1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_tx_vm_wr = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 631 "Use VM work requests to transmit packets."); 632 633 /* 634 * Set to non-zero to enable the attack filter. A packet that matches any of 635 * these conditions will get dropped on ingress: 636 * 1) IP && source address == destination address. 637 * 2) TCP/IP && source address is not a unicast address. 638 * 3) TCP/IP && destination address is not a unicast address. 639 * 4) IP && source address is loopback (127.x.y.z). 640 * 5) IP && destination address is loopback (127.x.y.z). 641 * 6) IPv6 && source address == destination address. 642 * 7) IPv6 && source address is not a unicast address. 643 * 8) IPv6 && source address is loopback (::1/128). 644 * 9) IPv6 && destination address is loopback (::1/128). 645 * 10) IPv6 && source address is unspecified (::/128). 646 * 11) IPv6 && destination address is unspecified (::/128). 647 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 648 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 649 */ 650 static int t4_attack_filter = 0; 651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 652 &t4_attack_filter, 0, "Drop suspicious traffic"); 653 654 static int t4_drop_ip_fragments = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 656 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 657 658 static int t4_drop_pkts_with_l2_errors = 1; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l2_errors, 0, 661 "Drop all frames with Layer 2 length or checksum errors"); 662 663 static int t4_drop_pkts_with_l3_errors = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 665 &t4_drop_pkts_with_l3_errors, 0, 666 "Drop all frames with IP version, length, or checksum errors"); 667 668 static int t4_drop_pkts_with_l4_errors = 0; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 670 &t4_drop_pkts_with_l4_errors, 0, 671 "Drop all frames with Layer 4 length, checksum, or other errors"); 672 673 #ifdef TCP_OFFLOAD 674 /* 675 * TOE tunables. 676 */ 677 static int t4_cop_managed_offloading = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 679 &t4_cop_managed_offloading, 0, 680 "COP (Connection Offload Policy) controls all TOE offload"); 681 #endif 682 683 #ifdef KERN_TLS 684 /* 685 * This enables KERN_TLS for all adapters if set. 686 */ 687 static int t4_kern_tls = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 689 "Enable KERN_TLS mode for all supported adapters"); 690 691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 692 "cxgbe(4) KERN_TLS parameters"); 693 694 static int t4_tls_inline_keys = 0; 695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 696 &t4_tls_inline_keys, 0, 697 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 698 "in card memory."); 699 700 static int t4_tls_combo_wrs = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 702 0, "Attempt to combine TCB field updates with TLS record work requests."); 703 #endif 704 705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 706 static int vi_mac_funcs[] = { 707 FW_VI_FUNC_ETH, 708 FW_VI_FUNC_OFLD, 709 FW_VI_FUNC_IWARP, 710 FW_VI_FUNC_OPENISCSI, 711 FW_VI_FUNC_OPENFCOE, 712 FW_VI_FUNC_FOISCSI, 713 FW_VI_FUNC_FOFCOE, 714 }; 715 716 struct intrs_and_queues { 717 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 718 uint16_t num_vis; /* number of VIs for each port */ 719 uint16_t nirq; /* Total # of vectors */ 720 uint16_t ntxq; /* # of NIC txq's for each port */ 721 uint16_t nrxq; /* # of NIC rxq's for each port */ 722 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 723 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 724 uint16_t nnmtxq; /* # of netmap txq's */ 725 uint16_t nnmrxq; /* # of netmap rxq's */ 726 727 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 728 uint16_t ntxq_vi; /* # of NIC txq's */ 729 uint16_t nrxq_vi; /* # of NIC rxq's */ 730 uint16_t nofldtxq_vi; /* # of TOE txq's */ 731 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 732 uint16_t nnmtxq_vi; /* # of netmap txq's */ 733 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 734 }; 735 736 static void setup_memwin(struct adapter *); 737 static void position_memwin(struct adapter *, int, uint32_t); 738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 739 static int fwmtype_to_hwmtype(int); 740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 741 uint32_t *); 742 static int fixup_devlog_params(struct adapter *); 743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 744 static int contact_firmware(struct adapter *); 745 static int partition_resources(struct adapter *); 746 static int get_params__pre_init(struct adapter *); 747 static int set_params__pre_init(struct adapter *); 748 static int get_params__post_init(struct adapter *); 749 static int set_params__post_init(struct adapter *); 750 static void t4_set_desc(struct adapter *); 751 static bool fixed_ifmedia(struct port_info *); 752 static void build_medialist(struct port_info *); 753 static void init_link_config(struct port_info *); 754 static int fixup_link_config(struct port_info *); 755 static int apply_link_config(struct port_info *); 756 static int cxgbe_init_synchronized(struct vi_info *); 757 static int cxgbe_uninit_synchronized(struct vi_info *); 758 static int adapter_full_init(struct adapter *); 759 static void adapter_full_uninit(struct adapter *); 760 static int vi_full_init(struct vi_info *); 761 static void vi_full_uninit(struct vi_info *); 762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 763 static void quiesce_txq(struct sge_txq *); 764 static void quiesce_wrq(struct sge_wrq *); 765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 766 static void quiesce_vi(struct vi_info *); 767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 768 driver_intr_t *, void *, char *); 769 static int t4_free_irq(struct adapter *, struct irq *); 770 static void t4_init_atid_table(struct adapter *); 771 static void t4_free_atid_table(struct adapter *); 772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 773 static void vi_refresh_stats(struct vi_info *); 774 static void cxgbe_refresh_stats(struct vi_info *); 775 static void cxgbe_tick(void *); 776 static void vi_tick(void *); 777 static void cxgbe_sysctls(struct port_info *); 778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 829 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 830 #ifdef TCP_OFFLOAD 831 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 841 #endif 842 static int get_sge_context(struct adapter *, struct t4_sge_context *); 843 static int load_fw(struct adapter *, struct t4_data *); 844 static int load_cfg(struct adapter *, struct t4_data *); 845 static int load_boot(struct adapter *, struct t4_bootrom *); 846 static int load_bootcfg(struct adapter *, struct t4_data *); 847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 848 static void free_offload_policy(struct t4_offload_policy *); 849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 851 static int read_i2c(struct adapter *, struct t4_i2c_data *); 852 static int clear_stats(struct adapter *, u_int); 853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 855 #ifdef TCP_OFFLOAD 856 static int toe_capability(struct vi_info *, bool); 857 static void t4_async_event(struct adapter *); 858 #endif 859 #ifdef KERN_TLS 860 static int ktls_capability(struct adapter *, bool); 861 #endif 862 static int mod_event(module_t, int, void *); 863 static int notify_siblings(device_t, int); 864 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 866 static void enable_vxlan_rx(struct adapter *); 867 static void reset_adapter_task(void *, int); 868 static void fatal_error_task(void *, int); 869 static void dump_devlog(struct adapter *); 870 static void dump_cim_regs(struct adapter *); 871 static void dump_cimla(struct adapter *); 872 873 struct { 874 uint16_t device; 875 char *desc; 876 } t4_pciids[] = { 877 {0xa000, "Chelsio Terminator 4 FPGA"}, 878 {0x4400, "Chelsio T440-dbg"}, 879 {0x4401, "Chelsio T420-CR"}, 880 {0x4402, "Chelsio T422-CR"}, 881 {0x4403, "Chelsio T440-CR"}, 882 {0x4404, "Chelsio T420-BCH"}, 883 {0x4405, "Chelsio T440-BCH"}, 884 {0x4406, "Chelsio T440-CH"}, 885 {0x4407, "Chelsio T420-SO"}, 886 {0x4408, "Chelsio T420-CX"}, 887 {0x4409, "Chelsio T420-BT"}, 888 {0x440a, "Chelsio T404-BT"}, 889 {0x440e, "Chelsio T440-LP-CR"}, 890 }, t5_pciids[] = { 891 {0xb000, "Chelsio Terminator 5 FPGA"}, 892 {0x5400, "Chelsio T580-dbg"}, 893 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 894 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 895 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 896 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 897 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 898 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 899 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 900 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 901 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 902 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 903 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 904 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 905 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 906 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 907 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 908 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 909 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 910 911 /* Custom */ 912 {0x5483, "Custom T540-CR"}, 913 {0x5484, "Custom T540-BT"}, 914 }, t6_pciids[] = { 915 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 916 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 917 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 918 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 919 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 920 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 921 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 922 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 923 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 924 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 925 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 926 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 927 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 928 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 929 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 930 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 931 932 /* Custom */ 933 {0x6480, "Custom T6225-CR"}, 934 {0x6481, "Custom T62100-CR"}, 935 {0x6482, "Custom T6225-CR"}, 936 {0x6483, "Custom T62100-CR"}, 937 {0x6484, "Custom T64100-CR"}, 938 {0x6485, "Custom T6240-SO"}, 939 {0x6486, "Custom T6225-SO-CR"}, 940 {0x6487, "Custom T6225-CR"}, 941 }; 942 943 #ifdef TCP_OFFLOAD 944 /* 945 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 946 * be exactly the same for both rxq and ofld_rxq. 947 */ 948 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 949 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 950 #endif 951 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 952 953 static int 954 t4_probe(device_t dev) 955 { 956 int i; 957 uint16_t v = pci_get_vendor(dev); 958 uint16_t d = pci_get_device(dev); 959 uint8_t f = pci_get_function(dev); 960 961 if (v != PCI_VENDOR_ID_CHELSIO) 962 return (ENXIO); 963 964 /* Attach only to PF0 of the FPGA */ 965 if (d == 0xa000 && f != 0) 966 return (ENXIO); 967 968 for (i = 0; i < nitems(t4_pciids); i++) { 969 if (d == t4_pciids[i].device) { 970 device_set_desc(dev, t4_pciids[i].desc); 971 return (BUS_PROBE_DEFAULT); 972 } 973 } 974 975 return (ENXIO); 976 } 977 978 static int 979 t5_probe(device_t dev) 980 { 981 int i; 982 uint16_t v = pci_get_vendor(dev); 983 uint16_t d = pci_get_device(dev); 984 uint8_t f = pci_get_function(dev); 985 986 if (v != PCI_VENDOR_ID_CHELSIO) 987 return (ENXIO); 988 989 /* Attach only to PF0 of the FPGA */ 990 if (d == 0xb000 && f != 0) 991 return (ENXIO); 992 993 for (i = 0; i < nitems(t5_pciids); i++) { 994 if (d == t5_pciids[i].device) { 995 device_set_desc(dev, t5_pciids[i].desc); 996 return (BUS_PROBE_DEFAULT); 997 } 998 } 999 1000 return (ENXIO); 1001 } 1002 1003 static int 1004 t6_probe(device_t dev) 1005 { 1006 int i; 1007 uint16_t v = pci_get_vendor(dev); 1008 uint16_t d = pci_get_device(dev); 1009 1010 if (v != PCI_VENDOR_ID_CHELSIO) 1011 return (ENXIO); 1012 1013 for (i = 0; i < nitems(t6_pciids); i++) { 1014 if (d == t6_pciids[i].device) { 1015 device_set_desc(dev, t6_pciids[i].desc); 1016 return (BUS_PROBE_DEFAULT); 1017 } 1018 } 1019 1020 return (ENXIO); 1021 } 1022 1023 static void 1024 t5_attribute_workaround(device_t dev) 1025 { 1026 device_t root_port; 1027 uint32_t v; 1028 1029 /* 1030 * The T5 chips do not properly echo the No Snoop and Relaxed 1031 * Ordering attributes when replying to a TLP from a Root 1032 * Port. As a workaround, find the parent Root Port and 1033 * disable No Snoop and Relaxed Ordering. Note that this 1034 * affects all devices under this root port. 1035 */ 1036 root_port = pci_find_pcie_root_port(dev); 1037 if (root_port == NULL) { 1038 device_printf(dev, "Unable to find parent root port\n"); 1039 return; 1040 } 1041 1042 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1043 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1044 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1045 0) 1046 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1047 device_get_nameunit(root_port)); 1048 } 1049 1050 static const struct devnames devnames[] = { 1051 { 1052 .nexus_name = "t4nex", 1053 .ifnet_name = "cxgbe", 1054 .vi_ifnet_name = "vcxgbe", 1055 .pf03_drv_name = "t4iov", 1056 .vf_nexus_name = "t4vf", 1057 .vf_ifnet_name = "cxgbev" 1058 }, { 1059 .nexus_name = "t5nex", 1060 .ifnet_name = "cxl", 1061 .vi_ifnet_name = "vcxl", 1062 .pf03_drv_name = "t5iov", 1063 .vf_nexus_name = "t5vf", 1064 .vf_ifnet_name = "cxlv" 1065 }, { 1066 .nexus_name = "t6nex", 1067 .ifnet_name = "cc", 1068 .vi_ifnet_name = "vcc", 1069 .pf03_drv_name = "t6iov", 1070 .vf_nexus_name = "t6vf", 1071 .vf_ifnet_name = "ccv" 1072 } 1073 }; 1074 1075 void 1076 t4_init_devnames(struct adapter *sc) 1077 { 1078 int id; 1079 1080 id = chip_id(sc); 1081 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1082 sc->names = &devnames[id - CHELSIO_T4]; 1083 else { 1084 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1085 sc->names = NULL; 1086 } 1087 } 1088 1089 static int 1090 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1091 { 1092 const char *parent, *name; 1093 long value; 1094 int line, unit; 1095 1096 line = 0; 1097 parent = device_get_nameunit(sc->dev); 1098 name = sc->names->ifnet_name; 1099 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1100 if (resource_long_value(name, unit, "port", &value) == 0 && 1101 value == pi->port_id) 1102 return (unit); 1103 } 1104 return (-1); 1105 } 1106 1107 static int 1108 t4_attach(device_t dev) 1109 { 1110 struct adapter *sc; 1111 int rc = 0, i, j, rqidx, tqidx, nports; 1112 struct make_dev_args mda; 1113 struct intrs_and_queues iaq; 1114 struct sge *s; 1115 uint32_t *buf; 1116 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1117 int ofld_tqidx; 1118 #endif 1119 #ifdef TCP_OFFLOAD 1120 int ofld_rqidx; 1121 #endif 1122 #ifdef DEV_NETMAP 1123 int nm_rqidx, nm_tqidx; 1124 #endif 1125 int num_vis; 1126 1127 sc = device_get_softc(dev); 1128 sc->dev = dev; 1129 sysctl_ctx_init(&sc->ctx); 1130 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1131 1132 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1133 t5_attribute_workaround(dev); 1134 pci_enable_busmaster(dev); 1135 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1136 uint32_t v; 1137 1138 pci_set_max_read_req(dev, 4096); 1139 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1140 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1141 if (pcie_relaxed_ordering == 0 && 1142 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1143 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1144 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1145 } else if (pcie_relaxed_ordering == 1 && 1146 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1147 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1148 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1149 } 1150 } 1151 1152 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1153 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1154 sc->traceq = -1; 1155 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1156 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1157 device_get_nameunit(dev)); 1158 1159 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1160 device_get_nameunit(dev)); 1161 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1162 t4_add_adapter(sc); 1163 1164 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1165 TAILQ_INIT(&sc->sfl); 1166 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1167 1168 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1169 1170 sc->policy = NULL; 1171 rw_init(&sc->policy_lock, "connection offload policy"); 1172 1173 callout_init(&sc->ktls_tick, 1); 1174 1175 refcount_init(&sc->vxlan_refcount, 0); 1176 1177 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1178 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1179 1180 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1181 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1182 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1183 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1184 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1185 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1186 1187 rc = t4_map_bars_0_and_4(sc); 1188 if (rc != 0) 1189 goto done; /* error message displayed already */ 1190 1191 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1192 1193 /* Prepare the adapter for operation. */ 1194 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1195 rc = -t4_prep_adapter(sc, buf); 1196 free(buf, M_CXGBE); 1197 if (rc != 0) { 1198 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1199 goto done; 1200 } 1201 1202 /* 1203 * This is the real PF# to which we're attaching. Works from within PCI 1204 * passthrough environments too, where pci_get_function() could return a 1205 * different PF# depending on the passthrough configuration. We need to 1206 * use the real PF# in all our communication with the firmware. 1207 */ 1208 j = t4_read_reg(sc, A_PL_WHOAMI); 1209 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1210 sc->mbox = sc->pf; 1211 1212 t4_init_devnames(sc); 1213 if (sc->names == NULL) { 1214 rc = ENOTSUP; 1215 goto done; /* error message displayed already */ 1216 } 1217 1218 /* 1219 * Do this really early, with the memory windows set up even before the 1220 * character device. The userland tool's register i/o and mem read 1221 * will work even in "recovery mode". 1222 */ 1223 setup_memwin(sc); 1224 if (t4_init_devlog_params(sc, 0) == 0) 1225 fixup_devlog_params(sc); 1226 make_dev_args_init(&mda); 1227 mda.mda_devsw = &t4_cdevsw; 1228 mda.mda_uid = UID_ROOT; 1229 mda.mda_gid = GID_WHEEL; 1230 mda.mda_mode = 0600; 1231 mda.mda_si_drv1 = sc; 1232 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1233 if (rc != 0) 1234 device_printf(dev, "failed to create nexus char device: %d.\n", 1235 rc); 1236 1237 /* Go no further if recovery mode has been requested. */ 1238 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1239 device_printf(dev, "recovery mode.\n"); 1240 goto done; 1241 } 1242 1243 #if defined(__i386__) 1244 if ((cpu_feature & CPUID_CX8) == 0) { 1245 device_printf(dev, "64 bit atomics not available.\n"); 1246 rc = ENOTSUP; 1247 goto done; 1248 } 1249 #endif 1250 1251 /* Contact the firmware and try to become the master driver. */ 1252 rc = contact_firmware(sc); 1253 if (rc != 0) 1254 goto done; /* error message displayed already */ 1255 MPASS(sc->flags & FW_OK); 1256 1257 rc = get_params__pre_init(sc); 1258 if (rc != 0) 1259 goto done; /* error message displayed already */ 1260 1261 if (sc->flags & MASTER_PF) { 1262 rc = partition_resources(sc); 1263 if (rc != 0) 1264 goto done; /* error message displayed already */ 1265 t4_intr_clear(sc); 1266 } 1267 1268 rc = get_params__post_init(sc); 1269 if (rc != 0) 1270 goto done; /* error message displayed already */ 1271 1272 rc = set_params__post_init(sc); 1273 if (rc != 0) 1274 goto done; /* error message displayed already */ 1275 1276 rc = t4_map_bar_2(sc); 1277 if (rc != 0) 1278 goto done; /* error message displayed already */ 1279 1280 rc = t4_create_dma_tag(sc); 1281 if (rc != 0) 1282 goto done; /* error message displayed already */ 1283 1284 /* 1285 * First pass over all the ports - allocate VIs and initialize some 1286 * basic parameters like mac address, port type, etc. 1287 */ 1288 for_each_port(sc, i) { 1289 struct port_info *pi; 1290 1291 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1292 sc->port[i] = pi; 1293 1294 /* These must be set before t4_port_init */ 1295 pi->adapter = sc; 1296 pi->port_id = i; 1297 /* 1298 * XXX: vi[0] is special so we can't delay this allocation until 1299 * pi->nvi's final value is known. 1300 */ 1301 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1302 M_ZERO | M_WAITOK); 1303 1304 /* 1305 * Allocate the "main" VI and initialize parameters 1306 * like mac addr. 1307 */ 1308 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1309 if (rc != 0) { 1310 device_printf(dev, "unable to initialize port %d: %d\n", 1311 i, rc); 1312 free(pi->vi, M_CXGBE); 1313 free(pi, M_CXGBE); 1314 sc->port[i] = NULL; 1315 goto done; 1316 } 1317 1318 if (is_bt(pi->port_type)) 1319 setbit(&sc->bt_map, pi->tx_chan); 1320 else 1321 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1322 1323 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1324 device_get_nameunit(dev), i); 1325 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1326 sc->chan_map[pi->tx_chan] = i; 1327 1328 /* 1329 * The MPS counter for FCS errors doesn't work correctly on the 1330 * T6 so we use the MAC counter here. Which MAC is in use 1331 * depends on the link settings which will be known when the 1332 * link comes up. 1333 */ 1334 if (is_t6(sc)) { 1335 pi->fcs_reg = -1; 1336 } else if (is_t4(sc)) { 1337 pi->fcs_reg = PORT_REG(pi->tx_chan, 1338 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1339 } else { 1340 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1341 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1342 } 1343 pi->fcs_base = 0; 1344 1345 /* All VIs on this port share this media. */ 1346 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1347 cxgbe_media_status); 1348 1349 PORT_LOCK(pi); 1350 init_link_config(pi); 1351 fixup_link_config(pi); 1352 build_medialist(pi); 1353 if (fixed_ifmedia(pi)) 1354 pi->flags |= FIXED_IFMEDIA; 1355 PORT_UNLOCK(pi); 1356 1357 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1358 t4_ifnet_unit(sc, pi)); 1359 if (pi->dev == NULL) { 1360 device_printf(dev, 1361 "failed to add device for port %d.\n", i); 1362 rc = ENXIO; 1363 goto done; 1364 } 1365 pi->vi[0].dev = pi->dev; 1366 device_set_softc(pi->dev, pi); 1367 } 1368 1369 /* 1370 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1371 */ 1372 nports = sc->params.nports; 1373 rc = cfg_itype_and_nqueues(sc, &iaq); 1374 if (rc != 0) 1375 goto done; /* error message displayed already */ 1376 1377 num_vis = iaq.num_vis; 1378 sc->intr_type = iaq.intr_type; 1379 sc->intr_count = iaq.nirq; 1380 1381 s = &sc->sge; 1382 s->nrxq = nports * iaq.nrxq; 1383 s->ntxq = nports * iaq.ntxq; 1384 if (num_vis > 1) { 1385 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1386 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1387 } 1388 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1389 s->neq += nports; /* ctrl queues: 1 per port */ 1390 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1391 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1392 if (is_offload(sc) || is_ethoffload(sc)) { 1393 s->nofldtxq = nports * iaq.nofldtxq; 1394 if (num_vis > 1) 1395 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1396 s->neq += s->nofldtxq; 1397 1398 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1399 M_CXGBE, M_ZERO | M_WAITOK); 1400 } 1401 #endif 1402 #ifdef TCP_OFFLOAD 1403 if (is_offload(sc)) { 1404 s->nofldrxq = nports * iaq.nofldrxq; 1405 if (num_vis > 1) 1406 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1407 s->neq += s->nofldrxq; /* free list */ 1408 s->niq += s->nofldrxq; 1409 1410 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1411 M_CXGBE, M_ZERO | M_WAITOK); 1412 } 1413 #endif 1414 #ifdef DEV_NETMAP 1415 s->nnmrxq = 0; 1416 s->nnmtxq = 0; 1417 if (t4_native_netmap & NN_MAIN_VI) { 1418 s->nnmrxq += nports * iaq.nnmrxq; 1419 s->nnmtxq += nports * iaq.nnmtxq; 1420 } 1421 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1422 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1423 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1424 } 1425 s->neq += s->nnmtxq + s->nnmrxq; 1426 s->niq += s->nnmrxq; 1427 1428 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1429 M_CXGBE, M_ZERO | M_WAITOK); 1430 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1431 M_CXGBE, M_ZERO | M_WAITOK); 1432 #endif 1433 MPASS(s->niq <= s->iqmap_sz); 1434 MPASS(s->neq <= s->eqmap_sz); 1435 1436 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1437 M_ZERO | M_WAITOK); 1438 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1439 M_ZERO | M_WAITOK); 1440 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1441 M_ZERO | M_WAITOK); 1442 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1443 M_ZERO | M_WAITOK); 1444 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1445 M_ZERO | M_WAITOK); 1446 1447 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1448 M_ZERO | M_WAITOK); 1449 1450 t4_init_l2t(sc, M_WAITOK); 1451 t4_init_smt(sc, M_WAITOK); 1452 t4_init_tx_sched(sc); 1453 t4_init_atid_table(sc); 1454 #ifdef RATELIMIT 1455 t4_init_etid_table(sc); 1456 #endif 1457 #ifdef INET6 1458 t4_init_clip_table(sc); 1459 #endif 1460 if (sc->vres.key.size != 0) 1461 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1462 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1463 1464 /* 1465 * Second pass over the ports. This time we know the number of rx and 1466 * tx queues that each port should get. 1467 */ 1468 rqidx = tqidx = 0; 1469 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1470 ofld_tqidx = 0; 1471 #endif 1472 #ifdef TCP_OFFLOAD 1473 ofld_rqidx = 0; 1474 #endif 1475 #ifdef DEV_NETMAP 1476 nm_rqidx = nm_tqidx = 0; 1477 #endif 1478 for_each_port(sc, i) { 1479 struct port_info *pi = sc->port[i]; 1480 struct vi_info *vi; 1481 1482 if (pi == NULL) 1483 continue; 1484 1485 pi->nvi = num_vis; 1486 for_each_vi(pi, j, vi) { 1487 vi->pi = pi; 1488 vi->adapter = sc; 1489 vi->first_intr = -1; 1490 vi->qsize_rxq = t4_qsize_rxq; 1491 vi->qsize_txq = t4_qsize_txq; 1492 1493 vi->first_rxq = rqidx; 1494 vi->first_txq = tqidx; 1495 vi->tmr_idx = t4_tmr_idx; 1496 vi->pktc_idx = t4_pktc_idx; 1497 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1498 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1499 1500 rqidx += vi->nrxq; 1501 tqidx += vi->ntxq; 1502 1503 if (j == 0 && vi->ntxq > 1) 1504 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1505 else 1506 vi->rsrv_noflowq = 0; 1507 1508 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1509 vi->first_ofld_txq = ofld_tqidx; 1510 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1511 ofld_tqidx += vi->nofldtxq; 1512 #endif 1513 #ifdef TCP_OFFLOAD 1514 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1515 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1516 vi->first_ofld_rxq = ofld_rqidx; 1517 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1518 1519 ofld_rqidx += vi->nofldrxq; 1520 #endif 1521 #ifdef DEV_NETMAP 1522 vi->first_nm_rxq = nm_rqidx; 1523 vi->first_nm_txq = nm_tqidx; 1524 if (j == 0) { 1525 vi->nnmrxq = iaq.nnmrxq; 1526 vi->nnmtxq = iaq.nnmtxq; 1527 } else { 1528 vi->nnmrxq = iaq.nnmrxq_vi; 1529 vi->nnmtxq = iaq.nnmtxq_vi; 1530 } 1531 nm_rqidx += vi->nnmrxq; 1532 nm_tqidx += vi->nnmtxq; 1533 #endif 1534 } 1535 } 1536 1537 rc = t4_setup_intr_handlers(sc); 1538 if (rc != 0) { 1539 device_printf(dev, 1540 "failed to setup interrupt handlers: %d\n", rc); 1541 goto done; 1542 } 1543 1544 rc = bus_generic_probe(dev); 1545 if (rc != 0) { 1546 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1547 goto done; 1548 } 1549 1550 /* 1551 * Ensure thread-safe mailbox access (in debug builds). 1552 * 1553 * So far this was the only thread accessing the mailbox but various 1554 * ifnets and sysctls are about to be created and their handlers/ioctls 1555 * will access the mailbox from different threads. 1556 */ 1557 sc->flags |= CHK_MBOX_ACCESS; 1558 1559 rc = bus_generic_attach(dev); 1560 if (rc != 0) { 1561 device_printf(dev, 1562 "failed to attach all child ports: %d\n", rc); 1563 goto done; 1564 } 1565 1566 device_printf(dev, 1567 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1568 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1569 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1570 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1571 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1572 1573 t4_set_desc(sc); 1574 1575 notify_siblings(dev, 0); 1576 1577 done: 1578 if (rc != 0 && sc->cdev) { 1579 /* cdev was created and so cxgbetool works; recover that way. */ 1580 device_printf(dev, 1581 "error during attach, adapter is now in recovery mode.\n"); 1582 rc = 0; 1583 } 1584 1585 if (rc != 0) 1586 t4_detach_common(dev); 1587 else 1588 t4_sysctls(sc); 1589 1590 return (rc); 1591 } 1592 1593 static int 1594 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1595 { 1596 struct adapter *sc; 1597 struct port_info *pi; 1598 int i; 1599 1600 sc = device_get_softc(bus); 1601 for_each_port(sc, i) { 1602 pi = sc->port[i]; 1603 if (pi != NULL && pi->dev == dev) { 1604 sbuf_printf(sb, "port=%d", pi->port_id); 1605 break; 1606 } 1607 } 1608 return (0); 1609 } 1610 1611 static int 1612 t4_ready(device_t dev) 1613 { 1614 struct adapter *sc; 1615 1616 sc = device_get_softc(dev); 1617 if (sc->flags & FW_OK) 1618 return (0); 1619 return (ENXIO); 1620 } 1621 1622 static int 1623 t4_read_port_device(device_t dev, int port, device_t *child) 1624 { 1625 struct adapter *sc; 1626 struct port_info *pi; 1627 1628 sc = device_get_softc(dev); 1629 if (port < 0 || port >= MAX_NPORTS) 1630 return (EINVAL); 1631 pi = sc->port[port]; 1632 if (pi == NULL || pi->dev == NULL) 1633 return (ENXIO); 1634 *child = pi->dev; 1635 return (0); 1636 } 1637 1638 static int 1639 notify_siblings(device_t dev, int detaching) 1640 { 1641 device_t sibling; 1642 int error, i; 1643 1644 error = 0; 1645 for (i = 0; i < PCI_FUNCMAX; i++) { 1646 if (i == pci_get_function(dev)) 1647 continue; 1648 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1649 pci_get_slot(dev), i); 1650 if (sibling == NULL || !device_is_attached(sibling)) 1651 continue; 1652 if (detaching) 1653 error = T4_DETACH_CHILD(sibling); 1654 else 1655 (void)T4_ATTACH_CHILD(sibling); 1656 if (error) 1657 break; 1658 } 1659 return (error); 1660 } 1661 1662 /* 1663 * Idempotent 1664 */ 1665 static int 1666 t4_detach(device_t dev) 1667 { 1668 int rc; 1669 1670 rc = notify_siblings(dev, 1); 1671 if (rc) { 1672 device_printf(dev, 1673 "failed to detach sibling devices: %d\n", rc); 1674 return (rc); 1675 } 1676 1677 return (t4_detach_common(dev)); 1678 } 1679 1680 int 1681 t4_detach_common(device_t dev) 1682 { 1683 struct adapter *sc; 1684 struct port_info *pi; 1685 int i, rc; 1686 1687 sc = device_get_softc(dev); 1688 1689 if (sc->cdev) { 1690 destroy_dev(sc->cdev); 1691 sc->cdev = NULL; 1692 } 1693 1694 sx_xlock(&t4_list_lock); 1695 SLIST_REMOVE(&t4_list, sc, adapter, link); 1696 sx_xunlock(&t4_list_lock); 1697 1698 sc->flags &= ~CHK_MBOX_ACCESS; 1699 if (sc->flags & FULL_INIT_DONE) { 1700 if (!(sc->flags & IS_VF)) 1701 t4_intr_disable(sc); 1702 } 1703 1704 if (device_is_attached(dev)) { 1705 rc = bus_generic_detach(dev); 1706 if (rc) { 1707 device_printf(dev, 1708 "failed to detach child devices: %d\n", rc); 1709 return (rc); 1710 } 1711 } 1712 1713 for (i = 0; i < sc->intr_count; i++) 1714 t4_free_irq(sc, &sc->irq[i]); 1715 1716 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1717 t4_free_tx_sched(sc); 1718 1719 for (i = 0; i < MAX_NPORTS; i++) { 1720 pi = sc->port[i]; 1721 if (pi) { 1722 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1723 if (pi->dev) 1724 device_delete_child(dev, pi->dev); 1725 1726 mtx_destroy(&pi->pi_lock); 1727 free(pi->vi, M_CXGBE); 1728 free(pi, M_CXGBE); 1729 } 1730 } 1731 1732 device_delete_children(dev); 1733 sysctl_ctx_free(&sc->ctx); 1734 adapter_full_uninit(sc); 1735 1736 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1737 t4_fw_bye(sc, sc->mbox); 1738 1739 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1740 pci_release_msi(dev); 1741 1742 if (sc->regs_res) 1743 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1744 sc->regs_res); 1745 1746 if (sc->udbs_res) 1747 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1748 sc->udbs_res); 1749 1750 if (sc->msix_res) 1751 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1752 sc->msix_res); 1753 1754 if (sc->l2t) 1755 t4_free_l2t(sc->l2t); 1756 if (sc->smt) 1757 t4_free_smt(sc->smt); 1758 t4_free_atid_table(sc); 1759 #ifdef RATELIMIT 1760 t4_free_etid_table(sc); 1761 #endif 1762 if (sc->key_map) 1763 vmem_destroy(sc->key_map); 1764 #ifdef INET6 1765 t4_destroy_clip_table(sc); 1766 #endif 1767 1768 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1769 free(sc->sge.ofld_txq, M_CXGBE); 1770 #endif 1771 #ifdef TCP_OFFLOAD 1772 free(sc->sge.ofld_rxq, M_CXGBE); 1773 #endif 1774 #ifdef DEV_NETMAP 1775 free(sc->sge.nm_rxq, M_CXGBE); 1776 free(sc->sge.nm_txq, M_CXGBE); 1777 #endif 1778 free(sc->irq, M_CXGBE); 1779 free(sc->sge.rxq, M_CXGBE); 1780 free(sc->sge.txq, M_CXGBE); 1781 free(sc->sge.ctrlq, M_CXGBE); 1782 free(sc->sge.iqmap, M_CXGBE); 1783 free(sc->sge.eqmap, M_CXGBE); 1784 free(sc->tids.ftid_tab, M_CXGBE); 1785 free(sc->tids.hpftid_tab, M_CXGBE); 1786 free_hftid_hash(&sc->tids); 1787 free(sc->tids.tid_tab, M_CXGBE); 1788 free(sc->tt.tls_rx_ports, M_CXGBE); 1789 t4_destroy_dma_tag(sc); 1790 1791 callout_drain(&sc->ktls_tick); 1792 callout_drain(&sc->sfl_callout); 1793 if (mtx_initialized(&sc->tids.ftid_lock)) { 1794 mtx_destroy(&sc->tids.ftid_lock); 1795 cv_destroy(&sc->tids.ftid_cv); 1796 } 1797 if (mtx_initialized(&sc->tids.atid_lock)) 1798 mtx_destroy(&sc->tids.atid_lock); 1799 if (mtx_initialized(&sc->ifp_lock)) 1800 mtx_destroy(&sc->ifp_lock); 1801 1802 if (rw_initialized(&sc->policy_lock)) { 1803 rw_destroy(&sc->policy_lock); 1804 #ifdef TCP_OFFLOAD 1805 if (sc->policy != NULL) 1806 free_offload_policy(sc->policy); 1807 #endif 1808 } 1809 1810 for (i = 0; i < NUM_MEMWIN; i++) { 1811 struct memwin *mw = &sc->memwin[i]; 1812 1813 if (rw_initialized(&mw->mw_lock)) 1814 rw_destroy(&mw->mw_lock); 1815 } 1816 1817 mtx_destroy(&sc->sfl_lock); 1818 mtx_destroy(&sc->reg_lock); 1819 mtx_destroy(&sc->sc_lock); 1820 1821 bzero(sc, sizeof(*sc)); 1822 1823 return (0); 1824 } 1825 1826 static inline bool 1827 ok_to_reset(struct adapter *sc) 1828 { 1829 struct tid_info *t = &sc->tids; 1830 struct port_info *pi; 1831 struct vi_info *vi; 1832 int i, j; 1833 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1834 1835 ASSERT_SYNCHRONIZED_OP(sc); 1836 MPASS(!(sc->flags & IS_VF)); 1837 1838 for_each_port(sc, i) { 1839 pi = sc->port[i]; 1840 for_each_vi(pi, j, vi) { 1841 if (vi->ifp->if_capenable & caps) 1842 return (false); 1843 } 1844 } 1845 1846 if (atomic_load_int(&t->tids_in_use) > 0) 1847 return (false); 1848 if (atomic_load_int(&t->stids_in_use) > 0) 1849 return (false); 1850 if (atomic_load_int(&t->atids_in_use) > 0) 1851 return (false); 1852 if (atomic_load_int(&t->ftids_in_use) > 0) 1853 return (false); 1854 if (atomic_load_int(&t->hpftids_in_use) > 0) 1855 return (false); 1856 if (atomic_load_int(&t->etids_in_use) > 0) 1857 return (false); 1858 1859 return (true); 1860 } 1861 1862 static inline int 1863 stop_adapter(struct adapter *sc) 1864 { 1865 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1866 return (1); /* Already stopped. */ 1867 return (t4_shutdown_adapter(sc)); 1868 } 1869 1870 static int 1871 t4_suspend(device_t dev) 1872 { 1873 struct adapter *sc = device_get_softc(dev); 1874 struct port_info *pi; 1875 struct vi_info *vi; 1876 struct ifnet *ifp; 1877 struct sge_rxq *rxq; 1878 struct sge_txq *txq; 1879 struct sge_wrq *wrq; 1880 #ifdef TCP_OFFLOAD 1881 struct sge_ofld_rxq *ofld_rxq; 1882 #endif 1883 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1884 struct sge_ofld_txq *ofld_txq; 1885 #endif 1886 int rc, i, j, k; 1887 1888 CH_ALERT(sc, "suspend requested\n"); 1889 1890 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1891 if (rc != 0) 1892 return (ENXIO); 1893 1894 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1895 MPASS(!hw_off_limits(sc)); 1896 1897 if (!ok_to_reset(sc)) { 1898 /* XXX: should list what resource is preventing suspend. */ 1899 CH_ERR(sc, "not safe to suspend.\n"); 1900 rc = EBUSY; 1901 goto done; 1902 } 1903 1904 /* No more DMA or interrupts. */ 1905 stop_adapter(sc); 1906 1907 /* Quiesce all activity. */ 1908 for_each_port(sc, i) { 1909 pi = sc->port[i]; 1910 pi->vxlan_tcam_entry = false; 1911 1912 PORT_LOCK(pi); 1913 if (pi->up_vis > 0) { 1914 /* 1915 * t4_shutdown_adapter has already shut down all the 1916 * PHYs but it also disables interrupts and DMA so there 1917 * won't be a link interrupt. So we update the state 1918 * manually and inform the kernel. 1919 */ 1920 pi->link_cfg.link_ok = false; 1921 t4_os_link_changed(pi); 1922 } 1923 PORT_UNLOCK(pi); 1924 1925 for_each_vi(pi, j, vi) { 1926 vi->xact_addr_filt = -1; 1927 mtx_lock(&vi->tick_mtx); 1928 vi->flags |= VI_SKIP_STATS; 1929 mtx_unlock(&vi->tick_mtx); 1930 if (!(vi->flags & VI_INIT_DONE)) 1931 continue; 1932 1933 ifp = vi->ifp; 1934 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1935 mtx_lock(&vi->tick_mtx); 1936 callout_stop(&vi->tick); 1937 mtx_unlock(&vi->tick_mtx); 1938 callout_drain(&vi->tick); 1939 } 1940 1941 /* 1942 * Note that the HW is not available. 1943 */ 1944 for_each_txq(vi, k, txq) { 1945 TXQ_LOCK(txq); 1946 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1947 TXQ_UNLOCK(txq); 1948 } 1949 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1950 for_each_ofld_txq(vi, k, ofld_txq) { 1951 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1952 } 1953 #endif 1954 for_each_rxq(vi, k, rxq) { 1955 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1956 } 1957 #if defined(TCP_OFFLOAD) 1958 for_each_ofld_rxq(vi, k, ofld_rxq) { 1959 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1960 } 1961 #endif 1962 1963 quiesce_vi(vi); 1964 } 1965 1966 if (sc->flags & FULL_INIT_DONE) { 1967 /* Control queue */ 1968 wrq = &sc->sge.ctrlq[i]; 1969 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1970 quiesce_wrq(wrq); 1971 } 1972 } 1973 if (sc->flags & FULL_INIT_DONE) { 1974 /* Firmware event queue */ 1975 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1976 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1977 } 1978 1979 /* Mark the adapter totally off limits. */ 1980 mtx_lock(&sc->reg_lock); 1981 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1982 sc->flags &= ~(FW_OK | MASTER_PF); 1983 sc->reset_thread = NULL; 1984 mtx_unlock(&sc->reg_lock); 1985 1986 CH_ALERT(sc, "suspend completed.\n"); 1987 done: 1988 end_synchronized_op(sc, 0); 1989 return (rc); 1990 } 1991 1992 struct adapter_pre_reset_state { 1993 u_int flags; 1994 uint16_t nbmcaps; 1995 uint16_t linkcaps; 1996 uint16_t switchcaps; 1997 uint16_t niccaps; 1998 uint16_t toecaps; 1999 uint16_t rdmacaps; 2000 uint16_t cryptocaps; 2001 uint16_t iscsicaps; 2002 uint16_t fcoecaps; 2003 2004 u_int cfcsum; 2005 char cfg_file[32]; 2006 2007 struct adapter_params params; 2008 struct t4_virt_res vres; 2009 struct tid_info tids; 2010 struct sge sge; 2011 2012 int rawf_base; 2013 int nrawf; 2014 2015 }; 2016 2017 static void 2018 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2019 { 2020 2021 ASSERT_SYNCHRONIZED_OP(sc); 2022 2023 o->flags = sc->flags; 2024 2025 o->nbmcaps = sc->nbmcaps; 2026 o->linkcaps = sc->linkcaps; 2027 o->switchcaps = sc->switchcaps; 2028 o->niccaps = sc->niccaps; 2029 o->toecaps = sc->toecaps; 2030 o->rdmacaps = sc->rdmacaps; 2031 o->cryptocaps = sc->cryptocaps; 2032 o->iscsicaps = sc->iscsicaps; 2033 o->fcoecaps = sc->fcoecaps; 2034 2035 o->cfcsum = sc->cfcsum; 2036 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2037 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2038 2039 o->params = sc->params; 2040 o->vres = sc->vres; 2041 o->tids = sc->tids; 2042 o->sge = sc->sge; 2043 2044 o->rawf_base = sc->rawf_base; 2045 o->nrawf = sc->nrawf; 2046 } 2047 2048 static int 2049 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2050 { 2051 int rc = 0; 2052 2053 ASSERT_SYNCHRONIZED_OP(sc); 2054 2055 /* Capabilities */ 2056 #define COMPARE_CAPS(c) do { \ 2057 if (o->c##caps != sc->c##caps) { \ 2058 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2059 sc->c##caps); \ 2060 rc = EINVAL; \ 2061 } \ 2062 } while (0) 2063 COMPARE_CAPS(nbm); 2064 COMPARE_CAPS(link); 2065 COMPARE_CAPS(switch); 2066 COMPARE_CAPS(nic); 2067 COMPARE_CAPS(toe); 2068 COMPARE_CAPS(rdma); 2069 COMPARE_CAPS(crypto); 2070 COMPARE_CAPS(iscsi); 2071 COMPARE_CAPS(fcoe); 2072 #undef COMPARE_CAPS 2073 2074 /* Firmware config file */ 2075 if (o->cfcsum != sc->cfcsum) { 2076 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2077 o->cfcsum, sc->cfg_file, sc->cfcsum); 2078 rc = EINVAL; 2079 } 2080 2081 #define COMPARE_PARAM(p, name) do { \ 2082 if (o->p != sc->p) { \ 2083 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2084 rc = EINVAL; \ 2085 } \ 2086 } while (0) 2087 COMPARE_PARAM(sge.iq_start, iq_start); 2088 COMPARE_PARAM(sge.eq_start, eq_start); 2089 COMPARE_PARAM(tids.ftid_base, ftid_base); 2090 COMPARE_PARAM(tids.ftid_end, ftid_end); 2091 COMPARE_PARAM(tids.nftids, nftids); 2092 COMPARE_PARAM(vres.l2t.start, l2t_start); 2093 COMPARE_PARAM(vres.l2t.size, l2t_size); 2094 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2095 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2096 COMPARE_PARAM(tids.tid_base, tid_base); 2097 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2098 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2099 COMPARE_PARAM(tids.nhpftids, nhpftids); 2100 COMPARE_PARAM(rawf_base, rawf_base); 2101 COMPARE_PARAM(nrawf, nrawf); 2102 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2103 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2104 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2105 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2106 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2107 COMPARE_PARAM(tids.ntids, ntids); 2108 COMPARE_PARAM(tids.etid_base, etid_base); 2109 COMPARE_PARAM(tids.etid_end, etid_end); 2110 COMPARE_PARAM(tids.netids, netids); 2111 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2112 COMPARE_PARAM(params.ethoffload, ethoffload); 2113 COMPARE_PARAM(tids.natids, natids); 2114 COMPARE_PARAM(tids.stid_base, stid_base); 2115 COMPARE_PARAM(vres.ddp.start, ddp_start); 2116 COMPARE_PARAM(vres.ddp.size, ddp_size); 2117 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2118 COMPARE_PARAM(vres.stag.start, stag_start); 2119 COMPARE_PARAM(vres.stag.size, stag_size); 2120 COMPARE_PARAM(vres.rq.start, rq_start); 2121 COMPARE_PARAM(vres.rq.size, rq_size); 2122 COMPARE_PARAM(vres.pbl.start, pbl_start); 2123 COMPARE_PARAM(vres.pbl.size, pbl_size); 2124 COMPARE_PARAM(vres.qp.start, qp_start); 2125 COMPARE_PARAM(vres.qp.size, qp_size); 2126 COMPARE_PARAM(vres.cq.start, cq_start); 2127 COMPARE_PARAM(vres.cq.size, cq_size); 2128 COMPARE_PARAM(vres.ocq.start, ocq_start); 2129 COMPARE_PARAM(vres.ocq.size, ocq_size); 2130 COMPARE_PARAM(vres.srq.start, srq_start); 2131 COMPARE_PARAM(vres.srq.size, srq_size); 2132 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2133 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2134 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2135 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2136 COMPARE_PARAM(vres.key.start, key_start); 2137 COMPARE_PARAM(vres.key.size, key_size); 2138 #undef COMPARE_PARAM 2139 2140 return (rc); 2141 } 2142 2143 static int 2144 t4_resume(device_t dev) 2145 { 2146 struct adapter *sc = device_get_softc(dev); 2147 struct adapter_pre_reset_state *old_state = NULL; 2148 struct port_info *pi; 2149 struct vi_info *vi; 2150 struct ifnet *ifp; 2151 struct sge_txq *txq; 2152 int rc, i, j, k; 2153 2154 CH_ALERT(sc, "resume requested.\n"); 2155 2156 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2157 if (rc != 0) 2158 return (ENXIO); 2159 MPASS(hw_off_limits(sc)); 2160 MPASS((sc->flags & FW_OK) == 0); 2161 MPASS((sc->flags & MASTER_PF) == 0); 2162 MPASS(sc->reset_thread == NULL); 2163 sc->reset_thread = curthread; 2164 2165 /* Register access is expected to work by the time we're here. */ 2166 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2167 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2168 rc = ENXIO; 2169 goto done; 2170 } 2171 2172 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2173 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2174 2175 /* Restore memory window. */ 2176 setup_memwin(sc); 2177 2178 /* Go no further if recovery mode has been requested. */ 2179 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2180 CH_ALERT(sc, "recovery mode on resume.