xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ratelimit.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/priv.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #include <machine/cputypes.h>
69 #include <vm/vm.h>
70 #include <vm/pmap.h>
71 #endif
72 #include <crypto/rijndael/rijndael.h>
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #include <ddb/db_lex.h>
76 #endif
77 
78 #include "common/common.h"
79 #include "common/t4_msg.h"
80 #include "common/t4_regs.h"
81 #include "common/t4_regs_values.h"
82 #include "cudbg/cudbg.h"
83 #include "t4_ioctl.h"
84 #include "t4_l2t.h"
85 #include "t4_mp_ring.h"
86 #include "t4_if.h"
87 
88 /* T4 bus driver interface */
89 static int t4_probe(device_t);
90 static int t4_attach(device_t);
91 static int t4_detach(device_t);
92 static int t4_ready(device_t);
93 static int t4_read_port_device(device_t, int, device_t *);
94 static device_method_t t4_methods[] = {
95 	DEVMETHOD(device_probe,		t4_probe),
96 	DEVMETHOD(device_attach,	t4_attach),
97 	DEVMETHOD(device_detach,	t4_detach),
98 
99 	DEVMETHOD(t4_is_main_ready,	t4_ready),
100 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
101 
102 	DEVMETHOD_END
103 };
104 static driver_t t4_driver = {
105 	"t4nex",
106 	t4_methods,
107 	sizeof(struct adapter)
108 };
109 
110 
111 /* T4 port (cxgbe) interface */
112 static int cxgbe_probe(device_t);
113 static int cxgbe_attach(device_t);
114 static int cxgbe_detach(device_t);
115 device_method_t cxgbe_methods[] = {
116 	DEVMETHOD(device_probe,		cxgbe_probe),
117 	DEVMETHOD(device_attach,	cxgbe_attach),
118 	DEVMETHOD(device_detach,	cxgbe_detach),
119 	{ 0, 0 }
120 };
121 static driver_t cxgbe_driver = {
122 	"cxgbe",
123 	cxgbe_methods,
124 	sizeof(struct port_info)
125 };
126 
127 /* T4 VI (vcxgbe) interface */
128 static int vcxgbe_probe(device_t);
129 static int vcxgbe_attach(device_t);
130 static int vcxgbe_detach(device_t);
131 static device_method_t vcxgbe_methods[] = {
132 	DEVMETHOD(device_probe,		vcxgbe_probe),
133 	DEVMETHOD(device_attach,	vcxgbe_attach),
134 	DEVMETHOD(device_detach,	vcxgbe_detach),
135 	{ 0, 0 }
136 };
137 static driver_t vcxgbe_driver = {
138 	"vcxgbe",
139 	vcxgbe_methods,
140 	sizeof(struct vi_info)
141 };
142 
143 static d_ioctl_t t4_ioctl;
144 
145 static struct cdevsw t4_cdevsw = {
146        .d_version = D_VERSION,
147        .d_ioctl = t4_ioctl,
148        .d_name = "t4nex",
149 };
150 
151 /* T5 bus driver interface */
152 static int t5_probe(device_t);
153 static device_method_t t5_methods[] = {
154 	DEVMETHOD(device_probe,		t5_probe),
155 	DEVMETHOD(device_attach,	t4_attach),
156 	DEVMETHOD(device_detach,	t4_detach),
157 
158 	DEVMETHOD(t4_is_main_ready,	t4_ready),
159 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
160 
161 	DEVMETHOD_END
162 };
163 static driver_t t5_driver = {
164 	"t5nex",
165 	t5_methods,
166 	sizeof(struct adapter)
167 };
168 
169 
170 /* T5 port (cxl) interface */
171 static driver_t cxl_driver = {
172 	"cxl",
173 	cxgbe_methods,
174 	sizeof(struct port_info)
175 };
176 
177 /* T5 VI (vcxl) interface */
178 static driver_t vcxl_driver = {
179 	"vcxl",
180 	vcxgbe_methods,
181 	sizeof(struct vi_info)
182 };
183 
184 /* T6 bus driver interface */
185 static int t6_probe(device_t);
186 static device_method_t t6_methods[] = {
187 	DEVMETHOD(device_probe,		t6_probe),
188 	DEVMETHOD(device_attach,	t4_attach),
189 	DEVMETHOD(device_detach,	t4_detach),
190 
191 	DEVMETHOD(t4_is_main_ready,	t4_ready),
192 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
193 
194 	DEVMETHOD_END
195 };
196 static driver_t t6_driver = {
197 	"t6nex",
198 	t6_methods,
199 	sizeof(struct adapter)
200 };
201 
202 
203 /* T6 port (cc) interface */
204 static driver_t cc_driver = {
205 	"cc",
206 	cxgbe_methods,
207 	sizeof(struct port_info)
208 };
209 
210 /* T6 VI (vcc) interface */
211 static driver_t vcc_driver = {
212 	"vcc",
213 	vcxgbe_methods,
214 	sizeof(struct vi_info)
215 };
216 
217 /* ifnet + media interface */
218 static void cxgbe_init(void *);
219 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
220 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
221 static void cxgbe_qflush(struct ifnet *);
222 static int cxgbe_media_change(struct ifnet *);
223 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
224 
225 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
226 
227 /*
228  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
229  * then ADAPTER_LOCK, then t4_uld_list_lock.
230  */
231 static struct sx t4_list_lock;
232 SLIST_HEAD(, adapter) t4_list;
233 #ifdef TCP_OFFLOAD
234 static struct sx t4_uld_list_lock;
235 SLIST_HEAD(, uld_info) t4_uld_list;
236 #endif
237 
238 /*
239  * Tunables.  See tweak_tunables() too.
240  *
241  * Each tunable is set to a default value here if it's known at compile-time.
242  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
243  * provide a reasonable default (upto n) when the driver is loaded.
244  *
245  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
246  * T5 are under hw.cxl.
247  */
248 
249 /*
250  * Number of queues for tx and rx, NIC and offload.
251  */
252 #define NTXQ 16
253 int t4_ntxq = -NTXQ;
254 TUNABLE_INT("hw.cxgbe.ntxq", &t4_ntxq);
255 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
256 
257 #define NRXQ 8
258 int t4_nrxq = -NRXQ;
259 TUNABLE_INT("hw.cxgbe.nrxq", &t4_nrxq);
260 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
261 
262 #define NTXQ_VI 1
263 static int t4_ntxq_vi = -NTXQ_VI;
264 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
265 
266 #define NRXQ_VI 1
267 static int t4_nrxq_vi = -NRXQ_VI;
268 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
269 
270 static int t4_rsrv_noflowq = 0;
271 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
272 
273 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
274 #define NOFLDTXQ 8
275 static int t4_nofldtxq = -NOFLDTXQ;
276 TUNABLE_INT("hw.cxgbe.nofldtxq", &t4_nofldtxq);
277 
278 #define NOFLDRXQ 2
279 static int t4_nofldrxq = -NOFLDRXQ;
280 TUNABLE_INT("hw.cxgbe.nofldrxq", &t4_nofldrxq);
281 
282 #define NOFLDTXQ_VI 1
283 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
284 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
285 
286 #define NOFLDRXQ_VI 1
287 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
288 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
289 
290 #define TMR_IDX_OFLD 1
291 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
292 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld);
293 
294 #define PKTC_IDX_OFLD (-1)
295 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
296 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld);
297 
298 /* 0 means chip/fw default, non-zero number is value in microseconds */
299 static u_long t4_toe_keepalive_idle = 0;
300 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle);
301 
302 /* 0 means chip/fw default, non-zero number is value in microseconds */
303 static u_long t4_toe_keepalive_interval = 0;
304 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval);
305 
306 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
307 static int t4_toe_keepalive_count = 0;
308 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count);
309 
310 /* 0 means chip/fw default, non-zero number is value in microseconds */
311 static u_long t4_toe_rexmt_min = 0;
312 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min);
313 
314 /* 0 means chip/fw default, non-zero number is value in microseconds */
315 static u_long t4_toe_rexmt_max = 0;
316 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max);
317 
318 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
319 static int t4_toe_rexmt_count = 0;
320 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count);
321 
322 /* -1 means chip/fw default, other values are raw backoff values to use */
323 static int t4_toe_rexmt_backoff[16] = {
324 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
325 };
326 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]);
327 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]);
328 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]);
329 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]);
330 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]);
331 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]);
332 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]);
333 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]);
334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]);
335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]);
336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]);
337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]);
338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]);
339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]);
340 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]);
341 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]);
342 #endif
343 
344 #ifdef DEV_NETMAP
345 #define NNMTXQ_VI 2
346 static int t4_nnmtxq_vi = -NNMTXQ_VI;
347 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
348 
349 #define NNMRXQ_VI 2
350 static int t4_nnmrxq_vi = -NNMRXQ_VI;
351 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
352 #endif
353 
354 /*
355  * Holdoff parameters for ports.
356  */
357 #define TMR_IDX 1
358 int t4_tmr_idx = TMR_IDX;
359 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx", &t4_tmr_idx);
360 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
361 
362 #define PKTC_IDX (-1)
363 int t4_pktc_idx = PKTC_IDX;
364 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx", &t4_pktc_idx);
365 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
366 
367 /*
368  * Size (# of entries) of each tx and rx queue.
369  */
370 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
371 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
372 
373 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
374 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
375 
376 /*
377  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
378  */
379 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
380 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
381 
382 /*
383  * Configuration file.  All the _CF names here are special.
384  */
385 #define DEFAULT_CF	"default"
386 #define BUILTIN_CF	"built-in"
387 #define FLASH_CF	"flash"
388 #define UWIRE_CF	"uwire"
389 #define FPGA_CF		"fpga"
390 static char t4_cfg_file[32] = DEFAULT_CF;
391 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
392 
393 /*
394  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
395  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
396  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
397  *            mark or when signalled to do so, 0 to never emit PAUSE.
398  */
399 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
400 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
401 
402 /*
403  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
404  * FEC_RESERVED respectively).
405  * -1 to run with the firmware default.
406  *  0 to disable FEC.
407  */
408 static int t4_fec = -1;
409 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
410 
411 /*
412  * Link autonegotiation.
413  * -1 to run with the firmware default.
414  *  0 to disable.
415  *  1 to enable.
416  */
417 static int t4_autoneg = -1;
418 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
419 
420 /*
421  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
422  * encouraged respectively).
423  */
424 static unsigned int t4_fw_install = 1;
425 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
426 
427 /*
428  * ASIC features that will be used.  Disable the ones you don't want so that the
429  * chip resources aren't wasted on features that will not be used.
430  */
431 static int t4_nbmcaps_allowed = 0;
432 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
433 
434 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
435 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
436 
437 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
438     FW_CAPS_CONFIG_SWITCH_EGRESS;
439 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
440 
441 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
442 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
443 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
444 
445 static int t4_toecaps_allowed = -1;
446 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
447 
448 static int t4_rdmacaps_allowed = -1;
449 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
450 
451 static int t4_cryptocaps_allowed = -1;
452 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
453 
454 static int t4_iscsicaps_allowed = -1;
455 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
456 
457 static int t4_fcoecaps_allowed = 0;
458 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
459 
460 static int t5_write_combine = 0;
461 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
462 
463 static int t4_num_vis = 1;
464 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
465 /*
466  * PCIe Relaxed Ordering.
467  * -1: driver should figure out a good value.
468  * 0: disable RO.
469  * 1: enable RO.
470  * 2: leave RO alone.
471  */
472 static int pcie_relaxed_ordering = -1;
473 TUNABLE_INT("hw.cxgbe.pcie_relaxed_ordering", &pcie_relaxed_ordering);
474 
475 static int t4_panic_on_fatal_err = 0;
476 TUNABLE_INT("hw.cxgbe.panic_on_fatal_err", &t4_panic_on_fatal_err);
477 
478 #ifdef TCP_OFFLOAD
479 /*
480  * TOE tunables.
481  */
482 static int t4_cop_managed_offloading = 0;
483 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
484 #endif
485 
486 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
487 static int vi_mac_funcs[] = {
488 	FW_VI_FUNC_ETH,
489 	FW_VI_FUNC_OFLD,
490 	FW_VI_FUNC_IWARP,
491 	FW_VI_FUNC_OPENISCSI,
492 	FW_VI_FUNC_OPENFCOE,
493 	FW_VI_FUNC_FOISCSI,
494 	FW_VI_FUNC_FOFCOE,
495 };
496 
497 struct intrs_and_queues {
498 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
499 	uint16_t num_vis;	/* number of VIs for each port */
500 	uint16_t nirq;		/* Total # of vectors */
501 	uint16_t ntxq;		/* # of NIC txq's for each port */
502 	uint16_t nrxq;		/* # of NIC rxq's for each port */
503 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
504 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
505 
506 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
507 	uint16_t ntxq_vi;	/* # of NIC txq's */
508 	uint16_t nrxq_vi;	/* # of NIC rxq's */
509 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
510 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
511 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
512 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
513 };
514 
515 static void setup_memwin(struct adapter *);
516 static void position_memwin(struct adapter *, int, uint32_t);
517 static int validate_mem_range(struct adapter *, uint32_t, int);
518 static int fwmtype_to_hwmtype(int);
519 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
520     uint32_t *);
521 static int fixup_devlog_params(struct adapter *);
522 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
523 static int prep_firmware(struct adapter *);
524 static int partition_resources(struct adapter *, const struct firmware *,
525     const char *);
526 static int get_params__pre_init(struct adapter *);
527 static int get_params__post_init(struct adapter *);
528 static int set_params__post_init(struct adapter *);
529 static void t4_set_desc(struct adapter *);
530 static void build_medialist(struct port_info *, struct ifmedia *);
531 static void init_l1cfg(struct port_info *);
532 static int cxgbe_init_synchronized(struct vi_info *);
533 static int cxgbe_uninit_synchronized(struct vi_info *);
534 static void quiesce_txq(struct adapter *, struct sge_txq *);
535 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
536 static void quiesce_iq(struct adapter *, struct sge_iq *);
537 static void quiesce_fl(struct adapter *, struct sge_fl *);
538 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
539     driver_intr_t *, void *, char *);
540 static int t4_free_irq(struct adapter *, struct irq *);
541 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
542 static void vi_refresh_stats(struct adapter *, struct vi_info *);
543 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
544 static void cxgbe_tick(void *);
545 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
546 static void cxgbe_sysctls(struct port_info *);
547 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
548 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
549 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
550 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
551 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
552 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
553 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
554 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
555 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
556 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
557 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
558 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
559 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
560 #ifdef SBUF_DRAIN
561 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
562 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
563 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
564 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
565 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
566 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
567 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
568 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
569 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
570 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
571 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
572 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
573 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
574 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
575 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
576 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
577 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
578 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
579 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
580 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
581 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
582 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
583 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
584 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
585 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
586 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
587 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
588 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
589 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
590 #endif
591 #ifdef TCP_OFFLOAD
592 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
593 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
594 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
595 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
596 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
597 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
598 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
599 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
600 #endif
601 static int get_sge_context(struct adapter *, struct t4_sge_context *);
602 static int load_fw(struct adapter *, struct t4_data *);
603 static int load_cfg(struct adapter *, struct t4_data *);
604 static int load_boot(struct adapter *, struct t4_bootrom *);
605 static int load_bootcfg(struct adapter *, struct t4_data *);
606 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
607 static void free_offload_policy(struct t4_offload_policy *);
608 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
609 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
610 static int read_i2c(struct adapter *, struct t4_i2c_data *);
611 #ifdef TCP_OFFLOAD
612 static int toe_capability(struct vi_info *, int);
613 #endif
614 static int mod_event(module_t, int, void *);
615 static int notify_siblings(device_t, int);
616 
617 struct {
618 	uint16_t device;
619 	char *desc;
620 } t4_pciids[] = {
621 	{0xa000, "Chelsio Terminator 4 FPGA"},
622 	{0x4400, "Chelsio T440-dbg"},
623 	{0x4401, "Chelsio T420-CR"},
624 	{0x4402, "Chelsio T422-CR"},
625 	{0x4403, "Chelsio T440-CR"},
626 	{0x4404, "Chelsio T420-BCH"},
627 	{0x4405, "Chelsio T440-BCH"},
628 	{0x4406, "Chelsio T440-CH"},
629 	{0x4407, "Chelsio T420-SO"},
630 	{0x4408, "Chelsio T420-CX"},
631 	{0x4409, "Chelsio T420-BT"},
632 	{0x440a, "Chelsio T404-BT"},
633 	{0x440e, "Chelsio T440-LP-CR"},
634 }, t5_pciids[] = {
635 	{0xb000, "Chelsio Terminator 5 FPGA"},
636 	{0x5400, "Chelsio T580-dbg"},
637 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
638 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
639 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
640 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
641 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
642 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
643 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
644 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
645 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
646 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
647 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
648 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
649 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
650 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
651 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
652 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
653 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
654 }, t6_pciids[] = {
655 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
656 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
657 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
658 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
659 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
660 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
661 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
662 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
663 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
664 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
665 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
666 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
667 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
668 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
669 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
670 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
671 
672 	/* Custom */
673 	{0x6480, "Custom T6225-CR"},
674 	{0x6481, "Custom T62100-CR"},
675 	{0x6482, "Custom T6225-CR"},
676 	{0x6483, "Custom T62100-CR"},
677 	{0x6484, "Custom T64100-CR"},
678 	{0x6485, "Custom T6240-SO"},
679 	{0x6486, "Custom T6225-SO-CR"},
680 	{0x6487, "Custom T6225-CR"},
681 };
682 
683 #ifdef TCP_OFFLOAD
684 /*
685  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
686  * exactly the same for both rxq and ofld_rxq.
687  */
688 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
689 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
690 #endif
691 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
692 
693 static int
694 t4_probe(device_t dev)
695 {
696 	int i;
697 	uint16_t v = pci_get_vendor(dev);
698 	uint16_t d = pci_get_device(dev);
699 	uint8_t f = pci_get_function(dev);
700 
701 	if (v != PCI_VENDOR_ID_CHELSIO)
702 		return (ENXIO);
703 
704 	/* Attach only to PF0 of the FPGA */
705 	if (d == 0xa000 && f != 0)
706 		return (ENXIO);
707 
708 	for (i = 0; i < nitems(t4_pciids); i++) {
709 		if (d == t4_pciids[i].device) {
710 			device_set_desc(dev, t4_pciids[i].desc);
711 			return (BUS_PROBE_DEFAULT);
712 		}
713 	}
714 
715 	return (ENXIO);
716 }
717 
718 static int
719 t5_probe(device_t dev)
720 {
721 	int i;
722 	uint16_t v = pci_get_vendor(dev);
723 	uint16_t d = pci_get_device(dev);
724 	uint8_t f = pci_get_function(dev);
725 
726 	if (v != PCI_VENDOR_ID_CHELSIO)
727 		return (ENXIO);
728 
729 	/* Attach only to PF0 of the FPGA */
730 	if (d == 0xb000 && f != 0)
731 		return (ENXIO);
732 
733 	for (i = 0; i < nitems(t5_pciids); i++) {
734 		if (d == t5_pciids[i].device) {
735 			device_set_desc(dev, t5_pciids[i].desc);
736 			return (BUS_PROBE_DEFAULT);
737 		}
738 	}
739 
740 	return (ENXIO);
741 }
742 
743 static int
744 t6_probe(device_t dev)
745 {
746 	int i;
747 	uint16_t v = pci_get_vendor(dev);
748 	uint16_t d = pci_get_device(dev);
749 
750 	if (v != PCI_VENDOR_ID_CHELSIO)
751 		return (ENXIO);
752 
753 	for (i = 0; i < nitems(t6_pciids); i++) {
754 		if (d == t6_pciids[i].device) {
755 			device_set_desc(dev, t6_pciids[i].desc);
756 			return (BUS_PROBE_DEFAULT);
757 		}
758 	}
759 
760 	return (ENXIO);
761 }
762 
763 static void
764 t5_attribute_workaround(device_t dev)
765 {
766 	device_t root_port;
767 	uint32_t v;
768 
769 	/*
770 	 * The T5 chips do not properly echo the No Snoop and Relaxed
771 	 * Ordering attributes when replying to a TLP from a Root
772 	 * Port.  As a workaround, find the parent Root Port and
773 	 * disable No Snoop and Relaxed Ordering.  Note that this
774 	 * affects all devices under this root port.
775 	 */
776 	root_port = pci_find_pcie_root_port(dev);
777 	if (root_port == NULL) {
778 		device_printf(dev, "Unable to find parent root port\n");
779 		return;
780 	}
781 
782 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
783 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
784 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
785 	    0)
786 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
787 		    device_get_nameunit(root_port));
788 }
789 
790 static const struct devnames devnames[] = {
791 	{
792 		.nexus_name = "t4nex",
793 		.ifnet_name = "cxgbe",
794 		.vi_ifnet_name = "vcxgbe",
795 		.pf03_drv_name = "t4iov",
796 		.vf_nexus_name = "t4vf",
797 		.vf_ifnet_name = "cxgbev"
798 	}, {
799 		.nexus_name = "t5nex",
800 		.ifnet_name = "cxl",
801 		.vi_ifnet_name = "vcxl",
802 		.pf03_drv_name = "t5iov",
803 		.vf_nexus_name = "t5vf",
804 		.vf_ifnet_name = "cxlv"
805 	}, {
806 		.nexus_name = "t6nex",
807 		.ifnet_name = "cc",
808 		.vi_ifnet_name = "vcc",
809 		.pf03_drv_name = "t6iov",
810 		.vf_nexus_name = "t6vf",
811 		.vf_ifnet_name = "ccv"
812 	}
813 };
814 
815 void
816 t4_init_devnames(struct adapter *sc)
817 {
818 	int id;
819 
820 	id = chip_id(sc);
821 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
822 		sc->names = &devnames[id - CHELSIO_T4];
823 	else {
824 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
825 		sc->names = NULL;
826 	}
827 }
828 
829 static int
830 t4_attach(device_t dev)
831 {
832 	struct adapter *sc;
833 	int rc = 0, i, j, rqidx, tqidx, nports;
834 	struct make_dev_args mda;
835 	struct intrs_and_queues iaq;
836 	struct sge *s;
837 	uint32_t *buf;
838 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
839 	int ofld_tqidx;
840 #endif
841 #ifdef TCP_OFFLOAD
842 	int ofld_rqidx;
843 #endif
844 #ifdef DEV_NETMAP
845 	int nm_rqidx, nm_tqidx;
846 #endif
847 	int num_vis;
848 
849 	sc = device_get_softc(dev);
850 	sc->dev = dev;
851 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
852 
853 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
854 		t5_attribute_workaround(dev);
855 	pci_enable_busmaster(dev);
856 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
857 		uint32_t v;
858 
859 		pci_set_max_read_req(dev, 4096);
860 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
861 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
862 		if (pcie_relaxed_ordering == 0 &&
863 		    (v | PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
864 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
865 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
866 		} else if (pcie_relaxed_ordering == 1 &&
867 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
868 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
869 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
870 		}
871 	}
872 
873 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
874 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
875 	sc->traceq = -1;
876 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
877 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
878 	    device_get_nameunit(dev));
879 
880 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
881 	    device_get_nameunit(dev));
882 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
883 	t4_add_adapter(sc);
884 
885 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
886 	TAILQ_INIT(&sc->sfl);
887 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
888 
889 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
890 
891 	sc->policy = NULL;
892 	rw_init(&sc->policy_lock, "connection offload policy");
893 
894 	rc = t4_map_bars_0_and_4(sc);
895 	if (rc != 0)
896 		goto done; /* error message displayed already */
897 
898 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
899 
900 	/* Prepare the adapter for operation. */
901 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
902 	rc = -t4_prep_adapter(sc, buf);
903 	free(buf, M_CXGBE);
904 	if (rc != 0) {
905 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
906 		goto done;
907 	}
908 
909 	/*
910 	 * This is the real PF# to which we're attaching.  Works from within PCI
911 	 * passthrough environments too, where pci_get_function() could return a
912 	 * different PF# depending on the passthrough configuration.  We need to
913 	 * use the real PF# in all our communication with the firmware.
914 	 */
915 	j = t4_read_reg(sc, A_PL_WHOAMI);
916 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
917 	sc->mbox = sc->pf;
918 
919 	t4_init_devnames(sc);
920 	if (sc->names == NULL) {
921 		rc = ENOTSUP;
922 		goto done; /* error message displayed already */
923 	}
924 
925 	/*
926 	 * Do this really early, with the memory windows set up even before the
927 	 * character device.  The userland tool's register i/o and mem read
928 	 * will work even in "recovery mode".
929 	 */
930 	setup_memwin(sc);
931 	if (t4_init_devlog_params(sc, 0) == 0)
932 		fixup_devlog_params(sc);
933 	make_dev_args_init(&mda);
934 	mda.mda_devsw = &t4_cdevsw;
935 	mda.mda_uid = UID_ROOT;
936 	mda.mda_gid = GID_WHEEL;
937 	mda.mda_mode = 0600;
938 	mda.mda_si_drv1 = sc;
939 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
940 	if (rc != 0)
941 		device_printf(dev, "failed to create nexus char device: %d.\n",
942 		    rc);
943 
944 	/* Go no further if recovery mode has been requested. */
945 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
946 		device_printf(dev, "recovery mode.\n");
947 		goto done;
948 	}
949 
950 #if defined(__i386__)
951 	if ((cpu_feature & CPUID_CX8) == 0) {
952 		device_printf(dev, "64 bit atomics not available.\n");
953 		rc = ENOTSUP;
954 		goto done;
955 	}
956 #endif
957 
958 	/* Prepare the firmware for operation */
959 	rc = prep_firmware(sc);
960 	if (rc != 0)
961 		goto done; /* error message displayed already */
962 
963 	rc = get_params__post_init(sc);
964 	if (rc != 0)
965 		goto done; /* error message displayed already */
966 
967 	rc = set_params__post_init(sc);
968 	if (rc != 0)
969 		goto done; /* error message displayed already */
970 
971 	rc = t4_map_bar_2(sc);
972 	if (rc != 0)
973 		goto done; /* error message displayed already */
974 
975 	rc = t4_create_dma_tag(sc);
976 	if (rc != 0)
977 		goto done; /* error message displayed already */
978 
979 	/*
980 	 * First pass over all the ports - allocate VIs and initialize some
981 	 * basic parameters like mac address, port type, etc.
982 	 */
983 	for_each_port(sc, i) {
984 		struct port_info *pi;
985 
986 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
987 		sc->port[i] = pi;
988 
989 		/* These must be set before t4_port_init */
990 		pi->adapter = sc;
991 		pi->port_id = i;
992 		/*
993 		 * XXX: vi[0] is special so we can't delay this allocation until
994 		 * pi->nvi's final value is known.
995 		 */
996 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
997 		    M_ZERO | M_WAITOK);
998 
999 		/*
1000 		 * Allocate the "main" VI and initialize parameters
1001 		 * like mac addr.
1002 		 */
1003 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1004 		if (rc != 0) {
1005 			device_printf(dev, "unable to initialize port %d: %d\n",
1006 			    i, rc);
1007 			free(pi->vi, M_CXGBE);
1008 			free(pi, M_CXGBE);
1009 			sc->port[i] = NULL;
1010 			goto done;
1011 		}
1012 
1013 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1014 		    device_get_nameunit(dev), i);
1015 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1016 		sc->chan_map[pi->tx_chan] = i;
1017 
1018 		/* All VIs on this port share this media. */
1019 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1020 		    cxgbe_media_status);
1021 
1022 		pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1023 		if (pi->dev == NULL) {
1024 			device_printf(dev,
1025 			    "failed to add device for port %d.\n", i);
1026 			rc = ENXIO;
1027 			goto done;
1028 		}
1029 		pi->vi[0].dev = pi->dev;
1030 		device_set_softc(pi->dev, pi);
1031 	}
1032 
1033 	/*
1034 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1035 	 */
1036 	nports = sc->params.nports;
1037 	rc = cfg_itype_and_nqueues(sc, &iaq);
1038 	if (rc != 0)
1039 		goto done; /* error message displayed already */
1040 
1041 	num_vis = iaq.num_vis;
1042 	sc->intr_type = iaq.intr_type;
1043 	sc->intr_count = iaq.nirq;
1044 
1045 	s = &sc->sge;
1046 	s->nrxq = nports * iaq.nrxq;
1047 	s->ntxq = nports * iaq.ntxq;
1048 	if (num_vis > 1) {
1049 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1050 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1051 	}
1052 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1053 	s->neq += nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1054 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1055 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1056 	if (is_offload(sc) || is_ethoffload(sc)) {
1057 		s->nofldtxq = nports * iaq.nofldtxq;
1058 		if (num_vis > 1)
1059 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1060 		s->neq += s->nofldtxq;
1061 
1062 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1063 		    M_CXGBE, M_ZERO | M_WAITOK);
1064 	}
1065 #endif
1066 #ifdef TCP_OFFLOAD
1067 	if (is_offload(sc)) {
1068 		s->nofldrxq = nports * iaq.nofldrxq;
1069 		if (num_vis > 1)
1070 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1071 		s->neq += s->nofldrxq;	/* free list */
1072 		s->niq += s->nofldrxq;
1073 
1074 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1075 		    M_CXGBE, M_ZERO | M_WAITOK);
1076 	}
1077 #endif
1078 #ifdef DEV_NETMAP
1079 	if (num_vis > 1) {
1080 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1081 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1082 	}
1083 	s->neq += s->nnmtxq + s->nnmrxq;
1084 	s->niq += s->nnmrxq;
1085 
1086 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1087 	    M_CXGBE, M_ZERO | M_WAITOK);
1088 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1089 	    M_CXGBE, M_ZERO | M_WAITOK);
1090 #endif
1091 
1092 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1093 	    M_ZERO | M_WAITOK);
1094 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1095 	    M_ZERO | M_WAITOK);
1096 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1097 	    M_ZERO | M_WAITOK);
1098 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1099 	    M_ZERO | M_WAITOK);
1100 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1101 	    M_ZERO | M_WAITOK);
1102 
1103 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1104 	    M_ZERO | M_WAITOK);
1105 
1106 	t4_init_l2t(sc, M_WAITOK);
1107 	t4_init_tx_sched(sc);
1108 #ifdef RATELIMIT
1109 	t4_init_etid_table(sc);
1110 #endif
1111 
1112 	/*
1113 	 * Second pass over the ports.  This time we know the number of rx and
1114 	 * tx queues that each port should get.
1115 	 */
1116 	rqidx = tqidx = 0;
1117 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1118 	ofld_tqidx = 0;
1119 #endif
1120 #ifdef TCP_OFFLOAD
1121 	ofld_rqidx = 0;
1122 #endif
1123 #ifdef DEV_NETMAP
1124 	nm_rqidx = nm_tqidx = 0;
1125 #endif
1126 	for_each_port(sc, i) {
1127 		struct port_info *pi = sc->port[i];
1128 		struct vi_info *vi;
1129 
1130 		if (pi == NULL)
1131 			continue;
1132 
1133 		pi->nvi = num_vis;
1134 		for_each_vi(pi, j, vi) {
1135 			vi->pi = pi;
1136 			vi->qsize_rxq = t4_qsize_rxq;
1137 			vi->qsize_txq = t4_qsize_txq;
1138 
1139 			vi->first_rxq = rqidx;
1140 			vi->first_txq = tqidx;
1141 			vi->tmr_idx = t4_tmr_idx;
1142 			vi->pktc_idx = t4_pktc_idx;
1143 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1144 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1145 
1146 			rqidx += vi->nrxq;
1147 			tqidx += vi->ntxq;
1148 
1149 			if (j == 0 && vi->ntxq > 1)
1150 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1151 			else
1152 				vi->rsrv_noflowq = 0;
1153 
1154 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1155 			vi->first_ofld_txq = ofld_tqidx;
1156 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1157 			ofld_tqidx += vi->nofldtxq;
1158 #endif
1159 #ifdef TCP_OFFLOAD
1160 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1161 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1162 			vi->first_ofld_rxq = ofld_rqidx;
1163 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1164 
1165 			ofld_rqidx += vi->nofldrxq;
1166 #endif
1167 #ifdef DEV_NETMAP
1168 			if (j > 0) {
1169 				vi->first_nm_rxq = nm_rqidx;
1170 				vi->first_nm_txq = nm_tqidx;
1171 				vi->nnmrxq = iaq.nnmrxq_vi;
1172 				vi->nnmtxq = iaq.nnmtxq_vi;
1173 				nm_rqidx += vi->nnmrxq;
1174 				nm_tqidx += vi->nnmtxq;
1175 			}
1176 #endif
1177 		}
1178 	}
1179 
1180 	rc = t4_setup_intr_handlers(sc);
1181 	if (rc != 0) {
1182 		device_printf(dev,
1183 		    "failed to setup interrupt handlers: %d\n", rc);
1184 		goto done;
1185 	}
1186 
1187 	rc = bus_generic_probe(dev);
1188 	if (rc != 0) {
1189 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1190 		goto done;
1191 	}
1192 
1193 	/*
1194 	 * Ensure thread-safe mailbox access (in debug builds).
1195 	 *
1196 	 * So far this was the only thread accessing the mailbox but various
1197 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1198 	 * will access the mailbox from different threads.
