1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/module.h> 46 #include <sys/malloc.h> 47 #include <sys/queue.h> 48 #include <sys/taskqueue.h> 49 #include <sys/pciio.h> 50 #include <dev/pci/pcireg.h> 51 #include <dev/pci/pcivar.h> 52 #include <dev/pci/pci_private.h> 53 #include <sys/firmware.h> 54 #include <sys/sbuf.h> 55 #include <sys/smp.h> 56 #include <sys/socket.h> 57 #include <sys/sockio.h> 58 #include <sys/sysctl.h> 59 #include <net/ethernet.h> 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_dl.h> 63 #include <net/if_vlan_var.h> 64 #ifdef RSS 65 #include <net/rss_config.h> 66 #endif 67 #include <netinet/in.h> 68 #include <netinet/ip.h> 69 #ifdef KERN_TLS 70 #include <netinet/tcp_seq.h> 71 #endif 72 #if defined(__i386__) || defined(__amd64__) 73 #include <machine/md_var.h> 74 #include <machine/cputypes.h> 75 #include <vm/vm.h> 76 #include <vm/pmap.h> 77 #endif 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #include <ddb/db_lex.h> 81 #endif 82 83 #include "common/common.h" 84 #include "common/t4_msg.h" 85 #include "common/t4_regs.h" 86 #include "common/t4_regs_values.h" 87 #include "cudbg/cudbg.h" 88 #include "t4_clip.h" 89 #include "t4_ioctl.h" 90 #include "t4_l2t.h" 91 #include "t4_mp_ring.h" 92 #include "t4_if.h" 93 #include "t4_smt.h" 94 95 /* T4 bus driver interface */ 96 static int t4_probe(device_t); 97 static int t4_attach(device_t); 98 static int t4_detach(device_t); 99 static int t4_child_location_str(device_t, device_t, char *, size_t); 100 static int t4_ready(device_t); 101 static int t4_read_port_device(device_t, int, device_t *); 102 static device_method_t t4_methods[] = { 103 DEVMETHOD(device_probe, t4_probe), 104 DEVMETHOD(device_attach, t4_attach), 105 DEVMETHOD(device_detach, t4_detach), 106 107 DEVMETHOD(bus_child_location_str, t4_child_location_str), 108 109 DEVMETHOD(t4_is_main_ready, t4_ready), 110 DEVMETHOD(t4_read_port_device, t4_read_port_device), 111 112 DEVMETHOD_END 113 }; 114 static driver_t t4_driver = { 115 "t4nex", 116 t4_methods, 117 sizeof(struct adapter) 118 }; 119 120 121 /* T4 port (cxgbe) interface */ 122 static int cxgbe_probe(device_t); 123 static int cxgbe_attach(device_t); 124 static int cxgbe_detach(device_t); 125 device_method_t cxgbe_methods[] = { 126 DEVMETHOD(device_probe, cxgbe_probe), 127 DEVMETHOD(device_attach, cxgbe_attach), 128 DEVMETHOD(device_detach, cxgbe_detach), 129 { 0, 0 } 130 }; 131 static driver_t cxgbe_driver = { 132 "cxgbe", 133 cxgbe_methods, 134 sizeof(struct port_info) 135 }; 136 137 /* T4 VI (vcxgbe) interface */ 138 static int vcxgbe_probe(device_t); 139 static int vcxgbe_attach(device_t); 140 static int vcxgbe_detach(device_t); 141 static device_method_t vcxgbe_methods[] = { 142 DEVMETHOD(device_probe, vcxgbe_probe), 143 DEVMETHOD(device_attach, vcxgbe_attach), 144 DEVMETHOD(device_detach, vcxgbe_detach), 145 { 0, 0 } 146 }; 147 static driver_t vcxgbe_driver = { 148 "vcxgbe", 149 vcxgbe_methods, 150 sizeof(struct vi_info) 151 }; 152 153 static d_ioctl_t t4_ioctl; 154 155 static struct cdevsw t4_cdevsw = { 156 .d_version = D_VERSION, 157 .d_ioctl = t4_ioctl, 158 .d_name = "t4nex", 159 }; 160 161 /* T5 bus driver interface */ 162 static int t5_probe(device_t); 163 static device_method_t t5_methods[] = { 164 DEVMETHOD(device_probe, t5_probe), 165 DEVMETHOD(device_attach, t4_attach), 166 DEVMETHOD(device_detach, t4_detach), 167 168 DEVMETHOD(bus_child_location_str, t4_child_location_str), 169 170 DEVMETHOD(t4_is_main_ready, t4_ready), 171 DEVMETHOD(t4_read_port_device, t4_read_port_device), 172 173 DEVMETHOD_END 174 }; 175 static driver_t t5_driver = { 176 "t5nex", 177 t5_methods, 178 sizeof(struct adapter) 179 }; 180 181 182 /* T5 port (cxl) interface */ 183 static driver_t cxl_driver = { 184 "cxl", 185 cxgbe_methods, 186 sizeof(struct port_info) 187 }; 188 189 /* T5 VI (vcxl) interface */ 190 static driver_t vcxl_driver = { 191 "vcxl", 192 vcxgbe_methods, 193 sizeof(struct vi_info) 194 }; 195 196 /* T6 bus driver interface */ 197 static int t6_probe(device_t); 198 static device_method_t t6_methods[] = { 199 DEVMETHOD(device_probe, t6_probe), 200 DEVMETHOD(device_attach, t4_attach), 201 DEVMETHOD(device_detach, t4_detach), 202 203 DEVMETHOD(bus_child_location_str, t4_child_location_str), 204 205 DEVMETHOD(t4_is_main_ready, t4_ready), 206 DEVMETHOD(t4_read_port_device, t4_read_port_device), 207 208 DEVMETHOD_END 209 }; 210 static driver_t t6_driver = { 211 "t6nex", 212 t6_methods, 213 sizeof(struct adapter) 214 }; 215 216 217 /* T6 port (cc) interface */ 218 static driver_t cc_driver = { 219 "cc", 220 cxgbe_methods, 221 sizeof(struct port_info) 222 }; 223 224 /* T6 VI (vcc) interface */ 225 static driver_t vcc_driver = { 226 "vcc", 227 vcxgbe_methods, 228 sizeof(struct vi_info) 229 }; 230 231 /* ifnet interface */ 232 static void cxgbe_init(void *); 233 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 234 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 235 static void cxgbe_qflush(struct ifnet *); 236 #if defined(KERN_TLS) || defined(RATELIMIT) 237 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 238 struct m_snd_tag **); 239 static int cxgbe_snd_tag_modify(struct m_snd_tag *, 240 union if_snd_tag_modify_params *); 241 static int cxgbe_snd_tag_query(struct m_snd_tag *, 242 union if_snd_tag_query_params *); 243 static void cxgbe_snd_tag_free(struct m_snd_tag *); 244 #endif 245 246 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 247 248 /* 249 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 250 * then ADAPTER_LOCK, then t4_uld_list_lock. 251 */ 252 static struct sx t4_list_lock; 253 SLIST_HEAD(, adapter) t4_list; 254 #ifdef TCP_OFFLOAD 255 static struct sx t4_uld_list_lock; 256 SLIST_HEAD(, uld_info) t4_uld_list; 257 #endif 258 259 /* 260 * Tunables. See tweak_tunables() too. 261 * 262 * Each tunable is set to a default value here if it's known at compile-time. 263 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 264 * provide a reasonable default (upto n) when the driver is loaded. 265 * 266 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 267 * T5 are under hw.cxl. 268 */ 269 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters"); 270 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters"); 271 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters"); 272 273 /* 274 * Number of queues for tx and rx, NIC and offload. 275 */ 276 #define NTXQ 16 277 int t4_ntxq = -NTXQ; 278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 279 "Number of TX queues per port"); 280 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 281 282 #define NRXQ 8 283 int t4_nrxq = -NRXQ; 284 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 285 "Number of RX queues per port"); 286 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 287 288 #define NTXQ_VI 1 289 static int t4_ntxq_vi = -NTXQ_VI; 290 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 291 "Number of TX queues per VI"); 292 293 #define NRXQ_VI 1 294 static int t4_nrxq_vi = -NRXQ_VI; 295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 296 "Number of RX queues per VI"); 297 298 static int t4_rsrv_noflowq = 0; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 300 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 301 302 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 303 #define NOFLDTXQ 8 304 static int t4_nofldtxq = -NOFLDTXQ; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 306 "Number of offload TX queues per port"); 307 308 #define NOFLDRXQ 2 309 static int t4_nofldrxq = -NOFLDRXQ; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 311 "Number of offload RX queues per port"); 312 313 #define NOFLDTXQ_VI 1 314 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 315 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 316 "Number of offload TX queues per VI"); 317 318 #define NOFLDRXQ_VI 1 319 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 321 "Number of offload RX queues per VI"); 322 323 #define TMR_IDX_OFLD 1 324 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 326 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 327 328 #define PKTC_IDX_OFLD (-1) 329 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 331 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 332 333 /* 0 means chip/fw default, non-zero number is value in microseconds */ 334 static u_long t4_toe_keepalive_idle = 0; 335 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 336 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 337 338 /* 0 means chip/fw default, non-zero number is value in microseconds */ 339 static u_long t4_toe_keepalive_interval = 0; 340 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 341 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 342 343 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 344 static int t4_toe_keepalive_count = 0; 345 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 346 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_rexmt_min = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 351 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_rexmt_max = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 356 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 359 static int t4_toe_rexmt_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 361 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 362 363 /* -1 means chip/fw default, other values are raw backoff values to use */ 364 static int t4_toe_rexmt_backoff[16] = { 365 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 366 }; 367 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0, 368 "cxgbe(4) TOE retransmit backoff values"); 369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 370 &t4_toe_rexmt_backoff[0], 0, ""); 371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 372 &t4_toe_rexmt_backoff[1], 0, ""); 373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_backoff[2], 0, ""); 375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_backoff[3], 0, ""); 377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 378 &t4_toe_rexmt_backoff[4], 0, ""); 379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 380 &t4_toe_rexmt_backoff[5], 0, ""); 381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 382 &t4_toe_rexmt_backoff[6], 0, ""); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[7], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[8], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[9], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[10], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[11], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[12], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[13], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[14], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[15], 0, ""); 401 #endif 402 403 #ifdef DEV_NETMAP 404 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 405 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 406 static int t4_native_netmap = NN_EXTRA_VI; 407 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 408 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 409 410 #define NNMTXQ 8 411 static int t4_nnmtxq = -NNMTXQ; 412 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 413 "Number of netmap TX queues"); 414 415 #define NNMRXQ 8 416 static int t4_nnmrxq = -NNMRXQ; 417 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 418 "Number of netmap RX queues"); 419 420 #define NNMTXQ_VI 2 421 static int t4_nnmtxq_vi = -NNMTXQ_VI; 422 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 423 "Number of netmap TX queues per VI"); 424 425 #define NNMRXQ_VI 2 426 static int t4_nnmrxq_vi = -NNMRXQ_VI; 427 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 428 "Number of netmap RX queues per VI"); 429 #endif 430 431 /* 432 * Holdoff parameters for ports. 433 */ 434 #define TMR_IDX 1 435 int t4_tmr_idx = TMR_IDX; 436 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 437 0, "Holdoff timer index"); 438 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 439 440 #define PKTC_IDX (-1) 441 int t4_pktc_idx = PKTC_IDX; 442 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 443 0, "Holdoff packet counter index"); 444 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 445 446 /* 447 * Size (# of entries) of each tx and rx queue. 448 */ 449 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 451 "Number of descriptors in each TX queue"); 452 453 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 454 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 455 "Number of descriptors in each RX queue"); 456 457 /* 458 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 459 */ 460 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 461 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 462 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 463 464 /* 465 * Configuration file. All the _CF names here are special. 466 */ 467 #define DEFAULT_CF "default" 468 #define BUILTIN_CF "built-in" 469 #define FLASH_CF "flash" 470 #define UWIRE_CF "uwire" 471 #define FPGA_CF "fpga" 472 static char t4_cfg_file[32] = DEFAULT_CF; 473 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 474 sizeof(t4_cfg_file), "Firmware configuration file"); 475 476 /* 477 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 478 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 479 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 480 * mark or when signalled to do so, 0 to never emit PAUSE. 481 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 482 * negotiated settings will override rx_pause/tx_pause. 483 * Otherwise rx_pause/tx_pause are applied forcibly. 484 */ 485 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 487 &t4_pause_settings, 0, 488 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 489 490 /* 491 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 492 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 493 * 0 to disable FEC. 494 */ 495 static int t4_fec = -1; 496 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 497 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 498 499 /* 500 * Link autonegotiation. 501 * -1 to run with the firmware default. 502 * 0 to disable. 503 * 1 to enable. 504 */ 505 static int t4_autoneg = -1; 506 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 507 "Link autonegotiation"); 508 509 /* 510 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 511 * encouraged respectively). '-n' is the same as 'n' except the firmware 512 * version used in the checks is read from the firmware bundled with the driver. 513 */ 514 static int t4_fw_install = 1; 515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 516 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 517 518 /* 519 * ASIC features that will be used. Disable the ones you don't want so that the 520 * chip resources aren't wasted on features that will not be used. 521 */ 522 static int t4_nbmcaps_allowed = 0; 523 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 524 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 525 526 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 527 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 528 &t4_linkcaps_allowed, 0, "Default link capabilities"); 529 530 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 531 FW_CAPS_CONFIG_SWITCH_EGRESS; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 533 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 534 535 #ifdef RATELIMIT 536 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 537 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 538 #else 539 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 540 FW_CAPS_CONFIG_NIC_HASHFILTER; 541 #endif 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 543 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 544 545 static int t4_toecaps_allowed = -1; 546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 547 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 548 549 static int t4_rdmacaps_allowed = -1; 550 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 551 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 552 553 static int t4_cryptocaps_allowed = -1; 554 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 555 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 556 557 static int t4_iscsicaps_allowed = -1; 558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 559 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 560 561 static int t4_fcoecaps_allowed = 0; 562 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 563 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 564 565 static int t5_write_combine = 0; 566 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 567 0, "Use WC instead of UC for BAR2"); 568 569 static int t4_num_vis = 1; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 571 "Number of VIs per port"); 572 573 /* 574 * PCIe Relaxed Ordering. 575 * -1: driver should figure out a good value. 576 * 0: disable RO. 577 * 1: enable RO. 578 * 2: leave RO alone. 579 */ 580 static int pcie_relaxed_ordering = -1; 581 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 582 &pcie_relaxed_ordering, 0, 583 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 584 585 static int t4_panic_on_fatal_err = 0; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN, 587 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 588 589 #ifdef TCP_OFFLOAD 590 /* 591 * TOE tunables. 592 */ 593 static int t4_cop_managed_offloading = 0; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 595 &t4_cop_managed_offloading, 0, 596 "COP (Connection Offload Policy) controls all TOE offload"); 597 #endif 598 599 #ifdef KERN_TLS 600 /* 601 * This enables KERN_TLS for all adapters if set. 602 */ 603 static int t4_kern_tls = 0; 604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 605 "Enable KERN_TLS mode for all supported adapters"); 606 607 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD, 0, 608 "cxgbe(4) KERN_TLS parameters"); 609 610 static int t4_tls_inline_keys = 0; 611 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 612 &t4_tls_inline_keys, 0, 613 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 614 "in card memory."); 615 616 static int t4_tls_combo_wrs = 0; 617 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 618 0, "Attempt to combine TCB field updates with TLS record work requests."); 619 #endif 620 621 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 622 static int vi_mac_funcs[] = { 623 FW_VI_FUNC_ETH, 624 FW_VI_FUNC_OFLD, 625 FW_VI_FUNC_IWARP, 626 FW_VI_FUNC_OPENISCSI, 627 FW_VI_FUNC_OPENFCOE, 628 FW_VI_FUNC_FOISCSI, 629 FW_VI_FUNC_FOFCOE, 630 }; 631 632 struct intrs_and_queues { 633 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 634 uint16_t num_vis; /* number of VIs for each port */ 635 uint16_t nirq; /* Total # of vectors */ 636 uint16_t ntxq; /* # of NIC txq's for each port */ 637 uint16_t nrxq; /* # of NIC rxq's for each port */ 638 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 639 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 640 uint16_t nnmtxq; /* # of netmap txq's */ 641 uint16_t nnmrxq; /* # of netmap rxq's */ 642 643 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 644 uint16_t ntxq_vi; /* # of NIC txq's */ 645 uint16_t nrxq_vi; /* # of NIC rxq's */ 646 uint16_t nofldtxq_vi; /* # of TOE txq's */ 647 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 648 uint16_t nnmtxq_vi; /* # of netmap txq's */ 649 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 650 }; 651 652 static void setup_memwin(struct adapter *); 653 static void position_memwin(struct adapter *, int, uint32_t); 654 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 655 static int fwmtype_to_hwmtype(int); 656 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 657 uint32_t *); 658 static int fixup_devlog_params(struct adapter *); 659 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 660 static int contact_firmware(struct adapter *); 661 static int partition_resources(struct adapter *); 662 static int get_params__pre_init(struct adapter *); 663 static int set_params__pre_init(struct adapter *); 664 static int get_params__post_init(struct adapter *); 665 static int set_params__post_init(struct adapter *); 666 static void t4_set_desc(struct adapter *); 667 static bool fixed_ifmedia(struct port_info *); 668 static void build_medialist(struct port_info *); 669 static void init_link_config(struct port_info *); 670 static int fixup_link_config(struct port_info *); 671 static int apply_link_config(struct port_info *); 672 static int cxgbe_init_synchronized(struct vi_info *); 673 static int cxgbe_uninit_synchronized(struct vi_info *); 674 static void quiesce_txq(struct adapter *, struct sge_txq *); 675 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 676 static void quiesce_iq(struct adapter *, struct sge_iq *); 677 static void quiesce_fl(struct adapter *, struct sge_fl *); 678 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 679 driver_intr_t *, void *, char *); 680 static int t4_free_irq(struct adapter *, struct irq *); 681 static void t4_init_atid_table(struct adapter *); 682 static void t4_free_atid_table(struct adapter *); 683 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 684 static void vi_refresh_stats(struct adapter *, struct vi_info *); 685 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 686 static void cxgbe_tick(void *); 687 static void cxgbe_sysctls(struct port_info *); 688 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 689 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 690 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 691 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 692 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 693 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 694 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 695 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 696 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 697 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 698 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 699 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 700 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 701 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 702 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 703 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 704 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 705 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 706 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 707 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 708 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 709 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 710 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 711 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 712 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 713 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 714 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 715 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 716 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 717 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 718 