680 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6681 	    CTLFLAG_RD, &pi->tx_tls_records,
6682 	    "# of TLS records transmitted");
6683 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6684 	    CTLFLAG_RD, &pi->tx_tls_octets,
6685 	    "# of payload octets in transmitted TLS records");
6686 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6687 	    CTLFLAG_RD, &pi->rx_tls_records,
6688 	    "# of TLS records received");
6689 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6690 	    CTLFLAG_RD, &pi->rx_tls_octets,
6691 	    "# of payload octets in received TLS records");
6692 }
6693 
6694 static int
6695 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6696 {
6697 	int rc, *i, space = 0;
6698 	struct sbuf sb;
6699 
6700 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6701 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6702 		if (space)
6703 			sbuf_printf(&sb, " ");
6704 		sbuf_printf(&sb, "%d", *i);
6705 		space = 1;
6706 	}
6707 	rc = sbuf_finish(&sb);
6708 	sbuf_delete(&sb);
6709 	return (rc);
6710 }
6711 
6712 static int
6713 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
6714 {
6715 	int rc;
6716 	struct sbuf *sb;
6717 
6718 	rc = sysctl_wire_old_buffer(req, 0);
6719 	if (rc != 0)
6720 		return(rc);
6721 
6722 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6723 	if (sb == NULL)
6724 		return (ENOMEM);
6725 
6726 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
6727 	rc = sbuf_finish(sb);
6728 	sbuf_delete(sb);
6729 
6730 	return (rc);
6731 }
6732 
6733 static int
6734 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
6735 {
6736 	int rc;
6737 	struct sbuf *sb;
6738 
6739 	rc = sysctl_wire_old_buffer(req, 0);
6740 	if (rc != 0)
6741 		return(rc);
6742 
6743 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6744 	if (sb == NULL)
6745 		return (ENOMEM);
6746 
6747 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
6748 	rc = sbuf_finish(sb);
6749 	sbuf_delete(sb);
6750 
6751 	return (rc);
6752 }
6753 
6754 static int
6755 sysctl_btphy(SYSCTL_HANDLER_ARGS)
6756 {
6757 	struct port_info *pi = arg1;
6758 	int op = arg2;
6759 	struct adapter *sc = pi->adapter;
6760 	u_int v;
6761 	int rc;
6762 
6763 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
6764 	if (rc)
6765 		return (rc);
6766 	/* XXX: magic numbers */
6767 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
6768 	    &v);
6769 	end_synchronized_op(sc, 0);
6770 	if (rc)
6771 		return (rc);
6772 	if (op == 0)
6773 		v /= 256;
6774 
6775 	rc = sysctl_handle_int(oidp, &v, 0, req);
6776 	return (rc);
6777 }
6778 
6779 static int
6780 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
6781 {
6782 	struct vi_info *vi = arg1;
6783 	int rc, val;
6784 
6785 	val = vi->rsrv_noflowq;
6786 	rc = sysctl_handle_int(oidp, &val, 0, req);
6787 	if (rc != 0 || req->newptr == NULL)
6788 		return (rc);
6789 
6790 	if ((val >= 1) && (vi->ntxq > 1))
6791 		vi->rsrv_noflowq = 1;
6792 	else
6793 		vi->rsrv_noflowq = 0;
6794 
6795 	return (rc);
6796 }
6797 
6798 static int
6799 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
6800 {
6801 	struct vi_info *vi = arg1;
6802 	struct adapter *sc = vi->pi->adapter;
6803 	int idx, rc, i;
6804 	struct sge_rxq *rxq;
6805 	uint8_t v;
6806 
6807 	idx = vi->tmr_idx;
6808 
6809 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6810 	if (rc != 0 || req->newptr == NULL)
6811 		return (rc);
6812 
6813 	if (idx < 0 || idx >= SGE_NTIMERS)
6814 		return (EINVAL);
6815 
6816 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6817 	    "t4tmr");
6818 	if (rc)
6819 		return (rc);
6820 
6821 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
6822 	for_each_rxq(vi, i, rxq) {
6823 #ifdef atomic_store_rel_8
6824 		atomic_store_rel_8(&rxq->iq.intr_params, v);
6825 #else
6826 		rxq->iq.intr_params = v;
6827 #endif
6828 	}
6829 	vi->tmr_idx = idx;
6830 
6831 	end_synchronized_op(sc, LOCK_HELD);
6832 	return (0);
6833 }
6834 
6835 static int
6836 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6837 {
6838 	struct vi_info *vi = arg1;
6839 	struct adapter *sc = vi->pi->adapter;
6840 	int idx, rc;
6841 
6842 	idx = vi->pktc_idx;
6843 
6844 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6845 	if (rc != 0 || req->newptr == NULL)
6846 		return (rc);
6847 
6848 	if (idx < -1 || idx >= SGE_NCOUNTERS)
6849 		return (EINVAL);
6850 
6851 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6852 	    "t4pktc");
6853 	if (rc)
6854 		return (rc);
6855 
6856 	if (vi->flags & VI_INIT_DONE)
6857 		rc = EBUSY; /* cannot be changed once the queues are created */
6858 	else
6859 		vi->pktc_idx = idx;
6860 
6861 	end_synchronized_op(sc, LOCK_HELD);
6862 	return (rc);
6863 }
6864 
6865 static int
6866 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6867 {
6868 	struct vi_info *vi = arg1;
6869 	struct adapter *sc = vi->pi->adapter;
6870 	int qsize, rc;
6871 
6872 	qsize = vi->qsize_rxq;
6873 
6874 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6875 	if (rc != 0 || req->newptr == NULL)
6876 		return (rc);
6877 
6878 	if (qsize < 128 || (qsize & 7))
6879 		return (EINVAL);
6880 
6881 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6882 	    "t4rxqs");
6883 	if (rc)
6884 		return (rc);
6885 
6886 	if (vi->flags & VI_INIT_DONE)
6887 		rc = EBUSY; /* cannot be changed once the queues are created */
6888 	else
6889 		vi->qsize_rxq = qsize;
6890 
6891 	end_synchronized_op(sc, LOCK_HELD);
6892 	return (rc);
6893 }
6894 
6895 static int
6896 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6897 {
6898 	struct vi_info *vi = arg1;
6899 	struct adapter *sc = vi->pi->adapter;
6900 	int qsize, rc;
6901 
6902 	qsize = vi->qsize_txq;
6903 
6904 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6905 	if (rc != 0 || req->newptr == NULL)
6906 		return (rc);
6907 
6908 	if (qsize < 128 || qsize > 65536)
6909 		return (EINVAL);
6910 
6911 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6912 	    "t4txqs");
6913 	if (rc)
6914 		return (rc);
6915 
6916 	if (vi->flags & VI_INIT_DONE)
6917 		rc = EBUSY; /* cannot be changed once the queues are created */
6918 	else
6919 		vi->qsize_txq = qsize;
6920 
6921 	end_synchronized_op(sc, LOCK_HELD);
6922 	return (rc);
6923 }
6924 
6925 static int
6926 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6927 {
6928 	struct port_info *pi = arg1;
6929 	struct adapter *sc = pi->adapter;
6930 	struct link_config *lc = &pi->link_cfg;
6931 	int rc;
6932 
6933 	if (req->newptr == NULL) {
6934 		struct sbuf *sb;
6935 		static char *bits = "\20\1RX\2TX\3AUTO";
6936 
6937 		rc = sysctl_wire_old_buffer(req, 0);
6938 		if (rc != 0)
6939 			return(rc);
6940 
6941 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6942 		if (sb == NULL)
6943 			return (ENOMEM);
6944 
6945 		if (lc->link_ok) {
6946 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
6947 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
6948 		} else {
6949 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
6950 			    PAUSE_RX | PAUSE_AUTONEG), bits);
6951 		}
6952 		rc = sbuf_finish(sb);
6953 		sbuf_delete(sb);
6954 	} else {
6955 		char s[2];
6956 		int n;
6957 
6958 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
6959 		    PAUSE_AUTONEG));
6960 		s[1] = 0;
6961 
6962 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6963 		if (rc != 0)
6964 			return(rc);
6965 
6966 		if (s[1] != 0)
6967 			return (EINVAL);
6968 		if (s[0] < '0' || s[0] > '9')
6969 			return (EINVAL);	/* not a number */
6970 		n = s[0] - '0';
6971 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
6972 			return (EINVAL);	/* some other bit is set too */
6973 
6974 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6975 		    "t4PAUSE");
6976 		if (rc)
6977 			return (rc);
6978 		PORT_LOCK(pi);
6979 		lc->requested_fc = n;
6980 		fixup_link_config(pi);
6981 		if (pi->up_vis > 0)
6982 			rc = apply_link_config(pi);
6983 		set_current_media(pi);
6984 		PORT_UNLOCK(pi);
6985 		end_synchronized_op(sc, 0);
6986 	}
6987 
6988 	return (rc);
6989 }
6990 
6991 static int
6992 sysctl_fec(SYSCTL_HANDLER_ARGS)
6993 {
6994 	struct port_info *pi = arg1;
6995 	struct adapter *sc = pi->adapter;
6996 	struct link_config *lc = &pi->link_cfg;
6997 	int rc;
6998 	int8_t old;
6999 
7000 	if (req->newptr == NULL) {
7001 		struct sbuf *sb;
7002 		static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO";
7003 
7004 		rc = sysctl_wire_old_buffer(req, 0);
7005 		if (rc != 0)
7006 			return(rc);
7007 
7008 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7009 		if (sb == NULL)
7010 			return (ENOMEM);
7011 
7012 		/*
7013 		 * Display the requested_fec when the link is down -- the actual
7014 		 * FEC makes sense only when the link is up.
7015 		 */
7016 		if (lc->link_ok) {
7017 			sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) |
7018 			    (lc->requested_fec & FEC_AUTO), bits);
7019 		} else {
7020 			sbuf_printf(sb, "%b", lc->requested_fec, bits);
7021 		}
7022 		rc = sbuf_finish(sb);
7023 		sbuf_delete(sb);
7024 	} else {
7025 		char s[3];
7026 		int n;
7027 
7028 		snprintf(s, sizeof(s), "%d",
7029 		    lc->requested_fec == FEC_AUTO ? -1 :
7030 		    lc->requested_fec & M_FW_PORT_CAP32_FEC);
7031 
7032 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
7033 		if (rc != 0)
7034 			return(rc);
7035 
7036 		n = strtol(&s[0], NULL, 0);
7037 		if (n < 0 || n & FEC_AUTO)
7038 			n = FEC_AUTO;
7039 		else {
7040 			if (n & ~M_FW_PORT_CAP32_FEC)
7041 				return (EINVAL);/* some other bit is set too */
7042 			if (!powerof2(n))
7043 				return (EINVAL);/* one bit can be set at most */
7044 		}
7045 
7046 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7047 		    "t4fec");
7048 		if (rc)
7049 			return (rc);
7050 		PORT_LOCK(pi);
7051 		old = lc->requested_fec;
7052 		if (n == FEC_AUTO)
7053 			lc->requested_fec = FEC_AUTO;
7054 		else if (n == 0)
7055 			lc->requested_fec = FEC_NONE;
7056 		else {
7057 			if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) !=
7058 			    lc->supported) {
7059 				rc = ENOTSUP;
7060 				goto done;
7061 			}
7062 			lc->requested_fec = n;
7063 		}
7064 		fixup_link_config(pi);
7065 		if (pi->up_vis > 0) {
7066 			rc = apply_link_config(pi);
7067 			if (rc != 0) {
7068 				lc->requested_fec = old;
7069 				if (rc == FW_EPROTO)
7070 					rc = ENOTSUP;
7071 			}
7072 		}
7073 done:
7074 		PORT_UNLOCK(pi);
7075 		end_synchronized_op(sc, 0);
7076 	}
7077 
7078 	return (rc);
7079 }
7080 
7081 static int
7082 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
7083 {
7084 	struct port_info *pi = arg1;
7085 	struct adapter *sc = pi->adapter;
7086 	struct link_config *lc = &pi->link_cfg;
7087 	int rc, val;
7088 
7089 	if (lc->supported & FW_PORT_CAP32_ANEG)
7090 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
7091 	else
7092 		val = -1;
7093 	rc = sysctl_handle_int(oidp, &val, 0, req);
7094 	if (rc != 0 || req->newptr == NULL)
7095 		return (rc);
7096 	if (val == 0)
7097 		val = AUTONEG_DISABLE;
7098 	else if (val == 1)
7099 		val = AUTONEG_ENABLE;
7100 	else
7101 		val = AUTONEG_AUTO;
7102 
7103 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7104 	    "t4aneg");
7105 	if (rc)
7106 		return (rc);
7107 	PORT_LOCK(pi);
7108 	if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) {
7109 		rc = ENOTSUP;
7110 		goto done;
7111 	}
7112 	lc->requested_aneg = val;
7113 	fixup_link_config(pi);
7114 	if (pi->up_vis > 0)
7115 		rc = apply_link_config(pi);
7116 	set_current_media(pi);
7117 done:
7118 	PORT_UNLOCK(pi);
7119 	end_synchronized_op(sc, 0);
7120 	return (rc);
7121 }
7122 
7123 static int
7124 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
7125 {
7126 	struct adapter *sc = arg1;
7127 	int reg = arg2;
7128 	uint64_t val;
7129 
7130 	val = t4_read_reg64(sc, reg);
7131 
7132 	return (sysctl_handle_64(oidp, &val, 0, req));
7133 }
7134 
7135 static int
7136 sysctl_temperature(SYSCTL_HANDLER_ARGS)
7137 {
7138 	struct adapter *sc = arg1;
7139 	int rc, t;
7140 	uint32_t param, val;
7141 
7142 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
7143 	if (rc)
7144 		return (rc);
7145 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7146 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7147 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
7148 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7149 	end_synchronized_op(sc, 0);
7150 	if (rc)
7151 		return (rc);
7152 
7153 	/* unknown is returned as 0 but we display -1 in that case */
7154 	t = val == 0 ? -1 : val;
7155 
7156 	rc = sysctl_handle_int(oidp, &t, 0, req);
7157 	return (rc);
7158 }
7159 
7160 static int
7161 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
7162 {
7163 	struct adapter *sc = arg1;
7164 	struct sbuf *sb;
7165 	int rc;
7166 	uint32_t param, val;
7167 
7168 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
7169 	if (rc)
7170 		return (rc);
7171 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7172 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
7173 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7174 	end_synchronized_op(sc, 0);
7175 	if (rc)
7176 		return (rc);
7177 
7178 	rc = sysctl_wire_old_buffer(req, 0);
7179 	if (rc != 0)
7180 		return (rc);
7181 
7182 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7183 	if (sb == NULL)
7184 		return (ENOMEM);
7185 
7186 	if (val == 0xffffffff) {
7187 		/* Only debug and custom firmwares report load averages. */
7188 		sbuf_printf(sb, "not available");
7189 	} else {
7190 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
7191 		    (val >> 16) & 0xff);
7192 	}
7193 	rc = sbuf_finish(sb);
7194 	sbuf_delete(sb);
7195 
7196 	return (rc);
7197 }
7198 
7199 static int
7200 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
7201 {
7202 	struct adapter *sc = arg1;
7203 	struct sbuf *sb;
7204 	int rc, i;
7205 	uint16_t incr[NMTUS][NCCTRL_WIN];
7206 	static const char *dec_fac[] = {
7207 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
7208 		"0.9375"
7209 	};
7210 
7211 	rc = sysctl_wire_old_buffer(req, 0);
7212 	if (rc != 0)
7213 		return (rc);
7214 
7215 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7216 	if (sb == NULL)
7217 		return (ENOMEM);
7218 
7219 	t4_read_cong_tbl(sc, incr);
7220 
7221 	for (i = 0; i < NCCTRL_WIN; ++i) {
7222 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
7223 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
7224 		    incr[5][i], incr[6][i], incr[7][i]);
7225 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
7226 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
7227 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
7228 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
7229 	}
7230 
7231 	rc = sbuf_finish(sb);
7232 	sbuf_delete(sb);
7233 
7234 	return (rc);
7235 }
7236 
7237 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
7238 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
7239 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
7240 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
7241 };
7242 
7243 static int
7244 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
7245 {
7246 	struct adapter *sc = arg1;
7247 	struct sbuf *sb;
7248 	int rc, i, n, qid = arg2;
7249 	uint32_t *buf, *p;
7250 	char *qtype;
7251 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