1199 	 */
1200 	sc->flags |= CHK_MBOX_ACCESS;
1201 
1202 	rc = bus_generic_attach(dev);
1203 	if (rc != 0) {
1204 		device_printf(dev,
1205 		    "failed to attach all child ports: %d\n", rc);
1206 		goto done;
1207 	}
1208 
1209 	device_printf(dev,
1210 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1211 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1212 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1213 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1214 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1215 
1216 	t4_set_desc(sc);
1217 
1218 	notify_siblings(dev, 0);
1219 
1220 done:
1221 	if (rc != 0 && sc->cdev) {
1222 		/* cdev was created and so cxgbetool works; recover that way. */
1223 		device_printf(dev,
1224 		    "error during attach, adapter is now in recovery mode.\n");
1225 		rc = 0;
1226 	}
1227 
1228 	if (rc != 0)
1229 		t4_detach_common(dev);
1230 	else
1231 		t4_sysctls(sc);
1232 
1233 	return (rc);
1234 }
1235 
1236 static int
1237 t4_ready(device_t dev)
1238 {
1239 	struct adapter *sc;
1240 
1241 	sc = device_get_softc(dev);
1242 	if (sc->flags & FW_OK)
1243 		return (0);
1244 	return (ENXIO);
1245 }
1246 
1247 static int
1248 t4_read_port_device(device_t dev, int port, device_t *child)
1249 {
1250 	struct adapter *sc;
1251 	struct port_info *pi;
1252 
1253 	sc = device_get_softc(dev);
1254 	if (port < 0 || port >= MAX_NPORTS)
1255 		return (EINVAL);
1256 	pi = sc->port[port];
1257 	if (pi == NULL || pi->dev == NULL)
1258 		return (ENXIO);
1259 	*child = pi->dev;
1260 	return (0);
1261 }
1262 
1263 static int
1264 notify_siblings(device_t dev, int detaching)
1265 {
1266 	device_t sibling;
1267 	int error, i;
1268 
1269 	error = 0;
1270 	for (i = 0; i < PCI_FUNCMAX; i++) {
1271 		if (i == pci_get_function(dev))
1272 			continue;
1273 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1274 		    pci_get_slot(dev), i);
1275 		if (sibling == NULL || !device_is_attached(sibling))
1276 			continue;
1277 		if (detaching)
1278 			error = T4_DETACH_CHILD(sibling);
1279 		else
1280 			(void)T4_ATTACH_CHILD(sibling);
1281 		if (error)
1282 			break;
1283 	}
1284 	return (error);
1285 }
1286 
1287 /*
1288  * Idempotent
1289  */
1290 static int
1291 t4_detach(device_t dev)
1292 {
1293 	struct adapter *sc;
1294 	int rc;
1295 
1296 	sc = device_get_softc(dev);
1297 
1298 	rc = notify_siblings(dev, 1);
1299 	if (rc) {
1300 		device_printf(dev,
1301 		    "failed to detach sibling devices: %d\n", rc);
1302 		return (rc);
1303 	}
1304 
1305 	return (t4_detach_common(dev));
1306 }
1307 
1308 int
1309 t4_detach_common(device_t dev)
1310 {
1311 	struct adapter *sc;
1312 	struct port_info *pi;
1313 	int i, rc;
1314 
1315 	sc = device_get_softc(dev);
1316 
1317 	if (sc->cdev) {
1318 		destroy_dev(sc->cdev);
1319 		sc->cdev = NULL;
1320 	}
1321 
1322 	sc->flags &= ~CHK_MBOX_ACCESS;
1323 	if (sc->flags & FULL_INIT_DONE) {
1324 		if (!(sc->flags & IS_VF))
1325 			t4_intr_disable(sc);
1326 	}
1327 
1328 	if (device_is_attached(dev)) {
1329 		rc = bus_generic_detach(dev);
1330 		if (rc) {
1331 			device_printf(dev,
1332 			    "failed to detach child devices: %d\n", rc);
1333 			return (rc);
1334 		}
1335 	}
1336 
1337 	for (i = 0; i < sc->intr_count; i++)
1338 		t4_free_irq(sc, &sc->irq[i]);
1339 
1340 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1341 		t4_free_tx_sched(sc);
1342 
1343 	for (i = 0; i < MAX_NPORTS; i++) {
1344 		pi = sc->port[i];
1345 		if (pi) {
1346 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1347 			if (pi->dev)
1348 				device_delete_child(dev, pi->dev);
1349 
1350 			mtx_destroy(&pi->pi_lock);
1351 			free(pi->vi, M_CXGBE);
1352 			free(pi, M_CXGBE);
1353 		}
1354 	}
1355 
1356 	device_delete_children(dev);
1357 
1358 	if (sc->flags & FULL_INIT_DONE)
1359 		adapter_full_uninit(sc);
1360 
1361 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1362 		t4_fw_bye(sc, sc->mbox);
1363 
1364 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1365 		pci_release_msi(dev);
1366 
1367 	if (sc->regs_res)
1368 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1369 		    sc->regs_res);
1370 
1371 	if (sc->udbs_res)
1372 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1373 		    sc->udbs_res);
1374 
1375 	if (sc->msix_res)
1376 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1377 		    sc->msix_res);
1378 
1379 	if (sc->l2t)
1380 		t4_free_l2t(sc->l2t);
1381 #ifdef RATELIMIT
1382 	t4_free_etid_table(sc);
1383 #endif
1384 
1385 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1386 	free(sc->sge.ofld_txq, M_CXGBE);
1387 #endif
1388 #ifdef TCP_OFFLOAD
1389 	free(sc->sge.ofld_rxq, M_CXGBE);
1390 #endif
1391 #ifdef DEV_NETMAP
1392 	free(sc->sge.nm_rxq, M_CXGBE);
1393 	free(sc->sge.nm_txq, M_CXGBE);
1394 #endif
1395 	free(sc->irq, M_CXGBE);
1396 	free(sc->sge.rxq, M_CXGBE);
1397 	free(sc->sge.txq, M_CXGBE);
1398 	free(sc->sge.ctrlq, M_CXGBE);
1399 	free(sc->sge.iqmap, M_CXGBE);
1400 	free(sc->sge.eqmap, M_CXGBE);
1401 	free(sc->tids.ftid_tab, M_CXGBE);
1402 	free(sc->tids.hftid_tab, M_CXGBE);
1403 	free(sc->tids.atid_tab, M_CXGBE);
1404 	free(sc->tids.tid_tab, M_CXGBE);
1405 	free(sc->tt.tls_rx_ports, M_CXGBE);
1406 	t4_destroy_dma_tag(sc);
1407 	if (mtx_initialized(&sc->sc_lock)) {
1408 		sx_xlock(&t4_list_lock);
1409 		SLIST_REMOVE(&t4_list, sc, adapter, link);
1410 		sx_xunlock(&t4_list_lock);
1411 		mtx_destroy(&sc->sc_lock);
1412 	}
1413 
1414 	callout_drain(&sc->sfl_callout);
1415 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1416 		mtx_destroy(&sc->tids.ftid_lock);
1417 		cv_destroy(&sc->tids.ftid_cv);
1418 	}
1419 	if (mtx_initialized(&sc->tids.hftid_lock)) {
1420 		mtx_destroy(&sc->tids.hftid_lock);
1421 		cv_destroy(&sc->tids.hftid_cv);
1422 	}
1423 	if (mtx_initialized(&sc->tids.atid_lock))
1424 		mtx_destroy(&sc->tids.atid_lock);
1425 	if (mtx_initialized(&sc->sfl_lock))
1426 		mtx_destroy(&sc->sfl_lock);
1427 	if (mtx_initialized(&sc->ifp_lock))
1428 		mtx_destroy(&sc->ifp_lock);
1429 	if (mtx_initialized(&sc->reg_lock))
1430 		mtx_destroy(&sc->reg_lock);
1431 
1432 	if (rw_initialized(&sc->policy_lock)) {
1433 		rw_destroy(&sc->policy_lock);
1434 #ifdef TCP_OFFLOAD
1435 		if (sc->policy != NULL)
1436 			free_offload_policy(sc->policy);
1437 #endif
1438 	}
1439 
1440 	for (i = 0; i < NUM_MEMWIN; i++) {
1441 		struct memwin *mw = &sc->memwin[i];
1442 
1443 		if (rw_initialized(&mw->mw_lock))
1444 			rw_destroy(&mw->mw_lock);
1445 	}
1446 
1447 	bzero(sc, sizeof(*sc));
1448 
1449 	return (0);
1450 }
1451 
1452 static int
1453 cxgbe_probe(device_t dev)
1454 {
1455 	char buf[128];
1456 	struct port_info *pi = device_get_softc(dev);
1457 
1458 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1459 	device_set_desc_copy(dev, buf);
1460 
1461 	return (BUS_PROBE_DEFAULT);
1462 }
1463 
1464 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1465     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1466     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1467 #define T4_CAP_ENABLE (T4_CAP)
1468 
1469 static int
1470 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1471 {
1472 	struct ifnet *ifp;
1473 	struct sbuf *sb;
1474 
1475 	vi->xact_addr_filt = -1;
1476 	callout_init(&vi->tick, 1);
1477 
1478 	/* Allocate an ifnet and set it up */
1479 	ifp = if_alloc(IFT_ETHER);
1480 	if (ifp == NULL) {
1481 		device_printf(dev, "Cannot allocate ifnet\n");
1482 		return (ENOMEM);
1483 	}
1484 	vi->ifp = ifp;
1485 	ifp->if_softc = vi;
1486 
1487 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1488 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1489 
1490 	ifp->if_init = cxgbe_init;
1491 	ifp->if_ioctl = cxgbe_ioctl;
1492 	ifp->if_transmit = cxgbe_transmit;
1493 	ifp->if_qflush = cxgbe_qflush;
1494 	ifp->if_get_counter = cxgbe_get_counter;
1495 #ifdef RATELIMIT
1496 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1497 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1498 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1499 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1500 #endif
1501 
1502 	ifp->if_capabilities = T4_CAP;
1503 #ifdef TCP_OFFLOAD
1504 	if (vi->nofldrxq != 0)
1505 		ifp->if_capabilities |= IFCAP_TOE;
1506 #endif
1507 #ifdef DEV_NETMAP
1508 	if (vi->nnmrxq != 0)
1509 		ifp->if_capabilities |= IFCAP_NETMAP;
1510 #endif
1511 	ifp->if_capenable = T4_CAP_ENABLE;
1512 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1513 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1514 
1515 	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1516 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1517 	ifp->if_hw_tsomaxsegsize = 65536;
1518 
1519 	vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1520 	    EVENTHANDLER_PRI_ANY);
1521 
1522 	ether_ifattach(ifp, vi->hw_addr);
1523 #ifdef DEV_NETMAP
1524 	if (ifp->if_capabilities & IFCAP_NETMAP)
1525 		cxgbe_nm_attach(vi);
1526 #endif
1527 	sb = sbuf_new_auto();
1528 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1529 #ifdef TCP_OFFLOAD
1530 	if (ifp->if_capabilities & IFCAP_TOE)
1531 		sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1532 		    vi->nofldtxq, vi->nofldrxq);
1533 #endif
1534 #ifdef DEV_NETMAP
1535 	if (ifp->if_capabilities & IFCAP_NETMAP)
1536 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1537 		    vi->nnmtxq, vi->nnmrxq);
1538 #endif
1539 	sbuf_finish(sb);
1540 	device_printf(dev, "%s\n", sbuf_data(sb));
1541 	sbuf_delete(sb);
1542 
1543 	vi_sysctls(vi);
1544 
1545 	return (0);
1546 }
1547 
1548 static int
1549 cxgbe_attach(device_t dev)
1550 {
1551 	struct port_info *pi = device_get_softc(dev);
1552 	struct adapter *sc = pi->adapter;
1553 	struct vi_info *vi;
1554 	int i, rc;
1555 
1556 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1557 
1558 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1559 	if (rc)
1560 		return (rc);
1561 
1562 	for_each_vi(pi, i, vi) {
1563 		if (i == 0)
1564 			continue;
1565 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1566 		if (vi->dev == NULL) {
1567 			device_printf(dev, "failed to add VI %d\n", i);
1568 			continue;
1569 		}
1570 		device_set_softc(vi->dev, vi);
1571 	}
1572 
1573 	cxgbe_sysctls(pi);
1574 
1575 	bus_generic_attach(dev);
1576 
1577 	return (0);
1578 }
1579 
1580 static void
1581 cxgbe_vi_detach(struct vi_info *vi)
1582 {
1583 	struct ifnet *ifp = vi->ifp;
1584 
1585 	ether_ifdetach(ifp);
1586 
1587 	if (vi->vlan_c)
1588 		EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1589 
1590 	/* Let detach proceed even if these fail. */
1591 #ifdef DEV_NETMAP
1592 	if (ifp->if_capabilities & IFCAP_NETMAP)
1593 		cxgbe_nm_detach(vi);
1594 #endif
1595 	cxgbe_uninit_synchronized(vi);
1596 	callout_drain(&vi->tick);
1597 	vi_full_uninit(vi);
1598 
1599 	if_free(vi->ifp);
1600 	vi->ifp = NULL;
1601 }
1602 
1603 static int
1604 cxgbe_detach(device_t dev)
1605 {
1606 	struct port_info *pi = device_get_softc(dev);
1607 	struct adapter *sc = pi->adapter;
1608 	int rc;
1609 
1610 	/* Detach the extra VIs first. */
1611 	rc = bus_generic_detach(dev);
1612 	if (rc)
1613 		return (rc);
1614 	device_delete_children(dev);
1615 
1616 	doom_vi(sc, &pi->vi[0]);
1617 
1618 	if (pi->flags & HAS_TRACEQ) {
1619 		sc->traceq = -1;	/* cloner should not create ifnet */
1620 		t4_tracer_port_detach(sc);
1621 	}
1622 
1623 	cxgbe_vi_detach(&pi->vi[0]);
1624 	callout_drain(&pi->tick);
1625 	ifmedia_removeall(&pi->media);
1626 
1627 	end_synchronized_op(sc, 0);
1628 
1629 	return (0);
1630 }
1631 
1632 static void
1633 cxgbe_init(void *arg)
1634 {
1635 	struct vi_info *vi = arg;
1636 	struct adapter *sc = vi->pi->adapter;
1637 
1638 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1639 		return;
1640 	cxgbe_init_synchronized(vi);
1641 	end_synchronized_op(sc, 0);
1642 }
1643 
1644 static int
1645 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1646 {
1647 	int rc = 0, mtu, flags, can_sleep;
1648 	struct vi_info *vi = ifp->if_softc;
1649 	struct port_info *pi = vi->pi;
1650 	struct adapter *sc = pi->adapter;
1651 	struct ifreq *ifr = (struct ifreq *)data;
1652 	uint32_t mask;
1653 
1654 	switch (cmd) {
1655 	case SIOCSIFMTU:
1656 		mtu = ifr->ifr_mtu;
1657 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1658 			return (EINVAL);
1659 
1660 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1661 		if (rc)
1662 			return (rc);
1663 		ifp->if_mtu = mtu;
1664 		if (vi->flags & VI_INIT_DONE) {
1665 			t4_update_fl_bufsize(ifp);
1666 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1667 				rc = update_mac_settings(ifp, XGMAC_MTU);
1668 		}
1669 		end_synchronized_op(sc, 0);
1670 		break;
1671 
1672 	case SIOCSIFFLAGS:
1673 		can_sleep = 0;
1674 redo_sifflags:
1675 		rc = begin_synchronized_op(sc, vi,
1676 		    can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1677 		if (rc) {
1678 			if_printf(ifp, "%ssleepable synch operation failed: %d."
1679 			    "  if_flags 0x%08x, if_drv_flags 0x%08x\n",
1680 			    can_sleep ? "" : "non-", rc, ifp->if_flags,
1681 			    ifp->if_drv_flags);
1682 			return (rc);
1683 		}
1684 
1685 		if (ifp->if_flags & IFF_UP) {
1686 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1687 				flags = vi->if_flags;
1688 				if ((ifp->if_flags ^ flags) &
1689 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1690 					if (can_sleep == 1) {
1691 						end_synchronized_op(sc, 0);
1692 						can_sleep = 0;
1693 						goto redo_sifflags;
1694 					}
1695 					rc = update_mac_settings(ifp,
1696 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1697 				}
1698 			} else {
1699 				if (can_sleep == 0) {
1700 					end_synchronized_op(sc, LOCK_HELD);
1701 					can_sleep = 1;
1702 					goto redo_sifflags;
1703 				}
1704 				rc = cxgbe_init_synchronized(vi);
1705 			}
1706 			vi->if_flags = ifp->if_flags;
1707 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1708 			if (can_sleep == 0) {
1709 				end_synchronized_op(sc, LOCK_HELD);
1710 				can_sleep = 1;
1711 				goto redo_sifflags;
1712 			}
1713 			rc = cxgbe_uninit_synchronized(vi);
1714 		}
1715 		end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1716 		break;
1717 
1718 	case SIOCADDMULTI:
1719 	case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1720 		rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1721 		if (rc)
1722 			return (rc);
1723 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1724 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1725 		end_synchronized_op(sc, LOCK_HELD);
1726 		break;
1727 
1728 	case SIOCSIFCAP:
1729 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1730 		if (rc)
1731 			return (rc);
1732 
1733 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1734 		if (mask & IFCAP_TXCSUM) {
1735 			ifp->if_capenable ^= IFCAP_TXCSUM;
1736 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1737 
1738 			if (IFCAP_TSO4 & ifp->if_capenable &&
1739 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1740 				ifp->if_capenable &= ~IFCAP_TSO4;
1741 				if_printf(ifp,
1742 				    "tso4 disabled due to -txcsum.\n");
1743 			}
1744 		}
1745 		if (mask & IFCAP_TXCSUM_IPV6) {
1746 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1747 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1748 
1749 			if (IFCAP_TSO6 & ifp->if_capenable &&
1750 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1751 				ifp->if_capenable &= ~IFCAP_TSO6;
1752 				if_printf(ifp,
1753 				    "tso6 disabled due to -txcsum6.\n");
1754 			}
1755 		}
1756 		if (mask & IFCAP_RXCSUM)
1757 			ifp->if_capenable ^= IFCAP_RXCSUM;
1758 		if (mask & IFCAP_RXCSUM_IPV6)
1759 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1760 
1761 		/*
1762 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1763 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1764 		 * sending a TSO request our way, so it's sufficient to toggle
1765 		 * IFCAP_TSOx only.
1766 		 */
1767 		if (mask & IFCAP_TSO4) {
1768 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1769 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1770 				if_printf(ifp, "enable txcsum first.\n");
1771 				rc = EAGAIN;
1772 				goto fail;
1773 			}
1774 			ifp->if_capenable ^= IFCAP_TSO4;
1775 		}
1776 		if (mask & IFCAP_TSO6) {
1777 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1778 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1779 				if_printf(ifp, "enable txcsum6 first.\n");
1780 				rc = EAGAIN;
1781 				goto fail;
1782 			}
1783 			ifp->if_capenable ^= IFCAP_TSO6;
1784 		}
1785 		if (mask & IFCAP_LRO) {
1786 #if defined(INET) || defined(INET6)
1787 			int i;
1788 			struct sge_rxq *rxq;
1789 
1790 			ifp->if_capenable ^= IFCAP_LRO;
1791 			for_each_rxq(vi, i, rxq) {
1792 				if (ifp->if_capenable & IFCAP_LRO)
1793 					rxq->iq.flags |= IQ_LRO_ENABLED;
1794 				else
1795 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1796 			}
1797 #endif
1798 		}
1799 #ifdef TCP_OFFLOAD
1800 		if (mask & IFCAP_TOE) {
1801 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1802 
1803 			rc = toe_capability(vi, enable);
1804 			if (rc != 0)
1805 				goto fail;
1806 
1807 			ifp->if_capenable ^= mask;
1808 		}
1809 #endif
1810 		if (mask & IFCAP_VLAN_HWTAGGING) {
1811 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1812 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1813 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1814 		}
1815 		if (mask & IFCAP_VLAN_MTU) {
1816 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1817 
1818 			/* Need to find out how to disable auto-mtu-inflation */
1819 		}
1820 		if (mask & IFCAP_VLAN_HWTSO)
1821 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1822 		if (mask & IFCAP_VLAN_HWCSUM)
1823 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1824 
1825 #ifdef VLAN_CAPABILITIES
1826 		VLAN_CAPABILITIES(ifp);
1827 #endif
1828 fail:
1829 		end_synchronized_op(sc, 0);
1830 		break;
1831 
1832 	case SIOCSIFMEDIA:
1833 	case SIOCGIFMEDIA:
1834 	case SIOCGIFXMEDIA:
1835 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
1836 		break;
1837 
1838 	case SIOCGI2C: {
1839 		struct ifi2creq i2c;
1840 
1841 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
1842 		if (rc != 0)
1843 			break;
1844 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1845 			rc = EPERM;
1846 			break;
1847 		}
1848 		if (i2c.len > sizeof(i2c.data)) {
1849 			rc = EINVAL;
1850 			break;
1851 		}
1852 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1853 		if (rc)
1854 			return (rc);
1855 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
1856 		    i2c.offset, i2c.len, &i2c.data[0]);
1857 		end_synchronized_op(sc, 0);
1858 		if (rc == 0)
1859 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
1860 		break;
1861 	}
1862 
1863 	default:
1864 		rc = ether_ioctl(ifp, cmd, data);
1865 	}
1866 
1867 	return (rc);
1868 }
1869 
1870 static int
1871 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1872 {
1873 	struct vi_info *vi = ifp->if_softc;
1874 	struct port_info *pi = vi->pi;
1875 	struct adapter *sc = pi->adapter;
1876 	struct sge_txq *txq;
1877 	void *items[1];
1878 	int rc;
1879 
1880 	M_ASSERTPKTHDR(m);
1881 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
1882 
1883 	if (__predict_false(pi->link_cfg.link_ok == 0)) {
1884 		m_freem(m);
1885 		return (ENETDOWN);
1886 	}
1887 
1888 	rc = parse_pkt(sc, &m);
1889 	if (__predict_false(rc != 0)) {
1890 		MPASS(m == NULL);			/* was freed already */
1891 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
1892 		return (rc);
1893 	}
1894 
1895 	/* Select a txq. */
1896 	txq = &sc->sge.txq[vi->first_txq];
1897 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1898 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1899 		    vi->rsrv_noflowq);
1900 
1901 	items[0] = m;
1902 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1903 	if (__predict_false(rc != 0))
1904 		m_freem(m);
1905 
1906 	return (rc);
1907 }
1908 
1909 static void
1910 cxgbe_qflush(struct ifnet *ifp)
1911 {
1912 	struct vi_info *vi = ifp->if_softc;
1913 	struct sge_txq *txq;
1914 	int i;
1915 
1916 	/* queues do not exist if !VI_INIT_DONE. */
1917 	if (vi->flags & VI_INIT_DONE) {
1918 		for_each_txq(vi, i, txq) {
1919 			TXQ_LOCK(txq);
1920 			txq->eq.flags |= EQ_QFLUSH;
1921 			TXQ_UNLOCK(txq);
1922 			while (!mp_ring_is_idle(txq->r)) {
1923 				mp_ring_check_drainage(txq->r, 0);
1924 				pause("qflush", 1);
1925 			}
1926 			TXQ_LOCK(txq);
1927 			txq->eq.flags &= ~EQ_QFLUSH;
1928 			TXQ_UNLOCK(txq);
1929 		}
1930 	}
1931 	if_qflush(ifp);
1932 }
1933 
1934 static uint64_t
1935 vi_get_counter(struct ifnet *ifp, ift_counter c)
1936 {
1937 	struct vi_info *vi = ifp->if_softc;
1938 	struct fw_vi_stats_vf *s = &vi->stats;
1939 
1940 	vi_refresh_stats(vi->pi->adapter, vi);
1941 
1942 	switch (c) {
1943 	case IFCOUNTER_IPACKETS:
1944 		return (s->rx_bcast_frames + s->rx_mcast_frames +
1945 		    s->rx_ucast_frames);
1946 	case IFCOUNTER_IERRORS:
1947 		return (s->rx_err_frames);
1948 	case IFCOUNTER_OPACKETS:
1949 		return (s->tx_bcast_frames + s->tx_mcast_frames +
1950 		    s->tx_ucast_frames + s->tx_offload_frames);
1951 	case IFCOUNTER_OERRORS:
1952 		return (s->tx_drop_frames);
1953 	case IFCOUNTER_IBYTES:
1954 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1955 		    s->rx_ucast_bytes);
1956 	case IFCOUNTER_OBYTES:
1957 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1958 		    s->tx_ucast_bytes + s->tx_offload_bytes);
1959 	case IFCOUNTER_IMCASTS:
1960 		return (s->rx_mcast_frames);
1961 	case IFCOUNTER_OMCASTS:
1962 		return (s->tx_mcast_frames);
1963 	case IFCOUNTER_OQDROPS: {
1964 		uint64_t drops;
1965 
1966 		drops = 0;
1967 		if (vi->flags & VI_INIT_DONE) {
1968 			int i;
1969 			struct sge_txq *txq;
1970 
1971 			for_each_txq(vi, i, txq)
1972 				drops += counter_u64_fetch(txq->r->drops);
1973 		}
1974 
1975 		return (drops);
1976 
1977 	}
1978 
1979 	default:
1980 		return (if_get_counter_default(ifp, c));
1981 	}
1982 }
1983 
1984 uint64_t
1985 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1986 {
1987 	struct vi_info *vi = ifp->if_softc;
1988 	struct port_info *pi = vi->pi;
1989 	struct adapter *sc = pi->adapter;
1990 	struct port_stats *s = &pi->stats;
1991 
1992 	if (pi->nvi > 1 || sc->flags & IS_VF)
1993 		return (vi_get_counter(ifp, c));
1994 
1995 	cxgbe_refresh_stats(sc, pi);
1996 
1997 	switch (c) {
1998 	case IFCOUNTER_IPACKETS:
1999 		return (s->rx_frames);
2000 
2001 	case IFCOUNTER_IERRORS:
2002 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2003 		    s->rx_fcs_err + s->rx_len_err);
2004 
2005 	case IFCOUNTER_OPACKETS:
2006 		return (s->tx_frames);
2007 
2008 	case IFCOUNTER_OERRORS:
2009 		return (s->tx_error_frames);
2010 
2011 	case IFCOUNTER_IBYTES:
2012 		return (s->rx_octets);
2013 
2014 	case IFCOUNTER_OBYTES:
2015 		return (s->tx_octets);
2016 
2017 	case IFCOUNTER_IMCASTS:
2018 		return (s->rx_mcast_frames);
2019 
2020 	case IFCOUNTER_OMCASTS:
2021 		return (s->tx_mcast_frames);
2022 
2023 	case IFCOUNTER_IQDROPS:
2024 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2025 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2026 		    s->rx_trunc3 + pi->tnl_cong_drops);
2027 
2028 	case IFCOUNTER_OQDROPS: {
2029 		uint64_t drops;
2030 
2031 		drops = s->tx_drop;
2032 		if (vi->flags & VI_INIT_DONE) {
2033 			int i;
2034 			struct sge_txq *txq;
2035 
2036 			for_each_txq(vi, i, txq)
2037 				drops += counter_u64_fetch(txq->r->drops);
2038 		}
2039 
2040 		return (drops);
2041 
2042 	}
2043 
2044 	default:
2045 		return (if_get_counter_default(ifp, c));
2046 	}
2047 }
2048 
2049 static int
2050 cxgbe_media_change(struct ifnet *ifp)
2051 {
2052 	struct vi_info *vi = ifp->if_softc;
2053 
2054 	device_printf(vi->dev, "%s unimplemented.\n", __func__);
2055 
2056 	return (EOPNOTSUPP);
2057 }
2058 
2059 static void
2060 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2061 {
2062 	struct vi_info *vi = ifp->if_softc;
2063 	struct port_info *pi = vi->pi;
2064 	struct ifmedia_entry *cur;
2065 	struct link_config *lc = &pi->link_cfg;
2066 
2067 	/*
2068 	 * If all the interfaces are administratively down the firmware does not
2069 	 * report transceiver changes.  Refresh port info here so that ifconfig
2070 	 * displays accurate information at all times.
2071 	 */
2072 	if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK,
2073 	    "t4med") == 0) {
2074 		PORT_LOCK(pi);
2075 		if (pi->up_vis == 0) {
2076 			t4_update_port_info(pi);
2077 			build_medialist(pi, &pi->media);
2078 		}
2079 		PORT_UNLOCK(pi);
2080 		end_synchronized_op(pi->adapter, 0);
2081 	}
2082 
2083 	ifmr->ifm_status = IFM_AVALID;
2084 	if (lc->link_ok == 0)
2085 		return;
2086 
2087 	ifmr->ifm_status |= IFM_ACTIVE;
2088 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2089 	if (lc->fc & PAUSE_RX)
2090 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2091 	if (lc->fc & PAUSE_TX)
2092 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2093 
2094 	/* active and current will differ iff current media is autoselect. */
2095 	cur = pi->media.ifm_cur;
2096 	if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2097 		return;
2098 
2099 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2100 	if (lc->fc & PAUSE_RX)
2101 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2102 	if (lc->fc & PAUSE_TX)
2103 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2104 	switch (lc->speed) {
2105 	case 10000:
2106 		ifmr->ifm_active |= IFM_10G_T;
2107 		break;
2108 	case 1000:
2109 		ifmr->ifm_active |= IFM_1000_T;
2110 		break;
2111 	case 100:
2112 		ifmr->ifm_active |= IFM_100_TX;
2113 		break;
2114 	case 10:
2115 		ifmr->ifm_active |= IFM_10_T;
2116 		break;
2117 	default:
2118 		device_printf(vi->dev, "link up but speed unknown (%u)\n",
2119 		    lc->speed);
2120 	}
2121 }
2122 
2123 static int
2124 vcxgbe_probe(device_t dev)
2125 {
2126 	char buf[128];
2127 	struct vi_info *vi = device_get_softc(dev);
2128 
2129 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2130 	    vi - vi->pi->vi);
2131 	device_set_desc_copy(dev, buf);
2132 
2133 	return (BUS_PROBE_DEFAULT);
2134 }
2135 
2136 static int
2137 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2138 {
2139 	int func, index, rc;
2140 	uint32_t param, val;
2141 
2142 	ASSERT_SYNCHRONIZED_OP(sc);
2143 
2144 	index = vi - pi->vi;
2145 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2146 	KASSERT(index < nitems(vi_mac_funcs),
2147 	    ("%s: VI %s doesn't have a MAC func", __func__,
2148 	    device_get_nameunit(vi->dev)));
2149 	func = vi_mac_funcs[index];
2150 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2151 	    vi->hw_addr, &vi->rss_size, func, 0);
2152 	if (rc < 0) {
2153 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2154 		    "for port %d: %d\n", index, pi->port_id, -rc);
2155 		return (-rc);
2156 	}
2157 	vi->viid = rc;
2158 	if (chip_id(sc) <= CHELSIO_T5)
2159 		vi->smt_idx = (rc & 0x7f) << 1;
2160 	else
2161 		vi->smt_idx = (rc & 0x7f);
2162 
2163 	if (vi->rss_size == 1) {
2164 		/*
2165 		 * This VI didn't get a slice of the RSS table.  Reduce the
2166 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2167 		 * configuration file (nvi, rssnvi for this PF) if this is a
2168 		 * problem.
2169 		 */
2170 		device_printf(vi->dev, "RSS table not available.\n");
2171 		vi->rss_base = 0xffff;
2172 
2173 		return (0);
2174 	}
2175 
2176 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2177 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2178 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2179 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2180 	if (rc)
2181 		vi->rss_base = 0xffff;
2182 	else {
2183 		MPASS((val >> 16) == vi->rss_size);
2184 		vi->rss_base = val & 0xffff;
2185 	}
2186 
2187 	return (0);
2188 }
2189 
2190 static int
2191 vcxgbe_attach(device_t dev)
2192 {
2193 	struct vi_info *vi;
2194 	struct port_info *pi;
2195 	struct adapter *sc;
2196 	int rc;
2197 
2198 	vi = device_get_softc(dev);
2199 	pi = vi->pi;
2200 	sc = pi->adapter;
2201 
2202 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2203 	if (rc)
2204 		return (rc);
2205 	rc = alloc_extra_vi(sc, pi, vi);
2206 	end_synchronized_op(sc, 0);
2207 	if (rc)
2208 		return (rc);
2209 
2210 	rc = cxgbe_vi_attach(dev, vi);
2211 	if (rc) {
2212 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2213 		return (rc);
2214 	}
2215 	return (0);
2216 }
2217 
2218 static int
2219 vcxgbe_detach(device_t dev)
2220 {
2221 	struct vi_info *vi;
2222 	struct adapter *sc;
2223 
2224 	vi = device_get_softc(dev);
2225 	sc = vi->pi->adapter;
2226 
2227 	doom_vi(sc, vi);
2228 
2229 	cxgbe_vi_detach(vi);
2230 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2231 
2232 	end_synchronized_op(sc, 0);
2233 
2234 	return (0);
2235 }
2236 
2237 void
2238 t4_fatal_err(struct adapter *sc)
2239 {
2240 	t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2241 	t4_intr_disable(sc);
2242 	log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2243 	    device_get_nameunit(sc->dev));
2244 	if (t4_panic_on_fatal_err)
2245 		panic("panic requested on fatal error");
2246 }
2247 
2248 void
2249 t4_add_adapter(struct adapter *sc)
2250 {
2251 	sx_xlock(&t4_list_lock);
2252 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2253 	sx_xunlock(&t4_list_lock);
2254 }
2255 
2256 int
2257 t4_map_bars_0_and_4(struct adapter *sc)
2258 {
2259 	sc->regs_rid = PCIR_BAR(0);
2260 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2261 	    &sc->regs_rid, RF_ACTIVE);
2262 	if (sc->regs_res == NULL) {
2263 		device_printf(sc->dev, "cannot map registers.\n");
2264 		return (ENXIO);
2265 	}
2266 	sc->bt = rman_get_bustag(sc->regs_res);
2267 	sc->bh = rman_get_bushandle(sc->regs_res);
2268 	sc->mmio_len = rman_get_size(sc->regs_res);
2269 	setbit(&sc->doorbells, DOORBELL_KDB);
2270 
2271 	sc->msix_rid = PCIR_BAR(4);
2272 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2273 	    &sc->msix_rid, RF_ACTIVE);
2274 	if (sc->msix_res == NULL) {
2275 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2276 		return (ENXIO);
2277 	}
2278 
2279 	return (0);
2280 }
2281 
2282 int
2283 t4_map_bar_2(struct adapter *sc)
2284 {
2285 
2286 	/*
2287 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2288 	 * to map it if RDMA is disabled.
2289 	 */
2290 	if (is_t4(sc) && sc->rdmacaps == 0)
2291 		return (0);
2292 
2293 	sc->udbs_rid = PCIR_BAR(2);
2294 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2295 	    &sc->udbs_rid, RF_ACTIVE);
2296 	if (sc->udbs_res == NULL) {
2297 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2298 		return (ENXIO);
2299 	}
2300 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2301 
2302 	if (chip_id(sc) >= CHELSIO_T5) {
2303 		setbit(&sc->doorbells, DOORBELL_UDB);
2304 #if defined(__i386__) || defined(__amd64__)
2305 		if (t5_write_combine) {
2306 			int rc, mode;
2307 
2308 			/*
2309 			 * Enable write combining on BAR2.  This is the
2310 			 * userspace doorbell BAR and is split into 128B
2311 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2312 			 * with an egress queue.  The first 64B has the doorbell
2313 			 * and the second 64B can be used to submit a tx work
2314 			 * request with an implicit doorbell.
2315 			 */
2316 
2317 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2318 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2319 			if (rc == 0) {
2320 				clrbit(&sc->doorbells, DOORBELL_UDB);
2321 				setbit(&sc->doorbells, DOORBELL_WCWR);
2322 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2323 			} else {
2324 				device_printf(sc->dev,
2325 				    "couldn't enable write combining: %d\n",
2326 				    rc);
2327 			}
2328 
2329 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2330 			t4_write_reg(sc, A_SGE_STAT_CFG,
2331 			    V_STATSOURCE_T5(7) | mode);
2332 		}
2333 #endif
2334 	}
2335 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2336 
2337 	return (0);
2338 }
2339 
2340 struct memwin_init {
2341 	uint32_t base;
2342 	uint32_t aperture;
2343 };
2344 
2345 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2346 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2347 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2348 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2349 };
2350 
2351 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2352 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2353 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2354 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2355 };
2356 
2357 static void
2358 setup_memwin(struct adapter *sc)
2359 {
2360 	const struct memwin_init *mw_init;
2361 	struct memwin *mw;
2362 	int i;
2363 	uint32_t bar0;
2364 
2365 	if (is_t4(sc)) {
2366 		/*
2367 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2368 		 * mechanism.  Works from within PCI passthrough environments
2369 		 * too, where rman_get_start() can return a different value.  We
2370 		 * need to program the T4 memory window decoders with the actual
2371 		 * addresses that will be coming across the PCIe link.
2372 		 */
2373 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2374 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2375 
2376 		mw_init = &t4_memwin[0];
2377 	} else {
2378 		/* T5+ use the relative offset inside the PCIe BAR */
2379 		bar0 = 0;
2380 
2381 		mw_init = &t5_memwin[0];
2382 	}
2383 
2384 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2385 		rw_init(&mw->mw_lock, "memory window access");
2386 		mw->mw_base = mw_init->base;
2387 		mw->mw_aperture = mw_init->aperture;
2388 		mw->mw_curpos = 0;
2389 		t4_write_reg(sc,
2390 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2391 		    (mw->mw_base + bar0) | V_BIR(0) |
2392 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2393 		rw_wlock(&mw->mw_lock);
2394 		position_memwin(sc, i, 0);
2395 		rw_wunlock(&mw->mw_lock);
2396 	}
2397 
2398 	/* flush */
2399 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2400 }
2401 
2402 /*
2403  * Positions the memory window at the given address in the card's address space.
2404  * There are some alignment requirements and the actual position may be at an
2405  * address prior to the requested address.  mw->mw_curpos always has the actual
2406  * position of the window.
2407  */
2408 static void
2409 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2410 {
2411 	struct memwin *mw;
2412 	uint32_t pf;
2413 	uint32_t reg;
2414 
2415 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2416 	mw = &sc->memwin[idx];
2417 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2418 
2419 	if (is_t4(sc)) {
2420 		pf = 0;
2421 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2422 	} else {
2423 		pf = V_PFNUM(sc->pf);
2424 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2425 	}
2426 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2427 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2428 	t4_read_reg(sc, reg);	/* flush */
2429 }
2430 
2431 int
2432 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2433     int len, int rw)
2434 {
2435 	struct memwin *mw;
2436 	uint32_t mw_end, v;
2437 
2438 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2439 
2440 	/* Memory can only be accessed in naturally aligned 4 byte units */
2441 	if (addr & 3 || len & 3 || len <= 0)
2442 		return (EINVAL);
2443 
2444 	mw = &sc->memwin[idx];
2445 	while (len > 0) {
2446 		rw_rlock(&mw->mw_lock);
2447 		mw_end = mw->mw_curpos + mw->mw_aperture;
2448 		if (addr >= mw_end || addr < mw->mw_curpos) {
2449 			/* Will need to reposition the window */
2450 			if (!rw_try_upgrade(&mw->mw_lock)) {
2451 				rw_runlock(&mw->mw_lock);
2452 				rw_wlock(&mw->mw_lock);
2453 			}
2454 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2455 			position_memwin(sc, idx, addr);
2456 			rw_downgrade(&mw->mw_lock);
2457 			mw_end = mw->mw_curpos + mw->mw_aperture;
2458 		}
2459 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2460 		while (addr < mw_end && len > 0) {
2461 			if (rw == 0) {
2462 				v = t4_read_reg(sc, mw->mw_base + addr -
2463 				    mw->mw_curpos);
2464 				*val++ = le32toh(v);
2465 			} else {
2466 				v = *val++;
2467 				t4_write_reg(sc, mw->mw_base + addr -
2468 				    mw->mw_curpos, htole32(v));
2469 			}
2470 			addr += 4;
2471 			len -= 4;
2472 		}
2473 		rw_runlock(&mw->mw_lock);
2474 	}
2475 
2476 	return (0);
2477 }
2478 
2479 int
2480 alloc_atid_tab(struct tid_info *t, int flags)
2481 {
2482 	int i;
2483 
2484 	MPASS(t->natids > 0);
2485 	MPASS(t->atid_tab == NULL);
2486 
2487 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
2488 	    M_ZERO | flags);
2489 	if (t->atid_tab == NULL)
2490 		return (ENOMEM);
2491 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
2492 	t->afree = t->atid_tab;
2493 	t->atids_in_use = 0;
2494 	for (i = 1; i < t->natids; i++)
2495 		t->atid_tab[i - 1].next = &t->atid_tab[i];
2496 	t->atid_tab[t->natids - 1].next = NULL;
2497 
2498 	return (0);
2499 }
2500 
2501 void
2502 free_atid_tab(struct tid_info *t)
2503 {
2504 
2505 	KASSERT(t->atids_in_use == 0,
2506 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
2507 
2508 	if (mtx_initialized(&t->atid_lock))
2509 		mtx_destroy(&t->atid_lock);
2510 	free(t->atid_tab, M_CXGBE);
2511 	t->atid_tab = NULL;
2512 }
2513 
2514 int
2515 alloc_atid(struct adapter *sc, void *ctx)
2516 {
2517 	struct tid_info *t = &sc->tids;
2518 	int atid = -1;
2519 
2520 	mtx_lock(&t->atid_lock);
2521 	if (t->afree) {
2522 		union aopen_entry *p = t->afree;
2523 
2524 		atid = p - t->atid_tab;
2525 		MPASS(atid <= M_TID_TID);
2526 		t->afree = p->next;
2527 		p->data = ctx;
2528 		t->atids_in_use++;
2529 	}
2530 	mtx_unlock(&t->atid_lock);
2531 	return (atid);
2532 }
2533 
2534 void *
2535 lookup_atid(struct adapter *sc, int atid)
2536 {
2537 	struct tid_info *t = &sc->tids;
2538 
2539 	return (t->atid_tab[atid].data);
2540 }
2541 
2542 void
2543 free_atid(struct adapter *sc, int atid)
2544 {
2545 	struct tid_info *t = &sc->tids;
2546 	union aopen_entry *p = &t->atid_tab[atid];
2547 
2548 	mtx_lock(&t->atid_lock);
2549 	p->next = t->afree;
2550 	t->afree = p;
2551 	t->atids_in_use--;
2552 	mtx_unlock(&t->atid_lock);
2553 }
2554 
2555 static void
2556 queue_tid_release(struct adapter *sc, int tid)
2557 {
2558 
2559 	CXGBE_UNIMPLEMENTED("deferred tid release");
2560 }
2561 
2562 void
2563 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
2564 {
2565 	struct wrqe *wr;
2566 	struct cpl_tid_release *req;
2567 
2568 	wr = alloc_wrqe(sizeof(*req), ctrlq);
2569 	if (wr == NULL) {
2570 		queue_tid_release(sc, tid);	/* defer */
2571 		return;
2572 	}
2573 	req = wrtod(wr);
2574 
2575 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
2576 
2577 	t4_wrq_tx(sc, wr);
2578 }
2579 
2580 static int
2581 t4_range_cmp(const void *a, const void *b)
2582 {
2583 	return ((const struct t4_range *)a)->start -
2584 	       ((const struct t4_range *)b)->start;
2585 }
2586 
2587 /*
2588  * Verify that the memory range specified by the addr/len pair is valid within
2589  * the card's address space.