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 719 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 720 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 721 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 722 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 723 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 724 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 725 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 726 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 727 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 728 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 729 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 730 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 731 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 732 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 733 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 734 #ifdef TCP_OFFLOAD 735 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 736 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 737 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 738 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 739 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 740 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 741 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 742 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 743 #endif 744 static int get_sge_context(struct adapter *, struct t4_sge_context *); 745 static int load_fw(struct adapter *, struct t4_data *); 746 static int load_cfg(struct adapter *, struct t4_data *); 747 static int load_boot(struct adapter *, struct t4_bootrom *); 748 static int load_bootcfg(struct adapter *, struct t4_data *); 749 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 750 static void free_offload_policy(struct t4_offload_policy *); 751 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 752 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 753 static int read_i2c(struct adapter *, struct t4_i2c_data *); 754 static int clear_stats(struct adapter *, u_int); 755 #ifdef TCP_OFFLOAD 756 static int toe_capability(struct vi_info *, int); 757 #endif 758 static int mod_event(module_t, int, void *); 759 static int notify_siblings(device_t, int); 760 761 struct { 762 uint16_t device; 763 char *desc; 764 } t4_pciids[] = { 765 {0xa000, "Chelsio Terminator 4 FPGA"}, 766 {0x4400, "Chelsio T440-dbg"}, 767 {0x4401, "Chelsio T420-CR"}, 768 {0x4402, "Chelsio T422-CR"}, 769 {0x4403, "Chelsio T440-CR"}, 770 {0x4404, "Chelsio T420-BCH"}, 771 {0x4405, "Chelsio T440-BCH"}, 772 {0x4406, "Chelsio T440-CH"}, 773 {0x4407, "Chelsio T420-SO"}, 774 {0x4408, "Chelsio T420-CX"}, 775 {0x4409, "Chelsio T420-BT"}, 776 {0x440a, "Chelsio T404-BT"}, 777 {0x440e, "Chelsio T440-LP-CR"}, 778 }, t5_pciids[] = { 779 {0xb000, "Chelsio Terminator 5 FPGA"}, 780 {0x5400, "Chelsio T580-dbg"}, 781 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 782 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 783 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 784 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 785 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 786 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 787 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 788 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 789 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 790 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 791 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 792 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 793 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 794 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 795 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 796 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 797 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 798 799 /* Custom */ 800 {0x5483, "Custom T540-CR"}, 801 {0x5484, "Custom T540-BT"}, 802 }, t6_pciids[] = { 803 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 804 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 805 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 806 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 807 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 808 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 809 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 810 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 811 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 812 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 813 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 814 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 815 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 816 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 817 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 818 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 819 820 /* Custom */ 821 {0x6480, "Custom T6225-CR"}, 822 {0x6481, "Custom T62100-CR"}, 823 {0x6482, "Custom T6225-CR"}, 824 {0x6483, "Custom T62100-CR"}, 825 {0x6484, "Custom T64100-CR"}, 826 {0x6485, "Custom T6240-SO"}, 827 {0x6486, "Custom T6225-SO-CR"}, 828 {0x6487, "Custom T6225-CR"}, 829 }; 830 831 #ifdef TCP_OFFLOAD 832 /* 833 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 834 * be exactly the same for both rxq and ofld_rxq. 835 */ 836 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 837 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 838 #endif 839 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 840 841 static int 842 t4_probe(device_t dev) 843 { 844 int i; 845 uint16_t v = pci_get_vendor(dev); 846 uint16_t d = pci_get_device(dev); 847 uint8_t f = pci_get_function(dev); 848 849 if (v != PCI_VENDOR_ID_CHELSIO) 850 return (ENXIO); 851 852 /* Attach only to PF0 of the FPGA */ 853 if (d == 0xa000 && f != 0) 854 return (ENXIO); 855 856 for (i = 0; i < nitems(t4_pciids); i++) { 857 if (d == t4_pciids[i].device) { 858 device_set_desc(dev, t4_pciids[i].desc); 859 return (BUS_PROBE_DEFAULT); 860 } 861 } 862 863 return (ENXIO); 864 } 865 866 static int 867 t5_probe(device_t dev) 868 { 869 int i; 870 uint16_t v = pci_get_vendor(dev); 871 uint16_t d = pci_get_device(dev); 872 uint8_t f = pci_get_function(dev); 873 874 if (v != PCI_VENDOR_ID_CHELSIO) 875 return (ENXIO); 876 877 /* Attach only to PF0 of the FPGA */ 878 if (d == 0xb000 && f != 0) 879 return (ENXIO); 880 881 for (i = 0; i < nitems(t5_pciids); i++) { 882 if (d == t5_pciids[i].device) { 883 device_set_desc(dev, t5_pciids[i].desc); 884 return (BUS_PROBE_DEFAULT); 885 } 886 } 887 888 return (ENXIO); 889 } 890 891 static int 892 t6_probe(device_t dev) 893 { 894 int i; 895 uint16_t v = pci_get_vendor(dev); 896 uint16_t d = pci_get_device(dev); 897 898 if (v != PCI_VENDOR_ID_CHELSIO) 899 return (ENXIO); 900 901 for (i = 0; i < nitems(t6_pciids); i++) { 902 if (d == t6_pciids[i].device) { 903 device_set_desc(dev, t6_pciids[i].desc); 904 return (BUS_PROBE_DEFAULT); 905 } 906 } 907 908 return (ENXIO); 909 } 910 911 static void 912 t5_attribute_workaround(device_t dev) 913 { 914 device_t root_port; 915 uint32_t v; 916 917 /* 918 * The T5 chips do not properly echo the No Snoop and Relaxed 919 * Ordering attributes when replying to a TLP from a Root 920 * Port. As a workaround, find the parent Root Port and 921 * disable No Snoop and Relaxed Ordering. Note that this 922 * affects all devices under this root port. 923 */ 924 root_port = pci_find_pcie_root_port(dev); 925 if (root_port == NULL) { 926 device_printf(dev, "Unable to find parent root port\n"); 927 return; 928 } 929 930 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 931 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 932 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 933 0) 934 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 935 device_get_nameunit(root_port)); 936 } 937 938 static const struct devnames devnames[] = { 939 { 940 .nexus_name = "t4nex", 941 .ifnet_name = "cxgbe", 942 .vi_ifnet_name = "vcxgbe", 943 .pf03_drv_name = "t4iov", 944 .vf_nexus_name = "t4vf", 945 .vf_ifnet_name = "cxgbev" 946 }, { 947 .nexus_name = "t5nex", 948 .ifnet_name = "cxl", 949 .vi_ifnet_name = "vcxl", 950 .pf03_drv_name = "t5iov", 951 .vf_nexus_name = "t5vf", 952 .vf_ifnet_name = "cxlv" 953 }, { 954 .nexus_name = "t6nex", 955 .ifnet_name = "cc", 956 .vi_ifnet_name = "vcc", 957 .pf03_drv_name = "t6iov", 958 .vf_nexus_name = "t6vf", 959 .vf_ifnet_name = "ccv" 960 } 961 }; 962 963 void 964 t4_init_devnames(struct adapter *sc) 965 { 966 int id; 967 968 id = chip_id(sc); 969 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 970 sc->names = &devnames[id - CHELSIO_T4]; 971 else { 972 device_printf(sc->dev, "chip id %d is not supported.\n", id); 973 sc->names = NULL; 974 } 975 } 976 977 static int 978 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 979 { 980 const char *parent, *name; 981 long value; 982 int line, unit; 983 984 line = 0; 985 parent = device_get_nameunit(sc->dev); 986 name = sc->names->ifnet_name; 987 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 988 if (resource_long_value(name, unit, "port", &value) == 0 && 989 value == pi->port_id) 990 return (unit); 991 } 992 return (-1); 993 } 994 995 static int 996 t4_attach(device_t dev) 997 { 998 struct adapter *sc; 999 int rc = 0, i, j, rqidx, tqidx, nports; 1000 struct make_dev_args mda; 1001 struct intrs_and_queues iaq; 1002 struct sge *s; 1003 uint32_t *buf; 1004 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1005 int ofld_tqidx; 1006 #endif 1007 #ifdef TCP_OFFLOAD 1008 int ofld_rqidx; 1009 #endif 1010 #ifdef DEV_NETMAP 1011 int nm_rqidx, nm_tqidx; 1012 #endif 1013 int num_vis; 1014 1015 sc = device_get_softc(dev); 1016 sc->dev = dev; 1017 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1018 1019 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1020 t5_attribute_workaround(dev); 1021 pci_enable_busmaster(dev); 1022 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1023 uint32_t v; 1024 1025 pci_set_max_read_req(dev, 4096); 1026 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1027 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1028 if (pcie_relaxed_ordering == 0 && 1029 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1030 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1031 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1032 } else if (pcie_relaxed_ordering == 1 && 1033 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1034 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1035 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1036 } 1037 } 1038 1039 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1040 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1041 sc->traceq = -1; 1042 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1043 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1044 device_get_nameunit(dev)); 1045 1046 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1047 device_get_nameunit(dev)); 1048 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1049 t4_add_adapter(sc); 1050 1051 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1052 TAILQ_INIT(&sc->sfl); 1053 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1054 1055 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1056 1057 sc->policy = NULL; 1058 rw_init(&sc->policy_lock, "connection offload policy"); 1059 1060 callout_init(&sc->ktls_tick, 1); 1061 1062 rc = t4_map_bars_0_and_4(sc); 1063 if (rc != 0) 1064 goto done; /* error message displayed already */ 1065 1066 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1067 1068 /* Prepare the adapter for operation. */ 1069 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1070 rc = -t4_prep_adapter(sc, buf); 1071 free(buf, M_CXGBE); 1072 if (rc != 0) { 1073 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1074 goto done; 1075 } 1076 1077 /* 1078 * This is the real PF# to which we're attaching. Works from within PCI 1079 * passthrough environments too, where pci_get_function() could return a 1080 * different PF# depending on the passthrough configuration. We need to 1081 * use the real PF# in all our communication with the firmware. 1082 */ 1083 j = t4_read_reg(sc, A_PL_WHOAMI); 1084 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1085 sc->mbox = sc->pf; 1086 1087 t4_init_devnames(sc); 1088 if (sc->names == NULL) { 1089 rc = ENOTSUP; 1090 goto done; /* error message displayed already */ 1091 } 1092 1093 /* 1094 * Do this really early, with the memory windows set up even before the 1095 * character device. The userland tool's register i/o and mem read 1096 * will work even in "recovery mode". 1097 */ 1098 setup_memwin(sc); 1099 if (t4_init_devlog_params(sc, 0) == 0) 1100 fixup_devlog_params(sc); 1101 make_dev_args_init(&mda); 1102 mda.mda_devsw = &t4_cdevsw; 1103 mda.mda_uid = UID_ROOT; 1104 mda.mda_gid = GID_WHEEL; 1105 mda.mda_mode = 0600; 1106 mda.mda_si_drv1 = sc; 1107 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1108 if (rc != 0) 1109 device_printf(dev, "failed to create nexus char device: %d.\n", 1110 rc); 1111 1112 /* Go no further if recovery mode has been requested. */ 1113 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1114 device_printf(dev, "recovery mode.\n"); 1115 goto done; 1116 } 1117 1118 #if defined(__i386__) 1119 if ((cpu_feature & CPUID_CX8) == 0) { 1120 device_printf(dev, "64 bit atomics not available.\n"); 1121 rc = ENOTSUP; 1122 goto done; 1123 } 1124 #endif 1125 1126 /* Contact the firmware and try to become the master driver. */ 1127 rc = contact_firmware(sc); 1128 if (rc != 0) 1129 goto done; /* error message displayed already */ 1130 MPASS(sc->flags & FW_OK); 1131 1132 rc = get_params__pre_init(sc); 1133 if (rc != 0) 1134 goto done; /* error message displayed already */ 1135 1136 if (sc->flags & MASTER_PF) { 1137 rc = partition_resources(sc); 1138 if (rc != 0) 1139 goto done; /* error message displayed already */ 1140 t4_intr_clear(sc); 1141 } 1142 1143 rc = get_params__post_init(sc); 1144 if (rc != 0) 1145 goto done; /* error message displayed already */ 1146 1147 rc = set_params__post_init(sc); 1148 if (rc != 0) 1149 goto done; /* error message displayed already */ 1150 1151 rc = t4_map_bar_2(sc); 1152 if (rc != 0) 1153 goto done; /* error message displayed already */ 1154 1155 rc = t4_create_dma_tag(sc); 1156 if (rc != 0) 1157 goto done; /* error message displayed already */ 1158 1159 /* 1160 * First pass over all the ports - allocate VIs and initialize some 1161 * basic parameters like mac address, port type, etc. 1162 */ 1163 for_each_port(sc, i) { 1164 struct port_info *pi; 1165 1166 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1167 sc->port[i] = pi; 1168 1169 /* These must be set before t4_port_init */ 1170 pi->adapter = sc; 1171 pi->port_id = i; 1172 /* 1173 * XXX: vi[0] is special so we can't delay this allocation until 1174 * pi->nvi's final value is known. 1175 */ 1176 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1177 M_ZERO | M_WAITOK); 1178 1179 /* 1180 * Allocate the "main" VI and initialize parameters 1181 * like mac addr. 1182 */ 1183 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1184 if (rc != 0) { 1185 device_printf(dev, "unable to initialize port %d: %d\n", 1186 i, rc); 1187 free(pi->vi, M_CXGBE); 1188 free(pi, M_CXGBE); 1189 sc->port[i] = NULL; 1190 goto done; 1191 } 1192 1193 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1194 device_get_nameunit(dev), i); 1195 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1196 sc->chan_map[pi->tx_chan] = i; 1197 1198 /* All VIs on this port share this media. */ 1199 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1200 cxgbe_media_status); 1201 1202 PORT_LOCK(pi); 1203 init_link_config(pi); 1204 fixup_link_config(pi); 1205 build_medialist(pi); 1206 if (fixed_ifmedia(pi)) 1207 pi->flags |= FIXED_IFMEDIA; 1208 PORT_UNLOCK(pi); 1209 1210 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1211 t4_ifnet_unit(sc, pi)); 1212 if (pi->dev == NULL) { 1213 device_printf(dev, 1214 "failed to add device for port %d.\n", i); 1215 rc = ENXIO; 1216 goto done; 1217 } 1218 pi->vi[0].dev = pi->dev; 1219 device_set_softc(pi->dev, pi); 1220 } 1221 1222 /* 1223 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1224 */ 1225 nports = sc->params.nports; 1226 rc = cfg_itype_and_nqueues(sc, &iaq); 1227 if (rc != 0) 1228 goto done; /* error message displayed already */ 1229 1230 num_vis = iaq.num_vis; 1231 sc->intr_type = iaq.intr_type; 1232 sc->intr_count = iaq.nirq; 1233 1234 s = &sc->sge; 1235 s->nrxq = nports * iaq.nrxq; 1236 s->ntxq = nports * iaq.ntxq; 1237 if (num_vis > 1) { 1238 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1239 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1240 } 1241 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1242 s->neq += nports; /* ctrl queues: 1 per port */ 1243 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1244 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1245 if (is_offload(sc) || is_ethoffload(sc)) { 1246 s->nofldtxq = nports * iaq.nofldtxq; 1247 if (num_vis > 1) 1248 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1249 s->neq += s->nofldtxq; 1250 1251 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 1252 M_CXGBE, M_ZERO | M_WAITOK); 1253 } 1254 #endif 1255 #ifdef TCP_OFFLOAD 1256 if (is_offload(sc)) { 1257 s->nofldrxq = nports * iaq.nofldrxq; 1258 if (num_vis > 1) 1259 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1260 s->neq += s->nofldrxq; /* free list */ 1261 s->niq += s->nofldrxq; 1262 1263 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1264 M_CXGBE, M_ZERO | M_WAITOK); 1265 } 1266 #endif 1267 #ifdef DEV_NETMAP 1268 s->nnmrxq = 0; 1269 s->nnmtxq = 0; 1270 if (t4_native_netmap & NN_MAIN_VI) { 1271 s->nnmrxq += nports * iaq.nnmrxq; 1272 s->nnmtxq += nports * iaq.nnmtxq; 1273 } 1274 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1275 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1276 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1277 } 1278 s->neq += s->nnmtxq + s->nnmrxq; 1279 s->niq += s->nnmrxq; 1280 1281 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1282 M_CXGBE, M_ZERO | M_WAITOK); 1283 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1284 M_CXGBE, M_ZERO | M_WAITOK); 1285 #endif 1286 1287 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1288 M_ZERO | M_WAITOK); 1289 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1290 M_ZERO | M_WAITOK); 1291 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1292 M_ZERO | M_WAITOK); 1293 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 1294 M_ZERO | M_WAITOK); 1295 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 1296 M_ZERO | M_WAITOK); 1297 1298 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1299 M_ZERO | M_WAITOK); 1300 1301 t4_init_l2t(sc, M_WAITOK); 1302 t4_init_smt(sc, M_WAITOK); 1303 t4_init_tx_sched(sc); 1304 t4_init_atid_table(sc); 1305 #ifdef RATELIMIT 1306 t4_init_etid_table(sc); 1307 #endif 1308 #ifdef INET6 1309 t4_init_clip_table(sc); 1310 #endif 1311 if (sc->vres.key.size != 0) 1312 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1313 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1314 1315 /* 1316 * Second pass over the ports. This time we know the number of rx and 1317 * tx queues that each port should get. 1318 */ 1319 rqidx = tqidx = 0; 1320 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1321 ofld_tqidx = 0; 1322 #endif 1323 #ifdef TCP_OFFLOAD 1324 ofld_rqidx = 0; 1325 #endif 1326 #ifdef DEV_NETMAP 1327 nm_rqidx = nm_tqidx = 0; 1328 #endif 1329 for_each_port(sc, i) { 1330 struct port_info *pi = sc->port[i]; 1331 struct vi_info *vi; 1332 1333 if (pi == NULL) 1334 continue; 1335 1336 pi->nvi = num_vis; 1337 for_each_vi(pi, j, vi) { 1338 vi->pi = pi; 1339 vi->qsize_rxq = t4_qsize_rxq; 1340 vi->qsize_txq = t4_qsize_txq; 1341 1342 vi->first_rxq = rqidx; 1343 vi->first_txq = tqidx; 1344 vi->tmr_idx = t4_tmr_idx; 1345 vi->pktc_idx = t4_pktc_idx; 1346 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1347 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1348 1349 rqidx += vi->nrxq; 1350 tqidx += vi->ntxq; 1351 1352 if (j == 0 && vi->ntxq > 1) 1353 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1354 else 1355 vi->rsrv_noflowq = 0; 1356 1357 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1358 vi->first_ofld_txq = ofld_tqidx; 1359 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1360 ofld_tqidx += vi->nofldtxq; 1361 #endif 1362 #ifdef TCP_OFFLOAD 1363 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1364 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1365 vi->first_ofld_rxq = ofld_rqidx; 1366 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1367 1368 ofld_rqidx += vi->nofldrxq; 1369 #endif 1370 #ifdef DEV_NETMAP 1371 vi->first_nm_rxq = nm_rqidx; 1372 vi->first_nm_txq = nm_tqidx; 1373 if (j == 0) { 1374 vi->nnmrxq = iaq.nnmrxq; 1375 vi->nnmtxq = iaq.nnmtxq; 1376 } else { 1377 vi->nnmrxq = iaq.nnmrxq_vi; 1378 vi->nnmtxq = iaq.nnmtxq_vi; 1379 } 1380 nm_rqidx += vi->nnmrxq; 1381 nm_tqidx += vi->nnmtxq; 1382 #endif 1383 } 1384 } 1385 1386 rc = t4_setup_intr_handlers(sc); 1387 if (rc != 0) { 1388 device_printf(dev, 1389 "failed to setup interrupt handlers: %d\n", rc); 1390 goto done; 1391 } 1392 1393 rc = bus_generic_probe(dev); 1394 if (rc != 0) { 1395 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1396 goto done; 1397 } 1398 1399 /* 1400 * Ensure thread-safe mailbox access (in debug builds). 1401 * 1402 * So far this was the only thread accessing the mailbox but various 1403 * ifnets and sysctls are about to be created and their handlers/ioctls 1404 * will access the mailbox from different threads. 1405 */ 1406 sc->flags |= CHK_MBOX_ACCESS; 1407 1408 rc = bus_generic_attach(dev); 1409 if (rc != 0) { 1410 device_printf(dev, 1411 "failed to attach all child ports: %d\n", rc); 1412 goto done; 1413 } 1414 1415 device_printf(dev, 1416 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1417 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1418 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1419 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1420 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1421 1422 t4_set_desc(sc); 1423 1424 notify_siblings(dev, 0); 1425 1426 done: 1427 if (rc != 0 && sc->cdev) { 1428 /* cdev was created and so cxgbetool works; recover that way. */ 1429 device_printf(dev, 1430 "error during attach, adapter is now in recovery mode.