1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 struct uld_info *t4_uld_list[ULD_MAX + 1]; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_clock_gate_on_suspend = 0; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 639 640 static int t4_tx_vm_wr = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 642 "Use VM work requests to transmit packets."); 643 644 /* 645 * Set to non-zero to enable the attack filter. A packet that matches any of 646 * these conditions will get dropped on ingress: 647 * 1) IP && source address == destination address. 648 * 2) TCP/IP && source address is not a unicast address. 649 * 3) TCP/IP && destination address is not a unicast address. 650 * 4) IP && source address is loopback (127.x.y.z). 651 * 5) IP && destination address is loopback (127.x.y.z). 652 * 6) IPv6 && source address == destination address. 653 * 7) IPv6 && source address is not a unicast address. 654 * 8) IPv6 && source address is loopback (::1/128). 655 * 9) IPv6 && destination address is loopback (::1/128). 656 * 10) IPv6 && source address is unspecified (::/128). 657 * 11) IPv6 && destination address is unspecified (::/128). 658 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 660 */ 661 static int t4_attack_filter = 0; 662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 663 &t4_attack_filter, 0, "Drop suspicious traffic"); 664 665 static int t4_drop_ip_fragments = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 667 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 668 669 static int t4_drop_pkts_with_l2_errors = 1; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l2_errors, 0, 672 "Drop all frames with Layer 2 length or checksum errors"); 673 674 static int t4_drop_pkts_with_l3_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l3_errors, 0, 677 "Drop all frames with IP version, length, or checksum errors"); 678 679 static int t4_drop_pkts_with_l4_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l4_errors, 0, 682 "Drop all frames with Layer 4 length, checksum, or other errors"); 683 684 #ifdef TCP_OFFLOAD 685 /* 686 * TOE tunables. 687 */ 688 static int t4_cop_managed_offloading = 0; 689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 690 &t4_cop_managed_offloading, 0, 691 "COP (Connection Offload Policy) controls all TOE offload"); 692 #endif 693 694 #ifdef KERN_TLS 695 /* 696 * This enables KERN_TLS for all adapters if set. 697 */ 698 static int t4_kern_tls = 0; 699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 700 "Enable KERN_TLS mode for T6 adapters"); 701 702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 703 "cxgbe(4) KERN_TLS parameters"); 704 705 static int t4_tls_inline_keys = 0; 706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 707 &t4_tls_inline_keys, 0, 708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 709 "in card memory."); 710 711 static int t4_tls_combo_wrs = 0; 712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 713 0, "Attempt to combine TCB field updates with TLS record work requests."); 714 #endif 715 716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 717 static int vi_mac_funcs[] = { 718 FW_VI_FUNC_ETH, 719 FW_VI_FUNC_OFLD, 720 FW_VI_FUNC_IWARP, 721 FW_VI_FUNC_OPENISCSI, 722 FW_VI_FUNC_OPENFCOE, 723 FW_VI_FUNC_FOISCSI, 724 FW_VI_FUNC_FOFCOE, 725 }; 726 727 struct intrs_and_queues { 728 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 729 uint16_t num_vis; /* number of VIs for each port */ 730 uint16_t nirq; /* Total # of vectors */ 731 uint16_t ntxq; /* # of NIC txq's for each port */ 732 uint16_t nrxq; /* # of NIC rxq's for each port */ 733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 734 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 735 uint16_t nnmtxq; /* # of netmap txq's */ 736 uint16_t nnmrxq; /* # of netmap rxq's */ 737 738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 739 uint16_t ntxq_vi; /* # of NIC txq's */ 740 uint16_t nrxq_vi; /* # of NIC rxq's */ 741 uint16_t nofldtxq_vi; /* # of TOE txq's */ 742 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 743 uint16_t nnmtxq_vi; /* # of netmap txq's */ 744 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 745 }; 746 747 static void setup_memwin(struct adapter *); 748 static void position_memwin(struct adapter *, int, uint32_t); 749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 750 static int fwmtype_to_hwmtype(int); 751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 752 uint32_t *); 753 static int fixup_devlog_params(struct adapter *); 754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 755 static int contact_firmware(struct adapter *); 756 static int partition_resources(struct adapter *); 757 static int get_params__pre_init(struct adapter *); 758 static int set_params__pre_init(struct adapter *); 759 static int get_params__post_init(struct adapter *); 760 static int set_params__post_init(struct adapter *); 761 static void t4_set_desc(struct adapter *); 762 static bool fixed_ifmedia(struct port_info *); 763 static void build_medialist(struct port_info *); 764 static void init_link_config(struct port_info *); 765 static int fixup_link_config(struct port_info *); 766 static int apply_link_config(struct port_info *); 767 static int cxgbe_init_synchronized(struct vi_info *); 768 static int cxgbe_uninit_synchronized(struct vi_info *); 769 static int adapter_full_init(struct adapter *); 770 static void adapter_full_uninit(struct adapter *); 771 static int vi_full_init(struct vi_info *); 772 static void vi_full_uninit(struct vi_info *); 773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 774 static void quiesce_txq(struct sge_txq *); 775 static void quiesce_wrq(struct sge_wrq *); 776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 777 static void quiesce_vi(struct vi_info *); 778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 779 driver_intr_t *, void *, char *); 780 static int t4_free_irq(struct adapter *, struct irq *); 781 static void t4_init_atid_table(struct adapter *); 782 static void t4_free_atid_table(struct adapter *); 783 static void stop_atid_allocator(struct adapter *); 784 static void restart_atid_allocator(struct adapter *); 785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 786 static void vi_refresh_stats(struct vi_info *); 787 static void cxgbe_refresh_stats(struct vi_info *); 788 static void cxgbe_tick(void *); 789 static void vi_tick(void *); 790 static void cxgbe_sysctls(struct port_info *); 791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 842 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 843 #ifdef TCP_OFFLOAD 844 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 852 #endif 853 static int get_sge_context(struct adapter *, struct t4_sge_context *); 854 static int load_fw(struct adapter *, struct t4_data *); 855 static int load_cfg(struct adapter *, struct t4_data *); 856 static int load_boot(struct adapter *, struct t4_bootrom *); 857 static int load_bootcfg(struct adapter *, struct t4_data *); 858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 859 static void free_offload_policy(struct t4_offload_policy *); 860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 862 static int read_i2c(struct adapter *, struct t4_i2c_data *); 863 static int clear_stats(struct adapter *, u_int); 864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 866 static inline int stop_adapter(struct adapter *); 867 static inline void set_adapter_hwstatus(struct adapter *, const bool); 868 static int stop_lld(struct adapter *); 869 static inline int restart_adapter(struct adapter *); 870 static int restart_lld(struct adapter *); 871 #ifdef TCP_OFFLOAD 872 static int toe_capability(struct vi_info *, bool); 873 static int deactivate_all_uld(struct adapter *); 874 static void stop_all_uld(struct adapter *); 875 static void restart_all_uld(struct adapter *); 876 #endif 877 #ifdef KERN_TLS 878 static int ktls_capability(struct adapter *, bool); 879 #endif 880 static int mod_event(module_t, int, void *); 881 static int notify_siblings(device_t, int); 882 static uint64_t vi_get_counter(if_t, ift_counter); 883 static uint64_t cxgbe_get_counter(if_t, ift_counter); 884 static void enable_vxlan_rx(struct adapter *); 885 static void reset_adapter_task(void *, int); 886 static void fatal_error_task(void *, int); 887 static void dump_devlog(struct adapter *); 888 static void dump_cim_regs(struct adapter *); 889 static void dump_cimla(struct adapter *); 890 891 struct { 892 uint16_t device; 893 char *desc; 894 } t4_pciids[] = { 895 {0xa000, "Chelsio Terminator 4 FPGA"}, 896 {0x4400, "Chelsio T440-dbg"}, 897 {0x4401, "Chelsio T420-CR"}, 898 {0x4402, "Chelsio T422-CR"}, 899 {0x4403, "Chelsio T440-CR"}, 900 {0x4404, "Chelsio T420-BCH"}, 901 {0x4405, "Chelsio T440-BCH"}, 902 {0x4406, "Chelsio T440-CH"}, 903 {0x4407, "Chelsio T420-SO"}, 904 {0x4408, "Chelsio T420-CX"}, 905 {0x4409, "Chelsio T420-BT"}, 906 {0x440a, "Chelsio T404-BT"}, 907 {0x440e, "Chelsio T440-LP-CR"}, 908 }, t5_pciids[] = { 909 {0xb000, "Chelsio Terminator 5 FPGA"}, 910 {0x5400, "Chelsio T580-dbg"}, 911 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 912 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 913 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 914 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 915 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 916 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 917 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 918 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 919 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 920 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 921 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 922 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 923 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 924 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 925 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 926 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 927 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 928 929 /* Custom */ 930 {0x5483, "Custom T540-CR"}, 931 {0x5484, "Custom T540-BT"}, 932 }, t6_pciids[] = { 933 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 934 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 935 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 936 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 937 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 938 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 939 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 940 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 941 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 942 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 943 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 944 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 945 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 946 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 947 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 948 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 949 950 /* Custom */ 951 {0x6480, "Custom T6225-CR"}, 952 {0x6481, "Custom T62100-CR"}, 953 {0x6482, "Custom T6225-CR"}, 954 {0x6483, "Custom T62100-CR"}, 955 {0x6484, "Custom T64100-CR"}, 956 {0x6485, "Custom T6240-SO"}, 957 {0x6486, "Custom T6225-SO-CR"}, 958 {0x6487, "Custom T6225-CR"}, 959 }; 960 961 #ifdef TCP_OFFLOAD 962 /* 963 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 964 * be exactly the same for both rxq and ofld_rxq. 965 */ 966 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 967 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 968 #endif 969 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 970 971 static int 972 t4_probe(device_t dev) 973 { 974 int i; 975 uint16_t v = pci_get_vendor(dev); 976 uint16_t d = pci_get_device(dev); 977 uint8_t f = pci_get_function(dev); 978 979 if (v != PCI_VENDOR_ID_CHELSIO) 980 return (ENXIO); 981 982 /* Attach only to PF0 of the FPGA */ 983 if (d == 0xa000 && f != 0) 984 return (ENXIO); 985 986 for (i = 0; i < nitems(t4_pciids); i++) { 987 if (d == t4_pciids[i].device) { 988 device_set_desc(dev, t4_pciids[i].desc); 989 return (BUS_PROBE_DEFAULT); 990 } 991 } 992 993 return (ENXIO); 994 } 995 996 static int 997 t5_probe(device_t dev) 998 { 999 int i; 1000 uint16_t v = pci_get_vendor(dev); 1001 uint16_t d = pci_get_device(dev); 1002 uint8_t f = pci_get_function(dev); 1003 1004 if (v != PCI_VENDOR_ID_CHELSIO) 1005 return (ENXIO); 1006 1007 /* Attach only to PF0 of the FPGA */ 1008 if (d == 0xb000 && f != 0) 1009 return (ENXIO); 1010 1011 for (i = 0; i < nitems(t5_pciids); i++) { 1012 if (d == t5_pciids[i].device) { 1013 device_set_desc(dev, t5_pciids[i].desc); 1014 return (BUS_PROBE_DEFAULT); 1015 } 1016 } 1017 1018 return (ENXIO); 1019 } 1020 1021 static int 1022 t6_probe(device_t dev) 1023 { 1024 int i; 1025 uint16_t v = pci_get_vendor(dev); 1026 uint16_t d = pci_get_device(dev); 1027 1028 if (v != PCI_VENDOR_ID_CHELSIO) 1029 return (ENXIO); 1030 1031 for (i = 0; i < nitems(t6_pciids); i++) { 1032 if (d == t6_pciids[i].device) { 1033 device_set_desc(dev, t6_pciids[i].desc); 1034 return (BUS_PROBE_DEFAULT); 1035 } 1036 } 1037 1038 return (ENXIO); 1039 } 1040 1041 static void 1042 t5_attribute_workaround(device_t dev) 1043 { 1044 device_t root_port; 1045 uint32_t v; 1046 1047 /* 1048 * The T5 chips do not properly echo the No Snoop and Relaxed 1049 * Ordering attributes when replying to a TLP from a Root 1050 * Port. As a workaround, find the parent Root Port and 1051 * disable No Snoop and Relaxed Ordering. Note that this 1052 * affects all devices under this root port. 1053 */ 1054 root_port = pci_find_pcie_root_port(dev); 1055 if (root_port == NULL) { 1056 device_printf(dev, "Unable to find parent root port\n"); 1057 return; 1058 } 1059 1060 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1061 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1062 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1063 0) 1064 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1065 device_get_nameunit(root_port)); 1066 } 1067 1068 static const struct devnames devnames[] = { 1069 { 1070 .nexus_name = "t4nex", 1071 .ifnet_name = "cxgbe", 1072 .vi_ifnet_name = "vcxgbe", 1073 .pf03_drv_name = "t4iov", 1074 .vf_nexus_name = "t4vf", 1075 .vf_ifnet_name = "cxgbev" 1076 }, { 1077 .nexus_name = "t5nex", 1078 .ifnet_name = "cxl", 1079 .vi_ifnet_name = "vcxl", 1080 .pf03_drv_name = "t5iov", 1081 .vf_nexus_name = "t5vf", 1082 .vf_ifnet_name = "cxlv" 1083 }, { 1084 .nexus_name = "t6nex", 1085 .ifnet_name = "cc", 1086 .vi_ifnet_name = "vcc", 1087 .pf03_drv_name = "t6iov", 1088 .vf_nexus_name = "t6vf", 1089 .vf_ifnet_name = "ccv" 1090 } 1091 }; 1092 1093 void 1094 t4_init_devnames(struct adapter *sc) 1095 { 1096 int id; 1097 1098 id = chip_id(sc); 1099 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1100 sc->names = &devnames[id - CHELSIO_T4]; 1101 else { 1102 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1103 sc->names = NULL; 1104 } 1105 } 1106 1107 static int 1108 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1109 { 1110 const char *parent, *name; 1111 long value; 1112 int line, unit; 1113 1114 line = 0; 1115 parent = device_get_nameunit(sc->dev); 1116 name = sc->names->ifnet_name; 1117 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1118 if (resource_long_value(name, unit, "port", &value) == 0 && 1119 value == pi->port_id) 1120 return (unit); 1121 } 1122 return (-1); 1123 } 1124 1125 static void 1126 t4_calibration(void *arg) 1127 { 1128 struct adapter *sc; 1129 struct clock_sync *cur, *nex; 1130 uint64_t hw; 1131 sbintime_t sbt; 1132 int next_up; 1133 1134 sc = (struct adapter *)arg; 1135 1136 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1137 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1138 sbt = sbinuptime(); 1139 1140 cur = &sc->cal_info[sc->cal_current]; 1141 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1142 nex = &sc->cal_info[next_up]; 1143 if (__predict_false(sc->cal_count == 0)) { 1144 /* First time in, just get the values in */ 1145 cur->hw_cur = hw; 1146 cur->sbt_cur = sbt; 1147 sc->cal_count++; 1148 goto done; 1149 } 1150 1151 if (cur->hw_cur == hw) { 1152 /* The clock is not advancing? */ 1153 sc->cal_count = 0; 1154 atomic_store_rel_int(&cur->gen, 0); 1155 goto done; 1156 } 1157 1158 seqc_write_begin(&nex->gen); 1159 nex->hw_prev = cur->hw_cur; 1160 nex->sbt_prev = cur->sbt_cur; 1161 nex->hw_cur = hw; 1162 nex->sbt_cur = sbt; 1163 seqc_write_end(&nex->gen); 1164 sc->cal_current = next_up; 1165 done: 1166 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1167 sc, C_DIRECT_EXEC); 1168 } 1169 1170 static void 1171 t4_calibration_start(struct adapter *sc) 1172 { 1173 /* 1174 * Here if we have not done a calibration 1175 * then do so otherwise start the appropriate 1176 * timer. 1177 */ 1178 int i; 1179 1180 for (i = 0; i < CNT_CAL_INFO; i++) { 1181 sc->cal_info[i].gen = 0; 1182 } 1183 sc->cal_current = 0; 1184 sc->cal_count = 0; 1185 sc->cal_gen = 0; 1186 t4_calibration(sc); 1187 } 1188 1189 static int 1190 t4_attach(device_t dev) 1191 { 1192 struct adapter *sc; 1193 int rc = 0, i, j, rqidx, tqidx, nports; 1194 struct make_dev_args mda; 1195 struct intrs_and_queues iaq; 1196 struct sge *s; 1197 uint32_t *buf; 1198 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1199 int ofld_tqidx; 1200 #endif 1201 #ifdef TCP_OFFLOAD 1202 int ofld_rqidx; 1203 #endif 1204 #ifdef DEV_NETMAP 1205 int nm_rqidx, nm_tqidx; 1206 #endif 1207 int num_vis; 1208 1209 sc = device_get_softc(dev); 1210 sc->dev = dev; 1211 sysctl_ctx_init(&sc->ctx); 1212 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1213 1214 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1215 t5_attribute_workaround(dev); 1216 pci_enable_busmaster(dev); 1217 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1218 uint32_t v; 1219 1220 pci_set_max_read_req(dev, 4096); 1221 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1222 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1223 if (pcie_relaxed_ordering == 0 && 1224 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1225 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1226 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1227 } else if (pcie_relaxed_ordering == 1 && 1228 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1229 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1230 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1231 } 1232 } 1233 1234 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1235 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1236 sc->traceq = -1; 1237 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1238 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1239 device_get_nameunit(dev)); 1240 1241 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1242 device_get_nameunit(dev)); 1243 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1244 t4_add_adapter(sc); 1245 1246 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1247 TAILQ_INIT(&sc->sfl); 1248 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1249 1250 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1251 1252 sc->policy = NULL; 1253 rw_init(&sc->policy_lock, "connection offload policy"); 1254 1255 callout_init(&sc->ktls_tick, 1); 1256 1257 callout_init(&sc->cal_callout, 1); 1258 1259 refcount_init(&sc->vxlan_refcount, 0); 1260 1261 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1262 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1263 1264 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1265 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1266 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1267 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1268 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1269 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1270 1271 rc = t4_map_bars_0_and_4(sc); 1272 if (rc != 0) 1273 goto done; /* error message displayed already */ 1274 1275 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1276 1277 /* Prepare the adapter for operation. */ 1278 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1279 rc = -t4_prep_adapter(sc, buf); 1280 free(buf, M_CXGBE); 1281 if (rc != 0) { 1282 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1283 goto done; 1284 } 1285 1286 /* 1287 * This is the real PF# to which we're attaching. Works from within PCI 1288 * passthrough environments too, where pci_get_function() could return a 1289 * different PF# depending on the passthrough configuration. We need to 1290 * use the real PF# in all our communication with the firmware. 1291 */ 1292 j = t4_read_reg(sc, A_PL_WHOAMI); 1293 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1294 sc->mbox = sc->pf; 1295 1296 t4_init_devnames(sc); 1297 if (sc->names == NULL) { 1298 rc = ENOTSUP; 1299 goto done; /* error message displayed already */ 1300 } 1301 1302 /* 1303 * Do this really early, with the memory windows set up even before the 1304 * character device. The userland tool's register i/o and mem read 1305 * will work even in "recovery mode". 1306 */ 1307 setup_memwin(sc); 1308 if (t4_init_devlog_params(sc, 0) == 0) 1309 fixup_devlog_params(sc); 1310 make_dev_args_init(&mda); 1311 mda.mda_devsw = &t4_cdevsw; 1312 mda.mda_uid = UID_ROOT; 1313 mda.mda_gid = GID_WHEEL; 1314 mda.mda_mode = 0600; 1315 mda.mda_si_drv1 = sc; 1316 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1317 if (rc != 0) 1318 device_printf(dev, "failed to create nexus char device: %d.\n", 1319 rc); 1320 1321 /* Go no further if recovery mode has been requested. */ 1322 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1323 device_printf(dev, "recovery mode.\n"); 1324 goto done; 1325 } 1326 1327 #if defined(__i386__) 1328 if ((cpu_feature & CPUID_CX8) == 0) { 1329 device_printf(dev, "64 bit atomics not available.\n"); 1330 rc = ENOTSUP; 1331 goto done; 1332 } 1333 #endif 1334 1335 /* Contact the firmware and try to become the master driver. */ 1336 rc = contact_firmware(sc); 1337 if (rc != 0) 1338 goto done; /* error message displayed already */ 1339 MPASS(sc->flags & FW_OK); 1340 1341 rc = get_params__pre_init(sc); 1342 if (rc != 0) 1343 goto done; /* error message displayed already */ 1344 1345 if (sc->flags & MASTER_PF) { 1346 rc = partition_resources(sc); 1347 if (rc != 0) 1348 goto done; /* error message displayed already */ 1349 } 1350 1351 rc = get_params__post_init(sc); 1352 if (rc != 0) 1353 goto done; /* error message displayed already */ 1354 1355 rc = set_params__post_init(sc); 1356 if (rc != 0) 1357 goto done; /* error message displayed already */ 1358 1359 rc = t4_map_bar_2(sc); 1360 if (rc != 0) 1361 goto done; /* error message displayed already */ 1362 1363 rc = t4_adj_doorbells(sc); 1364 if (rc != 0) 1365 goto done; /* error message displayed already */ 1366 1367 rc = t4_create_dma_tag(sc); 1368 if (rc != 0) 1369 goto done; /* error message displayed already */ 1370 1371 /* 1372 * First pass over all the ports - allocate VIs and initialize some 1373 * basic parameters like mac address, port type, etc. 1374 */ 1375 for_each_port(sc, i) { 1376 struct port_info *pi; 1377 1378 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1379 sc->port[i] = pi; 1380 1381 /* These must be set before t4_port_init */ 1382 pi->adapter = sc; 1383 pi->port_id = i; 1384 /* 1385 * XXX: vi[0] is special so we can't delay this allocation until 1386 * pi->nvi's final value is known. 1387 */ 1388 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1389 M_ZERO | M_WAITOK); 1390 1391 /* 1392 * Allocate the "main" VI and initialize parameters 1393 * like mac addr. 1394 */ 1395 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1396 if (rc != 0) { 1397 device_printf(dev, "unable to initialize port %d: %d\n", 1398 i, rc); 1399 free(pi->vi, M_CXGBE); 1400 free(pi, M_CXGBE); 1401 sc->port[i] = NULL; 1402 goto done; 1403 } 1404 1405 if (is_bt(pi->port_type)) 1406 setbit(&sc->bt_map, pi->tx_chan); 1407 else 1408 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1409 1410 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1411 device_get_nameunit(dev), i); 1412 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1413 sc->chan_map[pi->tx_chan] = i; 1414 1415 /* 1416 * The MPS counter for FCS errors doesn't work correctly on the 1417 * T6 so we use the MAC counter here. Which MAC is in use 1418 * depends on the link settings which will be known when the 1419 * link comes up. 1420 */ 1421 if (is_t6(sc)) 1422 pi->fcs_reg = -1; 1423 else { 1424 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1425 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1426 } 1427 pi->fcs_base = 0; 1428 1429 /* All VIs on this port share this media. */ 1430 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1431 cxgbe_media_status); 1432 1433 PORT_LOCK(pi); 1434 init_link_config(pi); 1435 fixup_link_config(pi); 1436 build_medialist(pi); 1437 if (fixed_ifmedia(pi)) 1438 pi->flags |= FIXED_IFMEDIA; 1439 PORT_UNLOCK(pi); 1440 1441 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1442 t4_ifnet_unit(sc, pi)); 1443 if (pi->dev == NULL) { 1444 device_printf(dev, 1445 "failed to add device for port %d.\n", i); 1446 rc = ENXIO; 1447 goto done; 1448 } 1449 pi->vi[0].dev = pi->dev; 1450 device_set_softc(pi->dev, pi); 1451 } 1452 1453 /* 1454 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1455 */ 1456 nports = sc->params.nports; 1457 rc = cfg_itype_and_nqueues(sc, &iaq); 1458 if (rc != 0) 1459 goto done; /* error message displayed already */ 1460 1461 num_vis = iaq.num_vis; 1462 sc->intr_type = iaq.intr_type; 1463 sc->intr_count = iaq.nirq; 1464 1465 s = &sc->sge; 1466 s->nrxq = nports * iaq.nrxq; 1467 s->ntxq = nports * iaq.ntxq; 1468 if (num_vis > 1) { 1469 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1470 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1471 } 1472 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1473 s->neq += nports; /* ctrl queues: 1 per port */ 1474 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1475 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1476 if (is_offload(sc) || is_ethoffload(sc)) { 1477 s->nofldtxq = nports * iaq.nofldtxq; 1478 if (num_vis > 1) 1479 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1480 s->neq += s->nofldtxq; 1481 1482 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1483 M_CXGBE, M_ZERO | M_WAITOK); 1484 } 1485 #endif 1486 #ifdef TCP_OFFLOAD 1487 if (is_offload(sc)) { 1488 s->nofldrxq = nports * iaq.nofldrxq; 1489 if (num_vis > 1) 1490 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1491 s->neq += s->nofldrxq; /* free list */ 1492 s->niq += s->nofldrxq; 1493 1494 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1495 M_CXGBE, M_ZERO | M_WAITOK); 1496 } 1497 #endif 1498 #ifdef DEV_NETMAP 1499 s->nnmrxq = 0; 1500 s->nnmtxq = 0; 1501 if (t4_native_netmap & NN_MAIN_VI) { 1502 s->nnmrxq += nports * iaq.nnmrxq; 1503 s->nnmtxq += nports * iaq.nnmtxq; 1504 } 1505 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1506 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1507 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1508 } 1509 s->neq += s->nnmtxq + s->nnmrxq; 1510 s->niq += s->nnmrxq; 1511 1512 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1513 M_CXGBE, M_ZERO | M_WAITOK); 1514 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1515 M_CXGBE, M_ZERO | M_WAITOK); 1516 #endif 1517 MPASS(s->niq <= s->iqmap_sz); 1518 MPASS(s->neq <= s->eqmap_sz); 1519 1520 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1521 M_ZERO | M_WAITOK); 1522 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1523 M_ZERO | M_WAITOK); 1524 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1525 M_ZERO | M_WAITOK); 1526 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1527 M_ZERO | M_WAITOK); 1528 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1529 M_ZERO | M_WAITOK); 1530 1531 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1532 M_ZERO | M_WAITOK); 1533 1534 t4_init_l2t(sc, M_WAITOK); 1535 t4_init_smt(sc, M_WAITOK); 1536 t4_init_tx_sched(sc); 1537 t4_init_atid_table(sc); 1538 #ifdef RATELIMIT 1539 t4_init_etid_table(sc); 1540 #endif 1541 #ifdef INET6 1542 t4_init_clip_table(sc); 1543 #endif 1544 if (sc->vres.key.size != 0) 1545 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1546 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1547 1548 /* 1549 * Second pass over the ports. This time we know the number of rx and 1550 * tx queues that each port should get. 1551 */ 1552 rqidx = tqidx = 0; 1553 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1554 ofld_tqidx = 0; 1555 #endif 1556 #ifdef TCP_OFFLOAD 1557 ofld_rqidx = 0; 1558 #endif 1559 #ifdef DEV_NETMAP 1560 nm_rqidx = nm_tqidx = 0; 1561 #endif 1562 for_each_port(sc, i) { 1563 struct port_info *pi = sc->port[i]; 1564 struct vi_info *vi; 1565 1566 if (pi == NULL) 1567 continue; 1568 1569 pi->nvi = num_vis; 1570 for_each_vi(pi, j, vi) { 1571 vi->pi = pi; 1572 vi->adapter = sc; 1573 vi->first_intr = -1; 1574 vi->qsize_rxq = t4_qsize_rxq; 1575 vi->qsize_txq = t4_qsize_txq; 1576 1577 vi->first_rxq = rqidx; 1578 vi->first_txq = tqidx; 1579 vi->tmr_idx = t4_tmr_idx; 1580 vi->pktc_idx = t4_pktc_idx; 1581 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1582 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1583 1584 rqidx += vi->nrxq; 1585 tqidx += vi->ntxq; 1586 1587 if (j == 0 && vi->ntxq > 1) 1588 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1589 else 1590 vi->rsrv_noflowq = 0; 1591 1592 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1593 vi->first_ofld_txq = ofld_tqidx; 1594 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1595 ofld_tqidx += vi->nofldtxq; 1596 #endif 1597 #ifdef TCP_OFFLOAD 1598 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1599 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1600 vi->first_ofld_rxq = ofld_rqidx; 1601 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1602 1603 ofld_rqidx += vi->nofldrxq; 1604 #endif 1605 #ifdef DEV_NETMAP 1606 vi->first_nm_rxq = nm_rqidx; 1607 vi->first_nm_txq = nm_tqidx; 1608 if (j == 0) { 1609 vi->nnmrxq = iaq.nnmrxq; 1610 vi->nnmtxq = iaq.nnmtxq; 1611 } else { 1612 vi->nnmrxq = iaq.nnmrxq_vi; 1613 vi->nnmtxq = iaq.nnmtxq_vi; 1614 } 1615 nm_rqidx += vi->nnmrxq; 1616 nm_tqidx += vi->nnmtxq; 1617 #endif 1618 } 1619 } 1620 1621 rc = t4_setup_intr_handlers(sc); 1622 if (rc != 0) { 1623 device_printf(dev, 1624 "failed to setup interrupt handlers: %d\n", rc); 1625 goto done; 1626 } 1627 1628 rc = bus_generic_probe(dev); 1629 if (rc != 0) { 1630 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1631 goto done; 1632 } 1633 1634 /* 1635 * Ensure thread-safe mailbox access (in debug builds). 1636 * 1637 * So far this was the only thread accessing the mailbox but various 1638 * ifnets and sysctls are about to be created and their handlers/ioctls 1639 * will access the mailbox from different threads. 1640 */ 1641 sc->flags |= CHK_MBOX_ACCESS; 1642 1643 rc = bus_generic_attach(dev); 1644 if (rc != 0) { 1645 device_printf(dev, 1646 "failed to attach all child ports: %d\n", rc); 1647 goto done; 1648 } 1649 t4_calibration_start(sc); 1650 1651 device_printf(dev, 1652 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1653 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1654 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1655 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1656 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1657 1658 t4_set_desc(sc); 1659 1660 notify_siblings(dev, 0); 1661 1662 done: 1663 if (rc != 0 && sc->cdev) { 1664 /* cdev was created and so cxgbetool works; recover that way. */ 1665 device_printf(dev, 1666 "error during attach, adapter is now in recovery mode.\n"); 1667 rc = 0; 1668 } 1669 1670 if (rc != 0) 1671 t4_detach_common(dev); 1672 else 1673 t4_sysctls(sc); 1674 1675 return (rc); 1676 } 1677 1678 static int 1679 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1680 { 1681 struct adapter *sc; 1682 struct port_info *pi; 1683 int i; 1684 1685 sc = device_get_softc(bus); 1686 for_each_port(sc, i) { 1687 pi = sc->port[i]; 1688 if (pi != NULL && pi->dev == dev) { 1689 sbuf_printf(sb, "port=%d", pi->port_id); 1690 break; 1691 } 1692 } 1693 return (0); 1694 } 1695 1696 static int 1697 t4_ready(device_t dev) 1698 { 1699 struct adapter *sc; 1700 1701 sc = device_get_softc(dev); 1702 if (sc->flags & FW_OK) 1703 return (0); 1704 return (ENXIO); 1705 } 1706 1707 static int 1708 t4_read_port_device(device_t dev, int port, device_t *child) 1709 { 1710 struct adapter *sc; 1711 struct port_info *pi; 1712 1713 sc = device_get_softc(dev); 1714 if (port < 0 || port >= MAX_NPORTS) 1715 return (EINVAL); 1716 pi = sc->port[port]; 1717 if (pi == NULL || pi->dev == NULL) 1718 return (ENXIO); 1719 *child = pi->dev; 1720 return (0); 1721 } 1722 1723 static int 1724 notify_siblings(device_t dev, int detaching) 1725 { 1726 device_t sibling; 1727 int error, i; 1728 1729 error = 0; 1730 for (i = 0; i < PCI_FUNCMAX; i++) { 1731 if (i == pci_get_function(dev)) 1732 continue; 1733 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1734 pci_get_slot(dev), i); 1735 if (sibling == NULL || !device_is_attached(sibling)) 1736 continue; 1737 if (detaching) 1738 error = T4_DETACH_CHILD(sibling); 1739 else 1740 (void)T4_ATTACH_CHILD(sibling); 1741 if (error) 1742 break; 1743 } 1744 return (error); 1745 } 1746 1747 /* 1748 * Idempotent 1749 */ 1750 static int 1751 t4_detach(device_t dev) 1752 { 1753 int rc; 1754 1755 rc = notify_siblings(dev, 1); 1756 if (rc) { 1757 device_printf(dev, 1758 "failed to detach sibling devices: %d\n", rc); 1759 return (rc); 1760 } 1761 1762 return (t4_detach_common(dev)); 1763 } 1764 1765 int 1766 t4_detach_common(device_t dev) 1767 { 1768 struct adapter *sc; 1769 struct port_info *pi; 1770 int i, rc; 1771 1772 sc = device_get_softc(dev); 1773 1774 #ifdef TCP_OFFLOAD 1775 rc = deactivate_all_uld(sc); 1776 if (rc) { 1777 device_printf(dev, 1778 "failed to detach upper layer drivers: %d\n", rc); 1779 return (rc); 1780 } 1781 #endif 1782 1783 if (sc->cdev) { 1784 destroy_dev(sc->cdev); 1785 sc->cdev = NULL; 1786 } 1787 1788 sx_xlock(&t4_list_lock); 1789 SLIST_REMOVE(&t4_list, sc, adapter, link); 1790 sx_xunlock(&t4_list_lock); 1791 1792 sc->flags &= ~CHK_MBOX_ACCESS; 1793 if (sc->flags & FULL_INIT_DONE) { 1794 if (!(sc->flags & IS_VF)) 1795 t4_intr_disable(sc); 1796 } 1797 1798 if (device_is_attached(dev)) { 1799 rc = bus_generic_detach(dev); 1800 if (rc) { 1801 device_printf(dev, 1802 "failed to detach child devices: %d\n", rc); 1803 return (rc); 1804 } 1805 } 1806 1807 for (i = 0; i < sc->intr_count; i++) 1808 t4_free_irq(sc, &sc->irq[i]); 1809 1810 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1811 t4_free_tx_sched(sc); 1812 1813 for (i = 0; i < MAX_NPORTS; i++) { 1814 pi = sc->port[i]; 1815 if (pi) { 1816 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1817 if (pi->dev) 1818 device_delete_child(dev, pi->dev); 1819 1820 mtx_destroy(&pi->pi_lock); 1821 free(pi->vi, M_CXGBE); 1822 free(pi, M_CXGBE); 1823 } 1824 } 1825 callout_stop(&sc->cal_callout); 1826 callout_drain(&sc->cal_callout); 1827 device_delete_children(dev); 1828 sysctl_ctx_free(&sc->ctx); 1829 adapter_full_uninit(sc); 1830 1831 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1832 t4_fw_bye(sc, sc->mbox); 1833 1834 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1835 pci_release_msi(dev); 1836 1837 if (sc->regs_res) 1838 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1839 sc->regs_res); 1840 1841 if (sc->udbs_res) 1842 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1843 sc->udbs_res); 1844 1845 if (sc->msix_res) 1846 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1847 sc->msix_res); 1848 1849 if (sc->l2t) 1850 t4_free_l2t(sc); 1851 if (sc->smt) 1852 t4_free_smt(sc->smt); 1853 t4_free_atid_table(sc); 1854 #ifdef RATELIMIT 1855 t4_free_etid_table(sc); 1856 #endif 1857 if (sc->key_map) 1858 vmem_destroy(sc->key_map); 1859 #ifdef INET6 1860 t4_destroy_clip_table(sc); 1861 #endif 1862 1863 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1864 free(sc->sge.ofld_txq, M_CXGBE); 1865 #endif 1866 #ifdef TCP_OFFLOAD 1867 free(sc->sge.ofld_rxq, M_CXGBE); 1868 #endif 1869 #ifdef DEV_NETMAP 1870 free(sc->sge.nm_rxq, M_CXGBE); 1871 free(sc->sge.nm_txq, M_CXGBE); 1872 #endif 1873 free(sc->irq, M_CXGBE); 1874 free(sc->sge.rxq, M_CXGBE); 1875 free(sc->sge.txq, M_CXGBE); 1876 free(sc->sge.ctrlq, M_CXGBE); 1877 free(sc->sge.iqmap, M_CXGBE); 1878 free(sc->sge.eqmap, M_CXGBE); 1879 free(sc->tids.ftid_tab, M_CXGBE); 1880 free(sc->tids.hpftid_tab, M_CXGBE); 1881 free_hftid_hash(&sc->tids); 1882 free(sc->tids.tid_tab, M_CXGBE); 1883 t4_destroy_dma_tag(sc); 1884 1885 callout_drain(&sc->ktls_tick); 1886 callout_drain(&sc->sfl_callout); 1887 if (mtx_initialized(&sc->tids.ftid_lock)) { 1888 mtx_destroy(&sc->tids.ftid_lock); 1889 cv_destroy(&sc->tids.ftid_cv); 1890 } 1891 if (mtx_initialized(&sc->tids.atid_lock)) 1892 mtx_destroy(&sc->tids.atid_lock); 1893 if (mtx_initialized(&sc->ifp_lock)) 1894 mtx_destroy(&sc->ifp_lock); 1895 1896 if (rw_initialized(&sc->policy_lock)) { 1897 rw_destroy(&sc->policy_lock); 1898 #ifdef TCP_OFFLOAD 1899 if (sc->policy != NULL) 1900 free_offload_policy(sc->policy); 1901 #endif 1902 } 1903 1904 for (i = 0; i < NUM_MEMWIN; i++) { 1905 struct memwin *mw = &sc->memwin[i]; 1906 1907 if (rw_initialized(&mw->mw_lock)) 1908 rw_destroy(&mw->mw_lock); 1909 } 1910 1911 mtx_destroy(&sc->sfl_lock); 1912 mtx_destroy(&sc->reg_lock); 1913 mtx_destroy(&sc->sc_lock); 1914 1915 bzero(sc, sizeof(*sc)); 1916 1917 return (0); 1918 } 1919 1920 static inline int 1921 stop_adapter(struct adapter *sc) 1922 { 1923 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1925 __func__, curthread, sc->flags, sc->error_flags); 1926 return (EALREADY); 1927 } 1928 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1929 sc->flags, sc->error_flags); 1930 return (t4_shutdown_adapter(sc)); 1931 } 1932 1933 static inline int 1934 restart_adapter(struct adapter *sc) 1935 { 1936 uint32_t val; 1937 1938 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1939 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1940 __func__, curthread, sc->flags, sc->error_flags); 1941 return (EALREADY); 1942 } 1943 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1944 sc->flags, sc->error_flags); 1945 1946 MPASS(hw_off_limits(sc)); 1947 MPASS((sc->flags & FW_OK) == 0); 1948 MPASS((sc->flags & MASTER_PF) == 0); 1949 MPASS(sc->reset_thread == NULL); 1950 1951 /* 1952 * The adapter is supposed to be back on PCIE with its config space and 1953 * BARs restored to their state before reset. Register access via 1954 * t4_read_reg BAR0 should just work. 1955 */ 1956 sc->reset_thread = curthread; 1957 val = t4_read_reg(sc, A_PL_WHOAMI); 1958 if (val == 0xffffffff || val == 0xeeeeeeee) { 1959 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1960 sc->reset_thread = NULL; 1961 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1962 return (ENXIO); 1963 } 1964 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1965 atomic_add_int(&sc->incarnation, 1); 1966 atomic_add_int(&sc->num_resets, 1); 1967 1968 return (0); 1969 } 1970 1971 static inline void 1972 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1973 { 1974 mtx_lock(&sc->reg_lock); 1975 if (usable) { 1976 /* Must be marked reusable by the designated thread. */ 1977 MPASS(sc->reset_thread == curthread); 1978 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1979 } else { 1980 /* Mark the adapter totally off limits. */ 1981 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1982 sc->flags &= ~(FW_OK | MASTER_PF); 1983 sc->reset_thread = NULL; 1984 } 1985 mtx_unlock(&sc->reg_lock); 1986 } 1987 1988 static int 1989 stop_lld(struct adapter *sc) 1990 { 1991 struct port_info *pi; 1992 struct vi_info *vi; 1993 if_t ifp; 1994 struct sge_rxq *rxq; 1995 struct sge_txq *txq; 1996 struct sge_wrq *wrq; 1997 #ifdef TCP_OFFLOAD 1998 struct sge_ofld_rxq *ofld_rxq; 1999 #endif 2000 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2001 struct sge_ofld_txq *ofld_txq; 2002 #endif 2003 int rc, i, j, k; 2004 2005 /* 2006 * XXX: Can there be a synch_op in progress that will hang because 2007 * hardware has been stopped? We'll hang too and the solution will be 2008 * to use a version of begin_synch_op that wakes up existing synch_op 2009 * with errors. Maybe stop_adapter should do this wakeup? 2010 * 2011 * I don't think any synch_op could get stranded waiting for DMA or 2012 * interrupt so I think we're okay here. Remove this comment block 2013 * after testing. 2014 */ 2015 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2016 if (rc != 0) 2017 return (ENXIO); 2018 2019 /* Quiesce all activity. */ 2020 for_each_port(sc, i) { 2021 pi = sc->port[i]; 2022 pi->vxlan_tcam_entry = false; 2023 2024 PORT_LOCK(pi); 2025 if (pi->up_vis > 0) { 2026 /* 2027 * t4_shutdown_adapter has already shut down all the 2028 * PHYs but it also disables interrupts and DMA so there 2029 * won't be a link interrupt. So we update the state 2030 * manually and inform the kernel. 2031 */ 2032 pi->link_cfg.link_ok = false; 2033 t4_os_link_changed(pi); 2034 } 2035 PORT_UNLOCK(pi); 2036 2037 for_each_vi(pi, j, vi) { 2038 vi->xact_addr_filt = -1; 2039 mtx_lock(&vi->tick_mtx); 2040 vi->flags |= VI_SKIP_STATS; 2041 mtx_unlock(&vi->tick_mtx); 2042 if (!(vi->flags & VI_INIT_DONE)) 2043 continue; 2044 2045 ifp = vi->ifp; 2046 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2047 mtx_lock(&vi->tick_mtx); 2048 callout_stop(&vi->tick); 2049 mtx_unlock(&vi->tick_mtx); 2050 callout_drain(&vi->tick); 2051 } 2052 2053 /* 2054 * Note that the HW is not available. 