xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 63cbe8d1d95f97e93929ec66f1138693d08dd9f6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ratelimit.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/priv.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #include <crypto/rijndael/rijndael.h>
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79 
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_ioctl.h"
86 #include "t4_l2t.h"
87 #include "t4_mp_ring.h"
88 #include "t4_if.h"
89 #include "t4_smt.h"
90 
91 /* T4 bus driver interface */
92 static int t4_probe(device_t);
93 static int t4_attach(device_t);
94 static int t4_detach(device_t);
95 static int t4_child_location_str(device_t, device_t, char *, size_t);
96 static int t4_ready(device_t);
97 static int t4_read_port_device(device_t, int, device_t *);
98 static device_method_t t4_methods[] = {
99 	DEVMETHOD(device_probe,		t4_probe),
100 	DEVMETHOD(device_attach,	t4_attach),
101 	DEVMETHOD(device_detach,	t4_detach),
102 
103 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
104 
105 	DEVMETHOD(t4_is_main_ready,	t4_ready),
106 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
107 
108 	DEVMETHOD_END
109 };
110 static driver_t t4_driver = {
111 	"t4nex",
112 	t4_methods,
113 	sizeof(struct adapter)
114 };
115 
116 
117 /* T4 port (cxgbe) interface */
118 static int cxgbe_probe(device_t);
119 static int cxgbe_attach(device_t);
120 static int cxgbe_detach(device_t);
121 device_method_t cxgbe_methods[] = {
122 	DEVMETHOD(device_probe,		cxgbe_probe),
123 	DEVMETHOD(device_attach,	cxgbe_attach),
124 	DEVMETHOD(device_detach,	cxgbe_detach),
125 	{ 0, 0 }
126 };
127 static driver_t cxgbe_driver = {
128 	"cxgbe",
129 	cxgbe_methods,
130 	sizeof(struct port_info)
131 };
132 
133 /* T4 VI (vcxgbe) interface */
134 static int vcxgbe_probe(device_t);
135 static int vcxgbe_attach(device_t);
136 static int vcxgbe_detach(device_t);
137 static device_method_t vcxgbe_methods[] = {
138 	DEVMETHOD(device_probe,		vcxgbe_probe),
139 	DEVMETHOD(device_attach,	vcxgbe_attach),
140 	DEVMETHOD(device_detach,	vcxgbe_detach),
141 	{ 0, 0 }
142 };
143 static driver_t vcxgbe_driver = {
144 	"vcxgbe",
145 	vcxgbe_methods,
146 	sizeof(struct vi_info)
147 };
148 
149 static d_ioctl_t t4_ioctl;
150 
151 static struct cdevsw t4_cdevsw = {
152        .d_version = D_VERSION,
153        .d_ioctl = t4_ioctl,
154        .d_name = "t4nex",
155 };
156 
157 /* T5 bus driver interface */
158 static int t5_probe(device_t);
159 static device_method_t t5_methods[] = {
160 	DEVMETHOD(device_probe,		t5_probe),
161 	DEVMETHOD(device_attach,	t4_attach),
162 	DEVMETHOD(device_detach,	t4_detach),
163 
164 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
165 
166 	DEVMETHOD(t4_is_main_ready,	t4_ready),
167 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
168 
169 	DEVMETHOD_END
170 };
171 static driver_t t5_driver = {
172 	"t5nex",
173 	t5_methods,
174 	sizeof(struct adapter)
175 };
176 
177 
178 /* T5 port (cxl) interface */
179 static driver_t cxl_driver = {
180 	"cxl",
181 	cxgbe_methods,
182 	sizeof(struct port_info)
183 };
184 
185 /* T5 VI (vcxl) interface */
186 static driver_t vcxl_driver = {
187 	"vcxl",
188 	vcxgbe_methods,
189 	sizeof(struct vi_info)
190 };
191 
192 /* T6 bus driver interface */
193 static int t6_probe(device_t);
194 static device_method_t t6_methods[] = {
195 	DEVMETHOD(device_probe,		t6_probe),
196 	DEVMETHOD(device_attach,	t4_attach),
197 	DEVMETHOD(device_detach,	t4_detach),
198 
199 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
200 
201 	DEVMETHOD(t4_is_main_ready,	t4_ready),
202 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
203 
204 	DEVMETHOD_END
205 };
206 static driver_t t6_driver = {
207 	"t6nex",
208 	t6_methods,
209 	sizeof(struct adapter)
210 };
211 
212 
213 /* T6 port (cc) interface */
214 static driver_t cc_driver = {
215 	"cc",
216 	cxgbe_methods,
217 	sizeof(struct port_info)
218 };
219 
220 /* T6 VI (vcc) interface */
221 static driver_t vcc_driver = {
222 	"vcc",
223 	vcxgbe_methods,
224 	sizeof(struct vi_info)
225 };
226 
227 /* ifnet interface */
228 static void cxgbe_init(void *);
229 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
230 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
231 static void cxgbe_qflush(struct ifnet *);
232 
233 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
234 
235 /*
236  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
237  * then ADAPTER_LOCK, then t4_uld_list_lock.
238  */
239 static struct sx t4_list_lock;
240 SLIST_HEAD(, adapter) t4_list;
241 #ifdef TCP_OFFLOAD
242 static struct sx t4_uld_list_lock;
243 SLIST_HEAD(, uld_info) t4_uld_list;
244 #endif
245 
246 /*
247  * Tunables.  See tweak_tunables() too.
248  *
249  * Each tunable is set to a default value here if it's known at compile-time.
250  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
251  * provide a reasonable default (upto n) when the driver is loaded.
252  *
253  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
254  * T5 are under hw.cxl.
255  */
256 
257 /*
258  * Number of queues for tx and rx, NIC and offload.
259  */
260 #define NTXQ 16
261 int t4_ntxq = -NTXQ;
262 TUNABLE_INT("hw.cxgbe.ntxq", &t4_ntxq);
263 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
264 
265 #define NRXQ 8
266 int t4_nrxq = -NRXQ;
267 TUNABLE_INT("hw.cxgbe.nrxq", &t4_nrxq);
268 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
269 
270 #define NTXQ_VI 1
271 static int t4_ntxq_vi = -NTXQ_VI;
272 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
273 
274 #define NRXQ_VI 1
275 static int t4_nrxq_vi = -NRXQ_VI;
276 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
277 
278 static int t4_rsrv_noflowq = 0;
279 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
280 
281 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
282 #define NOFLDTXQ 8
283 static int t4_nofldtxq = -NOFLDTXQ;
284 TUNABLE_INT("hw.cxgbe.nofldtxq", &t4_nofldtxq);
285 
286 #define NOFLDRXQ 2
287 static int t4_nofldrxq = -NOFLDRXQ;
288 TUNABLE_INT("hw.cxgbe.nofldrxq", &t4_nofldrxq);
289 
290 #define NOFLDTXQ_VI 1
291 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
292 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
293 
294 #define NOFLDRXQ_VI 1
295 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
296 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
297 
298 #define TMR_IDX_OFLD 1
299 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
300 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld);
301 
302 #define PKTC_IDX_OFLD (-1)
303 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
304 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld);
305 
306 /* 0 means chip/fw default, non-zero number is value in microseconds */
307 static u_long t4_toe_keepalive_idle = 0;
308 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle);
309 
310 /* 0 means chip/fw default, non-zero number is value in microseconds */
311 static u_long t4_toe_keepalive_interval = 0;
312 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval);
313 
314 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
315 static int t4_toe_keepalive_count = 0;
316 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count);
317 
318 /* 0 means chip/fw default, non-zero number is value in microseconds */
319 static u_long t4_toe_rexmt_min = 0;
320 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min);
321 
322 /* 0 means chip/fw default, non-zero number is value in microseconds */
323 static u_long t4_toe_rexmt_max = 0;
324 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max);
325 
326 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
327 static int t4_toe_rexmt_count = 0;
328 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count);
329 
330 /* -1 means chip/fw default, other values are raw backoff values to use */
331 static int t4_toe_rexmt_backoff[16] = {
332 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
333 };
334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]);
335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]);
336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]);
337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]);
338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]);
339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]);
340 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]);
341 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]);
342 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]);
343 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]);
344 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]);
345 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]);
346 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]);
347 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]);
348 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]);
349 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]);
350 #endif
351 
352 #ifdef DEV_NETMAP
353 #define NNMTXQ_VI 2
354 static int t4_nnmtxq_vi = -NNMTXQ_VI;
355 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
356 
357 #define NNMRXQ_VI 2
358 static int t4_nnmrxq_vi = -NNMRXQ_VI;
359 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
360 #endif
361 
362 /*
363  * Holdoff parameters for ports.
364  */
365 #define TMR_IDX 1
366 int t4_tmr_idx = TMR_IDX;
367 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx", &t4_tmr_idx);
368 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
369 
370 #define PKTC_IDX (-1)
371 int t4_pktc_idx = PKTC_IDX;
372 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx", &t4_pktc_idx);
373 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
374 
375 /*
376  * Size (# of entries) of each tx and rx queue.
377  */
378 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
379 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
380 
381 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
382 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
383 
384 /*
385  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
386  */
387 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
388 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
389 
390 /*
391  * Configuration file.  All the _CF names here are special.
392  */
393 #define DEFAULT_CF	"default"
394 #define BUILTIN_CF	"built-in"
395 #define FLASH_CF	"flash"
396 #define UWIRE_CF	"uwire"
397 #define FPGA_CF		"fpga"
398 static char t4_cfg_file[32] = DEFAULT_CF;
399 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
400 
401 /*
402  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
403  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
404  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
405  *            mark or when signalled to do so, 0 to never emit PAUSE.
406  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
407  *                 negotiated settings will override rx_pause/tx_pause.
408  *                 Otherwise rx_pause/tx_pause are applied forcibly.
409  */
410 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
411 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
412 
413 /*
414  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
415  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
416  *  0 to disable FEC.
417  */
418 static int t4_fec = -1;
419 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
420 
421 /*
422  * Link autonegotiation.
423  * -1 to run with the firmware default.
424  *  0 to disable.
425  *  1 to enable.
426  */
427 static int t4_autoneg = -1;
428 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
429 
430 /*
431  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
432  * encouraged respectively).
433  */
434 static unsigned int t4_fw_install = 1;
435 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
436 
437 /*
438  * ASIC features that will be used.  Disable the ones you don't want so that the
439  * chip resources aren't wasted on features that will not be used.
440  */
441 static int t4_nbmcaps_allowed = 0;
442 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
443 
444 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
445 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
446 
447 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
448     FW_CAPS_CONFIG_SWITCH_EGRESS;
449 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
450 
451 #ifdef RATELIMIT
452 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
453 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
454 #else
455 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
456 	FW_CAPS_CONFIG_NIC_HASHFILTER;
457 #endif
458 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
459 
460 static int t4_toecaps_allowed = -1;
461 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
462 
463 static int t4_rdmacaps_allowed = -1;
464 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
465 
466 static int t4_cryptocaps_allowed = -1;
467 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
468 
469 static int t4_iscsicaps_allowed = -1;
470 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
471 
472 static int t4_fcoecaps_allowed = 0;
473 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
474 
475 static int t5_write_combine = 0;
476 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
477 
478 static int t4_num_vis = 1;
479 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
480 /*
481  * PCIe Relaxed Ordering.
482  * -1: driver should figure out a good value.
483  * 0: disable RO.
484  * 1: enable RO.
485  * 2: leave RO alone.
486  */
487 static int pcie_relaxed_ordering = -1;
488 TUNABLE_INT("hw.cxgbe.pcie_relaxed_ordering", &pcie_relaxed_ordering);
489 
490 static int t4_panic_on_fatal_err = 0;
491 TUNABLE_INT("hw.cxgbe.panic_on_fatal_err", &t4_panic_on_fatal_err);
492 
493 #ifdef TCP_OFFLOAD
494 /*
495  * TOE tunables.
496  */
497 static int t4_cop_managed_offloading = 0;
498 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
499 #endif
500 
501 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
502 static int vi_mac_funcs[] = {
503 	FW_VI_FUNC_ETH,
504 	FW_VI_FUNC_OFLD,
505 	FW_VI_FUNC_IWARP,
506 	FW_VI_FUNC_OPENISCSI,
507 	FW_VI_FUNC_OPENFCOE,
508 	FW_VI_FUNC_FOISCSI,
509 	FW_VI_FUNC_FOFCOE,
510 };
511 
512 struct intrs_and_queues {
513 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
514 	uint16_t num_vis;	/* number of VIs for each port */
515 	uint16_t nirq;		/* Total # of vectors */
516 	uint16_t ntxq;		/* # of NIC txq's for each port */
517 	uint16_t nrxq;		/* # of NIC rxq's for each port */
518 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
519 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
520 
521 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
522 	uint16_t ntxq_vi;	/* # of NIC txq's */
523 	uint16_t nrxq_vi;	/* # of NIC rxq's */
524 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
525 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
526 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
527 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
528 };
529 
530 static void setup_memwin(struct adapter *);
531 static void position_memwin(struct adapter *, int, uint32_t);
532 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
533 static int fwmtype_to_hwmtype(int);
534 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
535     uint32_t *);
536 static int fixup_devlog_params(struct adapter *);
537 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
538 static int prep_firmware(struct adapter *);
539 static int partition_resources(struct adapter *, const struct firmware *,
540     const char *);
541 static int get_params__pre_init(struct adapter *);
542 static int get_params__post_init(struct adapter *);
543 static int set_params__post_init(struct adapter *);
544 static void t4_set_desc(struct adapter *);
545 static bool fixed_ifmedia(struct port_info *);
546 static void build_medialist(struct port_info *);
547 static void init_link_config(struct port_info *);
548 static int fixup_link_config(struct port_info *);
549 static int apply_link_config(struct port_info *);
550 static int cxgbe_init_synchronized(struct vi_info *);
551 static int cxgbe_uninit_synchronized(struct vi_info *);
552 static void quiesce_txq(struct adapter *, struct sge_txq *);
553 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
554 static void quiesce_iq(struct adapter *, struct sge_iq *);
555 static void quiesce_fl(struct adapter *, struct sge_fl *);
556 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
557     driver_intr_t *, void *, char *);
558 static int t4_free_irq(struct adapter *, struct irq *);
559 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
560 static void vi_refresh_stats(struct adapter *, struct vi_info *);
561 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
562 static void cxgbe_tick(void *);
563 static void cxgbe_sysctls(struct port_info *);
564 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
565 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
566 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
567 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
568 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
569 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
570 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
571 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
572 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
573 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
574 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
575 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
576 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
577 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
578 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
579 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
580 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
581 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
582 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
583 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
584 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
585 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
586 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
587 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
588 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
589 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
590 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
591 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
592 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
593 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
594 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
595 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
596 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
597 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
598 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
599 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
600 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
601 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
602 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
603 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
604 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
605 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
606 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
607 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
608 #ifdef TCP_OFFLOAD
609 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
610 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
611 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
612 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
613 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
614 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
615 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
616 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
617 #endif
618 static int get_sge_context(struct adapter *, struct t4_sge_context *);
619 static int load_fw(struct adapter *, struct t4_data *);
620 static int load_cfg(struct adapter *, struct t4_data *);
621 static int load_boot(struct adapter *, struct t4_bootrom *);
622 static int load_bootcfg(struct adapter *, struct t4_data *);
623 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
624 static void free_offload_policy(struct t4_offload_policy *);
625 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
626 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
627 static int read_i2c(struct adapter *, struct t4_i2c_data *);
628 #ifdef TCP_OFFLOAD
629 static int toe_capability(struct vi_info *, int);
630 #endif
631 static int mod_event(module_t, int, void *);
632 static int notify_siblings(device_t, int);
633 
634 struct {
635 	uint16_t device;
636 	char *desc;
637 } t4_pciids[] = {
638 	{0xa000, "Chelsio Terminator 4 FPGA"},
639 	{0x4400, "Chelsio T440-dbg"},
640 	{0x4401, "Chelsio T420-CR"},
641 	{0x4402, "Chelsio T422-CR"},
642 	{0x4403, "Chelsio T440-CR"},
643 	{0x4404, "Chelsio T420-BCH"},
644 	{0x4405, "Chelsio T440-BCH"},
645 	{0x4406, "Chelsio T440-CH"},
646 	{0x4407, "Chelsio T420-SO"},
647 	{0x4408, "Chelsio T420-CX"},
648 	{0x4409, "Chelsio T420-BT"},
649 	{0x440a, "Chelsio T404-BT"},
650 	{0x440e, "Chelsio T440-LP-CR"},
651 }, t5_pciids[] = {
652 	{0xb000, "Chelsio Terminator 5 FPGA"},
653 	{0x5400, "Chelsio T580-dbg"},
654 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
655 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
656 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
657 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
658 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
659 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
660 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
661 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
662 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
663 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
664 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
665 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
666 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
667 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
668 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
669 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
670 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
671 }, t6_pciids[] = {
672 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
673 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
674 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
675 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
676 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
677 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
678 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
679 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
680 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
681 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
682 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
683 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
684 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
685 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
686 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
687 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
688 
689 	/* Custom */
690 	{0x6480, "Custom T6225-CR"},
691 	{0x6481, "Custom T62100-CR"},
692 	{0x6482, "Custom T6225-CR"},
693 	{0x6483, "Custom T62100-CR"},
694 	{0x6484, "Custom T64100-CR"},
695 	{0x6485, "Custom T6240-SO"},
696 	{0x6486, "Custom T6225-SO-CR"},
697 	{0x6487, "Custom T6225-CR"},
698 };
699 
700 #ifdef TCP_OFFLOAD
701 /*
702  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
703  * be exactly the same for both rxq and ofld_rxq.
704  */
705 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
706 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
707 #endif
708 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
709 
710 static int
711 t4_probe(device_t dev)
712 {
713 	int i;
714 	uint16_t v = pci_get_vendor(dev);
715 	uint16_t d = pci_get_device(dev);
716 	uint8_t f = pci_get_function(dev);
717 
718 	if (v != PCI_VENDOR_ID_CHELSIO)
719 		return (ENXIO);
720 
721 	/* Attach only to PF0 of the FPGA */
722 	if (d == 0xa000 && f != 0)
723 		return (ENXIO);
724 
725 	for (i = 0; i < nitems(t4_pciids); i++) {
726 		if (d == t4_pciids[i].device) {
727 			device_set_desc(dev, t4_pciids[i].desc);
728 			return (BUS_PROBE_DEFAULT);
729 		}
730 	}
731 
732 	return (ENXIO);
733 }
734 
735 static int
736 t5_probe(device_t dev)
737 {
738 	int i;
739 	uint16_t v = pci_get_vendor(dev);
740 	uint16_t d = pci_get_device(dev);
741 	uint8_t f = pci_get_function(dev);
742 
743 	if (v != PCI_VENDOR_ID_CHELSIO)
744 		return (ENXIO);
745 
746 	/* Attach only to PF0 of the FPGA */
747 	if (d == 0xb000 && f != 0)
748 		return (ENXIO);
749 
750 	for (i = 0; i < nitems(t5_pciids); i++) {
751 		if (d == t5_pciids[i].device) {
752 			device_set_desc(dev, t5_pciids[i].desc);
753 			return (BUS_PROBE_DEFAULT);
754 		}
755 	}
756 
757 	return (ENXIO);
758 }
759 
760 static int
761 t6_probe(device_t dev)
762 {
763 	int i;
764 	uint16_t v = pci_get_vendor(dev);
765 	uint16_t d = pci_get_device(dev);
766 
767 	if (v != PCI_VENDOR_ID_CHELSIO)
768 		return (ENXIO);
769 
770 	for (i = 0; i < nitems(t6_pciids); i++) {
771 		if (d == t6_pciids[i].device) {
772 			device_set_desc(dev, t6_pciids[i].desc);
773 			return (BUS_PROBE_DEFAULT);
774 		}
775 	}
776 
777 	return (ENXIO);
778 }
779 
780 static void
781 t5_attribute_workaround(device_t dev)
782 {
783 	device_t root_port;
784 	uint32_t v;
785 
786 	/*
787 	 * The T5 chips do not properly echo the No Snoop and Relaxed
788 	 * Ordering attributes when replying to a TLP from a Root
789 	 * Port.  As a workaround, find the parent Root Port and
790 	 * disable No Snoop and Relaxed Ordering.  Note that this
791 	 * affects all devices under this root port.
792 	 */
793 	root_port = pci_find_pcie_root_port(dev);
794 	if (root_port == NULL) {
795 		device_printf(dev, "Unable to find parent root port\n");
796 		return;
797 	}
798 
799 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
800 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
801 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
802 	    0)
803 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
804 		    device_get_nameunit(root_port));
805 }
806 
807 static const struct devnames devnames[] = {
808 	{
809 		.nexus_name = "t4nex",
810 		.ifnet_name = "cxgbe",
811 		.vi_ifnet_name = "vcxgbe",
812 		.pf03_drv_name = "t4iov",
813 		.vf_nexus_name = "t4vf",
814 		.vf_ifnet_name = "cxgbev"
815 	}, {
816 		.nexus_name = "t5nex",
817 		.ifnet_name = "cxl",
818 		.vi_ifnet_name = "vcxl",
819 		.pf03_drv_name = "t5iov",
820 		.vf_nexus_name = "t5vf",
821 		.vf_ifnet_name = "cxlv"
822 	}, {
823 		.nexus_name = "t6nex",
824 		.ifnet_name = "cc",
825 		.vi_ifnet_name = "vcc",
826 		.pf03_drv_name = "t6iov",
827 		.vf_nexus_name = "t6vf",
828 		.vf_ifnet_name = "ccv"
829 	}
830 };
831 
832 void
833 t4_init_devnames(struct adapter *sc)
834 {
835 	int id;
836 
837 	id = chip_id(sc);
838 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
839 		sc->names = &devnames[id - CHELSIO_T4];
840 	else {
841 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
842 		sc->names = NULL;
843 	}
844 }
845 
846 static int
847 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
848 {
849 	const char *parent, *name;
850 	long value;
851 	int line, unit;
852 
853 	line = 0;
854 	parent = device_get_nameunit(sc->dev);
855 	name = sc->names->ifnet_name;
856 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
857 		if (resource_long_value(name, unit, "port", &value) == 0 &&
858 		    value == pi->port_id)
859 			return (unit);
860 	}
861 	return (-1);
862 }
863 
864 static int
865 t4_attach(device_t dev)
866 {
867 	struct adapter *sc;
868 	int rc = 0, i, j, rqidx, tqidx, nports;
869 	struct make_dev_args mda;
870 	struct intrs_and_queues iaq;
871 	struct sge *s;
872 	uint32_t *buf;
873 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
874 	int ofld_tqidx;
875 #endif
876 #ifdef TCP_OFFLOAD
877 	int ofld_rqidx;
878 #endif
879 #ifdef DEV_NETMAP
880 	int nm_rqidx, nm_tqidx;
881 #endif
882 	int num_vis;
883 
884 	sc = device_get_softc(dev);
885 	sc->dev = dev;
886 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
887 
888 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
889 		t5_attribute_workaround(dev);
890 	pci_enable_busmaster(dev);
891 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
892 		uint32_t v;
893 
894 		pci_set_max_read_req(dev, 4096);
895 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
896 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
897 		if (pcie_relaxed_ordering == 0 &&
898 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
899 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
900 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
901 		} else if (pcie_relaxed_ordering == 1 &&
902 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
903 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
904 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
905 		}
906 	}
907 
908 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
909 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
910 	sc->traceq = -1;
911 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
912 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
913 	    device_get_nameunit(dev));
914 
915 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
916 	    device_get_nameunit(dev));
917 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
918 	t4_add_adapter(sc);
919 
920 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
921 	TAILQ_INIT(&sc->sfl);
922 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
923 
924 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
925 
926 	sc->policy = NULL;
927 	rw_init(&sc->policy_lock, "connection offload policy");
928 
929 	rc = t4_map_bars_0_and_4(sc);
930 	if (rc != 0)
931 		goto done; /* error message displayed already */
932 
933 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
934 
935 	/* Prepare the adapter for operation. */
936 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
937 	rc = -t4_prep_adapter(sc, buf);
938 	free(buf, M_CXGBE);
939 	if (rc != 0) {
940 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
941 		goto done;
942 	}
943 
944 	/*
945 	 * This is the real PF# to which we're attaching.  Works from within PCI
946 	 * passthrough environments too, where pci_get_function() could return a
947 	 * different PF# depending on the passthrough configuration.  We need to
948 	 * use the real PF# in all our communication with the firmware.
949 	 */
950 	j = t4_read_reg(sc, A_PL_WHOAMI);
951 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
952 	sc->mbox = sc->pf;
953 
954 	t4_init_devnames(sc);
955 	if (sc->names == NULL) {
956 		rc = ENOTSUP;
957 		goto done; /* error message displayed already */
958 	}
959 
960 	/*
961 	 * Do this really early, with the memory windows set up even before the
962 	 * character device.  The userland tool's register i/o and mem read
963 	 * will work even in "recovery mode".
964 	 */
965 	setup_memwin(sc);
966 	if (t4_init_devlog_params(sc, 0) == 0)
967 		fixup_devlog_params(sc);
968 	make_dev_args_init(&mda);
969 	mda.mda_devsw = &t4_cdevsw;
970 	mda.mda_uid = UID_ROOT;
971 	mda.mda_gid = GID_WHEEL;
972 	mda.mda_mode = 0600;
973 	mda.mda_si_drv1 = sc;
974 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
975 	if (rc != 0)
976 		device_printf(dev, "failed to create nexus char device: %d.\n",
977 		    rc);
978 
979 	/* Go no further if recovery mode has been requested. */
980 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
981 		device_printf(dev, "recovery mode.\n");
982 		goto done;
983 	}
984 
985 #if defined(__i386__)
986 	if ((cpu_feature & CPUID_CX8) == 0) {
987 		device_printf(dev, "64 bit atomics not available.\n");
988 		rc = ENOTSUP;
989 		goto done;
990 	}
991 #endif
992 
993 	/* Prepare the firmware for operation */
994 	rc = prep_firmware(sc);
995 	if (rc != 0)
996 		goto done; /* error message displayed already */
997 
998 	rc = get_params__post_init(sc);
999 	if (rc != 0)
1000 		goto done; /* error message displayed already */
1001 
1002 	rc = set_params__post_init(sc);
1003 	if (rc != 0)
1004 		goto done; /* error message displayed already */
1005 
1006 	rc = t4_map_bar_2(sc);
1007 	if (rc != 0)
1008 		goto done; /* error message displayed already */
1009 
1010 	rc = t4_create_dma_tag(sc);
1011 	if (rc != 0)
1012 		goto done; /* error message displayed already */
1013 
1014 	/*
1015 	 * First pass over all the ports - allocate VIs and initialize some
1016 	 * basic parameters like mac address, port type, etc.
1017 	 */
1018 	for_each_port(sc, i) {
1019 		struct port_info *pi;
1020 
1021 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1022 		sc->port[i] = pi;
1023 
1024 		/* These must be set before t4_port_init */
1025 		pi->adapter = sc;
1026 		pi->port_id = i;
1027 		/*
1028 		 * XXX: vi[0] is special so we can't delay this allocation until
1029 		 * pi->nvi's final value is known.
1030 		 */
1031 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1032 		    M_ZERO | M_WAITOK);
1033 
1034 		/*
1035 		 * Allocate the "main" VI and initialize parameters
1036 		 * like mac addr.
1037 		 */
1038 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1039 		if (rc != 0) {
1040 			device_printf(dev, "unable to initialize port %d: %d\n",
1041 			    i, rc);
1042 			free(pi->vi, M_CXGBE);
1043 			free(pi, M_CXGBE);
1044 			sc->port[i] = NULL;
1045 			goto done;
1046 		}
1047 
1048 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1049 		    device_get_nameunit(dev), i);
1050 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1051 		sc->chan_map[pi->tx_chan] = i;
1052 
1053 		/* All VIs on this port share this media. */
1054 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1055 		    cxgbe_media_status);
1056 
1057 		PORT_LOCK(pi);
1058 		init_link_config(pi);
1059 		fixup_link_config(pi);
1060 		build_medialist(pi);
1061 		if (fixed_ifmedia(pi))
1062 			pi->flags |= FIXED_IFMEDIA;
1063 		PORT_UNLOCK(pi);
1064 
1065 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1066 		    t4_ifnet_unit(sc, pi));
1067 		if (pi->dev == NULL) {
1068 			device_printf(dev,
1069 			    "failed to add device for port %d.\n", i);
1070 			rc = ENXIO;
1071 			goto done;
1072 		}
1073 		pi->vi[0].dev = pi->dev;
1074 		device_set_softc(pi->dev, pi);
1075 	}
1076 
1077 	/*
1078 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1079 	 */
1080 	nports = sc->params.nports;
1081 	rc = cfg_itype_and_nqueues(sc, &iaq);
1082 	if (rc != 0)
1083 		goto done; /* error message displayed already */
1084 
1085 	num_vis = iaq.num_vis;
1086 	sc->intr_type = iaq.intr_type;
1087 	sc->intr_count = iaq.nirq;
1088 
1089 	s = &sc->sge;
1090 	s->nrxq = nports * iaq.nrxq;
1091 	s->ntxq = nports * iaq.ntxq;
1092 	if (num_vis > 1) {
1093 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1094 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1095 	}
1096 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1097 	s->neq += nports;		/* ctrl queues: 1 per port */
1098 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1099 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1100 	if (is_offload(sc) || is_ethoffload(sc)) {
1101 		s->nofldtxq = nports * iaq.nofldtxq;
1102 		if (num_vis > 1)
1103 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1104 		s->neq += s->nofldtxq;
1105 
1106 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1107 		    M_CXGBE, M_ZERO | M_WAITOK);
1108 	}
1109 #endif
1110 #ifdef TCP_OFFLOAD
1111 	if (is_offload(sc)) {
1112 		s->nofldrxq = nports * iaq.nofldrxq;
1113 		if (num_vis > 1)
1114 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1115 		s->neq += s->nofldrxq;	/* free list */
1116 		s->niq += s->nofldrxq;
1117 
1118 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1119 		    M_CXGBE, M_ZERO | M_WAITOK);
1120 	}
1121 #endif
1122 #ifdef DEV_NETMAP
1123 	if (num_vis > 1) {
1124 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1125 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1126 	}
1127 	s->neq += s->nnmtxq + s->nnmrxq;
1128 	s->niq += s->nnmrxq;
1129 
1130 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1131 	    M_CXGBE, M_ZERO | M_WAITOK);
1132 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1133 	    M_CXGBE, M_ZERO | M_WAITOK);
1134 #endif
1135 
1136 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1137 	    M_ZERO | M_WAITOK);
1138 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1139 	    M_ZERO | M_WAITOK);
1140 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1141 	    M_ZERO | M_WAITOK);
1142 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1143 	    M_ZERO | M_WAITOK);
1144 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1145 	    M_ZERO | M_WAITOK);
1146 
1147 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1148 	    M_ZERO | M_WAITOK);
1149 
1150 	t4_init_l2t(sc, M_WAITOK);
1151 	t4_init_smt(sc, M_WAITOK);
1152 	t4_init_tx_sched(sc);
1153 #ifdef RATELIMIT
1154 	t4_init_etid_table(sc);
1155 #endif
1156 	if (sc->vres.key.size != 0)
1157 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1158 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1159 
1160 	/*
1161 	 * Second pass over the ports.  This time we know the number of rx and
1162 	 * tx queues that each port should get.
1163 	 */
1164 	rqidx = tqidx = 0;
1165 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1166 	ofld_tqidx = 0;
1167 #endif
1168 #ifdef TCP_OFFLOAD
1169 	ofld_rqidx = 0;
1170 #endif
1171 #ifdef DEV_NETMAP
1172 	nm_rqidx = nm_tqidx = 0;
1173 #endif
1174 	for_each_port(sc, i) {
1175 		struct port_info *pi = sc->port[i];
1176 		struct vi_info *vi;
1177 
1178 		if (pi == NULL)
1179 			continue;
1180 
1181 		pi->nvi = num_vis;
1182 		for_each_vi(pi, j, vi) {
1183 			vi->pi = pi;
1184 			vi->qsize_rxq = t4_qsize_rxq;
1185 			vi->qsize_txq = t4_qsize_txq;
1186 
1187 			vi->first_rxq = rqidx;
1188 			vi->first_txq = tqidx;
1189 			vi->tmr_idx = t4_tmr_idx;
1190 			vi->pktc_idx = t4_pktc_idx;
1191 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1192 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1193 
1194 			rqidx += vi->nrxq;
1195 			tqidx += vi->ntxq;
1196 
1197 			if (j == 0 && vi->ntxq > 1)
1198 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1199 			else
1200 				vi->rsrv_noflowq = 0;
1201 
1202 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1203 			vi->first_ofld_txq = ofld_tqidx;
1204 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1205 			ofld_tqidx += vi->nofldtxq;
1206 #endif
1207 #ifdef TCP_OFFLOAD
1208 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1209 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1210 			vi->first_ofld_rxq = ofld_rqidx;
1211 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1212 
1213 			ofld_rqidx += vi->nofldrxq;
1214 #endif
1215 #ifdef DEV_NETMAP
1216 			if (j > 0) {
1217 				vi->first_nm_rxq = nm_rqidx;
1218 				vi->first_nm_txq = nm_tqidx;
1219 				vi->nnmrxq = iaq.nnmrxq_vi;
1220 				vi->nnmtxq = iaq.nnmtxq_vi;
1221 				nm_rqidx += vi->nnmrxq;
1222 				nm_tqidx += vi->nnmtxq;
1223 			}
1224 #endif
1225 		}
1226 	}
1227 
1228 	rc = t4_setup_intr_handlers(sc);
1229 	if (rc != 0) {
1230 		device_printf(dev,
1231 		    "failed to setup interrupt handlers: %d\n", rc);
1232 		goto done;
1233 	}
1234 
1235 	rc = bus_generic_probe(dev);
1236 	if (rc != 0) {
1237 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1238 		goto done;
1239 	}
1240 
1241 	/*
1242 	 * Ensure thread-safe mailbox access (in debug builds).
1243 	 *
1244 	 * So far this was the only thread accessing the mailbox but various
1245 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1246 	 * will access the mailbox from different threads.