\n"); 1431 rc = 0; 1432 } 1433 1434 if (rc != 0) 1435 t4_detach_common(dev); 1436 else 1437 t4_sysctls(sc); 1438 1439 return (rc); 1440 } 1441 1442 static int 1443 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) 1444 { 1445 struct adapter *sc; 1446 struct port_info *pi; 1447 int i; 1448 1449 sc = device_get_softc(bus); 1450 buf[0] = '\0'; 1451 for_each_port(sc, i) { 1452 pi = sc->port[i]; 1453 if (pi != NULL && pi->dev == dev) { 1454 snprintf(buf, buflen, "port=%d", pi->port_id); 1455 break; 1456 } 1457 } 1458 return (0); 1459 } 1460 1461 static int 1462 t4_ready(device_t dev) 1463 { 1464 struct adapter *sc; 1465 1466 sc = device_get_softc(dev); 1467 if (sc->flags & FW_OK) 1468 return (0); 1469 return (ENXIO); 1470 } 1471 1472 static int 1473 t4_read_port_device(device_t dev, int port, device_t *child) 1474 { 1475 struct adapter *sc; 1476 struct port_info *pi; 1477 1478 sc = device_get_softc(dev); 1479 if (port < 0 || port >= MAX_NPORTS) 1480 return (EINVAL); 1481 pi = sc->port[port]; 1482 if (pi == NULL || pi->dev == NULL) 1483 return (ENXIO); 1484 *child = pi->dev; 1485 return (0); 1486 } 1487 1488 static int 1489 notify_siblings(device_t dev, int detaching) 1490 { 1491 device_t sibling; 1492 int error, i; 1493 1494 error = 0; 1495 for (i = 0; i < PCI_FUNCMAX; i++) { 1496 if (i == pci_get_function(dev)) 1497 continue; 1498 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1499 pci_get_slot(dev), i); 1500 if (sibling == NULL || !device_is_attached(sibling)) 1501 continue; 1502 if (detaching) 1503 error = T4_DETACH_CHILD(sibling); 1504 else 1505 (void)T4_ATTACH_CHILD(sibling); 1506 if (error) 1507 break; 1508 } 1509 return (error); 1510 } 1511 1512 /* 1513 * Idempotent 1514 */ 1515 static int 1516 t4_detach(device_t dev) 1517 { 1518 struct adapter *sc; 1519 int rc; 1520 1521 sc = device_get_softc(dev); 1522 1523 rc = notify_siblings(dev, 1); 1524 if (rc) { 1525 device_printf(dev, 1526 "failed to detach sibling devices: %d\n", rc); 1527 return (rc); 1528 } 1529 1530 return (t4_detach_common(dev)); 1531 } 1532 1533 int 1534 t4_detach_common(device_t dev) 1535 { 1536 struct adapter *sc; 1537 struct port_info *pi; 1538 int i, rc; 1539 1540 sc = device_get_softc(dev); 1541 1542 if (sc->cdev) { 1543 destroy_dev(sc->cdev); 1544 sc->cdev = NULL; 1545 } 1546 1547 sx_xlock(&t4_list_lock); 1548 SLIST_REMOVE(&t4_list, sc, adapter, link); 1549 sx_xunlock(&t4_list_lock); 1550 1551 sc->flags &= ~CHK_MBOX_ACCESS; 1552 if (sc->flags & FULL_INIT_DONE) { 1553 if (!(sc->flags & IS_VF)) 1554 t4_intr_disable(sc); 1555 } 1556 1557 if (device_is_attached(dev)) { 1558 rc = bus_generic_detach(dev); 1559 if (rc) { 1560 device_printf(dev, 1561 "failed to detach child devices: %d\n", rc); 1562 return (rc); 1563 } 1564 } 1565 1566 for (i = 0; i < sc->intr_count; i++) 1567 t4_free_irq(sc, &sc->irq[i]); 1568 1569 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1570 t4_free_tx_sched(sc); 1571 1572 for (i = 0; i < MAX_NPORTS; i++) { 1573 pi = sc->port[i]; 1574 if (pi) { 1575 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1576 if (pi->dev) 1577 device_delete_child(dev, pi->dev); 1578 1579 mtx_destroy(&pi->pi_lock); 1580 free(pi->vi, M_CXGBE); 1581 free(pi, M_CXGBE); 1582 } 1583 } 1584 1585 device_delete_children(dev); 1586 1587 if (sc->flags & FULL_INIT_DONE) 1588 adapter_full_uninit(sc); 1589 1590 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1591 t4_fw_bye(sc, sc->mbox); 1592 1593 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1594 pci_release_msi(dev); 1595 1596 if (sc->regs_res) 1597 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1598 sc->regs_res); 1599 1600 if (sc->udbs_res) 1601 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1602 sc->udbs_res); 1603 1604 if (sc->msix_res) 1605 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1606 sc->msix_res); 1607 1608 if (sc->l2t) 1609 t4_free_l2t(sc->l2t); 1610 if (sc->smt) 1611 t4_free_smt(sc->smt); 1612 t4_free_atid_table(sc); 1613 #ifdef RATELIMIT 1614 t4_free_etid_table(sc); 1615 #endif 1616 if (sc->key_map) 1617 vmem_destroy(sc->key_map); 1618 #ifdef INET6 1619 t4_destroy_clip_table(sc); 1620 #endif 1621 1622 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1623 free(sc->sge.ofld_txq, M_CXGBE); 1624 #endif 1625 #ifdef TCP_OFFLOAD 1626 free(sc->sge.ofld_rxq, M_CXGBE); 1627 #endif 1628 #ifdef DEV_NETMAP 1629 free(sc->sge.nm_rxq, M_CXGBE); 1630 free(sc->sge.nm_txq, M_CXGBE); 1631 #endif 1632 free(sc->irq, M_CXGBE); 1633 free(sc->sge.rxq, M_CXGBE); 1634 free(sc->sge.txq, M_CXGBE); 1635 free(sc->sge.ctrlq, M_CXGBE); 1636 free(sc->sge.iqmap, M_CXGBE); 1637 free(sc->sge.eqmap, M_CXGBE); 1638 free(sc->tids.ftid_tab, M_CXGBE); 1639 free(sc->tids.hpftid_tab, M_CXGBE); 1640 free_hftid_hash(&sc->tids); 1641 free(sc->tids.tid_tab, M_CXGBE); 1642 free(sc->tt.tls_rx_ports, M_CXGBE); 1643 t4_destroy_dma_tag(sc); 1644 1645 callout_drain(&sc->ktls_tick); 1646 callout_drain(&sc->sfl_callout); 1647 if (mtx_initialized(&sc->tids.ftid_lock)) { 1648 mtx_destroy(&sc->tids.ftid_lock); 1649 cv_destroy(&sc->tids.ftid_cv); 1650 } 1651 if (mtx_initialized(&sc->tids.atid_lock)) 1652 mtx_destroy(&sc->tids.atid_lock); 1653 if (mtx_initialized(&sc->ifp_lock)) 1654 mtx_destroy(&sc->ifp_lock); 1655 1656 if (rw_initialized(&sc->policy_lock)) { 1657 rw_destroy(&sc->policy_lock); 1658 #ifdef TCP_OFFLOAD 1659 if (sc->policy != NULL) 1660 free_offload_policy(sc->policy); 1661 #endif 1662 } 1663 1664 for (i = 0; i < NUM_MEMWIN; i++) { 1665 struct memwin *mw = &sc->memwin[i]; 1666 1667 if (rw_initialized(&mw->mw_lock)) 1668 rw_destroy(&mw->mw_lock); 1669 } 1670 1671 mtx_destroy(&sc->sfl_lock); 1672 mtx_destroy(&sc->reg_lock); 1673 mtx_destroy(&sc->sc_lock); 1674 1675 bzero(sc, sizeof(*sc)); 1676 1677 return (0); 1678 } 1679 1680 static int 1681 cxgbe_probe(device_t dev) 1682 { 1683 char buf[128]; 1684 struct port_info *pi = device_get_softc(dev); 1685 1686 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1687 device_set_desc_copy(dev, buf); 1688 1689 return (BUS_PROBE_DEFAULT); 1690 } 1691 1692 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1693 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1694 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 1695 IFCAP_HWRXTSTMP | IFCAP_NOMAP) 1696 #define T4_CAP_ENABLE (T4_CAP) 1697 1698 static int 1699 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1700 { 1701 struct ifnet *ifp; 1702 struct sbuf *sb; 1703 struct pfil_head_args pa; 1704 1705 vi->xact_addr_filt = -1; 1706 callout_init(&vi->tick, 1); 1707 1708 /* Allocate an ifnet and set it up */ 1709 ifp = if_alloc_dev(IFT_ETHER, dev); 1710 if (ifp == NULL) { 1711 device_printf(dev, "Cannot allocate ifnet\n"); 1712 return (ENOMEM); 1713 } 1714 vi->ifp = ifp; 1715 ifp->if_softc = vi; 1716 1717 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1718 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1719 1720 ifp->if_init = cxgbe_init; 1721 ifp->if_ioctl = cxgbe_ioctl; 1722 ifp->if_transmit = cxgbe_transmit; 1723 ifp->if_qflush = cxgbe_qflush; 1724 ifp->if_get_counter = cxgbe_get_counter; 1725 #if defined(KERN_TLS) || defined(RATELIMIT) 1726 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 1727 ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; 1728 ifp->if_snd_tag_query = cxgbe_snd_tag_query; 1729 ifp->if_snd_tag_free = cxgbe_snd_tag_free; 1730 #endif 1731 #ifdef RATELIMIT 1732 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 1733 #endif 1734 1735 ifp->if_capabilities = T4_CAP; 1736 ifp->if_capenable = T4_CAP_ENABLE; 1737 #ifdef TCP_OFFLOAD 1738 if (vi->nofldrxq != 0 && (vi->pi->adapter->flags & KERN_TLS_OK) == 0) 1739 ifp->if_capabilities |= IFCAP_TOE; 1740 #endif 1741 #ifdef RATELIMIT 1742 if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) { 1743 ifp->if_capabilities |= IFCAP_TXRTLMT; 1744 ifp->if_capenable |= IFCAP_TXRTLMT; 1745 } 1746 #endif 1747 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1748 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1749 1750 ifp->if_hw_tsomax = IP_MAXPACKET; 1751 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 1752 #ifdef RATELIMIT 1753 if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) 1754 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 1755 #endif 1756 ifp->if_hw_tsomaxsegsize = 65536; 1757 #ifdef KERN_TLS 1758 if (vi->pi->adapter->flags & KERN_TLS_OK) { 1759 ifp->if_capabilities |= IFCAP_TXTLS; 1760 ifp->if_capenable |= IFCAP_TXTLS; 1761 } 1762 #endif 1763 1764 ether_ifattach(ifp, vi->hw_addr); 1765 #ifdef DEV_NETMAP 1766 if (vi->nnmrxq != 0) 1767 cxgbe_nm_attach(vi); 1768 #endif 1769 sb = sbuf_new_auto(); 1770 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1771 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1772 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 1773 case IFCAP_TOE: 1774 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 1775 break; 1776 case IFCAP_TOE | IFCAP_TXRTLMT: 1777 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 1778 break; 1779 case IFCAP_TXRTLMT: 1780 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 1781 break; 1782 } 1783 #endif 1784 #ifdef TCP_OFFLOAD 1785 if (ifp->if_capabilities & IFCAP_TOE) 1786 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 1787 #endif 1788 #ifdef DEV_NETMAP 1789 if (ifp->if_capabilities & IFCAP_NETMAP) 1790 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 1791 vi->nnmtxq, vi->nnmrxq); 1792 #endif 1793 sbuf_finish(sb); 1794 device_printf(dev, "%s\n", sbuf_data(sb)); 1795 sbuf_delete(sb); 1796 1797 vi_sysctls(vi); 1798 1799 pa.pa_version = PFIL_VERSION; 1800 pa.pa_flags = PFIL_IN; 1801 pa.pa_type = PFIL_TYPE_ETHERNET; 1802 pa.pa_headname = ifp->if_xname; 1803 vi->pfil = pfil_head_register(&pa); 1804 1805 return (0); 1806 } 1807 1808 static int 1809 cxgbe_attach(device_t dev) 1810 { 1811 struct port_info *pi = device_get_softc(dev); 1812 struct adapter *sc = pi->adapter; 1813 struct vi_info *vi; 1814 int i, rc; 1815 1816 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1817 1818 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1819 if (rc) 1820 return (rc); 1821 1822 for_each_vi(pi, i, vi) { 1823 if (i == 0) 1824 continue; 1825 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 1826 if (vi->dev == NULL) { 1827 device_printf(dev, "failed to add VI %d\n", i); 1828 continue; 1829 } 1830 device_set_softc(vi->dev, vi); 1831 } 1832 1833 cxgbe_sysctls(pi); 1834 1835 bus_generic_attach(dev); 1836 1837 return (0); 1838 } 1839 1840 static void 1841 cxgbe_vi_detach(struct vi_info *vi) 1842 { 1843 struct ifnet *ifp = vi->ifp; 1844 1845 if (vi->pfil != NULL) { 1846 pfil_head_unregister(vi->pfil); 1847 vi->pfil = NULL; 1848 } 1849 1850 ether_ifdetach(ifp); 1851 1852 /* Let detach proceed even if these fail. */ 1853 #ifdef DEV_NETMAP 1854 if (ifp->if_capabilities & IFCAP_NETMAP) 1855 cxgbe_nm_detach(vi); 1856 #endif 1857 cxgbe_uninit_synchronized(vi); 1858 callout_drain(&vi->tick); 1859 vi_full_uninit(vi); 1860 1861 if_free(vi->ifp); 1862 vi->ifp = NULL; 1863 } 1864 1865 static int 1866 cxgbe_detach(device_t dev) 1867 { 1868 struct port_info *pi = device_get_softc(dev); 1869 struct adapter *sc = pi->adapter; 1870 int rc; 1871 1872 /* Detach the extra VIs first. */ 1873 rc = bus_generic_detach(dev); 1874 if (rc) 1875 return (rc); 1876 device_delete_children(dev); 1877 1878 doom_vi(sc, &pi->vi[0]); 1879 1880 if (pi->flags & HAS_TRACEQ) { 1881 sc->traceq = -1; /* cloner should not create ifnet */ 1882 t4_tracer_port_detach(sc); 1883 } 1884 1885 cxgbe_vi_detach(&pi->vi[0]); 1886 callout_drain(&pi->tick); 1887 ifmedia_removeall(&pi->media); 1888 1889 end_synchronized_op(sc, 0); 1890 1891 return (0); 1892 } 1893 1894 static void 1895 cxgbe_init(void *arg) 1896 { 1897 struct vi_info *vi = arg; 1898 struct adapter *sc = vi->pi->adapter; 1899 1900 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1901 return; 1902 cxgbe_init_synchronized(vi); 1903 end_synchronized_op(sc, 0); 1904 } 1905 1906 static int 1907 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1908 { 1909 int rc = 0, mtu, flags; 1910 struct vi_info *vi = ifp->if_softc; 1911 struct port_info *pi = vi->pi; 1912 struct adapter *sc = pi->adapter; 1913 struct ifreq *ifr = (struct ifreq *)data; 1914 uint32_t mask; 1915 1916 switch (cmd) { 1917 case SIOCSIFMTU: 1918 mtu = ifr->ifr_mtu; 1919 if (mtu < ETHERMIN || mtu > MAX_MTU) 1920 return (EINVAL); 1921 1922 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 1923 if (rc) 1924 return (rc); 1925 ifp->if_mtu = mtu; 1926 if (vi->flags & VI_INIT_DONE) { 1927 t4_update_fl_bufsize(ifp); 1928 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1929 rc = update_mac_settings(ifp, XGMAC_MTU); 1930 } 1931 end_synchronized_op(sc, 0); 1932 break; 1933 1934 case SIOCSIFFLAGS: 1935 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 1936 if (rc) 1937 return (rc); 1938 1939 if (ifp->if_flags & IFF_UP) { 1940 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1941 flags = vi->if_flags; 1942 if ((ifp->if_flags ^ flags) & 1943 (IFF_PROMISC | IFF_ALLMULTI)) { 1944 rc = update_mac_settings(ifp, 1945 XGMAC_PROMISC | XGMAC_ALLMULTI); 1946 } 1947 } else { 1948 rc = cxgbe_init_synchronized(vi); 1949 } 1950 vi->if_flags = ifp->if_flags; 1951 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1952 rc = cxgbe_uninit_synchronized(vi); 1953 } 1954 end_synchronized_op(sc, 0); 1955 break; 1956 1957 case SIOCADDMULTI: 1958 case SIOCDELMULTI: 1959 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 1960 if (rc) 1961 return (rc); 1962 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1963 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 1964 end_synchronized_op(sc, 0); 1965 break; 1966 1967 case SIOCSIFCAP: 1968 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 1969 if (rc) 1970 return (rc); 1971 1972 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1973 if (mask & IFCAP_TXCSUM) { 1974 ifp->if_capenable ^= IFCAP_TXCSUM; 1975 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1976 1977 if (IFCAP_TSO4 & ifp->if_capenable && 1978 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1979 ifp->if_capenable &= ~IFCAP_TSO4; 1980 if_printf(ifp, 1981 "tso4 disabled due to -txcsum.\n"); 1982 } 1983 } 1984 if (mask & IFCAP_TXCSUM_IPV6) { 1985 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1986 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1987 1988 if (IFCAP_TSO6 & ifp->if_capenable && 1989 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1990 ifp->if_capenable &= ~IFCAP_TSO6; 1991 if_printf(ifp, 1992 "tso6 disabled due to -txcsum6.\n"); 1993 } 1994 } 1995 if (mask & IFCAP_RXCSUM) 1996 ifp->if_capenable ^= IFCAP_RXCSUM; 1997 if (mask & IFCAP_RXCSUM_IPV6) 1998 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1999 2000 /* 2001 * Note that we leave CSUM_TSO alone (it is always set). The 2002 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2003 * sending a TSO request our way, so it's sufficient to toggle 2004 * IFCAP_TSOx only. 2005 */ 2006 if (mask & IFCAP_TSO4) { 2007 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2008 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2009 if_printf(ifp, "enable txcsum first.\n"); 2010 rc = EAGAIN; 2011 goto fail; 2012 } 2013 ifp->if_capenable ^= IFCAP_TSO4; 2014 } 2015 if (mask & IFCAP_TSO6) { 2016 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2017 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2018 if_printf(ifp, "enable txcsum6 first.\n"); 2019 rc = EAGAIN; 2020 goto fail; 2021 } 2022 ifp->if_capenable ^= IFCAP_TSO6; 2023 } 2024 if (mask & IFCAP_LRO) { 2025 #if defined(INET) || defined(INET6) 2026 int i; 2027 struct sge_rxq *rxq; 2028 2029 ifp->if_capenable ^= IFCAP_LRO; 2030 for_each_rxq(vi, i, rxq) { 2031 if (ifp->if_capenable & IFCAP_LRO) 2032 rxq->iq.flags |= IQ_LRO_ENABLED; 2033 else 2034 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2035 } 2036 #endif 2037 } 2038 #ifdef TCP_OFFLOAD 2039 if (mask & IFCAP_TOE) { 2040 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2041 2042 rc = toe_capability(vi, enable); 2043 if (rc != 0) 2044 goto fail; 2045 2046 ifp->if_capenable ^= mask; 2047 } 2048 #endif 2049 if (mask & IFCAP_VLAN_HWTAGGING) { 2050 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2051 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2052 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2053 } 2054 if (mask & IFCAP_VLAN_MTU) { 2055 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2056 2057 /* Need to find out how to disable auto-mtu-inflation */ 2058 } 2059 if (mask & IFCAP_VLAN_HWTSO) 2060 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2061 if (mask & IFCAP_VLAN_HWCSUM) 2062 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2063 #ifdef RATELIMIT 2064 if (mask & IFCAP_TXRTLMT) 2065 ifp->if_capenable ^= IFCAP_TXRTLMT; 2066 #endif 2067 if (mask & IFCAP_HWRXTSTMP) { 2068 int i; 2069 struct sge_rxq *rxq; 2070 2071 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2072 for_each_rxq(vi, i, rxq) { 2073 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2074 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2075 else 2076 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2077 } 2078 } 2079 if (mask & IFCAP_NOMAP) 2080 ifp->if_capenable ^= IFCAP_NOMAP; 2081 2082 #ifdef KERN_TLS 2083 if (mask & IFCAP_TXTLS) 2084 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2085 #endif 2086 2087 #ifdef VLAN_CAPABILITIES 2088 VLAN_CAPABILITIES(ifp); 2089 #endif 2090 fail: 2091 end_synchronized_op(sc, 0); 2092 break; 2093 2094 case SIOCSIFMEDIA: 2095 case SIOCGIFMEDIA: 2096 case SIOCGIFXMEDIA: 2097 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2098 break; 2099 2100 case SIOCGI2C: { 2101 struct ifi2creq i2c; 2102 2103 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2104 if (rc != 0) 2105 break; 2106 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2107 rc = EPERM; 2108 break; 2109 } 2110 if (i2c.len > sizeof(i2c.data)) { 2111 rc = EINVAL; 2112 break; 2113 } 2114 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2115 if (rc) 2116 return (rc); 2117 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2118 i2c.offset, i2c.len, &i2c.data[0]); 2119 end_synchronized_op(sc, 0); 2120 if (rc == 0) 2121 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2122 break; 2123 } 2124 2125 default: 2126 rc = ether_ioctl(ifp, cmd, data); 2127 } 2128 2129 return (rc); 2130 } 2131 2132 static int 2133 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2134 { 2135 struct vi_info *vi = ifp->if_softc; 2136 struct port_info *pi = vi->pi; 2137 struct adapter *sc = pi->adapter; 2138 struct sge_txq *txq; 2139 #ifdef RATELIMIT 2140 struct cxgbe_snd_tag *cst; 2141 #endif 2142 void *items[1]; 2143 int rc; 2144 2145 M_ASSERTPKTHDR(m); 2146 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2147 #if defined(KERN_TLS) || defined(RATELIMIT) 2148 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2149 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2150 #endif 2151 2152 if (__predict_false(pi->link_cfg.link_ok == false)) { 2153 m_freem(m); 2154 return (ENETDOWN); 2155 } 2156 2157 rc = parse_pkt(sc, &m); 2158 if (__predict_false(rc != 0)) { 2159 MPASS(m == NULL); /* was freed already */ 2160 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2161 return (rc); 2162 } 2163 #ifdef RATELIMIT 2164 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2165 cst = mst_to_cst(m->m_pkthdr.snd_tag); 2166 if (cst->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2167 return (ethofld_transmit(ifp, m)); 2168 } 2169 #endif 2170 2171 /* Select a txq. */ 2172 txq = &sc->sge.txq[vi->first_txq]; 2173 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2174 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2175 vi->rsrv_noflowq); 2176 2177 items[0] = m; 2178 rc = mp_ring_enqueue(txq->r, items, 1, 4096); 2179 if (__predict_false(rc != 0)) 2180 m_freem(m); 2181 2182 return (rc); 2183 } 2184 2185 static void 2186 cxgbe_qflush(struct ifnet *ifp) 2187 { 2188 struct vi_info *vi = ifp->if_softc; 2189 struct sge_txq *txq; 2190 int i; 2191 2192 /* queues do not exist if !VI_INIT_DONE. */ 2193 if (vi->flags & VI_INIT_DONE) { 2194 for_each_txq(vi, i, txq) { 2195 TXQ_LOCK(txq); 2196 txq->eq.flags |= EQ_QFLUSH; 2197 TXQ_UNLOCK(txq); 2198 while (!mp_ring_is_idle(txq->r)) { 2199 mp_ring_check_drainage(txq->r, 0); 2200 pause("qflush", 1); 2201 } 2202 TXQ_LOCK(txq); 2203 txq->eq.flags &= ~EQ_QFLUSH; 2204 TXQ_UNLOCK(txq); 2205 } 2206 } 2207 if_qflush(ifp); 2208 } 2209 2210 static uint64_t 2211 vi_get_counter(struct ifnet *ifp, ift_counter c) 2212 { 2213 struct vi_info *vi = ifp->if_softc; 2214 struct fw_vi_stats_vf *s = &vi->stats; 2215 2216 vi_refresh_stats(vi->pi->adapter, vi); 2217 2218 switch (c) { 2219 case IFCOUNTER_IPACKETS: 2220 return (s->rx_bcast_frames + s->rx_mcast_frames + 2221 s->rx_ucast_frames); 2222 case IFCOUNTER_IERRORS: 2223 return (s->rx_err_frames); 2224 case IFCOUNTER_OPACKETS: 2225 return (s->tx_bcast_frames + s->tx_mcast_frames + 2226 s->tx_ucast_frames + s->tx_offload_frames); 2227 case IFCOUNTER_OERRORS: 2228 return (s->tx_drop_frames); 2229 case IFCOUNTER_IBYTES: 2230 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 2231 s->rx_ucast_bytes); 2232 case IFCOUNTER_OBYTES: 2233 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 2234 s->tx_ucast_bytes + s->tx_offload_bytes); 2235 case IFCOUNTER_IMCASTS: 2236 return (s->rx_mcast_frames); 2237 case IFCOUNTER_OMCASTS: 2238 return (s->tx_mcast_frames); 2239 case IFCOUNTER_OQDROPS: { 2240 uint64_t drops; 2241 2242 drops = 0; 2243 if (vi->flags & VI_INIT_DONE) { 2244 int i; 2245 struct sge_txq *txq; 2246 2247 for_each_txq(vi, i, txq) 2248 drops += counter_u64_fetch(txq->r->drops); 2249 } 2250 2251 return (drops); 2252 2253 } 2254 2255 default: 2256 return (if_get_counter_default(ifp, c)); 2257 } 2258 } 2259 2260 uint64_t 2261 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 2262 { 2263 struct vi_info *vi = ifp->if_softc; 2264 struct port_info *pi = vi->pi; 2265 struct adapter *sc = pi->adapter; 2266 struct port_stats *s = &pi->stats; 2267 2268 if (pi->nvi > 1 || sc->flags & IS_VF) 2269 return (vi_get_counter(ifp, c)); 2270 2271 cxgbe_refresh_stats(sc, pi); 2272 2273 switch (c) { 2274 case IFCOUNTER_IPACKETS: 2275 return (s->rx_frames); 2276 2277 case IFCOUNTER_IERRORS: 2278 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 2279 s->rx_fcs_err + s->rx_len_err); 2280 2281 case IFCOUNTER_OPACKETS: 2282 return (s->tx_frames); 2283 2284 case IFCOUNTER_OERRORS: 2285 return (s->tx_error_frames); 2286 2287 case IFCOUNTER_IBYTES: 2288 return (s->rx_octets); 2289 2290 case IFCOUNTER_OBYTES: 2291 return (s->tx_octets); 2292 2293 case IFCOUNTER_IMCASTS: 2294 return (s->rx_mcast_frames); 2295 2296 case IFCOUNTER_OMCASTS: 2297 return (s->tx_mcast_frames); 2298 2299 case IFCOUNTER_IQDROPS: 2300 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 2301 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 2302 s->rx_trunc3 + pi->tnl_cong_drops); 2303 2304 case IFCOUNTER_OQDROPS: { 2305 uint64_t drops; 2306 2307 drops = s->tx_drop; 2308 if (vi->flags & VI_INIT_DONE) { 2309 int i; 2310 struct sge_txq *txq; 2311 2312 for_each_txq(vi, i, txq) 2313 drops += counter_u64_fetch(txq->r->drops); 2314 } 2315 2316 return (drops); 2317 2318 } 2319 2320 default: 2321 return (if_get_counter_default(ifp, c)); 2322 } 2323 } 2324 2325 #if defined(KERN_TLS) || defined(RATELIMIT) 2326 void 2327 cxgbe_snd_tag_init(struct cxgbe_snd_tag *cst, struct ifnet *ifp, int type) 2328 { 2329 2330 m_snd_tag_init(&cst->com, ifp); 2331 cst->type = type; 2332 } 2333 2334 static int 2335 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 2336 struct m_snd_tag **pt) 2337 { 2338 int error; 2339 2340 switch (params->hdr.type) { 2341 #ifdef RATELIMIT 2342 case IF_SND_TAG_TYPE_RATE_LIMIT: 2343 error = cxgbe_rate_tag_alloc(ifp, params, pt); 2344 break; 2345 #endif 2346 #ifdef KERN_TLS 2347 case IF_SND_TAG_TYPE_TLS: 2348 error = cxgbe_tls_tag_alloc(ifp, params, pt); 2349 break; 2350 #endif 2351 default: 2352 error = EOPNOTSUPP; 2353 } 2354 if (error == 0) 2355 MPASS(mst_to_cst(*pt)->type == params->hdr.type); 2356 return (error); 2357 } 2358 2359 static int 2360 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 2361 union if_snd_tag_modify_params *params) 2362 { 2363 struct cxgbe_snd_tag *cst; 2364 2365 cst = mst_to_cst(mst); 2366 switch (cst->type) { 2367 #ifdef RATELIMIT 2368 case IF_SND_TAG_TYPE_RATE_LIMIT: 2369 return (cxgbe_rate_tag_modify(mst, params)); 2370 #endif 2371 default: 2372 return (EOPNOTSUPP); 2373 } 2374 } 2375 2376 static int 2377 cxgbe_snd_tag_query(struct m_snd_tag *mst, 2378 union if_snd_tag_query_params *params) 2379 { 2380 struct cxgbe_snd_tag *cst; 2381 2382 cst = mst_to_cst(mst); 2383 switch (cst->type) { 2384 #ifdef RATELIMIT 2385 case IF_SND_TAG_TYPE_RATE_LIMIT: 2386 return (cxgbe_rate_tag_query(mst, params)); 2387 #endif 2388 default: 2389 return (EOPNOTSUPP); 2390 } 2391 } 2392 2393 static void 2394 cxgbe_snd_tag_free(struct m_snd_tag *mst) 2395 { 2396 struct cxgbe_snd_tag *cst; 2397 2398 cst = mst_to_cst(mst); 2399 switch (cst->type) { 2400 #ifdef RATELIMIT 2401 case IF_SND_TAG_TYPE_RATE_LIMIT: 2402 cxgbe_rate_tag_free(mst); 2403 return; 2404 #endif 2405 #ifdef KERN_TLS 2406 case IF_SND_TAG_TYPE_TLS: 2407 cxgbe_tls_tag_free(mst); 2408 return; 2409 #endif 2410 default: 2411 panic("shouldn't get here"); 2412 } 2413 } 2414 #endif 2415 2416 /* 2417 * The kernel picks a media from the list we had provided but we still validate 2418 * the requeste. 