1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 struct uld_info *t4_uld_list[ULD_MAX + 1]; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_clock_gate_on_suspend = 0; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 639 640 static int t4_tx_vm_wr = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 642 "Use VM work requests to transmit packets."); 643 644 /* 645 * Set to non-zero to enable the attack filter. A packet that matches any of 646 * these conditions will get dropped on ingress: 647 * 1) IP && source address == destination address. 648 * 2) TCP/IP && source address is not a unicast address. 649 * 3) TCP/IP && destination address is not a unicast address. 650 * 4) IP && source address is loopback (127.x.y.z). 651 * 5) IP && destination address is loopback (127.x.y.z). 652 * 6) IPv6 && source address == destination address. 653 * 7) IPv6 && source address is not a unicast address. 654 * 8) IPv6 && source address is loopback (::1/128). 655 * 9) IPv6 && destination address is loopback (::1/128). 656 * 10) IPv6 && source address is unspecified (::/128). 657 * 11) IPv6 && destination address is unspecified (::/128). 658 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 660 */ 661 static int t4_attack_filter = 0; 662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 663 &t4_attack_filter, 0, "Drop suspicious traffic"); 664 665 static int t4_drop_ip_fragments = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 667 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 668 669 static int t4_drop_pkts_with_l2_errors = 1; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l2_errors, 0, 672 "Drop all frames with Layer 2 length or checksum errors"); 673 674 static int t4_drop_pkts_with_l3_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l3_errors, 0, 677 "Drop all frames with IP version, length, or checksum errors"); 678 679 static int t4_drop_pkts_with_l4_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l4_errors, 0, 682 "Drop all frames with Layer 4 length, checksum, or other errors"); 683 684 #ifdef TCP_OFFLOAD 685 /* 686 * TOE tunables. 687 */ 688 static int t4_cop_managed_offloading = 0; 689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 690 &t4_cop_managed_offloading, 0, 691 "COP (Connection Offload Policy) controls all TOE offload"); 692 #endif 693 694 #ifdef KERN_TLS 695 /* 696 * This enables KERN_TLS for all adapters if set. 697 */ 698 static int t4_kern_tls = 0; 699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 700 "Enable KERN_TLS mode for T6 adapters"); 701 702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 703 "cxgbe(4) KERN_TLS parameters"); 704 705 static int t4_tls_inline_keys = 0; 706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 707 &t4_tls_inline_keys, 0, 708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 709 "in card memory."); 710 711 static int t4_tls_combo_wrs = 0; 712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 713 0, "Attempt to combine TCB field updates with TLS record work requests."); 714 #endif 715 716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 717 static int vi_mac_funcs[] = { 718 FW_VI_FUNC_ETH, 719 FW_VI_FUNC_OFLD, 720 FW_VI_FUNC_IWARP, 721 FW_VI_FUNC_OPENISCSI, 722 FW_VI_FUNC_OPENFCOE, 723 FW_VI_FUNC_FOISCSI, 724 FW_VI_FUNC_FOFCOE, 725 }; 726 727 struct intrs_and_queues { 728 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 729 uint16_t num_vis; /* number of VIs for each port */ 730 uint16_t nirq; /* Total # of vectors */ 731 uint16_t ntxq; /* # of NIC txq's for each port */ 732 uint16_t nrxq; /* # of NIC rxq's for each port */ 733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 734 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 735 uint16_t nnmtxq; /* # of netmap txq's */ 736 uint16_t nnmrxq; /* # of netmap rxq's */ 737 738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 739 uint16_t ntxq_vi; /* # of NIC txq's */ 740 uint16_t nrxq_vi; /* # of NIC rxq's */ 741 uint16_t nofldtxq_vi; /* # of TOE txq's */ 742 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 743 uint16_t nnmtxq_vi; /* # of netmap txq's */ 744 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 745 }; 746 747 static void setup_memwin(struct adapter *); 748 static void position_memwin(struct adapter *, int, uint32_t); 749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 750 static int fwmtype_to_hwmtype(int); 751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 752 uint32_t *); 753 static int fixup_devlog_params(struct adapter *); 754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 755 static int contact_firmware(struct adapter *); 756 static int partition_resources(struct adapter *); 757 static int get_params__pre_init(struct adapter *); 758 static int set_params__pre_init(struct adapter *); 759 static int get_params__post_init(struct adapter *); 760 static int set_params__post_init(struct adapter *); 761 static void t4_set_desc(struct adapter *); 762 static bool fixed_ifmedia(struct port_info *); 763 static void build_medialist(struct port_info *); 764 static void init_link_config(struct port_info *); 765 static int fixup_link_config(struct port_info *); 766 static int apply_link_config(struct port_info *); 767 static int cxgbe_init_synchronized(struct vi_info *); 768 static int cxgbe_uninit_synchronized(struct vi_info *); 769 static int adapter_full_init(struct adapter *); 770 static void adapter_full_uninit(struct adapter *); 771 static int vi_full_init(struct vi_info *); 772 static void vi_full_uninit(struct vi_info *); 773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 774 static void quiesce_txq(struct sge_txq *); 775 static void quiesce_wrq(struct sge_wrq *); 776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 777 static void quiesce_vi(struct vi_info *); 778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 779 driver_intr_t *, void *, char *); 780 static int t4_free_irq(struct adapter *, struct irq *); 781 static void t4_init_atid_table(struct adapter *); 782 static void t4_free_atid_table(struct adapter *); 783 static void stop_atid_allocator(struct adapter *); 784 static void restart_atid_allocator(struct adapter *); 785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 786 static void vi_refresh_stats(struct vi_info *); 787 static void cxgbe_refresh_stats(struct vi_info *); 788 static void cxgbe_tick(void *); 789 static void vi_tick(void *); 790 static void cxgbe_sysctls(struct port_info *); 791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 842 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 843 #ifdef TCP_OFFLOAD 844 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 852 #endif 853 static int get_sge_context(struct adapter *, struct t4_sge_context *); 854 static int load_fw(struct adapter *, struct t4_data *); 855 static int load_cfg(struct adapter *, struct t4_data *); 856 static int load_boot(struct adapter *, struct t4_bootrom *); 857 static int load_bootcfg(struct adapter *, struct t4_data *); 858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 859 static void free_offload_policy(struct t4_offload_policy *); 860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 862 static int read_i2c(struct adapter *, struct t4_i2c_data *); 863 static int clear_stats(struct adapter *, u_int); 864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 866 static inline int stop_adapter(struct adapter *); 867 static inline void set_adapter_hwstatus(struct adapter *, const bool); 868 static int stop_lld(struct adapter *); 869 static inline int restart_adapter(struct adapter *); 870 static int restart_lld(struct adapter *); 871 #ifdef TCP_OFFLOAD 872 static int deactivate_all_uld(struct adapter *); 873 static void stop_all_uld(struct adapter *); 874 static void restart_all_uld(struct adapter *); 875 #endif 876 #ifdef KERN_TLS 877 static int ktls_capability(struct adapter *, bool); 878 #endif 879 static int mod_event(module_t, int, void *); 880 static int notify_siblings(device_t, int); 881 static uint64_t vi_get_counter(if_t, ift_counter); 882 static uint64_t cxgbe_get_counter(if_t, ift_counter); 883 static void enable_vxlan_rx(struct adapter *); 884 static void reset_adapter_task(void *, int); 885 static void fatal_error_task(void *, int); 886 static void dump_devlog(struct adapter *); 887 static void dump_cim_regs(struct adapter *); 888 static void dump_cimla(struct adapter *); 889 890 struct { 891 uint16_t device; 892 char *desc; 893 } t4_pciids[] = { 894 {0xa000, "Chelsio Terminator 4 FPGA"}, 895 {0x4400, "Chelsio T440-dbg"}, 896 {0x4401, "Chelsio T420-CR"}, 897 {0x4402, "Chelsio T422-CR"}, 898 {0x4403, "Chelsio T440-CR"}, 899 {0x4404, "Chelsio T420-BCH"}, 900 {0x4405, "Chelsio T440-BCH"}, 901 {0x4406, "Chelsio T440-CH"}, 902 {0x4407, "Chelsio T420-SO"}, 903 {0x4408, "Chelsio T420-CX"}, 904 {0x4409, "Chelsio T420-BT"}, 905 {0x440a, "Chelsio T404-BT"}, 906 {0x440e, "Chelsio T440-LP-CR"}, 907 }, t5_pciids[] = { 908 {0xb000, "Chelsio Terminator 5 FPGA"}, 909 {0x5400, "Chelsio T580-dbg"}, 910 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 911 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 912 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 913 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 914 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 915 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 916 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 917 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 918 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 919 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 920 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 921 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 922 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 923 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 924 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 925 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 926 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 927 928 /* Custom */ 929 {0x5483, "Custom T540-CR"}, 930 {0x5484, "Custom T540-BT"}, 931 }, t6_pciids[] = { 932 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 933 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 934 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 935 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 936 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 937 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 938 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 939 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 940 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 941 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 942 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 943 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 944 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 945 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 946 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 947 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 948 949 /* Custom */ 950 {0x6480, "Custom T6225-CR"}, 951 {0x6481, "Custom T62100-CR"}, 952 {0x6482, "Custom T6225-CR"}, 953 {0x6483, "Custom T62100-CR"}, 954 {0x6484, "Custom T64100-CR"}, 955 {0x6485, "Custom T6240-SO"}, 956 {0x6486, "Custom T6225-SO-CR"}, 957 {0x6487, "Custom T6225-CR"}, 958 }; 959 960 #ifdef TCP_OFFLOAD 961 /* 962 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 963 * be exactly the same for both rxq and ofld_rxq. 964 */ 965 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 966 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 967 #endif 968 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 969 970 static int 971 t4_probe(device_t dev) 972 { 973 int i; 974 uint16_t v = pci_get_vendor(dev); 975 uint16_t d = pci_get_device(dev); 976 uint8_t f = pci_get_function(dev); 977 978 if (v != PCI_VENDOR_ID_CHELSIO) 979 return (ENXIO); 980 981 /* Attach only to PF0 of the FPGA */ 982 if (d == 0xa000 && f != 0) 983 return (ENXIO); 984 985 for (i = 0; i < nitems(t4_pciids); i++) { 986 if (d == t4_pciids[i].device) { 987 device_set_desc(dev, t4_pciids[i].desc); 988 return (BUS_PROBE_DEFAULT); 989 } 990 } 991 992 return (ENXIO); 993 } 994 995 static int 996 t5_probe(device_t dev) 997 { 998 int i; 999 uint16_t v = pci_get_vendor(dev); 1000 uint16_t d = pci_get_device(dev); 1001 uint8_t f = pci_get_function(dev); 1002 1003 if (v != PCI_VENDOR_ID_CHELSIO) 1004 return (ENXIO); 1005 1006 /* Attach only to PF0 of the FPGA */ 1007 if (d == 0xb000 && f != 0) 1008 return (ENXIO); 1009 1010 for (i = 0; i < nitems(t5_pciids); i++) { 1011 if (d == t5_pciids[i].device) { 1012 device_set_desc(dev, t5_pciids[i].desc); 1013 return (BUS_PROBE_DEFAULT); 1014 } 1015 } 1016 1017 return (ENXIO); 1018 } 1019 1020 static int 1021 t6_probe(device_t dev) 1022 { 1023 int i; 1024 uint16_t v = pci_get_vendor(dev); 1025 uint16_t d = pci_get_device(dev); 1026 1027 if (v != PCI_VENDOR_ID_CHELSIO) 1028 return (ENXIO); 1029 1030 for (i = 0; i < nitems(t6_pciids); i++) { 1031 if (d == t6_pciids[i].device) { 1032 device_set_desc(dev, t6_pciids[i].desc); 1033 return (BUS_PROBE_DEFAULT); 1034 } 1035 } 1036 1037 return (ENXIO); 1038 } 1039 1040 static void 1041 t5_attribute_workaround(device_t dev) 1042 { 1043 device_t root_port; 1044 uint32_t v; 1045 1046 /* 1047 * The T5 chips do not properly echo the No Snoop and Relaxed 1048 * Ordering attributes when replying to a TLP from a Root 1049 * Port. As a workaround, find the parent Root Port and 1050 * disable No Snoop and Relaxed Ordering. Note that this 1051 * affects all devices under this root port. 1052 */ 1053 root_port = pci_find_pcie_root_port(dev); 1054 if (root_port == NULL) { 1055 device_printf(dev, "Unable to find parent root port\n"); 1056 return; 1057 } 1058 1059 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1060 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1061 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1062 0) 1063 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1064 device_get_nameunit(root_port)); 1065 } 1066 1067 static const struct devnames devnames[] = { 1068 { 1069 .nexus_name = "t4nex", 1070 .ifnet_name = "cxgbe", 1071 .vi_ifnet_name = "vcxgbe", 1072 .pf03_drv_name = "t4iov", 1073 .vf_nexus_name = "t4vf", 1074 .vf_ifnet_name = "cxgbev" 1075 }, { 1076 .nexus_name = "t5nex", 1077 .ifnet_name = "cxl", 1078 .vi_ifnet_name = "vcxl", 1079 .pf03_drv_name = "t5iov", 1080 .vf_nexus_name = "t5vf", 1081 .vf_ifnet_name = "cxlv" 1082 }, { 1083 .nexus_name = "t6nex", 1084 .ifnet_name = "cc", 1085 .vi_ifnet_name = "vcc", 1086 .pf03_drv_name = "t6iov", 1087 .vf_nexus_name = "t6vf", 1088 .vf_ifnet_name = "ccv" 1089 } 1090 }; 1091 1092 void 1093 t4_init_devnames(struct adapter *sc) 1094 { 1095 int id; 1096 1097 id = chip_id(sc); 1098 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1099 sc->names = &devnames[id - CHELSIO_T4]; 1100 else { 1101 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1102 sc->names = NULL; 1103 } 1104 } 1105 1106 static int 1107 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1108 { 1109 const char *parent, *name; 1110 long value; 1111 int line, unit; 1112 1113 line = 0; 1114 parent = device_get_nameunit(sc->dev); 1115 name = sc->names->ifnet_name; 1116 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1117 if (resource_long_value(name, unit, "port", &value) == 0 && 1118 value == pi->port_id) 1119 return (unit); 1120 } 1121 return (-1); 1122 } 1123 1124 static void 1125 t4_calibration(void *arg) 1126 { 1127 struct adapter *sc; 1128 struct clock_sync *cur, *nex; 1129 uint64_t hw; 1130 sbintime_t sbt; 1131 int next_up; 1132 1133 sc = (struct adapter *)arg; 1134 1135 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1136 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1137 sbt = sbinuptime(); 1138 1139 cur = &sc->cal_info[sc->cal_current]; 1140 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1141 nex = &sc->cal_info[next_up]; 1142 if (__predict_false(sc->cal_count == 0)) { 1143 /* First time in, just get the values in */ 1144 cur->hw_cur = hw; 1145 cur->sbt_cur = sbt; 1146 sc->cal_count++; 1147 goto done; 1148 } 1149 1150 if (cur->hw_cur == hw) { 1151 /* The clock is not advancing? */ 1152 sc->cal_count = 0; 1153 atomic_store_rel_int(&cur->gen, 0); 1154 goto done; 1155 } 1156 1157 seqc_write_begin(&nex->gen); 1158 nex->hw_prev = cur->hw_cur; 1159 nex->sbt_prev = cur->sbt_cur; 1160 nex->hw_cur = hw; 1161 nex->sbt_cur = sbt; 1162 seqc_write_end(&nex->gen); 1163 sc->cal_current = next_up; 1164 done: 1165 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1166 sc, C_DIRECT_EXEC); 1167 } 1168 1169 static void 1170 t4_calibration_start(struct adapter *sc) 1171 { 1172 /* 1173 * Here if we have not done a calibration 1174 * then do so otherwise start the appropriate 1175 * timer. 1176 */ 1177 int i; 1178 1179 for (i = 0; i < CNT_CAL_INFO; i++) { 1180 sc->cal_info[i].gen = 0; 1181 } 1182 sc->cal_current = 0; 1183 sc->cal_count = 0; 1184 sc->cal_gen = 0; 1185 t4_calibration(sc); 1186 } 1187 1188 static int 1189 t4_attach(device_t dev) 1190 { 1191 struct adapter *sc; 1192 int rc = 0, i, j, rqidx, tqidx, nports; 1193 struct make_dev_args mda; 1194 struct intrs_and_queues iaq; 1195 struct sge *s; 1196 uint32_t *buf; 1197 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1198 int ofld_tqidx; 1199 #endif 1200 #ifdef TCP_OFFLOAD 1201 int ofld_rqidx; 1202 #endif 1203 #ifdef DEV_NETMAP 1204 int nm_rqidx, nm_tqidx; 1205 #endif 1206 int num_vis; 1207 1208 sc = device_get_softc(dev); 1209 sc->dev = dev; 1210 sysctl_ctx_init(&sc->ctx); 1211 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1212 1213 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1214 t5_attribute_workaround(dev); 1215 pci_enable_busmaster(dev); 1216 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1217 uint32_t v; 1218 1219 pci_set_max_read_req(dev, 4096); 1220 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1221 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1222 if (pcie_relaxed_ordering == 0 && 1223 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1224 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1225 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1226 } else if (pcie_relaxed_ordering == 1 && 1227 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1228 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1229 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1230 } 1231 } 1232 1233 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1234 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1235 sc->traceq = -1; 1236 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1237 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1238 device_get_nameunit(dev)); 1239 1240 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1241 device_get_nameunit(dev)); 1242 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1243 t4_add_adapter(sc); 1244 1245 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1246 TAILQ_INIT(&sc->sfl); 1247 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1248 1249 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1250 1251 sc->policy = NULL; 1252 rw_init(&sc->policy_lock, "connection offload policy"); 1253 1254 callout_init(&sc->ktls_tick, 1); 1255 1256 callout_init(&sc->cal_callout, 1); 1257 1258 refcount_init(&sc->vxlan_refcount, 0); 1259 1260 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1261 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1262 1263 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1264 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1265 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1266 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1269 1270 rc = t4_map_bars_0_and_4(sc); 1271 if (rc != 0) 1272 goto done; /* error message displayed already */ 1273 1274 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1275 1276 /* Prepare the adapter for operation. */ 1277 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1278 rc = -t4_prep_adapter(sc, buf); 1279 free(buf, M_CXGBE); 1280 if (rc != 0) { 1281 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1282 goto done; 1283 } 1284 1285 /* 1286 * This is the real PF# to which we're attaching. Works from within PCI 1287 * passthrough environments too, where pci_get_function() could return a 1288 * different PF# depending on the passthrough configuration. We need to 1289 * use the real PF# in all our communication with the firmware. 1290 */ 1291 j = t4_read_reg(sc, A_PL_WHOAMI); 1292 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1293 sc->mbox = sc->pf; 1294 1295 t4_init_devnames(sc); 1296 if (sc->names == NULL) { 1297 rc = ENOTSUP; 1298 goto done; /* error message displayed already */ 1299 } 1300 1301 /* 1302 * Do this really early, with the memory windows set up even before the 1303 * character device. The userland tool's register i/o and mem read 1304 * will work even in "recovery mode". 1305 */ 1306 setup_memwin(sc); 1307 if (t4_init_devlog_params(sc, 0) == 0) 1308 fixup_devlog_params(sc); 1309 make_dev_args_init(&mda); 1310 mda.mda_devsw = &t4_cdevsw; 1311 mda.mda_uid = UID_ROOT; 1312 mda.mda_gid = GID_WHEEL; 1313 mda.mda_mode = 0600; 1314 mda.mda_si_drv1 = sc; 1315 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1316 if (rc != 0) 1317 device_printf(dev, "failed to create nexus char device: %d.\n", 1318 rc); 1319 1320 /* Go no further if recovery mode has been requested. */ 1321 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1322 device_printf(dev, "recovery mode.\n"); 1323 goto done; 1324 } 1325 1326 #if defined(__i386__) 1327 if ((cpu_feature & CPUID_CX8) == 0) { 1328 device_printf(dev, "64 bit atomics not available.\n"); 1329 rc = ENOTSUP; 1330 goto done; 1331 } 1332 #endif 1333 1334 /* Contact the firmware and try to become the master driver. */ 1335 rc = contact_firmware(sc); 1336 if (rc != 0) 1337 goto done; /* error message displayed already */ 1338 MPASS(sc->flags & FW_OK); 1339 1340 rc = get_params__pre_init(sc); 1341 if (rc != 0) 1342 goto done; /* error message displayed already */ 1343 1344 if (sc->flags & MASTER_PF) { 1345 rc = partition_resources(sc); 1346 if (rc != 0) 1347 goto done; /* error message displayed already */ 1348 } 1349 1350 rc = get_params__post_init(sc); 1351 if (rc != 0) 1352 goto done; /* error message displayed already */ 1353 1354 rc = set_params__post_init(sc); 1355 if (rc != 0) 1356 goto done; /* error message displayed already */ 1357 1358 rc = t4_map_bar_2(sc); 1359 if (rc != 0) 1360 goto done; /* error message displayed already */ 1361 1362 rc = t4_adj_doorbells(sc); 1363 if (rc != 0) 1364 goto done; /* error message displayed already */ 1365 1366 rc = t4_create_dma_tag(sc); 1367 if (rc != 0) 1368 goto done; /* error message displayed already */ 1369 1370 /* 1371 * First pass over all the ports - allocate VIs and initialize some 1372 * basic parameters like mac address, port type, etc. 1373 */ 1374 for_each_port(sc, i) { 1375 struct port_info *pi; 1376 1377 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1378 sc->port[i] = pi; 1379 1380 /* These must be set before t4_port_init */ 1381 pi->adapter = sc; 1382 pi->port_id = i; 1383 /* 1384 * XXX: vi[0] is special so we can't delay this allocation until 1385 * pi->nvi's final value is known. 1386 */ 1387 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1388 M_ZERO | M_WAITOK); 1389 1390 /* 1391 * Allocate the "main" VI and initialize parameters 1392 * like mac addr. 1393 */ 1394 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1395 if (rc != 0) { 1396 device_printf(dev, "unable to initialize port %d: %d\n", 1397 i, rc); 1398 free(pi->vi, M_CXGBE); 1399 free(pi, M_CXGBE); 1400 sc->port[i] = NULL; 1401 goto done; 1402 } 1403 1404 if (is_bt(pi->port_type)) 1405 setbit(&sc->bt_map, pi->tx_chan); 1406 else 1407 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1408 1409 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1410 device_get_nameunit(dev), i); 1411 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1412 sc->chan_map[pi->tx_chan] = i; 1413 1414 /* 1415 * The MPS counter for FCS errors doesn't work correctly on the 1416 * T6 so we use the MAC counter here. Which MAC is in use 1417 * depends on the link settings which will be known when the 1418 * link comes up. 1419 */ 1420 if (is_t6(sc)) 1421 pi->fcs_reg = -1; 1422 else { 1423 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1424 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1425 } 1426 pi->fcs_base = 0; 1427 1428 /* All VIs on this port share this media. */ 1429 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1430 cxgbe_media_status); 1431 1432 PORT_LOCK(pi); 1433 init_link_config(pi); 1434 fixup_link_config(pi); 1435 build_medialist(pi); 1436 if (fixed_ifmedia(pi)) 1437 pi->flags |= FIXED_IFMEDIA; 1438 PORT_UNLOCK(pi); 1439 1440 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1441 t4_ifnet_unit(sc, pi)); 1442 if (pi->dev == NULL) { 1443 device_printf(dev, 1444 "failed to add device for port %d.\n", i); 1445 rc = ENXIO; 1446 goto done; 1447 } 1448 pi->vi[0].dev = pi->dev; 1449 device_set_softc(pi->dev, pi); 1450 } 1451 1452 /* 1453 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1454 */ 1455 nports = sc->params.nports; 1456 rc = cfg_itype_and_nqueues(sc, &iaq); 1457 if (rc != 0) 1458 goto done; /* error message displayed already */ 1459 1460 num_vis = iaq.num_vis; 1461 sc->intr_type = iaq.intr_type; 1462 sc->intr_count = iaq.nirq; 1463 1464 s = &sc->sge; 1465 s->nrxq = nports * iaq.nrxq; 1466 s->ntxq = nports * iaq.ntxq; 1467 if (num_vis > 1) { 1468 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1469 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1470 } 1471 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1472 s->neq += nports; /* ctrl queues: 1 per port */ 1473 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1474 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1475 if (is_offload(sc) || is_ethoffload(sc)) { 1476 s->nofldtxq = nports * iaq.nofldtxq; 1477 if (num_vis > 1) 1478 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1479 s->neq += s->nofldtxq; 1480 1481 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1482 M_CXGBE, M_ZERO | M_WAITOK); 1483 } 1484 #endif 1485 #ifdef TCP_OFFLOAD 1486 if (is_offload(sc)) { 1487 s->nofldrxq = nports * iaq.nofldrxq; 1488 if (num_vis > 1) 1489 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1490 s->neq += s->nofldrxq; /* free list */ 1491 s->niq += s->nofldrxq; 1492 1493 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1494 M_CXGBE, M_ZERO | M_WAITOK); 1495 } 1496 #endif 1497 #ifdef DEV_NETMAP 1498 s->nnmrxq = 0; 1499 s->nnmtxq = 0; 1500 if (t4_native_netmap & NN_MAIN_VI) { 1501 s->nnmrxq += nports * iaq.nnmrxq; 1502 s->nnmtxq += nports * iaq.nnmtxq; 1503 } 1504 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1505 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1506 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1507 } 1508 s->neq += s->nnmtxq + s->nnmrxq; 1509 s->niq += s->nnmrxq; 1510 1511 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1512 M_CXGBE, M_ZERO | M_WAITOK); 1513 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1514 M_CXGBE, M_ZERO | M_WAITOK); 1515 #endif 1516 MPASS(s->niq <= s->iqmap_sz); 1517 MPASS(s->neq <= s->eqmap_sz); 1518 1519 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1520 M_ZERO | M_WAITOK); 1521 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1522 M_ZERO | M_WAITOK); 1523 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1524 M_ZERO | M_WAITOK); 1525 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1526 M_ZERO | M_WAITOK); 1527 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1528 M_ZERO | M_WAITOK); 1529 1530 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1531 M_ZERO | M_WAITOK); 1532 1533 t4_init_l2t(sc, M_WAITOK); 1534 t4_init_smt(sc, M_WAITOK); 1535 t4_init_tx_sched(sc); 1536 t4_init_atid_table(sc); 1537 #ifdef RATELIMIT 1538 t4_init_etid_table(sc); 1539 #endif 1540 #ifdef INET6 1541 t4_init_clip_table(sc); 1542 #endif 1543 if (sc->vres.key.size != 0) 1544 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1545 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1546 1547 /* 1548 * Second pass over the ports. This time we know the number of rx and 1549 * tx queues that each port should get. 1550 */ 1551 rqidx = tqidx = 0; 1552 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1553 ofld_tqidx = 0; 1554 #endif 1555 #ifdef TCP_OFFLOAD 1556 ofld_rqidx = 0; 1557 #endif 1558 #ifdef DEV_NETMAP 1559 nm_rqidx = nm_tqidx = 0; 1560 #endif 1561 for_each_port(sc, i) { 1562 struct port_info *pi = sc->port[i]; 1563 struct vi_info *vi; 1564 1565 if (pi == NULL) 1566 continue; 1567 1568 pi->nvi = num_vis; 1569 for_each_vi(pi, j, vi) { 1570 vi->pi = pi; 1571 vi->adapter = sc; 1572 vi->first_intr = -1; 1573 vi->qsize_rxq = t4_qsize_rxq; 1574 vi->qsize_txq = t4_qsize_txq; 1575 1576 vi->first_rxq = rqidx; 1577 vi->first_txq = tqidx; 1578 vi->tmr_idx = t4_tmr_idx; 1579 vi->pktc_idx = t4_pktc_idx; 1580 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1581 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1582 1583 rqidx += vi->nrxq; 1584 tqidx += vi->ntxq; 1585 1586 if (j == 0 && vi->ntxq > 1) 1587 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1588 else 1589 vi->rsrv_noflowq = 0; 1590 1591 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1592 vi->first_ofld_txq = ofld_tqidx; 1593 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1594 ofld_tqidx += vi->nofldtxq; 1595 #endif 1596 #ifdef TCP_OFFLOAD 1597 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1598 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1599 vi->first_ofld_rxq = ofld_rqidx; 1600 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1601 1602 ofld_rqidx += vi->nofldrxq; 1603 #endif 1604 #ifdef DEV_NETMAP 1605 vi->first_nm_rxq = nm_rqidx; 1606 vi->first_nm_txq = nm_tqidx; 1607 if (j == 0) { 1608 vi->nnmrxq = iaq.nnmrxq; 1609 vi->nnmtxq = iaq.nnmtxq; 1610 } else { 1611 vi->nnmrxq = iaq.nnmrxq_vi; 1612 vi->nnmtxq = iaq.nnmtxq_vi; 1613 } 1614 nm_rqidx += vi->nnmrxq; 1615 nm_tqidx += vi->nnmtxq; 1616 #endif 1617 } 1618 } 1619 1620 rc = t4_setup_intr_handlers(sc); 1621 if (rc != 0) { 1622 device_printf(dev, 1623 "failed to setup interrupt handlers: %d\n", rc); 1624 goto done; 1625 } 1626 1627 rc = bus_generic_probe(dev); 1628 if (rc != 0) { 1629 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1630 goto done; 1631 } 1632 1633 /* 1634 * Ensure thread-safe mailbox access (in debug builds). 1635 * 1636 * So far this was the only thread accessing the mailbox but various 1637 * ifnets and sysctls are about to be created and their handlers/ioctls 1638 * will access the mailbox from different threads. 1639 */ 1640 sc->flags |= CHK_MBOX_ACCESS; 1641 1642 rc = bus_generic_attach(dev); 1643 if (rc != 0) { 1644 device_printf(dev, 1645 "failed to attach all child ports: %d\n", rc); 1646 goto done; 1647 } 1648 t4_calibration_start(sc); 1649 1650 device_printf(dev, 1651 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1652 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1653 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1654 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1655 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1656 1657 t4_set_desc(sc); 1658 1659 notify_siblings(dev, 0); 1660 1661 done: 1662 if (rc != 0 && sc->cdev) { 1663 /* cdev was created and so cxgbetool works; recover that way. */ 1664 device_printf(dev, 1665 "error during attach, adapter is now in recovery mode.\n"); 1666 rc = 0; 1667 } 1668 1669 if (rc != 0) 1670 t4_detach_common(dev); 1671 else 1672 t4_sysctls(sc); 1673 1674 return (rc); 1675 } 1676 1677 static int 1678 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1679 { 1680 struct adapter *sc; 1681 struct port_info *pi; 1682 int i; 1683 1684 sc = device_get_softc(bus); 1685 for_each_port(sc, i) { 1686 pi = sc->port[i]; 1687 if (pi != NULL && pi->dev == dev) { 1688 sbuf_printf(sb, "port=%d", pi->port_id); 1689 break; 1690 } 1691 } 1692 return (0); 1693 } 1694 1695 static int 1696 t4_ready(device_t dev) 1697 { 1698 struct adapter *sc; 1699 1700 sc = device_get_softc(dev); 1701 if (sc->flags & FW_OK) 1702 return (0); 1703 return (ENXIO); 1704 } 1705 1706 static int 1707 t4_read_port_device(device_t dev, int port, device_t *child) 1708 { 1709 struct adapter *sc; 1710 struct port_info *pi; 1711 1712 sc = device_get_softc(dev); 1713 if (port < 0 || port >= MAX_NPORTS) 1714 return (EINVAL); 1715 pi = sc->port[port]; 1716 if (pi == NULL || pi->dev == NULL) 1717 return (ENXIO); 1718 *child = pi->dev; 1719 return (0); 1720 } 1721 1722 static int 1723 notify_siblings(device_t dev, int detaching) 1724 { 1725 device_t sibling; 1726 int error, i; 1727 1728 error = 0; 1729 for (i = 0; i < PCI_FUNCMAX; i++) { 1730 if (i == pci_get_function(dev)) 1731 continue; 1732 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1733 pci_get_slot(dev), i); 1734 if (sibling == NULL || !device_is_attached(sibling)) 1735 continue; 1736 if (detaching) 1737 error = T4_DETACH_CHILD(sibling); 1738 else 1739 (void)T4_ATTACH_CHILD(sibling); 1740 if (error) 1741 break; 1742 } 1743 return (error); 1744 } 1745 1746 /* 1747 * Idempotent 1748 */ 1749 static int 1750 t4_detach(device_t dev) 1751 { 1752 int rc; 1753 1754 rc = notify_siblings(dev, 1); 1755 if (rc) { 1756 device_printf(dev, 1757 "failed to detach sibling devices: %d\n", rc); 1758 return (rc); 1759 } 1760 1761 return (t4_detach_common(dev)); 1762 } 1763 1764 int 1765 t4_detach_common(device_t dev) 1766 { 1767 struct adapter *sc; 1768 struct port_info *pi; 1769 int i, rc; 1770 1771 sc = device_get_softc(dev); 1772 1773 #ifdef TCP_OFFLOAD 1774 rc = deactivate_all_uld(sc); 1775 if (rc) { 1776 device_printf(dev, 1777 "failed to detach upper layer drivers: %d\n", rc); 1778 return (rc); 1779 } 1780 #endif 1781 1782 if (sc->cdev) { 1783 destroy_dev(sc->cdev); 1784 sc->cdev = NULL; 1785 } 1786 1787 sx_xlock(&t4_list_lock); 1788 SLIST_REMOVE(&t4_list, sc, adapter, link); 1789 sx_xunlock(&t4_list_lock); 1790 1791 sc->flags &= ~CHK_MBOX_ACCESS; 1792 if (sc->flags & FULL_INIT_DONE) { 1793 if (!(sc->flags & IS_VF)) 1794 t4_intr_disable(sc); 1795 } 1796 1797 if (device_is_attached(dev)) { 1798 rc = bus_generic_detach(dev); 1799 if (rc) { 1800 device_printf(dev, 1801 "failed to detach child devices: %d\n", rc); 1802 return (rc); 1803 } 1804 } 1805 1806 for (i = 0; i < sc->intr_count; i++) 1807 t4_free_irq(sc, &sc->irq[i]); 1808 1809 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1810 t4_free_tx_sched(sc); 1811 1812 for (i = 0; i < MAX_NPORTS; i++) { 1813 pi = sc->port[i]; 1814 if (pi) { 1815 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1816 if (pi->dev) 1817 device_delete_child(dev, pi->dev); 1818 1819 mtx_destroy(&pi->pi_lock); 1820 free(pi->vi, M_CXGBE); 1821 free(pi, M_CXGBE); 1822 } 1823 } 1824 callout_stop(&sc->cal_callout); 1825 callout_drain(&sc->cal_callout); 1826 device_delete_children(dev); 1827 sysctl_ctx_free(&sc->ctx); 1828 adapter_full_uninit(sc); 1829 1830 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1831 t4_fw_bye(sc, sc->mbox); 1832 1833 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1834 pci_release_msi(dev); 1835 1836 if (sc->regs_res) 1837 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1838 sc->regs_res); 1839 1840 if (sc->udbs_res) 1841 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1842 sc->udbs_res); 1843 1844 if (sc->msix_res) 1845 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1846 sc->msix_res); 1847 1848 if (sc->l2t) 1849 t4_free_l2t(sc); 1850 if (sc->smt) 1851 t4_free_smt(sc->smt); 1852 t4_free_atid_table(sc); 1853 #ifdef RATELIMIT 1854 t4_free_etid_table(sc); 1855 #endif 1856 if (sc->key_map) 1857 vmem_destroy(sc->key_map); 1858 #ifdef INET6 1859 t4_destroy_clip_table(sc); 1860 #endif 1861 1862 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1863 free(sc->sge.ofld_txq, M_CXGBE); 1864 #endif 1865 #ifdef TCP_OFFLOAD 1866 free(sc->sge.ofld_rxq, M_CXGBE); 1867 #endif 1868 #ifdef DEV_NETMAP 1869 free(sc->sge.nm_rxq, M_CXGBE); 1870 free(sc->sge.nm_txq, M_CXGBE); 1871 #endif 1872 free(sc->irq, M_CXGBE); 1873 free(sc->sge.rxq, M_CXGBE); 1874 free(sc->sge.txq, M_CXGBE); 1875 free(sc->sge.ctrlq, M_CXGBE); 1876 free(sc->sge.iqmap, M_CXGBE); 1877 free(sc->sge.eqmap, M_CXGBE); 1878 free(sc->tids.ftid_tab, M_CXGBE); 1879 free(sc->tids.hpftid_tab, M_CXGBE); 1880 free_hftid_hash(&sc->tids); 1881 free(sc->tids.tid_tab, M_CXGBE); 1882 t4_destroy_dma_tag(sc); 1883 1884 callout_drain(&sc->ktls_tick); 1885 callout_drain(&sc->sfl_callout); 1886 if (mtx_initialized(&sc->tids.ftid_lock)) { 1887 mtx_destroy(&sc->tids.ftid_lock); 1888 cv_destroy(&sc->tids.ftid_cv); 1889 } 1890 if (mtx_initialized(&sc->tids.atid_lock)) 1891 mtx_destroy(&sc->tids.atid_lock); 1892 if (mtx_initialized(&sc->ifp_lock)) 1893 mtx_destroy(&sc->ifp_lock); 1894 1895 if (rw_initialized(&sc->policy_lock)) { 1896 rw_destroy(&sc->policy_lock); 1897 #ifdef TCP_OFFLOAD 1898 if (sc->policy != NULL) 1899 free_offload_policy(sc->policy); 1900 #endif 1901 } 1902 1903 for (i = 0; i < NUM_MEMWIN; i++) { 1904 struct memwin *mw = &sc->memwin[i]; 1905 1906 if (rw_initialized(&mw->mw_lock)) 1907 rw_destroy(&mw->mw_lock); 1908 } 1909 1910 mtx_destroy(&sc->sfl_lock); 1911 mtx_destroy(&sc->reg_lock); 1912 mtx_destroy(&sc->sc_lock); 1913 1914 bzero(sc, sizeof(*sc)); 1915 1916 return (0); 1917 } 1918 1919 static inline int 1920 stop_adapter(struct adapter *sc) 1921 { 1922 struct port_info *pi; 1923 int i; 1924 1925 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1926 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1927 __func__, curthread, sc->flags, sc->error_flags); 1928 return (EALREADY); 1929 } 1930 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1931 sc->flags, sc->error_flags); 1932 t4_shutdown_adapter(sc); 1933 for_each_port(sc, i) { 1934 pi = sc->port[i]; 1935 PORT_LOCK(pi); 1936 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 1937 /* 1938 * t4_shutdown_adapter has already shut down all the 1939 * PHYs but it also disables interrupts and DMA so there 1940 * won't be a link interrupt. Update the state manually 1941 * if the link was up previously and inform the kernel. 1942 */ 1943 pi->link_cfg.link_ok = false; 1944 t4_os_link_changed(pi); 1945 } 1946 PORT_UNLOCK(pi); 1947 } 1948 1949 return (0); 1950 } 1951 1952 static inline int 1953 restart_adapter(struct adapter *sc) 1954 { 1955 uint32_t val; 1956 1957 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1958 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1959 __func__, curthread, sc->flags, sc->error_flags); 1960 return (EALREADY); 1961 } 1962 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1963 sc->flags, sc->error_flags); 1964 1965 MPASS(hw_off_limits(sc)); 1966 MPASS((sc->flags & FW_OK) == 0); 1967 MPASS((sc->flags & MASTER_PF) == 0); 1968 MPASS(sc->reset_thread == NULL); 1969 1970 /* 1971 * The adapter is supposed to be back on PCIE with its config space and 1972 * BARs restored to their state before reset. Register access via 1973 * t4_read_reg BAR0 should just work. 1974 */ 1975 sc->reset_thread = curthread; 1976 val = t4_read_reg(sc, A_PL_WHOAMI); 1977 if (val == 0xffffffff || val == 0xeeeeeeee) { 1978 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1979 sc->reset_thread = NULL; 1980 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1981 return (ENXIO); 1982 } 1983 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1984 atomic_add_int(&sc->incarnation, 1); 1985 atomic_add_int(&sc->num_resets, 1); 1986 1987 return (0); 1988 } 1989 1990 static inline void 1991 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1992 { 1993 mtx_lock(&sc->reg_lock); 1994 if (usable) { 1995 /* Must be marked reusable by the designated thread. */ 1996 MPASS(sc->reset_thread == curthread); 1997 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1998 } else { 1999 /* Mark the adapter totally off limits. */ 2000 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2001 sc->flags &= ~(FW_OK | MASTER_PF); 2002 sc->reset_thread = NULL; 2003 } 2004 mtx_unlock(&sc->reg_lock); 2005 } 2006 2007 static int 2008 stop_lld(struct adapter *sc) 2009 { 2010 struct port_info *pi; 2011 struct vi_info *vi; 2012 if_t ifp; 2013 struct sge_rxq *rxq; 2014 struct sge_txq *txq; 2015 struct sge_wrq *wrq; 2016 #ifdef TCP_OFFLOAD 2017 struct sge_ofld_rxq *ofld_rxq; 2018 #endif 2019 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2020 struct sge_ofld_txq *ofld_txq; 2021 #endif 2022 int rc, i, j, k; 2023 2024 /* 2025 * XXX: Can there be a synch_op in progress that will hang because 2026 * hardware has been stopped? We'll hang too and the solution will be 2027 * to use a version of begin_synch_op that wakes up existing synch_op 2028 * with errors. Maybe stop_adapter should do this wakeup? 2029 * 2030 * I don't think any synch_op could get stranded waiting for DMA or 2031 * interrupt so I think we're okay here. Remove this comment block 2032 * after testing. 2033 */ 2034 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2035 if (rc != 0) 2036 return (ENXIO); 2037 2038 /* Quiesce all activity. */ 2039 for_each_port(sc, i) { 2040 pi = sc->port[i]; 2041 pi->vxlan_tcam_entry = false; 2042 for_each_vi(pi, j, vi) { 2043 vi->xact_addr_filt = -1; 2044 mtx_lock(&vi->tick_mtx); 2045 vi->flags |= VI_SKIP_STATS; 2046 mtx_unlock(&vi->tick_mtx); 2047 if (!(vi->flags & VI_INIT_DONE)) 2048 continue; 2049 2050 ifp = vi->ifp; 2051 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2052 mtx_lock(&vi->tick_mtx); 2053 callout_stop(&vi->tick); 2054 mtx_unlock(&vi->tick_mtx); 2055 callout_drain(&vi->tick); 2056 } 2057 2058 /* 2059 * Note that the HW is not available. 