2055 */ 2056 for_each_txq(vi, k, txq) { 2057 TXQ_LOCK(txq); 2058 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2059 TXQ_UNLOCK(txq); 2060 } 2061 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2062 for_each_ofld_txq(vi, k, ofld_txq) { 2063 TXQ_LOCK(&ofld_txq->wrq); 2064 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2065 TXQ_UNLOCK(&ofld_txq->wrq); 2066 } 2067 #endif 2068 for_each_rxq(vi, k, rxq) { 2069 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2070 } 2071 #if defined(TCP_OFFLOAD) 2072 for_each_ofld_rxq(vi, k, ofld_rxq) { 2073 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2074 } 2075 #endif 2076 2077 quiesce_vi(vi); 2078 } 2079 2080 if (sc->flags & FULL_INIT_DONE) { 2081 /* Control queue */ 2082 wrq = &sc->sge.ctrlq[i]; 2083 TXQ_LOCK(wrq); 2084 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2085 TXQ_UNLOCK(wrq); 2086 quiesce_wrq(wrq); 2087 } 2088 } 2089 if (sc->flags & FULL_INIT_DONE) { 2090 /* Firmware event queue */ 2091 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2092 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2093 } 2094 2095 /* Stop calibration */ 2096 callout_stop(&sc->cal_callout); 2097 callout_drain(&sc->cal_callout); 2098 2099 if (t4_clock_gate_on_suspend) { 2100 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2101 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2102 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2103 } 2104 2105 end_synchronized_op(sc, 0); 2106 2107 stop_atid_allocator(sc); 2108 t4_stop_l2t(sc); 2109 2110 return (rc); 2111 } 2112 2113 int 2114 suspend_adapter(struct adapter *sc) 2115 { 2116 stop_adapter(sc); 2117 stop_lld(sc); 2118 #ifdef TCP_OFFLOAD 2119 stop_all_uld(sc); 2120 #endif 2121 set_adapter_hwstatus(sc, false); 2122 2123 return (0); 2124 } 2125 2126 static int 2127 t4_suspend(device_t dev) 2128 { 2129 struct adapter *sc = device_get_softc(dev); 2130 int rc; 2131 2132 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2133 rc = suspend_adapter(sc); 2134 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2135 2136 return (rc); 2137 } 2138 2139 struct adapter_pre_reset_state { 2140 u_int flags; 2141 uint16_t nbmcaps; 2142 uint16_t linkcaps; 2143 uint16_t switchcaps; 2144 uint16_t niccaps; 2145 uint16_t toecaps; 2146 uint16_t rdmacaps; 2147 uint16_t cryptocaps; 2148 uint16_t iscsicaps; 2149 uint16_t fcoecaps; 2150 2151 u_int cfcsum; 2152 char cfg_file[32]; 2153 2154 struct adapter_params params; 2155 struct t4_virt_res vres; 2156 struct tid_info tids; 2157 struct sge sge; 2158 2159 int rawf_base; 2160 int nrawf; 2161 2162 }; 2163 2164 static void 2165 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2166 { 2167 2168 ASSERT_SYNCHRONIZED_OP(sc); 2169 2170 o->flags = sc->flags; 2171 2172 o->nbmcaps = sc->nbmcaps; 2173 o->linkcaps = sc->linkcaps; 2174 o->switchcaps = sc->switchcaps; 2175 o->niccaps = sc->niccaps; 2176 o->toecaps = sc->toecaps; 2177 o->rdmacaps = sc->rdmacaps; 2178 o->cryptocaps = sc->cryptocaps; 2179 o->iscsicaps = sc->iscsicaps; 2180 o->fcoecaps = sc->fcoecaps; 2181 2182 o->cfcsum = sc->cfcsum; 2183 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2184 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2185 2186 o->params = sc->params; 2187 o->vres = sc->vres; 2188 o->tids = sc->tids; 2189 o->sge = sc->sge; 2190 2191 o->rawf_base = sc->rawf_base; 2192 o->nrawf = sc->nrawf; 2193 } 2194 2195 static int 2196 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2197 { 2198 int rc = 0; 2199 2200 ASSERT_SYNCHRONIZED_OP(sc); 2201 2202 /* Capabilities */ 2203 #define COMPARE_CAPS(c) do { \ 2204 if (o->c##caps != sc->c##caps) { \ 2205 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2206 sc->c##caps); \ 2207 rc = EINVAL; \ 2208 } \ 2209 } while (0) 2210 COMPARE_CAPS(nbm); 2211 COMPARE_CAPS(link); 2212 COMPARE_CAPS(switch); 2213 COMPARE_CAPS(nic); 2214 COMPARE_CAPS(toe); 2215 COMPARE_CAPS(rdma); 2216 COMPARE_CAPS(crypto); 2217 COMPARE_CAPS(iscsi); 2218 COMPARE_CAPS(fcoe); 2219 #undef COMPARE_CAPS 2220 2221 /* Firmware config file */ 2222 if (o->cfcsum != sc->cfcsum) { 2223 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2224 o->cfcsum, sc->cfg_file, sc->cfcsum); 2225 rc = EINVAL; 2226 } 2227 2228 #define COMPARE_PARAM(p, name) do { \ 2229 if (o->p != sc->p) { \ 2230 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2231 rc = EINVAL; \ 2232 } \ 2233 } while (0) 2234 COMPARE_PARAM(sge.iq_start, iq_start); 2235 COMPARE_PARAM(sge.eq_start, eq_start); 2236 COMPARE_PARAM(tids.ftid_base, ftid_base); 2237 COMPARE_PARAM(tids.ftid_end, ftid_end); 2238 COMPARE_PARAM(tids.nftids, nftids); 2239 COMPARE_PARAM(vres.l2t.start, l2t_start); 2240 COMPARE_PARAM(vres.l2t.size, l2t_size); 2241 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2242 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2243 COMPARE_PARAM(tids.tid_base, tid_base); 2244 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2245 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2246 COMPARE_PARAM(tids.nhpftids, nhpftids); 2247 COMPARE_PARAM(rawf_base, rawf_base); 2248 COMPARE_PARAM(nrawf, nrawf); 2249 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2250 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2251 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2252 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2253 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2254 COMPARE_PARAM(tids.ntids, ntids); 2255 COMPARE_PARAM(tids.etid_base, etid_base); 2256 COMPARE_PARAM(tids.etid_end, etid_end); 2257 COMPARE_PARAM(tids.netids, netids); 2258 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2259 COMPARE_PARAM(params.ethoffload, ethoffload); 2260 COMPARE_PARAM(tids.natids, natids); 2261 COMPARE_PARAM(tids.stid_base, stid_base); 2262 COMPARE_PARAM(vres.ddp.start, ddp_start); 2263 COMPARE_PARAM(vres.ddp.size, ddp_size); 2264 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2265 COMPARE_PARAM(vres.stag.start, stag_start); 2266 COMPARE_PARAM(vres.stag.size, stag_size); 2267 COMPARE_PARAM(vres.rq.start, rq_start); 2268 COMPARE_PARAM(vres.rq.size, rq_size); 2269 COMPARE_PARAM(vres.pbl.start, pbl_start); 2270 COMPARE_PARAM(vres.pbl.size, pbl_size); 2271 COMPARE_PARAM(vres.qp.start, qp_start); 2272 COMPARE_PARAM(vres.qp.size, qp_size); 2273 COMPARE_PARAM(vres.cq.start, cq_start); 2274 COMPARE_PARAM(vres.cq.size, cq_size); 2275 COMPARE_PARAM(vres.ocq.start, ocq_start); 2276 COMPARE_PARAM(vres.ocq.size, ocq_size); 2277 COMPARE_PARAM(vres.srq.start, srq_start); 2278 COMPARE_PARAM(vres.srq.size, srq_size); 2279 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2280 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2281 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2282 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2283 COMPARE_PARAM(vres.key.start, key_start); 2284 COMPARE_PARAM(vres.key.size, key_size); 2285 #undef COMPARE_PARAM 2286 2287 return (rc); 2288 } 2289 2290 static int 2291 restart_lld(struct adapter *sc) 2292 { 2293 struct adapter_pre_reset_state *old_state = NULL; 2294 struct port_info *pi; 2295 struct vi_info *vi; 2296 if_t ifp; 2297 struct sge_txq *txq; 2298 int rc, i, j, k; 2299 2300 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2301 if (rc != 0) 2302 return (ENXIO); 2303 2304 /* Restore memory window. */ 2305 setup_memwin(sc); 2306 2307 /* Go no further if recovery mode has been requested. */ 2308 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2309 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2310 rc = 0; 2311 set_adapter_hwstatus(sc, true); 2312 goto done; 2313 } 2314 2315 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2316 save_caps_and_params(sc, old_state); 2317 2318 /* Reestablish contact with firmware and become the primary PF. */ 2319 rc = contact_firmware(sc); 2320 if (rc != 0) 2321 goto done; /* error message displayed already */ 2322 MPASS(sc->flags & FW_OK); 2323 2324 if (sc->flags & MASTER_PF) { 2325 rc = partition_resources(sc); 2326 if (rc != 0) 2327 goto done; /* error message displayed already */ 2328 } 2329 2330 rc = get_params__post_init(sc); 2331 if (rc != 0) 2332 goto done; /* error message displayed already */ 2333 2334 rc = set_params__post_init(sc); 2335 if (rc != 0) 2336 goto done; /* error message displayed already */ 2337 2338 rc = compare_caps_and_params(sc, old_state); 2339 if (rc != 0) 2340 goto done; /* error message displayed already */ 2341 2342 for_each_port(sc, i) { 2343 pi = sc->port[i]; 2344 MPASS(pi != NULL); 2345 MPASS(pi->vi != NULL); 2346 MPASS(pi->vi[0].dev == pi->dev); 2347 2348 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2349 if (rc != 0) { 2350 CH_ERR(sc, 2351 "failed to re-initialize port %d: %d\n", i, rc); 2352 goto done; 2353 } 2354 MPASS(sc->chan_map[pi->tx_chan] == i); 2355 2356 PORT_LOCK(pi); 2357 fixup_link_config(pi); 2358 build_medialist(pi); 2359 PORT_UNLOCK(pi); 2360 for_each_vi(pi, j, vi) { 2361 if (IS_MAIN_VI(vi)) 2362 continue; 2363 rc = alloc_extra_vi(sc, pi, vi); 2364 if (rc != 0) { 2365 CH_ERR(vi, 2366 "failed to re-allocate extra VI: %d\n", rc); 2367 goto done; 2368 } 2369 } 2370 } 2371 2372 /* 2373 * Interrupts and queues are about to be enabled and other threads will 2374 * want to access the hardware too. It is safe to do so. Note that 2375 * this thread is still in the middle of a synchronized_op. 2376 */ 2377 set_adapter_hwstatus(sc, true); 2378 2379 if (sc->flags & FULL_INIT_DONE) { 2380 rc = adapter_full_init(sc); 2381 if (rc != 0) { 2382 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2383 goto done; 2384 } 2385 2386 if (sc->vxlan_refcount > 0) 2387 enable_vxlan_rx(sc); 2388 2389 for_each_port(sc, i) { 2390 pi = sc->port[i]; 2391 for_each_vi(pi, j, vi) { 2392 mtx_lock(&vi->tick_mtx); 2393 vi->flags &= ~VI_SKIP_STATS; 2394 mtx_unlock(&vi->tick_mtx); 2395 if (!(vi->flags & VI_INIT_DONE)) 2396 continue; 2397 rc = vi_full_init(vi); 2398 if (rc != 0) { 2399 CH_ERR(vi, "failed to re-initialize " 2400 "interface: %d\n", rc); 2401 goto done; 2402 } 2403 2404 ifp = vi->ifp; 2405 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2406 continue; 2407 /* 2408 * Note that we do not setup multicast addresses 2409 * in the first pass. This ensures that the 2410 * unicast DMACs for all VIs on all ports get an 2411 * MPS TCAM entry. 2412 */ 2413 rc = update_mac_settings(ifp, XGMAC_ALL & 2414 ~XGMAC_MCADDRS); 2415 if (rc != 0) { 2416 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2417 goto done; 2418 } 2419 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2420 true); 2421 if (rc != 0) { 2422 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2423 goto done; 2424 } 2425 for_each_txq(vi, k, txq) { 2426 TXQ_LOCK(txq); 2427 txq->eq.flags |= EQ_ENABLED; 2428 TXQ_UNLOCK(txq); 2429 } 2430 mtx_lock(&vi->tick_mtx); 2431 callout_schedule(&vi->tick, hz); 2432 mtx_unlock(&vi->tick_mtx); 2433 } 2434 PORT_LOCK(pi); 2435 if (pi->up_vis > 0) { 2436 t4_update_port_info(pi); 2437 fixup_link_config(pi); 2438 build_medialist(pi); 2439 apply_link_config(pi); 2440 if (pi->link_cfg.link_ok) 2441 t4_os_link_changed(pi); 2442 } 2443 PORT_UNLOCK(pi); 2444 } 2445 2446 /* Now reprogram the L2 multicast addresses. */ 2447 for_each_port(sc, i) { 2448 pi = sc->port[i]; 2449 for_each_vi(pi, j, vi) { 2450 if (!(vi->flags & VI_INIT_DONE)) 2451 continue; 2452 ifp = vi->ifp; 2453 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2454 continue; 2455 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2456 if (rc != 0) { 2457 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2458 rc = 0; /* carry on */ 2459 } 2460 } 2461 } 2462 } 2463 2464 /* Reset all calibration */ 2465 t4_calibration_start(sc); 2466 done: 2467 end_synchronized_op(sc, 0); 2468 free(old_state, M_CXGBE); 2469 2470 restart_atid_allocator(sc); 2471 t4_restart_l2t(sc); 2472 2473 return (rc); 2474 } 2475 2476 int 2477 resume_adapter(struct adapter *sc) 2478 { 2479 restart_adapter(sc); 2480 restart_lld(sc); 2481 #ifdef TCP_OFFLOAD 2482 restart_all_uld(sc); 2483 #endif 2484 return (0); 2485 } 2486 2487 static int 2488 t4_resume(device_t dev) 2489 { 2490 struct adapter *sc = device_get_softc(dev); 2491 int rc; 2492 2493 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2494 rc = resume_adapter(sc); 2495 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2496 2497 return (rc); 2498 } 2499 2500 static int 2501 t4_reset_prepare(device_t dev, device_t child) 2502 { 2503 struct adapter *sc = device_get_softc(dev); 2504 2505 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2506 return (0); 2507 } 2508 2509 static int 2510 t4_reset_post(device_t dev, device_t child) 2511 { 2512 struct adapter *sc = device_get_softc(dev); 2513 2514 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2515 return (0); 2516 } 2517 2518 static int 2519 reset_adapter_with_pci_bus_reset(struct adapter *sc) 2520 { 2521 int rc; 2522 2523 mtx_lock(&Giant); 2524 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2525 mtx_unlock(&Giant); 2526 return (rc); 2527 } 2528 2529 static int 2530 reset_adapter_with_pl_rst(struct adapter *sc) 2531 { 2532 suspend_adapter(sc); 2533 2534 /* This is a t4_write_reg without the hw_off_limits check. */ 2535 MPASS(sc->error_flags & HW_OFF_LIMITS); 2536 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2537 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2538 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2539 2540 resume_adapter(sc); 2541 2542 return (0); 2543 } 2544 2545 static inline int 2546 reset_adapter(struct adapter *sc) 2547 { 2548 if (vm_guest == 0) 2549 return (reset_adapter_with_pci_bus_reset(sc)); 2550 else 2551 return (reset_adapter_with_pl_rst(sc)); 2552 } 2553 2554 static void 2555 reset_adapter_task(void *arg, int pending) 2556 { 2557 struct adapter *sc = arg; 2558 const int flags = sc->flags; 2559 const int eflags = sc->error_flags; 2560 int rc; 2561 2562 if (pending > 1) 2563 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2564 rc = reset_adapter(sc); 2565 if (rc != 0) { 2566 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2567 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2568 rc, flags, sc->flags, eflags, sc->error_flags); 2569 } 2570 } 2571 2572 static int 2573 cxgbe_probe(device_t dev) 2574 { 2575 struct port_info *pi = device_get_softc(dev); 2576 2577 device_set_descf(dev, "port %d", pi->port_id); 2578 2579 return (BUS_PROBE_DEFAULT); 2580 } 2581 2582 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2583 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2584 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2585 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2586 #define T4_CAP_ENABLE (T4_CAP) 2587 2588 static void 2589 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2590 { 2591 if_t ifp; 2592 struct sbuf *sb; 2593 struct sysctl_ctx_list *ctx = &vi->ctx; 2594 struct sysctl_oid_list *children; 2595 struct pfil_head_args pa; 2596 struct adapter *sc = vi->adapter; 2597 2598 sysctl_ctx_init(ctx); 2599 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2600 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2601 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2602 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2603 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2604 #ifdef DEV_NETMAP 2605 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2606 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2607 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2608 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2609 #endif 2610 #ifdef TCP_OFFLOAD 2611 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2612 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2613 #endif 2614 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2615 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2616 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2617 #endif 2618 2619 vi->xact_addr_filt = -1; 2620 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2621 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2622 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2623 vi->flags |= TX_USES_VM_WR; 2624 2625 /* Allocate an ifnet and set it up */ 2626 ifp = if_alloc_dev(IFT_ETHER, dev); 2627 vi->ifp = ifp; 2628 if_setsoftc(ifp, vi); 2629 2630 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2631 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2632 2633 if_setinitfn(ifp, cxgbe_init); 2634 if_setioctlfn(ifp, cxgbe_ioctl); 2635 if_settransmitfn(ifp, cxgbe_transmit); 2636 if_setqflushfn(ifp, cxgbe_qflush); 2637 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2638 if_setgetcounterfn(ifp, vi_get_counter); 2639 else 2640 if_setgetcounterfn(ifp, cxgbe_get_counter); 2641 #if defined(KERN_TLS) || defined(RATELIMIT) 2642 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2643 #endif 2644 #ifdef RATELIMIT 2645 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2646 #endif 2647 2648 if_setcapabilities(ifp, T4_CAP); 2649 if_setcapenable(ifp, T4_CAP_ENABLE); 2650 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2651 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2652 if (chip_id(sc) >= CHELSIO_T6) { 2653 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2654 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2655 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2656 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2657 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2658 } 2659 2660 #ifdef TCP_OFFLOAD 2661 if (vi->nofldrxq != 0) 2662 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2663 #endif 2664 #ifdef RATELIMIT 2665 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2666 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2667 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2668 } 2669 #endif 2670 2671 if_sethwtsomax(ifp, IP_MAXPACKET); 2672 if (vi->flags & TX_USES_VM_WR) 2673 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2674 else 2675 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2676 #ifdef RATELIMIT 2677 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2678 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2679 #endif 2680 if_sethwtsomaxsegsize(ifp, 65536); 2681 #ifdef KERN_TLS 2682 if (is_ktls(sc)) { 2683 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2684 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2685 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2686 } 2687 #endif 2688 2689 ether_ifattach(ifp, vi->hw_addr); 2690 #ifdef DEV_NETMAP 2691 if (vi->nnmrxq != 0) 2692 cxgbe_nm_attach(vi); 2693 #endif 2694 sb = sbuf_new_auto(); 2695 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2696 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2697 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2698 case IFCAP_TOE: 2699 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2700 break; 2701 case IFCAP_TOE | IFCAP_TXRTLMT: 2702 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2703 break; 2704 case IFCAP_TXRTLMT: 2705 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2706 break; 2707 } 2708 #endif 2709 #ifdef TCP_OFFLOAD 2710 if (if_getcapabilities(ifp) & IFCAP_TOE) 2711 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2712 #endif 2713 #ifdef DEV_NETMAP 2714 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2715 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2716 vi->nnmtxq, vi->nnmrxq); 2717 #endif 2718 sbuf_finish(sb); 2719 device_printf(dev, "%s\n", sbuf_data(sb)); 2720 sbuf_delete(sb); 2721 2722 vi_sysctls(vi); 2723 2724 pa.pa_version = PFIL_VERSION; 2725 pa.pa_flags = PFIL_IN; 2726 pa.pa_type = PFIL_TYPE_ETHERNET; 2727 pa.pa_headname = if_name(ifp); 2728 vi->pfil = pfil_head_register(&pa); 2729 } 2730 2731 static int 2732 cxgbe_attach(device_t dev) 2733 { 2734 struct port_info *pi = device_get_softc(dev); 2735 struct adapter *sc = pi->adapter; 2736 struct vi_info *vi; 2737 int i; 2738 2739 sysctl_ctx_init(&pi->ctx); 2740 2741 cxgbe_vi_attach(dev, &pi->vi[0]); 2742 2743 for_each_vi(pi, i, vi) { 2744 if (i == 0) 2745 continue; 2746 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2747 if (vi->dev == NULL) { 2748 device_printf(dev, "failed to add VI %d\n", i); 2749 continue; 2750 } 2751 device_set_softc(vi->dev, vi); 2752 } 2753 2754 cxgbe_sysctls(pi); 2755 2756 bus_generic_attach(dev); 2757 2758 return (0); 2759 } 2760 2761 static void 2762 cxgbe_vi_detach(struct vi_info *vi) 2763 { 2764 if_t ifp = vi->ifp; 2765 2766 if (vi->pfil != NULL) { 2767 pfil_head_unregister(vi->pfil); 2768 vi->pfil = NULL; 2769 } 2770 2771 ether_ifdetach(ifp); 2772 2773 /* Let detach proceed even if these fail. */ 2774 #ifdef DEV_NETMAP 2775 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2776 cxgbe_nm_detach(vi); 2777 #endif 2778 cxgbe_uninit_synchronized(vi); 2779 callout_drain(&vi->tick); 2780 mtx_destroy(&vi->tick_mtx); 2781 sysctl_ctx_free(&vi->ctx); 2782 vi_full_uninit(vi); 2783 2784 if_free(vi->ifp); 2785 vi->ifp = NULL; 2786 } 2787 2788 static int 2789 cxgbe_detach(device_t dev) 2790 { 2791 struct port_info *pi = device_get_softc(dev); 2792 struct adapter *sc = pi->adapter; 2793 int rc; 2794 2795 /* Detach the extra VIs first. */ 2796 rc = bus_generic_detach(dev); 2797 if (rc) 2798 return (rc); 2799 device_delete_children(dev); 2800 2801 sysctl_ctx_free(&pi->ctx); 2802 begin_vi_detach(sc, &pi->vi[0]); 2803 if (pi->flags & HAS_TRACEQ) { 2804 sc->traceq = -1; /* cloner should not create ifnet */ 2805 t4_tracer_port_detach(sc); 2806 } 2807 cxgbe_vi_detach(&pi->vi[0]); 2808 ifmedia_removeall(&pi->media); 2809 end_vi_detach(sc, &pi->vi[0]); 2810 2811 return (0); 2812 } 2813 2814 static void 2815 cxgbe_init(void *arg) 2816 { 2817 struct vi_info *vi = arg; 2818 struct adapter *sc = vi->adapter; 2819 2820 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2821 return; 2822 cxgbe_init_synchronized(vi); 2823 end_synchronized_op(sc, 0); 2824 } 2825 2826 static int 2827 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2828 { 2829 int rc = 0, mtu, flags; 2830 struct vi_info *vi = if_getsoftc(ifp); 2831 struct port_info *pi = vi->pi; 2832 struct adapter *sc = pi->adapter; 2833 struct ifreq *ifr = (struct ifreq *)data; 2834 uint32_t mask; 2835 2836 switch (cmd) { 2837 case SIOCSIFMTU: 2838 mtu = ifr->ifr_mtu; 2839 if (mtu < ETHERMIN || mtu > MAX_MTU) 2840 return (EINVAL); 2841 2842 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2843 if (rc) 2844 return (rc); 2845 if_setmtu(ifp, mtu); 2846 if (vi->flags & VI_INIT_DONE) { 2847 t4_update_fl_bufsize(ifp); 2848 if (!hw_off_limits(sc) && 2849 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2850 rc = update_mac_settings(ifp, XGMAC_MTU); 2851 } 2852 end_synchronized_op(sc, 0); 2853 break; 2854 2855 case SIOCSIFFLAGS: 2856 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2857 if (rc) 2858 return (rc); 2859 2860 if (hw_off_limits(sc)) { 2861 rc = ENXIO; 2862 goto fail; 2863 } 2864 2865 if (if_getflags(ifp) & IFF_UP) { 2866 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2867 flags = vi->if_flags; 2868 if ((if_getflags(ifp) ^ flags) & 2869 (IFF_PROMISC | IFF_ALLMULTI)) { 2870 rc = update_mac_settings(ifp, 2871 XGMAC_PROMISC | XGMAC_ALLMULTI); 2872 } 2873 } else { 2874 rc = cxgbe_init_synchronized(vi); 2875 } 2876 vi->if_flags = if_getflags(ifp); 2877 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2878 rc = cxgbe_uninit_synchronized(vi); 2879 } 2880 end_synchronized_op(sc, 0); 2881 break; 2882 2883 case SIOCADDMULTI: 2884 case SIOCDELMULTI: 2885 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2886 if (rc) 2887 return (rc); 2888 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2889 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2890 end_synchronized_op(sc, 0); 2891 break; 2892 2893 case SIOCSIFCAP: 2894 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2895 if (rc) 2896 return (rc); 2897 2898 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2899 if (mask & IFCAP_TXCSUM) { 2900 if_togglecapenable(ifp, IFCAP_TXCSUM); 2901 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2902 2903 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2904 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2905 mask &= ~IFCAP_TSO4; 2906 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2907 if_printf(ifp, 2908 "tso4 disabled due to -txcsum.\n"); 2909 } 2910 } 2911 if (mask & IFCAP_TXCSUM_IPV6) { 2912 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2913 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2914 2915 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2916 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2917 mask &= ~IFCAP_TSO6; 2918 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2919 if_printf(ifp, 2920 "tso6 disabled due to -txcsum6.\n"); 2921 } 2922 } 2923 if (mask & IFCAP_RXCSUM) 2924 if_togglecapenable(ifp, IFCAP_RXCSUM); 2925 if (mask & IFCAP_RXCSUM_IPV6) 2926 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2927 2928 /* 2929 * Note that we leave CSUM_TSO alone (it is always set). The 2930 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2931 * sending a TSO request our way, so it's sufficient to toggle 2932 * IFCAP_TSOx only. 2933 */ 2934 if (mask & IFCAP_TSO4) { 2935 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2936 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2937 if_printf(ifp, "enable txcsum first.\n"); 2938 rc = EAGAIN; 2939 goto fail; 2940 } 2941 if_togglecapenable(ifp, IFCAP_TSO4); 2942 } 2943 if (mask & IFCAP_TSO6) { 2944 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2945 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2946 if_printf(ifp, "enable txcsum6 first.\n"); 2947 rc = EAGAIN; 2948 goto fail; 2949 } 2950 if_togglecapenable(ifp, IFCAP_TSO6); 2951 } 2952 if (mask & IFCAP_LRO) { 2953 #if defined(INET) || defined(INET6) 2954 int i; 2955 struct sge_rxq *rxq; 2956 2957 if_togglecapenable(ifp, IFCAP_LRO); 2958 for_each_rxq(vi, i, rxq) { 2959 if (if_getcapenable(ifp) & IFCAP_LRO) 2960 rxq->iq.flags |= IQ_LRO_ENABLED; 2961 else 2962 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2963 } 2964 #endif 2965 } 2966 #ifdef TCP_OFFLOAD 2967 if (mask & IFCAP_TOE) { 2968 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2969 2970 rc = toe_capability(vi, enable); 2971 if (rc != 0) 2972 goto fail; 2973 2974 if_togglecapenable(ifp, mask); 2975 } 2976 #endif 2977 if (mask & IFCAP_VLAN_HWTAGGING) { 2978 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2979 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2980 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2981 } 2982 if (mask & IFCAP_VLAN_MTU) { 2983 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2984 2985 /* Need to find out how to disable auto-mtu-inflation */ 2986 } 2987 if (mask & IFCAP_VLAN_HWTSO) 2988 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2989 if (mask & IFCAP_VLAN_HWCSUM) 2990 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2991 #ifdef RATELIMIT 2992 if (mask & IFCAP_TXRTLMT) 2993 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2994 #endif 2995 if (mask & IFCAP_HWRXTSTMP) { 2996 int i; 2997 struct sge_rxq *rxq; 2998 2999 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3000 for_each_rxq(vi, i, rxq) { 3001 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3002 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3003 else 3004 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3005 } 3006 } 3007 if (mask & IFCAP_MEXTPG) 3008 if_togglecapenable(ifp, IFCAP_MEXTPG); 3009 3010 #ifdef KERN_TLS 3011 if (mask & IFCAP_TXTLS) { 3012 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3013 3014 rc = ktls_capability(sc, enable); 3015 if (rc != 0) 3016 goto fail; 3017 3018 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3019 } 3020 #endif 3021 if (mask & IFCAP_VXLAN_HWCSUM) { 3022 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3023 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3024 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3025 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3026 } 3027 if (mask & IFCAP_VXLAN_HWTSO) { 3028 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3029 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3030 CSUM_INNER_IP_TSO); 3031 } 3032 3033 #ifdef VLAN_CAPABILITIES 3034 VLAN_CAPABILITIES(ifp); 3035 #endif 3036 fail: 3037 end_synchronized_op(sc, 0); 3038 break; 3039 3040 case SIOCSIFMEDIA: 3041 case SIOCGIFMEDIA: 3042 case SIOCGIFXMEDIA: 3043 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3044 break; 3045 3046 case SIOCGI2C: { 3047 struct ifi2creq i2c; 3048 3049 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3050 if (rc != 0) 3051 break; 3052 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3053 rc = EPERM; 3054 break; 3055 } 3056 if (i2c.len > sizeof(i2c.data)) { 3057 rc = EINVAL; 3058 break; 3059 } 3060 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3061 if (rc) 3062 return (rc); 3063 if (hw_off_limits(sc)) 3064 rc = ENXIO; 3065 else 3066 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3067 i2c.offset, i2c.len, &i2c.data[0]); 3068 end_synchronized_op(sc, 0); 3069 if (rc == 0) 3070 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3071 break; 3072 } 3073 3074 default: 3075 rc = ether_ioctl(ifp, cmd, data); 3076 } 3077 3078 return (rc); 3079 } 3080 3081 static int 3082 cxgbe_transmit(if_t ifp, struct mbuf *m) 3083 { 3084 struct vi_info *vi = if_getsoftc(ifp); 3085 struct port_info *pi = vi->pi; 3086 struct adapter *sc; 3087 struct sge_txq *txq; 3088 void *items[1]; 3089 int rc; 3090 3091 M_ASSERTPKTHDR(m); 3092 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3093 #if defined(KERN_TLS) || defined(RATELIMIT) 3094 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3095 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3096 #endif 3097 3098 if (__predict_false(pi->link_cfg.link_ok == false)) { 3099 m_freem(m); 3100 return (ENETDOWN); 3101 } 3102 3103 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3104 if (__predict_false(rc != 0)) { 3105 if (__predict_true(rc == EINPROGRESS)) { 3106 /* queued by parse_pkt */ 3107 MPASS(m != NULL); 3108 return (0); 3109 } 3110 3111 MPASS(m == NULL); /* was freed already */ 3112 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3113 return (rc); 3114 } 3115 3116 /* Select a txq. */ 3117 sc = vi->adapter; 3118 txq = &sc->sge.txq[vi->first_txq]; 3119 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3120 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3121 vi->rsrv_noflowq); 3122 3123 items[0] = m; 3124 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3125 if (__predict_false(rc != 0)) 3126 m_freem(m); 3127 3128 return (rc); 3129 } 3130 3131 static void 3132 cxgbe_qflush(if_t ifp) 3133 { 3134 struct vi_info *vi = if_getsoftc(ifp); 3135 struct sge_txq *txq; 3136 int i; 3137 3138 /* queues do not exist if !VI_INIT_DONE. */ 3139 if (vi->flags & VI_INIT_DONE) { 3140 for_each_txq(vi, i, txq) { 3141 TXQ_LOCK(txq); 3142 txq->eq.flags |= EQ_QFLUSH; 3143 TXQ_UNLOCK(txq); 3144 while (!mp_ring_is_idle(txq->r)) { 3145 mp_ring_check_drainage(txq->r, 4096); 3146 pause("qflush", 1); 3147 } 3148 TXQ_LOCK(txq); 3149 txq->eq.flags &= ~EQ_QFLUSH; 3150 TXQ_UNLOCK(txq); 3151 } 3152 } 3153 if_qflush(ifp); 3154 } 3155 3156 static uint64_t 3157 vi_get_counter(if_t ifp, ift_counter c) 3158 { 3159 struct vi_info *vi = if_getsoftc(ifp); 3160 struct fw_vi_stats_vf *s = &vi->stats; 3161 3162 mtx_lock(&vi->tick_mtx); 3163 vi_refresh_stats(vi); 3164 mtx_unlock(&vi->tick_mtx); 3165 3166 switch (c) { 3167 case IFCOUNTER_IPACKETS: 3168 return (s->rx_bcast_frames + s->rx_mcast_frames + 3169 s->rx_ucast_frames); 3170 case IFCOUNTER_IERRORS: 3171 return (s->rx_err_frames); 3172 case IFCOUNTER_OPACKETS: 3173 return (s->tx_bcast_frames + s->tx_mcast_frames + 3174 s->tx_ucast_frames + s->tx_offload_frames); 3175 case IFCOUNTER_OERRORS: 3176 return (s->tx_drop_frames); 3177 case IFCOUNTER_IBYTES: 3178 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3179 s->rx_ucast_bytes); 3180 case IFCOUNTER_OBYTES: 3181 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3182 s->tx_ucast_bytes + s->tx_offload_bytes); 3183 case IFCOUNTER_IMCASTS: 3184 return (s->rx_mcast_frames); 3185 case IFCOUNTER_OMCASTS: 3186 return (s->tx_mcast_frames); 3187 case IFCOUNTER_OQDROPS: { 3188 uint64_t drops; 3189 3190 drops = 0; 3191 if (vi->flags & VI_INIT_DONE) { 3192 int i; 3193 struct sge_txq *txq; 3194 3195 for_each_txq(vi, i, txq) 3196 drops += counter_u64_fetch(txq->r->dropped); 3197 } 3198 3199 return (drops); 3200 3201 } 3202 3203 default: 3204 return (if_get_counter_default(ifp, c)); 3205 } 3206 } 3207 3208 static uint64_t 3209 cxgbe_get_counter(if_t ifp, ift_counter c) 3210 { 3211 struct vi_info *vi = if_getsoftc(ifp); 3212 struct port_info *pi = vi->pi; 3213 struct port_stats *s = &pi->stats; 3214 3215 mtx_lock(&vi->tick_mtx); 3216 cxgbe_refresh_stats(vi); 3217 mtx_unlock(&vi->tick_mtx); 3218 3219 switch (c) { 3220 case IFCOUNTER_IPACKETS: 3221 return (s->rx_frames); 3222 3223 case IFCOUNTER_IERRORS: 3224 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3225 s->rx_fcs_err + s->rx_len_err); 3226 3227 case IFCOUNTER_OPACKETS: 3228 return (s->tx_frames); 3229 3230 case IFCOUNTER_OERRORS: 3231 return (s->tx_error_frames); 3232 3233 case IFCOUNTER_IBYTES: 3234 return (s->rx_octets); 3235 3236 case IFCOUNTER_OBYTES: 3237 return (s->tx_octets); 3238 3239 case IFCOUNTER_IMCASTS: 3240 return (s->rx_mcast_frames); 3241 3242 case IFCOUNTER_OMCASTS: 3243 return (s->tx_mcast_frames); 3244 3245 case IFCOUNTER_IQDROPS: 3246 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3247 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3248 s->rx_trunc3 + pi->tnl_cong_drops); 3249 3250 case IFCOUNTER_OQDROPS: { 3251 uint64_t drops; 3252 3253 drops = s->tx_drop; 3254 if (vi->flags & VI_INIT_DONE) { 3255 int i; 3256 struct sge_txq *txq; 3257 3258 for_each_txq(vi, i, txq) 3259 drops += counter_u64_fetch(txq->r->dropped); 3260 } 3261 3262 return (drops); 3263 3264 } 3265 3266 default: 3267 return (if_get_counter_default(ifp, c)); 3268 } 3269 } 3270 3271 #if defined(KERN_TLS) || defined(RATELIMIT) 3272 static int 3273 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3274 struct m_snd_tag **pt) 3275 { 3276 int error; 3277 3278 switch (params->hdr.type) { 3279 #ifdef RATELIMIT 3280 case IF_SND_TAG_TYPE_RATE_LIMIT: 3281 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3282 break; 3283 #endif 3284 #ifdef KERN_TLS 3285 case IF_SND_TAG_TYPE_TLS: 3286 { 3287 struct vi_info *vi = if_getsoftc(ifp); 3288 3289 if (is_t6(vi->pi->adapter)) 3290 error = t6_tls_tag_alloc(ifp, params, pt); 3291 else 3292 error = EOPNOTSUPP; 3293 break; 3294 } 3295 #endif 3296 default: 3297 error = EOPNOTSUPP; 3298 } 3299 return (error); 3300 } 3301 #endif 3302 3303 /* 3304 * The kernel picks a media from the list we had provided but we still validate 3305 * the requeste. 3306 */ 3307 int 3308 cxgbe_media_change(if_t ifp) 3309 { 3310 struct vi_info *vi = if_getsoftc(ifp); 3311 struct port_info *pi = vi->pi; 3312 struct ifmedia *ifm = &pi->media; 3313 struct link_config *lc = &pi->link_cfg; 3314 struct adapter *sc = pi->adapter; 3315 int rc; 3316 3317 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3318 if (rc != 0) 3319 return (rc); 3320 PORT_LOCK(pi); 3321 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3322 /* ifconfig .. media autoselect */ 3323 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3324 rc = ENOTSUP; /* AN not supported by transceiver */ 3325 goto done; 3326 } 3327 lc->requested_aneg = AUTONEG_ENABLE; 3328 lc->requested_speed = 0; 3329 lc->requested_fc |= PAUSE_AUTONEG; 3330 } else { 3331 lc->requested_aneg = AUTONEG_DISABLE; 3332 lc->requested_speed = 3333 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3334 lc->requested_fc = 0; 3335 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3336 lc->requested_fc |= PAUSE_RX; 3337 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3338 lc->requested_fc |= PAUSE_TX; 3339 } 3340 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3341 fixup_link_config(pi); 3342 rc = apply_link_config(pi); 3343 } 3344 done: 3345 PORT_UNLOCK(pi); 3346 end_synchronized_op(sc, 0); 3347 return (rc); 3348 } 3349 3350 /* 3351 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3352 * given speed. 3353 */ 3354 static int 3355 port_mword(struct port_info *pi, uint32_t speed) 3356 { 3357 3358 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3359 MPASS(powerof2(speed)); 3360 3361 switch(pi->port_type) { 3362 case FW_PORT_TYPE_BT_SGMII: 3363 case FW_PORT_TYPE_BT_XFI: 3364 case FW_PORT_TYPE_BT_XAUI: 3365 /* BaseT */ 3366 switch (speed) { 3367 case FW_PORT_CAP32_SPEED_100M: 3368 return (IFM_100_T); 3369 case FW_PORT_CAP32_SPEED_1G: 3370 return (IFM_1000_T); 3371 case FW_PORT_CAP32_SPEED_10G: 3372 return (IFM_10G_T); 3373 } 3374 break; 3375 case FW_PORT_TYPE_KX4: 3376 if (speed == FW_PORT_CAP32_SPEED_10G) 3377 return (IFM_10G_KX4); 3378 break; 3379 case FW_PORT_TYPE_CX4: 3380 if (speed == FW_PORT_CAP32_SPEED_10G) 3381 return (IFM_10G_CX4); 3382 break; 3383 case FW_PORT_TYPE_KX: 3384 if (speed == FW_PORT_CAP32_SPEED_1G) 3385 return (IFM_1000_KX); 3386 break; 3387 case FW_PORT_TYPE_KR: 3388 case FW_PORT_TYPE_BP_AP: 3389 case FW_PORT_TYPE_BP4_AP: 3390 case FW_PORT_TYPE_BP40_BA: 3391 case FW_PORT_TYPE_KR4_100G: 3392 case FW_PORT_TYPE_KR_SFP28: 3393 case FW_PORT_TYPE_KR_XLAUI: 3394 switch (speed) { 3395 case FW_PORT_CAP32_SPEED_1G: 3396 return (IFM_1000_KX); 3397 case FW_PORT_CAP32_SPEED_10G: 3398 return (IFM_10G_KR); 3399 case FW_PORT_CAP32_SPEED_25G: 3400 return (IFM_25G_KR); 3401 case FW_PORT_CAP32_SPEED_40G: 3402 return (IFM_40G_KR4); 3403 case FW_PORT_CAP32_SPEED_50G: 3404 return (IFM_50G_KR2); 3405 case FW_PORT_CAP32_SPEED_100G: 3406 return (IFM_100G_KR4); 3407 } 3408 break; 3409 case FW_PORT_TYPE_FIBER_XFI: 3410 case FW_PORT_TYPE_FIBER_XAUI: 3411 case FW_PORT_TYPE_SFP: 3412 case FW_PORT_TYPE_QSFP_10G: 3413 case FW_PORT_TYPE_QSA: 3414 case FW_PORT_TYPE_QSFP: 3415 case FW_PORT_TYPE_CR4_QSFP: 3416 case FW_PORT_TYPE_CR_QSFP: 3417 case FW_PORT_TYPE_CR2_QSFP: 3418 case FW_PORT_TYPE_SFP28: 3419 /* Pluggable transceiver */ 3420 switch (pi->mod_type) { 3421 case FW_PORT_MOD_TYPE_LR: 3422 switch (speed) { 3423 case FW_PORT_CAP32_SPEED_1G: 3424 return (IFM_1000_LX); 3425 case FW_PORT_CAP32_SPEED_10G: 3426 return (IFM_10G_LR); 3427 case FW_PORT_CAP32_SPEED_25G: 3428 return (IFM_25G_LR); 3429 case FW_PORT_CAP32_SPEED_40G: 3430 return (IFM_40G_LR4); 3431 case FW_PORT_CAP32_SPEED_50G: 3432 return (IFM_50G_LR2); 3433 case FW_PORT_CAP32_SPEED_100G: 3434 return (IFM_100G_LR4); 3435 } 3436 break; 3437 case FW_PORT_MOD_TYPE_SR: 3438 switch (speed) { 3439 case FW_PORT_CAP32_SPEED_1G: 3440 return (IFM_1000_SX); 3441 case FW_PORT_CAP32_SPEED_10G: 3442 return (IFM_10G_SR); 3443 case FW_PORT_CAP32_SPEED_25G: 3444 return (IFM_25G_SR); 3445 case FW_PORT_CAP32_SPEED_40G: 3446 return (IFM_40G_SR4); 3447 case FW_PORT_CAP32_SPEED_50G: 3448 return (IFM_50G_SR2); 3449 case FW_PORT_CAP32_SPEED_100G: 3450 return (IFM_100G_SR4); 3451 } 3452 break; 3453 case FW_PORT_MOD_TYPE_ER: 3454 if (speed == FW_PORT_CAP32_SPEED_10G) 3455 return (IFM_10G_ER); 3456 break; 3457 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3458 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3459 switch (speed) { 3460 case FW_PORT_CAP32_SPEED_1G: 3461 return (IFM_1000_CX); 3462 case FW_PORT_CAP32_SPEED_10G: 3463 return (IFM_10G_TWINAX); 3464 case FW_PORT_CAP32_SPEED_25G: 3465 return (IFM_25G_CR); 3466 case FW_PORT_CAP32_SPEED_40G: 3467 return (IFM_40G_CR4); 3468 case FW_PORT_CAP32_SPEED_50G: 3469 return (IFM_50G_CR2); 3470 case FW_PORT_CAP32_SPEED_100G: 3471 return (IFM_100G_CR4); 3472 } 3473 break; 3474 case FW_PORT_MOD_TYPE_LRM: 3475 if (speed == FW_PORT_CAP32_SPEED_10G) 3476 return (IFM_10G_LRM); 3477 break; 3478 case FW_PORT_MOD_TYPE_NA: 3479 MPASS(0); /* Not pluggable? */ 3480 /* fall throough */ 3481 case FW_PORT_MOD_TYPE_ERROR: 3482 case FW_PORT_MOD_TYPE_UNKNOWN: 3483 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3484 break; 3485 case FW_PORT_MOD_TYPE_NONE: 3486 return (IFM_NONE); 3487 } 3488 break; 3489 case FW_PORT_TYPE_NONE: 3490 return (IFM_NONE); 3491 } 3492 3493 return (IFM_UNKNOWN); 3494 } 3495 3496 void 3497 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3498 { 3499 struct vi_info *vi = if_getsoftc(ifp); 3500 struct port_info *pi = vi->pi; 3501 struct adapter *sc = pi->adapter; 3502 struct link_config *lc = &pi->link_cfg; 3503 3504 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3505 return; 3506 PORT_LOCK(pi); 3507 3508 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3509 /* 3510 * If all the interfaces are administratively down the firmware 3511 * does not report transceiver changes. Refresh port info here 3512 * so that ifconfig displays accurate ifmedia at all times. 3513 * This is the only reason we have a synchronized op in this 3514 * function. Just PORT_LOCK would have been enough otherwise. 3515 */ 3516 t4_update_port_info(pi); 3517 build_medialist(pi); 3518 } 3519 3520 /* ifm_status */ 3521 ifmr->ifm_status = IFM_AVALID; 3522 if (lc->link_ok == false) 3523 goto done; 3524 ifmr->ifm_status |= IFM_ACTIVE; 3525 3526 /* ifm_active */ 3527 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3528 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3529 if (lc->fc & PAUSE_RX) 3530 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3531 if (lc->fc & PAUSE_TX) 3532 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3533 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3534 done: 3535 PORT_UNLOCK(pi); 3536 end_synchronized_op(sc, 0); 3537 } 3538 3539 static int 3540 vcxgbe_probe(device_t dev) 3541 { 3542 struct vi_info *vi = device_get_softc(dev); 3543 3544 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3545 vi - vi->pi->vi); 3546 3547 return (BUS_PROBE_DEFAULT); 3548 } 3549 3550 static int 3551 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3552 { 3553 int func, index, rc; 3554 uint32_t param, val; 3555 3556 ASSERT_SYNCHRONIZED_OP(sc); 3557 3558 index = vi - pi->vi; 3559 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3560 KASSERT(index < nitems(vi_mac_funcs), 3561 ("%s: VI %s doesn't have a MAC func", __func__, 3562 device_get_nameunit(vi->dev))); 3563 func = vi_mac_funcs[index]; 3564 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3565 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3566 if (rc < 0) { 3567 CH_ERR(vi, "failed to allocate virtual interface %d" 3568 "for port %d: %d\n", index, pi->port_id, -rc); 3569 return (-rc); 3570 } 3571 vi->viid = rc; 3572 3573 if (vi->rss_size == 1) { 3574 /* 3575 * This VI didn't get a slice of the RSS table. Reduce the 3576 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3577 * configuration file (nvi, rssnvi for this PF) if this is a 3578 * problem. 3579 */ 3580 device_printf(vi->dev, "RSS table not available.\n"); 3581 vi->rss_base = 0xffff; 3582 3583 return (0); 3584 } 3585 3586 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3587 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3588 V_FW_PARAMS_PARAM_YZ(vi->viid); 3589 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3590 if (rc) 3591 vi->rss_base = 0xffff; 3592 else { 3593 MPASS((val >> 16) == vi->rss_size); 3594 vi->rss_base = val & 0xffff; 3595 } 3596 3597 return (0); 3598 } 3599 3600 static int 3601 vcxgbe_attach(device_t dev) 3602 { 3603 struct vi_info *vi; 3604 struct port_info *pi; 3605 struct adapter *sc; 3606 int rc; 3607 3608 vi = device_get_softc(dev); 3609 pi = vi->pi; 3610 sc = pi->adapter; 3611 3612 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3613 if (rc) 3614 return (rc); 3615 rc = alloc_extra_vi(sc, pi, vi); 3616 end_synchronized_op(sc, 0); 3617 if (rc) 3618 return (rc); 3619 3620 cxgbe_vi_attach(dev, vi); 3621 3622 return (0); 3623 } 3624 3625 static int 3626 vcxgbe_detach(device_t dev) 3627 { 3628 struct vi_info *vi; 3629 struct adapter *sc; 3630 3631 vi = device_get_softc(dev); 3632 sc = vi->adapter; 3633 3634 begin_vi_detach(sc, vi); 3635 cxgbe_vi_detach(vi); 3636 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3637 end_vi_detach(sc, vi); 3638 3639 return (0); 3640 } 3641 3642 static struct callout fatal_callout; 3643 static struct taskqueue *reset_tq; 3644 3645 static void 3646 delayed_panic(void *arg) 3647 { 3648 struct adapter *sc = arg; 3649 3650 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3651 } 3652 3653 static void 3654 fatal_error_task(void *arg, int pending) 3655 { 3656 struct adapter *sc = arg; 3657 int rc; 3658 3659 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3660 dump_cim_regs(sc); 3661 dump_cimla(sc); 3662 dump_devlog(sc); 3663 } 3664 3665 if (t4_reset_on_fatal_err) { 3666 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3667 rc = reset_adapter(sc); 3668 if (rc == 0 && t4_panic_on_fatal_err) { 3669 CH_ALERT(sc, "reset was successful, " 3670 "system will NOT panic.\n"); 3671 return; 3672 } 3673 } 3674 3675 if (t4_panic_on_fatal_err) { 3676 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3677 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3678 } 3679 } 3680 3681 void 3682 t4_fatal_err(struct adapter *sc, bool fw_error) 3683 { 3684 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3685 3686 stop_adapter(sc); 3687 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3688 return; 3689 if (fw_error) { 3690 /* 3691 * We are here because of a firmware error/timeout and not 3692 * because of a hardware interrupt. It is possible (although 3693 * not very likely) that an error interrupt was also raised but 3694 * this thread ran first and inhibited t4_intr_err. We walk the 3695 * main INT_CAUSE registers here to make sure we haven't missed 3696 * anything interesting. 3697 */ 3698 t4_slow_intr_handler(sc, verbose); 3699 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3700 } 3701 t4_report_fw_error(sc); 3702 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3703 device_get_nameunit(sc->dev), fw_error); 3704 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3705 } 3706 3707 void 3708 t4_add_adapter(struct adapter *sc) 3709 { 3710 sx_xlock(&t4_list_lock); 3711 SLIST_INSERT_HEAD(&t4_list, sc, link); 3712 sx_xunlock(&t4_list_lock); 3713 } 3714 3715 int 3716 t4_map_bars_0_and_4(struct adapter *sc) 3717 { 3718 sc->regs_rid = PCIR_BAR(0); 3719 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3720 &sc->regs_rid, RF_ACTIVE); 3721 if (sc->regs_res == NULL) { 3722 device_printf(sc->dev, "cannot map registers.\n"); 3723 return (ENXIO); 3724 } 3725 sc->bt = rman_get_bustag(sc->regs_res); 3726 sc->bh = rman_get_bushandle(sc->regs_res); 3727 sc->mmio_len = rman_get_size(sc->regs_res); 3728 setbit(&sc->doorbells, DOORBELL_KDB); 3729 3730 sc->msix_rid = PCIR_BAR(4); 3731 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3732 &sc->msix_rid, RF_ACTIVE); 3733 if (sc->msix_res == NULL) { 3734 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3735 return (ENXIO); 3736 } 3737 3738 return (0); 3739 } 3740 3741 int 3742 t4_map_bar_2(struct adapter *sc) 3743 { 3744 3745 /* 3746 * T4: only iWARP driver uses the userspace doorbells. There is no need 3747 * to map it if RDMA is disabled. 3748 */ 3749 if (is_t4(sc) && sc->rdmacaps == 0) 3750 return (0); 3751 3752 sc->udbs_rid = PCIR_BAR(2); 3753 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3754 &sc->udbs_rid, RF_ACTIVE); 3755 if (sc->udbs_res == NULL) { 3756 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3757 return (ENXIO); 3758 } 3759 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3760 3761 if (chip_id(sc) >= CHELSIO_T5) { 3762 setbit(&sc->doorbells, DOORBELL_UDB); 3763 #if defined(__i386__) || defined(__amd64__) 3764 if (t5_write_combine) { 3765 int rc, mode; 3766 3767 /* 3768 * Enable write combining on BAR2. This is the 3769 * userspace doorbell BAR and is split into 128B 3770 * (UDBS_SEG_SIZE) doorbell regions, each associated 3771 * with an egress queue. The first 64B has the doorbell 3772 * and the second 64B can be used to submit a tx work 3773 * request with an implicit doorbell. 3774 */ 3775 3776 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3777 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3778 if (rc == 0) { 3779 clrbit(&sc->doorbells, DOORBELL_UDB); 3780 setbit(&sc->doorbells, DOORBELL_WCWR); 3781 setbit(&sc->doorbells, DOORBELL_UDBWC); 3782 } else { 3783 device_printf(sc->dev, 3784 "couldn't enable write combining: %d\n", 3785 rc); 3786 } 3787 3788 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3789 t4_write_reg(sc, A_SGE_STAT_CFG, 3790 V_STATSOURCE_T5(7) | mode); 3791 } 3792 #endif 3793 } 3794 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3795 3796 return (0); 3797 } 3798 3799 int 3800 t4_adj_doorbells(struct adapter *sc) 3801 { 3802 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3803 sc->doorbells &= t4_doorbells_allowed; 3804 return (0); 3805 } 3806 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3807 sc->doorbells, t4_doorbells_allowed); 3808 return (EINVAL); 3809 } 3810 3811 struct memwin_init { 3812 uint32_t base; 3813 uint32_t aperture; 3814 }; 3815 3816 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3817 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3818 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3819 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3820 }; 3821 3822 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3823 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3824 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3825 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3826 }; 3827 3828 static void 3829 setup_memwin(struct adapter *sc) 3830 { 3831 const struct memwin_init *mw_init; 3832 struct memwin *mw; 3833 int i; 3834 uint32_t bar0; 3835 3836 if (is_t4(sc)) { 3837 /* 3838 * Read low 32b of bar0 indirectly via the hardware backdoor 3839 * mechanism. Works from within PCI passthrough environments 3840 * too, where rman_get_start() can return a different value. We 3841 * need to program the T4 memory window decoders with the actual 3842 * addresses that will be coming across the PCIe link. 3843 */ 3844 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3845 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3846 3847 mw_init = &t4_memwin[0]; 3848 } else { 3849 /* T5+ use the relative offset inside the PCIe BAR */ 3850 bar0 = 0; 3851 3852 mw_init = &t5_memwin[0]; 3853 } 3854 3855 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3856 if (!rw_initialized(&mw->mw_lock)) { 3857 rw_init(&mw->mw_lock, "memory window access"); 3858 mw->mw_base = mw_init->base; 3859 mw->mw_aperture = mw_init->aperture; 3860 mw->mw_curpos = 0; 3861 } 3862 t4_write_reg(sc, 3863 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3864 (mw->mw_base + bar0) | V_BIR(0) | 3865 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3866 rw_wlock(&mw->mw_lock); 3867 position_memwin(sc, i, mw->mw_curpos); 3868 rw_wunlock(&mw->mw_lock); 3869 } 3870 3871 /* flush */ 3872 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3873 } 3874 3875 /* 3876 * Positions the memory window at the given address in the card's address space. 