2419 */ 2420 int 2421 cxgbe_media_change(struct ifnet *ifp) 2422 { 2423 struct vi_info *vi = ifp->if_softc; 2424 struct port_info *pi = vi->pi; 2425 struct ifmedia *ifm = &pi->media; 2426 struct link_config *lc = &pi->link_cfg; 2427 struct adapter *sc = pi->adapter; 2428 int rc; 2429 2430 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 2431 if (rc != 0) 2432 return (rc); 2433 PORT_LOCK(pi); 2434 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 2435 /* ifconfig .. media autoselect */ 2436 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 2437 rc = ENOTSUP; /* AN not supported by transceiver */ 2438 goto done; 2439 } 2440 lc->requested_aneg = AUTONEG_ENABLE; 2441 lc->requested_speed = 0; 2442 lc->requested_fc |= PAUSE_AUTONEG; 2443 } else { 2444 lc->requested_aneg = AUTONEG_DISABLE; 2445 lc->requested_speed = 2446 ifmedia_baudrate(ifm->ifm_media) / 1000000; 2447 lc->requested_fc = 0; 2448 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 2449 lc->requested_fc |= PAUSE_RX; 2450 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 2451 lc->requested_fc |= PAUSE_TX; 2452 } 2453 if (pi->up_vis > 0) { 2454 fixup_link_config(pi); 2455 rc = apply_link_config(pi); 2456 } 2457 done: 2458 PORT_UNLOCK(pi); 2459 end_synchronized_op(sc, 0); 2460 return (rc); 2461 } 2462 2463 /* 2464 * Base media word (without ETHER, pause, link active, etc.) for the port at the 2465 * given speed. 2466 */ 2467 static int 2468 port_mword(struct port_info *pi, uint32_t speed) 2469 { 2470 2471 MPASS(speed & M_FW_PORT_CAP32_SPEED); 2472 MPASS(powerof2(speed)); 2473 2474 switch(pi->port_type) { 2475 case FW_PORT_TYPE_BT_SGMII: 2476 case FW_PORT_TYPE_BT_XFI: 2477 case FW_PORT_TYPE_BT_XAUI: 2478 /* BaseT */ 2479 switch (speed) { 2480 case FW_PORT_CAP32_SPEED_100M: 2481 return (IFM_100_T); 2482 case FW_PORT_CAP32_SPEED_1G: 2483 return (IFM_1000_T); 2484 case FW_PORT_CAP32_SPEED_10G: 2485 return (IFM_10G_T); 2486 } 2487 break; 2488 case FW_PORT_TYPE_KX4: 2489 if (speed == FW_PORT_CAP32_SPEED_10G) 2490 return (IFM_10G_KX4); 2491 break; 2492 case FW_PORT_TYPE_CX4: 2493 if (speed == FW_PORT_CAP32_SPEED_10G) 2494 return (IFM_10G_CX4); 2495 break; 2496 case FW_PORT_TYPE_KX: 2497 if (speed == FW_PORT_CAP32_SPEED_1G) 2498 return (IFM_1000_KX); 2499 break; 2500 case FW_PORT_TYPE_KR: 2501 case FW_PORT_TYPE_BP_AP: 2502 case FW_PORT_TYPE_BP4_AP: 2503 case FW_PORT_TYPE_BP40_BA: 2504 case FW_PORT_TYPE_KR4_100G: 2505 case FW_PORT_TYPE_KR_SFP28: 2506 case FW_PORT_TYPE_KR_XLAUI: 2507 switch (speed) { 2508 case FW_PORT_CAP32_SPEED_1G: 2509 return (IFM_1000_KX); 2510 case FW_PORT_CAP32_SPEED_10G: 2511 return (IFM_10G_KR); 2512 case FW_PORT_CAP32_SPEED_25G: 2513 return (IFM_25G_KR); 2514 case FW_PORT_CAP32_SPEED_40G: 2515 return (IFM_40G_KR4); 2516 case FW_PORT_CAP32_SPEED_50G: 2517 return (IFM_50G_KR2); 2518 case FW_PORT_CAP32_SPEED_100G: 2519 return (IFM_100G_KR4); 2520 } 2521 break; 2522 case FW_PORT_TYPE_FIBER_XFI: 2523 case FW_PORT_TYPE_FIBER_XAUI: 2524 case FW_PORT_TYPE_SFP: 2525 case FW_PORT_TYPE_QSFP_10G: 2526 case FW_PORT_TYPE_QSA: 2527 case FW_PORT_TYPE_QSFP: 2528 case FW_PORT_TYPE_CR4_QSFP: 2529 case FW_PORT_TYPE_CR_QSFP: 2530 case FW_PORT_TYPE_CR2_QSFP: 2531 case FW_PORT_TYPE_SFP28: 2532 /* Pluggable transceiver */ 2533 switch (pi->mod_type) { 2534 case FW_PORT_MOD_TYPE_LR: 2535 switch (speed) { 2536 case FW_PORT_CAP32_SPEED_1G: 2537 return (IFM_1000_LX); 2538 case FW_PORT_CAP32_SPEED_10G: 2539 return (IFM_10G_LR); 2540 case FW_PORT_CAP32_SPEED_25G: 2541 return (IFM_25G_LR); 2542 case FW_PORT_CAP32_SPEED_40G: 2543 return (IFM_40G_LR4); 2544 case FW_PORT_CAP32_SPEED_50G: 2545 return (IFM_50G_LR2); 2546 case FW_PORT_CAP32_SPEED_100G: 2547 return (IFM_100G_LR4); 2548 } 2549 break; 2550 case FW_PORT_MOD_TYPE_SR: 2551 switch (speed) { 2552 case FW_PORT_CAP32_SPEED_1G: 2553 return (IFM_1000_SX); 2554 case FW_PORT_CAP32_SPEED_10G: 2555 return (IFM_10G_SR); 2556 case FW_PORT_CAP32_SPEED_25G: 2557 return (IFM_25G_SR); 2558 case FW_PORT_CAP32_SPEED_40G: 2559 return (IFM_40G_SR4); 2560 case FW_PORT_CAP32_SPEED_50G: 2561 return (IFM_50G_SR2); 2562 case FW_PORT_CAP32_SPEED_100G: 2563 return (IFM_100G_SR4); 2564 } 2565 break; 2566 case FW_PORT_MOD_TYPE_ER: 2567 if (speed == FW_PORT_CAP32_SPEED_10G) 2568 return (IFM_10G_ER); 2569 break; 2570 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 2571 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 2572 switch (speed) { 2573 case FW_PORT_CAP32_SPEED_1G: 2574 return (IFM_1000_CX); 2575 case FW_PORT_CAP32_SPEED_10G: 2576 return (IFM_10G_TWINAX); 2577 case FW_PORT_CAP32_SPEED_25G: 2578 return (IFM_25G_CR); 2579 case FW_PORT_CAP32_SPEED_40G: 2580 return (IFM_40G_CR4); 2581 case FW_PORT_CAP32_SPEED_50G: 2582 return (IFM_50G_CR2); 2583 case FW_PORT_CAP32_SPEED_100G: 2584 return (IFM_100G_CR4); 2585 } 2586 break; 2587 case FW_PORT_MOD_TYPE_LRM: 2588 if (speed == FW_PORT_CAP32_SPEED_10G) 2589 return (IFM_10G_LRM); 2590 break; 2591 case FW_PORT_MOD_TYPE_NA: 2592 MPASS(0); /* Not pluggable? */ 2593 /* fall throough */ 2594 case FW_PORT_MOD_TYPE_ERROR: 2595 case FW_PORT_MOD_TYPE_UNKNOWN: 2596 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 2597 break; 2598 case FW_PORT_MOD_TYPE_NONE: 2599 return (IFM_NONE); 2600 } 2601 break; 2602 case FW_PORT_TYPE_NONE: 2603 return (IFM_NONE); 2604 } 2605 2606 return (IFM_UNKNOWN); 2607 } 2608 2609 void 2610 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 2611 { 2612 struct vi_info *vi = ifp->if_softc; 2613 struct port_info *pi = vi->pi; 2614 struct adapter *sc = pi->adapter; 2615 struct link_config *lc = &pi->link_cfg; 2616 2617 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 2618 return; 2619 PORT_LOCK(pi); 2620 2621 if (pi->up_vis == 0) { 2622 /* 2623 * If all the interfaces are administratively down the firmware 2624 * does not report transceiver changes. Refresh port info here 2625 * so that ifconfig displays accurate ifmedia at all times. 2626 * This is the only reason we have a synchronized op in this 2627 * function. Just PORT_LOCK would have been enough otherwise. 2628 */ 2629 t4_update_port_info(pi); 2630 build_medialist(pi); 2631 } 2632 2633 /* ifm_status */ 2634 ifmr->ifm_status = IFM_AVALID; 2635 if (lc->link_ok == false) 2636 goto done; 2637 ifmr->ifm_status |= IFM_ACTIVE; 2638 2639 /* ifm_active */ 2640 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 2641 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 2642 if (lc->fc & PAUSE_RX) 2643 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2644 if (lc->fc & PAUSE_TX) 2645 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2646 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 2647 done: 2648 PORT_UNLOCK(pi); 2649 end_synchronized_op(sc, 0); 2650 } 2651 2652 static int 2653 vcxgbe_probe(device_t dev) 2654 { 2655 char buf[128]; 2656 struct vi_info *vi = device_get_softc(dev); 2657 2658 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 2659 vi - vi->pi->vi); 2660 device_set_desc_copy(dev, buf); 2661 2662 return (BUS_PROBE_DEFAULT); 2663 } 2664 2665 static int 2666 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 2667 { 2668 int func, index, rc; 2669 uint32_t param, val; 2670 2671 ASSERT_SYNCHRONIZED_OP(sc); 2672 2673 index = vi - pi->vi; 2674 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 2675 KASSERT(index < nitems(vi_mac_funcs), 2676 ("%s: VI %s doesn't have a MAC func", __func__, 2677 device_get_nameunit(vi->dev))); 2678 func = vi_mac_funcs[index]; 2679 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 2680 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 2681 if (rc < 0) { 2682 device_printf(vi->dev, "failed to allocate virtual interface %d" 2683 "for port %d: %d\n", index, pi->port_id, -rc); 2684 return (-rc); 2685 } 2686 vi->viid = rc; 2687 2688 if (vi->rss_size == 1) { 2689 /* 2690 * This VI didn't get a slice of the RSS table. Reduce the 2691 * number of VIs being created (hw.cxgbe.num_vis) or modify the 2692 * configuration file (nvi, rssnvi for this PF) if this is a 2693 * problem. 2694 */ 2695 device_printf(vi->dev, "RSS table not available.\n"); 2696 vi->rss_base = 0xffff; 2697 2698 return (0); 2699 } 2700 2701 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 2702 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 2703 V_FW_PARAMS_PARAM_YZ(vi->viid); 2704 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2705 if (rc) 2706 vi->rss_base = 0xffff; 2707 else { 2708 MPASS((val >> 16) == vi->rss_size); 2709 vi->rss_base = val & 0xffff; 2710 } 2711 2712 return (0); 2713 } 2714 2715 static int 2716 vcxgbe_attach(device_t dev) 2717 { 2718 struct vi_info *vi; 2719 struct port_info *pi; 2720 struct adapter *sc; 2721 int rc; 2722 2723 vi = device_get_softc(dev); 2724 pi = vi->pi; 2725 sc = pi->adapter; 2726 2727 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 2728 if (rc) 2729 return (rc); 2730 rc = alloc_extra_vi(sc, pi, vi); 2731 end_synchronized_op(sc, 0); 2732 if (rc) 2733 return (rc); 2734 2735 rc = cxgbe_vi_attach(dev, vi); 2736 if (rc) { 2737 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2738 return (rc); 2739 } 2740 return (0); 2741 } 2742 2743 static int 2744 vcxgbe_detach(device_t dev) 2745 { 2746 struct vi_info *vi; 2747 struct adapter *sc; 2748 2749 vi = device_get_softc(dev); 2750 sc = vi->pi->adapter; 2751 2752 doom_vi(sc, vi); 2753 2754 cxgbe_vi_detach(vi); 2755 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2756 2757 end_synchronized_op(sc, 0); 2758 2759 return (0); 2760 } 2761 2762 static struct callout fatal_callout; 2763 2764 static void 2765 delayed_panic(void *arg) 2766 { 2767 struct adapter *sc = arg; 2768 2769 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 2770 } 2771 2772 void 2773 t4_fatal_err(struct adapter *sc, bool fw_error) 2774 { 2775 2776 t4_shutdown_adapter(sc); 2777 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 2778 device_get_nameunit(sc->dev)); 2779 if (fw_error) { 2780 ASSERT_SYNCHRONIZED_OP(sc); 2781 sc->flags |= ADAP_ERR; 2782 } else { 2783 ADAPTER_LOCK(sc); 2784 sc->flags |= ADAP_ERR; 2785 ADAPTER_UNLOCK(sc); 2786 } 2787 2788 if (t4_panic_on_fatal_err) { 2789 log(LOG_ALERT, "%s: panic on fatal error after 30s", 2790 device_get_nameunit(sc->dev)); 2791 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 2792 } 2793 } 2794 2795 void 2796 t4_add_adapter(struct adapter *sc) 2797 { 2798 sx_xlock(&t4_list_lock); 2799 SLIST_INSERT_HEAD(&t4_list, sc, link); 2800 sx_xunlock(&t4_list_lock); 2801 } 2802 2803 int 2804 t4_map_bars_0_and_4(struct adapter *sc) 2805 { 2806 sc->regs_rid = PCIR_BAR(0); 2807 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2808 &sc->regs_rid, RF_ACTIVE); 2809 if (sc->regs_res == NULL) { 2810 device_printf(sc->dev, "cannot map registers.\n"); 2811 return (ENXIO); 2812 } 2813 sc->bt = rman_get_bustag(sc->regs_res); 2814 sc->bh = rman_get_bushandle(sc->regs_res); 2815 sc->mmio_len = rman_get_size(sc->regs_res); 2816 setbit(&sc->doorbells, DOORBELL_KDB); 2817 2818 sc->msix_rid = PCIR_BAR(4); 2819 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2820 &sc->msix_rid, RF_ACTIVE); 2821 if (sc->msix_res == NULL) { 2822 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 2823 return (ENXIO); 2824 } 2825 2826 return (0); 2827 } 2828 2829 int 2830 t4_map_bar_2(struct adapter *sc) 2831 { 2832 2833 /* 2834 * T4: only iWARP driver uses the userspace doorbells. There is no need 2835 * to map it if RDMA is disabled. 2836 */ 2837 if (is_t4(sc) && sc->rdmacaps == 0) 2838 return (0); 2839 2840 sc->udbs_rid = PCIR_BAR(2); 2841 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2842 &sc->udbs_rid, RF_ACTIVE); 2843 if (sc->udbs_res == NULL) { 2844 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 2845 return (ENXIO); 2846 } 2847 sc->udbs_base = rman_get_virtual(sc->udbs_res); 2848 2849 if (chip_id(sc) >= CHELSIO_T5) { 2850 setbit(&sc->doorbells, DOORBELL_UDB); 2851 #if defined(__i386__) || defined(__amd64__) 2852 if (t5_write_combine) { 2853 int rc, mode; 2854 2855 /* 2856 * Enable write combining on BAR2. This is the 2857 * userspace doorbell BAR and is split into 128B 2858 * (UDBS_SEG_SIZE) doorbell regions, each associated 2859 * with an egress queue. The first 64B has the doorbell 2860 * and the second 64B can be used to submit a tx work 2861 * request with an implicit doorbell. 2862 */ 2863 2864 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 2865 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 2866 if (rc == 0) { 2867 clrbit(&sc->doorbells, DOORBELL_UDB); 2868 setbit(&sc->doorbells, DOORBELL_WCWR); 2869 setbit(&sc->doorbells, DOORBELL_UDBWC); 2870 } else { 2871 device_printf(sc->dev, 2872 "couldn't enable write combining: %d\n", 2873 rc); 2874 } 2875 2876 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 2877 t4_write_reg(sc, A_SGE_STAT_CFG, 2878 V_STATSOURCE_T5(7) | mode); 2879 } 2880 #endif 2881 } 2882 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 2883 2884 return (0); 2885 } 2886 2887 struct memwin_init { 2888 uint32_t base; 2889 uint32_t aperture; 2890 }; 2891 2892 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2893 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2894 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2895 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2896 }; 2897 2898 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2899 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2900 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2901 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2902 }; 2903 2904 static void 2905 setup_memwin(struct adapter *sc) 2906 { 2907 const struct memwin_init *mw_init; 2908 struct memwin *mw; 2909 int i; 2910 uint32_t bar0; 2911 2912 if (is_t4(sc)) { 2913 /* 2914 * Read low 32b of bar0 indirectly via the hardware backdoor 2915 * mechanism. Works from within PCI passthrough environments 2916 * too, where rman_get_start() can return a different value. We 2917 * need to program the T4 memory window decoders with the actual 2918 * addresses that will be coming across the PCIe link. 2919 */ 2920 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 2921 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 2922 2923 mw_init = &t4_memwin[0]; 2924 } else { 2925 /* T5+ use the relative offset inside the PCIe BAR */ 2926 bar0 = 0; 2927 2928 mw_init = &t5_memwin[0]; 2929 } 2930 2931 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 2932 rw_init(&mw->mw_lock, "memory window access"); 2933 mw->mw_base = mw_init->base; 2934 mw->mw_aperture = mw_init->aperture; 2935 mw->mw_curpos = 0; 2936 t4_write_reg(sc, 2937 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 2938 (mw->mw_base + bar0) | V_BIR(0) | 2939 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 2940 rw_wlock(&mw->mw_lock); 2941 position_memwin(sc, i, 0); 2942 rw_wunlock(&mw->mw_lock); 2943 } 2944 2945 /* flush */ 2946 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 2947 } 2948 2949 /* 2950 * Positions the memory window at the given address in the card's address space. 2951 * There are some alignment requirements and the actual position may be at an 2952 * address prior to the requested address. mw->mw_curpos always has the actual 2953 * position of the window. 2954 */ 2955 static void 2956 position_memwin(struct adapter *sc, int idx, uint32_t addr) 2957 { 2958 struct memwin *mw; 2959 uint32_t pf; 2960 uint32_t reg; 2961 2962 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2963 mw = &sc->memwin[idx]; 2964 rw_assert(&mw->mw_lock, RA_WLOCKED); 2965 2966 if (is_t4(sc)) { 2967 pf = 0; 2968 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 2969 } else { 2970 pf = V_PFNUM(sc->pf); 2971 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 2972 } 2973 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 2974 t4_write_reg(sc, reg, mw->mw_curpos | pf); 2975 t4_read_reg(sc, reg); /* flush */ 2976 } 2977 2978 int 2979 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2980 int len, int rw) 2981 { 2982 struct memwin *mw; 2983 uint32_t mw_end, v; 2984 2985 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2986 2987 /* Memory can only be accessed in naturally aligned 4 byte units */ 2988 if (addr & 3 || len & 3 || len <= 0) 2989 return (EINVAL); 2990 2991 mw = &sc->memwin[idx]; 2992 while (len > 0) { 2993 rw_rlock(&mw->mw_lock); 2994 mw_end = mw->mw_curpos + mw->mw_aperture; 2995 if (addr >= mw_end || addr < mw->mw_curpos) { 2996 /* Will need to reposition the window */ 2997 if (!rw_try_upgrade(&mw->mw_lock)) { 2998 rw_runlock(&mw->mw_lock); 2999 rw_wlock(&mw->mw_lock); 3000 } 3001 rw_assert(&mw->mw_lock, RA_WLOCKED); 3002 position_memwin(sc, idx, addr); 3003 rw_downgrade(&mw->mw_lock); 3004 mw_end = mw->mw_curpos + mw->mw_aperture; 3005 } 3006 rw_assert(&mw->mw_lock, RA_RLOCKED); 3007 while (addr < mw_end && len > 0) { 3008 if (rw == 0) { 3009 v = t4_read_reg(sc, mw->mw_base + addr - 3010 mw->mw_curpos); 3011 *val++ = le32toh(v); 3012 } else { 3013 v = *val++; 3014 t4_write_reg(sc, mw->mw_base + addr - 3015 mw->mw_curpos, htole32(v)); 3016 } 3017 addr += 4; 3018 len -= 4; 3019 } 3020 rw_runlock(&mw->mw_lock); 3021 } 3022 3023 return (0); 3024 } 3025 3026 static void 3027 t4_init_atid_table(struct adapter *sc) 3028 { 3029 struct tid_info *t; 3030 int i; 3031 3032 t = &sc->tids; 3033 if (t->natids == 0) 3034 return; 3035 3036 MPASS(t->atid_tab == NULL); 3037 3038 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3039 M_ZERO | M_WAITOK); 3040 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3041 t->afree = t->atid_tab; 3042 t->atids_in_use = 0; 3043 for (i = 1; i < t->natids; i++) 3044 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3045 t->atid_tab[t->natids - 1].next = NULL; 3046 } 3047 3048 static void 3049 t4_free_atid_table(struct adapter *sc) 3050 { 3051 struct tid_info *t; 3052 3053 t = &sc->tids; 3054 3055 KASSERT(t->atids_in_use == 0, 3056 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3057 3058 if (mtx_initialized(&t->atid_lock)) 3059 mtx_destroy(&t->atid_lock); 3060 free(t->atid_tab, M_CXGBE); 3061 t->atid_tab = NULL; 3062 } 3063 3064 int 3065 alloc_atid(struct adapter *sc, void *ctx) 3066 { 3067 struct tid_info *t = &sc->tids; 3068 int atid = -1; 3069 3070 mtx_lock(&t->atid_lock); 3071 if (t->afree) { 3072 union aopen_entry *p = t->afree; 3073 3074 atid = p - t->atid_tab; 3075 MPASS(atid <= M_TID_TID); 3076 t->afree = p->next; 3077 p->data = ctx; 3078 t->atids_in_use++; 3079 } 3080 mtx_unlock(&t->atid_lock); 3081 return (atid); 3082 } 3083 3084 void * 3085 lookup_atid(struct adapter *sc, int atid) 3086 { 3087 struct tid_info *t = &sc->tids; 3088 3089 return (t->atid_tab[atid].data); 3090 } 3091 3092 void 3093 free_atid(struct adapter *sc, int atid) 3094 { 3095 struct tid_info *t = &sc->tids; 3096 union aopen_entry *p = &t->atid_tab[atid]; 3097 3098 mtx_lock(&t->atid_lock); 3099 p->next = t->afree; 3100 t->afree = p; 3101 t->atids_in_use--; 3102 mtx_unlock(&t->atid_lock); 3103 } 3104 3105 static void 3106 queue_tid_release(struct adapter *sc, int tid) 3107 { 3108 3109 CXGBE_UNIMPLEMENTED("deferred tid release"); 3110 } 3111 3112 void 3113 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3114 { 3115 struct wrqe *wr; 3116 struct cpl_tid_release *req; 3117 3118 wr = alloc_wrqe(sizeof(*req), ctrlq); 3119 if (wr == NULL) { 3120 queue_tid_release(sc, tid); /* defer */ 3121 return; 3122 } 3123 req = wrtod(wr); 3124 3125 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3126 3127 t4_wrq_tx(sc, wr); 3128 } 3129 3130 static int 3131 t4_range_cmp(const void *a, const void *b) 3132 { 3133 return ((const struct t4_range *)a)->start - 3134 ((const struct t4_range *)b)->start; 3135 } 3136 3137 /* 3138 * Verify that the memory range specified by the addr/len pair is valid within 3139 * the card's address space. 3140 */ 3141 static int 3142 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3143 { 3144 struct t4_range mem_ranges[4], *r, *next; 3145 uint32_t em, addr_len; 3146 int i, n, remaining; 3147 3148 /* Memory can only be accessed in naturally aligned 4 byte units */ 3149 if (addr & 3 || len & 3 || len == 0) 3150 return (EINVAL); 3151 3152 /* Enabled memories */ 3153 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3154 3155 r = &mem_ranges[0]; 3156 n = 0; 3157 bzero(r, sizeof(mem_ranges)); 3158 if (em & F_EDRAM0_ENABLE) { 3159 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3160 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3161 if (r->size > 0) { 3162 r->start = G_EDRAM0_BASE(addr_len) << 20; 3163 if (addr >= r->start && 3164 addr + len <= r->start + r->size) 3165 return (0); 3166 r++; 3167 n++; 3168 } 3169 } 3170 if (em & F_EDRAM1_ENABLE) { 3171 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3172 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3173 if (r->size > 0) { 3174 r->start = G_EDRAM1_BASE(addr_len) << 20; 3175 if (addr >= r->start && 3176 addr + len <= r->start + r->size) 3177 return (0); 3178 r++; 3179 n++; 3180 } 3181 } 3182 if (em & F_EXT_MEM_ENABLE) { 3183 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3184 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3185 if (r->size > 0) { 3186 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3187 if (addr >= r->start && 3188 addr + len <= r->start + r->size) 3189 return (0); 3190 r++; 3191 n++; 3192 } 3193 } 3194 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3195 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3196 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3197 if (r->size > 0) { 3198 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3199 if (addr >= r->start && 3200 addr + len <= r->start + r->size) 3201 return (0); 3202 r++; 3203 n++; 3204 } 3205 } 3206 MPASS(n <= nitems(mem_ranges)); 3207 3208 if (n > 1) { 3209 /* Sort and merge the ranges. */ 3210 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3211 3212 /* Start from index 0 and examine the next n - 1 entries. */ 3213 r = &mem_ranges[0]; 3214 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3215 3216 MPASS(r->size > 0); /* r is a valid entry. */ 3217 next = r + 1; 3218 MPASS(next->size > 0); /* and so is the next one. */ 3219 3220 while (r->start + r->size >= next->start) { 3221 /* Merge the next one into the current entry. */ 3222 r->size = max(r->start + r->size, 3223 next->start + next->size) - r->start; 3224 n--; /* One fewer entry in total. */ 3225 if (--remaining == 0) 3226 goto done; /* short circuit */ 3227 next++; 3228 } 3229 if (next != r + 1) { 3230 /* 3231 * Some entries were merged into r and next 3232 * points to the first valid entry that couldn't 3233 * be merged. 