2060 */ 2061 for_each_txq(vi, k, txq) { 2062 TXQ_LOCK(txq); 2063 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2064 TXQ_UNLOCK(txq); 2065 } 2066 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2067 for_each_ofld_txq(vi, k, ofld_txq) { 2068 TXQ_LOCK(&ofld_txq->wrq); 2069 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2070 TXQ_UNLOCK(&ofld_txq->wrq); 2071 } 2072 #endif 2073 for_each_rxq(vi, k, rxq) { 2074 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2075 } 2076 #if defined(TCP_OFFLOAD) 2077 for_each_ofld_rxq(vi, k, ofld_rxq) { 2078 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2079 } 2080 #endif 2081 2082 quiesce_vi(vi); 2083 } 2084 2085 if (sc->flags & FULL_INIT_DONE) { 2086 /* Control queue */ 2087 wrq = &sc->sge.ctrlq[i]; 2088 TXQ_LOCK(wrq); 2089 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2090 TXQ_UNLOCK(wrq); 2091 quiesce_wrq(wrq); 2092 } 2093 2094 if (pi->flags & HAS_TRACEQ) { 2095 pi->flags &= ~HAS_TRACEQ; 2096 sc->traceq = -1; 2097 sc->tracer_valid = 0; 2098 sc->tracer_enabled = 0; 2099 } 2100 } 2101 if (sc->flags & FULL_INIT_DONE) { 2102 /* Firmware event queue */ 2103 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2104 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2105 } 2106 2107 /* Stop calibration */ 2108 callout_stop(&sc->cal_callout); 2109 callout_drain(&sc->cal_callout); 2110 2111 if (t4_clock_gate_on_suspend) { 2112 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2113 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2114 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2115 } 2116 2117 end_synchronized_op(sc, 0); 2118 2119 stop_atid_allocator(sc); 2120 t4_stop_l2t(sc); 2121 2122 return (rc); 2123 } 2124 2125 int 2126 suspend_adapter(struct adapter *sc) 2127 { 2128 stop_adapter(sc); 2129 stop_lld(sc); 2130 #ifdef TCP_OFFLOAD 2131 stop_all_uld(sc); 2132 #endif 2133 set_adapter_hwstatus(sc, false); 2134 2135 return (0); 2136 } 2137 2138 static int 2139 t4_suspend(device_t dev) 2140 { 2141 struct adapter *sc = device_get_softc(dev); 2142 int rc; 2143 2144 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2145 rc = suspend_adapter(sc); 2146 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2147 2148 return (rc); 2149 } 2150 2151 struct adapter_pre_reset_state { 2152 u_int flags; 2153 uint16_t nbmcaps; 2154 uint16_t linkcaps; 2155 uint16_t switchcaps; 2156 uint16_t niccaps; 2157 uint16_t toecaps; 2158 uint16_t rdmacaps; 2159 uint16_t cryptocaps; 2160 uint16_t iscsicaps; 2161 uint16_t fcoecaps; 2162 2163 u_int cfcsum; 2164 char cfg_file[32]; 2165 2166 struct adapter_params params; 2167 struct t4_virt_res vres; 2168 struct tid_info tids; 2169 struct sge sge; 2170 2171 int rawf_base; 2172 int nrawf; 2173 2174 }; 2175 2176 static void 2177 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2178 { 2179 2180 ASSERT_SYNCHRONIZED_OP(sc); 2181 2182 o->flags = sc->flags; 2183 2184 o->nbmcaps = sc->nbmcaps; 2185 o->linkcaps = sc->linkcaps; 2186 o->switchcaps = sc->switchcaps; 2187 o->niccaps = sc->niccaps; 2188 o->toecaps = sc->toecaps; 2189 o->rdmacaps = sc->rdmacaps; 2190 o->cryptocaps = sc->cryptocaps; 2191 o->iscsicaps = sc->iscsicaps; 2192 o->fcoecaps = sc->fcoecaps; 2193 2194 o->cfcsum = sc->cfcsum; 2195 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2196 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2197 2198 o->params = sc->params; 2199 o->vres = sc->vres; 2200 o->tids = sc->tids; 2201 o->sge = sc->sge; 2202 2203 o->rawf_base = sc->rawf_base; 2204 o->nrawf = sc->nrawf; 2205 } 2206 2207 static int 2208 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2209 { 2210 int rc = 0; 2211 2212 ASSERT_SYNCHRONIZED_OP(sc); 2213 2214 /* Capabilities */ 2215 #define COMPARE_CAPS(c) do { \ 2216 if (o->c##caps != sc->c##caps) { \ 2217 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2218 sc->c##caps); \ 2219 rc = EINVAL; \ 2220 } \ 2221 } while (0) 2222 COMPARE_CAPS(nbm); 2223 COMPARE_CAPS(link); 2224 COMPARE_CAPS(switch); 2225 COMPARE_CAPS(nic); 2226 COMPARE_CAPS(toe); 2227 COMPARE_CAPS(rdma); 2228 COMPARE_CAPS(crypto); 2229 COMPARE_CAPS(iscsi); 2230 COMPARE_CAPS(fcoe); 2231 #undef COMPARE_CAPS 2232 2233 /* Firmware config file */ 2234 if (o->cfcsum != sc->cfcsum) { 2235 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2236 o->cfcsum, sc->cfg_file, sc->cfcsum); 2237 rc = EINVAL; 2238 } 2239 2240 #define COMPARE_PARAM(p, name) do { \ 2241 if (o->p != sc->p) { \ 2242 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2243 rc = EINVAL; \ 2244 } \ 2245 } while (0) 2246 COMPARE_PARAM(sge.iq_start, iq_start); 2247 COMPARE_PARAM(sge.eq_start, eq_start); 2248 COMPARE_PARAM(tids.ftid_base, ftid_base); 2249 COMPARE_PARAM(tids.ftid_end, ftid_end); 2250 COMPARE_PARAM(tids.nftids, nftids); 2251 COMPARE_PARAM(vres.l2t.start, l2t_start); 2252 COMPARE_PARAM(vres.l2t.size, l2t_size); 2253 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2254 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2255 COMPARE_PARAM(tids.tid_base, tid_base); 2256 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2257 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2258 COMPARE_PARAM(tids.nhpftids, nhpftids); 2259 COMPARE_PARAM(rawf_base, rawf_base); 2260 COMPARE_PARAM(nrawf, nrawf); 2261 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2262 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2263 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2264 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2265 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2266 COMPARE_PARAM(tids.ntids, ntids); 2267 COMPARE_PARAM(tids.etid_base, etid_base); 2268 COMPARE_PARAM(tids.etid_end, etid_end); 2269 COMPARE_PARAM(tids.netids, netids); 2270 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2271 COMPARE_PARAM(params.ethoffload, ethoffload); 2272 COMPARE_PARAM(tids.natids, natids); 2273 COMPARE_PARAM(tids.stid_base, stid_base); 2274 COMPARE_PARAM(vres.ddp.start, ddp_start); 2275 COMPARE_PARAM(vres.ddp.size, ddp_size); 2276 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2277 COMPARE_PARAM(vres.stag.start, stag_start); 2278 COMPARE_PARAM(vres.stag.size, stag_size); 2279 COMPARE_PARAM(vres.rq.start, rq_start); 2280 COMPARE_PARAM(vres.rq.size, rq_size); 2281 COMPARE_PARAM(vres.pbl.start, pbl_start); 2282 COMPARE_PARAM(vres.pbl.size, pbl_size); 2283 COMPARE_PARAM(vres.qp.start, qp_start); 2284 COMPARE_PARAM(vres.qp.size, qp_size); 2285 COMPARE_PARAM(vres.cq.start, cq_start); 2286 COMPARE_PARAM(vres.cq.size, cq_size); 2287 COMPARE_PARAM(vres.ocq.start, ocq_start); 2288 COMPARE_PARAM(vres.ocq.size, ocq_size); 2289 COMPARE_PARAM(vres.srq.start, srq_start); 2290 COMPARE_PARAM(vres.srq.size, srq_size); 2291 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2292 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2293 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2294 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2295 COMPARE_PARAM(vres.key.start, key_start); 2296 COMPARE_PARAM(vres.key.size, key_size); 2297 #undef COMPARE_PARAM 2298 2299 return (rc); 2300 } 2301 2302 static int 2303 restart_lld(struct adapter *sc) 2304 { 2305 struct adapter_pre_reset_state *old_state = NULL; 2306 struct port_info *pi; 2307 struct vi_info *vi; 2308 if_t ifp; 2309 struct sge_txq *txq; 2310 int rc, i, j, k; 2311 2312 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2313 if (rc != 0) 2314 return (ENXIO); 2315 2316 /* Restore memory window. */ 2317 setup_memwin(sc); 2318 2319 /* Go no further if recovery mode has been requested. */ 2320 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2321 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2322 rc = 0; 2323 set_adapter_hwstatus(sc, true); 2324 goto done; 2325 } 2326 2327 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2328 save_caps_and_params(sc, old_state); 2329 2330 /* Reestablish contact with firmware and become the primary PF. */ 2331 rc = contact_firmware(sc); 2332 if (rc != 0) 2333 goto done; /* error message displayed already */ 2334 MPASS(sc->flags & FW_OK); 2335 2336 if (sc->flags & MASTER_PF) { 2337 rc = partition_resources(sc); 2338 if (rc != 0) 2339 goto done; /* error message displayed already */ 2340 } 2341 2342 rc = get_params__post_init(sc); 2343 if (rc != 0) 2344 goto done; /* error message displayed already */ 2345 2346 rc = set_params__post_init(sc); 2347 if (rc != 0) 2348 goto done; /* error message displayed already */ 2349 2350 rc = compare_caps_and_params(sc, old_state); 2351 if (rc != 0) 2352 goto done; /* error message displayed already */ 2353 2354 for_each_port(sc, i) { 2355 pi = sc->port[i]; 2356 MPASS(pi != NULL); 2357 MPASS(pi->vi != NULL); 2358 MPASS(pi->vi[0].dev == pi->dev); 2359 2360 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2361 if (rc != 0) { 2362 CH_ERR(sc, 2363 "failed to re-initialize port %d: %d\n", i, rc); 2364 goto done; 2365 } 2366 MPASS(sc->chan_map[pi->tx_chan] == i); 2367 2368 PORT_LOCK(pi); 2369 fixup_link_config(pi); 2370 build_medialist(pi); 2371 PORT_UNLOCK(pi); 2372 for_each_vi(pi, j, vi) { 2373 if (IS_MAIN_VI(vi)) 2374 continue; 2375 rc = alloc_extra_vi(sc, pi, vi); 2376 if (rc != 0) { 2377 CH_ERR(vi, 2378 "failed to re-allocate extra VI: %d\n", rc); 2379 goto done; 2380 } 2381 } 2382 } 2383 2384 /* 2385 * Interrupts and queues are about to be enabled and other threads will 2386 * want to access the hardware too. It is safe to do so. Note that 2387 * this thread is still in the middle of a synchronized_op. 2388 */ 2389 set_adapter_hwstatus(sc, true); 2390 2391 if (sc->flags & FULL_INIT_DONE) { 2392 rc = adapter_full_init(sc); 2393 if (rc != 0) { 2394 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2395 goto done; 2396 } 2397 2398 if (sc->vxlan_refcount > 0) 2399 enable_vxlan_rx(sc); 2400 2401 for_each_port(sc, i) { 2402 pi = sc->port[i]; 2403 for_each_vi(pi, j, vi) { 2404 mtx_lock(&vi->tick_mtx); 2405 vi->flags &= ~VI_SKIP_STATS; 2406 mtx_unlock(&vi->tick_mtx); 2407 if (!(vi->flags & VI_INIT_DONE)) 2408 continue; 2409 rc = vi_full_init(vi); 2410 if (rc != 0) { 2411 CH_ERR(vi, "failed to re-initialize " 2412 "interface: %d\n", rc); 2413 goto done; 2414 } 2415 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2416 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2417 t4_write_reg(sc, is_t4(sc) ? 2418 A_MPS_TRC_RSS_CONTROL : 2419 A_MPS_T5_TRC_RSS_CONTROL, 2420 V_RSSCONTROL(pi->tx_chan) | 2421 V_QUEUENUMBER(sc->traceq)); 2422 pi->flags |= HAS_TRACEQ; 2423 } 2424 2425 ifp = vi->ifp; 2426 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2427 continue; 2428 /* 2429 * Note that we do not setup multicast addresses 2430 * in the first pass. This ensures that the 2431 * unicast DMACs for all VIs on all ports get an 2432 * MPS TCAM entry. 2433 */ 2434 rc = update_mac_settings(ifp, XGMAC_ALL & 2435 ~XGMAC_MCADDRS); 2436 if (rc != 0) { 2437 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2438 goto done; 2439 } 2440 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2441 true); 2442 if (rc != 0) { 2443 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2444 goto done; 2445 } 2446 for_each_txq(vi, k, txq) { 2447 TXQ_LOCK(txq); 2448 txq->eq.flags |= EQ_ENABLED; 2449 TXQ_UNLOCK(txq); 2450 } 2451 mtx_lock(&vi->tick_mtx); 2452 callout_schedule(&vi->tick, hz); 2453 mtx_unlock(&vi->tick_mtx); 2454 } 2455 PORT_LOCK(pi); 2456 if (pi->up_vis > 0) { 2457 t4_update_port_info(pi); 2458 fixup_link_config(pi); 2459 build_medialist(pi); 2460 apply_link_config(pi); 2461 if (pi->link_cfg.link_ok) 2462 t4_os_link_changed(pi); 2463 } 2464 PORT_UNLOCK(pi); 2465 } 2466 2467 /* Now reprogram the L2 multicast addresses. */ 2468 for_each_port(sc, i) { 2469 pi = sc->port[i]; 2470 for_each_vi(pi, j, vi) { 2471 if (!(vi->flags & VI_INIT_DONE)) 2472 continue; 2473 ifp = vi->ifp; 2474 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2475 continue; 2476 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2477 if (rc != 0) { 2478 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2479 rc = 0; /* carry on */ 2480 } 2481 } 2482 } 2483 } 2484 2485 /* Reset all calibration */ 2486 t4_calibration_start(sc); 2487 done: 2488 end_synchronized_op(sc, 0); 2489 free(old_state, M_CXGBE); 2490 2491 restart_atid_allocator(sc); 2492 t4_restart_l2t(sc); 2493 2494 return (rc); 2495 } 2496 2497 int 2498 resume_adapter(struct adapter *sc) 2499 { 2500 restart_adapter(sc); 2501 restart_lld(sc); 2502 #ifdef TCP_OFFLOAD 2503 restart_all_uld(sc); 2504 #endif 2505 return (0); 2506 } 2507 2508 static int 2509 t4_resume(device_t dev) 2510 { 2511 struct adapter *sc = device_get_softc(dev); 2512 int rc; 2513 2514 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2515 rc = resume_adapter(sc); 2516 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2517 2518 return (rc); 2519 } 2520 2521 static int 2522 t4_reset_prepare(device_t dev, device_t child) 2523 { 2524 struct adapter *sc = device_get_softc(dev); 2525 2526 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2527 return (0); 2528 } 2529 2530 static int 2531 t4_reset_post(device_t dev, device_t child) 2532 { 2533 struct adapter *sc = device_get_softc(dev); 2534 2535 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2536 return (0); 2537 } 2538 2539 static int 2540 reset_adapter_with_pci_bus_reset(struct adapter *sc) 2541 { 2542 int rc; 2543 2544 mtx_lock(&Giant); 2545 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2546 mtx_unlock(&Giant); 2547 return (rc); 2548 } 2549 2550 static int 2551 reset_adapter_with_pl_rst(struct adapter *sc) 2552 { 2553 suspend_adapter(sc); 2554 2555 /* This is a t4_write_reg without the hw_off_limits check. */ 2556 MPASS(sc->error_flags & HW_OFF_LIMITS); 2557 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2558 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2559 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2560 2561 resume_adapter(sc); 2562 2563 return (0); 2564 } 2565 2566 static inline int 2567 reset_adapter(struct adapter *sc) 2568 { 2569 if (vm_guest == 0) 2570 return (reset_adapter_with_pci_bus_reset(sc)); 2571 else 2572 return (reset_adapter_with_pl_rst(sc)); 2573 } 2574 2575 static void 2576 reset_adapter_task(void *arg, int pending) 2577 { 2578 struct adapter *sc = arg; 2579 const int flags = sc->flags; 2580 const int eflags = sc->error_flags; 2581 int rc; 2582 2583 if (pending > 1) 2584 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2585 rc = reset_adapter(sc); 2586 if (rc != 0) { 2587 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2588 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2589 rc, flags, sc->flags, eflags, sc->error_flags); 2590 } 2591 } 2592 2593 static int 2594 cxgbe_probe(device_t dev) 2595 { 2596 struct port_info *pi = device_get_softc(dev); 2597 2598 device_set_descf(dev, "port %d", pi->port_id); 2599 2600 return (BUS_PROBE_DEFAULT); 2601 } 2602 2603 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2604 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2605 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2606 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2607 #define T4_CAP_ENABLE (T4_CAP) 2608 2609 static void 2610 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2611 { 2612 if_t ifp; 2613 struct sbuf *sb; 2614 struct sysctl_ctx_list *ctx = &vi->ctx; 2615 struct sysctl_oid_list *children; 2616 struct pfil_head_args pa; 2617 struct adapter *sc = vi->adapter; 2618 2619 sysctl_ctx_init(ctx); 2620 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2621 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2622 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2623 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2624 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2625 #ifdef DEV_NETMAP 2626 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2627 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2628 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2629 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2630 #endif 2631 #ifdef TCP_OFFLOAD 2632 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2633 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2634 #endif 2635 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2636 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2637 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2638 #endif 2639 2640 vi->xact_addr_filt = -1; 2641 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2642 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2643 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2644 vi->flags |= TX_USES_VM_WR; 2645 2646 /* Allocate an ifnet and set it up */ 2647 ifp = if_alloc_dev(IFT_ETHER, dev); 2648 vi->ifp = ifp; 2649 if_setsoftc(ifp, vi); 2650 2651 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2652 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2653 2654 if_setinitfn(ifp, cxgbe_init); 2655 if_setioctlfn(ifp, cxgbe_ioctl); 2656 if_settransmitfn(ifp, cxgbe_transmit); 2657 if_setqflushfn(ifp, cxgbe_qflush); 2658 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2659 if_setgetcounterfn(ifp, vi_get_counter); 2660 else 2661 if_setgetcounterfn(ifp, cxgbe_get_counter); 2662 #if defined(KERN_TLS) || defined(RATELIMIT) 2663 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2664 #endif 2665 #ifdef RATELIMIT 2666 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2667 #endif 2668 2669 if_setcapabilities(ifp, T4_CAP); 2670 if_setcapenable(ifp, T4_CAP_ENABLE); 2671 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2672 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2673 if (chip_id(sc) >= CHELSIO_T6) { 2674 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2675 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2676 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2677 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2678 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2679 } 2680 2681 #ifdef TCP_OFFLOAD 2682 if (vi->nofldrxq != 0) 2683 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2684 #endif 2685 #ifdef RATELIMIT 2686 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2687 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2688 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2689 } 2690 #endif 2691 2692 if_sethwtsomax(ifp, IP_MAXPACKET); 2693 if (vi->flags & TX_USES_VM_WR) 2694 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2695 else 2696 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2697 #ifdef RATELIMIT 2698 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2699 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2700 #endif 2701 if_sethwtsomaxsegsize(ifp, 65536); 2702 #ifdef KERN_TLS 2703 if (is_ktls(sc)) { 2704 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2705 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2706 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2707 } 2708 #endif 2709 2710 ether_ifattach(ifp, vi->hw_addr); 2711 #ifdef DEV_NETMAP 2712 if (vi->nnmrxq != 0) 2713 cxgbe_nm_attach(vi); 2714 #endif 2715 sb = sbuf_new_auto(); 2716 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2717 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2718 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2719 case IFCAP_TOE: 2720 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2721 break; 2722 case IFCAP_TOE | IFCAP_TXRTLMT: 2723 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2724 break; 2725 case IFCAP_TXRTLMT: 2726 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2727 break; 2728 } 2729 #endif 2730 #ifdef TCP_OFFLOAD 2731 if (if_getcapabilities(ifp) & IFCAP_TOE) 2732 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2733 #endif 2734 #ifdef DEV_NETMAP 2735 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2736 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2737 vi->nnmtxq, vi->nnmrxq); 2738 #endif 2739 sbuf_finish(sb); 2740 device_printf(dev, "%s\n", sbuf_data(sb)); 2741 sbuf_delete(sb); 2742 2743 vi_sysctls(vi); 2744 2745 pa.pa_version = PFIL_VERSION; 2746 pa.pa_flags = PFIL_IN; 2747 pa.pa_type = PFIL_TYPE_ETHERNET; 2748 pa.pa_headname = if_name(ifp); 2749 vi->pfil = pfil_head_register(&pa); 2750 } 2751 2752 static int 2753 cxgbe_attach(device_t dev) 2754 { 2755 struct port_info *pi = device_get_softc(dev); 2756 struct adapter *sc = pi->adapter; 2757 struct vi_info *vi; 2758 int i; 2759 2760 sysctl_ctx_init(&pi->ctx); 2761 2762 cxgbe_vi_attach(dev, &pi->vi[0]); 2763 2764 for_each_vi(pi, i, vi) { 2765 if (i == 0) 2766 continue; 2767 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2768 if (vi->dev == NULL) { 2769 device_printf(dev, "failed to add VI %d\n", i); 2770 continue; 2771 } 2772 device_set_softc(vi->dev, vi); 2773 } 2774 2775 cxgbe_sysctls(pi); 2776 2777 bus_generic_attach(dev); 2778 2779 return (0); 2780 } 2781 2782 static void 2783 cxgbe_vi_detach(struct vi_info *vi) 2784 { 2785 if_t ifp = vi->ifp; 2786 2787 if (vi->pfil != NULL) { 2788 pfil_head_unregister(vi->pfil); 2789 vi->pfil = NULL; 2790 } 2791 2792 ether_ifdetach(ifp); 2793 2794 /* Let detach proceed even if these fail. */ 2795 #ifdef DEV_NETMAP 2796 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2797 cxgbe_nm_detach(vi); 2798 #endif 2799 cxgbe_uninit_synchronized(vi); 2800 callout_drain(&vi->tick); 2801 mtx_destroy(&vi->tick_mtx); 2802 sysctl_ctx_free(&vi->ctx); 2803 vi_full_uninit(vi); 2804 2805 if_free(vi->ifp); 2806 vi->ifp = NULL; 2807 } 2808 2809 static int 2810 cxgbe_detach(device_t dev) 2811 { 2812 struct port_info *pi = device_get_softc(dev); 2813 struct adapter *sc = pi->adapter; 2814 int rc; 2815 2816 /* Detach the extra VIs first. */ 2817 rc = bus_generic_detach(dev); 2818 if (rc) 2819 return (rc); 2820 device_delete_children(dev); 2821 2822 sysctl_ctx_free(&pi->ctx); 2823 begin_vi_detach(sc, &pi->vi[0]); 2824 if (pi->flags & HAS_TRACEQ) { 2825 sc->traceq = -1; /* cloner should not create ifnet */ 2826 t4_tracer_port_detach(sc); 2827 } 2828 cxgbe_vi_detach(&pi->vi[0]); 2829 ifmedia_removeall(&pi->media); 2830 end_vi_detach(sc, &pi->vi[0]); 2831 2832 return (0); 2833 } 2834 2835 static void 2836 cxgbe_init(void *arg) 2837 { 2838 struct vi_info *vi = arg; 2839 struct adapter *sc = vi->adapter; 2840 2841 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2842 return; 2843 cxgbe_init_synchronized(vi); 2844 end_synchronized_op(sc, 0); 2845 } 2846 2847 static int 2848 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2849 { 2850 int rc = 0, mtu, flags; 2851 struct vi_info *vi = if_getsoftc(ifp); 2852 struct port_info *pi = vi->pi; 2853 struct adapter *sc = pi->adapter; 2854 struct ifreq *ifr = (struct ifreq *)data; 2855 uint32_t mask; 2856 2857 switch (cmd) { 2858 case SIOCSIFMTU: 2859 mtu = ifr->ifr_mtu; 2860 if (mtu < ETHERMIN || mtu > MAX_MTU) 2861 return (EINVAL); 2862 2863 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2864 if (rc) 2865 return (rc); 2866 if_setmtu(ifp, mtu); 2867 if (vi->flags & VI_INIT_DONE) { 2868 t4_update_fl_bufsize(ifp); 2869 if (!hw_off_limits(sc) && 2870 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2871 rc = update_mac_settings(ifp, XGMAC_MTU); 2872 } 2873 end_synchronized_op(sc, 0); 2874 break; 2875 2876 case SIOCSIFFLAGS: 2877 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2878 if (rc) 2879 return (rc); 2880 2881 if (hw_off_limits(sc)) { 2882 rc = ENXIO; 2883 goto fail; 2884 } 2885 2886 if (if_getflags(ifp) & IFF_UP) { 2887 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2888 flags = vi->if_flags; 2889 if ((if_getflags(ifp) ^ flags) & 2890 (IFF_PROMISC | IFF_ALLMULTI)) { 2891 rc = update_mac_settings(ifp, 2892 XGMAC_PROMISC | XGMAC_ALLMULTI); 2893 } 2894 } else { 2895 rc = cxgbe_init_synchronized(vi); 2896 } 2897 vi->if_flags = if_getflags(ifp); 2898 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2899 rc = cxgbe_uninit_synchronized(vi); 2900 } 2901 end_synchronized_op(sc, 0); 2902 break; 2903 2904 case SIOCADDMULTI: 2905 case SIOCDELMULTI: 2906 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2907 if (rc) 2908 return (rc); 2909 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2910 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2911 end_synchronized_op(sc, 0); 2912 break; 2913 2914 case SIOCSIFCAP: 2915 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2916 if (rc) 2917 return (rc); 2918 2919 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2920 if (mask & IFCAP_TXCSUM) { 2921 if_togglecapenable(ifp, IFCAP_TXCSUM); 2922 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2923 2924 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2925 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2926 mask &= ~IFCAP_TSO4; 2927 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2928 if_printf(ifp, 2929 "tso4 disabled due to -txcsum.\n"); 2930 } 2931 } 2932 if (mask & IFCAP_TXCSUM_IPV6) { 2933 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2934 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2935 2936 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2937 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2938 mask &= ~IFCAP_TSO6; 2939 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2940 if_printf(ifp, 2941 "tso6 disabled due to -txcsum6.\n"); 2942 } 2943 } 2944 if (mask & IFCAP_RXCSUM) 2945 if_togglecapenable(ifp, IFCAP_RXCSUM); 2946 if (mask & IFCAP_RXCSUM_IPV6) 2947 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2948 2949 /* 2950 * Note that we leave CSUM_TSO alone (it is always set). The 2951 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2952 * sending a TSO request our way, so it's sufficient to toggle 2953 * IFCAP_TSOx only. 2954 */ 2955 if (mask & IFCAP_TSO4) { 2956 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2957 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2958 if_printf(ifp, "enable txcsum first.\n"); 2959 rc = EAGAIN; 2960 goto fail; 2961 } 2962 if_togglecapenable(ifp, IFCAP_TSO4); 2963 } 2964 if (mask & IFCAP_TSO6) { 2965 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2966 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2967 if_printf(ifp, "enable txcsum6 first.\n"); 2968 rc = EAGAIN; 2969 goto fail; 2970 } 2971 if_togglecapenable(ifp, IFCAP_TSO6); 2972 } 2973 if (mask & IFCAP_LRO) { 2974 #if defined(INET) || defined(INET6) 2975 int i; 2976 struct sge_rxq *rxq; 2977 2978 if_togglecapenable(ifp, IFCAP_LRO); 2979 for_each_rxq(vi, i, rxq) { 2980 if (if_getcapenable(ifp) & IFCAP_LRO) 2981 rxq->iq.flags |= IQ_LRO_ENABLED; 2982 else 2983 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2984 } 2985 #endif 2986 } 2987 #ifdef TCP_OFFLOAD 2988 if (mask & IFCAP_TOE) { 2989 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2990 2991 rc = toe_capability(vi, enable); 2992 if (rc != 0) 2993 goto fail; 2994 2995 if_togglecapenable(ifp, mask); 2996 } 2997 #endif 2998 if (mask & IFCAP_VLAN_HWTAGGING) { 2999 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3000 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3001 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3002 } 3003 if (mask & IFCAP_VLAN_MTU) { 3004 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3005 3006 /* Need to find out how to disable auto-mtu-inflation */ 3007 } 3008 if (mask & IFCAP_VLAN_HWTSO) 3009 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3010 if (mask & IFCAP_VLAN_HWCSUM) 3011 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3012 #ifdef RATELIMIT 3013 if (mask & IFCAP_TXRTLMT) 3014 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3015 #endif 3016 if (mask & IFCAP_HWRXTSTMP) { 3017 int i; 3018 struct sge_rxq *rxq; 3019 3020 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3021 for_each_rxq(vi, i, rxq) { 3022 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3023 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3024 else 3025 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3026 } 3027 } 3028 if (mask & IFCAP_MEXTPG) 3029 if_togglecapenable(ifp, IFCAP_MEXTPG); 3030 3031 #ifdef KERN_TLS 3032 if (mask & IFCAP_TXTLS) { 3033 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3034 3035 rc = ktls_capability(sc, enable); 3036 if (rc != 0) 3037 goto fail; 3038 3039 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3040 } 3041 #endif 3042 if (mask & IFCAP_VXLAN_HWCSUM) { 3043 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3044 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3045 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3046 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3047 } 3048 if (mask & IFCAP_VXLAN_HWTSO) { 3049 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3050 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3051 CSUM_INNER_IP_TSO); 3052 } 3053 3054 #ifdef VLAN_CAPABILITIES 3055 VLAN_CAPABILITIES(ifp); 3056 #endif 3057 fail: 3058 end_synchronized_op(sc, 0); 3059 break; 3060 3061 case SIOCSIFMEDIA: 3062 case SIOCGIFMEDIA: 3063 case SIOCGIFXMEDIA: 3064 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3065 break; 3066 3067 case SIOCGI2C: { 3068 struct ifi2creq i2c; 3069 3070 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3071 if (rc != 0) 3072 break; 3073 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3074 rc = EPERM; 3075 break; 3076 } 3077 if (i2c.len > sizeof(i2c.data)) { 3078 rc = EINVAL; 3079 break; 3080 } 3081 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3082 if (rc) 3083 return (rc); 3084 if (hw_off_limits(sc)) 3085 rc = ENXIO; 3086 else 3087 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3088 i2c.offset, i2c.len, &i2c.data[0]); 3089 end_synchronized_op(sc, 0); 3090 if (rc == 0) 3091 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3092 break; 3093 } 3094 3095 default: 3096 rc = ether_ioctl(ifp, cmd, data); 3097 } 3098 3099 return (rc); 3100 } 3101 3102 static int 3103 cxgbe_transmit(if_t ifp, struct mbuf *m) 3104 { 3105 struct vi_info *vi = if_getsoftc(ifp); 3106 struct port_info *pi = vi->pi; 3107 struct adapter *sc; 3108 struct sge_txq *txq; 3109 void *items[1]; 3110 int rc; 3111 3112 M_ASSERTPKTHDR(m); 3113 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3114 #if defined(KERN_TLS) || defined(RATELIMIT) 3115 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3116 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3117 #endif 3118 3119 if (__predict_false(pi->link_cfg.link_ok == false)) { 3120 m_freem(m); 3121 return (ENETDOWN); 3122 } 3123 3124 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3125 if (__predict_false(rc != 0)) { 3126 if (__predict_true(rc == EINPROGRESS)) { 3127 /* queued by parse_pkt */ 3128 MPASS(m != NULL); 3129 return (0); 3130 } 3131 3132 MPASS(m == NULL); /* was freed already */ 3133 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3134 return (rc); 3135 } 3136 3137 /* Select a txq. */ 3138 sc = vi->adapter; 3139 txq = &sc->sge.txq[vi->first_txq]; 3140 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3141 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3142 vi->rsrv_noflowq); 3143 3144 items[0] = m; 3145 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3146 if (__predict_false(rc != 0)) 3147 m_freem(m); 3148 3149 return (rc); 3150 } 3151 3152 static void 3153 cxgbe_qflush(if_t ifp) 3154 { 3155 struct vi_info *vi = if_getsoftc(ifp); 3156 struct sge_txq *txq; 3157 int i; 3158 3159 /* queues do not exist if !VI_INIT_DONE. */ 3160 if (vi->flags & VI_INIT_DONE) { 3161 for_each_txq(vi, i, txq) { 3162 TXQ_LOCK(txq); 3163 txq->eq.flags |= EQ_QFLUSH; 3164 TXQ_UNLOCK(txq); 3165 while (!mp_ring_is_idle(txq->r)) { 3166 mp_ring_check_drainage(txq->r, 4096); 3167 pause("qflush", 1); 3168 } 3169 TXQ_LOCK(txq); 3170 txq->eq.flags &= ~EQ_QFLUSH; 3171 TXQ_UNLOCK(txq); 3172 } 3173 } 3174 if_qflush(ifp); 3175 } 3176 3177 static uint64_t 3178 vi_get_counter(if_t ifp, ift_counter c) 3179 { 3180 struct vi_info *vi = if_getsoftc(ifp); 3181 struct fw_vi_stats_vf *s = &vi->stats; 3182 3183 mtx_lock(&vi->tick_mtx); 3184 vi_refresh_stats(vi); 3185 mtx_unlock(&vi->tick_mtx); 3186 3187 switch (c) { 3188 case IFCOUNTER_IPACKETS: 3189 return (s->rx_bcast_frames + s->rx_mcast_frames + 3190 s->rx_ucast_frames); 3191 case IFCOUNTER_IERRORS: 3192 return (s->rx_err_frames); 3193 case IFCOUNTER_OPACKETS: 3194 return (s->tx_bcast_frames + s->tx_mcast_frames + 3195 s->tx_ucast_frames + s->tx_offload_frames); 3196 case IFCOUNTER_OERRORS: 3197 return (s->tx_drop_frames); 3198 case IFCOUNTER_IBYTES: 3199 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3200 s->rx_ucast_bytes); 3201 case IFCOUNTER_OBYTES: 3202 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3203 s->tx_ucast_bytes + s->tx_offload_bytes); 3204 case IFCOUNTER_IMCASTS: 3205 return (s->rx_mcast_frames); 3206 case IFCOUNTER_OMCASTS: 3207 return (s->tx_mcast_frames); 3208 case IFCOUNTER_OQDROPS: { 3209 uint64_t drops; 3210 3211 drops = 0; 3212 if (vi->flags & VI_INIT_DONE) { 3213 int i; 3214 struct sge_txq *txq; 3215 3216 for_each_txq(vi, i, txq) 3217 drops += counter_u64_fetch(txq->r->dropped); 3218 } 3219 3220 return (drops); 3221 3222 } 3223 3224 default: 3225 return (if_get_counter_default(ifp, c)); 3226 } 3227 } 3228 3229 static uint64_t 3230 cxgbe_get_counter(if_t ifp, ift_counter c) 3231 { 3232 struct vi_info *vi = if_getsoftc(ifp); 3233 struct port_info *pi = vi->pi; 3234 struct port_stats *s = &pi->stats; 3235 3236 mtx_lock(&vi->tick_mtx); 3237 cxgbe_refresh_stats(vi); 3238 mtx_unlock(&vi->tick_mtx); 3239 3240 switch (c) { 3241 case IFCOUNTER_IPACKETS: 3242 return (s->rx_frames); 3243 3244 case IFCOUNTER_IERRORS: 3245 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3246 s->rx_fcs_err + s->rx_len_err); 3247 3248 case IFCOUNTER_OPACKETS: 3249 return (s->tx_frames); 3250 3251 case IFCOUNTER_OERRORS: 3252 return (s->tx_error_frames); 3253 3254 case IFCOUNTER_IBYTES: 3255 return (s->rx_octets); 3256 3257 case IFCOUNTER_OBYTES: 3258 return (s->tx_octets); 3259 3260 case IFCOUNTER_IMCASTS: 3261 return (s->rx_mcast_frames); 3262 3263 case IFCOUNTER_OMCASTS: 3264 return (s->tx_mcast_frames); 3265 3266 case IFCOUNTER_IQDROPS: 3267 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3268 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3269 s->rx_trunc3 + pi->tnl_cong_drops); 3270 3271 case IFCOUNTER_OQDROPS: { 3272 uint64_t drops; 3273 3274 drops = s->tx_drop; 3275 if (vi->flags & VI_INIT_DONE) { 3276 int i; 3277 struct sge_txq *txq; 3278 3279 for_each_txq(vi, i, txq) 3280 drops += counter_u64_fetch(txq->r->dropped); 3281 } 3282 3283 return (drops); 3284 3285 } 3286 3287 default: 3288 return (if_get_counter_default(ifp, c)); 3289 } 3290 } 3291 3292 #if defined(KERN_TLS) || defined(RATELIMIT) 3293 static int 3294 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3295 struct m_snd_tag **pt) 3296 { 3297 int error; 3298 3299 switch (params->hdr.type) { 3300 #ifdef RATELIMIT 3301 case IF_SND_TAG_TYPE_RATE_LIMIT: 3302 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3303 break; 3304 #endif 3305 #ifdef KERN_TLS 3306 case IF_SND_TAG_TYPE_TLS: 3307 { 3308 struct vi_info *vi = if_getsoftc(ifp); 3309 3310 if (is_t6(vi->pi->adapter)) 3311 error = t6_tls_tag_alloc(ifp, params, pt); 3312 else 3313 error = EOPNOTSUPP; 3314 break; 3315 } 3316 #endif 3317 default: 3318 error = EOPNOTSUPP; 3319 } 3320 return (error); 3321 } 3322 #endif 3323 3324 /* 3325 * The kernel picks a media from the list we had provided but we still validate 3326 * the requeste. 3327 */ 3328 int 3329 cxgbe_media_change(if_t ifp) 3330 { 3331 struct vi_info *vi = if_getsoftc(ifp); 3332 struct port_info *pi = vi->pi; 3333 struct ifmedia *ifm = &pi->media; 3334 struct link_config *lc = &pi->link_cfg; 3335 struct adapter *sc = pi->adapter; 3336 int rc; 3337 3338 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3339 if (rc != 0) 3340 return (rc); 3341 PORT_LOCK(pi); 3342 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3343 /* ifconfig .. media autoselect */ 3344 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3345 rc = ENOTSUP; /* AN not supported by transceiver */ 3346 goto done; 3347 } 3348 lc->requested_aneg = AUTONEG_ENABLE; 3349 lc->requested_speed = 0; 3350 lc->requested_fc |= PAUSE_AUTONEG; 3351 } else { 3352 lc->requested_aneg = AUTONEG_DISABLE; 3353 lc->requested_speed = 3354 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3355 lc->requested_fc = 0; 3356 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3357 lc->requested_fc |= PAUSE_RX; 3358 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3359 lc->requested_fc |= PAUSE_TX; 3360 } 3361 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3362 fixup_link_config(pi); 3363 rc = apply_link_config(pi); 3364 } 3365 done: 3366 PORT_UNLOCK(pi); 3367 end_synchronized_op(sc, 0); 3368 return (rc); 3369 } 3370 3371 /* 3372 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3373 * given speed. 3374 */ 3375 static int 3376 port_mword(struct port_info *pi, uint32_t speed) 3377 { 3378 3379 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3380 MPASS(powerof2(speed)); 3381 3382 switch(pi->port_type) { 3383 case FW_PORT_TYPE_BT_SGMII: 3384 case FW_PORT_TYPE_BT_XFI: 3385 case FW_PORT_TYPE_BT_XAUI: 3386 /* BaseT */ 3387 switch (speed) { 3388 case FW_PORT_CAP32_SPEED_100M: 3389 return (IFM_100_T); 3390 case FW_PORT_CAP32_SPEED_1G: 3391 return (IFM_1000_T); 3392 case FW_PORT_CAP32_SPEED_10G: 3393 return (IFM_10G_T); 3394 } 3395 break; 3396 case FW_PORT_TYPE_KX4: 3397 if (speed == FW_PORT_CAP32_SPEED_10G) 3398 return (IFM_10G_KX4); 3399 break; 3400 case FW_PORT_TYPE_CX4: 3401 if (speed == FW_PORT_CAP32_SPEED_10G) 3402 return (IFM_10G_CX4); 3403 break; 3404 case FW_PORT_TYPE_KX: 3405 if (speed == FW_PORT_CAP32_SPEED_1G) 3406 return (IFM_1000_KX); 3407 break; 3408 case FW_PORT_TYPE_KR: 3409 case FW_PORT_TYPE_BP_AP: 3410 case FW_PORT_TYPE_BP4_AP: 3411 case FW_PORT_TYPE_BP40_BA: 3412 case FW_PORT_TYPE_KR4_100G: 3413 case FW_PORT_TYPE_KR_SFP28: 3414 case FW_PORT_TYPE_KR_XLAUI: 3415 switch (speed) { 3416 case FW_PORT_CAP32_SPEED_1G: 3417 return (IFM_1000_KX); 3418 case FW_PORT_CAP32_SPEED_10G: 3419 return (IFM_10G_KR); 3420 case FW_PORT_CAP32_SPEED_25G: 3421 return (IFM_25G_KR); 3422 case FW_PORT_CAP32_SPEED_40G: 3423 return (IFM_40G_KR4); 3424 case FW_PORT_CAP32_SPEED_50G: 3425 return (IFM_50G_KR2); 3426 case FW_PORT_CAP32_SPEED_100G: 3427 return (IFM_100G_KR4); 3428 } 3429 break; 3430 case FW_PORT_TYPE_FIBER_XFI: 3431 case FW_PORT_TYPE_FIBER_XAUI: 3432 case FW_PORT_TYPE_SFP: 3433 case FW_PORT_TYPE_QSFP_10G: 3434 case FW_PORT_TYPE_QSA: 3435 case FW_PORT_TYPE_QSFP: 3436 case FW_PORT_TYPE_CR4_QSFP: 3437 case FW_PORT_TYPE_CR_QSFP: 3438 case FW_PORT_TYPE_CR2_QSFP: 3439 case FW_PORT_TYPE_SFP28: 3440 /* Pluggable transceiver */ 3441 switch (pi->mod_type) { 3442 case FW_PORT_MOD_TYPE_LR: 3443 switch (speed) { 3444 case FW_PORT_CAP32_SPEED_1G: 3445 return (IFM_1000_LX); 3446 case FW_PORT_CAP32_SPEED_10G: 3447 return (IFM_10G_LR); 3448 case FW_PORT_CAP32_SPEED_25G: 3449 return (IFM_25G_LR); 3450 case FW_PORT_CAP32_SPEED_40G: 3451 return (IFM_40G_LR4); 3452 case FW_PORT_CAP32_SPEED_50G: 3453 return (IFM_50G_LR2); 3454 case FW_PORT_CAP32_SPEED_100G: 3455 return (IFM_100G_LR4); 3456 } 3457 break; 3458 case FW_PORT_MOD_TYPE_SR: 3459 switch (speed) { 3460 case FW_PORT_CAP32_SPEED_1G: 3461 return (IFM_1000_SX); 3462 case FW_PORT_CAP32_SPEED_10G: 3463 return (IFM_10G_SR); 3464 case FW_PORT_CAP32_SPEED_25G: 3465 return (IFM_25G_SR); 3466 case FW_PORT_CAP32_SPEED_40G: 3467 return (IFM_40G_SR4); 3468 case FW_PORT_CAP32_SPEED_50G: 3469 return (IFM_50G_SR2); 3470 case FW_PORT_CAP32_SPEED_100G: 3471 return (IFM_100G_SR4); 3472 } 3473 break; 3474 case FW_PORT_MOD_TYPE_ER: 3475 if (speed == FW_PORT_CAP32_SPEED_10G) 3476 return (IFM_10G_ER); 3477 break; 3478 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3479 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3480 switch (speed) { 3481 case FW_PORT_CAP32_SPEED_1G: 3482 return (IFM_1000_CX); 3483 case FW_PORT_CAP32_SPEED_10G: 3484 return (IFM_10G_TWINAX); 3485 case FW_PORT_CAP32_SPEED_25G: 3486 return (IFM_25G_CR); 3487 case FW_PORT_CAP32_SPEED_40G: 3488 return (IFM_40G_CR4); 3489 case FW_PORT_CAP32_SPEED_50G: 3490 return (IFM_50G_CR2); 3491 case FW_PORT_CAP32_SPEED_100G: 3492 return (IFM_100G_CR4); 3493 } 3494 break; 3495 case FW_PORT_MOD_TYPE_LRM: 3496 if (speed == FW_PORT_CAP32_SPEED_10G) 3497 return (IFM_10G_LRM); 3498 break; 3499 case FW_PORT_MOD_TYPE_NA: 3500 MPASS(0); /* Not pluggable? */ 3501 /* fall throough */ 3502 case FW_PORT_MOD_TYPE_ERROR: 3503 case FW_PORT_MOD_TYPE_UNKNOWN: 3504 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3505 break; 3506 case FW_PORT_MOD_TYPE_NONE: 3507 return (IFM_NONE); 3508 } 3509 break; 3510 case FW_PORT_TYPE_NONE: 3511 return (IFM_NONE); 3512 } 3513 3514 return (IFM_UNKNOWN); 3515 } 3516 3517 void 3518 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3519 { 3520 struct vi_info *vi = if_getsoftc(ifp); 3521 struct port_info *pi = vi->pi; 3522 struct adapter *sc = pi->adapter; 3523 struct link_config *lc = &pi->link_cfg; 3524 3525 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3526 return; 3527 PORT_LOCK(pi); 3528 3529 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3530 /* 3531 * If all the interfaces are administratively down the firmware 3532 * does not report transceiver changes. Refresh port info here 3533 * so that ifconfig displays accurate ifmedia at all times. 3534 * This is the only reason we have a synchronized op in this 3535 * function. Just PORT_LOCK would have been enough otherwise. 3536 */ 3537 t4_update_port_info(pi); 3538 build_medialist(pi); 3539 } 3540 3541 /* ifm_status */ 3542 ifmr->ifm_status = IFM_AVALID; 3543 if (lc->link_ok == false) 3544 goto done; 3545 ifmr->ifm_status |= IFM_ACTIVE; 3546 3547 /* ifm_active */ 3548 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3549 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3550 if (lc->fc & PAUSE_RX) 3551 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3552 if (lc->fc & PAUSE_TX) 3553 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3554 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3555 done: 3556 PORT_UNLOCK(pi); 3557 end_synchronized_op(sc, 0); 3558 } 3559 3560 static int 3561 vcxgbe_probe(device_t dev) 3562 { 3563 struct vi_info *vi = device_get_softc(dev); 3564 3565 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3566 vi - vi->pi->vi); 3567 3568 return (BUS_PROBE_DEFAULT); 3569 } 3570 3571 static int 3572 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3573 { 3574 int func, index, rc; 3575 uint32_t param, val; 3576 3577 ASSERT_SYNCHRONIZED_OP(sc); 3578 3579 index = vi - pi->vi; 3580 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3581 KASSERT(index < nitems(vi_mac_funcs), 3582 ("%s: VI %s doesn't have a MAC func", __func__, 3583 device_get_nameunit(vi->dev))); 3584 func = vi_mac_funcs[index]; 3585 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3586 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3587 if (rc < 0) { 3588 CH_ERR(vi, "failed to allocate virtual interface %d" 3589 "for port %d: %d\n", index, pi->port_id, -rc); 3590 return (-rc); 3591 } 3592 vi->viid = rc; 3593 3594 if (vi->rss_size == 1) { 3595 /* 3596 * This VI didn't get a slice of the RSS table. Reduce the 3597 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3598 * configuration file (nvi, rssnvi for this PF) if this is a 3599 * problem. 3600 */ 3601 device_printf(vi->dev, "RSS table not available.\n"); 3602 vi->rss_base = 0xffff; 3603 3604 return (0); 3605 } 3606 3607 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3608 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3609 V_FW_PARAMS_PARAM_YZ(vi->viid); 3610 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3611 if (rc) 3612 vi->rss_base = 0xffff; 3613 else { 3614 MPASS((val >> 16) == vi->rss_size); 3615 vi->rss_base = val & 0xffff; 3616 } 3617 3618 return (0); 3619 } 3620 3621 static int 3622 vcxgbe_attach(device_t dev) 3623 { 3624 struct vi_info *vi; 3625 struct port_info *pi; 3626 struct adapter *sc; 3627 int rc; 3628 3629 vi = device_get_softc(dev); 3630 pi = vi->pi; 3631 sc = pi->adapter; 3632 3633 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3634 if (rc) 3635 return (rc); 3636 rc = alloc_extra_vi(sc, pi, vi); 3637 end_synchronized_op(sc, 0); 3638 if (rc) 3639 return (rc); 3640 3641 cxgbe_vi_attach(dev, vi); 3642 3643 return (0); 3644 } 3645 3646 static int 3647 vcxgbe_detach(device_t dev) 3648 { 3649 struct vi_info *vi; 3650 struct adapter *sc; 3651 3652 vi = device_get_softc(dev); 3653 sc = vi->adapter; 3654 3655 begin_vi_detach(sc, vi); 3656 cxgbe_vi_detach(vi); 3657 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3658 end_vi_detach(sc, vi); 3659 3660 return (0); 3661 } 3662 3663 static struct callout fatal_callout; 3664 static struct taskqueue *reset_tq; 3665 3666 static void 3667 delayed_panic(void *arg) 3668 { 3669 struct adapter *sc = arg; 3670 3671 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3672 } 3673 3674 static void 3675 fatal_error_task(void *arg, int pending) 3676 { 3677 struct adapter *sc = arg; 3678 int rc; 3679 3680 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3681 dump_cim_regs(sc); 3682 dump_cimla(sc); 3683 dump_devlog(sc); 3684 } 3685 3686 if (t4_reset_on_fatal_err) { 3687 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3688 rc = reset_adapter(sc); 3689 if (rc == 0 && t4_panic_on_fatal_err) { 3690 CH_ALERT(sc, "reset was successful, " 3691 "system will NOT panic.\n"); 3692 return; 3693 } 3694 } 3695 3696 if (t4_panic_on_fatal_err) { 3697 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3698 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3699 } 3700 } 3701 3702 void 3703 t4_fatal_err(struct adapter *sc, bool fw_error) 3704 { 3705 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3706 3707 stop_adapter(sc); 3708 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3709 return; 3710 if (fw_error) { 3711 /* 3712 * We are here because of a firmware error/timeout and not 3713 * because of a hardware interrupt. It is possible (although 3714 * not very likely) that an error interrupt was also raised but 3715 * this thread ran first and inhibited t4_intr_err. We walk the 3716 * main INT_CAUSE registers here to make sure we haven't missed 3717 * anything interesting. 3718 */ 3719 t4_slow_intr_handler(sc, verbose); 3720 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3721 } 3722 t4_report_fw_error(sc); 3723 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3724 device_get_nameunit(sc->dev), fw_error); 3725 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3726 } 3727 3728 void 3729 t4_add_adapter(struct adapter *sc) 3730 { 3731 sx_xlock(&t4_list_lock); 3732 SLIST_INSERT_HEAD(&t4_list, sc, link); 3733 sx_xunlock(&t4_list_lock); 3734 } 3735 3736 int 3737 t4_map_bars_0_and_4(struct adapter *sc) 3738 { 3739 sc->regs_rid = PCIR_BAR(0); 3740 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3741 &sc->regs_rid, RF_ACTIVE); 3742 if (sc->regs_res == NULL) { 3743 device_printf(sc->dev, "cannot map registers.\n"); 3744 return (ENXIO); 3745 } 3746 sc->bt = rman_get_bustag(sc->regs_res); 3747 sc->bh = rman_get_bushandle(sc->regs_res); 3748 sc->mmio_len = rman_get_size(sc->regs_res); 3749 setbit(&sc->doorbells, DOORBELL_KDB); 3750 3751 sc->msix_rid = PCIR_BAR(4); 3752 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3753 &sc->msix_rid, RF_ACTIVE); 3754 if (sc->msix_res == NULL) { 3755 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3756 return (ENXIO); 3757 } 3758 3759 return (0); 3760 } 3761 3762 int 3763 t4_map_bar_2(struct adapter *sc) 3764 { 3765 3766 /* 3767 * T4: only iWARP driver uses the userspace doorbells. There is no need 3768 * to map it if RDMA is disabled. 3769 */ 3770 if (is_t4(sc) && sc->rdmacaps == 0) 3771 return (0); 3772 3773 sc->udbs_rid = PCIR_BAR(2); 3774 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3775 &sc->udbs_rid, RF_ACTIVE); 3776 if (sc->udbs_res == NULL) { 3777 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3778 return (ENXIO); 3779 } 3780 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3781 3782 if (chip_id(sc) >= CHELSIO_T5) { 3783 setbit(&sc->doorbells, DOORBELL_UDB); 3784 #if defined(__i386__) || defined(__amd64__) 3785 if (t5_write_combine) { 3786 int rc, mode; 3787 3788 /* 3789 * Enable write combining on BAR2. This is the 3790 * userspace doorbell BAR and is split into 128B 3791 * (UDBS_SEG_SIZE) doorbell regions, each associated 3792 * with an egress queue. The first 64B has the doorbell 3793 * and the second 64B can be used to submit a tx work 3794 * request with an implicit doorbell. 3795 */ 3796 3797 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3798 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3799 if (rc == 0) { 3800 clrbit(&sc->doorbells, DOORBELL_UDB); 3801 setbit(&sc->doorbells, DOORBELL_WCWR); 3802 setbit(&sc->doorbells, DOORBELL_UDBWC); 3803 } else { 3804 device_printf(sc->dev, 3805 "couldn't enable write combining: %d\n", 3806 rc); 3807 } 3808 3809 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3810 t4_write_reg(sc, A_SGE_STAT_CFG, 3811 V_STATSOURCE_T5(7) | mode); 3812 } 3813 #endif 3814 } 3815 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3816 3817 return (0); 3818 } 3819 3820 int 3821 t4_adj_doorbells(struct adapter *sc) 3822 { 3823 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3824 sc->doorbells &= t4_doorbells_allowed; 3825 return (0); 3826 } 3827 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3828 sc->doorbells, t4_doorbells_allowed); 3829 return (EINVAL); 3830 } 3831 3832 struct memwin_init { 3833 uint32_t base; 3834 uint32_t aperture; 3835 }; 3836 3837 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3838 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3839 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3840 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3841 }; 3842 3843 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3844 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3845 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3846 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3847 }; 3848 3849 static void 3850 setup_memwin(struct adapter *sc) 3851 { 3852 const struct memwin_init *mw_init; 3853 struct memwin *mw; 3854 int i; 3855 uint32_t bar0; 3856 3857 if (is_t4(sc)) { 3858 /* 3859 * Read low 32b of bar0 indirectly via the hardware backdoor 3860 * mechanism. Works from within PCI passthrough environments 3861 * too, where rman_get_start() can return a different value. We 3862 * need to program the T4 memory window decoders with the actual 3863 * addresses that will be coming across the PCIe link. 3864 */ 3865 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3866 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3867 3868 mw_init = &t4_memwin[0]; 3869 } else { 3870 /* T5+ use the relative offset inside the PCIe BAR */ 3871 bar0 = 0; 3872 3873 mw_init = &t5_memwin[0]; 3874 } 3875 3876 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3877 if (!rw_initialized(&mw->mw_lock)) { 3878 rw_init(&mw->mw_lock, "memory window access"); 3879 mw->mw_base = mw_init->base; 3880 mw->mw_aperture = mw_init->aperture; 3881 mw->mw_curpos = 0; 3882 } 3883 t4_write_reg(sc, 3884 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3885 (mw->mw_base + bar0) | V_BIR(0) | 3886 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3887 rw_wlock(&mw->mw_lock); 3888 position_memwin(sc, i, mw->mw_curpos); 3889 rw_wunlock(&mw->mw_lock); 3890 } 3891 3892 /* flush */ 3893 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3894 } 3895 3896 /* 3897 * Positions the memory window at the given address in the card's address space. 