3877 * There are some alignment requirements and the actual position may be at an 3878 * address prior to the requested address. mw->mw_curpos always has the actual 3879 * position of the window. 3880 */ 3881 static void 3882 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3883 { 3884 struct memwin *mw; 3885 uint32_t pf; 3886 uint32_t reg; 3887 3888 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3889 mw = &sc->memwin[idx]; 3890 rw_assert(&mw->mw_lock, RA_WLOCKED); 3891 3892 if (is_t4(sc)) { 3893 pf = 0; 3894 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3895 } else { 3896 pf = V_PFNUM(sc->pf); 3897 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3898 } 3899 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3900 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3901 t4_read_reg(sc, reg); /* flush */ 3902 } 3903 3904 int 3905 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3906 int len, int rw) 3907 { 3908 struct memwin *mw; 3909 uint32_t mw_end, v; 3910 3911 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3912 3913 /* Memory can only be accessed in naturally aligned 4 byte units */ 3914 if (addr & 3 || len & 3 || len <= 0) 3915 return (EINVAL); 3916 3917 mw = &sc->memwin[idx]; 3918 while (len > 0) { 3919 rw_rlock(&mw->mw_lock); 3920 mw_end = mw->mw_curpos + mw->mw_aperture; 3921 if (addr >= mw_end || addr < mw->mw_curpos) { 3922 /* Will need to reposition the window */ 3923 if (!rw_try_upgrade(&mw->mw_lock)) { 3924 rw_runlock(&mw->mw_lock); 3925 rw_wlock(&mw->mw_lock); 3926 } 3927 rw_assert(&mw->mw_lock, RA_WLOCKED); 3928 position_memwin(sc, idx, addr); 3929 rw_downgrade(&mw->mw_lock); 3930 mw_end = mw->mw_curpos + mw->mw_aperture; 3931 } 3932 rw_assert(&mw->mw_lock, RA_RLOCKED); 3933 while (addr < mw_end && len > 0) { 3934 if (rw == 0) { 3935 v = t4_read_reg(sc, mw->mw_base + addr - 3936 mw->mw_curpos); 3937 *val++ = le32toh(v); 3938 } else { 3939 v = *val++; 3940 t4_write_reg(sc, mw->mw_base + addr - 3941 mw->mw_curpos, htole32(v)); 3942 } 3943 addr += 4; 3944 len -= 4; 3945 } 3946 rw_runlock(&mw->mw_lock); 3947 } 3948 3949 return (0); 3950 } 3951 3952 CTASSERT(M_TID_COOKIE == M_COOKIE); 3953 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3954 3955 static void 3956 t4_init_atid_table(struct adapter *sc) 3957 { 3958 struct tid_info *t; 3959 int i; 3960 3961 t = &sc->tids; 3962 if (t->natids == 0) 3963 return; 3964 3965 MPASS(t->atid_tab == NULL); 3966 3967 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3968 M_ZERO | M_WAITOK); 3969 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3970 t->afree = t->atid_tab; 3971 t->atids_in_use = 0; 3972 t->atid_alloc_stopped = false; 3973 for (i = 1; i < t->natids; i++) 3974 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3975 t->atid_tab[t->natids - 1].next = NULL; 3976 } 3977 3978 static void 3979 t4_free_atid_table(struct adapter *sc) 3980 { 3981 struct tid_info *t; 3982 3983 t = &sc->tids; 3984 3985 KASSERT(t->atids_in_use == 0, 3986 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3987 3988 if (mtx_initialized(&t->atid_lock)) 3989 mtx_destroy(&t->atid_lock); 3990 free(t->atid_tab, M_CXGBE); 3991 t->atid_tab = NULL; 3992 } 3993 3994 static void 3995 stop_atid_allocator(struct adapter *sc) 3996 { 3997 struct tid_info *t = &sc->tids; 3998 3999 mtx_lock(&t->atid_lock); 4000 t->atid_alloc_stopped = true; 4001 mtx_unlock(&t->atid_lock); 4002 } 4003 4004 static void 4005 restart_atid_allocator(struct adapter *sc) 4006 { 4007 struct tid_info *t = &sc->tids; 4008 4009 mtx_lock(&t->atid_lock); 4010 KASSERT(t->atids_in_use == 0, 4011 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4012 t->atid_alloc_stopped = false; 4013 mtx_unlock(&t->atid_lock); 4014 } 4015 4016 int 4017 alloc_atid(struct adapter *sc, void *ctx) 4018 { 4019 struct tid_info *t = &sc->tids; 4020 int atid = -1; 4021 4022 mtx_lock(&t->atid_lock); 4023 if (t->afree && !t->atid_alloc_stopped) { 4024 union aopen_entry *p = t->afree; 4025 4026 atid = p - t->atid_tab; 4027 MPASS(atid <= M_TID_TID); 4028 t->afree = p->next; 4029 p->data = ctx; 4030 t->atids_in_use++; 4031 } 4032 mtx_unlock(&t->atid_lock); 4033 return (atid); 4034 } 4035 4036 void * 4037 lookup_atid(struct adapter *sc, int atid) 4038 { 4039 struct tid_info *t = &sc->tids; 4040 4041 return (t->atid_tab[atid].data); 4042 } 4043 4044 void 4045 free_atid(struct adapter *sc, int atid) 4046 { 4047 struct tid_info *t = &sc->tids; 4048 union aopen_entry *p = &t->atid_tab[atid]; 4049 4050 mtx_lock(&t->atid_lock); 4051 p->next = t->afree; 4052 t->afree = p; 4053 t->atids_in_use--; 4054 mtx_unlock(&t->atid_lock); 4055 } 4056 4057 static void 4058 queue_tid_release(struct adapter *sc, int tid) 4059 { 4060 4061 CXGBE_UNIMPLEMENTED("deferred tid release"); 4062 } 4063 4064 void 4065 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4066 { 4067 struct wrqe *wr; 4068 struct cpl_tid_release *req; 4069 4070 wr = alloc_wrqe(sizeof(*req), ctrlq); 4071 if (wr == NULL) { 4072 queue_tid_release(sc, tid); /* defer */ 4073 return; 4074 } 4075 req = wrtod(wr); 4076 4077 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4078 4079 t4_wrq_tx(sc, wr); 4080 } 4081 4082 static int 4083 t4_range_cmp(const void *a, const void *b) 4084 { 4085 return ((const struct t4_range *)a)->start - 4086 ((const struct t4_range *)b)->start; 4087 } 4088 4089 /* 4090 * Verify that the memory range specified by the addr/len pair is valid within 4091 * the card's address space. 4092 */ 4093 static int 4094 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4095 { 4096 struct t4_range mem_ranges[4], *r, *next; 4097 uint32_t em, addr_len; 4098 int i, n, remaining; 4099 4100 /* Memory can only be accessed in naturally aligned 4 byte units */ 4101 if (addr & 3 || len & 3 || len == 0) 4102 return (EINVAL); 4103 4104 /* Enabled memories */ 4105 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4106 4107 r = &mem_ranges[0]; 4108 n = 0; 4109 bzero(r, sizeof(mem_ranges)); 4110 if (em & F_EDRAM0_ENABLE) { 4111 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4112 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4113 if (r->size > 0) { 4114 r->start = G_EDRAM0_BASE(addr_len) << 20; 4115 if (addr >= r->start && 4116 addr + len <= r->start + r->size) 4117 return (0); 4118 r++; 4119 n++; 4120 } 4121 } 4122 if (em & F_EDRAM1_ENABLE) { 4123 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4124 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4125 if (r->size > 0) { 4126 r->start = G_EDRAM1_BASE(addr_len) << 20; 4127 if (addr >= r->start && 4128 addr + len <= r->start + r->size) 4129 return (0); 4130 r++; 4131 n++; 4132 } 4133 } 4134 if (em & F_EXT_MEM_ENABLE) { 4135 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4136 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4137 if (r->size > 0) { 4138 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4139 if (addr >= r->start && 4140 addr + len <= r->start + r->size) 4141 return (0); 4142 r++; 4143 n++; 4144 } 4145 } 4146 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4147 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4148 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4149 if (r->size > 0) { 4150 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4151 if (addr >= r->start && 4152 addr + len <= r->start + r->size) 4153 return (0); 4154 r++; 4155 n++; 4156 } 4157 } 4158 MPASS(n <= nitems(mem_ranges)); 4159 4160 if (n > 1) { 4161 /* Sort and merge the ranges. */ 4162 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4163 4164 /* Start from index 0 and examine the next n - 1 entries. */ 4165 r = &mem_ranges[0]; 4166 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4167 4168 MPASS(r->size > 0); /* r is a valid entry. */ 4169 next = r + 1; 4170 MPASS(next->size > 0); /* and so is the next one. */ 4171 4172 while (r->start + r->size >= next->start) { 4173 /* Merge the next one into the current entry. */ 4174 r->size = max(r->start + r->size, 4175 next->start + next->size) - r->start; 4176 n--; /* One fewer entry in total. */ 4177 if (--remaining == 0) 4178 goto done; /* short circuit */ 4179 next++; 4180 } 4181 if (next != r + 1) { 4182 /* 4183 * Some entries were merged into r and next 4184 * points to the first valid entry that couldn't 4185 * be merged. 4186 */ 4187 MPASS(next->size > 0); /* must be valid */ 4188 memcpy(r + 1, next, remaining * sizeof(*r)); 4189 #ifdef INVARIANTS 4190 /* 4191 * This so that the foo->size assertion in the 4192 * next iteration of the loop do the right 4193 * thing for entries that were pulled up and are 4194 * no longer valid. 4195 */ 4196 MPASS(n < nitems(mem_ranges)); 4197 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4198 sizeof(struct t4_range)); 4199 #endif 4200 } 4201 } 4202 done: 4203 /* Done merging the ranges. */ 4204 MPASS(n > 0); 4205 r = &mem_ranges[0]; 4206 for (i = 0; i < n; i++, r++) { 4207 if (addr >= r->start && 4208 addr + len <= r->start + r->size) 4209 return (0); 4210 } 4211 } 4212 4213 return (EFAULT); 4214 } 4215 4216 static int 4217 fwmtype_to_hwmtype(int mtype) 4218 { 4219 4220 switch (mtype) { 4221 case FW_MEMTYPE_EDC0: 4222 return (MEM_EDC0); 4223 case FW_MEMTYPE_EDC1: 4224 return (MEM_EDC1); 4225 case FW_MEMTYPE_EXTMEM: 4226 return (MEM_MC0); 4227 case FW_MEMTYPE_EXTMEM1: 4228 return (MEM_MC1); 4229 default: 4230 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4231 } 4232 } 4233 4234 /* 4235 * Verify that the memory range specified by the memtype/offset/len pair is 4236 * valid and lies entirely within the memtype specified. The global address of 4237 * the start of the range is returned in addr. 4238 */ 4239 static int 4240 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4241 uint32_t *addr) 4242 { 4243 uint32_t em, addr_len, maddr; 4244 4245 /* Memory can only be accessed in naturally aligned 4 byte units */ 4246 if (off & 3 || len & 3 || len == 0) 4247 return (EINVAL); 4248 4249 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4250 switch (fwmtype_to_hwmtype(mtype)) { 4251 case MEM_EDC0: 4252 if (!(em & F_EDRAM0_ENABLE)) 4253 return (EINVAL); 4254 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4255 maddr = G_EDRAM0_BASE(addr_len) << 20; 4256 break; 4257 case MEM_EDC1: 4258 if (!(em & F_EDRAM1_ENABLE)) 4259 return (EINVAL); 4260 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4261 maddr = G_EDRAM1_BASE(addr_len) << 20; 4262 break; 4263 case MEM_MC: 4264 if (!(em & F_EXT_MEM_ENABLE)) 4265 return (EINVAL); 4266 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4267 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4268 break; 4269 case MEM_MC1: 4270 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4271 return (EINVAL); 4272 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4273 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4274 break; 4275 default: 4276 return (EINVAL); 4277 } 4278 4279 *addr = maddr + off; /* global address */ 4280 return (validate_mem_range(sc, *addr, len)); 4281 } 4282 4283 static int 4284 fixup_devlog_params(struct adapter *sc) 4285 { 4286 struct devlog_params *dparams = &sc->params.devlog; 4287 int rc; 4288 4289 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4290 dparams->size, &dparams->addr); 4291 4292 return (rc); 4293 } 4294 4295 static void 4296 update_nirq(struct intrs_and_queues *iaq, int nports) 4297 { 4298 4299 iaq->nirq = T4_EXTRA_INTR; 4300 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4301 iaq->nirq += nports * iaq->nofldrxq; 4302 iaq->nirq += nports * (iaq->num_vis - 1) * 4303 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4304 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4305 } 4306 4307 /* 4308 * Adjust requirements to fit the number of interrupts available. 4309 */ 4310 static void 4311 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4312 int navail) 4313 { 4314 int old_nirq; 4315 const int nports = sc->params.nports; 4316 4317 MPASS(nports > 0); 4318 MPASS(navail > 0); 4319 4320 bzero(iaq, sizeof(*iaq)); 4321 iaq->intr_type = itype; 4322 iaq->num_vis = t4_num_vis; 4323 iaq->ntxq = t4_ntxq; 4324 iaq->ntxq_vi = t4_ntxq_vi; 4325 iaq->nrxq = t4_nrxq; 4326 iaq->nrxq_vi = t4_nrxq_vi; 4327 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4328 if (is_offload(sc) || is_ethoffload(sc)) { 4329 iaq->nofldtxq = t4_nofldtxq; 4330 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4331 } 4332 #endif 4333 #ifdef TCP_OFFLOAD 4334 if (is_offload(sc)) { 4335 iaq->nofldrxq = t4_nofldrxq; 4336 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4337 } 4338 #endif 4339 #ifdef DEV_NETMAP 4340 if (t4_native_netmap & NN_MAIN_VI) { 4341 iaq->nnmtxq = t4_nnmtxq; 4342 iaq->nnmrxq = t4_nnmrxq; 4343 } 4344 if (t4_native_netmap & NN_EXTRA_VI) { 4345 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4346 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4347 } 4348 #endif 4349 4350 update_nirq(iaq, nports); 4351 if (iaq->nirq <= navail && 4352 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4353 /* 4354 * This is the normal case -- there are enough interrupts for 4355 * everything. 4356 */ 4357 goto done; 4358 } 4359 4360 /* 4361 * If extra VIs have been configured try reducing their count and see if 4362 * that works. 4363 */ 4364 while (iaq->num_vis > 1) { 4365 iaq->num_vis--; 4366 update_nirq(iaq, nports); 4367 if (iaq->nirq <= navail && 4368 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4369 device_printf(sc->dev, "virtual interfaces per port " 4370 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4371 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4372 "itype %d, navail %u, nirq %d.\n", 4373 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4374 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4375 itype, navail, iaq->nirq); 4376 goto done; 4377 } 4378 } 4379 4380 /* 4381 * Extra VIs will not be created. Log a message if they were requested. 4382 */ 4383 MPASS(iaq->num_vis == 1); 4384 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4385 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4386 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4387 if (iaq->num_vis != t4_num_vis) { 4388 device_printf(sc->dev, "extra virtual interfaces disabled. " 4389 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4390 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4391 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4392 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4393 } 4394 4395 /* 4396 * Keep reducing the number of NIC rx queues to the next lower power of 4397 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4398 * if that works. 4399 */ 4400 do { 4401 if (iaq->nrxq > 1) { 4402 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4403 if (iaq->nnmrxq > iaq->nrxq) 4404 iaq->nnmrxq = iaq->nrxq; 4405 } 4406 if (iaq->nofldrxq > 1) 4407 iaq->nofldrxq >>= 1; 4408 4409 old_nirq = iaq->nirq; 4410 update_nirq(iaq, nports); 4411 if (iaq->nirq <= navail && 4412 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4413 device_printf(sc->dev, "running with reduced number of " 4414 "rx queues because of shortage of interrupts. " 4415 "nrxq=%u, nofldrxq=%u. " 4416 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4417 iaq->nofldrxq, itype, navail, iaq->nirq); 4418 goto done; 4419 } 4420 } while (old_nirq != iaq->nirq); 4421 4422 /* One interrupt for everything. Ugh. */ 4423 device_printf(sc->dev, "running with minimal number of queues. " 4424 "itype %d, navail %u.\n", itype, navail); 4425 iaq->nirq = 1; 4426 iaq->nrxq = 1; 4427 iaq->ntxq = 1; 4428 if (iaq->nofldrxq > 0) { 4429 iaq->nofldrxq = 1; 4430 iaq->nofldtxq = 1; 4431 } 4432 iaq->nnmtxq = 0; 4433 iaq->nnmrxq = 0; 4434 done: 4435 MPASS(iaq->num_vis > 0); 4436 if (iaq->num_vis > 1) { 4437 MPASS(iaq->nrxq_vi > 0); 4438 MPASS(iaq->ntxq_vi > 0); 4439 } 4440 MPASS(iaq->nirq > 0); 4441 MPASS(iaq->nrxq > 0); 4442 MPASS(iaq->ntxq > 0); 4443 if (itype == INTR_MSI) { 4444 MPASS(powerof2(iaq->nirq)); 4445 } 4446 } 4447 4448 static int 4449 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4450 { 4451 int rc, itype, navail, nalloc; 4452 4453 for (itype = INTR_MSIX; itype; itype >>= 1) { 4454 4455 if ((itype & t4_intr_types) == 0) 4456 continue; /* not allowed */ 4457 4458 if (itype == INTR_MSIX) 4459 navail = pci_msix_count(sc->dev); 4460 else if (itype == INTR_MSI) 4461 navail = pci_msi_count(sc->dev); 4462 else 4463 navail = 1; 4464 restart: 4465 if (navail == 0) 4466 continue; 4467 4468 calculate_iaq(sc, iaq, itype, navail); 4469 nalloc = iaq->nirq; 4470 rc = 0; 4471 if (itype == INTR_MSIX) 4472 rc = pci_alloc_msix(sc->dev, &nalloc); 4473 else if (itype == INTR_MSI) 4474 rc = pci_alloc_msi(sc->dev, &nalloc); 4475 4476 if (rc == 0 && nalloc > 0) { 4477 if (nalloc == iaq->nirq) 4478 return (0); 4479 4480 /* 4481 * Didn't get the number requested. Use whatever number 4482 * the kernel is willing to allocate. 4483 */ 4484 device_printf(sc->dev, "fewer vectors than requested, " 4485 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4486 itype, iaq->nirq, nalloc); 4487 pci_release_msi(sc->dev); 4488 navail = nalloc; 4489 goto restart; 4490 } 4491 4492 device_printf(sc->dev, 4493 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4494 itype, rc, iaq->nirq, nalloc); 4495 } 4496 4497 device_printf(sc->dev, 4498 "failed to find a usable interrupt type. " 4499 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4500 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4501 4502 return (ENXIO); 4503 } 4504 4505 #define FW_VERSION(chip) ( \ 4506 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4507 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4508 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4509 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4510 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4511 4512 /* Just enough of fw_hdr to cover all version info. */ 4513 struct fw_h { 4514 __u8 ver; 4515 __u8 chip; 4516 __be16 len512; 4517 __be32 fw_ver; 4518 __be32 tp_microcode_ver; 4519 __u8 intfver_nic; 4520 __u8 intfver_vnic; 4521 __u8 intfver_ofld; 4522 __u8 intfver_ri; 4523 __u8 intfver_iscsipdu; 4524 __u8 intfver_iscsi; 4525 __u8 intfver_fcoepdu; 4526 __u8 intfver_fcoe; 4527 }; 4528 /* Spot check a couple of fields. */ 4529 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4530 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4531 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4532 4533 struct fw_info { 4534 uint8_t chip; 4535 char *kld_name; 4536 char *fw_mod_name; 4537 struct fw_h fw_h; 4538 } fw_info[] = { 4539 { 4540 .chip = CHELSIO_T4, 4541 .kld_name = "t4fw_cfg", 4542 .fw_mod_name = "t4fw", 4543 .fw_h = { 4544 .chip = FW_HDR_CHIP_T4, 4545 .fw_ver = htobe32(FW_VERSION(T4)), 4546 .intfver_nic = FW_INTFVER(T4, NIC), 4547 .intfver_vnic = FW_INTFVER(T4, VNIC), 4548 .intfver_ofld = FW_INTFVER(T4, OFLD), 4549 .intfver_ri = FW_INTFVER(T4, RI), 4550 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4551 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4552 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4553 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4554 }, 4555 }, { 4556 .chip = CHELSIO_T5, 4557 .kld_name = "t5fw_cfg", 4558 .fw_mod_name = "t5fw", 4559 .fw_h = { 4560 .chip = FW_HDR_CHIP_T5, 4561 .fw_ver = htobe32(FW_VERSION(T5)), 4562 .intfver_nic = FW_INTFVER(T5, NIC), 4563 .intfver_vnic = FW_INTFVER(T5, VNIC), 4564 .intfver_ofld = FW_INTFVER(T5, OFLD), 4565 .intfver_ri = FW_INTFVER(T5, RI), 4566 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4567 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4568 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4569 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4570 }, 4571 }, { 4572 .chip = CHELSIO_T6, 4573 .kld_name = "t6fw_cfg", 4574 .fw_mod_name = "t6fw", 4575 .fw_h = { 4576 .chip = FW_HDR_CHIP_T6, 4577 .fw_ver = htobe32(FW_VERSION(T6)), 4578 .intfver_nic = FW_INTFVER(T6, NIC), 4579 .intfver_vnic = FW_INTFVER(T6, VNIC), 4580 .intfver_ofld = FW_INTFVER(T6, OFLD), 4581 .intfver_ri = FW_INTFVER(T6, RI), 4582 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4583 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4584 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4585 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4586 }, 4587 } 4588 }; 4589 4590 static struct fw_info * 4591 find_fw_info(int chip) 4592 { 4593 int i; 4594 4595 for (i = 0; i < nitems(fw_info); i++) { 4596 if (fw_info[i].chip == chip) 4597 return (&fw_info[i]); 4598 } 4599 return (NULL); 4600 } 4601 4602 /* 4603 * Is the given firmware API compatible with the one the driver was compiled 4604 * with? 4605 */ 4606 static int 4607 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4608 { 4609 4610 /* short circuit if it's the exact same firmware version */ 4611 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4612 return (1); 4613 4614 /* 4615 * XXX: Is this too conservative? Perhaps I should limit this to the 4616 * features that are supported in the driver. 4617 */ 4618 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4619 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4620 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4621 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4622 return (1); 4623 #undef SAME_INTF 4624 4625 return (0); 4626 } 4627 4628 static int 4629 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4630 const struct firmware **fw) 4631 { 4632 struct fw_info *fw_info; 4633 4634 *dcfg = NULL; 4635 if (fw != NULL) 4636 *fw = NULL; 4637 4638 fw_info = find_fw_info(chip_id(sc)); 4639 if (fw_info == NULL) { 4640 device_printf(sc->dev, 4641 "unable to look up firmware information for chip %d.\n", 4642 chip_id(sc)); 4643 return (EINVAL); 4644 } 4645 4646 *dcfg = firmware_get(fw_info->kld_name); 4647 if (*dcfg != NULL) { 4648 if (fw != NULL) 4649 *fw = firmware_get(fw_info->fw_mod_name); 4650 return (0); 4651 } 4652 4653 return (ENOENT); 4654 } 4655 4656 static void 4657 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4658 const struct firmware *fw) 4659 { 4660 4661 if (fw != NULL) 4662 firmware_put(fw, FIRMWARE_UNLOAD); 4663 if (dcfg != NULL) 4664 firmware_put(dcfg, FIRMWARE_UNLOAD); 4665 } 4666 4667 /* 4668 * Return values: 4669 * 0 means no firmware install attempted. 4670 * ERESTART means a firmware install was attempted and was successful. 4671 * +ve errno means a firmware install was attempted but failed. 4672 */ 4673 static int 4674 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4675 const struct fw_h *drv_fw, const char *reason, int *already) 4676 { 4677 const struct firmware *cfg, *fw; 4678 const uint32_t c = be32toh(card_fw->fw_ver); 4679 uint32_t d, k; 4680 int rc, fw_install; 4681 struct fw_h bundled_fw; 4682 bool load_attempted; 4683 4684 cfg = fw = NULL; 4685 load_attempted = false; 4686 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4687 4688 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4689 if (t4_fw_install < 0) { 4690 rc = load_fw_module(sc, &cfg, &fw); 4691 if (rc != 0 || fw == NULL) { 4692 device_printf(sc->dev, 4693 "failed to load firmware module: %d. cfg %p, fw %p;" 4694 " will use compiled-in firmware version for" 4695 "hw.cxgbe.fw_install checks.\n", 4696 rc, cfg, fw); 4697 } else { 4698 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4699 } 4700 load_attempted = true; 4701 } 4702 d = be32toh(bundled_fw.fw_ver); 4703 4704 if (reason != NULL) 4705 goto install; 4706 4707 if ((sc->flags & FW_OK) == 0) { 4708 4709 if (c == 0xffffffff) { 4710 reason = "missing"; 4711 goto install; 4712 } 4713 4714 rc = 0; 4715 goto done; 4716 } 4717 4718 if (!fw_compatible(card_fw, &bundled_fw)) { 4719 reason = "incompatible or unusable"; 4720 goto install; 4721 } 4722 4723 if (d > c) { 4724 reason = "older than the version bundled with this driver"; 4725 goto install; 4726 } 4727 4728 if (fw_install == 2 && d != c) { 4729 reason = "different than the version bundled with this driver"; 4730 goto install; 4731 } 4732 4733 /* No reason to do anything to the firmware already on the card. */ 4734 rc = 0; 4735 goto done; 4736 4737 install: 4738 rc = 0; 4739 if ((*already)++) 4740 goto done; 4741 4742 if (fw_install == 0) { 4743 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4744 "but the driver is prohibited from installing a firmware " 4745 "on the card.\n", 4746 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4747 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4748 4749 goto done; 4750 } 4751 4752 /* 4753 * We'll attempt to install a firmware. Load the module first (if it 4754 * hasn't been loaded already). 4755 */ 4756 if (!load_attempted) { 4757 rc = load_fw_module(sc, &cfg, &fw); 4758 if (rc != 0 || fw == NULL) { 4759 device_printf(sc->dev, 4760 "failed to load firmware module: %d. cfg %p, fw %p\n", 4761 rc, cfg, fw); 4762 /* carry on */ 4763 } 4764 } 4765 if (fw == NULL) { 4766 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4767 "but the driver cannot take corrective action because it " 4768 "is unable to load the firmware module.\n", 4769 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4770 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4771 rc = sc->flags & FW_OK ? 0 : ENOENT; 4772 goto done; 4773 } 4774 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4775 if (k != d) { 4776 MPASS(t4_fw_install > 0); 4777 device_printf(sc->dev, 4778 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4779 "expecting (%u.%u.%u.%u) and will not be used.\n", 4780 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4781 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4782 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4783 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4784 rc = sc->flags & FW_OK ? 0 : EINVAL; 4785 goto done; 4786 } 4787 4788 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4789 "installing firmware %u.%u.%u.%u on card.\n", 4790 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4791 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4792 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4793 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4794 4795 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4796 if (rc != 0) { 4797 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4798 } else { 4799 /* Installed successfully, update the cached header too. */ 4800 rc = ERESTART; 4801 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4802 } 4803 done: 4804 unload_fw_module(sc, cfg, fw); 4805 4806 return (rc); 4807 } 4808 4809 /* 4810 * Establish contact with the firmware and attempt to become the master driver. 4811 * 4812 * A firmware will be installed to the card if needed (if the driver is allowed 4813 * to do so). 4814 */ 4815 static int 4816 contact_firmware(struct adapter *sc) 4817 { 4818 int rc, already = 0; 4819 enum dev_state state; 4820 struct fw_info *fw_info; 4821 struct fw_hdr *card_fw; /* fw on the card */ 4822 const struct fw_h *drv_fw; 4823 4824 fw_info = find_fw_info(chip_id(sc)); 4825 if (fw_info == NULL) { 4826 device_printf(sc->dev, 4827 "unable to look up firmware information for chip %d.\n", 4828 chip_id(sc)); 4829 return (EINVAL); 4830 } 4831 drv_fw = &fw_info->fw_h; 4832 4833 /* Read the header of the firmware on the card */ 4834 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4835 restart: 4836 rc = -t4_get_fw_hdr(sc, card_fw); 4837 if (rc != 0) { 4838 device_printf(sc->dev, 4839 "unable to read firmware header from card's flash: %d\n", 4840 rc); 4841 goto done; 4842 } 4843 4844 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4845 &already); 4846 if (rc == ERESTART) 4847 goto restart; 4848 if (rc != 0) 4849 goto done; 4850 4851 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4852 if (rc < 0 || state == DEV_STATE_ERR) { 4853 rc = -rc; 4854 device_printf(sc->dev, 4855 "failed to connect to the firmware: %d, %d. " 4856 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4857 #if 0 4858 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4859 "not responding properly to HELLO", &already) == ERESTART) 4860 goto restart; 4861 #endif 4862 goto done; 4863 } 4864 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4865 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4866 4867 if (rc == sc->pf) { 4868 sc->flags |= MASTER_PF; 4869 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4870 NULL, &already); 4871 if (rc == ERESTART) 4872 rc = 0; 4873 else if (rc != 0) 4874 goto done; 4875 } else if (state == DEV_STATE_UNINIT) { 4876 /* 4877 * We didn't get to be the master so we definitely won't be 4878 * configuring the chip. It's a bug if someone else hasn't 4879 * configured it already. 4880 */ 4881 device_printf(sc->dev, "couldn't be master(%d), " 4882 "device not already initialized either(%d). " 4883 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4884 rc = EPROTO; 4885 goto done; 4886 } else { 4887 /* 4888 * Some other PF is the master and has configured the chip. 4889 * This is allowed but untested. 4890 */ 4891 device_printf(sc->dev, "PF%d is master, device state %d. " 4892 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4893 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4894 sc->cfcsum = 0; 4895 rc = 0; 4896 } 4897 done: 4898 if (rc != 0 && sc->flags & FW_OK) { 4899 t4_fw_bye(sc, sc->mbox); 4900 sc->flags &= ~FW_OK; 4901 } 4902 free(card_fw, M_CXGBE); 4903 return (rc); 4904 } 4905 4906 static int 4907 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4908 uint32_t mtype, uint32_t moff) 4909 { 4910 struct fw_info *fw_info; 4911 const struct firmware *dcfg, *rcfg = NULL; 4912 const uint32_t *cfdata; 4913 uint32_t cflen, addr; 4914 int rc; 4915 4916 load_fw_module(sc, &dcfg, NULL); 4917 4918 /* Card specific interpretation of "default". */ 4919 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4920 if (pci_get_device(sc->dev) == 0x440a) 4921 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4922 if (is_fpga(sc)) 4923 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4924 } 4925 4926 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4927 if (dcfg == NULL) { 4928 device_printf(sc->dev, 4929 "KLD with default config is not available.\n"); 4930 rc = ENOENT; 4931 goto done; 4932 } 4933 cfdata = dcfg->data; 4934 cflen = dcfg->datasize & ~3; 4935 } else { 4936 char s[32]; 4937 4938 fw_info = find_fw_info(chip_id(sc)); 4939 if (fw_info == NULL) { 4940 device_printf(sc->dev, 4941 "unable to look up firmware information for chip %d.\n", 4942 chip_id(sc)); 4943 rc = EINVAL; 4944 goto done; 4945 } 4946 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4947 4948 rcfg = firmware_get(s); 4949 if (rcfg == NULL) { 4950 device_printf(sc->dev, 4951 "unable to load module \"%s\" for configuration " 4952 "profile \"%s\".\n", s, cfg_file); 4953 rc = ENOENT; 4954 goto done; 4955 } 4956 cfdata = rcfg->data; 4957 cflen = rcfg->datasize & ~3; 4958 } 4959 4960 if (cflen > FLASH_CFG_MAX_SIZE) { 4961 device_printf(sc->dev, 4962 "config file too long (%d, max allowed is %d).\n", 4963 cflen, FLASH_CFG_MAX_SIZE); 4964 rc = EINVAL; 4965 goto done; 4966 } 4967 4968 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4969 if (rc != 0) { 4970 device_printf(sc->dev, 4971 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4972 __func__, mtype, moff, cflen, rc); 4973 rc = EINVAL; 4974 goto done; 4975 } 4976 write_via_memwin(sc, 2, addr, cfdata, cflen); 4977 done: 4978 if (rcfg != NULL) 4979 firmware_put(rcfg, FIRMWARE_UNLOAD); 4980 unload_fw_module(sc, dcfg, NULL); 4981 return (rc); 4982 } 4983 4984 struct caps_allowed { 4985 uint16_t nbmcaps; 4986 uint16_t linkcaps; 4987 uint16_t switchcaps; 4988 uint16_t niccaps; 4989 uint16_t toecaps; 4990 uint16_t rdmacaps; 4991 uint16_t cryptocaps; 4992 uint16_t iscsicaps; 4993 uint16_t fcoecaps; 4994 }; 4995 4996 #define FW_PARAM_DEV(param) \ 4997 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4998 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4999 #define FW_PARAM_PFVF(param) \ 5000 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5001 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5002 5003 /* 5004 * Provide a configuration profile to the firmware and have it initialize the 5005 * chip accordingly. This may involve uploading a configuration file to the 5006 * card. 5007 */ 5008 static int 5009 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5010 const struct caps_allowed *caps_allowed) 5011 { 5012 int rc; 5013 struct fw_caps_config_cmd caps; 5014 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5015 5016 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5017 if (rc != 0) { 5018 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5019 return (rc); 5020 } 5021 5022 bzero(&caps, sizeof(caps)); 5023 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5024 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5025 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5026 mtype = 0; 5027 moff = 0; 5028 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5029 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5030 mtype = FW_MEMTYPE_FLASH; 5031 moff = t4_flash_cfg_addr(sc); 5032 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5033 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5034 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5035 FW_LEN16(caps)); 5036 } else { 5037 /* 5038 * Ask the firmware where it wants us to upload the config file. 5039 */ 5040 param = FW_PARAM_DEV(CF); 5041 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5042 if (rc != 0) { 5043 /* No support for config file? Shouldn't happen. */ 5044 device_printf(sc->dev, 5045 "failed to query config file location: %d.\n", rc); 5046 goto done; 5047 } 5048 mtype = G_FW_PARAMS_PARAM_Y(val); 5049 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5050 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5051 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5052 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5053 FW_LEN16(caps)); 5054 5055 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5056 if (rc != 0) { 5057 device_printf(sc->dev, 5058 "failed to upload config file to card: %d.\n", rc); 5059 goto done; 5060 } 5061 } 5062 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5063 if (rc != 0) { 5064 device_printf(sc->dev, "failed to pre-process config file: %d " 5065 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5066 goto done; 5067 } 5068 5069 finicsum = be32toh(caps.finicsum); 5070 cfcsum = be32toh(caps.cfcsum); /* actual */ 5071 if (finicsum != cfcsum) { 5072 device_printf(sc->dev, 5073 "WARNING: config file checksum mismatch: %08x %08x\n", 5074 finicsum, cfcsum); 5075 } 5076 sc->cfcsum = cfcsum; 5077 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5078 5079 /* 5080 * Let the firmware know what features will (not) be used so it can tune 5081 * things accordingly. 5082 */ 5083 #define LIMIT_CAPS(x) do { \ 5084 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5085 } while (0) 5086 LIMIT_CAPS(nbm); 5087 LIMIT_CAPS(link); 5088 LIMIT_CAPS(switch); 5089 LIMIT_CAPS(nic); 5090 LIMIT_CAPS(toe); 5091 LIMIT_CAPS(rdma); 5092 LIMIT_CAPS(crypto); 5093 LIMIT_CAPS(iscsi); 5094 LIMIT_CAPS(fcoe); 5095 #undef LIMIT_CAPS 5096 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5097 /* 5098 * TOE and hashfilters are mutually exclusive. It is a config 5099 * file or firmware bug if both are reported as available. Try 5100 * to cope with the situation in non-debug builds by disabling 5101 * TOE. 5102 */ 5103 MPASS(caps.toecaps == 0); 5104 5105 caps.toecaps = 0; 5106 caps.rdmacaps = 0; 5107 caps.iscsicaps = 0; 5108 } 5109 5110 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5111 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5112 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5113 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5114 if (rc != 0) { 5115 device_printf(sc->dev, 5116 "failed to process config file: %d.\n", rc); 5117 goto done; 5118 } 5119 5120 t4_tweak_chip_settings(sc); 5121 set_params__pre_init(sc); 5122 5123 /* get basic stuff going */ 5124 rc = -t4_fw_initialize(sc, sc->mbox); 5125 if (rc != 0) { 5126 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5127 goto done; 5128 } 5129 done: 5130 return (rc); 5131 } 5132 5133 /* 5134 * Partition chip resources for use between various PFs, VFs, etc. 5135 */ 5136 static int 5137 partition_resources(struct adapter *sc) 5138 { 5139 char cfg_file[sizeof(t4_cfg_file)]; 5140 struct caps_allowed caps_allowed; 5141 int rc; 5142 bool fallback; 5143 5144 /* Only the master driver gets to configure the chip resources. */ 5145 MPASS(sc->flags & MASTER_PF); 5146 5147 #define COPY_CAPS(x) do { \ 5148 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5149 } while (0) 5150 bzero(&caps_allowed, sizeof(caps_allowed)); 5151 COPY_CAPS(nbm); 5152 COPY_CAPS(link); 5153 COPY_CAPS(switch); 5154 COPY_CAPS(nic); 5155 COPY_CAPS(toe); 5156 COPY_CAPS(rdma); 5157 COPY_CAPS(crypto); 5158 COPY_CAPS(iscsi); 5159 COPY_CAPS(fcoe); 5160 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5161 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5162 retry: 5163 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5164 if (rc != 0 && fallback) { 5165 dump_devlog(sc); 5166 device_printf(sc->dev, 5167 "failed (%d) to configure card with \"%s\" profile, " 5168 "will fall back to a basic configuration and retry.\n", 5169 rc, cfg_file); 5170 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5171 bzero(&caps_allowed, sizeof(caps_allowed)); 5172 COPY_CAPS(switch); 5173 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5174 fallback = false; 5175 goto retry; 5176 } 5177 #undef COPY_CAPS 5178 return (rc); 5179 } 5180 5181 /* 5182 * Retrieve parameters that are needed (or nice to have) very early. 5183 */ 5184 static int 5185 get_params__pre_init(struct adapter *sc) 5186 { 5187 int rc; 5188 uint32_t param[2], val[2]; 5189 5190 t4_get_version_info(sc); 5191 5192 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5193 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5194 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5195 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5196 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5197 5198 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5199 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5200 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5201 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5202 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5203 5204 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5205 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5206 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5207 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5208 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5209 5210 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5211 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5212 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5213 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5214 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5215 5216 param[0] = FW_PARAM_DEV(PORTVEC); 5217 param[1] = FW_PARAM_DEV(CCLK); 5218 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5219 if (rc != 0) { 5220 device_printf(sc->dev, 5221 "failed to query parameters (pre_init): %d.\n", rc); 5222 return (rc); 5223 } 5224 5225 sc->params.portvec = val[0]; 5226 sc->params.nports = bitcount32(val[0]); 5227 sc->params.vpd.cclk = val[1]; 5228 5229 /* Read device log parameters. */ 5230 rc = -t4_init_devlog_params(sc, 1); 5231 if (rc == 0) 5232 fixup_devlog_params(sc); 5233 else { 5234 device_printf(sc->dev, 5235 "failed to get devlog parameters: %d.\n", rc); 5236 rc = 0; /* devlog isn't critical for device operation */ 5237 } 5238 5239 return (rc); 5240 } 5241 5242 /* 5243 * Any params that need to be set before FW_INITIALIZE. 5244 */ 5245 static int 5246 set_params__pre_init(struct adapter *sc) 5247 { 5248 int rc = 0; 5249 uint32_t param, val; 5250 5251 if (chip_id(sc) >= CHELSIO_T6) { 5252 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5253 val = 1; 5254 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5255 /* firmwares < 1.20.1.0 do not have this param. */ 5256 if (rc == FW_EINVAL && 5257 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5258 rc = 0; 5259 } 5260 if (rc != 0) { 5261 device_printf(sc->dev, 5262 "failed to enable high priority filters :%d.\n", 5263 rc); 5264 } 5265 5266 param = FW_PARAM_DEV(PPOD_EDRAM); 5267 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5268 if (rc == 0 && val == 1) { 5269 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5270 &val); 5271 if (rc != 0) { 5272 device_printf(sc->dev, 5273 "failed to set PPOD_EDRAM: %d.\n", rc); 5274 } 5275 } 5276 } 5277 5278 /* Enable opaque VIIDs with firmwares that support it. */ 5279 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5280 val = 1; 5281 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5282 if (rc == 0 && val == 1) 5283 sc->params.viid_smt_extn_support = true; 5284 else 5285 sc->params.viid_smt_extn_support = false; 5286 5287 return (rc); 5288 } 5289 5290 /* 5291 * Retrieve various parameters that are of interest to the driver. The device 5292 * has been initialized by the firmware at this point. 5293 */ 5294 static int 5295 get_params__post_init(struct adapter *sc) 5296 { 5297 int rc; 5298 uint32_t param[7], val[7]; 5299 struct fw_caps_config_cmd caps; 5300 5301 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5302 param[1] = FW_PARAM_PFVF(EQ_START); 5303 param[2] = FW_PARAM_PFVF(FILTER_START); 5304 param[3] = FW_PARAM_PFVF(FILTER_END); 5305 param[4] = FW_PARAM_PFVF(L2T_START); 5306 param[5] = FW_PARAM_PFVF(L2T_END); 5307 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5308 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5309 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5310 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5311 if (rc != 0) { 5312 device_printf(sc->dev, 5313 "failed to query parameters (post_init): %d.\n", rc); 5314 return (rc); 5315 } 5316 5317 sc->sge.iq_start = val[0]; 5318 sc->sge.eq_start = val[1]; 5319 if ((int)val[3] > (int)val[2]) { 5320 sc->tids.ftid_base = val[2]; 5321 sc->tids.ftid_end = val[3]; 5322 sc->tids.nftids = val[3] - val[2] + 1; 5323 } 5324 sc->vres.l2t.start = val[4]; 5325 sc->vres.l2t.size = val[5] - val[4] + 1; 5326 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5327 if (sc->vres.l2t.size > 0) 5328 MPASS(fls(val[5]) <= S_SYNC_WR); 5329 sc->params.core_vdd = val[6]; 5330 5331 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5332 param[1] = FW_PARAM_PFVF(EQ_END); 5333 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5334 if (rc != 0) { 5335 device_printf(sc->dev, 5336 "failed to query parameters (post_init2): %d.\n", rc); 5337 return (rc); 5338 } 5339 MPASS((int)val[0] >= sc->sge.iq_start); 5340 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5341 MPASS((int)val[1] >= sc->sge.eq_start); 5342 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5343 5344 if (chip_id(sc) >= CHELSIO_T6) { 5345 5346 sc->tids.tid_base = t4_read_reg(sc, 5347 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5348 5349 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5350 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5351 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5352 if (rc != 0) { 5353 device_printf(sc->dev, 5354 "failed to query hpfilter parameters: %d.\n", rc); 5355 return (rc); 5356 } 5357 if ((int)val[1] > (int)val[0]) { 5358 sc->tids.hpftid_base = val[0]; 5359 sc->tids.hpftid_end = val[1]; 5360 sc->tids.nhpftids = val[1] - val[0] + 1; 5361 5362 /* 5363 * These should go off if the layout changes and the 5364 * driver needs to catch up. 5365 */ 5366 MPASS(sc->tids.hpftid_base == 0); 5367 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5368 } 5369 5370 param[0] = FW_PARAM_PFVF(RAWF_START); 5371 param[1] = FW_PARAM_PFVF(RAWF_END); 5372 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5373 if (rc != 0) { 5374 device_printf(sc->dev, 5375 "failed to query rawf parameters: %d.\n", rc); 5376 return (rc); 5377 } 5378 if ((int)val[1] > (int)val[0]) { 5379 sc->rawf_base = val[0]; 5380 sc->nrawf = val[1] - val[0] + 1; 5381 } 5382 } 5383 5384 /* 5385 * The parameters that follow may not be available on all firmwares. We 5386 * query them individually rather than in a compound query because old 5387 * firmwares fail the entire query if an unknown parameter is queried. 5388 */ 5389 5390 /* 5391 * MPS buffer group configuration. 5392 */ 5393 param[0] = FW_PARAM_DEV(MPSBGMAP); 5394 val[0] = 0; 5395 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5396 if (rc == 0) 5397 sc->params.mps_bg_map = val[0]; 5398 else 5399 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5400 5401 param[0] = FW_PARAM_DEV(TPCHMAP); 5402 val[0] = 0; 5403 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5404 if (rc == 0) 5405 sc->params.tp_ch_map = val[0]; 5406 else 5407 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5408 5409 /* 5410 * Determine whether the firmware supports the filter2 work request. 