2590  */
2591 static int
2592 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2593 {
2594 	struct t4_range mem_ranges[4], *r, *next;
2595 	uint32_t em, addr_len;
2596 	int i, n, remaining;
2597 
2598 	/* Memory can only be accessed in naturally aligned 4 byte units */
2599 	if (addr & 3 || len & 3 || len <= 0)
2600 		return (EINVAL);
2601 
2602 	/* Enabled memories */
2603 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2604 
2605 	r = &mem_ranges[0];
2606 	n = 0;
2607 	bzero(r, sizeof(mem_ranges));
2608 	if (em & F_EDRAM0_ENABLE) {
2609 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2610 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2611 		if (r->size > 0) {
2612 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2613 			if (addr >= r->start &&
2614 			    addr + len <= r->start + r->size)
2615 				return (0);
2616 			r++;
2617 			n++;
2618 		}
2619 	}
2620 	if (em & F_EDRAM1_ENABLE) {
2621 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2622 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2623 		if (r->size > 0) {
2624 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2625 			if (addr >= r->start &&
2626 			    addr + len <= r->start + r->size)
2627 				return (0);
2628 			r++;
2629 			n++;
2630 		}
2631 	}
2632 	if (em & F_EXT_MEM_ENABLE) {
2633 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2634 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2635 		if (r->size > 0) {
2636 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2637 			if (addr >= r->start &&
2638 			    addr + len <= r->start + r->size)
2639 				return (0);
2640 			r++;
2641 			n++;
2642 		}
2643 	}
2644 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2645 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2646 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2647 		if (r->size > 0) {
2648 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2649 			if (addr >= r->start &&
2650 			    addr + len <= r->start + r->size)
2651 				return (0);
2652 			r++;
2653 			n++;
2654 		}
2655 	}
2656 	MPASS(n <= nitems(mem_ranges));
2657 
2658 	if (n > 1) {
2659 		/* Sort and merge the ranges. */
2660 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2661 
2662 		/* Start from index 0 and examine the next n - 1 entries. */
2663 		r = &mem_ranges[0];
2664 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
2665 
2666 			MPASS(r->size > 0);	/* r is a valid entry. */
2667 			next = r + 1;
2668 			MPASS(next->size > 0);	/* and so is the next one. */
2669 
2670 			while (r->start + r->size >= next->start) {
2671 				/* Merge the next one into the current entry. */
2672 				r->size = max(r->start + r->size,
2673 				    next->start + next->size) - r->start;
2674 				n--;	/* One fewer entry in total. */
2675 				if (--remaining == 0)
2676 					goto done;	/* short circuit */
2677 				next++;
2678 			}
2679 			if (next != r + 1) {
2680 				/*
2681 				 * Some entries were merged into r and next
2682 				 * points to the first valid entry that couldn't
2683 				 * be merged.
2684 				 */
2685 				MPASS(next->size > 0);	/* must be valid */
2686 				memcpy(r + 1, next, remaining * sizeof(*r));
2687 #ifdef INVARIANTS
2688 				/*
2689 				 * This so that the foo->size assertion in the
2690 				 * next iteration of the loop do the right
2691 				 * thing for entries that were pulled up and are
2692 				 * no longer valid.
2693 				 */
2694 				MPASS(n < nitems(mem_ranges));
2695 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2696 				    sizeof(struct t4_range));
2697 #endif
2698 			}
2699 		}
2700 done:
2701 		/* Done merging the ranges. */
2702 		MPASS(n > 0);
2703 		r = &mem_ranges[0];
2704 		for (i = 0; i < n; i++, r++) {
2705 			if (addr >= r->start &&
2706 			    addr + len <= r->start + r->size)
2707 				return (0);
2708 		}
2709 	}
2710 
2711 	return (EFAULT);
2712 }
2713 
2714 static int
2715 fwmtype_to_hwmtype(int mtype)
2716 {
2717 
2718 	switch (mtype) {
2719 	case FW_MEMTYPE_EDC0:
2720 		return (MEM_EDC0);
2721 	case FW_MEMTYPE_EDC1:
2722 		return (MEM_EDC1);
2723 	case FW_MEMTYPE_EXTMEM:
2724 		return (MEM_MC0);
2725 	case FW_MEMTYPE_EXTMEM1:
2726 		return (MEM_MC1);
2727 	default:
2728 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2729 	}
2730 }
2731 
2732 /*
2733  * Verify that the memory range specified by the memtype/offset/len pair is
2734  * valid and lies entirely within the memtype specified.  The global address of
2735  * the start of the range is returned in addr.
2736  */
2737 static int
2738 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2739     uint32_t *addr)
2740 {
2741 	uint32_t em, addr_len, maddr;
2742 
2743 	/* Memory can only be accessed in naturally aligned 4 byte units */
2744 	if (off & 3 || len & 3 || len == 0)
2745 		return (EINVAL);
2746 
2747 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2748 	switch (fwmtype_to_hwmtype(mtype)) {
2749 	case MEM_EDC0:
2750 		if (!(em & F_EDRAM0_ENABLE))
2751 			return (EINVAL);
2752 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2753 		maddr = G_EDRAM0_BASE(addr_len) << 20;
2754 		break;
2755 	case MEM_EDC1:
2756 		if (!(em & F_EDRAM1_ENABLE))
2757 			return (EINVAL);
2758 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2759 		maddr = G_EDRAM1_BASE(addr_len) << 20;
2760 		break;
2761 	case MEM_MC:
2762 		if (!(em & F_EXT_MEM_ENABLE))
2763 			return (EINVAL);
2764 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2765 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
2766 		break;
2767 	case MEM_MC1:
2768 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2769 			return (EINVAL);
2770 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2771 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2772 		break;
2773 	default:
2774 		return (EINVAL);
2775 	}
2776 
2777 	*addr = maddr + off;	/* global address */
2778 	return (validate_mem_range(sc, *addr, len));
2779 }
2780 
2781 static int
2782 fixup_devlog_params(struct adapter *sc)
2783 {
2784 	struct devlog_params *dparams = &sc->params.devlog;
2785 	int rc;
2786 
2787 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2788 	    dparams->size, &dparams->addr);
2789 
2790 	return (rc);
2791 }
2792 
2793 static void
2794 update_nirq(struct intrs_and_queues *iaq, int nports)
2795 {
2796 	int extra = T4_EXTRA_INTR;
2797 
2798 	iaq->nirq = extra;
2799 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
2800 	iaq->nirq += nports * (iaq->num_vis - 1) *
2801 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
2802 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
2803 }
2804 
2805 /*
2806  * Adjust requirements to fit the number of interrupts available.
2807  */
2808 static void
2809 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
2810     int navail)
2811 {
2812 	int old_nirq;
2813 	const int nports = sc->params.nports;
2814 
2815 	MPASS(nports > 0);
2816 	MPASS(navail > 0);
2817 
2818 	bzero(iaq, sizeof(*iaq));
2819 	iaq->intr_type = itype;
2820 	iaq->num_vis = t4_num_vis;
2821 	iaq->ntxq = t4_ntxq;
2822 	iaq->ntxq_vi = t4_ntxq_vi;
2823 	iaq->nrxq = t4_nrxq;
2824 	iaq->nrxq_vi = t4_nrxq_vi;
2825 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2826 	if (is_offload(sc) || is_ethoffload(sc)) {
2827 		iaq->nofldtxq = t4_nofldtxq;
2828 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
2829 	}
2830 #endif
2831 #ifdef TCP_OFFLOAD
2832 	if (is_offload(sc)) {
2833 		iaq->nofldrxq = t4_nofldrxq;
2834 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
2835 	}
2836 #endif
2837 #ifdef DEV_NETMAP
2838 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
2839 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
2840 #endif
2841 
2842 	update_nirq(iaq, nports);
2843 	if (iaq->nirq <= navail &&
2844 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
2845 		/*
2846 		 * This is the normal case -- there are enough interrupts for
2847 		 * everything.
2848 		 */
2849 		goto done;
2850 	}
2851 
2852 	/*
2853 	 * If extra VIs have been configured try reducing their count and see if
2854 	 * that works.
2855 	 */
2856 	while (iaq->num_vis > 1) {
2857 		iaq->num_vis--;
2858 		update_nirq(iaq, nports);
2859 		if (iaq->nirq <= navail &&
2860 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
2861 			device_printf(sc->dev, "virtual interfaces per port "
2862 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
2863 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
2864 			    "itype %d, navail %u, nirq %d.\n",
2865 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
2866 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
2867 			    itype, navail, iaq->nirq);
2868 			goto done;
2869 		}
2870 	}
2871 
2872 	/*
2873 	 * Extra VIs will not be created.  Log a message if they were requested.
2874 	 */
2875 	MPASS(iaq->num_vis == 1);
2876 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
2877 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2878 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2879 	if (iaq->num_vis != t4_num_vis) {
2880 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
2881 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2882 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
2883 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
2884 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
2885 	}
2886 
2887 	/*
2888 	 * Keep reducing the number of NIC rx queues to the next lower power of
2889 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
2890 	 * if that works.
2891 	 */
2892 	do {
2893 		if (iaq->nrxq > 1) {
2894 			do {
2895 				iaq->nrxq--;
2896 			} while (!powerof2(iaq->nrxq));
2897 		}
2898 		if (iaq->nofldrxq > 1)
2899 			iaq->nofldrxq >>= 1;
2900 
2901 		old_nirq = iaq->nirq;
2902 		update_nirq(iaq, nports);
2903 		if (iaq->nirq <= navail &&
2904 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
2905 			device_printf(sc->dev, "running with reduced number of "
2906 			    "rx queues because of shortage of interrupts.  "
2907 			    "nrxq=%u, nofldrxq=%u.  "
2908 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
2909 			    iaq->nofldrxq, itype, navail, iaq->nirq);
2910 			goto done;
2911 		}
2912 	} while (old_nirq != iaq->nirq);
2913 
2914 	/* One interrupt for everything.  Ugh. */
2915 	device_printf(sc->dev, "running with minimal number of queues.  "
2916 	    "itype %d, navail %u.\n", itype, navail);
2917 	iaq->nirq = 1;
2918 	MPASS(iaq->nrxq == 1);
2919 	iaq->ntxq = 1;
2920 	if (iaq->nofldrxq > 1)
2921 		iaq->nofldtxq = 1;
2922 done:
2923 	MPASS(iaq->num_vis > 0);
2924 	if (iaq->num_vis > 1) {
2925 		MPASS(iaq->nrxq_vi > 0);
2926 		MPASS(iaq->ntxq_vi > 0);
2927 	}
2928 	MPASS(iaq->nirq > 0);
2929 	MPASS(iaq->nrxq > 0);
2930 	MPASS(iaq->ntxq > 0);
2931 	if (itype == INTR_MSI) {
2932 		MPASS(powerof2(iaq->nirq));
2933 	}
2934 }
2935 
2936 static int
2937 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
2938 {
2939 	int rc, itype, navail, nalloc;
2940 
2941 	for (itype = INTR_MSIX; itype; itype >>= 1) {
2942 
2943 		if ((itype & t4_intr_types) == 0)
2944 			continue;	/* not allowed */
2945 
2946 		if (itype == INTR_MSIX)
2947 			navail = pci_msix_count(sc->dev);
2948 		else if (itype == INTR_MSI)
2949 			navail = pci_msi_count(sc->dev);
2950 		else
2951 			navail = 1;
2952 restart:
2953 		if (navail == 0)
2954 			continue;
2955 
2956 		calculate_iaq(sc, iaq, itype, navail);
2957 		nalloc = iaq->nirq;
2958 		rc = 0;
2959 		if (itype == INTR_MSIX)
2960 			rc = pci_alloc_msix(sc->dev, &nalloc);
2961 		else if (itype == INTR_MSI)
2962 			rc = pci_alloc_msi(sc->dev, &nalloc);
2963 
2964 		if (rc == 0 && nalloc > 0) {
2965 			if (nalloc == iaq->nirq)
2966 				return (0);
2967 
2968 			/*
2969 			 * Didn't get the number requested.  Use whatever number
2970 			 * the kernel is willing to allocate.
2971 			 */
2972 			device_printf(sc->dev, "fewer vectors than requested, "
2973 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2974 			    itype, iaq->nirq, nalloc);
2975 			pci_release_msi(sc->dev);
2976 			navail = nalloc;
2977 			goto restart;
2978 		}
2979 
2980 		device_printf(sc->dev,
2981 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2982 		    itype, rc, iaq->nirq, nalloc);
2983 	}
2984 
2985 	device_printf(sc->dev,
2986 	    "failed to find a usable interrupt type.  "
2987 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2988 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2989 
2990 	return (ENXIO);
2991 }
2992 
2993 #define FW_VERSION(chip) ( \
2994     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2995     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2996     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2997     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2998 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2999 
3000 struct fw_info {
3001 	uint8_t chip;
3002 	char *kld_name;
3003 	char *fw_mod_name;
3004 	struct fw_hdr fw_hdr;	/* XXX: waste of space, need a sparse struct */
3005 } fw_info[] = {
3006 	{
3007 		.chip = CHELSIO_T4,
3008 		.kld_name = "t4fw_cfg",
3009 		.fw_mod_name = "t4fw",
3010 		.fw_hdr = {
3011 			.chip = FW_HDR_CHIP_T4,
3012 			.fw_ver = htobe32_const(FW_VERSION(T4)),
3013 			.intfver_nic = FW_INTFVER(T4, NIC),
3014 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3015 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3016 			.intfver_ri = FW_INTFVER(T4, RI),
3017 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3018 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3019 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3020 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3021 		},
3022 	}, {
3023 		.chip = CHELSIO_T5,
3024 		.kld_name = "t5fw_cfg",
3025 		.fw_mod_name = "t5fw",
3026 		.fw_hdr = {
3027 			.chip = FW_HDR_CHIP_T5,
3028 			.fw_ver = htobe32_const(FW_VERSION(T5)),
3029 			.intfver_nic = FW_INTFVER(T5, NIC),
3030 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3031 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3032 			.intfver_ri = FW_INTFVER(T5, RI),
3033 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3034 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3035 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3036 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3037 		},
3038 	}, {
3039 		.chip = CHELSIO_T6,
3040 		.kld_name = "t6fw_cfg",
3041 		.fw_mod_name = "t6fw",
3042 		.fw_hdr = {
3043 			.chip = FW_HDR_CHIP_T6,
3044 			.fw_ver = htobe32_const(FW_VERSION(T6)),
3045 			.intfver_nic = FW_INTFVER(T6, NIC),
3046 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3047 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3048 			.intfver_ri = FW_INTFVER(T6, RI),
3049 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3050 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3051 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3052 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3053 		},
3054 	}
3055 };
3056 
3057 static struct fw_info *
3058 find_fw_info(int chip)
3059 {
3060 	int i;
3061 
3062 	for (i = 0; i < nitems(fw_info); i++) {
3063 		if (fw_info[i].chip == chip)
3064 			return (&fw_info[i]);
3065 	}
3066 	return (NULL);
3067 }
3068 
3069 /*
3070  * Is the given firmware API compatible with the one the driver was compiled
3071  * with?
3072  */
3073 static int
3074 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3075 {
3076 
3077 	/* short circuit if it's the exact same firmware version */
3078 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3079 		return (1);
3080 
3081 	/*
3082 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3083 	 * features that are supported in the driver.
3084 	 */
3085 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3086 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3087 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3088 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3089 		return (1);
3090 #undef SAME_INTF
3091 
3092 	return (0);
3093 }
3094 
3095 /*
3096  * The firmware in the KLD is usable, but should it be installed?  This routine
3097  * explains itself in detail if it indicates the KLD firmware should be
3098  * installed.
3099  */
3100 static int
3101 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
3102 {
3103 	const char *reason;
3104 
3105 	if (!card_fw_usable) {
3106 		reason = "incompatible or unusable";
3107 		goto install;
3108 	}
3109 
3110 	if (k > c) {
3111 		reason = "older than the version bundled with this driver";
3112 		goto install;
3113 	}
3114 
3115 	if (t4_fw_install == 2 && k != c) {
3116 		reason = "different than the version bundled with this driver";
3117 		goto install;
3118 	}
3119 
3120 	return (0);
3121 
3122 install:
3123 	if (t4_fw_install == 0) {
3124 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3125 		    "but the driver is prohibited from installing a different "
3126 		    "firmware on the card.\n",
3127 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3128 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3129 
3130 		return (0);
3131 	}
3132 
3133 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3134 	    "installing firmware %u.%u.%u.%u on card.\n",
3135 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3136 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3137 	    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3138 	    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3139 
3140 	return (1);
3141 }
3142 
3143 /*
3144  * Establish contact with the firmware and determine if we are the master driver
3145  * or not, and whether we are responsible for chip initialization.
3146  */
3147 static int
3148 prep_firmware(struct adapter *sc)
3149 {
3150 	const struct firmware *fw = NULL, *default_cfg;
3151 	int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
3152 	enum dev_state state;
3153 	struct fw_info *fw_info;
3154 	struct fw_hdr *card_fw;		/* fw on the card */
3155 	const struct fw_hdr *kld_fw;	/* fw in the KLD */
3156 	const struct fw_hdr *drv_fw;	/* fw header the driver was compiled
3157 					   against */
3158 
3159 	/* This is the firmware whose headers the driver was compiled against */
3160 	fw_info = find_fw_info(chip_id(sc));
3161 	if (fw_info == NULL) {
3162 		device_printf(sc->dev,
3163 		    "unable to look up firmware information for chip %d.\n",
3164 		    chip_id(sc));
3165 		return (EINVAL);
3166 	}
3167 	drv_fw = &fw_info->fw_hdr;
3168 
3169 	/*
3170 	 * The firmware KLD contains many modules.  The KLD name is also the
3171 	 * name of the module that contains the default config file.
3172 	 */
3173 	default_cfg = firmware_get(fw_info->kld_name);
3174 
3175 	/* This is the firmware in the KLD */
3176 	fw = firmware_get(fw_info->fw_mod_name);
3177 	if (fw != NULL) {
3178 		kld_fw = (const void *)fw->data;
3179 		kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3180 	} else {
3181 		kld_fw = NULL;
3182 		kld_fw_usable = 0;
3183 	}
3184 
3185 	/* Read the header of the firmware on the card */
3186 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3187 	rc = -t4_read_flash(sc, FLASH_FW_START,
3188 	    sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3189 	if (rc == 0) {
3190 		card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3191 		if (card_fw->fw_ver == be32toh(0xffffffff)) {
3192 			uint32_t d = be32toh(kld_fw->fw_ver);
3193 
3194 			if (!kld_fw_usable) {
3195 				device_printf(sc->dev,
3196 				    "no firmware on the card and no usable "
3197 				    "firmware bundled with the driver.\n");
3198 				rc = EIO;
3199 				goto done;
3200 			} else if (t4_fw_install == 0) {
3201 				device_printf(sc->dev,
3202 				    "no firmware on the card and the driver "
3203 				    "is prohibited from installing new "
3204 				    "firmware.\n");
3205 				rc = EIO;
3206 				goto done;
3207 			}
3208 
3209 			device_printf(sc->dev, "no firmware on the card, "
3210 			    "installing firmware %d.%d.%d.%d\n",
3211 			    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3212 			    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3213 			rc = t4_fw_forceinstall(sc, fw->data, fw->datasize);
3214 			if (rc < 0) {
3215 				rc = -rc;
3216 				device_printf(sc->dev,
3217 				    "firmware install failed: %d.\n", rc);
3218 				goto done;
3219 			}
3220 			memcpy(card_fw, kld_fw, sizeof(*card_fw));
3221 			card_fw_usable = 1;
3222 			need_fw_reset = 0;
3223 		}
3224 	} else {
3225 		device_printf(sc->dev,
3226 		    "Unable to read card's firmware header: %d\n", rc);
3227 		card_fw_usable = 0;
3228 	}
3229 
3230 	/* Contact firmware. */
3231 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3232 	if (rc < 0 || state == DEV_STATE_ERR) {
3233 		rc = -rc;
3234 		device_printf(sc->dev,
3235 		    "failed to connect to the firmware: %d, %d.\n", rc, state);
3236 		goto done;
3237 	}
3238 	pf = rc;
3239 	if (pf == sc->mbox)
3240 		sc->flags |= MASTER_PF;
3241 	else if (state == DEV_STATE_UNINIT) {
3242 		/*
3243 		 * We didn't get to be the master so we definitely won't be
3244 		 * configuring the chip.  It's a bug if someone else hasn't
3245 		 * configured it already.
3246 		 */
3247 		device_printf(sc->dev, "couldn't be master(%d), "
3248 		    "device not already initialized either(%d).\n", rc, state);
3249 		rc = EPROTO;
3250 		goto done;
3251 	}
3252 
3253 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3254 	    (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3255 		/*
3256 		 * Common case: the firmware on the card is an exact match and
3257 		 * the KLD is an exact match too, or the KLD is
3258 		 * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3259 		 * here -- use cxgbetool loadfw if you want to reinstall the
3260 		 * same firmware as the one on the card.
3261 		 */
3262 	} else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3263 	    should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3264 	    be32toh(card_fw->fw_ver))) {
3265 
3266 		rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3267 		if (rc != 0) {
3268 			device_printf(sc->dev,
3269 			    "failed to install firmware: %d\n", rc);
3270 			goto done;
3271 		}
3272 
3273 		/* Installed successfully, update the cached header too. */
3274 		memcpy(card_fw, kld_fw, sizeof(*card_fw));
3275 		card_fw_usable = 1;
3276 		need_fw_reset = 0;	/* already reset as part of load_fw */
3277 	}
3278 
3279 	if (!card_fw_usable) {
3280 		uint32_t d, c, k;
3281 
3282 		d = ntohl(drv_fw->fw_ver);
3283 		c = ntohl(card_fw->fw_ver);
3284 		k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3285 
3286 		device_printf(sc->dev, "Cannot find a usable firmware: "
3287 		    "fw_install %d, chip state %d, "
3288 		    "driver compiled with %d.%d.%d.%d, "
3289 		    "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3290 		    t4_fw_install, state,
3291 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3292 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3293 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3294 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3295 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3296 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3297 		rc = EINVAL;
3298 		goto done;
3299 	}
3300 
3301 	/* Reset device */
3302 	if (need_fw_reset &&
3303 	    (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3304 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3305 		if (rc != ETIMEDOUT && rc != EIO)
3306 			t4_fw_bye(sc, sc->mbox);
3307 		goto done;
3308 	}
3309 	sc->flags |= FW_OK;
3310 
3311 	rc = get_params__pre_init(sc);
3312 	if (rc != 0)
3313 		goto done; /* error message displayed already */
3314 
3315 	/* Partition adapter resources as specified in the config file. */
3316 	if (state == DEV_STATE_UNINIT) {
3317 
3318 		KASSERT(sc->flags & MASTER_PF,
3319 		    ("%s: trying to change chip settings when not master.",
3320 		    __func__));
3321 
3322 		rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3323 		if (rc != 0)
3324 			goto done;	/* error message displayed already */
3325 
3326 		t4_tweak_chip_settings(sc);
3327 
3328 		/* get basic stuff going */
3329 		rc = -t4_fw_initialize(sc, sc->mbox);
3330 		if (rc != 0) {
3331 			device_printf(sc->dev, "fw init failed: %d.\n", rc);
3332 			goto done;
3333 		}
3334 	} else {
3335 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3336 		sc->cfcsum = 0;
3337 	}
3338 
3339 done:
3340 	free(card_fw, M_CXGBE);
3341 	if (fw != NULL)
3342 		firmware_put(fw, FIRMWARE_UNLOAD);
3343 	if (default_cfg != NULL)
3344 		firmware_put(default_cfg, FIRMWARE_UNLOAD);
3345 
3346 	return (rc);
3347 }
3348 
3349 #define FW_PARAM_DEV(param) \
3350 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3351 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3352 #define FW_PARAM_PFVF(param) \
3353 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3354 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3355 
3356 /*
3357  * Partition chip resources for use between various PFs, VFs, etc.
3358  */
3359 static int
3360 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3361     const char *name_prefix)
3362 {
3363 	const struct firmware *cfg = NULL;
3364 	int rc = 0;
3365 	struct fw_caps_config_cmd caps;
3366 	uint32_t mtype, moff, finicsum, cfcsum;
3367 
3368 	/*
3369 	 * Figure out what configuration file to use.  Pick the default config
3370 	 * file for the card if the user hasn't specified one explicitly.
3371 	 */
3372 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3373 	if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3374 		/* Card specific overrides go here. */
3375 		if (pci_get_device(sc->dev) == 0x440a)
3376 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3377 		if (is_fpga(sc))
3378 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3379 	} else if (strncmp(t4_cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0)
3380 		goto use_built_in_config;	/* go straight to config. */
3381 
3382 	/*
3383 	 * We need to load another module if the profile is anything except
3384 	 * "default" or "flash".
3385 	 */
3386 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3387 	    strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3388 		char s[32];
3389 
3390 		snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3391 		cfg = firmware_get(s);
3392 		if (cfg == NULL) {
3393 			if (default_cfg != NULL) {
3394 				device_printf(sc->dev,
3395 				    "unable to load module \"%s\" for "
3396 				    "configuration profile \"%s\", will use "
3397 				    "the default config file instead.\n",
3398 				    s, sc->cfg_file);
3399 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3400 				    "%s", DEFAULT_CF);
3401 			} else {
3402 				device_printf(sc->dev,
3403 				    "unable to load module \"%s\" for "
3404 				    "configuration profile \"%s\", will use "
3405 				    "the config file on the card's flash "
3406 				    "instead.\n", s, sc->cfg_file);
3407 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3408 				    "%s", FLASH_CF);
3409 			}
3410 		}
3411 	}
3412 
3413 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3414 	    default_cfg == NULL) {
3415 		device_printf(sc->dev,
3416 		    "default config file not available, will use the config "
3417 		    "file on the card's flash instead.\n");
3418 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3419 	}
3420 
3421 	if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3422 		u_int cflen;
3423 		const uint32_t *cfdata;
3424 		uint32_t param, val, addr;
3425 
3426 		KASSERT(cfg != NULL || default_cfg != NULL,
3427 		    ("%s: no config to upload", __func__));
3428 
3429 		/*
3430 		 * Ask the firmware where it wants us to upload the config file.
3431 		 */
3432 		param = FW_PARAM_DEV(CF);
3433 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3434 		if (rc != 0) {
3435 			/* No support for config file?  Shouldn't happen. */
3436 			device_printf(sc->dev,
3437 			    "failed to query config file location: %d.\n", rc);
3438 			goto done;
3439 		}
3440 		mtype = G_FW_PARAMS_PARAM_Y(val);
3441 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3442 
3443 		/*
3444 		 * XXX: sheer laziness.  We deliberately added 4 bytes of
3445 		 * useless stuffing/comments at the end of the config file so
3446 		 * it's ok to simply throw away the last remaining bytes when
3447 		 * the config file is not an exact multiple of 4.  This also
3448 		 * helps with the validate_mt_off_len check.
3449 		 */
3450 		if (cfg != NULL) {
3451 			cflen = cfg->datasize & ~3;
3452 			cfdata = cfg->data;
3453 		} else {
3454 			cflen = default_cfg->datasize & ~3;
3455 			cfdata = default_cfg->data;
3456 		}
3457 
3458 		if (cflen > FLASH_CFG_MAX_SIZE) {
3459 			device_printf(sc->dev,
3460 			    "config file too long (%d, max allowed is %d).  "
3461 			    "Will try to use the config on the card, if any.\n",
3462 			    cflen, FLASH_CFG_MAX_SIZE);
3463 			goto use_config_on_flash;
3464 		}
3465 
3466 		rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3467 		if (rc != 0) {
3468 			device_printf(sc->dev,
3469 			    "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3470 			    "Will try to use the config on the card, if any.\n",
3471 			    __func__, mtype, moff, cflen, rc);
3472 			goto use_config_on_flash;
3473 		}
3474 		write_via_memwin(sc, 2, addr, cfdata, cflen);
3475 	} else {
3476 use_config_on_flash:
3477 		mtype = FW_MEMTYPE_FLASH;
3478 		moff = t4_flash_cfg_addr(sc);
3479 	}
3480 
3481 	bzero(&caps, sizeof(caps));
3482 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3483 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3484 	caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3485 	    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3486 	    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3487 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3488 	if (rc != 0) {
3489 		device_printf(sc->dev,
3490 		    "failed to pre-process config file: %d "
3491 		    "(mtype %d, moff 0x%x).  Will reset the firmware and retry "
3492 		    "with the built-in configuration.\n", rc, mtype, moff);
3493 
3494 	    	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
3495 		if (rc != 0) {
3496 			device_printf(sc->dev,
3497 			    "firmware reset failed: %d.\n", rc);
3498 			if (rc != ETIMEDOUT && rc != EIO) {
3499 				t4_fw_bye(sc, sc->mbox);
3500 				sc->flags &= ~FW_OK;
3501 			}
3502 			goto done;
3503 		}
3504 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", "built-in");
3505 use_built_in_config:
3506 		bzero(&caps, sizeof(caps));
3507 		caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3508 		    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3509 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3510 		rc = t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3511 		if (rc != 0) {
3512 			device_printf(sc->dev,
3513 			    "built-in configuration failed: %d.\n", rc);
3514 			goto done;
3515 		}
3516 	}
3517 
3518 	finicsum = be32toh(caps.finicsum);
3519 	cfcsum = be32toh(caps.cfcsum);
3520 	if (finicsum != cfcsum) {
3521 		device_printf(sc->dev,
3522 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3523 		    finicsum, cfcsum);
3524 	}
3525 	sc->cfcsum = cfcsum;
3526 
3527 #define LIMIT_CAPS(x) do { \
3528 	caps.x &= htobe16(t4_##x##_allowed); \
3529 } while (0)
3530 
3531 	/*
3532 	 * Let the firmware know what features will (not) be used so it can tune
3533 	 * things accordingly.
3534 	 */
3535 	LIMIT_CAPS(nbmcaps);
3536 	LIMIT_CAPS(linkcaps);
3537 	LIMIT_CAPS(switchcaps);
3538 	LIMIT_CAPS(niccaps);
3539 	LIMIT_CAPS(toecaps);
3540 	LIMIT_CAPS(rdmacaps);
3541 	LIMIT_CAPS(cryptocaps);
3542 	LIMIT_CAPS(iscsicaps);
3543 	LIMIT_CAPS(fcoecaps);
3544 #undef LIMIT_CAPS
3545 
3546 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
3547 		/*
3548 		 * TOE and hashfilters are mutually exclusive.  It is a config
3549 		 * file or firmware bug if both are reported as available.  Try
3550 		 * to cope with the situation in non-debug builds by disabling
3551 		 * TOE.
3552 		 */
3553 		MPASS(caps.toecaps == 0);
3554 
3555 		caps.toecaps = 0;
3556 		caps.rdmacaps = 0;
3557 		caps.iscsicaps = 0;
3558 	}
3559 
3560 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3561 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3562 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3563 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3564 	if (rc != 0) {
3565 		device_printf(sc->dev,
3566 		    "failed to process config file: %d.\n", rc);
3567 	}
3568 done:
3569 	if (cfg != NULL)
3570 		firmware_put(cfg, FIRMWARE_UNLOAD);
3571 	return (rc);
3572 }
3573 
3574 /*
3575  * Retrieve parameters that are needed (or nice to have) very early.
3576  */
3577 static int
3578 get_params__pre_init(struct adapter *sc)
3579 {
3580 	int rc;
3581 	uint32_t param[2], val[2];
3582 
3583 	t4_get_version_info(sc);
3584 
3585 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3586 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3587 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3588 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3589 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3590 
3591 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3592 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3593 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3594 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3595 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3596 
3597 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3598 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3599 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3600 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3601 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3602 
3603 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3604 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3605 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3606 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3607 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3608 
3609 	param[0] = FW_PARAM_DEV(PORTVEC);
3610 	param[1] = FW_PARAM_DEV(CCLK);
3611 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3612 	if (rc != 0) {
3613 		device_printf(sc->dev,
3614 		    "failed to query parameters (pre_init): %d.\n", rc);
3615 		return (rc);
3616 	}
3617 
3618 	sc->params.portvec = val[0];
3619 	sc->params.nports = bitcount32(val[0]);
3620 	sc->params.vpd.cclk = val[1];
3621 
3622 	/* Read device log parameters. */
3623 	rc = -t4_init_devlog_params(sc, 1);
3624 	if (rc == 0)
3625 		fixup_devlog_params(sc);
3626 	else {
3627 		device_printf(sc->dev,
3628 		    "failed to get devlog parameters: %d.\n", rc);
3629 		rc = 0;	/* devlog isn't critical for device operation */
3630 	}
3631 
3632 	return (rc);
3633 }
3634 
3635 /*
3636  * Retrieve various parameters that are of interest to the driver.  The device
3637  * has been initialized by the firmware at this point.
3638  */
3639 static int
3640 get_params__post_init(struct adapter *sc)
3641 {
3642 	int rc;
3643 	uint32_t param[7], val[7];
3644 	struct fw_caps_config_cmd caps;
3645 
3646 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
3647 	param[1] = FW_PARAM_PFVF(EQ_START);
3648 	param[2] = FW_PARAM_PFVF(FILTER_START);
3649 	param[3] = FW_PARAM_PFVF(FILTER_END);
3650 	param[4] = FW_PARAM_PFVF(L2T_START);
3651 	param[5] = FW_PARAM_PFVF(L2T_END);
3652 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3653 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
3654 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
3655 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
3656 	if (rc != 0) {
3657 		device_printf(sc->dev,
3658 		    "failed to query parameters (post_init): %d.\n", rc);
3659 		return (rc);
3660 	}
3661 
3662 	sc->sge.iq_start = val[0];
3663 	sc->sge.eq_start = val[1];
3664 	sc->tids.ftid_base = val[2];
3665 	sc->tids.nftids = val[3] - val[2] + 1;
3666 	sc->params.ftid_min = val[2];
3667 	sc->params.ftid_max = val[3];
3668 	sc->vres.l2t.start = val[4];
3669 	sc->vres.l2t.size = val[5] - val[4] + 1;
3670 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3671 	    ("%s: L2 table size (%u) larger than expected (%u)",
3672 	    __func__, sc->vres.l2t.size, L2T_SIZE));
3673 	sc->params.core_vdd = val[6];
3674 
3675 	/*
3676 	 * MPSBGMAP is queried separately because only recent firmwares support
3677 	 * it as a parameter and we don't want the compound query above to fail
3678 	 * on older firmwares.