3898 * There are some alignment requirements and the actual position may be at an 3899 * address prior to the requested address. mw->mw_curpos always has the actual 3900 * position of the window. 3901 */ 3902 static void 3903 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3904 { 3905 struct memwin *mw; 3906 uint32_t pf; 3907 uint32_t reg; 3908 3909 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3910 mw = &sc->memwin[idx]; 3911 rw_assert(&mw->mw_lock, RA_WLOCKED); 3912 3913 if (is_t4(sc)) { 3914 pf = 0; 3915 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3916 } else { 3917 pf = V_PFNUM(sc->pf); 3918 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3919 } 3920 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3921 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3922 t4_read_reg(sc, reg); /* flush */ 3923 } 3924 3925 int 3926 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3927 int len, int rw) 3928 { 3929 struct memwin *mw; 3930 uint32_t mw_end, v; 3931 3932 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3933 3934 /* Memory can only be accessed in naturally aligned 4 byte units */ 3935 if (addr & 3 || len & 3 || len <= 0) 3936 return (EINVAL); 3937 3938 mw = &sc->memwin[idx]; 3939 while (len > 0) { 3940 rw_rlock(&mw->mw_lock); 3941 mw_end = mw->mw_curpos + mw->mw_aperture; 3942 if (addr >= mw_end || addr < mw->mw_curpos) { 3943 /* Will need to reposition the window */ 3944 if (!rw_try_upgrade(&mw->mw_lock)) { 3945 rw_runlock(&mw->mw_lock); 3946 rw_wlock(&mw->mw_lock); 3947 } 3948 rw_assert(&mw->mw_lock, RA_WLOCKED); 3949 position_memwin(sc, idx, addr); 3950 rw_downgrade(&mw->mw_lock); 3951 mw_end = mw->mw_curpos + mw->mw_aperture; 3952 } 3953 rw_assert(&mw->mw_lock, RA_RLOCKED); 3954 while (addr < mw_end && len > 0) { 3955 if (rw == 0) { 3956 v = t4_read_reg(sc, mw->mw_base + addr - 3957 mw->mw_curpos); 3958 *val++ = le32toh(v); 3959 } else { 3960 v = *val++; 3961 t4_write_reg(sc, mw->mw_base + addr - 3962 mw->mw_curpos, htole32(v)); 3963 } 3964 addr += 4; 3965 len -= 4; 3966 } 3967 rw_runlock(&mw->mw_lock); 3968 } 3969 3970 return (0); 3971 } 3972 3973 CTASSERT(M_TID_COOKIE == M_COOKIE); 3974 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3975 3976 static void 3977 t4_init_atid_table(struct adapter *sc) 3978 { 3979 struct tid_info *t; 3980 int i; 3981 3982 t = &sc->tids; 3983 if (t->natids == 0) 3984 return; 3985 3986 MPASS(t->atid_tab == NULL); 3987 3988 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3989 M_ZERO | M_WAITOK); 3990 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3991 t->afree = t->atid_tab; 3992 t->atids_in_use = 0; 3993 t->atid_alloc_stopped = false; 3994 for (i = 1; i < t->natids; i++) 3995 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3996 t->atid_tab[t->natids - 1].next = NULL; 3997 } 3998 3999 static void 4000 t4_free_atid_table(struct adapter *sc) 4001 { 4002 struct tid_info *t; 4003 4004 t = &sc->tids; 4005 4006 KASSERT(t->atids_in_use == 0, 4007 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4008 4009 if (mtx_initialized(&t->atid_lock)) 4010 mtx_destroy(&t->atid_lock); 4011 free(t->atid_tab, M_CXGBE); 4012 t->atid_tab = NULL; 4013 } 4014 4015 static void 4016 stop_atid_allocator(struct adapter *sc) 4017 { 4018 struct tid_info *t = &sc->tids; 4019 4020 mtx_lock(&t->atid_lock); 4021 t->atid_alloc_stopped = true; 4022 mtx_unlock(&t->atid_lock); 4023 } 4024 4025 static void 4026 restart_atid_allocator(struct adapter *sc) 4027 { 4028 struct tid_info *t = &sc->tids; 4029 4030 mtx_lock(&t->atid_lock); 4031 KASSERT(t->atids_in_use == 0, 4032 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4033 t->atid_alloc_stopped = false; 4034 mtx_unlock(&t->atid_lock); 4035 } 4036 4037 int 4038 alloc_atid(struct adapter *sc, void *ctx) 4039 { 4040 struct tid_info *t = &sc->tids; 4041 int atid = -1; 4042 4043 mtx_lock(&t->atid_lock); 4044 if (t->afree && !t->atid_alloc_stopped) { 4045 union aopen_entry *p = t->afree; 4046 4047 atid = p - t->atid_tab; 4048 MPASS(atid <= M_TID_TID); 4049 t->afree = p->next; 4050 p->data = ctx; 4051 t->atids_in_use++; 4052 } 4053 mtx_unlock(&t->atid_lock); 4054 return (atid); 4055 } 4056 4057 void * 4058 lookup_atid(struct adapter *sc, int atid) 4059 { 4060 struct tid_info *t = &sc->tids; 4061 4062 return (t->atid_tab[atid].data); 4063 } 4064 4065 void 4066 free_atid(struct adapter *sc, int atid) 4067 { 4068 struct tid_info *t = &sc->tids; 4069 union aopen_entry *p = &t->atid_tab[atid]; 4070 4071 mtx_lock(&t->atid_lock); 4072 p->next = t->afree; 4073 t->afree = p; 4074 t->atids_in_use--; 4075 mtx_unlock(&t->atid_lock); 4076 } 4077 4078 static void 4079 queue_tid_release(struct adapter *sc, int tid) 4080 { 4081 4082 CXGBE_UNIMPLEMENTED("deferred tid release"); 4083 } 4084 4085 void 4086 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4087 { 4088 struct wrqe *wr; 4089 struct cpl_tid_release *req; 4090 4091 wr = alloc_wrqe(sizeof(*req), ctrlq); 4092 if (wr == NULL) { 4093 queue_tid_release(sc, tid); /* defer */ 4094 return; 4095 } 4096 req = wrtod(wr); 4097 4098 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4099 4100 t4_wrq_tx(sc, wr); 4101 } 4102 4103 static int 4104 t4_range_cmp(const void *a, const void *b) 4105 { 4106 return ((const struct t4_range *)a)->start - 4107 ((const struct t4_range *)b)->start; 4108 } 4109 4110 /* 4111 * Verify that the memory range specified by the addr/len pair is valid within 4112 * the card's address space. 4113 */ 4114 static int 4115 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4116 { 4117 struct t4_range mem_ranges[4], *r, *next; 4118 uint32_t em, addr_len; 4119 int i, n, remaining; 4120 4121 /* Memory can only be accessed in naturally aligned 4 byte units */ 4122 if (addr & 3 || len & 3 || len == 0) 4123 return (EINVAL); 4124 4125 /* Enabled memories */ 4126 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4127 4128 r = &mem_ranges[0]; 4129 n = 0; 4130 bzero(r, sizeof(mem_ranges)); 4131 if (em & F_EDRAM0_ENABLE) { 4132 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4133 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4134 if (r->size > 0) { 4135 r->start = G_EDRAM0_BASE(addr_len) << 20; 4136 if (addr >= r->start && 4137 addr + len <= r->start + r->size) 4138 return (0); 4139 r++; 4140 n++; 4141 } 4142 } 4143 if (em & F_EDRAM1_ENABLE) { 4144 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4145 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4146 if (r->size > 0) { 4147 r->start = G_EDRAM1_BASE(addr_len) << 20; 4148 if (addr >= r->start && 4149 addr + len <= r->start + r->size) 4150 return (0); 4151 r++; 4152 n++; 4153 } 4154 } 4155 if (em & F_EXT_MEM_ENABLE) { 4156 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4157 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4158 if (r->size > 0) { 4159 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4160 if (addr >= r->start && 4161 addr + len <= r->start + r->size) 4162 return (0); 4163 r++; 4164 n++; 4165 } 4166 } 4167 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4168 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4169 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4170 if (r->size > 0) { 4171 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4172 if (addr >= r->start && 4173 addr + len <= r->start + r->size) 4174 return (0); 4175 r++; 4176 n++; 4177 } 4178 } 4179 MPASS(n <= nitems(mem_ranges)); 4180 4181 if (n > 1) { 4182 /* Sort and merge the ranges. */ 4183 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4184 4185 /* Start from index 0 and examine the next n - 1 entries. */ 4186 r = &mem_ranges[0]; 4187 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4188 4189 MPASS(r->size > 0); /* r is a valid entry. */ 4190 next = r + 1; 4191 MPASS(next->size > 0); /* and so is the next one. */ 4192 4193 while (r->start + r->size >= next->start) { 4194 /* Merge the next one into the current entry. */ 4195 r->size = max(r->start + r->size, 4196 next->start + next->size) - r->start; 4197 n--; /* One fewer entry in total. */ 4198 if (--remaining == 0) 4199 goto done; /* short circuit */ 4200 next++; 4201 } 4202 if (next != r + 1) { 4203 /* 4204 * Some entries were merged into r and next 4205 * points to the first valid entry that couldn't 4206 * be merged. 4207 */ 4208 MPASS(next->size > 0); /* must be valid */ 4209 memcpy(r + 1, next, remaining * sizeof(*r)); 4210 #ifdef INVARIANTS 4211 /* 4212 * This so that the foo->size assertion in the 4213 * next iteration of the loop do the right 4214 * thing for entries that were pulled up and are 4215 * no longer valid. 4216 */ 4217 MPASS(n < nitems(mem_ranges)); 4218 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4219 sizeof(struct t4_range)); 4220 #endif 4221 } 4222 } 4223 done: 4224 /* Done merging the ranges. */ 4225 MPASS(n > 0); 4226 r = &mem_ranges[0]; 4227 for (i = 0; i < n; i++, r++) { 4228 if (addr >= r->start && 4229 addr + len <= r->start + r->size) 4230 return (0); 4231 } 4232 } 4233 4234 return (EFAULT); 4235 } 4236 4237 static int 4238 fwmtype_to_hwmtype(int mtype) 4239 { 4240 4241 switch (mtype) { 4242 case FW_MEMTYPE_EDC0: 4243 return (MEM_EDC0); 4244 case FW_MEMTYPE_EDC1: 4245 return (MEM_EDC1); 4246 case FW_MEMTYPE_EXTMEM: 4247 return (MEM_MC0); 4248 case FW_MEMTYPE_EXTMEM1: 4249 return (MEM_MC1); 4250 default: 4251 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4252 } 4253 } 4254 4255 /* 4256 * Verify that the memory range specified by the memtype/offset/len pair is 4257 * valid and lies entirely within the memtype specified. The global address of 4258 * the start of the range is returned in addr. 4259 */ 4260 static int 4261 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4262 uint32_t *addr) 4263 { 4264 uint32_t em, addr_len, maddr; 4265 4266 /* Memory can only be accessed in naturally aligned 4 byte units */ 4267 if (off & 3 || len & 3 || len == 0) 4268 return (EINVAL); 4269 4270 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4271 switch (fwmtype_to_hwmtype(mtype)) { 4272 case MEM_EDC0: 4273 if (!(em & F_EDRAM0_ENABLE)) 4274 return (EINVAL); 4275 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4276 maddr = G_EDRAM0_BASE(addr_len) << 20; 4277 break; 4278 case MEM_EDC1: 4279 if (!(em & F_EDRAM1_ENABLE)) 4280 return (EINVAL); 4281 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4282 maddr = G_EDRAM1_BASE(addr_len) << 20; 4283 break; 4284 case MEM_MC: 4285 if (!(em & F_EXT_MEM_ENABLE)) 4286 return (EINVAL); 4287 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4288 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4289 break; 4290 case MEM_MC1: 4291 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4292 return (EINVAL); 4293 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4294 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4295 break; 4296 default: 4297 return (EINVAL); 4298 } 4299 4300 *addr = maddr + off; /* global address */ 4301 return (validate_mem_range(sc, *addr, len)); 4302 } 4303 4304 static int 4305 fixup_devlog_params(struct adapter *sc) 4306 { 4307 struct devlog_params *dparams = &sc->params.devlog; 4308 int rc; 4309 4310 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4311 dparams->size, &dparams->addr); 4312 4313 return (rc); 4314 } 4315 4316 static void 4317 update_nirq(struct intrs_and_queues *iaq, int nports) 4318 { 4319 4320 iaq->nirq = T4_EXTRA_INTR; 4321 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4322 iaq->nirq += nports * iaq->nofldrxq; 4323 iaq->nirq += nports * (iaq->num_vis - 1) * 4324 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4325 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4326 } 4327 4328 /* 4329 * Adjust requirements to fit the number of interrupts available. 4330 */ 4331 static void 4332 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4333 int navail) 4334 { 4335 int old_nirq; 4336 const int nports = sc->params.nports; 4337 4338 MPASS(nports > 0); 4339 MPASS(navail > 0); 4340 4341 bzero(iaq, sizeof(*iaq)); 4342 iaq->intr_type = itype; 4343 iaq->num_vis = t4_num_vis; 4344 iaq->ntxq = t4_ntxq; 4345 iaq->ntxq_vi = t4_ntxq_vi; 4346 iaq->nrxq = t4_nrxq; 4347 iaq->nrxq_vi = t4_nrxq_vi; 4348 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4349 if (is_offload(sc) || is_ethoffload(sc)) { 4350 iaq->nofldtxq = t4_nofldtxq; 4351 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4352 } 4353 #endif 4354 #ifdef TCP_OFFLOAD 4355 if (is_offload(sc)) { 4356 iaq->nofldrxq = t4_nofldrxq; 4357 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4358 } 4359 #endif 4360 #ifdef DEV_NETMAP 4361 if (t4_native_netmap & NN_MAIN_VI) { 4362 iaq->nnmtxq = t4_nnmtxq; 4363 iaq->nnmrxq = t4_nnmrxq; 4364 } 4365 if (t4_native_netmap & NN_EXTRA_VI) { 4366 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4367 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4368 } 4369 #endif 4370 4371 update_nirq(iaq, nports); 4372 if (iaq->nirq <= navail && 4373 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4374 /* 4375 * This is the normal case -- there are enough interrupts for 4376 * everything. 4377 */ 4378 goto done; 4379 } 4380 4381 /* 4382 * If extra VIs have been configured try reducing their count and see if 4383 * that works. 4384 */ 4385 while (iaq->num_vis > 1) { 4386 iaq->num_vis--; 4387 update_nirq(iaq, nports); 4388 if (iaq->nirq <= navail && 4389 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4390 device_printf(sc->dev, "virtual interfaces per port " 4391 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4392 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4393 "itype %d, navail %u, nirq %d.\n", 4394 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4395 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4396 itype, navail, iaq->nirq); 4397 goto done; 4398 } 4399 } 4400 4401 /* 4402 * Extra VIs will not be created. Log a message if they were requested. 4403 */ 4404 MPASS(iaq->num_vis == 1); 4405 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4406 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4407 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4408 if (iaq->num_vis != t4_num_vis) { 4409 device_printf(sc->dev, "extra virtual interfaces disabled. " 4410 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4411 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4412 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4413 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4414 } 4415 4416 /* 4417 * Keep reducing the number of NIC rx queues to the next lower power of 4418 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4419 * if that works. 4420 */ 4421 do { 4422 if (iaq->nrxq > 1) { 4423 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4424 if (iaq->nnmrxq > iaq->nrxq) 4425 iaq->nnmrxq = iaq->nrxq; 4426 } 4427 if (iaq->nofldrxq > 1) 4428 iaq->nofldrxq >>= 1; 4429 4430 old_nirq = iaq->nirq; 4431 update_nirq(iaq, nports); 4432 if (iaq->nirq <= navail && 4433 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4434 device_printf(sc->dev, "running with reduced number of " 4435 "rx queues because of shortage of interrupts. " 4436 "nrxq=%u, nofldrxq=%u. " 4437 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4438 iaq->nofldrxq, itype, navail, iaq->nirq); 4439 goto done; 4440 } 4441 } while (old_nirq != iaq->nirq); 4442 4443 /* One interrupt for everything. Ugh. */ 4444 device_printf(sc->dev, "running with minimal number of queues. " 4445 "itype %d, navail %u.\n", itype, navail); 4446 iaq->nirq = 1; 4447 iaq->nrxq = 1; 4448 iaq->ntxq = 1; 4449 if (iaq->nofldrxq > 0) { 4450 iaq->nofldrxq = 1; 4451 iaq->nofldtxq = 1; 4452 } 4453 iaq->nnmtxq = 0; 4454 iaq->nnmrxq = 0; 4455 done: 4456 MPASS(iaq->num_vis > 0); 4457 if (iaq->num_vis > 1) { 4458 MPASS(iaq->nrxq_vi > 0); 4459 MPASS(iaq->ntxq_vi > 0); 4460 } 4461 MPASS(iaq->nirq > 0); 4462 MPASS(iaq->nrxq > 0); 4463 MPASS(iaq->ntxq > 0); 4464 if (itype == INTR_MSI) { 4465 MPASS(powerof2(iaq->nirq)); 4466 } 4467 } 4468 4469 static int 4470 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4471 { 4472 int rc, itype, navail, nalloc; 4473 4474 for (itype = INTR_MSIX; itype; itype >>= 1) { 4475 4476 if ((itype & t4_intr_types) == 0) 4477 continue; /* not allowed */ 4478 4479 if (itype == INTR_MSIX) 4480 navail = pci_msix_count(sc->dev); 4481 else if (itype == INTR_MSI) 4482 navail = pci_msi_count(sc->dev); 4483 else 4484 navail = 1; 4485 restart: 4486 if (navail == 0) 4487 continue; 4488 4489 calculate_iaq(sc, iaq, itype, navail); 4490 nalloc = iaq->nirq; 4491 rc = 0; 4492 if (itype == INTR_MSIX) 4493 rc = pci_alloc_msix(sc->dev, &nalloc); 4494 else if (itype == INTR_MSI) 4495 rc = pci_alloc_msi(sc->dev, &nalloc); 4496 4497 if (rc == 0 && nalloc > 0) { 4498 if (nalloc == iaq->nirq) 4499 return (0); 4500 4501 /* 4502 * Didn't get the number requested. Use whatever number 4503 * the kernel is willing to allocate. 4504 */ 4505 device_printf(sc->dev, "fewer vectors than requested, " 4506 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4507 itype, iaq->nirq, nalloc); 4508 pci_release_msi(sc->dev); 4509 navail = nalloc; 4510 goto restart; 4511 } 4512 4513 device_printf(sc->dev, 4514 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4515 itype, rc, iaq->nirq, nalloc); 4516 } 4517 4518 device_printf(sc->dev, 4519 "failed to find a usable interrupt type. " 4520 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4521 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4522 4523 return (ENXIO); 4524 } 4525 4526 #define FW_VERSION(chip) ( \ 4527 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4528 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4529 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4530 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4531 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4532 4533 /* Just enough of fw_hdr to cover all version info. */ 4534 struct fw_h { 4535 __u8 ver; 4536 __u8 chip; 4537 __be16 len512; 4538 __be32 fw_ver; 4539 __be32 tp_microcode_ver; 4540 __u8 intfver_nic; 4541 __u8 intfver_vnic; 4542 __u8 intfver_ofld; 4543 __u8 intfver_ri; 4544 __u8 intfver_iscsipdu; 4545 __u8 intfver_iscsi; 4546 __u8 intfver_fcoepdu; 4547 __u8 intfver_fcoe; 4548 }; 4549 /* Spot check a couple of fields. */ 4550 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4551 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4552 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4553 4554 struct fw_info { 4555 uint8_t chip; 4556 char *kld_name; 4557 char *fw_mod_name; 4558 struct fw_h fw_h; 4559 } fw_info[] = { 4560 { 4561 .chip = CHELSIO_T4, 4562 .kld_name = "t4fw_cfg", 4563 .fw_mod_name = "t4fw", 4564 .fw_h = { 4565 .chip = FW_HDR_CHIP_T4, 4566 .fw_ver = htobe32(FW_VERSION(T4)), 4567 .intfver_nic = FW_INTFVER(T4, NIC), 4568 .intfver_vnic = FW_INTFVER(T4, VNIC), 4569 .intfver_ofld = FW_INTFVER(T4, OFLD), 4570 .intfver_ri = FW_INTFVER(T4, RI), 4571 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4572 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4573 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4574 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4575 }, 4576 }, { 4577 .chip = CHELSIO_T5, 4578 .kld_name = "t5fw_cfg", 4579 .fw_mod_name = "t5fw", 4580 .fw_h = { 4581 .chip = FW_HDR_CHIP_T5, 4582 .fw_ver = htobe32(FW_VERSION(T5)), 4583 .intfver_nic = FW_INTFVER(T5, NIC), 4584 .intfver_vnic = FW_INTFVER(T5, VNIC), 4585 .intfver_ofld = FW_INTFVER(T5, OFLD), 4586 .intfver_ri = FW_INTFVER(T5, RI), 4587 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4588 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4589 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4590 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4591 }, 4592 }, { 4593 .chip = CHELSIO_T6, 4594 .kld_name = "t6fw_cfg", 4595 .fw_mod_name = "t6fw", 4596 .fw_h = { 4597 .chip = FW_HDR_CHIP_T6, 4598 .fw_ver = htobe32(FW_VERSION(T6)), 4599 .intfver_nic = FW_INTFVER(T6, NIC), 4600 .intfver_vnic = FW_INTFVER(T6, VNIC), 4601 .intfver_ofld = FW_INTFVER(T6, OFLD), 4602 .intfver_ri = FW_INTFVER(T6, RI), 4603 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4604 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4605 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4606 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4607 }, 4608 } 4609 }; 4610 4611 static struct fw_info * 4612 find_fw_info(int chip) 4613 { 4614 int i; 4615 4616 for (i = 0; i < nitems(fw_info); i++) { 4617 if (fw_info[i].chip == chip) 4618 return (&fw_info[i]); 4619 } 4620 return (NULL); 4621 } 4622 4623 /* 4624 * Is the given firmware API compatible with the one the driver was compiled 4625 * with? 4626 */ 4627 static int 4628 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4629 { 4630 4631 /* short circuit if it's the exact same firmware version */ 4632 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4633 return (1); 4634 4635 /* 4636 * XXX: Is this too conservative? Perhaps I should limit this to the 4637 * features that are supported in the driver. 4638 */ 4639 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4640 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4641 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4642 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4643 return (1); 4644 #undef SAME_INTF 4645 4646 return (0); 4647 } 4648 4649 static int 4650 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4651 const struct firmware **fw) 4652 { 4653 struct fw_info *fw_info; 4654 4655 *dcfg = NULL; 4656 if (fw != NULL) 4657 *fw = NULL; 4658 4659 fw_info = find_fw_info(chip_id(sc)); 4660 if (fw_info == NULL) { 4661 device_printf(sc->dev, 4662 "unable to look up firmware information for chip %d.\n", 4663 chip_id(sc)); 4664 return (EINVAL); 4665 } 4666 4667 *dcfg = firmware_get(fw_info->kld_name); 4668 if (*dcfg != NULL) { 4669 if (fw != NULL) 4670 *fw = firmware_get(fw_info->fw_mod_name); 4671 return (0); 4672 } 4673 4674 return (ENOENT); 4675 } 4676 4677 static void 4678 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4679 const struct firmware *fw) 4680 { 4681 4682 if (fw != NULL) 4683 firmware_put(fw, FIRMWARE_UNLOAD); 4684 if (dcfg != NULL) 4685 firmware_put(dcfg, FIRMWARE_UNLOAD); 4686 } 4687 4688 /* 4689 * Return values: 4690 * 0 means no firmware install attempted. 4691 * ERESTART means a firmware install was attempted and was successful. 4692 * +ve errno means a firmware install was attempted but failed. 4693 */ 4694 static int 4695 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4696 const struct fw_h *drv_fw, const char *reason, int *already) 4697 { 4698 const struct firmware *cfg, *fw; 4699 const uint32_t c = be32toh(card_fw->fw_ver); 4700 uint32_t d, k; 4701 int rc, fw_install; 4702 struct fw_h bundled_fw; 4703 bool load_attempted; 4704 4705 cfg = fw = NULL; 4706 load_attempted = false; 4707 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4708 4709 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4710 if (t4_fw_install < 0) { 4711 rc = load_fw_module(sc, &cfg, &fw); 4712 if (rc != 0 || fw == NULL) { 4713 device_printf(sc->dev, 4714 "failed to load firmware module: %d. cfg %p, fw %p;" 4715 " will use compiled-in firmware version for" 4716 "hw.cxgbe.fw_install checks.\n", 4717 rc, cfg, fw); 4718 } else { 4719 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4720 } 4721 load_attempted = true; 4722 } 4723 d = be32toh(bundled_fw.fw_ver); 4724 4725 if (reason != NULL) 4726 goto install; 4727 4728 if ((sc->flags & FW_OK) == 0) { 4729 4730 if (c == 0xffffffff) { 4731 reason = "missing"; 4732 goto install; 4733 } 4734 4735 rc = 0; 4736 goto done; 4737 } 4738 4739 if (!fw_compatible(card_fw, &bundled_fw)) { 4740 reason = "incompatible or unusable"; 4741 goto install; 4742 } 4743 4744 if (d > c) { 4745 reason = "older than the version bundled with this driver"; 4746 goto install; 4747 } 4748 4749 if (fw_install == 2 && d != c) { 4750 reason = "different than the version bundled with this driver"; 4751 goto install; 4752 } 4753 4754 /* No reason to do anything to the firmware already on the card. */ 4755 rc = 0; 4756 goto done; 4757 4758 install: 4759 rc = 0; 4760 if ((*already)++) 4761 goto done; 4762 4763 if (fw_install == 0) { 4764 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4765 "but the driver is prohibited from installing a firmware " 4766 "on the card.\n", 4767 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4768 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4769 4770 goto done; 4771 } 4772 4773 /* 4774 * We'll attempt to install a firmware. Load the module first (if it 4775 * hasn't been loaded already). 4776 */ 4777 if (!load_attempted) { 4778 rc = load_fw_module(sc, &cfg, &fw); 4779 if (rc != 0 || fw == NULL) { 4780 device_printf(sc->dev, 4781 "failed to load firmware module: %d. cfg %p, fw %p\n", 4782 rc, cfg, fw); 4783 /* carry on */ 4784 } 4785 } 4786 if (fw == NULL) { 4787 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4788 "but the driver cannot take corrective action because it " 4789 "is unable to load the firmware module.\n", 4790 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4791 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4792 rc = sc->flags & FW_OK ? 0 : ENOENT; 4793 goto done; 4794 } 4795 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4796 if (k != d) { 4797 MPASS(t4_fw_install > 0); 4798 device_printf(sc->dev, 4799 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4800 "expecting (%u.%u.%u.%u) and will not be used.\n", 4801 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4802 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4803 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4804 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4805 rc = sc->flags & FW_OK ? 0 : EINVAL; 4806 goto done; 4807 } 4808 4809 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4810 "installing firmware %u.%u.%u.%u on card.\n", 4811 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4812 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4813 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4814 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4815 4816 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4817 if (rc != 0) { 4818 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4819 } else { 4820 /* Installed successfully, update the cached header too. */ 4821 rc = ERESTART; 4822 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4823 } 4824 done: 4825 unload_fw_module(sc, cfg, fw); 4826 4827 return (rc); 4828 } 4829 4830 /* 4831 * Establish contact with the firmware and attempt to become the master driver. 4832 * 4833 * A firmware will be installed to the card if needed (if the driver is allowed 4834 * to do so). 4835 */ 4836 static int 4837 contact_firmware(struct adapter *sc) 4838 { 4839 int rc, already = 0; 4840 enum dev_state state; 4841 struct fw_info *fw_info; 4842 struct fw_hdr *card_fw; /* fw on the card */ 4843 const struct fw_h *drv_fw; 4844 4845 fw_info = find_fw_info(chip_id(sc)); 4846 if (fw_info == NULL) { 4847 device_printf(sc->dev, 4848 "unable to look up firmware information for chip %d.\n", 4849 chip_id(sc)); 4850 return (EINVAL); 4851 } 4852 drv_fw = &fw_info->fw_h; 4853 4854 /* Read the header of the firmware on the card */ 4855 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4856 restart: 4857 rc = -t4_get_fw_hdr(sc, card_fw); 4858 if (rc != 0) { 4859 device_printf(sc->dev, 4860 "unable to read firmware header from card's flash: %d\n", 4861 rc); 4862 goto done; 4863 } 4864 4865 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4866 &already); 4867 if (rc == ERESTART) 4868 goto restart; 4869 if (rc != 0) 4870 goto done; 4871 4872 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4873 if (rc < 0 || state == DEV_STATE_ERR) { 4874 rc = -rc; 4875 device_printf(sc->dev, 4876 "failed to connect to the firmware: %d, %d. " 4877 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4878 #if 0 4879 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4880 "not responding properly to HELLO", &already) == ERESTART) 4881 goto restart; 4882 #endif 4883 goto done; 4884 } 4885 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4886 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4887 4888 if (rc == sc->pf) { 4889 sc->flags |= MASTER_PF; 4890 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4891 NULL, &already); 4892 if (rc == ERESTART) 4893 rc = 0; 4894 else if (rc != 0) 4895 goto done; 4896 } else if (state == DEV_STATE_UNINIT) { 4897 /* 4898 * We didn't get to be the master so we definitely won't be 4899 * configuring the chip. It's a bug if someone else hasn't 4900 * configured it already. 4901 */ 4902 device_printf(sc->dev, "couldn't be master(%d), " 4903 "device not already initialized either(%d). " 4904 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4905 rc = EPROTO; 4906 goto done; 4907 } else { 4908 /* 4909 * Some other PF is the master and has configured the chip. 4910 * This is allowed but untested. 4911 */ 4912 device_printf(sc->dev, "PF%d is master, device state %d. " 4913 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4914 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4915 sc->cfcsum = 0; 4916 rc = 0; 4917 } 4918 done: 4919 if (rc != 0 && sc->flags & FW_OK) { 4920 t4_fw_bye(sc, sc->mbox); 4921 sc->flags &= ~FW_OK; 4922 } 4923 free(card_fw, M_CXGBE); 4924 return (rc); 4925 } 4926 4927 static int 4928 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4929 uint32_t mtype, uint32_t moff) 4930 { 4931 struct fw_info *fw_info; 4932 const struct firmware *dcfg, *rcfg = NULL; 4933 const uint32_t *cfdata; 4934 uint32_t cflen, addr; 4935 int rc; 4936 4937 load_fw_module(sc, &dcfg, NULL); 4938 4939 /* Card specific interpretation of "default". */ 4940 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4941 if (pci_get_device(sc->dev) == 0x440a) 4942 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4943 if (is_fpga(sc)) 4944 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4945 } 4946 4947 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4948 if (dcfg == NULL) { 4949 device_printf(sc->dev, 4950 "KLD with default config is not available.\n"); 4951 rc = ENOENT; 4952 goto done; 4953 } 4954 cfdata = dcfg->data; 4955 cflen = dcfg->datasize & ~3; 4956 } else { 4957 char s[32]; 4958 4959 fw_info = find_fw_info(chip_id(sc)); 4960 if (fw_info == NULL) { 4961 device_printf(sc->dev, 4962 "unable to look up firmware information for chip %d.\n", 4963 chip_id(sc)); 4964 rc = EINVAL; 4965 goto done; 4966 } 4967 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4968 4969 rcfg = firmware_get(s); 4970 if (rcfg == NULL) { 4971 device_printf(sc->dev, 4972 "unable to load module \"%s\" for configuration " 4973 "profile \"%s\".\n", s, cfg_file); 4974 rc = ENOENT; 4975 goto done; 4976 } 4977 cfdata = rcfg->data; 4978 cflen = rcfg->datasize & ~3; 4979 } 4980 4981 if (cflen > FLASH_CFG_MAX_SIZE) { 4982 device_printf(sc->dev, 4983 "config file too long (%d, max allowed is %d).\n", 4984 cflen, FLASH_CFG_MAX_SIZE); 4985 rc = EINVAL; 4986 goto done; 4987 } 4988 4989 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4990 if (rc != 0) { 4991 device_printf(sc->dev, 4992 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4993 __func__, mtype, moff, cflen, rc); 4994 rc = EINVAL; 4995 goto done; 4996 } 4997 write_via_memwin(sc, 2, addr, cfdata, cflen); 4998 done: 4999 if (rcfg != NULL) 5000 firmware_put(rcfg, FIRMWARE_UNLOAD); 5001 unload_fw_module(sc, dcfg, NULL); 5002 return (rc); 5003 } 5004 5005 struct caps_allowed { 5006 uint16_t nbmcaps; 5007 uint16_t linkcaps; 5008 uint16_t switchcaps; 5009 uint16_t niccaps; 5010 uint16_t toecaps; 5011 uint16_t rdmacaps; 5012 uint16_t cryptocaps; 5013 uint16_t iscsicaps; 5014 uint16_t fcoecaps; 5015 }; 5016 5017 #define FW_PARAM_DEV(param) \ 5018 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5019 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5020 #define FW_PARAM_PFVF(param) \ 5021 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5022 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5023 5024 /* 5025 * Provide a configuration profile to the firmware and have it initialize the 5026 * chip accordingly. This may involve uploading a configuration file to the 5027 * card. 5028 */ 5029 static int 5030 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5031 const struct caps_allowed *caps_allowed) 5032 { 5033 int rc; 5034 struct fw_caps_config_cmd caps; 5035 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5036 5037 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5038 if (rc != 0) { 5039 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5040 return (rc); 5041 } 5042 5043 bzero(&caps, sizeof(caps)); 5044 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5045 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5046 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5047 mtype = 0; 5048 moff = 0; 5049 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5050 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5051 mtype = FW_MEMTYPE_FLASH; 5052 moff = t4_flash_cfg_addr(sc); 5053 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5054 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5055 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5056 FW_LEN16(caps)); 5057 } else { 5058 /* 5059 * Ask the firmware where it wants us to upload the config file. 5060 */ 5061 param = FW_PARAM_DEV(CF); 5062 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5063 if (rc != 0) { 5064 /* No support for config file? Shouldn't happen. */ 5065 device_printf(sc->dev, 5066 "failed to query config file location: %d.\n", rc); 5067 goto done; 5068 } 5069 mtype = G_FW_PARAMS_PARAM_Y(val); 5070 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5071 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5072 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5073 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5074 FW_LEN16(caps)); 5075 5076 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5077 if (rc != 0) { 5078 device_printf(sc->dev, 5079 "failed to upload config file to card: %d.\n", rc); 5080 goto done; 5081 } 5082 } 5083 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5084 if (rc != 0) { 5085 device_printf(sc->dev, "failed to pre-process config file: %d " 5086 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5087 goto done; 5088 } 5089 5090 finicsum = be32toh(caps.finicsum); 5091 cfcsum = be32toh(caps.cfcsum); /* actual */ 5092 if (finicsum != cfcsum) { 5093 device_printf(sc->dev, 5094 "WARNING: config file checksum mismatch: %08x %08x\n", 5095 finicsum, cfcsum); 5096 } 5097 sc->cfcsum = cfcsum; 5098 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5099 5100 /* 5101 * Let the firmware know what features will (not) be used so it can tune 5102 * things accordingly. 5103 */ 5104 #define LIMIT_CAPS(x) do { \ 5105 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5106 } while (0) 5107 LIMIT_CAPS(nbm); 5108 LIMIT_CAPS(link); 5109 LIMIT_CAPS(switch); 5110 LIMIT_CAPS(nic); 5111 LIMIT_CAPS(toe); 5112 LIMIT_CAPS(rdma); 5113 LIMIT_CAPS(crypto); 5114 LIMIT_CAPS(iscsi); 5115 LIMIT_CAPS(fcoe); 5116 #undef LIMIT_CAPS 5117 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5118 /* 5119 * TOE and hashfilters are mutually exclusive. It is a config 5120 * file or firmware bug if both are reported as available. Try 5121 * to cope with the situation in non-debug builds by disabling 5122 * TOE. 5123 */ 5124 MPASS(caps.toecaps == 0); 5125 5126 caps.toecaps = 0; 5127 caps.rdmacaps = 0; 5128 caps.iscsicaps = 0; 5129 } 5130 5131 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5132 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5133 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5134 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5135 if (rc != 0) { 5136 device_printf(sc->dev, 5137 "failed to process config file: %d.\n", rc); 5138 goto done; 5139 } 5140 5141 t4_tweak_chip_settings(sc); 5142 set_params__pre_init(sc); 5143 5144 /* get basic stuff going */ 5145 rc = -t4_fw_initialize(sc, sc->mbox); 5146 if (rc != 0) { 5147 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5148 goto done; 5149 } 5150 done: 5151 return (rc); 5152 } 5153 5154 /* 5155 * Partition chip resources for use between various PFs, VFs, etc. 5156 */ 5157 static int 5158 partition_resources(struct adapter *sc) 5159 { 5160 char cfg_file[sizeof(t4_cfg_file)]; 5161 struct caps_allowed caps_allowed; 5162 int rc; 5163 bool fallback; 5164 5165 /* Only the master driver gets to configure the chip resources. */ 5166 MPASS(sc->flags & MASTER_PF); 5167 5168 #define COPY_CAPS(x) do { \ 5169 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5170 } while (0) 5171 bzero(&caps_allowed, sizeof(caps_allowed)); 5172 COPY_CAPS(nbm); 5173 COPY_CAPS(link); 5174 COPY_CAPS(switch); 5175 COPY_CAPS(nic); 5176 COPY_CAPS(toe); 5177 COPY_CAPS(rdma); 5178 COPY_CAPS(crypto); 5179 COPY_CAPS(iscsi); 5180 COPY_CAPS(fcoe); 5181 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5182 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5183 retry: 5184 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5185 if (rc != 0 && fallback) { 5186 dump_devlog(sc); 5187 device_printf(sc->dev, 5188 "failed (%d) to configure card with \"%s\" profile, " 5189 "will fall back to a basic configuration and retry.\n", 5190 rc, cfg_file); 5191 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5192 bzero(&caps_allowed, sizeof(caps_allowed)); 5193 COPY_CAPS(switch); 5194 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5195 fallback = false; 5196 goto retry; 5197 } 5198 #undef COPY_CAPS 5199 return (rc); 5200 } 5201 5202 /* 5203 * Retrieve parameters that are needed (or nice to have) very early. 5204 */ 5205 static int 5206 get_params__pre_init(struct adapter *sc) 5207 { 5208 int rc; 5209 uint32_t param[2], val[2]; 5210 5211 t4_get_version_info(sc); 5212 5213 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5214 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5215 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5216 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5217 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5218 5219 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5220 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5221 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5222 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5223 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5224 5225 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5226 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5227 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5228 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5229 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5230 5231 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5232 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5233 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5234 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5235 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5236 5237 param[0] = FW_PARAM_DEV(PORTVEC); 5238 param[1] = FW_PARAM_DEV(CCLK); 5239 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5240 if (rc != 0) { 5241 device_printf(sc->dev, 5242 "failed to query parameters (pre_init): %d.\n", rc); 5243 return (rc); 5244 } 5245 5246 sc->params.portvec = val[0]; 5247 sc->params.nports = bitcount32(val[0]); 5248 sc->params.vpd.cclk = val[1]; 5249 5250 /* Read device log parameters. */ 5251 rc = -t4_init_devlog_params(sc, 1); 5252 if (rc == 0) 5253 fixup_devlog_params(sc); 5254 else { 5255 device_printf(sc->dev, 5256 "failed to get devlog parameters: %d.\n", rc); 5257 rc = 0; /* devlog isn't critical for device operation */ 5258 } 5259 5260 return (rc); 5261 } 5262 5263 /* 5264 * Any params that need to be set before FW_INITIALIZE. 5265 */ 5266 static int 5267 set_params__pre_init(struct adapter *sc) 5268 { 5269 int rc = 0; 5270 uint32_t param, val; 5271 5272 if (chip_id(sc) >= CHELSIO_T6) { 5273 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5274 val = 1; 5275 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5276 /* firmwares < 1.20.1.0 do not have this param. */ 5277 if (rc == FW_EINVAL && 5278 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5279 rc = 0; 5280 } 5281 if (rc != 0) { 5282 device_printf(sc->dev, 5283 "failed to enable high priority filters :%d.\n", 5284 rc); 5285 } 5286 5287 param = FW_PARAM_DEV(PPOD_EDRAM); 5288 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5289 if (rc == 0 && val == 1) { 5290 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5291 &val); 5292 if (rc != 0) { 5293 device_printf(sc->dev, 5294 "failed to set PPOD_EDRAM: %d.\n", rc); 5295 } 5296 } 5297 } 5298 5299 /* Enable opaque VIIDs with firmwares that support it. */ 5300 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5301 val = 1; 5302 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5303 if (rc == 0 && val == 1) 5304 sc->params.viid_smt_extn_support = true; 5305 else 5306 sc->params.viid_smt_extn_support = false; 5307 5308 return (rc); 5309 } 5310 5311 /* 5312 * Retrieve various parameters that are of interest to the driver. The device 5313 * has been initialized by the firmware at this point. 5314 */ 5315 static int 5316 get_params__post_init(struct adapter *sc) 5317 { 5318 int rc; 5319 uint32_t param[7], val[7]; 5320 struct fw_caps_config_cmd caps; 5321 5322 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5323 param[1] = FW_PARAM_PFVF(EQ_START); 5324 param[2] = FW_PARAM_PFVF(FILTER_START); 5325 param[3] = FW_PARAM_PFVF(FILTER_END); 5326 param[4] = FW_PARAM_PFVF(L2T_START); 5327 param[5] = FW_PARAM_PFVF(L2T_END); 5328 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5329 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5330 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5331 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5332 if (rc != 0) { 5333 device_printf(sc->dev, 5334 "failed to query parameters (post_init): %d.\n", rc); 5335 return (rc); 5336 } 5337 5338 sc->sge.iq_start = val[0]; 5339 sc->sge.eq_start = val[1]; 5340 if ((int)val[3] > (int)val[2]) { 5341 sc->tids.ftid_base = val[2]; 5342 sc->tids.ftid_end = val[3]; 5343 sc->tids.nftids = val[3] - val[2] + 1; 5344 } 5345 sc->vres.l2t.start = val[4]; 5346 sc->vres.l2t.size = val[5] - val[4] + 1; 5347 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5348 if (sc->vres.l2t.size > 0) 5349 MPASS(fls(val[5]) <= S_SYNC_WR); 5350 sc->params.core_vdd = val[6]; 5351 5352 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5353 param[1] = FW_PARAM_PFVF(EQ_END); 5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5355 if (rc != 0) { 5356 device_printf(sc->dev, 5357 "failed to query parameters (post_init2): %d.\n", rc); 5358 return (rc); 5359 } 5360 MPASS((int)val[0] >= sc->sge.iq_start); 5361 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5362 MPASS((int)val[1] >= sc->sge.eq_start); 5363 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5364 5365 if (chip_id(sc) >= CHELSIO_T6) { 5366 5367 sc->tids.tid_base = t4_read_reg(sc, 5368 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5369 5370 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5371 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5372 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5373 if (rc != 0) { 5374 device_printf(sc->dev, 5375 "failed to query hpfilter parameters: %d.\n", rc); 5376 return (rc); 5377 } 5378 if ((int)val[1] > (int)val[0]) { 5379 sc->tids.hpftid_base = val[0]; 5380 sc->tids.hpftid_end = val[1]; 5381 sc->tids.nhpftids = val[1] - val[0] + 1; 5382 5383 /* 5384 * These should go off if the layout changes and the 5385 * driver needs to catch up. 5386 */ 5387 MPASS(sc->tids.hpftid_base == 0); 5388 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5389 } 5390 5391 param[0] = FW_PARAM_PFVF(RAWF_START); 5392 param[1] = FW_PARAM_PFVF(RAWF_END); 5393 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5394 if (rc != 0) { 5395 device_printf(sc->dev, 5396 "failed to query rawf parameters: %d.\n", rc); 5397 return (rc); 5398 } 5399 if ((int)val[1] > (int)val[0]) { 5400 sc->rawf_base = val[0]; 5401 sc->nrawf = val[1] - val[0] + 1; 5402 } 5403 } 5404 5405 /* 5406 * The parameters that follow may not be available on all firmwares. We 5407 * query them individually rather than in a compound query because old 5408 * firmwares fail the entire query if an unknown parameter is queried. 5409 */ 5410 5411 /* 5412 * MPS buffer group configuration. 5413 */ 5414 param[0] = FW_PARAM_DEV(MPSBGMAP); 5415 val[0] = 0; 5416 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5417 if (rc == 0) 5418 sc->params.mps_bg_map = val[0]; 5419 else 5420 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5421 5422 param[0] = FW_PARAM_DEV(TPCHMAP); 5423 val[0] = 0; 5424 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5425 if (rc == 0) 5426 sc->params.tp_ch_map = val[0]; 5427 else 5428 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5429 5430 /* 5431 * Determine whether the firmware supports the filter2 work request. 