5411 */ 5412 param[0] = FW_PARAM_DEV(FILTER2_WR); 5413 val[0] = 0; 5414 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5415 if (rc == 0) 5416 sc->params.filter2_wr_support = val[0] != 0; 5417 else 5418 sc->params.filter2_wr_support = 0; 5419 5420 /* 5421 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5422 */ 5423 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5424 val[0] = 0; 5425 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5426 if (rc == 0) 5427 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5428 else 5429 sc->params.ulptx_memwrite_dsgl = false; 5430 5431 /* FW_RI_FR_NSMR_TPTE_WR support */ 5432 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5433 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5434 if (rc == 0) 5435 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5436 else 5437 sc->params.fr_nsmr_tpte_wr_support = false; 5438 5439 /* Support for 512 SGL entries per FR MR. */ 5440 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5441 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5442 if (rc == 0) 5443 sc->params.dev_512sgl_mr = val[0] != 0; 5444 else 5445 sc->params.dev_512sgl_mr = false; 5446 5447 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5448 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5449 if (rc == 0) 5450 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5451 else 5452 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5453 5454 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5455 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5456 if (rc == 0) { 5457 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5458 sc->params.nsched_cls = val[0]; 5459 } else 5460 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5461 5462 /* get capabilites */ 5463 bzero(&caps, sizeof(caps)); 5464 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5465 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5466 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5467 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5468 if (rc != 0) { 5469 device_printf(sc->dev, 5470 "failed to get card capabilities: %d.\n", rc); 5471 return (rc); 5472 } 5473 5474 #define READ_CAPS(x) do { \ 5475 sc->x = htobe16(caps.x); \ 5476 } while (0) 5477 READ_CAPS(nbmcaps); 5478 READ_CAPS(linkcaps); 5479 READ_CAPS(switchcaps); 5480 READ_CAPS(niccaps); 5481 READ_CAPS(toecaps); 5482 READ_CAPS(rdmacaps); 5483 READ_CAPS(cryptocaps); 5484 READ_CAPS(iscsicaps); 5485 READ_CAPS(fcoecaps); 5486 5487 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5488 MPASS(chip_id(sc) > CHELSIO_T4); 5489 MPASS(sc->toecaps == 0); 5490 sc->toecaps = 0; 5491 5492 param[0] = FW_PARAM_DEV(NTID); 5493 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5494 if (rc != 0) { 5495 device_printf(sc->dev, 5496 "failed to query HASHFILTER parameters: %d.\n", rc); 5497 return (rc); 5498 } 5499 sc->tids.ntids = val[0]; 5500 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5501 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5502 sc->tids.ntids -= sc->tids.nhpftids; 5503 } 5504 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5505 sc->params.hash_filter = 1; 5506 } 5507 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5508 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5509 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5510 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5511 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5512 if (rc != 0) { 5513 device_printf(sc->dev, 5514 "failed to query NIC parameters: %d.\n", rc); 5515 return (rc); 5516 } 5517 if ((int)val[1] > (int)val[0]) { 5518 sc->tids.etid_base = val[0]; 5519 sc->tids.etid_end = val[1]; 5520 sc->tids.netids = val[1] - val[0] + 1; 5521 sc->params.eo_wr_cred = val[2]; 5522 sc->params.ethoffload = 1; 5523 } 5524 } 5525 if (sc->toecaps) { 5526 /* query offload-related parameters */ 5527 param[0] = FW_PARAM_DEV(NTID); 5528 param[1] = FW_PARAM_PFVF(SERVER_START); 5529 param[2] = FW_PARAM_PFVF(SERVER_END); 5530 param[3] = FW_PARAM_PFVF(TDDP_START); 5531 param[4] = FW_PARAM_PFVF(TDDP_END); 5532 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5533 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5534 if (rc != 0) { 5535 device_printf(sc->dev, 5536 "failed to query TOE parameters: %d.\n", rc); 5537 return (rc); 5538 } 5539 sc->tids.ntids = val[0]; 5540 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5541 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5542 sc->tids.ntids -= sc->tids.nhpftids; 5543 } 5544 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5545 if ((int)val[2] > (int)val[1]) { 5546 sc->tids.stid_base = val[1]; 5547 sc->tids.nstids = val[2] - val[1] + 1; 5548 } 5549 sc->vres.ddp.start = val[3]; 5550 sc->vres.ddp.size = val[4] - val[3] + 1; 5551 sc->params.ofldq_wr_cred = val[5]; 5552 sc->params.offload = 1; 5553 } else { 5554 /* 5555 * The firmware attempts memfree TOE configuration for -SO cards 5556 * and will report toecaps=0 if it runs out of resources (this 5557 * depends on the config file). It may not report 0 for other 5558 * capabilities dependent on the TOE in this case. Set them to 5559 * 0 here so that the driver doesn't bother tracking resources 5560 * that will never be used. 5561 */ 5562 sc->iscsicaps = 0; 5563 sc->rdmacaps = 0; 5564 } 5565 if (sc->rdmacaps) { 5566 param[0] = FW_PARAM_PFVF(STAG_START); 5567 param[1] = FW_PARAM_PFVF(STAG_END); 5568 param[2] = FW_PARAM_PFVF(RQ_START); 5569 param[3] = FW_PARAM_PFVF(RQ_END); 5570 param[4] = FW_PARAM_PFVF(PBL_START); 5571 param[5] = FW_PARAM_PFVF(PBL_END); 5572 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5573 if (rc != 0) { 5574 device_printf(sc->dev, 5575 "failed to query RDMA parameters(1): %d.\n", rc); 5576 return (rc); 5577 } 5578 sc->vres.stag.start = val[0]; 5579 sc->vres.stag.size = val[1] - val[0] + 1; 5580 sc->vres.rq.start = val[2]; 5581 sc->vres.rq.size = val[3] - val[2] + 1; 5582 sc->vres.pbl.start = val[4]; 5583 sc->vres.pbl.size = val[5] - val[4] + 1; 5584 5585 param[0] = FW_PARAM_PFVF(SQRQ_START); 5586 param[1] = FW_PARAM_PFVF(SQRQ_END); 5587 param[2] = FW_PARAM_PFVF(CQ_START); 5588 param[3] = FW_PARAM_PFVF(CQ_END); 5589 param[4] = FW_PARAM_PFVF(OCQ_START); 5590 param[5] = FW_PARAM_PFVF(OCQ_END); 5591 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5592 if (rc != 0) { 5593 device_printf(sc->dev, 5594 "failed to query RDMA parameters(2): %d.\n", rc); 5595 return (rc); 5596 } 5597 sc->vres.qp.start = val[0]; 5598 sc->vres.qp.size = val[1] - val[0] + 1; 5599 sc->vres.cq.start = val[2]; 5600 sc->vres.cq.size = val[3] - val[2] + 1; 5601 sc->vres.ocq.start = val[4]; 5602 sc->vres.ocq.size = val[5] - val[4] + 1; 5603 5604 param[0] = FW_PARAM_PFVF(SRQ_START); 5605 param[1] = FW_PARAM_PFVF(SRQ_END); 5606 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5607 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5608 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5609 if (rc != 0) { 5610 device_printf(sc->dev, 5611 "failed to query RDMA parameters(3): %d.\n", rc); 5612 return (rc); 5613 } 5614 sc->vres.srq.start = val[0]; 5615 sc->vres.srq.size = val[1] - val[0] + 1; 5616 sc->params.max_ordird_qp = val[2]; 5617 sc->params.max_ird_adapter = val[3]; 5618 } 5619 if (sc->iscsicaps) { 5620 param[0] = FW_PARAM_PFVF(ISCSI_START); 5621 param[1] = FW_PARAM_PFVF(ISCSI_END); 5622 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5623 if (rc != 0) { 5624 device_printf(sc->dev, 5625 "failed to query iSCSI parameters: %d.\n", rc); 5626 return (rc); 5627 } 5628 sc->vres.iscsi.start = val[0]; 5629 sc->vres.iscsi.size = val[1] - val[0] + 1; 5630 } 5631 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5632 param[0] = FW_PARAM_PFVF(TLS_START); 5633 param[1] = FW_PARAM_PFVF(TLS_END); 5634 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5635 if (rc != 0) { 5636 device_printf(sc->dev, 5637 "failed to query TLS parameters: %d.\n", rc); 5638 return (rc); 5639 } 5640 sc->vres.key.start = val[0]; 5641 sc->vres.key.size = val[1] - val[0] + 1; 5642 } 5643 5644 /* 5645 * We've got the params we wanted to query directly from the firmware. 5646 * Grab some others via other means. 5647 */ 5648 t4_init_sge_params(sc); 5649 t4_init_tp_params(sc); 5650 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5651 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5652 5653 rc = t4_verify_chip_settings(sc); 5654 if (rc != 0) 5655 return (rc); 5656 t4_init_rx_buf_info(sc); 5657 5658 return (rc); 5659 } 5660 5661 #ifdef KERN_TLS 5662 static void 5663 ktls_tick(void *arg) 5664 { 5665 struct adapter *sc; 5666 uint32_t tstamp; 5667 5668 sc = arg; 5669 tstamp = tcp_ts_getticks(); 5670 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5671 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5672 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5673 } 5674 5675 static int 5676 t6_config_kern_tls(struct adapter *sc, bool enable) 5677 { 5678 int rc; 5679 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5680 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5681 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5682 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5683 5684 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5685 if (rc != 0) { 5686 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5687 enable ? "enable" : "disable", rc); 5688 return (rc); 5689 } 5690 5691 if (enable) { 5692 sc->flags |= KERN_TLS_ON; 5693 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5694 C_HARDCLOCK); 5695 } else { 5696 sc->flags &= ~KERN_TLS_ON; 5697 callout_stop(&sc->ktls_tick); 5698 } 5699 5700 return (rc); 5701 } 5702 #endif 5703 5704 static int 5705 set_params__post_init(struct adapter *sc) 5706 { 5707 uint32_t mask, param, val; 5708 #ifdef TCP_OFFLOAD 5709 int i, v, shift; 5710 #endif 5711 5712 /* ask for encapsulated CPLs */ 5713 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5714 val = 1; 5715 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5716 5717 /* Enable 32b port caps if the firmware supports it. */ 5718 param = FW_PARAM_PFVF(PORT_CAPS32); 5719 val = 1; 5720 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5721 sc->params.port_caps32 = 1; 5722 5723 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5724 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5725 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5726 V_MASKFILTER(val - 1)); 5727 5728 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5729 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5730 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5731 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5732 val = 0; 5733 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5734 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5735 F_ATTACKFILTERENABLE); 5736 val |= F_DROPERRORATTACK; 5737 } 5738 if (t4_drop_ip_fragments != 0) { 5739 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5740 F_FRAGMENTDROP); 5741 val |= F_DROPERRORFRAG; 5742 } 5743 if (t4_drop_pkts_with_l2_errors != 0) 5744 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5745 if (t4_drop_pkts_with_l3_errors != 0) { 5746 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5747 F_DROPERRORCSUMIP; 5748 } 5749 if (t4_drop_pkts_with_l4_errors != 0) { 5750 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5751 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5752 } 5753 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5754 5755 #ifdef TCP_OFFLOAD 5756 /* 5757 * Override the TOE timers with user provided tunables. This is not the 5758 * recommended way to change the timers (the firmware config file is) so 5759 * these tunables are not documented. 5760 * 5761 * All the timer tunables are in microseconds. 5762 */ 5763 if (t4_toe_keepalive_idle != 0) { 5764 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5765 v &= M_KEEPALIVEIDLE; 5766 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5767 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5768 } 5769 if (t4_toe_keepalive_interval != 0) { 5770 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5771 v &= M_KEEPALIVEINTVL; 5772 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5773 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5774 } 5775 if (t4_toe_keepalive_count != 0) { 5776 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5777 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5778 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5779 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5780 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5781 } 5782 if (t4_toe_rexmt_min != 0) { 5783 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5784 v &= M_RXTMIN; 5785 t4_set_reg_field(sc, A_TP_RXT_MIN, 5786 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5787 } 5788 if (t4_toe_rexmt_max != 0) { 5789 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5790 v &= M_RXTMAX; 5791 t4_set_reg_field(sc, A_TP_RXT_MAX, 5792 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5793 } 5794 if (t4_toe_rexmt_count != 0) { 5795 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5796 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5797 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5798 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5799 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5800 } 5801 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5802 if (t4_toe_rexmt_backoff[i] != -1) { 5803 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5804 shift = (i & 3) << 3; 5805 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5806 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5807 } 5808 } 5809 #endif 5810 5811 /* 5812 * Limit TOE connections to 2 reassembly "islands". This is 5813 * required to permit migrating TOE connections to either 5814 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5815 */ 5816 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5817 V_PASSMODE(2)); 5818 5819 #ifdef KERN_TLS 5820 if (is_ktls(sc)) { 5821 sc->tlst.inline_keys = t4_tls_inline_keys; 5822 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5823 if (t4_kern_tls != 0 && is_t6(sc)) 5824 t6_config_kern_tls(sc, true); 5825 } 5826 #endif 5827 return (0); 5828 } 5829 5830 #undef FW_PARAM_PFVF 5831 #undef FW_PARAM_DEV 5832 5833 static void 5834 t4_set_desc(struct adapter *sc) 5835 { 5836 struct adapter_params *p = &sc->params; 5837 5838 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5839 } 5840 5841 static inline void 5842 ifmedia_add4(struct ifmedia *ifm, int m) 5843 { 5844 5845 ifmedia_add(ifm, m, 0, NULL); 5846 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5847 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5848 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5849 } 5850 5851 /* 5852 * This is the selected media, which is not quite the same as the active media. 5853 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5854 * and active are not the same, and "media: Ethernet selected" otherwise. 5855 */ 5856 static void 5857 set_current_media(struct port_info *pi) 5858 { 5859 struct link_config *lc; 5860 struct ifmedia *ifm; 5861 int mword; 5862 u_int speed; 5863 5864 PORT_LOCK_ASSERT_OWNED(pi); 5865 5866 /* Leave current media alone if it's already set to IFM_NONE. */ 5867 ifm = &pi->media; 5868 if (ifm->ifm_cur != NULL && 5869 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5870 return; 5871 5872 lc = &pi->link_cfg; 5873 if (lc->requested_aneg != AUTONEG_DISABLE && 5874 lc->pcaps & FW_PORT_CAP32_ANEG) { 5875 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5876 return; 5877 } 5878 mword = IFM_ETHER | IFM_FDX; 5879 if (lc->requested_fc & PAUSE_TX) 5880 mword |= IFM_ETH_TXPAUSE; 5881 if (lc->requested_fc & PAUSE_RX) 5882 mword |= IFM_ETH_RXPAUSE; 5883 if (lc->requested_speed == 0) 5884 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5885 else 5886 speed = lc->requested_speed; 5887 mword |= port_mword(pi, speed_to_fwcap(speed)); 5888 ifmedia_set(ifm, mword); 5889 } 5890 5891 /* 5892 * Returns true if the ifmedia list for the port cannot change. 5893 */ 5894 static bool 5895 fixed_ifmedia(struct port_info *pi) 5896 { 5897 5898 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5899 pi->port_type == FW_PORT_TYPE_BT_XFI || 5900 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5901 pi->port_type == FW_PORT_TYPE_KX4 || 5902 pi->port_type == FW_PORT_TYPE_KX || 5903 pi->port_type == FW_PORT_TYPE_KR || 5904 pi->port_type == FW_PORT_TYPE_BP_AP || 5905 pi->port_type == FW_PORT_TYPE_BP4_AP || 5906 pi->port_type == FW_PORT_TYPE_BP40_BA || 5907 pi->port_type == FW_PORT_TYPE_KR4_100G || 5908 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5909 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5910 } 5911 5912 static void 5913 build_medialist(struct port_info *pi) 5914 { 5915 uint32_t ss, speed; 5916 int unknown, mword, bit; 5917 struct link_config *lc; 5918 struct ifmedia *ifm; 5919 5920 PORT_LOCK_ASSERT_OWNED(pi); 5921 5922 if (pi->flags & FIXED_IFMEDIA) 5923 return; 5924 5925 /* 5926 * Rebuild the ifmedia list. 5927 */ 5928 ifm = &pi->media; 5929 ifmedia_removeall(ifm); 5930 lc = &pi->link_cfg; 5931 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5932 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5933 MPASS(ss != 0); 5934 no_media: 5935 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5936 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5937 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5938 return; 5939 } 5940 5941 unknown = 0; 5942 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5943 speed = 1 << bit; 5944 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5945 if (ss & speed) { 5946 mword = port_mword(pi, speed); 5947 if (mword == IFM_NONE) { 5948 goto no_media; 5949 } else if (mword == IFM_UNKNOWN) 5950 unknown++; 5951 else 5952 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5953 } 5954 } 5955 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5956 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5957 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5958 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5959 5960 set_current_media(pi); 5961 } 5962 5963 /* 5964 * Initialize the requested fields in the link config based on driver tunables. 5965 */ 5966 static void 5967 init_link_config(struct port_info *pi) 5968 { 5969 struct link_config *lc = &pi->link_cfg; 5970 5971 PORT_LOCK_ASSERT_OWNED(pi); 5972 5973 lc->requested_caps = 0; 5974 lc->requested_speed = 0; 5975 5976 if (t4_autoneg == 0) 5977 lc->requested_aneg = AUTONEG_DISABLE; 5978 else if (t4_autoneg == 1) 5979 lc->requested_aneg = AUTONEG_ENABLE; 5980 else 5981 lc->requested_aneg = AUTONEG_AUTO; 5982 5983 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5984 PAUSE_AUTONEG); 5985 5986 if (t4_fec & FEC_AUTO) 5987 lc->requested_fec = FEC_AUTO; 5988 else if (t4_fec == 0) 5989 lc->requested_fec = FEC_NONE; 5990 else { 5991 /* -1 is handled by the FEC_AUTO block above and not here. */ 5992 lc->requested_fec = t4_fec & 5993 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5994 if (lc->requested_fec == 0) 5995 lc->requested_fec = FEC_AUTO; 5996 } 5997 if (t4_force_fec < 0) 5998 lc->force_fec = -1; 5999 else if (t4_force_fec > 0) 6000 lc->force_fec = 1; 6001 else 6002 lc->force_fec = 0; 6003 } 6004 6005 /* 6006 * Makes sure that all requested settings comply with what's supported by the 6007 * port. Returns the number of settings that were invalid and had to be fixed. 6008 */ 6009 static int 6010 fixup_link_config(struct port_info *pi) 6011 { 6012 int n = 0; 6013 struct link_config *lc = &pi->link_cfg; 6014 uint32_t fwspeed; 6015 6016 PORT_LOCK_ASSERT_OWNED(pi); 6017 6018 /* Speed (when not autonegotiating) */ 6019 if (lc->requested_speed != 0) { 6020 fwspeed = speed_to_fwcap(lc->requested_speed); 6021 if ((fwspeed & lc->pcaps) == 0) { 6022 n++; 6023 lc->requested_speed = 0; 6024 } 6025 } 6026 6027 /* Link autonegotiation */ 6028 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6029 lc->requested_aneg == AUTONEG_DISABLE || 6030 lc->requested_aneg == AUTONEG_AUTO); 6031 if (lc->requested_aneg == AUTONEG_ENABLE && 6032 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6033 n++; 6034 lc->requested_aneg = AUTONEG_AUTO; 6035 } 6036 6037 /* Flow control */ 6038 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6039 if (lc->requested_fc & PAUSE_TX && 6040 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6041 n++; 6042 lc->requested_fc &= ~PAUSE_TX; 6043 } 6044 if (lc->requested_fc & PAUSE_RX && 6045 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6046 n++; 6047 lc->requested_fc &= ~PAUSE_RX; 6048 } 6049 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6050 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6051 n++; 6052 lc->requested_fc |= PAUSE_AUTONEG; 6053 } 6054 6055 /* FEC */ 6056 if ((lc->requested_fec & FEC_RS && 6057 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6058 (lc->requested_fec & FEC_BASER_RS && 6059 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6060 n++; 6061 lc->requested_fec = FEC_AUTO; 6062 } 6063 6064 return (n); 6065 } 6066 6067 /* 6068 * Apply the requested L1 settings, which are expected to be valid, to the 6069 * hardware. 6070 */ 6071 static int 6072 apply_link_config(struct port_info *pi) 6073 { 6074 struct adapter *sc = pi->adapter; 6075 struct link_config *lc = &pi->link_cfg; 6076 int rc; 6077 6078 #ifdef INVARIANTS 6079 ASSERT_SYNCHRONIZED_OP(sc); 6080 PORT_LOCK_ASSERT_OWNED(pi); 6081 6082 if (lc->requested_aneg == AUTONEG_ENABLE) 6083 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6084 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6085 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6086 if (lc->requested_fc & PAUSE_TX) 6087 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6088 if (lc->requested_fc & PAUSE_RX) 6089 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6090 if (lc->requested_fec & FEC_RS) 6091 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6092 if (lc->requested_fec & FEC_BASER_RS) 6093 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6094 #endif 6095 if (!(sc->flags & IS_VF)) { 6096 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6097 if (rc != 0) { 6098 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6099 return (rc); 6100 } 6101 } 6102 6103 /* 6104 * An L1_CFG will almost always result in a link-change event if the 6105 * link is up, and the driver will refresh the actual fec/fc/etc. when 6106 * the notification is processed. If the link is down then the actual 6107 * settings are meaningless. 6108 * 6109 * This takes care of the case where a change in the L1 settings may not 6110 * result in a notification. 6111 */ 6112 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6113 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6114 6115 return (0); 6116 } 6117 6118 #define FW_MAC_EXACT_CHUNK 7 6119 struct mcaddr_ctx { 6120 if_t ifp; 6121 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6122 uint64_t hash; 6123 int i; 6124 int del; 6125 int rc; 6126 }; 6127 6128 static u_int 6129 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6130 { 6131 struct mcaddr_ctx *ctx = arg; 6132 struct vi_info *vi = if_getsoftc(ctx->ifp); 6133 struct port_info *pi = vi->pi; 6134 struct adapter *sc = pi->adapter; 6135 6136 if (ctx->rc < 0) 6137 return (0); 6138 6139 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6140 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6141 ctx->i++; 6142 6143 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6144 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6145 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6146 if (ctx->rc < 0) { 6147 int j; 6148 6149 for (j = 0; j < ctx->i; j++) { 6150 if_printf(ctx->ifp, 6151 "failed to add mc address" 6152 " %02x:%02x:%02x:" 6153 "%02x:%02x:%02x rc=%d\n", 6154 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6155 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6156 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6157 -ctx->rc); 6158 } 6159 return (0); 6160 } 6161 ctx->del = 0; 6162 ctx->i = 0; 6163 } 6164 6165 return (1); 6166 } 6167 6168 /* 6169 * Program the port's XGMAC based on parameters in ifnet. The caller also 6170 * indicates which parameters should be programmed (the rest are left alone). 6171 */ 6172 int 6173 update_mac_settings(if_t ifp, int flags) 6174 { 6175 int rc = 0; 6176 struct vi_info *vi = if_getsoftc(ifp); 6177 struct port_info *pi = vi->pi; 6178 struct adapter *sc = pi->adapter; 6179 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6180 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6181 6182 ASSERT_SYNCHRONIZED_OP(sc); 6183 KASSERT(flags, ("%s: not told what to update.", __func__)); 6184 6185 if (flags & XGMAC_MTU) 6186 mtu = if_getmtu(ifp); 6187 6188 if (flags & XGMAC_PROMISC) 6189 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6190 6191 if (flags & XGMAC_ALLMULTI) 6192 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6193 6194 if (flags & XGMAC_VLANEX) 6195 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6196 6197 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6198 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6199 allmulti, 1, vlanex, false); 6200 if (rc) { 6201 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6202 rc); 6203 return (rc); 6204 } 6205 } 6206 6207 if (flags & XGMAC_UCADDR) { 6208 uint8_t ucaddr[ETHER_ADDR_LEN]; 6209 6210 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6211 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6212 ucaddr, true, &vi->smt_idx); 6213 if (rc < 0) { 6214 rc = -rc; 6215 if_printf(ifp, "change_mac failed: %d\n", rc); 6216 return (rc); 6217 } else { 6218 vi->xact_addr_filt = rc; 6219 rc = 0; 6220 } 6221 } 6222 6223 if (flags & XGMAC_MCADDRS) { 6224 struct epoch_tracker et; 6225 struct mcaddr_ctx ctx; 6226 int j; 6227 6228 ctx.ifp = ifp; 6229 ctx.hash = 0; 6230 ctx.i = 0; 6231 ctx.del = 1; 6232 ctx.rc = 0; 6233 /* 6234 * Unlike other drivers, we accumulate list of pointers into 6235 * interface address lists and we need to keep it safe even 6236 * after if_foreach_llmaddr() returns, thus we must enter the 6237 * network epoch. 6238 */ 6239 NET_EPOCH_ENTER(et); 6240 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6241 if (ctx.rc < 0) { 6242 NET_EPOCH_EXIT(et); 6243 rc = -ctx.rc; 6244 return (rc); 6245 } 6246 if (ctx.i > 0) { 6247 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6248 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6249 NET_EPOCH_EXIT(et); 6250 if (rc < 0) { 6251 rc = -rc; 6252 for (j = 0; j < ctx.i; j++) { 6253 if_printf(ifp, 6254 "failed to add mcast address" 6255 " %02x:%02x:%02x:" 6256 "%02x:%02x:%02x rc=%d\n", 6257 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6258 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6259 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6260 rc); 6261 } 6262 return (rc); 6263 } 6264 ctx.del = 0; 6265 } else 6266 NET_EPOCH_EXIT(et); 6267 6268 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6269 if (rc != 0) 6270 if_printf(ifp, "failed to set mcast address hash: %d\n", 6271 rc); 6272 if (ctx.del == 0) { 6273 /* We clobbered the VXLAN entry if there was one. */ 6274 pi->vxlan_tcam_entry = false; 6275 } 6276 } 6277 6278 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6279 pi->vxlan_tcam_entry == false) { 6280 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6281 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6282 true); 6283 if (rc < 0) { 6284 rc = -rc; 6285 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6286 rc); 6287 } else { 6288 MPASS(rc == sc->rawf_base + pi->port_id); 6289 rc = 0; 6290 pi->vxlan_tcam_entry = true; 6291 } 6292 } 6293 6294 return (rc); 6295 } 6296 6297 /* 6298 * {begin|end}_synchronized_op must be called from the same thread. 6299 */ 6300 int 6301 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6302 char *wmesg) 6303 { 6304 int rc, pri; 6305 6306 #ifdef WITNESS 6307 /* the caller thinks it's ok to sleep, but is it really? */ 6308 if (flags & SLEEP_OK) 6309 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6310 "begin_synchronized_op"); 6311 #endif 6312 6313 if (INTR_OK) 6314 pri = PCATCH; 6315 else 6316 pri = 0; 6317 6318 ADAPTER_LOCK(sc); 6319 for (;;) { 6320 6321 if (vi && IS_DETACHING(vi)) { 6322 rc = ENXIO; 6323 goto done; 6324 } 6325 6326 if (!IS_BUSY(sc)) { 6327 rc = 0; 6328 break; 6329 } 6330 6331 if (!(flags & SLEEP_OK)) { 6332 rc = EBUSY; 6333 goto done; 6334 } 6335 6336 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6337 rc = EINTR; 6338 goto done; 6339 } 6340 } 6341 6342 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6343 SET_BUSY(sc); 6344 #ifdef INVARIANTS 6345 sc->last_op = wmesg; 6346 sc->last_op_thr = curthread; 6347 sc->last_op_flags = flags; 6348 #endif 6349 6350 done: 6351 if (!(flags & HOLD_LOCK) || rc) 6352 ADAPTER_UNLOCK(sc); 6353 6354 return (rc); 6355 } 6356 6357 /* 6358 * Tell if_ioctl and if_init that the VI is going away. This is 6359 * special variant of begin_synchronized_op and must be paired with a 6360 * call to end_vi_detach. 6361 */ 6362 void 6363 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6364 { 6365 ADAPTER_LOCK(sc); 6366 SET_DETACHING(vi); 6367 wakeup(&sc->flags); 6368 while (IS_BUSY(sc)) 6369 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6370 SET_BUSY(sc); 6371 #ifdef INVARIANTS 6372 sc->last_op = "t4detach"; 6373 sc->last_op_thr = curthread; 6374 sc->last_op_flags = 0; 6375 #endif 6376 ADAPTER_UNLOCK(sc); 6377 } 6378 6379 void 6380 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6381 { 6382 ADAPTER_LOCK(sc); 6383 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6384 CLR_BUSY(sc); 6385 CLR_DETACHING(vi); 6386 wakeup(&sc->flags); 6387 ADAPTER_UNLOCK(sc); 6388 } 6389 6390 /* 6391 * {begin|end}_synchronized_op must be called from the same thread. 6392 */ 6393 void 6394 end_synchronized_op(struct adapter *sc, int flags) 6395 { 6396 6397 if (flags & LOCK_HELD) 6398 ADAPTER_LOCK_ASSERT_OWNED(sc); 6399 else 6400 ADAPTER_LOCK(sc); 6401 6402 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6403 CLR_BUSY(sc); 6404 wakeup(&sc->flags); 6405 ADAPTER_UNLOCK(sc); 6406 } 6407 6408 static int 6409 cxgbe_init_synchronized(struct vi_info *vi) 6410 { 6411 struct port_info *pi = vi->pi; 6412 struct adapter *sc = pi->adapter; 6413 if_t ifp = vi->ifp; 6414 int rc = 0, i; 6415 struct sge_txq *txq; 6416 6417 ASSERT_SYNCHRONIZED_OP(sc); 6418 6419 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6420 return (0); /* already running */ 6421 6422 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6423 return (rc); /* error message displayed already */ 6424 6425 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6426 return (rc); /* error message displayed already */ 6427 6428 rc = update_mac_settings(ifp, XGMAC_ALL); 6429 if (rc) 6430 goto done; /* error message displayed already */ 6431 6432 PORT_LOCK(pi); 6433 if (pi->up_vis == 0) { 6434 t4_update_port_info(pi); 6435 fixup_link_config(pi); 6436 build_medialist(pi); 6437 apply_link_config(pi); 6438 } 6439 6440 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6441 if (rc != 0) { 6442 if_printf(ifp, "enable_vi failed: %d\n", rc); 6443 PORT_UNLOCK(pi); 6444 goto done; 6445 } 6446 6447 /* 6448 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6449 * if this changes. 6450 */ 6451 6452 for_each_txq(vi, i, txq) { 6453 TXQ_LOCK(txq); 6454 txq->eq.flags |= EQ_ENABLED; 6455 TXQ_UNLOCK(txq); 6456 } 6457 6458 /* 6459 * The first iq of the first port to come up is used for tracing. 6460 */ 6461 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6462 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6463 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6464 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6465 V_QUEUENUMBER(sc->traceq)); 6466 pi->flags |= HAS_TRACEQ; 6467 } 6468 6469 /* all ok */ 6470 pi->up_vis++; 6471 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6472 if (pi->link_cfg.link_ok) 6473 t4_os_link_changed(pi); 6474 PORT_UNLOCK(pi); 6475 6476 mtx_lock(&vi->tick_mtx); 6477 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6478 callout_reset(&vi->tick, hz, vi_tick, vi); 6479 else 6480 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6481 mtx_unlock(&vi->tick_mtx); 6482 done: 6483 if (rc != 0) 6484 cxgbe_uninit_synchronized(vi); 6485 6486 return (rc); 6487 } 6488 6489 /* 6490 * Idempotent. 6491 */ 6492 static int 6493 cxgbe_uninit_synchronized(struct vi_info *vi) 6494 { 6495 struct port_info *pi = vi->pi; 6496 struct adapter *sc = pi->adapter; 6497 if_t ifp = vi->ifp; 6498 int rc, i; 6499 struct sge_txq *txq; 6500 6501 ASSERT_SYNCHRONIZED_OP(sc); 6502 6503 if (!(vi->flags & VI_INIT_DONE)) { 6504 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6505 KASSERT(0, ("uninited VI is running")); 6506 if_printf(ifp, "uninited VI with running ifnet. " 6507 "vi->flags 0x%016lx, if_flags 0x%08x, " 6508 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6509 if_getdrvflags(ifp)); 6510 } 6511 return (0); 6512 } 6513 6514 /* 6515 * Disable the VI so that all its data in either direction is discarded 6516 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6517 * tick) intact as the TP can deliver negative advice or data that it's 6518 * holding in its RAM (for an offloaded connection) even after the VI is 6519 * disabled. 6520 */ 6521 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6522 if (rc) { 6523 if_printf(ifp, "disable_vi failed: %d\n", rc); 6524 return (rc); 6525 } 6526 6527 for_each_txq(vi, i, txq) { 6528 TXQ_LOCK(txq); 6529 txq->eq.flags &= ~EQ_ENABLED; 6530 TXQ_UNLOCK(txq); 6531 } 6532 6533 mtx_lock(&vi->tick_mtx); 6534 callout_stop(&vi->tick); 6535 mtx_unlock(&vi->tick_mtx); 6536 6537 PORT_LOCK(pi); 6538 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6539 PORT_UNLOCK(pi); 6540 return (0); 6541 } 6542 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6543 pi->up_vis--; 6544 if (pi->up_vis > 0) { 6545 PORT_UNLOCK(pi); 6546 return (0); 6547 } 6548 6549 pi->link_cfg.link_ok = false; 6550 pi->link_cfg.speed = 0; 6551 pi->link_cfg.link_down_rc = 255; 6552 t4_os_link_changed(pi); 6553 PORT_UNLOCK(pi); 6554 6555 return (0); 6556 } 6557 6558 /* 6559 * It is ok for this function to fail midway and return right away. t4_detach 6560 * will walk the entire sc->irq list and clean up whatever is valid. 6561 */ 6562 int 6563 t4_setup_intr_handlers(struct adapter *sc) 6564 { 6565 int rc, rid, p, q, v; 6566 char s[8]; 6567 struct irq *irq; 6568 struct port_info *pi; 6569 struct vi_info *vi; 6570 struct sge *sge = &sc->sge; 6571 struct sge_rxq *rxq; 6572 #ifdef TCP_OFFLOAD 6573 struct sge_ofld_rxq *ofld_rxq; 6574 #endif 6575 #ifdef DEV_NETMAP 6576 struct sge_nm_rxq *nm_rxq; 6577 #endif 6578 #ifdef RSS 6579 int nbuckets = rss_getnumbuckets(); 6580 #endif 6581 6582 /* 6583 * Setup interrupts. 6584 */ 6585 irq = &sc->irq[0]; 6586 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6587 if (forwarding_intr_to_fwq(sc)) 6588 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6589 6590 /* Multiple interrupts. */ 6591 if (sc->flags & IS_VF) 6592 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6593 ("%s: too few intr.", __func__)); 6594 else 6595 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6596 ("%s: too few intr.", __func__)); 6597 6598 /* The first one is always error intr on PFs */ 6599 if (!(sc->flags & IS_VF)) { 6600 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6601 if (rc != 0) 6602 return (rc); 6603 irq++; 6604 rid++; 6605 } 6606 6607 /* The second one is always the firmware event queue (first on VFs) */ 6608 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6609 if (rc != 0) 6610 return (rc); 6611 irq++; 6612 rid++; 6613 6614 for_each_port(sc, p) { 6615 pi = sc->port[p]; 6616 for_each_vi(pi, v, vi) { 6617 vi->first_intr = rid - 1; 6618 6619 if (vi->nnmrxq > 0) { 6620 int n = max(vi->nrxq, vi->nnmrxq); 6621 6622 rxq = &sge->rxq[vi->first_rxq]; 6623 #ifdef DEV_NETMAP 6624 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6625 #endif 6626 for (q = 0; q < n; q++) { 6627 snprintf(s, sizeof(s), "%x%c%x", p, 6628 'a' + v, q); 6629 if (q < vi->nrxq) 6630 irq->rxq = rxq++; 6631 #ifdef DEV_NETMAP 6632 if (q < vi->nnmrxq) 6633 irq->nm_rxq = nm_rxq++; 6634 6635 if (irq->nm_rxq != NULL && 6636 irq->rxq == NULL) { 6637 /* Netmap rx only */ 6638 rc = t4_alloc_irq(sc, irq, rid, 6639 t4_nm_intr, irq->nm_rxq, s); 6640 } 6641 if (irq->nm_rxq != NULL && 6642 irq->rxq != NULL) { 6643 /* NIC and Netmap rx */ 6644 rc = t4_alloc_irq(sc, irq, rid, 6645 t4_vi_intr, irq, s); 6646 } 6647 #endif 6648 if (irq->rxq != NULL && 6649 irq->nm_rxq == NULL) { 6650 /* NIC rx only */ 6651 rc = t4_alloc_irq(sc, irq, rid, 6652 t4_intr, irq->rxq, s); 6653 } 6654 if (rc != 0) 6655 return (rc); 6656 #ifdef RSS 6657 if (q < vi->nrxq) { 6658 bus_bind_intr(sc->dev, irq->res, 6659 rss_getcpu(q % nbuckets)); 6660 } 6661 #endif 6662 irq++; 6663 rid++; 6664 vi->nintr++; 6665 } 6666 } else { 6667 for_each_rxq(vi, q, rxq) { 6668 snprintf(s, sizeof(s), "%x%c%x", p, 6669 'a' + v, q); 6670 rc = t4_alloc_irq(sc, irq, rid, 6671 t4_intr, rxq, s); 6672 if (rc != 0) 6673 return (rc); 6674 #ifdef RSS 6675 bus_bind_intr(sc->dev, irq->res, 6676 rss_getcpu(q % nbuckets)); 6677 #endif 6678 irq++; 6679 rid++; 6680 vi->nintr++; 6681 } 6682 } 6683 #ifdef TCP_OFFLOAD 6684 for_each_ofld_rxq(vi, q, ofld_rxq) { 6685 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6686 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6687 ofld_rxq, s); 6688 if (rc != 0) 6689 return (rc); 6690 irq++; 6691 rid++; 6692 vi->nintr++; 6693 } 6694 #endif 6695 } 6696 } 6697 MPASS(irq == &sc->irq[sc->intr_count]); 6698 6699 return (0); 6700 } 6701 6702 static void 6703 write_global_rss_key(struct adapter *sc) 6704 { 6705 #ifdef RSS 6706 int i; 6707 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6708 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6709 6710 CTASSERT(RSS_KEYSIZE == 40); 6711 6712 rss_getkey((void *)&raw_rss_key[0]); 6713 for (i = 0; i < nitems(rss_key); i++) { 6714 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6715 } 6716 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6717 #endif 6718 } 6719 6720 /* 6721 * Idempotent. 6722 */ 6723 static int 6724 adapter_full_init(struct adapter *sc) 6725 { 6726 int rc, i; 6727 6728 ASSERT_SYNCHRONIZED_OP(sc); 6729 6730 /* 6731 * queues that belong to the adapter (not any particular port). 6732 */ 6733 rc = t4_setup_adapter_queues(sc); 6734 if (rc != 0) 6735 return (rc); 6736 6737 MPASS(sc->params.nports <= nitems(sc->tq)); 6738 for (i = 0; i < sc->params.nports; i++) { 6739 if (sc->tq[i] != NULL) 6740 continue; 6741 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6742 taskqueue_thread_enqueue, &sc->tq[i]); 6743 if (sc->tq[i] == NULL) { 6744 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6745 return (ENOMEM); 6746 } 6747 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6748 device_get_nameunit(sc->dev), i); 6749 } 6750 6751 if (!(sc->flags & IS_VF)) { 6752 write_global_rss_key(sc); 6753 t4_intr_enable(sc); 6754 } 6755 return (0); 6756 } 6757 6758 int 6759 adapter_init(struct adapter *sc) 6760 { 6761 int rc; 6762 6763 ASSERT_SYNCHRONIZED_OP(sc); 6764 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6765 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6766 ("%s: FULL_INIT_DONE already", __func__)); 6767 6768 rc = adapter_full_init(sc); 6769 if (rc != 0) 6770 adapter_full_uninit(sc); 6771 else 6772 sc->flags |= FULL_INIT_DONE; 6773 6774 return (rc); 6775 } 6776 6777 /* 6778 * Idempotent. 6779 */ 6780 static void 6781 adapter_full_uninit(struct adapter *sc) 6782 { 6783 int i; 6784 6785 t4_teardown_adapter_queues(sc); 6786 6787 for (i = 0; i < nitems(sc->tq); i++) { 6788 if (sc->tq[i] == NULL) 6789 continue; 6790 taskqueue_free(sc->tq[i]); 6791 sc->tq[i] = NULL; 6792 } 6793 6794 sc->flags &= ~FULL_INIT_DONE; 6795 } 6796 6797 #ifdef RSS 6798 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6799 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6800 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6801 RSS_HASHTYPE_RSS_UDP_IPV6) 6802 6803 /* Translates kernel hash types to hardware. */ 6804 static int 6805 hashconfig_to_hashen(int hashconfig) 6806 { 6807 int hashen = 0; 6808 6809 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6810 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6811 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6812 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6813 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6814 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6815 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6816 } 6817 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6818 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6819 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6820 } 6821 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6822 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6823 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6824 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6825 6826 return (hashen); 6827 } 6828 6829 /* Translates hardware hash types to kernel. */ 6830 static int 6831 hashen_to_hashconfig(int hashen) 6832 { 6833 int hashconfig = 0; 6834 6835 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6836 /* 6837 * If UDP hashing was enabled it must have been enabled for 6838 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6839 * enabling any 4-tuple hash is nonsense configuration. 6840 */ 6841 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6842 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6843 6844 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6845 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6846 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6847 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6848 } 6849 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6850 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6851 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6852 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6853 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6854 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6855 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6856 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6857 6858 return (hashconfig); 6859 } 6860 #endif 6861 6862 /* 6863 * Idempotent. 6864 */ 6865 static int 6866 vi_full_init(struct vi_info *vi) 6867 { 6868 struct adapter *sc = vi->adapter; 6869 struct sge_rxq *rxq; 6870 int rc, i, j; 6871 #ifdef RSS 6872 int nbuckets = rss_getnumbuckets(); 6873 int hashconfig = rss_gethashconfig(); 6874 int extra; 6875 #endif 6876 6877 ASSERT_SYNCHRONIZED_OP(sc); 6878 6879 /* 6880 * Allocate tx/rx/fl queues for this VI. 6881 */ 6882 rc = t4_setup_vi_queues(vi); 6883 if (rc != 0) 6884 return (rc); 6885 6886 /* 6887 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6888 */ 6889 if (vi->nrxq > vi->rss_size) { 6890 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6891 "some queues will never receive traffic.\n", vi->nrxq, 6892 vi->rss_size); 6893 } else if (vi->rss_size % vi->nrxq) { 6894 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6895 "expect uneven traffic distribution.\n", vi->nrxq, 6896 vi->rss_size); 6897 } 6898 #ifdef RSS 6899 if (vi->nrxq != nbuckets) { 6900 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6901 "performance will be impacted.\n", vi->nrxq, nbuckets); 6902 } 6903 #endif 6904 if (vi->rss == NULL) 6905 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6906 M_ZERO | M_WAITOK); 6907 for (i = 0; i < vi->rss_size;) { 6908 #ifdef RSS 6909 j = rss_get_indirection_to_bucket(i); 6910 j %= vi->nrxq; 6911 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6912 vi->rss[i++] = rxq->iq.abs_id; 6913 #else 6914 for_each_rxq(vi, j, rxq) { 6915 vi->rss[i++] = rxq->iq.abs_id; 6916 if (i == vi->rss_size) 6917 break; 6918 } 6919 #endif 6920 } 6921 6922 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6923 vi->rss, vi->rss_size); 6924 if (rc != 0) { 6925 CH_ERR(vi, "rss_config failed: %d\n", rc); 6926 return (rc); 6927 } 6928 6929 #ifdef RSS 6930 vi->hashen = hashconfig_to_hashen(hashconfig); 6931 6932 /* 6933 * We may have had to enable some hashes even though the global config 6934 * wants them disabled. This is a potential problem that must be 6935 * reported to the user. 6936 */ 6937 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6938 6939 /* 6940 * If we consider only the supported hash types, then the enabled hashes 6941 * are a superset of the requested hashes. In other words, there cannot 6942 * be any supported hash that was requested but not enabled, but there 6943 * can be hashes that were not requested but had to be enabled. 6944 */ 6945 extra &= SUPPORTED_RSS_HASHTYPES; 6946 MPASS((extra & hashconfig) == 0); 6947 6948 if (extra) { 6949 CH_ALERT(vi, 6950 "global RSS config (0x%x) cannot be accommodated.\n", 6951 hashconfig); 6952 } 6953 if (extra & RSS_HASHTYPE_RSS_IPV4) 6954 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6955 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6956 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6957 if (extra & RSS_HASHTYPE_RSS_IPV6) 6958 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6959 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6960 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6961 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6962 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6963 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6964 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6965 #else 6966 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6967 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6968 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6969 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6970 #endif 6971 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6972 0, 0); 6973 if (rc != 0) { 6974 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6975 return (rc); 6976 } 6977 6978 return (0); 6979 } 6980 6981 int 6982 vi_init(struct vi_info *vi) 6983 { 6984 int rc; 6985 6986 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6987 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6988 ("%s: VI_INIT_DONE already", __func__)); 6989 6990 rc = vi_full_init(vi); 6991 if (rc != 0) 6992 vi_full_uninit(vi); 6993 else 6994 vi->flags |= VI_INIT_DONE; 6995 6996 return (rc); 6997 } 6998 6999 /* 7000 * Idempotent. 