\n"); 2181 rc = 0; 2182 mtx_lock(&sc->reg_lock); 2183 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2184 mtx_unlock(&sc->reg_lock); 2185 goto done; 2186 } 2187 2188 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2189 save_caps_and_params(sc, old_state); 2190 2191 /* Reestablish contact with firmware and become the primary PF. */ 2192 rc = contact_firmware(sc); 2193 if (rc != 0) 2194 goto done; /* error message displayed already */ 2195 MPASS(sc->flags & FW_OK); 2196 2197 if (sc->flags & MASTER_PF) { 2198 rc = partition_resources(sc); 2199 if (rc != 0) 2200 goto done; /* error message displayed already */ 2201 t4_intr_clear(sc); 2202 } 2203 2204 rc = get_params__post_init(sc); 2205 if (rc != 0) 2206 goto done; /* error message displayed already */ 2207 2208 rc = set_params__post_init(sc); 2209 if (rc != 0) 2210 goto done; /* error message displayed already */ 2211 2212 rc = compare_caps_and_params(sc, old_state); 2213 if (rc != 0) 2214 goto done; /* error message displayed already */ 2215 2216 for_each_port(sc, i) { 2217 pi = sc->port[i]; 2218 MPASS(pi != NULL); 2219 MPASS(pi->vi != NULL); 2220 MPASS(pi->vi[0].dev == pi->dev); 2221 2222 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2223 if (rc != 0) { 2224 CH_ERR(sc, 2225 "failed to re-initialize port %d: %d\n", i, rc); 2226 goto done; 2227 } 2228 MPASS(sc->chan_map[pi->tx_chan] == i); 2229 2230 PORT_LOCK(pi); 2231 fixup_link_config(pi); 2232 build_medialist(pi); 2233 PORT_UNLOCK(pi); 2234 for_each_vi(pi, j, vi) { 2235 if (IS_MAIN_VI(vi)) 2236 continue; 2237 rc = alloc_extra_vi(sc, pi, vi); 2238 if (rc != 0) { 2239 CH_ERR(vi, 2240 "failed to re-allocate extra VI: %d\n", rc); 2241 goto done; 2242 } 2243 } 2244 } 2245 2246 /* 2247 * Interrupts and queues are about to be enabled and other threads will 2248 * want to access the hardware too. It is safe to do so. Note that 2249 * this thread is still in the middle of a synchronized_op. 2250 */ 2251 mtx_lock(&sc->reg_lock); 2252 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2253 mtx_unlock(&sc->reg_lock); 2254 2255 if (sc->flags & FULL_INIT_DONE) { 2256 rc = adapter_full_init(sc); 2257 if (rc != 0) { 2258 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2259 goto done; 2260 } 2261 2262 if (sc->vxlan_refcount > 0) 2263 enable_vxlan_rx(sc); 2264 2265 for_each_port(sc, i) { 2266 pi = sc->port[i]; 2267 for_each_vi(pi, j, vi) { 2268 mtx_lock(&vi->tick_mtx); 2269 vi->flags &= ~VI_SKIP_STATS; 2270 mtx_unlock(&vi->tick_mtx); 2271 if (!(vi->flags & VI_INIT_DONE)) 2272 continue; 2273 rc = vi_full_init(vi); 2274 if (rc != 0) { 2275 CH_ERR(vi, "failed to re-initialize " 2276 "interface: %d\n", rc); 2277 goto done; 2278 } 2279 2280 ifp = vi->ifp; 2281 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2282 continue; 2283 /* 2284 * Note that we do not setup multicast addresses 2285 * in the first pass. This ensures that the 2286 * unicast DMACs for all VIs on all ports get an 2287 * MPS TCAM entry. 2288 */ 2289 rc = update_mac_settings(ifp, XGMAC_ALL & 2290 ~XGMAC_MCADDRS); 2291 if (rc != 0) { 2292 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2293 goto done; 2294 } 2295 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2296 true); 2297 if (rc != 0) { 2298 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2299 goto done; 2300 } 2301 for_each_txq(vi, k, txq) { 2302 TXQ_LOCK(txq); 2303 txq->eq.flags |= EQ_ENABLED; 2304 TXQ_UNLOCK(txq); 2305 } 2306 mtx_lock(&vi->tick_mtx); 2307 callout_schedule(&vi->tick, hz); 2308 mtx_unlock(&vi->tick_mtx); 2309 } 2310 PORT_LOCK(pi); 2311 if (pi->up_vis > 0) { 2312 t4_update_port_info(pi); 2313 fixup_link_config(pi); 2314 build_medialist(pi); 2315 apply_link_config(pi); 2316 if (pi->link_cfg.link_ok) 2317 t4_os_link_changed(pi); 2318 } 2319 PORT_UNLOCK(pi); 2320 } 2321 2322 /* Now reprogram the L2 multicast addresses. */ 2323 for_each_port(sc, i) { 2324 pi = sc->port[i]; 2325 for_each_vi(pi, j, vi) { 2326 if (!(vi->flags & VI_INIT_DONE)) 2327 continue; 2328 ifp = vi->ifp; 2329 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2330 continue; 2331 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2332 if (rc != 0) { 2333 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2334 rc = 0; /* carry on */ 2335 } 2336 } 2337 } 2338 } 2339 done: 2340 if (rc == 0) { 2341 sc->incarnation++; 2342 CH_ALERT(sc, "resume completed.\n"); 2343 } 2344 end_synchronized_op(sc, 0); 2345 free(old_state, M_CXGBE); 2346 return (rc); 2347 } 2348 2349 static int 2350 t4_reset_prepare(device_t dev, device_t child) 2351 { 2352 struct adapter *sc = device_get_softc(dev); 2353 2354 CH_ALERT(sc, "reset_prepare.\n"); 2355 return (0); 2356 } 2357 2358 static int 2359 t4_reset_post(device_t dev, device_t child) 2360 { 2361 struct adapter *sc = device_get_softc(dev); 2362 2363 CH_ALERT(sc, "reset_post.\n"); 2364 return (0); 2365 } 2366 2367 static int 2368 reset_adapter(struct adapter *sc) 2369 { 2370 int rc, oldinc, error_flags; 2371 2372 CH_ALERT(sc, "reset requested.\n"); 2373 2374 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2375 if (rc != 0) 2376 return (EBUSY); 2377 2378 if (hw_off_limits(sc)) { 2379 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2380 rc = ENXIO; 2381 goto done; 2382 } 2383 2384 if (!ok_to_reset(sc)) { 2385 /* XXX: should list what resource is preventing reset. */ 2386 CH_ERR(sc, "not safe to reset.\n"); 2387 rc = EBUSY; 2388 goto done; 2389 } 2390 2391 done: 2392 oldinc = sc->incarnation; 2393 end_synchronized_op(sc, 0); 2394 if (rc != 0) 2395 return (rc); /* Error logged already. */ 2396 2397 atomic_add_int(&sc->num_resets, 1); 2398 mtx_lock(&Giant); 2399 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2400 mtx_unlock(&Giant); 2401 if (rc != 0) 2402 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2403 else { 2404 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2405 if (rc != 0) 2406 return (EBUSY); 2407 error_flags = atomic_load_int(&sc->error_flags); 2408 if (sc->incarnation > oldinc && error_flags == 0) { 2409 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2410 } else { 2411 CH_ERR(sc, "adapter did not reset properly, flags " 2412 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2413 error_flags); 2414 rc = ENXIO; 2415 } 2416 end_synchronized_op(sc, 0); 2417 } 2418 2419 return (rc); 2420 } 2421 2422 static void 2423 reset_adapter_task(void *arg, int pending) 2424 { 2425 /* XXX: t4_async_event here? */ 2426 reset_adapter(arg); 2427 } 2428 2429 static int 2430 cxgbe_probe(device_t dev) 2431 { 2432 char buf[128]; 2433 struct port_info *pi = device_get_softc(dev); 2434 2435 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2436 device_set_desc_copy(dev, buf); 2437 2438 return (BUS_PROBE_DEFAULT); 2439 } 2440 2441 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2442 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2443 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2444 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2445 #define T4_CAP_ENABLE (T4_CAP) 2446 2447 static int 2448 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2449 { 2450 struct ifnet *ifp; 2451 struct sbuf *sb; 2452 struct sysctl_ctx_list *ctx = &vi->ctx; 2453 struct sysctl_oid_list *children; 2454 struct pfil_head_args pa; 2455 struct adapter *sc = vi->adapter; 2456 2457 sysctl_ctx_init(ctx); 2458 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2459 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2460 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2461 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2462 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2463 #ifdef DEV_NETMAP 2464 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2465 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2466 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2467 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2468 #endif 2469 #ifdef TCP_OFFLOAD 2470 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2471 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2472 #endif 2473 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2474 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2475 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2476 #endif 2477 2478 vi->xact_addr_filt = -1; 2479 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2480 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2481 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2482 vi->flags |= TX_USES_VM_WR; 2483 2484 /* Allocate an ifnet and set it up */ 2485 ifp = if_alloc_dev(IFT_ETHER, dev); 2486 if (ifp == NULL) { 2487 device_printf(dev, "Cannot allocate ifnet\n"); 2488 return (ENOMEM); 2489 } 2490 vi->ifp = ifp; 2491 ifp->if_softc = vi; 2492 2493 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2494 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2495 2496 ifp->if_init = cxgbe_init; 2497 ifp->if_ioctl = cxgbe_ioctl; 2498 ifp->if_transmit = cxgbe_transmit; 2499 ifp->if_qflush = cxgbe_qflush; 2500 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2501 ifp->if_get_counter = vi_get_counter; 2502 else 2503 ifp->if_get_counter = cxgbe_get_counter; 2504 #if defined(KERN_TLS) || defined(RATELIMIT) 2505 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2506 #endif 2507 #ifdef RATELIMIT 2508 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2509 #endif 2510 2511 ifp->if_capabilities = T4_CAP; 2512 ifp->if_capenable = T4_CAP_ENABLE; 2513 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2514 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2515 if (chip_id(sc) >= CHELSIO_T6) { 2516 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2517 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2518 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2519 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2520 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2521 } 2522 2523 #ifdef TCP_OFFLOAD 2524 if (vi->nofldrxq != 0) 2525 ifp->if_capabilities |= IFCAP_TOE; 2526 #endif 2527 #ifdef RATELIMIT 2528 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2529 ifp->if_capabilities |= IFCAP_TXRTLMT; 2530 ifp->if_capenable |= IFCAP_TXRTLMT; 2531 } 2532 #endif 2533 2534 ifp->if_hw_tsomax = IP_MAXPACKET; 2535 if (vi->flags & TX_USES_VM_WR) 2536 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2537 else 2538 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2539 #ifdef RATELIMIT 2540 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2541 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2542 #endif 2543 ifp->if_hw_tsomaxsegsize = 65536; 2544 #ifdef KERN_TLS 2545 if (is_ktls(sc)) { 2546 ifp->if_capabilities |= IFCAP_TXTLS; 2547 if (sc->flags & KERN_TLS_ON) 2548 ifp->if_capenable |= IFCAP_TXTLS; 2549 } 2550 #endif 2551 2552 ether_ifattach(ifp, vi->hw_addr); 2553 #ifdef DEV_NETMAP 2554 if (vi->nnmrxq != 0) 2555 cxgbe_nm_attach(vi); 2556 #endif 2557 sb = sbuf_new_auto(); 2558 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2559 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2560 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2561 case IFCAP_TOE: 2562 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2563 break; 2564 case IFCAP_TOE | IFCAP_TXRTLMT: 2565 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2566 break; 2567 case IFCAP_TXRTLMT: 2568 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2569 break; 2570 } 2571 #endif 2572 #ifdef TCP_OFFLOAD 2573 if (ifp->if_capabilities & IFCAP_TOE) 2574 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2575 #endif 2576 #ifdef DEV_NETMAP 2577 if (ifp->if_capabilities & IFCAP_NETMAP) 2578 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2579 vi->nnmtxq, vi->nnmrxq); 2580 #endif 2581 sbuf_finish(sb); 2582 device_printf(dev, "%s\n", sbuf_data(sb)); 2583 sbuf_delete(sb); 2584 2585 vi_sysctls(vi); 2586 2587 pa.pa_version = PFIL_VERSION; 2588 pa.pa_flags = PFIL_IN; 2589 pa.pa_type = PFIL_TYPE_ETHERNET; 2590 pa.pa_headname = ifp->if_xname; 2591 vi->pfil = pfil_head_register(&pa); 2592 2593 return (0); 2594 } 2595 2596 static int 2597 cxgbe_attach(device_t dev) 2598 { 2599 struct port_info *pi = device_get_softc(dev); 2600 struct adapter *sc = pi->adapter; 2601 struct vi_info *vi; 2602 int i, rc; 2603 2604 sysctl_ctx_init(&pi->ctx); 2605 2606 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2607 if (rc) 2608 return (rc); 2609 2610 for_each_vi(pi, i, vi) { 2611 if (i == 0) 2612 continue; 2613 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2614 if (vi->dev == NULL) { 2615 device_printf(dev, "failed to add VI %d\n", i); 2616 continue; 2617 } 2618 device_set_softc(vi->dev, vi); 2619 } 2620 2621 cxgbe_sysctls(pi); 2622 2623 bus_generic_attach(dev); 2624 2625 return (0); 2626 } 2627 2628 static void 2629 cxgbe_vi_detach(struct vi_info *vi) 2630 { 2631 struct ifnet *ifp = vi->ifp; 2632 2633 if (vi->pfil != NULL) { 2634 pfil_head_unregister(vi->pfil); 2635 vi->pfil = NULL; 2636 } 2637 2638 ether_ifdetach(ifp); 2639 2640 /* Let detach proceed even if these fail. */ 2641 #ifdef DEV_NETMAP 2642 if (ifp->if_capabilities & IFCAP_NETMAP) 2643 cxgbe_nm_detach(vi); 2644 #endif 2645 cxgbe_uninit_synchronized(vi); 2646 callout_drain(&vi->tick); 2647 sysctl_ctx_free(&vi->ctx); 2648 vi_full_uninit(vi); 2649 2650 if_free(vi->ifp); 2651 vi->ifp = NULL; 2652 } 2653 2654 static int 2655 cxgbe_detach(device_t dev) 2656 { 2657 struct port_info *pi = device_get_softc(dev); 2658 struct adapter *sc = pi->adapter; 2659 int rc; 2660 2661 /* Detach the extra VIs first. */ 2662 rc = bus_generic_detach(dev); 2663 if (rc) 2664 return (rc); 2665 device_delete_children(dev); 2666 2667 sysctl_ctx_free(&pi->ctx); 2668 doom_vi(sc, &pi->vi[0]); 2669 2670 if (pi->flags & HAS_TRACEQ) { 2671 sc->traceq = -1; /* cloner should not create ifnet */ 2672 t4_tracer_port_detach(sc); 2673 } 2674 2675 cxgbe_vi_detach(&pi->vi[0]); 2676 ifmedia_removeall(&pi->media); 2677 2678 end_synchronized_op(sc, 0); 2679 2680 return (0); 2681 } 2682 2683 static void 2684 cxgbe_init(void *arg) 2685 { 2686 struct vi_info *vi = arg; 2687 struct adapter *sc = vi->adapter; 2688 2689 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2690 return; 2691 cxgbe_init_synchronized(vi); 2692 end_synchronized_op(sc, 0); 2693 } 2694 2695 static int 2696 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2697 { 2698 int rc = 0, mtu, flags; 2699 struct vi_info *vi = ifp->if_softc; 2700 struct port_info *pi = vi->pi; 2701 struct adapter *sc = pi->adapter; 2702 struct ifreq *ifr = (struct ifreq *)data; 2703 uint32_t mask; 2704 2705 switch (cmd) { 2706 case SIOCSIFMTU: 2707 mtu = ifr->ifr_mtu; 2708 if (mtu < ETHERMIN || mtu > MAX_MTU) 2709 return (EINVAL); 2710 2711 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2712 if (rc) 2713 return (rc); 2714 ifp->if_mtu = mtu; 2715 if (vi->flags & VI_INIT_DONE) { 2716 t4_update_fl_bufsize(ifp); 2717 if (!hw_off_limits(sc) && 2718 ifp->if_drv_flags & IFF_DRV_RUNNING) 2719 rc = update_mac_settings(ifp, XGMAC_MTU); 2720 } 2721 end_synchronized_op(sc, 0); 2722 break; 2723 2724 case SIOCSIFFLAGS: 2725 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2726 if (rc) 2727 return (rc); 2728 2729 if (hw_off_limits(sc)) { 2730 rc = ENXIO; 2731 goto fail; 2732 } 2733 2734 if (ifp->if_flags & IFF_UP) { 2735 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2736 flags = vi->if_flags; 2737 if ((ifp->if_flags ^ flags) & 2738 (IFF_PROMISC | IFF_ALLMULTI)) { 2739 rc = update_mac_settings(ifp, 2740 XGMAC_PROMISC | XGMAC_ALLMULTI); 2741 } 2742 } else { 2743 rc = cxgbe_init_synchronized(vi); 2744 } 2745 vi->if_flags = ifp->if_flags; 2746 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2747 rc = cxgbe_uninit_synchronized(vi); 2748 } 2749 end_synchronized_op(sc, 0); 2750 break; 2751 2752 case SIOCADDMULTI: 2753 case SIOCDELMULTI: 2754 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2755 if (rc) 2756 return (rc); 2757 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2758 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2759 end_synchronized_op(sc, 0); 2760 break; 2761 2762 case SIOCSIFCAP: 2763 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2764 if (rc) 2765 return (rc); 2766 2767 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2768 if (mask & IFCAP_TXCSUM) { 2769 ifp->if_capenable ^= IFCAP_TXCSUM; 2770 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2771 2772 if (IFCAP_TSO4 & ifp->if_capenable && 2773 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2774 mask &= ~IFCAP_TSO4; 2775 ifp->if_capenable &= ~IFCAP_TSO4; 2776 if_printf(ifp, 2777 "tso4 disabled due to -txcsum.\n"); 2778 } 2779 } 2780 if (mask & IFCAP_TXCSUM_IPV6) { 2781 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2782 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2783 2784 if (IFCAP_TSO6 & ifp->if_capenable && 2785 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2786 mask &= ~IFCAP_TSO6; 2787 ifp->if_capenable &= ~IFCAP_TSO6; 2788 if_printf(ifp, 2789 "tso6 disabled due to -txcsum6.\n"); 2790 } 2791 } 2792 if (mask & IFCAP_RXCSUM) 2793 ifp->if_capenable ^= IFCAP_RXCSUM; 2794 if (mask & IFCAP_RXCSUM_IPV6) 2795 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2796 2797 /* 2798 * Note that we leave CSUM_TSO alone (it is always set). The 2799 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2800 * sending a TSO request our way, so it's sufficient to toggle 2801 * IFCAP_TSOx only. 2802 */ 2803 if (mask & IFCAP_TSO4) { 2804 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2805 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2806 if_printf(ifp, "enable txcsum first.\n"); 2807 rc = EAGAIN; 2808 goto fail; 2809 } 2810 ifp->if_capenable ^= IFCAP_TSO4; 2811 } 2812 if (mask & IFCAP_TSO6) { 2813 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2814 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2815 if_printf(ifp, "enable txcsum6 first.\n"); 2816 rc = EAGAIN; 2817 goto fail; 2818 } 2819 ifp->if_capenable ^= IFCAP_TSO6; 2820 } 2821 if (mask & IFCAP_LRO) { 2822 #if defined(INET) || defined(INET6) 2823 int i; 2824 struct sge_rxq *rxq; 2825 2826 ifp->if_capenable ^= IFCAP_LRO; 2827 for_each_rxq(vi, i, rxq) { 2828 if (ifp->if_capenable & IFCAP_LRO) 2829 rxq->iq.flags |= IQ_LRO_ENABLED; 2830 else 2831 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2832 } 2833 #endif 2834 } 2835 #ifdef TCP_OFFLOAD 2836 if (mask & IFCAP_TOE) { 2837 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2838 2839 rc = toe_capability(vi, enable); 2840 if (rc != 0) 2841 goto fail; 2842 2843 ifp->if_capenable ^= mask; 2844 } 2845 #endif 2846 if (mask & IFCAP_VLAN_HWTAGGING) { 2847 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2848 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2849 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2850 } 2851 if (mask & IFCAP_VLAN_MTU) { 2852 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2853 2854 /* Need to find out how to disable auto-mtu-inflation */ 2855 } 2856 if (mask & IFCAP_VLAN_HWTSO) 2857 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2858 if (mask & IFCAP_VLAN_HWCSUM) 2859 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2860 #ifdef RATELIMIT 2861 if (mask & IFCAP_TXRTLMT) 2862 ifp->if_capenable ^= IFCAP_TXRTLMT; 2863 #endif 2864 if (mask & IFCAP_HWRXTSTMP) { 2865 int i; 2866 struct sge_rxq *rxq; 2867 2868 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2869 for_each_rxq(vi, i, rxq) { 2870 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2871 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2872 else 2873 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2874 } 2875 } 2876 if (mask & IFCAP_MEXTPG) 2877 ifp->if_capenable ^= IFCAP_MEXTPG; 2878 2879 #ifdef KERN_TLS 2880 if (mask & IFCAP_TXTLS) { 2881 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2882 2883 rc = ktls_capability(sc, enable); 2884 if (rc != 0) 2885 goto fail; 2886 2887 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2888 } 2889 #endif 2890 if (mask & IFCAP_VXLAN_HWCSUM) { 2891 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2892 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2893 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2894 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2895 } 2896 if (mask & IFCAP_VXLAN_HWTSO) { 2897 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2898 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2899 CSUM_INNER_IP_TSO; 2900 } 2901 2902 #ifdef VLAN_CAPABILITIES 2903 VLAN_CAPABILITIES(ifp); 2904 #endif 2905 fail: 2906 end_synchronized_op(sc, 0); 2907 break; 2908 2909 case SIOCSIFMEDIA: 2910 case SIOCGIFMEDIA: 2911 case SIOCGIFXMEDIA: 2912 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2913 break; 2914 2915 case SIOCGI2C: { 2916 struct ifi2creq i2c; 2917 2918 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2919 if (rc != 0) 2920 break; 2921 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2922 rc = EPERM; 2923 break; 2924 } 2925 if (i2c.len > sizeof(i2c.data)) { 2926 rc = EINVAL; 2927 break; 2928 } 2929 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2930 if (rc) 2931 return (rc); 2932 if (hw_off_limits(sc)) 2933 rc = ENXIO; 2934 else 2935 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2936 i2c.offset, i2c.len, &i2c.data[0]); 2937 end_synchronized_op(sc, 0); 2938 if (rc == 0) 2939 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2940 break; 2941 } 2942 2943 default: 2944 rc = ether_ioctl(ifp, cmd, data); 2945 } 2946 2947 return (rc); 2948 } 2949 2950 static int 2951 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2952 { 2953 struct vi_info *vi = ifp->if_softc; 2954 struct port_info *pi = vi->pi; 2955 struct adapter *sc; 2956 struct sge_txq *txq; 2957 void *items[1]; 2958 int rc; 2959 2960 M_ASSERTPKTHDR(m); 2961 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2962 #if defined(KERN_TLS) || defined(RATELIMIT) 2963 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2964 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2965 #endif 2966 2967 if (__predict_false(pi->link_cfg.link_ok == false)) { 2968 m_freem(m); 2969 return (ENETDOWN); 2970 } 2971 2972 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2973 if (__predict_false(rc != 0)) { 2974 MPASS(m == NULL); /* was freed already */ 2975 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2976 return (rc); 2977 } 2978 #ifdef RATELIMIT 2979 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2980 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2981 return (ethofld_transmit(ifp, m)); 2982 } 2983 #endif 2984 2985 /* Select a txq. */ 2986 sc = vi->adapter; 2987 txq = &sc->sge.txq[vi->first_txq]; 2988 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2989 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2990 vi->rsrv_noflowq); 2991 2992 items[0] = m; 2993 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2994 if (__predict_false(rc != 0)) 2995 m_freem(m); 2996 2997 return (rc); 2998 } 2999 3000 static void 3001 cxgbe_qflush(struct ifnet *ifp) 3002 { 3003 struct vi_info *vi = ifp->if_softc; 3004 struct sge_txq *txq; 3005 int i; 3006 3007 /* queues do not exist if !VI_INIT_DONE. */ 3008 if (vi->flags & VI_INIT_DONE) { 3009 for_each_txq(vi, i, txq) { 3010 TXQ_LOCK(txq); 3011 txq->eq.flags |= EQ_QFLUSH; 3012 TXQ_UNLOCK(txq); 3013 while (!mp_ring_is_idle(txq->r)) { 3014 mp_ring_check_drainage(txq->r, 4096); 3015 pause("qflush", 1); 3016 } 3017 TXQ_LOCK(txq); 3018 txq->eq.flags &= ~EQ_QFLUSH; 3019 TXQ_UNLOCK(txq); 3020 } 3021 } 3022 if_qflush(ifp); 3023 } 3024 3025 static uint64_t 3026 vi_get_counter(struct ifnet *ifp, ift_counter c) 3027 { 3028 struct vi_info *vi = ifp->if_softc; 3029 struct fw_vi_stats_vf *s = &vi->stats; 3030 3031 mtx_lock(&vi->tick_mtx); 3032 vi_refresh_stats(vi); 3033 mtx_unlock(&vi->tick_mtx); 3034 3035 switch (c) { 3036 case IFCOUNTER_IPACKETS: 3037 return (s->rx_bcast_frames + s->rx_mcast_frames + 3038 s->rx_ucast_frames); 3039 case IFCOUNTER_IERRORS: 3040 return (s->rx_err_frames); 3041 case IFCOUNTER_OPACKETS: 3042 return (s->tx_bcast_frames + s->tx_mcast_frames + 3043 s->tx_ucast_frames + s->tx_offload_frames); 3044 case IFCOUNTER_OERRORS: 3045 return (s->tx_drop_frames); 3046 case IFCOUNTER_IBYTES: 3047 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3048 s->rx_ucast_bytes); 3049 case IFCOUNTER_OBYTES: 3050 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3051 s->tx_ucast_bytes + s->tx_offload_bytes); 3052 case IFCOUNTER_IMCASTS: 3053 return (s->rx_mcast_frames); 3054 case IFCOUNTER_OMCASTS: 3055 return (s->tx_mcast_frames); 3056 case IFCOUNTER_OQDROPS: { 3057 uint64_t drops; 3058 3059 drops = 0; 3060 if (vi->flags & VI_INIT_DONE) { 3061 int i; 3062 struct sge_txq *txq; 3063 3064 for_each_txq(vi, i, txq) 3065 drops += counter_u64_fetch(txq->r->dropped); 3066 } 3067 3068 return (drops); 3069 3070 } 3071 3072 default: 3073 return (if_get_counter_default(ifp, c)); 3074 } 3075 } 3076 3077 static uint64_t 3078 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3079 { 3080 struct vi_info *vi = ifp->if_softc; 3081 struct port_info *pi = vi->pi; 3082 struct port_stats *s = &pi->stats; 3083 3084 mtx_lock(&vi->tick_mtx); 3085 cxgbe_refresh_stats(vi); 3086 mtx_unlock(&vi->tick_mtx); 3087 3088 switch (c) { 3089 case IFCOUNTER_IPACKETS: 3090 return (s->rx_frames); 3091 3092 case IFCOUNTER_IERRORS: 3093 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3094 s->rx_fcs_err + s->rx_len_err); 3095 3096 case IFCOUNTER_OPACKETS: 3097 return (s->tx_frames); 3098 3099 case IFCOUNTER_OERRORS: 3100 return (s->tx_error_frames); 3101 3102 case IFCOUNTER_IBYTES: 3103 return (s->rx_octets); 3104 3105 case IFCOUNTER_OBYTES: 3106 return (s->tx_octets); 3107 3108 case IFCOUNTER_IMCASTS: 3109 return (s->rx_mcast_frames); 3110 3111 case IFCOUNTER_OMCASTS: 3112 return (s->tx_mcast_frames); 3113 3114 case IFCOUNTER_IQDROPS: 3115 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3116 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3117 s->rx_trunc3 + pi->tnl_cong_drops); 3118 3119 case IFCOUNTER_OQDROPS: { 3120 uint64_t drops; 3121 3122 drops = s->tx_drop; 3123 if (vi->flags & VI_INIT_DONE) { 3124 int i; 3125 struct sge_txq *txq; 3126 3127 for_each_txq(vi, i, txq) 3128 drops += counter_u64_fetch(txq->r->dropped); 3129 } 3130 3131 return (drops); 3132 3133 } 3134 3135 default: 3136 return (if_get_counter_default(ifp, c)); 3137 } 3138 } 3139 3140 #if defined(KERN_TLS) || defined(RATELIMIT) 3141 static int 3142 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3143 struct m_snd_tag **pt) 3144 { 3145 int error; 3146 3147 switch (params->hdr.type) { 3148 #ifdef RATELIMIT 3149 case IF_SND_TAG_TYPE_RATE_LIMIT: 3150 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3151 break; 3152 #endif 3153 #ifdef KERN_TLS 3154 case IF_SND_TAG_TYPE_TLS: 3155 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3156 break; 3157 #endif 3158 default: 3159 error = EOPNOTSUPP; 3160 } 3161 return (error); 3162 } 3163 #endif 3164 3165 /* 3166 * The kernel picks a media from the list we had provided but we still validate 3167 * the requeste. 3168 */ 3169 int 3170 cxgbe_media_change(struct ifnet *ifp) 3171 { 3172 struct vi_info *vi = ifp->if_softc; 3173 struct port_info *pi = vi->pi; 3174 struct ifmedia *ifm = &pi->media; 3175 struct link_config *lc = &pi->link_cfg; 3176 struct adapter *sc = pi->adapter; 3177 int rc; 3178 3179 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3180 if (rc != 0) 3181 return (rc); 3182 PORT_LOCK(pi); 3183 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3184 /* ifconfig .. media autoselect */ 3185 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3186 rc = ENOTSUP; /* AN not supported by transceiver */ 3187 goto done; 3188 } 3189 lc->requested_aneg = AUTONEG_ENABLE; 3190 lc->requested_speed = 0; 3191 lc->requested_fc |= PAUSE_AUTONEG; 3192 } else { 3193 lc->requested_aneg = AUTONEG_DISABLE; 3194 lc->requested_speed = 3195 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3196 lc->requested_fc = 0; 3197 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3198 lc->requested_fc |= PAUSE_RX; 3199 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3200 lc->requested_fc |= PAUSE_TX; 3201 } 3202 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3203 fixup_link_config(pi); 3204 rc = apply_link_config(pi); 3205 } 3206 done: 3207 PORT_UNLOCK(pi); 3208 end_synchronized_op(sc, 0); 3209 return (rc); 3210 } 3211 3212 /* 3213 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3214 * given speed. 3215 */ 3216 static int 3217 port_mword(struct port_info *pi, uint32_t speed) 3218 { 3219 3220 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3221 MPASS(powerof2(speed)); 3222 3223 switch(pi->port_type) { 3224 case FW_PORT_TYPE_BT_SGMII: 3225 case FW_PORT_TYPE_BT_XFI: 3226 case FW_PORT_TYPE_BT_XAUI: 3227 /* BaseT */ 3228 switch (speed) { 3229 case FW_PORT_CAP32_SPEED_100M: 3230 return (IFM_100_T); 3231 case FW_PORT_CAP32_SPEED_1G: 3232 return (IFM_1000_T); 3233 case FW_PORT_CAP32_SPEED_10G: 3234 return (IFM_10G_T); 3235 } 3236 break; 3237 case FW_PORT_TYPE_KX4: 3238 if (speed == FW_PORT_CAP32_SPEED_10G) 3239 return (IFM_10G_KX4); 3240 break; 3241 case FW_PORT_TYPE_CX4: 3242 if (speed == FW_PORT_CAP32_SPEED_10G) 3243 return (IFM_10G_CX4); 3244 break; 3245 case FW_PORT_TYPE_KX: 3246 if (speed == FW_PORT_CAP32_SPEED_1G) 3247 return (IFM_1000_KX); 3248 break; 3249 case FW_PORT_TYPE_KR: 3250 case FW_PORT_TYPE_BP_AP: 3251 case FW_PORT_TYPE_BP4_AP: 3252 case FW_PORT_TYPE_BP40_BA: 3253 case FW_PORT_TYPE_KR4_100G: 3254 case FW_PORT_TYPE_KR_SFP28: 3255 case FW_PORT_TYPE_KR_XLAUI: 3256 switch (speed) { 3257 case FW_PORT_CAP32_SPEED_1G: 3258 return (IFM_1000_KX); 3259 case FW_PORT_CAP32_SPEED_10G: 3260 return (IFM_10G_KR); 3261 case FW_PORT_CAP32_SPEED_25G: 3262 return (IFM_25G_KR); 3263 case FW_PORT_CAP32_SPEED_40G: 3264 return (IFM_40G_KR4); 3265 case FW_PORT_CAP32_SPEED_50G: 3266 return (IFM_50G_KR2); 3267 case FW_PORT_CAP32_SPEED_100G: 3268 return (IFM_100G_KR4); 3269 } 3270 break; 3271 case FW_PORT_TYPE_FIBER_XFI: 3272 case FW_PORT_TYPE_FIBER_XAUI: 3273 case FW_PORT_TYPE_SFP: 3274 case FW_PORT_TYPE_QSFP_10G: 3275 case FW_PORT_TYPE_QSA: 3276 case FW_PORT_TYPE_QSFP: 3277 case FW_PORT_TYPE_CR4_QSFP: 3278 case FW_PORT_TYPE_CR_QSFP: 3279 case FW_PORT_TYPE_CR2_QSFP: 3280 case FW_PORT_TYPE_SFP28: 3281 /* Pluggable transceiver */ 3282 switch (pi->mod_type) { 3283 case FW_PORT_MOD_TYPE_LR: 3284 switch (speed) { 3285 case FW_PORT_CAP32_SPEED_1G: 3286 return (IFM_1000_LX); 3287 case FW_PORT_CAP32_SPEED_10G: 3288 return (IFM_10G_LR); 3289 case FW_PORT_CAP32_SPEED_25G: 3290 return (IFM_25G_LR); 3291 case FW_PORT_CAP32_SPEED_40G: 3292 return (IFM_40G_LR4); 3293 case FW_PORT_CAP32_SPEED_50G: 3294 return (IFM_50G_LR2); 3295 case FW_PORT_CAP32_SPEED_100G: 3296 return (IFM_100G_LR4); 3297 } 3298 break; 3299 case FW_PORT_MOD_TYPE_SR: 3300 switch (speed) { 3301 case FW_PORT_CAP32_SPEED_1G: 3302 return (IFM_1000_SX); 3303 case FW_PORT_CAP32_SPEED_10G: 3304 return (IFM_10G_SR); 3305 case FW_PORT_CAP32_SPEED_25G: 3306 return (IFM_25G_SR); 3307 case FW_PORT_CAP32_SPEED_40G: 3308 return (IFM_40G_SR4); 3309 case FW_PORT_CAP32_SPEED_50G: 3310 return (IFM_50G_SR2); 3311 case FW_PORT_CAP32_SPEED_100G: 3312 return (IFM_100G_SR4); 3313 } 3314 break; 3315 case FW_PORT_MOD_TYPE_ER: 3316 if (speed == FW_PORT_CAP32_SPEED_10G) 3317 return (IFM_10G_ER); 3318 break; 3319 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3320 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3321 switch (speed) { 3322 case FW_PORT_CAP32_SPEED_1G: 3323 return (IFM_1000_CX); 3324 case FW_PORT_CAP32_SPEED_10G: 3325 return (IFM_10G_TWINAX); 3326 case FW_PORT_CAP32_SPEED_25G: 3327 return (IFM_25G_CR); 3328 case FW_PORT_CAP32_SPEED_40G: 3329 return (IFM_40G_CR4); 3330 case FW_PORT_CAP32_SPEED_50G: 3331 return (IFM_50G_CR2); 3332 case FW_PORT_CAP32_SPEED_100G: 3333 return (IFM_100G_CR4); 3334 } 3335 break; 3336 case FW_PORT_MOD_TYPE_LRM: 3337 if (speed == FW_PORT_CAP32_SPEED_10G) 3338 return (IFM_10G_LRM); 3339 break; 3340 case FW_PORT_MOD_TYPE_NA: 3341 MPASS(0); /* Not pluggable? */ 3342 /* fall throough */ 3343 case FW_PORT_MOD_TYPE_ERROR: 3344 case FW_PORT_MOD_TYPE_UNKNOWN: 3345 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3346 break; 3347 case FW_PORT_MOD_TYPE_NONE: 3348 return (IFM_NONE); 3349 } 3350 break; 3351 case FW_PORT_TYPE_NONE: 3352 return (IFM_NONE); 3353 } 3354 3355 return (IFM_UNKNOWN); 3356 } 3357 3358 void 3359 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3360 { 3361 struct vi_info *vi = ifp->if_softc; 3362 struct port_info *pi = vi->pi; 3363 struct adapter *sc = pi->adapter; 3364 struct link_config *lc = &pi->link_cfg; 3365 3366 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3367 return; 3368 PORT_LOCK(pi); 3369 3370 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3371 /* 3372 * If all the interfaces are administratively down the firmware 3373 * does not report transceiver changes. Refresh port info here 3374 * so that ifconfig displays accurate ifmedia at all times. 3375 * This is the only reason we have a synchronized op in this 3376 * function. Just PORT_LOCK would have been enough otherwise. 3377 */ 3378 t4_update_port_info(pi); 3379 build_medialist(pi); 3380 } 3381 3382 /* ifm_status */ 3383 ifmr->ifm_status = IFM_AVALID; 3384 if (lc->link_ok == false) 3385 goto done; 3386 ifmr->ifm_status |= IFM_ACTIVE; 3387 3388 /* ifm_active */ 3389 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3390 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3391 if (lc->fc & PAUSE_RX) 3392 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3393 if (lc->fc & PAUSE_TX) 3394 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3395 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3396 done: 3397 PORT_UNLOCK(pi); 3398 end_synchronized_op(sc, 0); 3399 } 3400 3401 static int 3402 vcxgbe_probe(device_t dev) 3403 { 3404 char buf[128]; 3405 struct vi_info *vi = device_get_softc(dev); 3406 3407 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3408 vi - vi->pi->vi); 3409 device_set_desc_copy(dev, buf); 3410 3411 return (BUS_PROBE_DEFAULT); 3412 } 3413 3414 static int 3415 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3416 { 3417 int func, index, rc; 3418 uint32_t param, val; 3419 3420 ASSERT_SYNCHRONIZED_OP(sc); 3421 3422 index = vi - pi->vi; 3423 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3424 KASSERT(index < nitems(vi_mac_funcs), 3425 ("%s: VI %s doesn't have a MAC func", __func__, 3426 device_get_nameunit(vi->dev))); 3427 func = vi_mac_funcs[index]; 3428 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3429 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3430 if (rc < 0) { 3431 CH_ERR(vi, "failed to allocate virtual interface %d" 3432 "for port %d: %d\n", index, pi->port_id, -rc); 3433 return (-rc); 3434 } 3435 vi->viid = rc; 3436 3437 if (vi->rss_size == 1) { 3438 /* 3439 * This VI didn't get a slice of the RSS table. Reduce the 3440 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3441 * configuration file (nvi, rssnvi for this PF) if this is a 3442 * problem. 3443 */ 3444 device_printf(vi->dev, "RSS table not available.\n"); 3445 vi->rss_base = 0xffff; 3446 3447 return (0); 3448 } 3449 3450 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3452 V_FW_PARAMS_PARAM_YZ(vi->viid); 3453 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3454 if (rc) 3455 vi->rss_base = 0xffff; 3456 else { 3457 MPASS((val >> 16) == vi->rss_size); 3458 vi->rss_base = val & 0xffff; 3459 } 3460 3461 return (0); 3462 } 3463 3464 static int 3465 vcxgbe_attach(device_t dev) 3466 { 3467 struct vi_info *vi; 3468 struct port_info *pi; 3469 struct adapter *sc; 3470 int rc; 3471 3472 vi = device_get_softc(dev); 3473 pi = vi->pi; 3474 sc = pi->adapter; 3475 3476 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3477 if (rc) 3478 return (rc); 3479 rc = alloc_extra_vi(sc, pi, vi); 3480 end_synchronized_op(sc, 0); 3481 if (rc) 3482 return (rc); 3483 3484 rc = cxgbe_vi_attach(dev, vi); 3485 if (rc) { 3486 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3487 return (rc); 3488 } 3489 return (0); 3490 } 3491 3492 static int 3493 vcxgbe_detach(device_t dev) 3494 { 3495 struct vi_info *vi; 3496 struct adapter *sc; 3497 3498 vi = device_get_softc(dev); 3499 sc = vi->adapter; 3500 3501 doom_vi(sc, vi); 3502 3503 cxgbe_vi_detach(vi); 3504 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3505 3506 end_synchronized_op(sc, 0); 3507 3508 return (0); 3509 } 3510 3511 static struct callout fatal_callout; 3512 static struct taskqueue *reset_tq; 3513 3514 static void 3515 delayed_panic(void *arg) 3516 { 3517 struct adapter *sc = arg; 3518 3519 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3520 } 3521 3522 static void 3523 fatal_error_task(void *arg, int pending) 3524 { 3525 struct adapter *sc = arg; 3526 int rc; 3527 3528 #ifdef TCP_OFFLOAD 3529 t4_async_event(sc); 3530 #endif 3531 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3532 dump_cim_regs(sc); 3533 dump_cimla(sc); 3534 dump_devlog(sc); 3535 } 3536 3537 if (t4_reset_on_fatal_err) { 3538 CH_ALERT(sc, "resetting on fatal error.\n"); 3539 rc = reset_adapter(sc); 3540 if (rc == 0 && t4_panic_on_fatal_err) { 3541 CH_ALERT(sc, "reset was successful, " 3542 "system will NOT panic.\n"); 3543 return; 3544 } 3545 } 3546 3547 if (t4_panic_on_fatal_err) { 3548 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3549 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3550 } 3551 } 3552 3553 void 3554 t4_fatal_err(struct adapter *sc, bool fw_error) 3555 { 3556 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3557 3558 stop_adapter(sc); 3559 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3560 return; 3561 if (fw_error) { 3562 /* 3563 * We are here because of a firmware error/timeout and not 3564 * because of a hardware interrupt. It is possible (although 3565 * not very likely) that an error interrupt was also raised but 3566 * this thread ran first and inhibited t4_intr_err. We walk the 3567 * main INT_CAUSE registers here to make sure we haven't missed 3568 * anything interesting. 3569 */ 3570 t4_slow_intr_handler(sc, verbose); 3571 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3572 } 3573 t4_report_fw_error(sc); 3574 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3575 device_get_nameunit(sc->dev), fw_error); 3576 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3577 } 3578 3579 void 3580 t4_add_adapter(struct adapter *sc) 3581 { 3582 sx_xlock(&t4_list_lock); 3583 SLIST_INSERT_HEAD(&t4_list, sc, link); 3584 sx_xunlock(&t4_list_lock); 3585 } 3586 3587 int 3588 t4_map_bars_0_and_4(struct adapter *sc) 3589 { 3590 sc->regs_rid = PCIR_BAR(0); 3591 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3592 &sc->regs_rid, RF_ACTIVE); 3593 if (sc->regs_res == NULL) { 3594 device_printf(sc->dev, "cannot map registers.\n"); 3595 return (ENXIO); 3596 } 3597 sc->bt = rman_get_bustag(sc->regs_res); 3598 sc->bh = rman_get_bushandle(sc->regs_res); 3599 sc->mmio_len = rman_get_size(sc->regs_res); 3600 setbit(&sc->doorbells, DOORBELL_KDB); 3601 3602 sc->msix_rid = PCIR_BAR(4); 3603 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3604 &sc->msix_rid, RF_ACTIVE); 3605 if (sc->msix_res == NULL) { 3606 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3607 return (ENXIO); 3608 } 3609 3610 return (0); 3611 } 3612 3613 int 3614 t4_map_bar_2(struct adapter *sc) 3615 { 3616 3617 /* 3618 * T4: only iWARP driver uses the userspace doorbells. There is no need 3619 * to map it if RDMA is disabled. 3620 */ 3621 if (is_t4(sc) && sc->rdmacaps == 0) 3622 return (0); 3623 3624 sc->udbs_rid = PCIR_BAR(2); 3625 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3626 &sc->udbs_rid, RF_ACTIVE); 3627 if (sc->udbs_res == NULL) { 3628 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3629 return (ENXIO); 3630 } 3631 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3632 3633 if (chip_id(sc) >= CHELSIO_T5) { 3634 setbit(&sc->doorbells, DOORBELL_UDB); 3635 #if defined(__i386__) || defined(__amd64__) 3636 if (t5_write_combine) { 3637 int rc, mode; 3638 3639 /* 3640 * Enable write combining on BAR2. This is the 3641 * userspace doorbell BAR and is split into 128B 3642 * (UDBS_SEG_SIZE) doorbell regions, each associated 3643 * with an egress queue. The first 64B has the doorbell 3644 * and the second 64B can be used to submit a tx work 3645 * request with an implicit doorbell. 3646 */ 3647 3648 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3649 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3650 if (rc == 0) { 3651 clrbit(&sc->doorbells, DOORBELL_UDB); 3652 setbit(&sc->doorbells, DOORBELL_WCWR); 3653 setbit(&sc->doorbells, DOORBELL_UDBWC); 3654 } else { 3655 device_printf(sc->dev, 3656 "couldn't enable write combining: %d\n", 3657 rc); 3658 } 3659 3660 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3661 t4_write_reg(sc, A_SGE_STAT_CFG, 3662 V_STATSOURCE_T5(7) | mode); 3663 } 3664 #endif 3665 } 3666 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3667 3668 return (0); 3669 } 3670 3671 struct memwin_init { 3672 uint32_t base; 3673 uint32_t aperture; 3674 }; 3675 3676 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3677 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3678 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3679 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3680 }; 3681 3682 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3683 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3684 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3685 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3686 }; 3687 3688 static void 3689 setup_memwin(struct adapter *sc) 3690 { 3691 const struct memwin_init *mw_init; 3692 struct memwin *mw; 3693 int i; 3694 uint32_t bar0; 3695 3696 if (is_t4(sc)) { 3697 /* 3698 * Read low 32b of bar0 indirectly via the hardware backdoor 3699 * mechanism. Works from within PCI passthrough environments 3700 * too, where rman_get_start() can return a different value. We 3701 * need to program the T4 memory window decoders with the actual 3702 * addresses that will be coming across the PCIe link. 3703 */ 3704 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3705 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3706 3707 mw_init = &t4_memwin[0]; 3708 } else { 3709 /* T5+ use the relative offset inside the PCIe BAR */ 3710 bar0 = 0; 3711 3712 mw_init = &t5_memwin[0]; 3713 } 3714 3715 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3716 if (!rw_initialized(&mw->mw_lock)) { 3717 rw_init(&mw->mw_lock, "memory window access"); 3718 mw->mw_base = mw_init->base; 3719 mw->mw_aperture = mw_init->aperture; 3720 mw->mw_curpos = 0; 3721 } 3722 t4_write_reg(sc, 3723 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3724 (mw->mw_base + bar0) | V_BIR(0) | 3725 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3726 rw_wlock(&mw->mw_lock); 3727 position_memwin(sc, i, mw->mw_curpos); 3728 rw_wunlock(&mw->mw_lock); 3729 } 3730 3731 /* flush */ 3732 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3733 } 3734 3735 /* 3736 * Positions the memory window at the given address in the card's address space. 3737 * There are some alignment requirements and the actual position may be at an 3738 * address prior to the requested address. mw->mw_curpos always has the actual 3739 * position of the window. 3740 */ 3741 static void 3742 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3743 { 3744 struct memwin *mw; 3745 uint32_t pf; 3746 uint32_t reg; 3747 3748 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3749 mw = &sc->memwin[idx]; 3750 rw_assert(&mw->mw_lock, RA_WLOCKED); 3751 3752 if (is_t4(sc)) { 3753 pf = 0; 3754 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3755 } else { 3756 pf = V_PFNUM(sc->pf); 3757 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3758 } 3759 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3760 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3761 t4_read_reg(sc, reg); /* flush */ 3762 } 3763 3764 int 3765 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3766 int len, int rw) 3767 { 3768 struct memwin *mw; 3769 uint32_t mw_end, v; 3770 3771 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3772 3773 /* Memory can only be accessed in naturally aligned 4 byte units */ 3774 if (addr & 3 || len & 3 || len <= 0) 3775 return (EINVAL); 3776 3777 mw = &sc->memwin[idx]; 3778 while (len > 0) { 3779 rw_rlock(&mw->mw_lock); 3780 mw_end = mw->mw_curpos + mw->mw_aperture; 3781 if (addr >= mw_end || addr < mw->mw_curpos) { 3782 /* Will need to reposition the window */ 3783 if (!rw_try_upgrade(&mw->mw_lock)) { 3784 rw_runlock(&mw->mw_lock); 3785 rw_wlock(&mw->mw_lock); 3786 } 3787 rw_assert(&mw->mw_lock, RA_WLOCKED); 3788 position_memwin(sc, idx, addr); 3789 rw_downgrade(&mw->mw_lock); 3790 mw_end = mw->mw_curpos + mw->mw_aperture; 3791 } 3792 rw_assert(&mw->mw_lock, RA_RLOCKED); 3793 while (addr < mw_end && len > 0) { 3794 if (rw == 0) { 3795 v = t4_read_reg(sc, mw->mw_base + addr - 3796 mw->mw_curpos); 3797 *val++ = le32toh(v); 3798 } else { 3799 v = *val++; 3800 t4_write_reg(sc, mw->mw_base + addr - 3801 mw->mw_curpos, htole32(v)); 3802 } 3803 addr += 4; 3804 len -= 4; 3805 } 3806 rw_runlock(&mw->mw_lock); 3807 } 3808 3809 return (0); 3810 } 3811 3812 static void 3813 t4_init_atid_table(struct adapter *sc) 3814 { 3815 struct tid_info *t; 3816 int i; 3817 3818 t = &sc->tids; 3819 if (t->natids == 0) 3820 return; 3821 3822 MPASS(t->atid_tab == NULL); 3823 3824 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3825 M_ZERO | M_WAITOK); 3826 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3827 t->afree = t->atid_tab; 3828 t->atids_in_use = 0; 3829 for (i = 1; i < t->natids; i++) 3830 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3831 t->atid_tab[t->natids - 1].next = NULL; 3832 } 3833 3834 static void 3835 t4_free_atid_table(struct adapter *sc) 3836 { 3837 struct tid_info *t; 3838 3839 t = &sc->tids; 3840 3841 KASSERT(t->atids_in_use == 0, 3842 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3843 3844 if (mtx_initialized(&t->atid_lock)) 3845 mtx_destroy(&t->atid_lock); 3846 free(t->atid_tab, M_CXGBE); 3847 t->atid_tab = NULL; 3848 } 3849 3850 int 3851 alloc_atid(struct adapter *sc, void *ctx) 3852 { 3853 struct tid_info *t = &sc->tids; 3854 int atid = -1; 3855 3856 mtx_lock(&t->atid_lock); 3857 if (t->afree) { 3858 union aopen_entry *p = t->afree; 3859 3860 atid = p - t->atid_tab; 3861 MPASS(atid <= M_TID_TID); 3862 t->afree = p->next; 3863 p->data = ctx; 3864 t->atids_in_use++; 3865 } 3866 mtx_unlock(&t->atid_lock); 3867 return (atid); 3868 } 3869 3870 void * 3871 lookup_atid(struct adapter *sc, int atid) 3872 { 3873 struct tid_info *t = &sc->tids; 3874 3875 return (t->atid_tab[atid].data); 3876 } 3877 3878 void 3879 free_atid(struct adapter *sc, int atid) 3880 { 3881 struct tid_info *t = &sc->tids; 3882 union aopen_entry *p = &t->atid_tab[atid]; 3883 3884 mtx_lock(&t->atid_lock); 3885 p->next = t->afree; 3886 t->afree = p; 3887 t->atids_in_use--; 3888 mtx_unlock(&t->atid_lock); 3889 } 3890 3891 static void 3892 queue_tid_release(struct adapter *sc, int tid) 3893 { 3894 3895 CXGBE_UNIMPLEMENTED("deferred tid release"); 3896 } 3897 3898 void 3899 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3900 { 3901 struct wrqe *wr; 3902 struct cpl_tid_release *req; 3903 3904 wr = alloc_wrqe(sizeof(*req), ctrlq); 3905 if (wr == NULL) { 3906 queue_tid_release(sc, tid); /* defer */ 3907 return; 3908 } 3909 req = wrtod(wr); 3910 3911 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3912 3913 t4_wrq_tx(sc, wr); 3914 } 3915 3916 static int 3917 t4_range_cmp(const void *a, const void *b) 3918 { 3919 return ((const struct t4_range *)a)->start - 3920 ((const struct t4_range *)b)->start; 3921 } 3922 3923 /* 3924 * Verify that the memory range specified by the addr/len pair is valid within 3925 * the card's address space. 