1247 	 */
1248 	sc->flags |= CHK_MBOX_ACCESS;
1249 
1250 	rc = bus_generic_attach(dev);
1251 	if (rc != 0) {
1252 		device_printf(dev,
1253 		    "failed to attach all child ports: %d\n", rc);
1254 		goto done;
1255 	}
1256 
1257 	device_printf(dev,
1258 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1259 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1260 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1261 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1262 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1263 
1264 	t4_set_desc(sc);
1265 
1266 	notify_siblings(dev, 0);
1267 
1268 done:
1269 	if (rc != 0 && sc->cdev) {
1270 		/* cdev was created and so cxgbetool works; recover that way. */
1271 		device_printf(dev,
1272 		    "error during attach, adapter is now in recovery mode.\n");
1273 		rc = 0;
1274 	}
1275 
1276 	if (rc != 0)
1277 		t4_detach_common(dev);
1278 	else
1279 		t4_sysctls(sc);
1280 
1281 	return (rc);
1282 }
1283 
1284 static int
1285 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen)
1286 {
1287 	struct port_info *pi;
1288 
1289 	pi = device_get_softc(dev);
1290 	snprintf(buf, buflen, "port=%d", pi->port_id);
1291 	return (0);
1292 }
1293 
1294 static int
1295 t4_ready(device_t dev)
1296 {
1297 	struct adapter *sc;
1298 
1299 	sc = device_get_softc(dev);
1300 	if (sc->flags & FW_OK)
1301 		return (0);
1302 	return (ENXIO);
1303 }
1304 
1305 static int
1306 t4_read_port_device(device_t dev, int port, device_t *child)
1307 {
1308 	struct adapter *sc;
1309 	struct port_info *pi;
1310 
1311 	sc = device_get_softc(dev);
1312 	if (port < 0 || port >= MAX_NPORTS)
1313 		return (EINVAL);
1314 	pi = sc->port[port];
1315 	if (pi == NULL || pi->dev == NULL)
1316 		return (ENXIO);
1317 	*child = pi->dev;
1318 	return (0);
1319 }
1320 
1321 static int
1322 notify_siblings(device_t dev, int detaching)
1323 {
1324 	device_t sibling;
1325 	int error, i;
1326 
1327 	error = 0;
1328 	for (i = 0; i < PCI_FUNCMAX; i++) {
1329 		if (i == pci_get_function(dev))
1330 			continue;
1331 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1332 		    pci_get_slot(dev), i);
1333 		if (sibling == NULL || !device_is_attached(sibling))
1334 			continue;
1335 		if (detaching)
1336 			error = T4_DETACH_CHILD(sibling);
1337 		else
1338 			(void)T4_ATTACH_CHILD(sibling);
1339 		if (error)
1340 			break;
1341 	}
1342 	return (error);
1343 }
1344 
1345 /*
1346  * Idempotent
1347  */
1348 static int
1349 t4_detach(device_t dev)
1350 {
1351 	struct adapter *sc;
1352 	int rc;
1353 
1354 	sc = device_get_softc(dev);
1355 
1356 	rc = notify_siblings(dev, 1);
1357 	if (rc) {
1358 		device_printf(dev,
1359 		    "failed to detach sibling devices: %d\n", rc);
1360 		return (rc);
1361 	}
1362 
1363 	return (t4_detach_common(dev));
1364 }
1365 
1366 int
1367 t4_detach_common(device_t dev)
1368 {
1369 	struct adapter *sc;
1370 	struct port_info *pi;
1371 	int i, rc;
1372 
1373 	sc = device_get_softc(dev);
1374 
1375 	if (sc->cdev) {
1376 		destroy_dev(sc->cdev);
1377 		sc->cdev = NULL;
1378 	}
1379 
1380 	sc->flags &= ~CHK_MBOX_ACCESS;
1381 	if (sc->flags & FULL_INIT_DONE) {
1382 		if (!(sc->flags & IS_VF))
1383 			t4_intr_disable(sc);
1384 	}
1385 
1386 	if (device_is_attached(dev)) {
1387 		rc = bus_generic_detach(dev);
1388 		if (rc) {
1389 			device_printf(dev,
1390 			    "failed to detach child devices: %d\n", rc);
1391 			return (rc);
1392 		}
1393 	}
1394 
1395 	for (i = 0; i < sc->intr_count; i++)
1396 		t4_free_irq(sc, &sc->irq[i]);
1397 
1398 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1399 		t4_free_tx_sched(sc);
1400 
1401 	for (i = 0; i < MAX_NPORTS; i++) {
1402 		pi = sc->port[i];
1403 		if (pi) {
1404 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1405 			if (pi->dev)
1406 				device_delete_child(dev, pi->dev);
1407 
1408 			mtx_destroy(&pi->pi_lock);
1409 			free(pi->vi, M_CXGBE);
1410 			free(pi, M_CXGBE);
1411 		}
1412 	}
1413 
1414 	device_delete_children(dev);
1415 
1416 	if (sc->flags & FULL_INIT_DONE)
1417 		adapter_full_uninit(sc);
1418 
1419 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1420 		t4_fw_bye(sc, sc->mbox);
1421 
1422 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1423 		pci_release_msi(dev);
1424 
1425 	if (sc->regs_res)
1426 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1427 		    sc->regs_res);
1428 
1429 	if (sc->udbs_res)
1430 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1431 		    sc->udbs_res);
1432 
1433 	if (sc->msix_res)
1434 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1435 		    sc->msix_res);
1436 
1437 	if (sc->l2t)
1438 		t4_free_l2t(sc->l2t);
1439 	if (sc->smt)
1440 		t4_free_smt(sc->smt);
1441 #ifdef RATELIMIT
1442 	t4_free_etid_table(sc);
1443 #endif
1444 	if (sc->key_map)
1445 		vmem_destroy(sc->key_map);
1446 
1447 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1448 	free(sc->sge.ofld_txq, M_CXGBE);
1449 #endif
1450 #ifdef TCP_OFFLOAD
1451 	free(sc->sge.ofld_rxq, M_CXGBE);
1452 #endif
1453 #ifdef DEV_NETMAP
1454 	free(sc->sge.nm_rxq, M_CXGBE);
1455 	free(sc->sge.nm_txq, M_CXGBE);
1456 #endif
1457 	free(sc->irq, M_CXGBE);
1458 	free(sc->sge.rxq, M_CXGBE);
1459 	free(sc->sge.txq, M_CXGBE);
1460 	free(sc->sge.ctrlq, M_CXGBE);
1461 	free(sc->sge.iqmap, M_CXGBE);
1462 	free(sc->sge.eqmap, M_CXGBE);
1463 	free(sc->tids.ftid_tab, M_CXGBE);
1464 	free(sc->tids.hpftid_tab, M_CXGBE);
1465 	free_hftid_hash(&sc->tids);
1466 	free(sc->tids.atid_tab, M_CXGBE);
1467 	free(sc->tids.tid_tab, M_CXGBE);
1468 	free(sc->tt.tls_rx_ports, M_CXGBE);
1469 	t4_destroy_dma_tag(sc);
1470 	if (mtx_initialized(&sc->sc_lock)) {
1471 		sx_xlock(&t4_list_lock);
1472 		SLIST_REMOVE(&t4_list, sc, adapter, link);
1473 		sx_xunlock(&t4_list_lock);
1474 		mtx_destroy(&sc->sc_lock);
1475 	}
1476 
1477 	callout_drain(&sc->sfl_callout);
1478 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1479 		mtx_destroy(&sc->tids.ftid_lock);
1480 		cv_destroy(&sc->tids.ftid_cv);
1481 	}
1482 	if (mtx_initialized(&sc->tids.atid_lock))
1483 		mtx_destroy(&sc->tids.atid_lock);
1484 	if (mtx_initialized(&sc->sfl_lock))
1485 		mtx_destroy(&sc->sfl_lock);
1486 	if (mtx_initialized(&sc->ifp_lock))
1487 		mtx_destroy(&sc->ifp_lock);
1488 	if (mtx_initialized(&sc->reg_lock))
1489 		mtx_destroy(&sc->reg_lock);
1490 
1491 	if (rw_initialized(&sc->policy_lock)) {
1492 		rw_destroy(&sc->policy_lock);
1493 #ifdef TCP_OFFLOAD
1494 		if (sc->policy != NULL)
1495 			free_offload_policy(sc->policy);
1496 #endif
1497 	}
1498 
1499 	for (i = 0; i < NUM_MEMWIN; i++) {
1500 		struct memwin *mw = &sc->memwin[i];
1501 
1502 		if (rw_initialized(&mw->mw_lock))
1503 			rw_destroy(&mw->mw_lock);
1504 	}
1505 
1506 	bzero(sc, sizeof(*sc));
1507 
1508 	return (0);
1509 }
1510 
1511 static int
1512 cxgbe_probe(device_t dev)
1513 {
1514 	char buf[128];
1515 	struct port_info *pi = device_get_softc(dev);
1516 
1517 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1518 	device_set_desc_copy(dev, buf);
1519 
1520 	return (BUS_PROBE_DEFAULT);
1521 }
1522 
1523 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1524     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1525     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
1526     IFCAP_HWRXTSTMP)
1527 #define T4_CAP_ENABLE (T4_CAP)
1528 
1529 static int
1530 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1531 {
1532 	struct ifnet *ifp;
1533 	struct sbuf *sb;
1534 
1535 	vi->xact_addr_filt = -1;
1536 	callout_init(&vi->tick, 1);
1537 
1538 	/* Allocate an ifnet and set it up */
1539 	ifp = if_alloc(IFT_ETHER);
1540 	if (ifp == NULL) {
1541 		device_printf(dev, "Cannot allocate ifnet\n");
1542 		return (ENOMEM);
1543 	}
1544 	vi->ifp = ifp;
1545 	ifp->if_softc = vi;
1546 
1547 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1548 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1549 
1550 	ifp->if_init = cxgbe_init;
1551 	ifp->if_ioctl = cxgbe_ioctl;
1552 	ifp->if_transmit = cxgbe_transmit;
1553 	ifp->if_qflush = cxgbe_qflush;
1554 	ifp->if_get_counter = cxgbe_get_counter;
1555 #ifdef RATELIMIT
1556 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1557 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1558 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1559 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1560 #endif
1561 
1562 	ifp->if_capabilities = T4_CAP;
1563 	ifp->if_capenable = T4_CAP_ENABLE;
1564 #ifdef TCP_OFFLOAD
1565 	if (vi->nofldrxq != 0)
1566 		ifp->if_capabilities |= IFCAP_TOE;
1567 #endif
1568 #ifdef DEV_NETMAP
1569 	if (vi->nnmrxq != 0)
1570 		ifp->if_capabilities |= IFCAP_NETMAP;
1571 #endif
1572 #ifdef RATELIMIT
1573 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) {
1574 		ifp->if_capabilities |= IFCAP_TXRTLMT;
1575 		ifp->if_capenable |= IFCAP_TXRTLMT;
1576 	}
1577 #endif
1578 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1579 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1580 
1581 	ifp->if_hw_tsomax = IP_MAXPACKET;
1582 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
1583 #ifdef RATELIMIT
1584 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0)
1585 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
1586 #endif
1587 	ifp->if_hw_tsomaxsegsize = 65536;
1588 
1589 	ether_ifattach(ifp, vi->hw_addr);
1590 #ifdef DEV_NETMAP
1591 	if (ifp->if_capabilities & IFCAP_NETMAP)
1592 		cxgbe_nm_attach(vi);
1593 #endif
1594 	sb = sbuf_new_auto();
1595 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1597 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
1598 	case IFCAP_TOE:
1599 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
1600 		break;
1601 	case IFCAP_TOE | IFCAP_TXRTLMT:
1602 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
1603 		break;
1604 	case IFCAP_TXRTLMT:
1605 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
1606 		break;
1607 	}
1608 #endif
1609 #ifdef TCP_OFFLOAD
1610 	if (ifp->if_capabilities & IFCAP_TOE)
1611 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
1612 #endif
1613 #ifdef DEV_NETMAP
1614 	if (ifp->if_capabilities & IFCAP_NETMAP)
1615 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1616 		    vi->nnmtxq, vi->nnmrxq);
1617 #endif
1618 	sbuf_finish(sb);
1619 	device_printf(dev, "%s\n", sbuf_data(sb));
1620 	sbuf_delete(sb);
1621 
1622 	vi_sysctls(vi);
1623 
1624 	return (0);
1625 }
1626 
1627 static int
1628 cxgbe_attach(device_t dev)
1629 {
1630 	struct port_info *pi = device_get_softc(dev);
1631 	struct adapter *sc = pi->adapter;
1632 	struct vi_info *vi;
1633 	int i, rc;
1634 
1635 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1636 
1637 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1638 	if (rc)
1639 		return (rc);
1640 
1641 	for_each_vi(pi, i, vi) {
1642 		if (i == 0)
1643 			continue;
1644 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1645 		if (vi->dev == NULL) {
1646 			device_printf(dev, "failed to add VI %d\n", i);
1647 			continue;
1648 		}
1649 		device_set_softc(vi->dev, vi);
1650 	}
1651 
1652 	cxgbe_sysctls(pi);
1653 
1654 	bus_generic_attach(dev);
1655 
1656 	return (0);
1657 }
1658 
1659 static void
1660 cxgbe_vi_detach(struct vi_info *vi)
1661 {
1662 	struct ifnet *ifp = vi->ifp;
1663 
1664 	ether_ifdetach(ifp);
1665 
1666 	/* Let detach proceed even if these fail. */
1667 #ifdef DEV_NETMAP
1668 	if (ifp->if_capabilities & IFCAP_NETMAP)
1669 		cxgbe_nm_detach(vi);
1670 #endif
1671 	cxgbe_uninit_synchronized(vi);
1672 	callout_drain(&vi->tick);
1673 	vi_full_uninit(vi);
1674 
1675 	if_free(vi->ifp);
1676 	vi->ifp = NULL;
1677 }
1678 
1679 static int
1680 cxgbe_detach(device_t dev)
1681 {
1682 	struct port_info *pi = device_get_softc(dev);
1683 	struct adapter *sc = pi->adapter;
1684 	int rc;
1685 
1686 	/* Detach the extra VIs first. */
1687 	rc = bus_generic_detach(dev);
1688 	if (rc)
1689 		return (rc);
1690 	device_delete_children(dev);
1691 
1692 	doom_vi(sc, &pi->vi[0]);
1693 
1694 	if (pi->flags & HAS_TRACEQ) {
1695 		sc->traceq = -1;	/* cloner should not create ifnet */
1696 		t4_tracer_port_detach(sc);
1697 	}
1698 
1699 	cxgbe_vi_detach(&pi->vi[0]);
1700 	callout_drain(&pi->tick);
1701 	ifmedia_removeall(&pi->media);
1702 
1703 	end_synchronized_op(sc, 0);
1704 
1705 	return (0);
1706 }
1707 
1708 static void
1709 cxgbe_init(void *arg)
1710 {
1711 	struct vi_info *vi = arg;
1712 	struct adapter *sc = vi->pi->adapter;
1713 
1714 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1715 		return;
1716 	cxgbe_init_synchronized(vi);
1717 	end_synchronized_op(sc, 0);
1718 }
1719 
1720 static int
1721 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1722 {
1723 	int rc = 0, mtu, flags;
1724 	struct vi_info *vi = ifp->if_softc;
1725 	struct port_info *pi = vi->pi;
1726 	struct adapter *sc = pi->adapter;
1727 	struct ifreq *ifr = (struct ifreq *)data;
1728 	uint32_t mask;
1729 
1730 	switch (cmd) {
1731 	case SIOCSIFMTU:
1732 		mtu = ifr->ifr_mtu;
1733 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1734 			return (EINVAL);
1735 
1736 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1737 		if (rc)
1738 			return (rc);
1739 		ifp->if_mtu = mtu;
1740 		if (vi->flags & VI_INIT_DONE) {
1741 			t4_update_fl_bufsize(ifp);
1742 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1743 				rc = update_mac_settings(ifp, XGMAC_MTU);
1744 		}
1745 		end_synchronized_op(sc, 0);
1746 		break;
1747 
1748 	case SIOCSIFFLAGS:
1749 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
1750 		if (rc)
1751 			return (rc);
1752 
1753 		if (ifp->if_flags & IFF_UP) {
1754 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1755 				flags = vi->if_flags;
1756 				if ((ifp->if_flags ^ flags) &
1757 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1758 					rc = update_mac_settings(ifp,
1759 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1760 				}
1761 			} else {
1762 				rc = cxgbe_init_synchronized(vi);
1763 			}
1764 			vi->if_flags = ifp->if_flags;
1765 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1766 			rc = cxgbe_uninit_synchronized(vi);
1767 		}
1768 		end_synchronized_op(sc, 0);
1769 		break;
1770 
1771 	case SIOCADDMULTI:
1772 	case SIOCDELMULTI:
1773 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
1774 		if (rc)
1775 			return (rc);
1776 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1777 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1778 		end_synchronized_op(sc, 0);
1779 		break;
1780 
1781 	case SIOCSIFCAP:
1782 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1783 		if (rc)
1784 			return (rc);
1785 
1786 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1787 		if (mask & IFCAP_TXCSUM) {
1788 			ifp->if_capenable ^= IFCAP_TXCSUM;
1789 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1790 
1791 			if (IFCAP_TSO4 & ifp->if_capenable &&
1792 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1793 				ifp->if_capenable &= ~IFCAP_TSO4;
1794 				if_printf(ifp,
1795 				    "tso4 disabled due to -txcsum.\n");
1796 			}
1797 		}
1798 		if (mask & IFCAP_TXCSUM_IPV6) {
1799 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1800 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1801 
1802 			if (IFCAP_TSO6 & ifp->if_capenable &&
1803 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1804 				ifp->if_capenable &= ~IFCAP_TSO6;
1805 				if_printf(ifp,
1806 				    "tso6 disabled due to -txcsum6.\n");
1807 			}
1808 		}
1809 		if (mask & IFCAP_RXCSUM)
1810 			ifp->if_capenable ^= IFCAP_RXCSUM;
1811 		if (mask & IFCAP_RXCSUM_IPV6)
1812 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1813 
1814 		/*
1815 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1816 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1817 		 * sending a TSO request our way, so it's sufficient to toggle
1818 		 * IFCAP_TSOx only.
1819 		 */
1820 		if (mask & IFCAP_TSO4) {
1821 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1822 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1823 				if_printf(ifp, "enable txcsum first.\n");
1824 				rc = EAGAIN;
1825 				goto fail;
1826 			}
1827 			ifp->if_capenable ^= IFCAP_TSO4;
1828 		}
1829 		if (mask & IFCAP_TSO6) {
1830 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1831 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1832 				if_printf(ifp, "enable txcsum6 first.\n");
1833 				rc = EAGAIN;
1834 				goto fail;
1835 			}
1836 			ifp->if_capenable ^= IFCAP_TSO6;
1837 		}
1838 		if (mask & IFCAP_LRO) {
1839 #if defined(INET) || defined(INET6)
1840 			int i;
1841 			struct sge_rxq *rxq;
1842 
1843 			ifp->if_capenable ^= IFCAP_LRO;
1844 			for_each_rxq(vi, i, rxq) {
1845 				if (ifp->if_capenable & IFCAP_LRO)
1846 					rxq->iq.flags |= IQ_LRO_ENABLED;
1847 				else
1848 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1849 			}
1850 #endif
1851 		}
1852 #ifdef TCP_OFFLOAD
1853 		if (mask & IFCAP_TOE) {
1854 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1855 
1856 			rc = toe_capability(vi, enable);
1857 			if (rc != 0)
1858 				goto fail;
1859 
1860 			ifp->if_capenable ^= mask;
1861 		}
1862 #endif
1863 		if (mask & IFCAP_VLAN_HWTAGGING) {
1864 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1865 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1866 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1867 		}
1868 		if (mask & IFCAP_VLAN_MTU) {
1869 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1870 
1871 			/* Need to find out how to disable auto-mtu-inflation */
1872 		}
1873 		if (mask & IFCAP_VLAN_HWTSO)
1874 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1875 		if (mask & IFCAP_VLAN_HWCSUM)
1876 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1877 #ifdef RATELIMIT
1878 		if (mask & IFCAP_TXRTLMT)
1879 			ifp->if_capenable ^= IFCAP_TXRTLMT;
1880 #endif
1881 		if (mask & IFCAP_HWRXTSTMP) {
1882 			int i;
1883 			struct sge_rxq *rxq;
1884 
1885 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
1886 			for_each_rxq(vi, i, rxq) {
1887 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
1888 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
1889 				else
1890 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
1891 			}
1892 		}
1893 
1894 #ifdef VLAN_CAPABILITIES
1895 		VLAN_CAPABILITIES(ifp);
1896 #endif
1897 fail:
1898 		end_synchronized_op(sc, 0);
1899 		break;
1900 
1901 	case SIOCSIFMEDIA:
1902 	case SIOCGIFMEDIA:
1903 	case SIOCGIFXMEDIA:
1904 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
1905 		break;
1906 
1907 	case SIOCGI2C: {
1908 		struct ifi2creq i2c;
1909 
1910 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
1911 		if (rc != 0)
1912 			break;
1913 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1914 			rc = EPERM;
1915 			break;
1916 		}
1917 		if (i2c.len > sizeof(i2c.data)) {
1918 			rc = EINVAL;
1919 			break;
1920 		}
1921 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1922 		if (rc)
1923 			return (rc);
1924 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
1925 		    i2c.offset, i2c.len, &i2c.data[0]);
1926 		end_synchronized_op(sc, 0);
1927 		if (rc == 0)
1928 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
1929 		break;
1930 	}
1931 
1932 	default:
1933 		rc = ether_ioctl(ifp, cmd, data);
1934 	}
1935 
1936 	return (rc);
1937 }
1938 
1939 static int
1940 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1941 {
1942 	struct vi_info *vi = ifp->if_softc;
1943 	struct port_info *pi = vi->pi;
1944 	struct adapter *sc = pi->adapter;
1945 	struct sge_txq *txq;
1946 	void *items[1];
1947 	int rc;
1948 
1949 	M_ASSERTPKTHDR(m);
1950 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
1951 
1952 	if (__predict_false(pi->link_cfg.link_ok == false)) {
1953 		m_freem(m);
1954 		return (ENETDOWN);
1955 	}
1956 
1957 	rc = parse_pkt(sc, &m);
1958 	if (__predict_false(rc != 0)) {
1959 		MPASS(m == NULL);			/* was freed already */
1960 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
1961 		return (rc);
1962 	}
1963 #ifdef RATELIMIT
1964 	if (m->m_pkthdr.snd_tag != NULL) {
1965 		/* EAGAIN tells the stack we are not the correct interface. */
1966 		if (__predict_false(ifp != m->m_pkthdr.snd_tag->ifp)) {
1967 			m_freem(m);
1968 			return (EAGAIN);
1969 		}
1970 
1971 		return (ethofld_transmit(ifp, m));
1972 	}
1973 #endif
1974 
1975 	/* Select a txq. */
1976 	txq = &sc->sge.txq[vi->first_txq];
1977 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1978 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1979 		    vi->rsrv_noflowq);
1980 
1981 	items[0] = m;
1982 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1983 	if (__predict_false(rc != 0))
1984 		m_freem(m);
1985 
1986 	return (rc);
1987 }
1988 
1989 static void
1990 cxgbe_qflush(struct ifnet *ifp)
1991 {
1992 	struct vi_info *vi = ifp->if_softc;
1993 	struct sge_txq *txq;
1994 	int i;
1995 
1996 	/* queues do not exist if !VI_INIT_DONE. */
1997 	if (vi->flags & VI_INIT_DONE) {
1998 		for_each_txq(vi, i, txq) {
1999 			TXQ_LOCK(txq);
2000 			txq->eq.flags |= EQ_QFLUSH;
2001 			TXQ_UNLOCK(txq);
2002 			while (!mp_ring_is_idle(txq->r)) {
2003 				mp_ring_check_drainage(txq->r, 0);
2004 				pause("qflush", 1);
2005 			}
2006 			TXQ_LOCK(txq);
2007 			txq->eq.flags &= ~EQ_QFLUSH;
2008 			TXQ_UNLOCK(txq);
2009 		}
2010 	}
2011 	if_qflush(ifp);
2012 }
2013 
2014 static uint64_t
2015 vi_get_counter(struct ifnet *ifp, ift_counter c)
2016 {
2017 	struct vi_info *vi = ifp->if_softc;
2018 	struct fw_vi_stats_vf *s = &vi->stats;
2019 
2020 	vi_refresh_stats(vi->pi->adapter, vi);
2021 
2022 	switch (c) {
2023 	case IFCOUNTER_IPACKETS:
2024 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2025 		    s->rx_ucast_frames);
2026 	case IFCOUNTER_IERRORS:
2027 		return (s->rx_err_frames);
2028 	case IFCOUNTER_OPACKETS:
2029 		return (s->tx_bcast_frames + s->tx_mcast_frames +
2030 		    s->tx_ucast_frames + s->tx_offload_frames);
2031 	case IFCOUNTER_OERRORS:
2032 		return (s->tx_drop_frames);
2033 	case IFCOUNTER_IBYTES:
2034 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
2035 		    s->rx_ucast_bytes);
2036 	case IFCOUNTER_OBYTES:
2037 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
2038 		    s->tx_ucast_bytes + s->tx_offload_bytes);
2039 	case IFCOUNTER_IMCASTS:
2040 		return (s->rx_mcast_frames);
2041 	case IFCOUNTER_OMCASTS:
2042 		return (s->tx_mcast_frames);
2043 	case IFCOUNTER_OQDROPS: {
2044 		uint64_t drops;
2045 
2046 		drops = 0;
2047 		if (vi->flags & VI_INIT_DONE) {
2048 			int i;
2049 			struct sge_txq *txq;
2050 
2051 			for_each_txq(vi, i, txq)
2052 				drops += counter_u64_fetch(txq->r->drops);
2053 		}
2054 
2055 		return (drops);
2056 
2057 	}
2058 
2059 	default:
2060 		return (if_get_counter_default(ifp, c));
2061 	}
2062 }
2063 
2064 uint64_t
2065 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
2066 {
2067 	struct vi_info *vi = ifp->if_softc;
2068 	struct port_info *pi = vi->pi;
2069 	struct adapter *sc = pi->adapter;
2070 	struct port_stats *s = &pi->stats;
2071 
2072 	if (pi->nvi > 1 || sc->flags & IS_VF)
2073 		return (vi_get_counter(ifp, c));
2074 
2075 	cxgbe_refresh_stats(sc, pi);
2076 
2077 	switch (c) {
2078 	case IFCOUNTER_IPACKETS:
2079 		return (s->rx_frames);
2080 
2081 	case IFCOUNTER_IERRORS:
2082 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2083 		    s->rx_fcs_err + s->rx_len_err);
2084 
2085 	case IFCOUNTER_OPACKETS:
2086 		return (s->tx_frames);
2087 
2088 	case IFCOUNTER_OERRORS:
2089 		return (s->tx_error_frames);
2090 
2091 	case IFCOUNTER_IBYTES:
2092 		return (s->rx_octets);
2093 
2094 	case IFCOUNTER_OBYTES:
2095 		return (s->tx_octets);
2096 
2097 	case IFCOUNTER_IMCASTS:
2098 		return (s->rx_mcast_frames);
2099 
2100 	case IFCOUNTER_OMCASTS:
2101 		return (s->tx_mcast_frames);
2102 
2103 	case IFCOUNTER_IQDROPS:
2104 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2105 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2106 		    s->rx_trunc3 + pi->tnl_cong_drops);
2107 
2108 	case IFCOUNTER_OQDROPS: {
2109 		uint64_t drops;
2110 
2111 		drops = s->tx_drop;
2112 		if (vi->flags & VI_INIT_DONE) {
2113 			int i;
2114 			struct sge_txq *txq;
2115 
2116 			for_each_txq(vi, i, txq)
2117 				drops += counter_u64_fetch(txq->r->drops);
2118 		}
2119 
2120 		return (drops);
2121 
2122 	}
2123 
2124 	default:
2125 		return (if_get_counter_default(ifp, c));
2126 	}
2127 }
2128 
2129 /*
2130  * The kernel picks a media from the list we had provided but we still validate
2131  * the requeste.
2132  */
2133 int
2134 cxgbe_media_change(struct ifnet *ifp)
2135 {
2136 	struct vi_info *vi = ifp->if_softc;
2137 	struct port_info *pi = vi->pi;
2138 	struct ifmedia *ifm = &pi->media;
2139 	struct link_config *lc = &pi->link_cfg;
2140 	struct adapter *sc = pi->adapter;
2141 	int rc;
2142 
2143 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
2144 	if (rc != 0)
2145 		return (rc);
2146 	PORT_LOCK(pi);
2147 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
2148 		/* ifconfig .. media autoselect */
2149 		if (!(lc->supported & FW_PORT_CAP32_ANEG)) {
2150 			rc = ENOTSUP; /* AN not supported by transceiver */
2151 			goto done;
2152 		}
2153 		lc->requested_aneg = AUTONEG_ENABLE;
2154 		lc->requested_speed = 0;
2155 		lc->requested_fc |= PAUSE_AUTONEG;
2156 	} else {
2157 		lc->requested_aneg = AUTONEG_DISABLE;
2158 		lc->requested_speed =
2159 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
2160 		lc->requested_fc = 0;
2161 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
2162 			lc->requested_fc |= PAUSE_RX;
2163 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
2164 			lc->requested_fc |= PAUSE_TX;
2165 	}
2166 	if (pi->up_vis > 0) {
2167 		fixup_link_config(pi);
2168 		rc = apply_link_config(pi);
2169 	}
2170 done:
2171 	PORT_UNLOCK(pi);
2172 	end_synchronized_op(sc, 0);
2173 	return (rc);
2174 }
2175 
2176 /*
2177  * Base media word (without ETHER, pause, link active, etc.) for the port at the
2178  * given speed.
2179  */
2180 static int
2181 port_mword(struct port_info *pi, uint32_t speed)
2182 {
2183 
2184 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
2185 	MPASS(powerof2(speed));
2186 
2187 	switch(pi->port_type) {
2188 	case FW_PORT_TYPE_BT_SGMII:
2189 	case FW_PORT_TYPE_BT_XFI:
2190 	case FW_PORT_TYPE_BT_XAUI:
2191 		/* BaseT */
2192 		switch (speed) {
2193 		case FW_PORT_CAP32_SPEED_100M:
2194 			return (IFM_100_T);
2195 		case FW_PORT_CAP32_SPEED_1G:
2196 			return (IFM_1000_T);
2197 		case FW_PORT_CAP32_SPEED_10G:
2198 			return (IFM_10G_T);
2199 		}
2200 		break;
2201 	case FW_PORT_TYPE_KX4:
2202 		if (speed == FW_PORT_CAP32_SPEED_10G)
2203 			return (IFM_10G_KX4);
2204 		break;
2205 	case FW_PORT_TYPE_CX4:
2206 		if (speed == FW_PORT_CAP32_SPEED_10G)
2207 			return (IFM_10G_CX4);
2208 		break;
2209 	case FW_PORT_TYPE_KX:
2210 		if (speed == FW_PORT_CAP32_SPEED_1G)
2211 			return (IFM_1000_KX);
2212 		break;
2213 	case FW_PORT_TYPE_KR:
2214 	case FW_PORT_TYPE_BP_AP:
2215 	case FW_PORT_TYPE_BP4_AP:
2216 	case FW_PORT_TYPE_BP40_BA:
2217 	case FW_PORT_TYPE_KR4_100G:
2218 	case FW_PORT_TYPE_KR_SFP28:
2219 	case FW_PORT_TYPE_KR_XLAUI:
2220 		switch (speed) {
2221 		case FW_PORT_CAP32_SPEED_1G:
2222 			return (IFM_1000_KX);
2223 		case FW_PORT_CAP32_SPEED_10G:
2224 			return (IFM_10G_KR);
2225 		case FW_PORT_CAP32_SPEED_25G:
2226 			return (IFM_25G_KR);
2227 		case FW_PORT_CAP32_SPEED_40G:
2228 			return (IFM_40G_KR4);
2229 		case FW_PORT_CAP32_SPEED_50G:
2230 			return (IFM_50G_KR2);
2231 		case FW_PORT_CAP32_SPEED_100G:
2232 			return (IFM_100G_KR4);
2233 		}
2234 		break;
2235 	case FW_PORT_TYPE_FIBER_XFI:
2236 	case FW_PORT_TYPE_FIBER_XAUI:
2237 	case FW_PORT_TYPE_SFP:
2238 	case FW_PORT_TYPE_QSFP_10G:
2239 	case FW_PORT_TYPE_QSA:
2240 	case FW_PORT_TYPE_QSFP:
2241 	case FW_PORT_TYPE_CR4_QSFP:
2242 	case FW_PORT_TYPE_CR_QSFP:
2243 	case FW_PORT_TYPE_CR2_QSFP:
2244 	case FW_PORT_TYPE_SFP28:
2245 		/* Pluggable transceiver */
2246 		switch (pi->mod_type) {
2247 		case FW_PORT_MOD_TYPE_LR:
2248 			switch (speed) {
2249 			case FW_PORT_CAP32_SPEED_1G:
2250 				return (IFM_1000_LX);
2251 			case FW_PORT_CAP32_SPEED_10G:
2252 				return (IFM_10G_LR);
2253 			case FW_PORT_CAP32_SPEED_25G:
2254 				return (IFM_25G_LR);
2255 			case FW_PORT_CAP32_SPEED_40G:
2256 				return (IFM_40G_LR4);
2257 			case FW_PORT_CAP32_SPEED_50G:
2258 				return (IFM_50G_LR2);
2259 			case FW_PORT_CAP32_SPEED_100G:
2260 				return (IFM_100G_LR4);
2261 			}
2262 			break;
2263 		case FW_PORT_MOD_TYPE_SR:
2264 			switch (speed) {
2265 			case FW_PORT_CAP32_SPEED_1G:
2266 				return (IFM_1000_SX);
2267 			case FW_PORT_CAP32_SPEED_10G:
2268 				return (IFM_10G_SR);
2269 			case FW_PORT_CAP32_SPEED_25G:
2270 				return (IFM_25G_SR);
2271 			case FW_PORT_CAP32_SPEED_40G:
2272 				return (IFM_40G_SR4);
2273 			case FW_PORT_CAP32_SPEED_50G:
2274 				return (IFM_50G_SR2);
2275 			case FW_PORT_CAP32_SPEED_100G:
2276 				return (IFM_100G_SR4);
2277 			}
2278 			break;
2279 		case FW_PORT_MOD_TYPE_ER:
2280 			if (speed == FW_PORT_CAP32_SPEED_10G)
2281 				return (IFM_10G_ER);
2282 			break;
2283 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
2284 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
2285 			switch (speed) {
2286 			case FW_PORT_CAP32_SPEED_1G:
2287 				return (IFM_1000_CX);
2288 			case FW_PORT_CAP32_SPEED_10G:
2289 				return (IFM_10G_TWINAX);
2290 			case FW_PORT_CAP32_SPEED_25G:
2291 				return (IFM_25G_CR);
2292 			case FW_PORT_CAP32_SPEED_40G:
2293 				return (IFM_40G_CR4);
2294 			case FW_PORT_CAP32_SPEED_50G:
2295 				return (IFM_50G_CR2);
2296 			case FW_PORT_CAP32_SPEED_100G:
2297 				return (IFM_100G_CR4);
2298 			}
2299 			break;
2300 		case FW_PORT_MOD_TYPE_LRM:
2301 			if (speed == FW_PORT_CAP32_SPEED_10G)
2302 				return (IFM_10G_LRM);
2303 			break;
2304 		case FW_PORT_MOD_TYPE_NA:
2305 			MPASS(0);	/* Not pluggable? */
2306 			/* fall throough */
2307 		case FW_PORT_MOD_TYPE_ERROR:
2308 		case FW_PORT_MOD_TYPE_UNKNOWN:
2309 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
2310 			break;
2311 		case FW_PORT_MOD_TYPE_NONE:
2312 			return (IFM_NONE);
2313 		}
2314 		break;
2315 	case FW_PORT_TYPE_NONE:
2316 		return (IFM_NONE);
2317 	}
2318 
2319 	return (IFM_UNKNOWN);
2320 }
2321 
2322 void
2323 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2324 {
2325 	struct vi_info *vi = ifp->if_softc;
2326 	struct port_info *pi = vi->pi;
2327 	struct adapter *sc = pi->adapter;
2328 	struct link_config *lc = &pi->link_cfg;
2329 
2330 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
2331 		return;
2332 	PORT_LOCK(pi);
2333 
2334 	if (pi->up_vis == 0) {
2335 		/*
2336 		 * If all the interfaces are administratively down the firmware
2337 		 * does not report transceiver changes.  Refresh port info here
2338 		 * so that ifconfig displays accurate ifmedia at all times.
2339 		 * This is the only reason we have a synchronized op in this
2340 		 * function.  Just PORT_LOCK would have been enough otherwise.
2341 		 */
2342 		t4_update_port_info(pi);
2343 		build_medialist(pi);
2344 	}
2345 
2346 	/* ifm_status */
2347 	ifmr->ifm_status = IFM_AVALID;
2348 	if (lc->link_ok == false)
2349 		goto done;
2350 	ifmr->ifm_status |= IFM_ACTIVE;
2351 
2352 	/* ifm_active */
2353 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2354 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2355 	if (lc->fc & PAUSE_RX)
2356 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2357 	if (lc->fc & PAUSE_TX)
2358 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2359 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
2360 done:
2361 	PORT_UNLOCK(pi);
2362 	end_synchronized_op(sc, 0);
2363 }
2364 
2365 static int
2366 vcxgbe_probe(device_t dev)
2367 {
2368 	char buf[128];
2369 	struct vi_info *vi = device_get_softc(dev);
2370 
2371 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2372 	    vi - vi->pi->vi);
2373 	device_set_desc_copy(dev, buf);
2374 
2375 	return (BUS_PROBE_DEFAULT);
2376 }
2377 
2378 static int
2379 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2380 {
2381 	int func, index, rc;
2382 	uint32_t param, val;
2383 
2384 	ASSERT_SYNCHRONIZED_OP(sc);
2385 
2386 	index = vi - pi->vi;
2387 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2388 	KASSERT(index < nitems(vi_mac_funcs),
2389 	    ("%s: VI %s doesn't have a MAC func", __func__,
2390 	    device_get_nameunit(vi->dev)));
2391 	func = vi_mac_funcs[index];
2392 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2393 	    vi->hw_addr, &vi->rss_size, func, 0);
2394 	if (rc < 0) {
2395 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2396 		    "for port %d: %d\n", index, pi->port_id, -rc);
2397 		return (-rc);
2398 	}
2399 	vi->viid = rc;
2400 	if (chip_id(sc) <= CHELSIO_T5)
2401 		vi->smt_idx = (rc & 0x7f) << 1;
2402 	else
2403 		vi->smt_idx = (rc & 0x7f);
2404 
2405 	if (vi->rss_size == 1) {
2406 		/*
2407 		 * This VI didn't get a slice of the RSS table.  Reduce the
2408 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2409 		 * configuration file (nvi, rssnvi for this PF) if this is a
2410 		 * problem.
2411 		 */
2412 		device_printf(vi->dev, "RSS table not available.\n");
2413 		vi->rss_base = 0xffff;
2414 
2415 		return (0);
2416 	}
2417 
2418 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2419 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2420 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2421 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2422 	if (rc)
2423 		vi->rss_base = 0xffff;
2424 	else {
2425 		MPASS((val >> 16) == vi->rss_size);
2426 		vi->rss_base = val & 0xffff;
2427 	}
2428 
2429 	return (0);
2430 }
2431 
2432 static int
2433 vcxgbe_attach(device_t dev)
2434 {
2435 	struct vi_info *vi;
2436 	struct port_info *pi;
2437 	struct adapter *sc;
2438 	int rc;
2439 
2440 	vi = device_get_softc(dev);
2441 	pi = vi->pi;
2442 	sc = pi->adapter;
2443 
2444 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2445 	if (rc)
2446 		return (rc);
2447 	rc = alloc_extra_vi(sc, pi, vi);
2448 	end_synchronized_op(sc, 0);
2449 	if (rc)
2450 		return (rc);
2451 
2452 	rc = cxgbe_vi_attach(dev, vi);
2453 	if (rc) {
2454 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2455 		return (rc);
2456 	}
2457 	return (0);
2458 }
2459 
2460 static int
2461 vcxgbe_detach(device_t dev)
2462 {
2463 	struct vi_info *vi;
2464 	struct adapter *sc;
2465 
2466 	vi = device_get_softc(dev);
2467 	sc = vi->pi->adapter;
2468 
2469 	doom_vi(sc, vi);
2470 
2471 	cxgbe_vi_detach(vi);
2472 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2473 
2474 	end_synchronized_op(sc, 0);
2475 
2476 	return (0);
2477 }
2478 
2479 void
2480 t4_fatal_err(struct adapter *sc)
2481 {
2482 	t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2483 	t4_intr_disable(sc);
2484 	log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2485 	    device_get_nameunit(sc->dev));
2486 	if (t4_panic_on_fatal_err)
2487 		panic("panic requested on fatal error");
2488 }
2489 
2490 void
2491 t4_add_adapter(struct adapter *sc)
2492 {
2493 	sx_xlock(&t4_list_lock);
2494 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2495 	sx_xunlock(&t4_list_lock);
2496 }
2497 
2498 int
2499 t4_map_bars_0_and_4(struct adapter *sc)
2500 {
2501 	sc->regs_rid = PCIR_BAR(0);
2502 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2503 	    &sc->regs_rid, RF_ACTIVE);
2504 	if (sc->regs_res == NULL) {
2505 		device_printf(sc->dev, "cannot map registers.\n");
2506 		return (ENXIO);
2507 	}
2508 	sc->bt = rman_get_bustag(sc->regs_res);
2509 	sc->bh = rman_get_bushandle(sc->regs_res);
2510 	sc->mmio_len = rman_get_size(sc->regs_res);
2511 	setbit(&sc->doorbells, DOORBELL_KDB);
2512 
2513 	sc->msix_rid = PCIR_BAR(4);
2514 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2515 	    &sc->msix_rid, RF_ACTIVE);
2516 	if (sc->msix_res == NULL) {
2517 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2518 		return (ENXIO);
2519 	}
2520 
2521 	return (0);
2522 }
2523 
2524 int
2525 t4_map_bar_2(struct adapter *sc)
2526 {
2527 
2528 	/*
2529 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2530 	 * to map it if RDMA is disabled.
2531 	 */
2532 	if (is_t4(sc) && sc->rdmacaps == 0)
2533 		return (0);
2534 
2535 	sc->udbs_rid = PCIR_BAR(2);
2536 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2537 	    &sc->udbs_rid, RF_ACTIVE);
2538 	if (sc->udbs_res == NULL) {
2539 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2540 		return (ENXIO);
2541 	}
2542 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2543 
2544 	if (chip_id(sc) >= CHELSIO_T5) {
2545 		setbit(&sc->doorbells, DOORBELL_UDB);
2546 #if defined(__i386__) || defined(__amd64__)
2547 		if (t5_write_combine) {
2548 			int rc, mode;
2549 
2550 			/*
2551 			 * Enable write combining on BAR2.  This is the
2552 			 * userspace doorbell BAR and is split into 128B
2553 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2554 			 * with an egress queue.  The first 64B has the doorbell
2555 			 * and the second 64B can be used to submit a tx work
2556 			 * request with an implicit doorbell.