7252 
7253 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
7254 	    ("%s: bad qid %d\n", __func__, qid));
7255 
7256 	if (qid < CIM_NUM_IBQ) {
7257 		/* inbound queue */
7258 		qtype = "IBQ";
7259 		n = 4 * CIM_IBQ_SIZE;
7260 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7261 		rc = t4_read_cim_ibq(sc, qid, buf, n);
7262 	} else {
7263 		/* outbound queue */
7264 		qtype = "OBQ";
7265 		qid -= CIM_NUM_IBQ;
7266 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
7267 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7268 		rc = t4_read_cim_obq(sc, qid, buf, n);
7269 	}
7270 
7271 	if (rc < 0) {
7272 		rc = -rc;
7273 		goto done;
7274 	}
7275 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
7276 
7277 	rc = sysctl_wire_old_buffer(req, 0);
7278 	if (rc != 0)
7279 		goto done;
7280 
7281 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7282 	if (sb == NULL) {
7283 		rc = ENOMEM;
7284 		goto done;
7285 	}
7286 
7287 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
7288 	for (i = 0, p = buf; i < n; i += 16, p += 4)
7289 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
7290 		    p[2], p[3]);
7291 
7292 	rc = sbuf_finish(sb);
7293 	sbuf_delete(sb);
7294 done:
7295 	free(buf, M_CXGBE);
7296 	return (rc);
7297 }
7298 
7299 static void
7300 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7301 {
7302 	uint32_t *p;
7303 
7304 	sbuf_printf(sb, "Status   Data      PC%s",
7305 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7306 	    "     LS0Stat  LS0Addr             LS0Data");
7307 
7308 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
7309 		if (cfg & F_UPDBGLACAPTPCONLY) {
7310 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
7311 			    p[6], p[7]);
7312 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
7313 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
7314 			    p[4] & 0xff, p[5] >> 8);
7315 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
7316 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7317 			    p[1] & 0xf, p[2] >> 4);
7318 		} else {
7319 			sbuf_printf(sb,
7320 			    "\n  %02x   %x%07x %x%07x %08x %08x "
7321 			    "%08x%08x%08x%08x",
7322 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7323 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
7324 			    p[6], p[7]);
7325 		}
7326 	}
7327 }
7328 
7329 static void
7330 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7331 {
7332 	uint32_t *p;
7333 
7334 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
7335 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7336 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
7337 
7338 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
7339 		if (cfg & F_UPDBGLACAPTPCONLY) {
7340 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
7341 			    p[3] & 0xff, p[2], p[1], p[0]);
7342 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
7343 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
7344 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
7345 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
7346 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
7347 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
7348 			    p[6] >> 16);
7349 		} else {
7350 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
7351 			    "%08x %08x %08x %08x %08x %08x",
7352 			    (p[9] >> 16) & 0xff,
7353 			    p[9] & 0xffff, p[8] >> 16,
7354 			    p[8] & 0xffff, p[7] >> 16,
7355 			    p[7] & 0xffff, p[6] >> 16,
7356 			    p[2], p[1], p[0], p[5], p[4], p[3]);
7357 		}
7358 	}
7359 }
7360 
7361 static int
7362 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
7363 {
7364 	uint32_t cfg, *buf;
7365 	int rc;
7366 
7367 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7368 	if (rc != 0)
7369 		return (rc);
7370 
7371 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7372 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7373 	    M_ZERO | flags);
7374 	if (buf == NULL)
7375 		return (ENOMEM);
7376 
7377 	rc = -t4_cim_read_la(sc, buf, NULL);
7378 	if (rc != 0)
7379 		goto done;
7380 	if (chip_id(sc) < CHELSIO_T6)
7381 		sbuf_cim_la4(sc, sb, buf, cfg);
7382 	else
7383 		sbuf_cim_la6(sc, sb, buf, cfg);
7384 
7385 done:
7386 	free(buf, M_CXGBE);
7387 	return (rc);
7388 }
7389 
7390 static int
7391 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
7392 {
7393 	struct adapter *sc = arg1;
7394 	struct sbuf *sb;
7395 	int rc;
7396 
7397 	rc = sysctl_wire_old_buffer(req, 0);
7398 	if (rc != 0)
7399 		return (rc);
7400 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7401 	if (sb == NULL)
7402 		return (ENOMEM);
7403 
7404 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
7405 	if (rc == 0)
7406 		rc = sbuf_finish(sb);
7407 	sbuf_delete(sb);
7408 	return (rc);
7409 }
7410 
7411 bool
7412 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose)
7413 {
7414 	struct sbuf sb;
7415 	int rc;
7416 
7417 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7418 		return (false);
7419 	rc = sbuf_cim_la(sc, &sb, M_NOWAIT);
7420 	if (rc == 0) {
7421 		rc = sbuf_finish(&sb);
7422 		if (rc == 0) {
7423 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s",
7424 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7425 		}
7426 	}
7427 	sbuf_delete(&sb);
7428 	return (false);
7429 }
7430 
7431 static int
7432 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
7433 {
7434 	struct adapter *sc = arg1;
7435 	u_int i;
7436 	struct sbuf *sb;
7437 	uint32_t *buf, *p;
7438 	int rc;
7439 
7440 	rc = sysctl_wire_old_buffer(req, 0);
7441 	if (rc != 0)
7442 		return (rc);
7443 
7444 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7445 	if (sb == NULL)
7446 		return (ENOMEM);
7447 
7448 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
7449 	    M_ZERO | M_WAITOK);
7450 
7451 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
7452 	p = buf;
7453 
7454 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7455 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
7456 		    p[1], p[0]);
7457 	}
7458 
7459 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
7460 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7461 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
7462 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
7463 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
7464 		    (p[1] >> 2) | ((p[2] & 3) << 30),
7465 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
7466 		    p[0] & 1);
7467 	}
7468 
7469 	rc = sbuf_finish(sb);
7470 	sbuf_delete(sb);
7471 	free(buf, M_CXGBE);
7472 	return (rc);
7473 }
7474 
7475 static int
7476 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
7477 {
7478 	struct adapter *sc = arg1;
7479 	u_int i;
7480 	struct sbuf *sb;
7481 	uint32_t *buf, *p;
7482 	int rc;
7483 
7484 	rc = sysctl_wire_old_buffer(req, 0);
7485 	if (rc != 0)
7486 		return (rc);
7487 
7488 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7489 	if (sb == NULL)
7490 		return (ENOMEM);
7491 
7492 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
7493 	    M_ZERO | M_WAITOK);
7494 
7495 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
7496 	p = buf;
7497 
7498 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
7499 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7500 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
7501 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
7502 		    p[4], p[3], p[2], p[1], p[0]);
7503 	}
7504 
7505 	sbuf_printf(sb, "\n\nCntl ID               Data");
7506 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7507 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
7508 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
7509 	}
7510 
7511 	rc = sbuf_finish(sb);
7512 	sbuf_delete(sb);
7513 	free(buf, M_CXGBE);
7514 	return (rc);
7515 }
7516 
7517 static int
7518 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
7519 {
7520 	struct adapter *sc = arg1;
7521 	struct sbuf *sb;
7522 	int rc, i;
7523 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7524 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7525 	uint16_t thres[CIM_NUM_IBQ];
7526 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
7527 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
7528 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
7529 
7530 	cim_num_obq = sc->chip_params->cim_num_obq;
7531 	if (is_t4(sc)) {
7532 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
7533 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
7534 	} else {
7535 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
7536 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
7537 	}
7538 	nq = CIM_NUM_IBQ + cim_num_obq;
7539 
7540 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
7541 	if (rc == 0)
7542 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
7543 	if (rc != 0)
7544 		return (rc);
7545 
7546 	t4_read_cimq_cfg(sc, base, size, thres);
7547 
7548 	rc = sysctl_wire_old_buffer(req, 0);
7549 	if (rc != 0)
7550 		return (rc);
7551 
7552 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7553 	if (sb == NULL)
7554 		return (ENOMEM);
7555 
7556 	sbuf_printf(sb,
7557 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
7558 
7559 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
7560 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
7561 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
7562 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7563 		    G_QUEREMFLITS(p[2]) * 16);
7564 	for ( ; i < nq; i++, p += 4, wr += 2)
7565 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
7566 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
7567 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7568 		    G_QUEREMFLITS(p[2]) * 16);
7569 
7570 	rc = sbuf_finish(sb);
7571 	sbuf_delete(sb);
7572 
7573 	return (rc);
7574 }
7575 
7576 static int
7577 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
7578 {
7579 	struct adapter *sc = arg1;
7580 	struct sbuf *sb;
7581 	int rc;
7582 	struct tp_cpl_stats stats;
7583 
7584 	rc = sysctl_wire_old_buffer(req, 0);
7585 	if (rc != 0)
7586 		return (rc);
7587 
7588 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7589 	if (sb == NULL)
7590 		return (ENOMEM);
7591 
7592 	mtx_lock(&sc->reg_lock);
7593 	t4_tp_get_cpl_stats(sc, &stats, 0);
7594 	mtx_unlock(&sc->reg_lock);
7595 
7596 	if (sc->chip_params->nchan > 2) {
7597 		sbuf_printf(sb, "                 channel 0  channel 1"
7598 		    "  channel 2  channel 3");
7599 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
7600 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
7601 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
7602 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
7603 	} else {
7604 		sbuf_printf(sb, "                 channel 0  channel 1");
7605 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
7606 		    stats.req[0], stats.req[1]);
7607 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
7608 		    stats.rsp[0], stats.rsp[1]);
7609 	}
7610 
7611 	rc = sbuf_finish(sb);
7612 	sbuf_delete(sb);
7613 
7614 	return (rc);
7615 }
7616 
7617 static int
7618 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
7619 {
7620 	struct adapter *sc = arg1;
7621 	struct sbuf *sb;
7622 	int rc;
7623 	struct tp_usm_stats stats;
7624 
7625 	rc = sysctl_wire_old_buffer(req, 0);
7626 	if (rc != 0)
7627 		return(rc);
7628 
7629 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7630 	if (sb == NULL)
7631 		return (ENOMEM);
7632 
7633 	t4_get_usm_stats(sc, &stats, 1);
7634 
7635 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
7636 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
7637 	sbuf_printf(sb, "Drops:  %u", stats.drops);
7638 
7639 	rc = sbuf_finish(sb);
7640 	sbuf_delete(sb);
7641 
7642 	return (rc);
7643 }
7644 
7645 static const char * const devlog_level_strings[] = {
7646 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
7647 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
7648 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
7649 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
7650 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
7651 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
7652 };
7653 
7654 static const char * const devlog_facility_strings[] = {
7655 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
7656 	[FW_DEVLOG_FACILITY_CF]		= "CF",
7657 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
7658 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
7659 	[FW_DEVLOG_FACILITY_RES]	= "RES",
7660 	[FW_DEVLOG_FACILITY_HW]		= "HW",
7661 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
7662 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
7663 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
7664 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
7665 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
7666 	[FW_DEVLOG_FACILITY_VI]		= "VI",
7667 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
7668 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
7669 	[FW_DEVLOG_FACILITY_TM]		= "TM",
7670 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
7671 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
7672 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
7673 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
7674 	[FW_DEVLOG_FACILITY_RI]		= "RI",
7675 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
7676 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
7677 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
7678 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
7679 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
7680 };
7681 
7682 static int
7683 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
7684 {
7685 	int i, j, rc, nentries, first = 0;
7686 	struct devlog_params *dparams = &sc->params.devlog;
7687 	struct fw_devlog_e *buf, *e;
7688 	uint64_t ftstamp = UINT64_MAX;
7689 
7690 	if (dparams->addr == 0)
7691 		return (ENXIO);
7692 
7693 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7694 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
7695 	if (buf == NULL)
7696 		return (ENOMEM);
7697 
7698 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
7699 	if (rc != 0)
7700 		goto done;
7701 
7702 	nentries = dparams->size / sizeof(struct fw_devlog_e);
7703 	for (i = 0; i < nentries; i++) {
7704 		e = &buf[i];
7705 
7706 		if (e->timestamp == 0)
7707 			break;	/* end */
7708 
7709 		e->timestamp = be64toh(e->timestamp);
7710 		e->seqno = be32toh(e->seqno);
7711 		for (j = 0; j < 8; j++)
7712 			e->params[j] = be32toh(e->params[j]);
7713 
7714 		if (e->timestamp < ftstamp) {
7715 			ftstamp = e->timestamp;
7716 			first = i;
7717 		}
7718 	}
7719 
7720 	if (buf[first].timestamp == 0)
7721 		goto done;	/* nothing in the log */
7722 
7723 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
7724 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
7725 
7726 	i = first;
7727 	do {
7728 		e = &buf[i];
7729 		if (e->timestamp == 0)
7730 			break;	/* end */
7731 
7732 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
7733 		    e->seqno, e->timestamp,
7734 		    (e->level < nitems(devlog_level_strings) ?
7735 			devlog_level_strings[e->level] : "UNKNOWN"),
7736 		    (e->facility < nitems(devlog_facility_strings) ?