7001 */ 7002 static void 7003 vi_full_uninit(struct vi_info *vi) 7004 { 7005 7006 if (vi->flags & VI_INIT_DONE) { 7007 quiesce_vi(vi); 7008 free(vi->rss, M_CXGBE); 7009 free(vi->nm_rss, M_CXGBE); 7010 } 7011 7012 t4_teardown_vi_queues(vi); 7013 vi->flags &= ~VI_INIT_DONE; 7014 } 7015 7016 static void 7017 quiesce_txq(struct sge_txq *txq) 7018 { 7019 struct sge_eq *eq = &txq->eq; 7020 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7021 7022 MPASS(eq->flags & EQ_SW_ALLOCATED); 7023 MPASS(!(eq->flags & EQ_ENABLED)); 7024 7025 /* Wait for the mp_ring to empty. */ 7026 while (!mp_ring_is_idle(txq->r)) { 7027 mp_ring_check_drainage(txq->r, 4096); 7028 pause("rquiesce", 1); 7029 } 7030 MPASS(txq->txp.npkt == 0); 7031 7032 if (eq->flags & EQ_HW_ALLOCATED) { 7033 /* 7034 * Hardware is alive and working normally. Wait for it to 7035 * finish and then wait for the driver to catch up and reclaim 7036 * all descriptors. 7037 */ 7038 while (spg->cidx != htobe16(eq->pidx)) 7039 pause("equiesce", 1); 7040 while (eq->cidx != eq->pidx) 7041 pause("dquiesce", 1); 7042 } else { 7043 /* 7044 * Hardware is unavailable. Discard all pending tx and reclaim 7045 * descriptors directly. 7046 */ 7047 TXQ_LOCK(txq); 7048 while (eq->cidx != eq->pidx) { 7049 struct mbuf *m, *nextpkt; 7050 struct tx_sdesc *txsd; 7051 7052 txsd = &txq->sdesc[eq->cidx]; 7053 for (m = txsd->m; m != NULL; m = nextpkt) { 7054 nextpkt = m->m_nextpkt; 7055 m->m_nextpkt = NULL; 7056 m_freem(m); 7057 } 7058 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7059 } 7060 spg->pidx = spg->cidx = htobe16(eq->cidx); 7061 TXQ_UNLOCK(txq); 7062 } 7063 } 7064 7065 static void 7066 quiesce_wrq(struct sge_wrq *wrq) 7067 { 7068 struct wrqe *wr; 7069 7070 TXQ_LOCK(wrq); 7071 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7072 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7073 #ifdef INVARIANTS 7074 wrq->nwr_pending--; 7075 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7076 #endif 7077 free(wr, M_CXGBE); 7078 } 7079 MPASS(wrq->nwr_pending == 0); 7080 MPASS(wrq->ndesc_needed == 0); 7081 wrq->nwr_pending = 0; 7082 wrq->ndesc_needed = 0; 7083 TXQ_UNLOCK(wrq); 7084 } 7085 7086 static void 7087 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7088 { 7089 /* Synchronize with the interrupt handler */ 7090 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7091 pause("iqfree", 1); 7092 7093 if (fl != NULL) { 7094 MPASS(iq->flags & IQ_HAS_FL); 7095 7096 mtx_lock(&sc->sfl_lock); 7097 FL_LOCK(fl); 7098 fl->flags |= FL_DOOMED; 7099 FL_UNLOCK(fl); 7100 callout_stop(&sc->sfl_callout); 7101 mtx_unlock(&sc->sfl_lock); 7102 7103 KASSERT((fl->flags & FL_STARVING) == 0, 7104 ("%s: still starving", __func__)); 7105 7106 /* Release all buffers if hardware is no longer available. */ 7107 if (!(iq->flags & IQ_HW_ALLOCATED)) 7108 free_fl_buffers(sc, fl); 7109 } 7110 } 7111 7112 /* 7113 * Wait for all activity on all the queues of the VI to complete. It is assumed 7114 * that no new work is being enqueued by the hardware or the driver. That part 7115 * should be arranged before calling this function. 7116 */ 7117 static void 7118 quiesce_vi(struct vi_info *vi) 7119 { 7120 int i; 7121 struct adapter *sc = vi->adapter; 7122 struct sge_rxq *rxq; 7123 struct sge_txq *txq; 7124 #ifdef TCP_OFFLOAD 7125 struct sge_ofld_rxq *ofld_rxq; 7126 #endif 7127 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7128 struct sge_ofld_txq *ofld_txq; 7129 #endif 7130 7131 if (!(vi->flags & VI_INIT_DONE)) 7132 return; 7133 7134 for_each_txq(vi, i, txq) { 7135 quiesce_txq(txq); 7136 } 7137 7138 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7139 for_each_ofld_txq(vi, i, ofld_txq) { 7140 quiesce_wrq(&ofld_txq->wrq); 7141 } 7142 #endif 7143 7144 for_each_rxq(vi, i, rxq) { 7145 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7146 } 7147 7148 #ifdef TCP_OFFLOAD 7149 for_each_ofld_rxq(vi, i, ofld_rxq) { 7150 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7151 } 7152 #endif 7153 } 7154 7155 static int 7156 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7157 driver_intr_t *handler, void *arg, char *name) 7158 { 7159 int rc; 7160 7161 irq->rid = rid; 7162 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7163 RF_SHAREABLE | RF_ACTIVE); 7164 if (irq->res == NULL) { 7165 device_printf(sc->dev, 7166 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7167 return (ENOMEM); 7168 } 7169 7170 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7171 NULL, handler, arg, &irq->tag); 7172 if (rc != 0) { 7173 device_printf(sc->dev, 7174 "failed to setup interrupt for rid %d, name %s: %d\n", 7175 rid, name, rc); 7176 } else if (name) 7177 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7178 7179 return (rc); 7180 } 7181 7182 static int 7183 t4_free_irq(struct adapter *sc, struct irq *irq) 7184 { 7185 if (irq->tag) 7186 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7187 if (irq->res) 7188 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7189 7190 bzero(irq, sizeof(*irq)); 7191 7192 return (0); 7193 } 7194 7195 static void 7196 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7197 { 7198 7199 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7200 t4_get_regs(sc, buf, regs->len); 7201 } 7202 7203 #define A_PL_INDIR_CMD 0x1f8 7204 7205 #define S_PL_AUTOINC 31 7206 #define M_PL_AUTOINC 0x1U 7207 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7208 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7209 7210 #define S_PL_VFID 20 7211 #define M_PL_VFID 0xffU 7212 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7213 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7214 7215 #define S_PL_ADDR 0 7216 #define M_PL_ADDR 0xfffffU 7217 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7218 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7219 7220 #define A_PL_INDIR_DATA 0x1fc 7221 7222 static uint64_t 7223 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7224 { 7225 u32 stats[2]; 7226 7227 if (sc->flags & IS_VF) { 7228 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7229 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7230 } else { 7231 mtx_assert(&sc->reg_lock, MA_OWNED); 7232 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7233 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7234 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7235 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7236 } 7237 return (((uint64_t)stats[1]) << 32 | stats[0]); 7238 } 7239 7240 static void 7241 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7242 { 7243 7244 #define GET_STAT(name) \ 7245 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7246 7247 if (!(sc->flags & IS_VF)) 7248 mtx_lock(&sc->reg_lock); 7249 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7250 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7251 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7252 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7253 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7254 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7255 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7256 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7257 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7258 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7259 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7260 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7261 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7262 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7263 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7264 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7265 if (!(sc->flags & IS_VF)) 7266 mtx_unlock(&sc->reg_lock); 7267 7268 #undef GET_STAT 7269 } 7270 7271 static void 7272 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7273 { 7274 int reg; 7275 7276 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7277 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7278 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7279 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7280 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7281 } 7282 7283 static void 7284 vi_refresh_stats(struct vi_info *vi) 7285 { 7286 struct timeval tv; 7287 const struct timeval interval = {0, 250000}; /* 250ms */ 7288 7289 mtx_assert(&vi->tick_mtx, MA_OWNED); 7290 7291 if (vi->flags & VI_SKIP_STATS) 7292 return; 7293 7294 getmicrotime(&tv); 7295 timevalsub(&tv, &interval); 7296 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7297 return; 7298 7299 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7300 getmicrotime(&vi->last_refreshed); 7301 } 7302 7303 static void 7304 cxgbe_refresh_stats(struct vi_info *vi) 7305 { 7306 u_int i, v, tnl_cong_drops, chan_map; 7307 struct timeval tv; 7308 const struct timeval interval = {0, 250000}; /* 250ms */ 7309 struct port_info *pi; 7310 struct adapter *sc; 7311 7312 mtx_assert(&vi->tick_mtx, MA_OWNED); 7313 7314 if (vi->flags & VI_SKIP_STATS) 7315 return; 7316 7317 getmicrotime(&tv); 7318 timevalsub(&tv, &interval); 7319 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7320 return; 7321 7322 pi = vi->pi; 7323 sc = vi->adapter; 7324 tnl_cong_drops = 0; 7325 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7326 chan_map = pi->rx_e_chan_map; 7327 while (chan_map) { 7328 i = ffs(chan_map) - 1; 7329 mtx_lock(&sc->reg_lock); 7330 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7331 A_TP_MIB_TNL_CNG_DROP_0 + i); 7332 mtx_unlock(&sc->reg_lock); 7333 tnl_cong_drops += v; 7334 chan_map &= ~(1 << i); 7335 } 7336 pi->tnl_cong_drops = tnl_cong_drops; 7337 getmicrotime(&vi->last_refreshed); 7338 } 7339 7340 static void 7341 cxgbe_tick(void *arg) 7342 { 7343 struct vi_info *vi = arg; 7344 7345 MPASS(IS_MAIN_VI(vi)); 7346 mtx_assert(&vi->tick_mtx, MA_OWNED); 7347 7348 cxgbe_refresh_stats(vi); 7349 callout_schedule(&vi->tick, hz); 7350 } 7351 7352 static void 7353 vi_tick(void *arg) 7354 { 7355 struct vi_info *vi = arg; 7356 7357 mtx_assert(&vi->tick_mtx, MA_OWNED); 7358 7359 vi_refresh_stats(vi); 7360 callout_schedule(&vi->tick, hz); 7361 } 7362 7363 /* 7364 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7365 */ 7366 static char *caps_decoder[] = { 7367 "\20\001IPMI\002NCSI", /* 0: NBM */ 7368 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7369 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7370 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7371 "\006HASHFILTER\007ETHOFLD", 7372 "\20\001TOE", /* 4: TOE */ 7373 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7374 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7375 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7376 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7377 "\007T10DIF" 7378 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7379 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7380 "\004TLS_HW", 7381 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7382 "\004PO_INITIATOR\005PO_TARGET", 7383 }; 7384 7385 void 7386 t4_sysctls(struct adapter *sc) 7387 { 7388 struct sysctl_ctx_list *ctx = &sc->ctx; 7389 struct sysctl_oid *oid; 7390 struct sysctl_oid_list *children, *c0; 7391 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7392 7393 /* 7394 * dev.t4nex.X. 7395 */ 7396 oid = device_get_sysctl_tree(sc->dev); 7397 c0 = children = SYSCTL_CHILDREN(oid); 7398 7399 sc->sc_do_rxcopy = 1; 7400 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7401 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7402 7403 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7404 sc->params.nports, "# of ports"); 7405 7406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7407 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7408 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7409 "available doorbells"); 7410 7411 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7412 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7413 7414 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7415 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7416 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7417 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7418 7419 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7420 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7421 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7422 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7423 7424 t4_sge_sysctls(sc, ctx, children); 7425 7426 sc->lro_timeout = 100; 7427 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7428 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7429 7430 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7431 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7432 7433 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7434 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7435 7436 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7437 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7438 7439 if (sc->flags & IS_VF) 7440 return; 7441 7442 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7443 NULL, chip_rev(sc), "chip hardware revision"); 7444 7445 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7446 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7447 7448 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7449 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7450 7451 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7452 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7453 7454 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7455 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7456 7457 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7458 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7459 7460 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7461 sc->er_version, 0, "expansion ROM version"); 7462 7463 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7464 sc->bs_version, 0, "bootstrap firmware version"); 7465 7466 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7467 NULL, sc->params.scfg_vers, "serial config version"); 7468 7469 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7470 NULL, sc->params.vpd_vers, "VPD version"); 7471 7472 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7473 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7474 7475 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7476 sc->cfcsum, "config file checksum"); 7477 7478 #define SYSCTL_CAP(name, n, text) \ 7479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7480 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7481 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7482 "available " text " capabilities") 7483 7484 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7485 SYSCTL_CAP(linkcaps, 1, "link"); 7486 SYSCTL_CAP(switchcaps, 2, "switch"); 7487 SYSCTL_CAP(niccaps, 3, "NIC"); 7488 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7489 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7490 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7491 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7492 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7493 #undef SYSCTL_CAP 7494 7495 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7496 NULL, sc->tids.nftids, "number of filters"); 7497 7498 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7499 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7500 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7501 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7502 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7503 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7504 7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7507 sysctl_loadavg, "A", 7508 "microprocessor load averages (debug firmwares only)"); 7509 7510 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7511 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7512 "I", "core Vdd (in mV)"); 7513 7514 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7515 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7516 sysctl_cpus, "A", "local CPUs"); 7517 7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7519 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7520 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7521 7522 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7523 &sc->swintr, 0, "software triggered interrupts"); 7524 7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7526 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7527 "1 = reset adapter, 0 = zero reset counter"); 7528 7529 /* 7530 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7531 */ 7532 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7533 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7534 "logs and miscellaneous information"); 7535 children = SYSCTL_CHILDREN(oid); 7536 7537 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7538 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7539 sysctl_cctrl, "A", "congestion control"); 7540 7541 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7542 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7543 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7544 7545 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7546 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7547 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7548 7549 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7550 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7551 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7552 7553 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7554 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7555 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7556 7557 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7558 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7559 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7560 7561 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7562 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7563 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7564 7565 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7566 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7567 sysctl_cim_la, "A", "CIM logic analyzer"); 7568 7569 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7570 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7571 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7572 7573 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7574 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7575 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7576 7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7578 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7579 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7580 7581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7582 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7583 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7584 7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7587 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7588 7589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7590 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7591 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7592 7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7595 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7596 7597 if (chip_id(sc) > CHELSIO_T4) { 7598 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7599 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7600 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7601 "CIM OBQ 6 (SGE0-RX)"); 7602 7603 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7604 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7605 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7606 "CIM OBQ 7 (SGE1-RX)"); 7607 } 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7611 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7615 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7616 7617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7618 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7619 sysctl_cpl_stats, "A", "CPL statistics"); 7620 7621 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7622 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7623 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7624 7625 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7626 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7627 sysctl_tid_stats, "A", "tid stats"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7631 sysctl_devlog, "A", "firmware's device log"); 7632 7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7634 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7635 sysctl_fcoe_stats, "A", "FCoE statistics"); 7636 7637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7638 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7639 sysctl_hw_sched, "A", "hardware scheduler "); 7640 7641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7642 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7643 sysctl_l2t, "A", "hardware L2 table"); 7644 7645 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7646 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7647 sysctl_smt, "A", "hardware source MAC table"); 7648 7649 #ifdef INET6 7650 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7651 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7652 sysctl_clip, "A", "active CLIP table entries"); 7653 #endif 7654 7655 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7656 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7657 sysctl_lb_stats, "A", "loopback statistics"); 7658 7659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7660 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7661 sysctl_meminfo, "A", "memory regions"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7664 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7665 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7666 "A", "MPS TCAM entries"); 7667 7668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7669 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7670 sysctl_path_mtus, "A", "path MTUs"); 7671 7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7673 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7674 sysctl_pm_stats, "A", "PM statistics"); 7675 7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7678 sysctl_rdma_stats, "A", "RDMA statistics"); 7679 7680 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7681 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7682 sysctl_tcp_stats, "A", "TCP statistics"); 7683 7684 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7685 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7686 sysctl_tids, "A", "TID information"); 7687 7688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7689 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7690 sysctl_tp_err_stats, "A", "TP error statistics"); 7691 7692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7693 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7694 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7695 7696 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7697 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7698 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7699 7700 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7701 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7702 sysctl_tp_la, "A", "TP logic analyzer"); 7703 7704 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7705 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7706 sysctl_tx_rate, "A", "Tx rate"); 7707 7708 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7709 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7710 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7711 7712 if (chip_id(sc) >= CHELSIO_T5) { 7713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7714 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7715 sysctl_wcwr_stats, "A", "write combined work requests"); 7716 } 7717 7718 #ifdef KERN_TLS 7719 if (is_ktls(sc)) { 7720 /* 7721 * dev.t4nex.0.tls. 7722 */ 7723 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7724 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7725 children = SYSCTL_CHILDREN(oid); 7726 7727 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7728 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7729 "keys in work requests (1) or attempt to store TLS keys " 7730 "in card memory."); 7731 7732 if (is_t6(sc)) 7733 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7734 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7735 "combine TCB field updates with TLS record work " 7736 "requests."); 7737 } 7738 #endif 7739 7740 #ifdef TCP_OFFLOAD 7741 if (is_offload(sc)) { 7742 int i; 7743 char s[4]; 7744 7745 /* 7746 * dev.t4nex.X.toe. 7747 */ 7748 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7749 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7750 children = SYSCTL_CHILDREN(oid); 7751 7752 sc->tt.cong_algorithm = -1; 7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7754 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7755 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7756 "3 = highspeed)"); 7757 7758 sc->tt.sndbuf = -1; 7759 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7760 &sc->tt.sndbuf, 0, "hardware send buffer"); 7761 7762 sc->tt.ddp = 0; 7763 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7764 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7765 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7766 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7767 7768 sc->tt.rx_coalesce = -1; 7769 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7770 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7771 7772 sc->tt.tls = 0; 7773 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7774 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7775 "Inline TLS allowed"); 7776 7777 sc->tt.tx_align = -1; 7778 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7779 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7780 7781 sc->tt.tx_zcopy = 0; 7782 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7783 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7784 "Enable zero-copy aio_write(2)"); 7785 7786 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7787 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7788 "cop_managed_offloading", CTLFLAG_RW, 7789 &sc->tt.cop_managed_offloading, 0, 7790 "COP (Connection Offload Policy) controls all TOE offload"); 7791 7792 sc->tt.autorcvbuf_inc = 16 * 1024; 7793 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7794 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7795 "autorcvbuf increment"); 7796 7797 sc->tt.update_hc_on_pmtu_change = 1; 7798 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7799 "update_hc_on_pmtu_change", CTLFLAG_RW, 7800 &sc->tt.update_hc_on_pmtu_change, 0, 7801 "Update hostcache entry if the PMTU changes"); 7802 7803 sc->tt.iso = 1; 7804 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7805 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7806 7807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7808 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7809 sysctl_tp_tick, "A", "TP timer tick (us)"); 7810 7811 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7812 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7813 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7814 7815 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7816 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7817 sysctl_tp_tick, "A", "DACK tick (us)"); 7818 7819 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7820 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7821 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7822 7823 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7824 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7825 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7826 "Minimum retransmit interval (us)"); 7827 7828 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7829 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7830 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7831 "Maximum retransmit interval (us)"); 7832 7833 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7834 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7835 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7836 "Persist timer min (us)"); 7837 7838 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7839 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7840 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7841 "Persist timer max (us)"); 7842 7843 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7844 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7845 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7846 "Keepalive idle timer (us)"); 7847 7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7849 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7850 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7851 "Keepalive interval timer (us)"); 7852 7853 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7854 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7855 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7856 7857 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7858 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7859 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7860 "FINWAIT2 timer (us)"); 7861 7862 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7863 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7864 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7865 "Number of SYN retransmissions before abort"); 7866 7867 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7868 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7869 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7870 "Number of retransmissions before abort"); 7871 7872 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7873 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7874 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7875 "Number of keepalive probes before abort"); 7876 7877 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7878 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7879 "TOE retransmit backoffs"); 7880 children = SYSCTL_CHILDREN(oid); 7881 for (i = 0; i < 16; i++) { 7882 snprintf(s, sizeof(s), "%u", i); 7883 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7884 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7885 i, sysctl_tp_backoff, "IU", 7886 "TOE retransmit backoff"); 7887 } 7888 } 7889 #endif 7890 } 7891 7892 void 7893 vi_sysctls(struct vi_info *vi) 7894 { 7895 struct sysctl_ctx_list *ctx = &vi->ctx; 7896 struct sysctl_oid *oid; 7897 struct sysctl_oid_list *children; 7898 7899 /* 7900 * dev.v?(cxgbe|cxl).X. 7901 */ 7902 oid = device_get_sysctl_tree(vi->dev); 7903 children = SYSCTL_CHILDREN(oid); 7904 7905 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7906 vi->viid, "VI identifer"); 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7908 &vi->nrxq, 0, "# of rx queues"); 7909 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7910 &vi->ntxq, 0, "# of tx queues"); 7911 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7912 &vi->first_rxq, 0, "index of first rx queue"); 7913 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7914 &vi->first_txq, 0, "index of first tx queue"); 7915 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7916 vi->rss_base, "start of RSS indirection table"); 7917 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7918 vi->rss_size, "size of RSS indirection table"); 7919 7920 if (IS_MAIN_VI(vi)) { 7921 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7922 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7923 sysctl_noflowq, "IU", 7924 "Reserve queue 0 for non-flowid packets"); 7925 } 7926 7927 if (vi->adapter->flags & IS_VF) { 7928 MPASS(vi->flags & TX_USES_VM_WR); 7929 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7930 NULL, 1, "use VM work requests for transmit"); 7931 } else { 7932 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7933 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7934 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7935 } 7936 7937 #ifdef TCP_OFFLOAD 7938 if (vi->nofldrxq != 0) { 7939 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7940 &vi->nofldrxq, 0, 7941 "# of rx queues for offloaded TCP connections"); 7942 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7943 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7944 "index of first TOE rx queue"); 7945 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7946 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7947 sysctl_holdoff_tmr_idx_ofld, "I", 7948 "holdoff timer index for TOE queues"); 7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7950 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7951 sysctl_holdoff_pktc_idx_ofld, "I", 7952 "holdoff packet counter index for TOE queues"); 7953 } 7954 #endif 7955 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7956 if (vi->nofldtxq != 0) { 7957 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7958 &vi->nofldtxq, 0, 7959 "# of tx queues for TOE/ETHOFLD"); 7960 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7961 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7962 "index of first TOE/ETHOFLD tx queue"); 7963 } 7964 #endif 7965 #ifdef DEV_NETMAP 7966 if (vi->nnmrxq != 0) { 7967 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7968 &vi->nnmrxq, 0, "# of netmap rx queues"); 7969 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7970 &vi->nnmtxq, 0, "# of netmap tx queues"); 7971 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7972 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7973 "index of first netmap rx queue"); 7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7975 CTLFLAG_RD, &vi->first_nm_txq, 0, 7976 "index of first netmap tx queue"); 7977 } 7978 #endif 7979 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7981 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7982 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7984 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7985 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7986 7987 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7988 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7989 sysctl_qsize_rxq, "I", "rx queue size"); 7990 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7991 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7992 sysctl_qsize_txq, "I", "tx queue size"); 7993 } 7994 7995 static void 7996 cxgbe_sysctls(struct port_info *pi) 7997 { 7998 struct sysctl_ctx_list *ctx = &pi->ctx; 7999 struct sysctl_oid *oid; 8000 struct sysctl_oid_list *children, *children2; 8001 struct adapter *sc = pi->adapter; 8002 int i; 8003 char name[16]; 8004 static char *tc_flags = {"\20\1USER"}; 8005 8006 /* 8007 * dev.cxgbe.X. 8008 */ 8009 oid = device_get_sysctl_tree(pi->dev); 8010 children = SYSCTL_CHILDREN(oid); 8011 8012 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8013 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8014 sysctl_linkdnrc, "A", "reason why link is down"); 8015 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8017 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8018 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8019 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8020 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8021 sysctl_btphy, "I", "PHY firmware version"); 8022 } 8023 8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8025 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8026 sysctl_pause_settings, "A", 8027 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8029 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8030 "FEC in use on the link"); 8031 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8032 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8033 sysctl_requested_fec, "A", 8034 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8035 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8036 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8037 "FEC recommended by the cable/transceiver"); 8038 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8039 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8040 sysctl_autoneg, "I", 8041 "autonegotiation (-1 = not supported)"); 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8043 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8044 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8045 8046 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8047 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8048 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8049 &pi->link_cfg.pcaps, 0, "port capabilities"); 8050 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8051 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8052 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8053 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8054 8055 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8056 port_top_speed(pi), "max speed (in Gbps)"); 8057 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8058 pi->mps_bg_map, "MPS buffer group map"); 8059 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8060 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8061 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8062 pi->tx_chan, "TP tx c-channel"); 8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8064 pi->rx_chan, "TP rx c-channel"); 8065 8066 if (sc->flags & IS_VF) 8067 return; 8068 8069 /* 8070 * dev.(cxgbe|cxl).X.tc. 8071 */ 8072 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8073 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8074 "Tx scheduler traffic classes (cl_rl)"); 8075 children2 = SYSCTL_CHILDREN(oid); 8076 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8077 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8078 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8079 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8080 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8081 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8082 for (i = 0; i < sc->params.nsched_cls; i++) { 8083 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8084 8085 snprintf(name, sizeof(name), "%d", i); 8086 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8087 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8088 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8089 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8090 CTLFLAG_RD, &tc->state, 0, "current state"); 8091 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8092 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8093 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8094 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8095 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8096 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8098 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8099 "traffic class parameters"); 8100 } 8101 8102 /* 8103 * dev.cxgbe.X.stats. 8104 */ 8105 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8106 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8107 children = SYSCTL_CHILDREN(oid); 8108 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8109 &pi->tx_parse_error, 0, 8110 "# of tx packets with invalid length or # of segments"); 8111 8112 #define T4_REGSTAT(name, stat, desc) \ 8113 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8114 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8115 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8116 sysctl_handle_t4_reg64, "QU", desc) 8117 8118 /* We get these from port_stats and they may be stale by up to 1s */ 8119 #define T4_PORTSTAT(name, desc) \ 8120 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8121 &pi->stats.name, desc) 8122 8123 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8124 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8125 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8126 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8127 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8128 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8129 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8130 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8131 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8132 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8133 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8134 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8135 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8136 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8137 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8138 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8139 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8140 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8141 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8142 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8143 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8144 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8145 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8146 8147 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8148 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8149 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8150 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8151 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8152 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8153 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8154 if (is_t6(sc)) { 8155 T4_PORTSTAT(rx_fcs_err, 8156 "# of frames received with bad FCS since last link up"); 8157 } else { 8158 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8159 "# of frames received with bad FCS"); 8160 } 8161 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8162 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8163 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8164 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8165 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8166 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8167 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8168 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8169 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8170 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8171 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8172 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8173 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8174 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8175 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8176 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8177 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8178 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8179 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8180 8181 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8182 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8183 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8184 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8185 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8186 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8187 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8188 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8189 8190 #undef T4_REGSTAT 8191 #undef T4_PORTSTAT 8192 } 8193 8194 static int 8195 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8196 { 8197 int rc, *i, space = 0; 8198 struct sbuf sb; 8199 8200 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8201 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8202 if (space) 8203 sbuf_printf(&sb, " "); 8204 sbuf_printf(&sb, "%d", *i); 8205 space = 1; 8206 } 8207 rc = sbuf_finish(&sb); 8208 sbuf_delete(&sb); 8209 return (rc); 8210 } 8211 8212 static int 8213 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8214 { 8215 int rc; 8216 struct sbuf *sb; 8217 8218 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8219 if (sb == NULL) 8220 return (ENOMEM); 8221 8222 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8223 rc = sbuf_finish(sb); 8224 sbuf_delete(sb); 8225 8226 return (rc); 8227 } 8228 8229 static int 8230 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8231 { 8232 int rc; 8233 struct sbuf *sb; 8234 8235 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8236 if (sb == NULL) 8237 return (ENOMEM); 8238 8239 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8240 rc = sbuf_finish(sb); 8241 sbuf_delete(sb); 8242 8243 return (rc); 8244 } 8245 8246 static int 8247 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8248 { 8249 struct port_info *pi = arg1; 8250 int op = arg2; 8251 struct adapter *sc = pi->adapter; 8252 u_int v; 8253 int rc; 8254 8255 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8256 if (rc) 8257 return (rc); 8258 if (hw_off_limits(sc)) 8259 rc = ENXIO; 8260 else { 8261 /* XXX: magic numbers */ 8262 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8263 op ? 0x20 : 0xc820, &v); 8264 } 8265 end_synchronized_op(sc, 0); 8266 if (rc) 8267 return (rc); 8268 if (op == 0) 8269 v /= 256; 8270 8271 rc = sysctl_handle_int(oidp, &v, 0, req); 8272 return (rc); 8273 } 8274 8275 static int 8276 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8277 { 8278 struct vi_info *vi = arg1; 8279 int rc, val; 8280 8281 val = vi->rsrv_noflowq; 8282 rc = sysctl_handle_int(oidp, &val, 0, req); 8283 if (rc != 0 || req->newptr == NULL) 8284 return (rc); 8285 8286 if ((val >= 1) && (vi->ntxq > 1)) 8287 vi->rsrv_noflowq = 1; 8288 else 8289 vi->rsrv_noflowq = 0; 8290 8291 return (rc); 8292 } 8293 8294 static int 8295 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8296 { 8297 struct vi_info *vi = arg1; 8298 struct adapter *sc = vi->adapter; 8299 int rc, val, i; 8300 8301 MPASS(!