2557 			 */
2558 
2559 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2560 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2561 			if (rc == 0) {
2562 				clrbit(&sc->doorbells, DOORBELL_UDB);
2563 				setbit(&sc->doorbells, DOORBELL_WCWR);
2564 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2565 			} else {
2566 				device_printf(sc->dev,
2567 				    "couldn't enable write combining: %d\n",
2568 				    rc);
2569 			}
2570 
2571 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2572 			t4_write_reg(sc, A_SGE_STAT_CFG,
2573 			    V_STATSOURCE_T5(7) | mode);
2574 		}
2575 #endif
2576 	}
2577 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2578 
2579 	return (0);
2580 }
2581 
2582 struct memwin_init {
2583 	uint32_t base;
2584 	uint32_t aperture;
2585 };
2586 
2587 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2588 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2589 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2590 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2591 };
2592 
2593 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2594 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2595 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2596 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2597 };
2598 
2599 static void
2600 setup_memwin(struct adapter *sc)
2601 {
2602 	const struct memwin_init *mw_init;
2603 	struct memwin *mw;
2604 	int i;
2605 	uint32_t bar0;
2606 
2607 	if (is_t4(sc)) {
2608 		/*
2609 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2610 		 * mechanism.  Works from within PCI passthrough environments
2611 		 * too, where rman_get_start() can return a different value.  We
2612 		 * need to program the T4 memory window decoders with the actual
2613 		 * addresses that will be coming across the PCIe link.
2614 		 */
2615 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2616 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2617 
2618 		mw_init = &t4_memwin[0];
2619 	} else {
2620 		/* T5+ use the relative offset inside the PCIe BAR */
2621 		bar0 = 0;
2622 
2623 		mw_init = &t5_memwin[0];
2624 	}
2625 
2626 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2627 		rw_init(&mw->mw_lock, "memory window access");
2628 		mw->mw_base = mw_init->base;
2629 		mw->mw_aperture = mw_init->aperture;
2630 		mw->mw_curpos = 0;
2631 		t4_write_reg(sc,
2632 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2633 		    (mw->mw_base + bar0) | V_BIR(0) |
2634 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2635 		rw_wlock(&mw->mw_lock);
2636 		position_memwin(sc, i, 0);
2637 		rw_wunlock(&mw->mw_lock);
2638 	}
2639 
2640 	/* flush */
2641 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2642 }
2643 
2644 /*
2645  * Positions the memory window at the given address in the card's address space.
2646  * There are some alignment requirements and the actual position may be at an
2647  * address prior to the requested address.  mw->mw_curpos always has the actual
2648  * position of the window.
2649  */
2650 static void
2651 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2652 {
2653 	struct memwin *mw;
2654 	uint32_t pf;
2655 	uint32_t reg;
2656 
2657 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2658 	mw = &sc->memwin[idx];
2659 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2660 
2661 	if (is_t4(sc)) {
2662 		pf = 0;
2663 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2664 	} else {
2665 		pf = V_PFNUM(sc->pf);
2666 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2667 	}
2668 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2669 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2670 	t4_read_reg(sc, reg);	/* flush */
2671 }
2672 
2673 int
2674 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2675     int len, int rw)
2676 {
2677 	struct memwin *mw;
2678 	uint32_t mw_end, v;
2679 
2680 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2681 
2682 	/* Memory can only be accessed in naturally aligned 4 byte units */
2683 	if (addr & 3 || len & 3 || len <= 0)
2684 		return (EINVAL);
2685 
2686 	mw = &sc->memwin[idx];
2687 	while (len > 0) {
2688 		rw_rlock(&mw->mw_lock);
2689 		mw_end = mw->mw_curpos + mw->mw_aperture;
2690 		if (addr >= mw_end || addr < mw->mw_curpos) {
2691 			/* Will need to reposition the window */
2692 			if (!rw_try_upgrade(&mw->mw_lock)) {
2693 				rw_runlock(&mw->mw_lock);
2694 				rw_wlock(&mw->mw_lock);
2695 			}
2696 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2697 			position_memwin(sc, idx, addr);
2698 			rw_downgrade(&mw->mw_lock);
2699 			mw_end = mw->mw_curpos + mw->mw_aperture;
2700 		}
2701 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2702 		while (addr < mw_end && len > 0) {
2703 			if (rw == 0) {
2704 				v = t4_read_reg(sc, mw->mw_base + addr -
2705 				    mw->mw_curpos);
2706 				*val++ = le32toh(v);
2707 			} else {
2708 				v = *val++;
2709 				t4_write_reg(sc, mw->mw_base + addr -
2710 				    mw->mw_curpos, htole32(v));
2711 			}
2712 			addr += 4;
2713 			len -= 4;
2714 		}
2715 		rw_runlock(&mw->mw_lock);
2716 	}
2717 
2718 	return (0);
2719 }
2720 
2721 int
2722 alloc_atid_tab(struct tid_info *t, int flags)
2723 {
2724 	int i;
2725 
2726 	MPASS(t->natids > 0);
2727 	MPASS(t->atid_tab == NULL);
2728 
2729 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
2730 	    M_ZERO | flags);
2731 	if (t->atid_tab == NULL)
2732 		return (ENOMEM);
2733 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
2734 	t->afree = t->atid_tab;
2735 	t->atids_in_use = 0;
2736 	for (i = 1; i < t->natids; i++)
2737 		t->atid_tab[i - 1].next = &t->atid_tab[i];
2738 	t->atid_tab[t->natids - 1].next = NULL;
2739 
2740 	return (0);
2741 }
2742 
2743 void
2744 free_atid_tab(struct tid_info *t)
2745 {
2746 
2747 	KASSERT(t->atids_in_use == 0,
2748 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
2749 
2750 	if (mtx_initialized(&t->atid_lock))
2751 		mtx_destroy(&t->atid_lock);
2752 	free(t->atid_tab, M_CXGBE);
2753 	t->atid_tab = NULL;
2754 }
2755 
2756 int
2757 alloc_atid(struct adapter *sc, void *ctx)
2758 {
2759 	struct tid_info *t = &sc->tids;
2760 	int atid = -1;
2761 
2762 	mtx_lock(&t->atid_lock);
2763 	if (t->afree) {
2764 		union aopen_entry *p = t->afree;
2765 
2766 		atid = p - t->atid_tab;
2767 		MPASS(atid <= M_TID_TID);
2768 		t->afree = p->next;
2769 		p->data = ctx;
2770 		t->atids_in_use++;
2771 	}
2772 	mtx_unlock(&t->atid_lock);
2773 	return (atid);
2774 }
2775 
2776 void *
2777 lookup_atid(struct adapter *sc, int atid)
2778 {
2779 	struct tid_info *t = &sc->tids;
2780 
2781 	return (t->atid_tab[atid].data);
2782 }
2783 
2784 void
2785 free_atid(struct adapter *sc, int atid)
2786 {
2787 	struct tid_info *t = &sc->tids;
2788 	union aopen_entry *p = &t->atid_tab[atid];
2789 
2790 	mtx_lock(&t->atid_lock);
2791 	p->next = t->afree;
2792 	t->afree = p;
2793 	t->atids_in_use--;
2794 	mtx_unlock(&t->atid_lock);
2795 }
2796 
2797 static void
2798 queue_tid_release(struct adapter *sc, int tid)
2799 {
2800 
2801 	CXGBE_UNIMPLEMENTED("deferred tid release");
2802 }
2803 
2804 void
2805 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
2806 {
2807 	struct wrqe *wr;
2808 	struct cpl_tid_release *req;
2809 
2810 	wr = alloc_wrqe(sizeof(*req), ctrlq);
2811 	if (wr == NULL) {
2812 		queue_tid_release(sc, tid);	/* defer */
2813 		return;
2814 	}
2815 	req = wrtod(wr);
2816 
2817 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
2818 
2819 	t4_wrq_tx(sc, wr);
2820 }
2821 
2822 static int
2823 t4_range_cmp(const void *a, const void *b)
2824 {
2825 	return ((const struct t4_range *)a)->start -
2826 	       ((const struct t4_range *)b)->start;
2827 }
2828 
2829 /*
2830  * Verify that the memory range specified by the addr/len pair is valid within
2831  * the card's address space.
2832  */
2833 static int
2834 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
2835 {
2836 	struct t4_range mem_ranges[4], *r, *next;
2837 	uint32_t em, addr_len;
2838 	int i, n, remaining;
2839 
2840 	/* Memory can only be accessed in naturally aligned 4 byte units */
2841 	if (addr & 3 || len & 3 || len == 0)
2842 		return (EINVAL);
2843 
2844 	/* Enabled memories */
2845 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2846 
2847 	r = &mem_ranges[0];
2848 	n = 0;
2849 	bzero(r, sizeof(mem_ranges));
2850 	if (em & F_EDRAM0_ENABLE) {
2851 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2852 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2853 		if (r->size > 0) {
2854 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2855 			if (addr >= r->start &&
2856 			    addr + len <= r->start + r->size)
2857 				return (0);
2858 			r++;
2859 			n++;
2860 		}
2861 	}
2862 	if (em & F_EDRAM1_ENABLE) {
2863 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2864 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2865 		if (r->size > 0) {
2866 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2867 			if (addr >= r->start &&
2868 			    addr + len <= r->start + r->size)
2869 				return (0);
2870 			r++;
2871 			n++;
2872 		}
2873 	}
2874 	if (em & F_EXT_MEM_ENABLE) {
2875 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2876 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2877 		if (r->size > 0) {
2878 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2879 			if (addr >= r->start &&
2880 			    addr + len <= r->start + r->size)
2881 				return (0);
2882 			r++;
2883 			n++;
2884 		}
2885 	}
2886 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2887 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2888 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2889 		if (r->size > 0) {
2890 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2891 			if (addr >= r->start &&
2892 			    addr + len <= r->start + r->size)
2893 				return (0);
2894 			r++;
2895 			n++;
2896 		}
2897 	}
2898 	MPASS(n <= nitems(mem_ranges));
2899 
2900 	if (n > 1) {
2901 		/* Sort and merge the ranges. */
2902 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2903 
2904 		/* Start from index 0 and examine the next n - 1 entries. */
2905 		r = &mem_ranges[0];
2906 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
2907 
2908 			MPASS(r->size > 0);	/* r is a valid entry. */
2909 			next = r + 1;
2910 			MPASS(next->size > 0);	/* and so is the next one. */
2911 
2912 			while (r->start + r->size >= next->start) {
2913 				/* Merge the next one into the current entry. */
2914 				r->size = max(r->start + r->size,
2915 				    next->start + next->size) - r->start;
2916 				n--;	/* One fewer entry in total. */
2917 				if (--remaining == 0)
2918 					goto done;	/* short circuit */
2919 				next++;
2920 			}
2921 			if (next != r + 1) {
2922 				/*
2923 				 * Some entries were merged into r and next
2924 				 * points to the first valid entry that couldn't
2925 				 * be merged.
2926 				 */
2927 				MPASS(next->size > 0);	/* must be valid */
2928 				memcpy(r + 1, next, remaining * sizeof(*r));
2929 #ifdef INVARIANTS
2930 				/*
2931 				 * This so that the foo->size assertion in the
2932 				 * next iteration of the loop do the right
2933 				 * thing for entries that were pulled up and are
2934 				 * no longer valid.
2935 				 */
2936 				MPASS(n < nitems(mem_ranges));
2937 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2938 				    sizeof(struct t4_range));
2939 #endif
2940 			}
2941 		}
2942 done:
2943 		/* Done merging the ranges. */
2944 		MPASS(n > 0);
2945 		r = &mem_ranges[0];
2946 		for (i = 0; i < n; i++, r++) {
2947 			if (addr >= r->start &&
2948 			    addr + len <= r->start + r->size)
2949 				return (0);
2950 		}
2951 	}
2952 
2953 	return (EFAULT);
2954 }
2955 
2956 static int
2957 fwmtype_to_hwmtype(int mtype)
2958 {
2959 
2960 	switch (mtype) {
2961 	case FW_MEMTYPE_EDC0:
2962 		return (MEM_EDC0);
2963 	case FW_MEMTYPE_EDC1:
2964 		return (MEM_EDC1);
2965 	case FW_MEMTYPE_EXTMEM:
2966 		return (MEM_MC0);
2967 	case FW_MEMTYPE_EXTMEM1:
2968 		return (MEM_MC1);
2969 	default:
2970 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2971 	}
2972 }
2973 
2974 /*
2975  * Verify that the memory range specified by the memtype/offset/len pair is
2976  * valid and lies entirely within the memtype specified.  The global address of
2977  * the start of the range is returned in addr.
2978  */
2979 static int
2980 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
2981     uint32_t *addr)
2982 {
2983 	uint32_t em, addr_len, maddr;
2984 
2985 	/* Memory can only be accessed in naturally aligned 4 byte units */
2986 	if (off & 3 || len & 3 || len == 0)
2987 		return (EINVAL);
2988 
2989 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2990 	switch (fwmtype_to_hwmtype(mtype)) {
2991 	case MEM_EDC0:
2992 		if (!(em & F_EDRAM0_ENABLE))
2993 			return (EINVAL);
2994 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2995 		maddr = G_EDRAM0_BASE(addr_len) << 20;
2996 		break;
2997 	case MEM_EDC1:
2998 		if (!(em & F_EDRAM1_ENABLE))
2999 			return (EINVAL);
3000 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3001 		maddr = G_EDRAM1_BASE(addr_len) << 20;
3002 		break;
3003 	case MEM_MC:
3004 		if (!(em & F_EXT_MEM_ENABLE))
3005 			return (EINVAL);
3006 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3007 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
3008 		break;
3009 	case MEM_MC1:
3010 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
3011 			return (EINVAL);
3012 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3013 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
3014 		break;
3015 	default:
3016 		return (EINVAL);
3017 	}
3018 
3019 	*addr = maddr + off;	/* global address */
3020 	return (validate_mem_range(sc, *addr, len));
3021 }
3022 
3023 static int
3024 fixup_devlog_params(struct adapter *sc)
3025 {
3026 	struct devlog_params *dparams = &sc->params.devlog;
3027 	int rc;
3028 
3029 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
3030 	    dparams->size, &dparams->addr);
3031 
3032 	return (rc);
3033 }
3034 
3035 static void
3036 update_nirq(struct intrs_and_queues *iaq, int nports)
3037 {
3038 	int extra = T4_EXTRA_INTR;
3039 
3040 	iaq->nirq = extra;
3041 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
3042 	iaq->nirq += nports * (iaq->num_vis - 1) *
3043 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
3044 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
3045 }
3046 
3047 /*
3048  * Adjust requirements to fit the number of interrupts available.
3049  */
3050 static void
3051 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
3052     int navail)
3053 {
3054 	int old_nirq;
3055 	const int nports = sc->params.nports;
3056 
3057 	MPASS(nports > 0);
3058 	MPASS(navail > 0);
3059 
3060 	bzero(iaq, sizeof(*iaq));
3061 	iaq->intr_type = itype;
3062 	iaq->num_vis = t4_num_vis;
3063 	iaq->ntxq = t4_ntxq;
3064 	iaq->ntxq_vi = t4_ntxq_vi;
3065 	iaq->nrxq = t4_nrxq;
3066 	iaq->nrxq_vi = t4_nrxq_vi;
3067 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3068 	if (is_offload(sc) || is_ethoffload(sc)) {
3069 		iaq->nofldtxq = t4_nofldtxq;
3070 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
3071 	}
3072 #endif
3073 #ifdef TCP_OFFLOAD
3074 	if (is_offload(sc)) {
3075 		iaq->nofldrxq = t4_nofldrxq;
3076 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
3077 	}
3078 #endif
3079 #ifdef DEV_NETMAP
3080 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
3081 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
3082 #endif
3083 
3084 	update_nirq(iaq, nports);
3085 	if (iaq->nirq <= navail &&
3086 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3087 		/*
3088 		 * This is the normal case -- there are enough interrupts for
3089 		 * everything.
3090 		 */
3091 		goto done;
3092 	}
3093 
3094 	/*
3095 	 * If extra VIs have been configured try reducing their count and see if
3096 	 * that works.
3097 	 */
3098 	while (iaq->num_vis > 1) {
3099 		iaq->num_vis--;
3100 		update_nirq(iaq, nports);
3101 		if (iaq->nirq <= navail &&
3102 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3103 			device_printf(sc->dev, "virtual interfaces per port "
3104 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
3105 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
3106 			    "itype %d, navail %u, nirq %d.\n",
3107 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
3108 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
3109 			    itype, navail, iaq->nirq);
3110 			goto done;
3111 		}
3112 	}
3113 
3114 	/*
3115 	 * Extra VIs will not be created.  Log a message if they were requested.
3116 	 */
3117 	MPASS(iaq->num_vis == 1);
3118 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
3119 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
3120 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
3121 	if (iaq->num_vis != t4_num_vis) {
3122 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
3123 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
3124 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
3125 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
3126 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
3127 	}
3128 
3129 	/*
3130 	 * Keep reducing the number of NIC rx queues to the next lower power of
3131 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
3132 	 * if that works.
3133 	 */
3134 	do {
3135 		if (iaq->nrxq > 1) {
3136 			do {
3137 				iaq->nrxq--;
3138 			} while (!powerof2(iaq->nrxq));
3139 		}
3140 		if (iaq->nofldrxq > 1)
3141 			iaq->nofldrxq >>= 1;
3142 
3143 		old_nirq = iaq->nirq;
3144 		update_nirq(iaq, nports);
3145 		if (iaq->nirq <= navail &&
3146 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3147 			device_printf(sc->dev, "running with reduced number of "
3148 			    "rx queues because of shortage of interrupts.  "
3149 			    "nrxq=%u, nofldrxq=%u.  "
3150 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
3151 			    iaq->nofldrxq, itype, navail, iaq->nirq);
3152 			goto done;
3153 		}
3154 	} while (old_nirq != iaq->nirq);
3155 
3156 	/* One interrupt for everything.  Ugh. */
3157 	device_printf(sc->dev, "running with minimal number of queues.  "
3158 	    "itype %d, navail %u.\n", itype, navail);
3159 	iaq->nirq = 1;
3160 	MPASS(iaq->nrxq == 1);
3161 	iaq->ntxq = 1;
3162 	if (iaq->nofldrxq > 1)
3163 		iaq->nofldtxq = 1;
3164 done:
3165 	MPASS(iaq->num_vis > 0);
3166 	if (iaq->num_vis > 1) {
3167 		MPASS(iaq->nrxq_vi > 0);
3168 		MPASS(iaq->ntxq_vi > 0);
3169 	}
3170 	MPASS(iaq->nirq > 0);
3171 	MPASS(iaq->nrxq > 0);
3172 	MPASS(iaq->ntxq > 0);
3173 	if (itype == INTR_MSI) {
3174 		MPASS(powerof2(iaq->nirq));
3175 	}
3176 }
3177 
3178 static int
3179 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
3180 {
3181 	int rc, itype, navail, nalloc;
3182 
3183 	for (itype = INTR_MSIX; itype; itype >>= 1) {
3184 
3185 		if ((itype & t4_intr_types) == 0)
3186 			continue;	/* not allowed */
3187 
3188 		if (itype == INTR_MSIX)
3189 			navail = pci_msix_count(sc->dev);
3190 		else if (itype == INTR_MSI)
3191 			navail = pci_msi_count(sc->dev);
3192 		else
3193 			navail = 1;
3194 restart:
3195 		if (navail == 0)
3196 			continue;
3197 
3198 		calculate_iaq(sc, iaq, itype, navail);
3199 		nalloc = iaq->nirq;
3200 		rc = 0;
3201 		if (itype == INTR_MSIX)
3202 			rc = pci_alloc_msix(sc->dev, &nalloc);
3203 		else if (itype == INTR_MSI)
3204 			rc = pci_alloc_msi(sc->dev, &nalloc);
3205 
3206 		if (rc == 0 && nalloc > 0) {
3207 			if (nalloc == iaq->nirq)
3208 				return (0);
3209 
3210 			/*
3211 			 * Didn't get the number requested.  Use whatever number
3212 			 * the kernel is willing to allocate.
3213 			 */
3214 			device_printf(sc->dev, "fewer vectors than requested, "
3215 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
3216 			    itype, iaq->nirq, nalloc);
3217 			pci_release_msi(sc->dev);
3218 			navail = nalloc;
3219 			goto restart;
3220 		}
3221 
3222 		device_printf(sc->dev,
3223 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
3224 		    itype, rc, iaq->nirq, nalloc);
3225 	}
3226 
3227 	device_printf(sc->dev,
3228 	    "failed to find a usable interrupt type.  "
3229 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
3230 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
3231 
3232 	return (ENXIO);
3233 }
3234 
3235 #define FW_VERSION(chip) ( \
3236     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
3237     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
3238     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
3239     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
3240 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
3241 
3242 struct fw_info {
3243 	uint8_t chip;
3244 	char *kld_name;
3245 	char *fw_mod_name;
3246 	struct fw_hdr fw_hdr;	/* XXX: waste of space, need a sparse struct */
3247 } fw_info[] = {
3248 	{
3249 		.chip = CHELSIO_T4,
3250 		.kld_name = "t4fw_cfg",
3251 		.fw_mod_name = "t4fw",
3252 		.fw_hdr = {
3253 			.chip = FW_HDR_CHIP_T4,
3254 			.fw_ver = htobe32(FW_VERSION(T4)),
3255 			.intfver_nic = FW_INTFVER(T4, NIC),
3256 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3257 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3258 			.intfver_ri = FW_INTFVER(T4, RI),
3259 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3260 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3261 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3262 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3263 		},
3264 	}, {
3265 		.chip = CHELSIO_T5,
3266 		.kld_name = "t5fw_cfg",
3267 		.fw_mod_name = "t5fw",
3268 		.fw_hdr = {
3269 			.chip = FW_HDR_CHIP_T5,
3270 			.fw_ver = htobe32(FW_VERSION(T5)),
3271 			.intfver_nic = FW_INTFVER(T5, NIC),
3272 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3273 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3274 			.intfver_ri = FW_INTFVER(T5, RI),
3275 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3276 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3277 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3278 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3279 		},
3280 	}, {
3281 		.chip = CHELSIO_T6,
3282 		.kld_name = "t6fw_cfg",
3283 		.fw_mod_name = "t6fw",
3284 		.fw_hdr = {
3285 			.chip = FW_HDR_CHIP_T6,
3286 			.fw_ver = htobe32(FW_VERSION(T6)),
3287 			.intfver_nic = FW_INTFVER(T6, NIC),
3288 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3289 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3290 			.intfver_ri = FW_INTFVER(T6, RI),
3291 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3292 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3293 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3294 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3295 		},
3296 	}
3297 };
3298 
3299 static struct fw_info *
3300 find_fw_info(int chip)
3301 {
3302 	int i;
3303 
3304 	for (i = 0; i < nitems(fw_info); i++) {
3305 		if (fw_info[i].chip == chip)
3306 			return (&fw_info[i]);
3307 	}
3308 	return (NULL);
3309 }
3310 
3311 /*
3312  * Is the given firmware API compatible with the one the driver was compiled
3313  * with?
3314  */
3315 static int
3316 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3317 {
3318 
3319 	/* short circuit if it's the exact same firmware version */
3320 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3321 		return (1);
3322 
3323 	/*
3324 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3325 	 * features that are supported in the driver.
3326 	 */
3327 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3328 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3329 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3330 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3331 		return (1);
3332 #undef SAME_INTF
3333 
3334 	return (0);
3335 }
3336 
3337 /*
3338  * The firmware in the KLD is usable, but should it be installed?  This routine
3339  * explains itself in detail if it indicates the KLD firmware should be
3340  * installed.
3341  */
3342 static int
3343 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
3344 {
3345 	const char *reason;
3346 
3347 	if (!card_fw_usable) {
3348 		reason = "incompatible or unusable";
3349 		goto install;
3350 	}
3351 
3352 	if (k > c) {
3353 		reason = "older than the version bundled with this driver";
3354 		goto install;
3355 	}
3356 
3357 	if (t4_fw_install == 2 && k != c) {
3358 		reason = "different than the version bundled with this driver";
3359 		goto install;
3360 	}
3361 
3362 	return (0);
3363 
3364 install:
3365 	if (t4_fw_install == 0) {
3366 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3367 		    "but the driver is prohibited from installing a different "
3368 		    "firmware on the card.\n",
3369 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3370 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3371 
3372 		return (0);
3373 	}
3374 
3375 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3376 	    "installing firmware %u.%u.%u.%u on card.\n",
3377 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3378 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3379 	    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3380 	    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3381 
3382 	return (1);
3383 }
3384 
3385 /*
3386  * Establish contact with the firmware and determine if we are the master driver
3387  * or not, and whether we are responsible for chip initialization.
3388  */
3389 static int
3390 prep_firmware(struct adapter *sc)
3391 {
3392 	const struct firmware *fw = NULL, *default_cfg;
3393 	int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
3394 	enum dev_state state;
3395 	struct fw_info *fw_info;
3396 	struct fw_hdr *card_fw;		/* fw on the card */
3397 	const struct fw_hdr *kld_fw;	/* fw in the KLD */
3398 	const struct fw_hdr *drv_fw;	/* fw header the driver was compiled
3399 					   against */
3400 
3401 	/* This is the firmware whose headers the driver was compiled against */
3402 	fw_info = find_fw_info(chip_id(sc));
3403 	if (fw_info == NULL) {
3404 		device_printf(sc->dev,
3405 		    "unable to look up firmware information for chip %d.\n",
3406 		    chip_id(sc));
3407 		return (EINVAL);
3408 	}
3409 	drv_fw = &fw_info->fw_hdr;
3410 
3411 	/*
3412 	 * The firmware KLD contains many modules.  The KLD name is also the
3413 	 * name of the module that contains the default config file.
3414 	 */
3415 	default_cfg = firmware_get(fw_info->kld_name);
3416 
3417 	/* This is the firmware in the KLD */
3418 	fw = firmware_get(fw_info->fw_mod_name);
3419 	if (fw != NULL) {
3420 		kld_fw = (const void *)fw->data;
3421 		kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3422 	} else {
3423 		kld_fw = NULL;
3424 		kld_fw_usable = 0;
3425 	}
3426 
3427 	/* Read the header of the firmware on the card */
3428 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3429 	rc = -t4_read_flash(sc, FLASH_FW_START,
3430 	    sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3431 	if (rc == 0) {
3432 		card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3433 		if (card_fw->fw_ver == be32toh(0xffffffff)) {
3434 			uint32_t d = be32toh(kld_fw->fw_ver);
3435 
3436 			if (!kld_fw_usable) {
3437 				device_printf(sc->dev,
3438 				    "no firmware on the card and no usable "
3439 				    "firmware bundled with the driver.\n");
3440 				rc = EIO;
3441 				goto done;
3442 			} else if (t4_fw_install == 0) {
3443 				device_printf(sc->dev,
3444 				    "no firmware on the card and the driver "
3445 				    "is prohibited from installing new "
3446 				    "firmware.\n");
3447 				rc = EIO;
3448 				goto done;
3449 			}
3450 
3451 			device_printf(sc->dev, "no firmware on the card, "
3452 			    "installing firmware %d.%d.%d.%d\n",
3453 			    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3454 			    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3455 			rc = t4_fw_forceinstall(sc, fw->data, fw->datasize);
3456 			if (rc < 0) {
3457 				rc = -rc;
3458 				device_printf(sc->dev,
3459 				    "firmware install failed: %d.\n", rc);
3460 				goto done;
3461 			}
3462 			memcpy(card_fw, kld_fw, sizeof(*card_fw));
3463 			card_fw_usable = 1;
3464 			need_fw_reset = 0;
3465 		}
3466 	} else {
3467 		device_printf(sc->dev,
3468 		    "Unable to read card's firmware header: %d\n", rc);
3469 		card_fw_usable = 0;
3470 	}
3471 
3472 	/* Contact firmware. */
3473 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3474 	if (rc < 0 || state == DEV_STATE_ERR) {
3475 		rc = -rc;
3476 		device_printf(sc->dev,
3477 		    "failed to connect to the firmware: %d, %d.\n", rc, state);
3478 		goto done;
3479 	}
3480 	pf = rc;
3481 	if (pf == sc->mbox)
3482 		sc->flags |= MASTER_PF;
3483 	else if (state == DEV_STATE_UNINIT) {
3484 		/*
3485 		 * We didn't get to be the master so we definitely won't be
3486 		 * configuring the chip.  It's a bug if someone else hasn't
3487 		 * configured it already.
3488 		 */
3489 		device_printf(sc->dev, "couldn't be master(%d), "
3490 		    "device not already initialized either(%d).\n", rc, state);
3491 		rc = EPROTO;
3492 		goto done;
3493 	}
3494 
3495 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3496 	    (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3497 		/*
3498 		 * Common case: the firmware on the card is an exact match and
3499 		 * the KLD is an exact match too, or the KLD is
3500 		 * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3501 		 * here -- use cxgbetool loadfw if you want to reinstall the
3502 		 * same firmware as the one on the card.
3503 		 */
3504 	} else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3505 	    should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3506 	    be32toh(card_fw->fw_ver))) {
3507 
3508 		rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3509 		if (rc != 0) {
3510 			device_printf(sc->dev,
3511 			    "failed to install firmware: %d\n", rc);
3512 			goto done;
3513 		}
3514 
3515 		/* Installed successfully, update the cached header too. */
3516 		memcpy(card_fw, kld_fw, sizeof(*card_fw));
3517 		card_fw_usable = 1;
3518 		need_fw_reset = 0;	/* already reset as part of load_fw */
3519 	}
3520 
3521 	if (!card_fw_usable) {
3522 		uint32_t d, c, k;
3523 
3524 		d = ntohl(drv_fw->fw_ver);
3525 		c = ntohl(card_fw->fw_ver);
3526 		k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3527 
3528 		device_printf(sc->dev, "Cannot find a usable firmware: "
3529 		    "fw_install %d, chip state %d, "
3530 		    "driver compiled with %d.%d.%d.%d, "
3531 		    "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3532 		    t4_fw_install, state,
3533 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3534 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3535 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3536 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3537 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3538 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3539 		rc = EINVAL;
3540 		goto done;
3541 	}
3542 
3543 	/* Reset device */
3544 	if (need_fw_reset &&
3545 	    (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3546 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3547 		if (rc != ETIMEDOUT && rc != EIO)
3548 			t4_fw_bye(sc, sc->mbox);
3549 		goto done;
3550 	}
3551 	sc->flags |= FW_OK;
3552 
3553 	rc = get_params__pre_init(sc);
3554 	if (rc != 0)
3555 		goto done; /* error message displayed already */
3556 
3557 	/* Partition adapter resources as specified in the config file. */
3558 	if (state == DEV_STATE_UNINIT) {
3559 
3560 		KASSERT(sc->flags & MASTER_PF,
3561 		    ("%s: trying to change chip settings when not master.",
3562 		    __func__));
3563 
3564 		rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3565 		if (rc != 0)
3566 			goto done;	/* error message displayed already */
3567 
3568 		t4_tweak_chip_settings(sc);
3569 
3570 		/* get basic stuff going */
3571 		rc = -t4_fw_initialize(sc, sc->mbox);
3572 		if (rc != 0) {
3573 			device_printf(sc->dev, "fw init failed: %d.\n", rc);
3574 			goto done;
3575 		}
3576 	} else {
3577 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3578 		sc->cfcsum = 0;
3579 	}
3580 
3581 done:
3582 	free(card_fw, M_CXGBE);
3583 	if (fw != NULL)
3584 		firmware_put(fw, FIRMWARE_UNLOAD);
3585 	if (default_cfg != NULL)
3586 		firmware_put(default_cfg, FIRMWARE_UNLOAD);
3587 
3588 	return (rc);
3589 }
3590 
3591 #define FW_PARAM_DEV(param) \
3592 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3593 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3594 #define FW_PARAM_PFVF(param) \
3595 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3596 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3597 
3598 /*
3599  * Partition chip resources for use between various PFs, VFs, etc.
3600  */
3601 static int
3602 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3603     const char *name_prefix)
3604 {
3605 	const struct firmware *cfg = NULL;
3606 	int rc = 0;
3607 	struct fw_caps_config_cmd caps;
3608 	uint32_t mtype, moff, finicsum, cfcsum;
3609 
3610 	/*
3611 	 * Figure out what configuration file to use.  Pick the default config
3612 	 * file for the card if the user hasn't specified one explicitly.
3613 	 */
3614 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3615 	if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3616 		/* Card specific overrides go here. */
3617 		if (pci_get_device(sc->dev) == 0x440a)
3618 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3619 		if (is_fpga(sc))
3620 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3621 	} else if (strncmp(t4_cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0)
3622 		goto use_built_in_config;	/* go straight to config. */
3623 
3624 	/*
3625 	 * We need to load another module if the profile is anything except
3626 	 * "default" or "flash".
3627 	 */
3628 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3629 	    strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3630 		char s[32];
3631 
3632 		snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3633 		cfg = firmware_get(s);
3634 		if (cfg == NULL) {
3635 			if (default_cfg != NULL) {
3636 				device_printf(sc->dev,
3637 				    "unable to load module \"%s\" for "
3638 				    "configuration profile \"%s\", will use "
3639 				    "the default config file instead.\n",
3640 				    s, sc->cfg_file);
3641 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3642 				    "%s", DEFAULT_CF);
3643 			} else {
3644 				device_printf(sc->dev,
3645 				    "unable to load module \"%s\" for "
3646 				    "configuration profile \"%s\", will use "
3647 				    "the config file on the card's flash "
3648 				    "instead.\n", s, sc->cfg_file);
3649 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3650 				    "%s", FLASH_CF);
3651 			}
3652 		}
3653 	}
3654 
3655 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3656 	    default_cfg == NULL) {
3657 		device_printf(sc->dev,
3658 		    "default config file not available, will use the config "
3659 		    "file on the card's flash instead.\n");
3660 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3661 	}
3662 
3663 	if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3664 		u_int cflen;
3665 		const uint32_t *cfdata;
3666 		uint32_t param, val, addr;
3667 
3668 		KASSERT(cfg != NULL || default_cfg != NULL,
3669 		    ("%s: no config to upload", __func__));
3670 
3671 		/*
3672 		 * Ask the firmware where it wants us to upload the config file.
3673 		 */
3674 		param = FW_PARAM_DEV(CF);
3675 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3676 		if (rc != 0) {
3677 			/* No support for config file?  Shouldn't happen. */
3678 			device_printf(sc->dev,
3679 			    "failed to query config file location: %d.\n", rc);
3680 			goto done;
3681 		}
3682 		mtype = G_FW_PARAMS_PARAM_Y(val);
3683 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3684 
3685 		/*
3686 		 * XXX: sheer laziness.  We deliberately added 4 bytes of
3687 		 * useless stuffing/comments at the end of the config file so
3688 		 * it's ok to simply throw away the last remaining bytes when
3689 		 * the config file is not an exact multiple of 4.  This also
3690 		 * helps with the validate_mt_off_len check.
3691 		 */
3692 		if (cfg != NULL) {
3693 			cflen = cfg->datasize & ~3;
3694 			cfdata = cfg->data;
3695 		} else {
3696 			cflen = default_cfg->datasize & ~3;
3697 			cfdata = default_cfg->data;
3698 		}
3699 
3700 		if (cflen > FLASH_CFG_MAX_SIZE) {
3701 			device_printf(sc->dev,
3702 			    "config file too long (%d, max allowed is %d).  "
3703 			    "Will try to use the config on the card, if any.\n",
3704 			    cflen, FLASH_CFG_MAX_SIZE);
3705 			goto use_config_on_flash;
3706 		}
3707 
3708 		rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3709 		if (rc != 0) {
3710 			device_printf(sc->dev,
3711 			    "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3712 			    "Will try to use the config on the card, if any.\n",
3713 			    __func__, mtype, moff, cflen, rc);
3714 			goto use_config_on_flash;
3715 		}
3716 		write_via_memwin(sc, 2, addr, cfdata, cflen);
3717 	} else {
3718 use_config_on_flash:
3719 		mtype = FW_MEMTYPE_FLASH;
3720 		moff = t4_flash_cfg_addr(sc);
3721 	}
3722 
3723 	bzero(&caps, sizeof(caps));
3724 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3725 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3726 	caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3727 	    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3728 	    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3729 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3730 	if (rc != 0) {
3731 		device_printf(sc->dev,
3732 		    "failed to pre-process config file: %d "
3733 		    "(mtype %d, moff 0x%x).  Will reset the firmware and retry "
3734 		    "with the built-in configuration.\n", rc, mtype, moff);
3735 
3736 	    	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
3737 		if (rc != 0) {
3738 			device_printf(sc->dev,
3739 			    "firmware reset failed: %d.\n", rc);
3740 			if (rc != ETIMEDOUT && rc != EIO) {
3741 				t4_fw_bye(sc, sc->mbox);
3742 				sc->flags &= ~FW_OK;
3743 			}
3744 			goto done;
3745 		}
3746 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", "built-in");
3747 use_built_in_config:
3748 		bzero(&caps, sizeof(caps));
3749 		caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3750 		    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3751 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3752 		rc = t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3753 		if (rc != 0) {
3754 			device_printf(sc->dev,
3755 			    "built-in configuration failed: %d.\n", rc);
3756 			goto done;
3757 		}
3758 	}
3759 
3760 	finicsum = be32toh(caps.finicsum);
3761 	cfcsum = be32toh(caps.cfcsum);
3762 	if (finicsum != cfcsum) {
3763 		device_printf(sc->dev,
3764 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3765 		    finicsum, cfcsum);
3766 	}
3767 	sc->cfcsum = cfcsum;
3768 
3769 #define LIMIT_CAPS(x) do { \
3770 	caps.x &= htobe16(t4_##x##_allowed); \
3771 } while (0)
3772 
3773 	/*
3774 	 * Let the firmware know what features will (not) be used so it can tune
3775 	 * things accordingly.
3776 	 */
3777 	LIMIT_CAPS(nbmcaps);
3778 	LIMIT_CAPS(linkcaps);
3779 	LIMIT_CAPS(switchcaps);
3780 	LIMIT_CAPS(niccaps);
3781 	LIMIT_CAPS(toecaps);
3782 	LIMIT_CAPS(rdmacaps);
3783 	LIMIT_CAPS(cryptocaps);
3784 	LIMIT_CAPS(iscsicaps);
3785 	LIMIT_CAPS(fcoecaps);
3786 #undef LIMIT_CAPS
3787 
3788 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
3789 		/*
3790 		 * TOE and hashfilters are mutually exclusive.  It is a config
3791 		 * file or firmware bug if both are reported as available.  Try
3792 		 * to cope with the situation in non-debug builds by disabling
3793 		 * TOE.
3794 		 */
3795 		MPASS(caps.toecaps == 0);
3796 
3797 		caps.toecaps = 0;
3798 		caps.rdmacaps = 0;
3799 		caps.iscsicaps = 0;
3800 	}
3801 
3802 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3803 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3804 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3805 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3806 	if (rc != 0) {
3807 		device_printf(sc->dev,
3808 		    "failed to process config file: %d.\n", rc);
3809 	}
3810 done:
3811 	if (cfg != NULL)
3812 		firmware_put(cfg, FIRMWARE_UNLOAD);
3813 	return (rc);
3814 }
3815 
3816 /*
3817  * Retrieve parameters that are needed (or nice to have) very early.