3926 */ 3927 static int 3928 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3929 { 3930 struct t4_range mem_ranges[4], *r, *next; 3931 uint32_t em, addr_len; 3932 int i, n, remaining; 3933 3934 /* Memory can only be accessed in naturally aligned 4 byte units */ 3935 if (addr & 3 || len & 3 || len == 0) 3936 return (EINVAL); 3937 3938 /* Enabled memories */ 3939 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3940 3941 r = &mem_ranges[0]; 3942 n = 0; 3943 bzero(r, sizeof(mem_ranges)); 3944 if (em & F_EDRAM0_ENABLE) { 3945 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3946 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3947 if (r->size > 0) { 3948 r->start = G_EDRAM0_BASE(addr_len) << 20; 3949 if (addr >= r->start && 3950 addr + len <= r->start + r->size) 3951 return (0); 3952 r++; 3953 n++; 3954 } 3955 } 3956 if (em & F_EDRAM1_ENABLE) { 3957 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3958 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3959 if (r->size > 0) { 3960 r->start = G_EDRAM1_BASE(addr_len) << 20; 3961 if (addr >= r->start && 3962 addr + len <= r->start + r->size) 3963 return (0); 3964 r++; 3965 n++; 3966 } 3967 } 3968 if (em & F_EXT_MEM_ENABLE) { 3969 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3970 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3971 if (r->size > 0) { 3972 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3973 if (addr >= r->start && 3974 addr + len <= r->start + r->size) 3975 return (0); 3976 r++; 3977 n++; 3978 } 3979 } 3980 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3981 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3982 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3983 if (r->size > 0) { 3984 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3985 if (addr >= r->start && 3986 addr + len <= r->start + r->size) 3987 return (0); 3988 r++; 3989 n++; 3990 } 3991 } 3992 MPASS(n <= nitems(mem_ranges)); 3993 3994 if (n > 1) { 3995 /* Sort and merge the ranges. */ 3996 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3997 3998 /* Start from index 0 and examine the next n - 1 entries. */ 3999 r = &mem_ranges[0]; 4000 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4001 4002 MPASS(r->size > 0); /* r is a valid entry. */ 4003 next = r + 1; 4004 MPASS(next->size > 0); /* and so is the next one. */ 4005 4006 while (r->start + r->size >= next->start) { 4007 /* Merge the next one into the current entry. */ 4008 r->size = max(r->start + r->size, 4009 next->start + next->size) - r->start; 4010 n--; /* One fewer entry in total. */ 4011 if (--remaining == 0) 4012 goto done; /* short circuit */ 4013 next++; 4014 } 4015 if (next != r + 1) { 4016 /* 4017 * Some entries were merged into r and next 4018 * points to the first valid entry that couldn't 4019 * be merged. 4020 */ 4021 MPASS(next->size > 0); /* must be valid */ 4022 memcpy(r + 1, next, remaining * sizeof(*r)); 4023 #ifdef INVARIANTS 4024 /* 4025 * This so that the foo->size assertion in the 4026 * next iteration of the loop do the right 4027 * thing for entries that were pulled up and are 4028 * no longer valid. 4029 */ 4030 MPASS(n < nitems(mem_ranges)); 4031 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4032 sizeof(struct t4_range)); 4033 #endif 4034 } 4035 } 4036 done: 4037 /* Done merging the ranges. */ 4038 MPASS(n > 0); 4039 r = &mem_ranges[0]; 4040 for (i = 0; i < n; i++, r++) { 4041 if (addr >= r->start && 4042 addr + len <= r->start + r->size) 4043 return (0); 4044 } 4045 } 4046 4047 return (EFAULT); 4048 } 4049 4050 static int 4051 fwmtype_to_hwmtype(int mtype) 4052 { 4053 4054 switch (mtype) { 4055 case FW_MEMTYPE_EDC0: 4056 return (MEM_EDC0); 4057 case FW_MEMTYPE_EDC1: 4058 return (MEM_EDC1); 4059 case FW_MEMTYPE_EXTMEM: 4060 return (MEM_MC0); 4061 case FW_MEMTYPE_EXTMEM1: 4062 return (MEM_MC1); 4063 default: 4064 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4065 } 4066 } 4067 4068 /* 4069 * Verify that the memory range specified by the memtype/offset/len pair is 4070 * valid and lies entirely within the memtype specified. The global address of 4071 * the start of the range is returned in addr. 4072 */ 4073 static int 4074 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4075 uint32_t *addr) 4076 { 4077 uint32_t em, addr_len, maddr; 4078 4079 /* Memory can only be accessed in naturally aligned 4 byte units */ 4080 if (off & 3 || len & 3 || len == 0) 4081 return (EINVAL); 4082 4083 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4084 switch (fwmtype_to_hwmtype(mtype)) { 4085 case MEM_EDC0: 4086 if (!(em & F_EDRAM0_ENABLE)) 4087 return (EINVAL); 4088 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4089 maddr = G_EDRAM0_BASE(addr_len) << 20; 4090 break; 4091 case MEM_EDC1: 4092 if (!(em & F_EDRAM1_ENABLE)) 4093 return (EINVAL); 4094 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4095 maddr = G_EDRAM1_BASE(addr_len) << 20; 4096 break; 4097 case MEM_MC: 4098 if (!(em & F_EXT_MEM_ENABLE)) 4099 return (EINVAL); 4100 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4101 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4102 break; 4103 case MEM_MC1: 4104 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4105 return (EINVAL); 4106 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4107 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4108 break; 4109 default: 4110 return (EINVAL); 4111 } 4112 4113 *addr = maddr + off; /* global address */ 4114 return (validate_mem_range(sc, *addr, len)); 4115 } 4116 4117 static int 4118 fixup_devlog_params(struct adapter *sc) 4119 { 4120 struct devlog_params *dparams = &sc->params.devlog; 4121 int rc; 4122 4123 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4124 dparams->size, &dparams->addr); 4125 4126 return (rc); 4127 } 4128 4129 static void 4130 update_nirq(struct intrs_and_queues *iaq, int nports) 4131 { 4132 4133 iaq->nirq = T4_EXTRA_INTR; 4134 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4135 iaq->nirq += nports * iaq->nofldrxq; 4136 iaq->nirq += nports * (iaq->num_vis - 1) * 4137 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4138 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4139 } 4140 4141 /* 4142 * Adjust requirements to fit the number of interrupts available. 4143 */ 4144 static void 4145 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4146 int navail) 4147 { 4148 int old_nirq; 4149 const int nports = sc->params.nports; 4150 4151 MPASS(nports > 0); 4152 MPASS(navail > 0); 4153 4154 bzero(iaq, sizeof(*iaq)); 4155 iaq->intr_type = itype; 4156 iaq->num_vis = t4_num_vis; 4157 iaq->ntxq = t4_ntxq; 4158 iaq->ntxq_vi = t4_ntxq_vi; 4159 iaq->nrxq = t4_nrxq; 4160 iaq->nrxq_vi = t4_nrxq_vi; 4161 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4162 if (is_offload(sc) || is_ethoffload(sc)) { 4163 iaq->nofldtxq = t4_nofldtxq; 4164 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4165 } 4166 #endif 4167 #ifdef TCP_OFFLOAD 4168 if (is_offload(sc)) { 4169 iaq->nofldrxq = t4_nofldrxq; 4170 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4171 } 4172 #endif 4173 #ifdef DEV_NETMAP 4174 if (t4_native_netmap & NN_MAIN_VI) { 4175 iaq->nnmtxq = t4_nnmtxq; 4176 iaq->nnmrxq = t4_nnmrxq; 4177 } 4178 if (t4_native_netmap & NN_EXTRA_VI) { 4179 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4180 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4181 } 4182 #endif 4183 4184 update_nirq(iaq, nports); 4185 if (iaq->nirq <= navail && 4186 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4187 /* 4188 * This is the normal case -- there are enough interrupts for 4189 * everything. 4190 */ 4191 goto done; 4192 } 4193 4194 /* 4195 * If extra VIs have been configured try reducing their count and see if 4196 * that works. 4197 */ 4198 while (iaq->num_vis > 1) { 4199 iaq->num_vis--; 4200 update_nirq(iaq, nports); 4201 if (iaq->nirq <= navail && 4202 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4203 device_printf(sc->dev, "virtual interfaces per port " 4204 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4205 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4206 "itype %d, navail %u, nirq %d.\n", 4207 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4208 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4209 itype, navail, iaq->nirq); 4210 goto done; 4211 } 4212 } 4213 4214 /* 4215 * Extra VIs will not be created. Log a message if they were requested. 4216 */ 4217 MPASS(iaq->num_vis == 1); 4218 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4219 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4220 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4221 if (iaq->num_vis != t4_num_vis) { 4222 device_printf(sc->dev, "extra virtual interfaces disabled. " 4223 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4224 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4225 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4226 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4227 } 4228 4229 /* 4230 * Keep reducing the number of NIC rx queues to the next lower power of 4231 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4232 * if that works. 4233 */ 4234 do { 4235 if (iaq->nrxq > 1) { 4236 do { 4237 iaq->nrxq--; 4238 } while (!powerof2(iaq->nrxq)); 4239 if (iaq->nnmrxq > iaq->nrxq) 4240 iaq->nnmrxq = iaq->nrxq; 4241 } 4242 if (iaq->nofldrxq > 1) 4243 iaq->nofldrxq >>= 1; 4244 4245 old_nirq = iaq->nirq; 4246 update_nirq(iaq, nports); 4247 if (iaq->nirq <= navail && 4248 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4249 device_printf(sc->dev, "running with reduced number of " 4250 "rx queues because of shortage of interrupts. " 4251 "nrxq=%u, nofldrxq=%u. " 4252 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4253 iaq->nofldrxq, itype, navail, iaq->nirq); 4254 goto done; 4255 } 4256 } while (old_nirq != iaq->nirq); 4257 4258 /* One interrupt for everything. Ugh. */ 4259 device_printf(sc->dev, "running with minimal number of queues. " 4260 "itype %d, navail %u.\n", itype, navail); 4261 iaq->nirq = 1; 4262 iaq->nrxq = 1; 4263 iaq->ntxq = 1; 4264 if (iaq->nofldrxq > 0) { 4265 iaq->nofldrxq = 1; 4266 iaq->nofldtxq = 1; 4267 } 4268 iaq->nnmtxq = 0; 4269 iaq->nnmrxq = 0; 4270 done: 4271 MPASS(iaq->num_vis > 0); 4272 if (iaq->num_vis > 1) { 4273 MPASS(iaq->nrxq_vi > 0); 4274 MPASS(iaq->ntxq_vi > 0); 4275 } 4276 MPASS(iaq->nirq > 0); 4277 MPASS(iaq->nrxq > 0); 4278 MPASS(iaq->ntxq > 0); 4279 if (itype == INTR_MSI) { 4280 MPASS(powerof2(iaq->nirq)); 4281 } 4282 } 4283 4284 static int 4285 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4286 { 4287 int rc, itype, navail, nalloc; 4288 4289 for (itype = INTR_MSIX; itype; itype >>= 1) { 4290 4291 if ((itype & t4_intr_types) == 0) 4292 continue; /* not allowed */ 4293 4294 if (itype == INTR_MSIX) 4295 navail = pci_msix_count(sc->dev); 4296 else if (itype == INTR_MSI) 4297 navail = pci_msi_count(sc->dev); 4298 else 4299 navail = 1; 4300 restart: 4301 if (navail == 0) 4302 continue; 4303 4304 calculate_iaq(sc, iaq, itype, navail); 4305 nalloc = iaq->nirq; 4306 rc = 0; 4307 if (itype == INTR_MSIX) 4308 rc = pci_alloc_msix(sc->dev, &nalloc); 4309 else if (itype == INTR_MSI) 4310 rc = pci_alloc_msi(sc->dev, &nalloc); 4311 4312 if (rc == 0 && nalloc > 0) { 4313 if (nalloc == iaq->nirq) 4314 return (0); 4315 4316 /* 4317 * Didn't get the number requested. Use whatever number 4318 * the kernel is willing to allocate. 4319 */ 4320 device_printf(sc->dev, "fewer vectors than requested, " 4321 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4322 itype, iaq->nirq, nalloc); 4323 pci_release_msi(sc->dev); 4324 navail = nalloc; 4325 goto restart; 4326 } 4327 4328 device_printf(sc->dev, 4329 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4330 itype, rc, iaq->nirq, nalloc); 4331 } 4332 4333 device_printf(sc->dev, 4334 "failed to find a usable interrupt type. " 4335 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4336 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4337 4338 return (ENXIO); 4339 } 4340 4341 #define FW_VERSION(chip) ( \ 4342 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4343 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4344 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4345 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4346 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4347 4348 /* Just enough of fw_hdr to cover all version info. */ 4349 struct fw_h { 4350 __u8 ver; 4351 __u8 chip; 4352 __be16 len512; 4353 __be32 fw_ver; 4354 __be32 tp_microcode_ver; 4355 __u8 intfver_nic; 4356 __u8 intfver_vnic; 4357 __u8 intfver_ofld; 4358 __u8 intfver_ri; 4359 __u8 intfver_iscsipdu; 4360 __u8 intfver_iscsi; 4361 __u8 intfver_fcoepdu; 4362 __u8 intfver_fcoe; 4363 }; 4364 /* Spot check a couple of fields. */ 4365 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4366 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4367 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4368 4369 struct fw_info { 4370 uint8_t chip; 4371 char *kld_name; 4372 char *fw_mod_name; 4373 struct fw_h fw_h; 4374 } fw_info[] = { 4375 { 4376 .chip = CHELSIO_T4, 4377 .kld_name = "t4fw_cfg", 4378 .fw_mod_name = "t4fw", 4379 .fw_h = { 4380 .chip = FW_HDR_CHIP_T4, 4381 .fw_ver = htobe32(FW_VERSION(T4)), 4382 .intfver_nic = FW_INTFVER(T4, NIC), 4383 .intfver_vnic = FW_INTFVER(T4, VNIC), 4384 .intfver_ofld = FW_INTFVER(T4, OFLD), 4385 .intfver_ri = FW_INTFVER(T4, RI), 4386 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4387 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4388 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4389 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4390 }, 4391 }, { 4392 .chip = CHELSIO_T5, 4393 .kld_name = "t5fw_cfg", 4394 .fw_mod_name = "t5fw", 4395 .fw_h = { 4396 .chip = FW_HDR_CHIP_T5, 4397 .fw_ver = htobe32(FW_VERSION(T5)), 4398 .intfver_nic = FW_INTFVER(T5, NIC), 4399 .intfver_vnic = FW_INTFVER(T5, VNIC), 4400 .intfver_ofld = FW_INTFVER(T5, OFLD), 4401 .intfver_ri = FW_INTFVER(T5, RI), 4402 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4403 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4404 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4405 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4406 }, 4407 }, { 4408 .chip = CHELSIO_T6, 4409 .kld_name = "t6fw_cfg", 4410 .fw_mod_name = "t6fw", 4411 .fw_h = { 4412 .chip = FW_HDR_CHIP_T6, 4413 .fw_ver = htobe32(FW_VERSION(T6)), 4414 .intfver_nic = FW_INTFVER(T6, NIC), 4415 .intfver_vnic = FW_INTFVER(T6, VNIC), 4416 .intfver_ofld = FW_INTFVER(T6, OFLD), 4417 .intfver_ri = FW_INTFVER(T6, RI), 4418 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4419 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4420 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4421 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4422 }, 4423 } 4424 }; 4425 4426 static struct fw_info * 4427 find_fw_info(int chip) 4428 { 4429 int i; 4430 4431 for (i = 0; i < nitems(fw_info); i++) { 4432 if (fw_info[i].chip == chip) 4433 return (&fw_info[i]); 4434 } 4435 return (NULL); 4436 } 4437 4438 /* 4439 * Is the given firmware API compatible with the one the driver was compiled 4440 * with? 4441 */ 4442 static int 4443 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4444 { 4445 4446 /* short circuit if it's the exact same firmware version */ 4447 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4448 return (1); 4449 4450 /* 4451 * XXX: Is this too conservative? Perhaps I should limit this to the 4452 * features that are supported in the driver. 4453 */ 4454 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4455 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4456 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4457 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4458 return (1); 4459 #undef SAME_INTF 4460 4461 return (0); 4462 } 4463 4464 static int 4465 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4466 const struct firmware **fw) 4467 { 4468 struct fw_info *fw_info; 4469 4470 *dcfg = NULL; 4471 if (fw != NULL) 4472 *fw = NULL; 4473 4474 fw_info = find_fw_info(chip_id(sc)); 4475 if (fw_info == NULL) { 4476 device_printf(sc->dev, 4477 "unable to look up firmware information for chip %d.\n", 4478 chip_id(sc)); 4479 return (EINVAL); 4480 } 4481 4482 *dcfg = firmware_get(fw_info->kld_name); 4483 if (*dcfg != NULL) { 4484 if (fw != NULL) 4485 *fw = firmware_get(fw_info->fw_mod_name); 4486 return (0); 4487 } 4488 4489 return (ENOENT); 4490 } 4491 4492 static void 4493 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4494 const struct firmware *fw) 4495 { 4496 4497 if (fw != NULL) 4498 firmware_put(fw, FIRMWARE_UNLOAD); 4499 if (dcfg != NULL) 4500 firmware_put(dcfg, FIRMWARE_UNLOAD); 4501 } 4502 4503 /* 4504 * Return values: 4505 * 0 means no firmware install attempted. 4506 * ERESTART means a firmware install was attempted and was successful. 4507 * +ve errno means a firmware install was attempted but failed. 4508 */ 4509 static int 4510 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4511 const struct fw_h *drv_fw, const char *reason, int *already) 4512 { 4513 const struct firmware *cfg, *fw; 4514 const uint32_t c = be32toh(card_fw->fw_ver); 4515 uint32_t d, k; 4516 int rc, fw_install; 4517 struct fw_h bundled_fw; 4518 bool load_attempted; 4519 4520 cfg = fw = NULL; 4521 load_attempted = false; 4522 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4523 4524 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4525 if (t4_fw_install < 0) { 4526 rc = load_fw_module(sc, &cfg, &fw); 4527 if (rc != 0 || fw == NULL) { 4528 device_printf(sc->dev, 4529 "failed to load firmware module: %d. cfg %p, fw %p;" 4530 " will use compiled-in firmware version for" 4531 "hw.cxgbe.fw_install checks.\n", 4532 rc, cfg, fw); 4533 } else { 4534 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4535 } 4536 load_attempted = true; 4537 } 4538 d = be32toh(bundled_fw.fw_ver); 4539 4540 if (reason != NULL) 4541 goto install; 4542 4543 if ((sc->flags & FW_OK) == 0) { 4544 4545 if (c == 0xffffffff) { 4546 reason = "missing"; 4547 goto install; 4548 } 4549 4550 rc = 0; 4551 goto done; 4552 } 4553 4554 if (!fw_compatible(card_fw, &bundled_fw)) { 4555 reason = "incompatible or unusable"; 4556 goto install; 4557 } 4558 4559 if (d > c) { 4560 reason = "older than the version bundled with this driver"; 4561 goto install; 4562 } 4563 4564 if (fw_install == 2 && d != c) { 4565 reason = "different than the version bundled with this driver"; 4566 goto install; 4567 } 4568 4569 /* No reason to do anything to the firmware already on the card. */ 4570 rc = 0; 4571 goto done; 4572 4573 install: 4574 rc = 0; 4575 if ((*already)++) 4576 goto done; 4577 4578 if (fw_install == 0) { 4579 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4580 "but the driver is prohibited from installing a firmware " 4581 "on the card.\n", 4582 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4583 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4584 4585 goto done; 4586 } 4587 4588 /* 4589 * We'll attempt to install a firmware. Load the module first (if it 4590 * hasn't been loaded already). 4591 */ 4592 if (!load_attempted) { 4593 rc = load_fw_module(sc, &cfg, &fw); 4594 if (rc != 0 || fw == NULL) { 4595 device_printf(sc->dev, 4596 "failed to load firmware module: %d. cfg %p, fw %p\n", 4597 rc, cfg, fw); 4598 /* carry on */ 4599 } 4600 } 4601 if (fw == NULL) { 4602 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4603 "but the driver cannot take corrective action because it " 4604 "is unable to load the firmware module.\n", 4605 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4606 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4607 rc = sc->flags & FW_OK ? 0 : ENOENT; 4608 goto done; 4609 } 4610 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4611 if (k != d) { 4612 MPASS(t4_fw_install > 0); 4613 device_printf(sc->dev, 4614 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4615 "expecting (%u.%u.%u.%u) and will not be used.\n", 4616 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4617 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4618 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4619 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4620 rc = sc->flags & FW_OK ? 0 : EINVAL; 4621 goto done; 4622 } 4623 4624 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4625 "installing firmware %u.%u.%u.%u on card.\n", 4626 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4627 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4628 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4629 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4630 4631 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4632 if (rc != 0) { 4633 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4634 } else { 4635 /* Installed successfully, update the cached header too. */ 4636 rc = ERESTART; 4637 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4638 } 4639 done: 4640 unload_fw_module(sc, cfg, fw); 4641 4642 return (rc); 4643 } 4644 4645 /* 4646 * Establish contact with the firmware and attempt to become the master driver. 4647 * 4648 * A firmware will be installed to the card if needed (if the driver is allowed 4649 * to do so). 4650 */ 4651 static int 4652 contact_firmware(struct adapter *sc) 4653 { 4654 int rc, already = 0; 4655 enum dev_state state; 4656 struct fw_info *fw_info; 4657 struct fw_hdr *card_fw; /* fw on the card */ 4658 const struct fw_h *drv_fw; 4659 4660 fw_info = find_fw_info(chip_id(sc)); 4661 if (fw_info == NULL) { 4662 device_printf(sc->dev, 4663 "unable to look up firmware information for chip %d.\n", 4664 chip_id(sc)); 4665 return (EINVAL); 4666 } 4667 drv_fw = &fw_info->fw_h; 4668 4669 /* Read the header of the firmware on the card */ 4670 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4671 restart: 4672 rc = -t4_get_fw_hdr(sc, card_fw); 4673 if (rc != 0) { 4674 device_printf(sc->dev, 4675 "unable to read firmware header from card's flash: %d\n", 4676 rc); 4677 goto done; 4678 } 4679 4680 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4681 &already); 4682 if (rc == ERESTART) 4683 goto restart; 4684 if (rc != 0) 4685 goto done; 4686 4687 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4688 if (rc < 0 || state == DEV_STATE_ERR) { 4689 rc = -rc; 4690 device_printf(sc->dev, 4691 "failed to connect to the firmware: %d, %d. " 4692 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4693 #if 0 4694 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4695 "not responding properly to HELLO", &already) == ERESTART) 4696 goto restart; 4697 #endif 4698 goto done; 4699 } 4700 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4701 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4702 4703 if (rc == sc->pf) { 4704 sc->flags |= MASTER_PF; 4705 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4706 NULL, &already); 4707 if (rc == ERESTART) 4708 rc = 0; 4709 else if (rc != 0) 4710 goto done; 4711 } else if (state == DEV_STATE_UNINIT) { 4712 /* 4713 * We didn't get to be the master so we definitely won't be 4714 * configuring the chip. It's a bug if someone else hasn't 4715 * configured it already. 4716 */ 4717 device_printf(sc->dev, "couldn't be master(%d), " 4718 "device not already initialized either(%d). " 4719 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4720 rc = EPROTO; 4721 goto done; 4722 } else { 4723 /* 4724 * Some other PF is the master and has configured the chip. 4725 * This is allowed but untested. 4726 */ 4727 device_printf(sc->dev, "PF%d is master, device state %d. " 4728 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4729 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4730 sc->cfcsum = 0; 4731 rc = 0; 4732 } 4733 done: 4734 if (rc != 0 && sc->flags & FW_OK) { 4735 t4_fw_bye(sc, sc->mbox); 4736 sc->flags &= ~FW_OK; 4737 } 4738 free(card_fw, M_CXGBE); 4739 return (rc); 4740 } 4741 4742 static int 4743 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4744 uint32_t mtype, uint32_t moff) 4745 { 4746 struct fw_info *fw_info; 4747 const struct firmware *dcfg, *rcfg = NULL; 4748 const uint32_t *cfdata; 4749 uint32_t cflen, addr; 4750 int rc; 4751 4752 load_fw_module(sc, &dcfg, NULL); 4753 4754 /* Card specific interpretation of "default". */ 4755 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4756 if (pci_get_device(sc->dev) == 0x440a) 4757 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4758 if (is_fpga(sc)) 4759 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4760 } 4761 4762 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4763 if (dcfg == NULL) { 4764 device_printf(sc->dev, 4765 "KLD with default config is not available.\n"); 4766 rc = ENOENT; 4767 goto done; 4768 } 4769 cfdata = dcfg->data; 4770 cflen = dcfg->datasize & ~3; 4771 } else { 4772 char s[32]; 4773 4774 fw_info = find_fw_info(chip_id(sc)); 4775 if (fw_info == NULL) { 4776 device_printf(sc->dev, 4777 "unable to look up firmware information for chip %d.\n", 4778 chip_id(sc)); 4779 rc = EINVAL; 4780 goto done; 4781 } 4782 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4783 4784 rcfg = firmware_get(s); 4785 if (rcfg == NULL) { 4786 device_printf(sc->dev, 4787 "unable to load module \"%s\" for configuration " 4788 "profile \"%s\".\n", s, cfg_file); 4789 rc = ENOENT; 4790 goto done; 4791 } 4792 cfdata = rcfg->data; 4793 cflen = rcfg->datasize & ~3; 4794 } 4795 4796 if (cflen > FLASH_CFG_MAX_SIZE) { 4797 device_printf(sc->dev, 4798 "config file too long (%d, max allowed is %d).\n", 4799 cflen, FLASH_CFG_MAX_SIZE); 4800 rc = EINVAL; 4801 goto done; 4802 } 4803 4804 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4805 if (rc != 0) { 4806 device_printf(sc->dev, 4807 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4808 __func__, mtype, moff, cflen, rc); 4809 rc = EINVAL; 4810 goto done; 4811 } 4812 write_via_memwin(sc, 2, addr, cfdata, cflen); 4813 done: 4814 if (rcfg != NULL) 4815 firmware_put(rcfg, FIRMWARE_UNLOAD); 4816 unload_fw_module(sc, dcfg, NULL); 4817 return (rc); 4818 } 4819 4820 struct caps_allowed { 4821 uint16_t nbmcaps; 4822 uint16_t linkcaps; 4823 uint16_t switchcaps; 4824 uint16_t niccaps; 4825 uint16_t toecaps; 4826 uint16_t rdmacaps; 4827 uint16_t cryptocaps; 4828 uint16_t iscsicaps; 4829 uint16_t fcoecaps; 4830 }; 4831 4832 #define FW_PARAM_DEV(param) \ 4833 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4834 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4835 #define FW_PARAM_PFVF(param) \ 4836 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4837 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4838 4839 /* 4840 * Provide a configuration profile to the firmware and have it initialize the 4841 * chip accordingly. This may involve uploading a configuration file to the 4842 * card. 4843 */ 4844 static int 4845 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4846 const struct caps_allowed *caps_allowed) 4847 { 4848 int rc; 4849 struct fw_caps_config_cmd caps; 4850 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4851 4852 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4853 if (rc != 0) { 4854 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4855 return (rc); 4856 } 4857 4858 bzero(&caps, sizeof(caps)); 4859 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4860 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4861 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4862 mtype = 0; 4863 moff = 0; 4864 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4865 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4866 mtype = FW_MEMTYPE_FLASH; 4867 moff = t4_flash_cfg_addr(sc); 4868 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4869 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4870 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4871 FW_LEN16(caps)); 4872 } else { 4873 /* 4874 * Ask the firmware where it wants us to upload the config file. 4875 */ 4876 param = FW_PARAM_DEV(CF); 4877 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4878 if (rc != 0) { 4879 /* No support for config file? Shouldn't happen. */ 4880 device_printf(sc->dev, 4881 "failed to query config file location: %d.\n", rc); 4882 goto done; 4883 } 4884 mtype = G_FW_PARAMS_PARAM_Y(val); 4885 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4886 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4887 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4888 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4889 FW_LEN16(caps)); 4890 4891 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4892 if (rc != 0) { 4893 device_printf(sc->dev, 4894 "failed to upload config file to card: %d.\n", rc); 4895 goto done; 4896 } 4897 } 4898 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4899 if (rc != 0) { 4900 device_printf(sc->dev, "failed to pre-process config file: %d " 4901 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4902 goto done; 4903 } 4904 4905 finicsum = be32toh(caps.finicsum); 4906 cfcsum = be32toh(caps.cfcsum); /* actual */ 4907 if (finicsum != cfcsum) { 4908 device_printf(sc->dev, 4909 "WARNING: config file checksum mismatch: %08x %08x\n", 4910 finicsum, cfcsum); 4911 } 4912 sc->cfcsum = cfcsum; 4913 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4914 4915 /* 4916 * Let the firmware know what features will (not) be used so it can tune 4917 * things accordingly. 4918 */ 4919 #define LIMIT_CAPS(x) do { \ 4920 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4921 } while (0) 4922 LIMIT_CAPS(nbm); 4923 LIMIT_CAPS(link); 4924 LIMIT_CAPS(switch); 4925 LIMIT_CAPS(nic); 4926 LIMIT_CAPS(toe); 4927 LIMIT_CAPS(rdma); 4928 LIMIT_CAPS(crypto); 4929 LIMIT_CAPS(iscsi); 4930 LIMIT_CAPS(fcoe); 4931 #undef LIMIT_CAPS 4932 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4933 /* 4934 * TOE and hashfilters are mutually exclusive. It is a config 4935 * file or firmware bug if both are reported as available. Try 4936 * to cope with the situation in non-debug builds by disabling 4937 * TOE. 4938 */ 4939 MPASS(caps.toecaps == 0); 4940 4941 caps.toecaps = 0; 4942 caps.rdmacaps = 0; 4943 caps.iscsicaps = 0; 4944 } 4945 4946 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4947 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4948 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4949 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4950 if (rc != 0) { 4951 device_printf(sc->dev, 4952 "failed to process config file: %d.\n", rc); 4953 goto done; 4954 } 4955 4956 t4_tweak_chip_settings(sc); 4957 set_params__pre_init(sc); 4958 4959 /* get basic stuff going */ 4960 rc = -t4_fw_initialize(sc, sc->mbox); 4961 if (rc != 0) { 4962 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4963 goto done; 4964 } 4965 done: 4966 return (rc); 4967 } 4968 4969 /* 4970 * Partition chip resources for use between various PFs, VFs, etc. 4971 */ 4972 static int 4973 partition_resources(struct adapter *sc) 4974 { 4975 char cfg_file[sizeof(t4_cfg_file)]; 4976 struct caps_allowed caps_allowed; 4977 int rc; 4978 bool fallback; 4979 4980 /* Only the master driver gets to configure the chip resources. */ 4981 MPASS(sc->flags & MASTER_PF); 4982 4983 #define COPY_CAPS(x) do { \ 4984 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4985 } while (0) 4986 bzero(&caps_allowed, sizeof(caps_allowed)); 4987 COPY_CAPS(nbm); 4988 COPY_CAPS(link); 4989 COPY_CAPS(switch); 4990 COPY_CAPS(nic); 4991 COPY_CAPS(toe); 4992 COPY_CAPS(rdma); 4993 COPY_CAPS(crypto); 4994 COPY_CAPS(iscsi); 4995 COPY_CAPS(fcoe); 4996 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4997 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4998 retry: 4999 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5000 if (rc != 0 && fallback) { 5001 device_printf(sc->dev, 5002 "failed (%d) to configure card with \"%s\" profile, " 5003 "will fall back to a basic configuration and retry.\n", 5004 rc, cfg_file); 5005 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5006 bzero(&caps_allowed, sizeof(caps_allowed)); 5007 COPY_CAPS(switch); 5008 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5009 fallback = false; 5010 goto retry; 5011 } 5012 #undef COPY_CAPS 5013 return (rc); 5014 } 5015 5016 /* 5017 * Retrieve parameters that are needed (or nice to have) very early. 5018 */ 5019 static int 5020 get_params__pre_init(struct adapter *sc) 5021 { 5022 int rc; 5023 uint32_t param[2], val[2]; 5024 5025 t4_get_version_info(sc); 5026 5027 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5028 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5029 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5030 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5031 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5032 5033 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5034 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5035 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5036 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5037 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5038 5039 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5040 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5041 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5042 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5043 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5044 5045 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5046 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5047 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5048 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5049 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5050 5051 param[0] = FW_PARAM_DEV(PORTVEC); 5052 param[1] = FW_PARAM_DEV(CCLK); 5053 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5054 if (rc != 0) { 5055 device_printf(sc->dev, 5056 "failed to query parameters (pre_init): %d.\n", rc); 5057 return (rc); 5058 } 5059 5060 sc->params.portvec = val[0]; 5061 sc->params.nports = bitcount32(val[0]); 5062 sc->params.vpd.cclk = val[1]; 5063 5064 /* Read device log parameters. */ 5065 rc = -t4_init_devlog_params(sc, 1); 5066 if (rc == 0) 5067 fixup_devlog_params(sc); 5068 else { 5069 device_printf(sc->dev, 5070 "failed to get devlog parameters: %d.\n", rc); 5071 rc = 0; /* devlog isn't critical for device operation */ 5072 } 5073 5074 return (rc); 5075 } 5076 5077 /* 5078 * Any params that need to be set before FW_INITIALIZE. 5079 */ 5080 static int 5081 set_params__pre_init(struct adapter *sc) 5082 { 5083 int rc = 0; 5084 uint32_t param, val; 5085 5086 if (chip_id(sc) >= CHELSIO_T6) { 5087 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5088 val = 1; 5089 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5090 /* firmwares < 1.20.1.0 do not have this param. */ 5091 if (rc == FW_EINVAL && 5092 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5093 rc = 0; 5094 } 5095 if (rc != 0) { 5096 device_printf(sc->dev, 5097 "failed to enable high priority filters :%d.\n", 5098 rc); 5099 } 5100 } 5101 5102 /* Enable opaque VIIDs with firmwares that support it. */ 5103 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5104 val = 1; 5105 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5106 if (rc == 0 && val == 1) 5107 sc->params.viid_smt_extn_support = true; 5108 else 5109 sc->params.viid_smt_extn_support = false; 5110 5111 return (rc); 5112 } 5113 5114 /* 5115 * Retrieve various parameters that are of interest to the driver. The device 5116 * has been initialized by the firmware at this point. 5117 */ 5118 static int 5119 get_params__post_init(struct adapter *sc) 5120 { 5121 int rc; 5122 uint32_t param[7], val[7]; 5123 struct fw_caps_config_cmd caps; 5124 5125 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5126 param[1] = FW_PARAM_PFVF(EQ_START); 5127 param[2] = FW_PARAM_PFVF(FILTER_START); 5128 param[3] = FW_PARAM_PFVF(FILTER_END); 5129 param[4] = FW_PARAM_PFVF(L2T_START); 5130 param[5] = FW_PARAM_PFVF(L2T_END); 5131 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5132 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5133 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5134 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5135 if (rc != 0) { 5136 device_printf(sc->dev, 5137 "failed to query parameters (post_init): %d.\n", rc); 5138 return (rc); 5139 } 5140 5141 sc->sge.iq_start = val[0]; 5142 sc->sge.eq_start = val[1]; 5143 if ((int)val[3] > (int)val[2]) { 5144 sc->tids.ftid_base = val[2]; 5145 sc->tids.ftid_end = val[3]; 5146 sc->tids.nftids = val[3] - val[2] + 1; 5147 } 5148 sc->vres.l2t.start = val[4]; 5149 sc->vres.l2t.size = val[5] - val[4] + 1; 5150 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5151 ("%s: L2 table size (%u) larger than expected (%u)", 5152 __func__, sc->vres.l2t.size, L2T_SIZE)); 5153 sc->params.core_vdd = val[6]; 5154 5155 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5156 param[1] = FW_PARAM_PFVF(EQ_END); 5157 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5158 if (rc != 0) { 5159 device_printf(sc->dev, 5160 "failed to query parameters (post_init2): %d.\n", rc); 5161 return (rc); 5162 } 5163 MPASS((int)val[0] >= sc->sge.iq_start); 5164 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5165 MPASS((int)val[1] >= sc->sge.eq_start); 5166 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5167 5168 if (chip_id(sc) >= CHELSIO_T6) { 5169 5170 sc->tids.tid_base = t4_read_reg(sc, 5171 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5172 5173 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5174 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5175 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5176 if (rc != 0) { 5177 device_printf(sc->dev, 5178 "failed to query hpfilter parameters: %d.\n", rc); 5179 return (rc); 5180 } 5181 if ((int)val[1] > (int)val[0]) { 5182 sc->tids.hpftid_base = val[0]; 5183 sc->tids.hpftid_end = val[1]; 5184 sc->tids.nhpftids = val[1] - val[0] + 1; 5185 5186 /* 5187 * These should go off if the layout changes and the 5188 * driver needs to catch up. 5189 */ 5190 MPASS(sc->tids.hpftid_base == 0); 5191 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5192 } 5193 5194 param[0] = FW_PARAM_PFVF(RAWF_START); 5195 param[1] = FW_PARAM_PFVF(RAWF_END); 5196 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5197 if (rc != 0) { 5198 device_printf(sc->dev, 5199 "failed to query rawf parameters: %d.\n", rc); 5200 return (rc); 5201 } 5202 if ((int)val[1] > (int)val[0]) { 5203 sc->rawf_base = val[0]; 5204 sc->nrawf = val[1] - val[0] + 1; 5205 } 5206 } 5207 5208 /* 5209 * MPSBGMAP is queried separately because only recent firmwares support 5210 * it as a parameter and we don't want the compound query above to fail 5211 * on older firmwares. 5212 */ 5213 param[0] = FW_PARAM_DEV(MPSBGMAP); 5214 val[0] = 0; 5215 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5216 if (rc == 0) 5217 sc->params.mps_bg_map = val[0]; 5218 else 5219 sc->params.mps_bg_map = 0; 5220 5221 /* 5222 * Determine whether the firmware supports the filter2 work request. 5223 * This is queried separately for the same reason as MPSBGMAP above. 5224 */ 5225 param[0] = FW_PARAM_DEV(FILTER2_WR); 5226 val[0] = 0; 5227 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5228 if (rc == 0) 5229 sc->params.filter2_wr_support = val[0] != 0; 5230 else 5231 sc->params.filter2_wr_support = 0; 5232 5233 /* 5234 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5235 * This is queried separately for the same reason as other params above. 5236 */ 5237 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5238 val[0] = 0; 5239 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5240 if (rc == 0) 5241 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5242 else 5243 sc->params.ulptx_memwrite_dsgl = false; 5244 5245 /* FW_RI_FR_NSMR_TPTE_WR support */ 5246 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5247 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5248 if (rc == 0) 5249 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5250 else 5251 sc->params.fr_nsmr_tpte_wr_support = false; 5252 5253 /* Support for 512 SGL entries per FR MR. */ 5254 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5255 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5256 if (rc == 0) 5257 sc->params.dev_512sgl_mr = val[0] != 0; 5258 else 5259 sc->params.dev_512sgl_mr = false; 5260 5261 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5262 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5263 if (rc == 0) 5264 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5265 else 5266 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5267 5268 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5269 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5270 if (rc == 0) { 5271 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5272 sc->params.nsched_cls = val[0]; 5273 } else 5274 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5275 5276 /* get capabilites */ 5277 bzero(&caps, sizeof(caps)); 5278 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5279 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5280 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5281 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5282 if (rc != 0) { 5283 device_printf(sc->dev, 5284 "failed to get card capabilities: %d.\n", rc); 5285 return (rc); 5286 } 5287 5288 #define READ_CAPS(x) do { \ 5289 sc->x = htobe16(caps.x); \ 5290 } while (0) 5291 READ_CAPS(nbmcaps); 5292 READ_CAPS(linkcaps); 5293 READ_CAPS(switchcaps); 5294 READ_CAPS(niccaps); 5295 READ_CAPS(toecaps); 5296 READ_CAPS(rdmacaps); 5297 READ_CAPS(cryptocaps); 5298 READ_CAPS(iscsicaps); 5299 READ_CAPS(fcoecaps); 5300 5301 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5302 MPASS(chip_id(sc) > CHELSIO_T4); 5303 MPASS(sc->toecaps == 0); 5304 sc->toecaps = 0; 5305 5306 param[0] = FW_PARAM_DEV(NTID); 5307 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5308 if (rc != 0) { 5309 device_printf(sc->dev, 5310 "failed to query HASHFILTER parameters: %d.\n", rc); 5311 return (rc); 5312 } 5313 sc->tids.ntids = val[0]; 5314 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5315 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5316 sc->tids.ntids -= sc->tids.nhpftids; 5317 } 5318 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5319 sc->params.hash_filter = 1; 5320 } 5321 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5322 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5323 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5324 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5325 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5326 if (rc != 0) { 5327 device_printf(sc->dev, 5328 "failed to query NIC parameters: %d.\n", rc); 5329 return (rc); 5330 } 5331 if ((int)val[1] > (int)val[0]) { 5332 sc->tids.etid_base = val[0]; 5333 sc->tids.etid_end = val[1]; 5334 sc->tids.netids = val[1] - val[0] + 1; 5335 sc->params.eo_wr_cred = val[2]; 5336 sc->params.ethoffload = 1; 5337 } 5338 } 5339 if (sc->toecaps) { 5340 /* query offload-related parameters */ 5341 param[0] = FW_PARAM_DEV(NTID); 5342 param[1] = FW_PARAM_PFVF(SERVER_START); 5343 param[2] = FW_PARAM_PFVF(SERVER_END); 5344 param[3] = FW_PARAM_PFVF(TDDP_START); 5345 param[4] = FW_PARAM_PFVF(TDDP_END); 5346 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5347 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5348 if (rc != 0) { 5349 device_printf(sc->dev, 5350 "failed to query TOE parameters: %d.\n", rc); 5351 return (rc); 5352 } 5353 sc->tids.ntids = val[0]; 5354 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5355 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5356 sc->tids.ntids -= sc->tids.nhpftids; 5357 } 5358 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5359 if ((int)val[2] > (int)val[1]) { 5360 sc->tids.stid_base = val[1]; 5361 sc->tids.nstids = val[2] - val[1] + 1; 5362 } 5363 sc->vres.ddp.start = val[3]; 5364 sc->vres.ddp.size = val[4] - val[3] + 1; 5365 sc->params.ofldq_wr_cred = val[5]; 5366 sc->params.offload = 1; 5367 } else { 5368 /* 5369 * The firmware attempts memfree TOE configuration for -SO cards 5370 * and will report toecaps=0 if it runs out of resources (this 5371 * depends on the config file). It may not report 0 for other 5372 * capabilities dependent on the TOE in this case. Set them to 5373 * 0 here so that the driver doesn't bother tracking resources 5374 * that will never be used. 5375 */ 5376 sc->iscsicaps = 0; 5377 sc->rdmacaps = 0; 5378 } 5379 if (sc->rdmacaps) { 5380 param[0] = FW_PARAM_PFVF(STAG_START); 5381 param[1] = FW_PARAM_PFVF(STAG_END); 5382 param[2] = FW_PARAM_PFVF(RQ_START); 5383 param[3] = FW_PARAM_PFVF(RQ_END); 5384 param[4] = FW_PARAM_PFVF(PBL_START); 5385 param[5] = FW_PARAM_PFVF(PBL_END); 5386 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5387 if (rc != 0) { 5388 device_printf(sc->dev, 5389 "failed to query RDMA parameters(1): %d.