3679 	 */
3680 	param[0] = FW_PARAM_DEV(MPSBGMAP);
3681 	val[0] = 0;
3682 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3683 	if (rc == 0)
3684 		sc->params.mps_bg_map = val[0];
3685 	else
3686 		sc->params.mps_bg_map = 0;
3687 
3688 	/*
3689 	 * Determine whether the firmware supports the filter2 work request.
3690 	 * This is queried separately for the same reason as MPSBGMAP above.
3691 	 */
3692 	param[0] = FW_PARAM_DEV(FILTER2_WR);
3693 	val[0] = 0;
3694 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3695 	if (rc == 0)
3696 		sc->params.filter2_wr_support = val[0] != 0;
3697 	else
3698 		sc->params.filter2_wr_support = 0;
3699 
3700 	/* get capabilites */
3701 	bzero(&caps, sizeof(caps));
3702 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3703 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3704 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3705 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3706 	if (rc != 0) {
3707 		device_printf(sc->dev,
3708 		    "failed to get card capabilities: %d.\n", rc);
3709 		return (rc);
3710 	}
3711 
3712 #define READ_CAPS(x) do { \
3713 	sc->x = htobe16(caps.x); \
3714 } while (0)
3715 	READ_CAPS(nbmcaps);
3716 	READ_CAPS(linkcaps);
3717 	READ_CAPS(switchcaps);
3718 	READ_CAPS(niccaps);
3719 	READ_CAPS(toecaps);
3720 	READ_CAPS(rdmacaps);
3721 	READ_CAPS(cryptocaps);
3722 	READ_CAPS(iscsicaps);
3723 	READ_CAPS(fcoecaps);
3724 
3725 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
3726 		MPASS(chip_id(sc) > CHELSIO_T4);
3727 		MPASS(sc->toecaps == 0);
3728 		sc->toecaps = 0;
3729 
3730 		param[0] = FW_PARAM_DEV(NTID);
3731 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3732 		if (rc != 0) {
3733 			device_printf(sc->dev,
3734 			    "failed to query HASHFILTER parameters: %d.\n", rc);
3735 			return (rc);
3736 		}
3737 		sc->tids.ntids = val[0];
3738 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3739 		sc->params.hash_filter = 1;
3740 	}
3741 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3742 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3743 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3744 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3745 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3746 		if (rc != 0) {
3747 			device_printf(sc->dev,
3748 			    "failed to query NIC parameters: %d.\n", rc);
3749 			return (rc);
3750 		}
3751 		sc->tids.etid_base = val[0];
3752 		sc->params.etid_min = val[0];
3753 		sc->tids.netids = val[1] - val[0] + 1;
3754 		sc->params.netids = sc->tids.netids;
3755 		sc->params.eo_wr_cred = val[2];
3756 		sc->params.ethoffload = 1;
3757 	}
3758 	if (sc->toecaps) {
3759 		/* query offload-related parameters */
3760 		param[0] = FW_PARAM_DEV(NTID);
3761 		param[1] = FW_PARAM_PFVF(SERVER_START);
3762 		param[2] = FW_PARAM_PFVF(SERVER_END);
3763 		param[3] = FW_PARAM_PFVF(TDDP_START);
3764 		param[4] = FW_PARAM_PFVF(TDDP_END);
3765 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3766 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3767 		if (rc != 0) {
3768 			device_printf(sc->dev,
3769 			    "failed to query TOE parameters: %d.\n", rc);
3770 			return (rc);
3771 		}
3772 		sc->tids.ntids = val[0];
3773 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3774 		sc->tids.stid_base = val[1];
3775 		sc->tids.nstids = val[2] - val[1] + 1;
3776 		sc->vres.ddp.start = val[3];
3777 		sc->vres.ddp.size = val[4] - val[3] + 1;
3778 		sc->params.ofldq_wr_cred = val[5];
3779 		sc->params.offload = 1;
3780 	} else {
3781 		/*
3782 		 * The firmware attempts memfree TOE configuration for -SO cards
3783 		 * and will report toecaps=0 if it runs out of resources (this
3784 		 * depends on the config file).  It may not report 0 for other
3785 		 * capabilities dependent on the TOE in this case.  Set them to
3786 		 * 0 here so that the driver doesn't bother tracking resources
3787 		 * that will never be used.
3788 		 */
3789 		sc->iscsicaps = 0;
3790 		sc->rdmacaps = 0;
3791 	}
3792 	if (sc->rdmacaps) {
3793 		param[0] = FW_PARAM_PFVF(STAG_START);
3794 		param[1] = FW_PARAM_PFVF(STAG_END);
3795 		param[2] = FW_PARAM_PFVF(RQ_START);
3796 		param[3] = FW_PARAM_PFVF(RQ_END);
3797 		param[4] = FW_PARAM_PFVF(PBL_START);
3798 		param[5] = FW_PARAM_PFVF(PBL_END);
3799 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3800 		if (rc != 0) {
3801 			device_printf(sc->dev,
3802 			    "failed to query RDMA parameters(1): %d.\n", rc);
3803 			return (rc);
3804 		}
3805 		sc->vres.stag.start = val[0];
3806 		sc->vres.stag.size = val[1] - val[0] + 1;
3807 		sc->vres.rq.start = val[2];
3808 		sc->vres.rq.size = val[3] - val[2] + 1;
3809 		sc->vres.pbl.start = val[4];
3810 		sc->vres.pbl.size = val[5] - val[4] + 1;
3811 
3812 		param[0] = FW_PARAM_PFVF(SQRQ_START);
3813 		param[1] = FW_PARAM_PFVF(SQRQ_END);
3814 		param[2] = FW_PARAM_PFVF(CQ_START);
3815 		param[3] = FW_PARAM_PFVF(CQ_END);
3816 		param[4] = FW_PARAM_PFVF(OCQ_START);
3817 		param[5] = FW_PARAM_PFVF(OCQ_END);
3818 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3819 		if (rc != 0) {
3820 			device_printf(sc->dev,
3821 			    "failed to query RDMA parameters(2): %d.\n", rc);
3822 			return (rc);
3823 		}
3824 		sc->vres.qp.start = val[0];
3825 		sc->vres.qp.size = val[1] - val[0] + 1;
3826 		sc->vres.cq.start = val[2];
3827 		sc->vres.cq.size = val[3] - val[2] + 1;
3828 		sc->vres.ocq.start = val[4];
3829 		sc->vres.ocq.size = val[5] - val[4] + 1;
3830 
3831 		param[0] = FW_PARAM_PFVF(SRQ_START);
3832 		param[1] = FW_PARAM_PFVF(SRQ_END);
3833 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3834 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3835 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3836 		if (rc != 0) {
3837 			device_printf(sc->dev,
3838 			    "failed to query RDMA parameters(3): %d.\n", rc);
3839 			return (rc);
3840 		}
3841 		sc->vres.srq.start = val[0];
3842 		sc->vres.srq.size = val[1] - val[0] + 1;
3843 		sc->params.max_ordird_qp = val[2];
3844 		sc->params.max_ird_adapter = val[3];
3845 	}
3846 	if (sc->iscsicaps) {
3847 		param[0] = FW_PARAM_PFVF(ISCSI_START);
3848 		param[1] = FW_PARAM_PFVF(ISCSI_END);
3849 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3850 		if (rc != 0) {
3851 			device_printf(sc->dev,
3852 			    "failed to query iSCSI parameters: %d.\n", rc);
3853 			return (rc);
3854 		}
3855 		sc->vres.iscsi.start = val[0];
3856 		sc->vres.iscsi.size = val[1] - val[0] + 1;
3857 	}
3858 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
3859 		param[0] = FW_PARAM_PFVF(TLS_START);
3860 		param[1] = FW_PARAM_PFVF(TLS_END);
3861 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3862 		if (rc != 0) {
3863 			device_printf(sc->dev,
3864 			    "failed to query TLS parameters: %d.\n", rc);
3865 			return (rc);
3866 		}
3867 		sc->vres.key.start = val[0];
3868 		sc->vres.key.size = val[1] - val[0] + 1;
3869 	}
3870 
3871 	t4_init_sge_params(sc);
3872 
3873 	/*
3874 	 * We've got the params we wanted to query via the firmware.  Now grab
3875 	 * some others directly from the chip.
3876 	 */
3877 	rc = t4_read_chip_settings(sc);
3878 
3879 	return (rc);
3880 }
3881 
3882 static int
3883 set_params__post_init(struct adapter *sc)
3884 {
3885 	uint32_t param, val;
3886 #ifdef TCP_OFFLOAD
3887 	int i, v, shift;
3888 #endif
3889 
3890 	/* ask for encapsulated CPLs */
3891 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3892 	val = 1;
3893 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3894 
3895 #ifdef TCP_OFFLOAD
3896 	/*
3897 	 * Override the TOE timers with user provided tunables.  This is not the
3898 	 * recommended way to change the timers (the firmware config file is) so
3899 	 * these tunables are not documented.
3900 	 *
3901 	 * All the timer tunables are in microseconds.
3902 	 */
3903 	if (t4_toe_keepalive_idle != 0) {
3904 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
3905 		v &= M_KEEPALIVEIDLE;
3906 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
3907 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
3908 	}
3909 	if (t4_toe_keepalive_interval != 0) {
3910 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
3911 		v &= M_KEEPALIVEINTVL;
3912 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
3913 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
3914 	}
3915 	if (t4_toe_keepalive_count != 0) {
3916 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
3917 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3918 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
3919 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
3920 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
3921 	}
3922 	if (t4_toe_rexmt_min != 0) {
3923 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
3924 		v &= M_RXTMIN;
3925 		t4_set_reg_field(sc, A_TP_RXT_MIN,
3926 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
3927 	}
3928 	if (t4_toe_rexmt_max != 0) {
3929 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
3930 		v &= M_RXTMAX;
3931 		t4_set_reg_field(sc, A_TP_RXT_MAX,
3932 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
3933 	}
3934 	if (t4_toe_rexmt_count != 0) {
3935 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
3936 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3937 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
3938 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
3939 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
3940 	}
3941 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
3942 		if (t4_toe_rexmt_backoff[i] != -1) {
3943 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
3944 			shift = (i & 3) << 3;
3945 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
3946 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
3947 		}
3948 	}
3949 #endif
3950 	return (0);
3951 }
3952 
3953 #undef FW_PARAM_PFVF
3954 #undef FW_PARAM_DEV
3955 
3956 static void
3957 t4_set_desc(struct adapter *sc)
3958 {
3959 	char buf[128];
3960 	struct adapter_params *p = &sc->params;
3961 
3962 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3963 
3964 	device_set_desc_copy(sc->dev, buf);
3965 }
3966 
3967 static void
3968 build_medialist(struct port_info *pi, struct ifmedia *media)
3969 {
3970 	int m;
3971 
3972 	PORT_LOCK_ASSERT_OWNED(pi);
3973 
3974 	ifmedia_removeall(media);
3975 
3976 	/*
3977 	 * XXX: Would it be better to ifmedia_add all 4 combinations of pause
3978 	 * settings for every speed instead of just txpause|rxpause?  ifconfig
3979 	 * media display looks much better if autoselect is the only case where
3980 	 * ifm_current is different from ifm_active.  If the user picks anything
3981 	 * except txpause|rxpause the display is ugly.
3982 	 */
3983 	m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3984 
3985 	switch(pi->port_type) {
3986 	case FW_PORT_TYPE_BT_XFI:
3987 	case FW_PORT_TYPE_BT_XAUI:
3988 		ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3989 		/* fall through */
3990 
3991 	case FW_PORT_TYPE_BT_SGMII:
3992 		ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3993 		ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3994 		ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3995 		ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3996 		break;
3997 
3998 	case FW_PORT_TYPE_CX4:
3999 		ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
4000 		ifmedia_set(media, m | IFM_10G_CX4);
4001 		break;
4002 
4003 	case FW_PORT_TYPE_QSFP_10G:
4004 	case FW_PORT_TYPE_SFP:
4005 	case FW_PORT_TYPE_FIBER_XFI:
4006 	case FW_PORT_TYPE_FIBER_XAUI:
4007 		switch (pi->mod_type) {
4008 
4009 		case FW_PORT_MOD_TYPE_LR:
4010 			ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
4011 			ifmedia_set(media, m | IFM_10G_LR);
4012 			break;
4013 
4014 		case FW_PORT_MOD_TYPE_SR:
4015 			ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
4016 			ifmedia_set(media, m | IFM_10G_SR);
4017 			break;
4018 
4019 		case FW_PORT_MOD_TYPE_LRM:
4020 			ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
4021 			ifmedia_set(media, m | IFM_10G_LRM);
4022 			break;
4023 
4024 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
4025 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
4026 			ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
4027 			ifmedia_set(media, m | IFM_10G_TWINAX);
4028 			break;
4029 
4030 		case FW_PORT_MOD_TYPE_NONE:
4031 			m &= ~IFM_FDX;
4032 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
4033 			ifmedia_set(media, m | IFM_NONE);
4034 			break;
4035 
4036 		case FW_PORT_MOD_TYPE_NA:
4037 		case FW_PORT_MOD_TYPE_ER:
4038 		default:
4039 			device_printf(pi->dev,
4040 			    "unknown port_type (%d), mod_type (%d)\n",
4041 			    pi->port_type, pi->mod_type);
4042 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4043 			ifmedia_set(media, m | IFM_UNKNOWN);
4044 			break;
4045 		}
4046 		break;
4047 
4048 	case FW_PORT_TYPE_CR_QSFP:
4049 	case FW_PORT_TYPE_SFP28:
4050 	case FW_PORT_TYPE_KR_SFP28:
4051 		switch (pi->mod_type) {
4052 
4053 		case FW_PORT_MOD_TYPE_SR:
4054 			ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
4055 			ifmedia_set(media, m | IFM_25G_SR);
4056 			break;
4057 
4058 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
4059 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
4060 			ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
4061 			ifmedia_set(media, m | IFM_25G_CR);
4062 			break;
4063 
4064 		case FW_PORT_MOD_TYPE_NONE:
4065 			m &= ~IFM_FDX;
4066 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
4067 			ifmedia_set(media, m | IFM_NONE);
4068 			break;
4069 
4070 		default:
4071 			device_printf(pi->dev,
4072 			    "unknown port_type (%d), mod_type (%d)\n",
4073 			    pi->port_type, pi->mod_type);
4074 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4075 			ifmedia_set(media, m | IFM_UNKNOWN);
4076 			break;
4077 		}
4078 		break;
4079 
4080 	case FW_PORT_TYPE_QSFP:
4081 		switch (pi->mod_type) {
4082 
4083 		case FW_PORT_MOD_TYPE_LR:
4084 			ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
4085 			ifmedia_set(media, m | IFM_40G_LR4);
4086 			break;
4087 
4088 		case FW_PORT_MOD_TYPE_SR:
4089 			ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
4090 			ifmedia_set(media, m | IFM_40G_SR4);
4091 			break;
4092 
4093 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
4094 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
4095 			ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
4096 			ifmedia_set(media, m | IFM_40G_CR4);
4097 			break;
4098 
4099 		case FW_PORT_MOD_TYPE_NONE:
4100 			m &= ~IFM_FDX;
4101 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
4102 			ifmedia_set(media, m | IFM_NONE);
4103 			break;
4104 
4105 		default:
4106 			device_printf(pi->dev,
4107 			    "unknown port_type (%d), mod_type (%d)\n",
4108 			    pi->port_type, pi->mod_type);
4109 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4110 			ifmedia_set(media, m | IFM_UNKNOWN);
4111 			break;
4112 		}
4113 		break;
4114 
4115 	case FW_PORT_TYPE_KR4_100G:
4116 	case FW_PORT_TYPE_CR4_QSFP:
4117 		switch (pi->mod_type) {
4118 
4119 		case FW_PORT_MOD_TYPE_LR:
4120 			ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
4121 			ifmedia_set(media, m | IFM_100G_LR4);
4122 			break;
4123 
4124 		case FW_PORT_MOD_TYPE_SR:
4125 			ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
4126 			ifmedia_set(media, m | IFM_100G_SR4);
4127 			break;
4128 
4129 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
4130 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
4131 			ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
4132 			ifmedia_set(media, m | IFM_100G_CR4);
4133 			break;
4134 
4135 		case FW_PORT_MOD_TYPE_NONE:
4136 			m &= ~IFM_FDX;
4137 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
4138 			ifmedia_set(media, m | IFM_NONE);
4139 			break;
4140 
4141 		default:
4142 			device_printf(pi->dev,
4143 			    "unknown port_type (%d), mod_type (%d)\n",
4144 			    pi->port_type, pi->mod_type);
4145 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4146 			ifmedia_set(media, m | IFM_UNKNOWN);
4147 			break;
4148 		}
4149 		break;
4150 
4151 	default:
4152 		device_printf(pi->dev,
4153 		    "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
4154 		    pi->mod_type);
4155 		ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4156 		ifmedia_set(media, m | IFM_UNKNOWN);
4157 		break;
4158 	}
4159 }
4160 
4161 /*
4162  * Update all the requested_* fields in the link config and then send a mailbox
4163  * command to apply the settings.
4164  */
4165 static void
4166 init_l1cfg(struct port_info *pi)
4167 {
4168 	struct adapter *sc = pi->adapter;
4169 	struct link_config *lc = &pi->link_cfg;
4170 	int rc;
4171 
4172 	ASSERT_SYNCHRONIZED_OP(sc);
4173 
4174 	lc->requested_speed = port_top_speed(pi);	/* in Gbps */
4175 	if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) {
4176 		lc->requested_aneg = AUTONEG_ENABLE;
4177 	} else {
4178 		lc->requested_aneg = AUTONEG_DISABLE;
4179 	}
4180 
4181 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX);
4182 
4183 	if (t4_fec != -1) {
4184 		lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS |
4185 		    FEC_RESERVED);
4186 	} else {
4187 		/* Use the suggested value provided by the firmware in acaps */
4188 		if (lc->advertising & FW_PORT_CAP_FEC_RS)
4189 			lc->requested_fec = FEC_RS;
4190 		else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
4191 			lc->requested_fec = FEC_BASER_RS;
4192 		else
4193 			lc->requested_fec = 0;
4194 	}
4195 
4196 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4197 	if (rc != 0) {
4198 		device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4199 	} else {
4200 		lc->fc = lc->requested_fc;
4201 		lc->fec = lc->requested_fec;
4202 	}
4203 }
4204 
4205 #define FW_MAC_EXACT_CHUNK	7
4206 
4207 /*
4208  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4209  * indicates which parameters should be programmed (the rest are left alone).
4210  */
4211 int
4212 update_mac_settings(struct ifnet *ifp, int flags)
4213 {
4214 	int rc = 0;
4215 	struct vi_info *vi = ifp->if_softc;
4216 	struct port_info *pi = vi->pi;
4217 	struct adapter *sc = pi->adapter;
4218 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4219 
4220 	ASSERT_SYNCHRONIZED_OP(sc);
4221 	KASSERT(flags, ("%s: not told what to update.", __func__));
4222 
4223 	if (flags & XGMAC_MTU)
4224 		mtu = ifp->if_mtu;
4225 
4226 	if (flags & XGMAC_PROMISC)
4227 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4228 
4229 	if (flags & XGMAC_ALLMULTI)
4230 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4231 
4232 	if (flags & XGMAC_VLANEX)
4233 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4234 
4235 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4236 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4237 		    allmulti, 1, vlanex, false);
4238 		if (rc) {
4239 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4240 			    rc);
4241 			return (rc);
4242 		}
4243 	}
4244 
4245 	if (flags & XGMAC_UCADDR) {
4246 		uint8_t ucaddr[ETHER_ADDR_LEN];
4247 
4248 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4249 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4250 		    ucaddr, true, true);
4251 		if (rc < 0) {
4252 			rc = -rc;
4253 			if_printf(ifp, "change_mac failed: %d\n", rc);
4254 			return (rc);
4255 		} else {
4256 			vi->xact_addr_filt = rc;
4257 			rc = 0;
4258 		}
4259 	}
4260 
4261 	if (flags & XGMAC_MCADDRS) {
4262 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4263 		int del = 1;
4264 		uint64_t hash = 0;
4265 		struct ifmultiaddr *ifma;
4266 		int i = 0, j;
4267 
4268 		if_maddr_rlock(ifp);
4269 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4270 			if (ifma->ifma_addr->sa_family != AF_LINK)
4271 				continue;
4272 			mcaddr[i] =
4273 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4274 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4275 			i++;
4276 
4277 			if (i == FW_MAC_EXACT_CHUNK) {
4278 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4279 				    del, i, mcaddr, NULL, &hash, 0);
4280 				if (rc < 0) {
4281 					rc = -rc;
4282 					for (j = 0; j < i; j++) {
4283 						if_printf(ifp,
4284 						    "failed to add mc address"
4285 						    " %02x:%02x:%02x:"
4286 						    "%02x:%02x:%02x rc=%d\n",
4287 						    mcaddr[j][0], mcaddr[j][1],
4288 						    mcaddr[j][2], mcaddr[j][3],
4289 						    mcaddr[j][4], mcaddr[j][5],
4290 						    rc);
4291 					}
4292 					goto mcfail;
4293 				}
4294 				del = 0;
4295 				i = 0;
4296 			}
4297 		}
4298 		if (i > 0) {
4299 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4300 			    mcaddr, NULL, &hash, 0);
4301 			if (rc < 0) {
4302 				rc = -rc;
4303 				for (j = 0; j < i; j++) {
4304 					if_printf(ifp,
4305 					    "failed to add mc address"
4306 					    " %02x:%02x:%02x:"
4307 					    "%02x:%02x:%02x rc=%d\n",
4308 					    mcaddr[j][0], mcaddr[j][1],
4309 					    mcaddr[j][2], mcaddr[j][3],
4310 					    mcaddr[j][4], mcaddr[j][5],
4311 					    rc);
4312 				}
4313 				goto mcfail;
4314 			}
4315 		}
4316 
4317 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4318 		if (rc != 0)
4319 			if_printf(ifp, "failed to set mc address hash: %d", rc);
4320 mcfail:
4321 		if_maddr_runlock(ifp);
4322 	}
4323 
4324 	return (rc);
4325 }
4326 
4327 /*
4328  * {begin|end}_synchronized_op must be called from the same thread.
4329  */
4330 int
4331 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4332     char *wmesg)
4333 {
4334 	int rc, pri;
4335 
4336 #ifdef WITNESS
4337 	/* the caller thinks it's ok to sleep, but is it really? */
4338 	if (flags & SLEEP_OK)
4339 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4340 		    "begin_synchronized_op");
4341 #endif
4342 
4343 	if (INTR_OK)
4344 		pri = PCATCH;
4345 	else
4346 		pri = 0;
4347 
4348 	ADAPTER_LOCK(sc);
4349 	for (;;) {
4350 
4351 		if (vi && IS_DOOMED(vi)) {
4352 			rc = ENXIO;
4353 			goto done;
4354 		}
4355 
4356 		if (!IS_BUSY(sc)) {
4357 			rc = 0;
4358 			break;
4359 		}
4360 
4361 		if (!(flags & SLEEP_OK)) {
4362 			rc = EBUSY;
4363 			goto done;
4364 		}
4365 
4366 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4367 			rc = EINTR;
4368 			goto done;
4369 		}
4370 	}
4371 
4372 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4373 	SET_BUSY(sc);
4374 #ifdef INVARIANTS
4375 	sc->last_op = wmesg;
4376 	sc->last_op_thr = curthread;
4377 	sc->last_op_flags = flags;
4378 #endif
4379 
4380 done:
4381 	if (!(flags & HOLD_LOCK) || rc)
4382 		ADAPTER_UNLOCK(sc);
4383 
4384 	return (rc);
4385 }
4386 
4387 /*
4388  * Tell if_ioctl and if_init that the VI is going away.  This is
4389  * special variant of begin_synchronized_op and must be paired with a
4390  * call to end_synchronized_op.
4391  */
4392 void
4393 doom_vi(struct adapter *sc, struct vi_info *vi)
4394 {
4395 
4396 	ADAPTER_LOCK(sc);
4397 	SET_DOOMED(vi);
4398 	wakeup(&sc->flags);
4399 	while (IS_BUSY(sc))
4400 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4401 	SET_BUSY(sc);
4402 #ifdef INVARIANTS
4403 	sc->last_op = "t4detach";
4404 	sc->last_op_thr = curthread;
4405 	sc->last_op_flags = 0;
4406 #endif
4407 	ADAPTER_UNLOCK(sc);
4408 }
4409 
4410 /*
4411  * {begin|end}_synchronized_op must be called from the same thread.
4412  */
4413 void
4414 end_synchronized_op(struct adapter *sc, int flags)
4415 {
4416 
4417 	if (flags & LOCK_HELD)
4418 		ADAPTER_LOCK_ASSERT_OWNED(sc);
4419 	else
4420 		ADAPTER_LOCK(sc);
4421 
4422 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
4423 	CLR_BUSY(sc);
4424 	wakeup(&sc->flags);
4425 	ADAPTER_UNLOCK(sc);
4426 }
4427 
4428 static int
4429 cxgbe_init_synchronized(struct vi_info *vi)
4430 {
4431 	struct port_info *pi = vi->pi;
4432 	struct adapter *sc = pi->adapter;
4433 	struct ifnet *ifp = vi->ifp;
4434 	int rc = 0, i;
4435 	struct sge_txq *txq;
4436 
4437 	ASSERT_SYNCHRONIZED_OP(sc);
4438 
4439 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4440 		return (0);	/* already running */
4441 
4442 	if (!(sc->flags & FULL_INIT_DONE) &&
4443 	    ((rc = adapter_full_init(sc)) != 0))
4444 		return (rc);	/* error message displayed already */
4445 
4446 	if (!(vi->flags & VI_INIT_DONE) &&
4447 	    ((rc = vi_full_init(vi)) != 0))
4448 		return (rc); /* error message displayed already */
4449 
4450 	rc = update_mac_settings(ifp, XGMAC_ALL);
4451 	if (rc)
4452 		goto done;	/* error message displayed already */
4453 
4454 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4455 	if (rc != 0) {
4456 		if_printf(ifp, "enable_vi failed: %d\n", rc);
4457 		goto done;
4458 	}
4459 
4460 	/*
4461 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4462 	 * if this changes.
4463 	 */
4464 
4465 	for_each_txq(vi, i, txq) {
4466 		TXQ_LOCK(txq);
4467 		txq->eq.flags |= EQ_ENABLED;
4468 		TXQ_UNLOCK(txq);
4469 	}
4470 
4471 	/*
4472 	 * The first iq of the first port to come up is used for tracing.
4473 	 */
4474 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4475 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4476 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4477 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4478 		    V_QUEUENUMBER(sc->traceq));
4479 		pi->flags |= HAS_TRACEQ;
4480 	}
4481 
4482 	/* all ok */
4483 	PORT_LOCK(pi);
4484 	if (pi->up_vis++ == 0) {
4485 		t4_update_port_info(pi);
4486 		build_medialist(pi, &pi->media);
4487 		init_l1cfg(pi);
4488 	}
4489 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4490 
4491 	if (pi->nvi > 1 || sc->flags & IS_VF)
4492 		callout_reset(&vi->tick, hz, vi_tick, vi);
4493 	else
4494 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4495 	PORT_UNLOCK(pi);
4496 done:
4497 	if (rc != 0)
4498 		cxgbe_uninit_synchronized(vi);
4499 
4500 	return (rc);
4501 }
4502 
4503 /*
4504  * Idempotent.
4505  */
4506 static int
4507 cxgbe_uninit_synchronized(struct vi_info *vi)
4508 {
4509 	struct port_info *pi = vi->pi;
4510 	struct adapter *sc = pi->adapter;
4511 	struct ifnet *ifp = vi->ifp;
4512 	int rc, i;
4513 	struct sge_txq *txq;
4514 
4515 	ASSERT_SYNCHRONIZED_OP(sc);
4516 
4517 	if (!(vi->flags & VI_INIT_DONE)) {
4518 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4519 			KASSERT(0, ("uninited VI is running"));
4520 			if_printf(ifp, "uninited VI with running ifnet.  "
4521 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
4522 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
4523 			    ifp->if_drv_flags);
4524 		}
4525 		return (0);
4526 	}
4527 
4528 	/*
4529 	 * Disable the VI so that all its data in either direction is discarded
4530 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4531 	 * tick) intact as the TP can deliver negative advice or data that it's
4532 	 * holding in its RAM (for an offloaded connection) even after the VI is
4533 	 * disabled.
4534 	 */
4535 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4536 	if (rc) {
4537 		if_printf(ifp, "disable_vi failed: %d\n", rc);
4538 		return (rc);
4539 	}
4540 
4541 	for_each_txq(vi, i, txq) {
4542 		TXQ_LOCK(txq);
4543 		txq->eq.flags &= ~EQ_ENABLED;
4544 		TXQ_UNLOCK(txq);
4545 	}
4546 
4547 	PORT_LOCK(pi);
4548 	if (pi->nvi > 1 || sc->flags & IS_VF)
4549 		callout_stop(&vi->tick);
4550 	else
4551 		callout_stop(&pi->tick);
4552 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4553 		PORT_UNLOCK(pi);
4554 		return (0);
4555 	}
4556 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4557 	pi->up_vis--;
4558 	if (pi->up_vis > 0) {
4559 		PORT_UNLOCK(pi);
4560 		return (0);
4561 	}
4562 	PORT_UNLOCK(pi);
4563 
4564 	pi->link_cfg.link_ok = 0;
4565 	pi->link_cfg.speed = 0;
4566 	pi->link_cfg.link_down_rc = 255;
4567 	t4_os_link_changed(pi);
4568 	pi->old_link_cfg = pi->link_cfg;
4569 
4570 	return (0);
4571 }
4572 
4573 /*
4574  * It is ok for this function to fail midway and return right away.  t4_detach
4575  * will walk the entire sc->irq list and clean up whatever is valid.
4576  */
4577 int
4578 t4_setup_intr_handlers(struct adapter *sc)
4579 {
4580 	int rc, rid, p, q, v;
4581 	char s[8];
4582 	struct irq *irq;
4583 	struct port_info *pi;
4584 	struct vi_info *vi;
4585 	struct sge *sge = &sc->sge;
4586 	struct sge_rxq *rxq;
4587 #ifdef TCP_OFFLOAD
4588 	struct sge_ofld_rxq *ofld_rxq;
4589 #endif
4590 #ifdef DEV_NETMAP
4591 	struct sge_nm_rxq *nm_rxq;
4592 #endif
4593 #ifdef RSS
4594 	int nbuckets = rss_getnumbuckets();
4595 #endif
4596 
4597 	/*
4598 	 * Setup interrupts.
4599 	 */
4600 	irq = &sc->irq[0];
4601 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
4602 	if (forwarding_intr_to_fwq(sc))
4603 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4604 
4605 	/* Multiple interrupts. */
4606 	if (sc->flags & IS_VF)
4607 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4608 		    ("%s: too few intr.", __func__));
4609 	else
4610 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4611 		    ("%s: too few intr.", __func__));
4612 
4613 	/* The first one is always error intr on PFs */
4614 	if (!(sc->flags & IS_VF)) {
4615 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4616 		if (rc != 0)
4617 			return (rc);
4618 		irq++;
4619 		rid++;
4620 	}
4621 
4622 	/* The second one is always the firmware event queue (first on VFs) */
4623 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4624 	if (rc != 0)
4625 		return (rc);
4626 	irq++;
4627 	rid++;
4628 
4629 	for_each_port(sc, p) {
4630 		pi = sc->port[p];
4631 		for_each_vi(pi, v, vi) {
4632 			vi->first_intr = rid - 1;
4633 
4634 			if (vi->nnmrxq > 0) {
4635 				int n = max(vi->nrxq, vi->nnmrxq);
4636 
4637 				rxq = &sge->rxq[vi->first_rxq];
4638 #ifdef DEV_NETMAP
4639 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4640 #endif
4641 				for (q = 0; q < n; q++) {
4642 					snprintf(s, sizeof(s), "%x%c%x", p,
4643 					    'a' + v, q);
4644 					if (q < vi->nrxq)
4645 						irq->rxq = rxq++;
4646 #ifdef DEV_NETMAP
4647 					if (q < vi->nnmrxq)
4648 						irq->nm_rxq = nm_rxq++;
4649 #endif
4650 					rc = t4_alloc_irq(sc, irq, rid,
4651 					    t4_vi_intr, irq, s);
4652 					if (rc != 0)
4653 						return (rc);
4654 #ifdef RSS
4655 					if (q < vi->nrxq) {
4656 						bus_bind_intr(sc->dev, irq->res,
4657 						    rss_getcpu(q % nbuckets));
4658 					}
4659 #endif
4660 					irq++;
4661 					rid++;
4662 					vi->nintr++;
4663 				}
4664 			} else {
4665 				for_each_rxq(vi, q, rxq) {
4666 					snprintf(s, sizeof(s), "%x%c%x", p,
4667 					    'a' + v, q);
4668 					rc = t4_alloc_irq(sc, irq, rid,
4669 					    t4_intr, rxq, s);
4670 					if (rc != 0)
4671 						return (rc);
4672 #ifdef RSS
4673 					bus_bind_intr(sc->dev, irq->res,
4674 					    rss_getcpu(q % nbuckets));
4675 #endif
4676 					irq++;
4677 					rid++;
4678 					vi->nintr++;
4679 				}
4680 			}
4681 #ifdef TCP_OFFLOAD
4682 			for_each_ofld_rxq(vi, q, ofld_rxq) {
4683 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
4684 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
4685 				    ofld_rxq, s);
4686 				if (rc != 0)
4687 					return (rc);
4688 				irq++;
4689 				rid++;
4690 				vi->nintr++;
4691 			}
4692 #endif
4693 		}
4694 	}
4695 	MPASS(irq == &sc->irq[sc->intr_count]);
4696 
4697 	return (0);
4698 }
4699 
4700 int
4701 adapter_full_init(struct adapter *sc)
4702 {
4703 	int rc, i;
4704 #ifdef RSS
4705 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4706 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4707 #endif
4708 
4709 	ASSERT_SYNCHRONIZED_OP(sc);
4710 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4711 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4712 	    ("%s: FULL_INIT_DONE already", __func__));
4713 
4714 	/*
4715 	 * queues that belong to the adapter (not any particular port).
4716 	 */
4717 	rc = t4_setup_adapter_queues(sc);
4718 	if (rc != 0)
4719 		goto done;
4720 
4721 	for (i = 0; i < nitems(sc->tq); i++) {
4722 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4723 		    taskqueue_thread_enqueue, &sc->tq[i]);
4724 		if (sc->tq[i] == NULL) {
4725 			device_printf(sc->dev,
4726 			    "failed to allocate task queue %d\n", i);
4727 			rc = ENOMEM;
4728 			goto done;
4729 		}
4730 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4731 		    device_get_nameunit(sc->dev), i);
4732 	}
4733 #ifdef RSS
4734 	MPASS(RSS_KEYSIZE == 40);
4735 	rss_getkey((void *)&raw_rss_key[0]);
4736 	for (i = 0; i < nitems(rss_key); i++) {
4737 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4738 	}
4739 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
4740 #endif
4741 
4742 	if (!(sc->flags & IS_VF))
4743 		t4_intr_enable(sc);
4744 	sc->flags |= FULL_INIT_DONE;
4745 done:
4746 	if (rc != 0)
4747 		adapter_full_uninit(sc);
4748 
4749 	return (rc);
4750 }
4751 
4752 int
4753 adapter_full_uninit(struct adapter *sc)
4754 {
4755 	int i;
4756 
4757 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4758 
4759 	t4_teardown_adapter_queues(sc);
4760 
4761 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4762 		taskqueue_free(sc->tq[i]);
4763 		sc->tq[i] = NULL;
4764 	}
4765 
4766 	sc->flags &= ~FULL_INIT_DONE;
4767 
4768 	return (0);
4769 }
4770 
4771 #ifdef RSS
4772 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4773     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4774     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4775     RSS_HASHTYPE_RSS_UDP_IPV6)
4776 
4777 /* Translates kernel hash types to hardware. */
4778 static int
4779 hashconfig_to_hashen(int hashconfig)
4780 {
4781 	int hashen = 0;
4782 
4783 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4784 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4785 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4786 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4787 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4788 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4789 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4790 	}
4791 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4792 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4793 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4794 	}
4795 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4796 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4797 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4798 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4799 
4800 	return (hashen);
4801 }
4802 
4803 /* Translates hardware hash types to kernel. */
4804 static int
4805 hashen_to_hashconfig(int hashen)
4806 {
4807 	int hashconfig = 0;
4808 
4809 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4810 		/*
4811 		 * If UDP hashing was enabled it must have been enabled for
4812 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4813 		 * enabling any 4-tuple hash is nonsense configuration.