7737 			devlog_facility_strings[e->facility] : "UNKNOWN"));
7738 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
7739 		    e->params[2], e->params[3], e->params[4],
7740 		    e->params[5], e->params[6], e->params[7]);
7741 
7742 		if (++i == nentries)
7743 			i = 0;
7744 	} while (i != first);
7745 done:
7746 	free(buf, M_CXGBE);
7747 	return (rc);
7748 }
7749 
7750 static int
7751 sysctl_devlog(SYSCTL_HANDLER_ARGS)
7752 {
7753 	struct adapter *sc = arg1;
7754 	int rc;
7755 	struct sbuf *sb;
7756 
7757 	rc = sysctl_wire_old_buffer(req, 0);
7758 	if (rc != 0)
7759 		return (rc);
7760 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7761 	if (sb == NULL)
7762 		return (ENOMEM);
7763 
7764 	rc = sbuf_devlog(sc, sb, M_WAITOK);
7765 	if (rc == 0)
7766 		rc = sbuf_finish(sb);
7767 	sbuf_delete(sb);
7768 	return (rc);
7769 }
7770 
7771 void
7772 t4_os_dump_devlog(struct adapter *sc)
7773 {
7774 	int rc;
7775 	struct sbuf sb;
7776 
7777 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7778 		return;
7779 	rc = sbuf_devlog(sc, &sb, M_NOWAIT);
7780 	if (rc == 0) {
7781 		rc = sbuf_finish(&sb);
7782 		if (rc == 0) {
7783 			log(LOG_DEBUG, "%s: device log follows.\n%s",
7784 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7785 		}
7786 	}
7787 	sbuf_delete(&sb);
7788 }
7789 
7790 static int
7791 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
7792 {
7793 	struct adapter *sc = arg1;
7794 	struct sbuf *sb;
7795 	int rc;
7796 	struct tp_fcoe_stats stats[MAX_NCHAN];
7797 	int i, nchan = sc->chip_params->nchan;
7798 
7799 	rc = sysctl_wire_old_buffer(req, 0);
7800 	if (rc != 0)
7801 		return (rc);
7802 
7803 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7804 	if (sb == NULL)
7805 		return (ENOMEM);
7806 
7807 	for (i = 0; i < nchan; i++)
7808 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
7809 
7810 	if (nchan > 2) {
7811 		sbuf_printf(sb, "                   channel 0        channel 1"
7812 		    "        channel 2        channel 3");
7813 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
7814 		    stats[0].octets_ddp, stats[1].octets_ddp,
7815 		    stats[2].octets_ddp, stats[3].octets_ddp);
7816 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
7817 		    stats[0].frames_ddp, stats[1].frames_ddp,
7818 		    stats[2].frames_ddp, stats[3].frames_ddp);
7819 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
7820 		    stats[0].frames_drop, stats[1].frames_drop,
7821 		    stats[2].frames_drop, stats[3].frames_drop);
7822 	} else {
7823 		sbuf_printf(sb, "                   channel 0        channel 1");
7824 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
7825 		    stats[0].octets_ddp, stats[1].octets_ddp);
7826 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
7827 		    stats[0].frames_ddp, stats[1].frames_ddp);
7828 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
7829 		    stats[0].frames_drop, stats[1].frames_drop);
7830 	}
7831 
7832 	rc = sbuf_finish(sb);
7833 	sbuf_delete(sb);
7834 
7835 	return (rc);
7836 }
7837 
7838 static int
7839 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
7840 {
7841 	struct adapter *sc = arg1;
7842 	struct sbuf *sb;
7843 	int rc, i;
7844 	unsigned int map, kbps, ipg, mode;
7845 	unsigned int pace_tab[NTX_SCHED];
7846 
7847 	rc = sysctl_wire_old_buffer(req, 0);
7848 	if (rc != 0)
7849 		return (rc);
7850 
7851 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7852 	if (sb == NULL)
7853 		return (ENOMEM);
7854 
7855 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
7856 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
7857 	t4_read_pace_tbl(sc, pace_tab);
7858 
7859 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
7860 	    "Class IPG (0.1 ns)   Flow IPG (us)");
7861 
7862 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
7863 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
7864 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
7865 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
7866 		if (kbps)
7867 			sbuf_printf(sb, "%9u     ", kbps);
7868 		else
7869 			sbuf_printf(sb, " disabled     ");
7870 
7871 		if (ipg)
7872 			sbuf_printf(sb, "%13u        ", ipg);
7873 		else
7874 			sbuf_printf(sb, "     disabled        ");
7875 
7876 		if (pace_tab[i])
7877 			sbuf_printf(sb, "%10u", pace_tab[i]);
7878 		else
7879 			sbuf_printf(sb, "  disabled");
7880 	}
7881 
7882 	rc = sbuf_finish(sb);
7883 	sbuf_delete(sb);
7884 
7885 	return (rc);
7886 }
7887 
7888 static int
7889 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
7890 {
7891 	struct adapter *sc = arg1;
7892 	struct sbuf *sb;
7893 	int rc, i, j;
7894 	uint64_t *p0, *p1;
7895 	struct lb_port_stats s[2];
7896 	static const char *stat_name[] = {
7897 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
7898 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
7899 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
7900 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
7901 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
7902 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
7903 		"BG2FramesTrunc:", "BG3FramesTrunc:"
7904 	};
7905 
7906 	rc = sysctl_wire_old_buffer(req, 0);
7907 	if (rc != 0)
7908 		return (rc);
7909 
7910 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7911 	if (sb == NULL)
7912 		return (ENOMEM);
7913 
7914 	memset(s, 0, sizeof(s));
7915 
7916 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
7917 		t4_get_lb_stats(sc, i, &s[0]);
7918 		t4_get_lb_stats(sc, i + 1, &s[1]);
7919 
7920 		p0 = &s[0].octets;
7921 		p1 = &s[1].octets;
7922 		sbuf_printf(sb, "%s                       Loopback %u"
7923 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
7924 
7925 		for (j = 0; j < nitems(stat_name); j++)
7926 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
7927 				   *p0++, *p1++);
7928 	}
7929 
7930 	rc = sbuf_finish(sb);
7931 	sbuf_delete(sb);
7932 
7933 	return (rc);
7934 }
7935 
7936 static int
7937 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
7938 {
7939 	int rc = 0;
7940 	struct port_info *pi = arg1;
7941 	struct link_config *lc = &pi->link_cfg;
7942 	struct sbuf *sb;
7943 
7944 	rc = sysctl_wire_old_buffer(req, 0);
7945 	if (rc != 0)
7946 		return(rc);
7947 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7948 	if (sb == NULL)
7949 		return (ENOMEM);
7950 
7951 	if (lc->link_ok || lc->link_down_rc == 255)
7952 		sbuf_printf(sb, "n/a");
7953 	else
7954 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7955 
7956 	rc = sbuf_finish(sb);
7957 	sbuf_delete(sb);
7958 
7959 	return (rc);
7960 }
7961 
7962 struct mem_desc {
7963 	unsigned int base;
7964 	unsigned int limit;
7965 	unsigned int idx;
7966 };
7967 
7968 static int
7969 mem_desc_cmp(const void *a, const void *b)
7970 {
7971 	return ((const struct mem_desc *)a)->base -
7972 	       ((const struct mem_desc *)b)->base;
7973 }
7974 
7975 static void
7976 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7977     unsigned int to)
7978 {
7979 	unsigned int size;
7980 
7981 	if (from == to)
7982 		return;
7983 
7984 	size = to - from + 1;
7985 	if (size == 0)
7986 		return;
7987 
7988 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7989 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7990 }
7991 
7992 static int
7993 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7994 {
7995 	struct adapter *sc = arg1;
7996 	struct sbuf *sb;
7997 	int rc, i, n;
7998 	uint32_t lo, hi, used, alloc;
7999 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
8000 	static const char *region[] = {
8001 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
8002 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
8003 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
8004 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
8005 		"RQUDP region:", "PBL region:", "TXPBL region:",
8006 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
8007 		"On-chip queues:", "TLS keys:",
8008 	};
8009 	struct mem_desc avail[4];
8010 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
8011 	struct mem_desc *md = mem;
8012 
8013 	rc = sysctl_wire_old_buffer(req, 0);
8014 	if (rc != 0)
8015 		return (rc);
8016 
8017 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8018 	if (sb == NULL)
8019 		return (ENOMEM);
8020 
8021 	for (i = 0; i < nitems(mem); i++) {
8022 		mem[i].limit = 0;
8023 		mem[i].idx = i;
8024 	}
8025 
8026 	/* Find and sort the populated memory ranges */
8027 	i = 0;
8028 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
8029 	if (lo & F_EDRAM0_ENABLE) {
8030 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
8031 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
8032 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
8033 		avail[i].idx = 0;
8034 		i++;
8035 	}
8036 	if (lo & F_EDRAM1_ENABLE) {
8037 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
8038 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
8039 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
8040 		avail[i].idx = 1;
8041 		i++;
8042 	}
8043 	if (lo & F_EXT_MEM_ENABLE) {
8044 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
8045 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
8046 		avail[i].limit = avail[i].base +
8047 		    (G_EXT_MEM_SIZE(hi) << 20);
8048 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
8049 		i++;
8050 	}
8051 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
8052 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
8053 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
8054 		avail[i].limit = avail[i].base +
8055 		    (G_EXT_MEM1_SIZE(hi) << 20);
8056 		avail[i].idx = 4;
8057 		i++;
8058 	}
8059 	if (!i)                                    /* no memory available */
8060 		return 0;
8061 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
8062 
8063 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
8064 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
8065 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
8066 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
8067 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
8068 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
8069 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
8070 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
8071 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
8072 
8073 	/* the next few have explicit upper bounds */
8074 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
8075 	md->limit = md->base - 1 +
8076 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
8077 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
8078 	md++;
8079 
8080 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
8081 	md->limit = md->base - 1 +
8082 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
8083 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
8084 	md++;
8085 
8086 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8087 		if (chip_id(sc) <= CHELSIO_T5)
8088 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
8089 		else
8090 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
8091 		md->limit = 0;
8092 	} else {
8093 		md->base = 0;
8094 		md->idx = nitems(region);  /* hide it */
8095 	}
8096 	md++;
8097 
8098 #define ulp_region(reg) \
8099 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
8100 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
8101 
8102 	ulp_region(RX_ISCSI);
8103 	ulp_region(RX_TDDP);
8104 	ulp_region(TX_TPT);
8105 	ulp_region(RX_STAG);
8106 	ulp_region(RX_RQ);
8107 	ulp_region(RX_RQUDP);
8108 	ulp_region(RX_PBL);
8109 	ulp_region(TX_PBL);
8110 #undef ulp_region
8111 
8112 	md->base = 0;
8113 	md->idx = nitems(region);
8114 	if (!is_t4(sc)) {
8115 		uint32_t size = 0;
8116 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
8117 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
8118 
8119 		if (is_t5(sc)) {
8120 			if (sge_ctrl & F_VFIFO_ENABLE)
8121 				size = G_DBVFIFO_SIZE(fifo_size);
8122 		} else
8123 			size = G_T6_DBVFIFO_SIZE(fifo_size);
8124 
8125 		if (size) {
8126 			md->base = G_BASEADDR(t4_read_reg(sc,
8127 			    A_SGE_DBVFIFO_BADDR));
8128 			md->limit = md->base + (size << 2) - 1;
8129 		}
8130 	}
8131 	md++;
8132 
8133 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
8134 	md->limit = 0;
8135 	md++;
8136 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
8137 	md->limit = 0;
8138 	md++;
8139 
8140 	md->base = sc->vres.ocq.start;
8141 	if (sc->vres.ocq.size)
8142 		md->limit = md->base + sc->vres.ocq.size - 1;
8143 	else
8144 		md->idx = nitems(region);  /* hide it */
8145 	md++;
8146 
8147 	md->base = sc->vres.key.start;
8148 	if (sc->vres.key.size)
8149 		md->limit = md->base + sc->vres.key.size - 1;
8150 	else
8151 		md->idx = nitems(region);  /* hide it */
8152 	md++;
8153 
8154 	/* add any address-space holes, there can be up to 3 */
8155 	for (n = 0; n < i - 1; n++)
8156 		if (avail[n].limit < avail[n + 1].base)
8157 			(md++)->base = avail[n].limit;
8158 	if (avail[n].limit)
8159 		(md++)->base = avail[n].limit;
8160 
8161 	n = md - mem;
8162 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
8163 
8164 	for (lo = 0; lo < i; lo++)
8165 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
8166 				avail[lo].limit - 1);
8167 
8168 	sbuf_printf(sb, "\n");
8169 	for (i = 0; i < n; i++) {
8170 		if (mem[i].idx >= nitems(region))
8171 			continue;                        /* skip holes */
8172 		if (!mem[i].limit)
8173 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
8174 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
8175 				mem[i].limit);
8176 	}
8177 
8178 	sbuf_printf(sb, "\n");
8179 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
8180 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
8181 	mem_region_show(sb, "uP RAM:", lo, hi);
8182 
8183 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
8184 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
8185 	mem_region_show(sb, "uP Extmem2:", lo, hi);
8186 
8187 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
8188 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
8189 		   G_PMRXMAXPAGE(lo),
8190 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
8191 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
8192 
8193 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
8194 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
8195 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
8196 		   G_PMTXMAXPAGE(lo),
8197 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
8198 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
8199 	sbuf_printf(sb, "%u p-structs\n",
8200 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
8201 
8202 	for (i = 0; i < 4; i++) {
8203 		if (chip_id(sc) > CHELSIO_T5)
8204 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
8205 		else
8206 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
8207 		if (is_t5(sc)) {
8208 			used = G_T5_USED(lo);
8209 			alloc = G_T5_ALLOC(lo);
8210 		} else {
8211 			used = G_USED(lo);
8212 			alloc = G_ALLOC(lo);
8213 		}
8214 		/* For T6 these are MAC buffer groups */
8215 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
8216 		    i, used, alloc);
8217 	}
8218 	for (i = 0; i < sc->chip_params->nchan; i++) {
8219 		if (chip_id(sc) > CHELSIO_T5)
8220 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
8221 		else
8222 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
8223 		if (is_t5(sc)) {
8224 			used = G_T5_USED(lo);
8225 			alloc = G_T5_ALLOC(lo);
8226 		} else {
8227 			used = G_USED(lo);
8228 			alloc = G_ALLOC(lo);
8229 		}
8230 		/* For T6 these are MAC buffer groups */
8231 		sbuf_printf(sb,
8232 		    "\nLoopback %d using %u pages out of %u allocated",
8233 		    i, used, alloc);
8234 	}
8235 
8236 	rc = sbuf_finish(sb);
8237 	sbuf_delete(sb);
8238 
8239 	return (rc);
8240 }
8241 
8242 static inline void
8243 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
8244 {
8245 	*mask = x | y;
8246 	y = htobe64(y);
8247 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
8248 }
8249 
8250 static int
8251 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
8252 {
8253 	struct adapter *sc = arg1;
8254 	struct sbuf *sb;
8255 	int rc, i;
8256 
8257 	MPASS(chip_id(sc) <= CHELSIO_T5);
8258 
8259 	rc = sysctl_wire_old_buffer(req, 0);
8260 	if (rc != 0)
8261 		return (rc);
8262 
8263 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8264 	if (sb == NULL)
8265 		return (ENOMEM);
8266 
8267 	sbuf_printf(sb,
8268 	    "Idx  Ethernet address     Mask     Vld Ports PF"
8269 	    "  VF              Replication             P0 P1 P2 P3  ML");
8270 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8271 		uint64_t tcamx, tcamy, mask;