5432 */ 5433 param[0] = FW_PARAM_DEV(FILTER2_WR); 5434 val[0] = 0; 5435 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5436 if (rc == 0) 5437 sc->params.filter2_wr_support = val[0] != 0; 5438 else 5439 sc->params.filter2_wr_support = 0; 5440 5441 /* 5442 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5443 */ 5444 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5445 val[0] = 0; 5446 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5447 if (rc == 0) 5448 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5449 else 5450 sc->params.ulptx_memwrite_dsgl = false; 5451 5452 /* FW_RI_FR_NSMR_TPTE_WR support */ 5453 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5454 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5455 if (rc == 0) 5456 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5457 else 5458 sc->params.fr_nsmr_tpte_wr_support = false; 5459 5460 /* Support for 512 SGL entries per FR MR. */ 5461 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5462 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5463 if (rc == 0) 5464 sc->params.dev_512sgl_mr = val[0] != 0; 5465 else 5466 sc->params.dev_512sgl_mr = false; 5467 5468 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5469 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5470 if (rc == 0) 5471 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5472 else 5473 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5474 5475 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5476 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5477 if (rc == 0) { 5478 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5479 sc->params.nsched_cls = val[0]; 5480 } else 5481 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5482 5483 /* get capabilites */ 5484 bzero(&caps, sizeof(caps)); 5485 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5486 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5487 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5488 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5489 if (rc != 0) { 5490 device_printf(sc->dev, 5491 "failed to get card capabilities: %d.\n", rc); 5492 return (rc); 5493 } 5494 5495 #define READ_CAPS(x) do { \ 5496 sc->x = htobe16(caps.x); \ 5497 } while (0) 5498 READ_CAPS(nbmcaps); 5499 READ_CAPS(linkcaps); 5500 READ_CAPS(switchcaps); 5501 READ_CAPS(niccaps); 5502 READ_CAPS(toecaps); 5503 READ_CAPS(rdmacaps); 5504 READ_CAPS(cryptocaps); 5505 READ_CAPS(iscsicaps); 5506 READ_CAPS(fcoecaps); 5507 5508 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5509 MPASS(chip_id(sc) > CHELSIO_T4); 5510 MPASS(sc->toecaps == 0); 5511 sc->toecaps = 0; 5512 5513 param[0] = FW_PARAM_DEV(NTID); 5514 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5515 if (rc != 0) { 5516 device_printf(sc->dev, 5517 "failed to query HASHFILTER parameters: %d.\n", rc); 5518 return (rc); 5519 } 5520 sc->tids.ntids = val[0]; 5521 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5522 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5523 sc->tids.ntids -= sc->tids.nhpftids; 5524 } 5525 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5526 sc->params.hash_filter = 1; 5527 } 5528 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5529 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5530 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5531 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5532 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5533 if (rc != 0) { 5534 device_printf(sc->dev, 5535 "failed to query NIC parameters: %d.\n", rc); 5536 return (rc); 5537 } 5538 if ((int)val[1] > (int)val[0]) { 5539 sc->tids.etid_base = val[0]; 5540 sc->tids.etid_end = val[1]; 5541 sc->tids.netids = val[1] - val[0] + 1; 5542 sc->params.eo_wr_cred = val[2]; 5543 sc->params.ethoffload = 1; 5544 } 5545 } 5546 if (sc->toecaps) { 5547 /* query offload-related parameters */ 5548 param[0] = FW_PARAM_DEV(NTID); 5549 param[1] = FW_PARAM_PFVF(SERVER_START); 5550 param[2] = FW_PARAM_PFVF(SERVER_END); 5551 param[3] = FW_PARAM_PFVF(TDDP_START); 5552 param[4] = FW_PARAM_PFVF(TDDP_END); 5553 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5554 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5555 if (rc != 0) { 5556 device_printf(sc->dev, 5557 "failed to query TOE parameters: %d.\n", rc); 5558 return (rc); 5559 } 5560 sc->tids.ntids = val[0]; 5561 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5562 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5563 sc->tids.ntids -= sc->tids.nhpftids; 5564 } 5565 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5566 if ((int)val[2] > (int)val[1]) { 5567 sc->tids.stid_base = val[1]; 5568 sc->tids.nstids = val[2] - val[1] + 1; 5569 } 5570 sc->vres.ddp.start = val[3]; 5571 sc->vres.ddp.size = val[4] - val[3] + 1; 5572 sc->params.ofldq_wr_cred = val[5]; 5573 sc->params.offload = 1; 5574 } else { 5575 /* 5576 * The firmware attempts memfree TOE configuration for -SO cards 5577 * and will report toecaps=0 if it runs out of resources (this 5578 * depends on the config file). It may not report 0 for other 5579 * capabilities dependent on the TOE in this case. Set them to 5580 * 0 here so that the driver doesn't bother tracking resources 5581 * that will never be used. 5582 */ 5583 sc->iscsicaps = 0; 5584 sc->rdmacaps = 0; 5585 } 5586 if (sc->rdmacaps) { 5587 param[0] = FW_PARAM_PFVF(STAG_START); 5588 param[1] = FW_PARAM_PFVF(STAG_END); 5589 param[2] = FW_PARAM_PFVF(RQ_START); 5590 param[3] = FW_PARAM_PFVF(RQ_END); 5591 param[4] = FW_PARAM_PFVF(PBL_START); 5592 param[5] = FW_PARAM_PFVF(PBL_END); 5593 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5594 if (rc != 0) { 5595 device_printf(sc->dev, 5596 "failed to query RDMA parameters(1): %d.\n", rc); 5597 return (rc); 5598 } 5599 sc->vres.stag.start = val[0]; 5600 sc->vres.stag.size = val[1] - val[0] + 1; 5601 sc->vres.rq.start = val[2]; 5602 sc->vres.rq.size = val[3] - val[2] + 1; 5603 sc->vres.pbl.start = val[4]; 5604 sc->vres.pbl.size = val[5] - val[4] + 1; 5605 5606 param[0] = FW_PARAM_PFVF(SQRQ_START); 5607 param[1] = FW_PARAM_PFVF(SQRQ_END); 5608 param[2] = FW_PARAM_PFVF(CQ_START); 5609 param[3] = FW_PARAM_PFVF(CQ_END); 5610 param[4] = FW_PARAM_PFVF(OCQ_START); 5611 param[5] = FW_PARAM_PFVF(OCQ_END); 5612 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5613 if (rc != 0) { 5614 device_printf(sc->dev, 5615 "failed to query RDMA parameters(2): %d.\n", rc); 5616 return (rc); 5617 } 5618 sc->vres.qp.start = val[0]; 5619 sc->vres.qp.size = val[1] - val[0] + 1; 5620 sc->vres.cq.start = val[2]; 5621 sc->vres.cq.size = val[3] - val[2] + 1; 5622 sc->vres.ocq.start = val[4]; 5623 sc->vres.ocq.size = val[5] - val[4] + 1; 5624 5625 param[0] = FW_PARAM_PFVF(SRQ_START); 5626 param[1] = FW_PARAM_PFVF(SRQ_END); 5627 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5628 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5629 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5630 if (rc != 0) { 5631 device_printf(sc->dev, 5632 "failed to query RDMA parameters(3): %d.\n", rc); 5633 return (rc); 5634 } 5635 sc->vres.srq.start = val[0]; 5636 sc->vres.srq.size = val[1] - val[0] + 1; 5637 sc->params.max_ordird_qp = val[2]; 5638 sc->params.max_ird_adapter = val[3]; 5639 } 5640 if (sc->iscsicaps) { 5641 param[0] = FW_PARAM_PFVF(ISCSI_START); 5642 param[1] = FW_PARAM_PFVF(ISCSI_END); 5643 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5644 if (rc != 0) { 5645 device_printf(sc->dev, 5646 "failed to query iSCSI parameters: %d.\n", rc); 5647 return (rc); 5648 } 5649 sc->vres.iscsi.start = val[0]; 5650 sc->vres.iscsi.size = val[1] - val[0] + 1; 5651 } 5652 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5653 param[0] = FW_PARAM_PFVF(TLS_START); 5654 param[1] = FW_PARAM_PFVF(TLS_END); 5655 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5656 if (rc != 0) { 5657 device_printf(sc->dev, 5658 "failed to query TLS parameters: %d.\n", rc); 5659 return (rc); 5660 } 5661 sc->vres.key.start = val[0]; 5662 sc->vres.key.size = val[1] - val[0] + 1; 5663 } 5664 5665 /* 5666 * We've got the params we wanted to query directly from the firmware. 5667 * Grab some others via other means. 5668 */ 5669 t4_init_sge_params(sc); 5670 t4_init_tp_params(sc); 5671 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5672 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5673 5674 rc = t4_verify_chip_settings(sc); 5675 if (rc != 0) 5676 return (rc); 5677 t4_init_rx_buf_info(sc); 5678 5679 return (rc); 5680 } 5681 5682 #ifdef KERN_TLS 5683 static void 5684 ktls_tick(void *arg) 5685 { 5686 struct adapter *sc; 5687 uint32_t tstamp; 5688 5689 sc = arg; 5690 tstamp = tcp_ts_getticks(); 5691 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5692 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5693 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5694 } 5695 5696 static int 5697 t6_config_kern_tls(struct adapter *sc, bool enable) 5698 { 5699 int rc; 5700 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5701 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5702 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5703 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5704 5705 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5706 if (rc != 0) { 5707 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5708 enable ? "enable" : "disable", rc); 5709 return (rc); 5710 } 5711 5712 if (enable) { 5713 sc->flags |= KERN_TLS_ON; 5714 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5715 C_HARDCLOCK); 5716 } else { 5717 sc->flags &= ~KERN_TLS_ON; 5718 callout_stop(&sc->ktls_tick); 5719 } 5720 5721 return (rc); 5722 } 5723 #endif 5724 5725 static int 5726 set_params__post_init(struct adapter *sc) 5727 { 5728 uint32_t mask, param, val; 5729 #ifdef TCP_OFFLOAD 5730 int i, v, shift; 5731 #endif 5732 5733 /* ask for encapsulated CPLs */ 5734 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5735 val = 1; 5736 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5737 5738 /* Enable 32b port caps if the firmware supports it. */ 5739 param = FW_PARAM_PFVF(PORT_CAPS32); 5740 val = 1; 5741 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5742 sc->params.port_caps32 = 1; 5743 5744 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5745 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5746 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5747 V_MASKFILTER(val - 1)); 5748 5749 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5750 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5751 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5752 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5753 val = 0; 5754 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5755 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5756 F_ATTACKFILTERENABLE); 5757 val |= F_DROPERRORATTACK; 5758 } 5759 if (t4_drop_ip_fragments != 0) { 5760 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5761 F_FRAGMENTDROP); 5762 val |= F_DROPERRORFRAG; 5763 } 5764 if (t4_drop_pkts_with_l2_errors != 0) 5765 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5766 if (t4_drop_pkts_with_l3_errors != 0) { 5767 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5768 F_DROPERRORCSUMIP; 5769 } 5770 if (t4_drop_pkts_with_l4_errors != 0) { 5771 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5772 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5773 } 5774 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5775 5776 #ifdef TCP_OFFLOAD 5777 /* 5778 * Override the TOE timers with user provided tunables. This is not the 5779 * recommended way to change the timers (the firmware config file is) so 5780 * these tunables are not documented. 5781 * 5782 * All the timer tunables are in microseconds. 5783 */ 5784 if (t4_toe_keepalive_idle != 0) { 5785 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5786 v &= M_KEEPALIVEIDLE; 5787 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5788 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5789 } 5790 if (t4_toe_keepalive_interval != 0) { 5791 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5792 v &= M_KEEPALIVEINTVL; 5793 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5794 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5795 } 5796 if (t4_toe_keepalive_count != 0) { 5797 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5798 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5799 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5800 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5801 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5802 } 5803 if (t4_toe_rexmt_min != 0) { 5804 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5805 v &= M_RXTMIN; 5806 t4_set_reg_field(sc, A_TP_RXT_MIN, 5807 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5808 } 5809 if (t4_toe_rexmt_max != 0) { 5810 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5811 v &= M_RXTMAX; 5812 t4_set_reg_field(sc, A_TP_RXT_MAX, 5813 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5814 } 5815 if (t4_toe_rexmt_count != 0) { 5816 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5817 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5818 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5819 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5820 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5821 } 5822 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5823 if (t4_toe_rexmt_backoff[i] != -1) { 5824 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5825 shift = (i & 3) << 3; 5826 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5827 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5828 } 5829 } 5830 #endif 5831 5832 /* 5833 * Limit TOE connections to 2 reassembly "islands". This is 5834 * required to permit migrating TOE connections to either 5835 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5836 */ 5837 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5838 V_PASSMODE(2)); 5839 5840 #ifdef KERN_TLS 5841 if (is_ktls(sc)) { 5842 sc->tlst.inline_keys = t4_tls_inline_keys; 5843 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5844 if (t4_kern_tls != 0 && is_t6(sc)) 5845 t6_config_kern_tls(sc, true); 5846 } 5847 #endif 5848 return (0); 5849 } 5850 5851 #undef FW_PARAM_PFVF 5852 #undef FW_PARAM_DEV 5853 5854 static void 5855 t4_set_desc(struct adapter *sc) 5856 { 5857 struct adapter_params *p = &sc->params; 5858 5859 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5860 } 5861 5862 static inline void 5863 ifmedia_add4(struct ifmedia *ifm, int m) 5864 { 5865 5866 ifmedia_add(ifm, m, 0, NULL); 5867 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5868 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5869 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5870 } 5871 5872 /* 5873 * This is the selected media, which is not quite the same as the active media. 5874 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5875 * and active are not the same, and "media: Ethernet selected" otherwise. 5876 */ 5877 static void 5878 set_current_media(struct port_info *pi) 5879 { 5880 struct link_config *lc; 5881 struct ifmedia *ifm; 5882 int mword; 5883 u_int speed; 5884 5885 PORT_LOCK_ASSERT_OWNED(pi); 5886 5887 /* Leave current media alone if it's already set to IFM_NONE. */ 5888 ifm = &pi->media; 5889 if (ifm->ifm_cur != NULL && 5890 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5891 return; 5892 5893 lc = &pi->link_cfg; 5894 if (lc->requested_aneg != AUTONEG_DISABLE && 5895 lc->pcaps & FW_PORT_CAP32_ANEG) { 5896 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5897 return; 5898 } 5899 mword = IFM_ETHER | IFM_FDX; 5900 if (lc->requested_fc & PAUSE_TX) 5901 mword |= IFM_ETH_TXPAUSE; 5902 if (lc->requested_fc & PAUSE_RX) 5903 mword |= IFM_ETH_RXPAUSE; 5904 if (lc->requested_speed == 0) 5905 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5906 else 5907 speed = lc->requested_speed; 5908 mword |= port_mword(pi, speed_to_fwcap(speed)); 5909 ifmedia_set(ifm, mword); 5910 } 5911 5912 /* 5913 * Returns true if the ifmedia list for the port cannot change. 5914 */ 5915 static bool 5916 fixed_ifmedia(struct port_info *pi) 5917 { 5918 5919 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5920 pi->port_type == FW_PORT_TYPE_BT_XFI || 5921 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5922 pi->port_type == FW_PORT_TYPE_KX4 || 5923 pi->port_type == FW_PORT_TYPE_KX || 5924 pi->port_type == FW_PORT_TYPE_KR || 5925 pi->port_type == FW_PORT_TYPE_BP_AP || 5926 pi->port_type == FW_PORT_TYPE_BP4_AP || 5927 pi->port_type == FW_PORT_TYPE_BP40_BA || 5928 pi->port_type == FW_PORT_TYPE_KR4_100G || 5929 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5930 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5931 } 5932 5933 static void 5934 build_medialist(struct port_info *pi) 5935 { 5936 uint32_t ss, speed; 5937 int unknown, mword, bit; 5938 struct link_config *lc; 5939 struct ifmedia *ifm; 5940 5941 PORT_LOCK_ASSERT_OWNED(pi); 5942 5943 if (pi->flags & FIXED_IFMEDIA) 5944 return; 5945 5946 /* 5947 * Rebuild the ifmedia list. 5948 */ 5949 ifm = &pi->media; 5950 ifmedia_removeall(ifm); 5951 lc = &pi->link_cfg; 5952 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5953 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5954 MPASS(ss != 0); 5955 no_media: 5956 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5957 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5958 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5959 return; 5960 } 5961 5962 unknown = 0; 5963 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5964 speed = 1 << bit; 5965 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5966 if (ss & speed) { 5967 mword = port_mword(pi, speed); 5968 if (mword == IFM_NONE) { 5969 goto no_media; 5970 } else if (mword == IFM_UNKNOWN) 5971 unknown++; 5972 else 5973 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5974 } 5975 } 5976 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5977 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5978 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5979 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5980 5981 set_current_media(pi); 5982 } 5983 5984 /* 5985 * Initialize the requested fields in the link config based on driver tunables. 5986 */ 5987 static void 5988 init_link_config(struct port_info *pi) 5989 { 5990 struct link_config *lc = &pi->link_cfg; 5991 5992 PORT_LOCK_ASSERT_OWNED(pi); 5993 5994 lc->requested_caps = 0; 5995 lc->requested_speed = 0; 5996 5997 if (t4_autoneg == 0) 5998 lc->requested_aneg = AUTONEG_DISABLE; 5999 else if (t4_autoneg == 1) 6000 lc->requested_aneg = AUTONEG_ENABLE; 6001 else 6002 lc->requested_aneg = AUTONEG_AUTO; 6003 6004 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6005 PAUSE_AUTONEG); 6006 6007 if (t4_fec & FEC_AUTO) 6008 lc->requested_fec = FEC_AUTO; 6009 else if (t4_fec == 0) 6010 lc->requested_fec = FEC_NONE; 6011 else { 6012 /* -1 is handled by the FEC_AUTO block above and not here. */ 6013 lc->requested_fec = t4_fec & 6014 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6015 if (lc->requested_fec == 0) 6016 lc->requested_fec = FEC_AUTO; 6017 } 6018 if (t4_force_fec < 0) 6019 lc->force_fec = -1; 6020 else if (t4_force_fec > 0) 6021 lc->force_fec = 1; 6022 else 6023 lc->force_fec = 0; 6024 } 6025 6026 /* 6027 * Makes sure that all requested settings comply with what's supported by the 6028 * port. Returns the number of settings that were invalid and had to be fixed. 6029 */ 6030 static int 6031 fixup_link_config(struct port_info *pi) 6032 { 6033 int n = 0; 6034 struct link_config *lc = &pi->link_cfg; 6035 uint32_t fwspeed; 6036 6037 PORT_LOCK_ASSERT_OWNED(pi); 6038 6039 /* Speed (when not autonegotiating) */ 6040 if (lc->requested_speed != 0) { 6041 fwspeed = speed_to_fwcap(lc->requested_speed); 6042 if ((fwspeed & lc->pcaps) == 0) { 6043 n++; 6044 lc->requested_speed = 0; 6045 } 6046 } 6047 6048 /* Link autonegotiation */ 6049 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6050 lc->requested_aneg == AUTONEG_DISABLE || 6051 lc->requested_aneg == AUTONEG_AUTO); 6052 if (lc->requested_aneg == AUTONEG_ENABLE && 6053 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6054 n++; 6055 lc->requested_aneg = AUTONEG_AUTO; 6056 } 6057 6058 /* Flow control */ 6059 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6060 if (lc->requested_fc & PAUSE_TX && 6061 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6062 n++; 6063 lc->requested_fc &= ~PAUSE_TX; 6064 } 6065 if (lc->requested_fc & PAUSE_RX && 6066 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6067 n++; 6068 lc->requested_fc &= ~PAUSE_RX; 6069 } 6070 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6071 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6072 n++; 6073 lc->requested_fc |= PAUSE_AUTONEG; 6074 } 6075 6076 /* FEC */ 6077 if ((lc->requested_fec & FEC_RS && 6078 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6079 (lc->requested_fec & FEC_BASER_RS && 6080 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6081 n++; 6082 lc->requested_fec = FEC_AUTO; 6083 } 6084 6085 return (n); 6086 } 6087 6088 /* 6089 * Apply the requested L1 settings, which are expected to be valid, to the 6090 * hardware. 6091 */ 6092 static int 6093 apply_link_config(struct port_info *pi) 6094 { 6095 struct adapter *sc = pi->adapter; 6096 struct link_config *lc = &pi->link_cfg; 6097 int rc; 6098 6099 #ifdef INVARIANTS 6100 ASSERT_SYNCHRONIZED_OP(sc); 6101 PORT_LOCK_ASSERT_OWNED(pi); 6102 6103 if (lc->requested_aneg == AUTONEG_ENABLE) 6104 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6105 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6106 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6107 if (lc->requested_fc & PAUSE_TX) 6108 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6109 if (lc->requested_fc & PAUSE_RX) 6110 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6111 if (lc->requested_fec & FEC_RS) 6112 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6113 if (lc->requested_fec & FEC_BASER_RS) 6114 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6115 #endif 6116 if (!(sc->flags & IS_VF)) { 6117 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6118 if (rc != 0) { 6119 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6120 return (rc); 6121 } 6122 } 6123 6124 /* 6125 * An L1_CFG will almost always result in a link-change event if the 6126 * link is up, and the driver will refresh the actual fec/fc/etc. when 6127 * the notification is processed. If the link is down then the actual 6128 * settings are meaningless. 6129 * 6130 * This takes care of the case where a change in the L1 settings may not 6131 * result in a notification. 6132 */ 6133 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6134 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6135 6136 return (0); 6137 } 6138 6139 #define FW_MAC_EXACT_CHUNK 7 6140 struct mcaddr_ctx { 6141 if_t ifp; 6142 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6143 uint64_t hash; 6144 int i; 6145 int del; 6146 int rc; 6147 }; 6148 6149 static u_int 6150 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6151 { 6152 struct mcaddr_ctx *ctx = arg; 6153 struct vi_info *vi = if_getsoftc(ctx->ifp); 6154 struct port_info *pi = vi->pi; 6155 struct adapter *sc = pi->adapter; 6156 6157 if (ctx->rc < 0) 6158 return (0); 6159 6160 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6161 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6162 ctx->i++; 6163 6164 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6165 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6166 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6167 if (ctx->rc < 0) { 6168 int j; 6169 6170 for (j = 0; j < ctx->i; j++) { 6171 if_printf(ctx->ifp, 6172 "failed to add mc address" 6173 " %02x:%02x:%02x:" 6174 "%02x:%02x:%02x rc=%d\n", 6175 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6176 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6177 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6178 -ctx->rc); 6179 } 6180 return (0); 6181 } 6182 ctx->del = 0; 6183 ctx->i = 0; 6184 } 6185 6186 return (1); 6187 } 6188 6189 /* 6190 * Program the port's XGMAC based on parameters in ifnet. The caller also 6191 * indicates which parameters should be programmed (the rest are left alone). 6192 */ 6193 int 6194 update_mac_settings(if_t ifp, int flags) 6195 { 6196 int rc = 0; 6197 struct vi_info *vi = if_getsoftc(ifp); 6198 struct port_info *pi = vi->pi; 6199 struct adapter *sc = pi->adapter; 6200 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6201 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6202 6203 ASSERT_SYNCHRONIZED_OP(sc); 6204 KASSERT(flags, ("%s: not told what to update.", __func__)); 6205 6206 if (flags & XGMAC_MTU) 6207 mtu = if_getmtu(ifp); 6208 6209 if (flags & XGMAC_PROMISC) 6210 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6211 6212 if (flags & XGMAC_ALLMULTI) 6213 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6214 6215 if (flags & XGMAC_VLANEX) 6216 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6217 6218 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6219 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6220 allmulti, 1, vlanex, false); 6221 if (rc) { 6222 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6223 rc); 6224 return (rc); 6225 } 6226 } 6227 6228 if (flags & XGMAC_UCADDR) { 6229 uint8_t ucaddr[ETHER_ADDR_LEN]; 6230 6231 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6232 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6233 ucaddr, true, &vi->smt_idx); 6234 if (rc < 0) { 6235 rc = -rc; 6236 if_printf(ifp, "change_mac failed: %d\n", rc); 6237 return (rc); 6238 } else { 6239 vi->xact_addr_filt = rc; 6240 rc = 0; 6241 } 6242 } 6243 6244 if (flags & XGMAC_MCADDRS) { 6245 struct epoch_tracker et; 6246 struct mcaddr_ctx ctx; 6247 int j; 6248 6249 ctx.ifp = ifp; 6250 ctx.hash = 0; 6251 ctx.i = 0; 6252 ctx.del = 1; 6253 ctx.rc = 0; 6254 /* 6255 * Unlike other drivers, we accumulate list of pointers into 6256 * interface address lists and we need to keep it safe even 6257 * after if_foreach_llmaddr() returns, thus we must enter the 6258 * network epoch. 6259 */ 6260 NET_EPOCH_ENTER(et); 6261 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6262 if (ctx.rc < 0) { 6263 NET_EPOCH_EXIT(et); 6264 rc = -ctx.rc; 6265 return (rc); 6266 } 6267 if (ctx.i > 0) { 6268 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6269 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6270 NET_EPOCH_EXIT(et); 6271 if (rc < 0) { 6272 rc = -rc; 6273 for (j = 0; j < ctx.i; j++) { 6274 if_printf(ifp, 6275 "failed to add mcast address" 6276 " %02x:%02x:%02x:" 6277 "%02x:%02x:%02x rc=%d\n", 6278 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6279 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6280 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6281 rc); 6282 } 6283 return (rc); 6284 } 6285 ctx.del = 0; 6286 } else 6287 NET_EPOCH_EXIT(et); 6288 6289 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6290 if (rc != 0) 6291 if_printf(ifp, "failed to set mcast address hash: %d\n", 6292 rc); 6293 if (ctx.del == 0) { 6294 /* We clobbered the VXLAN entry if there was one. */ 6295 pi->vxlan_tcam_entry = false; 6296 } 6297 } 6298 6299 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6300 pi->vxlan_tcam_entry == false) { 6301 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6302 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6303 true); 6304 if (rc < 0) { 6305 rc = -rc; 6306 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6307 rc); 6308 } else { 6309 MPASS(rc == sc->rawf_base + pi->port_id); 6310 rc = 0; 6311 pi->vxlan_tcam_entry = true; 6312 } 6313 } 6314 6315 return (rc); 6316 } 6317 6318 /* 6319 * {begin|end}_synchronized_op must be called from the same thread. 6320 */ 6321 int 6322 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6323 char *wmesg) 6324 { 6325 int rc, pri; 6326 6327 #ifdef WITNESS 6328 /* the caller thinks it's ok to sleep, but is it really? */ 6329 if (flags & SLEEP_OK) 6330 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6331 "begin_synchronized_op"); 6332 #endif 6333 6334 if (INTR_OK) 6335 pri = PCATCH; 6336 else 6337 pri = 0; 6338 6339 ADAPTER_LOCK(sc); 6340 for (;;) { 6341 6342 if (vi && IS_DETACHING(vi)) { 6343 rc = ENXIO; 6344 goto done; 6345 } 6346 6347 if (!IS_BUSY(sc)) { 6348 rc = 0; 6349 break; 6350 } 6351 6352 if (!(flags & SLEEP_OK)) { 6353 rc = EBUSY; 6354 goto done; 6355 } 6356 6357 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6358 rc = EINTR; 6359 goto done; 6360 } 6361 } 6362 6363 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6364 SET_BUSY(sc); 6365 #ifdef INVARIANTS 6366 sc->last_op = wmesg; 6367 sc->last_op_thr = curthread; 6368 sc->last_op_flags = flags; 6369 #endif 6370 6371 done: 6372 if (!(flags & HOLD_LOCK) || rc) 6373 ADAPTER_UNLOCK(sc); 6374 6375 return (rc); 6376 } 6377 6378 /* 6379 * Tell if_ioctl and if_init that the VI is going away. This is 6380 * special variant of begin_synchronized_op and must be paired with a 6381 * call to end_vi_detach. 6382 */ 6383 void 6384 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6385 { 6386 ADAPTER_LOCK(sc); 6387 SET_DETACHING(vi); 6388 wakeup(&sc->flags); 6389 while (IS_BUSY(sc)) 6390 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6391 SET_BUSY(sc); 6392 #ifdef INVARIANTS 6393 sc->last_op = "t4detach"; 6394 sc->last_op_thr = curthread; 6395 sc->last_op_flags = 0; 6396 #endif 6397 ADAPTER_UNLOCK(sc); 6398 } 6399 6400 void 6401 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6402 { 6403 ADAPTER_LOCK(sc); 6404 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6405 CLR_BUSY(sc); 6406 CLR_DETACHING(vi); 6407 wakeup(&sc->flags); 6408 ADAPTER_UNLOCK(sc); 6409 } 6410 6411 /* 6412 * {begin|end}_synchronized_op must be called from the same thread. 6413 */ 6414 void 6415 end_synchronized_op(struct adapter *sc, int flags) 6416 { 6417 6418 if (flags & LOCK_HELD) 6419 ADAPTER_LOCK_ASSERT_OWNED(sc); 6420 else 6421 ADAPTER_LOCK(sc); 6422 6423 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6424 CLR_BUSY(sc); 6425 wakeup(&sc->flags); 6426 ADAPTER_UNLOCK(sc); 6427 } 6428 6429 static int 6430 cxgbe_init_synchronized(struct vi_info *vi) 6431 { 6432 struct port_info *pi = vi->pi; 6433 struct adapter *sc = pi->adapter; 6434 if_t ifp = vi->ifp; 6435 int rc = 0, i; 6436 struct sge_txq *txq; 6437 6438 ASSERT_SYNCHRONIZED_OP(sc); 6439 6440 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6441 return (0); /* already running */ 6442 6443 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6444 return (rc); /* error message displayed already */ 6445 6446 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6447 return (rc); /* error message displayed already */ 6448 6449 rc = update_mac_settings(ifp, XGMAC_ALL); 6450 if (rc) 6451 goto done; /* error message displayed already */ 6452 6453 PORT_LOCK(pi); 6454 if (pi->up_vis == 0) { 6455 t4_update_port_info(pi); 6456 fixup_link_config(pi); 6457 build_medialist(pi); 6458 apply_link_config(pi); 6459 } 6460 6461 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6462 if (rc != 0) { 6463 if_printf(ifp, "enable_vi failed: %d\n", rc); 6464 PORT_UNLOCK(pi); 6465 goto done; 6466 } 6467 6468 /* 6469 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6470 * if this changes. 6471 */ 6472 6473 for_each_txq(vi, i, txq) { 6474 TXQ_LOCK(txq); 6475 txq->eq.flags |= EQ_ENABLED; 6476 TXQ_UNLOCK(txq); 6477 } 6478 6479 /* 6480 * The first iq of the first port to come up is used for tracing. 6481 */ 6482 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6483 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6484 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6485 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6486 V_QUEUENUMBER(sc->traceq)); 6487 pi->flags |= HAS_TRACEQ; 6488 } 6489 6490 /* all ok */ 6491 pi->up_vis++; 6492 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6493 if (pi->link_cfg.link_ok) 6494 t4_os_link_changed(pi); 6495 PORT_UNLOCK(pi); 6496 6497 mtx_lock(&vi->tick_mtx); 6498 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6499 callout_reset(&vi->tick, hz, vi_tick, vi); 6500 else 6501 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6502 mtx_unlock(&vi->tick_mtx); 6503 done: 6504 if (rc != 0) 6505 cxgbe_uninit_synchronized(vi); 6506 6507 return (rc); 6508 } 6509 6510 /* 6511 * Idempotent. 6512 */ 6513 static int 6514 cxgbe_uninit_synchronized(struct vi_info *vi) 6515 { 6516 struct port_info *pi = vi->pi; 6517 struct adapter *sc = pi->adapter; 6518 if_t ifp = vi->ifp; 6519 int rc, i; 6520 struct sge_txq *txq; 6521 6522 ASSERT_SYNCHRONIZED_OP(sc); 6523 6524 if (!(vi->flags & VI_INIT_DONE)) { 6525 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6526 KASSERT(0, ("uninited VI is running")); 6527 if_printf(ifp, "uninited VI with running ifnet. " 6528 "vi->flags 0x%016lx, if_flags 0x%08x, " 6529 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6530 if_getdrvflags(ifp)); 6531 } 6532 return (0); 6533 } 6534 6535 /* 6536 * Disable the VI so that all its data in either direction is discarded 6537 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6538 * tick) intact as the TP can deliver negative advice or data that it's 6539 * holding in its RAM (for an offloaded connection) even after the VI is 6540 * disabled. 6541 */ 6542 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6543 if (rc) { 6544 if_printf(ifp, "disable_vi failed: %d\n", rc); 6545 return (rc); 6546 } 6547 6548 for_each_txq(vi, i, txq) { 6549 TXQ_LOCK(txq); 6550 txq->eq.flags &= ~EQ_ENABLED; 6551 TXQ_UNLOCK(txq); 6552 } 6553 6554 mtx_lock(&vi->tick_mtx); 6555 callout_stop(&vi->tick); 6556 mtx_unlock(&vi->tick_mtx); 6557 6558 PORT_LOCK(pi); 6559 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6560 PORT_UNLOCK(pi); 6561 return (0); 6562 } 6563 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6564 pi->up_vis--; 6565 if (pi->up_vis > 0) { 6566 PORT_UNLOCK(pi); 6567 return (0); 6568 } 6569 6570 pi->link_cfg.link_ok = false; 6571 pi->link_cfg.speed = 0; 6572 pi->link_cfg.link_down_rc = 255; 6573 t4_os_link_changed(pi); 6574 PORT_UNLOCK(pi); 6575 6576 return (0); 6577 } 6578 6579 /* 6580 * It is ok for this function to fail midway and return right away. t4_detach 6581 * will walk the entire sc->irq list and clean up whatever is valid. 6582 */ 6583 int 6584 t4_setup_intr_handlers(struct adapter *sc) 6585 { 6586 int rc, rid, p, q, v; 6587 char s[8]; 6588 struct irq *irq; 6589 struct port_info *pi; 6590 struct vi_info *vi; 6591 struct sge *sge = &sc->sge; 6592 struct sge_rxq *rxq; 6593 #ifdef TCP_OFFLOAD 6594 struct sge_ofld_rxq *ofld_rxq; 6595 #endif 6596 #ifdef DEV_NETMAP 6597 struct sge_nm_rxq *nm_rxq; 6598 #endif 6599 #ifdef RSS 6600 int nbuckets = rss_getnumbuckets(); 6601 #endif 6602 6603 /* 6604 * Setup interrupts. 6605 */ 6606 irq = &sc->irq[0]; 6607 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6608 if (forwarding_intr_to_fwq(sc)) 6609 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6610 6611 /* Multiple interrupts. */ 6612 if (sc->flags & IS_VF) 6613 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6614 ("%s: too few intr.", __func__)); 6615 else 6616 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6617 ("%s: too few intr.", __func__)); 6618 6619 /* The first one is always error intr on PFs */ 6620 if (!(sc->flags & IS_VF)) { 6621 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6622 if (rc != 0) 6623 return (rc); 6624 irq++; 6625 rid++; 6626 } 6627 6628 /* The second one is always the firmware event queue (first on VFs) */ 6629 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6630 if (rc != 0) 6631 return (rc); 6632 irq++; 6633 rid++; 6634 6635 for_each_port(sc, p) { 6636 pi = sc->port[p]; 6637 for_each_vi(pi, v, vi) { 6638 vi->first_intr = rid - 1; 6639 6640 if (vi->nnmrxq > 0) { 6641 int n = max(vi->nrxq, vi->nnmrxq); 6642 6643 rxq = &sge->rxq[vi->first_rxq]; 6644 #ifdef DEV_NETMAP 6645 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6646 #endif 6647 for (q = 0; q < n; q++) { 6648 snprintf(s, sizeof(s), "%x%c%x", p, 6649 'a' + v, q); 6650 if (q < vi->nrxq) 6651 irq->rxq = rxq++; 6652 #ifdef DEV_NETMAP 6653 if (q < vi->nnmrxq) 6654 irq->nm_rxq = nm_rxq++; 6655 6656 if (irq->nm_rxq != NULL && 6657 irq->rxq == NULL) { 6658 /* Netmap rx only */ 6659 rc = t4_alloc_irq(sc, irq, rid, 6660 t4_nm_intr, irq->nm_rxq, s); 6661 } 6662 if (irq->nm_rxq != NULL && 6663 irq->rxq != NULL) { 6664 /* NIC and Netmap rx */ 6665 rc = t4_alloc_irq(sc, irq, rid, 6666 t4_vi_intr, irq, s); 6667 } 6668 #endif 6669 if (irq->rxq != NULL && 6670 irq->nm_rxq == NULL) { 6671 /* NIC rx only */ 6672 rc = t4_alloc_irq(sc, irq, rid, 6673 t4_intr, irq->rxq, s); 6674 } 6675 if (rc != 0) 6676 return (rc); 6677 #ifdef RSS 6678 if (q < vi->nrxq) { 6679 bus_bind_intr(sc->dev, irq->res, 6680 rss_getcpu(q % nbuckets)); 6681 } 6682 #endif 6683 irq++; 6684 rid++; 6685 vi->nintr++; 6686 } 6687 } else { 6688 for_each_rxq(vi, q, rxq) { 6689 snprintf(s, sizeof(s), "%x%c%x", p, 6690 'a' + v, q); 6691 rc = t4_alloc_irq(sc, irq, rid, 6692 t4_intr, rxq, s); 6693 if (rc != 0) 6694 return (rc); 6695 #ifdef RSS 6696 bus_bind_intr(sc->dev, irq->res, 6697 rss_getcpu(q % nbuckets)); 6698 #endif 6699 irq++; 6700 rid++; 6701 vi->nintr++; 6702 } 6703 } 6704 #ifdef TCP_OFFLOAD 6705 for_each_ofld_rxq(vi, q, ofld_rxq) { 6706 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6707 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6708 ofld_rxq, s); 6709 if (rc != 0) 6710 return (rc); 6711 irq++; 6712 rid++; 6713 vi->nintr++; 6714 } 6715 #endif 6716 } 6717 } 6718 MPASS(irq == &sc->irq[sc->intr_count]); 6719 6720 return (0); 6721 } 6722 6723 static void 6724 write_global_rss_key(struct adapter *sc) 6725 { 6726 #ifdef RSS 6727 int i; 6728 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6729 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6730 6731 CTASSERT(RSS_KEYSIZE == 40); 6732 6733 rss_getkey((void *)&raw_rss_key[0]); 6734 for (i = 0; i < nitems(rss_key); i++) { 6735 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6736 } 6737 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6738 #endif 6739 } 6740 6741 /* 6742 * Idempotent. 6743 */ 6744 static int 6745 adapter_full_init(struct adapter *sc) 6746 { 6747 int rc, i; 6748 6749 ASSERT_SYNCHRONIZED_OP(sc); 6750 6751 /* 6752 * queues that belong to the adapter (not any particular port). 6753 */ 6754 rc = t4_setup_adapter_queues(sc); 6755 if (rc != 0) 6756 return (rc); 6757 6758 MPASS(sc->params.nports <= nitems(sc->tq)); 6759 for (i = 0; i < sc->params.nports; i++) { 6760 if (sc->tq[i] != NULL) 6761 continue; 6762 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6763 taskqueue_thread_enqueue, &sc->tq[i]); 6764 if (sc->tq[i] == NULL) { 6765 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6766 return (ENOMEM); 6767 } 6768 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6769 device_get_nameunit(sc->dev), i); 6770 } 6771 6772 if (!(sc->flags & IS_VF)) { 6773 write_global_rss_key(sc); 6774 t4_intr_enable(sc); 6775 } 6776 return (0); 6777 } 6778 6779 int 6780 adapter_init(struct adapter *sc) 6781 { 6782 int rc; 6783 6784 ASSERT_SYNCHRONIZED_OP(sc); 6785 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6786 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6787 ("%s: FULL_INIT_DONE already", __func__)); 6788 6789 rc = adapter_full_init(sc); 6790 if (rc != 0) 6791 adapter_full_uninit(sc); 6792 else 6793 sc->flags |= FULL_INIT_DONE; 6794 6795 return (rc); 6796 } 6797 6798 /* 6799 * Idempotent. 6800 */ 6801 static void 6802 adapter_full_uninit(struct adapter *sc) 6803 { 6804 int i; 6805 6806 t4_teardown_adapter_queues(sc); 6807 6808 for (i = 0; i < nitems(sc->tq); i++) { 6809 if (sc->tq[i] == NULL) 6810 continue; 6811 taskqueue_free(sc->tq[i]); 6812 sc->tq[i] = NULL; 6813 } 6814 6815 sc->flags &= ~FULL_INIT_DONE; 6816 } 6817 6818 #ifdef RSS 6819 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6820 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6821 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6822 RSS_HASHTYPE_RSS_UDP_IPV6) 6823 6824 /* Translates kernel hash types to hardware. */ 6825 static int 6826 hashconfig_to_hashen(int hashconfig) 6827 { 6828 int hashen = 0; 6829 6830 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6831 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6832 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6833 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6834 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6835 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6836 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6837 } 6838 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6839 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6840 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6841 } 6842 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6843 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6844 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6845 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6846 6847 return (hashen); 6848 } 6849 6850 /* Translates hardware hash types to kernel. */ 6851 static int 6852 hashen_to_hashconfig(int hashen) 6853 { 6854 int hashconfig = 0; 6855 6856 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6857 /* 6858 * If UDP hashing was enabled it must have been enabled for 6859 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6860 * enabling any 4-tuple hash is nonsense configuration. 6861 */ 6862 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6863 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6864 6865 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6866 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6867 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6868 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6869 } 6870 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6871 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6872 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6873 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6874 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6875 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6876 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6877 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6878 6879 return (hashconfig); 6880 } 6881 #endif 6882 6883 /* 6884 * Idempotent. 6885 */ 6886 static int 6887 vi_full_init(struct vi_info *vi) 6888 { 6889 struct adapter *sc = vi->adapter; 6890 struct sge_rxq *rxq; 6891 int rc, i, j; 6892 #ifdef RSS 6893 int nbuckets = rss_getnumbuckets(); 6894 int hashconfig = rss_gethashconfig(); 6895 int extra; 6896 #endif 6897 6898 ASSERT_SYNCHRONIZED_OP(sc); 6899 6900 /* 6901 * Allocate tx/rx/fl queues for this VI. 6902 */ 6903 rc = t4_setup_vi_queues(vi); 6904 if (rc != 0) 6905 return (rc); 6906 6907 /* 6908 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6909 */ 6910 if (vi->nrxq > vi->rss_size) { 6911 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6912 "some queues will never receive traffic.\n", vi->nrxq, 6913 vi->rss_size); 6914 } else if (vi->rss_size % vi->nrxq) { 6915 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6916 "expect uneven traffic distribution.\n", vi->nrxq, 6917 vi->rss_size); 6918 } 6919 #ifdef RSS 6920 if (vi->nrxq != nbuckets) { 6921 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6922 "performance will be impacted.\n", vi->nrxq, nbuckets); 6923 } 6924 #endif 6925 if (vi->rss == NULL) 6926 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6927 M_ZERO | M_WAITOK); 6928 for (i = 0; i < vi->rss_size;) { 6929 #ifdef RSS 6930 j = rss_get_indirection_to_bucket(i); 6931 j %= vi->nrxq; 6932 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6933 vi->rss[i++] = rxq->iq.abs_id; 6934 #else 6935 for_each_rxq(vi, j, rxq) { 6936 vi->rss[i++] = rxq->iq.abs_id; 6937 if (i == vi->rss_size) 6938 break; 6939 } 6940 #endif 6941 } 6942 6943 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6944 vi->rss, vi->rss_size); 6945 if (rc != 0) { 6946 CH_ERR(vi, "rss_config failed: %d\n", rc); 6947 return (rc); 6948 } 6949 6950 #ifdef RSS 6951 vi->hashen = hashconfig_to_hashen(hashconfig); 6952 6953 /* 6954 * We may have had to enable some hashes even though the global config 6955 * wants them disabled. This is a potential problem that must be 6956 * reported to the user. 6957 */ 6958 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6959 6960 /* 6961 * If we consider only the supported hash types, then the enabled hashes 6962 * are a superset of the requested hashes. In other words, there cannot 6963 * be any supported hash that was requested but not enabled, but there 6964 * can be hashes that were not requested but had to be enabled. 6965 */ 6966 extra &= SUPPORTED_RSS_HASHTYPES; 6967 MPASS((extra & hashconfig) == 0); 6968 6969 if (extra) { 6970 CH_ALERT(vi, 6971 "global RSS config (0x%x) cannot be accommodated.\n", 6972 hashconfig); 6973 } 6974 if (extra & RSS_HASHTYPE_RSS_IPV4) 6975 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6976 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6977 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6978 if (extra & RSS_HASHTYPE_RSS_IPV6) 6979 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6980 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6981 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6982 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6983 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6984 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6985 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6986 #else 6987 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6988 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6989 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6990 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6991 #endif 6992 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6993 0, 0); 6994 if (rc != 0) { 6995 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6996 return (rc); 6997 } 6998 6999 return (0); 7000 } 7001 7002 int 7003 vi_init(struct vi_info *vi) 7004 { 7005 int rc; 7006 7007 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7008 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7009 ("%s: VI_INIT_DONE already", __func__)); 7010 7011 rc = vi_full_init(vi); 7012 if (rc != 0) 7013 vi_full_uninit(vi); 7014 else 7015 vi->flags |= VI_INIT_DONE; 7016 7017 return (rc); 7018 } 7019 7020 /* 7021 * Idempotent. 