3234 */ 3235 MPASS(next->size > 0); /* must be valid */ 3236 memcpy(r + 1, next, remaining * sizeof(*r)); 3237 #ifdef INVARIANTS 3238 /* 3239 * This so that the foo->size assertion in the 3240 * next iteration of the loop do the right 3241 * thing for entries that were pulled up and are 3242 * no longer valid. 3243 */ 3244 MPASS(n < nitems(mem_ranges)); 3245 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 3246 sizeof(struct t4_range)); 3247 #endif 3248 } 3249 } 3250 done: 3251 /* Done merging the ranges. */ 3252 MPASS(n > 0); 3253 r = &mem_ranges[0]; 3254 for (i = 0; i < n; i++, r++) { 3255 if (addr >= r->start && 3256 addr + len <= r->start + r->size) 3257 return (0); 3258 } 3259 } 3260 3261 return (EFAULT); 3262 } 3263 3264 static int 3265 fwmtype_to_hwmtype(int mtype) 3266 { 3267 3268 switch (mtype) { 3269 case FW_MEMTYPE_EDC0: 3270 return (MEM_EDC0); 3271 case FW_MEMTYPE_EDC1: 3272 return (MEM_EDC1); 3273 case FW_MEMTYPE_EXTMEM: 3274 return (MEM_MC0); 3275 case FW_MEMTYPE_EXTMEM1: 3276 return (MEM_MC1); 3277 default: 3278 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 3279 } 3280 } 3281 3282 /* 3283 * Verify that the memory range specified by the memtype/offset/len pair is 3284 * valid and lies entirely within the memtype specified. The global address of 3285 * the start of the range is returned in addr. 3286 */ 3287 static int 3288 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 3289 uint32_t *addr) 3290 { 3291 uint32_t em, addr_len, maddr; 3292 3293 /* Memory can only be accessed in naturally aligned 4 byte units */ 3294 if (off & 3 || len & 3 || len == 0) 3295 return (EINVAL); 3296 3297 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3298 switch (fwmtype_to_hwmtype(mtype)) { 3299 case MEM_EDC0: 3300 if (!(em & F_EDRAM0_ENABLE)) 3301 return (EINVAL); 3302 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3303 maddr = G_EDRAM0_BASE(addr_len) << 20; 3304 break; 3305 case MEM_EDC1: 3306 if (!(em & F_EDRAM1_ENABLE)) 3307 return (EINVAL); 3308 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3309 maddr = G_EDRAM1_BASE(addr_len) << 20; 3310 break; 3311 case MEM_MC: 3312 if (!(em & F_EXT_MEM_ENABLE)) 3313 return (EINVAL); 3314 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3315 maddr = G_EXT_MEM_BASE(addr_len) << 20; 3316 break; 3317 case MEM_MC1: 3318 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 3319 return (EINVAL); 3320 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3321 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 3322 break; 3323 default: 3324 return (EINVAL); 3325 } 3326 3327 *addr = maddr + off; /* global address */ 3328 return (validate_mem_range(sc, *addr, len)); 3329 } 3330 3331 static int 3332 fixup_devlog_params(struct adapter *sc) 3333 { 3334 struct devlog_params *dparams = &sc->params.devlog; 3335 int rc; 3336 3337 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 3338 dparams->size, &dparams->addr); 3339 3340 return (rc); 3341 } 3342 3343 static void 3344 update_nirq(struct intrs_and_queues *iaq, int nports) 3345 { 3346 3347 iaq->nirq = T4_EXTRA_INTR; 3348 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 3349 iaq->nirq += nports * iaq->nofldrxq; 3350 iaq->nirq += nports * (iaq->num_vis - 1) * 3351 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 3352 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 3353 } 3354 3355 /* 3356 * Adjust requirements to fit the number of interrupts available. 3357 */ 3358 static void 3359 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 3360 int navail) 3361 { 3362 int old_nirq; 3363 const int nports = sc->params.nports; 3364 3365 MPASS(nports > 0); 3366 MPASS(navail > 0); 3367 3368 bzero(iaq, sizeof(*iaq)); 3369 iaq->intr_type = itype; 3370 iaq->num_vis = t4_num_vis; 3371 iaq->ntxq = t4_ntxq; 3372 iaq->ntxq_vi = t4_ntxq_vi; 3373 iaq->nrxq = t4_nrxq; 3374 iaq->nrxq_vi = t4_nrxq_vi; 3375 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3376 if (is_offload(sc) || is_ethoffload(sc)) { 3377 iaq->nofldtxq = t4_nofldtxq; 3378 iaq->nofldtxq_vi = t4_nofldtxq_vi; 3379 } 3380 #endif 3381 #ifdef TCP_OFFLOAD 3382 if (is_offload(sc)) { 3383 iaq->nofldrxq = t4_nofldrxq; 3384 iaq->nofldrxq_vi = t4_nofldrxq_vi; 3385 } 3386 #endif 3387 #ifdef DEV_NETMAP 3388 if (t4_native_netmap & NN_MAIN_VI) { 3389 iaq->nnmtxq = t4_nnmtxq; 3390 iaq->nnmrxq = t4_nnmrxq; 3391 } 3392 if (t4_native_netmap & NN_EXTRA_VI) { 3393 iaq->nnmtxq_vi = t4_nnmtxq_vi; 3394 iaq->nnmrxq_vi = t4_nnmrxq_vi; 3395 } 3396 #endif 3397 3398 update_nirq(iaq, nports); 3399 if (iaq->nirq <= navail && 3400 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3401 /* 3402 * This is the normal case -- there are enough interrupts for 3403 * everything. 3404 */ 3405 goto done; 3406 } 3407 3408 /* 3409 * If extra VIs have been configured try reducing their count and see if 3410 * that works. 3411 */ 3412 while (iaq->num_vis > 1) { 3413 iaq->num_vis--; 3414 update_nirq(iaq, nports); 3415 if (iaq->nirq <= navail && 3416 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3417 device_printf(sc->dev, "virtual interfaces per port " 3418 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 3419 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 3420 "itype %d, navail %u, nirq %d.\n", 3421 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 3422 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 3423 itype, navail, iaq->nirq); 3424 goto done; 3425 } 3426 } 3427 3428 /* 3429 * Extra VIs will not be created. Log a message if they were requested. 3430 */ 3431 MPASS(iaq->num_vis == 1); 3432 iaq->ntxq_vi = iaq->nrxq_vi = 0; 3433 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 3434 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 3435 if (iaq->num_vis != t4_num_vis) { 3436 device_printf(sc->dev, "extra virtual interfaces disabled. " 3437 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 3438 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 3439 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 3440 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 3441 } 3442 3443 /* 3444 * Keep reducing the number of NIC rx queues to the next lower power of 3445 * 2 (for even RSS distribution) and halving the TOE rx queues and see 3446 * if that works. 3447 */ 3448 do { 3449 if (iaq->nrxq > 1) { 3450 do { 3451 iaq->nrxq--; 3452 } while (!powerof2(iaq->nrxq)); 3453 if (iaq->nnmrxq > iaq->nrxq) 3454 iaq->nnmrxq = iaq->nrxq; 3455 } 3456 if (iaq->nofldrxq > 1) 3457 iaq->nofldrxq >>= 1; 3458 3459 old_nirq = iaq->nirq; 3460 update_nirq(iaq, nports); 3461 if (iaq->nirq <= navail && 3462 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3463 device_printf(sc->dev, "running with reduced number of " 3464 "rx queues because of shortage of interrupts. " 3465 "nrxq=%u, nofldrxq=%u. " 3466 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 3467 iaq->nofldrxq, itype, navail, iaq->nirq); 3468 goto done; 3469 } 3470 } while (old_nirq != iaq->nirq); 3471 3472 /* One interrupt for everything. Ugh. */ 3473 device_printf(sc->dev, "running with minimal number of queues. " 3474 "itype %d, navail %u.\n", itype, navail); 3475 iaq->nirq = 1; 3476 iaq->nrxq = 1; 3477 iaq->ntxq = 1; 3478 if (iaq->nofldrxq > 0) { 3479 iaq->nofldrxq = 1; 3480 iaq->nofldtxq = 1; 3481 } 3482 iaq->nnmtxq = 0; 3483 iaq->nnmrxq = 0; 3484 done: 3485 MPASS(iaq->num_vis > 0); 3486 if (iaq->num_vis > 1) { 3487 MPASS(iaq->nrxq_vi > 0); 3488 MPASS(iaq->ntxq_vi > 0); 3489 } 3490 MPASS(iaq->nirq > 0); 3491 MPASS(iaq->nrxq > 0); 3492 MPASS(iaq->ntxq > 0); 3493 if (itype == INTR_MSI) { 3494 MPASS(powerof2(iaq->nirq)); 3495 } 3496 } 3497 3498 static int 3499 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 3500 { 3501 int rc, itype, navail, nalloc; 3502 3503 for (itype = INTR_MSIX; itype; itype >>= 1) { 3504 3505 if ((itype & t4_intr_types) == 0) 3506 continue; /* not allowed */ 3507 3508 if (itype == INTR_MSIX) 3509 navail = pci_msix_count(sc->dev); 3510 else if (itype == INTR_MSI) 3511 navail = pci_msi_count(sc->dev); 3512 else 3513 navail = 1; 3514 restart: 3515 if (navail == 0) 3516 continue; 3517 3518 calculate_iaq(sc, iaq, itype, navail); 3519 nalloc = iaq->nirq; 3520 rc = 0; 3521 if (itype == INTR_MSIX) 3522 rc = pci_alloc_msix(sc->dev, &nalloc); 3523 else if (itype == INTR_MSI) 3524 rc = pci_alloc_msi(sc->dev, &nalloc); 3525 3526 if (rc == 0 && nalloc > 0) { 3527 if (nalloc == iaq->nirq) 3528 return (0); 3529 3530 /* 3531 * Didn't get the number requested. Use whatever number 3532 * the kernel is willing to allocate. 3533 */ 3534 device_printf(sc->dev, "fewer vectors than requested, " 3535 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 3536 itype, iaq->nirq, nalloc); 3537 pci_release_msi(sc->dev); 3538 navail = nalloc; 3539 goto restart; 3540 } 3541 3542 device_printf(sc->dev, 3543 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 3544 itype, rc, iaq->nirq, nalloc); 3545 } 3546 3547 device_printf(sc->dev, 3548 "failed to find a usable interrupt type. " 3549 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 3550 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 3551 3552 return (ENXIO); 3553 } 3554 3555 #define FW_VERSION(chip) ( \ 3556 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 3557 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 3558 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 3559 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 3560 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 3561 3562 /* Just enough of fw_hdr to cover all version info. */ 3563 struct fw_h { 3564 __u8 ver; 3565 __u8 chip; 3566 __be16 len512; 3567 __be32 fw_ver; 3568 __be32 tp_microcode_ver; 3569 __u8 intfver_nic; 3570 __u8 intfver_vnic; 3571 __u8 intfver_ofld; 3572 __u8 intfver_ri; 3573 __u8 intfver_iscsipdu; 3574 __u8 intfver_iscsi; 3575 __u8 intfver_fcoepdu; 3576 __u8 intfver_fcoe; 3577 }; 3578 /* Spot check a couple of fields. */ 3579 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 3580 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 3581 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 3582 3583 struct fw_info { 3584 uint8_t chip; 3585 char *kld_name; 3586 char *fw_mod_name; 3587 struct fw_h fw_h; 3588 } fw_info[] = { 3589 { 3590 .chip = CHELSIO_T4, 3591 .kld_name = "t4fw_cfg", 3592 .fw_mod_name = "t4fw", 3593 .fw_h = { 3594 .chip = FW_HDR_CHIP_T4, 3595 .fw_ver = htobe32(FW_VERSION(T4)), 3596 .intfver_nic = FW_INTFVER(T4, NIC), 3597 .intfver_vnic = FW_INTFVER(T4, VNIC), 3598 .intfver_ofld = FW_INTFVER(T4, OFLD), 3599 .intfver_ri = FW_INTFVER(T4, RI), 3600 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 3601 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3602 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 3603 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3604 }, 3605 }, { 3606 .chip = CHELSIO_T5, 3607 .kld_name = "t5fw_cfg", 3608 .fw_mod_name = "t5fw", 3609 .fw_h = { 3610 .chip = FW_HDR_CHIP_T5, 3611 .fw_ver = htobe32(FW_VERSION(T5)), 3612 .intfver_nic = FW_INTFVER(T5, NIC), 3613 .intfver_vnic = FW_INTFVER(T5, VNIC), 3614 .intfver_ofld = FW_INTFVER(T5, OFLD), 3615 .intfver_ri = FW_INTFVER(T5, RI), 3616 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 3617 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3618 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 3619 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3620 }, 3621 }, { 3622 .chip = CHELSIO_T6, 3623 .kld_name = "t6fw_cfg", 3624 .fw_mod_name = "t6fw", 3625 .fw_h = { 3626 .chip = FW_HDR_CHIP_T6, 3627 .fw_ver = htobe32(FW_VERSION(T6)), 3628 .intfver_nic = FW_INTFVER(T6, NIC), 3629 .intfver_vnic = FW_INTFVER(T6, VNIC), 3630 .intfver_ofld = FW_INTFVER(T6, OFLD), 3631 .intfver_ri = FW_INTFVER(T6, RI), 3632 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3633 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3634 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3635 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3636 }, 3637 } 3638 }; 3639 3640 static struct fw_info * 3641 find_fw_info(int chip) 3642 { 3643 int i; 3644 3645 for (i = 0; i < nitems(fw_info); i++) { 3646 if (fw_info[i].chip == chip) 3647 return (&fw_info[i]); 3648 } 3649 return (NULL); 3650 } 3651 3652 /* 3653 * Is the given firmware API compatible with the one the driver was compiled 3654 * with? 3655 */ 3656 static int 3657 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 3658 { 3659 3660 /* short circuit if it's the exact same firmware version */ 3661 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3662 return (1); 3663 3664 /* 3665 * XXX: Is this too conservative? Perhaps I should limit this to the 3666 * features that are supported in the driver. 3667 */ 3668 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3669 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3670 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 3671 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 3672 return (1); 3673 #undef SAME_INTF 3674 3675 return (0); 3676 } 3677 3678 static int 3679 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 3680 const struct firmware **fw) 3681 { 3682 struct fw_info *fw_info; 3683 3684 *dcfg = NULL; 3685 if (fw != NULL) 3686 *fw = NULL; 3687 3688 fw_info = find_fw_info(chip_id(sc)); 3689 if (fw_info == NULL) { 3690 device_printf(sc->dev, 3691 "unable to look up firmware information for chip %d.\n", 3692 chip_id(sc)); 3693 return (EINVAL); 3694 } 3695 3696 *dcfg = firmware_get(fw_info->kld_name); 3697 if (*dcfg != NULL) { 3698 if (fw != NULL) 3699 *fw = firmware_get(fw_info->fw_mod_name); 3700 return (0); 3701 } 3702 3703 return (ENOENT); 3704 } 3705 3706 static void 3707 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 3708 const struct firmware *fw) 3709 { 3710 3711 if (fw != NULL) 3712 firmware_put(fw, FIRMWARE_UNLOAD); 3713 if (dcfg != NULL) 3714 firmware_put(dcfg, FIRMWARE_UNLOAD); 3715 } 3716 3717 /* 3718 * Return values: 3719 * 0 means no firmware install attempted. 3720 * ERESTART means a firmware install was attempted and was successful. 3721 * +ve errno means a firmware install was attempted but failed. 3722 */ 3723 static int 3724 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 3725 const struct fw_h *drv_fw, const char *reason, int *already) 3726 { 3727 const struct firmware *cfg, *fw; 3728 const uint32_t c = be32toh(card_fw->fw_ver); 3729 uint32_t d, k; 3730 int rc, fw_install; 3731 struct fw_h bundled_fw; 3732 bool load_attempted; 3733 3734 cfg = fw = NULL; 3735 load_attempted = false; 3736 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 3737 3738 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 3739 if (t4_fw_install < 0) { 3740 rc = load_fw_module(sc, &cfg, &fw); 3741 if (rc != 0 || fw == NULL) { 3742 device_printf(sc->dev, 3743 "failed to load firmware module: %d. cfg %p, fw %p;" 3744 " will use compiled-in firmware version for" 3745 "hw.cxgbe.fw_install checks.\n", 3746 rc, cfg, fw); 3747 } else { 3748 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 3749 } 3750 load_attempted = true; 3751 } 3752 d = be32toh(bundled_fw.fw_ver); 3753 3754 if (reason != NULL) 3755 goto install; 3756 3757 if ((sc->flags & FW_OK) == 0) { 3758 3759 if (c == 0xffffffff) { 3760 reason = "missing"; 3761 goto install; 3762 } 3763 3764 rc = 0; 3765 goto done; 3766 } 3767 3768 if (!fw_compatible(card_fw, &bundled_fw)) { 3769 reason = "incompatible or unusable"; 3770 goto install; 3771 } 3772 3773 if (d > c) { 3774 reason = "older than the version bundled with this driver"; 3775 goto install; 3776 } 3777 3778 if (fw_install == 2 && d != c) { 3779 reason = "different than the version bundled with this driver"; 3780 goto install; 3781 } 3782 3783 /* No reason to do anything to the firmware already on the card. */ 3784 rc = 0; 3785 goto done; 3786 3787 install: 3788 rc = 0; 3789 if ((*already)++) 3790 goto done; 3791 3792 if (fw_install == 0) { 3793 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3794 "but the driver is prohibited from installing a firmware " 3795 "on the card.\n", 3796 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3797 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3798 3799 goto done; 3800 } 3801 3802 /* 3803 * We'll attempt to install a firmware. Load the module first (if it 3804 * hasn't been loaded already). 3805 */ 3806 if (!load_attempted) { 3807 rc = load_fw_module(sc, &cfg, &fw); 3808 if (rc != 0 || fw == NULL) { 3809 device_printf(sc->dev, 3810 "failed to load firmware module: %d. cfg %p, fw %p\n", 3811 rc, cfg, fw); 3812 /* carry on */ 3813 } 3814 } 3815 if (fw == NULL) { 3816 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3817 "but the driver cannot take corrective action because it " 3818 "is unable to load the firmware module.\n", 3819 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3820 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3821 rc = sc->flags & FW_OK ? 0 : ENOENT; 3822 goto done; 3823 } 3824 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 3825 if (k != d) { 3826 MPASS(t4_fw_install > 0); 3827 device_printf(sc->dev, 3828 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 3829 "expecting (%u.%u.%u.%u) and will not be used.\n", 3830 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3831 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 3832 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3833 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3834 rc = sc->flags & FW_OK ? 0 : EINVAL; 3835 goto done; 3836 } 3837 3838 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3839 "installing firmware %u.%u.%u.%u on card.\n", 3840 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3841 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 3842 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3843 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3844 3845 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 3846 if (rc != 0) { 3847 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 3848 } else { 3849 /* Installed successfully, update the cached header too. */ 3850 rc = ERESTART; 3851 memcpy(card_fw, fw->data, sizeof(*card_fw)); 3852 } 3853 done: 3854 unload_fw_module(sc, cfg, fw); 3855 3856 return (rc); 3857 } 3858 3859 /* 3860 * Establish contact with the firmware and attempt to become the master driver. 3861 * 3862 * A firmware will be installed to the card if needed (if the driver is allowed 3863 * to do so). 3864 */ 3865 static int 3866 contact_firmware(struct adapter *sc) 3867 { 3868 int rc, already = 0; 3869 enum dev_state state; 3870 struct fw_info *fw_info; 3871 struct fw_hdr *card_fw; /* fw on the card */ 3872 const struct fw_h *drv_fw; 3873 3874 fw_info = find_fw_info(chip_id(sc)); 3875 if (fw_info == NULL) { 3876 device_printf(sc->dev, 3877 "unable to look up firmware information for chip %d.\n", 3878 chip_id(sc)); 3879 return (EINVAL); 3880 } 3881 drv_fw = &fw_info->fw_h; 3882 3883 /* Read the header of the firmware on the card */ 3884 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 3885 restart: 3886 rc = -t4_get_fw_hdr(sc, card_fw); 3887 if (rc != 0) { 3888 device_printf(sc->dev, 3889 "unable to read firmware header from card's flash: %d\n", 3890 rc); 3891 goto done; 3892 } 3893 3894 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 3895 &already); 3896 if (rc == ERESTART) 3897 goto restart; 3898 if (rc != 0) 3899 goto done; 3900 3901 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 3902 if (rc < 0 || state == DEV_STATE_ERR) { 3903 rc = -rc; 3904 device_printf(sc->dev, 3905 "failed to connect to the firmware: %d, %d. " 3906 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3907 #if 0 3908 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 3909 "not responding properly to HELLO", &already) == ERESTART) 3910 goto restart; 3911 #endif 3912 goto done; 3913 } 3914 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 3915 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 3916 3917 if (rc == sc->pf) { 3918 sc->flags |= MASTER_PF; 3919 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 3920 NULL, &already); 3921 if (rc == ERESTART) 3922 rc = 0; 3923 else if (rc != 0) 3924 goto done; 3925 } else if (state == DEV_STATE_UNINIT) { 3926 /* 3927 * We didn't get to be the master so we definitely won't be 3928 * configuring the chip. It's a bug if someone else hasn't 3929 * configured it already. 3930 */ 3931 device_printf(sc->dev, "couldn't be master(%d), " 3932 "device not already initialized either(%d). " 3933 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3934 rc = EPROTO; 3935 goto done; 3936 } else { 3937 /* 3938 * Some other PF is the master and has configured the chip. 3939 * This is allowed but untested. 3940 */ 3941 device_printf(sc->dev, "PF%d is master, device state %d. " 3942 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 3943 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 3944 sc->cfcsum = 0; 3945 rc = 0; 3946 } 3947 done: 3948 if (rc != 0 && sc->flags & FW_OK) { 3949 t4_fw_bye(sc, sc->mbox); 3950 sc->flags &= ~FW_OK; 3951 } 3952 free(card_fw, M_CXGBE); 3953 return (rc); 3954 } 3955 3956 static int 3957 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 3958 uint32_t mtype, uint32_t moff) 3959 { 3960 struct fw_info *fw_info; 3961 const struct firmware *dcfg, *rcfg = NULL; 3962 const uint32_t *cfdata; 3963 uint32_t cflen, addr; 3964 int rc; 3965 3966 load_fw_module(sc, &dcfg, NULL); 3967 3968 /* Card specific interpretation of "default". */ 3969 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3970 if (pci_get_device(sc->dev) == 0x440a) 3971 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 3972 if (is_fpga(sc)) 3973 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 3974 } 3975 3976 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3977 if (dcfg == NULL) { 3978 device_printf(sc->dev, 3979 "KLD with default config is not available.\n"); 3980 rc = ENOENT; 3981 goto done; 3982 } 3983 cfdata = dcfg->data; 3984 cflen = dcfg->datasize & ~3; 3985 } else { 3986 char s[32]; 3987 3988 fw_info = find_fw_info(chip_id(sc)); 3989 if (fw_info == NULL) { 3990 device_printf(sc->dev, 3991 "unable to look up firmware information for chip %d.\n", 3992 chip_id(sc)); 3993 rc = EINVAL; 3994 goto done; 3995 } 3996 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 3997 3998 rcfg = firmware_get(s); 3999 if (rcfg == NULL) { 4000 device_printf(sc->dev, 4001 "unable to load module \"%s\" for configuration " 4002 "profile \"%s\".