\n", rc); 5390 return (rc); 5391 } 5392 sc->vres.stag.start = val[0]; 5393 sc->vres.stag.size = val[1] - val[0] + 1; 5394 sc->vres.rq.start = val[2]; 5395 sc->vres.rq.size = val[3] - val[2] + 1; 5396 sc->vres.pbl.start = val[4]; 5397 sc->vres.pbl.size = val[5] - val[4] + 1; 5398 5399 param[0] = FW_PARAM_PFVF(SQRQ_START); 5400 param[1] = FW_PARAM_PFVF(SQRQ_END); 5401 param[2] = FW_PARAM_PFVF(CQ_START); 5402 param[3] = FW_PARAM_PFVF(CQ_END); 5403 param[4] = FW_PARAM_PFVF(OCQ_START); 5404 param[5] = FW_PARAM_PFVF(OCQ_END); 5405 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5406 if (rc != 0) { 5407 device_printf(sc->dev, 5408 "failed to query RDMA parameters(2): %d.\n", rc); 5409 return (rc); 5410 } 5411 sc->vres.qp.start = val[0]; 5412 sc->vres.qp.size = val[1] - val[0] + 1; 5413 sc->vres.cq.start = val[2]; 5414 sc->vres.cq.size = val[3] - val[2] + 1; 5415 sc->vres.ocq.start = val[4]; 5416 sc->vres.ocq.size = val[5] - val[4] + 1; 5417 5418 param[0] = FW_PARAM_PFVF(SRQ_START); 5419 param[1] = FW_PARAM_PFVF(SRQ_END); 5420 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5421 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5422 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5423 if (rc != 0) { 5424 device_printf(sc->dev, 5425 "failed to query RDMA parameters(3): %d.\n", rc); 5426 return (rc); 5427 } 5428 sc->vres.srq.start = val[0]; 5429 sc->vres.srq.size = val[1] - val[0] + 1; 5430 sc->params.max_ordird_qp = val[2]; 5431 sc->params.max_ird_adapter = val[3]; 5432 } 5433 if (sc->iscsicaps) { 5434 param[0] = FW_PARAM_PFVF(ISCSI_START); 5435 param[1] = FW_PARAM_PFVF(ISCSI_END); 5436 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5437 if (rc != 0) { 5438 device_printf(sc->dev, 5439 "failed to query iSCSI parameters: %d.\n", rc); 5440 return (rc); 5441 } 5442 sc->vres.iscsi.start = val[0]; 5443 sc->vres.iscsi.size = val[1] - val[0] + 1; 5444 } 5445 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5446 param[0] = FW_PARAM_PFVF(TLS_START); 5447 param[1] = FW_PARAM_PFVF(TLS_END); 5448 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5449 if (rc != 0) { 5450 device_printf(sc->dev, 5451 "failed to query TLS parameters: %d.\n", rc); 5452 return (rc); 5453 } 5454 sc->vres.key.start = val[0]; 5455 sc->vres.key.size = val[1] - val[0] + 1; 5456 } 5457 5458 /* 5459 * We've got the params we wanted to query directly from the firmware. 5460 * Grab some others via other means. 5461 */ 5462 t4_init_sge_params(sc); 5463 t4_init_tp_params(sc); 5464 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5465 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5466 5467 rc = t4_verify_chip_settings(sc); 5468 if (rc != 0) 5469 return (rc); 5470 t4_init_rx_buf_info(sc); 5471 5472 return (rc); 5473 } 5474 5475 #ifdef KERN_TLS 5476 static void 5477 ktls_tick(void *arg) 5478 { 5479 struct adapter *sc; 5480 uint32_t tstamp; 5481 5482 sc = arg; 5483 tstamp = tcp_ts_getticks(); 5484 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5485 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5486 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5487 } 5488 5489 static int 5490 t4_config_kern_tls(struct adapter *sc, bool enable) 5491 { 5492 int rc; 5493 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5494 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5495 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5496 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5497 5498 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5499 if (rc != 0) { 5500 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5501 enable ? "enable" : "disable", rc); 5502 return (rc); 5503 } 5504 5505 if (enable) { 5506 sc->flags |= KERN_TLS_ON; 5507 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5508 C_HARDCLOCK); 5509 } else { 5510 sc->flags &= ~KERN_TLS_ON; 5511 callout_stop(&sc->ktls_tick); 5512 } 5513 5514 return (rc); 5515 } 5516 #endif 5517 5518 static int 5519 set_params__post_init(struct adapter *sc) 5520 { 5521 uint32_t mask, param, val; 5522 #ifdef TCP_OFFLOAD 5523 int i, v, shift; 5524 #endif 5525 5526 /* ask for encapsulated CPLs */ 5527 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5528 val = 1; 5529 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5530 5531 /* Enable 32b port caps if the firmware supports it. */ 5532 param = FW_PARAM_PFVF(PORT_CAPS32); 5533 val = 1; 5534 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5535 sc->params.port_caps32 = 1; 5536 5537 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5538 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5539 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5540 V_MASKFILTER(val - 1)); 5541 5542 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5543 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5544 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5545 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5546 val = 0; 5547 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5548 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5549 F_ATTACKFILTERENABLE); 5550 val |= F_DROPERRORATTACK; 5551 } 5552 if (t4_drop_ip_fragments != 0) { 5553 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5554 F_FRAGMENTDROP); 5555 val |= F_DROPERRORFRAG; 5556 } 5557 if (t4_drop_pkts_with_l2_errors != 0) 5558 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5559 if (t4_drop_pkts_with_l3_errors != 0) { 5560 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5561 F_DROPERRORCSUMIP; 5562 } 5563 if (t4_drop_pkts_with_l4_errors != 0) { 5564 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5565 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5566 } 5567 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5568 5569 #ifdef TCP_OFFLOAD 5570 /* 5571 * Override the TOE timers with user provided tunables. This is not the 5572 * recommended way to change the timers (the firmware config file is) so 5573 * these tunables are not documented. 5574 * 5575 * All the timer tunables are in microseconds. 5576 */ 5577 if (t4_toe_keepalive_idle != 0) { 5578 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5579 v &= M_KEEPALIVEIDLE; 5580 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5581 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5582 } 5583 if (t4_toe_keepalive_interval != 0) { 5584 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5585 v &= M_KEEPALIVEINTVL; 5586 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5587 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5588 } 5589 if (t4_toe_keepalive_count != 0) { 5590 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5591 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5592 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5593 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5594 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5595 } 5596 if (t4_toe_rexmt_min != 0) { 5597 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5598 v &= M_RXTMIN; 5599 t4_set_reg_field(sc, A_TP_RXT_MIN, 5600 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5601 } 5602 if (t4_toe_rexmt_max != 0) { 5603 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5604 v &= M_RXTMAX; 5605 t4_set_reg_field(sc, A_TP_RXT_MAX, 5606 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5607 } 5608 if (t4_toe_rexmt_count != 0) { 5609 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5610 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5611 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5612 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5613 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5614 } 5615 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5616 if (t4_toe_rexmt_backoff[i] != -1) { 5617 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5618 shift = (i & 3) << 3; 5619 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5620 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5621 } 5622 } 5623 #endif 5624 5625 #ifdef KERN_TLS 5626 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5627 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5628 /* 5629 * Limit TOE connections to 2 reassembly "islands". This is 5630 * required for TOE TLS connections to downgrade to plain TOE 5631 * connections if an unsupported TLS version or ciphersuite is 5632 * used. 5633 */ 5634 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5635 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5636 if (is_ktls(sc)) { 5637 sc->tlst.inline_keys = t4_tls_inline_keys; 5638 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5639 if (t4_kern_tls != 0) 5640 t4_config_kern_tls(sc, true); 5641 } 5642 } 5643 #endif 5644 return (0); 5645 } 5646 5647 #undef FW_PARAM_PFVF 5648 #undef FW_PARAM_DEV 5649 5650 static void 5651 t4_set_desc(struct adapter *sc) 5652 { 5653 char buf[128]; 5654 struct adapter_params *p = &sc->params; 5655 5656 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5657 5658 device_set_desc_copy(sc->dev, buf); 5659 } 5660 5661 static inline void 5662 ifmedia_add4(struct ifmedia *ifm, int m) 5663 { 5664 5665 ifmedia_add(ifm, m, 0, NULL); 5666 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5667 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5668 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5669 } 5670 5671 /* 5672 * This is the selected media, which is not quite the same as the active media. 5673 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5674 * and active are not the same, and "media: Ethernet selected" otherwise. 5675 */ 5676 static void 5677 set_current_media(struct port_info *pi) 5678 { 5679 struct link_config *lc; 5680 struct ifmedia *ifm; 5681 int mword; 5682 u_int speed; 5683 5684 PORT_LOCK_ASSERT_OWNED(pi); 5685 5686 /* Leave current media alone if it's already set to IFM_NONE. */ 5687 ifm = &pi->media; 5688 if (ifm->ifm_cur != NULL && 5689 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5690 return; 5691 5692 lc = &pi->link_cfg; 5693 if (lc->requested_aneg != AUTONEG_DISABLE && 5694 lc->pcaps & FW_PORT_CAP32_ANEG) { 5695 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5696 return; 5697 } 5698 mword = IFM_ETHER | IFM_FDX; 5699 if (lc->requested_fc & PAUSE_TX) 5700 mword |= IFM_ETH_TXPAUSE; 5701 if (lc->requested_fc & PAUSE_RX) 5702 mword |= IFM_ETH_RXPAUSE; 5703 if (lc->requested_speed == 0) 5704 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5705 else 5706 speed = lc->requested_speed; 5707 mword |= port_mword(pi, speed_to_fwcap(speed)); 5708 ifmedia_set(ifm, mword); 5709 } 5710 5711 /* 5712 * Returns true if the ifmedia list for the port cannot change. 5713 */ 5714 static bool 5715 fixed_ifmedia(struct port_info *pi) 5716 { 5717 5718 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5719 pi->port_type == FW_PORT_TYPE_BT_XFI || 5720 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5721 pi->port_type == FW_PORT_TYPE_KX4 || 5722 pi->port_type == FW_PORT_TYPE_KX || 5723 pi->port_type == FW_PORT_TYPE_KR || 5724 pi->port_type == FW_PORT_TYPE_BP_AP || 5725 pi->port_type == FW_PORT_TYPE_BP4_AP || 5726 pi->port_type == FW_PORT_TYPE_BP40_BA || 5727 pi->port_type == FW_PORT_TYPE_KR4_100G || 5728 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5729 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5730 } 5731 5732 static void 5733 build_medialist(struct port_info *pi) 5734 { 5735 uint32_t ss, speed; 5736 int unknown, mword, bit; 5737 struct link_config *lc; 5738 struct ifmedia *ifm; 5739 5740 PORT_LOCK_ASSERT_OWNED(pi); 5741 5742 if (pi->flags & FIXED_IFMEDIA) 5743 return; 5744 5745 /* 5746 * Rebuild the ifmedia list. 5747 */ 5748 ifm = &pi->media; 5749 ifmedia_removeall(ifm); 5750 lc = &pi->link_cfg; 5751 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5752 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5753 MPASS(ss != 0); 5754 no_media: 5755 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5756 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5757 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5758 return; 5759 } 5760 5761 unknown = 0; 5762 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5763 speed = 1 << bit; 5764 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5765 if (ss & speed) { 5766 mword = port_mword(pi, speed); 5767 if (mword == IFM_NONE) { 5768 goto no_media; 5769 } else if (mword == IFM_UNKNOWN) 5770 unknown++; 5771 else 5772 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5773 } 5774 } 5775 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5776 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5777 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5778 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5779 5780 set_current_media(pi); 5781 } 5782 5783 /* 5784 * Initialize the requested fields in the link config based on driver tunables. 5785 */ 5786 static void 5787 init_link_config(struct port_info *pi) 5788 { 5789 struct link_config *lc = &pi->link_cfg; 5790 5791 PORT_LOCK_ASSERT_OWNED(pi); 5792 MPASS(lc->pcaps != 0); 5793 5794 lc->requested_caps = 0; 5795 lc->requested_speed = 0; 5796 5797 if (t4_autoneg == 0) 5798 lc->requested_aneg = AUTONEG_DISABLE; 5799 else if (t4_autoneg == 1) 5800 lc->requested_aneg = AUTONEG_ENABLE; 5801 else 5802 lc->requested_aneg = AUTONEG_AUTO; 5803 5804 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5805 PAUSE_AUTONEG); 5806 5807 if (t4_fec & FEC_AUTO) 5808 lc->requested_fec = FEC_AUTO; 5809 else if (t4_fec == 0) 5810 lc->requested_fec = FEC_NONE; 5811 else { 5812 /* -1 is handled by the FEC_AUTO block above and not here. */ 5813 lc->requested_fec = t4_fec & 5814 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5815 if (lc->requested_fec == 0) 5816 lc->requested_fec = FEC_AUTO; 5817 } 5818 lc->force_fec = 0; 5819 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 5820 if (t4_force_fec < 0) 5821 lc->force_fec = -1; 5822 else if (t4_force_fec > 0) 5823 lc->force_fec = 1; 5824 } 5825 } 5826 5827 /* 5828 * Makes sure that all requested settings comply with what's supported by the 5829 * port. Returns the number of settings that were invalid and had to be fixed. 5830 */ 5831 static int 5832 fixup_link_config(struct port_info *pi) 5833 { 5834 int n = 0; 5835 struct link_config *lc = &pi->link_cfg; 5836 uint32_t fwspeed; 5837 5838 PORT_LOCK_ASSERT_OWNED(pi); 5839 5840 /* Speed (when not autonegotiating) */ 5841 if (lc->requested_speed != 0) { 5842 fwspeed = speed_to_fwcap(lc->requested_speed); 5843 if ((fwspeed & lc->pcaps) == 0) { 5844 n++; 5845 lc->requested_speed = 0; 5846 } 5847 } 5848 5849 /* Link autonegotiation */ 5850 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5851 lc->requested_aneg == AUTONEG_DISABLE || 5852 lc->requested_aneg == AUTONEG_AUTO); 5853 if (lc->requested_aneg == AUTONEG_ENABLE && 5854 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5855 n++; 5856 lc->requested_aneg = AUTONEG_AUTO; 5857 } 5858 5859 /* Flow control */ 5860 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5861 if (lc->requested_fc & PAUSE_TX && 5862 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5863 n++; 5864 lc->requested_fc &= ~PAUSE_TX; 5865 } 5866 if (lc->requested_fc & PAUSE_RX && 5867 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5868 n++; 5869 lc->requested_fc &= ~PAUSE_RX; 5870 } 5871 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5872 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5873 n++; 5874 lc->requested_fc |= PAUSE_AUTONEG; 5875 } 5876 5877 /* FEC */ 5878 if ((lc->requested_fec & FEC_RS && 5879 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5880 (lc->requested_fec & FEC_BASER_RS && 5881 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5882 n++; 5883 lc->requested_fec = FEC_AUTO; 5884 } 5885 5886 return (n); 5887 } 5888 5889 /* 5890 * Apply the requested L1 settings, which are expected to be valid, to the 5891 * hardware. 5892 */ 5893 static int 5894 apply_link_config(struct port_info *pi) 5895 { 5896 struct adapter *sc = pi->adapter; 5897 struct link_config *lc = &pi->link_cfg; 5898 int rc; 5899 5900 #ifdef INVARIANTS 5901 ASSERT_SYNCHRONIZED_OP(sc); 5902 PORT_LOCK_ASSERT_OWNED(pi); 5903 5904 if (lc->requested_aneg == AUTONEG_ENABLE) 5905 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5906 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5907 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5908 if (lc->requested_fc & PAUSE_TX) 5909 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5910 if (lc->requested_fc & PAUSE_RX) 5911 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5912 if (lc->requested_fec & FEC_RS) 5913 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5914 if (lc->requested_fec & FEC_BASER_RS) 5915 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5916 #endif 5917 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5918 if (rc != 0) { 5919 /* Don't complain if the VF driver gets back an EPERM. */ 5920 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5921 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5922 } else { 5923 /* 5924 * An L1_CFG will almost always result in a link-change event if 5925 * the link is up, and the driver will refresh the actual 5926 * fec/fc/etc. when the notification is processed. If the link 5927 * is down then the actual settings are meaningless. 5928 * 5929 * This takes care of the case where a change in the L1 settings 5930 * may not result in a notification. 5931 */ 5932 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5933 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5934 } 5935 return (rc); 5936 } 5937 5938 #define FW_MAC_EXACT_CHUNK 7 5939 struct mcaddr_ctx { 5940 struct ifnet *ifp; 5941 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5942 uint64_t hash; 5943 int i; 5944 int del; 5945 int rc; 5946 }; 5947 5948 static u_int 5949 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5950 { 5951 struct mcaddr_ctx *ctx = arg; 5952 struct vi_info *vi = ctx->ifp->if_softc; 5953 struct port_info *pi = vi->pi; 5954 struct adapter *sc = pi->adapter; 5955 5956 if (ctx->rc < 0) 5957 return (0); 5958 5959 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5960 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5961 ctx->i++; 5962 5963 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5964 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5965 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5966 if (ctx->rc < 0) { 5967 int j; 5968 5969 for (j = 0; j < ctx->i; j++) { 5970 if_printf(ctx->ifp, 5971 "failed to add mc address" 5972 " %02x:%02x:%02x:" 5973 "%02x:%02x:%02x rc=%d\n", 5974 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5975 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5976 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5977 -ctx->rc); 5978 } 5979 return (0); 5980 } 5981 ctx->del = 0; 5982 ctx->i = 0; 5983 } 5984 5985 return (1); 5986 } 5987 5988 /* 5989 * Program the port's XGMAC based on parameters in ifnet. The caller also 5990 * indicates which parameters should be programmed (the rest are left alone). 5991 */ 5992 int 5993 update_mac_settings(struct ifnet *ifp, int flags) 5994 { 5995 int rc = 0; 5996 struct vi_info *vi = ifp->if_softc; 5997 struct port_info *pi = vi->pi; 5998 struct adapter *sc = pi->adapter; 5999 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6000 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6001 6002 ASSERT_SYNCHRONIZED_OP(sc); 6003 KASSERT(flags, ("%s: not told what to update.", __func__)); 6004 6005 if (flags & XGMAC_MTU) 6006 mtu = ifp->if_mtu; 6007 6008 if (flags & XGMAC_PROMISC) 6009 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 6010 6011 if (flags & XGMAC_ALLMULTI) 6012 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 6013 6014 if (flags & XGMAC_VLANEX) 6015 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6016 6017 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6018 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6019 allmulti, 1, vlanex, false); 6020 if (rc) { 6021 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6022 rc); 6023 return (rc); 6024 } 6025 } 6026 6027 if (flags & XGMAC_UCADDR) { 6028 uint8_t ucaddr[ETHER_ADDR_LEN]; 6029 6030 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 6031 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6032 ucaddr, true, &vi->smt_idx); 6033 if (rc < 0) { 6034 rc = -rc; 6035 if_printf(ifp, "change_mac failed: %d\n", rc); 6036 return (rc); 6037 } else { 6038 vi->xact_addr_filt = rc; 6039 rc = 0; 6040 } 6041 } 6042 6043 if (flags & XGMAC_MCADDRS) { 6044 struct epoch_tracker et; 6045 struct mcaddr_ctx ctx; 6046 int j; 6047 6048 ctx.ifp = ifp; 6049 ctx.hash = 0; 6050 ctx.i = 0; 6051 ctx.del = 1; 6052 ctx.rc = 0; 6053 /* 6054 * Unlike other drivers, we accumulate list of pointers into 6055 * interface address lists and we need to keep it safe even 6056 * after if_foreach_llmaddr() returns, thus we must enter the 6057 * network epoch. 6058 */ 6059 NET_EPOCH_ENTER(et); 6060 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6061 if (ctx.rc < 0) { 6062 NET_EPOCH_EXIT(et); 6063 rc = -ctx.rc; 6064 return (rc); 6065 } 6066 if (ctx.i > 0) { 6067 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6068 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6069 NET_EPOCH_EXIT(et); 6070 if (rc < 0) { 6071 rc = -rc; 6072 for (j = 0; j < ctx.i; j++) { 6073 if_printf(ifp, 6074 "failed to add mcast address" 6075 " %02x:%02x:%02x:" 6076 "%02x:%02x:%02x rc=%d\n", 6077 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6078 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6079 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6080 rc); 6081 } 6082 return (rc); 6083 } 6084 ctx.del = 0; 6085 } else 6086 NET_EPOCH_EXIT(et); 6087 6088 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6089 if (rc != 0) 6090 if_printf(ifp, "failed to set mcast address hash: %d\n", 6091 rc); 6092 if (ctx.del == 0) { 6093 /* We clobbered the VXLAN entry if there was one. */ 6094 pi->vxlan_tcam_entry = false; 6095 } 6096 } 6097 6098 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6099 pi->vxlan_tcam_entry == false) { 6100 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6101 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6102 true); 6103 if (rc < 0) { 6104 rc = -rc; 6105 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6106 rc); 6107 } else { 6108 MPASS(rc == sc->rawf_base + pi->port_id); 6109 rc = 0; 6110 pi->vxlan_tcam_entry = true; 6111 } 6112 } 6113 6114 return (rc); 6115 } 6116 6117 /* 6118 * {begin|end}_synchronized_op must be called from the same thread. 6119 */ 6120 int 6121 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6122 char *wmesg) 6123 { 6124 int rc, pri; 6125 6126 #ifdef WITNESS 6127 /* the caller thinks it's ok to sleep, but is it really? */ 6128 if (flags & SLEEP_OK) 6129 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6130 "begin_synchronized_op"); 6131 #endif 6132 6133 if (INTR_OK) 6134 pri = PCATCH; 6135 else 6136 pri = 0; 6137 6138 ADAPTER_LOCK(sc); 6139 for (;;) { 6140 6141 if (vi && IS_DOOMED(vi)) { 6142 rc = ENXIO; 6143 goto done; 6144 } 6145 6146 if (!IS_BUSY(sc)) { 6147 rc = 0; 6148 break; 6149 } 6150 6151 if (!(flags & SLEEP_OK)) { 6152 rc = EBUSY; 6153 goto done; 6154 } 6155 6156 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6157 rc = EINTR; 6158 goto done; 6159 } 6160 } 6161 6162 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6163 SET_BUSY(sc); 6164 #ifdef INVARIANTS 6165 sc->last_op = wmesg; 6166 sc->last_op_thr = curthread; 6167 sc->last_op_flags = flags; 6168 #endif 6169 6170 done: 6171 if (!(flags & HOLD_LOCK) || rc) 6172 ADAPTER_UNLOCK(sc); 6173 6174 return (rc); 6175 } 6176 6177 /* 6178 * Tell if_ioctl and if_init that the VI is going away. This is 6179 * special variant of begin_synchronized_op and must be paired with a 6180 * call to end_synchronized_op. 6181 */ 6182 void 6183 doom_vi(struct adapter *sc, struct vi_info *vi) 6184 { 6185 6186 ADAPTER_LOCK(sc); 6187 SET_DOOMED(vi); 6188 wakeup(&sc->flags); 6189 while (IS_BUSY(sc)) 6190 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6191 SET_BUSY(sc); 6192 #ifdef INVARIANTS 6193 sc->last_op = "t4detach"; 6194 sc->last_op_thr = curthread; 6195 sc->last_op_flags = 0; 6196 #endif 6197 ADAPTER_UNLOCK(sc); 6198 } 6199 6200 /* 6201 * {begin|end}_synchronized_op must be called from the same thread. 6202 */ 6203 void 6204 end_synchronized_op(struct adapter *sc, int flags) 6205 { 6206 6207 if (flags & LOCK_HELD) 6208 ADAPTER_LOCK_ASSERT_OWNED(sc); 6209 else 6210 ADAPTER_LOCK(sc); 6211 6212 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6213 CLR_BUSY(sc); 6214 wakeup(&sc->flags); 6215 ADAPTER_UNLOCK(sc); 6216 } 6217 6218 static int 6219 cxgbe_init_synchronized(struct vi_info *vi) 6220 { 6221 struct port_info *pi = vi->pi; 6222 struct adapter *sc = pi->adapter; 6223 struct ifnet *ifp = vi->ifp; 6224 int rc = 0, i; 6225 struct sge_txq *txq; 6226 6227 ASSERT_SYNCHRONIZED_OP(sc); 6228 6229 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6230 return (0); /* already running */ 6231 6232 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6233 return (rc); /* error message displayed already */ 6234 6235 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6236 return (rc); /* error message displayed already */ 6237 6238 rc = update_mac_settings(ifp, XGMAC_ALL); 6239 if (rc) 6240 goto done; /* error message displayed already */ 6241 6242 PORT_LOCK(pi); 6243 if (pi->up_vis == 0) { 6244 t4_update_port_info(pi); 6245 fixup_link_config(pi); 6246 build_medialist(pi); 6247 apply_link_config(pi); 6248 } 6249 6250 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6251 if (rc != 0) { 6252 if_printf(ifp, "enable_vi failed: %d\n", rc); 6253 PORT_UNLOCK(pi); 6254 goto done; 6255 } 6256 6257 /* 6258 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6259 * if this changes. 6260 */ 6261 6262 for_each_txq(vi, i, txq) { 6263 TXQ_LOCK(txq); 6264 txq->eq.flags |= EQ_ENABLED; 6265 TXQ_UNLOCK(txq); 6266 } 6267 6268 /* 6269 * The first iq of the first port to come up is used for tracing. 6270 */ 6271 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6272 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6273 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6274 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6275 V_QUEUENUMBER(sc->traceq)); 6276 pi->flags |= HAS_TRACEQ; 6277 } 6278 6279 /* all ok */ 6280 pi->up_vis++; 6281 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6282 if (pi->link_cfg.link_ok) 6283 t4_os_link_changed(pi); 6284 PORT_UNLOCK(pi); 6285 6286 mtx_lock(&vi->tick_mtx); 6287 if (ifp->if_get_counter == vi_get_counter) 6288 callout_reset(&vi->tick, hz, vi_tick, vi); 6289 else 6290 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6291 mtx_unlock(&vi->tick_mtx); 6292 done: 6293 if (rc != 0) 6294 cxgbe_uninit_synchronized(vi); 6295 6296 return (rc); 6297 } 6298 6299 /* 6300 * Idempotent. 6301 */ 6302 static int 6303 cxgbe_uninit_synchronized(struct vi_info *vi) 6304 { 6305 struct port_info *pi = vi->pi; 6306 struct adapter *sc = pi->adapter; 6307 struct ifnet *ifp = vi->ifp; 6308 int rc, i; 6309 struct sge_txq *txq; 6310 6311 ASSERT_SYNCHRONIZED_OP(sc); 6312 6313 if (!(vi->flags & VI_INIT_DONE)) { 6314 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6315 KASSERT(0, ("uninited VI is running")); 6316 if_printf(ifp, "uninited VI with running ifnet. " 6317 "vi->flags 0x%016lx, if_flags 0x%08x, " 6318 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6319 ifp->if_drv_flags); 6320 } 6321 return (0); 6322 } 6323 6324 /* 6325 * Disable the VI so that all its data in either direction is discarded 6326 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6327 * tick) intact as the TP can deliver negative advice or data that it's 6328 * holding in its RAM (for an offloaded connection) even after the VI is 6329 * disabled. 6330 */ 6331 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6332 if (rc) { 6333 if_printf(ifp, "disable_vi failed: %d\n", rc); 6334 return (rc); 6335 } 6336 6337 for_each_txq(vi, i, txq) { 6338 TXQ_LOCK(txq); 6339 txq->eq.flags &= ~EQ_ENABLED; 6340 TXQ_UNLOCK(txq); 6341 } 6342 6343 mtx_lock(&vi->tick_mtx); 6344 callout_stop(&vi->tick); 6345 mtx_unlock(&vi->tick_mtx); 6346 6347 PORT_LOCK(pi); 6348 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6349 PORT_UNLOCK(pi); 6350 return (0); 6351 } 6352 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6353 pi->up_vis--; 6354 if (pi->up_vis > 0) { 6355 PORT_UNLOCK(pi); 6356 return (0); 6357 } 6358 6359 pi->link_cfg.link_ok = false; 6360 pi->link_cfg.speed = 0; 6361 pi->link_cfg.link_down_rc = 255; 6362 t4_os_link_changed(pi); 6363 PORT_UNLOCK(pi); 6364 6365 return (0); 6366 } 6367 6368 /* 6369 * It is ok for this function to fail midway and return right away. t4_detach 6370 * will walk the entire sc->irq list and clean up whatever is valid. 6371 */ 6372 int 6373 t4_setup_intr_handlers(struct adapter *sc) 6374 { 6375 int rc, rid, p, q, v; 6376 char s[8]; 6377 struct irq *irq; 6378 struct port_info *pi; 6379 struct vi_info *vi; 6380 struct sge *sge = &sc->sge; 6381 struct sge_rxq *rxq; 6382 #ifdef TCP_OFFLOAD 6383 struct sge_ofld_rxq *ofld_rxq; 6384 #endif 6385 #ifdef DEV_NETMAP 6386 struct sge_nm_rxq *nm_rxq; 6387 #endif 6388 #ifdef RSS 6389 int nbuckets = rss_getnumbuckets(); 6390 #endif 6391 6392 /* 6393 * Setup interrupts. 6394 */ 6395 irq = &sc->irq[0]; 6396 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6397 if (forwarding_intr_to_fwq(sc)) 6398 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6399 6400 /* Multiple interrupts. */ 6401 if (sc->flags & IS_VF) 6402 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6403 ("%s: too few intr.", __func__)); 6404 else 6405 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6406 ("%s: too few intr.", __func__)); 6407 6408 /* The first one is always error intr on PFs */ 6409 if (!(sc->flags & IS_VF)) { 6410 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6411 if (rc != 0) 6412 return (rc); 6413 irq++; 6414 rid++; 6415 } 6416 6417 /* The second one is always the firmware event queue (first on VFs) */ 6418 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6419 if (rc != 0) 6420 return (rc); 6421 irq++; 6422 rid++; 6423 6424 for_each_port(sc, p) { 6425 pi = sc->port[p]; 6426 for_each_vi(pi, v, vi) { 6427 vi->first_intr = rid - 1; 6428 6429 if (vi->nnmrxq > 0) { 6430 int n = max(vi->nrxq, vi->nnmrxq); 6431 6432 rxq = &sge->rxq[vi->first_rxq]; 6433 #ifdef DEV_NETMAP 6434 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6435 #endif 6436 for (q = 0; q < n; q++) { 6437 snprintf(s, sizeof(s), "%x%c%x", p, 6438 'a' + v, q); 6439 if (q < vi->nrxq) 6440 irq->rxq = rxq++; 6441 #ifdef DEV_NETMAP 6442 if (q < vi->nnmrxq) 6443 irq->nm_rxq = nm_rxq++; 6444 6445 if (irq->nm_rxq != NULL && 6446 irq->rxq == NULL) { 6447 /* Netmap rx only */ 6448 rc = t4_alloc_irq(sc, irq, rid, 6449 t4_nm_intr, irq->nm_rxq, s); 6450 } 6451 if (irq->nm_rxq != NULL && 6452 irq->rxq != NULL) { 6453 /* NIC and Netmap rx */ 6454 rc = t4_alloc_irq(sc, irq, rid, 6455 t4_vi_intr, irq, s); 6456 } 6457 #endif 6458 if (irq->rxq != NULL && 6459 irq->nm_rxq == NULL) { 6460 /* NIC rx only */ 6461 rc = t4_alloc_irq(sc, irq, rid, 6462 t4_intr, irq->rxq, s); 6463 } 6464 if (rc != 0) 6465 return (rc); 6466 #ifdef RSS 6467 if (q < vi->nrxq) { 6468 bus_bind_intr(sc->dev, irq->res, 6469 rss_getcpu(q % nbuckets)); 6470 } 6471 #endif 6472 irq++; 6473 rid++; 6474 vi->nintr++; 6475 } 6476 } else { 6477 for_each_rxq(vi, q, rxq) { 6478 snprintf(s, sizeof(s), "%x%c%x", p, 6479 'a' + v, q); 6480 rc = t4_alloc_irq(sc, irq, rid, 6481 t4_intr, rxq, s); 6482 if (rc != 0) 6483 return (rc); 6484 #ifdef RSS 6485 bus_bind_intr(sc->dev, irq->res, 6486 rss_getcpu(q % nbuckets)); 6487 #endif 6488 irq++; 6489 rid++; 6490 vi->nintr++; 6491 } 6492 } 6493 #ifdef TCP_OFFLOAD 6494 for_each_ofld_rxq(vi, q, ofld_rxq) { 6495 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6496 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6497 ofld_rxq, s); 6498 if (rc != 0) 6499 return (rc); 6500 irq++; 6501 rid++; 6502 vi->nintr++; 6503 } 6504 #endif 6505 } 6506 } 6507 MPASS(irq == &sc->irq[sc->intr_count]); 6508 6509 return (0); 6510 } 6511 6512 static void 6513 write_global_rss_key(struct adapter *sc) 6514 { 6515 #ifdef RSS 6516 int i; 6517 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6518 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6519 6520 CTASSERT(RSS_KEYSIZE == 40); 6521 6522 rss_getkey((void *)&raw_rss_key[0]); 6523 for (i = 0; i < nitems(rss_key); i++) { 6524 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6525 } 6526 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6527 #endif 6528 } 6529 6530 /* 6531 * Idempotent. 6532 */ 6533 static int 6534 adapter_full_init(struct adapter *sc) 6535 { 6536 int rc, i; 6537 6538 ASSERT_SYNCHRONIZED_OP(sc); 6539 6540 /* 6541 * queues that belong to the adapter (not any particular port). 6542 */ 6543 rc = t4_setup_adapter_queues(sc); 6544 if (rc != 0) 6545 return (rc); 6546 6547 for (i = 0; i < nitems(sc->tq); i++) { 6548 if (sc->tq[i] != NULL) 6549 continue; 6550 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6551 taskqueue_thread_enqueue, &sc->tq[i]); 6552 if (sc->tq[i] == NULL) { 6553 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6554 return (ENOMEM); 6555 } 6556 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6557 device_get_nameunit(sc->dev), i); 6558 } 6559 6560 if (!(sc->flags & IS_VF)) { 6561 write_global_rss_key(sc); 6562 t4_intr_enable(sc); 6563 } 6564 return (0); 6565 } 6566 6567 int 6568 adapter_init(struct adapter *sc) 6569 { 6570 int rc; 6571 6572 ASSERT_SYNCHRONIZED_OP(sc); 6573 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6574 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6575 ("%s: FULL_INIT_DONE already", __func__)); 6576 6577 rc = adapter_full_init(sc); 6578 if (rc != 0) 6579 adapter_full_uninit(sc); 6580 else 6581 sc->flags |= FULL_INIT_DONE; 6582 6583 return (rc); 6584 } 6585 6586 /* 6587 * Idempotent. 6588 */ 6589 static void 6590 adapter_full_uninit(struct adapter *sc) 6591 { 6592 int i; 6593 6594 t4_teardown_adapter_queues(sc); 6595 6596 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6597 taskqueue_free(sc->tq[i]); 6598 sc->tq[i] = NULL; 6599 } 6600 6601 sc->flags &= ~FULL_INIT_DONE; 6602 } 6603 6604 #ifdef RSS 6605 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6606 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6607 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6608 RSS_HASHTYPE_RSS_UDP_IPV6) 6609 6610 /* Translates kernel hash types to hardware. */ 6611 static int 6612 hashconfig_to_hashen(int hashconfig) 6613 { 6614 int hashen = 0; 6615 6616 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6617 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6618 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6619 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6620 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6621 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6622 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6623 } 6624 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6625 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6626 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6627 } 6628 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6629 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6630 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6631 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6632 6633 return (hashen); 6634 } 6635 6636 /* Translates hardware hash types to kernel. */ 6637 static int 6638 hashen_to_hashconfig(int hashen) 6639 { 6640 int hashconfig = 0; 6641 6642 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6643 /* 6644 * If UDP hashing was enabled it must have been enabled for 6645 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6646 * enabling any 4-tuple hash is nonsense configuration. 6647 */ 6648 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6649 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6650 6651 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6652 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6653 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6654 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6655 } 6656 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6657 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6658 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6659 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6660 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6661 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6662 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6663 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6664 6665 return (hashconfig); 6666 } 6667 #endif 6668 6669 /* 6670 * Idempotent. 6671 */ 6672 static int 6673 vi_full_init(struct vi_info *vi) 6674 { 6675 struct adapter *sc = vi->adapter; 6676 struct sge_rxq *rxq; 6677 int rc, i, j; 6678 #ifdef RSS 6679 int nbuckets = rss_getnumbuckets(); 6680 int hashconfig = rss_gethashconfig(); 6681 int extra; 6682 #endif 6683 6684 ASSERT_SYNCHRONIZED_OP(sc); 6685 6686 /* 6687 * Allocate tx/rx/fl queues for this VI. 6688 */ 6689 rc = t4_setup_vi_queues(vi); 6690 if (rc != 0) 6691 return (rc); 6692 6693 /* 6694 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6695 */ 6696 if (vi->nrxq > vi->rss_size) { 6697 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6698 "some queues will never receive traffic.\n", vi->nrxq, 6699 vi->rss_size); 6700 } else if (vi->rss_size % vi->nrxq) { 6701 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6702 "expect uneven traffic distribution.\n", vi->nrxq, 6703 vi->rss_size); 6704 } 6705 #ifdef RSS 6706 if (vi->nrxq != nbuckets) { 6707 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6708 "performance will be impacted.\n", vi->nrxq, nbuckets); 6709 } 6710 #endif 6711 if (vi->rss == NULL) 6712 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6713 M_ZERO | M_WAITOK); 6714 for (i = 0; i < vi->rss_size;) { 6715 #ifdef RSS 6716 j = rss_get_indirection_to_bucket(i); 6717 j %= vi->nrxq; 6718 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6719 vi->rss[i++] = rxq->iq.abs_id; 6720 #else 6721 for_each_rxq(vi, j, rxq) { 6722 vi->rss[i++] = rxq->iq.abs_id; 6723 if (i == vi->rss_size) 6724 break; 6725 } 6726 #endif 6727 } 6728 6729 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6730 vi->rss, vi->rss_size); 6731 if (rc != 0) { 6732 CH_ERR(vi, "rss_config failed: %d\n", rc); 6733 return (rc); 6734 } 6735 6736 #ifdef RSS 6737 vi->hashen = hashconfig_to_hashen(hashconfig); 6738 6739 /* 6740 * We may have had to enable some hashes even though the global config 6741 * wants them disabled. This is a potential problem that must be 6742 * reported to the user. 6743 */ 6744 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6745 6746 /* 6747 * If we consider only the supported hash types, then the enabled hashes 6748 * are a superset of the requested hashes. In other words, there cannot 6749 * be any supported hash that was requested but not enabled, but there 6750 * can be hashes that were not requested but had to be enabled. 6751 */ 6752 extra &= SUPPORTED_RSS_HASHTYPES; 6753 MPASS((extra & hashconfig) == 0); 6754 6755 if (extra) { 6756 CH_ALERT(vi, 6757 "global RSS config (0x%x) cannot be accommodated.\n", 6758 hashconfig); 6759 } 6760 if (extra & RSS_HASHTYPE_RSS_IPV4) 6761 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6762 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6763 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6764 if (extra & RSS_HASHTYPE_RSS_IPV6) 6765 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6766 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6767 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6768 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6769 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6770 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6771 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6772 #else 6773 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6774 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6775 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6776 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6777 #endif 6778 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6779 0, 0); 6780 if (rc != 0) { 6781 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6782 return (rc); 6783 } 6784 6785 return (0); 6786 } 6787 6788 int 6789 vi_init(struct vi_info *vi) 6790 { 6791 int rc; 6792 6793 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6794 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6795 ("%s: VI_INIT_DONE already", __func__)); 6796 6797 rc = vi_full_init(vi); 6798 if (rc != 0) 6799 vi_full_uninit(vi); 6800 else 6801 vi->flags |= VI_INIT_DONE; 6802 6803 return (rc); 6804 } 6805 6806 /* 6807 * Idempotent. 6808 */ 6809 static void 6810 vi_full_uninit(struct vi_info *vi) 6811 { 6812 6813 if (vi->flags & VI_INIT_DONE) { 6814 quiesce_vi(vi); 6815 free(vi->rss, M_CXGBE); 6816 free(vi->nm_rss, M_CXGBE); 6817 } 6818 6819 t4_teardown_vi_queues(vi); 6820 vi->flags &= ~VI_INIT_DONE; 6821 } 6822 6823 static void 6824 quiesce_txq(struct sge_txq *txq) 6825 { 6826 struct sge_eq *eq = &txq->eq; 6827 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6828 6829 MPASS(eq->flags & EQ_SW_ALLOCATED); 6830 MPASS(!(eq->flags & EQ_ENABLED)); 6831 6832 /* Wait for the mp_ring to empty. */ 6833 while (!mp_ring_is_idle(txq->r)) { 6834 mp_ring_check_drainage(txq->r, 4096); 6835 pause("rquiesce", 1); 6836 } 6837 MPASS(txq->txp.npkt == 0); 6838 6839 if (eq->flags & EQ_HW_ALLOCATED) { 6840 /* 6841 * Hardware is alive and working normally. Wait for it to 6842 * finish and then wait for the driver to catch up and reclaim 6843 * all descriptors. 6844 */ 6845 while (spg->cidx != htobe16(eq->pidx)) 6846 pause("equiesce", 1); 6847 while (eq->cidx != eq->pidx) 6848 pause("dquiesce", 1); 6849 } else { 6850 /* 6851 * Hardware is unavailable. Discard all pending tx and reclaim 6852 * descriptors directly. 6853 */ 6854 TXQ_LOCK(txq); 6855 while (eq->cidx != eq->pidx) { 6856 struct mbuf *m, *nextpkt; 6857 struct tx_sdesc *txsd; 6858 6859 txsd = &txq->sdesc[eq->cidx]; 6860 for (m = txsd->m; m != NULL; m = nextpkt) { 6861 nextpkt = m->m_nextpkt; 6862 m->m_nextpkt = NULL; 6863 m_freem(m); 6864 } 6865 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6866 } 6867 spg->pidx = spg->cidx = htobe16(eq->cidx); 6868 TXQ_UNLOCK(txq); 6869 } 6870 } 6871 6872 static void 6873 quiesce_wrq(struct sge_wrq *wrq) 6874 { 6875 6876 /* XXXTX */ 6877 } 6878 6879 static void 6880 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6881 { 6882 /* Synchronize with the interrupt handler */ 6883 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6884 pause("iqfree", 1); 6885 6886 if (fl != NULL) { 6887 MPASS(iq->flags & IQ_HAS_FL); 6888 6889 mtx_lock(&sc->sfl_lock); 6890 FL_LOCK(fl); 6891 fl->flags |= FL_DOOMED; 6892 FL_UNLOCK(fl); 6893 callout_stop(&sc->sfl_callout); 6894 mtx_unlock(&sc->sfl_lock); 6895 6896 KASSERT((fl->flags & FL_STARVING) == 0, 6897 ("%s: still starving", __func__)); 6898 6899 /* Release all buffers if hardware is no longer available. */ 6900 if (!(iq->flags & IQ_HW_ALLOCATED)) 6901 free_fl_buffers(sc, fl); 6902 } 6903 } 6904 6905 /* 6906 * Wait for all activity on all the queues of the VI to complete. It is assumed 6907 * that no new work is being enqueued by the hardware or the driver. That part 6908 * should be arranged before calling this function. 6909 */ 6910 static void 6911 quiesce_vi(struct vi_info *vi) 6912 { 6913 int i; 6914 struct adapter *sc = vi->adapter; 6915 struct sge_rxq *rxq; 6916 struct sge_txq *txq; 6917 #ifdef TCP_OFFLOAD 6918 struct sge_ofld_rxq *ofld_rxq; 6919 #endif 6920 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6921 struct sge_ofld_txq *ofld_txq; 6922 #endif 6923 6924 if (!