7022 */ 7023 static void 7024 vi_full_uninit(struct vi_info *vi) 7025 { 7026 7027 if (vi->flags & VI_INIT_DONE) { 7028 quiesce_vi(vi); 7029 free(vi->rss, M_CXGBE); 7030 free(vi->nm_rss, M_CXGBE); 7031 } 7032 7033 t4_teardown_vi_queues(vi); 7034 vi->flags &= ~VI_INIT_DONE; 7035 } 7036 7037 static void 7038 quiesce_txq(struct sge_txq *txq) 7039 { 7040 struct sge_eq *eq = &txq->eq; 7041 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7042 7043 MPASS(eq->flags & EQ_SW_ALLOCATED); 7044 MPASS(!(eq->flags & EQ_ENABLED)); 7045 7046 /* Wait for the mp_ring to empty. */ 7047 while (!mp_ring_is_idle(txq->r)) { 7048 mp_ring_check_drainage(txq->r, 4096); 7049 pause("rquiesce", 1); 7050 } 7051 MPASS(txq->txp.npkt == 0); 7052 7053 if (eq->flags & EQ_HW_ALLOCATED) { 7054 /* 7055 * Hardware is alive and working normally. Wait for it to 7056 * finish and then wait for the driver to catch up and reclaim 7057 * all descriptors. 7058 */ 7059 while (spg->cidx != htobe16(eq->pidx)) 7060 pause("equiesce", 1); 7061 while (eq->cidx != eq->pidx) 7062 pause("dquiesce", 1); 7063 } else { 7064 /* 7065 * Hardware is unavailable. Discard all pending tx and reclaim 7066 * descriptors directly. 7067 */ 7068 TXQ_LOCK(txq); 7069 while (eq->cidx != eq->pidx) { 7070 struct mbuf *m, *nextpkt; 7071 struct tx_sdesc *txsd; 7072 7073 txsd = &txq->sdesc[eq->cidx]; 7074 for (m = txsd->m; m != NULL; m = nextpkt) { 7075 nextpkt = m->m_nextpkt; 7076 m->m_nextpkt = NULL; 7077 m_freem(m); 7078 } 7079 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7080 } 7081 spg->pidx = spg->cidx = htobe16(eq->cidx); 7082 TXQ_UNLOCK(txq); 7083 } 7084 } 7085 7086 static void 7087 quiesce_wrq(struct sge_wrq *wrq) 7088 { 7089 struct wrqe *wr; 7090 7091 TXQ_LOCK(wrq); 7092 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7093 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7094 #ifdef INVARIANTS 7095 wrq->nwr_pending--; 7096 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7097 #endif 7098 free(wr, M_CXGBE); 7099 } 7100 MPASS(wrq->nwr_pending == 0); 7101 MPASS(wrq->ndesc_needed == 0); 7102 wrq->nwr_pending = 0; 7103 wrq->ndesc_needed = 0; 7104 TXQ_UNLOCK(wrq); 7105 } 7106 7107 static void 7108 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7109 { 7110 /* Synchronize with the interrupt handler */ 7111 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7112 pause("iqfree", 1); 7113 7114 if (fl != NULL) { 7115 MPASS(iq->flags & IQ_HAS_FL); 7116 7117 mtx_lock(&sc->sfl_lock); 7118 FL_LOCK(fl); 7119 fl->flags |= FL_DOOMED; 7120 FL_UNLOCK(fl); 7121 callout_stop(&sc->sfl_callout); 7122 mtx_unlock(&sc->sfl_lock); 7123 7124 KASSERT((fl->flags & FL_STARVING) == 0, 7125 ("%s: still starving", __func__)); 7126 7127 /* Release all buffers if hardware is no longer available. */ 7128 if (!(iq->flags & IQ_HW_ALLOCATED)) 7129 free_fl_buffers(sc, fl); 7130 } 7131 } 7132 7133 /* 7134 * Wait for all activity on all the queues of the VI to complete. It is assumed 7135 * that no new work is being enqueued by the hardware or the driver. That part 7136 * should be arranged before calling this function. 7137 */ 7138 static void 7139 quiesce_vi(struct vi_info *vi) 7140 { 7141 int i; 7142 struct adapter *sc = vi->adapter; 7143 struct sge_rxq *rxq; 7144 struct sge_txq *txq; 7145 #ifdef TCP_OFFLOAD 7146 struct sge_ofld_rxq *ofld_rxq; 7147 #endif 7148 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7149 struct sge_ofld_txq *ofld_txq; 7150 #endif 7151 7152 if (!(vi->flags & VI_INIT_DONE)) 7153 return; 7154 7155 for_each_txq(vi, i, txq) { 7156 quiesce_txq(txq); 7157 } 7158 7159 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7160 for_each_ofld_txq(vi, i, ofld_txq) { 7161 quiesce_wrq(&ofld_txq->wrq); 7162 } 7163 #endif 7164 7165 for_each_rxq(vi, i, rxq) { 7166 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7167 } 7168 7169 #ifdef TCP_OFFLOAD 7170 for_each_ofld_rxq(vi, i, ofld_rxq) { 7171 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7172 } 7173 #endif 7174 } 7175 7176 static int 7177 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7178 driver_intr_t *handler, void *arg, char *name) 7179 { 7180 int rc; 7181 7182 irq->rid = rid; 7183 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7184 RF_SHAREABLE | RF_ACTIVE); 7185 if (irq->res == NULL) { 7186 device_printf(sc->dev, 7187 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7188 return (ENOMEM); 7189 } 7190 7191 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7192 NULL, handler, arg, &irq->tag); 7193 if (rc != 0) { 7194 device_printf(sc->dev, 7195 "failed to setup interrupt for rid %d, name %s: %d\n", 7196 rid, name, rc); 7197 } else if (name) 7198 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7199 7200 return (rc); 7201 } 7202 7203 static int 7204 t4_free_irq(struct adapter *sc, struct irq *irq) 7205 { 7206 if (irq->tag) 7207 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7208 if (irq->res) 7209 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7210 7211 bzero(irq, sizeof(*irq)); 7212 7213 return (0); 7214 } 7215 7216 static void 7217 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7218 { 7219 7220 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7221 t4_get_regs(sc, buf, regs->len); 7222 } 7223 7224 #define A_PL_INDIR_CMD 0x1f8 7225 7226 #define S_PL_AUTOINC 31 7227 #define M_PL_AUTOINC 0x1U 7228 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7229 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7230 7231 #define S_PL_VFID 20 7232 #define M_PL_VFID 0xffU 7233 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7234 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7235 7236 #define S_PL_ADDR 0 7237 #define M_PL_ADDR 0xfffffU 7238 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7239 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7240 7241 #define A_PL_INDIR_DATA 0x1fc 7242 7243 static uint64_t 7244 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7245 { 7246 u32 stats[2]; 7247 7248 if (sc->flags & IS_VF) { 7249 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7250 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7251 } else { 7252 mtx_assert(&sc->reg_lock, MA_OWNED); 7253 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7254 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7255 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7256 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7257 } 7258 return (((uint64_t)stats[1]) << 32 | stats[0]); 7259 } 7260 7261 static void 7262 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7263 { 7264 7265 #define GET_STAT(name) \ 7266 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7267 7268 if (!(sc->flags & IS_VF)) 7269 mtx_lock(&sc->reg_lock); 7270 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7271 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7272 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7273 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7274 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7275 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7276 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7277 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7278 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7279 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7280 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7281 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7282 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7283 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7284 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7285 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7286 if (!(sc->flags & IS_VF)) 7287 mtx_unlock(&sc->reg_lock); 7288 7289 #undef GET_STAT 7290 } 7291 7292 static void 7293 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7294 { 7295 int reg; 7296 7297 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7298 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7299 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7300 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7301 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7302 } 7303 7304 static void 7305 vi_refresh_stats(struct vi_info *vi) 7306 { 7307 struct timeval tv; 7308 const struct timeval interval = {0, 250000}; /* 250ms */ 7309 7310 mtx_assert(&vi->tick_mtx, MA_OWNED); 7311 7312 if (vi->flags & VI_SKIP_STATS) 7313 return; 7314 7315 getmicrotime(&tv); 7316 timevalsub(&tv, &interval); 7317 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7318 return; 7319 7320 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7321 getmicrotime(&vi->last_refreshed); 7322 } 7323 7324 static void 7325 cxgbe_refresh_stats(struct vi_info *vi) 7326 { 7327 u_int i, v, tnl_cong_drops, chan_map; 7328 struct timeval tv; 7329 const struct timeval interval = {0, 250000}; /* 250ms */ 7330 struct port_info *pi; 7331 struct adapter *sc; 7332 7333 mtx_assert(&vi->tick_mtx, MA_OWNED); 7334 7335 if (vi->flags & VI_SKIP_STATS) 7336 return; 7337 7338 getmicrotime(&tv); 7339 timevalsub(&tv, &interval); 7340 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7341 return; 7342 7343 pi = vi->pi; 7344 sc = vi->adapter; 7345 tnl_cong_drops = 0; 7346 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7347 chan_map = pi->rx_e_chan_map; 7348 while (chan_map) { 7349 i = ffs(chan_map) - 1; 7350 mtx_lock(&sc->reg_lock); 7351 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7352 A_TP_MIB_TNL_CNG_DROP_0 + i); 7353 mtx_unlock(&sc->reg_lock); 7354 tnl_cong_drops += v; 7355 chan_map &= ~(1 << i); 7356 } 7357 pi->tnl_cong_drops = tnl_cong_drops; 7358 getmicrotime(&vi->last_refreshed); 7359 } 7360 7361 static void 7362 cxgbe_tick(void *arg) 7363 { 7364 struct vi_info *vi = arg; 7365 7366 MPASS(IS_MAIN_VI(vi)); 7367 mtx_assert(&vi->tick_mtx, MA_OWNED); 7368 7369 cxgbe_refresh_stats(vi); 7370 callout_schedule(&vi->tick, hz); 7371 } 7372 7373 static void 7374 vi_tick(void *arg) 7375 { 7376 struct vi_info *vi = arg; 7377 7378 mtx_assert(&vi->tick_mtx, MA_OWNED); 7379 7380 vi_refresh_stats(vi); 7381 callout_schedule(&vi->tick, hz); 7382 } 7383 7384 /* 7385 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7386 */ 7387 static char *caps_decoder[] = { 7388 "\20\001IPMI\002NCSI", /* 0: NBM */ 7389 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7390 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7391 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7392 "\006HASHFILTER\007ETHOFLD", 7393 "\20\001TOE", /* 4: TOE */ 7394 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7395 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7396 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7397 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7398 "\007T10DIF" 7399 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7400 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7401 "\004TLS_HW", 7402 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7403 "\004PO_INITIATOR\005PO_TARGET", 7404 }; 7405 7406 void 7407 t4_sysctls(struct adapter *sc) 7408 { 7409 struct sysctl_ctx_list *ctx = &sc->ctx; 7410 struct sysctl_oid *oid; 7411 struct sysctl_oid_list *children, *c0; 7412 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7413 7414 /* 7415 * dev.t4nex.X. 7416 */ 7417 oid = device_get_sysctl_tree(sc->dev); 7418 c0 = children = SYSCTL_CHILDREN(oid); 7419 7420 sc->sc_do_rxcopy = 1; 7421 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7422 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7423 7424 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7425 sc->params.nports, "# of ports"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7428 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7429 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7430 "available doorbells"); 7431 7432 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7433 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7434 7435 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7436 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7437 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7438 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7439 7440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7441 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7442 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7443 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7444 7445 t4_sge_sysctls(sc, ctx, children); 7446 7447 sc->lro_timeout = 100; 7448 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7449 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7450 7451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7452 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7453 7454 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7455 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7456 7457 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7458 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7459 7460 if (sc->flags & IS_VF) 7461 return; 7462 7463 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7464 NULL, chip_rev(sc), "chip hardware revision"); 7465 7466 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7467 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7468 7469 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7470 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7471 7472 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7473 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7474 7475 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7476 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7477 7478 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7479 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7480 7481 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7482 sc->er_version, 0, "expansion ROM version"); 7483 7484 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7485 sc->bs_version, 0, "bootstrap firmware version"); 7486 7487 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7488 NULL, sc->params.scfg_vers, "serial config version"); 7489 7490 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7491 NULL, sc->params.vpd_vers, "VPD version"); 7492 7493 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7494 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7495 7496 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7497 sc->cfcsum, "config file checksum"); 7498 7499 #define SYSCTL_CAP(name, n, text) \ 7500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7501 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7502 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7503 "available " text " capabilities") 7504 7505 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7506 SYSCTL_CAP(linkcaps, 1, "link"); 7507 SYSCTL_CAP(switchcaps, 2, "switch"); 7508 SYSCTL_CAP(niccaps, 3, "NIC"); 7509 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7510 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7511 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7512 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7513 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7514 #undef SYSCTL_CAP 7515 7516 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7517 NULL, sc->tids.nftids, "number of filters"); 7518 7519 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7520 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7521 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7522 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7523 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7524 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7525 7526 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7527 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7528 sysctl_loadavg, "A", 7529 "microprocessor load averages (debug firmwares only)"); 7530 7531 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7532 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7533 "I", "core Vdd (in mV)"); 7534 7535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7536 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7537 sysctl_cpus, "A", "local CPUs"); 7538 7539 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7540 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7541 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7542 7543 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7544 &sc->swintr, 0, "software triggered interrupts"); 7545 7546 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7547 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7548 "1 = reset adapter, 0 = zero reset counter"); 7549 7550 /* 7551 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7552 */ 7553 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7554 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7555 "logs and miscellaneous information"); 7556 children = SYSCTL_CHILDREN(oid); 7557 7558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7559 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7560 sysctl_cctrl, "A", "congestion control"); 7561 7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7563 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7564 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7565 7566 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7567 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7568 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7569 7570 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7571 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7572 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7573 7574 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7575 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7576 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7577 7578 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7579 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7580 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7581 7582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7583 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7584 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7585 7586 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7587 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7588 sysctl_cim_la, "A", "CIM logic analyzer"); 7589 7590 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7591 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7592 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7593 7594 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7595 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7596 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7597 7598 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7599 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7600 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7601 7602 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7603 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7604 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7605 7606 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7607 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7608 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7609 7610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7611 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7612 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7613 7614 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7615 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7616 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7617 7618 if (chip_id(sc) > CHELSIO_T4) { 7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7620 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7621 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7622 "CIM OBQ 6 (SGE0-RX)"); 7623 7624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7625 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7626 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7627 "CIM OBQ 7 (SGE1-RX)"); 7628 } 7629 7630 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7631 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7632 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7633 7634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7635 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7636 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7637 7638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7639 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7640 sysctl_cpl_stats, "A", "CPL statistics"); 7641 7642 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7643 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7644 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7645 7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7647 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7648 sysctl_tid_stats, "A", "tid stats"); 7649 7650 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7651 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7652 sysctl_devlog, "A", "firmware's device log"); 7653 7654 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7655 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7656 sysctl_fcoe_stats, "A", "FCoE statistics"); 7657 7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7659 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7660 sysctl_hw_sched, "A", "hardware scheduler "); 7661 7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7663 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7664 sysctl_l2t, "A", "hardware L2 table"); 7665 7666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7667 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7668 sysctl_smt, "A", "hardware source MAC table"); 7669 7670 #ifdef INET6 7671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7672 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7673 sysctl_clip, "A", "active CLIP table entries"); 7674 #endif 7675 7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7678 sysctl_lb_stats, "A", "loopback statistics"); 7679 7680 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7681 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7682 sysctl_meminfo, "A", "memory regions"); 7683 7684 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7685 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7686 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7687 "A", "MPS TCAM entries"); 7688 7689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7690 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7691 sysctl_path_mtus, "A", "path MTUs"); 7692 7693 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7694 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7695 sysctl_pm_stats, "A", "PM statistics"); 7696 7697 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7698 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7699 sysctl_rdma_stats, "A", "RDMA statistics"); 7700 7701 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7702 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7703 sysctl_tcp_stats, "A", "TCP statistics"); 7704 7705 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7706 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7707 sysctl_tids, "A", "TID information"); 7708 7709 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7710 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7711 sysctl_tp_err_stats, "A", "TP error statistics"); 7712 7713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7714 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7715 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7716 7717 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7718 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7719 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7720 7721 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7722 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7723 sysctl_tp_la, "A", "TP logic analyzer"); 7724 7725 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7726 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7727 sysctl_tx_rate, "A", "Tx rate"); 7728 7729 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7730 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7731 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7732 7733 if (chip_id(sc) >= CHELSIO_T5) { 7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7735 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7736 sysctl_wcwr_stats, "A", "write combined work requests"); 7737 } 7738 7739 #ifdef KERN_TLS 7740 if (is_ktls(sc)) { 7741 /* 7742 * dev.t4nex.0.tls. 7743 */ 7744 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7746 children = SYSCTL_CHILDREN(oid); 7747 7748 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7749 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7750 "keys in work requests (1) or attempt to store TLS keys " 7751 "in card memory."); 7752 7753 if (is_t6(sc)) 7754 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7755 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7756 "combine TCB field updates with TLS record work " 7757 "requests."); 7758 } 7759 #endif 7760 7761 #ifdef TCP_OFFLOAD 7762 if (is_offload(sc)) { 7763 int i; 7764 char s[4]; 7765 7766 /* 7767 * dev.t4nex.X.toe. 7768 */ 7769 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7770 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7771 children = SYSCTL_CHILDREN(oid); 7772 7773 sc->tt.cong_algorithm = -1; 7774 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7775 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7776 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7777 "3 = highspeed)"); 7778 7779 sc->tt.sndbuf = -1; 7780 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7781 &sc->tt.sndbuf, 0, "hardware send buffer"); 7782 7783 sc->tt.ddp = 0; 7784 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7785 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7786 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7787 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7788 7789 sc->tt.rx_coalesce = -1; 7790 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7791 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7792 7793 sc->tt.tls = 0; 7794 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7795 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7796 "Inline TLS allowed"); 7797 7798 sc->tt.tx_align = -1; 7799 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7800 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7801 7802 sc->tt.tx_zcopy = 0; 7803 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7804 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7805 "Enable zero-copy aio_write(2)"); 7806 7807 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7808 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7809 "cop_managed_offloading", CTLFLAG_RW, 7810 &sc->tt.cop_managed_offloading, 0, 7811 "COP (Connection Offload Policy) controls all TOE offload"); 7812 7813 sc->tt.autorcvbuf_inc = 16 * 1024; 7814 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7815 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7816 "autorcvbuf increment"); 7817 7818 sc->tt.update_hc_on_pmtu_change = 1; 7819 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7820 "update_hc_on_pmtu_change", CTLFLAG_RW, 7821 &sc->tt.update_hc_on_pmtu_change, 0, 7822 "Update hostcache entry if the PMTU changes"); 7823 7824 sc->tt.iso = 1; 7825 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7826 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7827 7828 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7829 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7830 sysctl_tp_tick, "A", "TP timer tick (us)"); 7831 7832 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7833 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7834 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7835 7836 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7837 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7838 sysctl_tp_tick, "A", "DACK tick (us)"); 7839 7840 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7841 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7842 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7843 7844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7845 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7846 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7847 "Minimum retransmit interval (us)"); 7848 7849 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7850 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7851 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7852 "Maximum retransmit interval (us)"); 7853 7854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7855 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7856 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7857 "Persist timer min (us)"); 7858 7859 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7860 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7861 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7862 "Persist timer max (us)"); 7863 7864 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7865 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7866 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7867 "Keepalive idle timer (us)"); 7868 7869 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7870 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7871 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7872 "Keepalive interval timer (us)"); 7873 7874 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7875 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7876 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7877 7878 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7879 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7880 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7881 "FINWAIT2 timer (us)"); 7882 7883 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7884 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7885 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7886 "Number of SYN retransmissions before abort"); 7887 7888 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7889 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7890 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7891 "Number of retransmissions before abort"); 7892 7893 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7894 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7895 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7896 "Number of keepalive probes before abort"); 7897 7898 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7899 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7900 "TOE retransmit backoffs"); 7901 children = SYSCTL_CHILDREN(oid); 7902 for (i = 0; i < 16; i++) { 7903 snprintf(s, sizeof(s), "%u", i); 7904 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7905 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7906 i, sysctl_tp_backoff, "IU", 7907 "TOE retransmit backoff"); 7908 } 7909 } 7910 #endif 7911 } 7912 7913 void 7914 vi_sysctls(struct vi_info *vi) 7915 { 7916 struct sysctl_ctx_list *ctx = &vi->ctx; 7917 struct sysctl_oid *oid; 7918 struct sysctl_oid_list *children; 7919 7920 /* 7921 * dev.v?(cxgbe|cxl).X. 7922 */ 7923 oid = device_get_sysctl_tree(vi->dev); 7924 children = SYSCTL_CHILDREN(oid); 7925 7926 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7927 vi->viid, "VI identifer"); 7928 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7929 &vi->nrxq, 0, "# of rx queues"); 7930 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7931 &vi->ntxq, 0, "# of tx queues"); 7932 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7933 &vi->first_rxq, 0, "index of first rx queue"); 7934 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7935 &vi->first_txq, 0, "index of first tx queue"); 7936 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7937 vi->rss_base, "start of RSS indirection table"); 7938 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7939 vi->rss_size, "size of RSS indirection table"); 7940 7941 if (IS_MAIN_VI(vi)) { 7942 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7943 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7944 sysctl_noflowq, "IU", 7945 "Reserve queue 0 for non-flowid packets"); 7946 } 7947 7948 if (vi->adapter->flags & IS_VF) { 7949 MPASS(vi->flags & TX_USES_VM_WR); 7950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7951 NULL, 1, "use VM work requests for transmit"); 7952 } else { 7953 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7954 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7955 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7956 } 7957 7958 #ifdef TCP_OFFLOAD 7959 if (vi->nofldrxq != 0) { 7960 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7961 &vi->nofldrxq, 0, 7962 "# of rx queues for offloaded TCP connections"); 7963 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7964 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7965 "index of first TOE rx queue"); 7966 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7967 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7968 sysctl_holdoff_tmr_idx_ofld, "I", 7969 "holdoff timer index for TOE queues"); 7970 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7971 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7972 sysctl_holdoff_pktc_idx_ofld, "I", 7973 "holdoff packet counter index for TOE queues"); 7974 } 7975 #endif 7976 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7977 if (vi->nofldtxq != 0) { 7978 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7979 &vi->nofldtxq, 0, 7980 "# of tx queues for TOE/ETHOFLD"); 7981 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7982 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7983 "index of first TOE/ETHOFLD tx queue"); 7984 } 7985 #endif 7986 #ifdef DEV_NETMAP 7987 if (vi->nnmrxq != 0) { 7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7989 &vi->nnmrxq, 0, "# of netmap rx queues"); 7990 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7991 &vi->nnmtxq, 0, "# of netmap tx queues"); 7992 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7993 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7994 "index of first netmap rx queue"); 7995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7996 CTLFLAG_RD, &vi->first_nm_txq, 0, 7997 "index of first netmap tx queue"); 7998 } 7999 #endif 8000 8001 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8002 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8003 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8005 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8006 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8007 8008 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8009 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8010 sysctl_qsize_rxq, "I", "rx queue size"); 8011 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8012 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8013 sysctl_qsize_txq, "I", "tx queue size"); 8014 } 8015 8016 static void 8017 cxgbe_sysctls(struct port_info *pi) 8018 { 8019 struct sysctl_ctx_list *ctx = &pi->ctx; 8020 struct sysctl_oid *oid; 8021 struct sysctl_oid_list *children, *children2; 8022 struct adapter *sc = pi->adapter; 8023 int i; 8024 char name[16]; 8025 static char *tc_flags = {"\20\1USER"}; 8026 8027 /* 8028 * dev.cxgbe.X. 8029 */ 8030 oid = device_get_sysctl_tree(pi->dev); 8031 children = SYSCTL_CHILDREN(oid); 8032 8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8035 sysctl_linkdnrc, "A", "reason why link is down"); 8036 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8038 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8039 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8040 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8041 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8042 sysctl_btphy, "I", "PHY firmware version"); 8043 } 8044 8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8046 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8047 sysctl_pause_settings, "A", 8048 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8049 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8050 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8051 "FEC in use on the link"); 8052 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8053 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8054 sysctl_requested_fec, "A", 8055 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8056 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8057 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8058 "FEC recommended by the cable/transceiver"); 8059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8060 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8061 sysctl_autoneg, "I", 8062 "autonegotiation (-1 = not supported)"); 8063 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8064 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8065 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8066 8067 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8068 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8069 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8070 &pi->link_cfg.pcaps, 0, "port capabilities"); 8071 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8072 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8073 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8074 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8075 8076 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8077 port_top_speed(pi), "max speed (in Gbps)"); 8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8079 pi->mps_bg_map, "MPS buffer group map"); 8080 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8081 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8082 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8083 pi->tx_chan, "TP tx c-channel"); 8084 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8085 pi->rx_chan, "TP rx c-channel"); 8086 8087 if (sc->flags & IS_VF) 8088 return; 8089 8090 /* 8091 * dev.(cxgbe|cxl).X.tc. 8092 */ 8093 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8094 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8095 "Tx scheduler traffic classes (cl_rl)"); 8096 children2 = SYSCTL_CHILDREN(oid); 8097 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8098 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8099 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8100 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8101 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8102 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8103 for (i = 0; i < sc->params.nsched_cls; i++) { 8104 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8105 8106 snprintf(name, sizeof(name), "%d", i); 8107 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8108 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8109 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8110 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8111 CTLFLAG_RD, &tc->state, 0, "current state"); 8112 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8113 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8114 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8115 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8116 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8117 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8119 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8120 "traffic class parameters"); 8121 } 8122 8123 /* 8124 * dev.cxgbe.X.stats. 8125 */ 8126 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8127 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8128 children = SYSCTL_CHILDREN(oid); 8129 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8130 &pi->tx_parse_error, 0, 8131 "# of tx packets with invalid length or # of segments"); 8132 8133 #define T4_REGSTAT(name, stat, desc) \ 8134 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8135 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8136 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8137 sysctl_handle_t4_reg64, "QU", desc) 8138 8139 /* We get these from port_stats and they may be stale by up to 1s */ 8140 #define T4_PORTSTAT(name, desc) \ 8141 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8142 &pi->stats.name, desc) 8143 8144 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8145 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8146 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8147 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8148 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8149 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8150 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8151 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8152 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8153 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8154 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8155 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8156 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8157 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8158 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8159 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8160 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8161 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8162 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8163 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8164 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8165 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8166 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8167 8168 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8169 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8170 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8171 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8172 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8173 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8174 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8175 if (is_t6(sc)) { 8176 T4_PORTSTAT(rx_fcs_err, 8177 "# of frames received with bad FCS since last link up"); 8178 } else { 8179 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8180 "# of frames received with bad FCS"); 8181 } 8182 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8183 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8184 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8185 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8186 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8187 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8188 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8189 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8190 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8191 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8192 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8193 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8194 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8195 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8196 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8197 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8198 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8199 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8200 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8201 8202 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8203 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8204 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8205 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8206 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8207 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8208 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8209 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8210 8211 #undef T4_REGSTAT 8212 #undef T4_PORTSTAT 8213 } 8214 8215 static int 8216 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8217 { 8218 int rc, *i, space = 0; 8219 struct sbuf sb; 8220 8221 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8222 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8223 if (space) 8224 sbuf_printf(&sb, " "); 8225 sbuf_printf(&sb, "%d", *i); 8226 space = 1; 8227 } 8228 rc = sbuf_finish(&sb); 8229 sbuf_delete(&sb); 8230 return (rc); 8231 } 8232 8233 static int 8234 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8235 { 8236 int rc; 8237 struct sbuf *sb; 8238 8239 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8240 if (sb == NULL) 8241 return (ENOMEM); 8242 8243 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8244 rc = sbuf_finish(sb); 8245 sbuf_delete(sb); 8246 8247 return (rc); 8248 } 8249 8250 static int 8251 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8252 { 8253 int rc; 8254 struct sbuf *sb; 8255 8256 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8257 if (sb == NULL) 8258 return (ENOMEM); 8259 8260 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8261 rc = sbuf_finish(sb); 8262 sbuf_delete(sb); 8263 8264 return (rc); 8265 } 8266 8267 static int 8268 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8269 { 8270 struct port_info *pi = arg1; 8271 int op = arg2; 8272 struct adapter *sc = pi->adapter; 8273 u_int v; 8274 int rc; 8275 8276 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8277 if (rc) 8278 return (rc); 8279 if (hw_off_limits(sc)) 8280 rc = ENXIO; 8281 else { 8282 /* XXX: magic numbers */ 8283 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8284 op ? 0x20 : 0xc820, &v); 8285 } 8286 end_synchronized_op(sc, 0); 8287 if (rc) 8288 return (rc); 8289 if (op == 0) 8290 v /= 256; 8291 8292 rc = sysctl_handle_int(oidp, &v, 0, req); 8293 return (rc); 8294 } 8295 8296 static int 8297 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8298 { 8299 struct vi_info *vi = arg1; 8300 int rc, val; 8301 8302 val = vi->rsrv_noflowq; 8303 rc = sysctl_handle_int(oidp, &val, 0, req); 8304 if (rc != 0 || req->newptr == NULL) 8305 return (rc); 8306 8307 if ((val >= 1) && (vi->ntxq > 1)) 8308 vi->rsrv_noflowq = 1; 8309 else 8310 vi->rsrv_noflowq = 0; 8311 8312 return (rc); 8313 } 8314 8315 static int 8316 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8317 { 8318 struct vi_info *vi = arg1; 8319 struct adapter *sc = vi->adapter; 8320 int rc, val, i; 8321 8322 MPASS(!