(sc->flags & IS_VF)); 8302 8303 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8304 rc = sysctl_handle_int(oidp, &val, 0, req); 8305 if (rc != 0 || req->newptr == NULL) 8306 return (rc); 8307 8308 if (val != 0 && val != 1) 8309 return (EINVAL); 8310 8311 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8312 "t4txvm"); 8313 if (rc) 8314 return (rc); 8315 if (hw_off_limits(sc)) 8316 rc = ENXIO; 8317 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8318 /* 8319 * We don't want parse_pkt to run with one setting (VF or PF) 8320 * and then eth_tx to see a different setting but still use 8321 * stale information calculated by parse_pkt. 8322 */ 8323 rc = EBUSY; 8324 } else { 8325 struct port_info *pi = vi->pi; 8326 struct sge_txq *txq; 8327 uint32_t ctrl0; 8328 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8329 8330 if (val) { 8331 vi->flags |= TX_USES_VM_WR; 8332 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8333 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8334 V_TXPKT_INTF(pi->tx_chan)); 8335 if (!(sc->flags & IS_VF)) 8336 npkt--; 8337 } else { 8338 vi->flags &= ~TX_USES_VM_WR; 8339 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8340 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8341 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8342 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8343 } 8344 for_each_txq(vi, i, txq) { 8345 txq->cpl_ctrl0 = ctrl0; 8346 txq->txp.max_npkt = npkt; 8347 } 8348 } 8349 end_synchronized_op(sc, LOCK_HELD); 8350 return (rc); 8351 } 8352 8353 static int 8354 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8355 { 8356 struct vi_info *vi = arg1; 8357 struct adapter *sc = vi->adapter; 8358 int idx, rc, i; 8359 struct sge_rxq *rxq; 8360 uint8_t v; 8361 8362 idx = vi->tmr_idx; 8363 8364 rc = sysctl_handle_int(oidp, &idx, 0, req); 8365 if (rc != 0 || req->newptr == NULL) 8366 return (rc); 8367 8368 if (idx < 0 || idx >= SGE_NTIMERS) 8369 return (EINVAL); 8370 8371 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8372 "t4tmr"); 8373 if (rc) 8374 return (rc); 8375 8376 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8377 for_each_rxq(vi, i, rxq) { 8378 #ifdef atomic_store_rel_8 8379 atomic_store_rel_8(&rxq->iq.intr_params, v); 8380 #else 8381 rxq->iq.intr_params = v; 8382 #endif 8383 } 8384 vi->tmr_idx = idx; 8385 8386 end_synchronized_op(sc, LOCK_HELD); 8387 return (0); 8388 } 8389 8390 static int 8391 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8392 { 8393 struct vi_info *vi = arg1; 8394 struct adapter *sc = vi->adapter; 8395 int idx, rc; 8396 8397 idx = vi->pktc_idx; 8398 8399 rc = sysctl_handle_int(oidp, &idx, 0, req); 8400 if (rc != 0 || req->newptr == NULL) 8401 return (rc); 8402 8403 if (idx < -1 || idx >= SGE_NCOUNTERS) 8404 return (EINVAL); 8405 8406 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8407 "t4pktc"); 8408 if (rc) 8409 return (rc); 8410 8411 if (vi->flags & VI_INIT_DONE) 8412 rc = EBUSY; /* cannot be changed once the queues are created */ 8413 else 8414 vi->pktc_idx = idx; 8415 8416 end_synchronized_op(sc, LOCK_HELD); 8417 return (rc); 8418 } 8419 8420 static int 8421 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8422 { 8423 struct vi_info *vi = arg1; 8424 struct adapter *sc = vi->adapter; 8425 int qsize, rc; 8426 8427 qsize = vi->qsize_rxq; 8428 8429 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8430 if (rc != 0 || req->newptr == NULL) 8431 return (rc); 8432 8433 if (qsize < 128 || (qsize & 7)) 8434 return (EINVAL); 8435 8436 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8437 "t4rxqs"); 8438 if (rc) 8439 return (rc); 8440 8441 if (vi->flags & VI_INIT_DONE) 8442 rc = EBUSY; /* cannot be changed once the queues are created */ 8443 else 8444 vi->qsize_rxq = qsize; 8445 8446 end_synchronized_op(sc, LOCK_HELD); 8447 return (rc); 8448 } 8449 8450 static int 8451 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8452 { 8453 struct vi_info *vi = arg1; 8454 struct adapter *sc = vi->adapter; 8455 int qsize, rc; 8456 8457 qsize = vi->qsize_txq; 8458 8459 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8460 if (rc != 0 || req->newptr == NULL) 8461 return (rc); 8462 8463 if (qsize < 128 || qsize > 65536) 8464 return (EINVAL); 8465 8466 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8467 "t4txqs"); 8468 if (rc) 8469 return (rc); 8470 8471 if (vi->flags & VI_INIT_DONE) 8472 rc = EBUSY; /* cannot be changed once the queues are created */ 8473 else 8474 vi->qsize_txq = qsize; 8475 8476 end_synchronized_op(sc, LOCK_HELD); 8477 return (rc); 8478 } 8479 8480 static int 8481 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8482 { 8483 struct port_info *pi = arg1; 8484 struct adapter *sc = pi->adapter; 8485 struct link_config *lc = &pi->link_cfg; 8486 int rc; 8487 8488 if (req->newptr == NULL) { 8489 struct sbuf *sb; 8490 static char *bits = "\20\1RX\2TX\3AUTO"; 8491 8492 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8493 if (sb == NULL) 8494 return (ENOMEM); 8495 8496 if (lc->link_ok) { 8497 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8498 (lc->requested_fc & PAUSE_AUTONEG), bits); 8499 } else { 8500 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8501 PAUSE_RX | PAUSE_AUTONEG), bits); 8502 } 8503 rc = sbuf_finish(sb); 8504 sbuf_delete(sb); 8505 } else { 8506 char s[2]; 8507 int n; 8508 8509 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8510 PAUSE_AUTONEG)); 8511 s[1] = 0; 8512 8513 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8514 if (rc != 0) 8515 return(rc); 8516 8517 if (s[1] != 0) 8518 return (EINVAL); 8519 if (s[0] < '0' || s[0] > '9') 8520 return (EINVAL); /* not a number */ 8521 n = s[0] - '0'; 8522 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8523 return (EINVAL); /* some other bit is set too */ 8524 8525 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8526 "t4PAUSE"); 8527 if (rc) 8528 return (rc); 8529 if (!hw_off_limits(sc)) { 8530 PORT_LOCK(pi); 8531 lc->requested_fc = n; 8532 fixup_link_config(pi); 8533 if (pi->up_vis > 0) 8534 rc = apply_link_config(pi); 8535 set_current_media(pi); 8536 PORT_UNLOCK(pi); 8537 } 8538 end_synchronized_op(sc, 0); 8539 } 8540 8541 return (rc); 8542 } 8543 8544 static int 8545 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8546 { 8547 struct port_info *pi = arg1; 8548 struct link_config *lc = &pi->link_cfg; 8549 int rc; 8550 struct sbuf *sb; 8551 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8552 8553 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8554 if (sb == NULL) 8555 return (ENOMEM); 8556 if (lc->link_ok) 8557 sbuf_printf(sb, "%b", lc->fec, bits); 8558 else 8559 sbuf_printf(sb, "no link"); 8560 rc = sbuf_finish(sb); 8561 sbuf_delete(sb); 8562 8563 return (rc); 8564 } 8565 8566 static int 8567 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8568 { 8569 struct port_info *pi = arg1; 8570 struct adapter *sc = pi->adapter; 8571 struct link_config *lc = &pi->link_cfg; 8572 int rc; 8573 int8_t old; 8574 8575 if (req->newptr == NULL) { 8576 struct sbuf *sb; 8577 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8578 "\5RSVD3\6auto\7module"; 8579 8580 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8581 if (sb == NULL) 8582 return (ENOMEM); 8583 8584 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8585 rc = sbuf_finish(sb); 8586 sbuf_delete(sb); 8587 } else { 8588 char s[8]; 8589 int n; 8590 8591 snprintf(s, sizeof(s), "%d", 8592 lc->requested_fec == FEC_AUTO ? -1 : 8593 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8594 8595 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8596 if (rc != 0) 8597 return(rc); 8598 8599 n = strtol(&s[0], NULL, 0); 8600 if (n < 0 || n & FEC_AUTO) 8601 n = FEC_AUTO; 8602 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8603 return (EINVAL);/* some other bit is set too */ 8604 8605 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8606 "t4reqf"); 8607 if (rc) 8608 return (rc); 8609 PORT_LOCK(pi); 8610 old = lc->requested_fec; 8611 if (n == FEC_AUTO) 8612 lc->requested_fec = FEC_AUTO; 8613 else if (n == 0 || n == FEC_NONE) 8614 lc->requested_fec = FEC_NONE; 8615 else { 8616 if ((lc->pcaps | 8617 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8618 lc->pcaps) { 8619 rc = ENOTSUP; 8620 goto done; 8621 } 8622 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8623 FEC_MODULE); 8624 } 8625 if (!hw_off_limits(sc)) { 8626 fixup_link_config(pi); 8627 if (pi->up_vis > 0) { 8628 rc = apply_link_config(pi); 8629 if (rc != 0) { 8630 lc->requested_fec = old; 8631 if (rc == FW_EPROTO) 8632 rc = ENOTSUP; 8633 } 8634 } 8635 } 8636 done: 8637 PORT_UNLOCK(pi); 8638 end_synchronized_op(sc, 0); 8639 } 8640 8641 return (rc); 8642 } 8643 8644 static int 8645 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8646 { 8647 struct port_info *pi = arg1; 8648 struct adapter *sc = pi->adapter; 8649 struct link_config *lc = &pi->link_cfg; 8650 int rc; 8651 int8_t fec; 8652 struct sbuf *sb; 8653 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8654 8655 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8656 if (sb == NULL) 8657 return (ENOMEM); 8658 8659 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8660 rc = EBUSY; 8661 goto done; 8662 } 8663 if (hw_off_limits(sc)) { 8664 rc = ENXIO; 8665 goto done; 8666 } 8667 PORT_LOCK(pi); 8668 if (pi->up_vis == 0) { 8669 /* 8670 * If all the interfaces are administratively down the firmware 8671 * does not report transceiver changes. Refresh port info here. 8672 * This is the only reason we have a synchronized op in this 8673 * function. Just PORT_LOCK would have been enough otherwise. 8674 */ 8675 t4_update_port_info(pi); 8676 } 8677 8678 fec = lc->fec_hint; 8679 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8680 !fec_supported(lc->pcaps)) { 8681 PORT_UNLOCK(pi); 8682 sbuf_printf(sb, "n/a"); 8683 } else { 8684 if (fec == 0) 8685 fec = FEC_NONE; 8686 PORT_UNLOCK(pi); 8687 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8688 } 8689 rc = sbuf_finish(sb); 8690 done: 8691 sbuf_delete(sb); 8692 end_synchronized_op(sc, 0); 8693 8694 return (rc); 8695 } 8696 8697 static int 8698 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8699 { 8700 struct port_info *pi = arg1; 8701 struct adapter *sc = pi->adapter; 8702 struct link_config *lc = &pi->link_cfg; 8703 int rc, val; 8704 8705 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8706 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8707 else 8708 val = -1; 8709 rc = sysctl_handle_int(oidp, &val, 0, req); 8710 if (rc != 0 || req->newptr == NULL) 8711 return (rc); 8712 if (val == 0) 8713 val = AUTONEG_DISABLE; 8714 else if (val == 1) 8715 val = AUTONEG_ENABLE; 8716 else 8717 val = AUTONEG_AUTO; 8718 8719 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8720 "t4aneg"); 8721 if (rc) 8722 return (rc); 8723 PORT_LOCK(pi); 8724 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8725 rc = ENOTSUP; 8726 goto done; 8727 } 8728 lc->requested_aneg = val; 8729 if (!hw_off_limits(sc)) { 8730 fixup_link_config(pi); 8731 if (pi->up_vis > 0) 8732 rc = apply_link_config(pi); 8733 set_current_media(pi); 8734 } 8735 done: 8736 PORT_UNLOCK(pi); 8737 end_synchronized_op(sc, 0); 8738 return (rc); 8739 } 8740 8741 static int 8742 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8743 { 8744 struct port_info *pi = arg1; 8745 struct adapter *sc = pi->adapter; 8746 struct link_config *lc = &pi->link_cfg; 8747 int rc, val; 8748 8749 val = lc->force_fec; 8750 MPASS(val >= -1 && val <= 1); 8751 rc = sysctl_handle_int(oidp, &val, 0, req); 8752 if (rc != 0 || req->newptr == NULL) 8753 return (rc); 8754 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8755 return (ENOTSUP); 8756 if (val < -1 || val > 1) 8757 return (EINVAL); 8758 8759 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8760 if (rc) 8761 return (rc); 8762 PORT_LOCK(pi); 8763 lc->force_fec = val; 8764 if (!hw_off_limits(sc)) { 8765 fixup_link_config(pi); 8766 if (pi->up_vis > 0) 8767 rc = apply_link_config(pi); 8768 } 8769 PORT_UNLOCK(pi); 8770 end_synchronized_op(sc, 0); 8771 return (rc); 8772 } 8773 8774 static int 8775 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8776 { 8777 struct adapter *sc = arg1; 8778 int rc, reg = arg2; 8779 uint64_t val; 8780 8781 mtx_lock(&sc->reg_lock); 8782 if (hw_off_limits(sc)) 8783 rc = ENXIO; 8784 else { 8785 rc = 0; 8786 val = t4_read_reg64(sc, reg); 8787 } 8788 mtx_unlock(&sc->reg_lock); 8789 if (rc == 0) 8790 rc = sysctl_handle_64(oidp, &val, 0, req); 8791 return (rc); 8792 } 8793 8794 static int 8795 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8796 { 8797 struct adapter *sc = arg1; 8798 int rc, t; 8799 uint32_t param, val; 8800 8801 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8802 if (rc) 8803 return (rc); 8804 if (hw_off_limits(sc)) 8805 rc = ENXIO; 8806 else { 8807 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8808 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8809 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8810 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8811 } 8812 end_synchronized_op(sc, 0); 8813 if (rc) 8814 return (rc); 8815 8816 /* unknown is returned as 0 but we display -1 in that case */ 8817 t = val == 0 ? -1 : val; 8818 8819 rc = sysctl_handle_int(oidp, &t, 0, req); 8820 return (rc); 8821 } 8822 8823 static int 8824 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8825 { 8826 struct adapter *sc = arg1; 8827 int rc; 8828 uint32_t param, val; 8829 8830 if (sc->params.core_vdd == 0) { 8831 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8832 "t4vdd"); 8833 if (rc) 8834 return (rc); 8835 if (hw_off_limits(sc)) 8836 rc = ENXIO; 8837 else { 8838 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8839 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8840 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8841 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8842 ¶m, &val); 8843 } 8844 end_synchronized_op(sc, 0); 8845 if (rc) 8846 return (rc); 8847 sc->params.core_vdd = val; 8848 } 8849 8850 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8851 } 8852 8853 static int 8854 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8855 { 8856 struct adapter *sc = arg1; 8857 int rc, v; 8858 uint32_t param, val; 8859 8860 v = sc->sensor_resets; 8861 rc = sysctl_handle_int(oidp, &v, 0, req); 8862 if (rc != 0 || req->newptr == NULL || v <= 0) 8863 return (rc); 8864 8865 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8866 chip_id(sc) < CHELSIO_T5) 8867 return (ENOTSUP); 8868 8869 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8870 if (rc) 8871 return (rc); 8872 if (hw_off_limits(sc)) 8873 rc = ENXIO; 8874 else { 8875 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8876 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8877 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8878 val = 1; 8879 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8880 } 8881 end_synchronized_op(sc, 0); 8882 if (rc == 0) 8883 sc->sensor_resets++; 8884 return (rc); 8885 } 8886 8887 static int 8888 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8889 { 8890 struct adapter *sc = arg1; 8891 struct sbuf *sb; 8892 int rc; 8893 uint32_t param, val; 8894 8895 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8896 if (rc) 8897 return (rc); 8898 if (hw_off_limits(sc)) 8899 rc = ENXIO; 8900 else { 8901 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8902 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8903 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8904 } 8905 end_synchronized_op(sc, 0); 8906 if (rc) 8907 return (rc); 8908 8909 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8910 if (sb == NULL) 8911 return (ENOMEM); 8912 8913 if (val == 0xffffffff) { 8914 /* Only debug and custom firmwares report load averages. */ 8915 sbuf_printf(sb, "not available"); 8916 } else { 8917 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8918 (val >> 16) & 0xff); 8919 } 8920 rc = sbuf_finish(sb); 8921 sbuf_delete(sb); 8922 8923 return (rc); 8924 } 8925 8926 static int 8927 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8928 { 8929 struct adapter *sc = arg1; 8930 struct sbuf *sb; 8931 int rc, i; 8932 uint16_t incr[NMTUS][NCCTRL_WIN]; 8933 static const char *dec_fac[] = { 8934 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8935 "0.9375" 8936 }; 8937 8938 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8939 if (sb == NULL) 8940 return (ENOMEM); 8941 8942 rc = 0; 8943 mtx_lock(&sc->reg_lock); 8944 if (hw_off_limits(sc)) 8945 rc = ENXIO; 8946 else 8947 t4_read_cong_tbl(sc, incr); 8948 mtx_unlock(&sc->reg_lock); 8949 if (rc) 8950 goto done; 8951 8952 for (i = 0; i < NCCTRL_WIN; ++i) { 8953 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8954 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8955 incr[5][i], incr[6][i], incr[7][i]); 8956 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8957 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8958 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8959 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8960 } 8961 8962 rc = sbuf_finish(sb); 8963 done: 8964 sbuf_delete(sb); 8965 return (rc); 8966 } 8967 8968 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8969 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8970 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8971 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8972 }; 8973 8974 static int 8975 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8976 { 8977 struct adapter *sc = arg1; 8978 struct sbuf *sb; 8979 int rc, i, n, qid = arg2; 8980 uint32_t *buf, *p; 8981 char *qtype; 8982 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8983 8984 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8985 ("%s: bad qid %d\n", __func__, qid)); 8986 8987 if (qid < CIM_NUM_IBQ) { 8988 /* inbound queue */ 8989 qtype = "IBQ"; 8990 n = 4 * CIM_IBQ_SIZE; 8991 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8992 mtx_lock(&sc->reg_lock); 8993 if (hw_off_limits(sc)) 8994 rc = -ENXIO; 8995 else 8996 rc = t4_read_cim_ibq(sc, qid, buf, n); 8997 mtx_unlock(&sc->reg_lock); 8998 } else { 8999 /* outbound queue */ 9000 qtype = "OBQ"; 9001 qid -= CIM_NUM_IBQ; 9002 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 9003 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9004 mtx_lock(&sc->reg_lock); 9005 if (hw_off_limits(sc)) 9006 rc = -ENXIO; 9007 else 9008 rc = t4_read_cim_obq(sc, qid, buf, n); 9009 mtx_unlock(&sc->reg_lock); 9010 } 9011 9012 if (rc < 0) { 9013 rc = -rc; 9014 goto done; 9015 } 9016 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9017 9018 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9019 if (sb == NULL) { 9020 rc = ENOMEM; 9021 goto done; 9022 } 9023 9024 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 9025 for (i = 0, p = buf; i < n; i += 16, p += 4) 9026 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9027 p[2], p[3]); 9028 9029 rc = sbuf_finish(sb); 9030 sbuf_delete(sb); 9031 done: 9032 free(buf, M_CXGBE); 9033 return (rc); 9034 } 9035 9036 static void 9037 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9038 { 9039 uint32_t *p; 9040 9041 sbuf_printf(sb, "Status Data PC%s", 9042 cfg & F_UPDBGLACAPTPCONLY ? "" : 9043 " LS0Stat LS0Addr LS0Data"); 9044 9045 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9046 if (cfg & F_UPDBGLACAPTPCONLY) { 9047 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9048 p[6], p[7]); 9049 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9050 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9051 p[4] & 0xff, p[5] >> 8); 9052 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9053 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9054 p[1] & 0xf, p[2] >> 4); 9055 } else { 9056 sbuf_printf(sb, 9057 "\n %02x %x%07x %x%07x %08x %08x " 9058 "%08x%08x%08x%08x", 9059 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9060 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9061 p[6], p[7]); 9062 } 9063 } 9064 } 9065 9066 static void 9067 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9068 { 9069 uint32_t *p; 9070 9071 sbuf_printf(sb, "Status Inst Data PC%s", 9072 cfg & F_UPDBGLACAPTPCONLY ? "" : 9073 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9074 9075 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9076 if (cfg & F_UPDBGLACAPTPCONLY) { 9077 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9078 p[3] & 0xff, p[2], p[1], p[0]); 9079 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9080 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9081 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9082 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9083 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9084 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9085 p[6] >> 16); 9086 } else { 9087 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9088 "%08x %08x %08x %08x %08x %08x", 9089 (p[9] >> 16) & 0xff, 9090 p[9] & 0xffff, p[8] >> 16, 9091 p[8] & 0xffff, p[7] >> 16, 9092 p[7] & 0xffff, p[6] >> 16, 9093 p[2], p[1], p[0], p[5], p[4], p[3]); 9094 } 9095 } 9096 } 9097 9098 static int 9099 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9100 { 9101 uint32_t cfg, *buf; 9102 int rc; 9103 9104 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9105 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9106 M_ZERO | flags); 9107 if (buf == NULL) 9108 return (ENOMEM); 9109 9110 mtx_lock(&sc->reg_lock); 9111 if (hw_off_limits(sc)) 9112 rc = ENXIO; 9113 else { 9114 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9115 if (rc == 0) 9116 rc = -t4_cim_read_la(sc, buf, NULL); 9117 } 9118 mtx_unlock(&sc->reg_lock); 9119 if (rc == 0) { 9120 if (chip_id(sc) < CHELSIO_T6) 9121 sbuf_cim_la4(sc, sb, buf, cfg); 9122 else 9123 sbuf_cim_la6(sc, sb, buf, cfg); 9124 } 9125 free(buf, M_CXGBE); 9126 return (rc); 9127 } 9128 9129 static int 9130 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9131 { 9132 struct adapter *sc = arg1; 9133 struct sbuf *sb; 9134 int rc; 9135 9136 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9137 if (sb == NULL) 9138 return (ENOMEM); 9139 9140 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9141 if (rc == 0) 9142 rc = sbuf_finish(sb); 9143 sbuf_delete(sb); 9144 return (rc); 9145 } 9146 9147 static void 9148 dump_cim_regs(struct adapter *sc) 9149 { 9150 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9151 device_get_nameunit(sc->dev), 9152 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9153 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9154 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9155 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9156 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9157 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9158 device_get_nameunit(sc->dev), 9159 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9160 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9161 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9162 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9163 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9164 } 9165 9166 static void 9167 dump_cimla(struct adapter *sc) 9168 { 9169 struct sbuf sb; 9170 int rc; 9171 9172 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9173 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9174 device_get_nameunit(sc->dev)); 9175 return; 9176 } 9177 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9178 if (rc == 0) { 9179 rc = sbuf_finish(&sb); 9180 if (rc == 0) { 9181 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9182 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9183 } 9184 } 9185 sbuf_delete(&sb); 9186 } 9187 9188 void 9189 t4_os_cim_err(struct adapter *sc) 9190 { 9191 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9192 } 9193 9194 static int 9195 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9196 { 9197 struct adapter *sc = arg1; 9198 u_int i; 9199 struct sbuf *sb; 9200 uint32_t *buf, *p; 9201 int rc; 9202 9203 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9204 if (sb == NULL) 9205 return (ENOMEM); 9206 9207 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9208 M_ZERO | M_WAITOK); 9209 9210 rc = 0; 9211 mtx_lock(&sc->reg_lock); 9212 if (hw_off_limits(sc)) 9213 rc = ENXIO; 9214 else 9215 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9216 mtx_unlock(&sc->reg_lock); 9217 if (rc) 9218 goto done; 9219 9220 p = buf; 9221 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9222 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9223 p[1], p[0]); 9224 } 9225 9226 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9227 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9228 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9229 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9230 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9231 (p[1] >> 2) | ((p[2] & 3) << 30), 9232 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9233 p[0] & 1); 9234 } 9235 rc = sbuf_finish(sb); 9236 done: 9237 sbuf_delete(sb); 9238 free(buf, M_CXGBE); 9239 return (rc); 9240 } 9241 9242 static int 9243 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9244 { 9245 struct adapter *sc = arg1; 9246 u_int i; 9247 struct sbuf *sb; 9248 uint32_t *buf, *p; 9249 int rc; 9250 9251 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9252 if (sb == NULL) 9253 return (ENOMEM); 9254 9255 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9256 M_ZERO | M_WAITOK); 9257 9258 rc = 0; 9259 mtx_lock(&sc->reg_lock); 9260 if (hw_off_limits(sc)) 9261 rc = ENXIO; 9262 else 9263 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9264 mtx_unlock(&sc->reg_lock); 9265 if (rc) 9266 goto done; 9267 9268 p = buf; 9269 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9270 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9271 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9272 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9273 p[4], p[3], p[2], p[1], p[0]); 9274 } 9275 9276 sbuf_printf(sb, "\n\nCntl ID Data"); 9277 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9278 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9279 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9280 } 9281 9282 rc = sbuf_finish(sb); 9283 done: 9284 sbuf_delete(sb); 9285 free(buf, M_CXGBE); 9286 return (rc); 9287 } 9288 9289 static int 9290 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9291 { 9292 struct adapter *sc = arg1; 9293 struct sbuf *sb; 9294 int rc, i; 9295 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9296 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9297 uint16_t thres[CIM_NUM_IBQ]; 9298 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9299 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9300 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9301 9302 cim_num_obq = sc->chip_params->cim_num_obq; 9303 if (is_t4(sc)) { 9304 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9305 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9306 } else { 9307 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9308 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9309 } 9310 nq = CIM_NUM_IBQ + cim_num_obq; 9311 9312 mtx_lock(&sc->reg_lock); 9313 if (hw_off_limits(sc)) 9314 rc = ENXIO; 9315 else { 9316 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9317 if (rc == 0) { 9318 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9319 obq_wr); 9320 if (rc == 0) 9321 t4_read_cimq_cfg(sc, base, size, thres); 9322 } 9323 } 9324 mtx_unlock(&sc->reg_lock); 9325 if (rc) 9326 return (rc); 9327 9328 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9329 if (sb == NULL) 9330 return (ENOMEM); 9331 9332 sbuf_printf(sb, 9333 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9334 9335 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9336 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9337 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9338 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9339 G_QUEREMFLITS(p[2]) * 16); 9340 for ( ; i < nq; i++, p += 4, wr += 2) 9341 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9342 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9343 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9344 G_QUEREMFLITS(p[2]) * 16); 9345 9346 rc = sbuf_finish(sb); 9347 sbuf_delete(sb); 9348 9349 return (rc); 9350 } 9351 9352 static int 9353 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9354 { 9355 struct adapter *sc = arg1; 9356 struct sbuf *sb; 9357 int rc; 9358 struct tp_cpl_stats stats; 9359 9360 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9361 if (sb == NULL) 9362 return (ENOMEM); 9363 9364 rc = 0; 9365 mtx_lock(&sc->reg_lock); 9366 if (hw_off_limits(sc)) 9367 rc = ENXIO; 9368 else 9369 t4_tp_get_cpl_stats(sc, &stats, 0); 9370 mtx_unlock(&sc->reg_lock); 9371 if (rc) 9372 goto done; 9373 9374 if (sc->chip_params->nchan > 2) { 9375 sbuf_printf(sb, " channel 0 channel 1" 9376 " channel 2 channel 3"); 9377 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9378 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9379 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9380 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9381 } else { 9382 sbuf_printf(sb, " channel 0 channel 1"); 9383 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9384 stats.req[0], stats.req[1]); 9385 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9386 stats.rsp[0], stats.rsp[1]); 9387 } 9388 9389 rc = sbuf_finish(sb); 9390 done: 9391 sbuf_delete(sb); 9392 return (rc); 9393 } 9394 9395 static int 9396 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9397 { 9398 struct adapter *sc = arg1; 9399 struct sbuf *sb; 9400 int rc; 9401 struct tp_usm_stats stats; 9402 9403 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9404 if (sb == NULL) 9405 return (ENOMEM); 9406 9407 rc = 0; 9408 mtx_lock(&sc->reg_lock); 9409 if (hw_off_limits(sc)) 9410 rc = ENXIO; 9411 else 9412 t4_get_usm_stats(sc, &stats, 1); 9413 mtx_unlock(&sc->reg_lock); 9414 if (rc == 0) { 9415 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9416 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9417 sbuf_printf(sb, "Drops: %u", stats.drops); 9418 rc = sbuf_finish(sb); 9419 } 9420 sbuf_delete(sb); 9421 9422 return (rc); 9423 } 9424 9425 static int 9426 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9427 { 9428 struct adapter *sc = arg1; 9429 struct sbuf *sb; 9430 int rc; 9431 struct tp_tid_stats stats; 9432 9433 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9434 if (sb == NULL) 9435 return (ENOMEM); 9436 9437 rc = 0; 9438 mtx_lock(&sc->reg_lock); 9439 if (hw_off_limits(sc)) 9440 rc = ENXIO; 9441 else 9442 t4_tp_get_tid_stats(sc, &stats, 1); 9443 mtx_unlock(&sc->reg_lock); 9444 if (rc == 0) { 9445 sbuf_printf(sb, "Delete: %u\n", stats.del); 9446 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9447 sbuf_printf(sb, "Active: %u\n", stats.act); 9448 sbuf_printf(sb, "Passive: %u", stats.pas); 9449 rc = sbuf_finish(sb); 9450 } 9451 sbuf_delete(sb); 9452 9453 return (rc); 9454 } 9455 9456 static const char * const devlog_level_strings[] = { 9457 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9458 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9459 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9460 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9461 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9462 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9463 }; 9464 9465 static const char * const devlog_facility_strings[] = { 9466 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9467 [FW_DEVLOG_FACILITY_CF] = "CF", 9468 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9469 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9470 [FW_DEVLOG_FACILITY_RES] = "RES", 9471 [FW_DEVLOG_FACILITY_HW] = "HW", 9472 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9473 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9474 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9475 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9476 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9477 [FW_DEVLOG_FACILITY_VI] = "VI", 9478 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9479 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9480 [FW_DEVLOG_FACILITY_TM] = "TM", 9481 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9482 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9483 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9484 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9485 [FW_DEVLOG_FACILITY_RI] = "RI", 9486 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9487 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9488 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9489 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9490 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9491 }; 9492 9493 static int 9494 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9495 { 9496 int i, j, rc, nentries, first = 0; 9497 struct devlog_params *dparams = &sc->params.devlog; 9498 struct fw_devlog_e *buf, *e; 9499 uint64_t ftstamp = UINT64_MAX; 9500 9501 if (dparams->addr == 0) 9502 return (ENXIO); 9503 9504 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9505 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9506 if (buf == NULL) 9507 return (ENOMEM); 9508 9509 mtx_lock(&sc->reg_lock); 9510 if (hw_off_limits(sc)) 9511 rc = ENXIO; 9512 else 9513 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9514 dparams->size); 9515 mtx_unlock(&sc->reg_lock); 9516 if (rc != 0) 9517 goto done; 9518 9519 nentries = dparams->size / sizeof(struct fw_devlog_e); 9520 for (i = 0; i < nentries; i++) { 9521 e = &buf[i]; 9522 9523 if (e->timestamp == 0) 9524 break; /* end */ 9525 9526 e->timestamp = be64toh(e->timestamp); 9527 e->seqno = be32toh(e->seqno); 9528 for (j = 0; j < 8; j++) 9529 e->params[j] = be32toh(e->params[j]); 9530 9531 if (e->timestamp < ftstamp) { 9532 ftstamp = e->timestamp; 9533 first = i; 9534 } 9535 } 9536 9537 if (buf[first].timestamp == 0) 9538 goto done; /* nothing in the log */ 9539 9540 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9541 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9542 9543 i = first; 9544 do { 9545 e = &buf[i]; 9546 if (e->timestamp == 0) 9547 break; /* end */ 9548 9549 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9550 e->seqno, e->timestamp, 9551 (e->level < nitems(devlog_level_strings) ? 9552 devlog_level_strings[e->level] : "UNKNOWN"), 9553 (e->facility < nitems(devlog_facility_strings) ? 9554 devlog_facility_strings[e->facility] : "UNKNOWN")); 9555 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9556 e->params[2], e->params[3], e->params[4], 9557 e->params[5], e->params[6], e->params[7]); 9558 9559 if (++i == nentries) 9560 i = 0; 9561 } while (i != first); 9562 done: 9563 free(buf, M_CXGBE); 9564 return (rc); 9565 } 9566 9567 static int 9568 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9569 { 9570 struct adapter *sc = arg1; 9571 int rc; 9572 struct sbuf *sb; 9573 9574 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9575 if (sb == NULL) 9576 return (ENOMEM); 9577 9578 rc = sbuf_devlog(sc, sb, M_WAITOK); 9579 if (rc == 0) 9580 rc = sbuf_finish(sb); 9581 sbuf_delete(sb); 9582 return (rc); 9583 } 9584 9585 static void 9586 dump_devlog(struct adapter *sc) 9587 { 9588 int rc; 9589 struct sbuf sb; 9590 9591 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9592 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9593 device_get_nameunit(sc->dev)); 9594 return; 9595 } 9596 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9597 if (rc == 0) { 9598 rc = sbuf_finish(&sb); 9599 if (rc == 0) { 9600 log(LOG_DEBUG, "%s: device log follows.\n%s", 9601 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9602 } 9603 } 9604 sbuf_delete(&sb); 9605 } 9606 9607 static int 9608 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9609 { 9610 struct adapter *sc = arg1; 9611 struct sbuf *sb; 9612 int rc; 9613 struct tp_fcoe_stats stats[MAX_NCHAN]; 9614 int i, nchan = sc->chip_params->nchan; 9615 9616 rc = 0; 9617 mtx_lock(&sc->reg_lock); 9618 if (hw_off_limits(sc)) 9619 rc = ENXIO; 9620 else { 9621 for (i = 0; i < nchan; i++) 9622 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9623 } 9624 mtx_unlock(&sc->reg_lock); 9625 if (rc != 0) 9626 return (rc); 9627 9628 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9629 if (sb == NULL) 9630 return (ENOMEM); 9631 9632 if (nchan > 2) { 9633 sbuf_printf(sb, " channel 0 channel 1" 9634 " channel 2 channel 3"); 9635 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9636 stats[0].octets_ddp, stats[1].octets_ddp, 9637 stats[2].octets_ddp, stats[3].octets_ddp); 9638 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9639 stats[0].frames_ddp, stats[1].frames_ddp, 9640 stats[2].frames_ddp, stats[3].frames_ddp); 9641 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9642 stats[0].frames_drop, stats[1].frames_drop, 9643 stats[2].frames_drop, stats[3].frames_drop); 9644 } else { 9645 sbuf_printf(sb, " channel 0 channel 1"); 9646 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9647 stats[0].octets_ddp, stats[1].octets_ddp); 9648 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9649 stats[0].frames_ddp, stats[1].frames_ddp); 9650 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9651 stats[0].frames_drop, stats[1].frames_drop); 9652 } 9653 9654 rc = sbuf_finish(sb); 9655 sbuf_delete(sb); 9656 9657 return (rc); 9658 } 9659 9660 static int 9661 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9662 { 9663 struct adapter *sc = arg1; 9664 struct sbuf *sb; 9665 int rc, i; 9666 unsigned int map, kbps, ipg, mode; 9667 unsigned int pace_tab[NTX_SCHED]; 9668 9669 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9670 if (sb == NULL) 9671 return (ENOMEM); 9672 9673 mtx_lock(&sc->reg_lock); 9674 if (hw_off_limits(sc)) { 9675 mtx_unlock(&sc->reg_lock); 9676 rc = ENXIO; 9677 goto done; 9678 } 9679 9680 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9681 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9682 t4_read_pace_tbl(sc, pace_tab); 9683 mtx_unlock(&sc->reg_lock); 9684 9685 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9686 "Class IPG (0.1 ns) Flow IPG (us)"); 9687 9688 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9689 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9690 sbuf_printf(sb, "\n %u %-5s %u ", i, 9691 (mode & (1 << i)) ? "flow" : "class", map & 3); 9692 if (kbps) 9693 sbuf_printf(sb, "%9u ", kbps); 9694 else 9695 sbuf_printf(sb, " disabled "); 9696 9697 if (ipg) 9698 sbuf_printf(sb, "%13u ", ipg); 9699 else 9700 sbuf_printf(sb, " disabled "); 9701 9702 if (pace_tab[i]) 9703 sbuf_printf(sb, "%10u", pace_tab[i]); 9704 else 9705 sbuf_printf(sb, " disabled"); 9706 } 9707 rc = sbuf_finish(sb); 9708 done: 9709 sbuf_delete(sb); 9710 return (rc); 9711 } 9712 9713 static int 9714 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9715 { 9716 struct adapter *sc = arg1; 9717 struct sbuf *sb; 9718 int rc, i, j; 9719 uint64_t *p0, *p1; 9720 struct lb_port_stats s[2]; 9721 static const char *stat_name[] = { 9722 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9723 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9724 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9725 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9726 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9727 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9728 "BG2FramesTrunc:", "BG3FramesTrunc:" 9729 }; 9730 9731 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9732 if (sb == NULL) 9733 return (ENOMEM); 9734 9735 memset(s, 0, sizeof(s)); 9736 9737 rc = 0; 9738 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9739 mtx_lock(&sc->reg_lock); 9740 if (hw_off_limits(sc)) 9741 rc = ENXIO; 9742 else { 9743 t4_get_lb_stats(sc, i, &s[0]); 9744 t4_get_lb_stats(sc, i + 1, &s[1]); 9745 } 9746 mtx_unlock(&sc->reg_lock); 9747 if (rc != 0) 9748 break; 9749 9750 p0 = &s[0].octets; 9751 p1 = &s[1].octets; 9752 sbuf_printf(sb, "%s Loopback %u" 9753 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9754 9755 for (j = 0; j < nitems(stat_name); j++) 9756 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9757 *p0++, *p1++); 9758 } 9759 9760 if (rc == 0) 9761 rc = sbuf_finish(sb); 9762 sbuf_delete(sb); 9763 9764 return (rc); 9765 } 9766 9767 static int 9768 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9769 { 9770 int rc = 0; 9771 struct port_info *pi = arg1; 9772 struct link_config *lc = &pi->link_cfg; 9773 struct sbuf *sb; 9774 9775 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9776 if (sb == NULL) 9777 return (ENOMEM); 9778 9779 if (lc->link_ok || lc->link_down_rc == 255) 9780 sbuf_printf(sb, "n/a"); 9781 else 9782 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9783 9784 rc = sbuf_finish(sb); 9785 sbuf_delete(sb); 9786 9787 return (rc); 9788 } 9789 9790 struct mem_desc { 9791 u_int base; 9792 u_int limit; 9793 u_int idx; 9794 }; 9795 9796 static int 9797 mem_desc_cmp(const void *a, const void *b) 9798 { 9799 const u_int v1 = ((const struct mem_desc *)a)->base; 9800 const u_int v2 = ((const struct mem_desc *)b)->base; 9801 9802 if (v1 < v2) 9803 return (-1); 9804 else if (v1 > v2) 9805 return (1); 9806 9807 return (0); 9808 } 9809 9810 static void 9811 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9812 unsigned int to) 9813 { 9814 unsigned int size; 9815 9816 if (from == to) 9817 return; 9818 9819 size = to - from + 1; 9820 if (size == 0) 9821 return; 9822 9823 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9824 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9825 } 9826 9827 static int 9828 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9829 { 9830 struct adapter *sc = arg1; 9831 struct sbuf *sb; 9832 int rc, i, n; 9833 uint32_t lo, hi, used, free, alloc; 9834 static const char *memory[] = { 9835 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9836 }; 9837 static const char *region[] = { 9838 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9839 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9840 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9841 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9842 "RQUDP region:", "PBL region:", "TXPBL region:", 9843 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9844 "ULPTX state:", "On-chip queues:", 9845 }; 9846 struct mem_desc avail[4]; 9847 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9848 struct mem_desc *md = mem; 9849 9850 rc = sysctl_wire_old_buffer(req, 0); 9851 if (rc != 0) 9852 return (rc); 9853 9854 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9855 if (sb == NULL) 9856 return (ENOMEM); 9857 9858 for (i = 0; i < nitems(mem); i++) { 9859 mem[i].limit = 0; 9860 mem[i].idx = i; 9861 } 9862 9863 mtx_lock(&sc->reg_lock); 9864 if (hw_off_limits(sc)) { 9865 rc = ENXIO; 9866 goto done; 9867 } 9868 9869 /* Find and sort the populated memory ranges */ 9870 i = 0; 9871 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9872 if (lo & F_EDRAM0_ENABLE) { 9873 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9874 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9875 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9876 avail[i].idx = 0; 9877 i++; 9878 } 9879 if (lo & F_EDRAM1_ENABLE) { 9880 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9881 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9882 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9883 avail[i].idx = 1; 9884 i++; 9885 } 9886 if (lo & F_EXT_MEM_ENABLE) { 9887 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9888 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9889 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9890 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9891 i++; 9892 } 9893 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9894 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9895 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9896 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9897 avail[i].idx = 4; 9898 i++; 9899 } 9900 if (is_t6(sc) && lo & F_HMA_MUX) { 9901 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9902 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9903 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9904 avail[i].idx = 5; 9905 i++; 9906 } 9907 MPASS(i <= nitems(avail)); 9908 if (!i) /* no memory available */ 9909 goto done; 9910 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9911 9912 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9913 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9914 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9915 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9916 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9917 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9918 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9919 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9920 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9921 9922 /* the next few have explicit upper bounds */ 9923 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9924 md->limit = md->base - 1 + 9925 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9926 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9927 md++; 9928 9929 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9930 md->limit = md->base - 1 + 9931 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9932 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9933 md++; 9934 9935 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9936 if (chip_id(sc) <= CHELSIO_T5) 9937 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9938 else 9939 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9940 md->limit = 0; 9941 } else { 9942 md->base = 0; 9943 md->idx = nitems(region); /* hide it */ 9944 } 9945 md++; 9946 9947 #define ulp_region(reg) \ 9948 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9949 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9950 9951 ulp_region(RX_ISCSI); 9952 ulp_region(RX_TDDP); 9953 ulp_region(TX_TPT); 9954 ulp_region(RX_STAG); 9955 ulp_region(RX_RQ); 9956 ulp_region(RX_RQUDP); 9957 ulp_region(RX_PBL); 9958 ulp_region(TX_PBL); 9959 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9960 ulp_region(RX_TLS_KEY); 9961 } 9962 #undef ulp_region 9963 9964 md->base = 0; 9965 if (is_t4(sc)) 9966 md->idx = nitems(region); 9967 else { 9968 uint32_t size = 0; 9969 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9970 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9971 9972 if (is_t5(sc)) { 9973 if (sge_ctrl & F_VFIFO_ENABLE) 9974 size = fifo_size << 2; 9975 } else 9976 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9977 9978 if (size) { 9979 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9980 md->limit = md->base + size - 1; 9981 } else 9982 md->idx = nitems(region); 9983 } 9984 md++; 9985 9986 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9987 md->limit = 0; 9988 md++; 9989 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9990 md->limit = 0; 9991 md++; 9992 9993 md->base = sc->vres.ocq.start; 9994 if (sc->vres.ocq.size) 9995 md->limit = md->base + sc->vres.ocq.size - 1; 9996 else 9997 md->idx = nitems(region); /* hide it */ 9998 md++; 9999 10000 /* add any address-space holes, there can be up to 3 */ 10001 for (n = 0; n < i - 1; n++) 10002 if (avail[n].limit < avail[n + 1].base) 10003 (md++)->base = avail[n].limit; 10004 if (avail[n].limit) 10005 (md++)->base = avail[n].limit; 10006 10007 n = md - mem; 10008 MPASS(n <= nitems(mem)); 10009 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10010 10011 for (lo = 0; lo < i; lo++) 10012 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10013 avail[lo].limit - 1); 10014 10015 sbuf_printf(sb, "\n"); 10016 for (i = 0; i < n; i++) { 10017 if (mem[i].idx >= nitems(region)) 10018 continue; /* skip holes */ 10019 if (!mem[i].limit) 10020 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10021 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10022 mem[i].limit); 10023 } 10024 10025 sbuf_printf(sb, "\n"); 10026 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10027 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10028 mem_region_show(sb, "uP RAM:", lo, hi); 10029 10030 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10031 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10032 mem_region_show(sb, "uP Extmem2:", lo, hi); 10033 10034 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10035 for (i = 0, free = 0; i < 2; i++) 10036 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10037 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10038 G_PMRXMAXPAGE(lo), free, 10039 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10040 (lo & F_PMRXNUMCHN) ? 