(vi->flags & VI_INIT_DONE)) 6925 return; 6926 6927 for_each_txq(vi, i, txq) { 6928 quiesce_txq(txq); 6929 } 6930 6931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6932 for_each_ofld_txq(vi, i, ofld_txq) { 6933 quiesce_wrq(&ofld_txq->wrq); 6934 } 6935 #endif 6936 6937 for_each_rxq(vi, i, rxq) { 6938 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6939 } 6940 6941 #ifdef TCP_OFFLOAD 6942 for_each_ofld_rxq(vi, i, ofld_rxq) { 6943 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6944 } 6945 #endif 6946 } 6947 6948 static int 6949 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6950 driver_intr_t *handler, void *arg, char *name) 6951 { 6952 int rc; 6953 6954 irq->rid = rid; 6955 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6956 RF_SHAREABLE | RF_ACTIVE); 6957 if (irq->res == NULL) { 6958 device_printf(sc->dev, 6959 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6960 return (ENOMEM); 6961 } 6962 6963 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6964 NULL, handler, arg, &irq->tag); 6965 if (rc != 0) { 6966 device_printf(sc->dev, 6967 "failed to setup interrupt for rid %d, name %s: %d\n", 6968 rid, name, rc); 6969 } else if (name) 6970 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6971 6972 return (rc); 6973 } 6974 6975 static int 6976 t4_free_irq(struct adapter *sc, struct irq *irq) 6977 { 6978 if (irq->tag) 6979 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6980 if (irq->res) 6981 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6982 6983 bzero(irq, sizeof(*irq)); 6984 6985 return (0); 6986 } 6987 6988 static void 6989 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6990 { 6991 6992 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6993 t4_get_regs(sc, buf, regs->len); 6994 } 6995 6996 #define A_PL_INDIR_CMD 0x1f8 6997 6998 #define S_PL_AUTOINC 31 6999 #define M_PL_AUTOINC 0x1U 7000 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7001 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7002 7003 #define S_PL_VFID 20 7004 #define M_PL_VFID 0xffU 7005 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7006 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7007 7008 #define S_PL_ADDR 0 7009 #define M_PL_ADDR 0xfffffU 7010 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7011 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7012 7013 #define A_PL_INDIR_DATA 0x1fc 7014 7015 static uint64_t 7016 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7017 { 7018 u32 stats[2]; 7019 7020 if (sc->flags & IS_VF) { 7021 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7022 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7023 } else { 7024 mtx_assert(&sc->reg_lock, MA_OWNED); 7025 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7026 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7027 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7028 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7029 } 7030 return (((uint64_t)stats[1]) << 32 | stats[0]); 7031 } 7032 7033 static void 7034 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7035 { 7036 7037 #define GET_STAT(name) \ 7038 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7039 7040 if (!(sc->flags & IS_VF)) 7041 mtx_lock(&sc->reg_lock); 7042 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7043 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7044 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7045 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7046 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7047 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7048 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7049 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7050 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7051 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7052 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7053 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7054 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7055 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7056 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7057 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7058 if (!(sc->flags & IS_VF)) 7059 mtx_unlock(&sc->reg_lock); 7060 7061 #undef GET_STAT 7062 } 7063 7064 static void 7065 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7066 { 7067 int reg; 7068 7069 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7070 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7071 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7072 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7073 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7074 } 7075 7076 static void 7077 vi_refresh_stats(struct vi_info *vi) 7078 { 7079 struct timeval tv; 7080 const struct timeval interval = {0, 250000}; /* 250ms */ 7081 7082 mtx_assert(&vi->tick_mtx, MA_OWNED); 7083 7084 if (vi->flags & VI_SKIP_STATS) 7085 return; 7086 7087 getmicrotime(&tv); 7088 timevalsub(&tv, &interval); 7089 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7090 return; 7091 7092 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7093 getmicrotime(&vi->last_refreshed); 7094 } 7095 7096 static void 7097 cxgbe_refresh_stats(struct vi_info *vi) 7098 { 7099 u_int i, v, tnl_cong_drops, chan_map; 7100 struct timeval tv; 7101 const struct timeval interval = {0, 250000}; /* 250ms */ 7102 struct port_info *pi; 7103 struct adapter *sc; 7104 7105 mtx_assert(&vi->tick_mtx, MA_OWNED); 7106 7107 if (vi->flags & VI_SKIP_STATS) 7108 return; 7109 7110 getmicrotime(&tv); 7111 timevalsub(&tv, &interval); 7112 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7113 return; 7114 7115 pi = vi->pi; 7116 sc = vi->adapter; 7117 tnl_cong_drops = 0; 7118 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7119 chan_map = pi->rx_e_chan_map; 7120 while (chan_map) { 7121 i = ffs(chan_map) - 1; 7122 mtx_lock(&sc->reg_lock); 7123 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7124 A_TP_MIB_TNL_CNG_DROP_0 + i); 7125 mtx_unlock(&sc->reg_lock); 7126 tnl_cong_drops += v; 7127 chan_map &= ~(1 << i); 7128 } 7129 pi->tnl_cong_drops = tnl_cong_drops; 7130 getmicrotime(&vi->last_refreshed); 7131 } 7132 7133 static void 7134 cxgbe_tick(void *arg) 7135 { 7136 struct vi_info *vi = arg; 7137 7138 MPASS(IS_MAIN_VI(vi)); 7139 mtx_assert(&vi->tick_mtx, MA_OWNED); 7140 7141 cxgbe_refresh_stats(vi); 7142 callout_schedule(&vi->tick, hz); 7143 } 7144 7145 static void 7146 vi_tick(void *arg) 7147 { 7148 struct vi_info *vi = arg; 7149 7150 mtx_assert(&vi->tick_mtx, MA_OWNED); 7151 7152 vi_refresh_stats(vi); 7153 callout_schedule(&vi->tick, hz); 7154 } 7155 7156 /* 7157 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7158 */ 7159 static char *caps_decoder[] = { 7160 "\20\001IPMI\002NCSI", /* 0: NBM */ 7161 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7162 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7163 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7164 "\006HASHFILTER\007ETHOFLD", 7165 "\20\001TOE", /* 4: TOE */ 7166 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7167 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7168 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7169 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7170 "\007T10DIF" 7171 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7172 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7173 "\004TLS_HW", 7174 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7175 "\004PO_INITIATOR\005PO_TARGET", 7176 }; 7177 7178 void 7179 t4_sysctls(struct adapter *sc) 7180 { 7181 struct sysctl_ctx_list *ctx = &sc->ctx; 7182 struct sysctl_oid *oid; 7183 struct sysctl_oid_list *children, *c0; 7184 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7185 7186 /* 7187 * dev.t4nex.X. 7188 */ 7189 oid = device_get_sysctl_tree(sc->dev); 7190 c0 = children = SYSCTL_CHILDREN(oid); 7191 7192 sc->sc_do_rxcopy = 1; 7193 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7194 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7195 7196 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7197 sc->params.nports, "# of ports"); 7198 7199 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7200 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7201 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7202 "available doorbells"); 7203 7204 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7205 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7206 7207 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7208 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7209 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7210 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7211 7212 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7213 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7214 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7215 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7216 7217 t4_sge_sysctls(sc, ctx, children); 7218 7219 sc->lro_timeout = 100; 7220 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7221 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7222 7223 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7224 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7225 7226 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7227 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7228 7229 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7230 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7231 7232 if (sc->flags & IS_VF) 7233 return; 7234 7235 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7236 NULL, chip_rev(sc), "chip hardware revision"); 7237 7238 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7239 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7240 7241 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7242 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7243 7244 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7245 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7246 7247 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7248 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7249 7250 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7251 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7252 7253 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7254 sc->er_version, 0, "expansion ROM version"); 7255 7256 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7257 sc->bs_version, 0, "bootstrap firmware version"); 7258 7259 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7260 NULL, sc->params.scfg_vers, "serial config version"); 7261 7262 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7263 NULL, sc->params.vpd_vers, "VPD version"); 7264 7265 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7266 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7267 7268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7269 sc->cfcsum, "config file checksum"); 7270 7271 #define SYSCTL_CAP(name, n, text) \ 7272 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7273 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7274 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7275 "available " text " capabilities") 7276 7277 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7278 SYSCTL_CAP(linkcaps, 1, "link"); 7279 SYSCTL_CAP(switchcaps, 2, "switch"); 7280 SYSCTL_CAP(niccaps, 3, "NIC"); 7281 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7282 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7283 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7284 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7285 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7286 #undef SYSCTL_CAP 7287 7288 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7289 NULL, sc->tids.nftids, "number of filters"); 7290 7291 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7292 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7293 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7294 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7295 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7296 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7297 7298 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7299 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7300 sysctl_loadavg, "A", 7301 "microprocessor load averages (debug firmwares only)"); 7302 7303 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7304 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7305 "I", "core Vdd (in mV)"); 7306 7307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7308 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7309 sysctl_cpus, "A", "local CPUs"); 7310 7311 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7312 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7313 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7314 7315 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7316 &sc->swintr, 0, "software triggered interrupts"); 7317 7318 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7319 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7320 "1 = reset adapter, 0 = zero reset counter"); 7321 7322 /* 7323 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7324 */ 7325 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7326 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7327 "logs and miscellaneous information"); 7328 children = SYSCTL_CHILDREN(oid); 7329 7330 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7331 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7332 sysctl_cctrl, "A", "congestion control"); 7333 7334 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7335 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7336 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7337 7338 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7339 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7340 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7341 7342 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7343 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7344 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7345 7346 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7347 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7348 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7349 7350 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7351 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7352 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7353 7354 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7356 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7357 7358 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7359 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7360 sysctl_cim_la, "A", "CIM logic analyzer"); 7361 7362 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7363 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7364 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7365 7366 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7367 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7368 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7369 7370 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7371 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7372 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7373 7374 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7375 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7376 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7377 7378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7379 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7380 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7381 7382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7383 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7384 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7385 7386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7387 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7388 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7389 7390 if (chip_id(sc) > CHELSIO_T4) { 7391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7392 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7393 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7394 "CIM OBQ 6 (SGE0-RX)"); 7395 7396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7397 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7398 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7399 "CIM OBQ 7 (SGE1-RX)"); 7400 } 7401 7402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7403 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7404 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7405 7406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7407 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7408 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7409 7410 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7411 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7412 sysctl_cpl_stats, "A", "CPL statistics"); 7413 7414 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7415 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7416 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7417 7418 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7419 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7420 sysctl_tid_stats, "A", "tid stats"); 7421 7422 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7423 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7424 sysctl_devlog, "A", "firmware's device log"); 7425 7426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7428 sysctl_fcoe_stats, "A", "FCoE statistics"); 7429 7430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7431 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7432 sysctl_hw_sched, "A", "hardware scheduler "); 7433 7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7435 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7436 sysctl_l2t, "A", "hardware L2 table"); 7437 7438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7439 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7440 sysctl_smt, "A", "hardware source MAC table"); 7441 7442 #ifdef INET6 7443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7444 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7445 sysctl_clip, "A", "active CLIP table entries"); 7446 #endif 7447 7448 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7449 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7450 sysctl_lb_stats, "A", "loopback statistics"); 7451 7452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7453 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7454 sysctl_meminfo, "A", "memory regions"); 7455 7456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7457 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7458 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7459 "A", "MPS TCAM entries"); 7460 7461 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7462 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7463 sysctl_path_mtus, "A", "path MTUs"); 7464 7465 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7466 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7467 sysctl_pm_stats, "A", "PM statistics"); 7468 7469 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7470 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7471 sysctl_rdma_stats, "A", "RDMA statistics"); 7472 7473 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7474 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7475 sysctl_tcp_stats, "A", "TCP statistics"); 7476 7477 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7478 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7479 sysctl_tids, "A", "TID information"); 7480 7481 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7482 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7483 sysctl_tp_err_stats, "A", "TP error statistics"); 7484 7485 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7486 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7487 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7488 7489 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7490 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7491 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7492 7493 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7494 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7495 sysctl_tp_la, "A", "TP logic analyzer"); 7496 7497 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7498 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7499 sysctl_tx_rate, "A", "Tx rate"); 7500 7501 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7502 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7503 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7504 7505 if (chip_id(sc) >= CHELSIO_T5) { 7506 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7507 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7508 sysctl_wcwr_stats, "A", "write combined work requests"); 7509 } 7510 7511 #ifdef KERN_TLS 7512 if (is_ktls(sc)) { 7513 /* 7514 * dev.t4nex.0.tls. 7515 */ 7516 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7517 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7518 children = SYSCTL_CHILDREN(oid); 7519 7520 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7521 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7522 "keys in work requests (1) or attempt to store TLS keys " 7523 "in card memory."); 7524 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7525 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7526 "TCB field updates with TLS record work requests."); 7527 } 7528 #endif 7529 7530 #ifdef TCP_OFFLOAD 7531 if (is_offload(sc)) { 7532 int i; 7533 char s[4]; 7534 7535 /* 7536 * dev.t4nex.X.toe. 7537 */ 7538 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7539 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7540 children = SYSCTL_CHILDREN(oid); 7541 7542 sc->tt.cong_algorithm = -1; 7543 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7544 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7545 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7546 "3 = highspeed)"); 7547 7548 sc->tt.sndbuf = -1; 7549 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7550 &sc->tt.sndbuf, 0, "hardware send buffer"); 7551 7552 sc->tt.ddp = 0; 7553 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7554 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7555 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7556 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7557 7558 sc->tt.rx_coalesce = -1; 7559 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7560 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7561 7562 sc->tt.tls = 0; 7563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7564 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7565 "Inline TLS allowed"); 7566 7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7568 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7569 sysctl_tls_rx_ports, "I", 7570 "TCP ports that use inline TLS+TOE RX"); 7571 7572 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7573 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7574 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7575 sysctl_tls_rx_timeout, "I", 7576 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7577 7578 sc->tt.tx_align = -1; 7579 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7580 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7581 7582 sc->tt.tx_zcopy = 0; 7583 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7584 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7585 "Enable zero-copy aio_write(2)"); 7586 7587 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7588 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7589 "cop_managed_offloading", CTLFLAG_RW, 7590 &sc->tt.cop_managed_offloading, 0, 7591 "COP (Connection Offload Policy) controls all TOE offload"); 7592 7593 sc->tt.autorcvbuf_inc = 16 * 1024; 7594 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7595 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7596 "autorcvbuf increment"); 7597 7598 sc->tt.update_hc_on_pmtu_change = 1; 7599 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7600 "update_hc_on_pmtu_change", CTLFLAG_RW, 7601 &sc->tt.update_hc_on_pmtu_change, 0, 7602 "Update hostcache entry if the PMTU changes"); 7603 7604 sc->tt.iso = 1; 7605 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7606 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7607 7608 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7609 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7610 sysctl_tp_tick, "A", "TP timer tick (us)"); 7611 7612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7613 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7614 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7615 7616 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7617 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7618 sysctl_tp_tick, "A", "DACK tick (us)"); 7619 7620 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7621 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7622 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7623 7624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7625 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7626 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7627 "Minimum retransmit interval (us)"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7630 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7631 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7632 "Maximum retransmit interval (us)"); 7633 7634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7635 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7636 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7637 "Persist timer min (us)"); 7638 7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7640 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7641 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7642 "Persist timer max (us)"); 7643 7644 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7645 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7646 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7647 "Keepalive idle timer (us)"); 7648 7649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7650 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7651 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7652 "Keepalive interval timer (us)"); 7653 7654 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7655 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7656 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7657 7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7659 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7660 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7661 "FINWAIT2 timer (us)"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7664 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7665 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7666 "Number of SYN retransmissions before abort"); 7667 7668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7669 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7670 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7671 "Number of retransmissions before abort"); 7672 7673 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7674 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7675 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7676 "Number of keepalive probes before abort"); 7677 7678 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7679 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7680 "TOE retransmit backoffs"); 7681 children = SYSCTL_CHILDREN(oid); 7682 for (i = 0; i < 16; i++) { 7683 snprintf(s, sizeof(s), "%u", i); 7684 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7685 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7686 i, sysctl_tp_backoff, "IU", 7687 "TOE retransmit backoff"); 7688 } 7689 } 7690 #endif 7691 } 7692 7693 void 7694 vi_sysctls(struct vi_info *vi) 7695 { 7696 struct sysctl_ctx_list *ctx = &vi->ctx; 7697 struct sysctl_oid *oid; 7698 struct sysctl_oid_list *children; 7699 7700 /* 7701 * dev.v?(cxgbe|cxl).X. 7702 */ 7703 oid = device_get_sysctl_tree(vi->dev); 7704 children = SYSCTL_CHILDREN(oid); 7705 7706 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7707 vi->viid, "VI identifer"); 7708 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7709 &vi->nrxq, 0, "# of rx queues"); 7710 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7711 &vi->ntxq, 0, "# of tx queues"); 7712 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7713 &vi->first_rxq, 0, "index of first rx queue"); 7714 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7715 &vi->first_txq, 0, "index of first tx queue"); 7716 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7717 vi->rss_base, "start of RSS indirection table"); 7718 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7719 vi->rss_size, "size of RSS indirection table"); 7720 7721 if (IS_MAIN_VI(vi)) { 7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7723 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7724 sysctl_noflowq, "IU", 7725 "Reserve queue 0 for non-flowid packets"); 7726 } 7727 7728 if (vi->adapter->flags & IS_VF) { 7729 MPASS(vi->flags & TX_USES_VM_WR); 7730 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7731 NULL, 1, "use VM work requests for transmit"); 7732 } else { 7733 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7734 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7735 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7736 } 7737 7738 #ifdef TCP_OFFLOAD 7739 if (vi->nofldrxq != 0) { 7740 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7741 &vi->nofldrxq, 0, 7742 "# of rx queues for offloaded TCP connections"); 7743 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7744 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7745 "index of first TOE rx queue"); 7746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7747 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7748 sysctl_holdoff_tmr_idx_ofld, "I", 7749 "holdoff timer index for TOE queues"); 7750 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7751 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7752 sysctl_holdoff_pktc_idx_ofld, "I", 7753 "holdoff packet counter index for TOE queues"); 7754 } 7755 #endif 7756 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7757 if (vi->nofldtxq != 0) { 7758 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7759 &vi->nofldtxq, 0, 7760 "# of tx queues for TOE/ETHOFLD"); 7761 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7762 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7763 "index of first TOE/ETHOFLD tx queue"); 7764 } 7765 #endif 7766 #ifdef DEV_NETMAP 7767 if (vi->nnmrxq != 0) { 7768 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7769 &vi->nnmrxq, 0, "# of netmap rx queues"); 7770 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7771 &vi->nnmtxq, 0, "# of netmap tx queues"); 7772 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7773 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7774 "index of first netmap rx queue"); 7775 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7776 CTLFLAG_RD, &vi->first_nm_txq, 0, 7777 "index of first netmap tx queue"); 7778 } 7779 #endif 7780 7781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7782 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7783 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7784 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7785 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7786 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7787 7788 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7789 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7790 sysctl_qsize_rxq, "I", "rx queue size"); 7791 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7792 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7793 sysctl_qsize_txq, "I", "tx queue size"); 7794 } 7795 7796 static void 7797 cxgbe_sysctls(struct port_info *pi) 7798 { 7799 struct sysctl_ctx_list *ctx = &pi->ctx; 7800 struct sysctl_oid *oid; 7801 struct sysctl_oid_list *children, *children2; 7802 struct adapter *sc = pi->adapter; 7803 int i; 7804 char name[16]; 7805 static char *tc_flags = {"\20\1USER"}; 7806 7807 /* 7808 * dev.cxgbe.X. 7809 */ 7810 oid = device_get_sysctl_tree(pi->dev); 7811 children = SYSCTL_CHILDREN(oid); 7812 7813 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7814 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7815 sysctl_linkdnrc, "A", "reason why link is down"); 7816 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7817 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7818 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7819 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7820 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7821 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7822 sysctl_btphy, "I", "PHY firmware version"); 7823 } 7824 7825 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7826 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7827 sysctl_pause_settings, "A", 7828 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7829 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7830 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7831 "FEC in use on the link"); 7832 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7833 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7834 sysctl_requested_fec, "A", 7835 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7836 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7837 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7838 "FEC recommended by the cable/transceiver"); 7839 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7840 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7841 sysctl_autoneg, "I", 7842 "autonegotiation (-1 = not supported)"); 7843 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7844 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7845 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7846 7847 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7848 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7849 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7850 &pi->link_cfg.pcaps, 0, "port capabilities"); 7851 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7852 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7853 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7854 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7855 7856 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7857 port_top_speed(pi), "max speed (in Gbps)"); 7858 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7859 pi->mps_bg_map, "MPS buffer group map"); 7860 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7861 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7862 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7863 pi->rx_c_chan, "TP rx c-channel"); 7864 7865 if (sc->flags & IS_VF) 7866 return; 7867 7868 /* 7869 * dev.(cxgbe|cxl).X.tc. 7870 */ 7871 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7872 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7873 "Tx scheduler traffic classes (cl_rl)"); 7874 children2 = SYSCTL_CHILDREN(oid); 7875 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7876 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7877 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7878 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7879 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7880 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7881 for (i = 0; i < sc->params.nsched_cls; i++) { 7882 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7883 7884 snprintf(name, sizeof(name), "%d", i); 7885 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7886 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7887 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7888 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7889 CTLFLAG_RD, &tc->state, 0, "current state"); 7890 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7891 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7892 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7893 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7894 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7895 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7896 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7897 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7898 "traffic class parameters"); 7899 } 7900 7901 /* 7902 * dev.cxgbe.X.stats. 7903 */ 7904 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7905 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7906 children = SYSCTL_CHILDREN(oid); 7907 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7908 &pi->tx_parse_error, 0, 7909 "# of tx packets with invalid length or # of segments"); 7910 7911 #define T4_REGSTAT(name, stat, desc) \ 7912 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7913 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7914 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7915 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7916 sysctl_handle_t4_reg64, "QU", desc) 7917 7918 /* We get these from port_stats and they may be stale by up to 1s */ 7919 #define T4_PORTSTAT(name, desc) \ 7920 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7921 &pi->stats.name, desc) 7922 7923 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7924 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7925 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7926 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7927 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7928 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7929 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7930 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7931 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7932 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7933 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7934 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7935 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7936 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7937 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7938 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7939 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7940 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7941 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7942 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7943 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7944 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7945 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7946 7947 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7948 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7949 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7950 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7951 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7952 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7953 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7954 if (is_t6(sc)) { 7955 T4_PORTSTAT(rx_fcs_err, 7956 "# of frames received with bad FCS since last link up"); 7957 } else { 7958 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7959 "# of frames received with bad FCS"); 7960 } 7961 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7962 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7963 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7964 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7965 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7966 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7967 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7968 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7969 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7970 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7971 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7972 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7973 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7974 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7975 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7976 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7977 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7978 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7979 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7980 7981 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7982 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7983 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7984 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7985 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7986 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7987 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7988 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7989 7990 #undef T4_REGSTAT 7991 #undef T4_PORTSTAT 7992 } 7993 7994 static int 7995 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7996 { 7997 int rc, *i, space = 0; 7998 struct sbuf sb; 7999 8000 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8001 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8002 if (space) 8003 sbuf_printf(&sb, " "); 8004 sbuf_printf(&sb, "%d", *i); 8005 space = 1; 8006 } 8007 rc = sbuf_finish(&sb); 8008 sbuf_delete(&sb); 8009 return (rc); 8010 } 8011 8012 static int 8013 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8014 { 8015 int rc; 8016 struct sbuf *sb; 8017 8018 rc = sysctl_wire_old_buffer(req, 0); 8019 if (rc != 0) 8020 return(rc); 8021 8022 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8023 if (sb == NULL) 8024 return (ENOMEM); 8025 8026 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8027 rc = sbuf_finish(sb); 8028 sbuf_delete(sb); 8029 8030 return (rc); 8031 } 8032 8033 static int 8034 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8035 { 8036 int rc; 8037 struct sbuf *sb; 8038 8039 rc = sysctl_wire_old_buffer(req, 0); 8040 if (rc != 0) 8041 return(rc); 8042 8043 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8044 if (sb == NULL) 8045 return (ENOMEM); 8046 8047 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8048 rc = sbuf_finish(sb); 8049 sbuf_delete(sb); 8050 8051 return (rc); 8052 } 8053 8054 static int 8055 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8056 { 8057 struct port_info *pi = arg1; 8058 int op = arg2; 8059 struct adapter *sc = pi->adapter; 8060 u_int v; 8061 int rc; 8062 8063 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8064 if (rc) 8065 return (rc); 8066 if (hw_off_limits(sc)) 8067 rc = ENXIO; 8068 else { 8069 /* XXX: magic numbers */ 8070 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8071 op ? 0x20 : 0xc820, &v); 8072 } 8073 end_synchronized_op(sc, 0); 8074 if (rc) 8075 return (rc); 8076 if (op == 0) 8077 v /= 256; 8078 8079 rc = sysctl_handle_int(oidp, &v, 0, req); 8080 return (rc); 8081 } 8082 8083 static int 8084 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8085 { 8086 struct vi_info *vi = arg1; 8087 int rc, val; 8088 8089 val = vi->rsrv_noflowq; 8090 rc = sysctl_handle_int(oidp, &val, 0, req); 8091 if (rc != 0 || req->newptr == NULL) 8092 return (rc); 8093 8094 if ((val >= 1) && (vi->ntxq > 1)) 8095 vi->rsrv_noflowq = 1; 8096 else 8097 vi->rsrv_noflowq = 0; 8098 8099 return (rc); 8100 } 8101 8102 static int 8103 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8104 { 8105 struct vi_info *vi = arg1; 8106 struct adapter *sc = vi->adapter; 8107 int rc, val, i; 8108 8109 MPASS(!(sc->flags & IS_VF)); 8110 8111 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8112 rc = sysctl_handle_int(oidp, &val, 0, req); 8113 if (rc != 0 || req->newptr == NULL) 8114 return (rc); 8115 8116 if (val != 0 && val != 1) 8117 return (EINVAL); 8118 8119 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8120 "t4txvm"); 8121 if (rc) 8122 return (rc); 8123 if (hw_off_limits(sc)) 8124 rc = ENXIO; 8125 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8126 /* 8127 * We don't want parse_pkt to run with one setting (VF or PF) 8128 * and then eth_tx to see a different setting but still use 8129 * stale information calculated by parse_pkt. 8130 */ 8131 rc = EBUSY; 8132 } else { 8133 struct port_info *pi = vi->pi; 8134 struct sge_txq *txq; 8135 uint32_t ctrl0; 8136 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8137 8138 if (val) { 8139 vi->flags |= TX_USES_VM_WR; 8140 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8141 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8142 V_TXPKT_INTF(pi->tx_chan)); 8143 if (!