3818  */
3819 static int
3820 get_params__pre_init(struct adapter *sc)
3821 {
3822 	int rc;
3823 	uint32_t param[2], val[2];
3824 
3825 	t4_get_version_info(sc);
3826 
3827 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3828 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3829 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3830 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3831 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3832 
3833 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3834 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3835 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3836 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3837 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3838 
3839 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3840 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3841 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3842 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3843 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3844 
3845 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3846 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3847 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3848 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3849 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3850 
3851 	param[0] = FW_PARAM_DEV(PORTVEC);
3852 	param[1] = FW_PARAM_DEV(CCLK);
3853 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3854 	if (rc != 0) {
3855 		device_printf(sc->dev,
3856 		    "failed to query parameters (pre_init): %d.\n", rc);
3857 		return (rc);
3858 	}
3859 
3860 	sc->params.portvec = val[0];
3861 	sc->params.nports = bitcount32(val[0]);
3862 	sc->params.vpd.cclk = val[1];
3863 
3864 	/* Read device log parameters. */
3865 	rc = -t4_init_devlog_params(sc, 1);
3866 	if (rc == 0)
3867 		fixup_devlog_params(sc);
3868 	else {
3869 		device_printf(sc->dev,
3870 		    "failed to get devlog parameters: %d.\n", rc);
3871 		rc = 0;	/* devlog isn't critical for device operation */
3872 	}
3873 
3874 	return (rc);
3875 }
3876 
3877 /*
3878  * Retrieve various parameters that are of interest to the driver.  The device
3879  * has been initialized by the firmware at this point.
3880  */
3881 static int
3882 get_params__post_init(struct adapter *sc)
3883 {
3884 	int rc;
3885 	uint32_t param[7], val[7];
3886 	struct fw_caps_config_cmd caps;
3887 
3888 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
3889 	param[1] = FW_PARAM_PFVF(EQ_START);
3890 	param[2] = FW_PARAM_PFVF(FILTER_START);
3891 	param[3] = FW_PARAM_PFVF(FILTER_END);
3892 	param[4] = FW_PARAM_PFVF(L2T_START);
3893 	param[5] = FW_PARAM_PFVF(L2T_END);
3894 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3895 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
3896 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
3897 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
3898 	if (rc != 0) {
3899 		device_printf(sc->dev,
3900 		    "failed to query parameters (post_init): %d.\n", rc);
3901 		return (rc);
3902 	}
3903 
3904 	sc->sge.iq_start = val[0];
3905 	sc->sge.eq_start = val[1];
3906 	if ((int)val[3] > (int)val[2]) {
3907 		sc->tids.ftid_base = val[2];
3908 		sc->tids.ftid_end = val[3];
3909 		sc->tids.nftids = val[3] - val[2] + 1;
3910 	}
3911 	sc->vres.l2t.start = val[4];
3912 	sc->vres.l2t.size = val[5] - val[4] + 1;
3913 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3914 	    ("%s: L2 table size (%u) larger than expected (%u)",
3915 	    __func__, sc->vres.l2t.size, L2T_SIZE));
3916 	sc->params.core_vdd = val[6];
3917 
3918 	if (chip_id(sc) >= CHELSIO_T6) {
3919 
3920 #ifdef INVARIANTS
3921 		if (sc->params.fw_vers >=
3922 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
3923 		    V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) {
3924 			/*
3925 			 * Note that the code to enable the region should run
3926 			 * before t4_fw_initialize and not here.  This is just a
3927 			 * reminder to add said code.
3928 			 */
3929 			device_printf(sc->dev,
3930 			    "hpfilter region not enabled.\n");
3931 		}
3932 #endif
3933 
3934 		sc->tids.tid_base = t4_read_reg(sc,
3935 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
3936 
3937 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
3938 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
3939 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3940 		if (rc != 0) {
3941 			device_printf(sc->dev,
3942 			   "failed to query hpfilter parameters: %d.\n", rc);
3943 			return (rc);
3944 		}
3945 		if ((int)val[1] > (int)val[0]) {
3946 			sc->tids.hpftid_base = val[0];
3947 			sc->tids.hpftid_end = val[1];
3948 			sc->tids.nhpftids = val[1] - val[0] + 1;
3949 
3950 			/*
3951 			 * These should go off if the layout changes and the
3952 			 * driver needs to catch up.
3953 			 */
3954 			MPASS(sc->tids.hpftid_base == 0);
3955 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
3956 		}
3957 	}
3958 
3959 	/*
3960 	 * MPSBGMAP is queried separately because only recent firmwares support
3961 	 * it as a parameter and we don't want the compound query above to fail
3962 	 * on older firmwares.
3963 	 */
3964 	param[0] = FW_PARAM_DEV(MPSBGMAP);
3965 	val[0] = 0;
3966 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3967 	if (rc == 0)
3968 		sc->params.mps_bg_map = val[0];
3969 	else
3970 		sc->params.mps_bg_map = 0;
3971 
3972 	/*
3973 	 * Determine whether the firmware supports the filter2 work request.
3974 	 * This is queried separately for the same reason as MPSBGMAP above.
3975 	 */
3976 	param[0] = FW_PARAM_DEV(FILTER2_WR);
3977 	val[0] = 0;
3978 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3979 	if (rc == 0)
3980 		sc->params.filter2_wr_support = val[0] != 0;
3981 	else
3982 		sc->params.filter2_wr_support = 0;
3983 
3984 	/* get capabilites */
3985 	bzero(&caps, sizeof(caps));
3986 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3987 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3988 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3989 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3990 	if (rc != 0) {
3991 		device_printf(sc->dev,
3992 		    "failed to get card capabilities: %d.\n", rc);
3993 		return (rc);
3994 	}
3995 
3996 #define READ_CAPS(x) do { \
3997 	sc->x = htobe16(caps.x); \
3998 } while (0)
3999 	READ_CAPS(nbmcaps);
4000 	READ_CAPS(linkcaps);
4001 	READ_CAPS(switchcaps);
4002 	READ_CAPS(niccaps);
4003 	READ_CAPS(toecaps);
4004 	READ_CAPS(rdmacaps);
4005 	READ_CAPS(cryptocaps);
4006 	READ_CAPS(iscsicaps);
4007 	READ_CAPS(fcoecaps);
4008 
4009 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
4010 		MPASS(chip_id(sc) > CHELSIO_T4);
4011 		MPASS(sc->toecaps == 0);
4012 		sc->toecaps = 0;
4013 
4014 		param[0] = FW_PARAM_DEV(NTID);
4015 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4016 		if (rc != 0) {
4017 			device_printf(sc->dev,
4018 			    "failed to query HASHFILTER parameters: %d.\n", rc);
4019 			return (rc);
4020 		}
4021 		sc->tids.ntids = val[0];
4022 		if (sc->params.fw_vers <
4023 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4024 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4025 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4026 			sc->tids.ntids -= sc->tids.nhpftids;
4027 		}
4028 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4029 		sc->params.hash_filter = 1;
4030 	}
4031 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
4032 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
4033 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
4034 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4035 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
4036 		if (rc != 0) {
4037 			device_printf(sc->dev,
4038 			    "failed to query NIC parameters: %d.\n", rc);
4039 			return (rc);
4040 		}
4041 		if ((int)val[1] > (int)val[0]) {
4042 			sc->tids.etid_base = val[0];
4043 			sc->tids.etid_end = val[1];
4044 			sc->tids.netids = val[1] - val[0] + 1;
4045 			sc->params.eo_wr_cred = val[2];
4046 			sc->params.ethoffload = 1;
4047 		}
4048 	}
4049 	if (sc->toecaps) {
4050 		/* query offload-related parameters */
4051 		param[0] = FW_PARAM_DEV(NTID);
4052 		param[1] = FW_PARAM_PFVF(SERVER_START);
4053 		param[2] = FW_PARAM_PFVF(SERVER_END);
4054 		param[3] = FW_PARAM_PFVF(TDDP_START);
4055 		param[4] = FW_PARAM_PFVF(TDDP_END);
4056 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4057 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4058 		if (rc != 0) {
4059 			device_printf(sc->dev,
4060 			    "failed to query TOE parameters: %d.\n", rc);
4061 			return (rc);
4062 		}
4063 		sc->tids.ntids = val[0];
4064 		if (sc->params.fw_vers <
4065 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4066 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4067 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4068 			sc->tids.ntids -= sc->tids.nhpftids;
4069 		}
4070 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4071 		if ((int)val[2] > (int)val[1]) {
4072 			sc->tids.stid_base = val[1];
4073 			sc->tids.nstids = val[2] - val[1] + 1;
4074 		}
4075 		sc->vres.ddp.start = val[3];
4076 		sc->vres.ddp.size = val[4] - val[3] + 1;
4077 		sc->params.ofldq_wr_cred = val[5];
4078 		sc->params.offload = 1;
4079 	} else {
4080 		/*
4081 		 * The firmware attempts memfree TOE configuration for -SO cards
4082 		 * and will report toecaps=0 if it runs out of resources (this
4083 		 * depends on the config file).  It may not report 0 for other
4084 		 * capabilities dependent on the TOE in this case.  Set them to
4085 		 * 0 here so that the driver doesn't bother tracking resources
4086 		 * that will never be used.
4087 		 */
4088 		sc->iscsicaps = 0;
4089 		sc->rdmacaps = 0;
4090 	}
4091 	if (sc->rdmacaps) {
4092 		param[0] = FW_PARAM_PFVF(STAG_START);
4093 		param[1] = FW_PARAM_PFVF(STAG_END);
4094 		param[2] = FW_PARAM_PFVF(RQ_START);
4095 		param[3] = FW_PARAM_PFVF(RQ_END);
4096 		param[4] = FW_PARAM_PFVF(PBL_START);
4097 		param[5] = FW_PARAM_PFVF(PBL_END);
4098 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4099 		if (rc != 0) {
4100 			device_printf(sc->dev,
4101 			    "failed to query RDMA parameters(1): %d.\n", rc);
4102 			return (rc);
4103 		}
4104 		sc->vres.stag.start = val[0];
4105 		sc->vres.stag.size = val[1] - val[0] + 1;
4106 		sc->vres.rq.start = val[2];
4107 		sc->vres.rq.size = val[3] - val[2] + 1;
4108 		sc->vres.pbl.start = val[4];
4109 		sc->vres.pbl.size = val[5] - val[4] + 1;
4110 
4111 		param[0] = FW_PARAM_PFVF(SQRQ_START);
4112 		param[1] = FW_PARAM_PFVF(SQRQ_END);
4113 		param[2] = FW_PARAM_PFVF(CQ_START);
4114 		param[3] = FW_PARAM_PFVF(CQ_END);
4115 		param[4] = FW_PARAM_PFVF(OCQ_START);
4116 		param[5] = FW_PARAM_PFVF(OCQ_END);
4117 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4118 		if (rc != 0) {
4119 			device_printf(sc->dev,
4120 			    "failed to query RDMA parameters(2): %d.\n", rc);
4121 			return (rc);
4122 		}
4123 		sc->vres.qp.start = val[0];
4124 		sc->vres.qp.size = val[1] - val[0] + 1;
4125 		sc->vres.cq.start = val[2];
4126 		sc->vres.cq.size = val[3] - val[2] + 1;
4127 		sc->vres.ocq.start = val[4];
4128 		sc->vres.ocq.size = val[5] - val[4] + 1;
4129 
4130 		param[0] = FW_PARAM_PFVF(SRQ_START);
4131 		param[1] = FW_PARAM_PFVF(SRQ_END);
4132 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
4133 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4134 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
4135 		if (rc != 0) {
4136 			device_printf(sc->dev,
4137 			    "failed to query RDMA parameters(3): %d.\n", rc);
4138 			return (rc);
4139 		}
4140 		sc->vres.srq.start = val[0];
4141 		sc->vres.srq.size = val[1] - val[0] + 1;
4142 		sc->params.max_ordird_qp = val[2];
4143 		sc->params.max_ird_adapter = val[3];
4144 	}
4145 	if (sc->iscsicaps) {
4146 		param[0] = FW_PARAM_PFVF(ISCSI_START);
4147 		param[1] = FW_PARAM_PFVF(ISCSI_END);
4148 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4149 		if (rc != 0) {
4150 			device_printf(sc->dev,
4151 			    "failed to query iSCSI parameters: %d.\n", rc);
4152 			return (rc);
4153 		}
4154 		sc->vres.iscsi.start = val[0];
4155 		sc->vres.iscsi.size = val[1] - val[0] + 1;
4156 	}
4157 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
4158 		param[0] = FW_PARAM_PFVF(TLS_START);
4159 		param[1] = FW_PARAM_PFVF(TLS_END);
4160 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4161 		if (rc != 0) {
4162 			device_printf(sc->dev,
4163 			    "failed to query TLS parameters: %d.\n", rc);
4164 			return (rc);
4165 		}
4166 		sc->vres.key.start = val[0];
4167 		sc->vres.key.size = val[1] - val[0] + 1;
4168 	}
4169 
4170 	t4_init_sge_params(sc);
4171 
4172 	/*
4173 	 * We've got the params we wanted to query via the firmware.  Now grab
4174 	 * some others directly from the chip.
4175 	 */
4176 	rc = t4_read_chip_settings(sc);
4177 
4178 	return (rc);
4179 }
4180 
4181 static int
4182 set_params__post_init(struct adapter *sc)
4183 {
4184 	uint32_t param, val;
4185 #ifdef TCP_OFFLOAD
4186 	int i, v, shift;
4187 #endif
4188 
4189 	/* ask for encapsulated CPLs */
4190 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4191 	val = 1;
4192 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4193 
4194 	/* Enable 32b port caps if the firmware supports it. */
4195 	param = FW_PARAM_PFVF(PORT_CAPS32);
4196 	val = 1;
4197 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
4198 		sc->params.port_caps32 = 1;
4199 
4200 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
4201 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
4202 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
4203 	    V_MASKFILTER(val - 1));
4204 
4205 #ifdef TCP_OFFLOAD
4206 	/*
4207 	 * Override the TOE timers with user provided tunables.  This is not the
4208 	 * recommended way to change the timers (the firmware config file is) so
4209 	 * these tunables are not documented.
4210 	 *
4211 	 * All the timer tunables are in microseconds.
4212 	 */
4213 	if (t4_toe_keepalive_idle != 0) {
4214 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
4215 		v &= M_KEEPALIVEIDLE;
4216 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
4217 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
4218 	}
4219 	if (t4_toe_keepalive_interval != 0) {
4220 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
4221 		v &= M_KEEPALIVEINTVL;
4222 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
4223 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
4224 	}
4225 	if (t4_toe_keepalive_count != 0) {
4226 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
4227 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4228 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
4229 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
4230 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
4231 	}
4232 	if (t4_toe_rexmt_min != 0) {
4233 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
4234 		v &= M_RXTMIN;
4235 		t4_set_reg_field(sc, A_TP_RXT_MIN,
4236 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
4237 	}
4238 	if (t4_toe_rexmt_max != 0) {
4239 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
4240 		v &= M_RXTMAX;
4241 		t4_set_reg_field(sc, A_TP_RXT_MAX,
4242 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
4243 	}
4244 	if (t4_toe_rexmt_count != 0) {
4245 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
4246 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4247 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
4248 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
4249 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
4250 	}
4251 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
4252 		if (t4_toe_rexmt_backoff[i] != -1) {
4253 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
4254 			shift = (i & 3) << 3;
4255 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
4256 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
4257 		}
4258 	}
4259 #endif
4260 	return (0);
4261 }
4262 
4263 #undef FW_PARAM_PFVF
4264 #undef FW_PARAM_DEV
4265 
4266 static void
4267 t4_set_desc(struct adapter *sc)
4268 {
4269 	char buf[128];
4270 	struct adapter_params *p = &sc->params;
4271 
4272 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
4273 
4274 	device_set_desc_copy(sc->dev, buf);
4275 }
4276 
4277 static inline void
4278 ifmedia_add4(struct ifmedia *ifm, int m)
4279 {
4280 
4281 	ifmedia_add(ifm, m, 0, NULL);
4282 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
4283 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
4284 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
4285 }
4286 
4287 /*
4288  * This is the selected media, which is not quite the same as the active media.
4289  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
4290  * and active are not the same, and "media: Ethernet selected" otherwise.
4291  */
4292 static void
4293 set_current_media(struct port_info *pi)
4294 {
4295 	struct link_config *lc;
4296 	struct ifmedia *ifm;
4297 	int mword;
4298 	u_int speed;
4299 
4300 	PORT_LOCK_ASSERT_OWNED(pi);
4301 
4302 	/* Leave current media alone if it's already set to IFM_NONE. */
4303 	ifm = &pi->media;
4304 	if (ifm->ifm_cur != NULL &&
4305 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
4306 		return;
4307 
4308 	lc = &pi->link_cfg;
4309 	if (lc->requested_aneg != AUTONEG_DISABLE &&
4310 	    lc->supported & FW_PORT_CAP32_ANEG) {
4311 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
4312 		return;
4313 	}
4314 	mword = IFM_ETHER | IFM_FDX;
4315 	if (lc->requested_fc & PAUSE_TX)
4316 		mword |= IFM_ETH_TXPAUSE;
4317 	if (lc->requested_fc & PAUSE_RX)
4318 		mword |= IFM_ETH_RXPAUSE;
4319 	if (lc->requested_speed == 0)
4320 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
4321 	else
4322 		speed = lc->requested_speed;
4323 	mword |= port_mword(pi, speed_to_fwcap(speed));
4324 	ifmedia_set(ifm, mword);
4325 }
4326 
4327 /*
4328  * Returns true if the ifmedia list for the port cannot change.
4329  */
4330 static bool
4331 fixed_ifmedia(struct port_info *pi)
4332 {
4333 
4334 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
4335 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
4336 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
4337 	    pi->port_type == FW_PORT_TYPE_KX4 ||
4338 	    pi->port_type == FW_PORT_TYPE_KX ||
4339 	    pi->port_type == FW_PORT_TYPE_KR ||
4340 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
4341 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
4342 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
4343 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
4344 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
4345 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
4346 }
4347 
4348 static void
4349 build_medialist(struct port_info *pi)
4350 {
4351 	uint32_t ss, speed;
4352 	int unknown, mword, bit;
4353 	struct link_config *lc;
4354 	struct ifmedia *ifm;
4355 
4356 	PORT_LOCK_ASSERT_OWNED(pi);
4357 
4358 	if (pi->flags & FIXED_IFMEDIA)
4359 		return;
4360 
4361 	/*
4362 	 * Rebuild the ifmedia list.
4363 	 */
4364 	ifm = &pi->media;
4365 	ifmedia_removeall(ifm);
4366 	lc = &pi->link_cfg;
4367 	ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */
4368 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
4369 		MPASS(ss != 0);
4370 no_media:
4371 		MPASS(LIST_EMPTY(&ifm->ifm_list));
4372 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
4373 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
4374 		return;
4375 	}
4376 
4377 	unknown = 0;
4378 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
4379 		speed = 1 << bit;
4380 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
4381 		if (ss & speed) {
4382 			mword = port_mword(pi, speed);
4383 			if (mword == IFM_NONE) {
4384 				goto no_media;
4385 			} else if (mword == IFM_UNKNOWN)
4386 				unknown++;
4387 			else
4388 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
4389 		}
4390 	}
4391 	if (unknown > 0) /* Add one unknown for all unknown media types. */
4392 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
4393 	if (lc->supported & FW_PORT_CAP32_ANEG)
4394 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
4395 
4396 	set_current_media(pi);
4397 }
4398 
4399 /*
4400  * Initialize the requested fields in the link config based on driver tunables.
4401  */
4402 static void
4403 init_link_config(struct port_info *pi)
4404 {
4405 	struct link_config *lc = &pi->link_cfg;
4406 
4407 	PORT_LOCK_ASSERT_OWNED(pi);
4408 
4409 	lc->requested_speed = 0;
4410 
4411 	if (t4_autoneg == 0)
4412 		lc->requested_aneg = AUTONEG_DISABLE;
4413 	else if (t4_autoneg == 1)
4414 		lc->requested_aneg = AUTONEG_ENABLE;
4415 	else
4416 		lc->requested_aneg = AUTONEG_AUTO;
4417 
4418 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
4419 	    PAUSE_AUTONEG);
4420 
4421 	if (t4_fec == -1 || t4_fec & FEC_AUTO)
4422 		lc->requested_fec = FEC_AUTO;
4423 	else {
4424 		lc->requested_fec = FEC_NONE;
4425 		if (t4_fec & FEC_RS)
4426 			lc->requested_fec |= FEC_RS;
4427 		if (t4_fec & FEC_BASER_RS)
4428 			lc->requested_fec |= FEC_BASER_RS;
4429 	}
4430 }
4431 
4432 /*
4433  * Makes sure that all requested settings comply with what's supported by the
4434  * port.  Returns the number of settings that were invalid and had to be fixed.
4435  */
4436 static int
4437 fixup_link_config(struct port_info *pi)
4438 {
4439 	int n = 0;
4440 	struct link_config *lc = &pi->link_cfg;
4441 	uint32_t fwspeed;
4442 
4443 	PORT_LOCK_ASSERT_OWNED(pi);
4444 
4445 	/* Speed (when not autonegotiating) */
4446 	if (lc->requested_speed != 0) {
4447 		fwspeed = speed_to_fwcap(lc->requested_speed);
4448 		if ((fwspeed & lc->supported) == 0) {
4449 			n++;
4450 			lc->requested_speed = 0;
4451 		}
4452 	}
4453 
4454 	/* Link autonegotiation */
4455 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
4456 	    lc->requested_aneg == AUTONEG_DISABLE ||
4457 	    lc->requested_aneg == AUTONEG_AUTO);
4458 	if (lc->requested_aneg == AUTONEG_ENABLE &&
4459 	    !(lc->supported & FW_PORT_CAP32_ANEG)) {
4460 		n++;
4461 		lc->requested_aneg = AUTONEG_AUTO;
4462 	}
4463 
4464 	/* Flow control */
4465 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
4466 	if (lc->requested_fc & PAUSE_TX &&
4467 	    !(lc->supported & FW_PORT_CAP32_FC_TX)) {
4468 		n++;
4469 		lc->requested_fc &= ~PAUSE_TX;
4470 	}
4471 	if (lc->requested_fc & PAUSE_RX &&
4472 	    !(lc->supported & FW_PORT_CAP32_FC_RX)) {
4473 		n++;
4474 		lc->requested_fc &= ~PAUSE_RX;
4475 	}
4476 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
4477 	    !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) {
4478 		n++;
4479 		lc->requested_fc |= PAUSE_AUTONEG;
4480 	}
4481 
4482 	/* FEC */
4483 	if ((lc->requested_fec & FEC_RS &&
4484 	    !(lc->supported & FW_PORT_CAP32_FEC_RS)) ||
4485 	    (lc->requested_fec & FEC_BASER_RS &&
4486 	    !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) {
4487 		n++;
4488 		lc->requested_fec = FEC_AUTO;
4489 	}
4490 
4491 	return (n);
4492 }
4493 
4494 /*
4495  * Apply the requested L1 settings, which are expected to be valid, to the
4496  * hardware.
4497  */
4498 static int
4499 apply_link_config(struct port_info *pi)
4500 {
4501 	struct adapter *sc = pi->adapter;
4502 	struct link_config *lc = &pi->link_cfg;
4503 	int rc;
4504 
4505 #ifdef INVARIANTS
4506 	ASSERT_SYNCHRONIZED_OP(sc);
4507 	PORT_LOCK_ASSERT_OWNED(pi);
4508 
4509 	if (lc->requested_aneg == AUTONEG_ENABLE)
4510 		MPASS(lc->supported & FW_PORT_CAP32_ANEG);
4511 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4512 		MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE);
4513 	if (lc->requested_fc & PAUSE_TX)
4514 		MPASS(lc->supported & FW_PORT_CAP32_FC_TX);
4515 	if (lc->requested_fc & PAUSE_RX)
4516 		MPASS(lc->supported & FW_PORT_CAP32_FC_RX);
4517 	if (lc->requested_fec & FEC_RS)
4518 		MPASS(lc->supported & FW_PORT_CAP32_FEC_RS);
4519 	if (lc->requested_fec & FEC_BASER_RS)
4520 		MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS);
4521 #endif
4522 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4523 	if (rc != 0) {
4524 		/* Don't complain if the VF driver gets back an EPERM. */
4525 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
4526 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4527 	} else {
4528 		/*
4529 		 * An L1_CFG will almost always result in a link-change event if
4530 		 * the link is up, and the driver will refresh the actual
4531 		 * fec/fc/etc. when the notification is processed.  If the link
4532 		 * is down then the actual settings are meaningless.
4533 		 *
4534 		 * This takes care of the case where a change in the L1 settings
4535 		 * may not result in a notification.
4536 		 */
4537 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
4538 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
4539 	}
4540 	return (rc);
4541 }
4542 
4543 #define FW_MAC_EXACT_CHUNK	7
4544 
4545 /*
4546  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4547  * indicates which parameters should be programmed (the rest are left alone).
4548  */
4549 int
4550 update_mac_settings(struct ifnet *ifp, int flags)
4551 {
4552 	int rc = 0;
4553 	struct vi_info *vi = ifp->if_softc;
4554 	struct port_info *pi = vi->pi;
4555 	struct adapter *sc = pi->adapter;
4556 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4557 
4558 	ASSERT_SYNCHRONIZED_OP(sc);
4559 	KASSERT(flags, ("%s: not told what to update.", __func__));
4560 
4561 	if (flags & XGMAC_MTU)
4562 		mtu = ifp->if_mtu;
4563 
4564 	if (flags & XGMAC_PROMISC)
4565 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4566 
4567 	if (flags & XGMAC_ALLMULTI)
4568 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4569 
4570 	if (flags & XGMAC_VLANEX)
4571 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4572 
4573 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4574 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4575 		    allmulti, 1, vlanex, false);
4576 		if (rc) {
4577 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4578 			    rc);
4579 			return (rc);
4580 		}
4581 	}
4582 
4583 	if (flags & XGMAC_UCADDR) {
4584 		uint8_t ucaddr[ETHER_ADDR_LEN];
4585 
4586 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4587 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4588 		    ucaddr, true, true);
4589 		if (rc < 0) {
4590 			rc = -rc;
4591 			if_printf(ifp, "change_mac failed: %d\n", rc);
4592 			return (rc);
4593 		} else {
4594 			vi->xact_addr_filt = rc;
4595 			rc = 0;
4596 		}
4597 	}
4598 
4599 	if (flags & XGMAC_MCADDRS) {
4600 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4601 		int del = 1;
4602 		uint64_t hash = 0;
4603 		struct ifmultiaddr *ifma;
4604 		int i = 0, j;
4605 
4606 		if_maddr_rlock(ifp);
4607 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4608 			if (ifma->ifma_addr->sa_family != AF_LINK)
4609 				continue;
4610 			mcaddr[i] =
4611 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4612 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4613 			i++;
4614 
4615 			if (i == FW_MAC_EXACT_CHUNK) {
4616 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4617 				    del, i, mcaddr, NULL, &hash, 0);
4618 				if (rc < 0) {
4619 					rc = -rc;
4620 					for (j = 0; j < i; j++) {
4621 						if_printf(ifp,
4622 						    "failed to add mc address"
4623 						    " %02x:%02x:%02x:"
4624 						    "%02x:%02x:%02x rc=%d\n",
4625 						    mcaddr[j][0], mcaddr[j][1],
4626 						    mcaddr[j][2], mcaddr[j][3],
4627 						    mcaddr[j][4], mcaddr[j][5],
4628 						    rc);
4629 					}
4630 					goto mcfail;
4631 				}
4632 				del = 0;
4633 				i = 0;
4634 			}
4635 		}
4636 		if (i > 0) {
4637 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4638 			    mcaddr, NULL, &hash, 0);
4639 			if (rc < 0) {
4640 				rc = -rc;
4641 				for (j = 0; j < i; j++) {
4642 					if_printf(ifp,
4643 					    "failed to add mc address"
4644 					    " %02x:%02x:%02x:"
4645 					    "%02x:%02x:%02x rc=%d\n",
4646 					    mcaddr[j][0], mcaddr[j][1],
4647 					    mcaddr[j][2], mcaddr[j][3],
4648 					    mcaddr[j][4], mcaddr[j][5],
4649 					    rc);
4650 				}
4651 				goto mcfail;
4652 			}
4653 		}
4654 
4655 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4656 		if (rc != 0)
4657 			if_printf(ifp, "failed to set mc address hash: %d", rc);
4658 mcfail:
4659 		if_maddr_runlock(ifp);
4660 	}
4661 
4662 	return (rc);
4663 }
4664 
4665 /*
4666  * {begin|end}_synchronized_op must be called from the same thread.
4667  */
4668 int
4669 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4670     char *wmesg)
4671 {
4672 	int rc, pri;
4673 
4674 #ifdef WITNESS
4675 	/* the caller thinks it's ok to sleep, but is it really? */
4676 	if (flags & SLEEP_OK)
4677 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4678 		    "begin_synchronized_op");
4679 #endif
4680 
4681 	if (INTR_OK)
4682 		pri = PCATCH;
4683 	else
4684 		pri = 0;
4685 
4686 	ADAPTER_LOCK(sc);
4687 	for (;;) {
4688 
4689 		if (vi && IS_DOOMED(vi)) {
4690 			rc = ENXIO;
4691 			goto done;
4692 		}
4693 
4694 		if (!IS_BUSY(sc)) {
4695 			rc = 0;
4696 			break;
4697 		}
4698 
4699 		if (!(flags & SLEEP_OK)) {
4700 			rc = EBUSY;
4701 			goto done;
4702 		}
4703 
4704 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4705 			rc = EINTR;
4706 			goto done;
4707 		}
4708 	}
4709 
4710 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4711 	SET_BUSY(sc);
4712 #ifdef INVARIANTS
4713 	sc->last_op = wmesg;
4714 	sc->last_op_thr = curthread;
4715 	sc->last_op_flags = flags;
4716 #endif
4717 
4718 done:
4719 	if (!(flags & HOLD_LOCK) || rc)
4720 		ADAPTER_UNLOCK(sc);
4721 
4722 	return (rc);
4723 }
4724 
4725 /*
4726  * Tell if_ioctl and if_init that the VI is going away.  This is
4727  * special variant of begin_synchronized_op and must be paired with a
4728  * call to end_synchronized_op.
4729  */
4730 void
4731 doom_vi(struct adapter *sc, struct vi_info *vi)
4732 {
4733 
4734 	ADAPTER_LOCK(sc);
4735 	SET_DOOMED(vi);
4736 	wakeup(&sc->flags);
4737 	while (IS_BUSY(sc))
4738 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4739 	SET_BUSY(sc);
4740 #ifdef INVARIANTS
4741 	sc->last_op = "t4detach";
4742 	sc->last_op_thr = curthread;
4743 	sc->last_op_flags = 0;
4744 #endif
4745 	ADAPTER_UNLOCK(sc);
4746 }
4747 
4748 /*
4749  * {begin|end}_synchronized_op must be called from the same thread.
4750  */
4751 void
4752 end_synchronized_op(struct adapter *sc, int flags)
4753 {
4754 
4755 	if (flags & LOCK_HELD)
4756 		ADAPTER_LOCK_ASSERT_OWNED(sc);
4757 	else
4758 		ADAPTER_LOCK(sc);
4759 
4760 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
4761 	CLR_BUSY(sc);
4762 	wakeup(&sc->flags);
4763 	ADAPTER_UNLOCK(sc);
4764 }
4765 
4766 static int
4767 cxgbe_init_synchronized(struct vi_info *vi)
4768 {
4769 	struct port_info *pi = vi->pi;
4770 	struct adapter *sc = pi->adapter;
4771 	struct ifnet *ifp = vi->ifp;
4772 	int rc = 0, i;
4773 	struct sge_txq *txq;
4774 
4775 	ASSERT_SYNCHRONIZED_OP(sc);
4776 
4777 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4778 		return (0);	/* already running */
4779 
4780 	if (!(sc->flags & FULL_INIT_DONE) &&
4781 	    ((rc = adapter_full_init(sc)) != 0))
4782 		return (rc);	/* error message displayed already */
4783 
4784 	if (!(vi->flags & VI_INIT_DONE) &&
4785 	    ((rc = vi_full_init(vi)) != 0))
4786 		return (rc); /* error message displayed already */
4787 
4788 	rc = update_mac_settings(ifp, XGMAC_ALL);
4789 	if (rc)
4790 		goto done;	/* error message displayed already */
4791 
4792 	PORT_LOCK(pi);
4793 	if (pi->up_vis == 0) {
4794 		t4_update_port_info(pi);
4795 		fixup_link_config(pi);
4796 		build_medialist(pi);
4797 		apply_link_config(pi);
4798 	}
4799 
4800 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4801 	if (rc != 0) {
4802 		if_printf(ifp, "enable_vi failed: %d\n", rc);
4803 		PORT_UNLOCK(pi);
4804 		goto done;
4805 	}
4806 
4807 	/*
4808 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4809 	 * if this changes.
4810 	 */
4811 
4812 	for_each_txq(vi, i, txq) {
4813 		TXQ_LOCK(txq);
4814 		txq->eq.flags |= EQ_ENABLED;
4815 		TXQ_UNLOCK(txq);
4816 	}
4817 
4818 	/*
4819 	 * The first iq of the first port to come up is used for tracing.
4820 	 */
4821 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4822 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4823 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4824 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4825 		    V_QUEUENUMBER(sc->traceq));
4826 		pi->flags |= HAS_TRACEQ;
4827 	}
4828 
4829 	/* all ok */
4830 	pi->up_vis++;
4831 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4832 
4833 	if (pi->nvi > 1 || sc->flags & IS_VF)
4834 		callout_reset(&vi->tick, hz, vi_tick, vi);
4835 	else
4836 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4837 	PORT_UNLOCK(pi);
4838 done:
4839 	if (rc != 0)
4840 		cxgbe_uninit_synchronized(vi);
4841 
4842 	return (rc);
4843 }
4844 
4845 /*
4846  * Idempotent.
4847  */
4848 static int
4849 cxgbe_uninit_synchronized(struct vi_info *vi)
4850 {
4851 	struct port_info *pi = vi->pi;
4852 	struct adapter *sc = pi->adapter;
4853 	struct ifnet *ifp = vi->ifp;
4854 	int rc, i;
4855 	struct sge_txq *txq;
4856 
4857 	ASSERT_SYNCHRONIZED_OP(sc);
4858 
4859 	if (!(vi->flags & VI_INIT_DONE)) {
4860 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4861 			KASSERT(0, ("uninited VI is running"));
4862 			if_printf(ifp, "uninited VI with running ifnet.  "
4863 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
4864 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
4865 			    ifp->if_drv_flags);
4866 		}
4867 		return (0);
4868 	}
4869 
4870 	/*
4871 	 * Disable the VI so that all its data in either direction is discarded
4872 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4873 	 * tick) intact as the TP can deliver negative advice or data that it's
4874 	 * holding in its RAM (for an offloaded connection) even after the VI is
4875 	 * disabled.
4876 	 */
4877 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4878 	if (rc) {
4879 		if_printf(ifp, "disable_vi failed: %d\n", rc);
4880 		return (rc);
4881 	}
4882 
4883 	for_each_txq(vi, i, txq) {
4884 		TXQ_LOCK(txq);
4885 		txq->eq.flags &= ~EQ_ENABLED;
4886 		TXQ_UNLOCK(txq);
4887 	}
4888 
4889 	PORT_LOCK(pi);
4890 	if (pi->nvi > 1 || sc->flags & IS_VF)
4891 		callout_stop(&vi->tick);
4892 	else
4893 		callout_stop(&pi->tick);
4894 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4895 		PORT_UNLOCK(pi);
4896 		return (0);
4897 	}
4898 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4899 	pi->up_vis--;
4900 	if (pi->up_vis > 0) {
4901 		PORT_UNLOCK(pi);
4902 		return (0);
4903 	}
4904 
4905 	pi->link_cfg.link_ok = false;
4906 	pi->link_cfg.speed = 0;
4907 	pi->link_cfg.link_down_rc = 255;
4908 	t4_os_link_changed(pi);
4909 	PORT_UNLOCK(pi);
4910 
4911 	return (0);
4912 }
4913 
4914 /*
4915  * It is ok for this function to fail midway and return right away.  t4_detach
4916  * will walk the entire sc->irq list and clean up whatever is valid.
4917  */
4918 int
4919 t4_setup_intr_handlers(struct adapter *sc)
4920 {
4921 	int rc, rid, p, q, v;
4922 	char s[8];
4923 	struct irq *irq;
4924 	struct port_info *pi;
4925 	struct vi_info *vi;
4926 	struct sge *sge = &sc->sge;
4927 	struct sge_rxq *rxq;
4928 #ifdef TCP_OFFLOAD
4929 	struct sge_ofld_rxq *ofld_rxq;
4930 #endif
4931 #ifdef DEV_NETMAP
4932 	struct sge_nm_rxq *nm_rxq;
4933 #endif
4934 #ifdef RSS
4935 	int nbuckets = rss_getnumbuckets();
4936 #endif
4937 
4938 	/*
4939 	 * Setup interrupts.