2 : 1); 10041 10042 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10043 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10044 for (i = 0, free = 0; i < 4; i++) 10045 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10046 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10047 G_PMTXMAXPAGE(lo), free, 10048 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10049 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10050 sbuf_printf(sb, "%u p-structs (%u free)\n", 10051 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10052 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10053 10054 for (i = 0; i < 4; i++) { 10055 if (chip_id(sc) > CHELSIO_T5) 10056 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10057 else 10058 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10059 if (is_t5(sc)) { 10060 used = G_T5_USED(lo); 10061 alloc = G_T5_ALLOC(lo); 10062 } else { 10063 used = G_USED(lo); 10064 alloc = G_ALLOC(lo); 10065 } 10066 /* For T6 these are MAC buffer groups */ 10067 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10068 i, used, alloc); 10069 } 10070 for (i = 0; i < sc->chip_params->nchan; i++) { 10071 if (chip_id(sc) > CHELSIO_T5) 10072 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10073 else 10074 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10075 if (is_t5(sc)) { 10076 used = G_T5_USED(lo); 10077 alloc = G_T5_ALLOC(lo); 10078 } else { 10079 used = G_USED(lo); 10080 alloc = G_ALLOC(lo); 10081 } 10082 /* For T6 these are MAC buffer groups */ 10083 sbuf_printf(sb, 10084 "\nLoopback %d using %u pages out of %u allocated", 10085 i, used, alloc); 10086 } 10087 done: 10088 mtx_unlock(&sc->reg_lock); 10089 if (rc == 0) 10090 rc = sbuf_finish(sb); 10091 sbuf_delete(sb); 10092 return (rc); 10093 } 10094 10095 static inline void 10096 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10097 { 10098 *mask = x | y; 10099 y = htobe64(y); 10100 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10101 } 10102 10103 static int 10104 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10105 { 10106 struct adapter *sc = arg1; 10107 struct sbuf *sb; 10108 int rc, i; 10109 10110 MPASS(chip_id(sc) <= CHELSIO_T5); 10111 10112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10113 if (sb == NULL) 10114 return (ENOMEM); 10115 10116 sbuf_printf(sb, 10117 "Idx Ethernet address Mask Vld Ports PF" 10118 " VF Replication P0 P1 P2 P3 ML"); 10119 rc = 0; 10120 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10121 uint64_t tcamx, tcamy, mask; 10122 uint32_t cls_lo, cls_hi; 10123 uint8_t addr[ETHER_ADDR_LEN]; 10124 10125 mtx_lock(&sc->reg_lock); 10126 if (hw_off_limits(sc)) 10127 rc = ENXIO; 10128 else { 10129 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10130 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10131 } 10132 mtx_unlock(&sc->reg_lock); 10133 if (rc != 0) 10134 break; 10135 if (tcamx & tcamy) 10136 continue; 10137 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10138 mtx_lock(&sc->reg_lock); 10139 if (hw_off_limits(sc)) 10140 rc = ENXIO; 10141 else { 10142 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10143 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10144 } 10145 mtx_unlock(&sc->reg_lock); 10146 if (rc != 0) 10147 break; 10148 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10149 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10150 addr[3], addr[4], addr[5], (uintmax_t)mask, 10151 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10152 G_PORTMAP(cls_hi), G_PF(cls_lo), 10153 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10154 10155 if (cls_lo & F_REPLICATE) { 10156 struct fw_ldst_cmd ldst_cmd; 10157 10158 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10159 ldst_cmd.op_to_addrspace = 10160 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10161 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10162 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10163 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10164 ldst_cmd.u.mps.rplc.fid_idx = 10165 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10166 V_FW_LDST_CMD_IDX(i)); 10167 10168 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10169 "t4mps"); 10170 if (rc) 10171 break; 10172 if (hw_off_limits(sc)) 10173 rc = ENXIO; 10174 else 10175 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10176 sizeof(ldst_cmd), &ldst_cmd); 10177 end_synchronized_op(sc, 0); 10178 if (rc != 0) 10179 break; 10180 else { 10181 sbuf_printf(sb, " %08x %08x %08x %08x", 10182 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10183 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10184 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10185 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10186 } 10187 } else 10188 sbuf_printf(sb, "%36s", ""); 10189 10190 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10191 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10192 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10193 } 10194 10195 if (rc) 10196 (void) sbuf_finish(sb); 10197 else 10198 rc = sbuf_finish(sb); 10199 sbuf_delete(sb); 10200 10201 return (rc); 10202 } 10203 10204 static int 10205 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10206 { 10207 struct adapter *sc = arg1; 10208 struct sbuf *sb; 10209 int rc, i; 10210 10211 MPASS(chip_id(sc) > CHELSIO_T5); 10212 10213 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10214 if (sb == NULL) 10215 return (ENOMEM); 10216 10217 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10218 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10219 " Replication" 10220 " P0 P1 P2 P3 ML\n"); 10221 10222 rc = 0; 10223 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10224 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10225 uint16_t ivlan; 10226 uint64_t tcamx, tcamy, val, mask; 10227 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10228 uint8_t addr[ETHER_ADDR_LEN]; 10229 10230 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10231 if (i < 256) 10232 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10233 else 10234 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10235 mtx_lock(&sc->reg_lock); 10236 if (hw_off_limits(sc)) 10237 rc = ENXIO; 10238 else { 10239 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10240 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10241 tcamy = G_DMACH(val) << 32; 10242 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10243 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10244 } 10245 mtx_unlock(&sc->reg_lock); 10246 if (rc != 0) 10247 break; 10248 10249 lookup_type = G_DATALKPTYPE(data2); 10250 port_num = G_DATAPORTNUM(data2); 10251 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10252 /* Inner header VNI */ 10253 vniy = ((data2 & F_DATAVIDH2) << 23) | 10254 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10255 dip_hit = data2 & F_DATADIPHIT; 10256 vlan_vld = 0; 10257 } else { 10258 vniy = 0; 10259 dip_hit = 0; 10260 vlan_vld = data2 & F_DATAVIDH2; 10261 ivlan = G_VIDL(val); 10262 } 10263 10264 ctl |= V_CTLXYBITSEL(1); 10265 mtx_lock(&sc->reg_lock); 10266 if (hw_off_limits(sc)) 10267 rc = ENXIO; 10268 else { 10269 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10270 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10271 tcamx = G_DMACH(val) << 32; 10272 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10273 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10274 } 10275 mtx_unlock(&sc->reg_lock); 10276 if (rc != 0) 10277 break; 10278 10279 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10280 /* Inner header VNI mask */ 10281 vnix = ((data2 & F_DATAVIDH2) << 23) | 10282 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10283 } else 10284 vnix = 0; 10285 10286 if (tcamx & tcamy) 10287 continue; 10288 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10289 10290 mtx_lock(&sc->reg_lock); 10291 if (hw_off_limits(sc)) 10292 rc = ENXIO; 10293 else { 10294 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10295 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10296 } 10297 mtx_unlock(&sc->reg_lock); 10298 if (rc != 0) 10299 break; 10300 10301 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10302 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10303 "%012jx %06x %06x - - %3c" 10304 " I %4x %3c %#x%4u%4d", i, addr[0], 10305 addr[1], addr[2], addr[3], addr[4], addr[5], 10306 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10307 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10308 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10309 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10310 } else { 10311 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10312 "%012jx - - ", i, addr[0], addr[1], 10313 addr[2], addr[3], addr[4], addr[5], 10314 (uintmax_t)mask); 10315 10316 if (vlan_vld) 10317 sbuf_printf(sb, "%4u Y ", ivlan); 10318 else 10319 sbuf_printf(sb, " - N "); 10320 10321 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10322 lookup_type ? 'I' : 'O', port_num, 10323 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10324 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10325 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10326 } 10327 10328 10329 if (cls_lo & F_T6_REPLICATE) { 10330 struct fw_ldst_cmd ldst_cmd; 10331 10332 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10333 ldst_cmd.op_to_addrspace = 10334 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10335 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10336 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10337 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10338 ldst_cmd.u.mps.rplc.fid_idx = 10339 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10340 V_FW_LDST_CMD_IDX(i)); 10341 10342 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10343 "t6mps"); 10344 if (rc) 10345 break; 10346 if (hw_off_limits(sc)) 10347 rc = ENXIO; 10348 else 10349 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10350 sizeof(ldst_cmd), &ldst_cmd); 10351 end_synchronized_op(sc, 0); 10352 if (rc != 0) 10353 break; 10354 else { 10355 sbuf_printf(sb, " %08x %08x %08x %08x" 10356 " %08x %08x %08x %08x", 10357 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10358 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10359 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10360 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10361 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10362 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10363 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10364 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10365 } 10366 } else 10367 sbuf_printf(sb, "%72s", ""); 10368 10369 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10370 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10371 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10372 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10373 } 10374 10375 if (rc) 10376 (void) sbuf_finish(sb); 10377 else 10378 rc = sbuf_finish(sb); 10379 sbuf_delete(sb); 10380 10381 return (rc); 10382 } 10383 10384 static int 10385 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10386 { 10387 struct adapter *sc = arg1; 10388 struct sbuf *sb; 10389 int rc; 10390 uint16_t mtus[NMTUS]; 10391 10392 rc = 0; 10393 mtx_lock(&sc->reg_lock); 10394 if (hw_off_limits(sc)) 10395 rc = ENXIO; 10396 else 10397 t4_read_mtu_tbl(sc, mtus, NULL); 10398 mtx_unlock(&sc->reg_lock); 10399 if (rc != 0) 10400 return (rc); 10401 10402 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10403 if (sb == NULL) 10404 return (ENOMEM); 10405 10406 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10407 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10408 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10409 mtus[14], mtus[15]); 10410 10411 rc = sbuf_finish(sb); 10412 sbuf_delete(sb); 10413 10414 return (rc); 10415 } 10416 10417 static int 10418 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10419 { 10420 struct adapter *sc = arg1; 10421 struct sbuf *sb; 10422 int rc, i; 10423 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10424 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10425 static const char *tx_stats[MAX_PM_NSTATS] = { 10426 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10427 "Tx FIFO wait", NULL, "Tx latency" 10428 }; 10429 static const char *rx_stats[MAX_PM_NSTATS] = { 10430 "Read:", "Write bypass:", "Write mem:", "Flush:", 10431 "Rx FIFO wait", NULL, "Rx latency" 10432 }; 10433 10434 rc = 0; 10435 mtx_lock(&sc->reg_lock); 10436 if (hw_off_limits(sc)) 10437 rc = ENXIO; 10438 else { 10439 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10440 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10441 } 10442 mtx_unlock(&sc->reg_lock); 10443 if (rc != 0) 10444 return (rc); 10445 10446 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10447 if (sb == NULL) 10448 return (ENOMEM); 10449 10450 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10451 for (i = 0; i < 4; i++) { 10452 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10453 tx_cyc[i]); 10454 } 10455 10456 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10457 for (i = 0; i < 4; i++) { 10458 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10459 rx_cyc[i]); 10460 } 10461 10462 if (chip_id(sc) > CHELSIO_T5) { 10463 sbuf_printf(sb, 10464 "\n Total wait Total occupancy"); 10465 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10466 tx_cyc[i]); 10467 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10468 rx_cyc[i]); 10469 10470 i += 2; 10471 MPASS(i < nitems(tx_stats)); 10472 10473 sbuf_printf(sb, 10474 "\n Reads Total wait"); 10475 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10476 tx_cyc[i]); 10477 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10478 rx_cyc[i]); 10479 } 10480 10481 rc = sbuf_finish(sb); 10482 sbuf_delete(sb); 10483 10484 return (rc); 10485 } 10486 10487 static int 10488 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10489 { 10490 struct adapter *sc = arg1; 10491 struct sbuf *sb; 10492 int rc; 10493 struct tp_rdma_stats stats; 10494 10495 rc = 0; 10496 mtx_lock(&sc->reg_lock); 10497 if (hw_off_limits(sc)) 10498 rc = ENXIO; 10499 else 10500 t4_tp_get_rdma_stats(sc, &stats, 0); 10501 mtx_unlock(&sc->reg_lock); 10502 if (rc != 0) 10503 return (rc); 10504 10505 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10506 if (sb == NULL) 10507 return (ENOMEM); 10508 10509 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10510 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10511 10512 rc = sbuf_finish(sb); 10513 sbuf_delete(sb); 10514 10515 return (rc); 10516 } 10517 10518 static int 10519 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10520 { 10521 struct adapter *sc = arg1; 10522 struct sbuf *sb; 10523 int rc; 10524 struct tp_tcp_stats v4, v6; 10525 10526 rc = 0; 10527 mtx_lock(&sc->reg_lock); 10528 if (hw_off_limits(sc)) 10529 rc = ENXIO; 10530 else 10531 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10532 mtx_unlock(&sc->reg_lock); 10533 if (rc != 0) 10534 return (rc); 10535 10536 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10537 if (sb == NULL) 10538 return (ENOMEM); 10539 10540 sbuf_printf(sb, 10541 " IP IPv6\n"); 10542 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10543 v4.tcp_out_rsts, v6.tcp_out_rsts); 10544 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10545 v4.tcp_in_segs, v6.tcp_in_segs); 10546 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10547 v4.tcp_out_segs, v6.tcp_out_segs); 10548 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10549 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10550 10551 rc = sbuf_finish(sb); 10552 sbuf_delete(sb); 10553 10554 return (rc); 10555 } 10556 10557 static int 10558 sysctl_tids(SYSCTL_HANDLER_ARGS) 10559 { 10560 struct adapter *sc = arg1; 10561 struct sbuf *sb; 10562 int rc; 10563 uint32_t x, y; 10564 struct tid_info *t = &sc->tids; 10565 10566 rc = 0; 10567 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10568 if (sb == NULL) 10569 return (ENOMEM); 10570 10571 if (t->natids) { 10572 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10573 t->atids_in_use); 10574 } 10575 10576 if (t->nhpftids) { 10577 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10578 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10579 } 10580 10581 if (t->ntids) { 10582 bool hashen = false; 10583 10584 mtx_lock(&sc->reg_lock); 10585 if (hw_off_limits(sc)) 10586 rc = ENXIO; 10587 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10588 hashen = true; 10589 if (chip_id(sc) <= CHELSIO_T5) { 10590 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10591 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10592 } else { 10593 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10594 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10595 } 10596 } 10597 mtx_unlock(&sc->reg_lock); 10598 if (rc != 0) 10599 goto done; 10600 10601 sbuf_printf(sb, "TID range: "); 10602 if (hashen) { 10603 if (x) 10604 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10605 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10606 } else { 10607 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10608 t->ntids - 1); 10609 } 10610 sbuf_printf(sb, ", in use: %u\n", 10611 atomic_load_acq_int(&t->tids_in_use)); 10612 } 10613 10614 if (t->nstids) { 10615 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10616 t->stid_base + t->nstids - 1, t->stids_in_use); 10617 } 10618 10619 if (t->nftids) { 10620 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10621 t->ftid_end, t->ftids_in_use); 10622 } 10623 10624 if (t->netids) { 10625 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10626 t->etid_base + t->netids - 1, t->etids_in_use); 10627 } 10628 10629 mtx_lock(&sc->reg_lock); 10630 if (hw_off_limits(sc)) 10631 rc = ENXIO; 10632 else { 10633 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10634 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10635 } 10636 mtx_unlock(&sc->reg_lock); 10637 if (rc != 0) 10638 goto done; 10639 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10640 done: 10641 if (rc == 0) 10642 rc = sbuf_finish(sb); 10643 else 10644 (void)sbuf_finish(sb); 10645 sbuf_delete(sb); 10646 10647 return (rc); 10648 } 10649 10650 static int 10651 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10652 { 10653 struct adapter *sc = arg1; 10654 struct sbuf *sb; 10655 int rc; 10656 struct tp_err_stats stats; 10657 10658 rc = 0; 10659 mtx_lock(&sc->reg_lock); 10660 if (hw_off_limits(sc)) 10661 rc = ENXIO; 10662 else 10663 t4_tp_get_err_stats(sc, &stats, 0); 10664 mtx_unlock(&sc->reg_lock); 10665 if (rc != 0) 10666 return (rc); 10667 10668 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10669 if (sb == NULL) 10670 return (ENOMEM); 10671 10672 if (sc->chip_params->nchan > 2) { 10673 sbuf_printf(sb, " channel 0 channel 1" 10674 " channel 2 channel 3\n"); 10675 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10676 stats.mac_in_errs[0], stats.mac_in_errs[1], 10677 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10678 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10679 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10680 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10681 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10682 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10683 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10684 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10685 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10686 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10687 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10688 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10689 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10690 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10691 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10692 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10693 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10694 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10695 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10696 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10697 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10698 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10699 } else { 10700 sbuf_printf(sb, " channel 0 channel 1\n"); 10701 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10702 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10703 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10704 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10705 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10706 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10707 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10708 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10709 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10710 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10711 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10712 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10713 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10714 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10715 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10716 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10717 } 10718 10719 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10720 stats.ofld_no_neigh, stats.ofld_cong_defer); 10721 10722 rc = sbuf_finish(sb); 10723 sbuf_delete(sb); 10724 10725 return (rc); 10726 } 10727 10728 static int 10729 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10730 { 10731 struct adapter *sc = arg1; 10732 struct sbuf *sb; 10733 int rc; 10734 struct tp_tnl_stats stats; 10735 10736 rc = 0; 10737 mtx_lock(&sc->reg_lock); 10738 if (hw_off_limits(sc)) 10739 rc = ENXIO; 10740 else 10741 t4_tp_get_tnl_stats(sc, &stats, 1); 10742 mtx_unlock(&sc->reg_lock); 10743 if (rc != 0) 10744 return (rc); 10745 10746 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10747 if (sb == NULL) 10748 return (ENOMEM); 10749 10750 if (sc->chip_params->nchan > 2) { 10751 sbuf_printf(sb, " channel 0 channel 1" 10752 " channel 2 channel 3\n"); 10753 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10754 stats.out_pkt[0], stats.out_pkt[1], 10755 stats.out_pkt[2], stats.out_pkt[3]); 10756 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10757 stats.in_pkt[0], stats.in_pkt[1], 10758 stats.in_pkt[2], stats.in_pkt[3]); 10759 } else { 10760 sbuf_printf(sb, " channel 0 channel 1\n"); 10761 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10762 stats.out_pkt[0], stats.out_pkt[1]); 10763 sbuf_printf(sb, "InPkts: %10u %10u", 10764 stats.in_pkt[0], stats.in_pkt[1]); 10765 } 10766 10767 rc = sbuf_finish(sb); 10768 sbuf_delete(sb); 10769 10770 return (rc); 10771 } 10772 10773 static int 10774 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10775 { 10776 struct adapter *sc = arg1; 10777 struct tp_params *tpp = &sc->params.tp; 10778 u_int mask; 10779 int rc; 10780 10781 mask = tpp->la_mask >> 16; 10782 rc = sysctl_handle_int(oidp, &mask, 0, req); 10783 if (rc != 0 || req->newptr == NULL) 10784 return (rc); 10785 if (mask > 0xffff) 10786 return (EINVAL); 10787 mtx_lock(&sc->reg_lock); 10788 if (hw_off_limits(sc)) 10789 rc = ENXIO; 10790 else { 10791 tpp->la_mask = mask << 16; 10792 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10793 tpp->la_mask); 10794 } 10795 mtx_unlock(&sc->reg_lock); 10796 10797 return (rc); 10798 } 10799 10800 struct field_desc { 10801 const char *name; 10802 u_int start; 10803 u_int width; 10804 }; 10805 10806 static void 10807 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10808 { 10809 char buf[32]; 10810 int line_size = 0; 10811 10812 while (f->name) { 10813 uint64_t mask = (1ULL << f->width) - 1; 10814 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10815 ((uintmax_t)v >> f->start) & mask); 10816 10817 if (line_size + len >= 79) { 10818 line_size = 8; 10819 sbuf_printf(sb, "\n "); 10820 } 10821 sbuf_printf(sb, "%s ", buf); 10822 line_size += len + 1; 10823 f++; 10824 } 10825 sbuf_printf(sb, "\n"); 10826 } 10827 10828 static const struct field_desc tp_la0[] = { 10829 { "RcfOpCodeOut", 60, 4 }, 10830 { "State", 56, 4 }, 10831 { "WcfState", 52, 4 }, 10832 { "RcfOpcSrcOut", 50, 2 }, 10833 { "CRxError", 49, 1 }, 10834 { "ERxError", 48, 1 }, 10835 { "SanityFailed", 47, 1 }, 10836 { "SpuriousMsg", 46, 1 }, 10837 { "FlushInputMsg", 45, 1 }, 10838 { "FlushInputCpl", 44, 1 }, 10839 { "RssUpBit", 43, 1 }, 10840 { "RssFilterHit", 42, 1 }, 10841 { "Tid", 32, 10 }, 10842 { "InitTcb", 31, 1 }, 10843 { "LineNumber", 24, 7 }, 10844 { "Emsg", 23, 1 }, 10845 { "EdataOut", 22, 1 }, 10846 { "Cmsg", 21, 1 }, 10847 { "CdataOut", 20, 1 }, 10848 { "EreadPdu", 19, 1 }, 10849 { "CreadPdu", 18, 1 }, 10850 { "TunnelPkt", 17, 1 }, 10851 { "RcfPeerFin", 16, 1 }, 10852 { "RcfReasonOut", 12, 4 }, 10853 { "TxCchannel", 10, 2 }, 10854 { "RcfTxChannel", 8, 2 }, 10855 { "RxEchannel", 6, 2 }, 10856 { "RcfRxChannel", 5, 1 }, 10857 { "RcfDataOutSrdy", 4, 1 }, 10858 { "RxDvld", 3, 1 }, 10859 { "RxOoDvld", 2, 1 }, 10860 { "RxCongestion", 1, 1 }, 10861 { "TxCongestion", 0, 1 }, 10862 { NULL } 10863 }; 10864 10865 static const struct field_desc tp_la1[] = { 10866 { "CplCmdIn", 56, 8 }, 10867 { "CplCmdOut", 48, 8 }, 10868 { "ESynOut", 47, 1 }, 10869 { "EAckOut", 46, 1 }, 10870 { "EFinOut", 45, 1 }, 10871 { "ERstOut", 44, 1 }, 10872 { "SynIn", 43, 1 }, 10873 { "AckIn", 42, 1 }, 10874 { "FinIn", 41, 1 }, 10875 { "RstIn", 40, 1 }, 10876 { "DataIn", 39, 1 }, 10877 { "DataInVld", 38, 1 }, 10878 { "PadIn", 37, 1 }, 10879 { "RxBufEmpty", 36, 1 }, 10880 { "RxDdp", 35, 1 }, 10881 { "RxFbCongestion", 34, 1 }, 10882 { "TxFbCongestion", 33, 1 }, 10883 { "TxPktSumSrdy", 32, 1 }, 10884 { "RcfUlpType", 28, 4 }, 10885 { "Eread", 27, 1 }, 10886 { "Ebypass", 26, 1 }, 10887 { "Esave", 25, 1 }, 10888 { "Static0", 24, 1 }, 10889 { "Cread", 23, 1 }, 10890 { "Cbypass", 22, 1 }, 10891 { "Csave", 21, 1 }, 10892 { "CPktOut", 20, 1 }, 10893 { "RxPagePoolFull", 18, 2 }, 10894 { "RxLpbkPkt", 17, 1 }, 10895 { "TxLpbkPkt", 16, 1 }, 10896 { "RxVfValid", 15, 1 }, 10897 { "SynLearned", 14, 1 }, 10898 { "SetDelEntry", 13, 1 }, 10899 { "SetInvEntry", 12, 1 }, 10900 { "CpcmdDvld", 11, 1 }, 10901 { "CpcmdSave", 10, 1 }, 10902 { "RxPstructsFull", 8, 2 }, 10903 { "EpcmdDvld", 7, 1 }, 10904 { "EpcmdFlush", 6, 1 }, 10905 { "EpcmdTrimPrefix", 5, 1 }, 10906 { "EpcmdTrimPostfix", 4, 1 }, 10907 { "ERssIp4Pkt", 3, 1 }, 10908 { "ERssIp6Pkt", 2, 1 }, 10909 { "ERssTcpUdpPkt", 1, 1 }, 10910 { "ERssFceFipPkt", 0, 1 }, 10911 { NULL } 10912 }; 10913 10914 static const struct field_desc tp_la2[] = { 10915 { "CplCmdIn", 56, 8 }, 10916 { "MpsVfVld", 55, 1 }, 10917 { "MpsPf", 52, 3 }, 10918 { "MpsVf", 44, 8 }, 10919 { "SynIn", 43, 1 }, 10920 { "AckIn", 42, 1 }, 10921 { "FinIn", 41, 1 }, 10922 { "RstIn", 40, 1 }, 10923 { "DataIn", 39, 1 }, 10924 { "DataInVld", 38, 1 }, 10925 { "PadIn", 37, 1 }, 10926 { "RxBufEmpty", 36, 1 }, 10927 { "RxDdp", 35, 1 }, 10928 { "RxFbCongestion", 34, 1 }, 10929 { "TxFbCongestion", 33, 1 }, 10930 { "TxPktSumSrdy", 32, 1 }, 10931 { "RcfUlpType", 28, 4 }, 10932 { "Eread", 27, 1 }, 10933 { "Ebypass", 26, 1 }, 10934 { "Esave", 25, 1 }, 10935 { "Static0", 24, 1 }, 10936 { "Cread", 23, 1 }, 10937 { "Cbypass", 22, 1 }, 10938 { "Csave", 21, 1 }, 10939 { "CPktOut", 20, 1 }, 10940 { "RxPagePoolFull", 18, 2 }, 10941 { "RxLpbkPkt", 17, 1 }, 10942 { "TxLpbkPkt", 16, 1 }, 10943 { "RxVfValid", 15, 1 }, 10944 { "SynLearned", 14, 1 }, 10945 { "SetDelEntry", 13, 1 }, 10946 { "SetInvEntry", 12, 1 }, 10947 { "CpcmdDvld", 11, 1 }, 10948 { "CpcmdSave", 10, 1 }, 10949 { "RxPstructsFull", 8, 2 }, 10950 { "EpcmdDvld", 7, 1 }, 10951 { "EpcmdFlush", 6, 1 }, 10952 { "EpcmdTrimPrefix", 5, 1 }, 10953 { "EpcmdTrimPostfix", 4, 1 }, 10954 { "ERssIp4Pkt", 3, 1 }, 10955 { "ERssIp6Pkt", 2, 1 }, 10956 { "ERssTcpUdpPkt", 1, 1 }, 10957 { "ERssFceFipPkt", 0, 1 }, 10958 { NULL } 10959 }; 10960 10961 static void 10962 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10963 { 10964 10965 field_desc_show(sb, *p, tp_la0); 10966 } 10967 10968 static void 10969 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10970 { 10971 10972 if (idx) 10973 sbuf_printf(sb, "\n"); 10974 field_desc_show(sb, p[0], tp_la0); 10975 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10976 field_desc_show(sb, p[1], tp_la0); 10977 } 10978 10979 static void 10980 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10981 { 10982 10983 if (idx) 10984 sbuf_printf(sb, "\n"); 10985 field_desc_show(sb, p[0], tp_la0); 10986 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10987 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10988 } 10989 10990 static int 10991 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10992 { 10993 struct adapter *sc = arg1; 10994 struct sbuf *sb; 10995 uint64_t *buf, *p; 10996 int rc; 10997 u_int i, inc; 10998 void (*show_func)(struct sbuf *, uint64_t *, int); 10999 11000 rc = 0; 11001 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11002 if (sb == NULL) 11003 return (ENOMEM); 11004 11005 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11006 11007 mtx_lock(&sc->reg_lock); 11008 if (hw_off_limits(sc)) 11009 rc = ENXIO; 11010 else { 11011 t4_tp_read_la(sc, buf, NULL); 11012 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11013 case 2: 11014 inc = 2; 11015 show_func = tp_la_show2; 11016 break; 11017 case 3: 11018 inc = 2; 11019 show_func = tp_la_show3; 11020 break; 11021 default: 11022 inc = 1; 11023 show_func = tp_la_show; 11024 } 11025 } 11026 mtx_unlock(&sc->reg_lock); 11027 if (rc != 0) 11028 goto done; 11029 11030 p = buf; 11031 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11032 (*show_func)(sb, p, i); 11033 rc = sbuf_finish(sb); 11034 done: 11035 sbuf_delete(sb); 11036 free(buf, M_CXGBE); 11037 return (rc); 11038 } 11039 11040 static int 11041 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11042 { 11043 struct adapter *sc = arg1; 11044 struct sbuf *sb; 11045 int rc; 11046 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11047 11048 rc = 0; 11049 mtx_lock(&sc->reg_lock); 11050 if (hw_off_limits(sc)) 11051 rc = ENXIO; 11052 else 11053 t4_get_chan_txrate(sc, nrate, orate); 11054 mtx_unlock(&sc->reg_lock); 11055 if (rc != 0) 11056 return (rc); 11057 11058 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11059 if (sb == NULL) 11060 return (ENOMEM); 11061 11062 if (sc->chip_params->nchan > 2) { 11063 sbuf_printf(sb, " channel 0 channel 1" 11064 " channel 2 channel 3\n"); 11065 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11066 nrate[0], nrate[1], nrate[2], nrate[3]); 11067 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11068 orate[0], orate[1], orate[2], orate[3]); 11069 } else { 11070 sbuf_printf(sb, " channel 0 channel 1\n"); 11071 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11072 nrate[0], nrate[1]); 11073 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11074 orate[0], orate[1]); 11075 } 11076 11077 rc = sbuf_finish(sb); 11078 sbuf_delete(sb); 11079 11080 return (rc); 11081 } 11082 11083 static int 11084 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11085 { 11086 struct adapter *sc = arg1; 11087 struct sbuf *sb; 11088 uint32_t *buf, *p; 11089 int rc, i; 11090 11091 rc = 0; 11092 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11093 if (sb == NULL) 11094 return (ENOMEM); 11095 11096 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11097 M_ZERO | M_WAITOK); 11098 11099 mtx_lock(&sc->reg_lock); 11100 if (hw_off_limits(sc)) 11101 rc = ENXIO; 11102 else 11103 t4_ulprx_read_la(sc, buf); 11104 mtx_unlock(&sc->reg_lock); 11105 if (rc != 0) 11106 goto done; 11107 11108 p = buf; 11109 sbuf_printf(sb, " Pcmd Type Message" 11110 " Data"); 11111 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11112 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11113 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11114 } 11115 rc = sbuf_finish(sb); 11116 done: 11117 sbuf_delete(sb); 11118 free(buf, M_CXGBE); 11119 return (rc); 11120 } 11121 11122 static int 11123 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11124 { 11125 struct adapter *sc = arg1; 11126 struct sbuf *sb; 11127 int rc; 11128 uint32_t cfg, s1, s2; 11129 11130 MPASS(chip_id(sc) >= CHELSIO_T5); 11131 11132 rc = 0; 11133 mtx_lock(&sc->reg_lock); 11134 if (hw_off_limits(sc)) 11135 rc = ENXIO; 11136 else { 11137 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11138 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11139 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11140 } 11141 mtx_unlock(&sc->reg_lock); 11142 if (rc != 0) 11143 return (rc); 11144 11145 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11146 if (sb == NULL) 11147 return (ENOMEM); 11148 11149 if (G_STATSOURCE_T5(cfg) == 7) { 11150 int mode; 11151 11152 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11153 if (mode == 0) 11154 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11155 else if (mode == 1) 11156 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11157 else 11158 sbuf_printf(sb, "unknown mode %d", mode); 11159 } 11160 rc = sbuf_finish(sb); 11161 sbuf_delete(sb); 11162 11163 return (rc); 11164 } 11165 11166 static int 11167 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11168 { 11169 struct adapter *sc = arg1; 11170 enum cpu_sets op = arg2; 11171 cpuset_t cpuset; 11172 struct sbuf *sb; 11173 int i, rc; 11174 11175 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11176 11177 CPU_ZERO(&cpuset); 11178 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11179 if (rc != 0) 11180 return (rc); 11181 11182 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11183 if (sb == NULL) 11184 return (ENOMEM); 11185 11186 CPU_FOREACH(i) 11187 sbuf_printf(sb, "%d ", i); 11188 rc = sbuf_finish(sb); 11189 sbuf_delete(sb); 11190 11191 return (rc); 11192 } 11193 11194 static int 11195 sysctl_reset(SYSCTL_HANDLER_ARGS) 11196 { 11197 struct adapter *sc = arg1; 11198 u_int val; 11199 int rc; 11200 11201 val = atomic_load_int(&sc->num_resets); 11202 rc = sysctl_handle_int(oidp, &val, 0, req); 11203 if (rc != 0 || req->newptr == NULL) 11204 return (rc); 11205 11206 if (val == 0) { 11207 /* Zero out the counter that tracks reset. */ 11208 atomic_store_int(&sc->num_resets, 0); 11209 return (0); 11210 } 11211 11212 if (val != 1) 11213 return (EINVAL); /* 0 or 1 are the only legal values */ 11214 11215 if (hw_off_limits(sc)) /* harmless race */ 11216 return (EALREADY); 11217 11218 taskqueue_enqueue(reset_tq, &sc->reset_task); 11219 return (0); 11220 } 11221 11222 #ifdef TCP_OFFLOAD 11223 static int 11224 sysctl_tls(SYSCTL_HANDLER_ARGS) 11225 { 11226 struct adapter *sc = arg1; 11227 int i, j, v, rc; 11228 struct vi_info *vi; 11229 11230 v = sc->tt.tls; 11231 rc = sysctl_handle_int(oidp, &v, 0, req); 11232 if (rc != 0 || req->newptr == NULL) 11233 return (rc); 11234 11235 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11236 return (ENOTSUP); 11237 11238 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11239 if (rc) 11240 return (rc); 11241 if (hw_off_limits(sc)) 11242 rc = ENXIO; 11243 else { 11244 sc->tt.tls = !!v; 11245 for_each_port(sc, i) { 11246 for_each_vi(sc->port[i], j, vi) { 11247 if (vi->flags & VI_INIT_DONE) 11248 t4_update_fl_bufsize(vi->ifp); 11249 } 11250 } 11251 } 11252 end_synchronized_op(sc, 0); 11253 11254 return (rc); 11255 11256 } 11257 11258 static void 11259 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11260 { 11261 u_int rem = val % factor; 11262 11263 if (rem == 0) 11264 snprintf(buf, len, "%u", val / factor); 11265 else { 11266 while (rem % 10 == 0) 11267 rem /= 10; 11268 snprintf(buf, len, "%u.%u", val / factor, rem); 11269 } 11270 } 11271 11272 static int 11273 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11274 { 11275 struct adapter *sc = arg1; 11276 char buf[16]; 11277 u_int res, re; 11278 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11279 11280 mtx_lock(&sc->reg_lock); 11281 if (hw_off_limits(sc)) 11282 res = (u_int)-1; 11283 else 11284 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11285 mtx_unlock(&sc->reg_lock); 11286 if (res == (u_int)-1) 11287 return (ENXIO); 11288 11289 switch (arg2) { 11290 case 0: 11291 /* timer_tick */ 11292 re = G_TIMERRESOLUTION(res); 11293 break; 11294 case 1: 11295 /* TCP timestamp tick */ 11296 re = G_TIMESTAMPRESOLUTION(res); 11297 break; 11298 case 2: 11299 /* DACK tick */ 11300 re = G_DELAYEDACKRESOLUTION(res); 11301 break; 11302 default: 11303 return (EDOOFUS); 11304 } 11305 11306 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11307 11308 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11309 } 11310 11311 static int 11312 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11313 { 11314 struct adapter *sc = arg1; 11315 int rc; 11316 u_int dack_tmr, dack_re, v; 11317 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11318 11319 mtx_lock(&sc->reg_lock); 11320 if (hw_off_limits(sc)) 11321 rc = ENXIO; 11322 else { 11323 rc = 0; 11324 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11325 A_TP_TIMER_RESOLUTION)); 11326 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11327 } 11328 mtx_unlock(&sc->reg_lock); 11329 if (rc != 0) 11330 return (rc); 11331 11332 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11333 11334 return (sysctl_handle_int(oidp, &v, 0, req)); 11335 } 11336 11337 static int 11338 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11339 { 11340 struct adapter *sc = arg1; 11341 int rc, reg = arg2; 11342 u_int tre; 11343 u_long tp_tick_us, v; 11344 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11345 11346 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11347 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11348 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11349 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11350 11351 mtx_lock(&sc->reg_lock); 11352 if (hw_off_limits(sc)) 11353 rc = ENXIO; 11354 else { 11355 rc = 0; 11356 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11357 tp_tick_us = (cclk_ps << tre) / 1000000; 11358 if (reg == A_TP_INIT_SRTT) 11359 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11360 else 11361 v = tp_tick_us * t4_read_reg(sc, reg); 11362 } 11363 mtx_unlock(&sc->reg_lock); 11364 if (rc != 0) 11365 return (rc); 11366 else 11367 return (sysctl_handle_long(oidp, &v, 0, req)); 11368 } 11369 11370 /* 11371 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11372 * passed to this function. 11373 */ 11374 static int 11375 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11376 { 11377 struct adapter *sc = arg1; 11378 int rc, idx = arg2; 11379 u_int v; 11380 11381 MPASS(idx >= 0 && idx <= 24); 11382 11383 mtx_lock(&sc->reg_lock); 11384 if (hw_off_limits(sc)) 11385 rc = ENXIO; 11386 else { 11387 rc = 0; 11388 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11389 } 11390 mtx_unlock(&sc->reg_lock); 11391 if (rc != 0) 11392 return (rc); 11393 else 11394 return (sysctl_handle_int(oidp, &v, 0, req)); 11395 } 11396 11397 static int 11398 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11399 { 11400 struct adapter *sc = arg1; 11401 int rc, idx = arg2; 11402 u_int shift, v, r; 11403 11404 MPASS(idx >= 0 && idx < 16); 11405 11406 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11407 shift = (idx & 3) << 3; 11408 mtx_lock(&sc->reg_lock); 11409 if (hw_off_limits(sc)) 11410 rc = ENXIO; 11411 else { 11412 rc = 0; 11413 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11414 } 11415 mtx_unlock(&sc->reg_lock); 11416 if (rc != 0) 11417 return (rc); 11418 else 11419 return (sysctl_handle_int(oidp, &v, 0, req)); 11420 } 11421 11422 static int 11423 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11424 { 11425 struct vi_info *vi = arg1; 11426 struct adapter *sc = vi->adapter; 11427 int idx, rc, i; 11428 struct sge_ofld_rxq *ofld_rxq; 11429 uint8_t v; 11430 11431 idx = vi->ofld_tmr_idx; 11432 11433 rc = sysctl_handle_int(oidp, &idx, 0, req); 11434 if (rc != 0 || req->newptr == NULL) 11435 return (rc); 11436 11437 if (idx < 0 || idx >= SGE_NTIMERS) 11438 return (EINVAL); 11439 11440 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11441 "t4otmr"); 11442 if (rc) 11443 return (rc); 11444 11445 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11446 for_each_ofld_rxq(vi, i, ofld_rxq) { 11447 #ifdef atomic_store_rel_8 11448 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11449 #else 11450 ofld_rxq->iq.intr_params = v; 11451 #endif 11452 } 11453 vi->ofld_tmr_idx = idx; 11454 11455 end_synchronized_op(sc, LOCK_HELD); 11456 return (0); 11457 } 11458 11459 static int 11460 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11461 { 11462 struct vi_info *vi = arg1; 11463 struct adapter *sc = vi->adapter; 11464 int idx, rc; 11465 11466 idx = vi->ofld_pktc_idx; 11467 11468 rc = sysctl_handle_int(oidp, &idx, 0, req); 11469 if (rc != 0 || req->newptr == NULL) 11470 return (rc); 11471 11472 if (idx < -1 || idx >= SGE_NCOUNTERS) 11473 return (EINVAL); 11474 11475 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11476 "t4opktc"); 11477 if (rc) 11478 return (rc); 11479 11480 if (vi->flags & VI_INIT_DONE) 11481 rc = EBUSY; /* cannot be changed once the queues are created */ 11482 else 11483 vi->ofld_pktc_idx = idx; 11484 11485 end_synchronized_op(sc, LOCK_HELD); 11486 return (rc); 11487 } 11488 #endif 11489 11490 static int 11491 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11492 { 11493 int rc; 11494 11495 if (cntxt->cid > M_CTXTQID) 11496 return (EINVAL); 11497 11498 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11499 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11500 return (EINVAL); 11501 11502 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11503 if (rc) 11504 return (rc); 11505 11506 if (hw_off_limits(sc)) { 11507 rc = ENXIO; 11508 goto done; 11509 } 11510 11511 if (sc->flags & FW_OK) { 11512 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11513 &cntxt->data[0]); 11514 if (rc == 0) 11515 goto done; 11516 } 11517 11518 /* 11519 * Read via firmware failed or wasn't even attempted. Read directly via 11520 * the backdoor. 