\n", s, cfg_file); 4003 rc = ENOENT; 4004 goto done; 4005 } 4006 cfdata = rcfg->data; 4007 cflen = rcfg->datasize & ~3; 4008 } 4009 4010 if (cflen > FLASH_CFG_MAX_SIZE) { 4011 device_printf(sc->dev, 4012 "config file too long (%d, max allowed is %d).\n", 4013 cflen, FLASH_CFG_MAX_SIZE); 4014 rc = EINVAL; 4015 goto done; 4016 } 4017 4018 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4019 if (rc != 0) { 4020 device_printf(sc->dev, 4021 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4022 __func__, mtype, moff, cflen, rc); 4023 rc = EINVAL; 4024 goto done; 4025 } 4026 write_via_memwin(sc, 2, addr, cfdata, cflen); 4027 done: 4028 if (rcfg != NULL) 4029 firmware_put(rcfg, FIRMWARE_UNLOAD); 4030 unload_fw_module(sc, dcfg, NULL); 4031 return (rc); 4032 } 4033 4034 struct caps_allowed { 4035 uint16_t nbmcaps; 4036 uint16_t linkcaps; 4037 uint16_t switchcaps; 4038 uint16_t niccaps; 4039 uint16_t toecaps; 4040 uint16_t rdmacaps; 4041 uint16_t cryptocaps; 4042 uint16_t iscsicaps; 4043 uint16_t fcoecaps; 4044 }; 4045 4046 #define FW_PARAM_DEV(param) \ 4047 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4048 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4049 #define FW_PARAM_PFVF(param) \ 4050 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4051 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4052 4053 /* 4054 * Provide a configuration profile to the firmware and have it initialize the 4055 * chip accordingly. This may involve uploading a configuration file to the 4056 * card. 4057 */ 4058 static int 4059 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4060 const struct caps_allowed *caps_allowed) 4061 { 4062 int rc; 4063 struct fw_caps_config_cmd caps; 4064 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4065 4066 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4067 if (rc != 0) { 4068 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4069 return (rc); 4070 } 4071 4072 bzero(&caps, sizeof(caps)); 4073 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4074 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4075 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4076 mtype = 0; 4077 moff = 0; 4078 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4079 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4080 mtype = FW_MEMTYPE_FLASH; 4081 moff = t4_flash_cfg_addr(sc); 4082 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4083 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4084 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4085 FW_LEN16(caps)); 4086 } else { 4087 /* 4088 * Ask the firmware where it wants us to upload the config file. 4089 */ 4090 param = FW_PARAM_DEV(CF); 4091 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4092 if (rc != 0) { 4093 /* No support for config file? Shouldn't happen. */ 4094 device_printf(sc->dev, 4095 "failed to query config file location: %d.\n", rc); 4096 goto done; 4097 } 4098 mtype = G_FW_PARAMS_PARAM_Y(val); 4099 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4100 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4101 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4102 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4103 FW_LEN16(caps)); 4104 4105 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4106 if (rc != 0) { 4107 device_printf(sc->dev, 4108 "failed to upload config file to card: %d.\n", rc); 4109 goto done; 4110 } 4111 } 4112 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4113 if (rc != 0) { 4114 device_printf(sc->dev, "failed to pre-process config file: %d " 4115 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4116 goto done; 4117 } 4118 4119 finicsum = be32toh(caps.finicsum); 4120 cfcsum = be32toh(caps.cfcsum); /* actual */ 4121 if (finicsum != cfcsum) { 4122 device_printf(sc->dev, 4123 "WARNING: config file checksum mismatch: %08x %08x\n", 4124 finicsum, cfcsum); 4125 } 4126 sc->cfcsum = cfcsum; 4127 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4128 4129 /* 4130 * Let the firmware know what features will (not) be used so it can tune 4131 * things accordingly. 4132 */ 4133 #define LIMIT_CAPS(x) do { \ 4134 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4135 } while (0) 4136 LIMIT_CAPS(nbm); 4137 LIMIT_CAPS(link); 4138 LIMIT_CAPS(switch); 4139 LIMIT_CAPS(nic); 4140 LIMIT_CAPS(toe); 4141 LIMIT_CAPS(rdma); 4142 LIMIT_CAPS(crypto); 4143 LIMIT_CAPS(iscsi); 4144 LIMIT_CAPS(fcoe); 4145 #undef LIMIT_CAPS 4146 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4147 /* 4148 * TOE and hashfilters are mutually exclusive. It is a config 4149 * file or firmware bug if both are reported as available. Try 4150 * to cope with the situation in non-debug builds by disabling 4151 * TOE. 4152 */ 4153 MPASS(caps.toecaps == 0); 4154 4155 caps.toecaps = 0; 4156 caps.rdmacaps = 0; 4157 caps.iscsicaps = 0; 4158 } 4159 4160 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4161 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4162 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4163 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4164 if (rc != 0) { 4165 device_printf(sc->dev, 4166 "failed to process config file: %d.\n", rc); 4167 goto done; 4168 } 4169 4170 t4_tweak_chip_settings(sc); 4171 set_params__pre_init(sc); 4172 4173 /* get basic stuff going */ 4174 rc = -t4_fw_initialize(sc, sc->mbox); 4175 if (rc != 0) { 4176 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4177 goto done; 4178 } 4179 done: 4180 return (rc); 4181 } 4182 4183 /* 4184 * Partition chip resources for use between various PFs, VFs, etc. 4185 */ 4186 static int 4187 partition_resources(struct adapter *sc) 4188 { 4189 char cfg_file[sizeof(t4_cfg_file)]; 4190 struct caps_allowed caps_allowed; 4191 int rc; 4192 bool fallback; 4193 4194 /* Only the master driver gets to configure the chip resources. */ 4195 MPASS(sc->flags & MASTER_PF); 4196 4197 #define COPY_CAPS(x) do { \ 4198 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4199 } while (0) 4200 bzero(&caps_allowed, sizeof(caps_allowed)); 4201 COPY_CAPS(nbm); 4202 COPY_CAPS(link); 4203 COPY_CAPS(switch); 4204 COPY_CAPS(nic); 4205 COPY_CAPS(toe); 4206 COPY_CAPS(rdma); 4207 COPY_CAPS(crypto); 4208 COPY_CAPS(iscsi); 4209 COPY_CAPS(fcoe); 4210 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4211 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4212 retry: 4213 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4214 if (rc != 0 && fallback) { 4215 device_printf(sc->dev, 4216 "failed (%d) to configure card with \"%s\" profile, " 4217 "will fall back to a basic configuration and retry.\n", 4218 rc, cfg_file); 4219 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4220 bzero(&caps_allowed, sizeof(caps_allowed)); 4221 COPY_CAPS(switch); 4222 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4223 fallback = false; 4224 goto retry; 4225 } 4226 #undef COPY_CAPS 4227 return (rc); 4228 } 4229 4230 /* 4231 * Retrieve parameters that are needed (or nice to have) very early. 4232 */ 4233 static int 4234 get_params__pre_init(struct adapter *sc) 4235 { 4236 int rc; 4237 uint32_t param[2], val[2]; 4238 4239 t4_get_version_info(sc); 4240 4241 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4242 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 4243 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 4244 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 4245 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 4246 4247 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 4248 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 4249 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 4250 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 4251 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 4252 4253 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 4254 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 4255 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 4256 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 4257 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 4258 4259 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 4260 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 4261 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 4262 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 4263 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 4264 4265 param[0] = FW_PARAM_DEV(PORTVEC); 4266 param[1] = FW_PARAM_DEV(CCLK); 4267 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4268 if (rc != 0) { 4269 device_printf(sc->dev, 4270 "failed to query parameters (pre_init): %d.\n", rc); 4271 return (rc); 4272 } 4273 4274 sc->params.portvec = val[0]; 4275 sc->params.nports = bitcount32(val[0]); 4276 sc->params.vpd.cclk = val[1]; 4277 4278 /* Read device log parameters. */ 4279 rc = -t4_init_devlog_params(sc, 1); 4280 if (rc == 0) 4281 fixup_devlog_params(sc); 4282 else { 4283 device_printf(sc->dev, 4284 "failed to get devlog parameters: %d.\n", rc); 4285 rc = 0; /* devlog isn't critical for device operation */ 4286 } 4287 4288 return (rc); 4289 } 4290 4291 /* 4292 * Any params that need to be set before FW_INITIALIZE. 4293 */ 4294 static int 4295 set_params__pre_init(struct adapter *sc) 4296 { 4297 int rc = 0; 4298 uint32_t param, val; 4299 4300 if (chip_id(sc) >= CHELSIO_T6) { 4301 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 4302 val = 1; 4303 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4304 /* firmwares < 1.20.1.0 do not have this param. */ 4305 if (rc == FW_EINVAL && 4306 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 4307 rc = 0; 4308 } 4309 if (rc != 0) { 4310 device_printf(sc->dev, 4311 "failed to enable high priority filters :%d.\n", 4312 rc); 4313 } 4314 } 4315 4316 /* Enable opaque VIIDs with firmwares that support it. */ 4317 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4318 val = 1; 4319 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4320 if (rc == 0 && val == 1) 4321 sc->params.viid_smt_extn_support = true; 4322 else 4323 sc->params.viid_smt_extn_support = false; 4324 4325 return (rc); 4326 } 4327 4328 /* 4329 * Retrieve various parameters that are of interest to the driver. The device 4330 * has been initialized by the firmware at this point. 4331 */ 4332 static int 4333 get_params__post_init(struct adapter *sc) 4334 { 4335 int rc; 4336 uint32_t param[7], val[7]; 4337 struct fw_caps_config_cmd caps; 4338 4339 param[0] = FW_PARAM_PFVF(IQFLINT_START); 4340 param[1] = FW_PARAM_PFVF(EQ_START); 4341 param[2] = FW_PARAM_PFVF(FILTER_START); 4342 param[3] = FW_PARAM_PFVF(FILTER_END); 4343 param[4] = FW_PARAM_PFVF(L2T_START); 4344 param[5] = FW_PARAM_PFVF(L2T_END); 4345 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4346 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 4347 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 4348 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 4349 if (rc != 0) { 4350 device_printf(sc->dev, 4351 "failed to query parameters (post_init): %d.\n", rc); 4352 return (rc); 4353 } 4354 4355 sc->sge.iq_start = val[0]; 4356 sc->sge.eq_start = val[1]; 4357 if ((int)val[3] > (int)val[2]) { 4358 sc->tids.ftid_base = val[2]; 4359 sc->tids.ftid_end = val[3]; 4360 sc->tids.nftids = val[3] - val[2] + 1; 4361 } 4362 sc->vres.l2t.start = val[4]; 4363 sc->vres.l2t.size = val[5] - val[4] + 1; 4364 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 4365 ("%s: L2 table size (%u) larger than expected (%u)", 4366 __func__, sc->vres.l2t.size, L2T_SIZE)); 4367 sc->params.core_vdd = val[6]; 4368 4369 if (chip_id(sc) >= CHELSIO_T6) { 4370 4371 sc->tids.tid_base = t4_read_reg(sc, 4372 A_LE_DB_ACTIVE_TABLE_START_INDEX); 4373 4374 param[0] = FW_PARAM_PFVF(HPFILTER_START); 4375 param[1] = FW_PARAM_PFVF(HPFILTER_END); 4376 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4377 if (rc != 0) { 4378 device_printf(sc->dev, 4379 "failed to query hpfilter parameters: %d.\n", rc); 4380 return (rc); 4381 } 4382 if ((int)val[1] > (int)val[0]) { 4383 sc->tids.hpftid_base = val[0]; 4384 sc->tids.hpftid_end = val[1]; 4385 sc->tids.nhpftids = val[1] - val[0] + 1; 4386 4387 /* 4388 * These should go off if the layout changes and the 4389 * driver needs to catch up. 4390 */ 4391 MPASS(sc->tids.hpftid_base == 0); 4392 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 4393 } 4394 } 4395 4396 /* 4397 * MPSBGMAP is queried separately because only recent firmwares support 4398 * it as a parameter and we don't want the compound query above to fail 4399 * on older firmwares. 4400 */ 4401 param[0] = FW_PARAM_DEV(MPSBGMAP); 4402 val[0] = 0; 4403 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4404 if (rc == 0) 4405 sc->params.mps_bg_map = val[0]; 4406 else 4407 sc->params.mps_bg_map = 0; 4408 4409 /* 4410 * Determine whether the firmware supports the filter2 work request. 4411 * This is queried separately for the same reason as MPSBGMAP above. 4412 */ 4413 param[0] = FW_PARAM_DEV(FILTER2_WR); 4414 val[0] = 0; 4415 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4416 if (rc == 0) 4417 sc->params.filter2_wr_support = val[0] != 0; 4418 else 4419 sc->params.filter2_wr_support = 0; 4420 4421 /* 4422 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 4423 * This is queried separately for the same reason as other params above. 4424 */ 4425 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4426 val[0] = 0; 4427 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4428 if (rc == 0) 4429 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 4430 else 4431 sc->params.ulptx_memwrite_dsgl = false; 4432 4433 /* FW_RI_FR_NSMR_TPTE_WR support */ 4434 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4435 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4436 if (rc == 0) 4437 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 4438 else 4439 sc->params.fr_nsmr_tpte_wr_support = false; 4440 4441 /* get capabilites */ 4442 bzero(&caps, sizeof(caps)); 4443 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4444 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4445 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4446 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4447 if (rc != 0) { 4448 device_printf(sc->dev, 4449 "failed to get card capabilities: %d.\n", rc); 4450 return (rc); 4451 } 4452 4453 #define READ_CAPS(x) do { \ 4454 sc->x = htobe16(caps.x); \ 4455 } while (0) 4456 READ_CAPS(nbmcaps); 4457 READ_CAPS(linkcaps); 4458 READ_CAPS(switchcaps); 4459 READ_CAPS(niccaps); 4460 READ_CAPS(toecaps); 4461 READ_CAPS(rdmacaps); 4462 READ_CAPS(cryptocaps); 4463 READ_CAPS(iscsicaps); 4464 READ_CAPS(fcoecaps); 4465 4466 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 4467 MPASS(chip_id(sc) > CHELSIO_T4); 4468 MPASS(sc->toecaps == 0); 4469 sc->toecaps = 0; 4470 4471 param[0] = FW_PARAM_DEV(NTID); 4472 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4473 if (rc != 0) { 4474 device_printf(sc->dev, 4475 "failed to query HASHFILTER parameters: %d.\n", rc); 4476 return (rc); 4477 } 4478 sc->tids.ntids = val[0]; 4479 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 4480 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4481 sc->tids.ntids -= sc->tids.nhpftids; 4482 } 4483 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4484 sc->params.hash_filter = 1; 4485 } 4486 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 4487 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 4488 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 4489 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4490 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 4491 if (rc != 0) { 4492 device_printf(sc->dev, 4493 "failed to query NIC parameters: %d.\n", rc); 4494 return (rc); 4495 } 4496 if ((int)val[1] > (int)val[0]) { 4497 sc->tids.etid_base = val[0]; 4498 sc->tids.etid_end = val[1]; 4499 sc->tids.netids = val[1] - val[0] + 1; 4500 sc->params.eo_wr_cred = val[2]; 4501 sc->params.ethoffload = 1; 4502 } 4503 } 4504 if (sc->toecaps) { 4505 /* query offload-related parameters */ 4506 param[0] = FW_PARAM_DEV(NTID); 4507 param[1] = FW_PARAM_PFVF(SERVER_START); 4508 param[2] = FW_PARAM_PFVF(SERVER_END); 4509 param[3] = FW_PARAM_PFVF(TDDP_START); 4510 param[4] = FW_PARAM_PFVF(TDDP_END); 4511 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4512 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4513 if (rc != 0) { 4514 device_printf(sc->dev, 4515 "failed to query TOE parameters: %d.\n", rc); 4516 return (rc); 4517 } 4518 sc->tids.ntids = val[0]; 4519 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 4520 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4521 sc->tids.ntids -= sc->tids.nhpftids; 4522 } 4523 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4524 if ((int)val[2] > (int)val[1]) { 4525 sc->tids.stid_base = val[1]; 4526 sc->tids.nstids = val[2] - val[1] + 1; 4527 } 4528 sc->vres.ddp.start = val[3]; 4529 sc->vres.ddp.size = val[4] - val[3] + 1; 4530 sc->params.ofldq_wr_cred = val[5]; 4531 sc->params.offload = 1; 4532 } else { 4533 /* 4534 * The firmware attempts memfree TOE configuration for -SO cards 4535 * and will report toecaps=0 if it runs out of resources (this 4536 * depends on the config file). It may not report 0 for other 4537 * capabilities dependent on the TOE in this case. Set them to 4538 * 0 here so that the driver doesn't bother tracking resources 4539 * that will never be used. 4540 */ 4541 sc->iscsicaps = 0; 4542 sc->rdmacaps = 0; 4543 } 4544 if (sc->rdmacaps) { 4545 param[0] = FW_PARAM_PFVF(STAG_START); 4546 param[1] = FW_PARAM_PFVF(STAG_END); 4547 param[2] = FW_PARAM_PFVF(RQ_START); 4548 param[3] = FW_PARAM_PFVF(RQ_END); 4549 param[4] = FW_PARAM_PFVF(PBL_START); 4550 param[5] = FW_PARAM_PFVF(PBL_END); 4551 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4552 if (rc != 0) { 4553 device_printf(sc->dev, 4554 "failed to query RDMA parameters(1): %d.\n", rc); 4555 return (rc); 4556 } 4557 sc->vres.stag.start = val[0]; 4558 sc->vres.stag.size = val[1] - val[0] + 1; 4559 sc->vres.rq.start = val[2]; 4560 sc->vres.rq.size = val[3] - val[2] + 1; 4561 sc->vres.pbl.start = val[4]; 4562 sc->vres.pbl.size = val[5] - val[4] + 1; 4563 4564 param[0] = FW_PARAM_PFVF(SQRQ_START); 4565 param[1] = FW_PARAM_PFVF(SQRQ_END); 4566 param[2] = FW_PARAM_PFVF(CQ_START); 4567 param[3] = FW_PARAM_PFVF(CQ_END); 4568 param[4] = FW_PARAM_PFVF(OCQ_START); 4569 param[5] = FW_PARAM_PFVF(OCQ_END); 4570 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4571 if (rc != 0) { 4572 device_printf(sc->dev, 4573 "failed to query RDMA parameters(2): %d.\n", rc); 4574 return (rc); 4575 } 4576 sc->vres.qp.start = val[0]; 4577 sc->vres.qp.size = val[1] - val[0] + 1; 4578 sc->vres.cq.start = val[2]; 4579 sc->vres.cq.size = val[3] - val[2] + 1; 4580 sc->vres.ocq.start = val[4]; 4581 sc->vres.ocq.size = val[5] - val[4] + 1; 4582 4583 param[0] = FW_PARAM_PFVF(SRQ_START); 4584 param[1] = FW_PARAM_PFVF(SRQ_END); 4585 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 4586 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4587 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 4588 if (rc != 0) { 4589 device_printf(sc->dev, 4590 "failed to query RDMA parameters(3): %d.\n", rc); 4591 return (rc); 4592 } 4593 sc->vres.srq.start = val[0]; 4594 sc->vres.srq.size = val[1] - val[0] + 1; 4595 sc->params.max_ordird_qp = val[2]; 4596 sc->params.max_ird_adapter = val[3]; 4597 } 4598 if (sc->iscsicaps) { 4599 param[0] = FW_PARAM_PFVF(ISCSI_START); 4600 param[1] = FW_PARAM_PFVF(ISCSI_END); 4601 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4602 if (rc != 0) { 4603 device_printf(sc->dev, 4604 "failed to query iSCSI parameters: %d.\n", rc); 4605 return (rc); 4606 } 4607 sc->vres.iscsi.start = val[0]; 4608 sc->vres.iscsi.size = val[1] - val[0] + 1; 4609 } 4610 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 4611 param[0] = FW_PARAM_PFVF(TLS_START); 4612 param[1] = FW_PARAM_PFVF(TLS_END); 4613 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4614 if (rc != 0) { 4615 device_printf(sc->dev, 4616 "failed to query TLS parameters: %d.\n", rc); 4617 return (rc); 4618 } 4619 sc->vres.key.start = val[0]; 4620 sc->vres.key.size = val[1] - val[0] + 1; 4621 } 4622 4623 t4_init_sge_params(sc); 4624 4625 /* 4626 * We've got the params we wanted to query via the firmware. Now grab 4627 * some others directly from the chip. 4628 */ 4629 rc = t4_read_chip_settings(sc); 4630 4631 return (rc); 4632 } 4633 4634 #ifdef KERN_TLS 4635 static void 4636 ktls_tick(void *arg) 4637 { 4638 struct adapter *sc; 4639 uint32_t tstamp; 4640 4641 sc = arg; 4642 4643 tstamp = tcp_ts_getticks(); 4644 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 4645 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 4646 4647 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 4648 } 4649 4650 static void 4651 t4_enable_kern_tls(struct adapter *sc) 4652 { 4653 uint32_t m, v; 4654 4655 m = F_ENABLECBYP; 4656 v = F_ENABLECBYP; 4657 t4_set_reg_field(sc, A_TP_PARA_REG6, m, v); 4658 4659 m = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4660 v = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4661 t4_set_reg_field(sc, A_ULP_TX_CONFIG, m, v); 4662 4663 m = F_NICMODE; 4664 v = F_NICMODE; 4665 t4_set_reg_field(sc, A_TP_IN_CONFIG, m, v); 4666 4667 m = F_LOOKUPEVERYPKT; 4668 v = 0; 4669 t4_set_reg_field(sc, A_TP_INGRESS_CONFIG, m, v); 4670 4671 m = F_TXDEFERENABLE | F_DISABLEWINDOWPSH | F_DISABLESEPPSHFLAG; 4672 v = F_DISABLEWINDOWPSH; 4673 t4_set_reg_field(sc, A_TP_PC_CONFIG, m, v); 4674 4675 m = V_TIMESTAMPRESOLUTION(M_TIMESTAMPRESOLUTION); 4676 v = V_TIMESTAMPRESOLUTION(0x1f); 4677 t4_set_reg_field(sc, A_TP_TIMER_RESOLUTION, m, v); 4678 4679 sc->flags |= KERN_TLS_OK; 4680 4681 sc->tlst.inline_keys = t4_tls_inline_keys; 4682 sc->tlst.combo_wrs = t4_tls_combo_wrs; 4683 } 4684 #endif 4685 4686 static int 4687 set_params__post_init(struct adapter *sc) 4688 { 4689 uint32_t param, val; 4690 #ifdef TCP_OFFLOAD 4691 int i, v, shift; 4692 #endif 4693 4694 /* ask for encapsulated CPLs */ 4695 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4696 val = 1; 4697 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4698 4699 /* Enable 32b port caps if the firmware supports it. */ 4700 param = FW_PARAM_PFVF(PORT_CAPS32); 4701 val = 1; 4702 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 4703 sc->params.port_caps32 = 1; 4704 4705 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 4706 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 4707 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 4708 V_MASKFILTER(val - 1)); 4709 4710 #ifdef TCP_OFFLOAD 4711 /* 4712 * Override the TOE timers with user provided tunables. This is not the 4713 * recommended way to change the timers (the firmware config file is) so 4714 * these tunables are not documented. 4715 * 4716 * All the timer tunables are in microseconds. 