4814 		 */
4815 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4816 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4817 
4818 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4819 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4820 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4821 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4822 	}
4823 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4824 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4825 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4826 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4827 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4828 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4829 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4830 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4831 
4832 	return (hashconfig);
4833 }
4834 #endif
4835 
4836 int
4837 vi_full_init(struct vi_info *vi)
4838 {
4839 	struct adapter *sc = vi->pi->adapter;
4840 	struct ifnet *ifp = vi->ifp;
4841 	uint16_t *rss;
4842 	struct sge_rxq *rxq;
4843 	int rc, i, j, hashen;
4844 #ifdef RSS
4845 	int nbuckets = rss_getnumbuckets();
4846 	int hashconfig = rss_gethashconfig();
4847 	int extra;
4848 #endif
4849 
4850 	ASSERT_SYNCHRONIZED_OP(sc);
4851 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
4852 	    ("%s: VI_INIT_DONE already", __func__));
4853 
4854 	sysctl_ctx_init(&vi->ctx);
4855 	vi->flags |= VI_SYSCTL_CTX;
4856 
4857 	/*
4858 	 * Allocate tx/rx/fl queues for this VI.
4859 	 */
4860 	rc = t4_setup_vi_queues(vi);
4861 	if (rc != 0)
4862 		goto done;	/* error message displayed already */
4863 
4864 	/*
4865 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4866 	 */
4867 	if (vi->nrxq > vi->rss_size) {
4868 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4869 		    "some queues will never receive traffic.\n", vi->nrxq,
4870 		    vi->rss_size);
4871 	} else if (vi->rss_size % vi->nrxq) {
4872 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4873 		    "expect uneven traffic distribution.\n", vi->nrxq,
4874 		    vi->rss_size);
4875 	}
4876 #ifdef RSS
4877 	if (vi->nrxq != nbuckets) {
4878 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4879 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
4880 	}
4881 #endif
4882 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4883 	for (i = 0; i < vi->rss_size;) {
4884 #ifdef RSS
4885 		j = rss_get_indirection_to_bucket(i);
4886 		j %= vi->nrxq;
4887 		rxq = &sc->sge.rxq[vi->first_rxq + j];
4888 		rss[i++] = rxq->iq.abs_id;
4889 #else
4890 		for_each_rxq(vi, j, rxq) {
4891 			rss[i++] = rxq->iq.abs_id;
4892 			if (i == vi->rss_size)
4893 				break;
4894 		}
4895 #endif
4896 	}
4897 
4898 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4899 	    vi->rss_size);
4900 	if (rc != 0) {
4901 		if_printf(ifp, "rss_config failed: %d\n", rc);
4902 		goto done;
4903 	}
4904 
4905 #ifdef RSS
4906 	hashen = hashconfig_to_hashen(hashconfig);
4907 
4908 	/*
4909 	 * We may have had to enable some hashes even though the global config
4910 	 * wants them disabled.  This is a potential problem that must be
4911 	 * reported to the user.
4912 	 */
4913 	extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4914 
4915 	/*
4916 	 * If we consider only the supported hash types, then the enabled hashes
4917 	 * are a superset of the requested hashes.  In other words, there cannot
4918 	 * be any supported hash that was requested but not enabled, but there
4919 	 * can be hashes that were not requested but had to be enabled.
4920 	 */
4921 	extra &= SUPPORTED_RSS_HASHTYPES;
4922 	MPASS((extra & hashconfig) == 0);
4923 
4924 	if (extra) {
4925 		if_printf(ifp,
4926 		    "global RSS config (0x%x) cannot be accommodated.\n",
4927 		    hashconfig);
4928 	}
4929 	if (extra & RSS_HASHTYPE_RSS_IPV4)
4930 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4931 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4932 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4933 	if (extra & RSS_HASHTYPE_RSS_IPV6)
4934 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4935 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4936 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4937 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4938 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4939 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4940 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4941 #else
4942 	hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4943 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4944 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4945 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4946 #endif
4947 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4948 	if (rc != 0) {
4949 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4950 		goto done;
4951 	}
4952 
4953 	vi->rss = rss;
4954 	vi->flags |= VI_INIT_DONE;
4955 done:
4956 	if (rc != 0)
4957 		vi_full_uninit(vi);
4958 
4959 	return (rc);
4960 }
4961 
4962 /*
4963  * Idempotent.
4964  */
4965 int
4966 vi_full_uninit(struct vi_info *vi)
4967 {
4968 	struct port_info *pi = vi->pi;
4969 	struct adapter *sc = pi->adapter;
4970 	int i;
4971 	struct sge_rxq *rxq;
4972 	struct sge_txq *txq;
4973 #ifdef TCP_OFFLOAD
4974 	struct sge_ofld_rxq *ofld_rxq;
4975 	struct sge_wrq *ofld_txq;
4976 #endif
4977 
4978 	if (vi->flags & VI_INIT_DONE) {
4979 
4980 		/* Need to quiesce queues.  */
4981 
4982 		/* XXX: Only for the first VI? */
4983 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4984 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4985 
4986 		for_each_txq(vi, i, txq) {
4987 			quiesce_txq(sc, txq);
4988 		}
4989 
4990 #ifdef TCP_OFFLOAD
4991 		for_each_ofld_txq(vi, i, ofld_txq) {
4992 			quiesce_wrq(sc, ofld_txq);
4993 		}
4994 #endif
4995 
4996 		for_each_rxq(vi, i, rxq) {
4997 			quiesce_iq(sc, &rxq->iq);
4998 			quiesce_fl(sc, &rxq->fl);
4999 		}
5000 
5001 #ifdef TCP_OFFLOAD
5002 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5003 			quiesce_iq(sc, &ofld_rxq->iq);
5004 			quiesce_fl(sc, &ofld_rxq->fl);
5005 		}
5006 #endif
5007 		free(vi->rss, M_CXGBE);
5008 		free(vi->nm_rss, M_CXGBE);
5009 	}
5010 
5011 	t4_teardown_vi_queues(vi);
5012 	vi->flags &= ~VI_INIT_DONE;
5013 
5014 	return (0);
5015 }
5016 
5017 static void
5018 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5019 {
5020 	struct sge_eq *eq = &txq->eq;
5021 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5022 
5023 	(void) sc;	/* unused */
5024 
5025 #ifdef INVARIANTS
5026 	TXQ_LOCK(txq);
5027 	MPASS((eq->flags & EQ_ENABLED) == 0);
5028 	TXQ_UNLOCK(txq);
5029 #endif
5030 
5031 	/* Wait for the mp_ring to empty. */
5032 	while (!mp_ring_is_idle(txq->r)) {
5033 		mp_ring_check_drainage(txq->r, 0);
5034 		pause("rquiesce", 1);
5035 	}
5036 
5037 	/* Then wait for the hardware to finish. */
5038 	while (spg->cidx != htobe16(eq->pidx))
5039 		pause("equiesce", 1);
5040 
5041 	/* Finally, wait for the driver to reclaim all descriptors. */
5042 	while (eq->cidx != eq->pidx)
5043 		pause("dquiesce", 1);
5044 }
5045 
5046 static void
5047 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5048 {
5049 
5050 	/* XXXTX */
5051 }
5052 
5053 static void
5054 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5055 {
5056 	(void) sc;	/* unused */
5057 
5058 	/* Synchronize with the interrupt handler */
5059 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5060 		pause("iqfree", 1);
5061 }
5062 
5063 static void
5064 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5065 {
5066 	mtx_lock(&sc->sfl_lock);
5067 	FL_LOCK(fl);
5068 	fl->flags |= FL_DOOMED;
5069 	FL_UNLOCK(fl);
5070 	callout_stop(&sc->sfl_callout);
5071 	mtx_unlock(&sc->sfl_lock);
5072 
5073 	KASSERT((fl->flags & FL_STARVING) == 0,
5074 	    ("%s: still starving", __func__));
5075 }
5076 
5077 static int
5078 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5079     driver_intr_t *handler, void *arg, char *name)
5080 {
5081 	int rc;
5082 
5083 	irq->rid = rid;
5084 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5085 	    RF_SHAREABLE | RF_ACTIVE);
5086 	if (irq->res == NULL) {
5087 		device_printf(sc->dev,
5088 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5089 		return (ENOMEM);
5090 	}
5091 
5092 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5093 	    NULL, handler, arg, &irq->tag);
5094 	if (rc != 0) {
5095 		device_printf(sc->dev,
5096 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5097 		    rid, name, rc);
5098 	} else if (name)
5099 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5100 
5101 	return (rc);
5102 }
5103 
5104 static int
5105 t4_free_irq(struct adapter *sc, struct irq *irq)
5106 {
5107 	if (irq->tag)
5108 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5109 	if (irq->res)
5110 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5111 
5112 	bzero(irq, sizeof(*irq));
5113 
5114 	return (0);
5115 }
5116 
5117 static void
5118 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5119 {
5120 
5121 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5122 	t4_get_regs(sc, buf, regs->len);
5123 }
5124 
5125 #define	A_PL_INDIR_CMD	0x1f8
5126 
5127 #define	S_PL_AUTOINC	31
5128 #define	M_PL_AUTOINC	0x1U
5129 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5130 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5131 
5132 #define	S_PL_VFID	20
5133 #define	M_PL_VFID	0xffU
5134 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5135 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5136 
5137 #define	S_PL_ADDR	0
5138 #define	M_PL_ADDR	0xfffffU
5139 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5140 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5141 
5142 #define	A_PL_INDIR_DATA	0x1fc
5143 
5144 static uint64_t
5145 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
5146 {
5147 	u32 stats[2];
5148 
5149 	mtx_assert(&sc->reg_lock, MA_OWNED);
5150 	if (sc->flags & IS_VF) {
5151 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5152 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5153 	} else {
5154 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5155 		    V_PL_VFID(G_FW_VIID_VIN(viid)) |
5156 		    V_PL_ADDR(VF_MPS_REG(reg)));
5157 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5158 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5159 	}
5160 	return (((uint64_t)stats[1]) << 32 | stats[0]);
5161 }
5162 
5163 static void
5164 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
5165     struct fw_vi_stats_vf *stats)
5166 {
5167 
5168 #define GET_STAT(name) \
5169 	read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
5170 
5171 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5172 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5173 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5174 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5175 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5176 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5177 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5178 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5179 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5180 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5181 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5182 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5183 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5184 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5185 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5186 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5187 
5188 #undef GET_STAT
5189 }
5190 
5191 static void
5192 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
5193 {
5194 	int reg;
5195 
5196 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5197 	    V_PL_VFID(G_FW_VIID_VIN(viid)) |
5198 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5199 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5200 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5201 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5202 }
5203 
5204 static void
5205 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5206 {
5207 	struct timeval tv;
5208 	const struct timeval interval = {0, 250000};	/* 250ms */
5209 
5210 	if (!(vi->flags & VI_INIT_DONE))
5211 		return;
5212 
5213 	getmicrotime(&tv);
5214 	timevalsub(&tv, &interval);
5215 	if (timevalcmp(&tv, &vi->last_refreshed, <))
5216 		return;
5217 
5218 	mtx_lock(&sc->reg_lock);
5219 	t4_get_vi_stats(sc, vi->viid, &vi->stats);
5220 	getmicrotime(&vi->last_refreshed);
5221 	mtx_unlock(&sc->reg_lock);
5222 }
5223 
5224 static void
5225 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5226 {
5227 	u_int i, v, tnl_cong_drops, bg_map;
5228 	struct timeval tv;
5229 	const struct timeval interval = {0, 250000};	/* 250ms */
5230 
5231 	getmicrotime(&tv);
5232 	timevalsub(&tv, &interval);
5233 	if (timevalcmp(&tv, &pi->last_refreshed, <))
5234 		return;
5235 
5236 	tnl_cong_drops = 0;
5237 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5238 	bg_map = pi->mps_bg_map;
5239 	while (bg_map) {
5240 		i = ffs(bg_map) - 1;
5241 		mtx_lock(&sc->reg_lock);
5242 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5243 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
5244 		mtx_unlock(&sc->reg_lock);
5245 		tnl_cong_drops += v;
5246 		bg_map &= ~(1 << i);
5247 	}
5248 	pi->tnl_cong_drops = tnl_cong_drops;
5249 	getmicrotime(&pi->last_refreshed);
5250 }
5251 
5252 static void
5253 cxgbe_tick(void *arg)
5254 {
5255 	struct port_info *pi = arg;
5256 	struct adapter *sc = pi->adapter;
5257 
5258 	PORT_LOCK_ASSERT_OWNED(pi);
5259 	cxgbe_refresh_stats(sc, pi);
5260 
5261 	callout_schedule(&pi->tick, hz);
5262 }
5263 
5264 void
5265 vi_tick(void *arg)
5266 {
5267 	struct vi_info *vi = arg;
5268 	struct adapter *sc = vi->pi->adapter;
5269 
5270 	vi_refresh_stats(sc, vi);
5271 
5272 	callout_schedule(&vi->tick, hz);
5273 }
5274 
5275 static void
5276 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
5277 {
5278 	struct ifnet *vlan;
5279 
5280 	if (arg != ifp || ifp->if_type != IFT_ETHER)
5281 		return;
5282 
5283 	vlan = VLAN_DEVAT(ifp, vid);
5284 	VLAN_SETCOOKIE(vlan, ifp);
5285 }
5286 
5287 /*
5288  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5289  */
5290 static char *caps_decoder[] = {
5291 	"\20\001IPMI\002NCSI",				/* 0: NBM */
5292 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
5293 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
5294 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
5295 	    "\006HASHFILTER\007ETHOFLD",
5296 	"\20\001TOE",					/* 4: TOE */
5297 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
5298 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
5299 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5300 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5301 	    "\007T10DIF"
5302 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5303 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
5304 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
5305 		    "\004PO_INITIATOR\005PO_TARGET",
5306 };
5307 
5308 void
5309 t4_sysctls(struct adapter *sc)
5310 {
5311 	struct sysctl_ctx_list *ctx;
5312 	struct sysctl_oid *oid;
5313 	struct sysctl_oid_list *children, *c0;
5314 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5315 
5316 	ctx = device_get_sysctl_ctx(sc->dev);
5317 
5318 	/*
5319 	 * dev.t4nex.X.
5320 	 */
5321 	oid = device_get_sysctl_tree(sc->dev);
5322 	c0 = children = SYSCTL_CHILDREN(oid);
5323 
5324 	sc->sc_do_rxcopy = 1;
5325 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5326 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5327 
5328 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5329 	    sc->params.nports, "# of ports");
5330 
5331 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5332 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
5333 	    sysctl_bitfield, "A", "available doorbells");
5334 
5335 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5336 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
5337 
5338 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5339 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5340 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5341 	    "interrupt holdoff timer values (us)");
5342 
5343 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5344 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5345 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5346 	    "interrupt holdoff packet counter values");
5347 
5348 	t4_sge_sysctls(sc, ctx, children);
5349 
5350 	sc->lro_timeout = 100;
5351 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5352 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5353 
5354 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5355 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
5356 
5357 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5358 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5359 
5360 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5361 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5362 
5363 	if (sc->flags & IS_VF)
5364 		return;
5365 
5366 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5367 	    NULL, chip_rev(sc), "chip hardware revision");
5368 
5369 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5370 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5371 
5372 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5373 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5374 
5375 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5376 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5377 
5378 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5379 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5380 
5381 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5382 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5383 
5384 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5385 	    sc->er_version, 0, "expansion ROM version");
5386 
5387 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5388 	    sc->bs_version, 0, "bootstrap firmware version");
5389 
5390 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5391 	    NULL, sc->params.scfg_vers, "serial config version");
5392 
5393 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5394 	    NULL, sc->params.vpd_vers, "VPD version");
5395 
5396 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5397 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5398 
5399 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5400 	    sc->cfcsum, "config file checksum");
5401 
5402 #define SYSCTL_CAP(name, n, text) \
5403 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5404 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
5405 	    sysctl_bitfield, "A", "available " text " capabilities")
5406 
5407 	SYSCTL_CAP(nbmcaps, 0, "NBM");
5408 	SYSCTL_CAP(linkcaps, 1, "link");
5409 	SYSCTL_CAP(switchcaps, 2, "switch");
5410 	SYSCTL_CAP(niccaps, 3, "NIC");
5411 	SYSCTL_CAP(toecaps, 4, "TCP offload");
5412 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
5413 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
5414 	SYSCTL_CAP(cryptocaps, 7, "crypto");
5415 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
5416 #undef SYSCTL_CAP
5417 
5418 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
5419 	    NULL, sc->tids.nftids, "number of filters");
5420 
5421 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
5422 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
5423 	    "chip temperature (in Celsius)");
5424 
5425 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
5426 	    &sc->params.core_vdd, 0, "core Vdd (in mV)");
5427 
5428 #ifdef SBUF_DRAIN
5429 	/*
5430 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
5431 	 */
5432 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
5433 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
5434 	    "logs and miscellaneous information");
5435 	children = SYSCTL_CHILDREN(oid);
5436 
5437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
5438 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5439 	    sysctl_cctrl, "A", "congestion control");
5440 
5441 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
5442 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5443 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
5444 
5445 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5446 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5447 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5448 
5449 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5450 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5451 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5452 
5453 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5454 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5455 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5456 
5457 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5458 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5459 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5460 
5461 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5462 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5463 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5464 
5465 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5466 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5467 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5468 	    "A", "CIM logic analyzer");
5469 
5470 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5471 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5472 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5473 
5474 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5475 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5476 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5477 
5478 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5479 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5480 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5481 
5482 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5483 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5484 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5485 
5486 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5487 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5488 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5489 
5490 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5491 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5492 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5493 
5494 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5495 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5496 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5497 
5498 	if (chip_id(sc) > CHELSIO_T4) {
5499 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5500 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5501 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5502 
5503 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5504 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5505 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5506 	}
5507 
5508 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5509 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5510 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5511 
5512 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5513 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5514 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
5515 
5516 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5517 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5518 	    sysctl_cpl_stats, "A", "CPL statistics");
5519 
5520 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5521 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5522 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5523 
5524 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5525 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5526 	    sysctl_devlog, "A", "firmware's device log");
5527 
5528 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5529 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5530 	    sysctl_fcoe_stats, "A", "FCoE statistics");
5531 
5532 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5533 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5534 	    sysctl_hw_sched, "A", "hardware scheduler ");
5535 
5536 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5537 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5538 	    sysctl_l2t, "A", "hardware L2 table");
5539 
5540 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5541 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5542 	    sysctl_lb_stats, "A", "loopback statistics");
5543 
5544 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5545 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5546 	    sysctl_meminfo, "A", "memory regions");
5547 
5548 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5549 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5550 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5551 	    "A", "MPS TCAM entries");
5552 
5553 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5554 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5555 	    sysctl_path_mtus, "A", "path MTUs");
5556 
5557 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5558 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5559 	    sysctl_pm_stats, "A", "PM statistics");
5560 
5561 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5562 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5563 	    sysctl_rdma_stats, "A", "RDMA statistics");
5564 
5565 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5566 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5567 	    sysctl_tcp_stats, "A", "TCP statistics");
5568 
5569 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5570 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5571 	    sysctl_tids, "A", "TID information");
5572 
5573 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5574 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5575 	    sysctl_tp_err_stats, "A", "TP error statistics");
5576 
5577 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5578 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5579 	    "TP logic analyzer event capture mask");
5580 
5581 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5582 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5583 	    sysctl_tp_la, "A", "TP logic analyzer");
5584 
5585 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5586 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5587 	    sysctl_tx_rate, "A", "Tx rate");
5588 
5589 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5590 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5591 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5592 
5593 	if (chip_id(sc) >= CHELSIO_T5) {
5594 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5595 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5596 		    sysctl_wcwr_stats, "A", "write combined work requests");
5597 	}
5598 #endif
5599 
5600 #ifdef TCP_OFFLOAD
5601 	if (is_offload(sc)) {
5602 		int i;
5603 		char s[4];
5604 
5605 		/*
5606 		 * dev.t4nex.X.toe.
5607 		 */
5608 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5609 		    NULL, "TOE parameters");
5610 		children = SYSCTL_CHILDREN(oid);
5611 
5612 		sc->tt.cong_algorithm = -1;
5613 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
5614 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
5615 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
5616 		    "3 = highspeed)");
5617 
5618 		sc->tt.sndbuf = 256 * 1024;
5619 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5620 		    &sc->tt.sndbuf, 0, "max hardware send buffer size");
5621 
5622 		sc->tt.ddp = 0;
5623 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5624 		    &sc->tt.ddp, 0, "DDP allowed");
5625 
5626 		sc->tt.rx_coalesce = 1;
5627 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5628 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5629 
5630 		sc->tt.tls = 0;
5631 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
5632 		    &sc->tt.tls, 0, "Inline TLS allowed");
5633 
5634 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
5635 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
5636 		    "I", "TCP ports that use inline TLS+TOE RX");
5637 
5638 		sc->tt.tx_align = 1;
5639 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5640 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5641 
5642 		sc->tt.tx_zcopy = 0;
5643 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5644 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5645 		    "Enable zero-copy aio_write(2)");
5646 
5647 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
5648 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
5649 		    "cop_managed_offloading", CTLFLAG_RW,
5650 		    &sc->tt.cop_managed_offloading, 0,
5651 		    "COP (Connection Offload Policy) controls all TOE offload");
5652 
5653 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5654 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5655 		    "TP timer tick (us)");
5656 
5657 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5658 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5659 		    "TCP timestamp tick (us)");
5660 
5661 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5662 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5663 		    "DACK tick (us)");
5664 
5665 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5666 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5667 		    "IU", "DACK timer (us)");
5668 
5669 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5670 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5671 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
5672 
5673 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5674 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5675 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
5676 
5677 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5678 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5679 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
5680 
5681 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5682 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5683 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
5684 
5685 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5686 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5687 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
5688 
5689 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
5690 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5691 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
5692 
5693 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5694 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5695 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
5696 
5697 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5698 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5699 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5700 
5701 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
5702 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
5703 		    sysctl_tp_shift_cnt, "IU",
5704 		    "Number of SYN retransmissions before abort");
5705 
5706 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
5707 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
5708 		    sysctl_tp_shift_cnt, "IU",
5709 		    "Number of retransmissions before abort");
5710 
5711 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
5712 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
5713 		    sysctl_tp_shift_cnt, "IU",
5714 		    "Number of keepalive probes before abort");
5715 
5716 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
5717 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
5718 		children = SYSCTL_CHILDREN(oid);
5719 		for (i = 0; i < 16; i++) {
5720 			snprintf(s, sizeof(s), "%u", i);
5721 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
5722 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
5723 			    "IU", "TOE retransmit backoff");
5724 		}
5725 	}
5726 #endif
5727 }
5728 
5729 void
5730 vi_sysctls(struct vi_info *vi)
5731 {
5732 	struct sysctl_ctx_list *ctx;
5733 	struct sysctl_oid *oid;
5734 	struct sysctl_oid_list *children;
5735 
5736 	ctx = device_get_sysctl_ctx(vi->dev);
5737 
5738 	/*
5739 	 * dev.v?(cxgbe|cxl).X.
5740 	 */
5741 	oid = device_get_sysctl_tree(vi->dev);
5742 	children = SYSCTL_CHILDREN(oid);
5743 
5744 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5745 	    vi->viid, "VI identifer");
5746 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5747 	    &vi->nrxq, 0, "# of rx queues");
5748 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5749 	    &vi->ntxq, 0, "# of tx queues");
5750 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5751 	    &vi->first_rxq, 0, "index of first rx queue");
5752 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5753 	    &vi->first_txq, 0, "index of first tx queue");
5754 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5755 	    vi->rss_size, "size of RSS indirection table");
5756 
5757 	if (IS_MAIN_VI(vi)) {
5758 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5759 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5760 		    "Reserve queue 0 for non-flowid packets");
5761 	}
5762 
5763 #ifdef TCP_OFFLOAD
5764 	if (vi->nofldrxq != 0) {
5765 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5766 		    &vi->nofldrxq, 0,
5767 		    "# of rx queues for offloaded TCP connections");
5768 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5769 		    &vi->nofldtxq, 0,
5770 		    "# of tx queues for offloaded TCP connections");
5771 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5772 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5773 		    "index of first TOE rx queue");
5774 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5775 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
5776 		    "index of first TOE tx queue");
5777 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
5778 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5779 		    sysctl_holdoff_tmr_idx_ofld, "I",
5780 		    "holdoff timer index for TOE queues");
5781 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
5782 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5783 		    sysctl_holdoff_pktc_idx_ofld, "I",
5784 		    "holdoff packet counter index for TOE queues");
5785 	}
5786 #endif
5787 #ifdef DEV_NETMAP
5788 	if (vi->nnmrxq != 0) {
5789 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5790 		    &vi->nnmrxq, 0, "# of netmap rx queues");
5791 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5792 		    &vi->nnmtxq, 0, "# of netmap tx queues");
5793 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5794 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
5795 		    "index of first netmap rx queue");
5796 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5797 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
5798 		    "index of first netmap tx queue");
5799 	}
5800 #endif
5801 
5802 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5803 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5804 	    "holdoff timer index");
5805 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5806 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5807 	    "holdoff packet counter index");
5808 
5809 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5810 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5811 	    "rx queue size");
5812 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5813 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5814 	    "tx queue size");
5815 }
5816 
5817 static void
5818 cxgbe_sysctls(struct port_info *pi)
5819 {
5820 	struct sysctl_ctx_list *ctx;
5821 	struct sysctl_oid *oid;
5822 	struct sysctl_oid_list *children, *children2;
5823 	struct adapter *sc = pi->adapter;
5824 	int i;
5825 	char name[16];
5826 
5827 	ctx = device_get_sysctl_ctx(pi->dev);
5828 
5829 	/*
5830 	 * dev.cxgbe.X.
5831 	 */
5832 	oid = device_get_sysctl_tree(pi->dev);
5833 	children = SYSCTL_CHILDREN(oid);
5834 
5835 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5836 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5837 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5838 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5839 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5840 		    "PHY temperature (in Celsius)");
5841 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5842 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5843 		    "PHY firmware version");
5844 	}
5845 
5846 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5847 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5848 	    "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5849 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5850 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5851 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5852 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5853 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5854 	    "autonegotiation (-1 = not supported)");
5855 
5856 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5857 	    port_top_speed(pi), "max speed (in Gbps)");
5858 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
5859 	    pi->mps_bg_map, "MPS buffer group map");
5860 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
5861 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
5862 
5863 	if (sc->flags & IS_VF)
5864 		return;
5865 
5866 	/*
5867 	 * dev.(cxgbe|cxl).X.tc.
5868 	 */
5869 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5870 	    "Tx scheduler traffic classes (cl_rl)");
5871 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5872 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5873 
5874 		snprintf(name, sizeof(name), "%d", i);
5875 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5876 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5877 		    "traffic class"));
5878 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5879 		    &tc->flags, 0, "flags");
5880 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5881 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5882 #ifdef SBUF_DRAIN
5883 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5884 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5885 		    sysctl_tc_params, "A", "traffic class parameters");
5886 #endif
5887 	}
5888 
5889 	/*
5890 	 * dev.cxgbe.X.stats.