11521 */ 11522 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11523 done: 11524 end_synchronized_op(sc, 0); 11525 return (rc); 11526 } 11527 11528 static int 11529 load_fw(struct adapter *sc, struct t4_data *fw) 11530 { 11531 int rc; 11532 uint8_t *fw_data; 11533 11534 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11535 if (rc) 11536 return (rc); 11537 11538 if (hw_off_limits(sc)) { 11539 rc = ENXIO; 11540 goto done; 11541 } 11542 11543 /* 11544 * The firmware, with the sole exception of the memory parity error 11545 * handler, runs from memory and not flash. It is almost always safe to 11546 * install a new firmware on a running system. Just set bit 1 in 11547 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11548 */ 11549 if (sc->flags & FULL_INIT_DONE && 11550 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11551 rc = EBUSY; 11552 goto done; 11553 } 11554 11555 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11556 11557 rc = copyin(fw->data, fw_data, fw->len); 11558 if (rc == 0) 11559 rc = -t4_load_fw(sc, fw_data, fw->len); 11560 11561 free(fw_data, M_CXGBE); 11562 done: 11563 end_synchronized_op(sc, 0); 11564 return (rc); 11565 } 11566 11567 static int 11568 load_cfg(struct adapter *sc, struct t4_data *cfg) 11569 { 11570 int rc; 11571 uint8_t *cfg_data = NULL; 11572 11573 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11574 if (rc) 11575 return (rc); 11576 11577 if (hw_off_limits(sc)) { 11578 rc = ENXIO; 11579 goto done; 11580 } 11581 11582 if (cfg->len == 0) { 11583 /* clear */ 11584 rc = -t4_load_cfg(sc, NULL, 0); 11585 goto done; 11586 } 11587 11588 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11589 11590 rc = copyin(cfg->data, cfg_data, cfg->len); 11591 if (rc == 0) 11592 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11593 11594 free(cfg_data, M_CXGBE); 11595 done: 11596 end_synchronized_op(sc, 0); 11597 return (rc); 11598 } 11599 11600 static int 11601 load_boot(struct adapter *sc, struct t4_bootrom *br) 11602 { 11603 int rc; 11604 uint8_t *br_data = NULL; 11605 u_int offset; 11606 11607 if (br->len > 1024 * 1024) 11608 return (EFBIG); 11609 11610 if (br->pf_offset == 0) { 11611 /* pfidx */ 11612 if (br->pfidx_addr > 7) 11613 return (EINVAL); 11614 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11615 A_PCIE_PF_EXPROM_OFST))); 11616 } else if (br->pf_offset == 1) { 11617 /* offset */ 11618 offset = G_OFFSET(br->pfidx_addr); 11619 } else { 11620 return (EINVAL); 11621 } 11622 11623 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11624 if (rc) 11625 return (rc); 11626 11627 if (hw_off_limits(sc)) { 11628 rc = ENXIO; 11629 goto done; 11630 } 11631 11632 if (br->len == 0) { 11633 /* clear */ 11634 rc = -t4_load_boot(sc, NULL, offset, 0); 11635 goto done; 11636 } 11637 11638 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11639 11640 rc = copyin(br->data, br_data, br->len); 11641 if (rc == 0) 11642 rc = -t4_load_boot(sc, br_data, offset, br->len); 11643 11644 free(br_data, M_CXGBE); 11645 done: 11646 end_synchronized_op(sc, 0); 11647 return (rc); 11648 } 11649 11650 static int 11651 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11652 { 11653 int rc; 11654 uint8_t *bc_data = NULL; 11655 11656 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11657 if (rc) 11658 return (rc); 11659 11660 if (hw_off_limits(sc)) { 11661 rc = ENXIO; 11662 goto done; 11663 } 11664 11665 if (bc->len == 0) { 11666 /* clear */ 11667 rc = -t4_load_bootcfg(sc, NULL, 0); 11668 goto done; 11669 } 11670 11671 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11672 11673 rc = copyin(bc->data, bc_data, bc->len); 11674 if (rc == 0) 11675 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11676 11677 free(bc_data, M_CXGBE); 11678 done: 11679 end_synchronized_op(sc, 0); 11680 return (rc); 11681 } 11682 11683 static int 11684 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11685 { 11686 int rc; 11687 struct cudbg_init *cudbg; 11688 void *handle, *buf; 11689 11690 /* buf is large, don't block if no memory is available */ 11691 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11692 if (buf == NULL) 11693 return (ENOMEM); 11694 11695 handle = cudbg_alloc_handle(); 11696 if (handle == NULL) { 11697 rc = ENOMEM; 11698 goto done; 11699 } 11700 11701 cudbg = cudbg_get_init(handle); 11702 cudbg->adap = sc; 11703 cudbg->print = (cudbg_print_cb)printf; 11704 11705 #ifndef notyet 11706 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11707 __func__, dump->wr_flash, dump->len, dump->data); 11708 #endif 11709 11710 if (dump->wr_flash) 11711 cudbg->use_flash = 1; 11712 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11713 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11714 11715 rc = cudbg_collect(handle, buf, &dump->len); 11716 if (rc != 0) 11717 goto done; 11718 11719 rc = copyout(buf, dump->data, dump->len); 11720 done: 11721 cudbg_free_handle(handle); 11722 free(buf, M_CXGBE); 11723 return (rc); 11724 } 11725 11726 static void 11727 free_offload_policy(struct t4_offload_policy *op) 11728 { 11729 struct offload_rule *r; 11730 int i; 11731 11732 if (op == NULL) 11733 return; 11734 11735 r = &op->rule[0]; 11736 for (i = 0; i < op->nrules; i++, r++) { 11737 free(r->bpf_prog.bf_insns, M_CXGBE); 11738 } 11739 free(op->rule, M_CXGBE); 11740 free(op, M_CXGBE); 11741 } 11742 11743 static int 11744 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11745 { 11746 int i, rc, len; 11747 struct t4_offload_policy *op, *old; 11748 struct bpf_program *bf; 11749 const struct offload_settings *s; 11750 struct offload_rule *r; 11751 void *u; 11752 11753 if (!is_offload(sc)) 11754 return (ENODEV); 11755 11756 if (uop->nrules == 0) { 11757 /* Delete installed policies. */ 11758 op = NULL; 11759 goto set_policy; 11760 } else if (uop->nrules > 256) { /* arbitrary */ 11761 return (E2BIG); 11762 } 11763 11764 /* Copy userspace offload policy to kernel */ 11765 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11766 op->nrules = uop->nrules; 11767 len = op->nrules * sizeof(struct offload_rule); 11768 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11769 rc = copyin(uop->rule, op->rule, len); 11770 if (rc) { 11771 free(op->rule, M_CXGBE); 11772 free(op, M_CXGBE); 11773 return (rc); 11774 } 11775 11776 r = &op->rule[0]; 11777 for (i = 0; i < op->nrules; i++, r++) { 11778 11779 /* Validate open_type */ 11780 if (r->open_type != OPEN_TYPE_LISTEN && 11781 r->open_type != OPEN_TYPE_ACTIVE && 11782 r->open_type != OPEN_TYPE_PASSIVE && 11783 r->open_type != OPEN_TYPE_DONTCARE) { 11784 error: 11785 /* 11786 * Rules 0 to i have malloc'd filters that need to be 11787 * freed. Rules i+1 to nrules have userspace pointers 11788 * and should be left alone. 11789 */ 11790 op->nrules = i; 11791 free_offload_policy(op); 11792 return (rc); 11793 } 11794 11795 /* Validate settings */ 11796 s = &r->settings; 11797 if ((s->offload != 0 && s->offload != 1) || 11798 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11799 s->sched_class < -1 || 11800 s->sched_class >= sc->params.nsched_cls) { 11801 rc = EINVAL; 11802 goto error; 11803 } 11804 11805 bf = &r->bpf_prog; 11806 u = bf->bf_insns; /* userspace ptr */ 11807 bf->bf_insns = NULL; 11808 if (bf->bf_len == 0) { 11809 /* legal, matches everything */ 11810 continue; 11811 } 11812 len = bf->bf_len * sizeof(*bf->bf_insns); 11813 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11814 rc = copyin(u, bf->bf_insns, len); 11815 if (rc != 0) 11816 goto error; 11817 11818 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11819 rc = EINVAL; 11820 goto error; 11821 } 11822 } 11823 set_policy: 11824 rw_wlock(&sc->policy_lock); 11825 old = sc->policy; 11826 sc->policy = op; 11827 rw_wunlock(&sc->policy_lock); 11828 free_offload_policy(old); 11829 11830 return (0); 11831 } 11832 11833 #define MAX_READ_BUF_SIZE (128 * 1024) 11834 static int 11835 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11836 { 11837 uint32_t addr, remaining, n; 11838 uint32_t *buf; 11839 int rc; 11840 uint8_t *dst; 11841 11842 mtx_lock(&sc->reg_lock); 11843 if (hw_off_limits(sc)) 11844 rc = ENXIO; 11845 else 11846 rc = validate_mem_range(sc, mr->addr, mr->len); 11847 mtx_unlock(&sc->reg_lock); 11848 if (rc != 0) 11849 return (rc); 11850 11851 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11852 addr = mr->addr; 11853 remaining = mr->len; 11854 dst = (void *)mr->data; 11855 11856 while (remaining) { 11857 n = min(remaining, MAX_READ_BUF_SIZE); 11858 mtx_lock(&sc->reg_lock); 11859 if (hw_off_limits(sc)) 11860 rc = ENXIO; 11861 else 11862 read_via_memwin(sc, 2, addr, buf, n); 11863 mtx_unlock(&sc->reg_lock); 11864 if (rc != 0) 11865 break; 11866 11867 rc = copyout(buf, dst, n); 11868 if (rc != 0) 11869 break; 11870 11871 dst += n; 11872 remaining -= n; 11873 addr += n; 11874 } 11875 11876 free(buf, M_CXGBE); 11877 return (rc); 11878 } 11879 #undef MAX_READ_BUF_SIZE 11880 11881 static int 11882 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11883 { 11884 int rc; 11885 11886 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11887 return (EINVAL); 11888 11889 if (i2cd->len > sizeof(i2cd->data)) 11890 return (EFBIG); 11891 11892 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11893 if (rc) 11894 return (rc); 11895 if (hw_off_limits(sc)) 11896 rc = ENXIO; 11897 else 11898 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11899 i2cd->offset, i2cd->len, &i2cd->data[0]); 11900 end_synchronized_op(sc, 0); 11901 11902 return (rc); 11903 } 11904 11905 static int 11906 clear_stats(struct adapter *sc, u_int port_id) 11907 { 11908 int i, v, chan_map; 11909 struct port_info *pi; 11910 struct vi_info *vi; 11911 struct sge_rxq *rxq; 11912 struct sge_txq *txq; 11913 struct sge_wrq *wrq; 11914 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11915 struct sge_ofld_txq *ofld_txq; 11916 #endif 11917 #ifdef TCP_OFFLOAD 11918 struct sge_ofld_rxq *ofld_rxq; 11919 #endif 11920 11921 if (port_id >= sc->params.nports) 11922 return (EINVAL); 11923 pi = sc->port[port_id]; 11924 if (pi == NULL) 11925 return (EIO); 11926 11927 mtx_lock(&sc->reg_lock); 11928 if (!hw_off_limits(sc)) { 11929 /* MAC stats */ 11930 t4_clr_port_stats(sc, pi->tx_chan); 11931 if (is_t6(sc)) { 11932 if (pi->fcs_reg != -1) 11933 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11934 else 11935 pi->stats.rx_fcs_err = 0; 11936 } 11937 for_each_vi(pi, v, vi) { 11938 if (vi->flags & VI_INIT_DONE) 11939 t4_clr_vi_stats(sc, vi->vin); 11940 } 11941 chan_map = pi->rx_e_chan_map; 11942 v = 0; /* reuse */ 11943 while (chan_map) { 11944 i = ffs(chan_map) - 1; 11945 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11946 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11947 chan_map &= ~(1 << i); 11948 } 11949 } 11950 mtx_unlock(&sc->reg_lock); 11951 pi->tx_parse_error = 0; 11952 pi->tnl_cong_drops = 0; 11953 11954 /* 11955 * Since this command accepts a port, clear stats for 11956 * all VIs on this port. 11957 */ 11958 for_each_vi(pi, v, vi) { 11959 if (vi->flags & VI_INIT_DONE) { 11960 11961 for_each_rxq(vi, i, rxq) { 11962 #if defined(INET) || defined(INET6) 11963 rxq->lro.lro_queued = 0; 11964 rxq->lro.lro_flushed = 0; 11965 #endif 11966 rxq->rxcsum = 0; 11967 rxq->vlan_extraction = 0; 11968 rxq->vxlan_rxcsum = 0; 11969 11970 rxq->fl.cl_allocated = 0; 11971 rxq->fl.cl_recycled = 0; 11972 rxq->fl.cl_fast_recycled = 0; 11973 } 11974 11975 for_each_txq(vi, i, txq) { 11976 txq->txcsum = 0; 11977 txq->tso_wrs = 0; 11978 txq->vlan_insertion = 0; 11979 txq->imm_wrs = 0; 11980 txq->sgl_wrs = 0; 11981 txq->txpkt_wrs = 0; 11982 txq->txpkts0_wrs = 0; 11983 txq->txpkts1_wrs = 0; 11984 txq->txpkts0_pkts = 0; 11985 txq->txpkts1_pkts = 0; 11986 txq->txpkts_flush = 0; 11987 txq->raw_wrs = 0; 11988 txq->vxlan_tso_wrs = 0; 11989 txq->vxlan_txcsum = 0; 11990 txq->kern_tls_records = 0; 11991 txq->kern_tls_short = 0; 11992 txq->kern_tls_partial = 0; 11993 txq->kern_tls_full = 0; 11994 txq->kern_tls_octets = 0; 11995 txq->kern_tls_waste = 0; 11996 txq->kern_tls_options = 0; 11997 txq->kern_tls_header = 0; 11998 txq->kern_tls_fin = 0; 11999 txq->kern_tls_fin_short = 0; 12000 txq->kern_tls_cbc = 0; 12001 txq->kern_tls_gcm = 0; 12002 mp_ring_reset_stats(txq->r); 12003 } 12004 12005 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12006 for_each_ofld_txq(vi, i, ofld_txq) { 12007 ofld_txq->wrq.tx_wrs_direct = 0; 12008 ofld_txq->wrq.tx_wrs_copied = 0; 12009 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12010 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12011 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12012 counter_u64_zero(ofld_txq->tx_aio_jobs); 12013 counter_u64_zero(ofld_txq->tx_aio_octets); 12014 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12015 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12016 } 12017 #endif 12018 #ifdef TCP_OFFLOAD 12019 for_each_ofld_rxq(vi, i, ofld_rxq) { 12020 ofld_rxq->fl.cl_allocated = 0; 12021 ofld_rxq->fl.cl_recycled = 0; 12022 ofld_rxq->fl.cl_fast_recycled = 0; 12023 counter_u64_zero( 12024 ofld_rxq->rx_iscsi_ddp_setup_ok); 12025 counter_u64_zero( 12026 ofld_rxq->rx_iscsi_ddp_setup_error); 12027 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12028 ofld_rxq->rx_iscsi_ddp_octets = 0; 12029 ofld_rxq->rx_iscsi_fl_pdus = 0; 12030 ofld_rxq->rx_iscsi_fl_octets = 0; 12031 ofld_rxq->rx_aio_ddp_jobs = 0; 12032 ofld_rxq->rx_aio_ddp_octets = 0; 12033 ofld_rxq->rx_toe_tls_records = 0; 12034 ofld_rxq->rx_toe_tls_octets = 0; 12035 ofld_rxq->rx_toe_ddp_octets = 0; 12036 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12037 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12038 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12039 } 12040 #endif 12041 12042 if (IS_MAIN_VI(vi)) { 12043 wrq = &sc->sge.ctrlq[pi->port_id]; 12044 wrq->tx_wrs_direct = 0; 12045 wrq->tx_wrs_copied = 0; 12046 } 12047 } 12048 } 12049 12050 return (0); 12051 } 12052 12053 static int 12054 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12055 { 12056 #ifdef INET6 12057 struct in6_addr in6; 12058 12059 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12060 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12061 return (0); 12062 else 12063 return (EIO); 12064 #else 12065 return (ENOTSUP); 12066 #endif 12067 } 12068 12069 static int 12070 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12071 { 12072 #ifdef INET6 12073 struct in6_addr in6; 12074 12075 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12076 return (t4_release_clip_addr(sc, &in6)); 12077 #else 12078 return (ENOTSUP); 12079 #endif 12080 } 12081 12082 int 12083 t4_os_find_pci_capability(struct adapter *sc, int cap) 12084 { 12085 int i; 12086 12087 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12088 } 12089 12090 int 12091 t4_os_pci_save_state(struct adapter *sc) 12092 { 12093 device_t dev; 12094 struct pci_devinfo *dinfo; 12095 12096 dev = sc->dev; 12097 dinfo = device_get_ivars(dev); 12098 12099 pci_cfg_save(dev, dinfo, 0); 12100 return (0); 12101 } 12102 12103 int 12104 t4_os_pci_restore_state(struct adapter *sc) 12105 { 12106 device_t dev; 12107 struct pci_devinfo *dinfo; 12108 12109 dev = sc->dev; 12110 dinfo = device_get_ivars(dev); 12111 12112 pci_cfg_restore(dev, dinfo); 12113 return (0); 12114 } 12115 12116 void 12117 t4_os_portmod_changed(struct port_info *pi) 12118 { 12119 struct adapter *sc = pi->adapter; 12120 struct vi_info *vi; 12121 if_t ifp; 12122 static const char *mod_str[] = { 12123 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12124 }; 12125 12126 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12127 ("%s: port_type %u", __func__, pi->port_type)); 12128 12129 vi = &pi->vi[0]; 12130 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12131 PORT_LOCK(pi); 12132 build_medialist(pi); 12133 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12134 fixup_link_config(pi); 12135 apply_link_config(pi); 12136 } 12137 PORT_UNLOCK(pi); 12138 end_synchronized_op(sc, LOCK_HELD); 12139 } 12140 12141 ifp = vi->ifp; 12142 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12143 if_printf(ifp, "transceiver unplugged.\n"); 12144 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12145 if_printf(ifp, "unknown transceiver inserted.\n"); 12146 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12147 if_printf(ifp, "unsupported transceiver inserted.\n"); 12148 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12149 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12150 port_top_speed(pi), mod_str[pi->mod_type]); 12151 } else { 12152 if_printf(ifp, "transceiver (type %d) inserted.\n", 12153 pi->mod_type); 12154 } 12155 } 12156 12157 void 12158 t4_os_link_changed(struct port_info *pi) 12159 { 12160 struct vi_info *vi; 12161 if_t ifp; 12162 struct link_config *lc = &pi->link_cfg; 12163 struct adapter *sc = pi->adapter; 12164 int v; 12165 12166 PORT_LOCK_ASSERT_OWNED(pi); 12167 12168 if (is_t6(sc)) { 12169 if (lc->link_ok) { 12170 if (lc->speed > 25000 || 12171 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12172 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12173 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12174 } else { 12175 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12176 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12177 } 12178 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12179 pi->stats.rx_fcs_err = 0; 12180 } else { 12181 pi->fcs_reg = -1; 12182 } 12183 } else { 12184 MPASS(pi->fcs_reg != -1); 12185 MPASS(pi->fcs_base == 0); 12186 } 12187 12188 for_each_vi(pi, v, vi) { 12189 ifp = vi->ifp; 12190 if (ifp == NULL || IS_DETACHING(vi)) 12191 continue; 12192 12193 if (lc->link_ok) { 12194 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12195 if_link_state_change(ifp, LINK_STATE_UP); 12196 } else { 12197 if_link_state_change(ifp, LINK_STATE_DOWN); 12198 } 12199 } 12200 } 12201 12202 void 12203 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12204 { 12205 struct adapter *sc; 12206 12207 sx_slock(&t4_list_lock); 12208 SLIST_FOREACH(sc, &t4_list, link) { 12209 /* 12210 * func should not make any assumptions about what state sc is 12211 * in - the only guarantee is that sc->sc_lock is a valid lock. 12212 */ 12213 func(sc, arg); 12214 } 12215 sx_sunlock(&t4_list_lock); 12216 } 12217 12218 static int 12219 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12220 struct thread *td) 12221 { 12222 int rc; 12223 struct adapter *sc = dev->si_drv1; 12224 12225 rc = priv_check(td, PRIV_DRIVER); 12226 if (rc != 0) 12227 return (rc); 12228 12229 switch (cmd) { 12230 case CHELSIO_T4_GETREG: { 12231 struct t4_reg *edata = (struct t4_reg *)data; 12232 12233 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12234 return (EFAULT); 12235 12236 mtx_lock(&sc->reg_lock); 12237 if (hw_off_limits(sc)) 12238 rc = ENXIO; 12239 else if (edata->size == 4) 12240 edata->val = t4_read_reg(sc, edata->addr); 12241 else if (edata->size == 8) 12242 edata->val = t4_read_reg64(sc, edata->addr); 12243 else 12244 rc = EINVAL; 12245 mtx_unlock(&sc->reg_lock); 12246 12247 break; 12248 } 12249 case CHELSIO_T4_SETREG: { 12250 struct t4_reg *edata = (struct t4_reg *)data; 12251 12252 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12253 return (EFAULT); 12254 12255 mtx_lock(&sc->reg_lock); 12256 if (hw_off_limits(sc)) 12257 rc = ENXIO; 12258 else if (edata->size == 4) { 12259 if (edata->val & 0xffffffff00000000) 12260 rc = EINVAL; 12261 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12262 } else if (edata->size == 8) 12263 t4_write_reg64(sc, edata->addr, edata->val); 12264 else 12265 rc = EINVAL; 12266 mtx_unlock(&sc->reg_lock); 12267 12268 break; 12269 } 12270 case CHELSIO_T4_REGDUMP: { 12271 struct t4_regdump *regs = (struct t4_regdump *)data; 12272 int reglen = t4_get_regs_len(sc); 12273 uint8_t *buf; 12274 12275 if (regs->len < reglen) { 12276 regs->len = reglen; /* hint to the caller */ 12277 return (ENOBUFS); 12278 } 12279 12280 regs->len = reglen; 12281 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12282 mtx_lock(&sc->reg_lock); 12283 if (hw_off_limits(sc)) 12284 rc = ENXIO; 12285 else 12286 get_regs(sc, regs, buf); 12287 mtx_unlock(&sc->reg_lock); 12288 if (rc == 0) 12289 rc = copyout(buf, regs->data, reglen); 12290 free(buf, M_CXGBE); 12291 break; 12292 } 12293 case CHELSIO_T4_GET_FILTER_MODE: 12294 rc = get_filter_mode(sc, (uint32_t *)data); 12295 break; 12296 case CHELSIO_T4_SET_FILTER_MODE: 12297 rc = set_filter_mode(sc, *(uint32_t *)data); 12298 break; 12299 case CHELSIO_T4_SET_FILTER_MASK: 12300 rc = set_filter_mask(sc, *(uint32_t *)data); 12301 break; 12302 case CHELSIO_T4_GET_FILTER: 12303 rc = get_filter(sc, (struct t4_filter *)data); 12304 break; 12305 case CHELSIO_T4_SET_FILTER: 12306 rc = set_filter(sc, (struct t4_filter *)data); 12307 break; 12308 case CHELSIO_T4_DEL_FILTER: 12309 rc = del_filter(sc, (struct t4_filter *)data); 12310 break; 12311 case CHELSIO_T4_GET_SGE_CONTEXT: 12312 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12313 break; 12314 case CHELSIO_T4_LOAD_FW: 12315 rc = load_fw(sc, (struct t4_data *)data); 12316 break; 12317 case CHELSIO_T4_GET_MEM: 12318 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12319 break; 12320 case CHELSIO_T4_GET_I2C: 12321 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12322 break; 12323 case CHELSIO_T4_CLEAR_STATS: 12324 rc = clear_stats(sc, *(uint32_t *)data); 12325 break; 12326 case CHELSIO_T4_SCHED_CLASS: 12327 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12328 break; 12329 case CHELSIO_T4_SCHED_QUEUE: 12330 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12331 break; 12332 case CHELSIO_T4_GET_TRACER: 12333 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12334 break; 12335 case CHELSIO_T4_SET_TRACER: 12336 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12337 break; 12338 case CHELSIO_T4_LOAD_CFG: 12339 rc = load_cfg(sc, (struct t4_data *)data); 12340 break; 12341 case CHELSIO_T4_LOAD_BOOT: 12342 rc = load_boot(sc, (struct t4_bootrom *)data); 12343 break; 12344 case CHELSIO_T4_LOAD_BOOTCFG: 12345 rc = load_bootcfg(sc, (struct t4_data *)data); 12346 break; 12347 case CHELSIO_T4_CUDBG_DUMP: 12348 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12349 break; 12350 case CHELSIO_T4_SET_OFLD_POLICY: 12351 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12352 break; 12353 case CHELSIO_T4_HOLD_CLIP_ADDR: 12354 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12355 break; 12356 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12357 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12358 break; 12359 default: 12360 rc = ENOTTY; 12361 } 12362 12363 return (rc); 12364 } 12365 12366 #ifdef TCP_OFFLOAD 12367 static int 12368 toe_capability(struct vi_info *vi, bool enable) 12369 { 12370 int rc; 12371 struct port_info *pi = vi->pi; 12372 struct adapter *sc = pi->adapter; 12373 12374 ASSERT_SYNCHRONIZED_OP(sc); 12375 12376 if (!is_offload(sc)) 12377 return (ENODEV); 12378 if (hw_off_limits(sc)) 12379 return (ENXIO); 12380 12381 if (enable) { 12382 #ifdef KERN_TLS 12383 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12384 int i, j, n; 12385 struct port_info *p; 12386 struct vi_info *v; 12387 12388 /* 12389 * Reconfigure hardware for TOE if TXTLS is not enabled 12390 * on any ifnet. 12391 */ 12392 n = 0; 12393 for_each_port(sc, i) { 12394 p = sc->port[i]; 12395 for_each_vi(p, j, v) { 12396 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12397 CH_WARN(sc, 12398 "%s has NIC TLS enabled.\n", 12399 device_get_nameunit(v->dev)); 12400 n++; 12401 } 12402 } 12403 } 12404 if (n > 0) { 12405 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12406 "associated with this adapter before " 12407 "trying to enable TOE.\n"); 12408 return (EAGAIN); 12409 } 12410 rc = t6_config_kern_tls(sc, false); 12411 if (rc) 12412 return (rc); 12413 } 12414 #endif 12415 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12416 /* TOE is already enabled. */ 12417 return (0); 12418 } 12419 12420 /* 12421 * We need the port's queues around so that we're able to send 12422 * and receive CPLs to/from the TOE even if the ifnet for this 12423 * port has never been UP'd administratively. 12424 */ 12425 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12426 return (rc); 12427 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12428 ((rc = vi_init(&pi->vi[0])) != 0)) 12429 return (rc); 12430 12431 if (isset(&sc->offload_map, pi->port_id)) { 12432 /* TOE is enabled on another VI of this port. */ 12433 pi->uld_vis++; 12434 return (0); 12435 } 12436 12437 if (!uld_active(sc, ULD_TOM)) { 12438 rc = t4_activate_uld(sc, ULD_TOM); 12439 if (rc == EAGAIN) { 12440 log(LOG_WARNING, 12441 "You must kldload t4_tom.ko before trying " 12442 "to enable TOE on a cxgbe interface.\n"); 12443 } 12444 if (rc != 0) 12445 return (rc); 12446 KASSERT(sc->tom_softc != NULL, 12447 ("%s: TOM activated but softc NULL", __func__)); 12448 KASSERT(uld_active(sc, ULD_TOM), 12449 ("%s: TOM activated but flag not set", __func__)); 12450 } 12451 12452 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12453 if (!uld_active(sc, ULD_IWARP)) 12454 (void) t4_activate_uld(sc, ULD_IWARP); 12455 if (!uld_active(sc, ULD_ISCSI)) 12456 (void) t4_activate_uld(sc, ULD_ISCSI); 12457 12458 pi->uld_vis++; 12459 setbit(&sc->offload_map, pi->port_id); 12460 } else { 12461 pi->uld_vis--; 12462 12463 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12464 return (0); 12465 12466 KASSERT(uld_active(sc, ULD_TOM), 12467 ("%s: TOM never initialized?", __func__)); 12468 clrbit(&sc->offload_map, pi->port_id); 12469 } 12470 12471 return (0); 12472 } 12473 12474 /* 12475 * Add an upper layer driver to the global list. 12476 */ 12477 int 12478 t4_register_uld(struct uld_info *ui, int id) 12479 { 12480 int rc; 12481 12482 if (id < 0 || id > ULD_MAX) 12483 return (EINVAL); 12484 sx_xlock(&t4_uld_list_lock); 12485 if (t4_uld_list[id] != NULL) 12486 rc = EEXIST; 12487 else { 12488 t4_uld_list[id] = ui; 12489 rc = 0; 12490 } 12491 sx_xunlock(&t4_uld_list_lock); 12492 return (rc); 12493 } 12494 12495 int 12496 t4_unregister_uld(struct uld_info *ui, int id) 12497 { 12498 12499 if (id < 0 || id > ULD_MAX) 12500 return (EINVAL); 12501 sx_xlock(&t4_uld_list_lock); 12502 MPASS(t4_uld_list[id] == ui); 12503 t4_uld_list[id] = NULL; 12504 sx_xunlock(&t4_uld_list_lock); 12505 return (0); 12506 } 12507 12508 int 12509 t4_activate_uld(struct adapter *sc, int id) 12510 { 12511 int rc; 12512 12513 ASSERT_SYNCHRONIZED_OP(sc); 12514 12515 if (id < 0 || id > ULD_MAX) 12516 return (EINVAL); 12517 12518 /* Adapter needs to be initialized before any ULD can be activated. */ 12519 if (!(sc->flags & FULL_INIT_DONE)) { 12520 rc = adapter_init(sc); 12521 if (rc != 0) 12522 return (rc); 12523 } 12524 12525 sx_slock(&t4_uld_list_lock); 12526 if (t4_uld_list[id] == NULL) 12527 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12528 else { 12529 rc = t4_uld_list[id]->uld_activate(sc); 12530 if (rc == 0) 12531 setbit(&sc->active_ulds, id); 12532 } 12533 sx_sunlock(&t4_uld_list_lock); 12534 12535 return (rc); 12536 } 12537 12538 int 12539 t4_deactivate_uld(struct adapter *sc, int id) 12540 { 12541 int rc; 12542 12543 ASSERT_SYNCHRONIZED_OP(sc); 12544 12545 if (id < 0 || id > ULD_MAX) 12546 return (EINVAL); 12547 12548 sx_slock(&t4_uld_list_lock); 12549 if (t4_uld_list[id] == NULL) 12550 rc = ENXIO; 12551 else { 12552 rc = t4_uld_list[id]->uld_deactivate(sc); 12553 if (rc == 0) 12554 clrbit(&sc->active_ulds, id); 12555 } 12556 sx_sunlock(&t4_uld_list_lock); 12557 12558 return (rc); 12559 } 12560 12561 static int 12562 deactivate_all_uld(struct adapter *sc) 12563 { 12564 int i, rc; 12565 12566 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12567 if (rc != 0) 12568 return (ENXIO); 12569 sx_slock(&t4_uld_list_lock); 12570 for (i = 0; i <= ULD_MAX; i++) { 12571 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12572 continue; 12573 rc = t4_uld_list[i]->uld_deactivate(sc); 12574 if (rc != 0) 12575 break; 12576 clrbit(&sc->active_ulds, i); 12577 } 12578 sx_sunlock(&t4_uld_list_lock); 12579 end_synchronized_op(sc, 0); 12580 12581 return (rc); 12582 } 12583 12584 static void 12585 stop_all_uld(struct adapter *sc) 12586 { 12587 int i; 12588 12589 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12590 return; 12591 sx_slock(&t4_uld_list_lock); 12592 for (i = 0; i <= ULD_MAX; i++) { 12593 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12594 t4_uld_list[i]->uld_stop == NULL) 12595 continue; 12596 (void) t4_uld_list[i]->uld_stop(sc); 12597 } 12598 sx_sunlock(&t4_uld_list_lock); 12599 end_synchronized_op(sc, 0); 12600 } 12601 12602 static void 12603 restart_all_uld(struct adapter *sc) 12604 { 12605 int i; 12606 12607 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12608 return; 12609 sx_slock(&t4_uld_list_lock); 12610 for (i = 0; i <= ULD_MAX; i++) { 12611 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12612 t4_uld_list[i]->uld_restart == NULL) 12613 continue; 12614 (void) t4_uld_list[i]->uld_restart(sc); 12615 } 12616 sx_sunlock(&t4_uld_list_lock); 12617 end_synchronized_op(sc, 0); 12618 } 12619 12620 int 12621 uld_active(struct adapter *sc, int id) 12622 { 12623 12624 MPASS(id >= 0 && id <= ULD_MAX); 12625 12626 return (isset(&sc->active_ulds, id)); 12627 } 12628 #endif 12629 12630 #ifdef KERN_TLS 12631 static int 12632 ktls_capability(struct adapter *sc, bool enable) 12633 { 12634 ASSERT_SYNCHRONIZED_OP(sc); 12635 12636 if (!is_ktls(sc)) 12637 return (ENODEV); 12638 if (!is_t6(sc)) 12639 return (0); 12640 if (hw_off_limits(sc)) 12641 return (ENXIO); 12642 12643 if (enable) { 12644 if (sc->flags & KERN_TLS_ON) 12645 return (0); /* already on */ 12646 if (sc->offload_map != 0) { 12647 CH_WARN(sc, 12648 "Disable TOE on all interfaces associated with " 12649 "this adapter before trying to enable NIC TLS.\n"); 12650 return (EAGAIN); 12651 } 12652 return (t6_config_kern_tls(sc, true)); 12653 } else { 12654 /* 12655 * Nothing to do for disable. If TOE is enabled sometime later 12656 * then toe_capability will reconfigure the hardware. 12657 */ 12658 return (0); 12659 } 12660 } 12661 #endif 12662 12663 /* 12664 * t = ptr to tunable. 12665 * nc = number of CPUs. 12666 * c = compiled in default for that tunable. 12667 */ 12668 static void 12669 calculate_nqueues(int *t, int nc, const int c) 12670 { 12671 int nq; 12672 12673 if (*t > 0) 12674 return; 12675 nq = *t < 0 ? -*t : c; 12676 *t = min(nc, nq); 12677 } 12678 12679 /* 12680 * Come up with reasonable defaults for some of the tunables, provided they're 12681 * not set by the user (in which case we'll use the values as is). 12682 */ 12683 static void 12684 tweak_tunables(void) 12685 { 12686 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12687 12688 if (t4_ntxq < 1) { 12689 #ifdef RSS 12690 t4_ntxq = rss_getnumbuckets(); 12691 #else 12692 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12693 #endif 12694 } 12695 12696 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12697 12698 if (t4_nrxq < 1) { 12699 #ifdef RSS 12700 t4_nrxq = rss_getnumbuckets(); 12701 #else 12702 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12703 #endif 12704 } 12705 12706 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12707 12708 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12709 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12710 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12711 #endif 12712 #ifdef TCP_OFFLOAD 12713 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12714 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12715 #endif 12716 12717 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12718 if (t4_toecaps_allowed == -1) 12719 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12720 #else 12721 if (t4_toecaps_allowed == -1) 12722 t4_toecaps_allowed = 0; 12723 #endif 12724 12725 #ifdef TCP_OFFLOAD 12726 if (t4_rdmacaps_allowed == -1) { 12727 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12728 FW_CAPS_CONFIG_RDMA_RDMAC; 12729 } 12730 12731 if (t4_iscsicaps_allowed == -1) { 12732 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12733 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12734 FW_CAPS_CONFIG_ISCSI_T10DIF; 12735 } 12736 12737 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12738 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12739 12740 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12741 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12742 #else 12743 if (t4_rdmacaps_allowed == -1) 12744 t4_rdmacaps_allowed = 0; 12745 12746 if (t4_iscsicaps_allowed == -1) 12747 t4_iscsicaps_allowed = 0; 12748 #endif 12749 12750 #ifdef DEV_NETMAP 12751 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12752 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12753 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12754 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12755 #endif 12756 12757 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12758 t4_tmr_idx = TMR_IDX; 12759 12760 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12761 t4_pktc_idx = PKTC_IDX; 12762 12763 if (t4_qsize_txq < 128) 12764 t4_qsize_txq = 128; 12765 12766 if (t4_qsize_rxq < 128) 12767 t4_qsize_rxq = 128; 12768 while (t4_qsize_rxq & 7) 12769 t4_qsize_rxq++; 12770 12771 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12772 12773 /* 12774 * Number of VIs to create per-port. The first VI is the "main" regular 12775 * VI for the port. The rest are additional virtual interfaces on the 12776 * same physical port. Note that the main VI does not have native 12777 * netmap support but the extra VIs do. 12778 * 12779 * Limit the number of VIs per port to the number of available 12780 * MAC addresses per port. 12781 */ 12782 if (t4_num_vis < 1) 12783 t4_num_vis = 1; 12784 if (t4_num_vis > nitems(vi_mac_funcs)) { 12785 t4_num_vis = nitems(vi_mac_funcs); 12786 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12787 } 12788 12789 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12790 pcie_relaxed_ordering = 1; 12791 #if defined(__i386__) || defined(__amd64__) 12792 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12793 pcie_relaxed_ordering = 0; 12794 #endif 12795 } 12796 } 12797 12798 #ifdef DDB 12799 static void 12800 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12801 { 12802 uint32_t base, j, off, pf, reg, save, win_pos; 12803 12804 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12805 save = t4_read_reg(sc, reg); 12806 base = sc->memwin[2].mw_base; 12807 12808 if (is_t4(sc)) { 12809 pf = 0; 12810 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12811 } else { 12812 pf = V_PFNUM(sc->pf); 12813 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12814 } 12815 off = addr - win_pos; 12816 t4_write_reg(sc, reg, win_pos | pf); 12817 t4_read_reg(sc, reg); 12818 12819 while (len > 0 && !db_pager_quit) { 12820 uint32_t buf[8]; 12821 for (j = 0; j < 8; j++, off += 4) 12822 buf[j] = htonl(t4_read_reg(sc, base + off)); 12823 12824 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12825 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12826 buf[7]); 12827 if (len <= sizeof(buf)) 12828 len = 0; 12829 else 12830 len -= sizeof(buf); 12831 } 12832 12833 t4_write_reg(sc, reg, save); 12834 t4_read_reg(sc, reg); 12835 } 12836 12837 static void 12838 t4_dump_tcb(struct adapter *sc, int tid) 12839 { 12840 uint32_t tcb_addr; 12841 12842 /* Dump TCB for the tid */ 12843 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12844 tcb_addr += tid * TCB_SIZE; 12845 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12846 } 12847 12848 static void 12849 t4_dump_devlog(struct adapter *sc) 12850 { 12851 struct devlog_params *dparams = &sc->params.devlog; 12852 struct fw_devlog_e e; 12853 int i, first, j, m, nentries, rc; 12854 uint64_t ftstamp = UINT64_MAX; 12855 12856 if (dparams->start == 0) { 12857 db_printf("devlog params not valid\n"); 12858 return; 12859 } 12860 12861 nentries = dparams->size / sizeof(struct fw_devlog_e); 12862 m = fwmtype_to_hwmtype(dparams->memtype); 12863 12864 /* Find the first entry. */ 12865 first = -1; 12866 for (i = 0; i < nentries && !db_pager_quit; i++) { 12867 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12868 sizeof(e), (void *)&e); 12869 if (rc != 0) 12870 break; 12871 12872 if (e.timestamp == 0) 12873 break; 12874 12875 e.timestamp = be64toh(e.timestamp); 12876 if (e.timestamp < ftstamp) { 12877 ftstamp = e.timestamp; 12878 first = i; 12879 } 12880 } 12881 12882 if (first == -1) 12883 return; 12884 12885 i = first; 12886 do { 12887 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12888 sizeof(e), (void *)&e); 12889 if (rc != 0) 12890 return; 12891 12892 if (e.timestamp == 0) 12893 return; 12894 12895 e.timestamp = be64toh(e.timestamp); 12896 e.seqno = be32toh(e.seqno); 12897 for (j = 0; j < 8; j++) 12898 e.params[j] = be32toh(e.params[j]); 12899 12900 db_printf("%10d %15ju %8s %8s ", 12901 e.seqno, e.timestamp, 12902 (e.level < nitems(devlog_level_strings) ? 12903 devlog_level_strings[e.level] : "UNKNOWN"), 12904 (e.facility < nitems(devlog_facility_strings) ? 12905 devlog_facility_strings[e.facility] : "UNKNOWN")); 12906 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12907 e.params[3], e.params[4], e.params[5], e.params[6], 12908 e.params[7]); 12909 12910 if (++i == nentries) 12911 i = 0; 12912 } while (i != first && !db_pager_quit); 12913 } 12914 12915 static DB_DEFINE_TABLE(show, t4, show_t4); 12916 12917 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12918 { 12919 device_t dev; 12920 int t; 12921 bool valid; 12922 12923 valid = false; 12924 t = db_read_token(); 12925 if (t == tIDENT) { 12926 dev = device_lookup_by_name(db_tok_string); 12927 valid = true; 12928 } 12929 db_skip_to_eol(); 12930 if (!valid) { 12931 db_printf("usage: show t4 devlog <nexus>\n"); 12932 return; 12933 } 12934 12935 if (dev == NULL) { 12936 db_printf("device not found\n"); 12937 return; 12938 } 12939 12940 t4_dump_devlog(device_get_softc(dev)); 12941 } 12942 12943 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12944 { 12945 device_t dev; 12946 int radix, tid, t; 12947 bool valid; 12948 12949 valid = false; 12950 radix = db_radix; 12951 db_radix = 10; 12952 t = db_read_token(); 12953 if (t == tIDENT) { 12954 dev = device_lookup_by_name(db_tok_string); 12955 t = db_read_token(); 12956 if (t == tNUMBER) { 12957 tid = db_tok_number; 12958 valid = true; 12959 } 12960 } 12961 db_radix = radix; 12962 db_skip_to_eol(); 12963 if (!valid) { 12964 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12965 return; 12966 } 12967 12968 if (dev == NULL) { 12969 db_printf("device not found\n"); 12970 return; 12971 } 12972 if (tid < 0) { 12973 db_printf("invalid tid\n"); 12974 return; 12975 } 12976 12977 t4_dump_tcb(device_get_softc(dev), tid); 12978 } 12979 12980 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 12981 { 12982 device_t dev; 12983 int radix, t; 12984 bool valid; 12985 12986 valid = false; 12987 radix = db_radix; 12988 db_radix = 10; 12989 t = db_read_token(); 12990 if (t == tIDENT) { 12991 dev = device_lookup_by_name(db_tok_string); 12992 t = db_read_token(); 12993 if (t == tNUMBER) { 12994 addr = db_tok_number; 12995 t = db_read_token(); 12996 if (t == tNUMBER) { 12997 count = db_tok_number; 12998 valid = true; 12999 } 13000 } 13001 } 13002 db_radix = radix; 13003 db_skip_to_eol(); 13004 if (!valid) { 13005 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 13006 return; 13007 } 13008 13009 if (dev == NULL) { 13010 db_printf("device not found\n"); 13011 return; 13012 } 13013 if (addr < 0) { 13014 db_printf("invalid address\n"); 13015 return; 13016 } 13017 if (count <= 0) { 13018 db_printf("invalid length\n"); 13019 return; 13020 } 13021 13022 t4_dump_mem(device_get_softc(dev), addr, count); 13023 } 13024 #endif 13025 13026 static eventhandler_tag vxlan_start_evtag; 13027 static eventhandler_tag vxlan_stop_evtag; 13028 13029 struct vxlan_evargs { 13030 if_t ifp; 13031 uint16_t port; 13032 }; 13033 13034 static void 13035 enable_vxlan_rx(struct adapter *sc) 13036 { 13037 int i, rc; 13038 struct port_info *pi; 13039 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13040 13041 ASSERT_SYNCHRONIZED_OP(sc); 13042 13043 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13044 F_VXLAN_EN); 13045 for_each_port(sc, i) { 13046 pi = sc->port[i]; 13047 if (pi->vxlan_tcam_entry == true) 13048 continue; 13049 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13050 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13051 true); 13052 if (rc < 0) { 13053 rc = -rc; 13054 CH_ERR(&pi->vi[0], 13055 "failed to add VXLAN TCAM entry: %d.\n", rc); 13056 } else { 13057 MPASS(rc == sc->rawf_base + pi->port_id); 13058 pi->vxlan_tcam_entry = true; 13059 } 13060 } 13061 } 13062 13063 static void 13064 t4_vxlan_start(struct adapter *sc, void *arg) 13065 { 13066 struct vxlan_evargs *v = arg; 13067 13068 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13069 return; 13070 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13071 return; 13072 13073 if (sc->vxlan_refcount == 0) { 13074 sc->vxlan_port = v->port; 13075 sc->vxlan_refcount = 1; 13076 if (!hw_off_limits(sc)) 13077 enable_vxlan_rx(sc); 13078 } else if (sc->vxlan_port == v->port) { 13079 sc->vxlan_refcount++; 13080 } else { 13081 CH_ERR(sc, "VXLAN already configured on port %d; " 13082 "ignoring attempt to configure it on port %d\n", 13083 sc->vxlan_port, v->port); 13084 } 13085 end_synchronized_op(sc, 0); 13086 } 13087 13088 static void 13089 t4_vxlan_stop(struct adapter *sc, void *arg) 13090 { 13091 struct vxlan_evargs *v = arg; 13092 13093 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13094 return; 13095 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13096 return; 13097 13098 /* 13099 * VXLANs may have been configured before the driver was loaded so we 13100 * may see more stops than starts. This is not handled cleanly but at 13101 * least we keep the refcount sane. 13102 */ 13103 if (sc->vxlan_port != v->port) 13104 goto done; 13105 if (sc->vxlan_refcount == 0) { 13106 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13107 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13108 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13109 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13110 done: 13111 end_synchronized_op(sc, 0); 13112 } 13113 13114 static void 13115 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13116 sa_family_t family, u_int port) 13117 { 13118 struct vxlan_evargs v; 13119 13120 MPASS(family == AF_INET || family == AF_INET6); 13121 v.ifp = ifp; 13122 v.port = port; 13123 13124 t4_iterate(t4_vxlan_start, &v); 13125 } 13126 13127 static void 13128 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13129 u_int port) 13130 { 13131 struct vxlan_evargs v; 13132 13133 MPASS(family == AF_INET || family == AF_INET6); 13134 v.ifp = ifp; 13135 v.port = port; 13136 13137 t4_iterate(t4_vxlan_stop, &v); 13138 } 13139 13140 13141 static struct sx mlu; /* mod load unload */ 13142 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13143 13144 static int 13145 mod_event(module_t mod, int cmd, void *arg) 13146 { 13147 int rc = 0; 13148 static int loaded = 0; 13149 13150 switch (cmd) { 13151 case MOD_LOAD: 13152 sx_xlock(&mlu); 13153 if (loaded++ == 0) { 13154 t4_sge_modload(); 13155 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13156 t4_filter_rpl, CPL_COOKIE_FILTER); 13157 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13158 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13159 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13160 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13161 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13162 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13163 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13164 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13165 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13166 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13167 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13168 do_smt_write_rpl); 13169 sx_init(&t4_list_lock, "T4/T5 adapters"); 13170 SLIST_INIT(&t4_list); 13171 callout_init(&fatal_callout, 1); 13172 #ifdef TCP_OFFLOAD 13173 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13174 #endif 13175 #ifdef INET6 13176 t4_clip_modload(); 13177 #endif 13178 #ifdef KERN_TLS 13179 t6_ktls_modload(); 13180 #endif 13181 t4_tracer_modload(); 13182 tweak_tunables(); 13183 vxlan_start_evtag = 13184 EVENTHANDLER_REGISTER(vxlan_start, 13185 t4_vxlan_start_handler, NULL, 13186 EVENTHANDLER_PRI_ANY); 13187 vxlan_stop_evtag = 13188 EVENTHANDLER_REGISTER(vxlan_stop, 13189 t4_vxlan_stop_handler, NULL, 13190 EVENTHANDLER_PRI_ANY); 13191 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13192 taskqueue_thread_enqueue, &reset_tq); 13193 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13194 "t4_rst_thr"); 13195 } 13196 sx_xunlock(&mlu); 13197 break; 13198 13199 case MOD_UNLOAD: 13200 sx_xlock(&mlu); 13201 if (--loaded == 0) { 13202 #ifdef TCP_OFFLOAD 13203 int i; 13204 #endif 13205 int tries; 13206 13207 taskqueue_free(reset_tq); 13208 13209 tries = 0; 13210 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13211 uprintf("%ju clusters with custom free routine " 13212 "still is use.\n", t4_sge_extfree_refs()); 13213 pause("t4unload", 2 * hz); 13214 } 13215 13216 sx_slock(&t4_list_lock); 13217 if (!SLIST_EMPTY(&t4_list)) { 13218 rc = EBUSY; 13219 sx_sunlock(&t4_list_lock); 13220 goto done_unload; 13221 } 13222 #ifdef TCP_OFFLOAD 13223 sx_slock(&t4_uld_list_lock); 13224 for (i = 0; i <= ULD_MAX; i++) { 13225 if (t4_uld_list[i] != NULL) { 13226 rc = EBUSY; 13227 sx_sunlock(&t4_uld_list_lock); 13228 sx_sunlock(&t4_list_lock); 13229 goto done_unload; 13230 } 13231 } 13232 sx_sunlock(&t4_uld_list_lock); 13233 #endif 13234 sx_sunlock(&t4_list_lock); 13235 13236 if (t4_sge_extfree_refs() == 0) { 13237 EVENTHANDLER_DEREGISTER(vxlan_start, 13238 vxlan_start_evtag); 13239 EVENTHANDLER_DEREGISTER(vxlan_stop, 13240 vxlan_stop_evtag); 13241 t4_tracer_modunload(); 13242 #ifdef KERN_TLS 13243 t6_ktls_modunload(); 13244 #endif 13245 #ifdef INET6 13246 t4_clip_modunload(); 13247 #endif 13248 #ifdef TCP_OFFLOAD 13249 sx_destroy(&t4_uld_list_lock); 13250 #endif 13251 sx_destroy(&t4_list_lock); 13252 t4_sge_modunload(); 13253 loaded = 0; 13254 } else { 13255 rc = EBUSY; 13256 loaded++; /* undo earlier decrement */ 13257 } 13258 } 13259 done_unload: 13260 sx_xunlock(&mlu); 13261 break; 13262 } 13263 13264 return (rc); 13265 } 13266 13267 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13268 MODULE_VERSION(t4nex, 1); 13269 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13270 #ifdef DEV_NETMAP 13271 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13272 #endif /* DEV_NETMAP */ 13273 13274 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13275 MODULE_VERSION(t5nex, 1); 13276 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13277 #ifdef DEV_NETMAP 13278 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13279 #endif /* DEV_NETMAP */ 13280 13281 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13282 MODULE_VERSION(t6nex, 1); 13283 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13284 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13285 #ifdef DEV_NETMAP 13286 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13287 #endif /* DEV_NETMAP */ 13288 13289 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13290 MODULE_VERSION(cxgbe, 1); 13291 13292 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13293 MODULE_VERSION(cxl, 1); 13294 13295 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13296 MODULE_VERSION(cc, 1); 13297 13298 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13299 MODULE_VERSION(vcxgbe, 1); 13300 13301 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13302 MODULE_VERSION(vcxl, 1); 13303 13304 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13305 MODULE_VERSION(vcc, 1); 13306