4940 	 */
4941 	irq = &sc->irq[0];
4942 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
4943 	if (forwarding_intr_to_fwq(sc))
4944 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4945 
4946 	/* Multiple interrupts. */
4947 	if (sc->flags & IS_VF)
4948 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4949 		    ("%s: too few intr.", __func__));
4950 	else
4951 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4952 		    ("%s: too few intr.", __func__));
4953 
4954 	/* The first one is always error intr on PFs */
4955 	if (!(sc->flags & IS_VF)) {
4956 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4957 		if (rc != 0)
4958 			return (rc);
4959 		irq++;
4960 		rid++;
4961 	}
4962 
4963 	/* The second one is always the firmware event queue (first on VFs) */
4964 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4965 	if (rc != 0)
4966 		return (rc);
4967 	irq++;
4968 	rid++;
4969 
4970 	for_each_port(sc, p) {
4971 		pi = sc->port[p];
4972 		for_each_vi(pi, v, vi) {
4973 			vi->first_intr = rid - 1;
4974 
4975 			if (vi->nnmrxq > 0) {
4976 				int n = max(vi->nrxq, vi->nnmrxq);
4977 
4978 				rxq = &sge->rxq[vi->first_rxq];
4979 #ifdef DEV_NETMAP
4980 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4981 #endif
4982 				for (q = 0; q < n; q++) {
4983 					snprintf(s, sizeof(s), "%x%c%x", p,
4984 					    'a' + v, q);
4985 					if (q < vi->nrxq)
4986 						irq->rxq = rxq++;
4987 #ifdef DEV_NETMAP
4988 					if (q < vi->nnmrxq)
4989 						irq->nm_rxq = nm_rxq++;
4990 
4991 					if (irq->nm_rxq != NULL &&
4992 					    irq->rxq == NULL) {
4993 						/* Netmap rx only */
4994 						rc = t4_alloc_irq(sc, irq, rid,
4995 						    t4_nm_intr, irq->nm_rxq, s);
4996 					}
4997 					if (irq->nm_rxq != NULL &&
4998 					    irq->rxq != NULL) {
4999 						/* NIC and Netmap rx */
5000 						rc = t4_alloc_irq(sc, irq, rid,
5001 						    t4_vi_intr, irq, s);
5002 					}
5003 #endif
5004 					if (irq->rxq != NULL &&
5005 					    irq->nm_rxq == NULL) {
5006 						/* NIC rx only */
5007 						rc = t4_alloc_irq(sc, irq, rid,
5008 						    t4_intr, irq->rxq, s);
5009 					}
5010 					if (rc != 0)
5011 						return (rc);
5012 #ifdef RSS
5013 					if (q < vi->nrxq) {
5014 						bus_bind_intr(sc->dev, irq->res,
5015 						    rss_getcpu(q % nbuckets));
5016 					}
5017 #endif
5018 					irq++;
5019 					rid++;
5020 					vi->nintr++;
5021 				}
5022 			} else {
5023 				for_each_rxq(vi, q, rxq) {
5024 					snprintf(s, sizeof(s), "%x%c%x", p,
5025 					    'a' + v, q);
5026 					rc = t4_alloc_irq(sc, irq, rid,
5027 					    t4_intr, rxq, s);
5028 					if (rc != 0)
5029 						return (rc);
5030 #ifdef RSS
5031 					bus_bind_intr(sc->dev, irq->res,
5032 					    rss_getcpu(q % nbuckets));
5033 #endif
5034 					irq++;
5035 					rid++;
5036 					vi->nintr++;
5037 				}
5038 			}
5039 #ifdef TCP_OFFLOAD
5040 			for_each_ofld_rxq(vi, q, ofld_rxq) {
5041 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
5042 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
5043 				    ofld_rxq, s);
5044 				if (rc != 0)
5045 					return (rc);
5046 				irq++;
5047 				rid++;
5048 				vi->nintr++;
5049 			}
5050 #endif
5051 		}
5052 	}
5053 	MPASS(irq == &sc->irq[sc->intr_count]);
5054 
5055 	return (0);
5056 }
5057 
5058 int
5059 adapter_full_init(struct adapter *sc)
5060 {
5061 	int rc, i;
5062 #ifdef RSS
5063 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5064 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5065 #endif
5066 
5067 	ASSERT_SYNCHRONIZED_OP(sc);
5068 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5069 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
5070 	    ("%s: FULL_INIT_DONE already", __func__));
5071 
5072 	/*
5073 	 * queues that belong to the adapter (not any particular port).
5074 	 */
5075 	rc = t4_setup_adapter_queues(sc);
5076 	if (rc != 0)
5077 		goto done;
5078 
5079 	for (i = 0; i < nitems(sc->tq); i++) {
5080 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
5081 		    taskqueue_thread_enqueue, &sc->tq[i]);
5082 		if (sc->tq[i] == NULL) {
5083 			device_printf(sc->dev,
5084 			    "failed to allocate task queue %d\n", i);
5085 			rc = ENOMEM;
5086 			goto done;
5087 		}
5088 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
5089 		    device_get_nameunit(sc->dev), i);
5090 	}
5091 #ifdef RSS
5092 	MPASS(RSS_KEYSIZE == 40);
5093 	rss_getkey((void *)&raw_rss_key[0]);
5094 	for (i = 0; i < nitems(rss_key); i++) {
5095 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
5096 	}
5097 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
5098 #endif
5099 
5100 	if (!(sc->flags & IS_VF))
5101 		t4_intr_enable(sc);
5102 	sc->flags |= FULL_INIT_DONE;
5103 done:
5104 	if (rc != 0)
5105 		adapter_full_uninit(sc);
5106 
5107 	return (rc);
5108 }
5109 
5110 int
5111 adapter_full_uninit(struct adapter *sc)
5112 {
5113 	int i;
5114 
5115 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5116 
5117 	t4_teardown_adapter_queues(sc);
5118 
5119 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
5120 		taskqueue_free(sc->tq[i]);
5121 		sc->tq[i] = NULL;
5122 	}
5123 
5124 	sc->flags &= ~FULL_INIT_DONE;
5125 
5126 	return (0);
5127 }
5128 
5129 #ifdef RSS
5130 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
5131     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
5132     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
5133     RSS_HASHTYPE_RSS_UDP_IPV6)
5134 
5135 /* Translates kernel hash types to hardware. */
5136 static int
5137 hashconfig_to_hashen(int hashconfig)
5138 {
5139 	int hashen = 0;
5140 
5141 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
5142 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
5143 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
5144 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
5145 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
5146 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5147 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5148 	}
5149 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
5150 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5151 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5152 	}
5153 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
5154 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5155 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
5156 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5157 
5158 	return (hashen);
5159 }
5160 
5161 /* Translates hardware hash types to kernel. */
5162 static int
5163 hashen_to_hashconfig(int hashen)
5164 {
5165 	int hashconfig = 0;
5166 
5167 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
5168 		/*
5169 		 * If UDP hashing was enabled it must have been enabled for
5170 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
5171 		 * enabling any 4-tuple hash is nonsense configuration.
5172 		 */
5173 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5174 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
5175 
5176 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5177 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
5178 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5179 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
5180 	}
5181 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5182 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
5183 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5184 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
5185 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
5186 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
5187 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
5188 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
5189 
5190 	return (hashconfig);
5191 }
5192 #endif
5193 
5194 int
5195 vi_full_init(struct vi_info *vi)
5196 {
5197 	struct adapter *sc = vi->pi->adapter;
5198 	struct ifnet *ifp = vi->ifp;
5199 	uint16_t *rss;
5200 	struct sge_rxq *rxq;
5201 	int rc, i, j;
5202 #ifdef RSS
5203 	int nbuckets = rss_getnumbuckets();
5204 	int hashconfig = rss_gethashconfig();
5205 	int extra;
5206 #endif
5207 
5208 	ASSERT_SYNCHRONIZED_OP(sc);
5209 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
5210 	    ("%s: VI_INIT_DONE already", __func__));
5211 
5212 	sysctl_ctx_init(&vi->ctx);
5213 	vi->flags |= VI_SYSCTL_CTX;
5214 
5215 	/*
5216 	 * Allocate tx/rx/fl queues for this VI.
5217 	 */
5218 	rc = t4_setup_vi_queues(vi);
5219 	if (rc != 0)
5220 		goto done;	/* error message displayed already */
5221 
5222 	/*
5223 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
5224 	 */
5225 	if (vi->nrxq > vi->rss_size) {
5226 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
5227 		    "some queues will never receive traffic.\n", vi->nrxq,
5228 		    vi->rss_size);
5229 	} else if (vi->rss_size % vi->nrxq) {
5230 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
5231 		    "expect uneven traffic distribution.\n", vi->nrxq,
5232 		    vi->rss_size);
5233 	}
5234 #ifdef RSS
5235 	if (vi->nrxq != nbuckets) {
5236 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
5237 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
5238 	}
5239 #endif
5240 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
5241 	for (i = 0; i < vi->rss_size;) {
5242 #ifdef RSS
5243 		j = rss_get_indirection_to_bucket(i);
5244 		j %= vi->nrxq;
5245 		rxq = &sc->sge.rxq[vi->first_rxq + j];
5246 		rss[i++] = rxq->iq.abs_id;
5247 #else
5248 		for_each_rxq(vi, j, rxq) {
5249 			rss[i++] = rxq->iq.abs_id;
5250 			if (i == vi->rss_size)
5251 				break;
5252 		}
5253 #endif
5254 	}
5255 
5256 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
5257 	    vi->rss_size);
5258 	if (rc != 0) {
5259 		free(rss, M_CXGBE);
5260 		if_printf(ifp, "rss_config failed: %d\n", rc);
5261 		goto done;
5262 	}
5263 
5264 #ifdef RSS
5265 	vi->hashen = hashconfig_to_hashen(hashconfig);
5266 
5267 	/*
5268 	 * We may have had to enable some hashes even though the global config
5269 	 * wants them disabled.  This is a potential problem that must be
5270 	 * reported to the user.
5271 	 */
5272 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
5273 
5274 	/*
5275 	 * If we consider only the supported hash types, then the enabled hashes
5276 	 * are a superset of the requested hashes.  In other words, there cannot
5277 	 * be any supported hash that was requested but not enabled, but there
5278 	 * can be hashes that were not requested but had to be enabled.
5279 	 */
5280 	extra &= SUPPORTED_RSS_HASHTYPES;
5281 	MPASS((extra & hashconfig) == 0);
5282 
5283 	if (extra) {
5284 		if_printf(ifp,
5285 		    "global RSS config (0x%x) cannot be accommodated.\n",
5286 		    hashconfig);
5287 	}
5288 	if (extra & RSS_HASHTYPE_RSS_IPV4)
5289 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
5290 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
5291 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
5292 	if (extra & RSS_HASHTYPE_RSS_IPV6)
5293 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
5294 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
5295 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
5296 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
5297 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
5298 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
5299 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
5300 #else
5301 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
5302 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
5303 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5304 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
5305 #endif
5306 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0);
5307 	if (rc != 0) {
5308 		free(rss, M_CXGBE);
5309 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
5310 		goto done;
5311 	}
5312 
5313 	vi->rss = rss;
5314 	vi->flags |= VI_INIT_DONE;
5315 done:
5316 	if (rc != 0)
5317 		vi_full_uninit(vi);
5318 
5319 	return (rc);
5320 }
5321 
5322 /*
5323  * Idempotent.
5324  */
5325 int
5326 vi_full_uninit(struct vi_info *vi)
5327 {
5328 	struct port_info *pi = vi->pi;
5329 	struct adapter *sc = pi->adapter;
5330 	int i;
5331 	struct sge_rxq *rxq;
5332 	struct sge_txq *txq;
5333 #ifdef TCP_OFFLOAD
5334 	struct sge_ofld_rxq *ofld_rxq;
5335 	struct sge_wrq *ofld_txq;
5336 #endif
5337 
5338 	if (vi->flags & VI_INIT_DONE) {
5339 
5340 		/* Need to quiesce queues.  */
5341 
5342 		/* XXX: Only for the first VI? */
5343 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
5344 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
5345 
5346 		for_each_txq(vi, i, txq) {
5347 			quiesce_txq(sc, txq);
5348 		}
5349 
5350 #ifdef TCP_OFFLOAD
5351 		for_each_ofld_txq(vi, i, ofld_txq) {
5352 			quiesce_wrq(sc, ofld_txq);
5353 		}
5354 #endif
5355 
5356 		for_each_rxq(vi, i, rxq) {
5357 			quiesce_iq(sc, &rxq->iq);
5358 			quiesce_fl(sc, &rxq->fl);
5359 		}
5360 
5361 #ifdef TCP_OFFLOAD
5362 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5363 			quiesce_iq(sc, &ofld_rxq->iq);
5364 			quiesce_fl(sc, &ofld_rxq->fl);
5365 		}
5366 #endif
5367 		free(vi->rss, M_CXGBE);
5368 		free(vi->nm_rss, M_CXGBE);
5369 	}
5370 
5371 	t4_teardown_vi_queues(vi);
5372 	vi->flags &= ~VI_INIT_DONE;
5373 
5374 	return (0);
5375 }
5376 
5377 static void
5378 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5379 {
5380 	struct sge_eq *eq = &txq->eq;
5381 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5382 
5383 	(void) sc;	/* unused */
5384 
5385 #ifdef INVARIANTS
5386 	TXQ_LOCK(txq);
5387 	MPASS((eq->flags & EQ_ENABLED) == 0);
5388 	TXQ_UNLOCK(txq);
5389 #endif
5390 
5391 	/* Wait for the mp_ring to empty. */
5392 	while (!mp_ring_is_idle(txq->r)) {
5393 		mp_ring_check_drainage(txq->r, 0);
5394 		pause("rquiesce", 1);
5395 	}
5396 
5397 	/* Then wait for the hardware to finish. */
5398 	while (spg->cidx != htobe16(eq->pidx))
5399 		pause("equiesce", 1);
5400 
5401 	/* Finally, wait for the driver to reclaim all descriptors. */
5402 	while (eq->cidx != eq->pidx)
5403 		pause("dquiesce", 1);
5404 }
5405 
5406 static void
5407 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5408 {
5409 
5410 	/* XXXTX */
5411 }
5412 
5413 static void
5414 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5415 {
5416 	(void) sc;	/* unused */
5417 
5418 	/* Synchronize with the interrupt handler */
5419 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5420 		pause("iqfree", 1);
5421 }
5422 
5423 static void
5424 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5425 {
5426 	mtx_lock(&sc->sfl_lock);
5427 	FL_LOCK(fl);
5428 	fl->flags |= FL_DOOMED;
5429 	FL_UNLOCK(fl);
5430 	callout_stop(&sc->sfl_callout);
5431 	mtx_unlock(&sc->sfl_lock);
5432 
5433 	KASSERT((fl->flags & FL_STARVING) == 0,
5434 	    ("%s: still starving", __func__));
5435 }
5436 
5437 static int
5438 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5439     driver_intr_t *handler, void *arg, char *name)
5440 {
5441 	int rc;
5442 
5443 	irq->rid = rid;
5444 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5445 	    RF_SHAREABLE | RF_ACTIVE);
5446 	if (irq->res == NULL) {
5447 		device_printf(sc->dev,
5448 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5449 		return (ENOMEM);
5450 	}
5451 
5452 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5453 	    NULL, handler, arg, &irq->tag);
5454 	if (rc != 0) {
5455 		device_printf(sc->dev,
5456 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5457 		    rid, name, rc);
5458 	} else if (name)
5459 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5460 
5461 	return (rc);
5462 }
5463 
5464 static int
5465 t4_free_irq(struct adapter *sc, struct irq *irq)
5466 {
5467 	if (irq->tag)
5468 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5469 	if (irq->res)
5470 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5471 
5472 	bzero(irq, sizeof(*irq));
5473 
5474 	return (0);
5475 }
5476 
5477 static void
5478 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5479 {
5480 
5481 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5482 	t4_get_regs(sc, buf, regs->len);
5483 }
5484 
5485 #define	A_PL_INDIR_CMD	0x1f8
5486 
5487 #define	S_PL_AUTOINC	31
5488 #define	M_PL_AUTOINC	0x1U
5489 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5490 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5491 
5492 #define	S_PL_VFID	20
5493 #define	M_PL_VFID	0xffU
5494 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5495 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5496 
5497 #define	S_PL_ADDR	0
5498 #define	M_PL_ADDR	0xfffffU
5499 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5500 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5501 
5502 #define	A_PL_INDIR_DATA	0x1fc
5503 
5504 static uint64_t
5505 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
5506 {
5507 	u32 stats[2];
5508 
5509 	mtx_assert(&sc->reg_lock, MA_OWNED);
5510 	if (sc->flags & IS_VF) {
5511 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5512 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5513 	} else {
5514 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5515 		    V_PL_VFID(G_FW_VIID_VIN(viid)) |
5516 		    V_PL_ADDR(VF_MPS_REG(reg)));
5517 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5518 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5519 	}
5520 	return (((uint64_t)stats[1]) << 32 | stats[0]);
5521 }
5522 
5523 static void
5524 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
5525     struct fw_vi_stats_vf *stats)
5526 {
5527 
5528 #define GET_STAT(name) \
5529 	read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
5530 
5531 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5532 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5533 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5534 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5535 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5536 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5537 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5538 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5539 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5540 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5541 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5542 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5543 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5544 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5545 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5546 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5547 
5548 #undef GET_STAT
5549 }
5550 
5551 static void
5552 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
5553 {
5554 	int reg;
5555 
5556 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5557 	    V_PL_VFID(G_FW_VIID_VIN(viid)) |
5558 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5559 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5560 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5561 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5562 }
5563 
5564 static void
5565 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5566 {
5567 	struct timeval tv;
5568 	const struct timeval interval = {0, 250000};	/* 250ms */
5569 
5570 	if (!(vi->flags & VI_INIT_DONE))
5571 		return;
5572 
5573 	getmicrotime(&tv);
5574 	timevalsub(&tv, &interval);
5575 	if (timevalcmp(&tv, &vi->last_refreshed, <))
5576 		return;
5577 
5578 	mtx_lock(&sc->reg_lock);
5579 	t4_get_vi_stats(sc, vi->viid, &vi->stats);
5580 	getmicrotime(&vi->last_refreshed);
5581 	mtx_unlock(&sc->reg_lock);
5582 }
5583 
5584 static void
5585 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5586 {
5587 	u_int i, v, tnl_cong_drops, bg_map;
5588 	struct timeval tv;
5589 	const struct timeval interval = {0, 250000};	/* 250ms */
5590 
5591 	getmicrotime(&tv);
5592 	timevalsub(&tv, &interval);
5593 	if (timevalcmp(&tv, &pi->last_refreshed, <))
5594 		return;
5595 
5596 	tnl_cong_drops = 0;
5597 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5598 	bg_map = pi->mps_bg_map;
5599 	while (bg_map) {
5600 		i = ffs(bg_map) - 1;
5601 		mtx_lock(&sc->reg_lock);
5602 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5603 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
5604 		mtx_unlock(&sc->reg_lock);
5605 		tnl_cong_drops += v;
5606 		bg_map &= ~(1 << i);
5607 	}
5608 	pi->tnl_cong_drops = tnl_cong_drops;
5609 	getmicrotime(&pi->last_refreshed);
5610 }
5611 
5612 static void
5613 cxgbe_tick(void *arg)
5614 {
5615 	struct port_info *pi = arg;
5616 	struct adapter *sc = pi->adapter;
5617 
5618 	PORT_LOCK_ASSERT_OWNED(pi);
5619 	cxgbe_refresh_stats(sc, pi);
5620 
5621 	callout_schedule(&pi->tick, hz);
5622 }
5623 
5624 void
5625 vi_tick(void *arg)
5626 {
5627 	struct vi_info *vi = arg;
5628 	struct adapter *sc = vi->pi->adapter;
5629 
5630 	vi_refresh_stats(sc, vi);
5631 
5632 	callout_schedule(&vi->tick, hz);
5633 }
5634 
5635 /*
5636  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5637  */
5638 static char *caps_decoder[] = {
5639 	"\20\001IPMI\002NCSI",				/* 0: NBM */
5640 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
5641 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
5642 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
5643 	    "\006HASHFILTER\007ETHOFLD",
5644 	"\20\001TOE",					/* 4: TOE */
5645 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
5646 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
5647 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5648 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5649 	    "\007T10DIF"
5650 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5651 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
5652 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
5653 		    "\004PO_INITIATOR\005PO_TARGET",
5654 };
5655 
5656 void
5657 t4_sysctls(struct adapter *sc)
5658 {
5659 	struct sysctl_ctx_list *ctx;
5660 	struct sysctl_oid *oid;
5661 	struct sysctl_oid_list *children, *c0;
5662 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5663 
5664 	ctx = device_get_sysctl_ctx(sc->dev);
5665 
5666 	/*
5667 	 * dev.t4nex.X.
5668 	 */
5669 	oid = device_get_sysctl_tree(sc->dev);
5670 	c0 = children = SYSCTL_CHILDREN(oid);
5671 
5672 	sc->sc_do_rxcopy = 1;
5673 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5674 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5675 
5676 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5677 	    sc->params.nports, "# of ports");
5678 
5679 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5680 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells,
5681 	    sysctl_bitfield_8b, "A", "available doorbells");
5682 
5683 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5684 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
5685 
5686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5687 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5688 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5689 	    "interrupt holdoff timer values (us)");
5690 
5691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5692 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5693 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5694 	    "interrupt holdoff packet counter values");
5695 
5696 	t4_sge_sysctls(sc, ctx, children);
5697 
5698 	sc->lro_timeout = 100;
5699 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5700 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5701 
5702 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5703 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
5704 
5705 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5706 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5707 
5708 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5709 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5710 
5711 	if (sc->flags & IS_VF)
5712 		return;
5713 
5714 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5715 	    NULL, chip_rev(sc), "chip hardware revision");
5716 
5717 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5718 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5719 
5720 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5721 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5722 
5723 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5724 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5725 
5726 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5727 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5728 
5729 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5730 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5731 
5732 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5733 	    sc->er_version, 0, "expansion ROM version");
5734 
5735 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5736 	    sc->bs_version, 0, "bootstrap firmware version");
5737 
5738 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5739 	    NULL, sc->params.scfg_vers, "serial config version");
5740 
5741 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5742 	    NULL, sc->params.vpd_vers, "VPD version");
5743 
5744 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5745 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5746 
5747 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5748 	    sc->cfcsum, "config file checksum");
5749 
5750 #define SYSCTL_CAP(name, n, text) \
5751 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5752 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \
5753 	    sysctl_bitfield_16b, "A", "available " text " capabilities")
5754 
5755 	SYSCTL_CAP(nbmcaps, 0, "NBM");
5756 	SYSCTL_CAP(linkcaps, 1, "link");
5757 	SYSCTL_CAP(switchcaps, 2, "switch");
5758 	SYSCTL_CAP(niccaps, 3, "NIC");
5759 	SYSCTL_CAP(toecaps, 4, "TCP offload");
5760 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
5761 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
5762 	SYSCTL_CAP(cryptocaps, 7, "crypto");
5763 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
5764 #undef SYSCTL_CAP
5765 
5766 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
5767 	    NULL, sc->tids.nftids, "number of filters");
5768 
5769 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
5770 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
5771 	    "chip temperature (in Celsius)");
5772 
5773 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING |
5774 	    CTLFLAG_RD, sc, 0, sysctl_loadavg, "A",
5775 	    "microprocessor load averages (debug firmwares only)");
5776 
5777 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
5778 	    &sc->params.core_vdd, 0, "core Vdd (in mV)");
5779 
5780 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
5781 	    CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS,
5782 	    sysctl_cpus, "A", "local CPUs");
5783 
5784 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
5785 	    CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS,
5786 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
5787 
5788 	/*
5789 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
5790 	 */
5791 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
5792 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
5793 	    "logs and miscellaneous information");
5794 	children = SYSCTL_CHILDREN(oid);
5795 
5796 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
5797 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5798 	    sysctl_cctrl, "A", "congestion control");
5799 
5800 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
5801 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5802 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
5803 
5804 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5805 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5806 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5807 
5808 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5809 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5810 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5811 
5812 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5813 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5814 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5815 
5816 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5817 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5818 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5819 
5820 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5821 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5822 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5823 
5824 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5825 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5826 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5827 	    "A", "CIM logic analyzer");
5828 
5829 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5830 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5831 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5832 
5833 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5834 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5835 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5836 
5837 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5838 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5839 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5840 
5841 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5842 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5843 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5844 
5845 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5846 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5847 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5848 
5849 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5850 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5851 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5852 
5853 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5854 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5855 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5856 
5857 	if (chip_id(sc) > CHELSIO_T4) {
5858 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5859 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5860 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5861 
5862 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5863 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5864 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5865 	}
5866 
5867 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5868 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5869 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5870 
5871 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5872 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5873 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
5874 
5875 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5876 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5877 	    sysctl_cpl_stats, "A", "CPL statistics");
5878 
5879 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5880 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5881 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5882 
5883 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5884 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5885 	    sysctl_devlog, "A", "firmware's device log");
5886 
5887 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5888 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5889 	    sysctl_fcoe_stats, "A", "FCoE statistics");
5890 
5891 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5892 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5893 	    sysctl_hw_sched, "A", "hardware scheduler ");
5894 
5895 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5896 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5897 	    sysctl_l2t, "A", "hardware L2 table");
5898 
5899 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
5900 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5901 	    sysctl_smt, "A", "hardware source MAC table");
5902 
5903 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5904 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5905 	    sysctl_lb_stats, "A", "loopback statistics");
5906 
5907 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5908 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5909 	    sysctl_meminfo, "A", "memory regions");
5910 
5911 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5912 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5913 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5914 	    "A", "MPS TCAM entries");
5915 
5916 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5917 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5918 	    sysctl_path_mtus, "A", "path MTUs");
5919 
5920 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5921 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5922 	    sysctl_pm_stats, "A", "PM statistics");
5923 
5924 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5925 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5926 	    sysctl_rdma_stats, "A", "RDMA statistics");
5927 
5928 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5929 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5930 	    sysctl_tcp_stats, "A", "TCP statistics");
5931 
5932 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5933 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5934 	    sysctl_tids, "A", "TID information");
5935 
5936 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5937 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5938 	    sysctl_tp_err_stats, "A", "TP error statistics");
5939 
5940 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5941 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5942 	    "TP logic analyzer event capture mask");
5943 
5944 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5945 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5946 	    sysctl_tp_la, "A", "TP logic analyzer");
5947 
5948 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5949 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5950 	    sysctl_tx_rate, "A", "Tx rate");
5951 
5952 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5953 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5954 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5955 
5956 	if (chip_id(sc) >= CHELSIO_T5) {
5957 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5958 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5959 		    sysctl_wcwr_stats, "A", "write combined work requests");
5960 	}
5961 
5962 #ifdef TCP_OFFLOAD
5963 	if (is_offload(sc)) {
5964 		int i;
5965 		char s[4];
5966 
5967 		/*
5968 		 * dev.t4nex.X.toe.
5969 		 */
5970 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5971 		    NULL, "TOE parameters");
5972 		children = SYSCTL_CHILDREN(oid);
5973 
5974 		sc->tt.cong_algorithm = -1;
5975 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
5976 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
5977 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
5978 		    "3 = highspeed)");
5979 
5980 		sc->tt.sndbuf = 256 * 1024;
5981 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5982 		    &sc->tt.sndbuf, 0, "max hardware send buffer size");
5983 
5984 		sc->tt.ddp = 0;
5985 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5986 		    &sc->tt.ddp, 0, "DDP allowed");
5987 
5988 		sc->tt.rx_coalesce = 1;
5989 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5990 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5991 
5992 		sc->tt.tls = 0;
5993 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
5994 		    &sc->tt.tls, 0, "Inline TLS allowed");
5995 
5996 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
5997 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
5998 		    "I", "TCP ports that use inline TLS+TOE RX");
5999 
6000 		sc->tt.tx_align = 1;
6001 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
6002 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
6003 
6004 		sc->tt.tx_zcopy = 0;
6005 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
6006 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
6007 		    "Enable zero-copy aio_write(2)");
6008 
6009 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
6010 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6011 		    "cop_managed_offloading", CTLFLAG_RW,
6012 		    &sc->tt.cop_managed_offloading, 0,
6013 		    "COP (Connection Offload Policy) controls all TOE offload");
6014 
6015 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
6016 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
6017 		    "TP timer tick (us)");
6018 
6019 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
6020 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
6021 		    "TCP timestamp tick (us)");
6022 
6023 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
6024 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
6025 		    "DACK tick (us)");
6026 
6027 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
6028 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
6029 		    "IU", "DACK timer (us)");
6030 
6031 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
6032 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
6033 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
6034 
6035 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
6036 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
6037 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
6038 
6039 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
6040 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
6041 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
6042 
6043 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
6044 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
6045 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
6046 
6047 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
6048 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
6049 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
6050 
6051 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
6052 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
6053 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
6054 
6055 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
6056 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
6057 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
6058 
6059 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
6060 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
6061 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
6062 
6063 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
6064 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
6065 		    sysctl_tp_shift_cnt, "IU",
6066 		    "Number of SYN retransmissions before abort");
6067 
6068 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
6069 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
6070 		    sysctl_tp_shift_cnt, "IU",
6071 		    "Number of retransmissions before abort");
6072 
6073 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
6074 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
6075 		    sysctl_tp_shift_cnt, "IU",
6076 		    "Number of keepalive probes before abort");
6077 
6078 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
6079 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
6080 		children = SYSCTL_CHILDREN(oid);
6081 		for (i = 0; i < 16; i++) {
6082 			snprintf(s, sizeof(s), "%u", i);
6083 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
6084 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
6085 			    "IU", "TOE retransmit backoff");
6086 		}
6087 	}
6088 #endif
6089 }
6090 
6091 void
6092 vi_sysctls(struct vi_info *vi)
6093 {
6094 	struct sysctl_ctx_list *ctx;
6095 	struct sysctl_oid *oid;
6096 	struct sysctl_oid_list *children;
6097 
6098 	ctx = device_get_sysctl_ctx(vi->dev);
6099 
6100 	/*
6101 	 * dev.v?(cxgbe|cxl).X.
6102 	 */
6103 	oid = device_get_sysctl_tree(vi->dev);
6104 	children = SYSCTL_CHILDREN(oid);
6105 
6106 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
6107 	    vi->viid, "VI identifer");
6108 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
6109 	    &vi->nrxq, 0, "# of rx queues");
6110 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
6111 	    &vi->ntxq, 0, "# of tx queues");
6112 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
6113 	    &vi->first_rxq, 0, "index of first rx queue");
6114 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
6115 	    &vi->first_txq, 0, "index of first tx queue");
6116 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
6117 	    vi->rss_base, "start of RSS indirection table");
6118 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
6119 	    vi->rss_size, "size of RSS indirection table");
6120 
6121 	if (IS_MAIN_VI(vi)) {
6122 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
6123 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
6124 		    "Reserve queue 0 for non-flowid packets");
6125 	}
6126 
6127 #ifdef TCP_OFFLOAD
6128 	if (vi->nofldrxq != 0) {
6129 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
6130 		    &vi->nofldrxq, 0,
6131 		    "# of rx queues for offloaded TCP connections");
6132 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
6133 		    &vi->nofldtxq, 0,
6134 		    "# of tx queues for offloaded TCP connections");
6135 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
6136 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
6137 		    "index of first TOE rx queue");
6138 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
6139 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
6140 		    "index of first TOE tx queue");
6141 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
6142 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6143 		    sysctl_holdoff_tmr_idx_ofld, "I",
6144 		    "holdoff timer index for TOE queues");
6145 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
6146 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6147 		    sysctl_holdoff_pktc_idx_ofld, "I",
6148 		    "holdoff packet counter index for TOE queues");
6149 	}
6150 #endif
6151 #ifdef DEV_NETMAP
6152 	if (vi->nnmrxq != 0) {
6153 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
6154 		    &vi->nnmrxq, 0, "# of netmap rx queues");
6155 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
6156 		    &vi->nnmtxq, 0, "# of netmap tx queues");
6157 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
6158 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
6159 		    "index of first netmap rx queue");
6160 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
6161 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
6162 		    "index of first netmap tx queue");
6163 	}
6164 #endif
6165 
6166 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
6167 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
6168 	    "holdoff timer index");
6169 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
6170 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
6171 	    "holdoff packet counter index");
6172 
6173 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
6174 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
6175 	    "rx queue size");
6176 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
6177 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
6178 	    "tx queue size");
6179 }
6180 
6181 static void
6182 cxgbe_sysctls(struct port_info *pi)
6183 {
6184 	struct sysctl_ctx_list *ctx;
6185 	struct sysctl_oid *oid;
6186 	struct sysctl_oid_list *children, *children2;
6187 	struct adapter *sc = pi->adapter;
6188 	int i;
6189 	char name[16];
6190 	static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"};
6191 
6192 	ctx = device_get_sysctl_ctx(pi->dev);
6193 
6194 	/*
6195 	 * dev.cxgbe.X.
6196 	 */
6197 	oid = device_get_sysctl_tree(pi->dev);
6198 	children = SYSCTL_CHILDREN(oid);
6199 
6200 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
6201 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
6202 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
6203 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
6204 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
6205 		    "PHY temperature (in Celsius)");
6206 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
6207 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
6208 		    "PHY firmware version");
6209 	}
6210 
6211 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
6212 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
6213 	    "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
6214 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
6215 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
6216 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
6217 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
6218 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
6219 	    "autonegotiation (-1 = not supported)");
6220 
6221 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
6222 	    port_top_speed(pi), "max speed (in Gbps)");
6223 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
6224 	    pi->mps_bg_map, "MPS buffer group map");
6225 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
6226 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
6227 
6228 	if (sc->flags & IS_VF)
6229 		return;
6230 
6231 	/*
6232 	 * dev.(cxgbe|cxl).X.tc.
6233 	 */
6234 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
6235 	    "Tx scheduler traffic classes (cl_rl)");
6236 	children2 = SYSCTL_CHILDREN(oid);
6237 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
6238 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
6239 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
6240 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
6241 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
6242 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
6243 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
6244 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
6245 
6246 		snprintf(name, sizeof(name), "%d", i);
6247 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
6248 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
6249 		    "traffic class"));
6250 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
6251 		    CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags,
6252 		    sysctl_bitfield_8b, "A", "flags");
6253 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
6254 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
6255 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
6256 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
6257 		    sysctl_tc_params, "A", "traffic class parameters");
6258 	}
6259 
6260 	/*
6261 	 * dev.cxgbe.X.stats.
6262 	 */
6263 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
6264 	    NULL, "port statistics");
6265 	children = SYSCTL_CHILDREN(oid);
6266 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
6267 	    &pi->tx_parse_error, 0,
6268 	    "# of tx packets with invalid length or # of segments");
6269 
6270 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
6271 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
6272 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
6273 	    sysctl_handle_t4_reg64, "QU", desc)
6274 
6275 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
6276 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
6277 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
6278 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
6279 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
6280 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
6281 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
6282 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
6283 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
6284 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
6285 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
6286 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
6287 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
6288 	    "# of tx frames in this range",
6289 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
6290 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
6291 	    "# of tx frames in this range",
6292 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
6293 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
6294 	    "# of tx frames in this range",
6295 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
6296 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
6297 	    "# of tx frames in this range",
6298 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
6299 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
6300 	    "# of tx frames in this range",
6301 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
6302 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
6303 	    "# of tx frames in this range",
6304 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
6305 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
6306 	    "# of tx frames in this range",
6307 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
6308 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
6309 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
6310 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
6311 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
6312 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
6313 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
6314 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
6315 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
6316 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
6317 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
6318 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
6319 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
6320 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
6321 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
6322 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
6323 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
6324 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
6325 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
6326 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
6327 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
6328 
6329 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
6330 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
6331 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
6332 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
6333 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
6334 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
6335 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
6336 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
6337 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
6338 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
6339 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
6340 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
6341 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
6342 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
6343 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
6344 	    "# of frames received with bad FCS",
6345 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
6346 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
6347 	    "# of frames received with length error",
6348 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
6349 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
6350 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
6351 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
6352 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
6353 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
6354 	    "# of rx frames in this range",
6355 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
6356 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
6357 	    "# of rx frames in this range",
6358 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
6359 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
6360 	    "# of rx frames in this range",
6361 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
6362 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
6363 	    "# of rx frames in this range",
6364 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
6365 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
6366 	    "# of rx frames in this range",
6367 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
6368 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
6369 	    "# of rx frames in this range",
6370 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6371 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6372 	    "# of rx frames in this range",
6373 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6374 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6375 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6376 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6377 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6378 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6379 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6380 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6381 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6382 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6383 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6384 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6385 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6386 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6387 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6388 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6389 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6390 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6391 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6392 
6393 #undef SYSCTL_ADD_T4_REG64
6394 
6395 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6396 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6397 	    &pi->stats.name, desc)
6398 
6399 	/* We get these from port_stats and they may be stale by up to 1s */
6400 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6401 	    "# drops due to buffer-group 0 overflows");
6402 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6403 	    "# drops due to buffer-group 1 overflows");
6404 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6405 	    "# drops due to buffer-group 2 overflows");
6406 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6407 	    "# drops due to buffer-group 3 overflows");
6408 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6409 	    "# of buffer-group 0 truncated packets");
6410 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6411 	    "# of buffer-group 1 truncated packets");
6412 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6413 	    "# of buffer-group 2 truncated packets");
6414 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6415 	    "# of buffer-group 3 truncated packets");
6416 
6417 #undef SYSCTL_ADD_T4_PORTSTAT
6418 
6419 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6420 	    CTLFLAG_RD, &pi->tx_tls_records,
6421 	    "# of TLS records transmitted");
6422 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6423 	    CTLFLAG_RD, &pi->tx_tls_octets,
6424 	    "# of payload octets in transmitted TLS records");
6425 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6426 	    CTLFLAG_RD, &pi->rx_tls_records,
6427 	    "# of TLS records received");
6428 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6429 	    CTLFLAG_RD, &pi->rx_tls_octets,
6430 	    "# of payload octets in received TLS records");
6431 }
6432 
6433 static int
6434 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6435 {
6436 	int rc, *i, space = 0;
6437 	struct sbuf sb;
6438 
6439 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6440 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6441 		if (space)
6442 			sbuf_printf(&sb, " ");
6443 		sbuf_printf(&sb, "%d", *i);
6444 		space = 1;
6445 	}
6446 	rc = sbuf_finish(&sb);
6447 	sbuf_delete(&sb);
6448 	return (rc);
6449 }
6450 
6451 static int
6452 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
6453 {
6454 	int rc;
6455 	struct sbuf *sb;
6456 
6457 	rc = sysctl_wire_old_buffer(req, 0);
6458 	if (rc != 0)
6459 		return(rc);
6460 
6461 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6462 	if (sb == NULL)
6463 		return (ENOMEM);
6464 
6465 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
6466 	rc = sbuf_finish(sb);
6467 	sbuf_delete(sb);
6468 
6469 	return (rc);
6470 }
6471 
6472 static int
6473 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
6474 {
6475 	int rc;
6476 	struct sbuf *sb;
6477 
6478 	rc = sysctl_wire_old_buffer(req, 0);
6479 	if (rc != 0)
6480 		return(rc);
6481 
6482 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6483 	if (sb == NULL)
6484 		return (ENOMEM);
6485 
6486 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
6487 	rc = sbuf_finish(sb);
6488 	sbuf_delete(sb);
6489 
6490 	return (rc);
6491 }
6492 
6493 static int
6494 sysctl_btphy(SYSCTL_HANDLER_ARGS)
6495 {
6496 	struct port_info *pi = arg1;
6497 	int op = arg2;
6498 	struct adapter *sc = pi->adapter;
6499 	u_int v;
6500 	int rc;
6501 
6502 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
6503 	if (rc)
6504 		return (rc);
6505 	/* XXX: magic numbers */
6506 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
6507 	    &v);
6508 	end_synchronized_op(sc, 0);
6509 	if (rc)
6510 		return (rc);
6511 	if (op == 0)
6512 		v /= 256;
6513 
6514 	rc = sysctl_handle_int(oidp, &v, 0, req);
6515 	return (rc);
6516 }
6517 
6518 static int
6519 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
6520 {
6521 	struct vi_info *vi = arg1;
6522 	int rc, val;
6523 
6524 	val = vi->rsrv_noflowq;
6525 	rc = sysctl_handle_int(oidp, &val, 0, req);
6526 	if (rc != 0 || req->newptr == NULL)
6527 		return (rc);
6528 
6529 	if ((val >= 1) && (vi->ntxq > 1))
6530 		vi->rsrv_noflowq = 1;
6531 	else
6532 		vi->rsrv_noflowq = 0;
6533 
6534 	return (rc);
6535 }
6536 
6537 static int
6538 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
6539 {
6540 	struct vi_info *vi = arg1;
6541 	struct adapter *sc = vi->pi->adapter;
6542 	int idx, rc, i;
6543 	struct sge_rxq *rxq;
6544 	uint8_t v;
6545 
6546 	idx = vi->tmr_idx;
6547 
6548 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6549 	if (rc != 0 || req->newptr == NULL)
6550 		return (rc);
6551 
6552 	if (idx < 0 || idx >= SGE_NTIMERS)
6553 		return (EINVAL);
6554 
6555 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6556 	    "t4tmr");
6557 	if (rc)
6558 		return (rc);
6559 
6560 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
6561 	for_each_rxq(vi, i, rxq) {
6562 #ifdef atomic_store_rel_8
6563 		atomic_store_rel_8(&rxq->iq.intr_params, v);
6564 #else
6565 		rxq->iq.intr_params = v;
6566 #endif
6567 	}
6568 	vi->tmr_idx = idx;
6569 
6570 	end_synchronized_op(sc, LOCK_HELD);
6571 	return (0);
6572 }
6573 
6574 static int
6575 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6576 {
6577 	struct vi_info *vi = arg1;
6578 	struct adapter *sc = vi->pi->adapter;
6579 	int idx, rc;
6580 
6581 	idx = vi->pktc_idx;
6582 
6583 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6584 	if (rc != 0 || req->newptr == NULL)
6585 		return (rc);
6586 
6587 	if (idx < -1 || idx >= SGE_NCOUNTERS)
6588 		return (EINVAL);
6589 
6590 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6591 	    "t4pktc");
6592 	if (rc)
6593 		return (rc);
6594 
6595 	if (vi->flags & VI_INIT_DONE)
6596 		rc = EBUSY; /* cannot be changed once the queues are created */
6597 	else
6598 		vi->pktc_idx = idx;
6599 
6600 	end_synchronized_op(sc, LOCK_HELD);
6601 	return (rc);
6602 }
6603 
6604 static int
6605 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6606 {
6607 	struct vi_info *vi = arg1;
6608 	struct adapter *sc = vi->pi->adapter;
6609 	int qsize, rc;
6610 
6611 	qsize = vi->qsize_rxq;
6612 
6613 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6614 	if (rc != 0 || req->newptr == NULL)
6615 		return (rc);
6616 
6617 	if (qsize < 128 || (qsize & 7))
6618 		return (EINVAL);
6619 
6620 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6621 	    "t4rxqs");
6622 	if (rc)
6623 		return (rc);
6624 
6625 	if (vi->flags & VI_INIT_DONE)
6626 		rc = EBUSY; /* cannot be changed once the queues are created */
6627 	else
6628 		vi->qsize_rxq = qsize;
6629 
6630 	end_synchronized_op(sc, LOCK_HELD);
6631 	return (rc);
6632 }
6633 
6634 static int
6635 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6636 {
6637 	struct vi_info *vi = arg1;
6638 	struct adapter *sc = vi->pi->adapter;
6639 	int qsize, rc;
6640 
6641 	qsize = vi->qsize_txq;
6642 
6643 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6644 	if (rc != 0 || req->newptr == NULL)
6645 		return (rc);
6646 
6647 	if (qsize < 128 || qsize > 65536)
6648 		return (EINVAL);
6649 
6650 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6651 	    "t4txqs");
6652 	if (rc)
6653 		return (rc);
6654 
6655 	if (vi->flags & VI_INIT_DONE)
6656 		rc = EBUSY; /* cannot be changed once the queues are created */
6657 	else
6658 		vi->qsize_txq = qsize;
6659 
6660 	end_synchronized_op(sc, LOCK_HELD);
6661 	return (rc);
6662 }
6663 
6664 static int
6665 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6666 {
6667 	struct port_info *pi = arg1;
6668 	struct adapter *sc = pi->adapter;
6669 	struct link_config *lc = &pi->link_cfg;
6670 	int rc;
6671 
6672 	if (req->newptr == NULL) {
6673 		struct sbuf *sb;
6674 		static char *bits = "\20\1RX\2TX\3AUTO";
6675 
6676 		rc = sysctl_wire_old_buffer(req, 0);
6677 		if (rc != 0)
6678 			return(rc);
6679 
6680 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6681 		if (sb == NULL)
6682 			return (ENOMEM);
6683 
6684 		if (lc->link_ok) {
6685 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
6686 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
6687 		} else {
6688 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
6689 			    PAUSE_RX | PAUSE_AUTONEG), bits);
6690 		}
6691 		rc = sbuf_finish(sb);
6692 		sbuf_delete(sb);
6693 	} else {
6694 		char s[2];
6695 		int n;
6696 
6697 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
6698 		    PAUSE_AUTONEG));
6699 		s[1] = 0;
6700 
6701 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6702 		if (rc != 0)
6703 			return(rc);
6704 
6705 		if (s[1] != 0)
6706 			return (EINVAL);
6707 		if (s[0] < '0' || s[0] > '9')
6708 			return (EINVAL);	/* not a number */
6709 		n = s[0] - '0';
6710 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
6711 			return (EINVAL);	/* some other bit is set too */
6712 
6713 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6714 		    "t4PAUSE");
6715 		if (rc)
6716 			return (rc);
6717 		PORT_LOCK(pi);
6718 		lc->requested_fc = n;
6719 		fixup_link_config(pi);
6720 		if (pi->up_vis > 0)
6721 			rc = apply_link_config(pi);
6722 		set_current_media(pi);
6723 		PORT_UNLOCK(pi);
6724 		end_synchronized_op(sc, 0);
6725 	}
6726 
6727 	return (rc);
6728 }
6729 
6730 static int
6731 sysctl_fec(SYSCTL_HANDLER_ARGS)
6732 {
6733 	struct port_info *pi = arg1;
6734 	struct adapter *sc = pi->adapter;
6735 	struct link_config *lc = &pi->link_cfg;
6736 	int rc;
6737 	int8_t old;
6738 
6739 	if (req->newptr == NULL) {
6740 		struct sbuf *sb;
6741 		static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO";
6742 
6743 		rc = sysctl_wire_old_buffer(req, 0);
6744 		if (rc != 0)
6745 			return(rc);
6746 
6747 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6748 		if (sb == NULL)
6749 			return (ENOMEM);
6750 
6751 		/*
6752 		 * Display the requested_fec when the link is down -- the actual
6753 		 * FEC makes sense only when the link is up.