(sc->flags & IS_VF)); 8323 8324 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8325 rc = sysctl_handle_int(oidp, &val, 0, req); 8326 if (rc != 0 || req->newptr == NULL) 8327 return (rc); 8328 8329 if (val != 0 && val != 1) 8330 return (EINVAL); 8331 8332 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8333 "t4txvm"); 8334 if (rc) 8335 return (rc); 8336 if (hw_off_limits(sc)) 8337 rc = ENXIO; 8338 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8339 /* 8340 * We don't want parse_pkt to run with one setting (VF or PF) 8341 * and then eth_tx to see a different setting but still use 8342 * stale information calculated by parse_pkt. 8343 */ 8344 rc = EBUSY; 8345 } else { 8346 struct port_info *pi = vi->pi; 8347 struct sge_txq *txq; 8348 uint32_t ctrl0; 8349 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8350 8351 if (val) { 8352 vi->flags |= TX_USES_VM_WR; 8353 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8354 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8355 V_TXPKT_INTF(pi->tx_chan)); 8356 if (!(sc->flags & IS_VF)) 8357 npkt--; 8358 } else { 8359 vi->flags &= ~TX_USES_VM_WR; 8360 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8361 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8362 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8363 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8364 } 8365 for_each_txq(vi, i, txq) { 8366 txq->cpl_ctrl0 = ctrl0; 8367 txq->txp.max_npkt = npkt; 8368 } 8369 } 8370 end_synchronized_op(sc, LOCK_HELD); 8371 return (rc); 8372 } 8373 8374 static int 8375 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8376 { 8377 struct vi_info *vi = arg1; 8378 struct adapter *sc = vi->adapter; 8379 int idx, rc, i; 8380 struct sge_rxq *rxq; 8381 uint8_t v; 8382 8383 idx = vi->tmr_idx; 8384 8385 rc = sysctl_handle_int(oidp, &idx, 0, req); 8386 if (rc != 0 || req->newptr == NULL) 8387 return (rc); 8388 8389 if (idx < 0 || idx >= SGE_NTIMERS) 8390 return (EINVAL); 8391 8392 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8393 "t4tmr"); 8394 if (rc) 8395 return (rc); 8396 8397 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8398 for_each_rxq(vi, i, rxq) { 8399 #ifdef atomic_store_rel_8 8400 atomic_store_rel_8(&rxq->iq.intr_params, v); 8401 #else 8402 rxq->iq.intr_params = v; 8403 #endif 8404 } 8405 vi->tmr_idx = idx; 8406 8407 end_synchronized_op(sc, LOCK_HELD); 8408 return (0); 8409 } 8410 8411 static int 8412 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8413 { 8414 struct vi_info *vi = arg1; 8415 struct adapter *sc = vi->adapter; 8416 int idx, rc; 8417 8418 idx = vi->pktc_idx; 8419 8420 rc = sysctl_handle_int(oidp, &idx, 0, req); 8421 if (rc != 0 || req->newptr == NULL) 8422 return (rc); 8423 8424 if (idx < -1 || idx >= SGE_NCOUNTERS) 8425 return (EINVAL); 8426 8427 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8428 "t4pktc"); 8429 if (rc) 8430 return (rc); 8431 8432 if (vi->flags & VI_INIT_DONE) 8433 rc = EBUSY; /* cannot be changed once the queues are created */ 8434 else 8435 vi->pktc_idx = idx; 8436 8437 end_synchronized_op(sc, LOCK_HELD); 8438 return (rc); 8439 } 8440 8441 static int 8442 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8443 { 8444 struct vi_info *vi = arg1; 8445 struct adapter *sc = vi->adapter; 8446 int qsize, rc; 8447 8448 qsize = vi->qsize_rxq; 8449 8450 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8451 if (rc != 0 || req->newptr == NULL) 8452 return (rc); 8453 8454 if (qsize < 128 || (qsize & 7)) 8455 return (EINVAL); 8456 8457 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8458 "t4rxqs"); 8459 if (rc) 8460 return (rc); 8461 8462 if (vi->flags & VI_INIT_DONE) 8463 rc = EBUSY; /* cannot be changed once the queues are created */ 8464 else 8465 vi->qsize_rxq = qsize; 8466 8467 end_synchronized_op(sc, LOCK_HELD); 8468 return (rc); 8469 } 8470 8471 static int 8472 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8473 { 8474 struct vi_info *vi = arg1; 8475 struct adapter *sc = vi->adapter; 8476 int qsize, rc; 8477 8478 qsize = vi->qsize_txq; 8479 8480 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8481 if (rc != 0 || req->newptr == NULL) 8482 return (rc); 8483 8484 if (qsize < 128 || qsize > 65536) 8485 return (EINVAL); 8486 8487 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8488 "t4txqs"); 8489 if (rc) 8490 return (rc); 8491 8492 if (vi->flags & VI_INIT_DONE) 8493 rc = EBUSY; /* cannot be changed once the queues are created */ 8494 else 8495 vi->qsize_txq = qsize; 8496 8497 end_synchronized_op(sc, LOCK_HELD); 8498 return (rc); 8499 } 8500 8501 static int 8502 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8503 { 8504 struct port_info *pi = arg1; 8505 struct adapter *sc = pi->adapter; 8506 struct link_config *lc = &pi->link_cfg; 8507 int rc; 8508 8509 if (req->newptr == NULL) { 8510 struct sbuf *sb; 8511 static char *bits = "\20\1RX\2TX\3AUTO"; 8512 8513 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8514 if (sb == NULL) 8515 return (ENOMEM); 8516 8517 if (lc->link_ok) { 8518 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8519 (lc->requested_fc & PAUSE_AUTONEG), bits); 8520 } else { 8521 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8522 PAUSE_RX | PAUSE_AUTONEG), bits); 8523 } 8524 rc = sbuf_finish(sb); 8525 sbuf_delete(sb); 8526 } else { 8527 char s[2]; 8528 int n; 8529 8530 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8531 PAUSE_AUTONEG)); 8532 s[1] = 0; 8533 8534 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8535 if (rc != 0) 8536 return(rc); 8537 8538 if (s[1] != 0) 8539 return (EINVAL); 8540 if (s[0] < '0' || s[0] > '9') 8541 return (EINVAL); /* not a number */ 8542 n = s[0] - '0'; 8543 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8544 return (EINVAL); /* some other bit is set too */ 8545 8546 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8547 "t4PAUSE"); 8548 if (rc) 8549 return (rc); 8550 if (!hw_off_limits(sc)) { 8551 PORT_LOCK(pi); 8552 lc->requested_fc = n; 8553 fixup_link_config(pi); 8554 if (pi->up_vis > 0) 8555 rc = apply_link_config(pi); 8556 set_current_media(pi); 8557 PORT_UNLOCK(pi); 8558 } 8559 end_synchronized_op(sc, 0); 8560 } 8561 8562 return (rc); 8563 } 8564 8565 static int 8566 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8567 { 8568 struct port_info *pi = arg1; 8569 struct link_config *lc = &pi->link_cfg; 8570 int rc; 8571 struct sbuf *sb; 8572 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8573 8574 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8575 if (sb == NULL) 8576 return (ENOMEM); 8577 if (lc->link_ok) 8578 sbuf_printf(sb, "%b", lc->fec, bits); 8579 else 8580 sbuf_printf(sb, "no link"); 8581 rc = sbuf_finish(sb); 8582 sbuf_delete(sb); 8583 8584 return (rc); 8585 } 8586 8587 static int 8588 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8589 { 8590 struct port_info *pi = arg1; 8591 struct adapter *sc = pi->adapter; 8592 struct link_config *lc = &pi->link_cfg; 8593 int rc; 8594 int8_t old; 8595 8596 if (req->newptr == NULL) { 8597 struct sbuf *sb; 8598 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8599 "\5RSVD3\6auto\7module"; 8600 8601 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8602 if (sb == NULL) 8603 return (ENOMEM); 8604 8605 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8606 rc = sbuf_finish(sb); 8607 sbuf_delete(sb); 8608 } else { 8609 char s[8]; 8610 int n; 8611 8612 snprintf(s, sizeof(s), "%d", 8613 lc->requested_fec == FEC_AUTO ? -1 : 8614 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8615 8616 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8617 if (rc != 0) 8618 return(rc); 8619 8620 n = strtol(&s[0], NULL, 0); 8621 if (n < 0 || n & FEC_AUTO) 8622 n = FEC_AUTO; 8623 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8624 return (EINVAL);/* some other bit is set too */ 8625 8626 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8627 "t4reqf"); 8628 if (rc) 8629 return (rc); 8630 PORT_LOCK(pi); 8631 old = lc->requested_fec; 8632 if (n == FEC_AUTO) 8633 lc->requested_fec = FEC_AUTO; 8634 else if (n == 0 || n == FEC_NONE) 8635 lc->requested_fec = FEC_NONE; 8636 else { 8637 if ((lc->pcaps | 8638 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8639 lc->pcaps) { 8640 rc = ENOTSUP; 8641 goto done; 8642 } 8643 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8644 FEC_MODULE); 8645 } 8646 if (!hw_off_limits(sc)) { 8647 fixup_link_config(pi); 8648 if (pi->up_vis > 0) { 8649 rc = apply_link_config(pi); 8650 if (rc != 0) { 8651 lc->requested_fec = old; 8652 if (rc == FW_EPROTO) 8653 rc = ENOTSUP; 8654 } 8655 } 8656 } 8657 done: 8658 PORT_UNLOCK(pi); 8659 end_synchronized_op(sc, 0); 8660 } 8661 8662 return (rc); 8663 } 8664 8665 static int 8666 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8667 { 8668 struct port_info *pi = arg1; 8669 struct adapter *sc = pi->adapter; 8670 struct link_config *lc = &pi->link_cfg; 8671 int rc; 8672 int8_t fec; 8673 struct sbuf *sb; 8674 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8675 8676 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8677 if (sb == NULL) 8678 return (ENOMEM); 8679 8680 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8681 rc = EBUSY; 8682 goto done; 8683 } 8684 if (hw_off_limits(sc)) { 8685 rc = ENXIO; 8686 goto done; 8687 } 8688 PORT_LOCK(pi); 8689 if (pi->up_vis == 0) { 8690 /* 8691 * If all the interfaces are administratively down the firmware 8692 * does not report transceiver changes. Refresh port info here. 8693 * This is the only reason we have a synchronized op in this 8694 * function. Just PORT_LOCK would have been enough otherwise. 8695 */ 8696 t4_update_port_info(pi); 8697 } 8698 8699 fec = lc->fec_hint; 8700 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8701 !fec_supported(lc->pcaps)) { 8702 PORT_UNLOCK(pi); 8703 sbuf_printf(sb, "n/a"); 8704 } else { 8705 if (fec == 0) 8706 fec = FEC_NONE; 8707 PORT_UNLOCK(pi); 8708 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8709 } 8710 rc = sbuf_finish(sb); 8711 done: 8712 sbuf_delete(sb); 8713 end_synchronized_op(sc, 0); 8714 8715 return (rc); 8716 } 8717 8718 static int 8719 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8720 { 8721 struct port_info *pi = arg1; 8722 struct adapter *sc = pi->adapter; 8723 struct link_config *lc = &pi->link_cfg; 8724 int rc, val; 8725 8726 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8727 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8728 else 8729 val = -1; 8730 rc = sysctl_handle_int(oidp, &val, 0, req); 8731 if (rc != 0 || req->newptr == NULL) 8732 return (rc); 8733 if (val == 0) 8734 val = AUTONEG_DISABLE; 8735 else if (val == 1) 8736 val = AUTONEG_ENABLE; 8737 else 8738 val = AUTONEG_AUTO; 8739 8740 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8741 "t4aneg"); 8742 if (rc) 8743 return (rc); 8744 PORT_LOCK(pi); 8745 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8746 rc = ENOTSUP; 8747 goto done; 8748 } 8749 lc->requested_aneg = val; 8750 if (!hw_off_limits(sc)) { 8751 fixup_link_config(pi); 8752 if (pi->up_vis > 0) 8753 rc = apply_link_config(pi); 8754 set_current_media(pi); 8755 } 8756 done: 8757 PORT_UNLOCK(pi); 8758 end_synchronized_op(sc, 0); 8759 return (rc); 8760 } 8761 8762 static int 8763 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8764 { 8765 struct port_info *pi = arg1; 8766 struct adapter *sc = pi->adapter; 8767 struct link_config *lc = &pi->link_cfg; 8768 int rc, val; 8769 8770 val = lc->force_fec; 8771 MPASS(val >= -1 && val <= 1); 8772 rc = sysctl_handle_int(oidp, &val, 0, req); 8773 if (rc != 0 || req->newptr == NULL) 8774 return (rc); 8775 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8776 return (ENOTSUP); 8777 if (val < -1 || val > 1) 8778 return (EINVAL); 8779 8780 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8781 if (rc) 8782 return (rc); 8783 PORT_LOCK(pi); 8784 lc->force_fec = val; 8785 if (!hw_off_limits(sc)) { 8786 fixup_link_config(pi); 8787 if (pi->up_vis > 0) 8788 rc = apply_link_config(pi); 8789 } 8790 PORT_UNLOCK(pi); 8791 end_synchronized_op(sc, 0); 8792 return (rc); 8793 } 8794 8795 static int 8796 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8797 { 8798 struct adapter *sc = arg1; 8799 int rc, reg = arg2; 8800 uint64_t val; 8801 8802 mtx_lock(&sc->reg_lock); 8803 if (hw_off_limits(sc)) 8804 rc = ENXIO; 8805 else { 8806 rc = 0; 8807 val = t4_read_reg64(sc, reg); 8808 } 8809 mtx_unlock(&sc->reg_lock); 8810 if (rc == 0) 8811 rc = sysctl_handle_64(oidp, &val, 0, req); 8812 return (rc); 8813 } 8814 8815 static int 8816 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8817 { 8818 struct adapter *sc = arg1; 8819 int rc, t; 8820 uint32_t param, val; 8821 8822 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8823 if (rc) 8824 return (rc); 8825 if (hw_off_limits(sc)) 8826 rc = ENXIO; 8827 else { 8828 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8829 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8830 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8831 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8832 } 8833 end_synchronized_op(sc, 0); 8834 if (rc) 8835 return (rc); 8836 8837 /* unknown is returned as 0 but we display -1 in that case */ 8838 t = val == 0 ? -1 : val; 8839 8840 rc = sysctl_handle_int(oidp, &t, 0, req); 8841 return (rc); 8842 } 8843 8844 static int 8845 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8846 { 8847 struct adapter *sc = arg1; 8848 int rc; 8849 uint32_t param, val; 8850 8851 if (sc->params.core_vdd == 0) { 8852 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8853 "t4vdd"); 8854 if (rc) 8855 return (rc); 8856 if (hw_off_limits(sc)) 8857 rc = ENXIO; 8858 else { 8859 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8860 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8861 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8862 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8863 ¶m, &val); 8864 } 8865 end_synchronized_op(sc, 0); 8866 if (rc) 8867 return (rc); 8868 sc->params.core_vdd = val; 8869 } 8870 8871 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8872 } 8873 8874 static int 8875 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8876 { 8877 struct adapter *sc = arg1; 8878 int rc, v; 8879 uint32_t param, val; 8880 8881 v = sc->sensor_resets; 8882 rc = sysctl_handle_int(oidp, &v, 0, req); 8883 if (rc != 0 || req->newptr == NULL || v <= 0) 8884 return (rc); 8885 8886 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8887 chip_id(sc) < CHELSIO_T5) 8888 return (ENOTSUP); 8889 8890 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8891 if (rc) 8892 return (rc); 8893 if (hw_off_limits(sc)) 8894 rc = ENXIO; 8895 else { 8896 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8897 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8898 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8899 val = 1; 8900 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8901 } 8902 end_synchronized_op(sc, 0); 8903 if (rc == 0) 8904 sc->sensor_resets++; 8905 return (rc); 8906 } 8907 8908 static int 8909 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8910 { 8911 struct adapter *sc = arg1; 8912 struct sbuf *sb; 8913 int rc; 8914 uint32_t param, val; 8915 8916 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8917 if (rc) 8918 return (rc); 8919 if (hw_off_limits(sc)) 8920 rc = ENXIO; 8921 else { 8922 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8923 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8924 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8925 } 8926 end_synchronized_op(sc, 0); 8927 if (rc) 8928 return (rc); 8929 8930 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8931 if (sb == NULL) 8932 return (ENOMEM); 8933 8934 if (val == 0xffffffff) { 8935 /* Only debug and custom firmwares report load averages. */ 8936 sbuf_printf(sb, "not available"); 8937 } else { 8938 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8939 (val >> 16) & 0xff); 8940 } 8941 rc = sbuf_finish(sb); 8942 sbuf_delete(sb); 8943 8944 return (rc); 8945 } 8946 8947 static int 8948 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8949 { 8950 struct adapter *sc = arg1; 8951 struct sbuf *sb; 8952 int rc, i; 8953 uint16_t incr[NMTUS][NCCTRL_WIN]; 8954 static const char *dec_fac[] = { 8955 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8956 "0.9375" 8957 }; 8958 8959 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8960 if (sb == NULL) 8961 return (ENOMEM); 8962 8963 rc = 0; 8964 mtx_lock(&sc->reg_lock); 8965 if (hw_off_limits(sc)) 8966 rc = ENXIO; 8967 else 8968 t4_read_cong_tbl(sc, incr); 8969 mtx_unlock(&sc->reg_lock); 8970 if (rc) 8971 goto done; 8972 8973 for (i = 0; i < NCCTRL_WIN; ++i) { 8974 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8975 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8976 incr[5][i], incr[6][i], incr[7][i]); 8977 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8978 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8979 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8980 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8981 } 8982 8983 rc = sbuf_finish(sb); 8984 done: 8985 sbuf_delete(sb); 8986 return (rc); 8987 } 8988 8989 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8990 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8991 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8992 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8993 }; 8994 8995 static int 8996 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8997 { 8998 struct adapter *sc = arg1; 8999 struct sbuf *sb; 9000 int rc, i, n, qid = arg2; 9001 uint32_t *buf, *p; 9002 char *qtype; 9003 u_int cim_num_obq = sc->chip_params->cim_num_obq; 9004 9005 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 9006 ("%s: bad qid %d\n", __func__, qid)); 9007 9008 if (qid < CIM_NUM_IBQ) { 9009 /* inbound queue */ 9010 qtype = "IBQ"; 9011 n = 4 * CIM_IBQ_SIZE; 9012 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9013 mtx_lock(&sc->reg_lock); 9014 if (hw_off_limits(sc)) 9015 rc = -ENXIO; 9016 else 9017 rc = t4_read_cim_ibq(sc, qid, buf, n); 9018 mtx_unlock(&sc->reg_lock); 9019 } else { 9020 /* outbound queue */ 9021 qtype = "OBQ"; 9022 qid -= CIM_NUM_IBQ; 9023 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 9024 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9025 mtx_lock(&sc->reg_lock); 9026 if (hw_off_limits(sc)) 9027 rc = -ENXIO; 9028 else 9029 rc = t4_read_cim_obq(sc, qid, buf, n); 9030 mtx_unlock(&sc->reg_lock); 9031 } 9032 9033 if (rc < 0) { 9034 rc = -rc; 9035 goto done; 9036 } 9037 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9038 9039 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9040 if (sb == NULL) { 9041 rc = ENOMEM; 9042 goto done; 9043 } 9044 9045 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 9046 for (i = 0, p = buf; i < n; i += 16, p += 4) 9047 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9048 p[2], p[3]); 9049 9050 rc = sbuf_finish(sb); 9051 sbuf_delete(sb); 9052 done: 9053 free(buf, M_CXGBE); 9054 return (rc); 9055 } 9056 9057 static void 9058 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9059 { 9060 uint32_t *p; 9061 9062 sbuf_printf(sb, "Status Data PC%s", 9063 cfg & F_UPDBGLACAPTPCONLY ? "" : 9064 " LS0Stat LS0Addr LS0Data"); 9065 9066 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9067 if (cfg & F_UPDBGLACAPTPCONLY) { 9068 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9069 p[6], p[7]); 9070 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9071 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9072 p[4] & 0xff, p[5] >> 8); 9073 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9074 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9075 p[1] & 0xf, p[2] >> 4); 9076 } else { 9077 sbuf_printf(sb, 9078 "\n %02x %x%07x %x%07x %08x %08x " 9079 "%08x%08x%08x%08x", 9080 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9081 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9082 p[6], p[7]); 9083 } 9084 } 9085 } 9086 9087 static void 9088 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9089 { 9090 uint32_t *p; 9091 9092 sbuf_printf(sb, "Status Inst Data PC%s", 9093 cfg & F_UPDBGLACAPTPCONLY ? "" : 9094 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9095 9096 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9097 if (cfg & F_UPDBGLACAPTPCONLY) { 9098 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9099 p[3] & 0xff, p[2], p[1], p[0]); 9100 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9101 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9102 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9103 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9104 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9105 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9106 p[6] >> 16); 9107 } else { 9108 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9109 "%08x %08x %08x %08x %08x %08x", 9110 (p[9] >> 16) & 0xff, 9111 p[9] & 0xffff, p[8] >> 16, 9112 p[8] & 0xffff, p[7] >> 16, 9113 p[7] & 0xffff, p[6] >> 16, 9114 p[2], p[1], p[0], p[5], p[4], p[3]); 9115 } 9116 } 9117 } 9118 9119 static int 9120 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9121 { 9122 uint32_t cfg, *buf; 9123 int rc; 9124 9125 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9126 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9127 M_ZERO | flags); 9128 if (buf == NULL) 9129 return (ENOMEM); 9130 9131 mtx_lock(&sc->reg_lock); 9132 if (hw_off_limits(sc)) 9133 rc = ENXIO; 9134 else { 9135 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9136 if (rc == 0) 9137 rc = -t4_cim_read_la(sc, buf, NULL); 9138 } 9139 mtx_unlock(&sc->reg_lock); 9140 if (rc == 0) { 9141 if (chip_id(sc) < CHELSIO_T6) 9142 sbuf_cim_la4(sc, sb, buf, cfg); 9143 else 9144 sbuf_cim_la6(sc, sb, buf, cfg); 9145 } 9146 free(buf, M_CXGBE); 9147 return (rc); 9148 } 9149 9150 static int 9151 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9152 { 9153 struct adapter *sc = arg1; 9154 struct sbuf *sb; 9155 int rc; 9156 9157 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9158 if (sb == NULL) 9159 return (ENOMEM); 9160 9161 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9162 if (rc == 0) 9163 rc = sbuf_finish(sb); 9164 sbuf_delete(sb); 9165 return (rc); 9166 } 9167 9168 static void 9169 dump_cim_regs(struct adapter *sc) 9170 { 9171 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9172 device_get_nameunit(sc->dev), 9173 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9174 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9175 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9176 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9177 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9178 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9179 device_get_nameunit(sc->dev), 9180 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9181 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9182 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9183 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9184 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9185 } 9186 9187 static void 9188 dump_cimla(struct adapter *sc) 9189 { 9190 struct sbuf sb; 9191 int rc; 9192 9193 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9194 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9195 device_get_nameunit(sc->dev)); 9196 return; 9197 } 9198 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9199 if (rc == 0) { 9200 rc = sbuf_finish(&sb); 9201 if (rc == 0) { 9202 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9203 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9204 } 9205 } 9206 sbuf_delete(&sb); 9207 } 9208 9209 void 9210 t4_os_cim_err(struct adapter *sc) 9211 { 9212 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9213 } 9214 9215 static int 9216 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9217 { 9218 struct adapter *sc = arg1; 9219 u_int i; 9220 struct sbuf *sb; 9221 uint32_t *buf, *p; 9222 int rc; 9223 9224 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9225 if (sb == NULL) 9226 return (ENOMEM); 9227 9228 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9229 M_ZERO | M_WAITOK); 9230 9231 rc = 0; 9232 mtx_lock(&sc->reg_lock); 9233 if (hw_off_limits(sc)) 9234 rc = ENXIO; 9235 else 9236 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9237 mtx_unlock(&sc->reg_lock); 9238 if (rc) 9239 goto done; 9240 9241 p = buf; 9242 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9243 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9244 p[1], p[0]); 9245 } 9246 9247 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9248 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9249 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9250 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9251 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9252 (p[1] >> 2) | ((p[2] & 3) << 30), 9253 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9254 p[0] & 1); 9255 } 9256 rc = sbuf_finish(sb); 9257 done: 9258 sbuf_delete(sb); 9259 free(buf, M_CXGBE); 9260 return (rc); 9261 } 9262 9263 static int 9264 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9265 { 9266 struct adapter *sc = arg1; 9267 u_int i; 9268 struct sbuf *sb; 9269 uint32_t *buf, *p; 9270 int rc; 9271 9272 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9273 if (sb == NULL) 9274 return (ENOMEM); 9275 9276 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9277 M_ZERO | M_WAITOK); 9278 9279 rc = 0; 9280 mtx_lock(&sc->reg_lock); 9281 if (hw_off_limits(sc)) 9282 rc = ENXIO; 9283 else 9284 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9285 mtx_unlock(&sc->reg_lock); 9286 if (rc) 9287 goto done; 9288 9289 p = buf; 9290 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9291 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9292 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9293 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9294 p[4], p[3], p[2], p[1], p[0]); 9295 } 9296 9297 sbuf_printf(sb, "\n\nCntl ID Data"); 9298 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9299 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9300 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9301 } 9302 9303 rc = sbuf_finish(sb); 9304 done: 9305 sbuf_delete(sb); 9306 free(buf, M_CXGBE); 9307 return (rc); 9308 } 9309 9310 static int 9311 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9312 { 9313 struct adapter *sc = arg1; 9314 struct sbuf *sb; 9315 int rc, i; 9316 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9317 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9318 uint16_t thres[CIM_NUM_IBQ]; 9319 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9320 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9321 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9322 9323 cim_num_obq = sc->chip_params->cim_num_obq; 9324 if (is_t4(sc)) { 9325 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9326 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9327 } else { 9328 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9329 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9330 } 9331 nq = CIM_NUM_IBQ + cim_num_obq; 9332 9333 mtx_lock(&sc->reg_lock); 9334 if (hw_off_limits(sc)) 9335 rc = ENXIO; 9336 else { 9337 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9338 if (rc == 0) { 9339 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9340 obq_wr); 9341 if (rc == 0) 9342 t4_read_cimq_cfg(sc, base, size, thres); 9343 } 9344 } 9345 mtx_unlock(&sc->reg_lock); 9346 if (rc) 9347 return (rc); 9348 9349 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9350 if (sb == NULL) 9351 return (ENOMEM); 9352 9353 sbuf_printf(sb, 9354 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9355 9356 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9357 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9358 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9359 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9360 G_QUEREMFLITS(p[2]) * 16); 9361 for ( ; i < nq; i++, p += 4, wr += 2) 9362 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9363 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9364 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9365 G_QUEREMFLITS(p[2]) * 16); 9366 9367 rc = sbuf_finish(sb); 9368 sbuf_delete(sb); 9369 9370 return (rc); 9371 } 9372 9373 static int 9374 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9375 { 9376 struct adapter *sc = arg1; 9377 struct sbuf *sb; 9378 int rc; 9379 struct tp_cpl_stats stats; 9380 9381 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9382 if (sb == NULL) 9383 return (ENOMEM); 9384 9385 rc = 0; 9386 mtx_lock(&sc->reg_lock); 9387 if (hw_off_limits(sc)) 9388 rc = ENXIO; 9389 else 9390 t4_tp_get_cpl_stats(sc, &stats, 0); 9391 mtx_unlock(&sc->reg_lock); 9392 if (rc) 9393 goto done; 9394 9395 if (sc->chip_params->nchan > 2) { 9396 sbuf_printf(sb, " channel 0 channel 1" 9397 " channel 2 channel 3"); 9398 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9399 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9400 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9401 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9402 } else { 9403 sbuf_printf(sb, " channel 0 channel 1"); 9404 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9405 stats.req[0], stats.req[1]); 9406 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9407 stats.rsp[0], stats.rsp[1]); 9408 } 9409 9410 rc = sbuf_finish(sb); 9411 done: 9412 sbuf_delete(sb); 9413 return (rc); 9414 } 9415 9416 static int 9417 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9418 { 9419 struct adapter *sc = arg1; 9420 struct sbuf *sb; 9421 int rc; 9422 struct tp_usm_stats stats; 9423 9424 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9425 if (sb == NULL) 9426 return (ENOMEM); 9427 9428 rc = 0; 9429 mtx_lock(&sc->reg_lock); 9430 if (hw_off_limits(sc)) 9431 rc = ENXIO; 9432 else 9433 t4_get_usm_stats(sc, &stats, 1); 9434 mtx_unlock(&sc->reg_lock); 9435 if (rc == 0) { 9436 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9437 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9438 sbuf_printf(sb, "Drops: %u", stats.drops); 9439 rc = sbuf_finish(sb); 9440 } 9441 sbuf_delete(sb); 9442 9443 return (rc); 9444 } 9445 9446 static int 9447 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9448 { 9449 struct adapter *sc = arg1; 9450 struct sbuf *sb; 9451 int rc; 9452 struct tp_tid_stats stats; 9453 9454 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9455 if (sb == NULL) 9456 return (ENOMEM); 9457 9458 rc = 0; 9459 mtx_lock(&sc->reg_lock); 9460 if (hw_off_limits(sc)) 9461 rc = ENXIO; 9462 else 9463 t4_tp_get_tid_stats(sc, &stats, 1); 9464 mtx_unlock(&sc->reg_lock); 9465 if (rc == 0) { 9466 sbuf_printf(sb, "Delete: %u\n", stats.del); 9467 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9468 sbuf_printf(sb, "Active: %u\n", stats.act); 9469 sbuf_printf(sb, "Passive: %u", stats.pas); 9470 rc = sbuf_finish(sb); 9471 } 9472 sbuf_delete(sb); 9473 9474 return (rc); 9475 } 9476 9477 static const char * const devlog_level_strings[] = { 9478 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9479 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9480 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9481 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9482 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9483 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9484 }; 9485 9486 static const char * const devlog_facility_strings[] = { 9487 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9488 [FW_DEVLOG_FACILITY_CF] = "CF", 9489 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9490 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9491 [FW_DEVLOG_FACILITY_RES] = "RES", 9492 [FW_DEVLOG_FACILITY_HW] = "HW", 9493 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9494 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9495 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9496 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9497 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9498 [FW_DEVLOG_FACILITY_VI] = "VI", 9499 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9500 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9501 [FW_DEVLOG_FACILITY_TM] = "TM", 9502 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9503 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9504 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9505 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9506 [FW_DEVLOG_FACILITY_RI] = "RI", 9507 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9508 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9509 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9510 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9511 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9512 }; 9513 9514 static int 9515 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9516 { 9517 int i, j, rc, nentries, first = 0; 9518 struct devlog_params *dparams = &sc->params.devlog; 9519 struct fw_devlog_e *buf, *e; 9520 uint64_t ftstamp = UINT64_MAX; 9521 9522 if (dparams->addr == 0) 9523 return (ENXIO); 9524 9525 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9526 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9527 if (buf == NULL) 9528 return (ENOMEM); 9529 9530 mtx_lock(&sc->reg_lock); 9531 if (hw_off_limits(sc)) 9532 rc = ENXIO; 9533 else 9534 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9535 dparams->size); 9536 mtx_unlock(&sc->reg_lock); 9537 if (rc != 0) 9538 goto done; 9539 9540 nentries = dparams->size / sizeof(struct fw_devlog_e); 9541 for (i = 0; i < nentries; i++) { 9542 e = &buf[i]; 9543 9544 if (e->timestamp == 0) 9545 break; /* end */ 9546 9547 e->timestamp = be64toh(e->timestamp); 9548 e->seqno = be32toh(e->seqno); 9549 for (j = 0; j < 8; j++) 9550 e->params[j] = be32toh(e->params[j]); 9551 9552 if (e->timestamp < ftstamp) { 9553 ftstamp = e->timestamp; 9554 first = i; 9555 } 9556 } 9557 9558 if (buf[first].timestamp == 0) 9559 goto done; /* nothing in the log */ 9560 9561 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9562 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9563 9564 i = first; 9565 do { 9566 e = &buf[i]; 9567 if (e->timestamp == 0) 9568 break; /* end */ 9569 9570 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9571 e->seqno, e->timestamp, 9572 (e->level < nitems(devlog_level_strings) ? 9573 devlog_level_strings[e->level] : "UNKNOWN"), 9574 (e->facility < nitems(devlog_facility_strings) ? 9575 devlog_facility_strings[e->facility] : "UNKNOWN")); 9576 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9577 e->params[2], e->params[3], e->params[4], 9578 e->params[5], e->params[6], e->params[7]); 9579 9580 if (++i == nentries) 9581 i = 0; 9582 } while (i != first); 9583 done: 9584 free(buf, M_CXGBE); 9585 return (rc); 9586 } 9587 9588 static int 9589 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9590 { 9591 struct adapter *sc = arg1; 9592 int rc; 9593 struct sbuf *sb; 9594 9595 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9596 if (sb == NULL) 9597 return (ENOMEM); 9598 9599 rc = sbuf_devlog(sc, sb, M_WAITOK); 9600 if (rc == 0) 9601 rc = sbuf_finish(sb); 9602 sbuf_delete(sb); 9603 return (rc); 9604 } 9605 9606 static void 9607 dump_devlog(struct adapter *sc) 9608 { 9609 int rc; 9610 struct sbuf sb; 9611 9612 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9613 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9614 device_get_nameunit(sc->dev)); 9615 return; 9616 } 9617 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9618 if (rc == 0) { 9619 rc = sbuf_finish(&sb); 9620 if (rc == 0) { 9621 log(LOG_DEBUG, "%s: device log follows.\n%s", 9622 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9623 } 9624 } 9625 sbuf_delete(&sb); 9626 } 9627 9628 static int 9629 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9630 { 9631 struct adapter *sc = arg1; 9632 struct sbuf *sb; 9633 int rc; 9634 struct tp_fcoe_stats stats[MAX_NCHAN]; 9635 int i, nchan = sc->chip_params->nchan; 9636 9637 rc = 0; 9638 mtx_lock(&sc->reg_lock); 9639 if (hw_off_limits(sc)) 9640 rc = ENXIO; 9641 else { 9642 for (i = 0; i < nchan; i++) 9643 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9644 } 9645 mtx_unlock(&sc->reg_lock); 9646 if (rc != 0) 9647 return (rc); 9648 9649 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9650 if (sb == NULL) 9651 return (ENOMEM); 9652 9653 if (nchan > 2) { 9654 sbuf_printf(sb, " channel 0 channel 1" 9655 " channel 2 channel 3"); 9656 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9657 stats[0].octets_ddp, stats[1].octets_ddp, 9658 stats[2].octets_ddp, stats[3].octets_ddp); 9659 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9660 stats[0].frames_ddp, stats[1].frames_ddp, 9661 stats[2].frames_ddp, stats[3].frames_ddp); 9662 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9663 stats[0].frames_drop, stats[1].frames_drop, 9664 stats[2].frames_drop, stats[3].frames_drop); 9665 } else { 9666 sbuf_printf(sb, " channel 0 channel 1"); 9667 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9668 stats[0].octets_ddp, stats[1].octets_ddp); 9669 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9670 stats[0].frames_ddp, stats[1].frames_ddp); 9671 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9672 stats[0].frames_drop, stats[1].frames_drop); 9673 } 9674 9675 rc = sbuf_finish(sb); 9676 sbuf_delete(sb); 9677 9678 return (rc); 9679 } 9680 9681 static int 9682 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9683 { 9684 struct adapter *sc = arg1; 9685 struct sbuf *sb; 9686 int rc, i; 9687 unsigned int map, kbps, ipg, mode; 9688 unsigned int pace_tab[NTX_SCHED]; 9689 9690 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9691 if (sb == NULL) 9692 return (ENOMEM); 9693 9694 mtx_lock(&sc->reg_lock); 9695 if (hw_off_limits(sc)) { 9696 mtx_unlock(&sc->reg_lock); 9697 rc = ENXIO; 9698 goto done; 9699 } 9700 9701 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9702 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9703 t4_read_pace_tbl(sc, pace_tab); 9704 mtx_unlock(&sc->reg_lock); 9705 9706 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9707 "Class IPG (0.1 ns) Flow IPG (us)"); 9708 9709 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9710 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9711 sbuf_printf(sb, "\n %u %-5s %u ", i, 9712 (mode & (1 << i)) ? "flow" : "class", map & 3); 9713 if (kbps) 9714 sbuf_printf(sb, "%9u ", kbps); 9715 else 9716 sbuf_printf(sb, " disabled "); 9717 9718 if (ipg) 9719 sbuf_printf(sb, "%13u ", ipg); 9720 else 9721 sbuf_printf(sb, " disabled "); 9722 9723 if (pace_tab[i]) 9724 sbuf_printf(sb, "%10u", pace_tab[i]); 9725 else 9726 sbuf_printf(sb, " disabled"); 9727 } 9728 rc = sbuf_finish(sb); 9729 done: 9730 sbuf_delete(sb); 9731 return (rc); 9732 } 9733 9734 static int 9735 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9736 { 9737 struct adapter *sc = arg1; 9738 struct sbuf *sb; 9739 int rc, i, j; 9740 uint64_t *p0, *p1; 9741 struct lb_port_stats s[2]; 9742 static const char *stat_name[] = { 9743 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9744 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9745 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9746 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9747 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9748 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9749 "BG2FramesTrunc:", "BG3FramesTrunc:" 9750 }; 9751 9752 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9753 if (sb == NULL) 9754 return (ENOMEM); 9755 9756 memset(s, 0, sizeof(s)); 9757 9758 rc = 0; 9759 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9760 mtx_lock(&sc->reg_lock); 9761 if (hw_off_limits(sc)) 9762 rc = ENXIO; 9763 else { 9764 t4_get_lb_stats(sc, i, &s[0]); 9765 t4_get_lb_stats(sc, i + 1, &s[1]); 9766 } 9767 mtx_unlock(&sc->reg_lock); 9768 if (rc != 0) 9769 break; 9770 9771 p0 = &s[0].octets; 9772 p1 = &s[1].octets; 9773 sbuf_printf(sb, "%s Loopback %u" 9774 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9775 9776 for (j = 0; j < nitems(stat_name); j++) 9777 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9778 *p0++, *p1++); 9779 } 9780 9781 if (rc == 0) 9782 rc = sbuf_finish(sb); 9783 sbuf_delete(sb); 9784 9785 return (rc); 9786 } 9787 9788 static int 9789 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9790 { 9791 int rc = 0; 9792 struct port_info *pi = arg1; 9793 struct link_config *lc = &pi->link_cfg; 9794 struct sbuf *sb; 9795 9796 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9797 if (sb == NULL) 9798 return (ENOMEM); 9799 9800 if (lc->link_ok || lc->link_down_rc == 255) 9801 sbuf_printf(sb, "n/a"); 9802 else 9803 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9804 9805 rc = sbuf_finish(sb); 9806 sbuf_delete(sb); 9807 9808 return (rc); 9809 } 9810 9811 struct mem_desc { 9812 u_int base; 9813 u_int limit; 9814 u_int idx; 9815 }; 9816 9817 static int 9818 mem_desc_cmp(const void *a, const void *b) 9819 { 9820 const u_int v1 = ((const struct mem_desc *)a)->base; 9821 const u_int v2 = ((const struct mem_desc *)b)->base; 9822 9823 if (v1 < v2) 9824 return (-1); 9825 else if (v1 > v2) 9826 return (1); 9827 9828 return (0); 9829 } 9830 9831 static void 9832 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9833 unsigned int to) 9834 { 9835 unsigned int size; 9836 9837 if (from == to) 9838 return; 9839 9840 size = to - from + 1; 9841 if (size == 0) 9842 return; 9843 9844 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9845 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9846 } 9847 9848 static int 9849 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9850 { 9851 struct adapter *sc = arg1; 9852 struct sbuf *sb; 9853 int rc, i, n; 9854 uint32_t lo, hi, used, free, alloc; 9855 static const char *memory[] = { 9856 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9857 }; 9858 static const char *region[] = { 9859 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9860 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9861 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9862 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9863 "RQUDP region:", "PBL region:", "TXPBL region:", 9864 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9865 "ULPTX state:", "On-chip queues:", 9866 }; 9867 struct mem_desc avail[4]; 9868 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9869 struct mem_desc *md = mem; 9870 9871 rc = sysctl_wire_old_buffer(req, 0); 9872 if (rc != 0) 9873 return (rc); 9874 9875 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9876 if (sb == NULL) 9877 return (ENOMEM); 9878 9879 for (i = 0; i < nitems(mem); i++) { 9880 mem[i].limit = 0; 9881 mem[i].idx = i; 9882 } 9883 9884 mtx_lock(&sc->reg_lock); 9885 if (hw_off_limits(sc)) { 9886 rc = ENXIO; 9887 goto done; 9888 } 9889 9890 /* Find and sort the populated memory ranges */ 9891 i = 0; 9892 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9893 if (lo & F_EDRAM0_ENABLE) { 9894 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9895 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9896 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9897 avail[i].idx = 0; 9898 i++; 9899 } 9900 if (lo & F_EDRAM1_ENABLE) { 9901 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9902 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9903 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9904 avail[i].idx = 1; 9905 i++; 9906 } 9907 if (lo & F_EXT_MEM_ENABLE) { 9908 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9909 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9910 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9911 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9912 i++; 9913 } 9914 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9915 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9916 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9917 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9918 avail[i].idx = 4; 9919 i++; 9920 } 9921 if (is_t6(sc) && lo & F_HMA_MUX) { 9922 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9923 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9924 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9925 avail[i].idx = 5; 9926 i++; 9927 } 9928 MPASS(i <= nitems(avail)); 9929 if (!i) /* no memory available */ 9930 goto done; 9931 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9932 9933 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9934 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9935 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9936 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9937 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9938 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9939 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9940 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9941 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9942 9943 /* the next few have explicit upper bounds */ 9944 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9945 md->limit = md->base - 1 + 9946 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9947 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9948 md++; 9949 9950 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9951 md->limit = md->base - 1 + 9952 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9953 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9954 md++; 9955 9956 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9957 if (chip_id(sc) <= CHELSIO_T5) 9958 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9959 else 9960 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9961 md->limit = 0; 9962 } else { 9963 md->base = 0; 9964 md->idx = nitems(region); /* hide it */ 9965 } 9966 md++; 9967 9968 #define ulp_region(reg) \ 9969 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9970 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9971 9972 ulp_region(RX_ISCSI); 9973 ulp_region(RX_TDDP); 9974 ulp_region(TX_TPT); 9975 ulp_region(RX_STAG); 9976 ulp_region(RX_RQ); 9977 ulp_region(RX_RQUDP); 9978 ulp_region(RX_PBL); 9979 ulp_region(TX_PBL); 9980 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9981 ulp_region(RX_TLS_KEY); 9982 } 9983 #undef ulp_region 9984 9985 md->base = 0; 9986 if (is_t4(sc)) 9987 md->idx = nitems(region); 9988 else { 9989 uint32_t size = 0; 9990 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9991 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9992 9993 if (is_t5(sc)) { 9994 if (sge_ctrl & F_VFIFO_ENABLE) 9995 size = fifo_size << 2; 9996 } else 9997 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9998 9999 if (size) { 10000 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10001 md->limit = md->base + size - 1; 10002 } else 10003 md->idx = nitems(region); 10004 } 10005 md++; 10006 10007 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10008 md->limit = 0; 10009 md++; 10010 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10011 md->limit = 0; 10012 md++; 10013 10014 md->base = sc->vres.ocq.start; 10015 if (sc->vres.ocq.size) 10016 md->limit = md->base + sc->vres.ocq.size - 1; 10017 else 10018 md->idx = nitems(region); /* hide it */ 10019 md++; 10020 10021 /* add any address-space holes, there can be up to 3 */ 10022 for (n = 0; n < i - 1; n++) 10023 if (avail[n].limit < avail[n + 1].base) 10024 (md++)->base = avail[n].limit; 10025 if (avail[n].limit) 10026 (md++)->base = avail[n].limit; 10027 10028 n = md - mem; 10029 MPASS(n <= nitems(mem)); 10030 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10031 10032 for (lo = 0; lo < i; lo++) 10033 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10034 avail[lo].limit - 1); 10035 10036 sbuf_printf(sb, "\n"); 10037 for (i = 0; i < n; i++) { 10038 if (mem[i].idx >= nitems(region)) 10039 continue; /* skip holes */ 10040 if (!mem[i].limit) 10041 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10042 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10043 mem[i].limit); 10044 } 10045 10046 sbuf_printf(sb, "\n"); 10047 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10048 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10049 mem_region_show(sb, "uP RAM:", lo, hi); 10050 10051 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10052 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10053 mem_region_show(sb, "uP Extmem2:", lo, hi); 10054 10055 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10056 for (i = 0, free = 0; i < 2; i++) 10057 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10058 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10059 G_PMRXMAXPAGE(lo), free, 10060 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10061 (lo & F_PMRXNUMCHN) ? 