5891 	 */
5892 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5893 	    NULL, "port statistics");
5894 	children = SYSCTL_CHILDREN(oid);
5895 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5896 	    &pi->tx_parse_error, 0,
5897 	    "# of tx packets with invalid length or # of segments");
5898 
5899 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5900 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5901 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5902 	    sysctl_handle_t4_reg64, "QU", desc)
5903 
5904 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5905 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5906 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5907 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5908 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5909 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5910 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5911 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5912 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5913 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5914 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5915 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5916 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5917 	    "# of tx frames in this range",
5918 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5919 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5920 	    "# of tx frames in this range",
5921 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5922 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5923 	    "# of tx frames in this range",
5924 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5925 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5926 	    "# of tx frames in this range",
5927 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5928 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5929 	    "# of tx frames in this range",
5930 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5931 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5932 	    "# of tx frames in this range",
5933 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5934 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5935 	    "# of tx frames in this range",
5936 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5937 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5938 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5939 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5940 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5941 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5942 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5943 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5944 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5945 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5946 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5947 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5948 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5949 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5950 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5951 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5952 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5953 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5954 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5955 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5956 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5957 
5958 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5959 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5960 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5961 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5962 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5963 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5964 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5965 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5966 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5967 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5968 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5969 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5970 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5971 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5972 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5973 	    "# of frames received with bad FCS",
5974 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5975 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5976 	    "# of frames received with length error",
5977 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5978 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5979 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5980 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5981 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5982 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5983 	    "# of rx frames in this range",
5984 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5985 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5986 	    "# of rx frames in this range",
5987 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5988 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5989 	    "# of rx frames in this range",
5990 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5991 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5992 	    "# of rx frames in this range",
5993 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5994 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5995 	    "# of rx frames in this range",
5996 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5997 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5998 	    "# of rx frames in this range",
5999 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6000 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6001 	    "# of rx frames in this range",
6002 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6003 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6004 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6005 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6006 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6007 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6008 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6009 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6010 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6011 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6012 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6013 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6014 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6015 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6016 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6017 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6018 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6019 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6020 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6021 
6022 #undef SYSCTL_ADD_T4_REG64
6023 
6024 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6025 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6026 	    &pi->stats.name, desc)
6027 
6028 	/* We get these from port_stats and they may be stale by up to 1s */
6029 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6030 	    "# drops due to buffer-group 0 overflows");
6031 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6032 	    "# drops due to buffer-group 1 overflows");
6033 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6034 	    "# drops due to buffer-group 2 overflows");
6035 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6036 	    "# drops due to buffer-group 3 overflows");
6037 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6038 	    "# of buffer-group 0 truncated packets");
6039 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6040 	    "# of buffer-group 1 truncated packets");
6041 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6042 	    "# of buffer-group 2 truncated packets");
6043 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6044 	    "# of buffer-group 3 truncated packets");
6045 
6046 #undef SYSCTL_ADD_T4_PORTSTAT
6047 
6048 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6049 	    CTLFLAG_RD, &pi->tx_tls_records,
6050 	    "# of TLS records transmitted");
6051 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6052 	    CTLFLAG_RD, &pi->tx_tls_octets,
6053 	    "# of payload octets in transmitted TLS records");
6054 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6055 	    CTLFLAG_RD, &pi->rx_tls_records,
6056 	    "# of TLS records received");
6057 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6058 	    CTLFLAG_RD, &pi->rx_tls_octets,
6059 	    "# of payload octets in received TLS records");
6060 }
6061 
6062 static int
6063 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6064 {
6065 	int rc, *i, space = 0;
6066 	struct sbuf sb;
6067 
6068 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6069 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6070 		if (space)
6071 			sbuf_printf(&sb, " ");
6072 		sbuf_printf(&sb, "%d", *i);
6073 		space = 1;
6074 	}
6075 	rc = sbuf_finish(&sb);
6076 	sbuf_delete(&sb);
6077 	return (rc);
6078 }
6079 
6080 static int
6081 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
6082 {
6083 	int rc;
6084 	struct sbuf *sb;
6085 
6086 	rc = sysctl_wire_old_buffer(req, 0);
6087 	if (rc != 0)
6088 		return(rc);
6089 
6090 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6091 	if (sb == NULL)
6092 		return (ENOMEM);
6093 
6094 	sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
6095 	rc = sbuf_finish(sb);
6096 	sbuf_delete(sb);
6097 
6098 	return (rc);
6099 }
6100 
6101 static int
6102 sysctl_btphy(SYSCTL_HANDLER_ARGS)
6103 {
6104 	struct port_info *pi = arg1;
6105 	int op = arg2;
6106 	struct adapter *sc = pi->adapter;
6107 	u_int v;
6108 	int rc;
6109 
6110 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
6111 	if (rc)
6112 		return (rc);
6113 	/* XXX: magic numbers */
6114 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
6115 	    &v);
6116 	end_synchronized_op(sc, 0);
6117 	if (rc)
6118 		return (rc);
6119 	if (op == 0)
6120 		v /= 256;
6121 
6122 	rc = sysctl_handle_int(oidp, &v, 0, req);
6123 	return (rc);
6124 }
6125 
6126 static int
6127 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
6128 {
6129 	struct vi_info *vi = arg1;
6130 	int rc, val;
6131 
6132 	val = vi->rsrv_noflowq;
6133 	rc = sysctl_handle_int(oidp, &val, 0, req);
6134 	if (rc != 0 || req->newptr == NULL)
6135 		return (rc);
6136 
6137 	if ((val >= 1) && (vi->ntxq > 1))
6138 		vi->rsrv_noflowq = 1;
6139 	else
6140 		vi->rsrv_noflowq = 0;
6141 
6142 	return (rc);
6143 }
6144 
6145 static int
6146 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
6147 {
6148 	struct vi_info *vi = arg1;
6149 	struct adapter *sc = vi->pi->adapter;
6150 	int idx, rc, i;
6151 	struct sge_rxq *rxq;
6152 	uint8_t v;
6153 
6154 	idx = vi->tmr_idx;
6155 
6156 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6157 	if (rc != 0 || req->newptr == NULL)
6158 		return (rc);
6159 
6160 	if (idx < 0 || idx >= SGE_NTIMERS)
6161 		return (EINVAL);
6162 
6163 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6164 	    "t4tmr");
6165 	if (rc)
6166 		return (rc);
6167 
6168 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
6169 	for_each_rxq(vi, i, rxq) {
6170 #ifdef atomic_store_rel_8
6171 		atomic_store_rel_8(&rxq->iq.intr_params, v);
6172 #else
6173 		rxq->iq.intr_params = v;
6174 #endif
6175 	}
6176 	vi->tmr_idx = idx;
6177 
6178 	end_synchronized_op(sc, LOCK_HELD);
6179 	return (0);
6180 }
6181 
6182 static int
6183 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6184 {
6185 	struct vi_info *vi = arg1;
6186 	struct adapter *sc = vi->pi->adapter;
6187 	int idx, rc;
6188 
6189 	idx = vi->pktc_idx;
6190 
6191 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6192 	if (rc != 0 || req->newptr == NULL)
6193 		return (rc);
6194 
6195 	if (idx < -1 || idx >= SGE_NCOUNTERS)
6196 		return (EINVAL);
6197 
6198 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6199 	    "t4pktc");
6200 	if (rc)
6201 		return (rc);
6202 
6203 	if (vi->flags & VI_INIT_DONE)
6204 		rc = EBUSY; /* cannot be changed once the queues are created */
6205 	else
6206 		vi->pktc_idx = idx;
6207 
6208 	end_synchronized_op(sc, LOCK_HELD);
6209 	return (rc);
6210 }
6211 
6212 static int
6213 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6214 {
6215 	struct vi_info *vi = arg1;
6216 	struct adapter *sc = vi->pi->adapter;
6217 	int qsize, rc;
6218 
6219 	qsize = vi->qsize_rxq;
6220 
6221 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6222 	if (rc != 0 || req->newptr == NULL)
6223 		return (rc);
6224 
6225 	if (qsize < 128 || (qsize & 7))
6226 		return (EINVAL);
6227 
6228 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6229 	    "t4rxqs");
6230 	if (rc)
6231 		return (rc);
6232 
6233 	if (vi->flags & VI_INIT_DONE)
6234 		rc = EBUSY; /* cannot be changed once the queues are created */
6235 	else
6236 		vi->qsize_rxq = qsize;
6237 
6238 	end_synchronized_op(sc, LOCK_HELD);
6239 	return (rc);
6240 }
6241 
6242 static int
6243 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6244 {
6245 	struct vi_info *vi = arg1;
6246 	struct adapter *sc = vi->pi->adapter;
6247 	int qsize, rc;
6248 
6249 	qsize = vi->qsize_txq;
6250 
6251 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6252 	if (rc != 0 || req->newptr == NULL)
6253 		return (rc);
6254 
6255 	if (qsize < 128 || qsize > 65536)
6256 		return (EINVAL);
6257 
6258 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6259 	    "t4txqs");
6260 	if (rc)
6261 		return (rc);
6262 
6263 	if (vi->flags & VI_INIT_DONE)
6264 		rc = EBUSY; /* cannot be changed once the queues are created */
6265 	else
6266 		vi->qsize_txq = qsize;
6267 
6268 	end_synchronized_op(sc, LOCK_HELD);
6269 	return (rc);
6270 }
6271 
6272 static int
6273 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6274 {
6275 	struct port_info *pi = arg1;
6276 	struct adapter *sc = pi->adapter;
6277 	struct link_config *lc = &pi->link_cfg;
6278 	int rc;
6279 
6280 	if (req->newptr == NULL) {
6281 		struct sbuf *sb;
6282 		static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
6283 
6284 		rc = sysctl_wire_old_buffer(req, 0);
6285 		if (rc != 0)
6286 			return(rc);
6287 
6288 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6289 		if (sb == NULL)
6290 			return (ENOMEM);
6291 
6292 		sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
6293 		rc = sbuf_finish(sb);
6294 		sbuf_delete(sb);
6295 	} else {
6296 		char s[2];
6297 		int n;
6298 
6299 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
6300 		s[1] = 0;
6301 
6302 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6303 		if (rc != 0)
6304 			return(rc);
6305 
6306 		if (s[1] != 0)
6307 			return (EINVAL);
6308 		if (s[0] < '0' || s[0] > '9')
6309 			return (EINVAL);	/* not a number */
6310 		n = s[0] - '0';
6311 		if (n & ~(PAUSE_TX | PAUSE_RX))
6312 			return (EINVAL);	/* some other bit is set too */
6313 
6314 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6315 		    "t4PAUSE");
6316 		if (rc)
6317 			return (rc);
6318 		if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
6319 			lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
6320 			lc->requested_fc |= n;
6321 			rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6322 			if (rc == 0) {
6323 				lc->fc = lc->requested_fc;
6324 			}
6325 		}
6326 		end_synchronized_op(sc, 0);
6327 	}
6328 
6329 	return (rc);
6330 }
6331 
6332 static int
6333 sysctl_fec(SYSCTL_HANDLER_ARGS)
6334 {
6335 	struct port_info *pi = arg1;
6336 	struct adapter *sc = pi->adapter;
6337 	struct link_config *lc = &pi->link_cfg;
6338 	int rc;
6339 
6340 	if (req->newptr == NULL) {
6341 		struct sbuf *sb;
6342 		static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
6343 
6344 		rc = sysctl_wire_old_buffer(req, 0);
6345 		if (rc != 0)
6346 			return(rc);
6347 
6348 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6349 		if (sb == NULL)
6350 			return (ENOMEM);
6351 
6352 		sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
6353 		rc = sbuf_finish(sb);
6354 		sbuf_delete(sb);
6355 	} else {
6356 		char s[2];
6357 		int n;
6358 
6359 		s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
6360 		s[1] = 0;
6361 
6362 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6363 		if (rc != 0)
6364 			return(rc);
6365 
6366 		if (s[1] != 0)
6367 			return (EINVAL);
6368 		if (s[0] < '0' || s[0] > '9')
6369 			return (EINVAL);	/* not a number */
6370 		n = s[0] - '0';
6371 		if (n & ~M_FW_PORT_CAP_FEC)
6372 			return (EINVAL);	/* some other bit is set too */
6373 
6374 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6375 		    "t4fec");
6376 		if (rc)
6377 			return (rc);
6378 		if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
6379 			lc->requested_fec = n &
6380 			    G_FW_PORT_CAP_FEC(lc->supported);
6381 			rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6382 			if (rc == 0) {
6383 				lc->fec = lc->requested_fec;
6384 			}
6385 		}
6386 		end_synchronized_op(sc, 0);
6387 	}
6388 
6389 	return (rc);
6390 }
6391 
6392 static int
6393 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
6394 {
6395 	struct port_info *pi = arg1;
6396 	struct adapter *sc = pi->adapter;
6397 	struct link_config *lc = &pi->link_cfg;
6398 	int rc, val, old;
6399 
6400 	if (lc->supported & FW_PORT_CAP_ANEG)
6401 		val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0;
6402 	else
6403 		val = -1;
6404 	rc = sysctl_handle_int(oidp, &val, 0, req);
6405 	if (rc != 0 || req->newptr == NULL)
6406 		return (rc);
6407 	if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
6408 		return (ENOTSUP);
6409 
6410 	if (val == 0)
6411 		val = AUTONEG_DISABLE;
6412 	else if (val == 1)
6413 		val = AUTONEG_ENABLE;
6414 	else
6415 		return (EINVAL);
6416 	if (lc->requested_aneg == val)
6417 		return (0);	/* no change */
6418 
6419 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6420 	    "t4aneg");
6421 	if (rc)
6422 		return (rc);
6423 	old = lc->requested_aneg;
6424 	lc->requested_aneg = val;
6425 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6426 	if (rc != 0)
6427 		lc->requested_aneg = old;
6428 	end_synchronized_op(sc, 0);
6429 	return (rc);
6430 }
6431 
6432 static int
6433 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
6434 {
6435 	struct adapter *sc = arg1;
6436 	int reg = arg2;
6437 	uint64_t val;
6438 
6439 	val = t4_read_reg64(sc, reg);
6440 
6441 	return (sysctl_handle_64(oidp, &val, 0, req));
6442 }
6443 
6444 static int
6445 sysctl_temperature(SYSCTL_HANDLER_ARGS)
6446 {
6447 	struct adapter *sc = arg1;
6448 	int rc, t;
6449 	uint32_t param, val;
6450 
6451 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
6452 	if (rc)
6453 		return (rc);
6454 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6455 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
6456 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
6457 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6458 	end_synchronized_op(sc, 0);
6459 	if (rc)
6460 		return (rc);
6461 
6462 	/* unknown is returned as 0 but we display -1 in that case */
6463 	t = val == 0 ? -1 : val;
6464 
6465 	rc = sysctl_handle_int(oidp, &t, 0, req);
6466 	return (rc);
6467 }
6468 
6469 #ifdef SBUF_DRAIN
6470 static int
6471 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
6472 {
6473 	struct adapter *sc = arg1;
6474 	struct sbuf *sb;
6475 	int rc, i;
6476 	uint16_t incr[NMTUS][NCCTRL_WIN];
6477 	static const char *dec_fac[] = {
6478 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
6479 		"0.9375"
6480 	};
6481 
6482 	rc = sysctl_wire_old_buffer(req, 0);
6483 	if (rc != 0)
6484 		return (rc);
6485 
6486 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6487 	if (sb == NULL)
6488 		return (ENOMEM);
6489 
6490 	t4_read_cong_tbl(sc, incr);
6491 
6492 	for (i = 0; i < NCCTRL_WIN; ++i) {
6493 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
6494 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
6495 		    incr[5][i], incr[6][i], incr[7][i]);
6496 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
6497 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
6498 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
6499 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
6500 	}
6501 
6502 	rc = sbuf_finish(sb);
6503 	sbuf_delete(sb);
6504 
6505 	return (rc);
6506 }
6507 
6508 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
6509 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
6510 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
6511 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
6512 };
6513 
6514 static int
6515 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6516 {
6517 	struct adapter *sc = arg1;
6518 	struct sbuf *sb;
6519 	int rc, i, n, qid = arg2;
6520 	uint32_t *buf, *p;
6521 	char *qtype;
6522 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
6523 
6524 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6525 	    ("%s: bad qid %d\n", __func__, qid));
6526 
6527 	if (qid < CIM_NUM_IBQ) {
6528 		/* inbound queue */
6529 		qtype = "IBQ";
6530 		n = 4 * CIM_IBQ_SIZE;
6531 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6532 		rc = t4_read_cim_ibq(sc, qid, buf, n);
6533 	} else {
6534 		/* outbound queue */
6535 		qtype = "OBQ";
6536 		qid -= CIM_NUM_IBQ;
6537 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
6538 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6539 		rc = t4_read_cim_obq(sc, qid, buf, n);
6540 	}
6541 
6542 	if (rc < 0) {
6543 		rc = -rc;
6544 		goto done;
6545 	}
6546 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
6547 
6548 	rc = sysctl_wire_old_buffer(req, 0);
6549 	if (rc != 0)
6550 		goto done;
6551 
6552 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6553 	if (sb == NULL) {
6554 		rc = ENOMEM;
6555 		goto done;
6556 	}
6557 
6558 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6559 	for (i = 0, p = buf; i < n; i += 16, p += 4)
6560 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6561 		    p[2], p[3]);
6562 
6563 	rc = sbuf_finish(sb);
6564 	sbuf_delete(sb);
6565 done:
6566 	free(buf, M_CXGBE);
6567 	return (rc);
6568 }
6569 
6570 static int
6571 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6572 {
6573 	struct adapter *sc = arg1;
6574 	u_int cfg;
6575 	struct sbuf *sb;
6576 	uint32_t *buf, *p;
6577 	int rc;
6578 
6579 	MPASS(chip_id(sc) <= CHELSIO_T5);
6580 
6581 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6582 	if (rc != 0)
6583 		return (rc);
6584 
6585 	rc = sysctl_wire_old_buffer(req, 0);
6586 	if (rc != 0)
6587 		return (rc);
6588 
6589 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6590 	if (sb == NULL)
6591 		return (ENOMEM);
6592 
6593 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6594 	    M_ZERO | M_WAITOK);
6595 
6596 	rc = -t4_cim_read_la(sc, buf, NULL);
6597 	if (rc != 0)
6598 		goto done;
6599 
6600 	sbuf_printf(sb, "Status   Data      PC%s",
6601 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
6602 	    "     LS0Stat  LS0Addr             LS0Data");
6603 
6604 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6605 		if (cfg & F_UPDBGLACAPTPCONLY) {
6606 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6607 			    p[6], p[7]);
6608 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6609 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6610 			    p[4] & 0xff, p[5] >> 8);
6611 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6612 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6613 			    p[1] & 0xf, p[2] >> 4);
6614 		} else {
6615 			sbuf_printf(sb,
6616 			    "\n  %02x   %x%07x %x%07x %08x %08x "
6617 			    "%08x%08x%08x%08x",
6618 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6619 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6620 			    p[6], p[7]);
6621 		}
6622 	}
6623 
6624 	rc = sbuf_finish(sb);
6625 	sbuf_delete(sb);
6626 done:
6627 	free(buf, M_CXGBE);
6628 	return (rc);
6629 }
6630 
6631 static int
6632 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6633 {
6634 	struct adapter *sc = arg1;
6635 	u_int cfg;
6636 	struct sbuf *sb;
6637 	uint32_t *buf, *p;
6638 	int rc;
6639 
6640 	MPASS(chip_id(sc) > CHELSIO_T5);
6641 
6642 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6643 	if (rc != 0)
6644 		return (rc);
6645 
6646 	rc = sysctl_wire_old_buffer(req, 0);
6647 	if (rc != 0)
6648 		return (rc);
6649 
6650 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6651 	if (sb == NULL)
6652 		return (ENOMEM);
6653 
6654 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6655 	    M_ZERO | M_WAITOK);
6656 
6657 	rc = -t4_cim_read_la(sc, buf, NULL);
6658 	if (rc != 0)
6659 		goto done;
6660 
6661 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
6662 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
6663 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6664 
6665 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6666 		if (cfg & F_UPDBGLACAPTPCONLY) {
6667 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6668 			    p[3] & 0xff, p[2], p[1], p[0]);
6669 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6670 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6671 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6672 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6673 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6674 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6675 			    p[6] >> 16);
6676 		} else {
6677 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6678 			    "%08x %08x %08x %08x %08x %08x",
6679 			    (p[9] >> 16) & 0xff,
6680 			    p[9] & 0xffff, p[8] >> 16,
6681 			    p[8] & 0xffff, p[7] >> 16,
6682 			    p[7] & 0xffff, p[6] >> 16,
6683 			    p[2], p[1], p[0], p[5], p[4], p[3]);
6684 		}
6685 	}
6686 
6687 	rc = sbuf_finish(sb);
6688 	sbuf_delete(sb);
6689 done:
6690 	free(buf, M_CXGBE);
6691 	return (rc);
6692 }
6693 
6694 static int
6695 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6696 {
6697 	struct adapter *sc = arg1;
6698 	u_int i;
6699 	struct sbuf *sb;
6700 	uint32_t *buf, *p;
6701 	int rc;
6702 
6703 	rc = sysctl_wire_old_buffer(req, 0);
6704 	if (rc != 0)
6705 		return (rc);
6706 
6707 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6708 	if (sb == NULL)
6709 		return (ENOMEM);
6710 
6711 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6712 	    M_ZERO | M_WAITOK);
6713 
6714 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6715 	p = buf;
6716 
6717 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6718 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6719 		    p[1], p[0]);
6720 	}
6721 
6722 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6723 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6724 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6725 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6726 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6727 		    (p[1] >> 2) | ((p[2] & 3) << 30),
6728 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6729 		    p[0] & 1);
6730 	}
6731 
6732 	rc = sbuf_finish(sb);
6733 	sbuf_delete(sb);
6734 	free(buf, M_CXGBE);
6735 	return (rc);
6736 }
6737 
6738 static int
6739 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6740 {
6741 	struct adapter *sc = arg1;
6742 	u_int i;
6743 	struct sbuf *sb;
6744 	uint32_t *buf, *p;
6745 	int rc;
6746 
6747 	rc = sysctl_wire_old_buffer(req, 0);
6748 	if (rc != 0)
6749 		return (rc);
6750 
6751 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6752 	if (sb == NULL)
6753 		return (ENOMEM);
6754 
6755 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6756 	    M_ZERO | M_WAITOK);
6757 
6758 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6759 	p = buf;
6760 
6761 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6762 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6763 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6764 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6765 		    p[4], p[3], p[2], p[1], p[0]);
6766 	}
6767 
6768 	sbuf_printf(sb, "\n\nCntl ID               Data");
6769 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6770 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6771 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6772 	}
6773 
6774 	rc = sbuf_finish(sb);
6775 	sbuf_delete(sb);
6776 	free(buf, M_CXGBE);
6777 	return (rc);
6778 }
6779 
6780 static int
6781 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6782 {
6783 	struct adapter *sc = arg1;
6784 	struct sbuf *sb;
6785 	int rc, i;
6786 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6787 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6788 	uint16_t thres[CIM_NUM_IBQ];
6789 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6790 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6791 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6792 
6793 	cim_num_obq = sc->chip_params->cim_num_obq;
6794 	if (is_t4(sc)) {
6795 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6796 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
6797 	} else {
6798 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6799 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6800 	}
6801 	nq = CIM_NUM_IBQ + cim_num_obq;
6802 
6803 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6804 	if (rc == 0)
6805 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6806 	if (rc != 0)
6807 		return (rc);
6808 
6809 	t4_read_cimq_cfg(sc, base, size, thres);
6810 
6811 	rc = sysctl_wire_old_buffer(req, 0);
6812 	if (rc != 0)
6813 		return (rc);
6814 
6815 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6816 	if (sb == NULL)
6817 		return (ENOMEM);
6818 
6819 	sbuf_printf(sb,
6820 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6821 
6822 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6823 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6824 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6825 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6826 		    G_QUEREMFLITS(p[2]) * 16);
6827 	for ( ; i < nq; i++, p += 4, wr += 2)
6828 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6829 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6830 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6831 		    G_QUEREMFLITS(p[2]) * 16);
6832 
6833 	rc = sbuf_finish(sb);
6834 	sbuf_delete(sb);
6835 
6836 	return (rc);
6837 }
6838 
6839 static int
6840 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6841 {
6842 	struct adapter *sc = arg1;
6843 	struct sbuf *sb;
6844 	int rc;
6845 	struct tp_cpl_stats stats;
6846 
6847 	rc = sysctl_wire_old_buffer(req, 0);
6848 	if (rc != 0)
6849 		return (rc);
6850 
6851 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6852 	if (sb == NULL)
6853 		return (ENOMEM);
6854 
6855 	mtx_lock(&sc->reg_lock);
6856 	t4_tp_get_cpl_stats(sc, &stats, 0);
6857 	mtx_unlock(&sc->reg_lock);
6858 
6859 	if (sc->chip_params->nchan > 2) {
6860 		sbuf_printf(sb, "                 channel 0  channel 1"
6861 		    "  channel 2  channel 3");
6862 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6863 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6864 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6865 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6866 	} else {
6867 		sbuf_printf(sb, "                 channel 0  channel 1");
6868 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6869 		    stats.req[0], stats.req[1]);
6870 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6871 		    stats.rsp[0], stats.rsp[1]);
6872 	}
6873 
6874 	rc = sbuf_finish(sb);
6875 	sbuf_delete(sb);
6876 
6877 	return (rc);
6878 }
6879 
6880 static int
6881 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6882 {
6883 	struct adapter *sc = arg1;
6884 	struct sbuf *sb;
6885 	int rc;
6886 	struct tp_usm_stats stats;
6887 
6888 	rc = sysctl_wire_old_buffer(req, 0);
6889 	if (rc != 0)
6890 		return(rc);
6891 
6892 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6893 	if (sb == NULL)
6894 		return (ENOMEM);
6895 
6896 	t4_get_usm_stats(sc, &stats, 1);
6897 
6898 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
6899 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6900 	sbuf_printf(sb, "Drops:  %u", stats.drops);
6901 
6902 	rc = sbuf_finish(sb);
6903 	sbuf_delete(sb);
6904 
6905 	return (rc);
6906 }
6907 
6908 static const char * const devlog_level_strings[] = {
6909 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
6910 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
6911 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
6912 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
6913 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
6914 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
6915 };
6916 
6917 static const char * const devlog_facility_strings[] = {
6918 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
6919 	[FW_DEVLOG_FACILITY_CF]		= "CF",
6920 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
6921 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
6922 	[FW_DEVLOG_FACILITY_RES]	= "RES",
6923 	[FW_DEVLOG_FACILITY_HW]		= "HW",
6924 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
6925 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
6926 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
6927 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
6928 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
6929 	[FW_DEVLOG_FACILITY_VI]		= "VI",
6930 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
6931 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
6932 	[FW_DEVLOG_FACILITY_TM]		= "TM",
6933 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
6934 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
6935 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
6936 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
6937 	[FW_DEVLOG_FACILITY_RI]		= "RI",
6938 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
6939 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
6940 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
6941 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
6942 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
6943 };
6944 
6945 static int
6946 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6947 {
6948 	struct adapter *sc = arg1;
6949 	struct devlog_params *dparams = &sc->params.devlog;
6950 	struct fw_devlog_e *buf, *e;
6951 	int i, j, rc, nentries, first = 0;
6952 	struct sbuf *sb;
6953 	uint64_t ftstamp = UINT64_MAX;
6954 
6955 	if (dparams->addr == 0)
6956 		return (ENXIO);
6957 
6958 	buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6959 	if (buf == NULL)
6960 		return (ENOMEM);
6961 
6962 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6963 	if (rc != 0)
6964 		goto done;
6965 
6966 	nentries = dparams->size / sizeof(struct fw_devlog_e);
6967 	for (i = 0; i < nentries; i++) {
6968 		e = &buf[i];
6969 
6970 		if (e->timestamp == 0)
6971 			break;	/* end */
6972 
6973 		e->timestamp = be64toh(e->timestamp);
6974 		e->seqno = be32toh(e->seqno);
6975 		for (j = 0; j < 8; j++)
6976 			e->params[j] = be32toh(e->params[j]);
6977 
6978 		if (e->timestamp < ftstamp) {
6979 			ftstamp = e->timestamp;
6980 			first = i;
6981 		}
6982 	}
6983 
6984 	if (buf[first].timestamp == 0)
6985 		goto done;	/* nothing in the log */
6986 
6987 	rc = sysctl_wire_old_buffer(req, 0);
6988 	if (rc != 0)
6989 		goto done;
6990 
6991 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6992 	if (sb == NULL) {
6993 		rc = ENOMEM;
6994 		goto done;
6995 	}
6996 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6997 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
6998 
6999 	i = first;
7000 	do {
7001 		e = &buf[i];
7002 		if (e->timestamp == 0)
7003 			break;	/* end */
7004 
7005 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
7006 		    e->seqno, e->timestamp,
7007 		    (e->level < nitems(devlog_level_strings) ?
7008 			devlog_level_strings[e->level] : "UNKNOWN"),
7009 		    (e->facility < nitems(devlog_facility_strings) ?
7010 			devlog_facility_strings[e->facility] : "UNKNOWN"));
7011 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
7012 		    e->params[2], e->params[3], e->params[4],
7013 		    e->params[5], e->params[6], e->params[7]);
7014 
7015 		if (++i == nentries)
7016 			i = 0;
7017 	} while (i != first);
7018 
7019 	rc = sbuf_finish(sb);
7020 	sbuf_delete(sb);
7021 done:
7022 	free(buf, M_CXGBE);
7023 	return (rc);
7024 }
7025 
7026 static int
7027 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
7028 {
7029 	struct adapter *sc = arg1;
7030 	struct sbuf *sb;
7031 	int rc;
7032 	struct tp_fcoe_stats stats[MAX_NCHAN];
7033 	int i, nchan = sc->chip_params->nchan;
7034 
7035 	rc = sysctl_wire_old_buffer(req, 0);
7036 	if (rc != 0)
7037 		return (rc);
7038 
7039 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7040 	if (sb == NULL)
7041 		return (ENOMEM);
7042 
7043 	for (i = 0; i < nchan; i++)
7044 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
7045 
7046 	if (nchan > 2) {
7047 		sbuf_printf(sb, "                   channel 0        channel 1"
7048 		    "        channel 2        channel 3");
7049 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
7050 		    stats[0].octets_ddp, stats[1].octets_ddp,
7051 		    stats[2].octets_ddp, stats[3].octets_ddp);
7052 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
7053 		    stats[0].frames_ddp, stats[1].frames_ddp,
7054 		    stats[2].frames_ddp, stats[3].frames_ddp);
7055 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
7056 		    stats[0].frames_drop, stats[1].frames_drop,
7057 		    stats[2].frames_drop, stats[3].frames_drop);
7058 	} else {
7059 		sbuf_printf(sb, "                   channel 0        channel 1");
7060 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
7061 		    stats[0].octets_ddp, stats[1].octets_ddp);
7062 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
7063 		    stats[0].frames_ddp, stats[1].frames_ddp);
7064 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
7065 		    stats[0].frames_drop, stats[1].frames_drop);
7066 	}
7067 
7068 	rc = sbuf_finish(sb);
7069 	sbuf_delete(sb);
7070 
7071 	return (rc);
7072 }
7073 
7074 static int
7075 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
7076 {
7077 	struct adapter *sc = arg1;
7078 	struct sbuf *sb;
7079 	int rc, i;
7080 	unsigned int map, kbps, ipg, mode;
7081 	unsigned int pace_tab[NTX_SCHED];
7082 
7083 	rc = sysctl_wire_old_buffer(req, 0);
7084 	if (rc != 0)
7085 		return (rc);
7086 
7087 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7088 	if (sb == NULL)
7089 		return (ENOMEM);
7090 
7091 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
7092 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
7093 	t4_read_pace_tbl(sc, pace_tab);
7094 
7095 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
7096 	    "Class IPG (0.1 ns)   Flow IPG (us)");
7097 
7098 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
7099 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
7100 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
7101 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
7102 		if (kbps)
7103 			sbuf_printf(sb, "%9u     ", kbps);
7104 		else
7105 			sbuf_printf(sb, " disabled     ");
7106 
7107 		if (ipg)
7108 			sbuf_printf(sb, "%13u        ", ipg);
7109 		else
7110 			sbuf_printf(sb, "     disabled        ");
7111 
7112 		if (pace_tab[i])
7113 			sbuf_printf(sb, "%10u", pace_tab[i]);
7114 		else
7115 			sbuf_printf(sb, "  disabled");
7116 	}
7117 
7118 	rc = sbuf_finish(sb);
7119 	sbuf_delete(sb);
7120 
7121 	return (rc);
7122 }
7123 
7124 static int
7125 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
7126 {
7127 	struct adapter *sc = arg1;
7128 	struct sbuf *sb;
7129 	int rc, i, j;
7130 	uint64_t *p0, *p1;
7131 	struct lb_port_stats s[2];
7132 	static const char *stat_name[] = {
7133 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
7134 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
7135 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
7136 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
7137 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
7138 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
7139 		"BG2FramesTrunc:", "BG3FramesTrunc:"
7140 	};
7141 
7142 	rc = sysctl_wire_old_buffer(req, 0);
7143 	if (rc != 0)
7144 		return (rc);
7145 
7146 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7147 	if (sb == NULL)
7148 		return (ENOMEM);
7149 
7150 	memset(s, 0, sizeof(s));
7151 
7152 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
7153 		t4_get_lb_stats(sc, i, &s[0]);
7154 		t4_get_lb_stats(sc, i + 1, &s[1]);
7155 
7156 		p0 = &s[0].octets;
7157 		p1 = &s[1].octets;
7158 		sbuf_printf(sb, "%s                       Loopback %u"
7159 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
7160 
7161 		for (j = 0; j < nitems(stat_name); j++)
7162 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
7163 				   *p0++, *p1++);
7164 	}
7165 
7166 	rc = sbuf_finish(sb);
7167 	sbuf_delete(sb);
7168 
7169 	return (rc);
7170 }
7171 
7172 static int
7173 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
7174 {
7175 	int rc = 0;
7176 	struct port_info *pi = arg1;
7177 	struct link_config *lc = &pi->link_cfg;
7178 	struct sbuf *sb;
7179 
7180 	rc = sysctl_wire_old_buffer(req, 0);
7181 	if (rc != 0)
7182 		return(rc);
7183 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7184 	if (sb == NULL)
7185 		return (ENOMEM);
7186 
7187 	if (lc->link_ok || lc->link_down_rc == 255)
7188 		sbuf_printf(sb, "n/a");
7189 	else
7190 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7191 
7192 	rc = sbuf_finish(sb);
7193 	sbuf_delete(sb);
7194 
7195 	return (rc);
7196 }
7197 
7198 struct mem_desc {
7199 	unsigned int base;
7200 	unsigned int limit;
7201 	unsigned int idx;
7202 };
7203 
7204 static int
7205 mem_desc_cmp(const void *a, const void *b)
7206 {
7207 	return ((const struct mem_desc *)a)->base -
7208 	       ((const struct mem_desc *)b)->base;
7209 }
7210 
7211 static void
7212 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7213     unsigned int to)
7214 {
7215 	unsigned int size;
7216 
7217 	if (from == to)
7218 		return;
7219 
7220 	size = to - from + 1;
7221 	if (size == 0)
7222 		return;
7223 
7224 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7225 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7226 }
7227 
7228 static int
7229 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7230 {
7231 	struct adapter *sc = arg1;
7232 	struct sbuf *sb;
7233 	int rc, i, n;
7234 	uint32_t lo, hi, used, alloc;
7235 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
7236 	static const char *region[] = {
7237 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
7238 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
7239 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
7240 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
7241 		"RQUDP region:", "PBL region:", "TXPBL region:",
7242 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
7243 		"On-chip queues:", "TLS keys:",
7244 	};
7245 	struct mem_desc avail[4];
7246 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
7247 	struct mem_desc *md = mem;
7248 
7249 	rc = sysctl_wire_old_buffer(req, 0);
7250 	if (rc != 0)
7251 		return (rc);
7252 
7253 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7254 	if (sb == NULL)
7255 		return (ENOMEM);
7256 
7257 	for (i = 0; i < nitems(mem); i++) {
7258 		mem[i].limit = 0;
7259 		mem[i].idx = i;
7260 	}
7261 
7262 	/* Find and sort the populated memory ranges */
7263 	i = 0;
7264 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
7265 	if (lo & F_EDRAM0_ENABLE) {
7266 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
7267 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
7268 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
7269 		avail[i].idx = 0;
7270 		i++;
7271 	}
7272 	if (lo & F_EDRAM1_ENABLE) {
7273 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
7274 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
7275 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
7276 		avail[i].idx = 1;
7277 		i++;
7278 	}
7279 	if (lo & F_EXT_MEM_ENABLE) {
7280 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
7281 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
7282 		avail[i].limit = avail[i].base +
7283 		    (G_EXT_MEM_SIZE(hi) << 20);
7284 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
7285 		i++;
7286 	}
7287 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
7288 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
7289 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
7290 		avail[i].limit = avail[i].base +
7291 		    (G_EXT_MEM1_SIZE(hi) << 20);
7292 		avail[i].idx = 4;
7293 		i++;
7294 	}
7295 	if (!i)                                    /* no memory available */
7296 		return 0;
7297 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
7298 
7299 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
7300 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
7301 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
7302 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
7303 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
7304 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
7305 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
7306 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
7307 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
7308 
7309 	/* the next few have explicit upper bounds */
7310 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
7311 	md->limit = md->base - 1 +
7312 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
7313 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
7314 	md++;
7315 
7316 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
7317 	md->limit = md->base - 1 +
7318 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
7319 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
7320 	md++;
7321 
7322 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7323 		if (chip_id(sc) <= CHELSIO_T5)
7324 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
7325 		else
7326 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
7327 		md->limit = 0;
7328 	} else {
7329 		md->base = 0;
7330 		md->idx = nitems(region);  /* hide it */
7331 	}
7332 	md++;
7333 
7334 #define ulp_region(reg) \
7335 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
7336 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
7337 
7338 	ulp_region(RX_ISCSI);
7339 	ulp_region(RX_TDDP);
7340 	ulp_region(TX_TPT);
7341 	ulp_region(RX_STAG);
7342 	ulp_region(RX_RQ);
7343 	ulp_region(RX_RQUDP);
7344 	ulp_region(RX_PBL);
7345 	ulp_region(TX_PBL);
7346 #undef ulp_region
7347 
7348 	md->base = 0;
7349 	md->idx = nitems(region);
7350 	if (!is_t4(sc)) {
7351 		uint32_t size = 0;
7352 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
7353 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
7354 
7355 		if (is_t5(sc)) {
7356 			if (sge_ctrl & F_VFIFO_ENABLE)
7357 				size = G_DBVFIFO_SIZE(fifo_size);
7358 		} else
7359 			size = G_T6_DBVFIFO_SIZE(fifo_size);
7360 
7361 		if (size) {
7362 			md->base = G_BASEADDR(t4_read_reg(sc,
7363 			    A_SGE_DBVFIFO_BADDR));
7364 			md->limit = md->base + (size << 2) - 1;
7365 		}
7366 	}
7367 	md++;
7368 
7369 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
7370 	md->limit = 0;
7371 	md++;
7372 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
7373 	md->limit = 0;
7374 	md++;
7375 
7376 	md->base = sc->vres.ocq.start;
7377 	if (sc->vres.ocq.size)
7378 		md->limit = md->base + sc->vres.ocq.size - 1;
7379 	else
7380 		md->idx = nitems(region);  /* hide it */
7381 	md++;
7382 
7383 	md->base = sc->vres.key.start;
7384 	if (sc->vres.key.size)
7385 		md->limit = md->base + sc->vres.key.size - 1;
7386 	else
7387 		md->idx = nitems(region);  /* hide it */
7388 	md++;
7389 
7390 	/* add any address-space holes, there can be up to 3 */
7391 	for (n = 0; n < i - 1; n++)