8272 		uint32_t cls_lo, cls_hi;
8273 		uint8_t addr[ETHER_ADDR_LEN];
8274 
8275 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
8276 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
8277 		if (tcamx & tcamy)
8278 			continue;
8279 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8280 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8281 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8282 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
8283 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
8284 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
8285 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
8286 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
8287 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
8288 
8289 		if (cls_lo & F_REPLICATE) {
8290 			struct fw_ldst_cmd ldst_cmd;
8291 
8292 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8293 			ldst_cmd.op_to_addrspace =
8294 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8295 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8296 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8297 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8298 			ldst_cmd.u.mps.rplc.fid_idx =
8299 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8300 				V_FW_LDST_CMD_IDX(i));
8301 
8302 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8303 			    "t4mps");
8304 			if (rc)
8305 				break;
8306 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8307 			    sizeof(ldst_cmd), &ldst_cmd);
8308 			end_synchronized_op(sc, 0);
8309 
8310 			if (rc != 0) {
8311 				sbuf_printf(sb, "%36d", rc);
8312 				rc = 0;
8313 			} else {
8314 				sbuf_printf(sb, " %08x %08x %08x %08x",
8315 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8316 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8317 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8318 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8319 			}
8320 		} else
8321 			sbuf_printf(sb, "%36s", "");
8322 
8323 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
8324 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
8325 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
8326 	}
8327 
8328 	if (rc)
8329 		(void) sbuf_finish(sb);
8330 	else
8331 		rc = sbuf_finish(sb);
8332 	sbuf_delete(sb);
8333 
8334 	return (rc);
8335 }
8336 
8337 static int
8338 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
8339 {
8340 	struct adapter *sc = arg1;
8341 	struct sbuf *sb;
8342 	int rc, i;
8343 
8344 	MPASS(chip_id(sc) > CHELSIO_T5);
8345 
8346 	rc = sysctl_wire_old_buffer(req, 0);
8347 	if (rc != 0)
8348 		return (rc);
8349 
8350 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8351 	if (sb == NULL)
8352 		return (ENOMEM);
8353 
8354 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
8355 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
8356 	    "                           Replication"
8357 	    "                                    P0 P1 P2 P3  ML\n");
8358 
8359 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8360 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
8361 		uint16_t ivlan;
8362 		uint64_t tcamx, tcamy, val, mask;
8363 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
8364 		uint8_t addr[ETHER_ADDR_LEN];
8365 
8366 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
8367 		if (i < 256)
8368 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
8369 		else
8370 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
8371 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8372 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8373 		tcamy = G_DMACH(val) << 32;
8374 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8375 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8376 		lookup_type = G_DATALKPTYPE(data2);
8377 		port_num = G_DATAPORTNUM(data2);
8378 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8379 			/* Inner header VNI */
8380 			vniy = ((data2 & F_DATAVIDH2) << 23) |
8381 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8382 			dip_hit = data2 & F_DATADIPHIT;
8383 			vlan_vld = 0;
8384 		} else {
8385 			vniy = 0;
8386 			dip_hit = 0;
8387 			vlan_vld = data2 & F_DATAVIDH2;
8388 			ivlan = G_VIDL(val);
8389 		}
8390 
8391 		ctl |= V_CTLXYBITSEL(1);
8392 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8393 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8394 		tcamx = G_DMACH(val) << 32;
8395 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8396 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8397 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8398 			/* Inner header VNI mask */
8399 			vnix = ((data2 & F_DATAVIDH2) << 23) |
8400 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8401 		} else
8402 			vnix = 0;
8403 
8404 		if (tcamx & tcamy)
8405 			continue;
8406 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8407 
8408 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8409 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8410 
8411 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8412 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8413 			    "%012jx %06x %06x    -    -   %3c"
8414 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
8415 			    addr[1], addr[2], addr[3], addr[4], addr[5],
8416 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
8417 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8418 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8419 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8420 		} else {
8421 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8422 			    "%012jx    -       -   ", i, addr[0], addr[1],
8423 			    addr[2], addr[3], addr[4], addr[5],
8424 			    (uintmax_t)mask);
8425 
8426 			if (vlan_vld)
8427 				sbuf_printf(sb, "%4u   Y     ", ivlan);
8428 			else
8429 				sbuf_printf(sb, "  -    N     ");
8430 
8431 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
8432 			    lookup_type ? 'I' : 'O', port_num,
8433 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8434 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8435 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8436 		}
8437 
8438 
8439 		if (cls_lo & F_T6_REPLICATE) {
8440 			struct fw_ldst_cmd ldst_cmd;
8441 
8442 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8443 			ldst_cmd.op_to_addrspace =
8444 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8445 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8446 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8447 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8448 			ldst_cmd.u.mps.rplc.fid_idx =
8449 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8450 				V_FW_LDST_CMD_IDX(i));
8451 
8452 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8453 			    "t6mps");
8454 			if (rc)
8455 				break;
8456 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8457 			    sizeof(ldst_cmd), &ldst_cmd);
8458 			end_synchronized_op(sc, 0);
8459 
8460 			if (rc != 0) {
8461 				sbuf_printf(sb, "%72d", rc);
8462 				rc = 0;
8463 			} else {
8464 				sbuf_printf(sb, " %08x %08x %08x %08x"
8465 				    " %08x %08x %08x %08x",
8466 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
8467 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
8468 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
8469 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
8470 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8471 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8472 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8473 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8474 			}
8475 		} else
8476 			sbuf_printf(sb, "%72s", "");
8477 
8478 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
8479 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
8480 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
8481 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
8482 	}
8483 
8484 	if (rc)
8485 		(void) sbuf_finish(sb);
8486 	else
8487 		rc = sbuf_finish(sb);
8488 	sbuf_delete(sb);
8489 
8490 	return (rc);
8491 }
8492 
8493 static int
8494 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
8495 {
8496 	struct adapter *sc = arg1;
8497 	struct sbuf *sb;
8498 	int rc;
8499 	uint16_t mtus[NMTUS];
8500 
8501 	rc = sysctl_wire_old_buffer(req, 0);
8502 	if (rc != 0)
8503 		return (rc);
8504 
8505 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8506 	if (sb == NULL)
8507 		return (ENOMEM);
8508 
8509 	t4_read_mtu_tbl(sc, mtus, NULL);
8510 
8511 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
8512 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
8513 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
8514 	    mtus[14], mtus[15]);
8515 
8516 	rc = sbuf_finish(sb);
8517 	sbuf_delete(sb);
8518 
8519 	return (rc);
8520 }
8521 
8522 static int
8523 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
8524 {
8525 	struct adapter *sc = arg1;
8526 	struct sbuf *sb;
8527 	int rc, i;
8528 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
8529 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
8530 	static const char *tx_stats[MAX_PM_NSTATS] = {
8531 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
8532 		"Tx FIFO wait", NULL, "Tx latency"
8533 	};
8534 	static const char *rx_stats[MAX_PM_NSTATS] = {
8535 		"Read:", "Write bypass:", "Write mem:", "Flush:",
8536 		"Rx FIFO wait", NULL, "Rx latency"
8537 	};
8538 
8539 	rc = sysctl_wire_old_buffer(req, 0);
8540 	if (rc != 0)
8541 		return (rc);
8542 
8543 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8544 	if (sb == NULL)
8545 		return (ENOMEM);
8546 
8547 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
8548 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
8549 
8550 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
8551 	for (i = 0; i < 4; i++) {
8552 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8553 		    tx_cyc[i]);
8554 	}
8555 
8556 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
8557 	for (i = 0; i < 4; i++) {
8558 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8559 		    rx_cyc[i]);
8560 	}
8561 
8562 	if (chip_id(sc) > CHELSIO_T5) {
8563 		sbuf_printf(sb,
8564 		    "\n              Total wait      Total occupancy");
8565 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8566 		    tx_cyc[i]);
8567 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8568 		    rx_cyc[i]);
8569 
8570 		i += 2;
8571 		MPASS(i < nitems(tx_stats));
8572 
8573 		sbuf_printf(sb,
8574 		    "\n                   Reads           Total wait");
8575 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8576 		    tx_cyc[i]);
8577 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8578 		    rx_cyc[i]);
8579 	}
8580 
8581 	rc = sbuf_finish(sb);
8582 	sbuf_delete(sb);
8583 
8584 	return (rc);
8585 }
8586 
8587 static int
8588 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
8589 {
8590 	struct adapter *sc = arg1;
8591 	struct sbuf *sb;
8592 	int rc;
8593 	struct tp_rdma_stats stats;
8594 
8595 	rc = sysctl_wire_old_buffer(req, 0);
8596 	if (rc != 0)
8597 		return (rc);
8598 
8599 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8600 	if (sb == NULL)
8601 		return (ENOMEM);
8602 
8603 	mtx_lock(&sc->reg_lock);
8604 	t4_tp_get_rdma_stats(sc, &stats, 0);
8605 	mtx_unlock(&sc->reg_lock);
8606 
8607 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
8608 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
8609 
8610 	rc = sbuf_finish(sb);
8611 	sbuf_delete(sb);
8612 
8613 	return (rc);
8614 }
8615 
8616 static int
8617 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
8618 {
8619 	struct adapter *sc = arg1;
8620 	struct sbuf *sb;
8621 	int rc;
8622 	struct tp_tcp_stats v4, v6;
8623 
8624 	rc = sysctl_wire_old_buffer(req, 0);
8625 	if (rc != 0)
8626 		return (rc);
8627 
8628 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8629 	if (sb == NULL)
8630 		return (ENOMEM);
8631 
8632 	mtx_lock(&sc->reg_lock);
8633 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
8634 	mtx_unlock(&sc->reg_lock);
8635 
8636 	sbuf_printf(sb,
8637 	    "                                IP                 IPv6\n");
8638 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
8639 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
8640 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
8641 	    v4.tcp_in_segs, v6.tcp_in_segs);
8642 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
8643 	    v4.tcp_out_segs, v6.tcp_out_segs);
8644 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
8645 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
8646 
8647 	rc = sbuf_finish(sb);
8648 	sbuf_delete(sb);
8649 
8650 	return (rc);
8651 }
8652 
8653 static int
8654 sysctl_tids(SYSCTL_HANDLER_ARGS)
8655 {
8656 	struct adapter *sc = arg1;
8657 	struct sbuf *sb;
8658 	int rc;
8659 	struct tid_info *t = &sc->tids;
8660 
8661 	rc = sysctl_wire_old_buffer(req, 0);
8662 	if (rc != 0)
8663 		return (rc);
8664 
8665 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8666 	if (sb == NULL)
8667 		return (ENOMEM);
8668 
8669 	if (t->natids) {
8670 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
8671 		    t->atids_in_use);
8672 	}
8673 
8674 	if (t->nhpftids) {
8675 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
8676 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
8677 	}
8678 
8679 	if (t->ntids) {
8680 		sbuf_printf(sb, "TID range: ");
8681 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8682 			uint32_t b, hb;
8683 
8684 			if (chip_id(sc) <= CHELSIO_T5) {
8685 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
8686 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
8687 			} else {
8688 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
8689 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
8690 			}
8691 
8692 			if (b)
8693 				sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1);
8694 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
8695 		} else
8696 			sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1);
8697 		sbuf_printf(sb, ", in use: %u\n",
8698 		    atomic_load_acq_int(&t->tids_in_use));
8699 	}
8700 
8701 	if (t->nstids) {
8702 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
8703 		    t->stid_base + t->nstids - 1, t->stids_in_use);
8704 	}
8705 
8706 	if (t->nftids) {
8707 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
8708 		    t->ftid_end, t->ftids_in_use);
8709 	}
8710 
8711 	if (t->netids) {
8712 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
8713 		    t->etid_base + t->netids - 1, t->etids_in_use);
8714 	}
8715 
8716 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
8717 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
8718 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
8719 
8720 	rc = sbuf_finish(sb);
8721 	sbuf_delete(sb);
8722 
8723 	return (rc);
8724 }
8725 
8726 static int
8727 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
8728 {
8729 	struct adapter *sc = arg1;
8730 	struct sbuf *sb;
8731 	int rc;
8732 	struct tp_err_stats stats;
8733 
8734 	rc = sysctl_wire_old_buffer(req, 0);
8735 	if (rc != 0)
8736 		return (rc);
8737 
8738 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8739 	if (sb == NULL)
8740 		return (ENOMEM);
8741 
8742 	mtx_lock(&sc->reg_lock);
8743 	t4_tp_get_err_stats(sc, &stats, 0);
8744 	mtx_unlock(&sc->reg_lock);
8745 
8746 	if (sc->chip_params->nchan > 2) {
8747 		sbuf_printf(sb, "                 channel 0  channel 1"
8748 		    "  channel 2  channel 3\n");
8749 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
8750 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
8751 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
8752 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
8753 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
8754 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
8755 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
8756 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
8757 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
8758 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
8759 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
8760 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
8761 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
8762 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
8763 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
8764 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
8765 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
8766 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
8767 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
8768 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