6754 		 */
6755 		if (lc->link_ok) {
6756 			sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) |
6757 			    (lc->requested_fec & FEC_AUTO), bits);
6758 		} else {
6759 			sbuf_printf(sb, "%b", lc->requested_fec, bits);
6760 		}
6761 		rc = sbuf_finish(sb);
6762 		sbuf_delete(sb);
6763 	} else {
6764 		char s[3];
6765 		int n;
6766 
6767 		snprintf(s, sizeof(s), "%d",
6768 		    lc->requested_fec == FEC_AUTO ? -1 :
6769 		    lc->requested_fec & M_FW_PORT_CAP32_FEC);
6770 
6771 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6772 		if (rc != 0)
6773 			return(rc);
6774 
6775 		n = strtol(&s[0], NULL, 0);
6776 		if (n < 0 || n & FEC_AUTO)
6777 			n = FEC_AUTO;
6778 		else {
6779 			if (n & ~M_FW_PORT_CAP32_FEC)
6780 				return (EINVAL);/* some other bit is set too */
6781 			if (!powerof2(n))
6782 				return (EINVAL);/* one bit can be set at most */
6783 		}
6784 
6785 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6786 		    "t4fec");
6787 		if (rc)
6788 			return (rc);
6789 		PORT_LOCK(pi);
6790 		old = lc->requested_fec;
6791 		if (n == FEC_AUTO)
6792 			lc->requested_fec = FEC_AUTO;
6793 		else if (n == 0)
6794 			lc->requested_fec = FEC_NONE;
6795 		else {
6796 			if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) !=
6797 			    lc->supported) {
6798 				rc = ENOTSUP;
6799 				goto done;
6800 			}
6801 			lc->requested_fec = n;
6802 		}
6803 		fixup_link_config(pi);
6804 		if (pi->up_vis > 0) {
6805 			rc = apply_link_config(pi);
6806 			if (rc != 0) {
6807 				lc->requested_fec = old;
6808 				if (rc == FW_EPROTO)
6809 					rc = ENOTSUP;
6810 			}
6811 		}
6812 done:
6813 		PORT_UNLOCK(pi);
6814 		end_synchronized_op(sc, 0);
6815 	}
6816 
6817 	return (rc);
6818 }
6819 
6820 static int
6821 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
6822 {
6823 	struct port_info *pi = arg1;
6824 	struct adapter *sc = pi->adapter;
6825 	struct link_config *lc = &pi->link_cfg;
6826 	int rc, val;
6827 
6828 	if (lc->supported & FW_PORT_CAP32_ANEG)
6829 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
6830 	else
6831 		val = -1;
6832 	rc = sysctl_handle_int(oidp, &val, 0, req);
6833 	if (rc != 0 || req->newptr == NULL)
6834 		return (rc);
6835 	if (val == 0)
6836 		val = AUTONEG_DISABLE;
6837 	else if (val == 1)
6838 		val = AUTONEG_ENABLE;
6839 	else
6840 		val = AUTONEG_AUTO;
6841 
6842 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6843 	    "t4aneg");
6844 	if (rc)
6845 		return (rc);
6846 	PORT_LOCK(pi);
6847 	if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) {
6848 		rc = ENOTSUP;
6849 		goto done;
6850 	}
6851 	lc->requested_aneg = val;
6852 	fixup_link_config(pi);
6853 	if (pi->up_vis > 0)
6854 		rc = apply_link_config(pi);
6855 	set_current_media(pi);
6856 done:
6857 	PORT_UNLOCK(pi);
6858 	end_synchronized_op(sc, 0);
6859 	return (rc);
6860 }
6861 
6862 static int
6863 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
6864 {
6865 	struct adapter *sc = arg1;
6866 	int reg = arg2;
6867 	uint64_t val;
6868 
6869 	val = t4_read_reg64(sc, reg);
6870 
6871 	return (sysctl_handle_64(oidp, &val, 0, req));
6872 }
6873 
6874 static int
6875 sysctl_temperature(SYSCTL_HANDLER_ARGS)
6876 {
6877 	struct adapter *sc = arg1;
6878 	int rc, t;
6879 	uint32_t param, val;
6880 
6881 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
6882 	if (rc)
6883 		return (rc);
6884 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6885 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
6886 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
6887 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6888 	end_synchronized_op(sc, 0);
6889 	if (rc)
6890 		return (rc);
6891 
6892 	/* unknown is returned as 0 but we display -1 in that case */
6893 	t = val == 0 ? -1 : val;
6894 
6895 	rc = sysctl_handle_int(oidp, &t, 0, req);
6896 	return (rc);
6897 }
6898 
6899 static int
6900 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
6901 {
6902 	struct adapter *sc = arg1;
6903 	struct sbuf *sb;
6904 	int rc;
6905 	uint32_t param, val;
6906 
6907 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
6908 	if (rc)
6909 		return (rc);
6910 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6911 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
6912 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6913 	end_synchronized_op(sc, 0);
6914 	if (rc)
6915 		return (rc);
6916 
6917 	rc = sysctl_wire_old_buffer(req, 0);
6918 	if (rc != 0)
6919 		return (rc);
6920 
6921 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6922 	if (sb == NULL)
6923 		return (ENOMEM);
6924 
6925 	if (val == 0xffffffff) {
6926 		/* Only debug and custom firmwares report load averages. */
6927 		sbuf_printf(sb, "not available");
6928 	} else {
6929 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
6930 		    (val >> 16) & 0xff);
6931 	}
6932 	rc = sbuf_finish(sb);
6933 	sbuf_delete(sb);
6934 
6935 	return (rc);
6936 }
6937 
6938 static int
6939 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
6940 {
6941 	struct adapter *sc = arg1;
6942 	struct sbuf *sb;
6943 	int rc, i;
6944 	uint16_t incr[NMTUS][NCCTRL_WIN];
6945 	static const char *dec_fac[] = {
6946 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
6947 		"0.9375"
6948 	};
6949 
6950 	rc = sysctl_wire_old_buffer(req, 0);
6951 	if (rc != 0)
6952 		return (rc);
6953 
6954 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6955 	if (sb == NULL)
6956 		return (ENOMEM);
6957 
6958 	t4_read_cong_tbl(sc, incr);
6959 
6960 	for (i = 0; i < NCCTRL_WIN; ++i) {
6961 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
6962 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
6963 		    incr[5][i], incr[6][i], incr[7][i]);
6964 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
6965 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
6966 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
6967 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
6968 	}
6969 
6970 	rc = sbuf_finish(sb);
6971 	sbuf_delete(sb);
6972 
6973 	return (rc);
6974 }
6975 
6976 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
6977 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
6978 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
6979 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
6980 };
6981 
6982 static int
6983 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6984 {
6985 	struct adapter *sc = arg1;
6986 	struct sbuf *sb;
6987 	int rc, i, n, qid = arg2;
6988 	uint32_t *buf, *p;
6989 	char *qtype;
6990 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
6991 
6992 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6993 	    ("%s: bad qid %d\n", __func__, qid));
6994 
6995 	if (qid < CIM_NUM_IBQ) {
6996 		/* inbound queue */
6997 		qtype = "IBQ";
6998 		n = 4 * CIM_IBQ_SIZE;
6999 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7000 		rc = t4_read_cim_ibq(sc, qid, buf, n);
7001 	} else {
7002 		/* outbound queue */
7003 		qtype = "OBQ";
7004 		qid -= CIM_NUM_IBQ;
7005 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
7006 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7007 		rc = t4_read_cim_obq(sc, qid, buf, n);
7008 	}
7009 
7010 	if (rc < 0) {
7011 		rc = -rc;
7012 		goto done;
7013 	}
7014 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
7015 
7016 	rc = sysctl_wire_old_buffer(req, 0);
7017 	if (rc != 0)
7018 		goto done;
7019 
7020 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7021 	if (sb == NULL) {
7022 		rc = ENOMEM;
7023 		goto done;
7024 	}
7025 
7026 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
7027 	for (i = 0, p = buf; i < n; i += 16, p += 4)
7028 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
7029 		    p[2], p[3]);
7030 
7031 	rc = sbuf_finish(sb);
7032 	sbuf_delete(sb);
7033 done:
7034 	free(buf, M_CXGBE);
7035 	return (rc);
7036 }
7037 
7038 static int
7039 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
7040 {
7041 	struct adapter *sc = arg1;
7042 	u_int cfg;
7043 	struct sbuf *sb;
7044 	uint32_t *buf, *p;
7045 	int rc;
7046 
7047 	MPASS(chip_id(sc) <= CHELSIO_T5);
7048 
7049 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7050 	if (rc != 0)
7051 		return (rc);
7052 
7053 	rc = sysctl_wire_old_buffer(req, 0);
7054 	if (rc != 0)
7055 		return (rc);
7056 
7057 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7058 	if (sb == NULL)
7059 		return (ENOMEM);
7060 
7061 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7062 	    M_ZERO | M_WAITOK);
7063 
7064 	rc = -t4_cim_read_la(sc, buf, NULL);
7065 	if (rc != 0)
7066 		goto done;
7067 
7068 	sbuf_printf(sb, "Status   Data      PC%s",
7069 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7070 	    "     LS0Stat  LS0Addr             LS0Data");
7071 
7072 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
7073 		if (cfg & F_UPDBGLACAPTPCONLY) {
7074 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
7075 			    p[6], p[7]);
7076 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
7077 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
7078 			    p[4] & 0xff, p[5] >> 8);
7079 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
7080 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7081 			    p[1] & 0xf, p[2] >> 4);
7082 		} else {
7083 			sbuf_printf(sb,
7084 			    "\n  %02x   %x%07x %x%07x %08x %08x "
7085 			    "%08x%08x%08x%08x",
7086 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7087 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
7088 			    p[6], p[7]);
7089 		}
7090 	}
7091 
7092 	rc = sbuf_finish(sb);
7093 	sbuf_delete(sb);
7094 done:
7095 	free(buf, M_CXGBE);
7096 	return (rc);
7097 }
7098 
7099 static int
7100 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
7101 {
7102 	struct adapter *sc = arg1;
7103 	u_int cfg;
7104 	struct sbuf *sb;
7105 	uint32_t *buf, *p;
7106 	int rc;
7107 
7108 	MPASS(chip_id(sc) > CHELSIO_T5);
7109 
7110 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7111 	if (rc != 0)
7112 		return (rc);
7113 
7114 	rc = sysctl_wire_old_buffer(req, 0);
7115 	if (rc != 0)
7116 		return (rc);
7117 
7118 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7119 	if (sb == NULL)
7120 		return (ENOMEM);
7121 
7122 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7123 	    M_ZERO | M_WAITOK);
7124 
7125 	rc = -t4_cim_read_la(sc, buf, NULL);
7126 	if (rc != 0)
7127 		goto done;
7128 
7129 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
7130 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7131 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
7132 
7133 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
7134 		if (cfg & F_UPDBGLACAPTPCONLY) {
7135 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
7136 			    p[3] & 0xff, p[2], p[1], p[0]);
7137 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
7138 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
7139 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
7140 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
7141 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
7142 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
7143 			    p[6] >> 16);
7144 		} else {
7145 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
7146 			    "%08x %08x %08x %08x %08x %08x",
7147 			    (p[9] >> 16) & 0xff,
7148 			    p[9] & 0xffff, p[8] >> 16,
7149 			    p[8] & 0xffff, p[7] >> 16,
7150 			    p[7] & 0xffff, p[6] >> 16,
7151 			    p[2], p[1], p[0], p[5], p[4], p[3]);
7152 		}
7153 	}
7154 
7155 	rc = sbuf_finish(sb);
7156 	sbuf_delete(sb);
7157 done:
7158 	free(buf, M_CXGBE);
7159 	return (rc);
7160 }
7161 
7162 static int
7163 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
7164 {
7165 	struct adapter *sc = arg1;
7166 	u_int i;
7167 	struct sbuf *sb;
7168 	uint32_t *buf, *p;
7169 	int rc;
7170 
7171 	rc = sysctl_wire_old_buffer(req, 0);
7172 	if (rc != 0)
7173 		return (rc);
7174 
7175 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7176 	if (sb == NULL)
7177 		return (ENOMEM);
7178 
7179 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
7180 	    M_ZERO | M_WAITOK);
7181 
7182 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
7183 	p = buf;
7184 
7185 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7186 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
7187 		    p[1], p[0]);
7188 	}
7189 
7190 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
7191 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7192 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
7193 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
7194 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
7195 		    (p[1] >> 2) | ((p[2] & 3) << 30),
7196 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
7197 		    p[0] & 1);
7198 	}
7199 
7200 	rc = sbuf_finish(sb);
7201 	sbuf_delete(sb);
7202 	free(buf, M_CXGBE);
7203 	return (rc);
7204 }
7205 
7206 static int
7207 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
7208 {
7209 	struct adapter *sc = arg1;
7210 	u_int i;
7211 	struct sbuf *sb;
7212 	uint32_t *buf, *p;
7213 	int rc;
7214 
7215 	rc = sysctl_wire_old_buffer(req, 0);
7216 	if (rc != 0)
7217 		return (rc);
7218 
7219 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7220 	if (sb == NULL)
7221 		return (ENOMEM);
7222 
7223 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
7224 	    M_ZERO | M_WAITOK);
7225 
7226 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
7227 	p = buf;
7228 
7229 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
7230 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7231 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
7232 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
7233 		    p[4], p[3], p[2], p[1], p[0]);
7234 	}
7235 
7236 	sbuf_printf(sb, "\n\nCntl ID               Data");
7237 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7238 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
7239 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
7240 	}
7241 
7242 	rc = sbuf_finish(sb);
7243 	sbuf_delete(sb);
7244 	free(buf, M_CXGBE);
7245 	return (rc);
7246 }
7247 
7248 static int
7249 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
7250 {
7251 	struct adapter *sc = arg1;
7252 	struct sbuf *sb;
7253 	int rc, i;
7254 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7255 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7256 	uint16_t thres[CIM_NUM_IBQ];
7257 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
7258 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
7259 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
7260 
7261 	cim_num_obq = sc->chip_params->cim_num_obq;
7262 	if (is_t4(sc)) {
7263 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
7264 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
7265 	} else {
7266 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
7267 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
7268 	}
7269 	nq = CIM_NUM_IBQ + cim_num_obq;
7270 
7271 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
7272 	if (rc == 0)
7273 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
7274 	if (rc != 0)
7275 		return (rc);
7276 
7277 	t4_read_cimq_cfg(sc, base, size, thres);
7278 
7279 	rc = sysctl_wire_old_buffer(req, 0);
7280 	if (rc != 0)
7281 		return (rc);
7282 
7283 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7284 	if (sb == NULL)
7285 		return (ENOMEM);
7286 
7287 	sbuf_printf(sb,
7288 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
7289 
7290 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
7291 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
7292 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
7293 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7294 		    G_QUEREMFLITS(p[2]) * 16);
7295 	for ( ; i < nq; i++, p += 4, wr += 2)
7296 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
7297 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
7298 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7299 		    G_QUEREMFLITS(p[2]) * 16);
7300 
7301 	rc = sbuf_finish(sb);
7302 	sbuf_delete(sb);
7303 
7304 	return (rc);
7305 }
7306 
7307 static int
7308 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
7309 {
7310 	struct adapter *sc = arg1;
7311 	struct sbuf *sb;
7312 	int rc;
7313 	struct tp_cpl_stats stats;
7314 
7315 	rc = sysctl_wire_old_buffer(req, 0);
7316 	if (rc != 0)
7317 		return (rc);
7318 
7319 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7320 	if (sb == NULL)
7321 		return (ENOMEM);
7322 
7323 	mtx_lock(&sc->reg_lock);
7324 	t4_tp_get_cpl_stats(sc, &stats, 0);
7325 	mtx_unlock(&sc->reg_lock);
7326 
7327 	if (sc->chip_params->nchan > 2) {
7328 		sbuf_printf(sb, "                 channel 0  channel 1"
7329 		    "  channel 2  channel 3");
7330 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
7331 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
7332 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
7333 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
7334 	} else {
7335 		sbuf_printf(sb, "                 channel 0  channel 1");
7336 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
7337 		    stats.req[0], stats.req[1]);
7338 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
7339 		    stats.rsp[0], stats.rsp[1]);
7340 	}
7341 
7342 	rc = sbuf_finish(sb);
7343 	sbuf_delete(sb);
7344 
7345 	return (rc);
7346 }
7347 
7348 static int
7349 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
7350 {
7351 	struct adapter *sc = arg1;
7352 	struct sbuf *sb;
7353 	int rc;
7354 	struct tp_usm_stats stats;
7355 
7356 	rc = sysctl_wire_old_buffer(req, 0);
7357 	if (rc != 0)
7358 		return(rc);
7359 
7360 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7361 	if (sb == NULL)
7362 		return (ENOMEM);
7363 
7364 	t4_get_usm_stats(sc, &stats, 1);
7365 
7366 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
7367 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
7368 	sbuf_printf(sb, "Drops:  %u", stats.drops);
7369 
7370 	rc = sbuf_finish(sb);
7371 	sbuf_delete(sb);
7372 
7373 	return (rc);
7374 }
7375 
7376 static const char * const devlog_level_strings[] = {
7377 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
7378 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
7379 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
7380 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
7381 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
7382 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
7383 };
7384 
7385 static const char * const devlog_facility_strings[] = {
7386 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
7387 	[FW_DEVLOG_FACILITY_CF]		= "CF",
7388 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
7389 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
7390 	[FW_DEVLOG_FACILITY_RES]	= "RES",
7391 	[FW_DEVLOG_FACILITY_HW]		= "HW",
7392 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
7393 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
7394 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
7395 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
7396 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
7397 	[FW_DEVLOG_FACILITY_VI]		= "VI",
7398 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
7399 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
7400 	[FW_DEVLOG_FACILITY_TM]		= "TM",
7401 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
7402 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
7403 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
7404 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
7405 	[FW_DEVLOG_FACILITY_RI]		= "RI",
7406 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
7407 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
7408 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
7409 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
7410 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
7411 };
7412 
7413 static int
7414 sysctl_devlog(SYSCTL_HANDLER_ARGS)
7415 {
7416 	struct adapter *sc = arg1;
7417 	struct devlog_params *dparams = &sc->params.devlog;
7418 	struct fw_devlog_e *buf, *e;
7419 	int i, j, rc, nentries, first = 0;
7420 	struct sbuf *sb;
7421 	uint64_t ftstamp = UINT64_MAX;
7422 
7423 	if (dparams->addr == 0)
7424 		return (ENXIO);
7425 
7426 	buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
7427 	if (buf == NULL)
7428 		return (ENOMEM);
7429 
7430 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
7431 	if (rc != 0)
7432 		goto done;
7433 
7434 	nentries = dparams->size / sizeof(struct fw_devlog_e);
7435 	for (i = 0; i < nentries; i++) {
7436 		e = &buf[i];
7437 
7438 		if (e->timestamp == 0)
7439 			break;	/* end */
7440 
7441 		e->timestamp = be64toh(e->timestamp);
7442 		e->seqno = be32toh(e->seqno);
7443 		for (j = 0; j < 8; j++)
7444 			e->params[j] = be32toh(e->params[j]);
7445 
7446 		if (e->timestamp < ftstamp) {
7447 			ftstamp = e->timestamp;
7448 			first = i;
7449 		}
7450 	}
7451 
7452 	if (buf[first].timestamp == 0)
7453 		goto done;	/* nothing in the log */
7454 
7455 	rc = sysctl_wire_old_buffer(req, 0);
7456 	if (rc != 0)
7457 		goto done;
7458 
7459 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7460 	if (sb == NULL) {
7461 		rc = ENOMEM;
7462 		goto done;
7463 	}
7464 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
7465 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
7466 
7467 	i = first;
7468 	do {
7469 		e = &buf[i];
7470 		if (e->timestamp == 0)
7471 			break;	/* end */
7472 
7473 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
7474 		    e->seqno, e->timestamp,
7475 		    (e->level < nitems(devlog_level_strings) ?
7476 			devlog_level_strings[e->level] : "UNKNOWN"),
7477 		    (e->facility < nitems(devlog_facility_strings) ?
7478 			devlog_facility_strings[e->facility] : "UNKNOWN"));
7479 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
7480 		    e->params[2], e->params[3], e->params[4],
7481 		    e->params[5], e->params[6], e->params[7]);
7482 
7483 		if (++i == nentries)
7484 			i = 0;
7485 	} while (i != first);
7486 
7487 	rc = sbuf_finish(sb);
7488 	sbuf_delete(sb);
7489 done:
7490 	free(buf, M_CXGBE);
7491 	return (rc);
7492 }
7493 
7494 static int
7495 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
7496 {
7497 	struct adapter *sc = arg1;
7498 	struct sbuf *sb;
7499 	int rc;
7500 	struct tp_fcoe_stats stats[MAX_NCHAN];
7501 	int i, nchan = sc->chip_params->nchan;
7502 
7503 	rc = sysctl_wire_old_buffer(req, 0);
7504 	if (rc != 0)
7505 		return (rc);
7506 
7507 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7508 	if (sb == NULL)
7509 		return (ENOMEM);
7510 
7511 	for (i = 0; i < nchan; i++)
7512 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
7513 
7514 	if (nchan > 2) {
7515 		sbuf_printf(sb, "                   channel 0        channel 1"
7516 		    "        channel 2        channel 3");
7517 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
7518 		    stats[0].octets_ddp, stats[1].octets_ddp,
7519 		    stats[2].octets_ddp, stats[3].octets_ddp);
7520 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
7521 		    stats[0].frames_ddp, stats[1].frames_ddp,
7522 		    stats[2].frames_ddp, stats[3].frames_ddp);
7523 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
7524 		    stats[0].frames_drop, stats[1].frames_drop,
7525 		    stats[2].frames_drop, stats[3].frames_drop);
7526 	} else {
7527 		sbuf_printf(sb, "                   channel 0        channel 1");
7528 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
7529 		    stats[0].octets_ddp, stats[1].octets_ddp);
7530 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
7531 		    stats[0].frames_ddp, stats[1].frames_ddp);
7532 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
7533 		    stats[0].frames_drop, stats[1].frames_drop);
7534 	}
7535 
7536 	rc = sbuf_finish(sb);
7537 	sbuf_delete(sb);
7538 
7539 	return (rc);
7540 }
7541 
7542 static int
7543 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
7544 {
7545 	struct adapter *sc = arg1;
7546 	struct sbuf *sb;
7547 	int rc, i;
7548 	unsigned int map, kbps, ipg, mode;
7549 	unsigned int pace_tab[NTX_SCHED];
7550 
7551 	rc = sysctl_wire_old_buffer(req, 0);
7552 	if (rc != 0)
7553 		return (rc);
7554 
7555 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7556 	if (sb == NULL)
7557 		return (ENOMEM);
7558 
7559 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
7560 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
7561 	t4_read_pace_tbl(sc, pace_tab);
7562 
7563 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
7564 	    "Class IPG (0.1 ns)   Flow IPG (us)");
7565 
7566 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
7567 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
7568 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
7569 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
7570 		if (kbps)
7571 			sbuf_printf(sb, "%9u     ", kbps);
7572 		else
7573 			sbuf_printf(sb, " disabled     ");
7574 
7575 		if (ipg)
7576 			sbuf_printf(sb, "%13u        ", ipg);
7577 		else
7578 			sbuf_printf(sb, "     disabled        ");
7579 
7580 		if (pace_tab[i])
7581 			sbuf_printf(sb, "%10u", pace_tab[i]);
7582 		else
7583 			sbuf_printf(sb, "  disabled");
7584 	}
7585 
7586 	rc = sbuf_finish(sb);
7587 	sbuf_delete(sb);
7588 
7589 	return (rc);
7590 }
7591 
7592 static int
7593 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
7594 {
7595 	struct adapter *sc = arg1;
7596 	struct sbuf *sb;
7597 	int rc, i, j;
7598 	uint64_t *p0, *p1;
7599 	struct lb_port_stats s[2];
7600 	static const char *stat_name[] = {
7601 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
7602 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
7603 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
7604 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
7605 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
7606 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
7607 		"BG2FramesTrunc:", "BG3FramesTrunc:"
7608 	};
7609 
7610 	rc = sysctl_wire_old_buffer(req, 0);
7611 	if (rc != 0)
7612 		return (rc);
7613 
7614 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7615 	if (sb == NULL)
7616 		return (ENOMEM);
7617 
7618 	memset(s, 0, sizeof(s));
7619 
7620 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
7621 		t4_get_lb_stats(sc, i, &s[0]);
7622 		t4_get_lb_stats(sc, i + 1, &s[1]);
7623 
7624 		p0 = &s[0].octets;
7625 		p1 = &s[1].octets;
7626 		sbuf_printf(sb, "%s                       Loopback %u"
7627 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
7628 
7629 		for (j = 0; j < nitems(stat_name); j++)
7630 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
7631 				   *p0++, *p1++);
7632 	}
7633 
7634 	rc = sbuf_finish(sb);
7635 	sbuf_delete(sb);
7636 
7637 	return (rc);
7638 }
7639 
7640 static int
7641 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
7642 {
7643 	int rc = 0;
7644 	struct port_info *pi = arg1;
7645 	struct link_config *lc = &pi->link_cfg;
7646 	struct sbuf *sb;
7647 
7648 	rc = sysctl_wire_old_buffer(req, 0);
7649 	if (rc != 0)
7650 		return(rc);
7651 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7652 	if (sb == NULL)
7653 		return (ENOMEM);
7654 
7655 	if (lc->link_ok || lc->link_down_rc == 255)
7656 		sbuf_printf(sb, "n/a");
7657 	else
7658 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7659 
7660 	rc = sbuf_finish(sb);
7661 	sbuf_delete(sb);
7662 
7663 	return (rc);
7664 }
7665 
7666 struct mem_desc {
7667 	unsigned int base;
7668 	unsigned int limit;
7669 	unsigned int idx;
7670 };
7671 
7672 static int
7673 mem_desc_cmp(const void *a, const void *b)
7674 {
7675 	return ((const struct mem_desc *)a)->base -
7676 	       ((const struct mem_desc *)b)->base;
7677 }
7678 
7679 static void
7680 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7681     unsigned int to)
7682 {
7683 	unsigned int size;
7684 
7685 	if (from == to)
7686 		return;
7687 
7688 	size = to - from + 1;
7689 	if (size == 0)
7690 		return;
7691 
7692 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7693 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7694 }
7695 
7696 static int
7697 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7698 {
7699 	struct adapter *sc = arg1;
7700 	struct sbuf *sb;
7701 	int rc, i, n;
7702 	uint32_t lo, hi, used, alloc;
7703 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
7704 	static const char *region[] = {
7705 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
7706 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
7707 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
7708 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
7709 		"RQUDP region:", "PBL region:", "TXPBL region:",
7710 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
7711 		"On-chip queues:", "TLS keys:",
7712 	};
7713 	struct mem_desc avail[4];
7714 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
7715 	struct mem_desc *md = mem;
7716 
7717 	rc = sysctl_wire_old_buffer(req, 0);
7718 	if (rc != 0)
7719 		return (rc);
7720 
7721 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7722 	if (sb == NULL)
7723 		return (ENOMEM);
7724 
7725 	for (i = 0; i < nitems(mem); i++) {
7726 		mem[i].limit = 0;
7727 		mem[i].idx = i;
7728 	}
7729 
7730 	/* Find and sort the populated memory ranges */
7731 	i = 0;
7732 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
7733 	if (lo & F_EDRAM0_ENABLE) {
7734 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
7735 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
7736 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
7737 		avail[i].idx = 0;
7738 		i++;
7739 	}
7740 	if (lo & F_EDRAM1_ENABLE) {
7741 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
7742 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
7743 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
7744 		avail[i].idx = 1;
7745 		i++;
7746 	}
7747 	if (lo & F_EXT_MEM_ENABLE) {
7748 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
7749 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
7750 		avail[i].limit = avail[i].base +
7751 		    (G_EXT_MEM_SIZE(hi) << 20);
7752 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
7753 		i++;
7754 	}
7755 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
7756 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
7757 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
7758 		avail[i].limit = avail[i].base +
7759 		    (G_EXT_MEM1_SIZE(hi) << 20);
7760 		avail[i].idx = 4;
7761 		i++;
7762 	}
7763 	if (!i)                                    /* no memory available */
7764 		return 0;
7765 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
7766 
7767 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
7768 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
7769 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
7770 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
7771 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
7772 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
7773 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
7774 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
7775 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
7776 
7777 	/* the next few have explicit upper bounds */
7778 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
7779 	md->limit = md->base - 1 +
7780 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
7781 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
7782 	md++;
7783 
7784 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
7785 	md->limit = md->base - 1 +
7786 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
7787 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
7788 	md++;
7789 
7790 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7791 		if (chip_id(sc) <= CHELSIO_T5)
7792 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
7793 		else
7794 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
7795 		md->limit = 0;
7796 	} else {
7797 		md->base = 0;
7798 		md->idx = nitems(region);  /* hide it */
7799 	}
7800 	md++;
7801 
7802 #define ulp_region(reg) \
7803 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
7804 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
7805 
7806 	ulp_region(RX_ISCSI);
7807 	ulp_region(RX_TDDP);
7808 	ulp_region(TX_TPT);
7809 	ulp_region(RX_STAG);
7810 	ulp_region(RX_RQ);
7811 	ulp_region(RX_RQUDP);
7812 	ulp_region(RX_PBL);
7813 	ulp_region(TX_PBL);
7814 #undef ulp_region
7815 
7816 	md->base = 0;
7817 	md->idx = nitems(region);
7818 	if (!is_t4(sc)) {
7819 		uint32_t size = 0;
7820 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
7821 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
7822 
7823 		if (is_t5(sc)) {
7824 			if (sge_ctrl & F_VFIFO_ENABLE)
7825 				size = G_DBVFIFO_SIZE(fifo_size);
7826 		} else
7827 			size = G_T6_DBVFIFO_SIZE(fifo_size);
7828 
7829 		if (size) {
7830 			md->base = G_BASEADDR(t4_read_reg(sc,
7831 			    A_SGE_DBVFIFO_BADDR));
7832 			md->limit = md->base + (size << 2) - 1;
7833 		}
7834 	}
7835 	md++;
7836 
7837 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
7838 	md->limit = 0;
7839 	md++;
7840 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
7841 	md->limit = 0;
7842 	md++;
7843 
7844 	md->base = sc->vres.ocq.start;
7845 	if (sc->vres.ocq.size)
7846 		md->limit = md->base + sc->vres.ocq.size - 1;
7847 	else
7848 		md->idx = nitems(region);  /* hide it */
7849 	md++;
7850 
7851 	md->base = sc->vres.key.start;
7852 	if (sc->vres.key.size)
7853 		md->limit = md->base + sc->vres.key.size - 1;
7854 	else
7855 		md->idx = nitems(region);  /* hide it */
7856 	md++;
7857 
7858 	/* add any address-space holes, there can be up to 3 */
7859 	for (n = 0; n < i - 1; n++)
7860 		if (avail[n].limit < avail[n + 1].base)
7861 			(md++)->base = avail[n].limit;
7862 	if (avail[n].limit)
7863 		(md++)->base = avail[n].limit;
7864 
7865 	n = md - mem;
7866 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
7867 
7868 	for (lo = 0; lo < i; lo++)
7869 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
7870 				avail[lo].limit - 1);
7871 
7872 	sbuf_printf(sb, "\n");
7873 	for (i = 0; i < n; i++) {
7874 		if (mem[i].idx >= nitems(region))
7875 			continue;                        /* skip holes */
7876 		if (!mem[i].limit)
7877 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
7878 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
7879 				mem[i].limit);
7880 	}
7881 
7882 	sbuf_printf(sb, "\n");
7883 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
7884 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
7885 	mem_region_show(sb, "uP RAM:", lo, hi);
7886 
7887 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
7888 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
7889 	mem_region_show(sb, "uP Extmem2:", lo, hi);
7890 
7891 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
7892 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
7893 		   G_PMRXMAXPAGE(lo),
7894 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
7895 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
7896 
7897 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
7898 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
7899 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
7900 		   G_PMTXMAXPAGE(lo),
7901 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
7902 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
7903 	sbuf_printf(sb, "%u p-structs\n",
7904 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
7905 
7906 	for (i = 0; i < 4; i++) {
7907 		if (chip_id(sc) > CHELSIO_T5)
7908 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
7909 		else
7910 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
7911 		if (is_t5(sc)) {
7912 			used = G_T5_USED(lo);
7913 			alloc = G_T5_ALLOC(lo);
7914 		} else {
7915 			used = G_USED(lo);
7916 			alloc = G_ALLOC(lo);
7917 		}
7918 		/* For T6 these are MAC buffer groups */
7919 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
7920 		    i, used, alloc);
7921 	}
7922 	for (i = 0; i < sc->chip_params->nchan; i++) {
7923 		if (chip_id(sc) > CHELSIO_T5)
7924 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
7925 		else
7926 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
7927 		if (is_t5(sc)) {
7928 			used = G_T5_USED(lo);
7929 			alloc = G_T5_ALLOC(lo);
7930 		} else {
7931 			used = G_USED(lo);
7932 			alloc = G_ALLOC(lo);
7933 		}
7934 		/* For T6 these are MAC buffer groups */
7935 		sbuf_printf(sb,
7936 		    "\nLoopback %d using %u pages out of %u allocated",
7937 		    i, used, alloc);
7938 	}
7939 
7940 	rc = sbuf_finish(sb);
7941 	sbuf_delete(sb);
7942 
7943 	return (rc);
7944 }
7945 
7946 static inline void
7947 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
7948 {
7949 	*mask = x | y;
7950 	y = htobe64(y);
7951 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
7952 }
7953 
7954 static int
7955 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
7956 {
7957 	struct adapter *sc = arg1;
7958 	struct sbuf *sb;
7959 	int rc, i;
7960 