2 : 1); 10062 10063 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10064 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10065 for (i = 0, free = 0; i < 4; i++) 10066 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10067 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10068 G_PMTXMAXPAGE(lo), free, 10069 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10070 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10071 sbuf_printf(sb, "%u p-structs (%u free)\n", 10072 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10073 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10074 10075 for (i = 0; i < 4; i++) { 10076 if (chip_id(sc) > CHELSIO_T5) 10077 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10078 else 10079 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10080 if (is_t5(sc)) { 10081 used = G_T5_USED(lo); 10082 alloc = G_T5_ALLOC(lo); 10083 } else { 10084 used = G_USED(lo); 10085 alloc = G_ALLOC(lo); 10086 } 10087 /* For T6 these are MAC buffer groups */ 10088 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10089 i, used, alloc); 10090 } 10091 for (i = 0; i < sc->chip_params->nchan; i++) { 10092 if (chip_id(sc) > CHELSIO_T5) 10093 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10094 else 10095 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10096 if (is_t5(sc)) { 10097 used = G_T5_USED(lo); 10098 alloc = G_T5_ALLOC(lo); 10099 } else { 10100 used = G_USED(lo); 10101 alloc = G_ALLOC(lo); 10102 } 10103 /* For T6 these are MAC buffer groups */ 10104 sbuf_printf(sb, 10105 "\nLoopback %d using %u pages out of %u allocated", 10106 i, used, alloc); 10107 } 10108 done: 10109 mtx_unlock(&sc->reg_lock); 10110 if (rc == 0) 10111 rc = sbuf_finish(sb); 10112 sbuf_delete(sb); 10113 return (rc); 10114 } 10115 10116 static inline void 10117 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10118 { 10119 *mask = x | y; 10120 y = htobe64(y); 10121 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10122 } 10123 10124 static int 10125 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10126 { 10127 struct adapter *sc = arg1; 10128 struct sbuf *sb; 10129 int rc, i; 10130 10131 MPASS(chip_id(sc) <= CHELSIO_T5); 10132 10133 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10134 if (sb == NULL) 10135 return (ENOMEM); 10136 10137 sbuf_printf(sb, 10138 "Idx Ethernet address Mask Vld Ports PF" 10139 " VF Replication P0 P1 P2 P3 ML"); 10140 rc = 0; 10141 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10142 uint64_t tcamx, tcamy, mask; 10143 uint32_t cls_lo, cls_hi; 10144 uint8_t addr[ETHER_ADDR_LEN]; 10145 10146 mtx_lock(&sc->reg_lock); 10147 if (hw_off_limits(sc)) 10148 rc = ENXIO; 10149 else { 10150 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10151 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10152 } 10153 mtx_unlock(&sc->reg_lock); 10154 if (rc != 0) 10155 break; 10156 if (tcamx & tcamy) 10157 continue; 10158 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10159 mtx_lock(&sc->reg_lock); 10160 if (hw_off_limits(sc)) 10161 rc = ENXIO; 10162 else { 10163 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10164 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10165 } 10166 mtx_unlock(&sc->reg_lock); 10167 if (rc != 0) 10168 break; 10169 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10170 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10171 addr[3], addr[4], addr[5], (uintmax_t)mask, 10172 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10173 G_PORTMAP(cls_hi), G_PF(cls_lo), 10174 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10175 10176 if (cls_lo & F_REPLICATE) { 10177 struct fw_ldst_cmd ldst_cmd; 10178 10179 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10180 ldst_cmd.op_to_addrspace = 10181 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10182 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10183 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10184 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10185 ldst_cmd.u.mps.rplc.fid_idx = 10186 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10187 V_FW_LDST_CMD_IDX(i)); 10188 10189 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10190 "t4mps"); 10191 if (rc) 10192 break; 10193 if (hw_off_limits(sc)) 10194 rc = ENXIO; 10195 else 10196 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10197 sizeof(ldst_cmd), &ldst_cmd); 10198 end_synchronized_op(sc, 0); 10199 if (rc != 0) 10200 break; 10201 else { 10202 sbuf_printf(sb, " %08x %08x %08x %08x", 10203 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10204 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10205 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10206 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10207 } 10208 } else 10209 sbuf_printf(sb, "%36s", ""); 10210 10211 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10212 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10213 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10214 } 10215 10216 if (rc) 10217 (void) sbuf_finish(sb); 10218 else 10219 rc = sbuf_finish(sb); 10220 sbuf_delete(sb); 10221 10222 return (rc); 10223 } 10224 10225 static int 10226 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10227 { 10228 struct adapter *sc = arg1; 10229 struct sbuf *sb; 10230 int rc, i; 10231 10232 MPASS(chip_id(sc) > CHELSIO_T5); 10233 10234 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10235 if (sb == NULL) 10236 return (ENOMEM); 10237 10238 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10239 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10240 " Replication" 10241 " P0 P1 P2 P3 ML\n"); 10242 10243 rc = 0; 10244 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10245 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10246 uint16_t ivlan; 10247 uint64_t tcamx, tcamy, val, mask; 10248 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10249 uint8_t addr[ETHER_ADDR_LEN]; 10250 10251 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10252 if (i < 256) 10253 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10254 else 10255 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10256 mtx_lock(&sc->reg_lock); 10257 if (hw_off_limits(sc)) 10258 rc = ENXIO; 10259 else { 10260 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10261 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10262 tcamy = G_DMACH(val) << 32; 10263 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10264 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10265 } 10266 mtx_unlock(&sc->reg_lock); 10267 if (rc != 0) 10268 break; 10269 10270 lookup_type = G_DATALKPTYPE(data2); 10271 port_num = G_DATAPORTNUM(data2); 10272 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10273 /* Inner header VNI */ 10274 vniy = ((data2 & F_DATAVIDH2) << 23) | 10275 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10276 dip_hit = data2 & F_DATADIPHIT; 10277 vlan_vld = 0; 10278 } else { 10279 vniy = 0; 10280 dip_hit = 0; 10281 vlan_vld = data2 & F_DATAVIDH2; 10282 ivlan = G_VIDL(val); 10283 } 10284 10285 ctl |= V_CTLXYBITSEL(1); 10286 mtx_lock(&sc->reg_lock); 10287 if (hw_off_limits(sc)) 10288 rc = ENXIO; 10289 else { 10290 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10291 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10292 tcamx = G_DMACH(val) << 32; 10293 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10294 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10295 } 10296 mtx_unlock(&sc->reg_lock); 10297 if (rc != 0) 10298 break; 10299 10300 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10301 /* Inner header VNI mask */ 10302 vnix = ((data2 & F_DATAVIDH2) << 23) | 10303 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10304 } else 10305 vnix = 0; 10306 10307 if (tcamx & tcamy) 10308 continue; 10309 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10310 10311 mtx_lock(&sc->reg_lock); 10312 if (hw_off_limits(sc)) 10313 rc = ENXIO; 10314 else { 10315 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10316 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10317 } 10318 mtx_unlock(&sc->reg_lock); 10319 if (rc != 0) 10320 break; 10321 10322 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10323 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10324 "%012jx %06x %06x - - %3c" 10325 " I %4x %3c %#x%4u%4d", i, addr[0], 10326 addr[1], addr[2], addr[3], addr[4], addr[5], 10327 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10328 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10329 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10330 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10331 } else { 10332 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10333 "%012jx - - ", i, addr[0], addr[1], 10334 addr[2], addr[3], addr[4], addr[5], 10335 (uintmax_t)mask); 10336 10337 if (vlan_vld) 10338 sbuf_printf(sb, "%4u Y ", ivlan); 10339 else 10340 sbuf_printf(sb, " - N "); 10341 10342 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10343 lookup_type ? 'I' : 'O', port_num, 10344 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10345 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10346 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10347 } 10348 10349 10350 if (cls_lo & F_T6_REPLICATE) { 10351 struct fw_ldst_cmd ldst_cmd; 10352 10353 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10354 ldst_cmd.op_to_addrspace = 10355 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10356 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10357 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10358 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10359 ldst_cmd.u.mps.rplc.fid_idx = 10360 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10361 V_FW_LDST_CMD_IDX(i)); 10362 10363 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10364 "t6mps"); 10365 if (rc) 10366 break; 10367 if (hw_off_limits(sc)) 10368 rc = ENXIO; 10369 else 10370 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10371 sizeof(ldst_cmd), &ldst_cmd); 10372 end_synchronized_op(sc, 0); 10373 if (rc != 0) 10374 break; 10375 else { 10376 sbuf_printf(sb, " %08x %08x %08x %08x" 10377 " %08x %08x %08x %08x", 10378 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10379 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10380 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10381 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10382 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10383 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10384 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10385 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10386 } 10387 } else 10388 sbuf_printf(sb, "%72s", ""); 10389 10390 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10391 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10392 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10393 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10394 } 10395 10396 if (rc) 10397 (void) sbuf_finish(sb); 10398 else 10399 rc = sbuf_finish(sb); 10400 sbuf_delete(sb); 10401 10402 return (rc); 10403 } 10404 10405 static int 10406 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10407 { 10408 struct adapter *sc = arg1; 10409 struct sbuf *sb; 10410 int rc; 10411 uint16_t mtus[NMTUS]; 10412 10413 rc = 0; 10414 mtx_lock(&sc->reg_lock); 10415 if (hw_off_limits(sc)) 10416 rc = ENXIO; 10417 else 10418 t4_read_mtu_tbl(sc, mtus, NULL); 10419 mtx_unlock(&sc->reg_lock); 10420 if (rc != 0) 10421 return (rc); 10422 10423 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10424 if (sb == NULL) 10425 return (ENOMEM); 10426 10427 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10428 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10429 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10430 mtus[14], mtus[15]); 10431 10432 rc = sbuf_finish(sb); 10433 sbuf_delete(sb); 10434 10435 return (rc); 10436 } 10437 10438 static int 10439 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10440 { 10441 struct adapter *sc = arg1; 10442 struct sbuf *sb; 10443 int rc, i; 10444 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10445 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10446 static const char *tx_stats[MAX_PM_NSTATS] = { 10447 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10448 "Tx FIFO wait", NULL, "Tx latency" 10449 }; 10450 static const char *rx_stats[MAX_PM_NSTATS] = { 10451 "Read:", "Write bypass:", "Write mem:", "Flush:", 10452 "Rx FIFO wait", NULL, "Rx latency" 10453 }; 10454 10455 rc = 0; 10456 mtx_lock(&sc->reg_lock); 10457 if (hw_off_limits(sc)) 10458 rc = ENXIO; 10459 else { 10460 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10461 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10462 } 10463 mtx_unlock(&sc->reg_lock); 10464 if (rc != 0) 10465 return (rc); 10466 10467 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10468 if (sb == NULL) 10469 return (ENOMEM); 10470 10471 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10472 for (i = 0; i < 4; i++) { 10473 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10474 tx_cyc[i]); 10475 } 10476 10477 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10478 for (i = 0; i < 4; i++) { 10479 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10480 rx_cyc[i]); 10481 } 10482 10483 if (chip_id(sc) > CHELSIO_T5) { 10484 sbuf_printf(sb, 10485 "\n Total wait Total occupancy"); 10486 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10487 tx_cyc[i]); 10488 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10489 rx_cyc[i]); 10490 10491 i += 2; 10492 MPASS(i < nitems(tx_stats)); 10493 10494 sbuf_printf(sb, 10495 "\n Reads Total wait"); 10496 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10497 tx_cyc[i]); 10498 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10499 rx_cyc[i]); 10500 } 10501 10502 rc = sbuf_finish(sb); 10503 sbuf_delete(sb); 10504 10505 return (rc); 10506 } 10507 10508 static int 10509 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10510 { 10511 struct adapter *sc = arg1; 10512 struct sbuf *sb; 10513 int rc; 10514 struct tp_rdma_stats stats; 10515 10516 rc = 0; 10517 mtx_lock(&sc->reg_lock); 10518 if (hw_off_limits(sc)) 10519 rc = ENXIO; 10520 else 10521 t4_tp_get_rdma_stats(sc, &stats, 0); 10522 mtx_unlock(&sc->reg_lock); 10523 if (rc != 0) 10524 return (rc); 10525 10526 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10527 if (sb == NULL) 10528 return (ENOMEM); 10529 10530 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10531 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10532 10533 rc = sbuf_finish(sb); 10534 sbuf_delete(sb); 10535 10536 return (rc); 10537 } 10538 10539 static int 10540 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10541 { 10542 struct adapter *sc = arg1; 10543 struct sbuf *sb; 10544 int rc; 10545 struct tp_tcp_stats v4, v6; 10546 10547 rc = 0; 10548 mtx_lock(&sc->reg_lock); 10549 if (hw_off_limits(sc)) 10550 rc = ENXIO; 10551 else 10552 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10553 mtx_unlock(&sc->reg_lock); 10554 if (rc != 0) 10555 return (rc); 10556 10557 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10558 if (sb == NULL) 10559 return (ENOMEM); 10560 10561 sbuf_printf(sb, 10562 " IP IPv6\n"); 10563 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10564 v4.tcp_out_rsts, v6.tcp_out_rsts); 10565 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10566 v4.tcp_in_segs, v6.tcp_in_segs); 10567 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10568 v4.tcp_out_segs, v6.tcp_out_segs); 10569 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10570 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10571 10572 rc = sbuf_finish(sb); 10573 sbuf_delete(sb); 10574 10575 return (rc); 10576 } 10577 10578 static int 10579 sysctl_tids(SYSCTL_HANDLER_ARGS) 10580 { 10581 struct adapter *sc = arg1; 10582 struct sbuf *sb; 10583 int rc; 10584 uint32_t x, y; 10585 struct tid_info *t = &sc->tids; 10586 10587 rc = 0; 10588 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10589 if (sb == NULL) 10590 return (ENOMEM); 10591 10592 if (t->natids) { 10593 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10594 t->atids_in_use); 10595 } 10596 10597 if (t->nhpftids) { 10598 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10599 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10600 } 10601 10602 if (t->ntids) { 10603 bool hashen = false; 10604 10605 mtx_lock(&sc->reg_lock); 10606 if (hw_off_limits(sc)) 10607 rc = ENXIO; 10608 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10609 hashen = true; 10610 if (chip_id(sc) <= CHELSIO_T5) { 10611 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10612 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10613 } else { 10614 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10615 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10616 } 10617 } 10618 mtx_unlock(&sc->reg_lock); 10619 if (rc != 0) 10620 goto done; 10621 10622 sbuf_printf(sb, "TID range: "); 10623 if (hashen) { 10624 if (x) 10625 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10626 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10627 } else { 10628 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10629 t->ntids - 1); 10630 } 10631 sbuf_printf(sb, ", in use: %u\n", 10632 atomic_load_acq_int(&t->tids_in_use)); 10633 } 10634 10635 if (t->nstids) { 10636 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10637 t->stid_base + t->nstids - 1, t->stids_in_use); 10638 } 10639 10640 if (t->nftids) { 10641 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10642 t->ftid_end, t->ftids_in_use); 10643 } 10644 10645 if (t->netids) { 10646 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10647 t->etid_base + t->netids - 1, t->etids_in_use); 10648 } 10649 10650 mtx_lock(&sc->reg_lock); 10651 if (hw_off_limits(sc)) 10652 rc = ENXIO; 10653 else { 10654 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10655 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10656 } 10657 mtx_unlock(&sc->reg_lock); 10658 if (rc != 0) 10659 goto done; 10660 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10661 done: 10662 if (rc == 0) 10663 rc = sbuf_finish(sb); 10664 else 10665 (void)sbuf_finish(sb); 10666 sbuf_delete(sb); 10667 10668 return (rc); 10669 } 10670 10671 static int 10672 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10673 { 10674 struct adapter *sc = arg1; 10675 struct sbuf *sb; 10676 int rc; 10677 struct tp_err_stats stats; 10678 10679 rc = 0; 10680 mtx_lock(&sc->reg_lock); 10681 if (hw_off_limits(sc)) 10682 rc = ENXIO; 10683 else 10684 t4_tp_get_err_stats(sc, &stats, 0); 10685 mtx_unlock(&sc->reg_lock); 10686 if (rc != 0) 10687 return (rc); 10688 10689 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10690 if (sb == NULL) 10691 return (ENOMEM); 10692 10693 if (sc->chip_params->nchan > 2) { 10694 sbuf_printf(sb, " channel 0 channel 1" 10695 " channel 2 channel 3\n"); 10696 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10697 stats.mac_in_errs[0], stats.mac_in_errs[1], 10698 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10699 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10700 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10701 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10702 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10703 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10704 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10705 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10706 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10707 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10708 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10709 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10710 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10711 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10712 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10713 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10714 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10715 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10716 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10717 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10718 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10719 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10720 } else { 10721 sbuf_printf(sb, " channel 0 channel 1\n"); 10722 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10723 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10724 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10725 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10726 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10727 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10728 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10729 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10730 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10731 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10732 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10733 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10734 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10735 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10736 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10737 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10738 } 10739 10740 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10741 stats.ofld_no_neigh, stats.ofld_cong_defer); 10742 10743 rc = sbuf_finish(sb); 10744 sbuf_delete(sb); 10745 10746 return (rc); 10747 } 10748 10749 static int 10750 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10751 { 10752 struct adapter *sc = arg1; 10753 struct sbuf *sb; 10754 int rc; 10755 struct tp_tnl_stats stats; 10756 10757 rc = 0; 10758 mtx_lock(&sc->reg_lock); 10759 if (hw_off_limits(sc)) 10760 rc = ENXIO; 10761 else 10762 t4_tp_get_tnl_stats(sc, &stats, 1); 10763 mtx_unlock(&sc->reg_lock); 10764 if (rc != 0) 10765 return (rc); 10766 10767 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10768 if (sb == NULL) 10769 return (ENOMEM); 10770 10771 if (sc->chip_params->nchan > 2) { 10772 sbuf_printf(sb, " channel 0 channel 1" 10773 " channel 2 channel 3\n"); 10774 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10775 stats.out_pkt[0], stats.out_pkt[1], 10776 stats.out_pkt[2], stats.out_pkt[3]); 10777 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10778 stats.in_pkt[0], stats.in_pkt[1], 10779 stats.in_pkt[2], stats.in_pkt[3]); 10780 } else { 10781 sbuf_printf(sb, " channel 0 channel 1\n"); 10782 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10783 stats.out_pkt[0], stats.out_pkt[1]); 10784 sbuf_printf(sb, "InPkts: %10u %10u", 10785 stats.in_pkt[0], stats.in_pkt[1]); 10786 } 10787 10788 rc = sbuf_finish(sb); 10789 sbuf_delete(sb); 10790 10791 return (rc); 10792 } 10793 10794 static int 10795 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10796 { 10797 struct adapter *sc = arg1; 10798 struct tp_params *tpp = &sc->params.tp; 10799 u_int mask; 10800 int rc; 10801 10802 mask = tpp->la_mask >> 16; 10803 rc = sysctl_handle_int(oidp, &mask, 0, req); 10804 if (rc != 0 || req->newptr == NULL) 10805 return (rc); 10806 if (mask > 0xffff) 10807 return (EINVAL); 10808 mtx_lock(&sc->reg_lock); 10809 if (hw_off_limits(sc)) 10810 rc = ENXIO; 10811 else { 10812 tpp->la_mask = mask << 16; 10813 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10814 tpp->la_mask); 10815 } 10816 mtx_unlock(&sc->reg_lock); 10817 10818 return (rc); 10819 } 10820 10821 struct field_desc { 10822 const char *name; 10823 u_int start; 10824 u_int width; 10825 }; 10826 10827 static void 10828 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10829 { 10830 char buf[32]; 10831 int line_size = 0; 10832 10833 while (f->name) { 10834 uint64_t mask = (1ULL << f->width) - 1; 10835 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10836 ((uintmax_t)v >> f->start) & mask); 10837 10838 if (line_size + len >= 79) { 10839 line_size = 8; 10840 sbuf_printf(sb, "\n "); 10841 } 10842 sbuf_printf(sb, "%s ", buf); 10843 line_size += len + 1; 10844 f++; 10845 } 10846 sbuf_printf(sb, "\n"); 10847 } 10848 10849 static const struct field_desc tp_la0[] = { 10850 { "RcfOpCodeOut", 60, 4 }, 10851 { "State", 56, 4 }, 10852 { "WcfState", 52, 4 }, 10853 { "RcfOpcSrcOut", 50, 2 }, 10854 { "CRxError", 49, 1 }, 10855 { "ERxError", 48, 1 }, 10856 { "SanityFailed", 47, 1 }, 10857 { "SpuriousMsg", 46, 1 }, 10858 { "FlushInputMsg", 45, 1 }, 10859 { "FlushInputCpl", 44, 1 }, 10860 { "RssUpBit", 43, 1 }, 10861 { "RssFilterHit", 42, 1 }, 10862 { "Tid", 32, 10 }, 10863 { "InitTcb", 31, 1 }, 10864 { "LineNumber", 24, 7 }, 10865 { "Emsg", 23, 1 }, 10866 { "EdataOut", 22, 1 }, 10867 { "Cmsg", 21, 1 }, 10868 { "CdataOut", 20, 1 }, 10869 { "EreadPdu", 19, 1 }, 10870 { "CreadPdu", 18, 1 }, 10871 { "TunnelPkt", 17, 1 }, 10872 { "RcfPeerFin", 16, 1 }, 10873 { "RcfReasonOut", 12, 4 }, 10874 { "TxCchannel", 10, 2 }, 10875 { "RcfTxChannel", 8, 2 }, 10876 { "RxEchannel", 6, 2 }, 10877 { "RcfRxChannel", 5, 1 }, 10878 { "RcfDataOutSrdy", 4, 1 }, 10879 { "RxDvld", 3, 1 }, 10880 { "RxOoDvld", 2, 1 }, 10881 { "RxCongestion", 1, 1 }, 10882 { "TxCongestion", 0, 1 }, 10883 { NULL } 10884 }; 10885 10886 static const struct field_desc tp_la1[] = { 10887 { "CplCmdIn", 56, 8 }, 10888 { "CplCmdOut", 48, 8 }, 10889 { "ESynOut", 47, 1 }, 10890 { "EAckOut", 46, 1 }, 10891 { "EFinOut", 45, 1 }, 10892 { "ERstOut", 44, 1 }, 10893 { "SynIn", 43, 1 }, 10894 { "AckIn", 42, 1 }, 10895 { "FinIn", 41, 1 }, 10896 { "RstIn", 40, 1 }, 10897 { "DataIn", 39, 1 }, 10898 { "DataInVld", 38, 1 }, 10899 { "PadIn", 37, 1 }, 10900 { "RxBufEmpty", 36, 1 }, 10901 { "RxDdp", 35, 1 }, 10902 { "RxFbCongestion", 34, 1 }, 10903 { "TxFbCongestion", 33, 1 }, 10904 { "TxPktSumSrdy", 32, 1 }, 10905 { "RcfUlpType", 28, 4 }, 10906 { "Eread", 27, 1 }, 10907 { "Ebypass", 26, 1 }, 10908 { "Esave", 25, 1 }, 10909 { "Static0", 24, 1 }, 10910 { "Cread", 23, 1 }, 10911 { "Cbypass", 22, 1 }, 10912 { "Csave", 21, 1 }, 10913 { "CPktOut", 20, 1 }, 10914 { "RxPagePoolFull", 18, 2 }, 10915 { "RxLpbkPkt", 17, 1 }, 10916 { "TxLpbkPkt", 16, 1 }, 10917 { "RxVfValid", 15, 1 }, 10918 { "SynLearned", 14, 1 }, 10919 { "SetDelEntry", 13, 1 }, 10920 { "SetInvEntry", 12, 1 }, 10921 { "CpcmdDvld", 11, 1 }, 10922 { "CpcmdSave", 10, 1 }, 10923 { "RxPstructsFull", 8, 2 }, 10924 { "EpcmdDvld", 7, 1 }, 10925 { "EpcmdFlush", 6, 1 }, 10926 { "EpcmdTrimPrefix", 5, 1 }, 10927 { "EpcmdTrimPostfix", 4, 1 }, 10928 { "ERssIp4Pkt", 3, 1 }, 10929 { "ERssIp6Pkt", 2, 1 }, 10930 { "ERssTcpUdpPkt", 1, 1 }, 10931 { "ERssFceFipPkt", 0, 1 }, 10932 { NULL } 10933 }; 10934 10935 static const struct field_desc tp_la2[] = { 10936 { "CplCmdIn", 56, 8 }, 10937 { "MpsVfVld", 55, 1 }, 10938 { "MpsPf", 52, 3 }, 10939 { "MpsVf", 44, 8 }, 10940 { "SynIn", 43, 1 }, 10941 { "AckIn", 42, 1 }, 10942 { "FinIn", 41, 1 }, 10943 { "RstIn", 40, 1 }, 10944 { "DataIn", 39, 1 }, 10945 { "DataInVld", 38, 1 }, 10946 { "PadIn", 37, 1 }, 10947 { "RxBufEmpty", 36, 1 }, 10948 { "RxDdp", 35, 1 }, 10949 { "RxFbCongestion", 34, 1 }, 10950 { "TxFbCongestion", 33, 1 }, 10951 { "TxPktSumSrdy", 32, 1 }, 10952 { "RcfUlpType", 28, 4 }, 10953 { "Eread", 27, 1 }, 10954 { "Ebypass", 26, 1 }, 10955 { "Esave", 25, 1 }, 10956 { "Static0", 24, 1 }, 10957 { "Cread", 23, 1 }, 10958 { "Cbypass", 22, 1 }, 10959 { "Csave", 21, 1 }, 10960 { "CPktOut", 20, 1 }, 10961 { "RxPagePoolFull", 18, 2 }, 10962 { "RxLpbkPkt", 17, 1 }, 10963 { "TxLpbkPkt", 16, 1 }, 10964 { "RxVfValid", 15, 1 }, 10965 { "SynLearned", 14, 1 }, 10966 { "SetDelEntry", 13, 1 }, 10967 { "SetInvEntry", 12, 1 }, 10968 { "CpcmdDvld", 11, 1 }, 10969 { "CpcmdSave", 10, 1 }, 10970 { "RxPstructsFull", 8, 2 }, 10971 { "EpcmdDvld", 7, 1 }, 10972 { "EpcmdFlush", 6, 1 }, 10973 { "EpcmdTrimPrefix", 5, 1 }, 10974 { "EpcmdTrimPostfix", 4, 1 }, 10975 { "ERssIp4Pkt", 3, 1 }, 10976 { "ERssIp6Pkt", 2, 1 }, 10977 { "ERssTcpUdpPkt", 1, 1 }, 10978 { "ERssFceFipPkt", 0, 1 }, 10979 { NULL } 10980 }; 10981 10982 static void 10983 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10984 { 10985 10986 field_desc_show(sb, *p, tp_la0); 10987 } 10988 10989 static void 10990 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10991 { 10992 10993 if (idx) 10994 sbuf_printf(sb, "\n"); 10995 field_desc_show(sb, p[0], tp_la0); 10996 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10997 field_desc_show(sb, p[1], tp_la0); 10998 } 10999 11000 static void 11001 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11002 { 11003 11004 if (idx) 11005 sbuf_printf(sb, "\n"); 11006 field_desc_show(sb, p[0], tp_la0); 11007 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11008 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11009 } 11010 11011 static int 11012 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11013 { 11014 struct adapter *sc = arg1; 11015 struct sbuf *sb; 11016 uint64_t *buf, *p; 11017 int rc; 11018 u_int i, inc; 11019 void (*show_func)(struct sbuf *, uint64_t *, int); 11020 11021 rc = 0; 11022 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11023 if (sb == NULL) 11024 return (ENOMEM); 11025 11026 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11027 11028 mtx_lock(&sc->reg_lock); 11029 if (hw_off_limits(sc)) 11030 rc = ENXIO; 11031 else { 11032 t4_tp_read_la(sc, buf, NULL); 11033 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11034 case 2: 11035 inc = 2; 11036 show_func = tp_la_show2; 11037 break; 11038 case 3: 11039 inc = 2; 11040 show_func = tp_la_show3; 11041 break; 11042 default: 11043 inc = 1; 11044 show_func = tp_la_show; 11045 } 11046 } 11047 mtx_unlock(&sc->reg_lock); 11048 if (rc != 0) 11049 goto done; 11050 11051 p = buf; 11052 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11053 (*show_func)(sb, p, i); 11054 rc = sbuf_finish(sb); 11055 done: 11056 sbuf_delete(sb); 11057 free(buf, M_CXGBE); 11058 return (rc); 11059 } 11060 11061 static int 11062 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11063 { 11064 struct adapter *sc = arg1; 11065 struct sbuf *sb; 11066 int rc; 11067 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11068 11069 rc = 0; 11070 mtx_lock(&sc->reg_lock); 11071 if (hw_off_limits(sc)) 11072 rc = ENXIO; 11073 else 11074 t4_get_chan_txrate(sc, nrate, orate); 11075 mtx_unlock(&sc->reg_lock); 11076 if (rc != 0) 11077 return (rc); 11078 11079 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11080 if (sb == NULL) 11081 return (ENOMEM); 11082 11083 if (sc->chip_params->nchan > 2) { 11084 sbuf_printf(sb, " channel 0 channel 1" 11085 " channel 2 channel 3\n"); 11086 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11087 nrate[0], nrate[1], nrate[2], nrate[3]); 11088 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11089 orate[0], orate[1], orate[2], orate[3]); 11090 } else { 11091 sbuf_printf(sb, " channel 0 channel 1\n"); 11092 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11093 nrate[0], nrate[1]); 11094 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11095 orate[0], orate[1]); 11096 } 11097 11098 rc = sbuf_finish(sb); 11099 sbuf_delete(sb); 11100 11101 return (rc); 11102 } 11103 11104 static int 11105 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11106 { 11107 struct adapter *sc = arg1; 11108 struct sbuf *sb; 11109 uint32_t *buf, *p; 11110 int rc, i; 11111 11112 rc = 0; 11113 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11114 if (sb == NULL) 11115 return (ENOMEM); 11116 11117 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11118 M_ZERO | M_WAITOK); 11119 11120 mtx_lock(&sc->reg_lock); 11121 if (hw_off_limits(sc)) 11122 rc = ENXIO; 11123 else 11124 t4_ulprx_read_la(sc, buf); 11125 mtx_unlock(&sc->reg_lock); 11126 if (rc != 0) 11127 goto done; 11128 11129 p = buf; 11130 sbuf_printf(sb, " Pcmd Type Message" 11131 " Data"); 11132 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11133 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11134 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11135 } 11136 rc = sbuf_finish(sb); 11137 done: 11138 sbuf_delete(sb); 11139 free(buf, M_CXGBE); 11140 return (rc); 11141 } 11142 11143 static int 11144 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11145 { 11146 struct adapter *sc = arg1; 11147 struct sbuf *sb; 11148 int rc; 11149 uint32_t cfg, s1, s2; 11150 11151 MPASS(chip_id(sc) >= CHELSIO_T5); 11152 11153 rc = 0; 11154 mtx_lock(&sc->reg_lock); 11155 if (hw_off_limits(sc)) 11156 rc = ENXIO; 11157 else { 11158 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11159 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11160 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11161 } 11162 mtx_unlock(&sc->reg_lock); 11163 if (rc != 0) 11164 return (rc); 11165 11166 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11167 if (sb == NULL) 11168 return (ENOMEM); 11169 11170 if (G_STATSOURCE_T5(cfg) == 7) { 11171 int mode; 11172 11173 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11174 if (mode == 0) 11175 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11176 else if (mode == 1) 11177 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11178 else 11179 sbuf_printf(sb, "unknown mode %d", mode); 11180 } 11181 rc = sbuf_finish(sb); 11182 sbuf_delete(sb); 11183 11184 return (rc); 11185 } 11186 11187 static int 11188 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11189 { 11190 struct adapter *sc = arg1; 11191 enum cpu_sets op = arg2; 11192 cpuset_t cpuset; 11193 struct sbuf *sb; 11194 int i, rc; 11195 11196 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11197 11198 CPU_ZERO(&cpuset); 11199 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11200 if (rc != 0) 11201 return (rc); 11202 11203 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11204 if (sb == NULL) 11205 return (ENOMEM); 11206 11207 CPU_FOREACH(i) 11208 sbuf_printf(sb, "%d ", i); 11209 rc = sbuf_finish(sb); 11210 sbuf_delete(sb); 11211 11212 return (rc); 11213 } 11214 11215 static int 11216 sysctl_reset(SYSCTL_HANDLER_ARGS) 11217 { 11218 struct adapter *sc = arg1; 11219 u_int val; 11220 int rc; 11221 11222 val = atomic_load_int(&sc->num_resets); 11223 rc = sysctl_handle_int(oidp, &val, 0, req); 11224 if (rc != 0 || req->newptr == NULL) 11225 return (rc); 11226 11227 if (val == 0) { 11228 /* Zero out the counter that tracks reset. */ 11229 atomic_store_int(&sc->num_resets, 0); 11230 return (0); 11231 } 11232 11233 if (val != 1) 11234 return (EINVAL); /* 0 or 1 are the only legal values */ 11235 11236 if (hw_off_limits(sc)) /* harmless race */ 11237 return (EALREADY); 11238 11239 taskqueue_enqueue(reset_tq, &sc->reset_task); 11240 return (0); 11241 } 11242 11243 #ifdef TCP_OFFLOAD 11244 static int 11245 sysctl_tls(SYSCTL_HANDLER_ARGS) 11246 { 11247 struct adapter *sc = arg1; 11248 int i, j, v, rc; 11249 struct vi_info *vi; 11250 11251 v = sc->tt.tls; 11252 rc = sysctl_handle_int(oidp, &v, 0, req); 11253 if (rc != 0 || req->newptr == NULL) 11254 return (rc); 11255 11256 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11257 return (ENOTSUP); 11258 11259 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11260 if (rc) 11261 return (rc); 11262 if (hw_off_limits(sc)) 11263 rc = ENXIO; 11264 else { 11265 sc->tt.tls = !!v; 11266 for_each_port(sc, i) { 11267 for_each_vi(sc->port[i], j, vi) { 11268 if (vi->flags & VI_INIT_DONE) 11269 t4_update_fl_bufsize(vi->ifp); 11270 } 11271 } 11272 } 11273 end_synchronized_op(sc, 0); 11274 11275 return (rc); 11276 11277 } 11278 11279 static void 11280 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11281 { 11282 u_int rem = val % factor; 11283 11284 if (rem == 0) 11285 snprintf(buf, len, "%u", val / factor); 11286 else { 11287 while (rem % 10 == 0) 11288 rem /= 10; 11289 snprintf(buf, len, "%u.%u", val / factor, rem); 11290 } 11291 } 11292 11293 static int 11294 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11295 { 11296 struct adapter *sc = arg1; 11297 char buf[16]; 11298 u_int res, re; 11299 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11300 11301 mtx_lock(&sc->reg_lock); 11302 if (hw_off_limits(sc)) 11303 res = (u_int)-1; 11304 else 11305 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11306 mtx_unlock(&sc->reg_lock); 11307 if (res == (u_int)-1) 11308 return (ENXIO); 11309 11310 switch (arg2) { 11311 case 0: 11312 /* timer_tick */ 11313 re = G_TIMERRESOLUTION(res); 11314 break; 11315 case 1: 11316 /* TCP timestamp tick */ 11317 re = G_TIMESTAMPRESOLUTION(res); 11318 break; 11319 case 2: 11320 /* DACK tick */ 11321 re = G_DELAYEDACKRESOLUTION(res); 11322 break; 11323 default: 11324 return (EDOOFUS); 11325 } 11326 11327 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11328 11329 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11330 } 11331 11332 static int 11333 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11334 { 11335 struct adapter *sc = arg1; 11336 int rc; 11337 u_int dack_tmr, dack_re, v; 11338 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11339 11340 mtx_lock(&sc->reg_lock); 11341 if (hw_off_limits(sc)) 11342 rc = ENXIO; 11343 else { 11344 rc = 0; 11345 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11346 A_TP_TIMER_RESOLUTION)); 11347 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11348 } 11349 mtx_unlock(&sc->reg_lock); 11350 if (rc != 0) 11351 return (rc); 11352 11353 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11354 11355 return (sysctl_handle_int(oidp, &v, 0, req)); 11356 } 11357 11358 static int 11359 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11360 { 11361 struct adapter *sc = arg1; 11362 int rc, reg = arg2; 11363 u_int tre; 11364 u_long tp_tick_us, v; 11365 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11366 11367 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11368 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11369 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11370 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11371 11372 mtx_lock(&sc->reg_lock); 11373 if (hw_off_limits(sc)) 11374 rc = ENXIO; 11375 else { 11376 rc = 0; 11377 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11378 tp_tick_us = (cclk_ps << tre) / 1000000; 11379 if (reg == A_TP_INIT_SRTT) 11380 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11381 else 11382 v = tp_tick_us * t4_read_reg(sc, reg); 11383 } 11384 mtx_unlock(&sc->reg_lock); 11385 if (rc != 0) 11386 return (rc); 11387 else 11388 return (sysctl_handle_long(oidp, &v, 0, req)); 11389 } 11390 11391 /* 11392 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11393 * passed to this function. 11394 */ 11395 static int 11396 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11397 { 11398 struct adapter *sc = arg1; 11399 int rc, idx = arg2; 11400 u_int v; 11401 11402 MPASS(idx >= 0 && idx <= 24); 11403 11404 mtx_lock(&sc->reg_lock); 11405 if (hw_off_limits(sc)) 11406 rc = ENXIO; 11407 else { 11408 rc = 0; 11409 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11410 } 11411 mtx_unlock(&sc->reg_lock); 11412 if (rc != 0) 11413 return (rc); 11414 else 11415 return (sysctl_handle_int(oidp, &v, 0, req)); 11416 } 11417 11418 static int 11419 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11420 { 11421 struct adapter *sc = arg1; 11422 int rc, idx = arg2; 11423 u_int shift, v, r; 11424 11425 MPASS(idx >= 0 && idx < 16); 11426 11427 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11428 shift = (idx & 3) << 3; 11429 mtx_lock(&sc->reg_lock); 11430 if (hw_off_limits(sc)) 11431 rc = ENXIO; 11432 else { 11433 rc = 0; 11434 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11435 } 11436 mtx_unlock(&sc->reg_lock); 11437 if (rc != 0) 11438 return (rc); 11439 else 11440 return (sysctl_handle_int(oidp, &v, 0, req)); 11441 } 11442 11443 static int 11444 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11445 { 11446 struct vi_info *vi = arg1; 11447 struct adapter *sc = vi->adapter; 11448 int idx, rc, i; 11449 struct sge_ofld_rxq *ofld_rxq; 11450 uint8_t v; 11451 11452 idx = vi->ofld_tmr_idx; 11453 11454 rc = sysctl_handle_int(oidp, &idx, 0, req); 11455 if (rc != 0 || req->newptr == NULL) 11456 return (rc); 11457 11458 if (idx < 0 || idx >= SGE_NTIMERS) 11459 return (EINVAL); 11460 11461 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11462 "t4otmr"); 11463 if (rc) 11464 return (rc); 11465 11466 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11467 for_each_ofld_rxq(vi, i, ofld_rxq) { 11468 #ifdef atomic_store_rel_8 11469 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11470 #else 11471 ofld_rxq->iq.intr_params = v; 11472 #endif 11473 } 11474 vi->ofld_tmr_idx = idx; 11475 11476 end_synchronized_op(sc, LOCK_HELD); 11477 return (0); 11478 } 11479 11480 static int 11481 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11482 { 11483 struct vi_info *vi = arg1; 11484 struct adapter *sc = vi->adapter; 11485 int idx, rc; 11486 11487 idx = vi->ofld_pktc_idx; 11488 11489 rc = sysctl_handle_int(oidp, &idx, 0, req); 11490 if (rc != 0 || req->newptr == NULL) 11491 return (rc); 11492 11493 if (idx < -1 || idx >= SGE_NCOUNTERS) 11494 return (EINVAL); 11495 11496 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11497 "t4opktc"); 11498 if (rc) 11499 return (rc); 11500 11501 if (vi->flags & VI_INIT_DONE) 11502 rc = EBUSY; /* cannot be changed once the queues are created */ 11503 else 11504 vi->ofld_pktc_idx = idx; 11505 11506 end_synchronized_op(sc, LOCK_HELD); 11507 return (rc); 11508 } 11509 #endif 11510 11511 static int 11512 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11513 { 11514 int rc; 11515 11516 if (cntxt->cid > M_CTXTQID) 11517 return (EINVAL); 11518 11519 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11520 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11521 return (EINVAL); 11522 11523 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11524 if (rc) 11525 return (rc); 11526 11527 if (hw_off_limits(sc)) { 11528 rc = ENXIO; 11529 goto done; 11530 } 11531 11532 if (sc->flags & FW_OK) { 11533 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11534 &cntxt->data[0]); 11535 if (rc == 0) 11536 goto done; 11537 } 11538 11539 /* 11540 * Read via firmware failed or wasn't even attempted. Read directly via 11541 * the backdoor. 