8769 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
8770 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
8771 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
8772 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
8773 	} else {
8774 		sbuf_printf(sb, "                 channel 0  channel 1\n");
8775 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
8776 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
8777 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
8778 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
8779 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
8780 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
8781 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
8782 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
8783 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
8784 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
8785 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
8786 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
8787 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
8788 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
8789 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
8790 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
8791 	}
8792 
8793 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
8794 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
8795 
8796 	rc = sbuf_finish(sb);
8797 	sbuf_delete(sb);
8798 
8799 	return (rc);
8800 }
8801 
8802 static int
8803 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
8804 {
8805 	struct adapter *sc = arg1;
8806 	struct tp_params *tpp = &sc->params.tp;
8807 	u_int mask;
8808 	int rc;
8809 
8810 	mask = tpp->la_mask >> 16;
8811 	rc = sysctl_handle_int(oidp, &mask, 0, req);
8812 	if (rc != 0 || req->newptr == NULL)
8813 		return (rc);
8814 	if (mask > 0xffff)
8815 		return (EINVAL);
8816 	tpp->la_mask = mask << 16;
8817 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
8818 
8819 	return (0);
8820 }
8821 
8822 struct field_desc {
8823 	const char *name;
8824 	u_int start;
8825 	u_int width;
8826 };
8827 
8828 static void
8829 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
8830 {
8831 	char buf[32];
8832 	int line_size = 0;
8833 
8834 	while (f->name) {
8835 		uint64_t mask = (1ULL << f->width) - 1;
8836 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
8837 		    ((uintmax_t)v >> f->start) & mask);
8838 
8839 		if (line_size + len >= 79) {
8840 			line_size = 8;
8841 			sbuf_printf(sb, "\n        ");
8842 		}
8843 		sbuf_printf(sb, "%s ", buf);
8844 		line_size += len + 1;
8845 		f++;
8846 	}
8847 	sbuf_printf(sb, "\n");
8848 }
8849 
8850 static const struct field_desc tp_la0[] = {
8851 	{ "RcfOpCodeOut", 60, 4 },
8852 	{ "State", 56, 4 },
8853 	{ "WcfState", 52, 4 },
8854 	{ "RcfOpcSrcOut", 50, 2 },
8855 	{ "CRxError", 49, 1 },
8856 	{ "ERxError", 48, 1 },
8857 	{ "SanityFailed", 47, 1 },
8858 	{ "SpuriousMsg", 46, 1 },
8859 	{ "FlushInputMsg", 45, 1 },
8860 	{ "FlushInputCpl", 44, 1 },
8861 	{ "RssUpBit", 43, 1 },
8862 	{ "RssFilterHit", 42, 1 },
8863 	{ "Tid", 32, 10 },
8864 	{ "InitTcb", 31, 1 },
8865 	{ "LineNumber", 24, 7 },
8866 	{ "Emsg", 23, 1 },
8867 	{ "EdataOut", 22, 1 },
8868 	{ "Cmsg", 21, 1 },
8869 	{ "CdataOut", 20, 1 },
8870 	{ "EreadPdu", 19, 1 },
8871 	{ "CreadPdu", 18, 1 },
8872 	{ "TunnelPkt", 17, 1 },
8873 	{ "RcfPeerFin", 16, 1 },
8874 	{ "RcfReasonOut", 12, 4 },
8875 	{ "TxCchannel", 10, 2 },
8876 	{ "RcfTxChannel", 8, 2 },
8877 	{ "RxEchannel", 6, 2 },
8878 	{ "RcfRxChannel", 5, 1 },
8879 	{ "RcfDataOutSrdy", 4, 1 },
8880 	{ "RxDvld", 3, 1 },
8881 	{ "RxOoDvld", 2, 1 },
8882 	{ "RxCongestion", 1, 1 },
8883 	{ "TxCongestion", 0, 1 },
8884 	{ NULL }
8885 };
8886 
8887 static const struct field_desc tp_la1[] = {
8888 	{ "CplCmdIn", 56, 8 },
8889 	{ "CplCmdOut", 48, 8 },
8890 	{ "ESynOut", 47, 1 },
8891 	{ "EAckOut", 46, 1 },
8892 	{ "EFinOut", 45, 1 },
8893 	{ "ERstOut", 44, 1 },
8894 	{ "SynIn", 43, 1 },
8895 	{ "AckIn", 42, 1 },
8896 	{ "FinIn", 41, 1 },
8897 	{ "RstIn", 40, 1 },
8898 	{ "DataIn", 39, 1 },
8899 	{ "DataInVld", 38, 1 },
8900 	{ "PadIn", 37, 1 },
8901 	{ "RxBufEmpty", 36, 1 },
8902 	{ "RxDdp", 35, 1 },
8903 	{ "RxFbCongestion", 34, 1 },
8904 	{ "TxFbCongestion", 33, 1 },
8905 	{ "TxPktSumSrdy", 32, 1 },
8906 	{ "RcfUlpType", 28, 4 },
8907 	{ "Eread", 27, 1 },
8908 	{ "Ebypass", 26, 1 },
8909 	{ "Esave", 25, 1 },
8910 	{ "Static0", 24, 1 },
8911 	{ "Cread", 23, 1 },
8912 	{ "Cbypass", 22, 1 },
8913 	{ "Csave", 21, 1 },
8914 	{ "CPktOut", 20, 1 },
8915 	{ "RxPagePoolFull", 18, 2 },
8916 	{ "RxLpbkPkt", 17, 1 },
8917 	{ "TxLpbkPkt", 16, 1 },
8918 	{ "RxVfValid", 15, 1 },
8919 	{ "SynLearned", 14, 1 },
8920 	{ "SetDelEntry", 13, 1 },
8921 	{ "SetInvEntry", 12, 1 },
8922 	{ "CpcmdDvld", 11, 1 },
8923 	{ "CpcmdSave", 10, 1 },
8924 	{ "RxPstructsFull", 8, 2 },
8925 	{ "EpcmdDvld", 7, 1 },
8926 	{ "EpcmdFlush", 6, 1 },
8927 	{ "EpcmdTrimPrefix", 5, 1 },
8928 	{ "EpcmdTrimPostfix", 4, 1 },
8929 	{ "ERssIp4Pkt", 3, 1 },
8930 	{ "ERssIp6Pkt", 2, 1 },
8931 	{ "ERssTcpUdpPkt", 1, 1 },
8932 	{ "ERssFceFipPkt", 0, 1 },
8933 	{ NULL }
8934 };
8935 
8936 static const struct field_desc tp_la2[] = {
8937 	{ "CplCmdIn", 56, 8 },
8938 	{ "MpsVfVld", 55, 1 },
8939 	{ "MpsPf", 52, 3 },
8940 	{ "MpsVf", 44, 8 },
8941 	{ "SynIn", 43, 1 },
8942 	{ "AckIn", 42, 1 },
8943 	{ "FinIn", 41, 1 },
8944 	{ "RstIn", 40, 1 },
8945 	{ "DataIn", 39, 1 },
8946 	{ "DataInVld", 38, 1 },
8947 	{ "PadIn", 37, 1 },
8948 	{ "RxBufEmpty", 36, 1 },
8949 	{ "RxDdp", 35, 1 },
8950 	{ "RxFbCongestion", 34, 1 },
8951 	{ "TxFbCongestion", 33, 1 },
8952 	{ "TxPktSumSrdy", 32, 1 },
8953 	{ "RcfUlpType", 28, 4 },
8954 	{ "Eread", 27, 1 },
8955 	{ "Ebypass", 26, 1 },
8956 	{ "Esave", 25, 1 },
8957 	{ "Static0", 24, 1 },
8958 	{ "Cread", 23, 1 },
8959 	{ "Cbypass", 22, 1 },
8960 	{ "Csave", 21, 1 },
8961 	{ "CPktOut", 20, 1 },
8962 	{ "RxPagePoolFull", 18, 2 },
8963 	{ "RxLpbkPkt", 17, 1 },
8964 	{ "TxLpbkPkt", 16, 1 },
8965 	{ "RxVfValid", 15, 1 },
8966 	{ "SynLearned", 14, 1 },
8967 	{ "SetDelEntry", 13, 1 },
8968 	{ "SetInvEntry", 12, 1 },
8969 	{ "CpcmdDvld", 11, 1 },
8970 	{ "CpcmdSave", 10, 1 },
8971 	{ "RxPstructsFull", 8, 2 },
8972 	{ "EpcmdDvld", 7, 1 },
8973 	{ "EpcmdFlush", 6, 1 },
8974 	{ "EpcmdTrimPrefix", 5, 1 },
8975 	{ "EpcmdTrimPostfix", 4, 1 },
8976 	{ "ERssIp4Pkt", 3, 1 },
8977 	{ "ERssIp6Pkt", 2, 1 },
8978 	{ "ERssTcpUdpPkt", 1, 1 },
8979 	{ "ERssFceFipPkt", 0, 1 },
8980 	{ NULL }
8981 };
8982 
8983 static void
8984 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8985 {
8986 
8987 	field_desc_show(sb, *p, tp_la0);
8988 }
8989 
8990 static void
8991 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8992 {
8993 
8994 	if (idx)
8995 		sbuf_printf(sb, "\n");
8996 	field_desc_show(sb, p[0], tp_la0);
8997 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8998 		field_desc_show(sb, p[1], tp_la0);
8999 }
9000 
9001 static void
9002 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
9003 {
9004 
9005 	if (idx)
9006 		sbuf_printf(sb, "\n");
9007 	field_desc_show(sb, p[0], tp_la0);
9008 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
9009 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
9010 }
9011 
9012 static int
9013 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
9014 {
9015 	struct adapter *sc = arg1;
9016 	struct sbuf *sb;
9017 	uint64_t *buf, *p;
9018 	int rc;
9019 	u_int i, inc;
9020 	void (*show_func)(struct sbuf *, uint64_t *, int);
9021 
9022 	rc = sysctl_wire_old_buffer(req, 0);
9023 	if (rc != 0)
9024 		return (rc);
9025 
9026 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9027 	if (sb == NULL)
9028 		return (ENOMEM);
9029 
9030 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
9031 
9032 	t4_tp_read_la(sc, buf, NULL);
9033 	p = buf;
9034 
9035 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
9036 	case 2:
9037 		inc = 2;
9038 		show_func = tp_la_show2;
9039 		break;
9040 	case 3:
9041 		inc = 2;
9042 		show_func = tp_la_show3;
9043 		break;
9044 	default:
9045 		inc = 1;
9046 		show_func = tp_la_show;
9047 	}
9048 
9049 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
9050 		(*show_func)(sb, p, i);
9051 
9052 	rc = sbuf_finish(sb);
9053 	sbuf_delete(sb);
9054 	free(buf, M_CXGBE);
9055 	return (rc);
9056 }
9057 
9058 static int
9059 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
9060 {
9061 	struct adapter *sc = arg1;
9062 	struct sbuf *sb;
9063 	int rc;
9064 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
9065 
9066 	rc = sysctl_wire_old_buffer(req, 0);
9067 	if (rc != 0)
9068 		return (rc);
9069 
9070 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9071 	if (sb == NULL)
9072 		return (ENOMEM);
9073 
9074 	t4_get_chan_txrate(sc, nrate, orate);
9075 
9076 	if (sc->chip_params->nchan > 2) {
9077 		sbuf_printf(sb, "              channel 0   channel 1"
9078 		    "   channel 2   channel 3\n");
9079 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
9080 		    nrate[0], nrate[1], nrate[2], nrate[3]);
9081 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
9082 		    orate[0], orate[1], orate[2], orate[3]);
9083 	} else {
9084 		sbuf_printf(sb, "              channel 0   channel 1\n");
9085 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
9086 		    nrate[0], nrate[1]);
9087 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
9088 		    orate[0], orate[1]);
9089 	}
9090 
9091 	rc = sbuf_finish(sb);
9092 	sbuf_delete(sb);
9093 
9094 	return (rc);
9095 }
9096 
9097 static int
9098 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
9099 {
9100 	struct adapter *sc = arg1;
9101 	struct sbuf *sb;
9102 	uint32_t *buf, *p;
9103 	int rc, i;
9104 
9105 	rc = sysctl_wire_old_buffer(req, 0);
9106 	if (rc != 0)
9107 		return (rc);
9108 
9109 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9110 	if (sb == NULL)
9111 		return (ENOMEM);
9112 
9113 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
9114 	    M_ZERO | M_WAITOK);
9115 
9116 	t4_ulprx_read_la(sc, buf);
9117 	p = buf;
9118 
9119 	sbuf_printf(sb, "      Pcmd        Type   Message"
9120 	    "                Data");
9121 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
9122 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
9123 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
9124 	}
9125 
9126 	rc = sbuf_finish(sb);
9127 	sbuf_delete(sb);
9128 	free(buf, M_CXGBE);
9129 	return (rc);
9130 }
9131 
9132 static int
9133 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
9134 {
9135 	struct adapter *sc = arg1;
9136 	struct sbuf *sb;
9137 	int rc, v;
9138 
9139 	MPASS(chip_id(sc) >= CHELSIO_T5);
9140 
9141 	rc = sysctl_wire_old_buffer(req, 0);
9142 	if (rc != 0)
9143 		return (rc);
9144 
9145 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9146 	if (sb == NULL)
9147 		return (ENOMEM);
9148 
9149 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
9150 	if (G_STATSOURCE_T5(v) == 7) {
9151 		int mode;
9152 
9153 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
9154 		if (mode == 0) {
9155 			sbuf_printf(sb, "total %d, incomplete %d",
9156 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9157 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9158 		} else if (mode == 1) {
9159 			sbuf_printf(sb, "total %d, data overflow %d",
9160 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9161 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9162 		} else {
9163 			sbuf_printf(sb, "unknown mode %d", mode);
9164 		}
9165 	}
9166 	rc = sbuf_finish(sb);
9167 	sbuf_delete(sb);
9168 
9169 	return (rc);
9170 }
9171 
9172 static int
9173 sysctl_cpus(SYSCTL_HANDLER_ARGS)
9174 {
9175 	struct adapter *sc = arg1;
9176 	enum cpu_sets op = arg2;
9177 	cpuset_t cpuset;
9178 	struct sbuf *sb;
9179 	int i, rc;
9180 
9181 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
9182 
9183 	CPU_ZERO(&cpuset);
9184 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
9185 	if (rc != 0)
9186 		return (rc);
9187 
9188 	rc = sysctl_wire_old_buffer(req, 0);
9189 	if (rc != 0)
9190 		return (rc);
9191 
9192 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9193 	if (sb == NULL)
9194 		return (ENOMEM);
9195 
9196 	CPU_FOREACH(i)
9197 		sbuf_printf(sb, "%d ", i);
9198 	rc = sbuf_finish(sb);
9199 	sbuf_delete(sb);
9200 
9201 	return (rc);
9202 }
9203 
9204 #ifdef TCP_OFFLOAD
9205 static int
9206 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
9207 {
9208 	struct adapter *sc = arg1;
9209 	int *old_ports, *new_ports;
9210 	int i, new_count, rc;
9211 
9212 	if (req->newptr == NULL && req->oldptr == NULL)
9213 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
9214 		    sizeof(sc->tt.tls_rx_ports[0])));
9215 
9216 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
9217 	if (rc)
9218 		return (rc);
9219 
9220 	if (sc->tt.num_tls_rx_ports == 0) {
9221 		i = -1;
9222 		rc = SYSCTL_OUT(req, &i, sizeof(i));
9223 	} else
9224 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
9225 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
9226 	if (rc == 0 && req->newptr != NULL) {
9227 		new_count = req->newlen / sizeof(new_ports[0]);
9228 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
9229 		    M_WAITOK);
9230 		rc = SYSCTL_IN(req, new_ports, new_count *
9231 		    sizeof(new_ports[0]));
9232 		if (rc)
9233 			goto err;
9234 
9235 		/* Allow setting to a single '-1' to clear the list. */
9236 		if (new_count == 1 && new_ports[0] == -1) {
9237 			ADAPTER_LOCK(sc);
9238 			old_ports = sc->tt.tls_rx_ports;
9239 			sc->tt.tls_rx_ports = NULL;
9240 			sc->tt.num_tls_rx_ports = 0;
9241 			ADAPTER_UNLOCK(sc);
9242 			free(old_ports, M_CXGBE);
9243 		} else {
9244 			for (i = 0; i < new_count; i++) {
9245 				if (new_ports[i] < 1 ||
9246 				    new_ports[i] > IPPORT_MAX) {
9247 					rc = EINVAL;
9248 					goto err;
9249 				}
9250 			}
9251 
9252 			ADAPTER_LOCK(sc);
9253 			old_ports = sc->tt.tls_rx_ports;
9254 			sc->tt.tls_rx_ports = new_ports;
9255 			sc->tt.num_tls_rx_ports = new_count;
9256 			ADAPTER_UNLOCK(sc);
9257 			free(old_ports, M_CXGBE);
9258 			new_ports = NULL;
9259 		}
9260 	err:
9261 		free(new_ports, M_CXGBE);
9262 	}
9263 	end_synchronized_op(sc, 0);
9264 	return (rc);
9265 }
9266 
9267 static void
9268 unit_conv(char *buf, size_t len, u_int val, u_int factor)
9269 {
9270 	u_int rem = val % factor;
9271 
9272 	if (rem == 0)
9273 		snprintf(buf, len, "%u", val / factor);
9274 	else {
9275 		while (rem % 10 == 0)
9276 			rem /= 10;
9277 		snprintf(buf, len, "%u.%u", val / factor, rem);
9278 	}
9279 }
9280 
9281 static int
9282 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
9283 {
9284 	struct adapter *sc = arg1;
9285 	char buf[16];
9286 	u_int res, re;
9287 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9288 
9289 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9290 	switch (arg2) {
9291 	case 0:
9292 		/* timer_tick */
9293 		re = G_TIMERRESOLUTION(res);
9294 		break;
9295 	case 1:
9296 		/* TCP timestamp tick */
9297 		re = G_TIMESTAMPRESOLUTION(res);
9298 		break;
9299 	case 2:
9300 		/* DACK tick */
9301 		re = G_DELAYEDACKRESOLUTION(res);
9302 		break;
9303 	default:
9304 		return (EDOOFUS);
9305 	}
9306 
9307 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
9308 
9309 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
9310 }
9311 
9312 static int
9313 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
9314 {
9315 	struct adapter *sc = arg1;
9316 	u_int res, dack_re, v;
9317 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9318 
9319 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9320 	dack_re = G_DELAYEDACKRESOLUTION(res);
9321 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
9322 
9323 	return (sysctl_handle_int(oidp, &v, 0, req));
9324 }
9325 
9326 static int
9327 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
9328 {
9329 	struct adapter *sc = arg1;
9330 	int reg = arg2;
9331 	u_int tre;
9332 	u_long tp_tick_us, v;
9333 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9334 
9335 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
9336 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
9337 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
9338 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
9339 
9340 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
9341 	tp_tick_us = (cclk_ps << tre) / 1000000;
9342 
9343 	if (reg == A_TP_INIT_SRTT)
9344 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
9345 	else
9346 		v = tp_tick_us * t4_read_reg(sc, reg);
9347 
9348 	return (sysctl_handle_long(oidp, &v, 0, req));
9349 }
9350 
9351 /*
9352  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
9353  * passed to this function.