7961 	MPASS(chip_id(sc) <= CHELSIO_T5);
7962 
7963 	rc = sysctl_wire_old_buffer(req, 0);
7964 	if (rc != 0)
7965 		return (rc);
7966 
7967 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7968 	if (sb == NULL)
7969 		return (ENOMEM);
7970 
7971 	sbuf_printf(sb,
7972 	    "Idx  Ethernet address     Mask     Vld Ports PF"
7973 	    "  VF              Replication             P0 P1 P2 P3  ML");
7974 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7975 		uint64_t tcamx, tcamy, mask;
7976 		uint32_t cls_lo, cls_hi;
7977 		uint8_t addr[ETHER_ADDR_LEN];
7978 
7979 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
7980 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
7981 		if (tcamx & tcamy)
7982 			continue;
7983 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
7984 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7985 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7986 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7987 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7988 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
7989 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7990 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
7991 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7992 
7993 		if (cls_lo & F_REPLICATE) {
7994 			struct fw_ldst_cmd ldst_cmd;
7995 
7996 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7997 			ldst_cmd.op_to_addrspace =
7998 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7999 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8000 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8001 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8002 			ldst_cmd.u.mps.rplc.fid_idx =
8003 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8004 				V_FW_LDST_CMD_IDX(i));
8005 
8006 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8007 			    "t4mps");
8008 			if (rc)
8009 				break;
8010 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8011 			    sizeof(ldst_cmd), &ldst_cmd);
8012 			end_synchronized_op(sc, 0);
8013 
8014 			if (rc != 0) {
8015 				sbuf_printf(sb, "%36d", rc);
8016 				rc = 0;
8017 			} else {
8018 				sbuf_printf(sb, " %08x %08x %08x %08x",
8019 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8020 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8021 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8022 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8023 			}
8024 		} else
8025 			sbuf_printf(sb, "%36s", "");
8026 
8027 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
8028 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
8029 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
8030 	}
8031 
8032 	if (rc)
8033 		(void) sbuf_finish(sb);
8034 	else
8035 		rc = sbuf_finish(sb);
8036 	sbuf_delete(sb);
8037 
8038 	return (rc);
8039 }
8040 
8041 static int
8042 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
8043 {
8044 	struct adapter *sc = arg1;
8045 	struct sbuf *sb;
8046 	int rc, i;
8047 
8048 	MPASS(chip_id(sc) > CHELSIO_T5);
8049 
8050 	rc = sysctl_wire_old_buffer(req, 0);
8051 	if (rc != 0)
8052 		return (rc);
8053 
8054 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8055 	if (sb == NULL)
8056 		return (ENOMEM);
8057 
8058 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
8059 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
8060 	    "                           Replication"
8061 	    "                                    P0 P1 P2 P3  ML\n");
8062 
8063 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8064 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
8065 		uint16_t ivlan;
8066 		uint64_t tcamx, tcamy, val, mask;
8067 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
8068 		uint8_t addr[ETHER_ADDR_LEN];
8069 
8070 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
8071 		if (i < 256)
8072 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
8073 		else
8074 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
8075 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8076 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8077 		tcamy = G_DMACH(val) << 32;
8078 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8079 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8080 		lookup_type = G_DATALKPTYPE(data2);
8081 		port_num = G_DATAPORTNUM(data2);
8082 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8083 			/* Inner header VNI */
8084 			vniy = ((data2 & F_DATAVIDH2) << 23) |
8085 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8086 			dip_hit = data2 & F_DATADIPHIT;
8087 			vlan_vld = 0;
8088 		} else {
8089 			vniy = 0;
8090 			dip_hit = 0;
8091 			vlan_vld = data2 & F_DATAVIDH2;
8092 			ivlan = G_VIDL(val);
8093 		}
8094 
8095 		ctl |= V_CTLXYBITSEL(1);
8096 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8097 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8098 		tcamx = G_DMACH(val) << 32;
8099 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8100 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8101 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8102 			/* Inner header VNI mask */
8103 			vnix = ((data2 & F_DATAVIDH2) << 23) |
8104 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8105 		} else
8106 			vnix = 0;
8107 
8108 		if (tcamx & tcamy)
8109 			continue;
8110 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8111 
8112 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8113 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8114 
8115 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8116 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8117 			    "%012jx %06x %06x    -    -   %3c"
8118 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
8119 			    addr[1], addr[2], addr[3], addr[4], addr[5],
8120 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
8121 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8122 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8123 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8124 		} else {
8125 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8126 			    "%012jx    -       -   ", i, addr[0], addr[1],
8127 			    addr[2], addr[3], addr[4], addr[5],
8128 			    (uintmax_t)mask);
8129 
8130 			if (vlan_vld)
8131 				sbuf_printf(sb, "%4u   Y     ", ivlan);
8132 			else
8133 				sbuf_printf(sb, "  -    N     ");
8134 
8135 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
8136 			    lookup_type ? 'I' : 'O', port_num,
8137 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8138 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8139 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8140 		}
8141 
8142 
8143 		if (cls_lo & F_T6_REPLICATE) {
8144 			struct fw_ldst_cmd ldst_cmd;
8145 
8146 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8147 			ldst_cmd.op_to_addrspace =
8148 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8149 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8150 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8151 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8152 			ldst_cmd.u.mps.rplc.fid_idx =
8153 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8154 				V_FW_LDST_CMD_IDX(i));
8155 
8156 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8157 			    "t6mps");
8158 			if (rc)
8159 				break;
8160 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8161 			    sizeof(ldst_cmd), &ldst_cmd);
8162 			end_synchronized_op(sc, 0);
8163 
8164 			if (rc != 0) {
8165 				sbuf_printf(sb, "%72d", rc);
8166 				rc = 0;
8167 			} else {
8168 				sbuf_printf(sb, " %08x %08x %08x %08x"
8169 				    " %08x %08x %08x %08x",
8170 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
8171 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
8172 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
8173 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
8174 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8175 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8176 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8177 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8178 			}
8179 		} else
8180 			sbuf_printf(sb, "%72s", "");
8181 
8182 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
8183 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
8184 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
8185 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
8186 	}
8187 
8188 	if (rc)
8189 		(void) sbuf_finish(sb);
8190 	else
8191 		rc = sbuf_finish(sb);
8192 	sbuf_delete(sb);
8193 
8194 	return (rc);
8195 }
8196 
8197 static int
8198 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
8199 {
8200 	struct adapter *sc = arg1;
8201 	struct sbuf *sb;
8202 	int rc;
8203 	uint16_t mtus[NMTUS];
8204 
8205 	rc = sysctl_wire_old_buffer(req, 0);
8206 	if (rc != 0)
8207 		return (rc);
8208 
8209 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8210 	if (sb == NULL)
8211 		return (ENOMEM);
8212 
8213 	t4_read_mtu_tbl(sc, mtus, NULL);
8214 
8215 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
8216 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
8217 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
8218 	    mtus[14], mtus[15]);
8219 
8220 	rc = sbuf_finish(sb);
8221 	sbuf_delete(sb);
8222 
8223 	return (rc);
8224 }
8225 
8226 static int
8227 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
8228 {
8229 	struct adapter *sc = arg1;
8230 	struct sbuf *sb;
8231 	int rc, i;
8232 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
8233 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
8234 	static const char *tx_stats[MAX_PM_NSTATS] = {
8235 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
8236 		"Tx FIFO wait", NULL, "Tx latency"
8237 	};
8238 	static const char *rx_stats[MAX_PM_NSTATS] = {
8239 		"Read:", "Write bypass:", "Write mem:", "Flush:",
8240 		"Rx FIFO wait", NULL, "Rx latency"
8241 	};
8242 
8243 	rc = sysctl_wire_old_buffer(req, 0);
8244 	if (rc != 0)
8245 		return (rc);
8246 
8247 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8248 	if (sb == NULL)
8249 		return (ENOMEM);
8250 
8251 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
8252 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
8253 
8254 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
8255 	for (i = 0; i < 4; i++) {
8256 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8257 		    tx_cyc[i]);
8258 	}
8259 
8260 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
8261 	for (i = 0; i < 4; i++) {
8262 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8263 		    rx_cyc[i]);
8264 	}
8265 
8266 	if (chip_id(sc) > CHELSIO_T5) {
8267 		sbuf_printf(sb,
8268 		    "\n              Total wait      Total occupancy");
8269 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8270 		    tx_cyc[i]);
8271 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8272 		    rx_cyc[i]);
8273 
8274 		i += 2;
8275 		MPASS(i < nitems(tx_stats));
8276 
8277 		sbuf_printf(sb,
8278 		    "\n                   Reads           Total wait");
8279 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8280 		    tx_cyc[i]);
8281 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8282 		    rx_cyc[i]);
8283 	}
8284 
8285 	rc = sbuf_finish(sb);
8286 	sbuf_delete(sb);
8287 
8288 	return (rc);
8289 }
8290 
8291 static int
8292 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
8293 {
8294 	struct adapter *sc = arg1;
8295 	struct sbuf *sb;
8296 	int rc;
8297 	struct tp_rdma_stats stats;
8298 
8299 	rc = sysctl_wire_old_buffer(req, 0);
8300 	if (rc != 0)
8301 		return (rc);
8302 
8303 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8304 	if (sb == NULL)
8305 		return (ENOMEM);
8306 
8307 	mtx_lock(&sc->reg_lock);
8308 	t4_tp_get_rdma_stats(sc, &stats, 0);
8309 	mtx_unlock(&sc->reg_lock);
8310 
8311 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
8312 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
8313 
8314 	rc = sbuf_finish(sb);
8315 	sbuf_delete(sb);
8316 
8317 	return (rc);
8318 }
8319 
8320 static int
8321 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
8322 {
8323 	struct adapter *sc = arg1;
8324 	struct sbuf *sb;
8325 	int rc;
8326 	struct tp_tcp_stats v4, v6;
8327 
8328 	rc = sysctl_wire_old_buffer(req, 0);
8329 	if (rc != 0)
8330 		return (rc);
8331 
8332 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8333 	if (sb == NULL)
8334 		return (ENOMEM);
8335 
8336 	mtx_lock(&sc->reg_lock);
8337 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
8338 	mtx_unlock(&sc->reg_lock);
8339 
8340 	sbuf_printf(sb,
8341 	    "                                IP                 IPv6\n");
8342 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
8343 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
8344 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
8345 	    v4.tcp_in_segs, v6.tcp_in_segs);
8346 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
8347 	    v4.tcp_out_segs, v6.tcp_out_segs);
8348 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
8349 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
8350 
8351 	rc = sbuf_finish(sb);
8352 	sbuf_delete(sb);
8353 
8354 	return (rc);
8355 }
8356 
8357 static int
8358 sysctl_tids(SYSCTL_HANDLER_ARGS)
8359 {
8360 	struct adapter *sc = arg1;
8361 	struct sbuf *sb;
8362 	int rc;
8363 	struct tid_info *t = &sc->tids;
8364 
8365 	rc = sysctl_wire_old_buffer(req, 0);
8366 	if (rc != 0)
8367 		return (rc);
8368 
8369 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8370 	if (sb == NULL)
8371 		return (ENOMEM);
8372 
8373 	if (t->natids) {
8374 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
8375 		    t->atids_in_use);
8376 	}
8377 
8378 	if (t->nhpftids) {
8379 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
8380 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
8381 	}
8382 
8383 	if (t->ntids) {
8384 		sbuf_printf(sb, "TID range: ");
8385 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8386 			uint32_t b, hb;
8387 
8388 			if (chip_id(sc) <= CHELSIO_T5) {
8389 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
8390 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
8391 			} else {
8392 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
8393 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
8394 			}
8395 
8396 			if (b)
8397 				sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1);
8398 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
8399 		} else
8400 			sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1);
8401 		sbuf_printf(sb, ", in use: %u\n",
8402 		    atomic_load_acq_int(&t->tids_in_use));
8403 	}
8404 
8405 	if (t->nstids) {
8406 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
8407 		    t->stid_base + t->nstids - 1, t->stids_in_use);
8408 	}
8409 
8410 	if (t->nftids) {
8411 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
8412 		    t->ftid_end, t->ftids_in_use);
8413 	}
8414 
8415 	if (t->netids) {
8416 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
8417 		    t->etid_base + t->netids - 1, t->etids_in_use);
8418 	}
8419 
8420 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
8421 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
8422 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
8423 
8424 	rc = sbuf_finish(sb);
8425 	sbuf_delete(sb);
8426 
8427 	return (rc);
8428 }
8429 
8430 static int
8431 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
8432 {
8433 	struct adapter *sc = arg1;
8434 	struct sbuf *sb;
8435 	int rc;
8436 	struct tp_err_stats stats;
8437 
8438 	rc = sysctl_wire_old_buffer(req, 0);
8439 	if (rc != 0)
8440 		return (rc);
8441 
8442 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8443 	if (sb == NULL)
8444 		return (ENOMEM);
8445 
8446 	mtx_lock(&sc->reg_lock);
8447 	t4_tp_get_err_stats(sc, &stats, 0);
8448 	mtx_unlock(&sc->reg_lock);
8449 
8450 	if (sc->chip_params->nchan > 2) {
8451 		sbuf_printf(sb, "                 channel 0  channel 1"
8452 		    "  channel 2  channel 3\n");
8453 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
8454 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
8455 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
8456 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
8457 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
8458 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
8459 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
8460 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
8461 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
8462 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
8463 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
8464 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
8465 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
8466 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
8467 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
8468 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
8469 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
8470 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
8471 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
8472 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
8473 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
8474 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
8475 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
8476 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
8477 	} else {
8478 		sbuf_printf(sb, "                 channel 0  channel 1\n");
8479 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
8480 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
8481 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
8482 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
8483 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
8484 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
8485 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
8486 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
8487 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
8488 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
8489 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
8490 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
8491 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
8492 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
8493 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
8494 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
8495 	}
8496 
8497 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
8498 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
8499 
8500 	rc = sbuf_finish(sb);
8501 	sbuf_delete(sb);
8502 
8503 	return (rc);
8504 }
8505 
8506 static int
8507 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
8508 {
8509 	struct adapter *sc = arg1;
8510 	struct tp_params *tpp = &sc->params.tp;
8511 	u_int mask;
8512 	int rc;
8513 
8514 	mask = tpp->la_mask >> 16;
8515 	rc = sysctl_handle_int(oidp, &mask, 0, req);
8516 	if (rc != 0 || req->newptr == NULL)
8517 		return (rc);
8518 	if (mask > 0xffff)
8519 		return (EINVAL);
8520 	tpp->la_mask = mask << 16;
8521 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
8522 
8523 	return (0);
8524 }
8525 
8526 struct field_desc {
8527 	const char *name;
8528 	u_int start;
8529 	u_int width;
8530 };
8531 
8532 static void
8533 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
8534 {
8535 	char buf[32];
8536 	int line_size = 0;
8537 
8538 	while (f->name) {
8539 		uint64_t mask = (1ULL << f->width) - 1;
8540 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
8541 		    ((uintmax_t)v >> f->start) & mask);
8542 
8543 		if (line_size + len >= 79) {
8544 			line_size = 8;
8545 			sbuf_printf(sb, "\n        ");
8546 		}
8547 		sbuf_printf(sb, "%s ", buf);
8548 		line_size += len + 1;
8549 		f++;
8550 	}
8551 	sbuf_printf(sb, "\n");
8552 }
8553 
8554 static const struct field_desc tp_la0[] = {
8555 	{ "RcfOpCodeOut", 60, 4 },
8556 	{ "State", 56, 4 },
8557 	{ "WcfState", 52, 4 },
8558 	{ "RcfOpcSrcOut", 50, 2 },
8559 	{ "CRxError", 49, 1 },
8560 	{ "ERxError", 48, 1 },
8561 	{ "SanityFailed", 47, 1 },
8562 	{ "SpuriousMsg", 46, 1 },
8563 	{ "FlushInputMsg", 45, 1 },
8564 	{ "FlushInputCpl", 44, 1 },
8565 	{ "RssUpBit", 43, 1 },
8566 	{ "RssFilterHit", 42, 1 },
8567 	{ "Tid", 32, 10 },
8568 	{ "InitTcb", 31, 1 },
8569 	{ "LineNumber", 24, 7 },
8570 	{ "Emsg", 23, 1 },
8571 	{ "EdataOut", 22, 1 },
8572 	{ "Cmsg", 21, 1 },
8573 	{ "CdataOut", 20, 1 },
8574 	{ "EreadPdu", 19, 1 },
8575 	{ "CreadPdu", 18, 1 },
8576 	{ "TunnelPkt", 17, 1 },
8577 	{ "RcfPeerFin", 16, 1 },
8578 	{ "RcfReasonOut", 12, 4 },
8579 	{ "TxCchannel", 10, 2 },
8580 	{ "RcfTxChannel", 8, 2 },
8581 	{ "RxEchannel", 6, 2 },
8582 	{ "RcfRxChannel", 5, 1 },
8583 	{ "RcfDataOutSrdy", 4, 1 },
8584 	{ "RxDvld", 3, 1 },
8585 	{ "RxOoDvld", 2, 1 },
8586 	{ "RxCongestion", 1, 1 },
8587 	{ "TxCongestion", 0, 1 },
8588 	{ NULL }
8589 };
8590 
8591 static const struct field_desc tp_la1[] = {
8592 	{ "CplCmdIn", 56, 8 },
8593 	{ "CplCmdOut", 48, 8 },
8594 	{ "ESynOut", 47, 1 },
8595 	{ "EAckOut", 46, 1 },
8596 	{ "EFinOut", 45, 1 },
8597 	{ "ERstOut", 44, 1 },
8598 	{ "SynIn", 43, 1 },
8599 	{ "AckIn", 42, 1 },
8600 	{ "FinIn", 41, 1 },
8601 	{ "RstIn", 40, 1 },
8602 	{ "DataIn", 39, 1 },
8603 	{ "DataInVld", 38, 1 },
8604 	{ "PadIn", 37, 1 },
8605 	{ "RxBufEmpty", 36, 1 },
8606 	{ "RxDdp", 35, 1 },
8607 	{ "RxFbCongestion", 34, 1 },
8608 	{ "TxFbCongestion", 33, 1 },
8609 	{ "TxPktSumSrdy", 32, 1 },
8610 	{ "RcfUlpType", 28, 4 },
8611 	{ "Eread", 27, 1 },
8612 	{ "Ebypass", 26, 1 },
8613 	{ "Esave", 25, 1 },
8614 	{ "Static0", 24, 1 },
8615 	{ "Cread", 23, 1 },
8616 	{ "Cbypass", 22, 1 },
8617 	{ "Csave", 21, 1 },
8618 	{ "CPktOut", 20, 1 },
8619 	{ "RxPagePoolFull", 18, 2 },
8620 	{ "RxLpbkPkt", 17, 1 },
8621 	{ "TxLpbkPkt", 16, 1 },
8622 	{ "RxVfValid", 15, 1 },
8623 	{ "SynLearned", 14, 1 },
8624 	{ "SetDelEntry", 13, 1 },
8625 	{ "SetInvEntry", 12, 1 },
8626 	{ "CpcmdDvld", 11, 1 },
8627 	{ "CpcmdSave", 10, 1 },
8628 	{ "RxPstructsFull", 8, 2 },
8629 	{ "EpcmdDvld", 7, 1 },
8630 	{ "EpcmdFlush", 6, 1 },
8631 	{ "EpcmdTrimPrefix", 5, 1 },
8632 	{ "EpcmdTrimPostfix", 4, 1 },
8633 	{ "ERssIp4Pkt", 3, 1 },
8634 	{ "ERssIp6Pkt", 2, 1 },
8635 	{ "ERssTcpUdpPkt", 1, 1 },
8636 	{ "ERssFceFipPkt", 0, 1 },
8637 	{ NULL }
8638 };
8639 
8640 static const struct field_desc tp_la2[] = {
8641 	{ "CplCmdIn", 56, 8 },
8642 	{ "MpsVfVld", 55, 1 },
8643 	{ "MpsPf", 52, 3 },
8644 	{ "MpsVf", 44, 8 },
8645 	{ "SynIn", 43, 1 },
8646 	{ "AckIn", 42, 1 },
8647 	{ "FinIn", 41, 1 },
8648 	{ "RstIn", 40, 1 },
8649 	{ "DataIn", 39, 1 },
8650 	{ "DataInVld", 38, 1 },
8651 	{ "PadIn", 37, 1 },
8652 	{ "RxBufEmpty", 36, 1 },
8653 	{ "RxDdp", 35, 1 },
8654 	{ "RxFbCongestion", 34, 1 },
8655 	{ "TxFbCongestion", 33, 1 },
8656 	{ "TxPktSumSrdy", 32, 1 },
8657 	{ "RcfUlpType", 28, 4 },
8658 	{ "Eread", 27, 1 },
8659 	{ "Ebypass", 26, 1 },
8660 	{ "Esave", 25, 1 },
8661 	{ "Static0", 24, 1 },
8662 	{ "Cread", 23, 1 },
8663 	{ "Cbypass", 22, 1 },
8664 	{ "Csave", 21, 1 },
8665 	{ "CPktOut", 20, 1 },
8666 	{ "RxPagePoolFull", 18, 2 },
8667 	{ "RxLpbkPkt", 17, 1 },
8668 	{ "TxLpbkPkt", 16, 1 },
8669 	{ "RxVfValid", 15, 1 },
8670 	{ "SynLearned", 14, 1 },
8671 	{ "SetDelEntry", 13, 1 },
8672 	{ "SetInvEntry", 12, 1 },
8673 	{ "CpcmdDvld", 11, 1 },
8674 	{ "CpcmdSave", 10, 1 },
8675 	{ "RxPstructsFull", 8, 2 },
8676 	{ "EpcmdDvld", 7, 1 },
8677 	{ "EpcmdFlush", 6, 1 },
8678 	{ "EpcmdTrimPrefix", 5, 1 },
8679 	{ "EpcmdTrimPostfix", 4, 1 },
8680 	{ "ERssIp4Pkt", 3, 1 },
8681 	{ "ERssIp6Pkt", 2, 1 },
8682 	{ "ERssTcpUdpPkt", 1, 1 },
8683 	{ "ERssFceFipPkt", 0, 1 },
8684 	{ NULL }
8685 };
8686 
8687 static void
8688 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8689 {
8690 
8691 	field_desc_show(sb, *p, tp_la0);
8692 }
8693 
8694 static void
8695 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8696 {
8697 
8698 	if (idx)
8699 		sbuf_printf(sb, "\n");
8700 	field_desc_show(sb, p[0], tp_la0);
8701 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8702 		field_desc_show(sb, p[1], tp_la0);
8703 }
8704 
8705 static void
8706 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
8707 {
8708 
8709 	if (idx)
8710 		sbuf_printf(sb, "\n");
8711 	field_desc_show(sb, p[0], tp_la0);
8712 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8713 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
8714 }
8715 
8716 static int
8717 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
8718 {
8719 	struct adapter *sc = arg1;
8720 	struct sbuf *sb;
8721 	uint64_t *buf, *p;
8722 	int rc;
8723 	u_int i, inc;
8724 	void (*show_func)(struct sbuf *, uint64_t *, int);
8725 
8726 	rc = sysctl_wire_old_buffer(req, 0);
8727 	if (rc != 0)
8728 		return (rc);
8729 
8730 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8731 	if (sb == NULL)
8732 		return (ENOMEM);
8733 
8734 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
8735 
8736 	t4_tp_read_la(sc, buf, NULL);
8737 	p = buf;
8738 
8739 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
8740 	case 2:
8741 		inc = 2;
8742 		show_func = tp_la_show2;
8743 		break;
8744 	case 3:
8745 		inc = 2;
8746 		show_func = tp_la_show3;
8747 		break;
8748 	default:
8749 		inc = 1;
8750 		show_func = tp_la_show;
8751 	}
8752 
8753 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
8754 		(*show_func)(sb, p, i);
8755 
8756 	rc = sbuf_finish(sb);
8757 	sbuf_delete(sb);
8758 	free(buf, M_CXGBE);
8759 	return (rc);
8760 }
8761 
8762 static int
8763 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
8764 {
8765 	struct adapter *sc = arg1;
8766 	struct sbuf *sb;
8767 	int rc;
8768 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
8769 
8770 	rc = sysctl_wire_old_buffer(req, 0);
8771 	if (rc != 0)
8772 		return (rc);
8773 
8774 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8775 	if (sb == NULL)
8776 		return (ENOMEM);
8777 
8778 	t4_get_chan_txrate(sc, nrate, orate);
8779 
8780 	if (sc->chip_params->nchan > 2) {
8781 		sbuf_printf(sb, "              channel 0   channel 1"
8782 		    "   channel 2   channel 3\n");
8783 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
8784 		    nrate[0], nrate[1], nrate[2], nrate[3]);
8785 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
8786 		    orate[0], orate[1], orate[2], orate[3]);
8787 	} else {
8788 		sbuf_printf(sb, "              channel 0   channel 1\n");
8789 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
8790 		    nrate[0], nrate[1]);
8791 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
8792 		    orate[0], orate[1]);
8793 	}
8794 
8795 	rc = sbuf_finish(sb);
8796 	sbuf_delete(sb);
8797 
8798 	return (rc);
8799 }
8800 
8801 static int
8802 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
8803 {
8804 	struct adapter *sc = arg1;
8805 	struct sbuf *sb;
8806 	uint32_t *buf, *p;
8807 	int rc, i;
8808 
8809 	rc = sysctl_wire_old_buffer(req, 0);
8810 	if (rc != 0)
8811 		return (rc);
8812 
8813 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8814 	if (sb == NULL)
8815 		return (ENOMEM);
8816 
8817 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
8818 	    M_ZERO | M_WAITOK);
8819 
8820 	t4_ulprx_read_la(sc, buf);
8821 	p = buf;
8822 
8823 	sbuf_printf(sb, "      Pcmd        Type   Message"
8824 	    "                Data");
8825 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
8826 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
8827 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
8828 	}
8829 
8830 	rc = sbuf_finish(sb);
8831 	sbuf_delete(sb);
8832 	free(buf, M_CXGBE);
8833 	return (rc);
8834 }
8835 
8836 static int
8837 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
8838 {
8839 	struct adapter *sc = arg1;
8840 	struct sbuf *sb;
8841 	int rc, v;
8842 
8843 	MPASS(chip_id(sc) >= CHELSIO_T5);
8844 
8845 	rc = sysctl_wire_old_buffer(req, 0);
8846 	if (rc != 0)
8847 		return (rc);
8848 
8849 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8850 	if (sb == NULL)
8851 		return (ENOMEM);
8852 
8853 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
8854 	if (G_STATSOURCE_T5(v) == 7) {
8855 		int mode;
8856 
8857 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
8858 		if (mode == 0) {
8859 			sbuf_printf(sb, "total %d, incomplete %d",
8860 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
8861 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
8862 		} else if (mode == 1) {
8863 			sbuf_printf(sb, "total %d, data overflow %d",
8864 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
8865 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
8866 		} else {
8867 			sbuf_printf(sb, "unknown mode %d", mode);
8868 		}
8869 	}
8870 	rc = sbuf_finish(sb);
8871 	sbuf_delete(sb);
8872 
8873 	return (rc);
8874 }
8875 
8876 static int
8877 sysctl_cpus(SYSCTL_HANDLER_ARGS)
8878 {
8879 	struct adapter *sc = arg1;
8880 	enum cpu_sets op = arg2;
8881 	cpuset_t cpuset;
8882 	struct sbuf *sb;
8883 	int i, rc;
8884 
8885 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
8886 
8887 	CPU_ZERO(&cpuset);
8888 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
8889 	if (rc != 0)
8890 		return (rc);
8891 
8892 	rc = sysctl_wire_old_buffer(req, 0);
8893 	if (rc != 0)
8894 		return (rc);
8895 
8896 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8897 	if (sb == NULL)
8898 		return (ENOMEM);
8899 
8900 	CPU_FOREACH(i)
8901 		sbuf_printf(sb, "%d ", i);
8902 	rc = sbuf_finish(sb);
8903 	sbuf_delete(sb);
8904 
8905 	return (rc);
8906 }
8907 
8908 #ifdef TCP_OFFLOAD
8909 static int
8910 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
8911 {
8912 	struct adapter *sc = arg1;
8913 	int *old_ports, *new_ports;
8914 	int i, new_count, rc;
8915 
8916 	if (req->newptr == NULL && req->oldptr == NULL)
8917 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
8918 		    sizeof(sc->tt.tls_rx_ports[0])));
8919 
8920 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
8921 	if (rc)
8922 		return (rc);
8923 
8924 	if (sc->tt.num_tls_rx_ports == 0) {
8925 		i = -1;
8926 		rc = SYSCTL_OUT(req, &i, sizeof(i));
8927 	} else
8928 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
8929 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
8930 	if (rc == 0 && req->newptr != NULL) {
8931 		new_count = req->newlen / sizeof(new_ports[0]);
8932 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
8933 		    M_WAITOK);
8934 		rc = SYSCTL_IN(req, new_ports, new_count *
8935 		    sizeof(new_ports[0]));
8936 		if (rc)
8937 			goto err;
8938 
8939 		/* Allow setting to a single '-1' to clear the list. */
8940 		if (new_count == 1 && new_ports[0] == -1) {
8941 			ADAPTER_LOCK(sc);
8942 			old_ports = sc->tt.tls_rx_ports;
8943 			sc->tt.tls_rx_ports = NULL;
8944 			sc->tt.num_tls_rx_ports = 0;
8945 			ADAPTER_UNLOCK(sc);
8946 			free(old_ports, M_CXGBE);
8947 		} else {
8948 			for (i = 0; i < new_count; i++) {
8949 				if (new_ports[i] < 1 ||
8950 				    new_ports[i] > IPPORT_MAX) {
8951 					rc = EINVAL;
8952 					goto err;
8953 				}
8954 			}
8955 
8956 			ADAPTER_LOCK(sc);
8957 			old_ports = sc->tt.tls_rx_ports;
8958 			sc->tt.tls_rx_ports = new_ports;
8959 			sc->tt.num_tls_rx_ports = new_count;
8960 			ADAPTER_UNLOCK(sc);
8961 			free(old_ports, M_CXGBE);
8962 			new_ports = NULL;
8963 		}
8964 	err:
8965 		free(new_ports, M_CXGBE);
8966 	}
8967 	end_synchronized_op(sc, 0);
8968 	return (rc);
8969 }
8970 
8971 static void
8972 unit_conv(char *buf, size_t len, u_int val, u_int factor)
8973 {
8974 	u_int rem = val % factor;
8975 
8976 	if (rem == 0)
8977 		snprintf(buf, len, "%u", val / factor);
8978 	else {
8979 		while (rem % 10 == 0)
8980 			rem /= 10;
8981 		snprintf(buf, len, "%u.%u", val / factor, rem);
8982 	}
8983 }
8984 
8985 static int
8986 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
8987 {
8988 	struct adapter *sc = arg1;
8989 	char buf[16];
8990 	u_int res, re;
8991 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8992 
8993 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8994 	switch (arg2) {
8995 	case 0:
8996 		/* timer_tick */
8997 		re = G_TIMERRESOLUTION(res);
8998 		break;
8999 	case 1:
9000 		/* TCP timestamp tick */
9001 		re = G_TIMESTAMPRESOLUTION(res);
9002 		break;
9003 	case 2:
9004 		/* DACK tick */
9005 		re = G_DELAYEDACKRESOLUTION(res);
9006 		break;
9007 	default:
9008 		return (EDOOFUS);
9009 	}
9010 
9011 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
9012 
9013 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
9014 }
9015 
9016 static int
9017 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
9018 {
9019 	struct adapter *sc = arg1;
9020 	u_int res, dack_re, v;
9021 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9022 
9023 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9024 	dack_re = G_DELAYEDACKRESOLUTION(res);
9025 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
9026 
9027 	return (sysctl_handle_int(oidp, &v, 0, req));
9028 }
9029 
9030 static int
9031 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
9032 {
9033 	struct adapter *sc = arg1;
9034 	int reg = arg2;
9035 	u_int tre;
9036 	u_long tp_tick_us, v;
9037 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9038 
9039 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
9040 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
9041 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
9042 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
9043 
9044 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
9045 	tp_tick_us = (cclk_ps << tre) / 1000000;
9046 
9047 	if (reg == A_TP_INIT_SRTT)
9048 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
9049 	else
9050 		v = tp_tick_us * t4_read_reg(sc, reg);
9051 
9052 	return (sysctl_handle_long(oidp, &v, 0, req));
9053 }
9054 
9055 /*
9056  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
9057  * passed to this function.
9058  */
9059 static int
9060 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
9061 {
9062 	struct adapter *sc = arg1;
9063 	int idx = arg2;
9064 	u_int v;
9065 
9066 	MPASS(idx >= 0 && idx <= 24);
9067 
9068 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
9069 
9070 	return (sysctl_handle_int(oidp, &v, 0, req));
9071 }
9072 
9073 static int
9074 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
9075 {
9076 	struct adapter *sc = arg1;
9077 	int idx = arg2;
9078 	u_int shift, v, r;
9079 
9080 	MPASS(idx >= 0 && idx < 16);
9081 
9082 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
9083 	shift = (idx & 3) << 3;
9084 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
9085 
9086 	return (sysctl_handle_int(oidp, &v, 0, req));
9087 }
9088 
9089 static int
9090 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
9091 {
9092 	struct vi_info *vi = arg1;
9093 	struct adapter *sc = vi->pi->adapter;
9094 	int idx, rc, i;
9095 	struct sge_ofld_rxq *ofld_rxq;
9096 	uint8_t v;
9097 
9098 	idx = vi->ofld_tmr_idx;
9099 
9100 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9101 	if (rc != 0 || req->newptr == NULL)
9102 		return (rc);
9103 
9104 	if (idx < 0 || idx >= SGE_NTIMERS)
9105 		return (EINVAL);
9106 
9107 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9108 	    "t4otmr");
9109 	if (rc)
9110 		return (rc);
9111 
9112 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
9113 	for_each_ofld_rxq(vi, i, ofld_rxq) {
9114 #ifdef atomic_store_rel_8
9115 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
9116 #else
9117 		ofld_rxq->iq.intr_params = v;
9118 #endif
9119 	}
9120 	vi->ofld_tmr_idx = idx;
9121 
9122 	end_synchronized_op(sc, LOCK_HELD);
9123 	return (0);
9124 }
9125 
9126 static int
9127 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
9128 {
9129 	struct vi_info *vi = arg1;
9130 	struct adapter *sc = vi->pi->adapter;
9131 	int idx, rc;
9132 
9133 	idx = vi->ofld_pktc_idx;
9134 
9135 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9136 	if (rc != 0 || req->newptr == NULL)
9137 		return (rc);
9138 
9139 	if (idx < -1 || idx >= SGE_NCOUNTERS)
9140 		return (EINVAL);
9141 
9142 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9143 	    "t4opktc");
9144 	if (rc)
9145 		return (rc);
9146 
9147 	if (vi->flags & VI_INIT_DONE)
9148 		rc = EBUSY; /* cannot be changed once the queues are created */
9149 	else
9150 		vi->ofld_pktc_idx = idx;
9151 
9152 	end_synchronized_op(sc, LOCK_HELD);
9153 	return (rc);
9154 }
9155 #endif
9156 
9157 static int
9158 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9159 {
9160 	int rc;
9161 
9162 	if (cntxt->cid > M_CTXTQID)
9163 		return (EINVAL);
9164 
9165 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9166 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9167 		return (EINVAL);
9168 
9169 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9170 	if (rc)
9171 		return (rc);
9172 
9173 	if (sc->flags & FW_OK) {
9174 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9175 		    &cntxt->data[0]);
9176 		if (rc == 0)
9177 			goto done;
9178 	}
9179 
9180 	/*
9181 	 * Read via firmware failed or wasn't even attempted.  Read directly via
9182 	 * the backdoor.