11542 */ 11543 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11544 done: 11545 end_synchronized_op(sc, 0); 11546 return (rc); 11547 } 11548 11549 static int 11550 load_fw(struct adapter *sc, struct t4_data *fw) 11551 { 11552 int rc; 11553 uint8_t *fw_data; 11554 11555 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11556 if (rc) 11557 return (rc); 11558 11559 if (hw_off_limits(sc)) { 11560 rc = ENXIO; 11561 goto done; 11562 } 11563 11564 /* 11565 * The firmware, with the sole exception of the memory parity error 11566 * handler, runs from memory and not flash. It is almost always safe to 11567 * install a new firmware on a running system. Just set bit 1 in 11568 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11569 */ 11570 if (sc->flags & FULL_INIT_DONE && 11571 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11572 rc = EBUSY; 11573 goto done; 11574 } 11575 11576 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11577 11578 rc = copyin(fw->data, fw_data, fw->len); 11579 if (rc == 0) 11580 rc = -t4_load_fw(sc, fw_data, fw->len); 11581 11582 free(fw_data, M_CXGBE); 11583 done: 11584 end_synchronized_op(sc, 0); 11585 return (rc); 11586 } 11587 11588 static int 11589 load_cfg(struct adapter *sc, struct t4_data *cfg) 11590 { 11591 int rc; 11592 uint8_t *cfg_data = NULL; 11593 11594 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11595 if (rc) 11596 return (rc); 11597 11598 if (hw_off_limits(sc)) { 11599 rc = ENXIO; 11600 goto done; 11601 } 11602 11603 if (cfg->len == 0) { 11604 /* clear */ 11605 rc = -t4_load_cfg(sc, NULL, 0); 11606 goto done; 11607 } 11608 11609 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11610 11611 rc = copyin(cfg->data, cfg_data, cfg->len); 11612 if (rc == 0) 11613 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11614 11615 free(cfg_data, M_CXGBE); 11616 done: 11617 end_synchronized_op(sc, 0); 11618 return (rc); 11619 } 11620 11621 static int 11622 load_boot(struct adapter *sc, struct t4_bootrom *br) 11623 { 11624 int rc; 11625 uint8_t *br_data = NULL; 11626 u_int offset; 11627 11628 if (br->len > 1024 * 1024) 11629 return (EFBIG); 11630 11631 if (br->pf_offset == 0) { 11632 /* pfidx */ 11633 if (br->pfidx_addr > 7) 11634 return (EINVAL); 11635 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11636 A_PCIE_PF_EXPROM_OFST))); 11637 } else if (br->pf_offset == 1) { 11638 /* offset */ 11639 offset = G_OFFSET(br->pfidx_addr); 11640 } else { 11641 return (EINVAL); 11642 } 11643 11644 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11645 if (rc) 11646 return (rc); 11647 11648 if (hw_off_limits(sc)) { 11649 rc = ENXIO; 11650 goto done; 11651 } 11652 11653 if (br->len == 0) { 11654 /* clear */ 11655 rc = -t4_load_boot(sc, NULL, offset, 0); 11656 goto done; 11657 } 11658 11659 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11660 11661 rc = copyin(br->data, br_data, br->len); 11662 if (rc == 0) 11663 rc = -t4_load_boot(sc, br_data, offset, br->len); 11664 11665 free(br_data, M_CXGBE); 11666 done: 11667 end_synchronized_op(sc, 0); 11668 return (rc); 11669 } 11670 11671 static int 11672 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11673 { 11674 int rc; 11675 uint8_t *bc_data = NULL; 11676 11677 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11678 if (rc) 11679 return (rc); 11680 11681 if (hw_off_limits(sc)) { 11682 rc = ENXIO; 11683 goto done; 11684 } 11685 11686 if (bc->len == 0) { 11687 /* clear */ 11688 rc = -t4_load_bootcfg(sc, NULL, 0); 11689 goto done; 11690 } 11691 11692 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11693 11694 rc = copyin(bc->data, bc_data, bc->len); 11695 if (rc == 0) 11696 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11697 11698 free(bc_data, M_CXGBE); 11699 done: 11700 end_synchronized_op(sc, 0); 11701 return (rc); 11702 } 11703 11704 static int 11705 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11706 { 11707 int rc; 11708 struct cudbg_init *cudbg; 11709 void *handle, *buf; 11710 11711 /* buf is large, don't block if no memory is available */ 11712 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11713 if (buf == NULL) 11714 return (ENOMEM); 11715 11716 handle = cudbg_alloc_handle(); 11717 if (handle == NULL) { 11718 rc = ENOMEM; 11719 goto done; 11720 } 11721 11722 cudbg = cudbg_get_init(handle); 11723 cudbg->adap = sc; 11724 cudbg->print = (cudbg_print_cb)printf; 11725 11726 #ifndef notyet 11727 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11728 __func__, dump->wr_flash, dump->len, dump->data); 11729 #endif 11730 11731 if (dump->wr_flash) 11732 cudbg->use_flash = 1; 11733 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11734 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11735 11736 rc = cudbg_collect(handle, buf, &dump->len); 11737 if (rc != 0) 11738 goto done; 11739 11740 rc = copyout(buf, dump->data, dump->len); 11741 done: 11742 cudbg_free_handle(handle); 11743 free(buf, M_CXGBE); 11744 return (rc); 11745 } 11746 11747 static void 11748 free_offload_policy(struct t4_offload_policy *op) 11749 { 11750 struct offload_rule *r; 11751 int i; 11752 11753 if (op == NULL) 11754 return; 11755 11756 r = &op->rule[0]; 11757 for (i = 0; i < op->nrules; i++, r++) { 11758 free(r->bpf_prog.bf_insns, M_CXGBE); 11759 } 11760 free(op->rule, M_CXGBE); 11761 free(op, M_CXGBE); 11762 } 11763 11764 static int 11765 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11766 { 11767 int i, rc, len; 11768 struct t4_offload_policy *op, *old; 11769 struct bpf_program *bf; 11770 const struct offload_settings *s; 11771 struct offload_rule *r; 11772 void *u; 11773 11774 if (!is_offload(sc)) 11775 return (ENODEV); 11776 11777 if (uop->nrules == 0) { 11778 /* Delete installed policies. */ 11779 op = NULL; 11780 goto set_policy; 11781 } else if (uop->nrules > 256) { /* arbitrary */ 11782 return (E2BIG); 11783 } 11784 11785 /* Copy userspace offload policy to kernel */ 11786 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11787 op->nrules = uop->nrules; 11788 len = op->nrules * sizeof(struct offload_rule); 11789 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11790 rc = copyin(uop->rule, op->rule, len); 11791 if (rc) { 11792 free(op->rule, M_CXGBE); 11793 free(op, M_CXGBE); 11794 return (rc); 11795 } 11796 11797 r = &op->rule[0]; 11798 for (i = 0; i < op->nrules; i++, r++) { 11799 11800 /* Validate open_type */ 11801 if (r->open_type != OPEN_TYPE_LISTEN && 11802 r->open_type != OPEN_TYPE_ACTIVE && 11803 r->open_type != OPEN_TYPE_PASSIVE && 11804 r->open_type != OPEN_TYPE_DONTCARE) { 11805 error: 11806 /* 11807 * Rules 0 to i have malloc'd filters that need to be 11808 * freed. Rules i+1 to nrules have userspace pointers 11809 * and should be left alone. 11810 */ 11811 op->nrules = i; 11812 free_offload_policy(op); 11813 return (rc); 11814 } 11815 11816 /* Validate settings */ 11817 s = &r->settings; 11818 if ((s->offload != 0 && s->offload != 1) || 11819 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11820 s->sched_class < -1 || 11821 s->sched_class >= sc->params.nsched_cls) { 11822 rc = EINVAL; 11823 goto error; 11824 } 11825 11826 bf = &r->bpf_prog; 11827 u = bf->bf_insns; /* userspace ptr */ 11828 bf->bf_insns = NULL; 11829 if (bf->bf_len == 0) { 11830 /* legal, matches everything */ 11831 continue; 11832 } 11833 len = bf->bf_len * sizeof(*bf->bf_insns); 11834 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11835 rc = copyin(u, bf->bf_insns, len); 11836 if (rc != 0) 11837 goto error; 11838 11839 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11840 rc = EINVAL; 11841 goto error; 11842 } 11843 } 11844 set_policy: 11845 rw_wlock(&sc->policy_lock); 11846 old = sc->policy; 11847 sc->policy = op; 11848 rw_wunlock(&sc->policy_lock); 11849 free_offload_policy(old); 11850 11851 return (0); 11852 } 11853 11854 #define MAX_READ_BUF_SIZE (128 * 1024) 11855 static int 11856 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11857 { 11858 uint32_t addr, remaining, n; 11859 uint32_t *buf; 11860 int rc; 11861 uint8_t *dst; 11862 11863 mtx_lock(&sc->reg_lock); 11864 if (hw_off_limits(sc)) 11865 rc = ENXIO; 11866 else 11867 rc = validate_mem_range(sc, mr->addr, mr->len); 11868 mtx_unlock(&sc->reg_lock); 11869 if (rc != 0) 11870 return (rc); 11871 11872 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11873 addr = mr->addr; 11874 remaining = mr->len; 11875 dst = (void *)mr->data; 11876 11877 while (remaining) { 11878 n = min(remaining, MAX_READ_BUF_SIZE); 11879 mtx_lock(&sc->reg_lock); 11880 if (hw_off_limits(sc)) 11881 rc = ENXIO; 11882 else 11883 read_via_memwin(sc, 2, addr, buf, n); 11884 mtx_unlock(&sc->reg_lock); 11885 if (rc != 0) 11886 break; 11887 11888 rc = copyout(buf, dst, n); 11889 if (rc != 0) 11890 break; 11891 11892 dst += n; 11893 remaining -= n; 11894 addr += n; 11895 } 11896 11897 free(buf, M_CXGBE); 11898 return (rc); 11899 } 11900 #undef MAX_READ_BUF_SIZE 11901 11902 static int 11903 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11904 { 11905 int rc; 11906 11907 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11908 return (EINVAL); 11909 11910 if (i2cd->len > sizeof(i2cd->data)) 11911 return (EFBIG); 11912 11913 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11914 if (rc) 11915 return (rc); 11916 if (hw_off_limits(sc)) 11917 rc = ENXIO; 11918 else 11919 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11920 i2cd->offset, i2cd->len, &i2cd->data[0]); 11921 end_synchronized_op(sc, 0); 11922 11923 return (rc); 11924 } 11925 11926 static int 11927 clear_stats(struct adapter *sc, u_int port_id) 11928 { 11929 int i, v, chan_map; 11930 struct port_info *pi; 11931 struct vi_info *vi; 11932 struct sge_rxq *rxq; 11933 struct sge_txq *txq; 11934 struct sge_wrq *wrq; 11935 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11936 struct sge_ofld_txq *ofld_txq; 11937 #endif 11938 #ifdef TCP_OFFLOAD 11939 struct sge_ofld_rxq *ofld_rxq; 11940 #endif 11941 11942 if (port_id >= sc->params.nports) 11943 return (EINVAL); 11944 pi = sc->port[port_id]; 11945 if (pi == NULL) 11946 return (EIO); 11947 11948 mtx_lock(&sc->reg_lock); 11949 if (!hw_off_limits(sc)) { 11950 /* MAC stats */ 11951 t4_clr_port_stats(sc, pi->tx_chan); 11952 if (is_t6(sc)) { 11953 if (pi->fcs_reg != -1) 11954 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11955 else 11956 pi->stats.rx_fcs_err = 0; 11957 } 11958 for_each_vi(pi, v, vi) { 11959 if (vi->flags & VI_INIT_DONE) 11960 t4_clr_vi_stats(sc, vi->vin); 11961 } 11962 chan_map = pi->rx_e_chan_map; 11963 v = 0; /* reuse */ 11964 while (chan_map) { 11965 i = ffs(chan_map) - 1; 11966 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11967 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11968 chan_map &= ~(1 << i); 11969 } 11970 } 11971 mtx_unlock(&sc->reg_lock); 11972 pi->tx_parse_error = 0; 11973 pi->tnl_cong_drops = 0; 11974 11975 /* 11976 * Since this command accepts a port, clear stats for 11977 * all VIs on this port. 11978 */ 11979 for_each_vi(pi, v, vi) { 11980 if (vi->flags & VI_INIT_DONE) { 11981 11982 for_each_rxq(vi, i, rxq) { 11983 #if defined(INET) || defined(INET6) 11984 rxq->lro.lro_queued = 0; 11985 rxq->lro.lro_flushed = 0; 11986 #endif 11987 rxq->rxcsum = 0; 11988 rxq->vlan_extraction = 0; 11989 rxq->vxlan_rxcsum = 0; 11990 11991 rxq->fl.cl_allocated = 0; 11992 rxq->fl.cl_recycled = 0; 11993 rxq->fl.cl_fast_recycled = 0; 11994 } 11995 11996 for_each_txq(vi, i, txq) { 11997 txq->txcsum = 0; 11998 txq->tso_wrs = 0; 11999 txq->vlan_insertion = 0; 12000 txq->imm_wrs = 0; 12001 txq->sgl_wrs = 0; 12002 txq->txpkt_wrs = 0; 12003 txq->txpkts0_wrs = 0; 12004 txq->txpkts1_wrs = 0; 12005 txq->txpkts0_pkts = 0; 12006 txq->txpkts1_pkts = 0; 12007 txq->txpkts_flush = 0; 12008 txq->raw_wrs = 0; 12009 txq->vxlan_tso_wrs = 0; 12010 txq->vxlan_txcsum = 0; 12011 txq->kern_tls_records = 0; 12012 txq->kern_tls_short = 0; 12013 txq->kern_tls_partial = 0; 12014 txq->kern_tls_full = 0; 12015 txq->kern_tls_octets = 0; 12016 txq->kern_tls_waste = 0; 12017 txq->kern_tls_options = 0; 12018 txq->kern_tls_header = 0; 12019 txq->kern_tls_fin = 0; 12020 txq->kern_tls_fin_short = 0; 12021 txq->kern_tls_cbc = 0; 12022 txq->kern_tls_gcm = 0; 12023 mp_ring_reset_stats(txq->r); 12024 } 12025 12026 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12027 for_each_ofld_txq(vi, i, ofld_txq) { 12028 ofld_txq->wrq.tx_wrs_direct = 0; 12029 ofld_txq->wrq.tx_wrs_copied = 0; 12030 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12031 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12032 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12033 counter_u64_zero(ofld_txq->tx_aio_jobs); 12034 counter_u64_zero(ofld_txq->tx_aio_octets); 12035 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12036 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12037 } 12038 #endif 12039 #ifdef TCP_OFFLOAD 12040 for_each_ofld_rxq(vi, i, ofld_rxq) { 12041 ofld_rxq->fl.cl_allocated = 0; 12042 ofld_rxq->fl.cl_recycled = 0; 12043 ofld_rxq->fl.cl_fast_recycled = 0; 12044 counter_u64_zero( 12045 ofld_rxq->rx_iscsi_ddp_setup_ok); 12046 counter_u64_zero( 12047 ofld_rxq->rx_iscsi_ddp_setup_error); 12048 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12049 ofld_rxq->rx_iscsi_ddp_octets = 0; 12050 ofld_rxq->rx_iscsi_fl_pdus = 0; 12051 ofld_rxq->rx_iscsi_fl_octets = 0; 12052 ofld_rxq->rx_aio_ddp_jobs = 0; 12053 ofld_rxq->rx_aio_ddp_octets = 0; 12054 ofld_rxq->rx_toe_tls_records = 0; 12055 ofld_rxq->rx_toe_tls_octets = 0; 12056 ofld_rxq->rx_toe_ddp_octets = 0; 12057 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12058 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12059 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12060 } 12061 #endif 12062 12063 if (IS_MAIN_VI(vi)) { 12064 wrq = &sc->sge.ctrlq[pi->port_id]; 12065 wrq->tx_wrs_direct = 0; 12066 wrq->tx_wrs_copied = 0; 12067 } 12068 } 12069 } 12070 12071 return (0); 12072 } 12073 12074 static int 12075 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12076 { 12077 #ifdef INET6 12078 struct in6_addr in6; 12079 12080 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12081 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12082 return (0); 12083 else 12084 return (EIO); 12085 #else 12086 return (ENOTSUP); 12087 #endif 12088 } 12089 12090 static int 12091 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12092 { 12093 #ifdef INET6 12094 struct in6_addr in6; 12095 12096 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12097 return (t4_release_clip_addr(sc, &in6)); 12098 #else 12099 return (ENOTSUP); 12100 #endif 12101 } 12102 12103 int 12104 t4_os_find_pci_capability(struct adapter *sc, int cap) 12105 { 12106 int i; 12107 12108 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12109 } 12110 12111 int 12112 t4_os_pci_save_state(struct adapter *sc) 12113 { 12114 device_t dev; 12115 struct pci_devinfo *dinfo; 12116 12117 dev = sc->dev; 12118 dinfo = device_get_ivars(dev); 12119 12120 pci_cfg_save(dev, dinfo, 0); 12121 return (0); 12122 } 12123 12124 int 12125 t4_os_pci_restore_state(struct adapter *sc) 12126 { 12127 device_t dev; 12128 struct pci_devinfo *dinfo; 12129 12130 dev = sc->dev; 12131 dinfo = device_get_ivars(dev); 12132 12133 pci_cfg_restore(dev, dinfo); 12134 return (0); 12135 } 12136 12137 void 12138 t4_os_portmod_changed(struct port_info *pi) 12139 { 12140 struct adapter *sc = pi->adapter; 12141 struct vi_info *vi; 12142 if_t ifp; 12143 static const char *mod_str[] = { 12144 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12145 }; 12146 12147 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12148 ("%s: port_type %u", __func__, pi->port_type)); 12149 12150 vi = &pi->vi[0]; 12151 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12152 PORT_LOCK(pi); 12153 build_medialist(pi); 12154 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12155 fixup_link_config(pi); 12156 apply_link_config(pi); 12157 } 12158 PORT_UNLOCK(pi); 12159 end_synchronized_op(sc, LOCK_HELD); 12160 } 12161 12162 ifp = vi->ifp; 12163 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12164 if_printf(ifp, "transceiver unplugged.\n"); 12165 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12166 if_printf(ifp, "unknown transceiver inserted.\n"); 12167 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12168 if_printf(ifp, "unsupported transceiver inserted.\n"); 12169 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12170 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12171 port_top_speed(pi), mod_str[pi->mod_type]); 12172 } else { 12173 if_printf(ifp, "transceiver (type %d) inserted.\n", 12174 pi->mod_type); 12175 } 12176 } 12177 12178 void 12179 t4_os_link_changed(struct port_info *pi) 12180 { 12181 struct vi_info *vi; 12182 if_t ifp; 12183 struct link_config *lc = &pi->link_cfg; 12184 struct adapter *sc = pi->adapter; 12185 int v; 12186 12187 PORT_LOCK_ASSERT_OWNED(pi); 12188 12189 if (is_t6(sc)) { 12190 if (lc->link_ok) { 12191 if (lc->speed > 25000 || 12192 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12193 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12194 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12195 } else { 12196 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12197 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12198 } 12199 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12200 pi->stats.rx_fcs_err = 0; 12201 } else { 12202 pi->fcs_reg = -1; 12203 } 12204 } else { 12205 MPASS(pi->fcs_reg != -1); 12206 MPASS(pi->fcs_base == 0); 12207 } 12208 12209 for_each_vi(pi, v, vi) { 12210 ifp = vi->ifp; 12211 if (ifp == NULL || IS_DETACHING(vi)) 12212 continue; 12213 12214 if (lc->link_ok) { 12215 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12216 if_link_state_change(ifp, LINK_STATE_UP); 12217 } else { 12218 if_link_state_change(ifp, LINK_STATE_DOWN); 12219 } 12220 } 12221 } 12222 12223 void 12224 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12225 { 12226 struct adapter *sc; 12227 12228 sx_slock(&t4_list_lock); 12229 SLIST_FOREACH(sc, &t4_list, link) { 12230 /* 12231 * func should not make any assumptions about what state sc is 12232 * in - the only guarantee is that sc->sc_lock is a valid lock. 12233 */ 12234 func(sc, arg); 12235 } 12236 sx_sunlock(&t4_list_lock); 12237 } 12238 12239 static int 12240 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12241 struct thread *td) 12242 { 12243 int rc; 12244 struct adapter *sc = dev->si_drv1; 12245 12246 rc = priv_check(td, PRIV_DRIVER); 12247 if (rc != 0) 12248 return (rc); 12249 12250 switch (cmd) { 12251 case CHELSIO_T4_GETREG: { 12252 struct t4_reg *edata = (struct t4_reg *)data; 12253 12254 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12255 return (EFAULT); 12256 12257 mtx_lock(&sc->reg_lock); 12258 if (hw_off_limits(sc)) 12259 rc = ENXIO; 12260 else if (edata->size == 4) 12261 edata->val = t4_read_reg(sc, edata->addr); 12262 else if (edata->size == 8) 12263 edata->val = t4_read_reg64(sc, edata->addr); 12264 else 12265 rc = EINVAL; 12266 mtx_unlock(&sc->reg_lock); 12267 12268 break; 12269 } 12270 case CHELSIO_T4_SETREG: { 12271 struct t4_reg *edata = (struct t4_reg *)data; 12272 12273 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12274 return (EFAULT); 12275 12276 mtx_lock(&sc->reg_lock); 12277 if (hw_off_limits(sc)) 12278 rc = ENXIO; 12279 else if (edata->size == 4) { 12280 if (edata->val & 0xffffffff00000000) 12281 rc = EINVAL; 12282 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12283 } else if (edata->size == 8) 12284 t4_write_reg64(sc, edata->addr, edata->val); 12285 else 12286 rc = EINVAL; 12287 mtx_unlock(&sc->reg_lock); 12288 12289 break; 12290 } 12291 case CHELSIO_T4_REGDUMP: { 12292 struct t4_regdump *regs = (struct t4_regdump *)data; 12293 int reglen = t4_get_regs_len(sc); 12294 uint8_t *buf; 12295 12296 if (regs->len < reglen) { 12297 regs->len = reglen; /* hint to the caller */ 12298 return (ENOBUFS); 12299 } 12300 12301 regs->len = reglen; 12302 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12303 mtx_lock(&sc->reg_lock); 12304 if (hw_off_limits(sc)) 12305 rc = ENXIO; 12306 else 12307 get_regs(sc, regs, buf); 12308 mtx_unlock(&sc->reg_lock); 12309 if (rc == 0) 12310 rc = copyout(buf, regs->data, reglen); 12311 free(buf, M_CXGBE); 12312 break; 12313 } 12314 case CHELSIO_T4_GET_FILTER_MODE: 12315 rc = get_filter_mode(sc, (uint32_t *)data); 12316 break; 12317 case CHELSIO_T4_SET_FILTER_MODE: 12318 rc = set_filter_mode(sc, *(uint32_t *)data); 12319 break; 12320 case CHELSIO_T4_SET_FILTER_MASK: 12321 rc = set_filter_mask(sc, *(uint32_t *)data); 12322 break; 12323 case CHELSIO_T4_GET_FILTER: 12324 rc = get_filter(sc, (struct t4_filter *)data); 12325 break; 12326 case CHELSIO_T4_SET_FILTER: 12327 rc = set_filter(sc, (struct t4_filter *)data); 12328 break; 12329 case CHELSIO_T4_DEL_FILTER: 12330 rc = del_filter(sc, (struct t4_filter *)data); 12331 break; 12332 case CHELSIO_T4_GET_SGE_CONTEXT: 12333 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12334 break; 12335 case CHELSIO_T4_LOAD_FW: 12336 rc = load_fw(sc, (struct t4_data *)data); 12337 break; 12338 case CHELSIO_T4_GET_MEM: 12339 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12340 break; 12341 case CHELSIO_T4_GET_I2C: 12342 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12343 break; 12344 case CHELSIO_T4_CLEAR_STATS: 12345 rc = clear_stats(sc, *(uint32_t *)data); 12346 break; 12347 case CHELSIO_T4_SCHED_CLASS: 12348 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12349 break; 12350 case CHELSIO_T4_SCHED_QUEUE: 12351 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12352 break; 12353 case CHELSIO_T4_GET_TRACER: 12354 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12355 break; 12356 case CHELSIO_T4_SET_TRACER: 12357 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12358 break; 12359 case CHELSIO_T4_LOAD_CFG: 12360 rc = load_cfg(sc, (struct t4_data *)data); 12361 break; 12362 case CHELSIO_T4_LOAD_BOOT: 12363 rc = load_boot(sc, (struct t4_bootrom *)data); 12364 break; 12365 case CHELSIO_T4_LOAD_BOOTCFG: 12366 rc = load_bootcfg(sc, (struct t4_data *)data); 12367 break; 12368 case CHELSIO_T4_CUDBG_DUMP: 12369 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12370 break; 12371 case CHELSIO_T4_SET_OFLD_POLICY: 12372 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12373 break; 12374 case CHELSIO_T4_HOLD_CLIP_ADDR: 12375 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12376 break; 12377 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12378 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12379 break; 12380 default: 12381 rc = ENOTTY; 12382 } 12383 12384 return (rc); 12385 } 12386 12387 #ifdef TCP_OFFLOAD 12388 int 12389 toe_capability(struct vi_info *vi, bool enable) 12390 { 12391 int rc; 12392 struct port_info *pi = vi->pi; 12393 struct adapter *sc = pi->adapter; 12394 12395 ASSERT_SYNCHRONIZED_OP(sc); 12396 12397 if (!is_offload(sc)) 12398 return (ENODEV); 12399 if (hw_off_limits(sc)) 12400 return (ENXIO); 12401 12402 if (enable) { 12403 #ifdef KERN_TLS 12404 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12405 int i, j, n; 12406 struct port_info *p; 12407 struct vi_info *v; 12408 12409 /* 12410 * Reconfigure hardware for TOE if TXTLS is not enabled 12411 * on any ifnet. 12412 */ 12413 n = 0; 12414 for_each_port(sc, i) { 12415 p = sc->port[i]; 12416 for_each_vi(p, j, v) { 12417 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12418 CH_WARN(sc, 12419 "%s has NIC TLS enabled.\n", 12420 device_get_nameunit(v->dev)); 12421 n++; 12422 } 12423 } 12424 } 12425 if (n > 0) { 12426 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12427 "associated with this adapter before " 12428 "trying to enable TOE.\n"); 12429 return (EAGAIN); 12430 } 12431 rc = t6_config_kern_tls(sc, false); 12432 if (rc) 12433 return (rc); 12434 } 12435 #endif 12436 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12437 /* TOE is already enabled. */ 12438 return (0); 12439 } 12440 12441 /* 12442 * We need the port's queues around so that we're able to send 12443 * and receive CPLs to/from the TOE even if the ifnet for this 12444 * port has never been UP'd administratively. 12445 */ 12446 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12447 return (rc); 12448 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12449 ((rc = vi_init(&pi->vi[0])) != 0)) 12450 return (rc); 12451 12452 if (isset(&sc->offload_map, pi->port_id)) { 12453 /* TOE is enabled on another VI of this port. */ 12454 MPASS(pi->uld_vis > 0); 12455 pi->uld_vis++; 12456 return (0); 12457 } 12458 12459 if (!uld_active(sc, ULD_TOM)) { 12460 rc = t4_activate_uld(sc, ULD_TOM); 12461 if (rc == EAGAIN) { 12462 log(LOG_WARNING, 12463 "You must kldload t4_tom.ko before trying " 12464 "to enable TOE on a cxgbe interface.\n"); 12465 } 12466 if (rc != 0) 12467 return (rc); 12468 KASSERT(sc->tom_softc != NULL, 12469 ("%s: TOM activated but softc NULL", __func__)); 12470 KASSERT(uld_active(sc, ULD_TOM), 12471 ("%s: TOM activated but flag not set", __func__)); 12472 } 12473 12474 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12475 if (!uld_active(sc, ULD_IWARP)) 12476 (void) t4_activate_uld(sc, ULD_IWARP); 12477 if (!uld_active(sc, ULD_ISCSI)) 12478 (void) t4_activate_uld(sc, ULD_ISCSI); 12479 12480 if (pi->uld_vis++ == 0) 12481 setbit(&sc->offload_map, pi->port_id); 12482 } else { 12483 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 12484 /* TOE is already disabled. */ 12485 return (0); 12486 } 12487 MPASS(isset(&sc->offload_map, pi->port_id)); 12488 MPASS(pi->uld_vis > 0); 12489 if (--pi->uld_vis == 0) 12490 clrbit(&sc->offload_map, pi->port_id); 12491 } 12492 12493 return (0); 12494 } 12495 12496 /* 12497 * Add an upper layer driver to the global list. 12498 */ 12499 int 12500 t4_register_uld(struct uld_info *ui, int id) 12501 { 12502 int rc; 12503 12504 if (id < 0 || id > ULD_MAX) 12505 return (EINVAL); 12506 sx_xlock(&t4_uld_list_lock); 12507 if (t4_uld_list[id] != NULL) 12508 rc = EEXIST; 12509 else { 12510 t4_uld_list[id] = ui; 12511 rc = 0; 12512 } 12513 sx_xunlock(&t4_uld_list_lock); 12514 return (rc); 12515 } 12516 12517 int 12518 t4_unregister_uld(struct uld_info *ui, int id) 12519 { 12520 12521 if (id < 0 || id > ULD_MAX) 12522 return (EINVAL); 12523 sx_xlock(&t4_uld_list_lock); 12524 MPASS(t4_uld_list[id] == ui); 12525 t4_uld_list[id] = NULL; 12526 sx_xunlock(&t4_uld_list_lock); 12527 return (0); 12528 } 12529 12530 int 12531 t4_activate_uld(struct adapter *sc, int id) 12532 { 12533 int rc; 12534 12535 ASSERT_SYNCHRONIZED_OP(sc); 12536 12537 if (id < 0 || id > ULD_MAX) 12538 return (EINVAL); 12539 12540 /* Adapter needs to be initialized before any ULD can be activated. */ 12541 if (!(sc->flags & FULL_INIT_DONE)) { 12542 rc = adapter_init(sc); 12543 if (rc != 0) 12544 return (rc); 12545 } 12546 12547 sx_slock(&t4_uld_list_lock); 12548 if (t4_uld_list[id] == NULL) 12549 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12550 else { 12551 rc = t4_uld_list[id]->uld_activate(sc); 12552 if (rc == 0) 12553 setbit(&sc->active_ulds, id); 12554 } 12555 sx_sunlock(&t4_uld_list_lock); 12556 12557 return (rc); 12558 } 12559 12560 int 12561 t4_deactivate_uld(struct adapter *sc, int id) 12562 { 12563 int rc; 12564 12565 ASSERT_SYNCHRONIZED_OP(sc); 12566 12567 if (id < 0 || id > ULD_MAX) 12568 return (EINVAL); 12569 12570 sx_slock(&t4_uld_list_lock); 12571 if (t4_uld_list[id] == NULL) 12572 rc = ENXIO; 12573 else { 12574 rc = t4_uld_list[id]->uld_deactivate(sc); 12575 if (rc == 0) 12576 clrbit(&sc->active_ulds, id); 12577 } 12578 sx_sunlock(&t4_uld_list_lock); 12579 12580 return (rc); 12581 } 12582 12583 static int 12584 deactivate_all_uld(struct adapter *sc) 12585 { 12586 int i, rc; 12587 12588 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12589 if (rc != 0) 12590 return (ENXIO); 12591 sx_slock(&t4_uld_list_lock); 12592 for (i = 0; i <= ULD_MAX; i++) { 12593 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12594 continue; 12595 rc = t4_uld_list[i]->uld_deactivate(sc); 12596 if (rc != 0) 12597 break; 12598 clrbit(&sc->active_ulds, i); 12599 } 12600 sx_sunlock(&t4_uld_list_lock); 12601 end_synchronized_op(sc, 0); 12602 12603 return (rc); 12604 } 12605 12606 static void 12607 stop_all_uld(struct adapter *sc) 12608 { 12609 int i; 12610 12611 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12612 return; 12613 sx_slock(&t4_uld_list_lock); 12614 for (i = 0; i <= ULD_MAX; i++) { 12615 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12616 t4_uld_list[i]->uld_stop == NULL) 12617 continue; 12618 (void) t4_uld_list[i]->uld_stop(sc); 12619 } 12620 sx_sunlock(&t4_uld_list_lock); 12621 end_synchronized_op(sc, 0); 12622 } 12623 12624 static void 12625 restart_all_uld(struct adapter *sc) 12626 { 12627 int i; 12628 12629 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12630 return; 12631 sx_slock(&t4_uld_list_lock); 12632 for (i = 0; i <= ULD_MAX; i++) { 12633 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12634 t4_uld_list[i]->uld_restart == NULL) 12635 continue; 12636 (void) t4_uld_list[i]->uld_restart(sc); 12637 } 12638 sx_sunlock(&t4_uld_list_lock); 12639 end_synchronized_op(sc, 0); 12640 } 12641 12642 int 12643 uld_active(struct adapter *sc, int id) 12644 { 12645 12646 MPASS(id >= 0 && id <= ULD_MAX); 12647 12648 return (isset(&sc->active_ulds, id)); 12649 } 12650 #endif 12651 12652 #ifdef KERN_TLS 12653 static int 12654 ktls_capability(struct adapter *sc, bool enable) 12655 { 12656 ASSERT_SYNCHRONIZED_OP(sc); 12657 12658 if (!is_ktls(sc)) 12659 return (ENODEV); 12660 if (!is_t6(sc)) 12661 return (0); 12662 if (hw_off_limits(sc)) 12663 return (ENXIO); 12664 12665 if (enable) { 12666 if (sc->flags & KERN_TLS_ON) 12667 return (0); /* already on */ 12668 if (sc->offload_map != 0) { 12669 CH_WARN(sc, 12670 "Disable TOE on all interfaces associated with " 12671 "this adapter before trying to enable NIC TLS.\n"); 12672 return (EAGAIN); 12673 } 12674 return (t6_config_kern_tls(sc, true)); 12675 } else { 12676 /* 12677 * Nothing to do for disable. If TOE is enabled sometime later 12678 * then toe_capability will reconfigure the hardware. 12679 */ 12680 return (0); 12681 } 12682 } 12683 #endif 12684 12685 /* 12686 * t = ptr to tunable. 12687 * nc = number of CPUs. 12688 * c = compiled in default for that tunable. 12689 */ 12690 static void 12691 calculate_nqueues(int *t, int nc, const int c) 12692 { 12693 int nq; 12694 12695 if (*t > 0) 12696 return; 12697 nq = *t < 0 ? -*t : c; 12698 *t = min(nc, nq); 12699 } 12700 12701 /* 12702 * Come up with reasonable defaults for some of the tunables, provided they're 12703 * not set by the user (in which case we'll use the values as is). 12704 */ 12705 static void 12706 tweak_tunables(void) 12707 { 12708 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12709 12710 if (t4_ntxq < 1) { 12711 #ifdef RSS 12712 t4_ntxq = rss_getnumbuckets(); 12713 #else 12714 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12715 #endif 12716 } 12717 12718 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12719 12720 if (t4_nrxq < 1) { 12721 #ifdef RSS 12722 t4_nrxq = rss_getnumbuckets(); 12723 #else 12724 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12725 #endif 12726 } 12727 12728 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12729 12730 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12731 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12732 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12733 #endif 12734 #ifdef TCP_OFFLOAD 12735 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12736 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12737 #endif 12738 12739 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12740 if (t4_toecaps_allowed == -1) 12741 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12742 #else 12743 if (t4_toecaps_allowed == -1) 12744 t4_toecaps_allowed = 0; 12745 #endif 12746 12747 #ifdef TCP_OFFLOAD 12748 if (t4_rdmacaps_allowed == -1) { 12749 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12750 FW_CAPS_CONFIG_RDMA_RDMAC; 12751 } 12752 12753 if (t4_iscsicaps_allowed == -1) { 12754 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12755 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12756 FW_CAPS_CONFIG_ISCSI_T10DIF; 12757 } 12758 12759 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12760 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12761 12762 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12763 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12764 #else 12765 if (t4_rdmacaps_allowed == -1) 12766 t4_rdmacaps_allowed = 0; 12767 12768 if (t4_iscsicaps_allowed == -1) 12769 t4_iscsicaps_allowed = 0; 12770 #endif 12771 12772 #ifdef DEV_NETMAP 12773 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12774 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12775 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12776 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12777 #endif 12778 12779 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12780 t4_tmr_idx = TMR_IDX; 12781 12782 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12783 t4_pktc_idx = PKTC_IDX; 12784 12785 if (t4_qsize_txq < 128) 12786 t4_qsize_txq = 128; 12787 12788 if (t4_qsize_rxq < 128) 12789 t4_qsize_rxq = 128; 12790 while (t4_qsize_rxq & 7) 12791 t4_qsize_rxq++; 12792 12793 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12794 12795 /* 12796 * Number of VIs to create per-port. The first VI is the "main" regular 12797 * VI for the port. The rest are additional virtual interfaces on the 12798 * same physical port. Note that the main VI does not have native 12799 * netmap support but the extra VIs do. 12800 * 12801 * Limit the number of VIs per port to the number of available 12802 * MAC addresses per port. 12803 */ 12804 if (t4_num_vis < 1) 12805 t4_num_vis = 1; 12806 if (t4_num_vis > nitems(vi_mac_funcs)) { 12807 t4_num_vis = nitems(vi_mac_funcs); 12808 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12809 } 12810 12811 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12812 pcie_relaxed_ordering = 1; 12813 #if defined(__i386__) || defined(__amd64__) 12814 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12815 pcie_relaxed_ordering = 0; 12816 #endif 12817 } 12818 } 12819 12820 #ifdef DDB 12821 static void 12822 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12823 { 12824 uint32_t base, j, off, pf, reg, save, win_pos; 12825 12826 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12827 save = t4_read_reg(sc, reg); 12828 base = sc->memwin[2].mw_base; 12829 12830 if (is_t4(sc)) { 12831 pf = 0; 12832 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12833 } else { 12834 pf = V_PFNUM(sc->pf); 12835 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12836 } 12837 off = addr - win_pos; 12838 t4_write_reg(sc, reg, win_pos | pf); 12839 t4_read_reg(sc, reg); 12840 12841 while (len > 0 && !db_pager_quit) { 12842 uint32_t buf[8]; 12843 for (j = 0; j < 8; j++, off += 4) 12844 buf[j] = htonl(t4_read_reg(sc, base + off)); 12845 12846 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12847 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12848 buf[7]); 12849 if (len <= sizeof(buf)) 12850 len = 0; 12851 else 12852 len -= sizeof(buf); 12853 } 12854 12855 t4_write_reg(sc, reg, save); 12856 t4_read_reg(sc, reg); 12857 } 12858 12859 static void 12860 t4_dump_tcb(struct adapter *sc, int tid) 12861 { 12862 uint32_t tcb_addr; 12863 12864 /* Dump TCB for the tid */ 12865 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12866 tcb_addr += tid * TCB_SIZE; 12867 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12868 } 12869 12870 static void 12871 t4_dump_devlog(struct adapter *sc) 12872 { 12873 struct devlog_params *dparams = &sc->params.devlog; 12874 struct fw_devlog_e e; 12875 int i, first, j, m, nentries, rc; 12876 uint64_t ftstamp = UINT64_MAX; 12877 12878 if (dparams->start == 0) { 12879 db_printf("devlog params not valid\n"); 12880 return; 12881 } 12882 12883 nentries = dparams->size / sizeof(struct fw_devlog_e); 12884 m = fwmtype_to_hwmtype(dparams->memtype); 12885 12886 /* Find the first entry. */ 12887 first = -1; 12888 for (i = 0; i < nentries && !db_pager_quit; i++) { 12889 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12890 sizeof(e), (void *)&e); 12891 if (rc != 0) 12892 break; 12893 12894 if (e.timestamp == 0) 12895 break; 12896 12897 e.timestamp = be64toh(e.timestamp); 12898 if (e.timestamp < ftstamp) { 12899 ftstamp = e.timestamp; 12900 first = i; 12901 } 12902 } 12903 12904 if (first == -1) 12905 return; 12906 12907 i = first; 12908 do { 12909 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12910 sizeof(e), (void *)&e); 12911 if (rc != 0) 12912 return; 12913 12914 if (e.timestamp == 0) 12915 return; 12916 12917 e.timestamp = be64toh(e.timestamp); 12918 e.seqno = be32toh(e.seqno); 12919 for (j = 0; j < 8; j++) 12920 e.params[j] = be32toh(e.params[j]); 12921 12922 db_printf("%10d %15ju %8s %8s ", 12923 e.seqno, e.timestamp, 12924 (e.level < nitems(devlog_level_strings) ? 12925 devlog_level_strings[e.level] : "UNKNOWN"), 12926 (e.facility < nitems(devlog_facility_strings) ? 12927 devlog_facility_strings[e.facility] : "UNKNOWN")); 12928 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12929 e.params[3], e.params[4], e.params[5], e.params[6], 12930 e.params[7]); 12931 12932 if (++i == nentries) 12933 i = 0; 12934 } while (i != first && !db_pager_quit); 12935 } 12936 12937 static DB_DEFINE_TABLE(show, t4, show_t4); 12938 12939 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12940 { 12941 device_t dev; 12942 int t; 12943 bool valid; 12944 12945 valid = false; 12946 t = db_read_token(); 12947 if (t == tIDENT) { 12948 dev = device_lookup_by_name(db_tok_string); 12949 valid = true; 12950 } 12951 db_skip_to_eol(); 12952 if (!valid) { 12953 db_printf("usage: show t4 devlog <nexus>\n"); 12954 return; 12955 } 12956 12957 if (dev == NULL) { 12958 db_printf("device not found\n"); 12959 return; 12960 } 12961 12962 t4_dump_devlog(device_get_softc(dev)); 12963 } 12964 12965 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12966 { 12967 device_t dev; 12968 int radix, tid, t; 12969 bool valid; 12970 12971 valid = false; 12972 radix = db_radix; 12973 db_radix = 10; 12974 t = db_read_token(); 12975 if (t == tIDENT) { 12976 dev = device_lookup_by_name(db_tok_string); 12977 t = db_read_token(); 12978 if (t == tNUMBER) { 12979 tid = db_tok_number; 12980 valid = true; 12981 } 12982 } 12983 db_radix = radix; 12984 db_skip_to_eol(); 12985 if (!valid) { 12986 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12987 return; 12988 } 12989 12990 if (dev == NULL) { 12991 db_printf("device not found\n"); 12992 return; 12993 } 12994 if (tid < 0) { 12995 db_printf("invalid tid\n"); 12996 return; 12997 } 12998 12999 t4_dump_tcb(device_get_softc(dev), tid); 13000 } 13001 13002 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13003 { 13004 device_t dev; 13005 int radix, t; 13006 bool valid; 13007 13008 valid = false; 13009 radix = db_radix; 13010 db_radix = 10; 13011 t = db_read_token(); 13012 if (t == tIDENT) { 13013 dev = device_lookup_by_name(db_tok_string); 13014 t = db_read_token(); 13015 if (t == tNUMBER) { 13016 addr = db_tok_number; 13017 t = db_read_token(); 13018 if (t == tNUMBER) { 13019 count = db_tok_number; 13020 valid = true; 13021 } 13022 } 13023 } 13024 db_radix = radix; 13025 db_skip_to_eol(); 13026 if (!valid) { 13027 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 13028 return; 13029 } 13030 13031 if (dev == NULL) { 13032 db_printf("device not found\n"); 13033 return; 13034 } 13035 if (addr < 0) { 13036 db_printf("invalid address\n"); 13037 return; 13038 } 13039 if (count <= 0) { 13040 db_printf("invalid length\n"); 13041 return; 13042 } 13043 13044 t4_dump_mem(device_get_softc(dev), addr, count); 13045 } 13046 #endif 13047 13048 static eventhandler_tag vxlan_start_evtag; 13049 static eventhandler_tag vxlan_stop_evtag; 13050 13051 struct vxlan_evargs { 13052 if_t ifp; 13053 uint16_t port; 13054 }; 13055 13056 static void 13057 enable_vxlan_rx(struct adapter *sc) 13058 { 13059 int i, rc; 13060 struct port_info *pi; 13061 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13062 13063 ASSERT_SYNCHRONIZED_OP(sc); 13064 13065 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13066 F_VXLAN_EN); 13067 for_each_port(sc, i) { 13068 pi = sc->port[i]; 13069 if (pi->vxlan_tcam_entry == true) 13070 continue; 13071 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13072 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13073 true); 13074 if (rc < 0) { 13075 rc = -rc; 13076 CH_ERR(&pi->vi[0], 13077 "failed to add VXLAN TCAM entry: %d.\n", rc); 13078 } else { 13079 MPASS(rc == sc->rawf_base + pi->port_id); 13080 pi->vxlan_tcam_entry = true; 13081 } 13082 } 13083 } 13084 13085 static void 13086 t4_vxlan_start(struct adapter *sc, void *arg) 13087 { 13088 struct vxlan_evargs *v = arg; 13089 13090 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13091 return; 13092 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13093 return; 13094 13095 if (sc->vxlan_refcount == 0) { 13096 sc->vxlan_port = v->port; 13097 sc->vxlan_refcount = 1; 13098 if (!hw_off_limits(sc)) 13099 enable_vxlan_rx(sc); 13100 } else if (sc->vxlan_port == v->port) { 13101 sc->vxlan_refcount++; 13102 } else { 13103 CH_ERR(sc, "VXLAN already configured on port %d; " 13104 "ignoring attempt to configure it on port %d\n", 13105 sc->vxlan_port, v->port); 13106 } 13107 end_synchronized_op(sc, 0); 13108 } 13109 13110 static void 13111 t4_vxlan_stop(struct adapter *sc, void *arg) 13112 { 13113 struct vxlan_evargs *v = arg; 13114 13115 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13116 return; 13117 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13118 return; 13119 13120 /* 13121 * VXLANs may have been configured before the driver was loaded so we 13122 * may see more stops than starts. This is not handled cleanly but at 13123 * least we keep the refcount sane. 13124 */ 13125 if (sc->vxlan_port != v->port) 13126 goto done; 13127 if (sc->vxlan_refcount == 0) { 13128 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13129 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13130 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13131 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13132 done: 13133 end_synchronized_op(sc, 0); 13134 } 13135 13136 static void 13137 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13138 sa_family_t family, u_int port) 13139 { 13140 struct vxlan_evargs v; 13141 13142 MPASS(family == AF_INET || family == AF_INET6); 13143 v.ifp = ifp; 13144 v.port = port; 13145 13146 t4_iterate(t4_vxlan_start, &v); 13147 } 13148 13149 static void 13150 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13151 u_int port) 13152 { 13153 struct vxlan_evargs v; 13154 13155 MPASS(family == AF_INET || family == AF_INET6); 13156 v.ifp = ifp; 13157 v.port = port; 13158 13159 t4_iterate(t4_vxlan_stop, &v); 13160 } 13161 13162 13163 static struct sx mlu; /* mod load unload */ 13164 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13165 13166 static int 13167 mod_event(module_t mod, int cmd, void *arg) 13168 { 13169 int rc = 0; 13170 static int loaded = 0; 13171 13172 switch (cmd) { 13173 case MOD_LOAD: 13174 sx_xlock(&mlu); 13175 if (loaded++ == 0) { 13176 t4_sge_modload(); 13177 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13178 t4_filter_rpl, CPL_COOKIE_FILTER); 13179 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13180 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13181 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13182 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13183 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13184 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13185 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13186 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13187 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13188 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13189 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13190 do_smt_write_rpl); 13191 sx_init(&t4_list_lock, "T4/T5 adapters"); 13192 SLIST_INIT(&t4_list); 13193 callout_init(&fatal_callout, 1); 13194 #ifdef TCP_OFFLOAD 13195 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13196 #endif 13197 #ifdef INET6 13198 t4_clip_modload(); 13199 #endif 13200 #ifdef KERN_TLS 13201 t6_ktls_modload(); 13202 #endif 13203 t4_tracer_modload(); 13204 tweak_tunables(); 13205 vxlan_start_evtag = 13206 EVENTHANDLER_REGISTER(vxlan_start, 13207 t4_vxlan_start_handler, NULL, 13208 EVENTHANDLER_PRI_ANY); 13209 vxlan_stop_evtag = 13210 EVENTHANDLER_REGISTER(vxlan_stop, 13211 t4_vxlan_stop_handler, NULL, 13212 EVENTHANDLER_PRI_ANY); 13213 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13214 taskqueue_thread_enqueue, &reset_tq); 13215 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13216 "t4_rst_thr"); 13217 } 13218 sx_xunlock(&mlu); 13219 break; 13220 13221 case MOD_UNLOAD: 13222 sx_xlock(&mlu); 13223 if (--loaded == 0) { 13224 #ifdef TCP_OFFLOAD 13225 int i; 13226 #endif 13227 int tries; 13228 13229 taskqueue_free(reset_tq); 13230 13231 tries = 0; 13232 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13233 uprintf("%ju clusters with custom free routine " 13234 "still is use.\n", t4_sge_extfree_refs()); 13235 pause("t4unload", 2 * hz); 13236 } 13237 13238 sx_slock(&t4_list_lock); 13239 if (!SLIST_EMPTY(&t4_list)) { 13240 rc = EBUSY; 13241 sx_sunlock(&t4_list_lock); 13242 goto done_unload; 13243 } 13244 #ifdef TCP_OFFLOAD 13245 sx_slock(&t4_uld_list_lock); 13246 for (i = 0; i <= ULD_MAX; i++) { 13247 if (t4_uld_list[i] != NULL) { 13248 rc = EBUSY; 13249 sx_sunlock(&t4_uld_list_lock); 13250 sx_sunlock(&t4_list_lock); 13251 goto done_unload; 13252 } 13253 } 13254 sx_sunlock(&t4_uld_list_lock); 13255 #endif 13256 sx_sunlock(&t4_list_lock); 13257 13258 if (t4_sge_extfree_refs() == 0) { 13259 EVENTHANDLER_DEREGISTER(vxlan_start, 13260 vxlan_start_evtag); 13261 EVENTHANDLER_DEREGISTER(vxlan_stop, 13262 vxlan_stop_evtag); 13263 t4_tracer_modunload(); 13264 #ifdef KERN_TLS 13265 t6_ktls_modunload(); 13266 #endif 13267 #ifdef INET6 13268 t4_clip_modunload(); 13269 #endif 13270 #ifdef TCP_OFFLOAD 13271 sx_destroy(&t4_uld_list_lock); 13272 #endif 13273 sx_destroy(&t4_list_lock); 13274 t4_sge_modunload(); 13275 loaded = 0; 13276 } else { 13277 rc = EBUSY; 13278 loaded++; /* undo earlier decrement */ 13279 } 13280 } 13281 done_unload: 13282 sx_xunlock(&mlu); 13283 break; 13284 } 13285 13286 return (rc); 13287 } 13288 13289 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13290 MODULE_VERSION(t4nex, 1); 13291 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13292 #ifdef DEV_NETMAP 13293 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13294 #endif /* DEV_NETMAP */ 13295 13296 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13297 MODULE_VERSION(t5nex, 1); 13298 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13299 #ifdef DEV_NETMAP 13300 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13301 #endif /* DEV_NETMAP */ 13302 13303 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13304 MODULE_VERSION(t6nex, 1); 13305 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13306 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13307 #ifdef DEV_NETMAP 13308 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13309 #endif /* DEV_NETMAP */ 13310 13311 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13312 MODULE_VERSION(cxgbe, 1); 13313 13314 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13315 MODULE_VERSION(cxl, 1); 13316 13317 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13318 MODULE_VERSION(cc, 1); 13319 13320 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13321 MODULE_VERSION(vcxgbe, 1); 13322 13323 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13324 MODULE_VERSION(vcxl, 1); 13325 13326 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13327 MODULE_VERSION(vcc, 1); 13328