9354  */
9355 static int
9356 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
9357 {
9358 	struct adapter *sc = arg1;
9359 	int idx = arg2;
9360 	u_int v;
9361 
9362 	MPASS(idx >= 0 && idx <= 24);
9363 
9364 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
9365 
9366 	return (sysctl_handle_int(oidp, &v, 0, req));
9367 }
9368 
9369 static int
9370 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
9371 {
9372 	struct adapter *sc = arg1;
9373 	int idx = arg2;
9374 	u_int shift, v, r;
9375 
9376 	MPASS(idx >= 0 && idx < 16);
9377 
9378 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
9379 	shift = (idx & 3) << 3;
9380 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
9381 
9382 	return (sysctl_handle_int(oidp, &v, 0, req));
9383 }
9384 
9385 static int
9386 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
9387 {
9388 	struct vi_info *vi = arg1;
9389 	struct adapter *sc = vi->pi->adapter;
9390 	int idx, rc, i;
9391 	struct sge_ofld_rxq *ofld_rxq;
9392 	uint8_t v;
9393 
9394 	idx = vi->ofld_tmr_idx;
9395 
9396 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9397 	if (rc != 0 || req->newptr == NULL)
9398 		return (rc);
9399 
9400 	if (idx < 0 || idx >= SGE_NTIMERS)
9401 		return (EINVAL);
9402 
9403 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9404 	    "t4otmr");
9405 	if (rc)
9406 		return (rc);
9407 
9408 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
9409 	for_each_ofld_rxq(vi, i, ofld_rxq) {
9410 #ifdef atomic_store_rel_8
9411 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
9412 #else
9413 		ofld_rxq->iq.intr_params = v;
9414 #endif
9415 	}
9416 	vi->ofld_tmr_idx = idx;
9417 
9418 	end_synchronized_op(sc, LOCK_HELD);
9419 	return (0);
9420 }
9421 
9422 static int
9423 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
9424 {
9425 	struct vi_info *vi = arg1;
9426 	struct adapter *sc = vi->pi->adapter;
9427 	int idx, rc;
9428 
9429 	idx = vi->ofld_pktc_idx;
9430 
9431 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9432 	if (rc != 0 || req->newptr == NULL)
9433 		return (rc);
9434 
9435 	if (idx < -1 || idx >= SGE_NCOUNTERS)
9436 		return (EINVAL);
9437 
9438 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9439 	    "t4opktc");
9440 	if (rc)
9441 		return (rc);
9442 
9443 	if (vi->flags & VI_INIT_DONE)
9444 		rc = EBUSY; /* cannot be changed once the queues are created */
9445 	else
9446 		vi->ofld_pktc_idx = idx;
9447 
9448 	end_synchronized_op(sc, LOCK_HELD);
9449 	return (rc);
9450 }
9451 #endif
9452 
9453 static int
9454 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9455 {
9456 	int rc;
9457 
9458 	if (cntxt->cid > M_CTXTQID)
9459 		return (EINVAL);
9460 
9461 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9462 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9463 		return (EINVAL);
9464 
9465 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9466 	if (rc)
9467 		return (rc);
9468 
9469 	if (sc->flags & FW_OK) {
9470 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9471 		    &cntxt->data[0]);
9472 		if (rc == 0)
9473 			goto done;
9474 	}
9475 
9476 	/*
9477 	 * Read via firmware failed or wasn't even attempted.  Read directly via
9478 	 * the backdoor.
9479 	 */
9480 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9481 done:
9482 	end_synchronized_op(sc, 0);
9483 	return (rc);
9484 }
9485 
9486 static int
9487 load_fw(struct adapter *sc, struct t4_data *fw)
9488 {
9489 	int rc;
9490 	uint8_t *fw_data;
9491 
9492 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9493 	if (rc)
9494 		return (rc);
9495 
9496 	/*
9497 	 * The firmware, with the sole exception of the memory parity error
9498 	 * handler, runs from memory and not flash.  It is almost always safe to
9499 	 * install a new firmware on a running system.  Just set bit 1 in
9500 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9501 	 */
9502 	if (sc->flags & FULL_INIT_DONE &&
9503 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9504 		rc = EBUSY;
9505 		goto done;
9506 	}
9507 
9508 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9509 	if (fw_data == NULL) {
9510 		rc = ENOMEM;
9511 		goto done;
9512 	}
9513 
9514 	rc = copyin(fw->data, fw_data, fw->len);
9515 	if (rc == 0)
9516 		rc = -t4_load_fw(sc, fw_data, fw->len);
9517 
9518 	free(fw_data, M_CXGBE);
9519 done:
9520 	end_synchronized_op(sc, 0);
9521 	return (rc);
9522 }
9523 
9524 static int
9525 load_cfg(struct adapter *sc, struct t4_data *cfg)
9526 {
9527 	int rc;
9528 	uint8_t *cfg_data = NULL;
9529 
9530 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9531 	if (rc)
9532 		return (rc);
9533 
9534 	if (cfg->len == 0) {
9535 		/* clear */
9536 		rc = -t4_load_cfg(sc, NULL, 0);
9537 		goto done;
9538 	}
9539 
9540 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9541 	if (cfg_data == NULL) {
9542 		rc = ENOMEM;
9543 		goto done;
9544 	}
9545 
9546 	rc = copyin(cfg->data, cfg_data, cfg->len);
9547 	if (rc == 0)
9548 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9549 
9550 	free(cfg_data, M_CXGBE);
9551 done:
9552 	end_synchronized_op(sc, 0);
9553 	return (rc);
9554 }
9555 
9556 static int
9557 load_boot(struct adapter *sc, struct t4_bootrom *br)
9558 {
9559 	int rc;
9560 	uint8_t *br_data = NULL;
9561 	u_int offset;
9562 
9563 	if (br->len > 1024 * 1024)
9564 		return (EFBIG);
9565 
9566 	if (br->pf_offset == 0) {
9567 		/* pfidx */
9568 		if (br->pfidx_addr > 7)
9569 			return (EINVAL);
9570 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9571 		    A_PCIE_PF_EXPROM_OFST)));
9572 	} else if (br->pf_offset == 1) {
9573 		/* offset */
9574 		offset = G_OFFSET(br->pfidx_addr);
9575 	} else {
9576 		return (EINVAL);
9577 	}
9578 
9579 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9580 	if (rc)
9581 		return (rc);
9582 
9583 	if (br->len == 0) {
9584 		/* clear */
9585 		rc = -t4_load_boot(sc, NULL, offset, 0);
9586 		goto done;
9587 	}
9588 
9589 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9590 	if (br_data == NULL) {
9591 		rc = ENOMEM;
9592 		goto done;
9593 	}
9594 
9595 	rc = copyin(br->data, br_data, br->len);
9596 	if (rc == 0)
9597 		rc = -t4_load_boot(sc, br_data, offset, br->len);
9598 
9599 	free(br_data, M_CXGBE);
9600 done:
9601 	end_synchronized_op(sc, 0);
9602 	return (rc);
9603 }
9604 
9605 static int
9606 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9607 {
9608 	int rc;
9609 	uint8_t *bc_data = NULL;
9610 
9611 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9612 	if (rc)
9613 		return (rc);
9614 
9615 	if (bc->len == 0) {
9616 		/* clear */
9617 		rc = -t4_load_bootcfg(sc, NULL, 0);
9618 		goto done;
9619 	}
9620 
9621 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9622 	if (bc_data == NULL) {
9623 		rc = ENOMEM;
9624 		goto done;
9625 	}
9626 
9627 	rc = copyin(bc->data, bc_data, bc->len);
9628 	if (rc == 0)
9629 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9630 
9631 	free(bc_data, M_CXGBE);
9632 done:
9633 	end_synchronized_op(sc, 0);
9634 	return (rc);
9635 }
9636 
9637 static int
9638 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9639 {
9640 	int rc;
9641 	struct cudbg_init *cudbg;
9642 	void *handle, *buf;
9643 
9644 	/* buf is large, don't block if no memory is available */
9645 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9646 	if (buf == NULL)
9647 		return (ENOMEM);
9648 
9649 	handle = cudbg_alloc_handle();
9650 	if (handle == NULL) {
9651 		rc = ENOMEM;
9652 		goto done;
9653 	}
9654 
9655 	cudbg = cudbg_get_init(handle);
9656 	cudbg->adap = sc;
9657 	cudbg->print = (cudbg_print_cb)printf;
9658 
9659 #ifndef notyet
9660 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9661 	    __func__, dump->wr_flash, dump->len, dump->data);
9662 #endif
9663 
9664 	if (dump->wr_flash)
9665 		cudbg->use_flash = 1;
9666 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9667 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9668 
9669 	rc = cudbg_collect(handle, buf, &dump->len);
9670 	if (rc != 0)
9671 		goto done;
9672 
9673 	rc = copyout(buf, dump->data, dump->len);
9674 done:
9675 	cudbg_free_handle(handle);
9676 	free(buf, M_CXGBE);
9677 	return (rc);
9678 }
9679 
9680 static void
9681 free_offload_policy(struct t4_offload_policy *op)
9682 {
9683 	struct offload_rule *r;
9684 	int i;
9685 
9686 	if (op == NULL)
9687 		return;
9688 
9689 	r = &op->rule[0];
9690 	for (i = 0; i < op->nrules; i++, r++) {
9691 		free(r->bpf_prog.bf_insns, M_CXGBE);
9692 	}
9693 	free(op->rule, M_CXGBE);
9694 	free(op, M_CXGBE);
9695 }
9696 
9697 static int
9698 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
9699 {
9700 	int i, rc, len;
9701 	struct t4_offload_policy *op, *old;
9702 	struct bpf_program *bf;
9703 	const struct offload_settings *s;
9704 	struct offload_rule *r;
9705 	void *u;
9706 
9707 	if (!is_offload(sc))
9708 		return (ENODEV);
9709 
9710 	if (uop->nrules == 0) {
9711 		/* Delete installed policies. */
9712 		op = NULL;
9713 		goto set_policy;
9714 	} else if (uop->nrules > 256) { /* arbitrary */
9715 		return (E2BIG);
9716 	}
9717 
9718 	/* Copy userspace offload policy to kernel */
9719 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
9720 	op->nrules = uop->nrules;
9721 	len = op->nrules * sizeof(struct offload_rule);
9722 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9723 	rc = copyin(uop->rule, op->rule, len);
9724 	if (rc) {
9725 		free(op->rule, M_CXGBE);
9726 		free(op, M_CXGBE);
9727 		return (rc);
9728 	}
9729 
9730 	r = &op->rule[0];
9731 	for (i = 0; i < op->nrules; i++, r++) {
9732 
9733 		/* Validate open_type */
9734 		if (r->open_type != OPEN_TYPE_LISTEN &&
9735 		    r->open_type != OPEN_TYPE_ACTIVE &&
9736 		    r->open_type != OPEN_TYPE_PASSIVE &&
9737 		    r->open_type != OPEN_TYPE_DONTCARE) {
9738 error:
9739 			/*
9740 			 * Rules 0 to i have malloc'd filters that need to be
9741 			 * freed.  Rules i+1 to nrules have userspace pointers
9742 			 * and should be left alone.