7392 		if (avail[n].limit < avail[n + 1].base)
7393 			(md++)->base = avail[n].limit;
7394 	if (avail[n].limit)
7395 		(md++)->base = avail[n].limit;
7396 
7397 	n = md - mem;
7398 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
7399 
7400 	for (lo = 0; lo < i; lo++)
7401 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
7402 				avail[lo].limit - 1);
7403 
7404 	sbuf_printf(sb, "\n");
7405 	for (i = 0; i < n; i++) {
7406 		if (mem[i].idx >= nitems(region))
7407 			continue;                        /* skip holes */
7408 		if (!mem[i].limit)
7409 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
7410 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
7411 				mem[i].limit);
7412 	}
7413 
7414 	sbuf_printf(sb, "\n");
7415 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
7416 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
7417 	mem_region_show(sb, "uP RAM:", lo, hi);
7418 
7419 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
7420 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
7421 	mem_region_show(sb, "uP Extmem2:", lo, hi);
7422 
7423 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
7424 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
7425 		   G_PMRXMAXPAGE(lo),
7426 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
7427 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
7428 
7429 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
7430 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
7431 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
7432 		   G_PMTXMAXPAGE(lo),
7433 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
7434 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
7435 	sbuf_printf(sb, "%u p-structs\n",
7436 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
7437 
7438 	for (i = 0; i < 4; i++) {
7439 		if (chip_id(sc) > CHELSIO_T5)
7440 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
7441 		else
7442 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
7443 		if (is_t5(sc)) {
7444 			used = G_T5_USED(lo);
7445 			alloc = G_T5_ALLOC(lo);
7446 		} else {
7447 			used = G_USED(lo);
7448 			alloc = G_ALLOC(lo);
7449 		}
7450 		/* For T6 these are MAC buffer groups */
7451 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
7452 		    i, used, alloc);
7453 	}
7454 	for (i = 0; i < sc->chip_params->nchan; i++) {
7455 		if (chip_id(sc) > CHELSIO_T5)
7456 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
7457 		else
7458 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
7459 		if (is_t5(sc)) {
7460 			used = G_T5_USED(lo);
7461 			alloc = G_T5_ALLOC(lo);
7462 		} else {
7463 			used = G_USED(lo);
7464 			alloc = G_ALLOC(lo);
7465 		}
7466 		/* For T6 these are MAC buffer groups */
7467 		sbuf_printf(sb,
7468 		    "\nLoopback %d using %u pages out of %u allocated",
7469 		    i, used, alloc);
7470 	}
7471 
7472 	rc = sbuf_finish(sb);
7473 	sbuf_delete(sb);
7474 
7475 	return (rc);
7476 }
7477 
7478 static inline void
7479 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
7480 {
7481 	*mask = x | y;
7482 	y = htobe64(y);
7483 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
7484 }
7485 
7486 static int
7487 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
7488 {
7489 	struct adapter *sc = arg1;
7490 	struct sbuf *sb;
7491 	int rc, i;
7492 
7493 	MPASS(chip_id(sc) <= CHELSIO_T5);
7494 
7495 	rc = sysctl_wire_old_buffer(req, 0);
7496 	if (rc != 0)
7497 		return (rc);
7498 
7499 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7500 	if (sb == NULL)
7501 		return (ENOMEM);
7502 
7503 	sbuf_printf(sb,
7504 	    "Idx  Ethernet address     Mask     Vld Ports PF"
7505 	    "  VF              Replication             P0 P1 P2 P3  ML");
7506 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7507 		uint64_t tcamx, tcamy, mask;
7508 		uint32_t cls_lo, cls_hi;
7509 		uint8_t addr[ETHER_ADDR_LEN];
7510 
7511 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
7512 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
7513 		if (tcamx & tcamy)
7514 			continue;
7515 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
7516 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7517 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7518 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7519 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7520 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
7521 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7522 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
7523 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7524 
7525 		if (cls_lo & F_REPLICATE) {
7526 			struct fw_ldst_cmd ldst_cmd;
7527 
7528 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7529 			ldst_cmd.op_to_addrspace =
7530 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7531 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
7532 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7533 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7534 			ldst_cmd.u.mps.rplc.fid_idx =
7535 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7536 				V_FW_LDST_CMD_IDX(i));
7537 
7538 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7539 			    "t4mps");
7540 			if (rc)
7541 				break;
7542 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7543 			    sizeof(ldst_cmd), &ldst_cmd);
7544 			end_synchronized_op(sc, 0);
7545 
7546 			if (rc != 0) {
7547 				sbuf_printf(sb, "%36d", rc);
7548 				rc = 0;
7549 			} else {
7550 				sbuf_printf(sb, " %08x %08x %08x %08x",
7551 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7552 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7553 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7554 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7555 			}
7556 		} else
7557 			sbuf_printf(sb, "%36s", "");
7558 
7559 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7560 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7561 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7562 	}
7563 
7564 	if (rc)
7565 		(void) sbuf_finish(sb);
7566 	else
7567 		rc = sbuf_finish(sb);
7568 	sbuf_delete(sb);
7569 
7570 	return (rc);
7571 }
7572 
7573 static int
7574 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7575 {
7576 	struct adapter *sc = arg1;
7577 	struct sbuf *sb;
7578 	int rc, i;
7579 
7580 	MPASS(chip_id(sc) > CHELSIO_T5);
7581 
7582 	rc = sysctl_wire_old_buffer(req, 0);
7583 	if (rc != 0)
7584 		return (rc);
7585 
7586 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7587 	if (sb == NULL)
7588 		return (ENOMEM);
7589 
7590 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7591 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7592 	    "                           Replication"
7593 	    "                                    P0 P1 P2 P3  ML\n");
7594 
7595 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7596 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7597 		uint16_t ivlan;
7598 		uint64_t tcamx, tcamy, val, mask;
7599 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7600 		uint8_t addr[ETHER_ADDR_LEN];
7601 
7602 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7603 		if (i < 256)
7604 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7605 		else
7606 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7607 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7608 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7609 		tcamy = G_DMACH(val) << 32;
7610 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7611 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7612 		lookup_type = G_DATALKPTYPE(data2);
7613 		port_num = G_DATAPORTNUM(data2);
7614 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7615 			/* Inner header VNI */
7616 			vniy = ((data2 & F_DATAVIDH2) << 23) |
7617 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7618 			dip_hit = data2 & F_DATADIPHIT;
7619 			vlan_vld = 0;
7620 		} else {
7621 			vniy = 0;
7622 			dip_hit = 0;
7623 			vlan_vld = data2 & F_DATAVIDH2;
7624 			ivlan = G_VIDL(val);
7625 		}
7626 
7627 		ctl |= V_CTLXYBITSEL(1);
7628 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7629 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7630 		tcamx = G_DMACH(val) << 32;
7631 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7632 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7633 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7634 			/* Inner header VNI mask */
7635 			vnix = ((data2 & F_DATAVIDH2) << 23) |
7636 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7637 		} else
7638 			vnix = 0;
7639 
7640 		if (tcamx & tcamy)
7641 			continue;
7642 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
7643 
7644 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7645 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7646 
7647 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7648 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7649 			    "%012jx %06x %06x    -    -   %3c"
7650 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7651 			    addr[1], addr[2], addr[3], addr[4], addr[5],
7652 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7653 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7654 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7655 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7656 		} else {
7657 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7658 			    "%012jx    -       -   ", i, addr[0], addr[1],
7659 			    addr[2], addr[3], addr[4], addr[5],
7660 			    (uintmax_t)mask);
7661 
7662 			if (vlan_vld)
7663 				sbuf_printf(sb, "%4u   Y     ", ivlan);
7664 			else
7665 				sbuf_printf(sb, "  -    N     ");
7666 
7667 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7668 			    lookup_type ? 'I' : 'O', port_num,
7669 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7670 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7671 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7672 		}
7673 
7674 
7675 		if (cls_lo & F_T6_REPLICATE) {
7676 			struct fw_ldst_cmd ldst_cmd;
7677 
7678 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7679 			ldst_cmd.op_to_addrspace =
7680 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7681 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
7682 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7683 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7684 			ldst_cmd.u.mps.rplc.fid_idx =
7685 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7686 				V_FW_LDST_CMD_IDX(i));
7687 
7688 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7689 			    "t6mps");
7690 			if (rc)
7691 				break;
7692 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7693 			    sizeof(ldst_cmd), &ldst_cmd);
7694 			end_synchronized_op(sc, 0);
7695 
7696 			if (rc != 0) {
7697 				sbuf_printf(sb, "%72d", rc);
7698 				rc = 0;
7699 			} else {
7700 				sbuf_printf(sb, " %08x %08x %08x %08x"
7701 				    " %08x %08x %08x %08x",
7702 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7703 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7704 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7705 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7706 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7707 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7708 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7709 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7710 			}
7711 		} else
7712 			sbuf_printf(sb, "%72s", "");
7713 
7714 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7715 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7716 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7717 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7718 	}
7719 
7720 	if (rc)
7721 		(void) sbuf_finish(sb);
7722 	else
7723 		rc = sbuf_finish(sb);
7724 	sbuf_delete(sb);
7725 
7726 	return (rc);
7727 }
7728 
7729 static int
7730 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7731 {
7732 	struct adapter *sc = arg1;
7733 	struct sbuf *sb;
7734 	int rc;
7735 	uint16_t mtus[NMTUS];
7736 
7737 	rc = sysctl_wire_old_buffer(req, 0);
7738 	if (rc != 0)
7739 		return (rc);
7740 
7741 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7742 	if (sb == NULL)
7743 		return (ENOMEM);
7744 
7745 	t4_read_mtu_tbl(sc, mtus, NULL);
7746 
7747 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7748 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7749 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7750 	    mtus[14], mtus[15]);
7751 
7752 	rc = sbuf_finish(sb);
7753 	sbuf_delete(sb);
7754 
7755 	return (rc);
7756 }
7757 
7758 static int
7759 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7760 {
7761 	struct adapter *sc = arg1;
7762 	struct sbuf *sb;
7763 	int rc, i;
7764 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7765 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7766 	static const char *tx_stats[MAX_PM_NSTATS] = {
7767 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7768 		"Tx FIFO wait", NULL, "Tx latency"
7769 	};
7770 	static const char *rx_stats[MAX_PM_NSTATS] = {
7771 		"Read:", "Write bypass:", "Write mem:", "Flush:",
7772 		"Rx FIFO wait", NULL, "Rx latency"
7773 	};
7774 
7775 	rc = sysctl_wire_old_buffer(req, 0);
7776 	if (rc != 0)
7777 		return (rc);
7778 
7779 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7780 	if (sb == NULL)
7781 		return (ENOMEM);
7782 
7783 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7784 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7785 
7786 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7787 	for (i = 0; i < 4; i++) {
7788 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7789 		    tx_cyc[i]);
7790 	}
7791 
7792 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7793 	for (i = 0; i < 4; i++) {
7794 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7795 		    rx_cyc[i]);
7796 	}
7797 
7798 	if (chip_id(sc) > CHELSIO_T5) {
7799 		sbuf_printf(sb,
7800 		    "\n              Total wait      Total occupancy");
7801 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7802 		    tx_cyc[i]);
7803 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7804 		    rx_cyc[i]);
7805 
7806 		i += 2;
7807 		MPASS(i < nitems(tx_stats));
7808 
7809 		sbuf_printf(sb,
7810 		    "\n                   Reads           Total wait");
7811 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7812 		    tx_cyc[i]);
7813 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7814 		    rx_cyc[i]);
7815 	}
7816 
7817 	rc = sbuf_finish(sb);
7818 	sbuf_delete(sb);
7819 
7820 	return (rc);
7821 }
7822 
7823 static int
7824 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7825 {
7826 	struct adapter *sc = arg1;
7827 	struct sbuf *sb;
7828 	int rc;
7829 	struct tp_rdma_stats stats;
7830 
7831 	rc = sysctl_wire_old_buffer(req, 0);
7832 	if (rc != 0)
7833 		return (rc);
7834 
7835 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7836 	if (sb == NULL)
7837 		return (ENOMEM);
7838 
7839 	mtx_lock(&sc->reg_lock);
7840 	t4_tp_get_rdma_stats(sc, &stats, 0);
7841 	mtx_unlock(&sc->reg_lock);
7842 
7843 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7844 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7845 
7846 	rc = sbuf_finish(sb);
7847 	sbuf_delete(sb);
7848 
7849 	return (rc);
7850 }
7851 
7852 static int
7853 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7854 {
7855 	struct adapter *sc = arg1;
7856 	struct sbuf *sb;
7857 	int rc;
7858 	struct tp_tcp_stats v4, v6;
7859 
7860 	rc = sysctl_wire_old_buffer(req, 0);
7861 	if (rc != 0)
7862 		return (rc);
7863 
7864 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7865 	if (sb == NULL)
7866 		return (ENOMEM);
7867 
7868 	mtx_lock(&sc->reg_lock);
7869 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
7870 	mtx_unlock(&sc->reg_lock);
7871 
7872 	sbuf_printf(sb,
7873 	    "                                IP                 IPv6\n");
7874 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7875 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
7876 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7877 	    v4.tcp_in_segs, v6.tcp_in_segs);
7878 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7879 	    v4.tcp_out_segs, v6.tcp_out_segs);
7880 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7881 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7882 
7883 	rc = sbuf_finish(sb);
7884 	sbuf_delete(sb);
7885 
7886 	return (rc);
7887 }
7888 
7889 static int
7890 sysctl_tids(SYSCTL_HANDLER_ARGS)
7891 {
7892 	struct adapter *sc = arg1;
7893 	struct sbuf *sb;
7894 	int rc;
7895 	struct tid_info *t = &sc->tids;
7896 
7897 	rc = sysctl_wire_old_buffer(req, 0);
7898 	if (rc != 0)
7899 		return (rc);
7900 
7901 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7902 	if (sb == NULL)
7903 		return (ENOMEM);
7904 
7905 	if (t->natids) {
7906 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7907 		    t->atids_in_use);
7908 	}
7909 
7910 	if (t->ntids) {
7911 		sbuf_printf(sb, "TID range: ");
7912 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7913 			uint32_t b, hb;
7914 
7915 			if (chip_id(sc) <= CHELSIO_T5) {
7916 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7917 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7918 			} else {
7919 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7920 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7921 			}
7922 
7923 			if (b)
7924 				sbuf_printf(sb, "0-%u, ", b - 1);
7925 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7926 		} else
7927 			sbuf_printf(sb, "0-%u", t->ntids - 1);
7928 		sbuf_printf(sb, ", in use: %u\n",
7929 		    atomic_load_acq_int(&t->tids_in_use));
7930 	}
7931 
7932 	if (t->nstids) {
7933 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7934 		    t->stid_base + t->nstids - 1, t->stids_in_use);
7935 	}
7936 
7937 	if (t->nftids) {
7938 		sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7939 		    t->ftid_base + t->nftids - 1);
7940 	}
7941 
7942 	if (t->netids) {
7943 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
7944 		    t->etid_base + t->netids - 1, t->etids_in_use);
7945 	}
7946 
7947 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7948 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7949 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7950 
7951 	rc = sbuf_finish(sb);
7952 	sbuf_delete(sb);
7953 
7954 	return (rc);
7955 }
7956 
7957 static int
7958 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7959 {
7960 	struct adapter *sc = arg1;
7961 	struct sbuf *sb;
7962 	int rc;
7963 	struct tp_err_stats stats;
7964 
7965 	rc = sysctl_wire_old_buffer(req, 0);
7966 	if (rc != 0)
7967 		return (rc);
7968 
7969 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7970 	if (sb == NULL)
7971 		return (ENOMEM);
7972 
7973 	mtx_lock(&sc->reg_lock);
7974 	t4_tp_get_err_stats(sc, &stats, 0);
7975 	mtx_unlock(&sc->reg_lock);
7976 
7977 	if (sc->chip_params->nchan > 2) {
7978 		sbuf_printf(sb, "                 channel 0  channel 1"
7979 		    "  channel 2  channel 3\n");
7980 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7981 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
7982 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
7983 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7984 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7985 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7986 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7987 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7988 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7989 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7990 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7991 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7992 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7993 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7994 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7995 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7996 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7997 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7998 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7999 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
8000 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
8001 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
8002 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
8003 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
8004 	} else {
8005 		sbuf_printf(sb, "                 channel 0  channel 1\n");
8006 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
8007 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
8008 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
8009 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
8010 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
8011 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
8012 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
8013 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
8014 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
8015 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
8016 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
8017 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
8018 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
8019 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
8020 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
8021 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
8022 	}
8023 
8024 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
8025 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
8026 
8027 	rc = sbuf_finish(sb);
8028 	sbuf_delete(sb);
8029 
8030 	return (rc);
8031 }
8032 
8033 static int
8034 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
8035 {
8036 	struct adapter *sc = arg1;
8037 	struct tp_params *tpp = &sc->params.tp;
8038 	u_int mask;
8039 	int rc;
8040 
8041 	mask = tpp->la_mask >> 16;
8042 	rc = sysctl_handle_int(oidp, &mask, 0, req);
8043 	if (rc != 0 || req->newptr == NULL)
8044 		return (rc);
8045 	if (mask > 0xffff)
8046 		return (EINVAL);
8047 	tpp->la_mask = mask << 16;
8048 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
8049 
8050 	return (0);
8051 }
8052 
8053 struct field_desc {
8054 	const char *name;
8055 	u_int start;
8056 	u_int width;
8057 };
8058 
8059 static void
8060 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
8061 {
8062 	char buf[32];
8063 	int line_size = 0;
8064 
8065 	while (f->name) {
8066 		uint64_t mask = (1ULL << f->width) - 1;
8067 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
8068 		    ((uintmax_t)v >> f->start) & mask);
8069 
8070 		if (line_size + len >= 79) {
8071 			line_size = 8;
8072 			sbuf_printf(sb, "\n        ");
8073 		}
8074 		sbuf_printf(sb, "%s ", buf);
8075 		line_size += len + 1;
8076 		f++;
8077 	}
8078 	sbuf_printf(sb, "\n");
8079 }
8080 
8081 static const struct field_desc tp_la0[] = {
8082 	{ "RcfOpCodeOut", 60, 4 },
8083 	{ "State", 56, 4 },
8084 	{ "WcfState", 52, 4 },
8085 	{ "RcfOpcSrcOut", 50, 2 },
8086 	{ "CRxError", 49, 1 },
8087 	{ "ERxError", 48, 1 },
8088 	{ "SanityFailed", 47, 1 },
8089 	{ "SpuriousMsg", 46, 1 },
8090 	{ "FlushInputMsg", 45, 1 },
8091 	{ "FlushInputCpl", 44, 1 },
8092 	{ "RssUpBit", 43, 1 },
8093 	{ "RssFilterHit", 42, 1 },
8094 	{ "Tid", 32, 10 },
8095 	{ "InitTcb", 31, 1 },
8096 	{ "LineNumber", 24, 7 },
8097 	{ "Emsg", 23, 1 },
8098 	{ "EdataOut", 22, 1 },
8099 	{ "Cmsg", 21, 1 },
8100 	{ "CdataOut", 20, 1 },
8101 	{ "EreadPdu", 19, 1 },
8102 	{ "CreadPdu", 18, 1 },
8103 	{ "TunnelPkt", 17, 1 },
8104 	{ "RcfPeerFin", 16, 1 },
8105 	{ "RcfReasonOut", 12, 4 },
8106 	{ "TxCchannel", 10, 2 },
8107 	{ "RcfTxChannel", 8, 2 },
8108 	{ "RxEchannel", 6, 2 },
8109 	{ "RcfRxChannel", 5, 1 },
8110 	{ "RcfDataOutSrdy", 4, 1 },
8111 	{ "RxDvld", 3, 1 },
8112 	{ "RxOoDvld", 2, 1 },
8113 	{ "RxCongestion", 1, 1 },
8114 	{ "TxCongestion", 0, 1 },
8115 	{ NULL }
8116 };
8117 
8118 static const struct field_desc tp_la1[] = {
8119 	{ "CplCmdIn", 56, 8 },
8120 	{ "CplCmdOut", 48, 8 },
8121 	{ "ESynOut", 47, 1 },
8122 	{ "EAckOut", 46, 1 },
8123 	{ "EFinOut", 45, 1 },
8124 	{ "ERstOut", 44, 1 },
8125 	{ "SynIn", 43, 1 },
8126 	{ "AckIn", 42, 1 },
8127 	{ "FinIn", 41, 1 },
8128 	{ "RstIn", 40, 1 },
8129 	{ "DataIn", 39, 1 },
8130 	{ "DataInVld", 38, 1 },
8131 	{ "PadIn", 37, 1 },
8132 	{ "RxBufEmpty", 36, 1 },
8133 	{ "RxDdp", 35, 1 },
8134 	{ "RxFbCongestion", 34, 1 },
8135 	{ "TxFbCongestion", 33, 1 },
8136 	{ "TxPktSumSrdy", 32, 1 },
8137 	{ "RcfUlpType", 28, 4 },
8138 	{ "Eread", 27, 1 },
8139 	{ "Ebypass", 26, 1 },
8140 	{ "Esave", 25, 1 },
8141 	{ "Static0", 24, 1 },
8142 	{ "Cread", 23, 1 },
8143 	{ "Cbypass", 22, 1 },
8144 	{ "Csave", 21, 1 },
8145 	{ "CPktOut", 20, 1 },
8146 	{ "RxPagePoolFull", 18, 2 },
8147 	{ "RxLpbkPkt", 17, 1 },
8148 	{ "TxLpbkPkt", 16, 1 },
8149 	{ "RxVfValid", 15, 1 },
8150 	{ "SynLearned", 14, 1 },
8151 	{ "SetDelEntry", 13, 1 },
8152 	{ "SetInvEntry", 12, 1 },
8153 	{ "CpcmdDvld", 11, 1 },
8154 	{ "CpcmdSave", 10, 1 },
8155 	{ "RxPstructsFull", 8, 2 },
8156 	{ "EpcmdDvld", 7, 1 },
8157 	{ "EpcmdFlush", 6, 1 },
8158 	{ "EpcmdTrimPrefix", 5, 1 },
8159 	{ "EpcmdTrimPostfix", 4, 1 },
8160 	{ "ERssIp4Pkt", 3, 1 },
8161 	{ "ERssIp6Pkt", 2, 1 },
8162 	{ "ERssTcpUdpPkt", 1, 1 },
8163 	{ "ERssFceFipPkt", 0, 1 },
8164 	{ NULL }
8165 };
8166 
8167 static const struct field_desc tp_la2[] = {
8168 	{ "CplCmdIn", 56, 8 },
8169 	{ "MpsVfVld", 55, 1 },
8170 	{ "MpsPf", 52, 3 },
8171 	{ "MpsVf", 44, 8 },
8172 	{ "SynIn", 43, 1 },
8173 	{ "AckIn", 42, 1 },
8174 	{ "FinIn", 41, 1 },
8175 	{ "RstIn", 40, 1 },
8176 	{ "DataIn", 39, 1 },
8177 	{ "DataInVld", 38, 1 },
8178 	{ "PadIn", 37, 1 },
8179 	{ "RxBufEmpty", 36, 1 },
8180 	{ "RxDdp", 35, 1 },
8181 	{ "RxFbCongestion", 34, 1 },
8182 	{ "TxFbCongestion", 33, 1 },
8183 	{ "TxPktSumSrdy", 32, 1 },
8184 	{ "RcfUlpType", 28, 4 },
8185 	{ "Eread", 27, 1 },
8186 	{ "Ebypass", 26, 1 },
8187 	{ "Esave", 25, 1 },
8188 	{ "Static0", 24, 1 },
8189 	{ "Cread", 23, 1 },
8190 	{ "Cbypass", 22, 1 },
8191 	{ "Csave", 21, 1 },
8192 	{ "CPktOut", 20, 1 },
8193 	{ "RxPagePoolFull", 18, 2 },
8194 	{ "RxLpbkPkt", 17, 1 },
8195 	{ "TxLpbkPkt", 16, 1 },
8196 	{ "RxVfValid", 15, 1 },
8197 	{ "SynLearned", 14, 1 },
8198 	{ "SetDelEntry", 13, 1 },
8199 	{ "SetInvEntry", 12, 1 },
8200 	{ "CpcmdDvld", 11, 1 },
8201 	{ "CpcmdSave", 10, 1 },
8202 	{ "RxPstructsFull", 8, 2 },
8203 	{ "EpcmdDvld", 7, 1 },
8204 	{ "EpcmdFlush", 6, 1 },
8205 	{ "EpcmdTrimPrefix", 5, 1 },
8206 	{ "EpcmdTrimPostfix", 4, 1 },
8207 	{ "ERssIp4Pkt", 3, 1 },
8208 	{ "ERssIp6Pkt", 2, 1 },
8209 	{ "ERssTcpUdpPkt", 1, 1 },
8210 	{ "ERssFceFipPkt", 0, 1 },
8211 	{ NULL }
8212 };
8213 
8214 static void
8215 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8216 {
8217 
8218 	field_desc_show(sb, *p, tp_la0);
8219 }
8220 
8221 static void
8222 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8223 {
8224 
8225 	if (idx)
8226 		sbuf_printf(sb, "\n");
8227 	field_desc_show(sb, p[0], tp_la0);
8228 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8229 		field_desc_show(sb, p[1], tp_la0);
8230 }
8231 
8232 static void
8233 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
8234 {
8235 
8236 	if (idx)
8237 		sbuf_printf(sb, "\n");
8238 	field_desc_show(sb, p[0], tp_la0);
8239 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8240 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
8241 }
8242 
8243 static int
8244 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
8245 {
8246 	struct adapter *sc = arg1;
8247 	struct sbuf *sb;
8248 	uint64_t *buf, *p;
8249 	int rc;
8250 	u_int i, inc;
8251 	void (*show_func)(struct sbuf *, uint64_t *, int);
8252 
8253 	rc = sysctl_wire_old_buffer(req, 0);
8254 	if (rc != 0)
8255 		return (rc);
8256 
8257 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8258 	if (sb == NULL)
8259 		return (ENOMEM);
8260 
8261 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
8262 
8263 	t4_tp_read_la(sc, buf, NULL);
8264 	p = buf;
8265 
8266 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
8267 	case 2:
8268 		inc = 2;
8269 		show_func = tp_la_show2;
8270 		break;
8271 	case 3:
8272 		inc = 2;
8273 		show_func = tp_la_show3;
8274 		break;
8275 	default:
8276 		inc = 1;
8277 		show_func = tp_la_show;
8278 	}
8279 
8280 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
8281 		(*show_func)(sb, p, i);
8282 
8283 	rc = sbuf_finish(sb);
8284 	sbuf_delete(sb);
8285 	free(buf, M_CXGBE);
8286 	return (rc);
8287 }
8288 
8289 static int
8290 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
8291 {
8292 	struct adapter *sc = arg1;
8293 	struct sbuf *sb;
8294 	int rc;
8295 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
8296 
8297 	rc = sysctl_wire_old_buffer(req, 0);
8298 	if (rc != 0)
8299 		return (rc);
8300 
8301 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8302 	if (sb == NULL)
8303 		return (ENOMEM);
8304 
8305 	t4_get_chan_txrate(sc, nrate, orate);
8306 
8307 	if (sc->chip_params->nchan > 2) {
8308 		sbuf_printf(sb, "              channel 0   channel 1"
8309 		    "   channel 2   channel 3\n");
8310 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
8311 		    nrate[0], nrate[1], nrate[2], nrate[3]);
8312 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
8313 		    orate[0], orate[1], orate[2], orate[3]);
8314 	} else {
8315 		sbuf_printf(sb, "              channel 0   channel 1\n");
8316 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
8317 		    nrate[0], nrate[1]);
8318 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
8319 		    orate[0], orate[1]);
8320 	}
8321 
8322 	rc = sbuf_finish(sb);
8323 	sbuf_delete(sb);
8324 
8325 	return (rc);
8326 }
8327 
8328 static int
8329 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
8330 {
8331 	struct adapter *sc = arg1;
8332 	struct sbuf *sb;
8333 	uint32_t *buf, *p;
8334 	int rc, i;
8335 
8336 	rc = sysctl_wire_old_buffer(req, 0);
8337 	if (rc != 0)
8338 		return (rc);
8339 
8340 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8341 	if (sb == NULL)
8342 		return (ENOMEM);
8343 
8344 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
8345 	    M_ZERO | M_WAITOK);
8346 
8347 	t4_ulprx_read_la(sc, buf);
8348 	p = buf;
8349 
8350 	sbuf_printf(sb, "      Pcmd        Type   Message"
8351 	    "                Data");
8352 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
8353 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
8354 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
8355 	}
8356 
8357 	rc = sbuf_finish(sb);
8358 	sbuf_delete(sb);
8359 	free(buf, M_CXGBE);
8360 	return (rc);
8361 }
8362 
8363 static int
8364 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
8365 {
8366 	struct adapter *sc = arg1;
8367 	struct sbuf *sb;
8368 	int rc, v;
8369 
8370 	MPASS(chip_id(sc) >= CHELSIO_T5);
8371 
8372 	rc = sysctl_wire_old_buffer(req, 0);
8373 	if (rc != 0)
8374 		return (rc);
8375 
8376 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8377 	if (sb == NULL)
8378 		return (ENOMEM);
8379 
8380 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
8381 	if (G_STATSOURCE_T5(v) == 7) {
8382 		int mode;
8383 
8384 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
8385 		if (mode == 0) {
8386 			sbuf_printf(sb, "total %d, incomplete %d",
8387 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
8388 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
8389 		} else if (mode == 1) {
8390 			sbuf_printf(sb, "total %d, data overflow %d",
8391 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
8392 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
8393 		} else {
8394 			sbuf_printf(sb, "unknown mode %d", mode);
8395 		}
8396 	}
8397 	rc = sbuf_finish(sb);
8398 	sbuf_delete(sb);
8399 
8400 	return (rc);
8401 }
8402 
8403 static int
8404 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
8405 {
8406 	struct adapter *sc = arg1;
8407 	struct tx_cl_rl_params tc;
8408 	struct sbuf *sb;
8409 	int i, rc, port_id, mbps, gbps;
8410 
8411 	rc = sysctl_wire_old_buffer(req, 0);
8412 	if (rc != 0)
8413 		return (rc);
8414 
8415 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8416 	if (sb == NULL)
8417 		return (ENOMEM);
8418 
8419 	port_id = arg2 >> 16;
8420 	MPASS(port_id < sc->params.nports);
8421 	MPASS(sc->port[port_id] != NULL);
8422 	i = arg2 & 0xffff;
8423 	MPASS(i < sc->chip_params->nsched_cls);
8424 
8425 	mtx_lock(&sc->tc_lock);
8426 	tc = sc->port[port_id]->sched_params->cl_rl[i];
8427 	mtx_unlock(&sc->tc_lock);
8428 
8429 	if (tc.flags & TX_CLRL_ERROR) {
8430 		sbuf_printf(sb, "error");
8431 		goto done;
8432 	}
8433 
8434 	if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
8435 		/* XXX: top speed or actual link speed? */
8436 		gbps = port_top_speed(sc->port[port_id]);
8437 		sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
8438 	} else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
8439 		switch (tc.rateunit) {
8440 		case SCHED_CLASS_RATEUNIT_BITS:
8441 			mbps = tc.maxrate / 1000;
8442 			gbps = tc.maxrate / 1000000;
8443 			if (tc.maxrate == gbps * 1000000)
8444 				sbuf_printf(sb, " %uGbps", gbps);
8445 			else if (tc.maxrate == mbps * 1000)
8446 				sbuf_printf(sb, " %uMbps", mbps);
8447 			else
8448 				sbuf_printf(sb, " %uKbps", tc.maxrate);
8449 			break;
8450 		case SCHED_CLASS_RATEUNIT_PKTS:
8451 			sbuf_printf(sb, " %upps", tc.maxrate);
8452 			break;
8453 		default:
8454 			rc = ENXIO;
8455 			goto done;
8456 		}
8457 	}
8458 
8459 	switch (tc.mode) {
8460 	case SCHED_CLASS_MODE_CLASS:
8461 		sbuf_printf(sb, " aggregate");
8462 		break;
8463 	case SCHED_CLASS_MODE_FLOW:
8464 		sbuf_printf(sb, " per-flow");
8465 		break;
8466 	default:
8467 		rc = ENXIO;
8468 		goto done;
8469 	}
8470 
8471 done:
8472 	if (rc == 0)
8473 		rc = sbuf_finish(sb);
8474 	sbuf_delete(sb);
8475 
8476 	return (rc);
8477 }
8478 #endif
8479 
8480 #ifdef TCP_OFFLOAD
8481 static int
8482 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
8483 {
8484 	struct adapter *sc = arg1;
8485 	int *old_ports, *new_ports;
8486 	int i, new_count, rc;
8487 
8488 	if (req->newptr == NULL && req->oldptr == NULL)
8489 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
8490 		    sizeof(sc->tt.tls_rx_ports[0])));
8491 
8492 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
8493 	if (rc)
8494 		return (rc);
8495 
8496 	if (sc->tt.num_tls_rx_ports == 0) {
8497 		i = -1;
8498 		rc = SYSCTL_OUT(req, &i, sizeof(i));
8499 	} else
8500 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
8501 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
8502 	if (rc == 0 && req->newptr != NULL) {
8503 		new_count = req->newlen / sizeof(new_ports[0]);
8504 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
8505 		    M_WAITOK);
8506 		rc = SYSCTL_IN(req, new_ports, new_count *
8507 		    sizeof(new_ports[0]));
8508 		if (rc)
8509 			goto err;
8510 
8511 		/* Allow setting to a single '-1' to clear the list. */
8512 		if (new_count == 1 && new_ports[0] == -1) {
8513 			ADAPTER_LOCK(sc);
8514 			old_ports = sc->tt.tls_rx_ports;
8515 			sc->tt.tls_rx_ports = NULL;
8516 			sc->tt.num_tls_rx_ports = 0;
8517 			ADAPTER_UNLOCK(sc);
8518 			free(old_ports, M_CXGBE);
8519 		} else {
8520 			for (i = 0; i < new_count; i++) {
8521 				if (new_ports[i] < 1 ||
8522 				    new_ports[i] > IPPORT_MAX) {
8523 					rc = EINVAL;
8524 					goto err;
8525 				}
8526 			}
8527 
8528 			ADAPTER_LOCK(sc);
8529 			old_ports = sc->tt.tls_rx_ports;
8530 			sc->tt.tls_rx_ports = new_ports;
8531 			sc->tt.num_tls_rx_ports = new_count;
8532 			ADAPTER_UNLOCK(sc);
8533 			free(old_ports, M_CXGBE);
8534 			new_ports = NULL;
8535 		}
8536 	err:
8537 		free(new_ports, M_CXGBE);
8538 	}
8539 	end_synchronized_op(sc, 0);
8540 	return (rc);
8541 }
8542 
8543 static void
8544 unit_conv(char *buf, size_t len, u_int val, u_int factor)
8545 {
8546 	u_int rem = val % factor;
8547 
8548 	if (rem == 0)
8549 		snprintf(buf, len, "%u", val / factor);
8550 	else {
8551 		while (rem % 10 == 0)
8552 			rem /= 10;
8553 		snprintf(buf, len, "%u.%u", val / factor, rem);
8554 	}
8555 }
8556 
8557 static int
8558 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
8559 {
8560 	struct adapter *sc = arg1;
8561 	char buf[16];
8562 	u_int res, re;
8563 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8564 
8565 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8566 	switch (arg2) {
8567 	case 0:
8568 		/* timer_tick */
8569 		re = G_TIMERRESOLUTION(res);
8570 		break;
8571 	case 1:
8572 		/* TCP timestamp tick */
8573 		re = G_TIMESTAMPRESOLUTION(res);
8574 		break;
8575 	case 2:
8576 		/* DACK tick */
8577 		re = G_DELAYEDACKRESOLUTION(res);
8578 		break;
8579 	default:
8580 		return (EDOOFUS);
8581 	}
8582 
8583 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
8584 
8585 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
8586 }
8587 
8588 static int
8589 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
8590 {
8591 	struct adapter *sc = arg1;
8592 	u_int res, dack_re, v;
8593 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8594 
8595 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8596 	dack_re = G_DELAYEDACKRESOLUTION(res);
8597 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
8598 
8599 	return (sysctl_handle_int(oidp, &v, 0, req));
8600 }
8601 
8602 static int
8603 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
8604 {
8605 	struct adapter *sc = arg1;
8606 	int reg = arg2;
8607 	u_int tre;
8608 	u_long tp_tick_us, v;
8609 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8610 
8611 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8612 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8613 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8614 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8615 
8616 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8617 	tp_tick_us = (cclk_ps << tre) / 1000000;
8618 
8619 	if (reg == A_TP_INIT_SRTT)
8620 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8621 	else
8622 		v = tp_tick_us * t4_read_reg(sc, reg);
8623 
8624 	return (sysctl_handle_long(oidp, &v, 0, req));
8625 }
8626 
8627 /*
8628  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
8629  * passed to this function.
8630  */
8631 static int
8632 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
8633 {
8634 	struct adapter *sc = arg1;
8635 	int idx = arg2;
8636 	u_int v;
8637 
8638 	MPASS(idx >= 0 && idx <= 24);
8639 
8640 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
8641 
8642 	return (sysctl_handle_int(oidp, &v, 0, req));
8643 }
8644 
8645 static int
8646 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
8647 {
8648 	struct adapter *sc = arg1;
8649 	int idx = arg2;
8650 	u_int shift, v, r;
8651 
8652 	MPASS(idx >= 0 && idx < 16);
8653 
8654 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
8655 	shift = (idx & 3) << 3;
8656 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
8657 
8658 	return (sysctl_handle_int(oidp, &v, 0, req));
8659 }
8660 
8661 static int
8662 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
8663 {
8664 	struct vi_info *vi = arg1;
8665 	struct adapter *sc = vi->pi->adapter;
8666 	int idx, rc, i;
8667 	struct sge_ofld_rxq *ofld_rxq;
8668 	uint8_t v;
8669 
8670 	idx = vi->ofld_tmr_idx;
8671 
8672 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8673 	if (rc != 0 || req->newptr == NULL)
8674 		return (rc);
8675 
8676 	if (idx < 0 || idx >= SGE_NTIMERS)
8677 		return (EINVAL);
8678 
8679 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8680 	    "t4otmr");
8681 	if (rc)
8682 		return (rc);
8683 
8684 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
8685 	for_each_ofld_rxq(vi, i, ofld_rxq) {
8686 #ifdef atomic_store_rel_8
8687 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
8688 #else
8689 		ofld_rxq->iq.intr_params = v;
8690 #endif
8691 	}
8692 	vi->ofld_tmr_idx = idx;
8693 
8694 	end_synchronized_op(sc, LOCK_HELD);
8695 	return (0);
8696 }
8697 
8698 static int
8699 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
8700 {
8701 	struct vi_info *vi = arg1;
8702 	struct adapter *sc = vi->pi->adapter;
8703 	int idx, rc;
8704 
8705 	idx = vi->ofld_pktc_idx;
8706 
8707 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8708 	if (rc != 0 || req->newptr == NULL)
8709 		return (rc);
8710 
8711 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8712 		return (EINVAL);
8713 
8714 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8715 	    "t4opktc");
8716 	if (rc)
8717 		return (rc);
8718 
8719 	if (vi->flags & VI_INIT_DONE)
8720 		rc = EBUSY; /* cannot be changed once the queues are created */
8721 	else
8722 		vi->ofld_pktc_idx = idx;
8723 
8724 	end_synchronized_op(sc, LOCK_HELD);
8725 	return (rc);
8726 }
8727 #endif
8728 
8729 static int
8730 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
8731 {
8732 	int rc;
8733 
8734 	if (cntxt->cid > M_CTXTQID)
8735 		return (EINVAL);
8736 
8737 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
8738 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
8739 		return (EINVAL);
8740 
8741 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
8742 	if (rc)
8743 		return (rc);
8744 
8745 	if (sc->flags & FW_OK) {
8746 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
8747 		    &cntxt->data[0]);
8748 		if (rc == 0)
8749 			goto done;
8750 	}
8751 
8752 	/*
8753 	 * Read via firmware failed or wasn't even attempted.  Read directly via
8754 	 * the backdoor.
8755 	 */
8756 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
8757 done:
8758 	end_synchronized_op(sc, 0);
8759 	return (rc);
8760 }
8761 
8762 static int
8763 load_fw(struct adapter *sc, struct t4_data *fw)
8764 {
8765 	int rc;
8766 	uint8_t *fw_data;
8767 
8768 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
8769 	if (rc)
8770 		return (rc);
8771 
8772 	/*
8773 	 * The firmware, with the sole exception of the memory parity error
8774 	 * handler, runs from memory and not flash.  It is almost always safe to
8775 	 * install a new firmware on a running system.  Just set bit 1 in
8776 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
8777 	 */
8778 	if (sc->flags & FULL_INIT_DONE &&
8779 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
8780 		rc = EBUSY;
8781 		goto done;
8782 	}
8783 
8784 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
8785 	if (fw_data == NULL) {
8786 		rc = ENOMEM;
8787 		goto done;
8788 	}
8789 
8790 	rc = copyin(fw->data, fw_data, fw->len);
8791 	if (rc == 0)
8792 		rc = -t4_load_fw(sc, fw_data, fw->len);
8793 
8794 	free(fw_data, M_CXGBE);
8795 done:
8796 	end_synchronized_op(sc, 0);
8797 	return (rc);
8798 }
8799 
8800 static int
8801 load_cfg(struct adapter *sc, struct t4_data *cfg)
8802 {
8803 	int rc;
8804 	uint8_t *cfg_data = NULL;
8805 
8806 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
8807 	if (rc)
8808 		return (rc);
8809 
8810 	if (cfg->len == 0) {
8811 		/* clear */
8812 		rc = -t4_load_cfg(sc, NULL, 0);
8813 		goto done;
8814 	}
8815 
8816 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
8817 	if (cfg_data == NULL) {
8818 		rc = ENOMEM;
8819 		goto done;
8820 	}
8821 
8822 	rc = copyin(cfg->data, cfg_data, cfg->len);
8823 	if (rc == 0)
8824 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
8825 
8826 	free(cfg_data, M_CXGBE);
8827 done:
8828 	end_synchronized_op(sc, 0);
8829 	return (rc);
8830 }
8831 
8832 static int
8833 load_boot(struct adapter *sc, struct t4_bootrom *br)
8834 {
8835 	int rc;
8836 	uint8_t *br_data = NULL;
8837 	u_int offset;
8838 
8839 	if (br->len > 1024 * 1024)
8840 		return (EFBIG);
8841 
8842 	if (br->pf_offset == 0) {
8843 		/* pfidx */
8844 		if (br->pfidx_addr > 7)
8845 			return (EINVAL);
8846 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
8847 		    A_PCIE_PF_EXPROM_OFST)));
8848 	} else if (br->pf_offset == 1) {
8849 		/* offset */
8850 		offset = G_OFFSET(br->pfidx_addr);
8851 	} else {
8852 		return (EINVAL);
8853 	}
8854 
8855 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
8856 	if (rc)
8857 		return (rc);
8858 
8859 	if (br->len == 0) {
8860 		/* clear */
8861 		rc = -t4_load_boot(sc, NULL, offset, 0);
8862 		goto done;
8863 	}
8864 
8865 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
8866 	if (br_data == NULL) {
8867 		rc = ENOMEM;
8868 		goto done;
8869 	}
8870 
8871 	rc = copyin(br->data, br_data, br->len);
8872 	if (rc == 0)
8873 		rc = -t4_load_boot(sc, br_data, offset, br->len);
8874 
8875 	free(br_data, M_CXGBE);
8876 done:
8877 	end_synchronized_op(sc, 0);
8878 	return (rc);
8879 }
8880 
8881 static int
8882 load_bootcfg(struct adapter *sc, struct t4_data *bc)
8883 {
8884 	int rc;
8885 	uint8_t *bc_data = NULL;
8886 
8887 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
8888 	if (rc)
8889 		return (rc);
8890 
8891 	if (bc->len == 0) {
8892 		/* clear */
8893 		rc = -t4_load_bootcfg(sc, NULL, 0);
8894 		goto done;
8895 	}
8896 
8897 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
8898 	if (bc_data == NULL) {
8899 		rc = ENOMEM;
8900 		goto done;
8901 	}
8902 
8903 	rc = copyin(bc->data, bc_data, bc->len);
8904 	if (rc == 0)
8905 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
8906 
8907 	free(bc_data, M_CXGBE);
8908 done:
8909 	end_synchronized_op(sc, 0);
8910 	return (rc);
8911 }
8912 
8913 static int
8914 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
8915 {
8916 	int rc;
8917 	struct cudbg_init *cudbg;
8918 	void *handle, *buf;
8919 
8920 	/* buf is large, don't block if no memory is available */
8921 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
8922 	if (buf == NULL)
8923 		return (ENOMEM);
8924 
8925 	handle = cudbg_alloc_handle();
8926 	if (handle == NULL) {
8927 		rc = ENOMEM;
8928 		goto done;
8929 	}
8930 
8931 	cudbg = cudbg_get_init(handle);
8932 	cudbg->adap = sc;
8933 	cudbg->print = (cudbg_print_cb)printf;
8934 
8935 #ifndef notyet
8936 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
8937 	    __func__, dump->wr_flash, dump->len, dump->data);
8938 #endif
8939 
8940 	if (dump->wr_flash)
8941 		cudbg->use_flash = 1;
8942 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
8943 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
8944 
8945 	rc = cudbg_collect(handle, buf, &dump->len);
8946 	if (rc != 0)
8947 		goto done;
8948 
8949 	rc = copyout(buf, dump->data, dump->len);
8950 done:
8951 	cudbg_free_handle(handle);
8952 	free(buf, M_CXGBE);
8953 	return (rc);
8954 }
8955 
8956 static void
8957 free_offload_policy(struct t4_offload_policy *op)
8958 {
8959 	struct offload_rule *r;
8960 	int i;
8961 
8962 	if (op == NULL)
8963 		return;
8964 
8965 	r = &op->rule[0];
8966 	for (i = 0; i < op->nrules; i++, r++) {
8967 		free(r->bpf_prog.bf_insns, M_CXGBE);
8968 	}
8969 	free(op->rule, M_CXGBE);
8970 	free(op, M_CXGBE);
8971 }
8972 
8973 static int
8974 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
8975 {
8976 	int i, rc, len;
8977 	struct t4_offload_policy *op, *old;
8978 	struct bpf_program *bf;
8979 	const struct offload_settings *s;
8980 	struct offload_rule *r;
8981 	void *u;
8982 
8983 	if (!is_offload(sc))
8984 		return (ENODEV);
8985 
8986 	if (uop->nrules == 0) {
8987 		/* Delete installed policies. */
8988 		op = NULL;
8989 		goto set_policy;
8990 	} if (uop->nrules > 256) { /* arbitrary */
8991 		return (E2BIG);
8992 	}
8993 
8994 	/* Copy userspace offload policy to kernel */
8995 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
8996 	op->nrules = uop->nrules;
8997 	len = op->nrules * sizeof(struct offload_rule);
8998 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
8999 	rc = copyin(uop->rule, op->rule, len);
9000 	if (rc) {
9001 		free(op->rule, M_CXGBE);
9002 		free(op, M_CXGBE);
9003 		return (rc);
9004 	}
9005 
9006 	r = &op->rule[0];
9007 	for (i = 0; i < op->nrules; i++, r++) {
9008 
9009 		/* Validate open_type */
9010 		if (r->open_type != OPEN_TYPE_LISTEN &&
9011 		    r->open_type != OPEN_TYPE_ACTIVE &&
9012 		    r->open_type != OPEN_TYPE_PASSIVE &&
9013 		    r->open_type != OPEN_TYPE_DONTCARE) {
9014 error:
9015 			/*
9016 			 * Rules 0 to i have malloc'd filters that need to be
9017 			 * freed.  Rules i+1 to nrules have userspace pointers
9018 			 * and should be left alone.