4717 */ 4718 if (t4_toe_keepalive_idle != 0) { 4719 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 4720 v &= M_KEEPALIVEIDLE; 4721 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 4722 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 4723 } 4724 if (t4_toe_keepalive_interval != 0) { 4725 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 4726 v &= M_KEEPALIVEINTVL; 4727 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 4728 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 4729 } 4730 if (t4_toe_keepalive_count != 0) { 4731 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 4732 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4733 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 4734 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 4735 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 4736 } 4737 if (t4_toe_rexmt_min != 0) { 4738 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 4739 v &= M_RXTMIN; 4740 t4_set_reg_field(sc, A_TP_RXT_MIN, 4741 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 4742 } 4743 if (t4_toe_rexmt_max != 0) { 4744 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 4745 v &= M_RXTMAX; 4746 t4_set_reg_field(sc, A_TP_RXT_MAX, 4747 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 4748 } 4749 if (t4_toe_rexmt_count != 0) { 4750 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 4751 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4752 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 4753 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 4754 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 4755 } 4756 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 4757 if (t4_toe_rexmt_backoff[i] != -1) { 4758 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 4759 shift = (i & 3) << 3; 4760 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 4761 M_TIMERBACKOFFINDEX0 << shift, v << shift); 4762 } 4763 } 4764 #endif 4765 4766 #ifdef KERN_TLS 4767 if (t4_kern_tls != 0 && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 4768 sc->toecaps & FW_CAPS_CONFIG_TOE) 4769 t4_enable_kern_tls(sc); 4770 #endif 4771 return (0); 4772 } 4773 4774 #undef FW_PARAM_PFVF 4775 #undef FW_PARAM_DEV 4776 4777 static void 4778 t4_set_desc(struct adapter *sc) 4779 { 4780 char buf[128]; 4781 struct adapter_params *p = &sc->params; 4782 4783 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 4784 4785 device_set_desc_copy(sc->dev, buf); 4786 } 4787 4788 static inline void 4789 ifmedia_add4(struct ifmedia *ifm, int m) 4790 { 4791 4792 ifmedia_add(ifm, m, 0, NULL); 4793 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 4794 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 4795 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 4796 } 4797 4798 /* 4799 * This is the selected media, which is not quite the same as the active media. 4800 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 4801 * and active are not the same, and "media: Ethernet selected" otherwise. 4802 */ 4803 static void 4804 set_current_media(struct port_info *pi) 4805 { 4806 struct link_config *lc; 4807 struct ifmedia *ifm; 4808 int mword; 4809 u_int speed; 4810 4811 PORT_LOCK_ASSERT_OWNED(pi); 4812 4813 /* Leave current media alone if it's already set to IFM_NONE. */ 4814 ifm = &pi->media; 4815 if (ifm->ifm_cur != NULL && 4816 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 4817 return; 4818 4819 lc = &pi->link_cfg; 4820 if (lc->requested_aneg != AUTONEG_DISABLE && 4821 lc->pcaps & FW_PORT_CAP32_ANEG) { 4822 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 4823 return; 4824 } 4825 mword = IFM_ETHER | IFM_FDX; 4826 if (lc->requested_fc & PAUSE_TX) 4827 mword |= IFM_ETH_TXPAUSE; 4828 if (lc->requested_fc & PAUSE_RX) 4829 mword |= IFM_ETH_RXPAUSE; 4830 if (lc->requested_speed == 0) 4831 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 4832 else 4833 speed = lc->requested_speed; 4834 mword |= port_mword(pi, speed_to_fwcap(speed)); 4835 ifmedia_set(ifm, mword); 4836 } 4837 4838 /* 4839 * Returns true if the ifmedia list for the port cannot change. 4840 */ 4841 static bool 4842 fixed_ifmedia(struct port_info *pi) 4843 { 4844 4845 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 4846 pi->port_type == FW_PORT_TYPE_BT_XFI || 4847 pi->port_type == FW_PORT_TYPE_BT_XAUI || 4848 pi->port_type == FW_PORT_TYPE_KX4 || 4849 pi->port_type == FW_PORT_TYPE_KX || 4850 pi->port_type == FW_PORT_TYPE_KR || 4851 pi->port_type == FW_PORT_TYPE_BP_AP || 4852 pi->port_type == FW_PORT_TYPE_BP4_AP || 4853 pi->port_type == FW_PORT_TYPE_BP40_BA || 4854 pi->port_type == FW_PORT_TYPE_KR4_100G || 4855 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 4856 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 4857 } 4858 4859 static void 4860 build_medialist(struct port_info *pi) 4861 { 4862 uint32_t ss, speed; 4863 int unknown, mword, bit; 4864 struct link_config *lc; 4865 struct ifmedia *ifm; 4866 4867 PORT_LOCK_ASSERT_OWNED(pi); 4868 4869 if (pi->flags & FIXED_IFMEDIA) 4870 return; 4871 4872 /* 4873 * Rebuild the ifmedia list. 4874 */ 4875 ifm = &pi->media; 4876 ifmedia_removeall(ifm); 4877 lc = &pi->link_cfg; 4878 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 4879 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 4880 MPASS(ss != 0); 4881 no_media: 4882 MPASS(LIST_EMPTY(&ifm->ifm_list)); 4883 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 4884 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 4885 return; 4886 } 4887 4888 unknown = 0; 4889 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 4890 speed = 1 << bit; 4891 MPASS(speed & M_FW_PORT_CAP32_SPEED); 4892 if (ss & speed) { 4893 mword = port_mword(pi, speed); 4894 if (mword == IFM_NONE) { 4895 goto no_media; 4896 } else if (mword == IFM_UNKNOWN) 4897 unknown++; 4898 else 4899 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 4900 } 4901 } 4902 if (unknown > 0) /* Add one unknown for all unknown media types. */ 4903 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 4904 if (lc->pcaps & FW_PORT_CAP32_ANEG) 4905 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 4906 4907 set_current_media(pi); 4908 } 4909 4910 /* 4911 * Initialize the requested fields in the link config based on driver tunables. 4912 */ 4913 static void 4914 init_link_config(struct port_info *pi) 4915 { 4916 struct link_config *lc = &pi->link_cfg; 4917 4918 PORT_LOCK_ASSERT_OWNED(pi); 4919 4920 lc->requested_speed = 0; 4921 4922 if (t4_autoneg == 0) 4923 lc->requested_aneg = AUTONEG_DISABLE; 4924 else if (t4_autoneg == 1) 4925 lc->requested_aneg = AUTONEG_ENABLE; 4926 else 4927 lc->requested_aneg = AUTONEG_AUTO; 4928 4929 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 4930 PAUSE_AUTONEG); 4931 4932 if (t4_fec & FEC_AUTO) 4933 lc->requested_fec = FEC_AUTO; 4934 else if (t4_fec == 0) 4935 lc->requested_fec = FEC_NONE; 4936 else { 4937 /* -1 is handled by the FEC_AUTO block above and not here. */ 4938 lc->requested_fec = t4_fec & 4939 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 4940 if (lc->requested_fec == 0) 4941 lc->requested_fec = FEC_AUTO; 4942 } 4943 } 4944 4945 /* 4946 * Makes sure that all requested settings comply with what's supported by the 4947 * port. Returns the number of settings that were invalid and had to be fixed. 4948 */ 4949 static int 4950 fixup_link_config(struct port_info *pi) 4951 { 4952 int n = 0; 4953 struct link_config *lc = &pi->link_cfg; 4954 uint32_t fwspeed; 4955 4956 PORT_LOCK_ASSERT_OWNED(pi); 4957 4958 /* Speed (when not autonegotiating) */ 4959 if (lc->requested_speed != 0) { 4960 fwspeed = speed_to_fwcap(lc->requested_speed); 4961 if ((fwspeed & lc->pcaps) == 0) { 4962 n++; 4963 lc->requested_speed = 0; 4964 } 4965 } 4966 4967 /* Link autonegotiation */ 4968 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 4969 lc->requested_aneg == AUTONEG_DISABLE || 4970 lc->requested_aneg == AUTONEG_AUTO); 4971 if (lc->requested_aneg == AUTONEG_ENABLE && 4972 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4973 n++; 4974 lc->requested_aneg = AUTONEG_AUTO; 4975 } 4976 4977 /* Flow control */ 4978 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 4979 if (lc->requested_fc & PAUSE_TX && 4980 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 4981 n++; 4982 lc->requested_fc &= ~PAUSE_TX; 4983 } 4984 if (lc->requested_fc & PAUSE_RX && 4985 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 4986 n++; 4987 lc->requested_fc &= ~PAUSE_RX; 4988 } 4989 if (!(lc->requested_fc & PAUSE_AUTONEG) && 4990 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 4991 n++; 4992 lc->requested_fc |= PAUSE_AUTONEG; 4993 } 4994 4995 /* FEC */ 4996 if ((lc->requested_fec & FEC_RS && 4997 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 4998 (lc->requested_fec & FEC_BASER_RS && 4999 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5000 n++; 5001 lc->requested_fec = FEC_AUTO; 5002 } 5003 5004 return (n); 5005 } 5006 5007 /* 5008 * Apply the requested L1 settings, which are expected to be valid, to the 5009 * hardware. 5010 */ 5011 static int 5012 apply_link_config(struct port_info *pi) 5013 { 5014 struct adapter *sc = pi->adapter; 5015 struct link_config *lc = &pi->link_cfg; 5016 int rc; 5017 5018 #ifdef INVARIANTS 5019 ASSERT_SYNCHRONIZED_OP(sc); 5020 PORT_LOCK_ASSERT_OWNED(pi); 5021 5022 if (lc->requested_aneg == AUTONEG_ENABLE) 5023 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5024 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5025 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5026 if (lc->requested_fc & PAUSE_TX) 5027 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5028 if (lc->requested_fc & PAUSE_RX) 5029 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5030 if (lc->requested_fec & FEC_RS) 5031 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5032 if (lc->requested_fec & FEC_BASER_RS) 5033 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5034 #endif 5035 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5036 if (rc != 0) { 5037 /* Don't complain if the VF driver gets back an EPERM. */ 5038 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5039 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5040 } else { 5041 /* 5042 * An L1_CFG will almost always result in a link-change event if 5043 * the link is up, and the driver will refresh the actual 5044 * fec/fc/etc. when the notification is processed. If the link 5045 * is down then the actual settings are meaningless. 5046 * 5047 * This takes care of the case where a change in the L1 settings 5048 * may not result in a notification. 5049 */ 5050 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5051 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5052 } 5053 return (rc); 5054 } 5055 5056 #define FW_MAC_EXACT_CHUNK 7 5057 struct mcaddr_ctx { 5058 struct ifnet *ifp; 5059 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5060 uint64_t hash; 5061 int i; 5062 int del; 5063 int rc; 5064 }; 5065 5066 static u_int 5067 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5068 { 5069 struct mcaddr_ctx *ctx = arg; 5070 struct vi_info *vi = ctx->ifp->if_softc; 5071 struct port_info *pi = vi->pi; 5072 struct adapter *sc = pi->adapter; 5073 5074 if (ctx->rc < 0) 5075 return (0); 5076 5077 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5078 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5079 ctx->i++; 5080 5081 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5082 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5083 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5084 if (ctx->rc < 0) { 5085 int j; 5086 5087 for (j = 0; j < ctx->i; j++) { 5088 if_printf(ctx->ifp, 5089 "failed to add mc address" 5090 " %02x:%02x:%02x:" 5091 "%02x:%02x:%02x rc=%d\n", 5092 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5093 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5094 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5095 -ctx->rc); 5096 } 5097 return (0); 5098 } 5099 ctx->del = 0; 5100 ctx->i = 0; 5101 } 5102 5103 return (1); 5104 } 5105 5106 /* 5107 * Program the port's XGMAC based on parameters in ifnet. The caller also 5108 * indicates which parameters should be programmed (the rest are left alone). 5109 */ 5110 int 5111 update_mac_settings(struct ifnet *ifp, int flags) 5112 { 5113 int rc = 0; 5114 struct vi_info *vi = ifp->if_softc; 5115 struct port_info *pi = vi->pi; 5116 struct adapter *sc = pi->adapter; 5117 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5118 5119 ASSERT_SYNCHRONIZED_OP(sc); 5120 KASSERT(flags, ("%s: not told what to update.", __func__)); 5121 5122 if (flags & XGMAC_MTU) 5123 mtu = ifp->if_mtu; 5124 5125 if (flags & XGMAC_PROMISC) 5126 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5127 5128 if (flags & XGMAC_ALLMULTI) 5129 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5130 5131 if (flags & XGMAC_VLANEX) 5132 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5133 5134 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5135 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5136 allmulti, 1, vlanex, false); 5137 if (rc) { 5138 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5139 rc); 5140 return (rc); 5141 } 5142 } 5143 5144 if (flags & XGMAC_UCADDR) { 5145 uint8_t ucaddr[ETHER_ADDR_LEN]; 5146 5147 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5148 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5149 ucaddr, true, &vi->smt_idx); 5150 if (rc < 0) { 5151 rc = -rc; 5152 if_printf(ifp, "change_mac failed: %d\n", rc); 5153 return (rc); 5154 } else { 5155 vi->xact_addr_filt = rc; 5156 rc = 0; 5157 } 5158 } 5159 5160 if (flags & XGMAC_MCADDRS) { 5161 struct epoch_tracker et; 5162 struct mcaddr_ctx ctx; 5163 int j; 5164 5165 ctx.ifp = ifp; 5166 ctx.hash = 0; 5167 ctx.i = 0; 5168 ctx.del = 1; 5169 ctx.rc = 0; 5170 /* 5171 * Unlike other drivers, we accumulate list of pointers into 5172 * interface address lists and we need to keep it safe even 5173 * after if_foreach_llmaddr() returns, thus we must enter the 5174 * network epoch. 5175 */ 5176 NET_EPOCH_ENTER(et); 5177 if_foreach_llmaddr(ifp, add_maddr, &ctx); 5178 if (ctx.rc < 0) { 5179 NET_EPOCH_EXIT(et); 5180 rc = -ctx.rc; 5181 return (rc); 5182 } 5183 if (ctx.i > 0) { 5184 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 5185 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 5186 NET_EPOCH_EXIT(et); 5187 if (rc < 0) { 5188 rc = -rc; 5189 for (j = 0; j < ctx.i; j++) { 5190 if_printf(ifp, 5191 "failed to add mc address" 5192 " %02x:%02x:%02x:" 5193 "%02x:%02x:%02x rc=%d\n", 5194 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 5195 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 5196 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 5197 rc); 5198 } 5199 return (rc); 5200 } 5201 } else 5202 NET_EPOCH_EXIT(et); 5203 5204 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 5205 if (rc != 0) 5206 if_printf(ifp, "failed to set mc address hash: %d", rc); 5207 } 5208 5209 return (rc); 5210 } 5211 5212 /* 5213 * {begin|end}_synchronized_op must be called from the same thread. 5214 */ 5215 int 5216 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 5217 char *wmesg) 5218 { 5219 int rc, pri; 5220 5221 #ifdef WITNESS 5222 /* the caller thinks it's ok to sleep, but is it really? */ 5223 if (flags & SLEEP_OK) 5224 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 5225 "begin_synchronized_op"); 5226 #endif 5227 5228 if (INTR_OK) 5229 pri = PCATCH; 5230 else 5231 pri = 0; 5232 5233 ADAPTER_LOCK(sc); 5234 for (;;) { 5235 5236 if (vi && IS_DOOMED(vi)) { 5237 rc = ENXIO; 5238 goto done; 5239 } 5240 5241 if (!IS_BUSY(sc)) { 5242 rc = 0; 5243 break; 5244 } 5245 5246 if (!(flags & SLEEP_OK)) { 5247 rc = EBUSY; 5248 goto done; 5249 } 5250 5251 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 5252 rc = EINTR; 5253 goto done; 5254 } 5255 } 5256 5257 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 5258 SET_BUSY(sc); 5259 #ifdef INVARIANTS 5260 sc->last_op = wmesg; 5261 sc->last_op_thr = curthread; 5262 sc->last_op_flags = flags; 5263 #endif 5264 5265 done: 5266 if (!(flags & HOLD_LOCK) || rc) 5267 ADAPTER_UNLOCK(sc); 5268 5269 return (rc); 5270 } 5271 5272 /* 5273 * Tell if_ioctl and if_init that the VI is going away. This is 5274 * special variant of begin_synchronized_op and must be paired with a 5275 * call to end_synchronized_op. 5276 */ 5277 void 5278 doom_vi(struct adapter *sc, struct vi_info *vi) 5279 { 5280 5281 ADAPTER_LOCK(sc); 5282 SET_DOOMED(vi); 5283 wakeup(&sc->flags); 5284 while (IS_BUSY(sc)) 5285 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 5286 SET_BUSY(sc); 5287 #ifdef INVARIANTS 5288 sc->last_op = "t4detach"; 5289 sc->last_op_thr = curthread; 5290 sc->last_op_flags = 0; 5291 #endif 5292 ADAPTER_UNLOCK(sc); 5293 } 5294 5295 /* 5296 * {begin|end}_synchronized_op must be called from the same thread. 5297 */ 5298 void 5299 end_synchronized_op(struct adapter *sc, int flags) 5300 { 5301 5302 if (flags & LOCK_HELD) 5303 ADAPTER_LOCK_ASSERT_OWNED(sc); 5304 else 5305 ADAPTER_LOCK(sc); 5306 5307 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 5308 CLR_BUSY(sc); 5309 wakeup(&sc->flags); 5310 ADAPTER_UNLOCK(sc); 5311 } 5312 5313 static int 5314 cxgbe_init_synchronized(struct vi_info *vi) 5315 { 5316 struct port_info *pi = vi->pi; 5317 struct adapter *sc = pi->adapter; 5318 struct ifnet *ifp = vi->ifp; 5319 int rc = 0, i; 5320 struct sge_txq *txq; 5321 5322 ASSERT_SYNCHRONIZED_OP(sc); 5323 5324 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5325 return (0); /* already running */ 5326 5327 if (!(sc->flags & FULL_INIT_DONE) && 5328 ((rc = adapter_full_init(sc)) != 0)) 5329 return (rc); /* error message displayed already */ 5330 5331 if (!(vi->flags & VI_INIT_DONE) && 5332 ((rc = vi_full_init(vi)) != 0)) 5333 return (rc); /* error message displayed already */ 5334 5335 rc = update_mac_settings(ifp, XGMAC_ALL); 5336 if (rc) 5337 goto done; /* error message displayed already */ 5338 5339 PORT_LOCK(pi); 5340 if (pi->up_vis == 0) { 5341 t4_update_port_info(pi); 5342 fixup_link_config(pi); 5343 build_medialist(pi); 5344 apply_link_config(pi); 5345 } 5346 5347 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 5348 if (rc != 0) { 5349 if_printf(ifp, "enable_vi failed: %d\n", rc); 5350 PORT_UNLOCK(pi); 5351 goto done; 5352 } 5353 5354 /* 5355 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 5356 * if this changes. 5357 */ 5358 5359 for_each_txq(vi, i, txq) { 5360 TXQ_LOCK(txq); 5361 txq->eq.flags |= EQ_ENABLED; 5362 TXQ_UNLOCK(txq); 5363 } 5364 5365 /* 5366 * The first iq of the first port to come up is used for tracing. 5367 */ 5368 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 5369 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 5370 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 5371 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 5372 V_QUEUENUMBER(sc->traceq)); 5373 pi->flags |= HAS_TRACEQ; 5374 } 5375 5376 /* all ok */ 5377 pi->up_vis++; 5378 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5379 5380 if (pi->nvi > 1 || sc->flags & IS_VF) 5381 callout_reset(&vi->tick, hz, vi_tick, vi); 5382 else 5383 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 5384 if (pi->link_cfg.link_ok) 5385 t4_os_link_changed(pi); 5386 PORT_UNLOCK(pi); 5387 done: 5388 if (rc != 0) 5389 cxgbe_uninit_synchronized(vi); 5390 5391 return (rc); 5392 } 5393 5394 /* 5395 * Idempotent. 5396 */ 5397 static int 5398 cxgbe_uninit_synchronized(struct vi_info *vi) 5399 { 5400 struct port_info *pi = vi->pi; 5401 struct adapter *sc = pi->adapter; 5402 struct ifnet *ifp = vi->ifp; 5403 int rc, i; 5404 struct sge_txq *txq; 5405 5406 ASSERT_SYNCHRONIZED_OP(sc); 5407 5408 if (!(vi->flags & VI_INIT_DONE)) { 5409 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5410 KASSERT(0, ("uninited VI is running")); 5411 if_printf(ifp, "uninited VI with running ifnet. " 5412 "vi->flags 0x%016lx, if_flags 0x%08x, " 5413 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 5414 ifp->if_drv_flags); 5415 } 5416 return (0); 5417 } 5418 5419 /* 5420 * Disable the VI so that all its data in either direction is discarded 5421 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 5422 * tick) intact as the TP can deliver negative advice or data that it's 5423 * holding in its RAM (for an offloaded connection) even after the VI is 5424 * disabled. 5425 */ 5426 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 5427 if (rc) { 5428 if_printf(ifp, "disable_vi failed: %d\n", rc); 5429 return (rc); 5430 } 5431 5432 for_each_txq(vi, i, txq) { 5433 TXQ_LOCK(txq); 5434 txq->eq.flags &= ~EQ_ENABLED; 5435 TXQ_UNLOCK(txq); 5436 } 5437 5438 PORT_LOCK(pi); 5439 if (pi->nvi > 1 || sc->flags & IS_VF) 5440 callout_stop(&vi->tick); 5441 else 5442 callout_stop(&pi->tick); 5443 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5444 PORT_UNLOCK(pi); 5445 return (0); 5446 } 5447 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5448 pi->up_vis--; 5449 if (pi->up_vis > 0) { 5450 PORT_UNLOCK(pi); 5451 return (0); 5452 } 5453 5454 pi->link_cfg.link_ok = false; 5455 pi->link_cfg.speed = 0; 5456 pi->link_cfg.link_down_rc = 255; 5457 t4_os_link_changed(pi); 5458 PORT_UNLOCK(pi); 5459 5460 return (0); 5461 } 5462 5463 /* 5464 * It is ok for this function to fail midway and return right away. t4_detach 5465 * will walk the entire sc->irq list and clean up whatever is valid. 5466 */ 5467 int 5468 t4_setup_intr_handlers(struct adapter *sc) 5469 { 5470 int rc, rid, p, q, v; 5471 char s[8]; 5472 struct irq *irq; 5473 struct port_info *pi; 5474 struct vi_info *vi; 5475 struct sge *sge = &sc->sge; 5476 struct sge_rxq *rxq; 5477 #ifdef TCP_OFFLOAD 5478 struct sge_ofld_rxq *ofld_rxq; 5479 #endif 5480 #ifdef DEV_NETMAP 5481 struct sge_nm_rxq *nm_rxq; 5482 #endif 5483 #ifdef RSS 5484 int nbuckets = rss_getnumbuckets(); 5485 #endif 5486 5487 /* 5488 * Setup interrupts. 5489 */ 5490 irq = &sc->irq[0]; 5491 rid = sc->intr_type == INTR_INTX ? 0 : 1; 5492 if (forwarding_intr_to_fwq(sc)) 5493 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 5494 5495 /* Multiple interrupts. */ 5496 if (sc->flags & IS_VF) 5497 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 5498 ("%s: too few intr.", __func__)); 5499 else 5500 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 5501 ("%s: too few intr.", __func__)); 5502 5503 /* The first one is always error intr on PFs */ 5504 if (!