9183 	 */
9184 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9185 done:
9186 	end_synchronized_op(sc, 0);
9187 	return (rc);
9188 }
9189 
9190 static int
9191 load_fw(struct adapter *sc, struct t4_data *fw)
9192 {
9193 	int rc;
9194 	uint8_t *fw_data;
9195 
9196 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9197 	if (rc)
9198 		return (rc);
9199 
9200 	/*
9201 	 * The firmware, with the sole exception of the memory parity error
9202 	 * handler, runs from memory and not flash.  It is almost always safe to
9203 	 * install a new firmware on a running system.  Just set bit 1 in
9204 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9205 	 */
9206 	if (sc->flags & FULL_INIT_DONE &&
9207 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9208 		rc = EBUSY;
9209 		goto done;
9210 	}
9211 
9212 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9213 	if (fw_data == NULL) {
9214 		rc = ENOMEM;
9215 		goto done;
9216 	}
9217 
9218 	rc = copyin(fw->data, fw_data, fw->len);
9219 	if (rc == 0)
9220 		rc = -t4_load_fw(sc, fw_data, fw->len);
9221 
9222 	free(fw_data, M_CXGBE);
9223 done:
9224 	end_synchronized_op(sc, 0);
9225 	return (rc);
9226 }
9227 
9228 static int
9229 load_cfg(struct adapter *sc, struct t4_data *cfg)
9230 {
9231 	int rc;
9232 	uint8_t *cfg_data = NULL;
9233 
9234 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9235 	if (rc)
9236 		return (rc);
9237 
9238 	if (cfg->len == 0) {
9239 		/* clear */
9240 		rc = -t4_load_cfg(sc, NULL, 0);
9241 		goto done;
9242 	}
9243 
9244 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9245 	if (cfg_data == NULL) {
9246 		rc = ENOMEM;
9247 		goto done;
9248 	}
9249 
9250 	rc = copyin(cfg->data, cfg_data, cfg->len);
9251 	if (rc == 0)
9252 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9253 
9254 	free(cfg_data, M_CXGBE);
9255 done:
9256 	end_synchronized_op(sc, 0);
9257 	return (rc);
9258 }
9259 
9260 static int
9261 load_boot(struct adapter *sc, struct t4_bootrom *br)
9262 {
9263 	int rc;
9264 	uint8_t *br_data = NULL;
9265 	u_int offset;
9266 
9267 	if (br->len > 1024 * 1024)
9268 		return (EFBIG);
9269 
9270 	if (br->pf_offset == 0) {
9271 		/* pfidx */
9272 		if (br->pfidx_addr > 7)
9273 			return (EINVAL);
9274 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9275 		    A_PCIE_PF_EXPROM_OFST)));
9276 	} else if (br->pf_offset == 1) {
9277 		/* offset */
9278 		offset = G_OFFSET(br->pfidx_addr);
9279 	} else {
9280 		return (EINVAL);
9281 	}
9282 
9283 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9284 	if (rc)
9285 		return (rc);
9286 
9287 	if (br->len == 0) {
9288 		/* clear */
9289 		rc = -t4_load_boot(sc, NULL, offset, 0);
9290 		goto done;
9291 	}
9292 
9293 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9294 	if (br_data == NULL) {
9295 		rc = ENOMEM;
9296 		goto done;
9297 	}
9298 
9299 	rc = copyin(br->data, br_data, br->len);
9300 	if (rc == 0)
9301 		rc = -t4_load_boot(sc, br_data, offset, br->len);
9302 
9303 	free(br_data, M_CXGBE);
9304 done:
9305 	end_synchronized_op(sc, 0);
9306 	return (rc);
9307 }
9308 
9309 static int
9310 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9311 {
9312 	int rc;
9313 	uint8_t *bc_data = NULL;
9314 
9315 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9316 	if (rc)
9317 		return (rc);
9318 
9319 	if (bc->len == 0) {
9320 		/* clear */
9321 		rc = -t4_load_bootcfg(sc, NULL, 0);
9322 		goto done;
9323 	}
9324 
9325 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9326 	if (bc_data == NULL) {
9327 		rc = ENOMEM;
9328 		goto done;
9329 	}
9330 
9331 	rc = copyin(bc->data, bc_data, bc->len);
9332 	if (rc == 0)
9333 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9334 
9335 	free(bc_data, M_CXGBE);
9336 done:
9337 	end_synchronized_op(sc, 0);
9338 	return (rc);
9339 }
9340 
9341 static int
9342 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9343 {
9344 	int rc;
9345 	struct cudbg_init *cudbg;
9346 	void *handle, *buf;
9347 
9348 	/* buf is large, don't block if no memory is available */
9349 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9350 	if (buf == NULL)
9351 		return (ENOMEM);
9352 
9353 	handle = cudbg_alloc_handle();
9354 	if (handle == NULL) {
9355 		rc = ENOMEM;
9356 		goto done;
9357 	}
9358 
9359 	cudbg = cudbg_get_init(handle);
9360 	cudbg->adap = sc;
9361 	cudbg->print = (cudbg_print_cb)printf;
9362 
9363 #ifndef notyet
9364 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9365 	    __func__, dump->wr_flash, dump->len, dump->data);
9366 #endif
9367 
9368 	if (dump->wr_flash)
9369 		cudbg->use_flash = 1;
9370 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9371 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9372 
9373 	rc = cudbg_collect(handle, buf, &dump->len);
9374 	if (rc != 0)
9375 		goto done;
9376 
9377 	rc = copyout(buf, dump->data, dump->len);
9378 done:
9379 	cudbg_free_handle(handle);
9380 	free(buf, M_CXGBE);
9381 	return (rc);
9382 }
9383 
9384 static void
9385 free_offload_policy(struct t4_offload_policy *op)
9386 {
9387 	struct offload_rule *r;
9388 	int i;
9389 
9390 	if (op == NULL)
9391 		return;
9392 
9393 	r = &op->rule[0];
9394 	for (i = 0; i < op->nrules; i++, r++) {
9395 		free(r->bpf_prog.bf_insns, M_CXGBE);
9396 	}
9397 	free(op->rule, M_CXGBE);
9398 	free(op, M_CXGBE);
9399 }
9400 
9401 static int
9402 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
9403 {
9404 	int i, rc, len;
9405 	struct t4_offload_policy *op, *old;
9406 	struct bpf_program *bf;
9407 	const struct offload_settings *s;
9408 	struct offload_rule *r;
9409 	void *u;
9410 
9411 	if (!is_offload(sc))
9412 		return (ENODEV);
9413 
9414 	if (uop->nrules == 0) {
9415 		/* Delete installed policies. */
9416 		op = NULL;
9417 		goto set_policy;
9418 	} if (uop->nrules > 256) { /* arbitrary */
9419 		return (E2BIG);
9420 	}
9421 
9422 	/* Copy userspace offload policy to kernel */
9423 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
9424 	op->nrules = uop->nrules;
9425 	len = op->nrules * sizeof(struct offload_rule);
9426 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9427 	rc = copyin(uop->rule, op->rule, len);
9428 	if (rc) {
9429 		free(op->rule, M_CXGBE);
9430 		free(op, M_CXGBE);
9431 		return (rc);
9432 	}
9433 
9434 	r = &op->rule[0];
9435 	for (i = 0; i < op->nrules; i++, r++) {
9436 
9437 		/* Validate open_type */
9438 		if (r->open_type != OPEN_TYPE_LISTEN &&
9439 		    r->open_type != OPEN_TYPE_ACTIVE &&
9440 		    r->open_type != OPEN_TYPE_PASSIVE &&
9441 		    r->open_type != OPEN_TYPE_DONTCARE) {
9442 error:
9443 			/*
9444 			 * Rules 0 to i have malloc'd filters that need to be
9445 			 * freed.  Rules i+1 to nrules have userspace pointers
9446 			 * and should be left alone.
9447 			 */
9448 			op->nrules = i;
9449 			free_offload_policy(op);
9450 			return (rc);
9451 		}
9452 
9453 		/* Validate settings */
9454 		s = &r->settings;
9455 		if ((s->offload != 0 && s->offload != 1) ||
9456 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
9457 		    s->sched_class < -1 ||
9458 		    s->sched_class >= sc->chip_params->nsched_cls) {
9459 			rc = EINVAL;
9460 			goto error;
9461 		}
9462 
9463 		bf = &r->bpf_prog;
9464 		u = bf->bf_insns;	/* userspace ptr */
9465 		bf->bf_insns = NULL;
9466 		if (bf->bf_len == 0) {
9467 			/* legal, matches everything */
9468 			continue;
9469 		}
9470 		len = bf->bf_len * sizeof(*bf->bf_insns);
9471 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9472 		rc = copyin(u, bf->bf_insns, len);
9473 		if (rc != 0)
9474 			goto error;
9475 
9476 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
9477 			rc = EINVAL;
9478 			goto error;
9479 		}
9480 	}
9481 set_policy:
9482 	rw_wlock(&sc->policy_lock);
9483 	old = sc->policy;
9484 	sc->policy = op;
9485 	rw_wunlock(&sc->policy_lock);
9486 	free_offload_policy(old);
9487 
9488 	return (0);
9489 }
9490 
9491 #define MAX_READ_BUF_SIZE (128 * 1024)
9492 static int
9493 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9494 {
9495 	uint32_t addr, remaining, n;
9496 	uint32_t *buf;
9497 	int rc;
9498 	uint8_t *dst;
9499 
9500 	rc = validate_mem_range(sc, mr->addr, mr->len);
9501 	if (rc != 0)
9502 		return (rc);
9503 
9504 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9505 	addr = mr->addr;
9506 	remaining = mr->len;
9507 	dst = (void *)mr->data;
9508 
9509 	while (remaining) {
9510 		n = min(remaining, MAX_READ_BUF_SIZE);
9511 		read_via_memwin(sc, 2, addr, buf, n);
9512 
9513 		rc = copyout(buf, dst, n);
9514 		if (rc != 0)
9515 			break;
9516 
9517 		dst += n;
9518 		remaining -= n;
9519 		addr += n;
9520 	}
9521 
9522 	free(buf, M_CXGBE);
9523 	return (rc);
9524 }
9525 #undef MAX_READ_BUF_SIZE
9526 
9527 static int
9528 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9529 {
9530 	int rc;
9531 
9532 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9533 		return (EINVAL);
9534 
9535 	if (i2cd->len > sizeof(i2cd->data))
9536 		return (EFBIG);
9537 
9538 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9539 	if (rc)
9540 		return (rc);
9541 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9542 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
9543 	end_synchronized_op(sc, 0);
9544 
9545 	return (rc);
9546 }
9547 
9548 int
9549 t4_os_find_pci_capability(struct adapter *sc, int cap)
9550 {
9551 	int i;
9552 
9553 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9554 }
9555 
9556 int
9557 t4_os_pci_save_state(struct adapter *sc)
9558 {
9559 	device_t dev;
9560 	struct pci_devinfo *dinfo;
9561 
9562 	dev = sc->dev;
9563 	dinfo = device_get_ivars(dev);
9564 
9565 	pci_cfg_save(dev, dinfo, 0);
9566 	return (0);
9567 }
9568 
9569 int
9570 t4_os_pci_restore_state(struct adapter *sc)
9571 {
9572 	device_t dev;
9573 	struct pci_devinfo *dinfo;
9574 
9575 	dev = sc->dev;
9576 	dinfo = device_get_ivars(dev);
9577 
9578 	pci_cfg_restore(dev, dinfo);
9579 	return (0);
9580 }
9581 
9582 void
9583 t4_os_portmod_changed(struct port_info *pi)
9584 {
9585 	struct adapter *sc = pi->adapter;
9586 	struct vi_info *vi;
9587 	struct ifnet *ifp;
9588 	static const char *mod_str[] = {
9589 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9590 	};
9591 
9592 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
9593 	    ("%s: port_type %u", __func__, pi->port_type));
9594 
9595 	vi = &pi->vi[0];
9596 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9597 		PORT_LOCK(pi);
9598 		build_medialist(pi);
9599 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
9600 			fixup_link_config(pi);
9601 			apply_link_config(pi);
9602 		}
9603 		PORT_UNLOCK(pi);
9604 		end_synchronized_op(sc, LOCK_HELD);
9605 	}
9606 
9607 	ifp = vi->ifp;
9608 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9609 		if_printf(ifp, "transceiver unplugged.\n");
9610 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9611 		if_printf(ifp, "unknown transceiver inserted.\n");
9612 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9613 		if_printf(ifp, "unsupported transceiver inserted.\n");
9614 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9615 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9616 		    port_top_speed(pi), mod_str[pi->mod_type]);
9617 	} else {
9618 		if_printf(ifp, "transceiver (type %d) inserted.\n",
9619 		    pi->mod_type);
9620 	}
9621 }
9622 
9623 void
9624 t4_os_link_changed(struct port_info *pi)
9625 {
9626 	struct vi_info *vi;
9627 	struct ifnet *ifp;
9628 	struct link_config *lc;
9629 	int v;
9630 
9631 	PORT_LOCK_ASSERT_OWNED(pi);
9632 
9633 	for_each_vi(pi, v, vi) {
9634 		ifp = vi->ifp;
9635 		if (ifp == NULL)
9636 			continue;
9637 
9638 		lc = &pi->link_cfg;
9639 		if (lc->link_ok) {
9640 			ifp->if_baudrate = IF_Mbps(lc->speed);
9641 			if_link_state_change(ifp, LINK_STATE_UP);
9642 		} else {
9643 			if_link_state_change(ifp, LINK_STATE_DOWN);
9644 		}
9645 	}
9646 }
9647 
9648 void
9649 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9650 {
9651 	struct adapter *sc;
9652 
9653 	sx_slock(&t4_list_lock);
9654 	SLIST_FOREACH(sc, &t4_list, link) {
9655 		/*
9656 		 * func should not make any assumptions about what state sc is
9657 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
9658 		 */
9659 		func(sc, arg);
9660 	}
9661 	sx_sunlock(&t4_list_lock);
9662 }
9663 
9664 static int
9665 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9666     struct thread *td)
9667 {
9668 	int rc;
9669 	struct adapter *sc = dev->si_drv1;
9670 
9671 	rc = priv_check(td, PRIV_DRIVER);
9672 	if (rc != 0)
9673 		return (rc);
9674 
9675 	switch (cmd) {
9676 	case CHELSIO_T4_GETREG: {
9677 		struct t4_reg *edata = (struct t4_reg *)data;
9678 
9679 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9680 			return (EFAULT);
9681 
9682 		if (edata->size == 4)
9683 			edata->val = t4_read_reg(sc, edata->addr);
9684 		else if (edata->size == 8)
9685 			edata->val = t4_read_reg64(sc, edata->addr);
9686 		else
9687 			return (EINVAL);
9688 
9689 		break;
9690 	}
9691 	case CHELSIO_T4_SETREG: {
9692 		struct t4_reg *edata = (struct t4_reg *)data;
9693 
9694 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9695 			return (EFAULT);
9696 
9697 		if (edata->size == 4) {
9698 			if (edata->val & 0xffffffff00000000)
9699 				return (EINVAL);
9700 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9701 		} else if (edata->size == 8)
9702 			t4_write_reg64(sc, edata->addr, edata->val);
9703 		else
9704 			return (EINVAL);
9705 		break;
9706 	}
9707 	case CHELSIO_T4_REGDUMP: {
9708 		struct t4_regdump *regs = (struct t4_regdump *)data;
9709 		int reglen = t4_get_regs_len(sc);
9710 		uint8_t *buf;
9711 
9712 		if (regs->len < reglen) {
9713 			regs->len = reglen; /* hint to the caller */
9714 			return (ENOBUFS);
9715 		}
9716 
9717 		regs->len = reglen;
9718 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9719 		get_regs(sc, regs, buf);
9720 		rc = copyout(buf, regs->data, reglen);
9721 		free(buf, M_CXGBE);
9722 		break;
9723 	}
9724 	case CHELSIO_T4_GET_FILTER_MODE:
9725 		rc = get_filter_mode(sc, (uint32_t *)data);
9726 		break;
9727 	case CHELSIO_T4_SET_FILTER_MODE:
9728 		rc = set_filter_mode(sc, *(uint32_t *)data);
9729 		break;
9730 	case CHELSIO_T4_GET_FILTER:
9731 		rc = get_filter(sc, (struct t4_filter *)data);
9732 		break;
9733 	case CHELSIO_T4_SET_FILTER:
9734 		rc = set_filter(sc, (struct t4_filter *)data);
9735 		break;
9736 	case CHELSIO_T4_DEL_FILTER:
9737 		rc = del_filter(sc, (struct t4_filter *)data);
9738 		break;
9739 	case CHELSIO_T4_GET_SGE_CONTEXT:
9740 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
9741 		break;
9742 	case CHELSIO_T4_LOAD_FW:
9743 		rc = load_fw(sc, (struct t4_data *)data);
9744 		break;
9745 	case CHELSIO_T4_GET_MEM:
9746 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9747 		break;
9748 	case CHELSIO_T4_GET_I2C:
9749 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
9750 		break;
9751 	case CHELSIO_T4_CLEAR_STATS: {
9752 		int i, v, bg_map;
9753 		u_int port_id = *(uint32_t *)data;
9754 		struct port_info *pi;
9755 		struct vi_info *vi;
9756 
9757 		if (port_id >= sc->params.nports)
9758 			return (EINVAL);
9759 		pi = sc->port[port_id];
9760 		if (pi == NULL)
9761 			return (EIO);
9762 
9763 		/* MAC stats */
9764 		t4_clr_port_stats(sc, pi->tx_chan);
9765 		pi->tx_parse_error = 0;
9766 		pi->tnl_cong_drops = 0;
9767 		mtx_lock(&sc->reg_lock);
9768 		for_each_vi(pi, v, vi) {
9769 			if (vi->flags & VI_INIT_DONE)
9770 				t4_clr_vi_stats(sc, vi->viid);
9771 		}
9772 		bg_map = pi->mps_bg_map;
9773 		v = 0;	/* reuse */
9774 		while (bg_map) {
9775 			i = ffs(bg_map) - 1;
9776 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
9777 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
9778 			bg_map &= ~(1 << i);
9779 		}
9780 		mtx_unlock(&sc->reg_lock);
9781 
9782 		/*
9783 		 * Since this command accepts a port, clear stats for
9784 		 * all VIs on this port.
9785 		 */
9786 		for_each_vi(pi, v, vi) {
9787 			if (vi->flags & VI_INIT_DONE) {
9788 				struct sge_rxq *rxq;
9789 				struct sge_txq *txq;
9790 				struct sge_wrq *wrq;
9791 
9792 				for_each_rxq(vi, i, rxq) {
9793 #if defined(INET) || defined(INET6)
9794 					rxq->lro.lro_queued = 0;
9795 					rxq->lro.lro_flushed = 0;
9796 #endif
9797 					rxq->rxcsum = 0;
9798 					rxq->vlan_extraction = 0;
9799 				}
9800 
9801 				for_each_txq(vi, i, txq) {
9802 					txq->txcsum = 0;
9803 					txq->tso_wrs = 0;
9804 					txq->vlan_insertion = 0;
9805 					txq->imm_wrs = 0;
9806 					txq->sgl_wrs = 0;
9807 					txq->txpkt_wrs = 0;
9808 					txq->txpkts0_wrs = 0;
9809 					txq->txpkts1_wrs = 0;
9810 					txq->txpkts0_pkts = 0;
9811 					txq->txpkts1_pkts = 0;
9812 					txq->raw_wrs = 0;
9813 					mp_ring_reset_stats(txq->r);
9814 				}
9815 
9816 #ifdef TCP_OFFLOAD
9817 				/* nothing to clear for each ofld_rxq */
9818 
9819 				for_each_ofld_txq(vi, i, wrq) {
9820 					wrq->tx_wrs_direct = 0;
9821 					wrq->tx_wrs_copied = 0;
9822 				}
9823 #endif
9824 
9825 				if (IS_MAIN_VI(vi)) {
9826 					wrq = &sc->sge.ctrlq[pi->port_id];
9827 					wrq->tx_wrs_direct = 0;
9828 					wrq->tx_wrs_copied = 0;
9829 				}
9830 			}
9831 		}
9832 		break;
9833 	}
9834 	case CHELSIO_T4_SCHED_CLASS:
9835 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9836 		break;
9837 	case CHELSIO_T4_SCHED_QUEUE:
9838 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9839 		break;
9840 	case CHELSIO_T4_GET_TRACER:
9841 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9842 		break;
9843 	case CHELSIO_T4_SET_TRACER:
9844 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9845 		break;
9846 	case CHELSIO_T4_LOAD_CFG:
9847 		rc = load_cfg(sc, (struct t4_data *)data);
9848 		break;
9849 	case CHELSIO_T4_LOAD_BOOT:
9850 		rc = load_boot(sc, (struct t4_bootrom *)data);
9851 		break;
9852 	case CHELSIO_T4_LOAD_BOOTCFG:
9853 		rc = load_bootcfg(sc, (struct t4_data *)data);
9854 		break;
9855 	case CHELSIO_T4_CUDBG_DUMP:
9856 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
9857 		break;
9858 	case CHELSIO_T4_SET_OFLD_POLICY:
9859 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
9860 		break;
9861 	default:
9862 		rc = ENOTTY;
9863 	}
9864 
9865 	return (rc);
9866 }
9867 
9868 void
9869 t4_db_full(struct adapter *sc)
9870 {
9871 
9872 	CXGBE_UNIMPLEMENTED(__func__);
9873 }
9874 
9875 void
9876 t4_db_dropped(struct adapter *sc)
9877 {
9878 
9879 	CXGBE_UNIMPLEMENTED(__func__);
9880 }
9881 
9882 #ifdef TCP_OFFLOAD
9883 static int
9884 toe_capability(struct vi_info *vi, int enable)
9885 {
9886 	int rc;
9887 	struct port_info *pi = vi->pi;
9888 	struct adapter *sc = pi->adapter;
9889 
9890 	ASSERT_SYNCHRONIZED_OP(sc);
9891 
9892 	if (!is_offload(sc))
9893 		return (ENODEV);
9894 
9895 	if (enable) {
9896 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9897 			/* TOE is already enabled. */
9898 			return (0);
9899 		}
9900 
9901 		/*
9902 		 * We need the port's queues around so that we're able to send
9903 		 * and receive CPLs to/from the TOE even if the ifnet for this
9904 		 * port has never been UP'd administratively.
9905 		 */
9906 		if (!(vi->flags & VI_INIT_DONE)) {
9907 			rc = vi_full_init(vi);
9908 			if (rc)
9909 				return (rc);
9910 		}
9911 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9912 			rc = vi_full_init(&pi->vi[0]);
9913 			if (rc)
9914 				return (rc);
9915 		}
9916 
9917 		if (isset(&sc->offload_map, pi->port_id)) {
9918 			/* TOE is enabled on another VI of this port. */
9919 			pi->uld_vis++;
9920 			return (0);
9921 		}
9922 
9923 		if (!uld_active(sc, ULD_TOM)) {
9924 			rc = t4_activate_uld(sc, ULD_TOM);
9925 			if (rc == EAGAIN) {
9926 				log(LOG_WARNING,
9927 				    "You must kldload t4_tom.ko before trying "
9928 				    "to enable TOE on a cxgbe interface.\n");
9929 			}
9930 			if (rc != 0)
9931 				return (rc);
9932 			KASSERT(sc->tom_softc != NULL,
9933 			    ("%s: TOM activated but softc NULL", __func__));
9934 			KASSERT(uld_active(sc, ULD_TOM),
9935 			    ("%s: TOM activated but flag not set", __func__));
9936 		}
9937 
9938 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
9939 		if (!uld_active(sc, ULD_IWARP))
9940 			(void) t4_activate_uld(sc, ULD_IWARP);
9941 		if (!uld_active(sc, ULD_ISCSI))
9942 			(void) t4_activate_uld(sc, ULD_ISCSI);
9943 
9944 		pi->uld_vis++;
9945 		setbit(&sc->offload_map, pi->port_id);
9946 	} else {
9947 		pi->uld_vis--;
9948 
9949 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9950 			return (0);
9951 
9952 		KASSERT(uld_active(sc, ULD_TOM),
9953 		    ("%s: TOM never initialized?", __func__));
9954 		clrbit(&sc->offload_map, pi->port_id);
9955 	}
9956 
9957 	return (0);
9958 }
9959 
9960 /*
9961  * Add an upper layer driver to the global list.
9962  */
9963 int
9964 t4_register_uld(struct uld_info *ui)
9965 {
9966 	int rc = 0;
9967 	struct uld_info *u;
9968 
9969 	sx_xlock(&t4_uld_list_lock);
9970 	SLIST_FOREACH(u, &t4_uld_list, link) {
9971 	    if (u->uld_id == ui->uld_id) {
9972 		    rc = EEXIST;
9973 		    goto done;
9974 	    }
9975 	}
9976 
9977 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9978 	ui->refcount = 0;
9979 done:
9980 	sx_xunlock(&t4_uld_list_lock);
9981 	return (rc);
9982 }
9983 
9984 int
9985 t4_unregister_uld(struct uld_info *ui)
9986 {
9987 	int rc = EINVAL;
9988 	struct uld_info *u;
9989 
9990 	sx_xlock(&t4_uld_list_lock);
9991 
9992 	SLIST_FOREACH(u, &t4_uld_list, link) {
9993 	    if (u == ui) {
9994 		    if (ui->refcount > 0) {
9995 			    rc = EBUSY;
9996 			    goto done;
9997 		    }
9998 
9999 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
10000 		    rc = 0;
10001 		    goto done;
10002 	    }
10003 	}
10004 done:
10005 	sx_xunlock(&t4_uld_list_lock);
10006 	return (rc);
10007 }
10008 
10009 int
10010 t4_activate_uld(struct adapter *sc, int id)
10011 {
10012 	int rc;
10013 	struct uld_info *ui;
10014 
10015 	ASSERT_SYNCHRONIZED_OP(sc);
10016 
10017 	if (id < 0 || id > ULD_MAX)
10018 		return (EINVAL);
10019 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
10020 
10021 	sx_slock(&t4_uld_list_lock);
10022 
10023 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10024 		if (ui->uld_id == id) {
10025 			if (!(sc->flags & FULL_INIT_DONE)) {
10026 				rc = adapter_full_init(sc);
10027 				if (rc != 0)
10028 					break;
10029 			}
10030 
10031 			rc = ui->activate(sc);
10032 			if (rc == 0) {
10033 				setbit(&sc->active_ulds, id);
10034 				ui->refcount++;
10035 			}
10036 			break;
10037 		}
10038 	}
10039 
10040 	sx_sunlock(&t4_uld_list_lock);
10041 
10042 	return (rc);
10043 }
10044 
10045 int
10046 t4_deactivate_uld(struct adapter *sc, int id)
10047 {
10048 	int rc;
10049 	struct uld_info *ui;
10050 
10051 	ASSERT_SYNCHRONIZED_OP(sc);
10052 
10053 	if (id < 0 || id > ULD_MAX)
10054 		return (EINVAL);
10055 	rc = ENXIO;
10056 
10057 	sx_slock(&t4_uld_list_lock);
10058 
10059 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10060 		if (ui->uld_id == id) {
10061 			rc = ui->deactivate(sc);
10062 			if (rc == 0) {
10063 				clrbit(&sc->active_ulds, id);
10064 				ui->refcount--;
10065 			}
10066 			break;
10067 		}
10068 	}
10069 
10070 	sx_sunlock(&t4_uld_list_lock);
10071 
10072 	return (rc);
10073 }
10074 
10075 int
10076 uld_active(struct adapter *sc, int uld_id)
10077 {
10078 
10079 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
10080 
10081 	return (isset(&sc->active_ulds, uld_id));
10082 }
10083 #endif
10084 
10085 /*
10086  * t  = ptr to tunable.
10087  * nc = number of CPUs.
10088  * c  = compiled in default for that tunable.
10089  */
10090 static void
10091 calculate_nqueues(int *t, int nc, const int c)
10092 {
10093 	int nq;
10094 
10095 	if (*t > 0)
10096 		return;
10097 	nq = *t < 0 ? -*t : c;
10098 	*t = min(nc, nq);
10099 }
10100 
10101 /*
10102  * Come up with reasonable defaults for some of the tunables, provided they're
10103  * not set by the user (in which case we'll use the values as is).
10104  */
10105 static void
10106 tweak_tunables(void)
10107 {
10108 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
10109 
10110 	if (t4_ntxq < 1) {
10111 #ifdef RSS
10112 		t4_ntxq = rss_getnumbuckets();
10113 #else
10114 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
10115 #endif
10116 	}
10117 
10118 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
10119 
10120 	if (t4_nrxq < 1) {
10121 #ifdef RSS
10122 		t4_nrxq = rss_getnumbuckets();
10123 #else
10124 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
10125 #endif
10126 	}
10127 
10128 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
10129 
10130 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10131 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
10132 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
10133 #endif
10134 #ifdef TCP_OFFLOAD
10135 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
10136 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
10137 
10138 	if (t4_toecaps_allowed == -1)
10139 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
10140 
10141 	if (t4_rdmacaps_allowed == -1) {
10142 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
10143 		    FW_CAPS_CONFIG_RDMA_RDMAC;
10144 	}
10145 
10146 	if (t4_iscsicaps_allowed == -1) {
10147 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10148 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10149 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
10150 	}
10151 
10152 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10153 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
10154 
10155 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10156 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10157 #else
10158 	if (t4_toecaps_allowed == -1)
10159 		t4_toecaps_allowed = 0;
10160 
10161 	if (t4_rdmacaps_allowed == -1)
10162 		t4_rdmacaps_allowed = 0;
10163 
10164 	if (t4_iscsicaps_allowed == -1)
10165 		t4_iscsicaps_allowed = 0;
10166 #endif
10167 
10168 #ifdef DEV_NETMAP
10169 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10170 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10171 #endif
10172 
10173 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
10174 		t4_tmr_idx = TMR_IDX;
10175 
10176 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
10177 		t4_pktc_idx = PKTC_IDX;
10178 
10179 	if (t4_qsize_txq < 128)
10180 		t4_qsize_txq = 128;
10181 
10182 	if (t4_qsize_rxq < 128)
10183 		t4_qsize_rxq = 128;
10184 	while (t4_qsize_rxq & 7)
10185 		t4_qsize_rxq++;
10186 
10187 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10188 
10189 	/*
10190 	 * Number of VIs to create per-port.  The first VI is the "main" regular
10191 	 * VI for the port.  The rest are additional virtual interfaces on the
10192 	 * same physical port.  Note that the main VI does not have native
10193 	 * netmap support but the extra VIs do.
10194 	 *
10195 	 * Limit the number of VIs per port to the number of available
10196 	 * MAC addresses per port.
10197 	 */
10198 	if (t4_num_vis < 1)
10199 		t4_num_vis = 1;
10200 	if (t4_num_vis > nitems(vi_mac_funcs)) {
10201 		t4_num_vis = nitems(vi_mac_funcs);
10202 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10203 	}
10204 
10205 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10206 		pcie_relaxed_ordering = 1;
10207 #if defined(__i386__) || defined(__amd64__)
10208 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
10209 			pcie_relaxed_ordering = 0;
10210 #endif
10211 	}
10212 }
10213 
10214 #ifdef DDB
10215 static void
10216 t4_dump_tcb(struct adapter *sc, int tid)
10217 {
10218 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10219 
10220 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10221 	save = t4_read_reg(sc, reg);
10222 	base = sc->memwin[2].mw_base;
10223 
10224 	/* Dump TCB for the tid */
10225 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10226 	tcb_addr += tid * TCB_SIZE;
10227 
10228 	if (is_t4(sc)) {
10229 		pf = 0;
10230 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
10231 	} else {
10232 		pf = V_PFNUM(sc->pf);
10233 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
10234 	}
10235 	t4_write_reg(sc, reg, win_pos | pf);
10236 	t4_read_reg(sc, reg);
10237 
10238 	off = tcb_addr - win_pos;
10239 	for (i = 0; i < 4; i++) {
10240 		uint32_t buf[8];
10241 		for (j = 0; j < 8; j++, off += 4)
10242 			buf[j] = htonl(t4_read_reg(sc, base + off));
10243 
10244 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10245 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10246 		    buf[7]);
10247 	}
10248 
10249 	t4_write_reg(sc, reg, save);
10250 	t4_read_reg(sc, reg);
10251 }
10252 
10253 static void
10254 t4_dump_devlog(struct adapter *sc)
10255 {
10256 	struct devlog_params *dparams = &sc->params.devlog;
10257 	struct fw_devlog_e e;
10258 	int i, first, j, m, nentries, rc;
10259 	uint64_t ftstamp = UINT64_MAX;
10260 
10261 	if (dparams->start == 0) {
10262 		db_printf("devlog params not valid\n");
10263 		return;
10264 	}
10265 
10266 	nentries = dparams->size / sizeof(struct fw_devlog_e);
10267 	m = fwmtype_to_hwmtype(dparams->memtype);
10268 
10269 	/* Find the first entry. */
10270 	first = -1;
10271 	for (i = 0; i < nentries && !db_pager_quit; i++) {
10272 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10273 		    sizeof(e), (void *)&e);
10274 		if (rc != 0)
10275 			break;
10276 
10277 		if (e.timestamp == 0)
10278 			break;
10279 
10280 		e.timestamp = be64toh(e.timestamp);
10281 		if (e.timestamp < ftstamp) {
10282 			ftstamp = e.timestamp;
10283 			first = i;
10284 		}
10285 	}
10286 
10287 	if (first == -1)
10288 		return;
10289 
10290 	i = first;
10291 	do {
10292 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10293 		    sizeof(e), (void *)&e);
10294 		if (rc != 0)
10295 			return;
10296 
10297 		if (e.timestamp == 0)
10298 			return;
10299 
10300 		e.timestamp = be64toh(e.timestamp);
10301 		e.seqno = be32toh(e.seqno);
10302 		for (j = 0; j < 8; j++)
10303 			e.params[j] = be32toh(e.params[j]);
10304 
10305 		db_printf("%10d  %15ju  %8s  %8s  ",
10306 		    e.seqno, e.timestamp,
10307 		    (e.level < nitems(devlog_level_strings) ?
10308 			devlog_level_strings[e.level] : "UNKNOWN"),
10309 		    (e.facility < nitems(devlog_facility_strings) ?
10310 			devlog_facility_strings[e.facility] : "UNKNOWN"));
10311 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10312 		    e.params[3], e.params[4], e.params[5], e.params[6],
10313 		    e.params[7]);
10314 
10315 		if (++i == nentries)
10316 			i = 0;
10317 	} while (i != first && !db_pager_quit);
10318 }
10319 
10320 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10321 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10322 
10323 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10324 {
10325 	device_t dev;
10326 	int t;
10327 	bool valid;
10328 
10329 	valid = false;
10330 	t = db_read_token();
10331 	if (t == tIDENT) {
10332 		dev = device_lookup_by_name(db_tok_string);
10333 		valid = true;
10334 	}
10335 	db_skip_to_eol();
10336 	if (!valid) {
10337 		db_printf("usage: show t4 devlog <nexus>\n");
10338 		return;
10339 	}
10340 
10341 	if (dev == NULL) {
10342 		db_printf("device not found\n");
10343 		return;
10344 	}
10345 
10346 	t4_dump_devlog(device_get_softc(dev));
10347 }
10348 
10349 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10350 {
10351 	device_t dev;
10352 	int radix, tid, t;
10353 	bool valid;
10354 
10355 	valid = false;
10356 	radix = db_radix;
10357 	db_radix = 10;
10358 	t = db_read_token();
10359 	if (t == tIDENT) {
10360 		dev = device_lookup_by_name(db_tok_string);
10361 		t = db_read_token();
10362 		if (t == tNUMBER) {
10363 			tid = db_tok_number;
10364 			valid = true;
10365 		}
10366 	}
10367 	db_radix = radix;
10368 	db_skip_to_eol();
10369 	if (!valid) {
10370 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
10371 		return;
10372 	}
10373 
10374 	if (dev == NULL) {
10375 		db_printf("device not found\n");
10376 		return;
10377 	}
10378 	if (tid < 0) {
10379 		db_printf("invalid tid\n");
10380 		return;
10381 	}
10382 
10383 	t4_dump_tcb(device_get_softc(dev), tid);
10384 }
10385 #endif
10386 
10387 /*
10388  * Borrowed from cesa_prep_aes_key().
10389  *
10390  * NB: The crypto engine wants the words in the decryption key in reverse
10391  * order.
10392  */
10393 void
10394 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
10395 {
10396 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
10397 	uint32_t *dkey;
10398 	int i;
10399 
10400 	rijndaelKeySetupEnc(ek, enc_key, kbits);
10401 	dkey = dec_key;
10402 	dkey += (kbits / 8) / 4;
10403 
10404 	switch (kbits) {
10405 	case 128:
10406 		for (i = 0; i < 4; i++)
10407 			*--dkey = htobe32(ek[4 * 10 + i]);
10408 		break;
10409 	case 192:
10410 		for (i = 0; i < 2; i++)
10411 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
10412 		for (i = 0; i < 4; i++)
10413 			*--dkey = htobe32(ek[4 * 12 + i]);
10414 		break;
10415 	case 256:
10416 		for (i = 0; i < 4; i++)
10417 			*--dkey = htobe32(ek[4 * 13 + i]);
10418 		for (i = 0; i < 4; i++)
10419 			*--dkey = htobe32(ek[4 * 14 + i]);
10420 		break;
10421 	}
10422 	MPASS(dkey == dec_key);
10423 }
10424 
10425 static struct sx mlu;	/* mod load unload */
10426 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10427 
10428 static int
10429 mod_event(module_t mod, int cmd, void *arg)
10430 {
10431 	int rc = 0;
10432 	static int loaded = 0;
10433 
10434 	switch (cmd) {
10435 	case MOD_LOAD:
10436 		sx_xlock(&mlu);
10437 		if (loaded++ == 0) {
10438 			t4_sge_modload();
10439 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10440 			    t4_filter_rpl, CPL_COOKIE_FILTER);
10441 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
10442 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
10443 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
10444 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
10445 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10446 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
10447 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
10448 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
10449 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10450 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10451 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
10452 			    do_smt_write_rpl);
10453 			sx_init(&t4_list_lock, "T4/T5 adapters");
10454 			SLIST_INIT(&t4_list);
10455 #ifdef TCP_OFFLOAD
10456 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10457 			SLIST_INIT(&t4_uld_list);
10458 #endif
10459 			t4_tracer_modload();
10460 			tweak_tunables();
10461 		}
10462 		sx_xunlock(&mlu);
10463 		break;
10464 
10465 	case MOD_UNLOAD:
10466 		sx_xlock(&mlu);
10467 		if (--loaded == 0) {
10468 			int tries;
10469 
10470 			sx_slock(&t4_list_lock);
10471 			if (!SLIST_EMPTY(&t4_list)) {
10472 				rc = EBUSY;
10473 				sx_sunlock(&t4_list_lock);
10474 				goto done_unload;
10475 			}
10476 #ifdef TCP_OFFLOAD
10477 			sx_slock(&t4_uld_list_lock);
10478 			if (!SLIST_EMPTY(&t4_uld_list)) {
10479 				rc = EBUSY;
10480 				sx_sunlock(&t4_uld_list_lock);
10481 				sx_sunlock(&t4_list_lock);
10482 				goto done_unload;
10483 			}
10484 #endif
10485 			tries = 0;
10486 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10487 				uprintf("%ju clusters with custom free routine "
10488 				    "still is use.\n", t4_sge_extfree_refs());
10489 				pause("t4unload", 2 * hz);
10490 			}
10491 #ifdef TCP_OFFLOAD
10492 			sx_sunlock(&t4_uld_list_lock);
10493 #endif
10494 			sx_sunlock(&t4_list_lock);
10495 
10496 			if (t4_sge_extfree_refs() == 0) {
10497 				t4_tracer_modunload();
10498 #ifdef TCP_OFFLOAD
10499 				sx_destroy(&t4_uld_list_lock);
10500 #endif
10501 				sx_destroy(&t4_list_lock);
10502 				t4_sge_modunload();
10503 				loaded = 0;
10504 			} else {
10505 				rc = EBUSY;
10506 				loaded++;	/* undo earlier decrement */
10507 			}
10508 		}
10509 done_unload:
10510 		sx_xunlock(&mlu);
10511 		break;
10512 	}
10513 
10514 	return (rc);
10515 }
10516 
10517 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10518 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10519 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10520 
10521 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10522 MODULE_VERSION(t4nex, 1);
10523 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10524 #ifdef DEV_NETMAP
10525 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10526 #endif /* DEV_NETMAP */
10527 
10528 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10529 MODULE_VERSION(t5nex, 1);
10530 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10531 #ifdef DEV_NETMAP
10532 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10533 #endif /* DEV_NETMAP */
10534 
10535 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10536 MODULE_VERSION(t6nex, 1);
10537 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10538 #ifdef DEV_NETMAP
10539 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10540 #endif /* DEV_NETMAP */
10541 
10542 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10543 MODULE_VERSION(cxgbe, 1);
10544 
10545 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10546 MODULE_VERSION(cxl, 1);
10547 
10548 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10549 MODULE_VERSION(cc, 1);
10550 
10551 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10552 MODULE_VERSION(vcxgbe, 1);
10553 
10554 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10555 MODULE_VERSION(vcxl, 1);
10556 
10557 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10558 MODULE_VERSION(vcc, 1);
10559