9743 			 */
9744 			op->nrules = i;
9745 			free_offload_policy(op);
9746 			return (rc);
9747 		}
9748 
9749 		/* Validate settings */
9750 		s = &r->settings;
9751 		if ((s->offload != 0 && s->offload != 1) ||
9752 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
9753 		    s->sched_class < -1 ||
9754 		    s->sched_class >= sc->chip_params->nsched_cls) {
9755 			rc = EINVAL;
9756 			goto error;
9757 		}
9758 
9759 		bf = &r->bpf_prog;
9760 		u = bf->bf_insns;	/* userspace ptr */
9761 		bf->bf_insns = NULL;
9762 		if (bf->bf_len == 0) {
9763 			/* legal, matches everything */
9764 			continue;
9765 		}
9766 		len = bf->bf_len * sizeof(*bf->bf_insns);
9767 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9768 		rc = copyin(u, bf->bf_insns, len);
9769 		if (rc != 0)
9770 			goto error;
9771 
9772 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
9773 			rc = EINVAL;
9774 			goto error;
9775 		}
9776 	}
9777 set_policy:
9778 	rw_wlock(&sc->policy_lock);
9779 	old = sc->policy;
9780 	sc->policy = op;
9781 	rw_wunlock(&sc->policy_lock);
9782 	free_offload_policy(old);
9783 
9784 	return (0);
9785 }
9786 
9787 #define MAX_READ_BUF_SIZE (128 * 1024)
9788 static int
9789 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9790 {
9791 	uint32_t addr, remaining, n;
9792 	uint32_t *buf;
9793 	int rc;
9794 	uint8_t *dst;
9795 
9796 	rc = validate_mem_range(sc, mr->addr, mr->len);
9797 	if (rc != 0)
9798 		return (rc);
9799 
9800 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9801 	addr = mr->addr;
9802 	remaining = mr->len;
9803 	dst = (void *)mr->data;
9804 
9805 	while (remaining) {
9806 		n = min(remaining, MAX_READ_BUF_SIZE);
9807 		read_via_memwin(sc, 2, addr, buf, n);
9808 
9809 		rc = copyout(buf, dst, n);
9810 		if (rc != 0)
9811 			break;
9812 
9813 		dst += n;
9814 		remaining -= n;
9815 		addr += n;
9816 	}
9817 
9818 	free(buf, M_CXGBE);
9819 	return (rc);
9820 }
9821 #undef MAX_READ_BUF_SIZE
9822 
9823 static int
9824 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9825 {
9826 	int rc;
9827 
9828 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9829 		return (EINVAL);
9830 
9831 	if (i2cd->len > sizeof(i2cd->data))
9832 		return (EFBIG);
9833 
9834 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9835 	if (rc)
9836 		return (rc);
9837 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9838 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
9839 	end_synchronized_op(sc, 0);
9840 
9841 	return (rc);
9842 }
9843 
9844 int
9845 t4_os_find_pci_capability(struct adapter *sc, int cap)
9846 {
9847 	int i;
9848 
9849 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9850 }
9851 
9852 int
9853 t4_os_pci_save_state(struct adapter *sc)
9854 {
9855 	device_t dev;
9856 	struct pci_devinfo *dinfo;
9857 
9858 	dev = sc->dev;
9859 	dinfo = device_get_ivars(dev);
9860 
9861 	pci_cfg_save(dev, dinfo, 0);
9862 	return (0);
9863 }
9864 
9865 int
9866 t4_os_pci_restore_state(struct adapter *sc)
9867 {
9868 	device_t dev;
9869 	struct pci_devinfo *dinfo;
9870 
9871 	dev = sc->dev;
9872 	dinfo = device_get_ivars(dev);
9873 
9874 	pci_cfg_restore(dev, dinfo);
9875 	return (0);
9876 }
9877 
9878 void
9879 t4_os_portmod_changed(struct port_info *pi)
9880 {
9881 	struct adapter *sc = pi->adapter;
9882 	struct vi_info *vi;
9883 	struct ifnet *ifp;
9884 	static const char *mod_str[] = {
9885 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9886 	};
9887 
9888 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
9889 	    ("%s: port_type %u", __func__, pi->port_type));
9890 
9891 	vi = &pi->vi[0];
9892 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9893 		PORT_LOCK(pi);
9894 		build_medialist(pi);
9895 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
9896 			fixup_link_config(pi);
9897 			apply_link_config(pi);
9898 		}
9899 		PORT_UNLOCK(pi);
9900 		end_synchronized_op(sc, LOCK_HELD);
9901 	}
9902 
9903 	ifp = vi->ifp;
9904 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9905 		if_printf(ifp, "transceiver unplugged.\n");
9906 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9907 		if_printf(ifp, "unknown transceiver inserted.\n");
9908 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9909 		if_printf(ifp, "unsupported transceiver inserted.\n");
9910 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9911 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9912 		    port_top_speed(pi), mod_str[pi->mod_type]);
9913 	} else {
9914 		if_printf(ifp, "transceiver (type %d) inserted.\n",
9915 		    pi->mod_type);
9916 	}
9917 }
9918 
9919 void
9920 t4_os_link_changed(struct port_info *pi)
9921 {
9922 	struct vi_info *vi;
9923 	struct ifnet *ifp;
9924 	struct link_config *lc;
9925 	int v;
9926 
9927 	PORT_LOCK_ASSERT_OWNED(pi);
9928 
9929 	for_each_vi(pi, v, vi) {
9930 		ifp = vi->ifp;
9931 		if (ifp == NULL)
9932 			continue;
9933 
9934 		lc = &pi->link_cfg;
9935 		if (lc->link_ok) {
9936 			ifp->if_baudrate = IF_Mbps(lc->speed);
9937 			if_link_state_change(ifp, LINK_STATE_UP);
9938 		} else {
9939 			if_link_state_change(ifp, LINK_STATE_DOWN);
9940 		}
9941 	}
9942 }
9943 
9944 void
9945 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9946 {
9947 	struct adapter *sc;
9948 
9949 	sx_slock(&t4_list_lock);
9950 	SLIST_FOREACH(sc, &t4_list, link) {
9951 		/*
9952 		 * func should not make any assumptions about what state sc is
9953 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
9954 		 */
9955 		func(sc, arg);
9956 	}
9957 	sx_sunlock(&t4_list_lock);
9958 }
9959 
9960 static int
9961 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9962     struct thread *td)
9963 {
9964 	int rc;
9965 	struct adapter *sc = dev->si_drv1;
9966 
9967 	rc = priv_check(td, PRIV_DRIVER);
9968 	if (rc != 0)
9969 		return (rc);
9970 
9971 	switch (cmd) {
9972 	case CHELSIO_T4_GETREG: {
9973 		struct t4_reg *edata = (struct t4_reg *)data;
9974 
9975 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9976 			return (EFAULT);
9977 
9978 		if (edata->size == 4)
9979 			edata->val = t4_read_reg(sc, edata->addr);
9980 		else if (edata->size == 8)
9981 			edata->val = t4_read_reg64(sc, edata->addr);
9982 		else
9983 			return (EINVAL);
9984 
9985 		break;
9986 	}
9987 	case CHELSIO_T4_SETREG: {
9988 		struct t4_reg *edata = (struct t4_reg *)data;
9989 
9990 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9991 			return (EFAULT);
9992 
9993 		if (edata->size == 4) {
9994 			if (edata->val & 0xffffffff00000000)
9995 				return (EINVAL);
9996 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9997 		} else if (edata->size == 8)
9998 			t4_write_reg64(sc, edata->addr, edata->val);
9999 		else
10000 			return (EINVAL);
10001 		break;
10002 	}
10003 	case CHELSIO_T4_REGDUMP: {
10004 		struct t4_regdump *regs = (struct t4_regdump *)data;
10005 		int reglen = t4_get_regs_len(sc);
10006 		uint8_t *buf;
10007 
10008 		if (regs->len < reglen) {
10009 			regs->len = reglen; /* hint to the caller */
10010 			return (ENOBUFS);
10011 		}
10012 
10013 		regs->len = reglen;
10014 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
10015 		get_regs(sc, regs, buf);
10016 		rc = copyout(buf, regs->data, reglen);
10017 		free(buf, M_CXGBE);
10018 		break;
10019 	}
10020 	case CHELSIO_T4_GET_FILTER_MODE:
10021 		rc = get_filter_mode(sc, (uint32_t *)data);
10022 		break;
10023 	case CHELSIO_T4_SET_FILTER_MODE:
10024 		rc = set_filter_mode(sc, *(uint32_t *)data);
10025 		break;
10026 	case CHELSIO_T4_GET_FILTER:
10027 		rc = get_filter(sc, (struct t4_filter *)data);
10028 		break;
10029 	case CHELSIO_T4_SET_FILTER:
10030 		rc = set_filter(sc, (struct t4_filter *)data);
10031 		break;
10032 	case CHELSIO_T4_DEL_FILTER:
10033 		rc = del_filter(sc, (struct t4_filter *)data);
10034 		break;
10035 	case CHELSIO_T4_GET_SGE_CONTEXT:
10036 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
10037 		break;
10038 	case CHELSIO_T4_LOAD_FW:
10039 		rc = load_fw(sc, (struct t4_data *)data);
10040 		break;
10041 	case CHELSIO_T4_GET_MEM:
10042 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
10043 		break;
10044 	case CHELSIO_T4_GET_I2C:
10045 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
10046 		break;
10047 	case CHELSIO_T4_CLEAR_STATS: {
10048 		int i, v, bg_map;
10049 		u_int port_id = *(uint32_t *)data;
10050 		struct port_info *pi;
10051 		struct vi_info *vi;
10052 
10053 		if (port_id >= sc->params.nports)
10054 			return (EINVAL);
10055 		pi = sc->port[port_id];
10056 		if (pi == NULL)
10057 			return (EIO);
10058 
10059 		/* MAC stats */
10060 		t4_clr_port_stats(sc, pi->tx_chan);
10061 		pi->tx_parse_error = 0;
10062 		pi->tnl_cong_drops = 0;
10063 		mtx_lock(&sc->reg_lock);
10064 		for_each_vi(pi, v, vi) {
10065 			if (vi->flags & VI_INIT_DONE)
10066 				t4_clr_vi_stats(sc, vi->vin);
10067 		}
10068 		bg_map = pi->mps_bg_map;
10069 		v = 0;	/* reuse */
10070 		while (bg_map) {
10071 			i = ffs(bg_map) - 1;
10072 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
10073 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
10074 			bg_map &= ~(1 << i);
10075 		}
10076 		mtx_unlock(&sc->reg_lock);
10077 
10078 		/*
10079 		 * Since this command accepts a port, clear stats for
10080 		 * all VIs on this port.
10081 		 */
10082 		for_each_vi(pi, v, vi) {
10083 			if (vi->flags & VI_INIT_DONE) {
10084 				struct sge_rxq *rxq;
10085 				struct sge_txq *txq;
10086 				struct sge_wrq *wrq;
10087 
10088 				for_each_rxq(vi, i, rxq) {
10089 #if defined(INET) || defined(INET6)
10090 					rxq->lro.lro_queued = 0;
10091 					rxq->lro.lro_flushed = 0;
10092 #endif
10093 					rxq->rxcsum = 0;
10094 					rxq->vlan_extraction = 0;
10095 				}
10096 
10097 				for_each_txq(vi, i, txq) {
10098 					txq->txcsum = 0;
10099 					txq->tso_wrs = 0;
10100 					txq->vlan_insertion = 0;
10101 					txq->imm_wrs = 0;
10102 					txq->sgl_wrs = 0;
10103 					txq->txpkt_wrs = 0;
10104 					txq->txpkts0_wrs = 0;
10105 					txq->txpkts1_wrs = 0;
10106 					txq->txpkts0_pkts = 0;
10107 					txq->txpkts1_pkts = 0;
10108 					txq->raw_wrs = 0;
10109 					mp_ring_reset_stats(txq->r);
10110 				}
10111 
10112 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10113 				/* nothing to clear for each ofld_rxq */
10114 
10115 				for_each_ofld_txq(vi, i, wrq) {
10116 					wrq->tx_wrs_direct = 0;
10117 					wrq->tx_wrs_copied = 0;
10118 				}
10119 #endif
10120 
10121 				if (IS_MAIN_VI(vi)) {
10122 					wrq = &sc->sge.ctrlq[pi->port_id];
10123 					wrq->tx_wrs_direct = 0;
10124 					wrq->tx_wrs_copied = 0;
10125 				}
10126 			}
10127 		}
10128 		break;
10129 	}
10130 	case CHELSIO_T4_SCHED_CLASS:
10131 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
10132 		break;
10133 	case CHELSIO_T4_SCHED_QUEUE:
10134 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
10135 		break;
10136 	case CHELSIO_T4_GET_TRACER:
10137 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
10138 		break;
10139 	case CHELSIO_T4_SET_TRACER:
10140 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
10141 		break;
10142 	case CHELSIO_T4_LOAD_CFG:
10143 		rc = load_cfg(sc, (struct t4_data *)data);
10144 		break;
10145 	case CHELSIO_T4_LOAD_BOOT:
10146 		rc = load_boot(sc, (struct t4_bootrom *)data);
10147 		break;
10148 	case CHELSIO_T4_LOAD_BOOTCFG:
10149 		rc = load_bootcfg(sc, (struct t4_data *)data);
10150 		break;
10151 	case CHELSIO_T4_CUDBG_DUMP:
10152 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
10153 		break;
10154 	case CHELSIO_T4_SET_OFLD_POLICY:
10155 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
10156 		break;
10157 	default:
10158 		rc = ENOTTY;
10159 	}
10160 
10161 	return (rc);
10162 }
10163 
10164 #ifdef TCP_OFFLOAD
10165 static int
10166 toe_capability(struct vi_info *vi, int enable)
10167 {
10168 	int rc;
10169 	struct port_info *pi = vi->pi;
10170 	struct adapter *sc = pi->adapter;
10171 
10172 	ASSERT_SYNCHRONIZED_OP(sc);
10173 
10174 	if (!is_offload(sc))
10175 		return (ENODEV);
10176 
10177 	if (enable) {
10178 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
10179 			/* TOE is already enabled. */
10180 			return (0);
10181 		}
10182 
10183 		/*
10184 		 * We need the port's queues around so that we're able to send
10185 		 * and receive CPLs to/from the TOE even if the ifnet for this
10186 		 * port has never been UP'd administratively.
10187 		 */
10188 		if (!(vi->flags & VI_INIT_DONE)) {
10189 			rc = vi_full_init(vi);
10190 			if (rc)
10191 				return (rc);
10192 		}
10193 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
10194 			rc = vi_full_init(&pi->vi[0]);
10195 			if (rc)
10196 				return (rc);
10197 		}
10198 
10199 		if (isset(&sc->offload_map, pi->port_id)) {
10200 			/* TOE is enabled on another VI of this port. */
10201 			pi->uld_vis++;
10202 			return (0);
10203 		}
10204 
10205 		if (!uld_active(sc, ULD_TOM)) {
10206 			rc = t4_activate_uld(sc, ULD_TOM);
10207 			if (rc == EAGAIN) {
10208 				log(LOG_WARNING,
10209 				    "You must kldload t4_tom.ko before trying "
10210 				    "to enable TOE on a cxgbe interface.\n");
10211 			}
10212 			if (rc != 0)
10213 				return (rc);
10214 			KASSERT(sc->tom_softc != NULL,
10215 			    ("%s: TOM activated but softc NULL", __func__));
10216 			KASSERT(uld_active(sc, ULD_TOM),
10217 			    ("%s: TOM activated but flag not set", __func__));
10218 		}
10219 
10220 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
10221 		if (!uld_active(sc, ULD_IWARP))
10222 			(void) t4_activate_uld(sc, ULD_IWARP);
10223 		if (!uld_active(sc, ULD_ISCSI))
10224 			(void) t4_activate_uld(sc, ULD_ISCSI);
10225 
10226 		pi->uld_vis++;
10227 		setbit(&sc->offload_map, pi->port_id);
10228 	} else {
10229 		pi->uld_vis--;
10230 
10231 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
10232 			return (0);
10233 
10234 		KASSERT(uld_active(sc, ULD_TOM),
10235 		    ("%s: TOM never initialized?", __func__));
10236 		clrbit(&sc->offload_map, pi->port_id);
10237 	}
10238 
10239 	return (0);
10240 }
10241 
10242 /*
10243  * Add an upper layer driver to the global list.
10244  */
10245 int
10246 t4_register_uld(struct uld_info *ui)
10247 {
10248 	int rc = 0;
10249 	struct uld_info *u;
10250 
10251 	sx_xlock(&t4_uld_list_lock);
10252 	SLIST_FOREACH(u, &t4_uld_list, link) {
10253 	    if (u->uld_id == ui->uld_id) {
10254 		    rc = EEXIST;
10255 		    goto done;
10256 	    }
10257 	}
10258 
10259 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
10260 	ui->refcount = 0;
10261 done:
10262 	sx_xunlock(&t4_uld_list_lock);
10263 	return (rc);
10264 }
10265 
10266 int
10267 t4_unregister_uld(struct uld_info *ui)
10268 {
10269 	int rc = EINVAL;
10270 	struct uld_info *u;
10271 
10272 	sx_xlock(&t4_uld_list_lock);
10273 
10274 	SLIST_FOREACH(u, &t4_uld_list, link) {
10275 	    if (u == ui) {
10276 		    if (ui->refcount > 0) {
10277 			    rc = EBUSY;
10278 			    goto done;
10279 		    }
10280 
10281 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
10282 		    rc = 0;
10283 		    goto done;
10284 	    }
10285 	}
10286 done:
10287 	sx_xunlock(&t4_uld_list_lock);
10288 	return (rc);
10289 }
10290 
10291 int
10292 t4_activate_uld(struct adapter *sc, int id)
10293 {
10294 	int rc;
10295 	struct uld_info *ui;
10296 
10297 	ASSERT_SYNCHRONIZED_OP(sc);
10298 
10299 	if (id < 0 || id > ULD_MAX)
10300 		return (EINVAL);
10301 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
10302 
10303 	sx_slock(&t4_uld_list_lock);
10304 
10305 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10306 		if (ui->uld_id == id) {
10307 			if (!(sc->flags & FULL_INIT_DONE)) {
10308 				rc = adapter_full_init(sc);
10309 				if (rc != 0)
10310 					break;
10311 			}
10312 
10313 			rc = ui->activate(sc);
10314 			if (rc == 0) {
10315 				setbit(&sc->active_ulds, id);
10316 				ui->refcount++;
10317 			}
10318 			break;
10319 		}
10320 	}
10321 
10322 	sx_sunlock(&t4_uld_list_lock);
10323 
10324 	return (rc);
10325 }
10326 
10327 int
10328 t4_deactivate_uld(struct adapter *sc, int id)
10329 {
10330 	int rc;
10331 	struct uld_info *ui;
10332 
10333 	ASSERT_SYNCHRONIZED_OP(sc);
10334 
10335 	if (id < 0 || id > ULD_MAX)
10336 		return (EINVAL);
10337 	rc = ENXIO;
10338 
10339 	sx_slock(&t4_uld_list_lock);
10340 
10341 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10342 		if (ui->uld_id == id) {
10343 			rc = ui->deactivate(sc);
10344 			if (rc == 0) {
10345 				clrbit(&sc->active_ulds, id);
10346 				ui->refcount--;
10347 			}
10348 			break;
10349 		}
10350 	}
10351 
10352 	sx_sunlock(&t4_uld_list_lock);
10353 
10354 	return (rc);
10355 }
10356 
10357 int
10358 uld_active(struct adapter *sc, int uld_id)
10359 {
10360 
10361 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
10362 
10363 	return (isset(&sc->active_ulds, uld_id));
10364 }
10365 #endif
10366 
10367 /*
10368  * t  = ptr to tunable.