9019 			 */
9020 			op->nrules = i;
9021 			free_offload_policy(op);
9022 			return (rc);
9023 		}
9024 
9025 		/* Validate settings */
9026 		s = &r->settings;
9027 		if ((s->offload != 0 && s->offload != 1) ||
9028 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
9029 		    s->sched_class < -1 ||
9030 		    s->sched_class >= sc->chip_params->nsched_cls) {
9031 			rc = EINVAL;
9032 			goto error;
9033 		}
9034 
9035 		bf = &r->bpf_prog;
9036 		u = bf->bf_insns;	/* userspace ptr */
9037 		bf->bf_insns = NULL;
9038 		if (bf->bf_len == 0) {
9039 			/* legal, matches everything */
9040 			continue;
9041 		}
9042 		len = bf->bf_len * sizeof(*bf->bf_insns);
9043 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9044 		rc = copyin(u, bf->bf_insns, len);
9045 		if (rc != 0)
9046 			goto error;
9047 
9048 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
9049 			rc = EINVAL;
9050 			goto error;
9051 		}
9052 	}
9053 set_policy:
9054 	rw_wlock(&sc->policy_lock);
9055 	old = sc->policy;
9056 	sc->policy = op;
9057 	rw_wunlock(&sc->policy_lock);
9058 	free_offload_policy(old);
9059 
9060 	return (0);
9061 }
9062 
9063 #define MAX_READ_BUF_SIZE (128 * 1024)
9064 static int
9065 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9066 {
9067 	uint32_t addr, remaining, n;
9068 	uint32_t *buf;
9069 	int rc;
9070 	uint8_t *dst;
9071 
9072 	rc = validate_mem_range(sc, mr->addr, mr->len);
9073 	if (rc != 0)
9074 		return (rc);
9075 
9076 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9077 	addr = mr->addr;
9078 	remaining = mr->len;
9079 	dst = (void *)mr->data;
9080 
9081 	while (remaining) {
9082 		n = min(remaining, MAX_READ_BUF_SIZE);
9083 		read_via_memwin(sc, 2, addr, buf, n);
9084 
9085 		rc = copyout(buf, dst, n);
9086 		if (rc != 0)
9087 			break;
9088 
9089 		dst += n;
9090 		remaining -= n;
9091 		addr += n;
9092 	}
9093 
9094 	free(buf, M_CXGBE);
9095 	return (rc);
9096 }
9097 #undef MAX_READ_BUF_SIZE
9098 
9099 static int
9100 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9101 {
9102 	int rc;
9103 
9104 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9105 		return (EINVAL);
9106 
9107 	if (i2cd->len > sizeof(i2cd->data))
9108 		return (EFBIG);
9109 
9110 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9111 	if (rc)
9112 		return (rc);
9113 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9114 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
9115 	end_synchronized_op(sc, 0);
9116 
9117 	return (rc);
9118 }
9119 
9120 int
9121 t4_os_find_pci_capability(struct adapter *sc, int cap)
9122 {
9123 	int i;
9124 
9125 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9126 }
9127 
9128 int
9129 t4_os_pci_save_state(struct adapter *sc)
9130 {
9131 	device_t dev;
9132 	struct pci_devinfo *dinfo;
9133 
9134 	dev = sc->dev;
9135 	dinfo = device_get_ivars(dev);
9136 
9137 	pci_cfg_save(dev, dinfo, 0);
9138 	return (0);
9139 }
9140 
9141 int
9142 t4_os_pci_restore_state(struct adapter *sc)
9143 {
9144 	device_t dev;
9145 	struct pci_devinfo *dinfo;
9146 
9147 	dev = sc->dev;
9148 	dinfo = device_get_ivars(dev);
9149 
9150 	pci_cfg_restore(dev, dinfo);
9151 	return (0);
9152 }
9153 
9154 void
9155 t4_os_portmod_changed(struct port_info *pi)
9156 {
9157 	struct adapter *sc = pi->adapter;
9158 	struct vi_info *vi;
9159 	struct ifnet *ifp;
9160 	static const char *mod_str[] = {
9161 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9162 	};
9163 
9164 	PORT_LOCK(pi);
9165 	build_medialist(pi, &pi->media);
9166 	PORT_UNLOCK(pi);
9167 	vi = &pi->vi[0];
9168 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9169 		init_l1cfg(pi);
9170 		end_synchronized_op(sc, LOCK_HELD);
9171 	}
9172 
9173 	ifp = vi->ifp;
9174 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9175 		if_printf(ifp, "transceiver unplugged.\n");
9176 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9177 		if_printf(ifp, "unknown transceiver inserted.\n");
9178 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9179 		if_printf(ifp, "unsupported transceiver inserted.\n");
9180 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9181 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9182 		    port_top_speed(pi), mod_str[pi->mod_type]);
9183 	} else {
9184 		if_printf(ifp, "transceiver (type %d) inserted.\n",
9185 		    pi->mod_type);
9186 	}
9187 }
9188 
9189 void
9190 t4_os_link_changed(struct port_info *pi)
9191 {
9192 	struct vi_info *vi;
9193 	struct ifnet *ifp;
9194 	struct link_config *lc;
9195 	int v;
9196 
9197 	for_each_vi(pi, v, vi) {
9198 		ifp = vi->ifp;
9199 		if (ifp == NULL)
9200 			continue;
9201 
9202 		lc = &pi->link_cfg;
9203 		if (lc->link_ok) {
9204 			ifp->if_baudrate = IF_Mbps(lc->speed);
9205 			if_link_state_change(ifp, LINK_STATE_UP);
9206 		} else {
9207 			if_link_state_change(ifp, LINK_STATE_DOWN);
9208 		}
9209 	}
9210 }
9211 
9212 void
9213 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9214 {
9215 	struct adapter *sc;
9216 
9217 	sx_slock(&t4_list_lock);
9218 	SLIST_FOREACH(sc, &t4_list, link) {
9219 		/*
9220 		 * func should not make any assumptions about what state sc is
9221 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
9222 		 */
9223 		func(sc, arg);
9224 	}
9225 	sx_sunlock(&t4_list_lock);
9226 }
9227 
9228 static int
9229 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9230     struct thread *td)
9231 {
9232 	int rc;
9233 	struct adapter *sc = dev->si_drv1;
9234 
9235 	rc = priv_check(td, PRIV_DRIVER);
9236 	if (rc != 0)
9237 		return (rc);
9238 
9239 	switch (cmd) {
9240 	case CHELSIO_T4_GETREG: {
9241 		struct t4_reg *edata = (struct t4_reg *)data;
9242 
9243 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9244 			return (EFAULT);
9245 
9246 		if (edata->size == 4)
9247 			edata->val = t4_read_reg(sc, edata->addr);
9248 		else if (edata->size == 8)
9249 			edata->val = t4_read_reg64(sc, edata->addr);
9250 		else
9251 			return (EINVAL);
9252 
9253 		break;
9254 	}
9255 	case CHELSIO_T4_SETREG: {
9256 		struct t4_reg *edata = (struct t4_reg *)data;
9257 
9258 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9259 			return (EFAULT);
9260 
9261 		if (edata->size == 4) {
9262 			if (edata->val & 0xffffffff00000000)
9263 				return (EINVAL);
9264 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9265 		} else if (edata->size == 8)
9266 			t4_write_reg64(sc, edata->addr, edata->val);
9267 		else
9268 			return (EINVAL);
9269 		break;
9270 	}
9271 	case CHELSIO_T4_REGDUMP: {
9272 		struct t4_regdump *regs = (struct t4_regdump *)data;
9273 		int reglen = t4_get_regs_len(sc);
9274 		uint8_t *buf;
9275 
9276 		if (regs->len < reglen) {
9277 			regs->len = reglen; /* hint to the caller */
9278 			return (ENOBUFS);
9279 		}
9280 
9281 		regs->len = reglen;
9282 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9283 		get_regs(sc, regs, buf);
9284 		rc = copyout(buf, regs->data, reglen);
9285 		free(buf, M_CXGBE);
9286 		break;
9287 	}
9288 	case CHELSIO_T4_GET_FILTER_MODE:
9289 		rc = get_filter_mode(sc, (uint32_t *)data);
9290 		break;
9291 	case CHELSIO_T4_SET_FILTER_MODE:
9292 		rc = set_filter_mode(sc, *(uint32_t *)data);
9293 		break;
9294 	case CHELSIO_T4_GET_FILTER:
9295 		rc = get_filter(sc, (struct t4_filter *)data);
9296 		break;
9297 	case CHELSIO_T4_SET_FILTER:
9298 		rc = set_filter(sc, (struct t4_filter *)data);
9299 		break;
9300 	case CHELSIO_T4_DEL_FILTER:
9301 		rc = del_filter(sc, (struct t4_filter *)data);
9302 		break;
9303 	case CHELSIO_T4_GET_SGE_CONTEXT:
9304 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
9305 		break;
9306 	case CHELSIO_T4_LOAD_FW:
9307 		rc = load_fw(sc, (struct t4_data *)data);
9308 		break;
9309 	case CHELSIO_T4_GET_MEM:
9310 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9311 		break;
9312 	case CHELSIO_T4_GET_I2C:
9313 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
9314 		break;
9315 	case CHELSIO_T4_CLEAR_STATS: {
9316 		int i, v, bg_map;
9317 		u_int port_id = *(uint32_t *)data;
9318 		struct port_info *pi;
9319 		struct vi_info *vi;
9320 
9321 		if (port_id >= sc->params.nports)
9322 			return (EINVAL);
9323 		pi = sc->port[port_id];
9324 		if (pi == NULL)
9325 			return (EIO);
9326 
9327 		/* MAC stats */
9328 		t4_clr_port_stats(sc, pi->tx_chan);
9329 		pi->tx_parse_error = 0;
9330 		pi->tnl_cong_drops = 0;
9331 		mtx_lock(&sc->reg_lock);
9332 		for_each_vi(pi, v, vi) {
9333 			if (vi->flags & VI_INIT_DONE)
9334 				t4_clr_vi_stats(sc, vi->viid);
9335 		}
9336 		bg_map = pi->mps_bg_map;
9337 		v = 0;	/* reuse */
9338 		while (bg_map) {
9339 			i = ffs(bg_map) - 1;
9340 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
9341 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
9342 			bg_map &= ~(1 << i);
9343 		}
9344 		mtx_unlock(&sc->reg_lock);
9345 
9346 		/*
9347 		 * Since this command accepts a port, clear stats for
9348 		 * all VIs on this port.
9349 		 */
9350 		for_each_vi(pi, v, vi) {
9351 			if (vi->flags & VI_INIT_DONE) {
9352 				struct sge_rxq *rxq;
9353 				struct sge_txq *txq;
9354 				struct sge_wrq *wrq;
9355 
9356 				for_each_rxq(vi, i, rxq) {
9357 #if defined(INET) || defined(INET6)
9358 					rxq->lro.lro_queued = 0;
9359 					rxq->lro.lro_flushed = 0;
9360 #endif
9361 					rxq->rxcsum = 0;
9362 					rxq->vlan_extraction = 0;
9363 				}
9364 
9365 				for_each_txq(vi, i, txq) {
9366 					txq->txcsum = 0;
9367 					txq->tso_wrs = 0;
9368 					txq->vlan_insertion = 0;
9369 					txq->imm_wrs = 0;
9370 					txq->sgl_wrs = 0;
9371 					txq->txpkt_wrs = 0;
9372 					txq->txpkts0_wrs = 0;
9373 					txq->txpkts1_wrs = 0;
9374 					txq->txpkts0_pkts = 0;
9375 					txq->txpkts1_pkts = 0;
9376 					mp_ring_reset_stats(txq->r);
9377 				}
9378 
9379 #ifdef TCP_OFFLOAD
9380 				/* nothing to clear for each ofld_rxq */
9381 
9382 				for_each_ofld_txq(vi, i, wrq) {
9383 					wrq->tx_wrs_direct = 0;
9384 					wrq->tx_wrs_copied = 0;
9385 				}
9386 #endif
9387 
9388 				if (IS_MAIN_VI(vi)) {
9389 					wrq = &sc->sge.ctrlq[pi->port_id];
9390 					wrq->tx_wrs_direct = 0;
9391 					wrq->tx_wrs_copied = 0;
9392 				}
9393 			}
9394 		}
9395 		break;
9396 	}
9397 	case CHELSIO_T4_SCHED_CLASS:
9398 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9399 		break;
9400 	case CHELSIO_T4_SCHED_QUEUE:
9401 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9402 		break;
9403 	case CHELSIO_T4_GET_TRACER:
9404 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9405 		break;
9406 	case CHELSIO_T4_SET_TRACER:
9407 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9408 		break;
9409 	case CHELSIO_T4_LOAD_CFG:
9410 		rc = load_cfg(sc, (struct t4_data *)data);
9411 		break;
9412 	case CHELSIO_T4_LOAD_BOOT:
9413 		rc = load_boot(sc, (struct t4_bootrom *)data);
9414 		break;
9415 	case CHELSIO_T4_LOAD_BOOTCFG:
9416 		rc = load_bootcfg(sc, (struct t4_data *)data);
9417 		break;
9418 	case CHELSIO_T4_CUDBG_DUMP:
9419 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
9420 		break;
9421 	case CHELSIO_T4_SET_OFLD_POLICY:
9422 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
9423 		break;
9424 	default:
9425 		rc = ENOTTY;
9426 	}
9427 
9428 	return (rc);
9429 }
9430 
9431 void
9432 t4_db_full(struct adapter *sc)
9433 {
9434 
9435 	CXGBE_UNIMPLEMENTED(__func__);
9436 }
9437 
9438 void
9439 t4_db_dropped(struct adapter *sc)
9440 {
9441 
9442 	CXGBE_UNIMPLEMENTED(__func__);
9443 }
9444 
9445 #ifdef TCP_OFFLOAD
9446 static int
9447 toe_capability(struct vi_info *vi, int enable)
9448 {
9449 	int rc;
9450 	struct port_info *pi = vi->pi;
9451 	struct adapter *sc = pi->adapter;
9452 
9453 	ASSERT_SYNCHRONIZED_OP(sc);
9454 
9455 	if (!is_offload(sc))
9456 		return (ENODEV);
9457 
9458 	if (enable) {
9459 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9460 			/* TOE is already enabled. */
9461 			return (0);
9462 		}
9463 
9464 		/*
9465 		 * We need the port's queues around so that we're able to send
9466 		 * and receive CPLs to/from the TOE even if the ifnet for this
9467 		 * port has never been UP'd administratively.
9468 		 */
9469 		if (!(vi->flags & VI_INIT_DONE)) {
9470 			rc = vi_full_init(vi);
9471 			if (rc)
9472 				return (rc);
9473 		}
9474 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9475 			rc = vi_full_init(&pi->vi[0]);
9476 			if (rc)
9477 				return (rc);
9478 		}
9479 
9480 		if (isset(&sc->offload_map, pi->port_id)) {
9481 			/* TOE is enabled on another VI of this port. */
9482 			pi->uld_vis++;
9483 			return (0);
9484 		}
9485 
9486 		if (!uld_active(sc, ULD_TOM)) {
9487 			rc = t4_activate_uld(sc, ULD_TOM);
9488 			if (rc == EAGAIN) {
9489 				log(LOG_WARNING,
9490 				    "You must kldload t4_tom.ko before trying "
9491 				    "to enable TOE on a cxgbe interface.\n");
9492 			}
9493 			if (rc != 0)
9494 				return (rc);
9495 			KASSERT(sc->tom_softc != NULL,
9496 			    ("%s: TOM activated but softc NULL", __func__));
9497 			KASSERT(uld_active(sc, ULD_TOM),
9498 			    ("%s: TOM activated but flag not set", __func__));
9499 		}
9500 
9501 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
9502 		if (!uld_active(sc, ULD_IWARP))
9503 			(void) t4_activate_uld(sc, ULD_IWARP);
9504 		if (!uld_active(sc, ULD_ISCSI))
9505 			(void) t4_activate_uld(sc, ULD_ISCSI);
9506 
9507 		pi->uld_vis++;
9508 		setbit(&sc->offload_map, pi->port_id);
9509 	} else {
9510 		pi->uld_vis--;
9511 
9512 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9513 			return (0);
9514 
9515 		KASSERT(uld_active(sc, ULD_TOM),
9516 		    ("%s: TOM never initialized?", __func__));
9517 		clrbit(&sc->offload_map, pi->port_id);
9518 	}
9519 
9520 	return (0);
9521 }
9522 
9523 /*
9524  * Add an upper layer driver to the global list.
9525  */
9526 int
9527 t4_register_uld(struct uld_info *ui)
9528 {
9529 	int rc = 0;
9530 	struct uld_info *u;
9531 
9532 	sx_xlock(&t4_uld_list_lock);
9533 	SLIST_FOREACH(u, &t4_uld_list, link) {
9534 	    if (u->uld_id == ui->uld_id) {
9535 		    rc = EEXIST;
9536 		    goto done;
9537 	    }
9538 	}
9539 
9540 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9541 	ui->refcount = 0;
9542 done:
9543 	sx_xunlock(&t4_uld_list_lock);
9544 	return (rc);
9545 }
9546 
9547 int
9548 t4_unregister_uld(struct uld_info *ui)
9549 {
9550 	int rc = EINVAL;
9551 	struct uld_info *u;
9552 
9553 	sx_xlock(&t4_uld_list_lock);
9554 
9555 	SLIST_FOREACH(u, &t4_uld_list, link) {
9556 	    if (u == ui) {
9557 		    if (ui->refcount > 0) {
9558 			    rc = EBUSY;
9559 			    goto done;
9560 		    }
9561 
9562 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9563 		    rc = 0;
9564 		    goto done;
9565 	    }
9566 	}
9567 done:
9568 	sx_xunlock(&t4_uld_list_lock);
9569 	return (rc);
9570 }
9571 
9572 int
9573 t4_activate_uld(struct adapter *sc, int id)
9574 {
9575 	int rc;
9576 	struct uld_info *ui;
9577 
9578 	ASSERT_SYNCHRONIZED_OP(sc);
9579 
9580 	if (id < 0 || id > ULD_MAX)
9581 		return (EINVAL);
9582 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
9583 
9584 	sx_slock(&t4_uld_list_lock);
9585 
9586 	SLIST_FOREACH(ui, &t4_uld_list, link) {
9587 		if (ui->uld_id == id) {
9588 			if (!(sc->flags & FULL_INIT_DONE)) {
9589 				rc = adapter_full_init(sc);
9590 				if (rc != 0)
9591 					break;
9592 			}
9593 
9594 			rc = ui->activate(sc);
9595 			if (rc == 0) {
9596 				setbit(&sc->active_ulds, id);
9597 				ui->refcount++;
9598 			}
9599 			break;
9600 		}
9601 	}
9602 
9603 	sx_sunlock(&t4_uld_list_lock);
9604 
9605 	return (rc);
9606 }
9607 
9608 int
9609 t4_deactivate_uld(struct adapter *sc, int id)
9610 {
9611 	int rc;
9612 	struct uld_info *ui;
9613 
9614 	ASSERT_SYNCHRONIZED_OP(sc);
9615 
9616 	if (id < 0 || id > ULD_MAX)
9617 		return (EINVAL);
9618 	rc = ENXIO;
9619 
9620 	sx_slock(&t4_uld_list_lock);
9621 
9622 	SLIST_FOREACH(ui, &t4_uld_list, link) {
9623 		if (ui->uld_id == id) {
9624 			rc = ui->deactivate(sc);
9625 			if (rc == 0) {
9626 				clrbit(&sc->active_ulds, id);
9627 				ui->refcount--;
9628 			}
9629 			break;
9630 		}
9631 	}
9632 
9633 	sx_sunlock(&t4_uld_list_lock);
9634 
9635 	return (rc);
9636 }
9637 
9638 int
9639 uld_active(struct adapter *sc, int uld_id)
9640 {
9641 
9642 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9643 
9644 	return (isset(&sc->active_ulds, uld_id));
9645 }
9646 #endif
9647 
9648 /*
9649  * t  = ptr to tunable.
9650  * nc = number of CPUs.
9651  * c  = compiled in default for that tunable.
9652  */
9653 static void
9654 calculate_nqueues(int *t, int nc, const int c)
9655 {
9656 	int nq;
9657 
9658 	if (*t > 0)
9659 		return;
9660 	nq = *t < 0 ? -*t : c;
9661 	*t = min(nc, nq);
9662 }
9663 
9664 /*
9665  * Come up with reasonable defaults for some of the tunables, provided they're
9666  * not set by the user (in which case we'll use the values as is).
9667  */
9668 static void
9669 tweak_tunables(void)
9670 {
9671 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
9672 
9673 	if (t4_ntxq < 1) {
9674 #ifdef RSS
9675 		t4_ntxq = rss_getnumbuckets();
9676 #else
9677 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
9678 #endif
9679 	}
9680 
9681 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9682 
9683 	if (t4_nrxq < 1) {
9684 #ifdef RSS
9685 		t4_nrxq = rss_getnumbuckets();
9686 #else
9687 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
9688 #endif
9689 	}
9690 
9691 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9692 
9693 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
9694 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
9695 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9696 #endif
9697 #ifdef TCP_OFFLOAD
9698 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
9699 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9700 
9701 	if (t4_toecaps_allowed == -1)
9702 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9703 
9704 	if (t4_rdmacaps_allowed == -1) {
9705 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9706 		    FW_CAPS_CONFIG_RDMA_RDMAC;
9707 	}
9708 
9709 	if (t4_iscsicaps_allowed == -1) {
9710 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
9711 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
9712 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
9713 	}
9714 
9715 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
9716 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
9717 
9718 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
9719 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
9720 #else
9721 	if (t4_toecaps_allowed == -1)
9722 		t4_toecaps_allowed = 0;
9723 
9724 	if (t4_rdmacaps_allowed == -1)
9725 		t4_rdmacaps_allowed = 0;
9726 
9727 	if (t4_iscsicaps_allowed == -1)
9728 		t4_iscsicaps_allowed = 0;
9729 #endif
9730 
9731 #ifdef DEV_NETMAP
9732 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
9733 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
9734 #endif
9735 
9736 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
9737 		t4_tmr_idx = TMR_IDX;
9738 
9739 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
9740 		t4_pktc_idx = PKTC_IDX;
9741 
9742 	if (t4_qsize_txq < 128)
9743 		t4_qsize_txq = 128;
9744 
9745 	if (t4_qsize_rxq < 128)
9746 		t4_qsize_rxq = 128;
9747 	while (t4_qsize_rxq & 7)
9748 		t4_qsize_rxq++;
9749 
9750 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
9751 
9752 	/*
9753 	 * Number of VIs to create per-port.  The first VI is the "main" regular
9754 	 * VI for the port.  The rest are additional virtual interfaces on the
9755 	 * same physical port.  Note that the main VI does not have native
9756 	 * netmap support but the extra VIs do.
9757 	 *
9758 	 * Limit the number of VIs per port to the number of available
9759 	 * MAC addresses per port.
9760 	 */
9761 	if (t4_num_vis < 1)
9762 		t4_num_vis = 1;
9763 	if (t4_num_vis > nitems(vi_mac_funcs)) {
9764 		t4_num_vis = nitems(vi_mac_funcs);
9765 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
9766 	}
9767 
9768 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
9769 		pcie_relaxed_ordering = 1;
9770 #if defined(__i386__) || defined(__amd64__)
9771 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
9772 			pcie_relaxed_ordering = 0;
9773 #endif
9774 	}
9775 }
9776 
9777 #ifdef DDB
9778 static void
9779 t4_dump_tcb(struct adapter *sc, int tid)
9780 {
9781 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
9782 
9783 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
9784 	save = t4_read_reg(sc, reg);
9785 	base = sc->memwin[2].mw_base;
9786 
9787 	/* Dump TCB for the tid */
9788 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9789 	tcb_addr += tid * TCB_SIZE;
9790 
9791 	if (is_t4(sc)) {
9792 		pf = 0;
9793 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
9794 	} else {
9795 		pf = V_PFNUM(sc->pf);
9796 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
9797 	}
9798 	t4_write_reg(sc, reg, win_pos | pf);
9799 	t4_read_reg(sc, reg);
9800 
9801 	off = tcb_addr - win_pos;
9802 	for (i = 0; i < 4; i++) {
9803 		uint32_t buf[8];
9804 		for (j = 0; j < 8; j++, off += 4)
9805 			buf[j] = htonl(t4_read_reg(sc, base + off));
9806 
9807 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
9808 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
9809 		    buf[7]);
9810 	}
9811 
9812 	t4_write_reg(sc, reg, save);
9813 	t4_read_reg(sc, reg);
9814 }
9815 
9816 static void
9817 t4_dump_devlog(struct adapter *sc)
9818 {
9819 	struct devlog_params *dparams = &sc->params.devlog;
9820 	struct fw_devlog_e e;
9821 	int i, first, j, m, nentries, rc;
9822 	uint64_t ftstamp = UINT64_MAX;
9823 
9824 	if (dparams->start == 0) {
9825 		db_printf("devlog params not valid\n");
9826 		return;
9827 	}
9828 
9829 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9830 	m = fwmtype_to_hwmtype(dparams->memtype);
9831 
9832 	/* Find the first entry. */
9833 	first = -1;
9834 	for (i = 0; i < nentries && !db_pager_quit; i++) {
9835 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9836 		    sizeof(e), (void *)&e);
9837 		if (rc != 0)
9838 			break;
9839 
9840 		if (e.timestamp == 0)
9841 			break;
9842 
9843 		e.timestamp = be64toh(e.timestamp);
9844 		if (e.timestamp < ftstamp) {
9845 			ftstamp = e.timestamp;
9846 			first = i;
9847 		}
9848 	}
9849 
9850 	if (first == -1)
9851 		return;
9852 
9853 	i = first;
9854 	do {
9855 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9856 		    sizeof(e), (void *)&e);
9857 		if (rc != 0)
9858 			return;
9859 
9860 		if (e.timestamp == 0)
9861 			return;
9862 
9863 		e.timestamp = be64toh(e.timestamp);
9864 		e.seqno = be32toh(e.seqno);
9865 		for (j = 0; j < 8; j++)
9866 			e.params[j] = be32toh(e.params[j]);
9867 
9868 		db_printf("%10d  %15ju  %8s  %8s  ",
9869 		    e.seqno, e.timestamp,
9870 		    (e.level < nitems(devlog_level_strings) ?
9871 			devlog_level_strings[e.level] : "UNKNOWN"),
9872 		    (e.facility < nitems(devlog_facility_strings) ?
9873 			devlog_facility_strings[e.facility] : "UNKNOWN"));
9874 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
9875 		    e.params[3], e.params[4], e.params[5], e.params[6],
9876 		    e.params[7]);
9877 
9878 		if (++i == nentries)
9879 			i = 0;
9880 	} while (i != first && !db_pager_quit);
9881 }
9882 
9883 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
9884 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
9885 
9886 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
9887 {
9888 	device_t dev;
9889 	int t;
9890 	bool valid;
9891 
9892 	valid = false;
9893 	t = db_read_token();
9894 	if (t == tIDENT) {
9895 		dev = device_lookup_by_name(db_tok_string);
9896 		valid = true;
9897 	}
9898 	db_skip_to_eol();
9899 	if (!valid) {
9900 		db_printf("usage: show t4 devlog <nexus>\n");
9901 		return;
9902 	}
9903 
9904 	if (dev == NULL) {
9905 		db_printf("device not found\n");
9906 		return;
9907 	}
9908 
9909 	t4_dump_devlog(device_get_softc(dev));
9910 }
9911 
9912 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
9913 {
9914 	device_t dev;
9915 	int radix, tid, t;
9916 	bool valid;
9917 
9918 	valid = false;
9919 	radix = db_radix;
9920 	db_radix = 10;
9921 	t = db_read_token();
9922 	if (t == tIDENT) {
9923 		dev = device_lookup_by_name(db_tok_string);
9924 		t = db_read_token();
9925 		if (t == tNUMBER) {
9926 			tid = db_tok_number;
9927 			valid = true;
9928 		}
9929 	}
9930 	db_radix = radix;
9931 	db_skip_to_eol();
9932 	if (!valid) {
9933 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
9934 		return;
9935 	}
9936 
9937 	if (dev == NULL) {
9938 		db_printf("device not found\n");
9939 		return;
9940 	}
9941 	if (tid < 0) {
9942 		db_printf("invalid tid\n");
9943 		return;
9944 	}
9945 
9946 	t4_dump_tcb(device_get_softc(dev), tid);
9947 }
9948 #endif
9949 
9950 /*
9951  * Borrowed from cesa_prep_aes_key().
9952  *
9953  * NB: The crypto engine wants the words in the decryption key in reverse
9954  * order.
9955  */
9956 void
9957 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
9958 {
9959 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
9960 	uint32_t *dkey;
9961 	int i;
9962 
9963 	rijndaelKeySetupEnc(ek, enc_key, kbits);
9964 	dkey = dec_key;
9965 	dkey += (kbits / 8) / 4;
9966 
9967 	switch (kbits) {
9968 	case 128:
9969 		for (i = 0; i < 4; i++)
9970 			*--dkey = htobe32(ek[4 * 10 + i]);
9971 		break;
9972 	case 192:
9973 		for (i = 0; i < 2; i++)
9974 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
9975 		for (i = 0; i < 4; i++)
9976 			*--dkey = htobe32(ek[4 * 12 + i]);
9977 		break;
9978 	case 256:
9979 		for (i = 0; i < 4; i++)
9980 			*--dkey = htobe32(ek[4 * 13 + i]);
9981 		for (i = 0; i < 4; i++)
9982 			*--dkey = htobe32(ek[4 * 14 + i]);
9983 		break;
9984 	}
9985 	MPASS(dkey == dec_key);
9986 }
9987 
9988 static struct sx mlu;	/* mod load unload */
9989 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
9990 
9991 static int
9992 mod_event(module_t mod, int cmd, void *arg)
9993 {
9994 	int rc = 0;
9995 	static int loaded = 0;
9996 
9997 	switch (cmd) {
9998 	case MOD_LOAD:
9999 		sx_xlock(&mlu);
10000 		if (loaded++ == 0) {
10001 			t4_sge_modload();
10002 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10003 			    t4_filter_rpl, CPL_COOKIE_FILTER);
10004 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
10005 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
10006 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
10007 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
10008 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10009 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
10010 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
10011 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
10012 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10013 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10014 			sx_init(&t4_list_lock, "T4/T5 adapters");
10015 			SLIST_INIT(&t4_list);
10016 #ifdef TCP_OFFLOAD
10017 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10018 			SLIST_INIT(&t4_uld_list);
10019 #endif
10020 			t4_tracer_modload();
10021 			tweak_tunables();
10022 		}
10023 		sx_xunlock(&mlu);
10024 		break;
10025 
10026 	case MOD_UNLOAD:
10027 		sx_xlock(&mlu);
10028 		if (--loaded == 0) {
10029 			int tries;
10030 
10031 			sx_slock(&t4_list_lock);
10032 			if (!SLIST_EMPTY(&t4_list)) {
10033 				rc = EBUSY;
10034 				sx_sunlock(&t4_list_lock);
10035 				goto done_unload;
10036 			}
10037 #ifdef TCP_OFFLOAD
10038 			sx_slock(&t4_uld_list_lock);
10039 			if (!SLIST_EMPTY(&t4_uld_list)) {
10040 				rc = EBUSY;
10041 				sx_sunlock(&t4_uld_list_lock);
10042 				sx_sunlock(&t4_list_lock);
10043 				goto done_unload;
10044 			}
10045 #endif
10046 			tries = 0;
10047 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10048 				uprintf("%ju clusters with custom free routine "
10049 				    "still is use.\n", t4_sge_extfree_refs());
10050 				pause("t4unload", 2 * hz);
10051 			}
10052 #ifdef TCP_OFFLOAD
10053 			sx_sunlock(&t4_uld_list_lock);
10054 #endif
10055 			sx_sunlock(&t4_list_lock);
10056 
10057 			if (t4_sge_extfree_refs() == 0) {
10058 				t4_tracer_modunload();
10059 #ifdef TCP_OFFLOAD
10060 				sx_destroy(&t4_uld_list_lock);
10061 #endif
10062 				sx_destroy(&t4_list_lock);
10063 				t4_sge_modunload();
10064 				loaded = 0;
10065 			} else {
10066 				rc = EBUSY;
10067 				loaded++;	/* undo earlier decrement */
10068 			}
10069 		}
10070 done_unload:
10071 		sx_xunlock(&mlu);
10072 		break;
10073 	}
10074 
10075 	return (rc);
10076 }
10077 
10078 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10079 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10080 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10081 
10082 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10083 MODULE_VERSION(t4nex, 1);
10084 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10085 #ifdef DEV_NETMAP
10086 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10087 #endif /* DEV_NETMAP */
10088 
10089 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10090 MODULE_VERSION(t5nex, 1);
10091 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10092 #ifdef DEV_NETMAP
10093 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10094 #endif /* DEV_NETMAP */
10095 
10096 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10097 MODULE_VERSION(t6nex, 1);
10098 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10099 #ifdef DEV_NETMAP
10100 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10101 #endif /* DEV_NETMAP */
10102 
10103 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10104 MODULE_VERSION(cxgbe, 1);
10105 
10106 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10107 MODULE_VERSION(cxl, 1);
10108 
10109 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10110 MODULE_VERSION(cc, 1);
10111 
10112 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10113 MODULE_VERSION(vcxgbe, 1);
10114 
10115 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10116 MODULE_VERSION(vcxl, 1);
10117 
10118 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10119 MODULE_VERSION(vcc, 1);
10120