(sc->flags & IS_VF)) 8144 npkt--; 8145 } else { 8146 vi->flags &= ~TX_USES_VM_WR; 8147 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8148 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8149 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8150 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8151 } 8152 for_each_txq(vi, i, txq) { 8153 txq->cpl_ctrl0 = ctrl0; 8154 txq->txp.max_npkt = npkt; 8155 } 8156 } 8157 end_synchronized_op(sc, LOCK_HELD); 8158 return (rc); 8159 } 8160 8161 static int 8162 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8163 { 8164 struct vi_info *vi = arg1; 8165 struct adapter *sc = vi->adapter; 8166 int idx, rc, i; 8167 struct sge_rxq *rxq; 8168 uint8_t v; 8169 8170 idx = vi->tmr_idx; 8171 8172 rc = sysctl_handle_int(oidp, &idx, 0, req); 8173 if (rc != 0 || req->newptr == NULL) 8174 return (rc); 8175 8176 if (idx < 0 || idx >= SGE_NTIMERS) 8177 return (EINVAL); 8178 8179 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8180 "t4tmr"); 8181 if (rc) 8182 return (rc); 8183 8184 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8185 for_each_rxq(vi, i, rxq) { 8186 #ifdef atomic_store_rel_8 8187 atomic_store_rel_8(&rxq->iq.intr_params, v); 8188 #else 8189 rxq->iq.intr_params = v; 8190 #endif 8191 } 8192 vi->tmr_idx = idx; 8193 8194 end_synchronized_op(sc, LOCK_HELD); 8195 return (0); 8196 } 8197 8198 static int 8199 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8200 { 8201 struct vi_info *vi = arg1; 8202 struct adapter *sc = vi->adapter; 8203 int idx, rc; 8204 8205 idx = vi->pktc_idx; 8206 8207 rc = sysctl_handle_int(oidp, &idx, 0, req); 8208 if (rc != 0 || req->newptr == NULL) 8209 return (rc); 8210 8211 if (idx < -1 || idx >= SGE_NCOUNTERS) 8212 return (EINVAL); 8213 8214 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8215 "t4pktc"); 8216 if (rc) 8217 return (rc); 8218 8219 if (vi->flags & VI_INIT_DONE) 8220 rc = EBUSY; /* cannot be changed once the queues are created */ 8221 else 8222 vi->pktc_idx = idx; 8223 8224 end_synchronized_op(sc, LOCK_HELD); 8225 return (rc); 8226 } 8227 8228 static int 8229 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8230 { 8231 struct vi_info *vi = arg1; 8232 struct adapter *sc = vi->adapter; 8233 int qsize, rc; 8234 8235 qsize = vi->qsize_rxq; 8236 8237 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8238 if (rc != 0 || req->newptr == NULL) 8239 return (rc); 8240 8241 if (qsize < 128 || (qsize & 7)) 8242 return (EINVAL); 8243 8244 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8245 "t4rxqs"); 8246 if (rc) 8247 return (rc); 8248 8249 if (vi->flags & VI_INIT_DONE) 8250 rc = EBUSY; /* cannot be changed once the queues are created */ 8251 else 8252 vi->qsize_rxq = qsize; 8253 8254 end_synchronized_op(sc, LOCK_HELD); 8255 return (rc); 8256 } 8257 8258 static int 8259 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8260 { 8261 struct vi_info *vi = arg1; 8262 struct adapter *sc = vi->adapter; 8263 int qsize, rc; 8264 8265 qsize = vi->qsize_txq; 8266 8267 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8268 if (rc != 0 || req->newptr == NULL) 8269 return (rc); 8270 8271 if (qsize < 128 || qsize > 65536) 8272 return (EINVAL); 8273 8274 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8275 "t4txqs"); 8276 if (rc) 8277 return (rc); 8278 8279 if (vi->flags & VI_INIT_DONE) 8280 rc = EBUSY; /* cannot be changed once the queues are created */ 8281 else 8282 vi->qsize_txq = qsize; 8283 8284 end_synchronized_op(sc, LOCK_HELD); 8285 return (rc); 8286 } 8287 8288 static int 8289 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8290 { 8291 struct port_info *pi = arg1; 8292 struct adapter *sc = pi->adapter; 8293 struct link_config *lc = &pi->link_cfg; 8294 int rc; 8295 8296 if (req->newptr == NULL) { 8297 struct sbuf *sb; 8298 static char *bits = "\20\1RX\2TX\3AUTO"; 8299 8300 rc = sysctl_wire_old_buffer(req, 0); 8301 if (rc != 0) 8302 return(rc); 8303 8304 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8305 if (sb == NULL) 8306 return (ENOMEM); 8307 8308 if (lc->link_ok) { 8309 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8310 (lc->requested_fc & PAUSE_AUTONEG), bits); 8311 } else { 8312 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8313 PAUSE_RX | PAUSE_AUTONEG), bits); 8314 } 8315 rc = sbuf_finish(sb); 8316 sbuf_delete(sb); 8317 } else { 8318 char s[2]; 8319 int n; 8320 8321 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8322 PAUSE_AUTONEG)); 8323 s[1] = 0; 8324 8325 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8326 if (rc != 0) 8327 return(rc); 8328 8329 if (s[1] != 0) 8330 return (EINVAL); 8331 if (s[0] < '0' || s[0] > '9') 8332 return (EINVAL); /* not a number */ 8333 n = s[0] - '0'; 8334 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8335 return (EINVAL); /* some other bit is set too */ 8336 8337 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8338 "t4PAUSE"); 8339 if (rc) 8340 return (rc); 8341 if (!hw_off_limits(sc)) { 8342 PORT_LOCK(pi); 8343 lc->requested_fc = n; 8344 fixup_link_config(pi); 8345 if (pi->up_vis > 0) 8346 rc = apply_link_config(pi); 8347 set_current_media(pi); 8348 PORT_UNLOCK(pi); 8349 } 8350 end_synchronized_op(sc, 0); 8351 } 8352 8353 return (rc); 8354 } 8355 8356 static int 8357 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8358 { 8359 struct port_info *pi = arg1; 8360 struct link_config *lc = &pi->link_cfg; 8361 int rc; 8362 struct sbuf *sb; 8363 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8364 8365 rc = sysctl_wire_old_buffer(req, 0); 8366 if (rc != 0) 8367 return(rc); 8368 8369 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8370 if (sb == NULL) 8371 return (ENOMEM); 8372 if (lc->link_ok) 8373 sbuf_printf(sb, "%b", lc->fec, bits); 8374 else 8375 sbuf_printf(sb, "no link"); 8376 rc = sbuf_finish(sb); 8377 sbuf_delete(sb); 8378 8379 return (rc); 8380 } 8381 8382 static int 8383 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8384 { 8385 struct port_info *pi = arg1; 8386 struct adapter *sc = pi->adapter; 8387 struct link_config *lc = &pi->link_cfg; 8388 int rc; 8389 int8_t old; 8390 8391 if (req->newptr == NULL) { 8392 struct sbuf *sb; 8393 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8394 "\5RSVD3\6auto\7module"; 8395 8396 rc = sysctl_wire_old_buffer(req, 0); 8397 if (rc != 0) 8398 return(rc); 8399 8400 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8401 if (sb == NULL) 8402 return (ENOMEM); 8403 8404 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8405 rc = sbuf_finish(sb); 8406 sbuf_delete(sb); 8407 } else { 8408 char s[8]; 8409 int n; 8410 8411 snprintf(s, sizeof(s), "%d", 8412 lc->requested_fec == FEC_AUTO ? -1 : 8413 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8414 8415 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8416 if (rc != 0) 8417 return(rc); 8418 8419 n = strtol(&s[0], NULL, 0); 8420 if (n < 0 || n & FEC_AUTO) 8421 n = FEC_AUTO; 8422 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8423 return (EINVAL);/* some other bit is set too */ 8424 8425 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8426 "t4reqf"); 8427 if (rc) 8428 return (rc); 8429 PORT_LOCK(pi); 8430 old = lc->requested_fec; 8431 if (n == FEC_AUTO) 8432 lc->requested_fec = FEC_AUTO; 8433 else if (n == 0 || n == FEC_NONE) 8434 lc->requested_fec = FEC_NONE; 8435 else { 8436 if ((lc->pcaps | 8437 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8438 lc->pcaps) { 8439 rc = ENOTSUP; 8440 goto done; 8441 } 8442 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8443 FEC_MODULE); 8444 } 8445 if (!hw_off_limits(sc)) { 8446 fixup_link_config(pi); 8447 if (pi->up_vis > 0) { 8448 rc = apply_link_config(pi); 8449 if (rc != 0) { 8450 lc->requested_fec = old; 8451 if (rc == FW_EPROTO) 8452 rc = ENOTSUP; 8453 } 8454 } 8455 } 8456 done: 8457 PORT_UNLOCK(pi); 8458 end_synchronized_op(sc, 0); 8459 } 8460 8461 return (rc); 8462 } 8463 8464 static int 8465 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8466 { 8467 struct port_info *pi = arg1; 8468 struct adapter *sc = pi->adapter; 8469 struct link_config *lc = &pi->link_cfg; 8470 int rc; 8471 int8_t fec; 8472 struct sbuf *sb; 8473 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8474 8475 rc = sysctl_wire_old_buffer(req, 0); 8476 if (rc != 0) 8477 return (rc); 8478 8479 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8480 if (sb == NULL) 8481 return (ENOMEM); 8482 8483 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8484 rc = EBUSY; 8485 goto done; 8486 } 8487 if (hw_off_limits(sc)) { 8488 rc = ENXIO; 8489 goto done; 8490 } 8491 PORT_LOCK(pi); 8492 if (pi->up_vis == 0) { 8493 /* 8494 * If all the interfaces are administratively down the firmware 8495 * does not report transceiver changes. Refresh port info here. 8496 * This is the only reason we have a synchronized op in this 8497 * function. Just PORT_LOCK would have been enough otherwise. 8498 */ 8499 t4_update_port_info(pi); 8500 } 8501 8502 fec = lc->fec_hint; 8503 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8504 !fec_supported(lc->pcaps)) { 8505 sbuf_printf(sb, "n/a"); 8506 } else { 8507 if (fec == 0) 8508 fec = FEC_NONE; 8509 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8510 } 8511 rc = sbuf_finish(sb); 8512 PORT_UNLOCK(pi); 8513 done: 8514 sbuf_delete(sb); 8515 end_synchronized_op(sc, 0); 8516 8517 return (rc); 8518 } 8519 8520 static int 8521 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8522 { 8523 struct port_info *pi = arg1; 8524 struct adapter *sc = pi->adapter; 8525 struct link_config *lc = &pi->link_cfg; 8526 int rc, val; 8527 8528 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8529 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8530 else 8531 val = -1; 8532 rc = sysctl_handle_int(oidp, &val, 0, req); 8533 if (rc != 0 || req->newptr == NULL) 8534 return (rc); 8535 if (val == 0) 8536 val = AUTONEG_DISABLE; 8537 else if (val == 1) 8538 val = AUTONEG_ENABLE; 8539 else 8540 val = AUTONEG_AUTO; 8541 8542 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8543 "t4aneg"); 8544 if (rc) 8545 return (rc); 8546 PORT_LOCK(pi); 8547 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8548 rc = ENOTSUP; 8549 goto done; 8550 } 8551 lc->requested_aneg = val; 8552 if (!hw_off_limits(sc)) { 8553 fixup_link_config(pi); 8554 if (pi->up_vis > 0) 8555 rc = apply_link_config(pi); 8556 set_current_media(pi); 8557 } 8558 done: 8559 PORT_UNLOCK(pi); 8560 end_synchronized_op(sc, 0); 8561 return (rc); 8562 } 8563 8564 static int 8565 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8566 { 8567 struct port_info *pi = arg1; 8568 struct adapter *sc = pi->adapter; 8569 struct link_config *lc = &pi->link_cfg; 8570 int rc, val; 8571 8572 val = lc->force_fec; 8573 MPASS(val >= -1 && val <= 1); 8574 rc = sysctl_handle_int(oidp, &val, 0, req); 8575 if (rc != 0 || req->newptr == NULL) 8576 return (rc); 8577 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8578 return (ENOTSUP); 8579 if (val < -1 || val > 1) 8580 return (EINVAL); 8581 8582 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8583 if (rc) 8584 return (rc); 8585 PORT_LOCK(pi); 8586 lc->force_fec = val; 8587 if (!hw_off_limits(sc)) { 8588 fixup_link_config(pi); 8589 if (pi->up_vis > 0) 8590 rc = apply_link_config(pi); 8591 } 8592 PORT_UNLOCK(pi); 8593 end_synchronized_op(sc, 0); 8594 return (rc); 8595 } 8596 8597 static int 8598 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8599 { 8600 struct adapter *sc = arg1; 8601 int rc, reg = arg2; 8602 uint64_t val; 8603 8604 mtx_lock(&sc->reg_lock); 8605 if (hw_off_limits(sc)) 8606 rc = ENXIO; 8607 else { 8608 rc = 0; 8609 val = t4_read_reg64(sc, reg); 8610 } 8611 mtx_unlock(&sc->reg_lock); 8612 if (rc == 0) 8613 rc = sysctl_handle_64(oidp, &val, 0, req); 8614 return (rc); 8615 } 8616 8617 static int 8618 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8619 { 8620 struct adapter *sc = arg1; 8621 int rc, t; 8622 uint32_t param, val; 8623 8624 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8625 if (rc) 8626 return (rc); 8627 if (hw_off_limits(sc)) 8628 rc = ENXIO; 8629 else { 8630 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8631 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8632 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8633 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8634 } 8635 end_synchronized_op(sc, 0); 8636 if (rc) 8637 return (rc); 8638 8639 /* unknown is returned as 0 but we display -1 in that case */ 8640 t = val == 0 ? -1 : val; 8641 8642 rc = sysctl_handle_int(oidp, &t, 0, req); 8643 return (rc); 8644 } 8645 8646 static int 8647 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8648 { 8649 struct adapter *sc = arg1; 8650 int rc; 8651 uint32_t param, val; 8652 8653 if (sc->params.core_vdd == 0) { 8654 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8655 "t4vdd"); 8656 if (rc) 8657 return (rc); 8658 if (hw_off_limits(sc)) 8659 rc = ENXIO; 8660 else { 8661 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8662 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8663 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8664 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8665 ¶m, &val); 8666 } 8667 end_synchronized_op(sc, 0); 8668 if (rc) 8669 return (rc); 8670 sc->params.core_vdd = val; 8671 } 8672 8673 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8674 } 8675 8676 static int 8677 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8678 { 8679 struct adapter *sc = arg1; 8680 int rc, v; 8681 uint32_t param, val; 8682 8683 v = sc->sensor_resets; 8684 rc = sysctl_handle_int(oidp, &v, 0, req); 8685 if (rc != 0 || req->newptr == NULL || v <= 0) 8686 return (rc); 8687 8688 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8689 chip_id(sc) < CHELSIO_T5) 8690 return (ENOTSUP); 8691 8692 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8693 if (rc) 8694 return (rc); 8695 if (hw_off_limits(sc)) 8696 rc = ENXIO; 8697 else { 8698 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8699 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8700 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8701 val = 1; 8702 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8703 } 8704 end_synchronized_op(sc, 0); 8705 if (rc == 0) 8706 sc->sensor_resets++; 8707 return (rc); 8708 } 8709 8710 static int 8711 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8712 { 8713 struct adapter *sc = arg1; 8714 struct sbuf *sb; 8715 int rc; 8716 uint32_t param, val; 8717 8718 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8719 if (rc) 8720 return (rc); 8721 if (hw_off_limits(sc)) 8722 rc = ENXIO; 8723 else { 8724 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8725 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8726 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8727 } 8728 end_synchronized_op(sc, 0); 8729 if (rc) 8730 return (rc); 8731 8732 rc = sysctl_wire_old_buffer(req, 0); 8733 if (rc != 0) 8734 return (rc); 8735 8736 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8737 if (sb == NULL) 8738 return (ENOMEM); 8739 8740 if (val == 0xffffffff) { 8741 /* Only debug and custom firmwares report load averages. */ 8742 sbuf_printf(sb, "not available"); 8743 } else { 8744 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8745 (val >> 16) & 0xff); 8746 } 8747 rc = sbuf_finish(sb); 8748 sbuf_delete(sb); 8749 8750 return (rc); 8751 } 8752 8753 static int 8754 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8755 { 8756 struct adapter *sc = arg1; 8757 struct sbuf *sb; 8758 int rc, i; 8759 uint16_t incr[NMTUS][NCCTRL_WIN]; 8760 static const char *dec_fac[] = { 8761 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8762 "0.9375" 8763 }; 8764 8765 rc = sysctl_wire_old_buffer(req, 0); 8766 if (rc != 0) 8767 return (rc); 8768 8769 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8770 if (sb == NULL) 8771 return (ENOMEM); 8772 8773 mtx_lock(&sc->reg_lock); 8774 if (hw_off_limits(sc)) 8775 rc = ENXIO; 8776 else 8777 t4_read_cong_tbl(sc, incr); 8778 mtx_unlock(&sc->reg_lock); 8779 if (rc) 8780 goto done; 8781 8782 for (i = 0; i < NCCTRL_WIN; ++i) { 8783 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8784 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8785 incr[5][i], incr[6][i], incr[7][i]); 8786 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8787 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8788 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8789 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8790 } 8791 8792 rc = sbuf_finish(sb); 8793 done: 8794 sbuf_delete(sb); 8795 return (rc); 8796 } 8797 8798 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8799 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8800 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8801 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8802 }; 8803 8804 static int 8805 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8806 { 8807 struct adapter *sc = arg1; 8808 struct sbuf *sb; 8809 int rc, i, n, qid = arg2; 8810 uint32_t *buf, *p; 8811 char *qtype; 8812 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8813 8814 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8815 ("%s: bad qid %d\n", __func__, qid)); 8816 8817 if (qid < CIM_NUM_IBQ) { 8818 /* inbound queue */ 8819 qtype = "IBQ"; 8820 n = 4 * CIM_IBQ_SIZE; 8821 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8822 mtx_lock(&sc->reg_lock); 8823 if (hw_off_limits(sc)) 8824 rc = -ENXIO; 8825 else 8826 rc = t4_read_cim_ibq(sc, qid, buf, n); 8827 mtx_unlock(&sc->reg_lock); 8828 } else { 8829 /* outbound queue */ 8830 qtype = "OBQ"; 8831 qid -= CIM_NUM_IBQ; 8832 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8833 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8834 mtx_lock(&sc->reg_lock); 8835 if (hw_off_limits(sc)) 8836 rc = -ENXIO; 8837 else 8838 rc = t4_read_cim_obq(sc, qid, buf, n); 8839 mtx_unlock(&sc->reg_lock); 8840 } 8841 8842 if (rc < 0) { 8843 rc = -rc; 8844 goto done; 8845 } 8846 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8847 8848 rc = sysctl_wire_old_buffer(req, 0); 8849 if (rc != 0) 8850 goto done; 8851 8852 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8853 if (sb == NULL) { 8854 rc = ENOMEM; 8855 goto done; 8856 } 8857 8858 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8859 for (i = 0, p = buf; i < n; i += 16, p += 4) 8860 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8861 p[2], p[3]); 8862 8863 rc = sbuf_finish(sb); 8864 sbuf_delete(sb); 8865 done: 8866 free(buf, M_CXGBE); 8867 return (rc); 8868 } 8869 8870 static void 8871 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8872 { 8873 uint32_t *p; 8874 8875 sbuf_printf(sb, "Status Data PC%s", 8876 cfg & F_UPDBGLACAPTPCONLY ? "" : 8877 " LS0Stat LS0Addr LS0Data"); 8878 8879 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8880 if (cfg & F_UPDBGLACAPTPCONLY) { 8881 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8882 p[6], p[7]); 8883 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8884 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8885 p[4] & 0xff, p[5] >> 8); 8886 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8887 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8888 p[1] & 0xf, p[2] >> 4); 8889 } else { 8890 sbuf_printf(sb, 8891 "\n %02x %x%07x %x%07x %08x %08x " 8892 "%08x%08x%08x%08x", 8893 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8894 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8895 p[6], p[7]); 8896 } 8897 } 8898 } 8899 8900 static void 8901 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8902 { 8903 uint32_t *p; 8904 8905 sbuf_printf(sb, "Status Inst Data PC%s", 8906 cfg & F_UPDBGLACAPTPCONLY ? "" : 8907 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8908 8909 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8910 if (cfg & F_UPDBGLACAPTPCONLY) { 8911 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8912 p[3] & 0xff, p[2], p[1], p[0]); 8913 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8914 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8915 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8916 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8917 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8918 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8919 p[6] >> 16); 8920 } else { 8921 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8922 "%08x %08x %08x %08x %08x %08x", 8923 (p[9] >> 16) & 0xff, 8924 p[9] & 0xffff, p[8] >> 16, 8925 p[8] & 0xffff, p[7] >> 16, 8926 p[7] & 0xffff, p[6] >> 16, 8927 p[2], p[1], p[0], p[5], p[4], p[3]); 8928 } 8929 } 8930 } 8931 8932 static int 8933 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8934 { 8935 uint32_t cfg, *buf; 8936 int rc; 8937 8938 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8939 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8940 M_ZERO | flags); 8941 if (buf == NULL) 8942 return (ENOMEM); 8943 8944 mtx_lock(&sc->reg_lock); 8945 if (hw_off_limits(sc)) 8946 rc = ENXIO; 8947 else { 8948 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8949 if (rc == 0) 8950 rc = -t4_cim_read_la(sc, buf, NULL); 8951 } 8952 mtx_unlock(&sc->reg_lock); 8953 if (rc == 0) { 8954 if (chip_id(sc) < CHELSIO_T6) 8955 sbuf_cim_la4(sc, sb, buf, cfg); 8956 else 8957 sbuf_cim_la6(sc, sb, buf, cfg); 8958 } 8959 free(buf, M_CXGBE); 8960 return (rc); 8961 } 8962 8963 static int 8964 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8965 { 8966 struct adapter *sc = arg1; 8967 struct sbuf *sb; 8968 int rc; 8969 8970 rc = sysctl_wire_old_buffer(req, 0); 8971 if (rc != 0) 8972 return (rc); 8973 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8974 if (sb == NULL) 8975 return (ENOMEM); 8976 8977 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8978 if (rc == 0) 8979 rc = sbuf_finish(sb); 8980 sbuf_delete(sb); 8981 return (rc); 8982 } 8983 8984 static void 8985 dump_cim_regs(struct adapter *sc) 8986 { 8987 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 8988 device_get_nameunit(sc->dev), 8989 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 8990 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 8991 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 8992 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 8993 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 8994 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 8995 device_get_nameunit(sc->dev), 8996 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 8997 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 8998 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 8999 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9000 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9001 } 9002 9003 static void 9004 dump_cimla(struct adapter *sc) 9005 { 9006 struct sbuf sb; 9007 int rc; 9008 9009 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9010 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9011 device_get_nameunit(sc->dev)); 9012 return; 9013 } 9014 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 9015 if (rc == 0) { 9016 rc = sbuf_finish(&sb); 9017 if (rc == 0) { 9018 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9019 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9020 } 9021 } 9022 sbuf_delete(&sb); 9023 } 9024 9025 void 9026 t4_os_cim_err(struct adapter *sc) 9027 { 9028 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9029 } 9030 9031 static int 9032 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9033 { 9034 struct adapter *sc = arg1; 9035 u_int i; 9036 struct sbuf *sb; 9037 uint32_t *buf, *p; 9038 int rc; 9039 9040 rc = sysctl_wire_old_buffer(req, 0); 9041 if (rc != 0) 9042 return (rc); 9043 9044 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9045 if (sb == NULL) 9046 return (ENOMEM); 9047 9048 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9049 M_ZERO | M_WAITOK); 9050 9051 mtx_lock(&sc->reg_lock); 9052 if (hw_off_limits(sc)) 9053 rc = ENXIO; 9054 else 9055 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9056 mtx_unlock(&sc->reg_lock); 9057 if (rc) 9058 goto done; 9059 9060 p = buf; 9061 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9062 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9063 p[1], p[0]); 9064 } 9065 9066 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9067 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9068 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9069 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9070 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9071 (p[1] >> 2) | ((p[2] & 3) << 30), 9072 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9073 p[0] & 1); 9074 } 9075 rc = sbuf_finish(sb); 9076 done: 9077 sbuf_delete(sb); 9078 free(buf, M_CXGBE); 9079 return (rc); 9080 } 9081 9082 static int 9083 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9084 { 9085 struct adapter *sc = arg1; 9086 u_int i; 9087 struct sbuf *sb; 9088 uint32_t *buf, *p; 9089 int rc; 9090 9091 rc = sysctl_wire_old_buffer(req, 0); 9092 if (rc != 0) 9093 return (rc); 9094 9095 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9096 if (sb == NULL) 9097 return (ENOMEM); 9098 9099 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9100 M_ZERO | M_WAITOK); 9101 9102 mtx_lock(&sc->reg_lock); 9103 if (hw_off_limits(sc)) 9104 rc = ENXIO; 9105 else 9106 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9107 mtx_unlock(&sc->reg_lock); 9108 if (rc) 9109 goto done; 9110 9111 p = buf; 9112 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9113 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9114 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9115 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9116 p[4], p[3], p[2], p[1], p[0]); 9117 } 9118 9119 sbuf_printf(sb, "\n\nCntl ID Data"); 9120 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9121 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9122 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9123 } 9124 9125 rc = sbuf_finish(sb); 9126 done: 9127 sbuf_delete(sb); 9128 free(buf, M_CXGBE); 9129 return (rc); 9130 } 9131 9132 static int 9133 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9134 { 9135 struct adapter *sc = arg1; 9136 struct sbuf *sb; 9137 int rc, i; 9138 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9139 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9140 uint16_t thres[CIM_NUM_IBQ]; 9141 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9142 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9143 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9144 9145 cim_num_obq = sc->chip_params->cim_num_obq; 9146 if (is_t4(sc)) { 9147 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9148 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9149 } else { 9150 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9151 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9152 } 9153 nq = CIM_NUM_IBQ + cim_num_obq; 9154 9155 mtx_lock(&sc->reg_lock); 9156 if (hw_off_limits(sc)) 9157 rc = ENXIO; 9158 else { 9159 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9160 if (rc == 0) { 9161 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9162 obq_wr); 9163 if (rc == 0) 9164 t4_read_cimq_cfg(sc, base, size, thres); 9165 } 9166 } 9167 mtx_unlock(&sc->reg_lock); 9168 if (rc) 9169 return (rc); 9170 9171 rc = sysctl_wire_old_buffer(req, 0); 9172 if (rc != 0) 9173 return (rc); 9174 9175 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9176 if (sb == NULL) 9177 return (ENOMEM); 9178 9179 sbuf_printf(sb, 9180 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9181 9182 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9183 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9184 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9185 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9186 G_QUEREMFLITS(p[2]) * 16); 9187 for ( ; i < nq; i++, p += 4, wr += 2) 9188 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9189 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9190 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9191 G_QUEREMFLITS(p[2]) * 16); 9192 9193 rc = sbuf_finish(sb); 9194 sbuf_delete(sb); 9195 9196 return (rc); 9197 } 9198 9199 static int 9200 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9201 { 9202 struct adapter *sc = arg1; 9203 struct sbuf *sb; 9204 int rc; 9205 struct tp_cpl_stats stats; 9206 9207 rc = sysctl_wire_old_buffer(req, 0); 9208 if (rc != 0) 9209 return (rc); 9210 9211 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9212 if (sb == NULL) 9213 return (ENOMEM); 9214 9215 mtx_lock(&sc->reg_lock); 9216 if (hw_off_limits(sc)) 9217 rc = ENXIO; 9218 else 9219 t4_tp_get_cpl_stats(sc, &stats, 0); 9220 mtx_unlock(&sc->reg_lock); 9221 if (rc) 9222 goto done; 9223 9224 if (sc->chip_params->nchan > 2) { 9225 sbuf_printf(sb, " channel 0 channel 1" 9226 " channel 2 channel 3"); 9227 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9228 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9229 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9230 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9231 } else { 9232 sbuf_printf(sb, " channel 0 channel 1"); 9233 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9234 stats.req[0], stats.req[1]); 9235 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9236 stats.rsp[0], stats.rsp[1]); 9237 } 9238 9239 rc = sbuf_finish(sb); 9240 done: 9241 sbuf_delete(sb); 9242 return (rc); 9243 } 9244 9245 static int 9246 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9247 { 9248 struct adapter *sc = arg1; 9249 struct sbuf *sb; 9250 int rc; 9251 struct tp_usm_stats stats; 9252 9253 rc = sysctl_wire_old_buffer(req, 0); 9254 if (rc != 0) 9255 return(rc); 9256 9257 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9258 if (sb == NULL) 9259 return (ENOMEM); 9260 9261 mtx_lock(&sc->reg_lock); 9262 if (hw_off_limits(sc)) 9263 rc = ENXIO; 9264 else 9265 t4_get_usm_stats(sc, &stats, 1); 9266 mtx_unlock(&sc->reg_lock); 9267 if (rc == 0) { 9268 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9269 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9270 sbuf_printf(sb, "Drops: %u", stats.drops); 9271 rc = sbuf_finish(sb); 9272 } 9273 sbuf_delete(sb); 9274 9275 return (rc); 9276 } 9277 9278 static int 9279 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9280 { 9281 struct adapter *sc = arg1; 9282 struct sbuf *sb; 9283 int rc; 9284 struct tp_tid_stats stats; 9285 9286 rc = sysctl_wire_old_buffer(req, 0); 9287 if (rc != 0) 9288 return(rc); 9289 9290 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9291 if (sb == NULL) 9292 return (ENOMEM); 9293 9294 mtx_lock(&sc->reg_lock); 9295 if (hw_off_limits(sc)) 9296 rc = ENXIO; 9297 else 9298 t4_tp_get_tid_stats(sc, &stats, 1); 9299 mtx_unlock(&sc->reg_lock); 9300 if (rc == 0) { 9301 sbuf_printf(sb, "Delete: %u\n", stats.del); 9302 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9303 sbuf_printf(sb, "Active: %u\n", stats.act); 9304 sbuf_printf(sb, "Passive: %u", stats.pas); 9305 rc = sbuf_finish(sb); 9306 } 9307 sbuf_delete(sb); 9308 9309 return (rc); 9310 } 9311 9312 static const char * const devlog_level_strings[] = { 9313 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9314 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9315 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9316 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9317 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9318 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9319 }; 9320 9321 static const char * const devlog_facility_strings[] = { 9322 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9323 [FW_DEVLOG_FACILITY_CF] = "CF", 9324 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9325 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9326 [FW_DEVLOG_FACILITY_RES] = "RES", 9327 [FW_DEVLOG_FACILITY_HW] = "HW", 9328 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9329 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9330 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9331 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9332 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9333 [FW_DEVLOG_FACILITY_VI] = "VI", 9334 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9335 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9336 [FW_DEVLOG_FACILITY_TM] = "TM", 9337 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9338 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9339 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9340 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9341 [FW_DEVLOG_FACILITY_RI] = "RI", 9342 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9343 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9344 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9345 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9346 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9347 }; 9348 9349 static int 9350 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9351 { 9352 int i, j, rc, nentries, first = 0; 9353 struct devlog_params *dparams = &sc->params.devlog; 9354 struct fw_devlog_e *buf, *e; 9355 uint64_t ftstamp = UINT64_MAX; 9356 9357 if (dparams->addr == 0) 9358 return (ENXIO); 9359 9360 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9361 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9362 if (buf == NULL) 9363 return (ENOMEM); 9364 9365 mtx_lock(&sc->reg_lock); 9366 if (hw_off_limits(sc)) 9367 rc = ENXIO; 9368 else 9369 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9370 dparams->size); 9371 mtx_unlock(&sc->reg_lock); 9372 if (rc != 0) 9373 goto done; 9374 9375 nentries = dparams->size / sizeof(struct fw_devlog_e); 9376 for (i = 0; i < nentries; i++) { 9377 e = &buf[i]; 9378 9379 if (e->timestamp == 0) 9380 break; /* end */ 9381 9382 e->timestamp = be64toh(e->timestamp); 9383 e->seqno = be32toh(e->seqno); 9384 for (j = 0; j < 8; j++) 9385 e->params[j] = be32toh(e->params[j]); 9386 9387 if (e->timestamp < ftstamp) { 9388 ftstamp = e->timestamp; 9389 first = i; 9390 } 9391 } 9392 9393 if (buf[first].timestamp == 0) 9394 goto done; /* nothing in the log */ 9395 9396 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9397 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9398 9399 i = first; 9400 do { 9401 e = &buf[i]; 9402 if (e->timestamp == 0) 9403 break; /* end */ 9404 9405 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9406 e->seqno, e->timestamp, 9407 (e->level < nitems(devlog_level_strings) ? 9408 devlog_level_strings[e->level] : "UNKNOWN"), 9409 (e->facility < nitems(devlog_facility_strings) ? 9410 devlog_facility_strings[e->facility] : "UNKNOWN")); 9411 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9412 e->params[2], e->params[3], e->params[4], 9413 e->params[5], e->params[6], e->params[7]); 9414 9415 if (++i == nentries) 9416 i = 0; 9417 } while (i != first); 9418 done: 9419 free(buf, M_CXGBE); 9420 return (rc); 9421 } 9422 9423 static int 9424 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9425 { 9426 struct adapter *sc = arg1; 9427 int rc; 9428 struct sbuf *sb; 9429 9430 rc = sysctl_wire_old_buffer(req, 0); 9431 if (rc != 0) 9432 return (rc); 9433 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9434 if (sb == NULL) 9435 return (ENOMEM); 9436 9437 rc = sbuf_devlog(sc, sb, M_WAITOK); 9438 if (rc == 0) 9439 rc = sbuf_finish(sb); 9440 sbuf_delete(sb); 9441 return (rc); 9442 } 9443 9444 static void 9445 dump_devlog(struct adapter *sc) 9446 { 9447 int rc; 9448 struct sbuf sb; 9449 9450 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 9451 return; 9452 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 9453 if (rc == 0) { 9454 rc = sbuf_finish(&sb); 9455 if (rc == 0) { 9456 log(LOG_DEBUG, "%s: device log follows.\n%s", 9457 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9458 } 9459 } 9460 sbuf_delete(&sb); 9461 } 9462 9463 static int 9464 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9465 { 9466 struct adapter *sc = arg1; 9467 struct sbuf *sb; 9468 int rc; 9469 struct tp_fcoe_stats stats[MAX_NCHAN]; 9470 int i, nchan = sc->chip_params->nchan; 9471 9472 rc = sysctl_wire_old_buffer(req, 0); 9473 if (rc != 0) 9474 return (rc); 9475 9476 mtx_lock(&sc->reg_lock); 9477 if (hw_off_limits(sc)) 9478 rc = ENXIO; 9479 else { 9480 for (i = 0; i < nchan; i++) 9481 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9482 } 9483 mtx_unlock(&sc->reg_lock); 9484 if (rc != 0) 9485 return (rc); 9486 9487 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9488 if (sb == NULL) 9489 return (ENOMEM); 9490 9491 if (nchan > 2) { 9492 sbuf_printf(sb, " channel 0 channel 1" 9493 " channel 2 channel 3"); 9494 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9495 stats[0].octets_ddp, stats[1].octets_ddp, 9496 stats[2].octets_ddp, stats[3].octets_ddp); 9497 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9498 stats[0].frames_ddp, stats[1].frames_ddp, 9499 stats[2].frames_ddp, stats[3].frames_ddp); 9500 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9501 stats[0].frames_drop, stats[1].frames_drop, 9502 stats[2].frames_drop, stats[3].frames_drop); 9503 } else { 9504 sbuf_printf(sb, " channel 0 channel 1"); 9505 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9506 stats[0].octets_ddp, stats[1].octets_ddp); 9507 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9508 stats[0].frames_ddp, stats[1].frames_ddp); 9509 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9510 stats[0].frames_drop, stats[1].frames_drop); 9511 } 9512 9513 rc = sbuf_finish(sb); 9514 sbuf_delete(sb); 9515 9516 return (rc); 9517 } 9518 9519 static int 9520 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9521 { 9522 struct adapter *sc = arg1; 9523 struct sbuf *sb; 9524 int rc, i; 9525 unsigned int map, kbps, ipg, mode; 9526 unsigned int pace_tab[NTX_SCHED]; 9527 9528 rc = sysctl_wire_old_buffer(req, 0); 9529 if (rc != 0) 9530 return (rc); 9531 9532 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9533 if (sb == NULL) 9534 return (ENOMEM); 9535 9536 mtx_lock(&sc->reg_lock); 9537 if (hw_off_limits(sc)) { 9538 rc = ENXIO; 9539 goto done; 9540 } 9541 9542 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9543 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9544 t4_read_pace_tbl(sc, pace_tab); 9545 9546 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9547 "Class IPG (0.1 ns) Flow IPG (us)"); 9548 9549 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9550 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9551 sbuf_printf(sb, "\n %u %-5s %u ", i, 9552 (mode & (1 << i)) ? "flow" : "class", map & 3); 9553 if (kbps) 9554 sbuf_printf(sb, "%9u ", kbps); 9555 else 9556 sbuf_printf(sb, " disabled "); 9557 9558 if (ipg) 9559 sbuf_printf(sb, "%13u ", ipg); 9560 else 9561 sbuf_printf(sb, " disabled "); 9562 9563 if (pace_tab[i]) 9564 sbuf_printf(sb, "%10u", pace_tab[i]); 9565 else 9566 sbuf_printf(sb, " disabled"); 9567 } 9568 rc = sbuf_finish(sb); 9569 done: 9570 mtx_unlock(&sc->reg_lock); 9571 sbuf_delete(sb); 9572 return (rc); 9573 } 9574 9575 static int 9576 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9577 { 9578 struct adapter *sc = arg1; 9579 struct sbuf *sb; 9580 int rc, i, j; 9581 uint64_t *p0, *p1; 9582 struct lb_port_stats s[2]; 9583 static const char *stat_name[] = { 9584 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9585 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9586 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9587 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9588 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9589 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9590 "BG2FramesTrunc:", "BG3FramesTrunc:" 9591 }; 9592 9593 rc = sysctl_wire_old_buffer(req, 0); 9594 if (rc != 0) 9595 return (rc); 9596 9597 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9598 if (sb == NULL) 9599 return (ENOMEM); 9600 9601 memset(s, 0, sizeof(s)); 9602 9603 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9604 mtx_lock(&sc->reg_lock); 9605 if (hw_off_limits(sc)) 9606 rc = ENXIO; 9607 else { 9608 t4_get_lb_stats(sc, i, &s[0]); 9609 t4_get_lb_stats(sc, i + 1, &s[1]); 9610 } 9611 mtx_unlock(&sc->reg_lock); 9612 if (rc != 0) 9613 break; 9614 9615 p0 = &s[0].octets; 9616 p1 = &s[1].octets; 9617 sbuf_printf(sb, "%s Loopback %u" 9618 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9619 9620 for (j = 0; j < nitems(stat_name); j++) 9621 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9622 *p0++, *p1++); 9623 } 9624 9625 rc = sbuf_finish(sb); 9626 sbuf_delete(sb); 9627 9628 return (rc); 9629 } 9630 9631 static int 9632 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9633 { 9634 int rc = 0; 9635 struct port_info *pi = arg1; 9636 struct link_config *lc = &pi->link_cfg; 9637 struct sbuf *sb; 9638 9639 rc = sysctl_wire_old_buffer(req, 0); 9640 if (rc != 0) 9641 return(rc); 9642 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9643 if (sb == NULL) 9644 return (ENOMEM); 9645 9646 if (lc->link_ok || lc->link_down_rc == 255) 9647 sbuf_printf(sb, "n/a"); 9648 else 9649 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9650 9651 rc = sbuf_finish(sb); 9652 sbuf_delete(sb); 9653 9654 return (rc); 9655 } 9656 9657 struct mem_desc { 9658 unsigned int base; 9659 unsigned int limit; 9660 unsigned int idx; 9661 }; 9662 9663 static int 9664 mem_desc_cmp(const void *a, const void *b) 9665 { 9666 return ((const struct mem_desc *)a)->base - 9667 ((const struct mem_desc *)b)->base; 9668 } 9669 9670 static void 9671 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9672 unsigned int to) 9673 { 9674 unsigned int size; 9675 9676 if (from == to) 9677 return; 9678 9679 size = to - from + 1; 9680 if (size == 0) 9681 return; 9682 9683 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9684 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9685 } 9686 9687 static int 9688 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9689 { 9690 struct adapter *sc = arg1; 9691 struct sbuf *sb; 9692 int rc, i, n; 9693 uint32_t lo, hi, used, alloc; 9694 static const char *memory[] = { 9695 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9696 }; 9697 static const char *region[] = { 9698 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9699 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9700 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9701 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9702 "RQUDP region:", "PBL region:", "TXPBL region:", 9703 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 9704 "On-chip queues:", "TLS keys:", 9705 }; 9706 struct mem_desc avail[4]; 9707 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9708 struct mem_desc *md = mem; 9709 9710 rc = sysctl_wire_old_buffer(req, 0); 9711 if (rc != 0) 9712 return (rc); 9713 9714 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9715 if (sb == NULL) 9716 return (ENOMEM); 9717 9718 for (i = 0; i < nitems(mem); i++) { 9719 mem[i].limit = 0; 9720 mem[i].idx = i; 9721 } 9722 9723 mtx_lock(&sc->reg_lock); 9724 if (hw_off_limits(sc)) { 9725 rc = ENXIO; 9726 goto done; 9727 } 9728 9729 /* Find and sort the populated memory ranges */ 9730 i = 0; 9731 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9732 if (lo & F_EDRAM0_ENABLE) { 9733 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9734 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9735 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9736 avail[i].idx = 0; 9737 i++; 9738 } 9739 if (lo & F_EDRAM1_ENABLE) { 9740 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9741 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9742 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9743 avail[i].idx = 1; 9744 i++; 9745 } 9746 if (lo & F_EXT_MEM_ENABLE) { 9747 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9748 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9749 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9750 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9751 i++; 9752 } 9753 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9754 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9755 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9756 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9757 avail[i].idx = 4; 9758 i++; 9759 } 9760 if (is_t6(sc) && lo & F_HMA_MUX) { 9761 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9762 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9763 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9764 avail[i].idx = 5; 9765 i++; 9766 } 9767 MPASS(i <= nitems(avail)); 9768 if (!i) /* no memory available */ 9769 goto done; 9770 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9771 9772 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9773 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9774 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9775 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9776 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9777 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9778 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9779 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9780 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9781 9782 /* the next few have explicit upper bounds */ 9783 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9784 md->limit = md->base - 1 + 9785 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9786 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9787 md++; 9788 9789 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9790 md->limit = md->base - 1 + 9791 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9792 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9793 md++; 9794 9795 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9796 if (chip_id(sc) <= CHELSIO_T5) 9797 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9798 else 9799 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9800 md->limit = 0; 9801 } else { 9802 md->base = 0; 9803 md->idx = nitems(region); /* hide it */ 9804 } 9805 md++; 9806 9807 #define ulp_region(reg) \ 9808 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9809 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9810 9811 ulp_region(RX_ISCSI); 9812 ulp_region(RX_TDDP); 9813 ulp_region(TX_TPT); 9814 ulp_region(RX_STAG); 9815 ulp_region(RX_RQ); 9816 ulp_region(RX_RQUDP); 9817 ulp_region(RX_PBL); 9818 ulp_region(TX_PBL); 9819 #undef ulp_region 9820 9821 md->base = 0; 9822 if (is_t4(sc)) 9823 md->idx = nitems(region); 9824 else { 9825 uint32_t size = 0; 9826 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9827 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9828 9829 if (is_t5(sc)) { 9830 if (sge_ctrl & F_VFIFO_ENABLE) 9831 size = fifo_size << 2; 9832 } else 9833 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9834 9835 if (size) { 9836 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9837 md->limit = md->base + size - 1; 9838 } else 9839 md->idx = nitems(region); 9840 } 9841 md++; 9842 9843 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9844 md->limit = 0; 9845 md++; 9846 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9847 md->limit = 0; 9848 md++; 9849 9850 md->base = sc->vres.ocq.start; 9851 if (sc->vres.ocq.size) 9852 md->limit = md->base + sc->vres.ocq.size - 1; 9853 else 9854 md->idx = nitems(region); /* hide it */ 9855 md++; 9856 9857 md->base = sc->vres.key.start; 9858 if (sc->vres.key.size) 9859 md->limit = md->base + sc->vres.key.size - 1; 9860 else 9861 md->idx = nitems(region); /* hide it */ 9862 md++; 9863 9864 /* add any address-space holes, there can be up to 3 */ 9865 for (n = 0; n < i - 1; n++) 9866 if (avail[n].limit < avail[n + 1].base) 9867 (md++)->base = avail[n].limit; 9868 if (avail[n].limit) 9869 (md++)->base = avail[n].limit; 9870 9871 n = md - mem; 9872 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9873 9874 for (lo = 0; lo < i; lo++) 9875 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9876 avail[lo].limit - 1); 9877 9878 sbuf_printf(sb, "\n"); 9879 for (i = 0; i < n; i++) { 9880 if (mem[i].idx >= nitems(region)) 9881 continue; /* skip holes */ 9882 if (!mem[i].limit) 9883 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9884 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9885 mem[i].limit); 9886 } 9887 9888 sbuf_printf(sb, "\n"); 9889 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9890 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9891 mem_region_show(sb, "uP RAM:", lo, hi); 9892 9893 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9894 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9895 mem_region_show(sb, "uP Extmem2:", lo, hi); 9896 9897 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9898 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 9899 G_PMRXMAXPAGE(lo), 9900 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9901 (lo & F_PMRXNUMCHN) ? 