10369  * nc = number of CPUs.
10370  * c  = compiled in default for that tunable.
10371  */
10372 static void
10373 calculate_nqueues(int *t, int nc, const int c)
10374 {
10375 	int nq;
10376 
10377 	if (*t > 0)
10378 		return;
10379 	nq = *t < 0 ? -*t : c;
10380 	*t = min(nc, nq);
10381 }
10382 
10383 /*
10384  * Come up with reasonable defaults for some of the tunables, provided they're
10385  * not set by the user (in which case we'll use the values as is).
10386  */
10387 static void
10388 tweak_tunables(void)
10389 {
10390 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
10391 
10392 	if (t4_ntxq < 1) {
10393 #ifdef RSS
10394 		t4_ntxq = rss_getnumbuckets();
10395 #else
10396 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
10397 #endif
10398 	}
10399 
10400 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
10401 
10402 	if (t4_nrxq < 1) {
10403 #ifdef RSS
10404 		t4_nrxq = rss_getnumbuckets();
10405 #else
10406 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
10407 #endif
10408 	}
10409 
10410 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
10411 
10412 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10413 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
10414 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
10415 #endif
10416 #ifdef TCP_OFFLOAD
10417 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
10418 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
10419 
10420 	if (t4_toecaps_allowed == -1)
10421 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
10422 
10423 	if (t4_rdmacaps_allowed == -1) {
10424 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
10425 		    FW_CAPS_CONFIG_RDMA_RDMAC;
10426 	}
10427 
10428 	if (t4_iscsicaps_allowed == -1) {
10429 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10430 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10431 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
10432 	}
10433 
10434 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10435 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
10436 
10437 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10438 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10439 #else
10440 	if (t4_toecaps_allowed == -1)
10441 		t4_toecaps_allowed = 0;
10442 
10443 	if (t4_rdmacaps_allowed == -1)
10444 		t4_rdmacaps_allowed = 0;
10445 
10446 	if (t4_iscsicaps_allowed == -1)
10447 		t4_iscsicaps_allowed = 0;
10448 #endif
10449 
10450 #ifdef DEV_NETMAP
10451 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10452 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10453 #endif
10454 
10455 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
10456 		t4_tmr_idx = TMR_IDX;
10457 
10458 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
10459 		t4_pktc_idx = PKTC_IDX;
10460 
10461 	if (t4_qsize_txq < 128)
10462 		t4_qsize_txq = 128;
10463 
10464 	if (t4_qsize_rxq < 128)
10465 		t4_qsize_rxq = 128;
10466 	while (t4_qsize_rxq & 7)
10467 		t4_qsize_rxq++;
10468 
10469 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10470 
10471 	/*
10472 	 * Number of VIs to create per-port.  The first VI is the "main" regular
10473 	 * VI for the port.  The rest are additional virtual interfaces on the
10474 	 * same physical port.  Note that the main VI does not have native
10475 	 * netmap support but the extra VIs do.
10476 	 *
10477 	 * Limit the number of VIs per port to the number of available
10478 	 * MAC addresses per port.
10479 	 */
10480 	if (t4_num_vis < 1)
10481 		t4_num_vis = 1;
10482 	if (t4_num_vis > nitems(vi_mac_funcs)) {
10483 		t4_num_vis = nitems(vi_mac_funcs);
10484 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10485 	}
10486 
10487 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10488 		pcie_relaxed_ordering = 1;
10489 #if defined(__i386__) || defined(__amd64__)
10490 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
10491 			pcie_relaxed_ordering = 0;
10492 #endif
10493 	}
10494 }
10495 
10496 #ifdef DDB
10497 static void
10498 t4_dump_tcb(struct adapter *sc, int tid)
10499 {
10500 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10501 
10502 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10503 	save = t4_read_reg(sc, reg);
10504 	base = sc->memwin[2].mw_base;
10505 
10506 	/* Dump TCB for the tid */
10507 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10508 	tcb_addr += tid * TCB_SIZE;
10509 
10510 	if (is_t4(sc)) {
10511 		pf = 0;
10512 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
10513 	} else {
10514 		pf = V_PFNUM(sc->pf);
10515 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
10516 	}
10517 	t4_write_reg(sc, reg, win_pos | pf);
10518 	t4_read_reg(sc, reg);
10519 
10520 	off = tcb_addr - win_pos;
10521 	for (i = 0; i < 4; i++) {
10522 		uint32_t buf[8];
10523 		for (j = 0; j < 8; j++, off += 4)
10524 			buf[j] = htonl(t4_read_reg(sc, base + off));
10525 
10526 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10527 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10528 		    buf[7]);
10529 	}
10530 
10531 	t4_write_reg(sc, reg, save);
10532 	t4_read_reg(sc, reg);
10533 }
10534 
10535 static void
10536 t4_dump_devlog(struct adapter *sc)
10537 {
10538 	struct devlog_params *dparams = &sc->params.devlog;
10539 	struct fw_devlog_e e;
10540 	int i, first, j, m, nentries, rc;
10541 	uint64_t ftstamp = UINT64_MAX;
10542 
10543 	if (dparams->start == 0) {
10544 		db_printf("devlog params not valid\n");
10545 		return;
10546 	}
10547 
10548 	nentries = dparams->size / sizeof(struct fw_devlog_e);
10549 	m = fwmtype_to_hwmtype(dparams->memtype);
10550 
10551 	/* Find the first entry. */
10552 	first = -1;
10553 	for (i = 0; i < nentries && !db_pager_quit; i++) {
10554 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10555 		    sizeof(e), (void *)&e);
10556 		if (rc != 0)
10557 			break;
10558 
10559 		if (e.timestamp == 0)
10560 			break;
10561 
10562 		e.timestamp = be64toh(e.timestamp);
10563 		if (e.timestamp < ftstamp) {
10564 			ftstamp = e.timestamp;
10565 			first = i;
10566 		}
10567 	}
10568 
10569 	if (first == -1)
10570 		return;
10571 
10572 	i = first;
10573 	do {
10574 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10575 		    sizeof(e), (void *)&e);
10576 		if (rc != 0)
10577 			return;
10578 
10579 		if (e.timestamp == 0)
10580 			return;
10581 
10582 		e.timestamp = be64toh(e.timestamp);
10583 		e.seqno = be32toh(e.seqno);
10584 		for (j = 0; j < 8; j++)
10585 			e.params[j] = be32toh(e.params[j]);
10586 
10587 		db_printf("%10d  %15ju  %8s  %8s  ",
10588 		    e.seqno, e.timestamp,
10589 		    (e.level < nitems(devlog_level_strings) ?
10590 			devlog_level_strings[e.level] : "UNKNOWN"),
10591 		    (e.facility < nitems(devlog_facility_strings) ?
10592 			devlog_facility_strings[e.facility] : "UNKNOWN"));
10593 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10594 		    e.params[3], e.params[4], e.params[5], e.params[6],
10595 		    e.params[7]);
10596 
10597 		if (++i == nentries)
10598 			i = 0;
10599 	} while (i != first && !db_pager_quit);
10600 }
10601 
10602 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10603 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10604 
10605 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10606 {
10607 	device_t dev;
10608 	int t;
10609 	bool valid;
10610 
10611 	valid = false;
10612 	t = db_read_token();
10613 	if (t == tIDENT) {
10614 		dev = device_lookup_by_name(db_tok_string);
10615 		valid = true;
10616 	}
10617 	db_skip_to_eol();
10618 	if (!valid) {
10619 		db_printf("usage: show t4 devlog <nexus>\n");
10620 		return;
10621 	}
10622 
10623 	if (dev == NULL) {
10624 		db_printf("device not found\n");
10625 		return;
10626 	}
10627 
10628 	t4_dump_devlog(device_get_softc(dev));
10629 }
10630 
10631 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10632 {
10633 	device_t dev;
10634 	int radix, tid, t;
10635 	bool valid;
10636 
10637 	valid = false;
10638 	radix = db_radix;
10639 	db_radix = 10;
10640 	t = db_read_token();
10641 	if (t == tIDENT) {
10642 		dev = device_lookup_by_name(db_tok_string);
10643 		t = db_read_token();
10644 		if (t == tNUMBER) {
10645 			tid = db_tok_number;
10646 			valid = true;
10647 		}
10648 	}
10649 	db_radix = radix;
10650 	db_skip_to_eol();
10651 	if (!valid) {
10652 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
10653 		return;
10654 	}
10655 
10656 	if (dev == NULL) {
10657 		db_printf("device not found\n");
10658 		return;
10659 	}
10660 	if (tid < 0) {
10661 		db_printf("invalid tid\n");
10662 		return;
10663 	}
10664 
10665 	t4_dump_tcb(device_get_softc(dev), tid);
10666 }
10667 #endif
10668 
10669 /*
10670  * Borrowed from cesa_prep_aes_key().
10671  *
10672  * NB: The crypto engine wants the words in the decryption key in reverse
10673  * order.
10674  */
10675 void
10676 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
10677 {
10678 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
10679 	uint32_t *dkey;
10680 	int i;
10681 
10682 	rijndaelKeySetupEnc(ek, enc_key, kbits);
10683 	dkey = dec_key;
10684 	dkey += (kbits / 8) / 4;
10685 
10686 	switch (kbits) {
10687 	case 128:
10688 		for (i = 0; i < 4; i++)
10689 			*--dkey = htobe32(ek[4 * 10 + i]);
10690 		break;
10691 	case 192:
10692 		for (i = 0; i < 2; i++)
10693 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
10694 		for (i = 0; i < 4; i++)
10695 			*--dkey = htobe32(ek[4 * 12 + i]);
10696 		break;
10697 	case 256:
10698 		for (i = 0; i < 4; i++)
10699 			*--dkey = htobe32(ek[4 * 13 + i]);
10700 		for (i = 0; i < 4; i++)
10701 			*--dkey = htobe32(ek[4 * 14 + i]);
10702 		break;
10703 	}
10704 	MPASS(dkey == dec_key);
10705 }
10706 
10707 static struct sx mlu;	/* mod load unload */
10708 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10709 
10710 static int
10711 mod_event(module_t mod, int cmd, void *arg)
10712 {
10713 	int rc = 0;
10714 	static int loaded = 0;
10715 
10716 	switch (cmd) {
10717 	case MOD_LOAD:
10718 		sx_xlock(&mlu);
10719 		if (loaded++ == 0) {
10720 			t4_sge_modload();
10721 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10722 			    t4_filter_rpl, CPL_COOKIE_FILTER);
10723 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
10724 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
10725 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
10726 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
10727 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10728 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
10729 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
10730 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
10731 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10732 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10733 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
10734 			    do_smt_write_rpl);
10735 			sx_init(&t4_list_lock, "T4/T5 adapters");
10736 			SLIST_INIT(&t4_list);
10737 			callout_init(&fatal_callout, 1);
10738 #ifdef TCP_OFFLOAD
10739 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10740 			SLIST_INIT(&t4_uld_list);
10741 #endif
10742 #ifdef INET6
10743 			t4_clip_modload();
10744 #endif
10745 			t4_tracer_modload();
10746 			tweak_tunables();
10747 		}
10748 		sx_xunlock(&mlu);
10749 		break;
10750 
10751 	case MOD_UNLOAD:
10752 		sx_xlock(&mlu);
10753 		if (--loaded == 0) {
10754 			int tries;
10755 
10756 			sx_slock(&t4_list_lock);
10757 			if (!SLIST_EMPTY(&t4_list)) {
10758 				rc = EBUSY;
10759 				sx_sunlock(&t4_list_lock);
10760 				goto done_unload;
10761 			}
10762 #ifdef TCP_OFFLOAD
10763 			sx_slock(&t4_uld_list_lock);
10764 			if (!SLIST_EMPTY(&t4_uld_list)) {
10765 				rc = EBUSY;
10766 				sx_sunlock(&t4_uld_list_lock);
10767 				sx_sunlock(&t4_list_lock);
10768 				goto done_unload;
10769 			}
10770 #endif
10771 			tries = 0;
10772 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10773 				uprintf("%ju clusters with custom free routine "
10774 				    "still is use.\n", t4_sge_extfree_refs());
10775 				pause("t4unload", 2 * hz);
10776 			}
10777 #ifdef TCP_OFFLOAD
10778 			sx_sunlock(&t4_uld_list_lock);
10779 #endif
10780 			sx_sunlock(&t4_list_lock);
10781 
10782 			if (t4_sge_extfree_refs() == 0) {
10783 				t4_tracer_modunload();
10784 #ifdef INET6
10785 				t4_clip_modunload();
10786 #endif
10787 #ifdef TCP_OFFLOAD
10788 				sx_destroy(&t4_uld_list_lock);
10789 #endif
10790 				sx_destroy(&t4_list_lock);
10791 				t4_sge_modunload();
10792 				loaded = 0;
10793 			} else {
10794 				rc = EBUSY;
10795 				loaded++;	/* undo earlier decrement */
10796 			}
10797 		}
10798 done_unload:
10799 		sx_xunlock(&mlu);
10800 		break;
10801 	}
10802 
10803 	return (rc);
10804 }
10805 
10806 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10807 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10808 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10809 
10810 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10811 MODULE_VERSION(t4nex, 1);
10812 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10813 #ifdef DEV_NETMAP
10814 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10815 #endif /* DEV_NETMAP */
10816 
10817 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10818 MODULE_VERSION(t5nex, 1);
10819 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10820 #ifdef DEV_NETMAP
10821 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10822 #endif /* DEV_NETMAP */
10823 
10824 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10825 MODULE_VERSION(t6nex, 1);
10826 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10827 #ifdef DEV_NETMAP
10828 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10829 #endif /* DEV_NETMAP */
10830 
10831 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10832 MODULE_VERSION(cxgbe, 1);
10833 
10834 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10835 MODULE_VERSION(cxl, 1);
10836 
10837 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10838 MODULE_VERSION(cc, 1);
10839 
10840 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10841 MODULE_VERSION(vcxgbe, 1);
10842 
10843 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10844 MODULE_VERSION(vcxl, 1);
10845 
10846 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10847 MODULE_VERSION(vcc, 1);
10848