2 : 1); 9902 9903 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9904 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9905 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 9906 G_PMTXMAXPAGE(lo), 9907 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9908 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9909 sbuf_printf(sb, "%u p-structs\n", 9910 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 9911 9912 for (i = 0; i < 4; i++) { 9913 if (chip_id(sc) > CHELSIO_T5) 9914 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9915 else 9916 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9917 if (is_t5(sc)) { 9918 used = G_T5_USED(lo); 9919 alloc = G_T5_ALLOC(lo); 9920 } else { 9921 used = G_USED(lo); 9922 alloc = G_ALLOC(lo); 9923 } 9924 /* For T6 these are MAC buffer groups */ 9925 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9926 i, used, alloc); 9927 } 9928 for (i = 0; i < sc->chip_params->nchan; i++) { 9929 if (chip_id(sc) > CHELSIO_T5) 9930 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9931 else 9932 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9933 if (is_t5(sc)) { 9934 used = G_T5_USED(lo); 9935 alloc = G_T5_ALLOC(lo); 9936 } else { 9937 used = G_USED(lo); 9938 alloc = G_ALLOC(lo); 9939 } 9940 /* For T6 these are MAC buffer groups */ 9941 sbuf_printf(sb, 9942 "\nLoopback %d using %u pages out of %u allocated", 9943 i, used, alloc); 9944 } 9945 done: 9946 mtx_unlock(&sc->reg_lock); 9947 if (rc == 0) 9948 rc = sbuf_finish(sb); 9949 sbuf_delete(sb); 9950 return (rc); 9951 } 9952 9953 static inline void 9954 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9955 { 9956 *mask = x | y; 9957 y = htobe64(y); 9958 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9959 } 9960 9961 static int 9962 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9963 { 9964 struct adapter *sc = arg1; 9965 struct sbuf *sb; 9966 int rc, i; 9967 9968 MPASS(chip_id(sc) <= CHELSIO_T5); 9969 9970 rc = sysctl_wire_old_buffer(req, 0); 9971 if (rc != 0) 9972 return (rc); 9973 9974 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9975 if (sb == NULL) 9976 return (ENOMEM); 9977 9978 sbuf_printf(sb, 9979 "Idx Ethernet address Mask Vld Ports PF" 9980 " VF Replication P0 P1 P2 P3 ML"); 9981 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9982 uint64_t tcamx, tcamy, mask; 9983 uint32_t cls_lo, cls_hi; 9984 uint8_t addr[ETHER_ADDR_LEN]; 9985 9986 mtx_lock(&sc->reg_lock); 9987 if (hw_off_limits(sc)) 9988 rc = ENXIO; 9989 else { 9990 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 9991 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 9992 } 9993 mtx_unlock(&sc->reg_lock); 9994 if (rc != 0) 9995 break; 9996 if (tcamx & tcamy) 9997 continue; 9998 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9999 mtx_lock(&sc->reg_lock); 10000 if (hw_off_limits(sc)) 10001 rc = ENXIO; 10002 else { 10003 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10004 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10005 } 10006 mtx_unlock(&sc->reg_lock); 10007 if (rc != 0) 10008 break; 10009 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10010 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10011 addr[3], addr[4], addr[5], (uintmax_t)mask, 10012 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10013 G_PORTMAP(cls_hi), G_PF(cls_lo), 10014 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10015 10016 if (cls_lo & F_REPLICATE) { 10017 struct fw_ldst_cmd ldst_cmd; 10018 10019 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10020 ldst_cmd.op_to_addrspace = 10021 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10022 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10023 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10024 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10025 ldst_cmd.u.mps.rplc.fid_idx = 10026 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10027 V_FW_LDST_CMD_IDX(i)); 10028 10029 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10030 "t4mps"); 10031 if (rc) 10032 break; 10033 if (hw_off_limits(sc)) 10034 rc = ENXIO; 10035 else 10036 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10037 sizeof(ldst_cmd), &ldst_cmd); 10038 end_synchronized_op(sc, 0); 10039 if (rc != 0) 10040 break; 10041 else { 10042 sbuf_printf(sb, " %08x %08x %08x %08x", 10043 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10044 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10045 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10046 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10047 } 10048 } else 10049 sbuf_printf(sb, "%36s", ""); 10050 10051 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10052 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10053 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10054 } 10055 10056 if (rc) 10057 (void) sbuf_finish(sb); 10058 else 10059 rc = sbuf_finish(sb); 10060 sbuf_delete(sb); 10061 10062 return (rc); 10063 } 10064 10065 static int 10066 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10067 { 10068 struct adapter *sc = arg1; 10069 struct sbuf *sb; 10070 int rc, i; 10071 10072 MPASS(chip_id(sc) > CHELSIO_T5); 10073 10074 rc = sysctl_wire_old_buffer(req, 0); 10075 if (rc != 0) 10076 return (rc); 10077 10078 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10079 if (sb == NULL) 10080 return (ENOMEM); 10081 10082 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10083 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10084 " Replication" 10085 " P0 P1 P2 P3 ML\n"); 10086 10087 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10088 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10089 uint16_t ivlan; 10090 uint64_t tcamx, tcamy, val, mask; 10091 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10092 uint8_t addr[ETHER_ADDR_LEN]; 10093 10094 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10095 if (i < 256) 10096 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10097 else 10098 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10099 mtx_lock(&sc->reg_lock); 10100 if (hw_off_limits(sc)) 10101 rc = ENXIO; 10102 else { 10103 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10104 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10105 tcamy = G_DMACH(val) << 32; 10106 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10107 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10108 } 10109 mtx_unlock(&sc->reg_lock); 10110 if (rc != 0) 10111 break; 10112 10113 lookup_type = G_DATALKPTYPE(data2); 10114 port_num = G_DATAPORTNUM(data2); 10115 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10116 /* Inner header VNI */ 10117 vniy = ((data2 & F_DATAVIDH2) << 23) | 10118 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10119 dip_hit = data2 & F_DATADIPHIT; 10120 vlan_vld = 0; 10121 } else { 10122 vniy = 0; 10123 dip_hit = 0; 10124 vlan_vld = data2 & F_DATAVIDH2; 10125 ivlan = G_VIDL(val); 10126 } 10127 10128 ctl |= V_CTLXYBITSEL(1); 10129 mtx_lock(&sc->reg_lock); 10130 if (hw_off_limits(sc)) 10131 rc = ENXIO; 10132 else { 10133 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10134 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10135 tcamx = G_DMACH(val) << 32; 10136 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10137 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10138 } 10139 mtx_unlock(&sc->reg_lock); 10140 if (rc != 0) 10141 break; 10142 10143 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10144 /* Inner header VNI mask */ 10145 vnix = ((data2 & F_DATAVIDH2) << 23) | 10146 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10147 } else 10148 vnix = 0; 10149 10150 if (tcamx & tcamy) 10151 continue; 10152 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10153 10154 mtx_lock(&sc->reg_lock); 10155 if (hw_off_limits(sc)) 10156 rc = ENXIO; 10157 else { 10158 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10159 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10160 } 10161 mtx_unlock(&sc->reg_lock); 10162 if (rc != 0) 10163 break; 10164 10165 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10166 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10167 "%012jx %06x %06x - - %3c" 10168 " I %4x %3c %#x%4u%4d", i, addr[0], 10169 addr[1], addr[2], addr[3], addr[4], addr[5], 10170 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10171 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10172 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10173 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10174 } else { 10175 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10176 "%012jx - - ", i, addr[0], addr[1], 10177 addr[2], addr[3], addr[4], addr[5], 10178 (uintmax_t)mask); 10179 10180 if (vlan_vld) 10181 sbuf_printf(sb, "%4u Y ", ivlan); 10182 else 10183 sbuf_printf(sb, " - N "); 10184 10185 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10186 lookup_type ? 'I' : 'O', port_num, 10187 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10188 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10189 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10190 } 10191 10192 10193 if (cls_lo & F_T6_REPLICATE) { 10194 struct fw_ldst_cmd ldst_cmd; 10195 10196 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10197 ldst_cmd.op_to_addrspace = 10198 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10199 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10200 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10201 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10202 ldst_cmd.u.mps.rplc.fid_idx = 10203 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10204 V_FW_LDST_CMD_IDX(i)); 10205 10206 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10207 "t6mps"); 10208 if (rc) 10209 break; 10210 if (hw_off_limits(sc)) 10211 rc = ENXIO; 10212 else 10213 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10214 sizeof(ldst_cmd), &ldst_cmd); 10215 end_synchronized_op(sc, 0); 10216 if (rc != 0) 10217 break; 10218 else { 10219 sbuf_printf(sb, " %08x %08x %08x %08x" 10220 " %08x %08x %08x %08x", 10221 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10222 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10223 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10224 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10225 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10226 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10227 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10228 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10229 } 10230 } else 10231 sbuf_printf(sb, "%72s", ""); 10232 10233 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10234 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10235 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10236 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10237 } 10238 10239 if (rc) 10240 (void) sbuf_finish(sb); 10241 else 10242 rc = sbuf_finish(sb); 10243 sbuf_delete(sb); 10244 10245 return (rc); 10246 } 10247 10248 static int 10249 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10250 { 10251 struct adapter *sc = arg1; 10252 struct sbuf *sb; 10253 int rc; 10254 uint16_t mtus[NMTUS]; 10255 10256 rc = sysctl_wire_old_buffer(req, 0); 10257 if (rc != 0) 10258 return (rc); 10259 10260 mtx_lock(&sc->reg_lock); 10261 if (hw_off_limits(sc)) 10262 rc = ENXIO; 10263 else 10264 t4_read_mtu_tbl(sc, mtus, NULL); 10265 mtx_unlock(&sc->reg_lock); 10266 if (rc != 0) 10267 return (rc); 10268 10269 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10270 if (sb == NULL) 10271 return (ENOMEM); 10272 10273 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10274 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10275 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10276 mtus[14], mtus[15]); 10277 10278 rc = sbuf_finish(sb); 10279 sbuf_delete(sb); 10280 10281 return (rc); 10282 } 10283 10284 static int 10285 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10286 { 10287 struct adapter *sc = arg1; 10288 struct sbuf *sb; 10289 int rc, i; 10290 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10291 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10292 static const char *tx_stats[MAX_PM_NSTATS] = { 10293 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10294 "Tx FIFO wait", NULL, "Tx latency" 10295 }; 10296 static const char *rx_stats[MAX_PM_NSTATS] = { 10297 "Read:", "Write bypass:", "Write mem:", "Flush:", 10298 "Rx FIFO wait", NULL, "Rx latency" 10299 }; 10300 10301 rc = sysctl_wire_old_buffer(req, 0); 10302 if (rc != 0) 10303 return (rc); 10304 10305 mtx_lock(&sc->reg_lock); 10306 if (hw_off_limits(sc)) 10307 rc = ENXIO; 10308 else { 10309 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10310 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10311 } 10312 mtx_unlock(&sc->reg_lock); 10313 if (rc != 0) 10314 return (rc); 10315 10316 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10317 if (sb == NULL) 10318 return (ENOMEM); 10319 10320 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10321 for (i = 0; i < 4; i++) { 10322 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10323 tx_cyc[i]); 10324 } 10325 10326 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10327 for (i = 0; i < 4; i++) { 10328 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10329 rx_cyc[i]); 10330 } 10331 10332 if (chip_id(sc) > CHELSIO_T5) { 10333 sbuf_printf(sb, 10334 "\n Total wait Total occupancy"); 10335 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10336 tx_cyc[i]); 10337 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10338 rx_cyc[i]); 10339 10340 i += 2; 10341 MPASS(i < nitems(tx_stats)); 10342 10343 sbuf_printf(sb, 10344 "\n Reads Total wait"); 10345 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10346 tx_cyc[i]); 10347 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10348 rx_cyc[i]); 10349 } 10350 10351 rc = sbuf_finish(sb); 10352 sbuf_delete(sb); 10353 10354 return (rc); 10355 } 10356 10357 static int 10358 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10359 { 10360 struct adapter *sc = arg1; 10361 struct sbuf *sb; 10362 int rc; 10363 struct tp_rdma_stats stats; 10364 10365 rc = sysctl_wire_old_buffer(req, 0); 10366 if (rc != 0) 10367 return (rc); 10368 10369 mtx_lock(&sc->reg_lock); 10370 if (hw_off_limits(sc)) 10371 rc = ENXIO; 10372 else 10373 t4_tp_get_rdma_stats(sc, &stats, 0); 10374 mtx_unlock(&sc->reg_lock); 10375 if (rc != 0) 10376 return (rc); 10377 10378 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10379 if (sb == NULL) 10380 return (ENOMEM); 10381 10382 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10383 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10384 10385 rc = sbuf_finish(sb); 10386 sbuf_delete(sb); 10387 10388 return (rc); 10389 } 10390 10391 static int 10392 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10393 { 10394 struct adapter *sc = arg1; 10395 struct sbuf *sb; 10396 int rc; 10397 struct tp_tcp_stats v4, v6; 10398 10399 rc = sysctl_wire_old_buffer(req, 0); 10400 if (rc != 0) 10401 return (rc); 10402 10403 mtx_lock(&sc->reg_lock); 10404 if (hw_off_limits(sc)) 10405 rc = ENXIO; 10406 else 10407 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10408 mtx_unlock(&sc->reg_lock); 10409 if (rc != 0) 10410 return (rc); 10411 10412 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10413 if (sb == NULL) 10414 return (ENOMEM); 10415 10416 sbuf_printf(sb, 10417 " IP IPv6\n"); 10418 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10419 v4.tcp_out_rsts, v6.tcp_out_rsts); 10420 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10421 v4.tcp_in_segs, v6.tcp_in_segs); 10422 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10423 v4.tcp_out_segs, v6.tcp_out_segs); 10424 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10425 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10426 10427 rc = sbuf_finish(sb); 10428 sbuf_delete(sb); 10429 10430 return (rc); 10431 } 10432 10433 static int 10434 sysctl_tids(SYSCTL_HANDLER_ARGS) 10435 { 10436 struct adapter *sc = arg1; 10437 struct sbuf *sb; 10438 int rc; 10439 uint32_t x, y; 10440 struct tid_info *t = &sc->tids; 10441 10442 rc = sysctl_wire_old_buffer(req, 0); 10443 if (rc != 0) 10444 return (rc); 10445 10446 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10447 if (sb == NULL) 10448 return (ENOMEM); 10449 10450 if (t->natids) { 10451 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10452 t->atids_in_use); 10453 } 10454 10455 if (t->nhpftids) { 10456 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10457 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10458 } 10459 10460 if (t->ntids) { 10461 bool hashen = false; 10462 10463 mtx_lock(&sc->reg_lock); 10464 if (hw_off_limits(sc)) 10465 rc = ENXIO; 10466 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10467 hashen = true; 10468 if (chip_id(sc) <= CHELSIO_T5) { 10469 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10470 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10471 } else { 10472 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10473 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10474 } 10475 } 10476 mtx_unlock(&sc->reg_lock); 10477 if (rc != 0) 10478 goto done; 10479 10480 sbuf_printf(sb, "TID range: "); 10481 if (hashen) { 10482 if (x) 10483 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10484 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10485 } else { 10486 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10487 t->ntids - 1); 10488 } 10489 sbuf_printf(sb, ", in use: %u\n", 10490 atomic_load_acq_int(&t->tids_in_use)); 10491 } 10492 10493 if (t->nstids) { 10494 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10495 t->stid_base + t->nstids - 1, t->stids_in_use); 10496 } 10497 10498 if (t->nftids) { 10499 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10500 t->ftid_end, t->ftids_in_use); 10501 } 10502 10503 if (t->netids) { 10504 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10505 t->etid_base + t->netids - 1, t->etids_in_use); 10506 } 10507 10508 mtx_lock(&sc->reg_lock); 10509 if (hw_off_limits(sc)) 10510 rc = ENXIO; 10511 else { 10512 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10513 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10514 } 10515 mtx_unlock(&sc->reg_lock); 10516 if (rc != 0) 10517 goto done; 10518 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10519 done: 10520 if (rc == 0) 10521 rc = sbuf_finish(sb); 10522 else 10523 (void)sbuf_finish(sb); 10524 sbuf_delete(sb); 10525 10526 return (rc); 10527 } 10528 10529 static int 10530 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10531 { 10532 struct adapter *sc = arg1; 10533 struct sbuf *sb; 10534 int rc; 10535 struct tp_err_stats stats; 10536 10537 rc = sysctl_wire_old_buffer(req, 0); 10538 if (rc != 0) 10539 return (rc); 10540 10541 mtx_lock(&sc->reg_lock); 10542 if (hw_off_limits(sc)) 10543 rc = ENXIO; 10544 else 10545 t4_tp_get_err_stats(sc, &stats, 0); 10546 mtx_unlock(&sc->reg_lock); 10547 if (rc != 0) 10548 return (rc); 10549 10550 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10551 if (sb == NULL) 10552 return (ENOMEM); 10553 10554 if (sc->chip_params->nchan > 2) { 10555 sbuf_printf(sb, " channel 0 channel 1" 10556 " channel 2 channel 3\n"); 10557 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10558 stats.mac_in_errs[0], stats.mac_in_errs[1], 10559 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10560 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10561 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10562 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10563 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10564 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10565 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10566 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10567 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10568 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10569 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10570 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10571 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10572 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10573 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10574 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10575 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10576 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10577 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10578 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10579 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10580 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10581 } else { 10582 sbuf_printf(sb, " channel 0 channel 1\n"); 10583 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10584 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10585 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10586 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10587 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10588 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10589 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10590 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10591 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10592 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10593 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10594 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10595 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10596 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10597 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10598 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10599 } 10600 10601 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10602 stats.ofld_no_neigh, stats.ofld_cong_defer); 10603 10604 rc = sbuf_finish(sb); 10605 sbuf_delete(sb); 10606 10607 return (rc); 10608 } 10609 10610 static int 10611 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10612 { 10613 struct adapter *sc = arg1; 10614 struct sbuf *sb; 10615 int rc; 10616 struct tp_tnl_stats stats; 10617 10618 rc = sysctl_wire_old_buffer(req, 0); 10619 if (rc != 0) 10620 return(rc); 10621 10622 mtx_lock(&sc->reg_lock); 10623 if (hw_off_limits(sc)) 10624 rc = ENXIO; 10625 else 10626 t4_tp_get_tnl_stats(sc, &stats, 1); 10627 mtx_unlock(&sc->reg_lock); 10628 if (rc != 0) 10629 return (rc); 10630 10631 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10632 if (sb == NULL) 10633 return (ENOMEM); 10634 10635 if (sc->chip_params->nchan > 2) { 10636 sbuf_printf(sb, " channel 0 channel 1" 10637 " channel 2 channel 3\n"); 10638 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10639 stats.out_pkt[0], stats.out_pkt[1], 10640 stats.out_pkt[2], stats.out_pkt[3]); 10641 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10642 stats.in_pkt[0], stats.in_pkt[1], 10643 stats.in_pkt[2], stats.in_pkt[3]); 10644 } else { 10645 sbuf_printf(sb, " channel 0 channel 1\n"); 10646 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10647 stats.out_pkt[0], stats.out_pkt[1]); 10648 sbuf_printf(sb, "InPkts: %10u %10u", 10649 stats.in_pkt[0], stats.in_pkt[1]); 10650 } 10651 10652 rc = sbuf_finish(sb); 10653 sbuf_delete(sb); 10654 10655 return (rc); 10656 } 10657 10658 static int 10659 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10660 { 10661 struct adapter *sc = arg1; 10662 struct tp_params *tpp = &sc->params.tp; 10663 u_int mask; 10664 int rc; 10665 10666 mask = tpp->la_mask >> 16; 10667 rc = sysctl_handle_int(oidp, &mask, 0, req); 10668 if (rc != 0 || req->newptr == NULL) 10669 return (rc); 10670 if (mask > 0xffff) 10671 return (EINVAL); 10672 mtx_lock(&sc->reg_lock); 10673 if (hw_off_limits(sc)) 10674 rc = ENXIO; 10675 else { 10676 tpp->la_mask = mask << 16; 10677 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10678 tpp->la_mask); 10679 } 10680 mtx_unlock(&sc->reg_lock); 10681 10682 return (rc); 10683 } 10684 10685 struct field_desc { 10686 const char *name; 10687 u_int start; 10688 u_int width; 10689 }; 10690 10691 static void 10692 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10693 { 10694 char buf[32]; 10695 int line_size = 0; 10696 10697 while (f->name) { 10698 uint64_t mask = (1ULL << f->width) - 1; 10699 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10700 ((uintmax_t)v >> f->start) & mask); 10701 10702 if (line_size + len >= 79) { 10703 line_size = 8; 10704 sbuf_printf(sb, "\n "); 10705 } 10706 sbuf_printf(sb, "%s ", buf); 10707 line_size += len + 1; 10708 f++; 10709 } 10710 sbuf_printf(sb, "\n"); 10711 } 10712 10713 static const struct field_desc tp_la0[] = { 10714 { "RcfOpCodeOut", 60, 4 }, 10715 { "State", 56, 4 }, 10716 { "WcfState", 52, 4 }, 10717 { "RcfOpcSrcOut", 50, 2 }, 10718 { "CRxError", 49, 1 }, 10719 { "ERxError", 48, 1 }, 10720 { "SanityFailed", 47, 1 }, 10721 { "SpuriousMsg", 46, 1 }, 10722 { "FlushInputMsg", 45, 1 }, 10723 { "FlushInputCpl", 44, 1 }, 10724 { "RssUpBit", 43, 1 }, 10725 { "RssFilterHit", 42, 1 }, 10726 { "Tid", 32, 10 }, 10727 { "InitTcb", 31, 1 }, 10728 { "LineNumber", 24, 7 }, 10729 { "Emsg", 23, 1 }, 10730 { "EdataOut", 22, 1 }, 10731 { "Cmsg", 21, 1 }, 10732 { "CdataOut", 20, 1 }, 10733 { "EreadPdu", 19, 1 }, 10734 { "CreadPdu", 18, 1 }, 10735 { "TunnelPkt", 17, 1 }, 10736 { "RcfPeerFin", 16, 1 }, 10737 { "RcfReasonOut", 12, 4 }, 10738 { "TxCchannel", 10, 2 }, 10739 { "RcfTxChannel", 8, 2 }, 10740 { "RxEchannel", 6, 2 }, 10741 { "RcfRxChannel", 5, 1 }, 10742 { "RcfDataOutSrdy", 4, 1 }, 10743 { "RxDvld", 3, 1 }, 10744 { "RxOoDvld", 2, 1 }, 10745 { "RxCongestion", 1, 1 }, 10746 { "TxCongestion", 0, 1 }, 10747 { NULL } 10748 }; 10749 10750 static const struct field_desc tp_la1[] = { 10751 { "CplCmdIn", 56, 8 }, 10752 { "CplCmdOut", 48, 8 }, 10753 { "ESynOut", 47, 1 }, 10754 { "EAckOut", 46, 1 }, 10755 { "EFinOut", 45, 1 }, 10756 { "ERstOut", 44, 1 }, 10757 { "SynIn", 43, 1 }, 10758 { "AckIn", 42, 1 }, 10759 { "FinIn", 41, 1 }, 10760 { "RstIn", 40, 1 }, 10761 { "DataIn", 39, 1 }, 10762 { "DataInVld", 38, 1 }, 10763 { "PadIn", 37, 1 }, 10764 { "RxBufEmpty", 36, 1 }, 10765 { "RxDdp", 35, 1 }, 10766 { "RxFbCongestion", 34, 1 }, 10767 { "TxFbCongestion", 33, 1 }, 10768 { "TxPktSumSrdy", 32, 1 }, 10769 { "RcfUlpType", 28, 4 }, 10770 { "Eread", 27, 1 }, 10771 { "Ebypass", 26, 1 }, 10772 { "Esave", 25, 1 }, 10773 { "Static0", 24, 1 }, 10774 { "Cread", 23, 1 }, 10775 { "Cbypass", 22, 1 }, 10776 { "Csave", 21, 1 }, 10777 { "CPktOut", 20, 1 }, 10778 { "RxPagePoolFull", 18, 2 }, 10779 { "RxLpbkPkt", 17, 1 }, 10780 { "TxLpbkPkt", 16, 1 }, 10781 { "RxVfValid", 15, 1 }, 10782 { "SynLearned", 14, 1 }, 10783 { "SetDelEntry", 13, 1 }, 10784 { "SetInvEntry", 12, 1 }, 10785 { "CpcmdDvld", 11, 1 }, 10786 { "CpcmdSave", 10, 1 }, 10787 { "RxPstructsFull", 8, 2 }, 10788 { "EpcmdDvld", 7, 1 }, 10789 { "EpcmdFlush", 6, 1 }, 10790 { "EpcmdTrimPrefix", 5, 1 }, 10791 { "EpcmdTrimPostfix", 4, 1 }, 10792 { "ERssIp4Pkt", 3, 1 }, 10793 { "ERssIp6Pkt", 2, 1 }, 10794 { "ERssTcpUdpPkt", 1, 1 }, 10795 { "ERssFceFipPkt", 0, 1 }, 10796 { NULL } 10797 }; 10798 10799 static const struct field_desc tp_la2[] = { 10800 { "CplCmdIn", 56, 8 }, 10801 { "MpsVfVld", 55, 1 }, 10802 { "MpsPf", 52, 3 }, 10803 { "MpsVf", 44, 8 }, 10804 { "SynIn", 43, 1 }, 10805 { "AckIn", 42, 1 }, 10806 { "FinIn", 41, 1 }, 10807 { "RstIn", 40, 1 }, 10808 { "DataIn", 39, 1 }, 10809 { "DataInVld", 38, 1 }, 10810 { "PadIn", 37, 1 }, 10811 { "RxBufEmpty", 36, 1 }, 10812 { "RxDdp", 35, 1 }, 10813 { "RxFbCongestion", 34, 1 }, 10814 { "TxFbCongestion", 33, 1 }, 10815 { "TxPktSumSrdy", 32, 1 }, 10816 { "RcfUlpType", 28, 4 }, 10817 { "Eread", 27, 1 }, 10818 { "Ebypass", 26, 1 }, 10819 { "Esave", 25, 1 }, 10820 { "Static0", 24, 1 }, 10821 { "Cread", 23, 1 }, 10822 { "Cbypass", 22, 1 }, 10823 { "Csave", 21, 1 }, 10824 { "CPktOut", 20, 1 }, 10825 { "RxPagePoolFull", 18, 2 }, 10826 { "RxLpbkPkt", 17, 1 }, 10827 { "TxLpbkPkt", 16, 1 }, 10828 { "RxVfValid", 15, 1 }, 10829 { "SynLearned", 14, 1 }, 10830 { "SetDelEntry", 13, 1 }, 10831 { "SetInvEntry", 12, 1 }, 10832 { "CpcmdDvld", 11, 1 }, 10833 { "CpcmdSave", 10, 1 }, 10834 { "RxPstructsFull", 8, 2 }, 10835 { "EpcmdDvld", 7, 1 }, 10836 { "EpcmdFlush", 6, 1 }, 10837 { "EpcmdTrimPrefix", 5, 1 }, 10838 { "EpcmdTrimPostfix", 4, 1 }, 10839 { "ERssIp4Pkt", 3, 1 }, 10840 { "ERssIp6Pkt", 2, 1 }, 10841 { "ERssTcpUdpPkt", 1, 1 }, 10842 { "ERssFceFipPkt", 0, 1 }, 10843 { NULL } 10844 }; 10845 10846 static void 10847 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10848 { 10849 10850 field_desc_show(sb, *p, tp_la0); 10851 } 10852 10853 static void 10854 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10855 { 10856 10857 if (idx) 10858 sbuf_printf(sb, "\n"); 10859 field_desc_show(sb, p[0], tp_la0); 10860 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10861 field_desc_show(sb, p[1], tp_la0); 10862 } 10863 10864 static void 10865 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10866 { 10867 10868 if (idx) 10869 sbuf_printf(sb, "\n"); 10870 field_desc_show(sb, p[0], tp_la0); 10871 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10872 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10873 } 10874 10875 static int 10876 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10877 { 10878 struct adapter *sc = arg1; 10879 struct sbuf *sb; 10880 uint64_t *buf, *p; 10881 int rc; 10882 u_int i, inc; 10883 void (*show_func)(struct sbuf *, uint64_t *, int); 10884 10885 rc = sysctl_wire_old_buffer(req, 0); 10886 if (rc != 0) 10887 return (rc); 10888 10889 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10890 if (sb == NULL) 10891 return (ENOMEM); 10892 10893 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10894 10895 mtx_lock(&sc->reg_lock); 10896 if (hw_off_limits(sc)) 10897 rc = ENXIO; 10898 else { 10899 t4_tp_read_la(sc, buf, NULL); 10900 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10901 case 2: 10902 inc = 2; 10903 show_func = tp_la_show2; 10904 break; 10905 case 3: 10906 inc = 2; 10907 show_func = tp_la_show3; 10908 break; 10909 default: 10910 inc = 1; 10911 show_func = tp_la_show; 10912 } 10913 } 10914 mtx_unlock(&sc->reg_lock); 10915 if (rc != 0) 10916 goto done; 10917 10918 p = buf; 10919 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10920 (*show_func)(sb, p, i); 10921 rc = sbuf_finish(sb); 10922 done: 10923 sbuf_delete(sb); 10924 free(buf, M_CXGBE); 10925 return (rc); 10926 } 10927 10928 static int 10929 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10930 { 10931 struct adapter *sc = arg1; 10932 struct sbuf *sb; 10933 int rc; 10934 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10935 10936 rc = sysctl_wire_old_buffer(req, 0); 10937 if (rc != 0) 10938 return (rc); 10939 10940 mtx_lock(&sc->reg_lock); 10941 if (hw_off_limits(sc)) 10942 rc = ENXIO; 10943 else 10944 t4_get_chan_txrate(sc, nrate, orate); 10945 mtx_unlock(&sc->reg_lock); 10946 if (rc != 0) 10947 return (rc); 10948 10949 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10950 if (sb == NULL) 10951 return (ENOMEM); 10952 10953 if (sc->chip_params->nchan > 2) { 10954 sbuf_printf(sb, " channel 0 channel 1" 10955 " channel 2 channel 3\n"); 10956 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10957 nrate[0], nrate[1], nrate[2], nrate[3]); 10958 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10959 orate[0], orate[1], orate[2], orate[3]); 10960 } else { 10961 sbuf_printf(sb, " channel 0 channel 1\n"); 10962 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10963 nrate[0], nrate[1]); 10964 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10965 orate[0], orate[1]); 10966 } 10967 10968 rc = sbuf_finish(sb); 10969 sbuf_delete(sb); 10970 10971 return (rc); 10972 } 10973 10974 static int 10975 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10976 { 10977 struct adapter *sc = arg1; 10978 struct sbuf *sb; 10979 uint32_t *buf, *p; 10980 int rc, i; 10981 10982 rc = sysctl_wire_old_buffer(req, 0); 10983 if (rc != 0) 10984 return (rc); 10985 10986 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10987 if (sb == NULL) 10988 return (ENOMEM); 10989 10990 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 10991 M_ZERO | M_WAITOK); 10992 10993 mtx_lock(&sc->reg_lock); 10994 if (hw_off_limits(sc)) 10995 rc = ENXIO; 10996 else 10997 t4_ulprx_read_la(sc, buf); 10998 mtx_unlock(&sc->reg_lock); 10999 if (rc != 0) 11000 goto done; 11001 11002 p = buf; 11003 sbuf_printf(sb, " Pcmd Type Message" 11004 " Data"); 11005 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11006 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11007 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11008 } 11009 rc = sbuf_finish(sb); 11010 done: 11011 sbuf_delete(sb); 11012 free(buf, M_CXGBE); 11013 return (rc); 11014 } 11015 11016 static int 11017 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11018 { 11019 struct adapter *sc = arg1; 11020 struct sbuf *sb; 11021 int rc; 11022 uint32_t cfg, s1, s2; 11023 11024 MPASS(chip_id(sc) >= CHELSIO_T5); 11025 11026 rc = sysctl_wire_old_buffer(req, 0); 11027 if (rc != 0) 11028 return (rc); 11029 11030 mtx_lock(&sc->reg_lock); 11031 if (hw_off_limits(sc)) 11032 rc = ENXIO; 11033 else { 11034 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11035 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11036 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11037 } 11038 mtx_unlock(&sc->reg_lock); 11039 if (rc != 0) 11040 return (rc); 11041 11042 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11043 if (sb == NULL) 11044 return (ENOMEM); 11045 11046 if (G_STATSOURCE_T5(cfg) == 7) { 11047 int mode; 11048 11049 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11050 if (mode == 0) 11051 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11052 else if (mode == 1) 11053 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11054 else 11055 sbuf_printf(sb, "unknown mode %d", mode); 11056 } 11057 rc = sbuf_finish(sb); 11058 sbuf_delete(sb); 11059 11060 return (rc); 11061 } 11062 11063 static int 11064 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11065 { 11066 struct adapter *sc = arg1; 11067 enum cpu_sets op = arg2; 11068 cpuset_t cpuset; 11069 struct sbuf *sb; 11070 int i, rc; 11071 11072 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11073 11074 CPU_ZERO(&cpuset); 11075 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11076 if (rc != 0) 11077 return (rc); 11078 11079 rc = sysctl_wire_old_buffer(req, 0); 11080 if (rc != 0) 11081 return (rc); 11082 11083 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11084 if (sb == NULL) 11085 return (ENOMEM); 11086 11087 CPU_FOREACH(i) 11088 sbuf_printf(sb, "%d ", i); 11089 rc = sbuf_finish(sb); 11090 sbuf_delete(sb); 11091 11092 return (rc); 11093 } 11094 11095 static int 11096 sysctl_reset(SYSCTL_HANDLER_ARGS) 11097 { 11098 struct adapter *sc = arg1; 11099 u_int val; 11100 int rc; 11101 11102 val = atomic_load_int(&sc->num_resets); 11103 rc = sysctl_handle_int(oidp, &val, 0, req); 11104 if (rc != 0 || req->newptr == NULL) 11105 return (rc); 11106 11107 if (val == 0) { 11108 /* Zero out the counter that tracks reset. */ 11109 atomic_store_int(&sc->num_resets, 0); 11110 return (0); 11111 } 11112 11113 if (val != 1) 11114 return (EINVAL); /* 0 or 1 are the only legal values */ 11115 11116 if (hw_off_limits(sc)) /* harmless race */ 11117 return (EALREADY); 11118 11119 taskqueue_enqueue(reset_tq, &sc->reset_task); 11120 return (0); 11121 } 11122 11123 #ifdef TCP_OFFLOAD 11124 static int 11125 sysctl_tls(SYSCTL_HANDLER_ARGS) 11126 { 11127 struct adapter *sc = arg1; 11128 int i, j, v, rc; 11129 struct vi_info *vi; 11130 11131 v = sc->tt.tls; 11132 rc = sysctl_handle_int(oidp, &v, 0, req); 11133 if (rc != 0 || req->newptr == NULL) 11134 return (rc); 11135 11136 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11137 return (ENOTSUP); 11138 11139 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11140 if (rc) 11141 return (rc); 11142 if (hw_off_limits(sc)) 11143 rc = ENXIO; 11144 else { 11145 sc->tt.tls = !!v; 11146 for_each_port(sc, i) { 11147 for_each_vi(sc->port[i], j, vi) { 11148 if (vi->flags & VI_INIT_DONE) 11149 t4_update_fl_bufsize(vi->ifp); 11150 } 11151 } 11152 } 11153 end_synchronized_op(sc, 0); 11154 11155 return (rc); 11156 11157 } 11158 11159 static int 11160 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11161 { 11162 struct adapter *sc = arg1; 11163 int *old_ports, *new_ports; 11164 int i, new_count, rc; 11165 11166 if (req->newptr == NULL && req->oldptr == NULL) 11167 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11168 sizeof(sc->tt.tls_rx_ports[0]))); 11169 11170 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11171 if (rc) 11172 return (rc); 11173 11174 if (hw_off_limits(sc)) { 11175 rc = ENXIO; 11176 goto done; 11177 } 11178 11179 if (sc->tt.num_tls_rx_ports == 0) { 11180 i = -1; 11181 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11182 } else 11183 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11184 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11185 if (rc == 0 && req->newptr != NULL) { 11186 new_count = req->newlen / sizeof(new_ports[0]); 11187 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11188 M_WAITOK); 11189 rc = SYSCTL_IN(req, new_ports, new_count * 11190 sizeof(new_ports[0])); 11191 if (rc) 11192 goto err; 11193 11194 /* Allow setting to a single '-1' to clear the list. */ 11195 if (new_count == 1 && new_ports[0] == -1) { 11196 ADAPTER_LOCK(sc); 11197 old_ports = sc->tt.tls_rx_ports; 11198 sc->tt.tls_rx_ports = NULL; 11199 sc->tt.num_tls_rx_ports = 0; 11200 ADAPTER_UNLOCK(sc); 11201 free(old_ports, M_CXGBE); 11202 } else { 11203 for (i = 0; i < new_count; i++) { 11204 if (new_ports[i] < 1 || 11205 new_ports[i] > IPPORT_MAX) { 11206 rc = EINVAL; 11207 goto err; 11208 } 11209 } 11210 11211 ADAPTER_LOCK(sc); 11212 old_ports = sc->tt.tls_rx_ports; 11213 sc->tt.tls_rx_ports = new_ports; 11214 sc->tt.num_tls_rx_ports = new_count; 11215 ADAPTER_UNLOCK(sc); 11216 free(old_ports, M_CXGBE); 11217 new_ports = NULL; 11218 } 11219 err: 11220 free(new_ports, M_CXGBE); 11221 } 11222 done: 11223 end_synchronized_op(sc, 0); 11224 return (rc); 11225 } 11226 11227 static int 11228 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11229 { 11230 struct adapter *sc = arg1; 11231 int v, rc; 11232 11233 v = sc->tt.tls_rx_timeout; 11234 rc = sysctl_handle_int(oidp, &v, 0, req); 11235 if (rc != 0 || req->newptr == NULL) 11236 return (rc); 11237 11238 if (v < 0) 11239 return (EINVAL); 11240 11241 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11242 return (ENOTSUP); 11243 11244 sc->tt.tls_rx_timeout = v; 11245 11246 return (0); 11247 11248 } 11249 11250 static void 11251 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11252 { 11253 u_int rem = val % factor; 11254 11255 if (rem == 0) 11256 snprintf(buf, len, "%u", val / factor); 11257 else { 11258 while (rem % 10 == 0) 11259 rem /= 10; 11260 snprintf(buf, len, "%u.%u", val / factor, rem); 11261 } 11262 } 11263 11264 static int 11265 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11266 { 11267 struct adapter *sc = arg1; 11268 char buf[16]; 11269 u_int res, re; 11270 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11271 11272 mtx_lock(&sc->reg_lock); 11273 if (hw_off_limits(sc)) 11274 res = (u_int)-1; 11275 else 11276 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11277 mtx_unlock(&sc->reg_lock); 11278 if (res == (u_int)-1) 11279 return (ENXIO); 11280 11281 switch (arg2) { 11282 case 0: 11283 /* timer_tick */ 11284 re = G_TIMERRESOLUTION(res); 11285 break; 11286 case 1: 11287 /* TCP timestamp tick */ 11288 re = G_TIMESTAMPRESOLUTION(res); 11289 break; 11290 case 2: 11291 /* DACK tick */ 11292 re = G_DELAYEDACKRESOLUTION(res); 11293 break; 11294 default: 11295 return (EDOOFUS); 11296 } 11297 11298 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11299 11300 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11301 } 11302 11303 static int 11304 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11305 { 11306 struct adapter *sc = arg1; 11307 int rc; 11308 u_int dack_tmr, dack_re, v; 11309 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11310 11311 mtx_lock(&sc->reg_lock); 11312 if (hw_off_limits(sc)) 11313 rc = ENXIO; 11314 else { 11315 rc = 0; 11316 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11317 A_TP_TIMER_RESOLUTION)); 11318 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11319 } 11320 mtx_unlock(&sc->reg_lock); 11321 if (rc != 0) 11322 return (rc); 11323 11324 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11325 11326 return (sysctl_handle_int(oidp, &v, 0, req)); 11327 } 11328 11329 static int 11330 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11331 { 11332 struct adapter *sc = arg1; 11333 int rc, reg = arg2; 11334 u_int tre; 11335 u_long tp_tick_us, v; 11336 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11337 11338 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11339 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11340 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11341 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11342 11343 mtx_lock(&sc->reg_lock); 11344 if (hw_off_limits(sc)) 11345 rc = ENXIO; 11346 else { 11347 rc = 0; 11348 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11349 tp_tick_us = (cclk_ps << tre) / 1000000; 11350 if (reg == A_TP_INIT_SRTT) 11351 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11352 else 11353 v = tp_tick_us * t4_read_reg(sc, reg); 11354 } 11355 mtx_unlock(&sc->reg_lock); 11356 if (rc != 0) 11357 return (rc); 11358 else 11359 return (sysctl_handle_long(oidp, &v, 0, req)); 11360 } 11361 11362 /* 11363 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11364 * passed to this function. 11365 */ 11366 static int 11367 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11368 { 11369 struct adapter *sc = arg1; 11370 int rc, idx = arg2; 11371 u_int v; 11372 11373 MPASS(idx >= 0 && idx <= 24); 11374 11375 mtx_lock(&sc->reg_lock); 11376 if (hw_off_limits(sc)) 11377 rc = ENXIO; 11378 else { 11379 rc = 0; 11380 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11381 } 11382 mtx_unlock(&sc->reg_lock); 11383 if (rc != 0) 11384 return (rc); 11385 else 11386 return (sysctl_handle_int(oidp, &v, 0, req)); 11387 } 11388 11389 static int 11390 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11391 { 11392 struct adapter *sc = arg1; 11393 int rc, idx = arg2; 11394 u_int shift, v, r; 11395 11396 MPASS(idx >= 0 && idx < 16); 11397 11398 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11399 shift = (idx & 3) << 3; 11400 mtx_lock(&sc->reg_lock); 11401 if (hw_off_limits(sc)) 11402 rc = ENXIO; 11403 else { 11404 rc = 0; 11405 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11406 } 11407 mtx_unlock(&sc->reg_lock); 11408 if (rc != 0) 11409 return (rc); 11410 else 11411 return (sysctl_handle_int(oidp, &v, 0, req)); 11412 } 11413 11414 static int 11415 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11416 { 11417 struct vi_info *vi = arg1; 11418 struct adapter *sc = vi->adapter; 11419 int idx, rc, i; 11420 struct sge_ofld_rxq *ofld_rxq; 11421 uint8_t v; 11422 11423 idx = vi->ofld_tmr_idx; 11424 11425 rc = sysctl_handle_int(oidp, &idx, 0, req); 11426 if (rc != 0 || req->newptr == NULL) 11427 return (rc); 11428 11429 if (idx < 0 || idx >= SGE_NTIMERS) 11430 return (EINVAL); 11431 11432 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11433 "t4otmr"); 11434 if (rc) 11435 return (rc); 11436 11437 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11438 for_each_ofld_rxq(vi, i, ofld_rxq) { 11439 #ifdef atomic_store_rel_8 11440 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11441 #else 11442 ofld_rxq->iq.intr_params = v; 11443 #endif 11444 } 11445 vi->ofld_tmr_idx = idx; 11446 11447 end_synchronized_op(sc, LOCK_HELD); 11448 return (0); 11449 } 11450 11451 static int 11452 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11453 { 11454 struct vi_info *vi = arg1; 11455 struct adapter *sc = vi->adapter; 11456 int idx, rc; 11457 11458 idx = vi->ofld_pktc_idx; 11459 11460 rc = sysctl_handle_int(oidp, &idx, 0, req); 11461 if (rc != 0 || req->newptr == NULL) 11462 return (rc); 11463 11464 if (idx < -1 || idx >= SGE_NCOUNTERS) 11465 return (EINVAL); 11466 11467 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11468 "t4opktc"); 11469 if (rc) 11470 return (rc); 11471 11472 if (vi->flags & VI_INIT_DONE) 11473 rc = EBUSY; /* cannot be changed once the queues are created */ 11474 else 11475 vi->ofld_pktc_idx = idx; 11476 11477 end_synchronized_op(sc, LOCK_HELD); 11478 return (rc); 11479 } 11480 #endif 11481 11482 static int 11483 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11484 { 11485 int rc; 11486 11487 if (cntxt->cid > M_CTXTQID) 11488 return (EINVAL); 11489 11490 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11491 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11492 return (EINVAL); 11493 11494 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11495 if (rc) 11496 return (rc); 11497 11498 if (hw_off_limits(sc)) { 11499 rc = ENXIO; 11500 goto done; 11501 } 11502 11503 if (sc->flags & FW_OK) { 11504 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11505 &cntxt->data[0]); 11506 if (rc == 0) 11507 goto done; 11508 } 11509 11510 /* 11511 * Read via firmware failed or wasn't even attempted. Read directly via 11512 * the backdoor. 11513 */ 11514 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11515 done: 11516 end_synchronized_op(sc, 0); 11517 return (rc); 11518 } 11519 11520 static int 11521 load_fw(struct adapter *sc, struct t4_data *fw) 11522 { 11523 int rc; 11524 uint8_t *fw_data; 11525 11526 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11527 if (rc) 11528 return (rc); 11529 11530 if (hw_off_limits(sc)) { 11531 rc = ENXIO; 11532 goto done; 11533 } 11534 11535 /* 11536 * The firmware, with the sole exception of the memory parity error 11537 * handler, runs from memory and not flash. It is almost always safe to 11538 * install a new firmware on a running system. Just set bit 1 in 11539 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11540 */ 11541 if (sc->flags & FULL_INIT_DONE && 11542 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11543 rc = EBUSY; 11544 goto done; 11545 } 11546 11547 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11548 11549 rc = copyin(fw->data, fw_data, fw->len); 11550 if (rc == 0) 11551 rc = -t4_load_fw(sc, fw_data, fw->len); 11552 11553 free(fw_data, M_CXGBE); 11554 done: 11555 end_synchronized_op(sc, 0); 11556 return (rc); 11557 } 11558 11559 static int 11560 load_cfg(struct adapter *sc, struct t4_data *cfg) 11561 { 11562 int rc; 11563 uint8_t *cfg_data = NULL; 11564 11565 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11566 if (rc) 11567 return (rc); 11568 11569 if (hw_off_limits(sc)) { 11570 rc = ENXIO; 11571 goto done; 11572 } 11573 11574 if (cfg->len == 0) { 11575 /* clear */ 11576 rc = -t4_load_cfg(sc, NULL, 0); 11577 goto done; 11578 } 11579 11580 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11581 11582 rc = copyin(cfg->data, cfg_data, cfg->len); 11583 if (rc == 0) 11584 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11585 11586 free(cfg_data, M_CXGBE); 11587 done: 11588 end_synchronized_op(sc, 0); 11589 return (rc); 11590 } 11591 11592 static int 11593 load_boot(struct adapter *sc, struct t4_bootrom *br) 11594 { 11595 int rc; 11596 uint8_t *br_data = NULL; 11597 u_int offset; 11598 11599 if (br->len > 1024 * 1024) 11600 return (EFBIG); 11601 11602 if (br->pf_offset == 0) { 11603 /* pfidx */ 11604 if (br->pfidx_addr > 7) 11605 return (EINVAL); 11606 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11607 A_PCIE_PF_EXPROM_OFST))); 11608 } else if (br->pf_offset == 1) { 11609 /* offset */ 11610 offset = G_OFFSET(br->pfidx_addr); 11611 } else { 11612 return (EINVAL); 11613 } 11614 11615 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11616 if (rc) 11617 return (rc); 11618 11619 if (hw_off_limits(sc)) { 11620 rc = ENXIO; 11621 goto done; 11622 } 11623 11624 if (br->len == 0) { 11625 /* clear */ 11626 rc = -t4_load_boot(sc, NULL, offset, 0); 11627 goto done; 11628 } 11629 11630 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11631 11632 rc = copyin(br->data, br_data, br->len); 11633 if (rc == 0) 11634 rc = -t4_load_boot(sc, br_data, offset, br->len); 11635 11636 free(br_data, M_CXGBE); 11637 done: 11638 end_synchronized_op(sc, 0); 11639 return (rc); 11640 } 11641 11642 static int 11643 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11644 { 11645 int rc; 11646 uint8_t *bc_data = NULL; 11647 11648 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11649 if (rc) 11650 return (rc); 11651 11652 if (hw_off_limits(sc)) { 11653 rc = ENXIO; 11654 goto done; 11655 } 11656 11657 if (bc->len == 0) { 11658 /* clear */ 11659 rc = -t4_load_bootcfg(sc, NULL, 0); 11660 goto done; 11661 } 11662 11663 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11664 11665 rc = copyin(bc->data, bc_data, bc->len); 11666 if (rc == 0) 11667 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11668 11669 free(bc_data, M_CXGBE); 11670 done: 11671 end_synchronized_op(sc, 0); 11672 return (rc); 11673 } 11674 11675 static int 11676 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11677 { 11678 int rc; 11679 struct cudbg_init *cudbg; 11680 void *handle, *buf; 11681 11682 /* buf is large, don't block if no memory is available */ 11683 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11684 if (buf == NULL) 11685 return (ENOMEM); 11686 11687 handle = cudbg_alloc_handle(); 11688 if (handle == NULL) { 11689 rc = ENOMEM; 11690 goto done; 11691 } 11692 11693 cudbg = cudbg_get_init(handle); 11694 cudbg->adap = sc; 11695 cudbg->print = (cudbg_print_cb)printf; 11696 11697 #ifndef notyet 11698 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11699 __func__, dump->wr_flash, dump->len, dump->data); 11700 #endif 11701 11702 if (dump->wr_flash) 11703 cudbg->use_flash = 1; 11704 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11705 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11706 11707 rc = cudbg_collect(handle, buf, &dump->len); 11708 if (rc != 0) 11709 goto done; 11710 11711 rc = copyout(buf, dump->data, dump->len); 11712 done: 11713 cudbg_free_handle(handle); 11714 free(buf, M_CXGBE); 11715 return (rc); 11716 } 11717 11718 static void 11719 free_offload_policy(struct t4_offload_policy *op) 11720 { 11721 struct offload_rule *r; 11722 int i; 11723 11724 if (op == NULL) 11725 return; 11726 11727 r = &op->rule[0]; 11728 for (i = 0; i < op->nrules; i++, r++) { 11729 free(r->bpf_prog.bf_insns, M_CXGBE); 11730 } 11731 free(op->rule, M_CXGBE); 11732 free(op, M_CXGBE); 11733 } 11734 11735 static int 11736 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11737 { 11738 int i, rc, len; 11739 struct t4_offload_policy *op, *old; 11740 struct bpf_program *bf; 11741 const struct offload_settings *s; 11742 struct offload_rule *r; 11743 void *u; 11744 11745 if (!is_offload(sc)) 11746 return (ENODEV); 11747 11748 if (uop->nrules == 0) { 11749 /* Delete installed policies. */ 11750 op = NULL; 11751 goto set_policy; 11752 } else if (uop->nrules > 256) { /* arbitrary */ 11753 return (E2BIG); 11754 } 11755 11756 /* Copy userspace offload policy to kernel */ 11757 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11758 op->nrules = uop->nrules; 11759 len = op->nrules * sizeof(struct offload_rule); 11760 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11761 rc = copyin(uop->rule, op->rule, len); 11762 if (rc) { 11763 free(op->rule, M_CXGBE); 11764 free(op, M_CXGBE); 11765 return (rc); 11766 } 11767 11768 r = &op->rule[0]; 11769 for (i = 0; i < op->nrules; i++, r++) { 11770 11771 /* Validate open_type */ 11772 if (r->open_type != OPEN_TYPE_LISTEN && 11773 r->open_type != OPEN_TYPE_ACTIVE && 11774 r->open_type != OPEN_TYPE_PASSIVE && 11775 r->open_type != OPEN_TYPE_DONTCARE) { 11776 error: 11777 /* 11778 * Rules 0 to i have malloc'd filters that need to be 11779 * freed. Rules i+1 to nrules have userspace pointers 11780 * and should be left alone. 11781 */ 11782 op->nrules = i; 11783 free_offload_policy(op); 11784 return (rc); 11785 } 11786 11787 /* Validate settings */ 11788 s = &r->settings; 11789 if ((s->offload != 0 && s->offload != 1) || 11790 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11791 s->sched_class < -1 || 11792 s->sched_class >= sc->params.nsched_cls) { 11793 rc = EINVAL; 11794 goto error; 11795 } 11796 11797 bf = &r->bpf_prog; 11798 u = bf->bf_insns; /* userspace ptr */ 11799 bf->bf_insns = NULL; 11800 if (bf->bf_len == 0) { 11801 /* legal, matches everything */ 11802 continue; 11803 } 11804 len = bf->bf_len * sizeof(*bf->bf_insns); 11805 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11806 rc = copyin(u, bf->bf_insns, len); 11807 if (rc != 0) 11808 goto error; 11809 11810 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11811 rc = EINVAL; 11812 goto error; 11813 } 11814 } 11815 set_policy: 11816 rw_wlock(&sc->policy_lock); 11817 old = sc->policy; 11818 sc->policy = op; 11819 rw_wunlock(&sc->policy_lock); 11820 free_offload_policy(old); 11821 11822 return (0); 11823 } 11824 11825 #define MAX_READ_BUF_SIZE (128 * 1024) 11826 static int 11827 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11828 { 11829 uint32_t addr, remaining, n; 11830 uint32_t *buf; 11831 int rc; 11832 uint8_t *dst; 11833 11834 mtx_lock(&sc->reg_lock); 11835 if (hw_off_limits(sc)) 11836 rc = ENXIO; 11837 else 11838 rc = validate_mem_range(sc, mr->addr, mr->len); 11839 mtx_unlock(&sc->reg_lock); 11840 if (rc != 0) 11841 return (rc); 11842 11843 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11844 addr = mr->addr; 11845 remaining = mr->len; 11846 dst = (void *)mr->data; 11847 11848 while (remaining) { 11849 n = min(remaining, MAX_READ_BUF_SIZE); 11850 mtx_lock(&sc->reg_lock); 11851 if (hw_off_limits(sc)) 11852 rc = ENXIO; 11853 else 11854 read_via_memwin(sc, 2, addr, buf, n); 11855 mtx_unlock(&sc->reg_lock); 11856 if (rc != 0) 11857 break; 11858 11859 rc = copyout(buf, dst, n); 11860 if (rc != 0) 11861 break; 11862 11863 dst += n; 11864 remaining -= n; 11865 addr += n; 11866 } 11867 11868 free(buf, M_CXGBE); 11869 return (rc); 11870 } 11871 #undef MAX_READ_BUF_SIZE 11872 11873 static int 11874 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11875 { 11876 int rc; 11877 11878 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11879 return (EINVAL); 11880 11881 if (i2cd->len > sizeof(i2cd->data)) 11882 return (EFBIG); 11883 11884 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11885 if (rc) 11886 return (rc); 11887 if (hw_off_limits(sc)) 11888 rc = ENXIO; 11889 else 11890 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11891 i2cd->offset, i2cd->len, &i2cd->data[0]); 11892 end_synchronized_op(sc, 0); 11893 11894 return (rc); 11895 } 11896 11897 static int 11898 clear_stats(struct adapter *sc, u_int port_id) 11899 { 11900 int i, v, chan_map; 11901 struct port_info *pi; 11902 struct vi_info *vi; 11903 struct sge_rxq *rxq; 11904 struct sge_txq *txq; 11905 struct sge_wrq *wrq; 11906 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11907 struct sge_ofld_txq *ofld_txq; 11908 #endif 11909 #ifdef TCP_OFFLOAD 11910 struct sge_ofld_rxq *ofld_rxq; 11911 #endif 11912 11913 if (port_id >= sc->params.nports) 11914 return (EINVAL); 11915 pi = sc->port[port_id]; 11916 if (pi == NULL) 11917 return (EIO); 11918 11919 mtx_lock(&sc->reg_lock); 11920 if (!hw_off_limits(sc)) { 11921 /* MAC stats */ 11922 t4_clr_port_stats(sc, pi->tx_chan); 11923 if (is_t6(sc)) { 11924 if (pi->fcs_reg != -1) 11925 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11926 else 11927 pi->stats.rx_fcs_err = 0; 11928 } 11929 for_each_vi(pi, v, vi) { 11930 if (vi->flags & VI_INIT_DONE) 11931 t4_clr_vi_stats(sc, vi->vin); 11932 } 11933 chan_map = pi->rx_e_chan_map; 11934 v = 0; /* reuse */ 11935 while (chan_map) { 11936 i = ffs(chan_map) - 1; 11937 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11938 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11939 chan_map &= ~(1 << i); 11940 } 11941 } 11942 mtx_unlock(&sc->reg_lock); 11943 pi->tx_parse_error = 0; 11944 pi->tnl_cong_drops = 0; 11945 11946 /* 11947 * Since this command accepts a port, clear stats for 11948 * all VIs on this port. 11949 */ 11950 for_each_vi(pi, v, vi) { 11951 if (vi->flags & VI_INIT_DONE) { 11952 11953 for_each_rxq(vi, i, rxq) { 11954 #if defined(INET) || defined(INET6) 11955 rxq->lro.lro_queued = 0; 11956 rxq->lro.lro_flushed = 0; 11957 #endif 11958 rxq->rxcsum = 0; 11959 rxq->vlan_extraction = 0; 11960 rxq->vxlan_rxcsum = 0; 11961 11962 rxq->fl.cl_allocated = 0; 11963 rxq->fl.cl_recycled = 0; 11964 rxq->fl.cl_fast_recycled = 0; 11965 } 11966 11967 for_each_txq(vi, i, txq) { 11968 txq->txcsum = 0; 11969 txq->tso_wrs = 0; 11970 txq->vlan_insertion = 0; 11971 txq->imm_wrs = 0; 11972 txq->sgl_wrs = 0; 11973 txq->txpkt_wrs = 0; 11974 txq->txpkts0_wrs = 0; 11975 txq->txpkts1_wrs = 0; 11976 txq->txpkts0_pkts = 0; 11977 txq->txpkts1_pkts = 0; 11978 txq->txpkts_flush = 0; 11979 txq->raw_wrs = 0; 11980 txq->vxlan_tso_wrs = 0; 11981 txq->vxlan_txcsum = 0; 11982 txq->kern_tls_records = 0; 11983 txq->kern_tls_short = 0; 11984 txq->kern_tls_partial = 0; 11985 txq->kern_tls_full = 0; 11986 txq->kern_tls_octets = 0; 11987 txq->kern_tls_waste = 0; 11988 txq->kern_tls_options = 0; 11989 txq->kern_tls_header = 0; 11990 txq->kern_tls_fin = 0; 11991 txq->kern_tls_fin_short = 0; 11992 txq->kern_tls_cbc = 0; 11993 txq->kern_tls_gcm = 0; 11994 mp_ring_reset_stats(txq->r); 11995 } 11996 11997 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11998 for_each_ofld_txq(vi, i, ofld_txq) { 11999 ofld_txq->wrq.tx_wrs_direct = 0; 12000 ofld_txq->wrq.tx_wrs_copied = 0; 12001 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12002 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12003 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12004 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12005 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12006 } 12007 #endif 12008 #ifdef TCP_OFFLOAD 12009 for_each_ofld_rxq(vi, i, ofld_rxq) { 12010 ofld_rxq->fl.cl_allocated = 0; 12011 ofld_rxq->fl.cl_recycled = 0; 12012 ofld_rxq->fl.cl_fast_recycled = 0; 12013 counter_u64_zero( 12014 ofld_rxq->rx_iscsi_ddp_setup_ok); 12015 counter_u64_zero( 12016 ofld_rxq->rx_iscsi_ddp_setup_error); 12017 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12018 ofld_rxq->rx_iscsi_ddp_octets = 0; 12019 ofld_rxq->rx_iscsi_fl_pdus = 0; 12020 ofld_rxq->rx_iscsi_fl_octets = 0; 12021 ofld_rxq->rx_toe_tls_records = 0; 12022 ofld_rxq->rx_toe_tls_octets = 0; 12023 } 12024 #endif 12025 12026 if (IS_MAIN_VI(vi)) { 12027 wrq = &sc->sge.ctrlq[pi->port_id]; 12028 wrq->tx_wrs_direct = 0; 12029 wrq->tx_wrs_copied = 0; 12030 } 12031 } 12032 } 12033 12034 return (0); 12035 } 12036 12037 static int 12038 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12039 { 12040 #ifdef INET6 12041 struct in6_addr in6; 12042 12043 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12044 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12045 return (0); 12046 else 12047 return (EIO); 12048 #else 12049 return (ENOTSUP); 12050 #endif 12051 } 12052 12053 static int 12054 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12055 { 12056 #ifdef INET6 12057 struct in6_addr in6; 12058 12059 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12060 return (t4_release_clip_addr(sc, &in6)); 12061 #else 12062 return (ENOTSUP); 12063 #endif 12064 } 12065 12066 int 12067 t4_os_find_pci_capability(struct adapter *sc, int cap) 12068 { 12069 int i; 12070 12071 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12072 } 12073 12074 int 12075 t4_os_pci_save_state(struct adapter *sc) 12076 { 12077 device_t dev; 12078 struct pci_devinfo *dinfo; 12079 12080 dev = sc->dev; 12081 dinfo = device_get_ivars(dev); 12082 12083 pci_cfg_save(dev, dinfo, 0); 12084 return (0); 12085 } 12086 12087 int 12088 t4_os_pci_restore_state(struct adapter *sc) 12089 { 12090 device_t dev; 12091 struct pci_devinfo *dinfo; 12092 12093 dev = sc->dev; 12094 dinfo = device_get_ivars(dev); 12095 12096 pci_cfg_restore(dev, dinfo); 12097 return (0); 12098 } 12099 12100 void 12101 t4_os_portmod_changed(struct port_info *pi) 12102 { 12103 struct adapter *sc = pi->adapter; 12104 struct vi_info *vi; 12105 struct ifnet *ifp; 12106 static const char *mod_str[] = { 12107 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12108 }; 12109 12110 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12111 ("%s: port_type %u", __func__, pi->port_type)); 12112 12113 vi = &pi->vi[0]; 12114 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12115 PORT_LOCK(pi); 12116 build_medialist(pi); 12117 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12118 fixup_link_config(pi); 12119 apply_link_config(pi); 12120 } 12121 PORT_UNLOCK(pi); 12122 end_synchronized_op(sc, LOCK_HELD); 12123 } 12124 12125 ifp = vi->ifp; 12126 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12127 if_printf(ifp, "transceiver unplugged.\n"); 12128 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12129 if_printf(ifp, "unknown transceiver inserted.\n"); 12130 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12131 if_printf(ifp, "unsupported transceiver inserted.\n"); 12132 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12133 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12134 port_top_speed(pi), mod_str[pi->mod_type]); 12135 } else { 12136 if_printf(ifp, "transceiver (type %d) inserted.\n", 12137 pi->mod_type); 12138 } 12139 } 12140 12141 void 12142 t4_os_link_changed(struct port_info *pi) 12143 { 12144 struct vi_info *vi; 12145 struct ifnet *ifp; 12146 struct link_config *lc = &pi->link_cfg; 12147 struct adapter *sc = pi->adapter; 12148 int v; 12149 12150 PORT_LOCK_ASSERT_OWNED(pi); 12151 12152 if (is_t6(sc)) { 12153 if (lc->link_ok) { 12154 if (lc->speed > 25000 || 12155 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12156 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12157 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12158 } else { 12159 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12160 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12161 } 12162 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12163 pi->stats.rx_fcs_err = 0; 12164 } else { 12165 pi->fcs_reg = -1; 12166 } 12167 } else { 12168 MPASS(pi->fcs_reg != -1); 12169 MPASS(pi->fcs_base == 0); 12170 } 12171 12172 for_each_vi(pi, v, vi) { 12173 ifp = vi->ifp; 12174 if (ifp == NULL) 12175 continue; 12176 12177 if (lc->link_ok) { 12178 ifp->if_baudrate = IF_Mbps(lc->speed); 12179 if_link_state_change(ifp, LINK_STATE_UP); 12180 } else { 12181 if_link_state_change(ifp, LINK_STATE_DOWN); 12182 } 12183 } 12184 } 12185 12186 void 12187 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12188 { 12189 struct adapter *sc; 12190 12191 sx_slock(&t4_list_lock); 12192 SLIST_FOREACH(sc, &t4_list, link) { 12193 /* 12194 * func should not make any assumptions about what state sc is 12195 * in - the only guarantee is that sc->sc_lock is a valid lock. 12196 */ 12197 func(sc, arg); 12198 } 12199 sx_sunlock(&t4_list_lock); 12200 } 12201 12202 static int 12203 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12204 struct thread *td) 12205 { 12206 int rc; 12207 struct adapter *sc = dev->si_drv1; 12208 12209 rc = priv_check(td, PRIV_DRIVER); 12210 if (rc != 0) 12211 return (rc); 12212 12213 switch (cmd) { 12214 case CHELSIO_T4_GETREG: { 12215 struct t4_reg *edata = (struct t4_reg *)data; 12216 12217 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12218 return (EFAULT); 12219 12220 mtx_lock(&sc->reg_lock); 12221 if (hw_off_limits(sc)) 12222 rc = ENXIO; 12223 else if (edata->size == 4) 12224 edata->val = t4_read_reg(sc, edata->addr); 12225 else if (edata->size == 8) 12226 edata->val = t4_read_reg64(sc, edata->addr); 12227 else 12228 rc = EINVAL; 12229 mtx_unlock(&sc->reg_lock); 12230 12231 break; 12232 } 12233 case CHELSIO_T4_SETREG: { 12234 struct t4_reg *edata = (struct t4_reg *)data; 12235 12236 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12237 return (EFAULT); 12238 12239 mtx_lock(&sc->reg_lock); 12240 if (hw_off_limits(sc)) 12241 rc = ENXIO; 12242 else if (edata->size == 4) { 12243 if (edata->val & 0xffffffff00000000) 12244 rc = EINVAL; 12245 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12246 } else if (edata->size == 8) 12247 t4_write_reg64(sc, edata->addr, edata->val); 12248 else 12249 rc = EINVAL; 12250 mtx_unlock(&sc->reg_lock); 12251 12252 break; 12253 } 12254 case CHELSIO_T4_REGDUMP: { 12255 struct t4_regdump *regs = (struct t4_regdump *)data; 12256 int reglen = t4_get_regs_len(sc); 12257 uint8_t *buf; 12258 12259 if (regs->len < reglen) { 12260 regs->len = reglen; /* hint to the caller */ 12261 return (ENOBUFS); 12262 } 12263 12264 regs->len = reglen; 12265 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12266 mtx_lock(&sc->reg_lock); 12267 if (hw_off_limits(sc)) 12268 rc = ENXIO; 12269 else 12270 get_regs(sc, regs, buf); 12271 mtx_unlock(&sc->reg_lock); 12272 if (rc == 0) 12273 rc = copyout(buf, regs->data, reglen); 12274 free(buf, M_CXGBE); 12275 break; 12276 } 12277 case CHELSIO_T4_GET_FILTER_MODE: 12278 rc = get_filter_mode(sc, (uint32_t *)data); 12279 break; 12280 case CHELSIO_T4_SET_FILTER_MODE: 12281 rc = set_filter_mode(sc, *(uint32_t *)data); 12282 break; 12283 case CHELSIO_T4_SET_FILTER_MASK: 12284 rc = set_filter_mask(sc, *(uint32_t *)data); 12285 break; 12286 case CHELSIO_T4_GET_FILTER: 12287 rc = get_filter(sc, (struct t4_filter *)data); 12288 break; 12289 case CHELSIO_T4_SET_FILTER: 12290 rc = set_filter(sc, (struct t4_filter *)data); 12291 break; 12292 case CHELSIO_T4_DEL_FILTER: 12293 rc = del_filter(sc, (struct t4_filter *)data); 12294 break; 12295 case CHELSIO_T4_GET_SGE_CONTEXT: 12296 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12297 break; 12298 case CHELSIO_T4_LOAD_FW: 12299 rc = load_fw(sc, (struct t4_data *)data); 12300 break; 12301 case CHELSIO_T4_GET_MEM: 12302 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12303 break; 12304 case CHELSIO_T4_GET_I2C: 12305 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12306 break; 12307 case CHELSIO_T4_CLEAR_STATS: 12308 rc = clear_stats(sc, *(uint32_t *)data); 12309 break; 12310 case CHELSIO_T4_SCHED_CLASS: 12311 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12312 break; 12313 case CHELSIO_T4_SCHED_QUEUE: 12314 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12315 break; 12316 case CHELSIO_T4_GET_TRACER: 12317 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12318 break; 12319 case CHELSIO_T4_SET_TRACER: 12320 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12321 break; 12322 case CHELSIO_T4_LOAD_CFG: 12323 rc = load_cfg(sc, (struct t4_data *)data); 12324 break; 12325 case CHELSIO_T4_LOAD_BOOT: 12326 rc = load_boot(sc, (struct t4_bootrom *)data); 12327 break; 12328 case CHELSIO_T4_LOAD_BOOTCFG: 12329 rc = load_bootcfg(sc, (struct t4_data *)data); 12330 break; 12331 case CHELSIO_T4_CUDBG_DUMP: 12332 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12333 break; 12334 case CHELSIO_T4_SET_OFLD_POLICY: 12335 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12336 break; 12337 case CHELSIO_T4_HOLD_CLIP_ADDR: 12338 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12339 break; 12340 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12341 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12342 break; 12343 default: 12344 rc = ENOTTY; 12345 } 12346 12347 return (rc); 12348 } 12349 12350 #ifdef TCP_OFFLOAD 12351 static int 12352 toe_capability(struct vi_info *vi, bool enable) 12353 { 12354 int rc; 12355 struct port_info *pi = vi->pi; 12356 struct adapter *sc = pi->adapter; 12357 12358 ASSERT_SYNCHRONIZED_OP(sc); 12359 12360 if (!is_offload(sc)) 12361 return (ENODEV); 12362 if (hw_off_limits(sc)) 12363 return (ENXIO); 12364 12365 if (enable) { 12366 #ifdef KERN_TLS 12367 if (sc->flags & KERN_TLS_ON) { 12368 int i, j, n; 12369 struct port_info *p; 12370 struct vi_info *v; 12371 12372 /* 12373 * Reconfigure hardware for TOE if TXTLS is not enabled 12374 * on any ifnet. 12375 */ 12376 n = 0; 12377 for_each_port(sc, i) { 12378 p = sc->port[i]; 12379 for_each_vi(p, j, v) { 12380 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12381 CH_WARN(sc, 12382 "%s has NIC TLS enabled.\n", 12383 device_get_nameunit(v->dev)); 12384 n++; 12385 } 12386 } 12387 } 12388 if (n > 0) { 12389 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12390 "associated with this adapter before " 12391 "trying to enable TOE.\n"); 12392 return (EAGAIN); 12393 } 12394 rc = t4_config_kern_tls(sc, false); 12395 if (rc) 12396 return (rc); 12397 } 12398 #endif 12399 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12400 /* TOE is already enabled. */ 12401 return (0); 12402 } 12403 12404 /* 12405 * We need the port's queues around so that we're able to send 12406 * and receive CPLs to/from the TOE even if the ifnet for this 12407 * port has never been UP'd administratively. 12408 */ 12409 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12410 return (rc); 12411 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12412 ((rc = vi_init(&pi->vi[0])) != 0)) 12413 return (rc); 12414 12415 if (isset(&sc->offload_map, pi->port_id)) { 12416 /* TOE is enabled on another VI of this port. */ 12417 pi->uld_vis++; 12418 return (0); 12419 } 12420 12421 if (!uld_active(sc, ULD_TOM)) { 12422 rc = t4_activate_uld(sc, ULD_TOM); 12423 if (rc == EAGAIN) { 12424 log(LOG_WARNING, 12425 "You must kldload t4_tom.ko before trying " 12426 "to enable TOE on a cxgbe interface.\n"); 12427 } 12428 if (rc != 0) 12429 return (rc); 12430 KASSERT(sc->tom_softc != NULL, 12431 ("%s: TOM activated but softc NULL", __func__)); 12432 KASSERT(uld_active(sc, ULD_TOM), 12433 ("%s: TOM activated but flag not set", __func__)); 12434 } 12435 12436 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12437 if (!uld_active(sc, ULD_IWARP)) 12438 (void) t4_activate_uld(sc, ULD_IWARP); 12439 if (!uld_active(sc, ULD_ISCSI)) 12440 (void) t4_activate_uld(sc, ULD_ISCSI); 12441 12442 pi->uld_vis++; 12443 setbit(&sc->offload_map, pi->port_id); 12444 } else { 12445 pi->uld_vis--; 12446 12447 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12448 return (0); 12449 12450 KASSERT(uld_active(sc, ULD_TOM), 12451 ("%s: TOM never initialized?", __func__)); 12452 clrbit(&sc->offload_map, pi->port_id); 12453 } 12454 12455 return (0); 12456 } 12457 12458 /* 12459 * Add an upper layer driver to the global list. 12460 */ 12461 int 12462 t4_register_uld(struct uld_info *ui) 12463 { 12464 int rc = 0; 12465 struct uld_info *u; 12466 12467 sx_xlock(&t4_uld_list_lock); 12468 SLIST_FOREACH(u, &t4_uld_list, link) { 12469 if (u->uld_id == ui->uld_id) { 12470 rc = EEXIST; 12471 goto done; 12472 } 12473 } 12474 12475 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12476 ui->refcount = 0; 12477 done: 12478 sx_xunlock(&t4_uld_list_lock); 12479 return (rc); 12480 } 12481 12482 int 12483 t4_unregister_uld(struct uld_info *ui) 12484 { 12485 int rc = EINVAL; 12486 struct uld_info *u; 12487 12488 sx_xlock(&t4_uld_list_lock); 12489 12490 SLIST_FOREACH(u, &t4_uld_list, link) { 12491 if (u == ui) { 12492 if (ui->refcount > 0) { 12493 rc = EBUSY; 12494 goto done; 12495 } 12496 12497 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12498 rc = 0; 12499 goto done; 12500 } 12501 } 12502 done: 12503 sx_xunlock(&t4_uld_list_lock); 12504 return (rc); 12505 } 12506 12507 int 12508 t4_activate_uld(struct adapter *sc, int id) 12509 { 12510 int rc; 12511 struct uld_info *ui; 12512 12513 ASSERT_SYNCHRONIZED_OP(sc); 12514 12515 if (id < 0 || id > ULD_MAX) 12516 return (EINVAL); 12517 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12518 12519 sx_slock(&t4_uld_list_lock); 12520 12521 SLIST_FOREACH(ui, &t4_uld_list, link) { 12522 if (ui->uld_id == id) { 12523 if (!(sc->flags & FULL_INIT_DONE)) { 12524 rc = adapter_init(sc); 12525 if (rc != 0) 12526 break; 12527 } 12528 12529 rc = ui->activate(sc); 12530 if (rc == 0) { 12531 setbit(&sc->active_ulds, id); 12532 ui->refcount++; 12533 } 12534 break; 12535 } 12536 } 12537 12538 sx_sunlock(&t4_uld_list_lock); 12539 12540 return (rc); 12541 } 12542 12543 int 12544 t4_deactivate_uld(struct adapter *sc, int id) 12545 { 12546 int rc; 12547 struct uld_info *ui; 12548 12549 ASSERT_SYNCHRONIZED_OP(sc); 12550 12551 if (id < 0 || id > ULD_MAX) 12552 return (EINVAL); 12553 rc = ENXIO; 12554 12555 sx_slock(&t4_uld_list_lock); 12556 12557 SLIST_FOREACH(ui, &t4_uld_list, link) { 12558 if (ui->uld_id == id) { 12559 rc = ui->deactivate(sc); 12560 if (rc == 0) { 12561 clrbit(&sc->active_ulds, id); 12562 ui->refcount--; 12563 } 12564 break; 12565 } 12566 } 12567 12568 sx_sunlock(&t4_uld_list_lock); 12569 12570 return (rc); 12571 } 12572 12573 static void 12574 t4_async_event(struct adapter *sc) 12575 { 12576 struct uld_info *ui; 12577 12578 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12579 return; 12580 sx_slock(&t4_uld_list_lock); 12581 SLIST_FOREACH(ui, &t4_uld_list, link) { 12582 if (ui->uld_id == ULD_IWARP) { 12583 ui->async_event(sc); 12584 break; 12585 } 12586 } 12587 sx_sunlock(&t4_uld_list_lock); 12588 end_synchronized_op(sc, 0); 12589 } 12590 12591 int 12592 uld_active(struct adapter *sc, int uld_id) 12593 { 12594 12595 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12596 12597 return (isset(&sc->active_ulds, uld_id)); 12598 } 12599 #endif 12600 12601 #ifdef KERN_TLS 12602 static int 12603 ktls_capability(struct adapter *sc, bool enable) 12604 { 12605 ASSERT_SYNCHRONIZED_OP(sc); 12606 12607 if (!is_ktls(sc)) 12608 return (ENODEV); 12609 if (hw_off_limits(sc)) 12610 return (ENXIO); 12611 12612 if (enable) { 12613 if (sc->flags & KERN_TLS_ON) 12614 return (0); /* already on */ 12615 if (sc->offload_map != 0) { 12616 CH_WARN(sc, 12617 "Disable TOE on all interfaces associated with " 12618 "this adapter before trying to enable NIC TLS.\n"); 12619 return (EAGAIN); 12620 } 12621 return (t4_config_kern_tls(sc, true)); 12622 } else { 12623 /* 12624 * Nothing to do for disable. If TOE is enabled sometime later 12625 * then toe_capability will reconfigure the hardware. 12626 */ 12627 return (0); 12628 } 12629 } 12630 #endif 12631 12632 /* 12633 * t = ptr to tunable. 12634 * nc = number of CPUs. 12635 * c = compiled in default for that tunable. 12636 */ 12637 static void 12638 calculate_nqueues(int *t, int nc, const int c) 12639 { 12640 int nq; 12641 12642 if (*t > 0) 12643 return; 12644 nq = *t < 0 ? -*t : c; 12645 *t = min(nc, nq); 12646 } 12647 12648 /* 12649 * Come up with reasonable defaults for some of the tunables, provided they're 12650 * not set by the user (in which case we'll use the values as is). 12651 */ 12652 static void 12653 tweak_tunables(void) 12654 { 12655 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12656 12657 if (t4_ntxq < 1) { 12658 #ifdef RSS 12659 t4_ntxq = rss_getnumbuckets(); 12660 #else 12661 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12662 #endif 12663 } 12664 12665 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12666 12667 if (t4_nrxq < 1) { 12668 #ifdef RSS 12669 t4_nrxq = rss_getnumbuckets(); 12670 #else 12671 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12672 #endif 12673 } 12674 12675 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12676 12677 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12678 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12679 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12680 #endif 12681 #ifdef TCP_OFFLOAD 12682 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12683 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12684 #endif 12685 12686 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12687 if (t4_toecaps_allowed == -1) 12688 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12689 #else 12690 if (t4_toecaps_allowed == -1) 12691 t4_toecaps_allowed = 0; 12692 #endif 12693 12694 #ifdef TCP_OFFLOAD 12695 if (t4_rdmacaps_allowed == -1) { 12696 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12697 FW_CAPS_CONFIG_RDMA_RDMAC; 12698 } 12699 12700 if (t4_iscsicaps_allowed == -1) { 12701 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12702 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12703 FW_CAPS_CONFIG_ISCSI_T10DIF; 12704 } 12705 12706 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12707 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12708 12709 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12710 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12711 12712 if (t4_toe_tls_rx_timeout < 0) 12713 t4_toe_tls_rx_timeout = 0; 12714 #else 12715 if (t4_rdmacaps_allowed == -1) 12716 t4_rdmacaps_allowed = 0; 12717 12718 if (t4_iscsicaps_allowed == -1) 12719 t4_iscsicaps_allowed = 0; 12720 #endif 12721 12722 #ifdef DEV_NETMAP 12723 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12724 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12725 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12726 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12727 #endif 12728 12729 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12730 t4_tmr_idx = TMR_IDX; 12731 12732 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12733 t4_pktc_idx = PKTC_IDX; 12734 12735 if (t4_qsize_txq < 128) 12736 t4_qsize_txq = 128; 12737 12738 if (t4_qsize_rxq < 128) 12739 t4_qsize_rxq = 128; 12740 while (t4_qsize_rxq & 7) 12741 t4_qsize_rxq++; 12742 12743 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12744 12745 /* 12746 * Number of VIs to create per-port. The first VI is the "main" regular 12747 * VI for the port. The rest are additional virtual interfaces on the 12748 * same physical port. Note that the main VI does not have native 12749 * netmap support but the extra VIs do. 12750 * 12751 * Limit the number of VIs per port to the number of available 12752 * MAC addresses per port. 12753 */ 12754 if (t4_num_vis < 1) 12755 t4_num_vis = 1; 12756 if (t4_num_vis > nitems(vi_mac_funcs)) { 12757 t4_num_vis = nitems(vi_mac_funcs); 12758 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12759 } 12760 12761 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12762 pcie_relaxed_ordering = 1; 12763 #if defined(__i386__) || defined(__amd64__) 12764 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12765 pcie_relaxed_ordering = 0; 12766 #endif 12767 } 12768 } 12769 12770 #ifdef DDB 12771 static void 12772 t4_dump_tcb(struct adapter *sc, int tid) 12773 { 12774 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12775 12776 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12777 save = t4_read_reg(sc, reg); 12778 base = sc->memwin[2].mw_base; 12779 12780 /* Dump TCB for the tid */ 12781 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12782 tcb_addr += tid * TCB_SIZE; 12783 12784 if (is_t4(sc)) { 12785 pf = 0; 12786 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12787 } else { 12788 pf = V_PFNUM(sc->pf); 12789 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12790 } 12791 t4_write_reg(sc, reg, win_pos | pf); 12792 t4_read_reg(sc, reg); 12793 12794 off = tcb_addr - win_pos; 12795 for (i = 0; i < 4; i++) { 12796 uint32_t buf[8]; 12797 for (j = 0; j < 8; j++, off += 4) 12798 buf[j] = htonl(t4_read_reg(sc, base + off)); 12799 12800 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12801 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12802 buf[7]); 12803 } 12804 12805 t4_write_reg(sc, reg, save); 12806 t4_read_reg(sc, reg); 12807 } 12808 12809 static void 12810 t4_dump_devlog(struct adapter *sc) 12811 { 12812 struct devlog_params *dparams = &sc->params.devlog; 12813 struct fw_devlog_e e; 12814 int i, first, j, m, nentries, rc; 12815 uint64_t ftstamp = UINT64_MAX; 12816 12817 if (dparams->start == 0) { 12818 db_printf("devlog params not valid\n"); 12819 return; 12820 } 12821 12822 nentries = dparams->size / sizeof(struct fw_devlog_e); 12823 m = fwmtype_to_hwmtype(dparams->memtype); 12824 12825 /* Find the first entry. */ 12826 first = -1; 12827 for (i = 0; i < nentries && !db_pager_quit; i++) { 12828 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12829 sizeof(e), (void *)&e); 12830 if (rc != 0) 12831 break; 12832 12833 if (e.timestamp == 0) 12834 break; 12835 12836 e.timestamp = be64toh(e.timestamp); 12837 if (e.timestamp < ftstamp) { 12838 ftstamp = e.timestamp; 12839 first = i; 12840 } 12841 } 12842 12843 if (first == -1) 12844 return; 12845 12846 i = first; 12847 do { 12848 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12849 sizeof(e), (void *)&e); 12850 if (rc != 0) 12851 return; 12852 12853 if (e.timestamp == 0) 12854 return; 12855 12856 e.timestamp = be64toh(e.timestamp); 12857 e.seqno = be32toh(e.seqno); 12858 for (j = 0; j < 8; j++) 12859 e.params[j] = be32toh(e.params[j]); 12860 12861 db_printf("%10d %15ju %8s %8s ", 12862 e.seqno, e.timestamp, 12863 (e.level < nitems(devlog_level_strings) ? 12864 devlog_level_strings[e.level] : "UNKNOWN"), 12865 (e.facility < nitems(devlog_facility_strings) ? 12866 devlog_facility_strings[e.facility] : "UNKNOWN")); 12867 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12868 e.params[3], e.params[4], e.params[5], e.params[6], 12869 e.params[7]); 12870 12871 if (++i == nentries) 12872 i = 0; 12873 } while (i != first && !db_pager_quit); 12874 } 12875 12876 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12877 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12878 12879 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12880 { 12881 device_t dev; 12882 int t; 12883 bool valid; 12884 12885 valid = false; 12886 t = db_read_token(); 12887 if (t == tIDENT) { 12888 dev = device_lookup_by_name(db_tok_string); 12889 valid = true; 12890 } 12891 db_skip_to_eol(); 12892 if (!valid) { 12893 db_printf("usage: show t4 devlog <nexus>\n"); 12894 return; 12895 } 12896 12897 if (dev == NULL) { 12898 db_printf("device not found\n"); 12899 return; 12900 } 12901 12902 t4_dump_devlog(device_get_softc(dev)); 12903 } 12904 12905 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12906 { 12907 device_t dev; 12908 int radix, tid, t; 12909 bool valid; 12910 12911 valid = false; 12912 radix = db_radix; 12913 db_radix = 10; 12914 t = db_read_token(); 12915 if (t == tIDENT) { 12916 dev = device_lookup_by_name(db_tok_string); 12917 t = db_read_token(); 12918 if (t == tNUMBER) { 12919 tid = db_tok_number; 12920 valid = true; 12921 } 12922 } 12923 db_radix = radix; 12924 db_skip_to_eol(); 12925 if (!valid) { 12926 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12927 return; 12928 } 12929 12930 if (dev == NULL) { 12931 db_printf("device not found\n"); 12932 return; 12933 } 12934 if (tid < 0) { 12935 db_printf("invalid tid\n"); 12936 return; 12937 } 12938 12939 t4_dump_tcb(device_get_softc(dev), tid); 12940 } 12941 #endif 12942 12943 static eventhandler_tag vxlan_start_evtag; 12944 static eventhandler_tag vxlan_stop_evtag; 12945 12946 struct vxlan_evargs { 12947 struct ifnet *ifp; 12948 uint16_t port; 12949 }; 12950 12951 static void 12952 enable_vxlan_rx(struct adapter *sc) 12953 { 12954 int i, rc; 12955 struct port_info *pi; 12956 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12957 12958 ASSERT_SYNCHRONIZED_OP(sc); 12959 12960 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12961 F_VXLAN_EN); 12962 for_each_port(sc, i) { 12963 pi = sc->port[i]; 12964 if (pi->vxlan_tcam_entry == true) 12965 continue; 12966 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12967 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12968 true); 12969 if (rc < 0) { 12970 rc = -rc; 12971 CH_ERR(&pi->vi[0], 12972 "failed to add VXLAN TCAM entry: %d.\n", rc); 12973 } else { 12974 MPASS(rc == sc->rawf_base + pi->port_id); 12975 pi->vxlan_tcam_entry = true; 12976 } 12977 } 12978 } 12979 12980 static void 12981 t4_vxlan_start(struct adapter *sc, void *arg) 12982 { 12983 struct vxlan_evargs *v = arg; 12984 12985 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12986 return; 12987 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 12988 return; 12989 12990 if (sc->vxlan_refcount == 0) { 12991 sc->vxlan_port = v->port; 12992 sc->vxlan_refcount = 1; 12993 if (!hw_off_limits(sc)) 12994 enable_vxlan_rx(sc); 12995 } else if (sc->vxlan_port == v->port) { 12996 sc->vxlan_refcount++; 12997 } else { 12998 CH_ERR(sc, "VXLAN already configured on port %d; " 12999 "ignoring attempt to configure it on port %d\n", 13000 sc->vxlan_port, v->port); 13001 } 13002 end_synchronized_op(sc, 0); 13003 } 13004 13005 static void 13006 t4_vxlan_stop(struct adapter *sc, void *arg) 13007 { 13008 struct vxlan_evargs *v = arg; 13009 13010 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13011 return; 13012 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13013 return; 13014 13015 /* 13016 * VXLANs may have been configured before the driver was loaded so we 13017 * may see more stops than starts. This is not handled cleanly but at 13018 * least we keep the refcount sane. 13019 */ 13020 if (sc->vxlan_port != v->port) 13021 goto done; 13022 if (sc->vxlan_refcount == 0) { 13023 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13024 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13025 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13026 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13027 done: 13028 end_synchronized_op(sc, 0); 13029 } 13030 13031 static void 13032 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 13033 sa_family_t family, u_int port) 13034 { 13035 struct vxlan_evargs v; 13036 13037 MPASS(family == AF_INET || family == AF_INET6); 13038 v.ifp = ifp; 13039 v.port = port; 13040 13041 t4_iterate(t4_vxlan_start, &v); 13042 } 13043 13044 static void 13045 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 13046 u_int port) 13047 { 13048 struct vxlan_evargs v; 13049 13050 MPASS(family == AF_INET || family == AF_INET6); 13051 v.ifp = ifp; 13052 v.port = port; 13053 13054 t4_iterate(t4_vxlan_stop, &v); 13055 } 13056 13057 13058 static struct sx mlu; /* mod load unload */ 13059 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13060 13061 static int 13062 mod_event(module_t mod, int cmd, void *arg) 13063 { 13064 int rc = 0; 13065 static int loaded = 0; 13066 13067 switch (cmd) { 13068 case MOD_LOAD: 13069 sx_xlock(&mlu); 13070 if (loaded++ == 0) { 13071 t4_sge_modload(); 13072 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13073 t4_filter_rpl, CPL_COOKIE_FILTER); 13074 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13075 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13076 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13077 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13078 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13079 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13080 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13081 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13082 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13083 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13084 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13085 do_smt_write_rpl); 13086 sx_init(&t4_list_lock, "T4/T5 adapters"); 13087 SLIST_INIT(&t4_list); 13088 callout_init(&fatal_callout, 1); 13089 #ifdef TCP_OFFLOAD 13090 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13091 SLIST_INIT(&t4_uld_list); 13092 #endif 13093 #ifdef INET6 13094 t4_clip_modload(); 13095 #endif 13096 #ifdef KERN_TLS 13097 t6_ktls_modload(); 13098 #endif 13099 t4_tracer_modload(); 13100 tweak_tunables(); 13101 vxlan_start_evtag = 13102 EVENTHANDLER_REGISTER(vxlan_start, 13103 t4_vxlan_start_handler, NULL, 13104 EVENTHANDLER_PRI_ANY); 13105 vxlan_stop_evtag = 13106 EVENTHANDLER_REGISTER(vxlan_stop, 13107 t4_vxlan_stop_handler, NULL, 13108 EVENTHANDLER_PRI_ANY); 13109 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13110 taskqueue_thread_enqueue, &reset_tq); 13111 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13112 "t4_rst_thr"); 13113 } 13114 sx_xunlock(&mlu); 13115 break; 13116 13117 case MOD_UNLOAD: 13118 sx_xlock(&mlu); 13119 if (--loaded == 0) { 13120 int tries; 13121 13122 taskqueue_free(reset_tq); 13123 sx_slock(&t4_list_lock); 13124 if (!SLIST_EMPTY(&t4_list)) { 13125 rc = EBUSY; 13126 sx_sunlock(&t4_list_lock); 13127 goto done_unload; 13128 } 13129 #ifdef TCP_OFFLOAD 13130 sx_slock(&t4_uld_list_lock); 13131 if (!SLIST_EMPTY(&t4_uld_list)) { 13132 rc = EBUSY; 13133 sx_sunlock(&t4_uld_list_lock); 13134 sx_sunlock(&t4_list_lock); 13135 goto done_unload; 13136 } 13137 #endif 13138 tries = 0; 13139 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13140 uprintf("%ju clusters with custom free routine " 13141 "still is use.\n", t4_sge_extfree_refs()); 13142 pause("t4unload", 2 * hz); 13143 } 13144 #ifdef TCP_OFFLOAD 13145 sx_sunlock(&t4_uld_list_lock); 13146 #endif 13147 sx_sunlock(&t4_list_lock); 13148 13149 if (t4_sge_extfree_refs() == 0) { 13150 EVENTHANDLER_DEREGISTER(vxlan_start, 13151 vxlan_start_evtag); 13152 EVENTHANDLER_DEREGISTER(vxlan_stop, 13153 vxlan_stop_evtag); 13154 t4_tracer_modunload(); 13155 #ifdef KERN_TLS 13156 t6_ktls_modunload(); 13157 #endif 13158 #ifdef INET6 13159 t4_clip_modunload(); 13160 #endif 13161 #ifdef TCP_OFFLOAD 13162 sx_destroy(&t4_uld_list_lock); 13163 #endif 13164 sx_destroy(&t4_list_lock); 13165 t4_sge_modunload(); 13166 loaded = 0; 13167 } else { 13168 rc = EBUSY; 13169 loaded++; /* undo earlier decrement */ 13170 } 13171 } 13172 done_unload: 13173 sx_xunlock(&mlu); 13174 break; 13175 } 13176 13177 return (rc); 13178 } 13179 13180 static devclass_t t4_devclass, t5_devclass, t6_devclass; 13181 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 13182 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 13183 13184 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 13185 MODULE_VERSION(t4nex, 1); 13186 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13187 #ifdef DEV_NETMAP 13188 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13189 #endif /* DEV_NETMAP */ 13190 13191 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 13192 MODULE_VERSION(t5nex, 1); 13193 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13194 #ifdef DEV_NETMAP 13195 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13196 #endif /* DEV_NETMAP */ 13197 13198 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 13199 MODULE_VERSION(t6nex, 1); 13200 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13201 #ifdef DEV_NETMAP 13202 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13203 #endif /* DEV_NETMAP */ 13204 13205 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 13206 MODULE_VERSION(cxgbe, 1); 13207 13208 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 13209 MODULE_VERSION(cxl, 1); 13210 13211 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 13212 MODULE_VERSION(cc, 1); 13213 13214 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 13215 MODULE_VERSION(vcxgbe, 1); 13216 13217 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 13218 MODULE_VERSION(vcxl, 1); 13219 13220 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 13221 MODULE_VERSION(vcc, 1); 13222