(sc->flags & IS_VF)) { 5505 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 5506 if (rc != 0) 5507 return (rc); 5508 irq++; 5509 rid++; 5510 } 5511 5512 /* The second one is always the firmware event queue (first on VFs) */ 5513 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 5514 if (rc != 0) 5515 return (rc); 5516 irq++; 5517 rid++; 5518 5519 for_each_port(sc, p) { 5520 pi = sc->port[p]; 5521 for_each_vi(pi, v, vi) { 5522 vi->first_intr = rid - 1; 5523 5524 if (vi->nnmrxq > 0) { 5525 int n = max(vi->nrxq, vi->nnmrxq); 5526 5527 rxq = &sge->rxq[vi->first_rxq]; 5528 #ifdef DEV_NETMAP 5529 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 5530 #endif 5531 for (q = 0; q < n; q++) { 5532 snprintf(s, sizeof(s), "%x%c%x", p, 5533 'a' + v, q); 5534 if (q < vi->nrxq) 5535 irq->rxq = rxq++; 5536 #ifdef DEV_NETMAP 5537 if (q < vi->nnmrxq) 5538 irq->nm_rxq = nm_rxq++; 5539 5540 if (irq->nm_rxq != NULL && 5541 irq->rxq == NULL) { 5542 /* Netmap rx only */ 5543 rc = t4_alloc_irq(sc, irq, rid, 5544 t4_nm_intr, irq->nm_rxq, s); 5545 } 5546 if (irq->nm_rxq != NULL && 5547 irq->rxq != NULL) { 5548 /* NIC and Netmap rx */ 5549 rc = t4_alloc_irq(sc, irq, rid, 5550 t4_vi_intr, irq, s); 5551 } 5552 #endif 5553 if (irq->rxq != NULL && 5554 irq->nm_rxq == NULL) { 5555 /* NIC rx only */ 5556 rc = t4_alloc_irq(sc, irq, rid, 5557 t4_intr, irq->rxq, s); 5558 } 5559 if (rc != 0) 5560 return (rc); 5561 #ifdef RSS 5562 if (q < vi->nrxq) { 5563 bus_bind_intr(sc->dev, irq->res, 5564 rss_getcpu(q % nbuckets)); 5565 } 5566 #endif 5567 irq++; 5568 rid++; 5569 vi->nintr++; 5570 } 5571 } else { 5572 for_each_rxq(vi, q, rxq) { 5573 snprintf(s, sizeof(s), "%x%c%x", p, 5574 'a' + v, q); 5575 rc = t4_alloc_irq(sc, irq, rid, 5576 t4_intr, rxq, s); 5577 if (rc != 0) 5578 return (rc); 5579 #ifdef RSS 5580 bus_bind_intr(sc->dev, irq->res, 5581 rss_getcpu(q % nbuckets)); 5582 #endif 5583 irq++; 5584 rid++; 5585 vi->nintr++; 5586 } 5587 } 5588 #ifdef TCP_OFFLOAD 5589 for_each_ofld_rxq(vi, q, ofld_rxq) { 5590 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 5591 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 5592 ofld_rxq, s); 5593 if (rc != 0) 5594 return (rc); 5595 irq++; 5596 rid++; 5597 vi->nintr++; 5598 } 5599 #endif 5600 } 5601 } 5602 MPASS(irq == &sc->irq[sc->intr_count]); 5603 5604 return (0); 5605 } 5606 5607 int 5608 adapter_full_init(struct adapter *sc) 5609 { 5610 int rc, i; 5611 #ifdef RSS 5612 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5613 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5614 #endif 5615 5616 ASSERT_SYNCHRONIZED_OP(sc); 5617 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5618 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 5619 ("%s: FULL_INIT_DONE already", __func__)); 5620 5621 /* 5622 * queues that belong to the adapter (not any particular port). 5623 */ 5624 rc = t4_setup_adapter_queues(sc); 5625 if (rc != 0) 5626 goto done; 5627 5628 for (i = 0; i < nitems(sc->tq); i++) { 5629 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 5630 taskqueue_thread_enqueue, &sc->tq[i]); 5631 if (sc->tq[i] == NULL) { 5632 device_printf(sc->dev, 5633 "failed to allocate task queue %d\n", i); 5634 rc = ENOMEM; 5635 goto done; 5636 } 5637 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 5638 device_get_nameunit(sc->dev), i); 5639 } 5640 #ifdef RSS 5641 MPASS(RSS_KEYSIZE == 40); 5642 rss_getkey((void *)&raw_rss_key[0]); 5643 for (i = 0; i < nitems(rss_key); i++) { 5644 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 5645 } 5646 t4_write_rss_key(sc, &rss_key[0], -1, 1); 5647 #endif 5648 5649 if (!(sc->flags & IS_VF)) 5650 t4_intr_enable(sc); 5651 #ifdef KERN_TLS 5652 if (sc->flags & KERN_TLS_OK) 5653 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5654 C_HARDCLOCK); 5655 #endif 5656 sc->flags |= FULL_INIT_DONE; 5657 done: 5658 if (rc != 0) 5659 adapter_full_uninit(sc); 5660 5661 return (rc); 5662 } 5663 5664 int 5665 adapter_full_uninit(struct adapter *sc) 5666 { 5667 int i; 5668 5669 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5670 5671 t4_teardown_adapter_queues(sc); 5672 5673 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 5674 taskqueue_free(sc->tq[i]); 5675 sc->tq[i] = NULL; 5676 } 5677 5678 sc->flags &= ~FULL_INIT_DONE; 5679 5680 return (0); 5681 } 5682 5683 #ifdef RSS 5684 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 5685 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 5686 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 5687 RSS_HASHTYPE_RSS_UDP_IPV6) 5688 5689 /* Translates kernel hash types to hardware. */ 5690 static int 5691 hashconfig_to_hashen(int hashconfig) 5692 { 5693 int hashen = 0; 5694 5695 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 5696 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 5697 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 5698 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 5699 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 5700 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5701 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5702 } 5703 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 5704 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5705 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5706 } 5707 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 5708 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5709 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 5710 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5711 5712 return (hashen); 5713 } 5714 5715 /* Translates hardware hash types to kernel. */ 5716 static int 5717 hashen_to_hashconfig(int hashen) 5718 { 5719 int hashconfig = 0; 5720 5721 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 5722 /* 5723 * If UDP hashing was enabled it must have been enabled for 5724 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 5725 * enabling any 4-tuple hash is nonsense configuration. 5726 */ 5727 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 5728 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 5729 5730 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5731 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 5732 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5733 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 5734 } 5735 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5736 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 5737 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5738 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 5739 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 5740 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 5741 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 5742 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 5743 5744 return (hashconfig); 5745 } 5746 #endif 5747 5748 int 5749 vi_full_init(struct vi_info *vi) 5750 { 5751 struct adapter *sc = vi->pi->adapter; 5752 struct ifnet *ifp = vi->ifp; 5753 uint16_t *rss; 5754 struct sge_rxq *rxq; 5755 int rc, i, j; 5756 #ifdef RSS 5757 int nbuckets = rss_getnumbuckets(); 5758 int hashconfig = rss_gethashconfig(); 5759 int extra; 5760 #endif 5761 5762 ASSERT_SYNCHRONIZED_OP(sc); 5763 KASSERT((vi->flags & VI_INIT_DONE) == 0, 5764 ("%s: VI_INIT_DONE already", __func__)); 5765 5766 sysctl_ctx_init(&vi->ctx); 5767 vi->flags |= VI_SYSCTL_CTX; 5768 5769 /* 5770 * Allocate tx/rx/fl queues for this VI. 5771 */ 5772 rc = t4_setup_vi_queues(vi); 5773 if (rc != 0) 5774 goto done; /* error message displayed already */ 5775 5776 /* 5777 * Setup RSS for this VI. Save a copy of the RSS table for later use. 5778 */ 5779 if (vi->nrxq > vi->rss_size) { 5780 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 5781 "some queues will never receive traffic.\n", vi->nrxq, 5782 vi->rss_size); 5783 } else if (vi->rss_size % vi->nrxq) { 5784 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 5785 "expect uneven traffic distribution.\n", vi->nrxq, 5786 vi->rss_size); 5787 } 5788 #ifdef RSS 5789 if (vi->nrxq != nbuckets) { 5790 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 5791 "performance will be impacted.\n", vi->nrxq, nbuckets); 5792 } 5793 #endif 5794 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 5795 for (i = 0; i < vi->rss_size;) { 5796 #ifdef RSS 5797 j = rss_get_indirection_to_bucket(i); 5798 j %= vi->nrxq; 5799 rxq = &sc->sge.rxq[vi->first_rxq + j]; 5800 rss[i++] = rxq->iq.abs_id; 5801 #else 5802 for_each_rxq(vi, j, rxq) { 5803 rss[i++] = rxq->iq.abs_id; 5804 if (i == vi->rss_size) 5805 break; 5806 } 5807 #endif 5808 } 5809 5810 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 5811 vi->rss_size); 5812 if (rc != 0) { 5813 free(rss, M_CXGBE); 5814 if_printf(ifp, "rss_config failed: %d\n", rc); 5815 goto done; 5816 } 5817 5818 #ifdef RSS 5819 vi->hashen = hashconfig_to_hashen(hashconfig); 5820 5821 /* 5822 * We may have had to enable some hashes even though the global config 5823 * wants them disabled. This is a potential problem that must be 5824 * reported to the user. 5825 */ 5826 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 5827 5828 /* 5829 * If we consider only the supported hash types, then the enabled hashes 5830 * are a superset of the requested hashes. In other words, there cannot 5831 * be any supported hash that was requested but not enabled, but there 5832 * can be hashes that were not requested but had to be enabled. 5833 */ 5834 extra &= SUPPORTED_RSS_HASHTYPES; 5835 MPASS((extra & hashconfig) == 0); 5836 5837 if (extra) { 5838 if_printf(ifp, 5839 "global RSS config (0x%x) cannot be accommodated.\n", 5840 hashconfig); 5841 } 5842 if (extra & RSS_HASHTYPE_RSS_IPV4) 5843 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 5844 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 5845 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 5846 if (extra & RSS_HASHTYPE_RSS_IPV6) 5847 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 5848 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 5849 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 5850 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 5851 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 5852 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 5853 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 5854 #else 5855 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 5856 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 5857 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 5858 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 5859 #endif 5860 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0); 5861 if (rc != 0) { 5862 free(rss, M_CXGBE); 5863 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 5864 goto done; 5865 } 5866 5867 vi->rss = rss; 5868 vi->flags |= VI_INIT_DONE; 5869 done: 5870 if (rc != 0) 5871 vi_full_uninit(vi); 5872 5873 return (rc); 5874 } 5875 5876 /* 5877 * Idempotent. 5878 */ 5879 int 5880 vi_full_uninit(struct vi_info *vi) 5881 { 5882 struct port_info *pi = vi->pi; 5883 struct adapter *sc = pi->adapter; 5884 int i; 5885 struct sge_rxq *rxq; 5886 struct sge_txq *txq; 5887 #ifdef TCP_OFFLOAD 5888 struct sge_ofld_rxq *ofld_rxq; 5889 #endif 5890 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 5891 struct sge_wrq *ofld_txq; 5892 #endif 5893 5894 if (vi->flags & VI_INIT_DONE) { 5895 5896 /* Need to quiesce queues. */ 5897 5898 /* XXX: Only for the first VI? */ 5899 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 5900 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 5901 5902 for_each_txq(vi, i, txq) { 5903 quiesce_txq(sc, txq); 5904 } 5905 5906 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 5907 for_each_ofld_txq(vi, i, ofld_txq) { 5908 quiesce_wrq(sc, ofld_txq); 5909 } 5910 #endif 5911 5912 for_each_rxq(vi, i, rxq) { 5913 quiesce_iq(sc, &rxq->iq); 5914 quiesce_fl(sc, &rxq->fl); 5915 } 5916 5917 #ifdef TCP_OFFLOAD 5918 for_each_ofld_rxq(vi, i, ofld_rxq) { 5919 quiesce_iq(sc, &ofld_rxq->iq); 5920 quiesce_fl(sc, &ofld_rxq->fl); 5921 } 5922 #endif 5923 free(vi->rss, M_CXGBE); 5924 free(vi->nm_rss, M_CXGBE); 5925 } 5926 5927 t4_teardown_vi_queues(vi); 5928 vi->flags &= ~VI_INIT_DONE; 5929 5930 return (0); 5931 } 5932 5933 static void 5934 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 5935 { 5936 struct sge_eq *eq = &txq->eq; 5937 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 5938 5939 (void) sc; /* unused */ 5940 5941 #ifdef INVARIANTS 5942 TXQ_LOCK(txq); 5943 MPASS((eq->flags & EQ_ENABLED) == 0); 5944 TXQ_UNLOCK(txq); 5945 #endif 5946 5947 /* Wait for the mp_ring to empty. */ 5948 while (!mp_ring_is_idle(txq->r)) { 5949 mp_ring_check_drainage(txq->r, 0); 5950 pause("rquiesce", 1); 5951 } 5952 5953 /* Then wait for the hardware to finish. */ 5954 while (spg->cidx != htobe16(eq->pidx)) 5955 pause("equiesce", 1); 5956 5957 /* Finally, wait for the driver to reclaim all descriptors. */ 5958 while (eq->cidx != eq->pidx) 5959 pause("dquiesce", 1); 5960 } 5961 5962 static void 5963 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 5964 { 5965 5966 /* XXXTX */ 5967 } 5968 5969 static void 5970 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 5971 { 5972 (void) sc; /* unused */ 5973 5974 /* Synchronize with the interrupt handler */ 5975 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 5976 pause("iqfree", 1); 5977 } 5978 5979 static void 5980 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 5981 { 5982 mtx_lock(&sc->sfl_lock); 5983 FL_LOCK(fl); 5984 fl->flags |= FL_DOOMED; 5985 FL_UNLOCK(fl); 5986 callout_stop(&sc->sfl_callout); 5987 mtx_unlock(&sc->sfl_lock); 5988 5989 KASSERT((fl->flags & FL_STARVING) == 0, 5990 ("%s: still starving", __func__)); 5991 } 5992 5993 static int 5994 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 5995 driver_intr_t *handler, void *arg, char *name) 5996 { 5997 int rc; 5998 5999 irq->rid = rid; 6000 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6001 RF_SHAREABLE | RF_ACTIVE); 6002 if (irq->res == NULL) { 6003 device_printf(sc->dev, 6004 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6005 return (ENOMEM); 6006 } 6007 6008 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6009 NULL, handler, arg, &irq->tag); 6010 if (rc != 0) { 6011 device_printf(sc->dev, 6012 "failed to setup interrupt for rid %d, name %s: %d\n", 6013 rid, name, rc); 6014 } else if (name) 6015 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6016 6017 return (rc); 6018 } 6019 6020 static int 6021 t4_free_irq(struct adapter *sc, struct irq *irq) 6022 { 6023 if (irq->tag) 6024 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6025 if (irq->res) 6026 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6027 6028 bzero(irq, sizeof(*irq)); 6029 6030 return (0); 6031 } 6032 6033 static void 6034 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6035 { 6036 6037 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6038 t4_get_regs(sc, buf, regs->len); 6039 } 6040 6041 #define A_PL_INDIR_CMD 0x1f8 6042 6043 #define S_PL_AUTOINC 31 6044 #define M_PL_AUTOINC 0x1U 6045 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6046 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6047 6048 #define S_PL_VFID 20 6049 #define M_PL_VFID 0xffU 6050 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6051 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6052 6053 #define S_PL_ADDR 0 6054 #define M_PL_ADDR 0xfffffU 6055 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6056 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6057 6058 #define A_PL_INDIR_DATA 0x1fc 6059 6060 static uint64_t 6061 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6062 { 6063 u32 stats[2]; 6064 6065 mtx_assert(&sc->reg_lock, MA_OWNED); 6066 if (sc->flags & IS_VF) { 6067 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 6068 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 6069 } else { 6070 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 6071 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 6072 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 6073 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 6074 } 6075 return (((uint64_t)stats[1]) << 32 | stats[0]); 6076 } 6077 6078 static void 6079 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 6080 { 6081 6082 #define GET_STAT(name) \ 6083 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 6084 6085 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 6086 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 6087 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 6088 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 6089 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 6090 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 6091 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 6092 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 6093 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 6094 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 6095 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 6096 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 6097 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 6098 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 6099 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 6100 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 6101 6102 #undef GET_STAT 6103 } 6104 6105 static void 6106 t4_clr_vi_stats(struct adapter *sc, u_int vin) 6107 { 6108 int reg; 6109 6110 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 6111 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 6112 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 6113 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 6114 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 6115 } 6116 6117 static void 6118 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 6119 { 6120 struct timeval tv; 6121 const struct timeval interval = {0, 250000}; /* 250ms */ 6122 6123 if (!(vi->flags & VI_INIT_DONE)) 6124 return; 6125 6126 getmicrotime(&tv); 6127 timevalsub(&tv, &interval); 6128 if (timevalcmp(&tv, &vi->last_refreshed, <)) 6129 return; 6130 6131 mtx_lock(&sc->reg_lock); 6132 t4_get_vi_stats(sc, vi->vin, &vi->stats); 6133 getmicrotime(&vi->last_refreshed); 6134 mtx_unlock(&sc->reg_lock); 6135 } 6136 6137 static void 6138 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 6139 { 6140 u_int i, v, tnl_cong_drops, bg_map; 6141 struct timeval tv; 6142 const struct timeval interval = {0, 250000}; /* 250ms */ 6143 6144 getmicrotime(&tv); 6145 timevalsub(&tv, &interval); 6146 if (timevalcmp(&tv, &pi->last_refreshed, <)) 6147 return; 6148 6149 tnl_cong_drops = 0; 6150 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 6151 bg_map = pi->mps_bg_map; 6152 while (bg_map) { 6153 i = ffs(bg_map) - 1; 6154 mtx_lock(&sc->reg_lock); 6155 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 6156 A_TP_MIB_TNL_CNG_DROP_0 + i); 6157 mtx_unlock(&sc->reg_lock); 6158 tnl_cong_drops += v; 6159 bg_map &= ~(1 << i); 6160 } 6161 pi->tnl_cong_drops = tnl_cong_drops; 6162 getmicrotime(&pi->last_refreshed); 6163 } 6164 6165 static void 6166 cxgbe_tick(void *arg) 6167 { 6168 struct port_info *pi = arg; 6169 struct adapter *sc = pi->adapter; 6170 6171 PORT_LOCK_ASSERT_OWNED(pi); 6172 cxgbe_refresh_stats(sc, pi); 6173 6174 callout_schedule(&pi->tick, hz); 6175 } 6176 6177 void 6178 vi_tick(void *arg) 6179 { 6180 struct vi_info *vi = arg; 6181 struct adapter *sc = vi->pi->adapter; 6182 6183 vi_refresh_stats(sc, vi); 6184 6185 callout_schedule(&vi->tick, hz); 6186 } 6187 6188 /* 6189 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 6190 */ 6191 static char *caps_decoder[] = { 6192 "\20\001IPMI\002NCSI", /* 0: NBM */ 6193 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 6194 "\20\001INGRESS\002EGRESS", /* 2: switch */ 6195 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 6196 "\006HASHFILTER\007ETHOFLD", 6197 "\20\001TOE", /* 4: TOE */ 6198 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 6199 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 6200 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 6201 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 6202 "\007T10DIF" 6203 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 6204 "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ 6205 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 6206 "\004PO_INITIATOR\005PO_TARGET", 6207 }; 6208 6209 void 6210 t4_sysctls(struct adapter *sc) 6211 { 6212 struct sysctl_ctx_list *ctx; 6213 struct sysctl_oid *oid; 6214 struct sysctl_oid_list *children, *c0; 6215 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 6216 6217 ctx = device_get_sysctl_ctx(sc->dev); 6218 6219 /* 6220 * dev.t4nex.X. 6221 */ 6222 oid = device_get_sysctl_tree(sc->dev); 6223 c0 = children = SYSCTL_CHILDREN(oid); 6224 6225 sc->sc_do_rxcopy = 1; 6226 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 6227 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 6228 6229 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 6230 sc->params.nports, "# of ports"); 6231 6232 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 6233 CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells, 6234 sysctl_bitfield_8b, "A", "available doorbells"); 6235 6236 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 6237 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 6238 6239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 6240 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, 6241 sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", 6242 "interrupt holdoff timer values (us)"); 6243 6244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 6245 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, 6246 sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", 6247 "interrupt holdoff packet counter values"); 6248 6249 t4_sge_sysctls(sc, ctx, children); 6250 6251 sc->lro_timeout = 100; 6252 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 6253 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 6254 6255 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 6256 &sc->debug_flags, 0, "flags to enable runtime debugging"); 6257 6258 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 6259 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 6260 6261 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 6262 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 6263 6264 if (sc->flags & IS_VF) 6265 return; 6266 6267 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 6268 NULL, chip_rev(sc), "chip hardware revision"); 6269 6270 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 6271 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 6272 6273 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 6274 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 6275 6276 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 6277 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 6278 6279 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 6280 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 6281 6282 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 6283 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 6284 6285 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 6286 sc->er_version, 0, "expansion ROM version"); 6287 6288 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 6289 sc->bs_version, 0, "bootstrap firmware version"); 6290 6291 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 6292 NULL, sc->params.scfg_vers, "serial config version"); 6293 6294 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 6295 NULL, sc->params.vpd_vers, "VPD version"); 6296 6297 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 6298 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 6299 6300 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 6301 sc->cfcsum, "config file checksum"); 6302 6303 #define SYSCTL_CAP(name, n, text) \ 6304 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 6305 CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \ 6306 sysctl_bitfield_16b, "A", "available " text " capabilities") 6307 6308 SYSCTL_CAP(nbmcaps, 0, "NBM"); 6309 SYSCTL_CAP(linkcaps, 1, "link"); 6310 SYSCTL_CAP(switchcaps, 2, "switch"); 6311 SYSCTL_CAP(niccaps, 3, "NIC"); 6312 SYSCTL_CAP(toecaps, 4, "TCP offload"); 6313 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 6314 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 6315 SYSCTL_CAP(cryptocaps, 7, "crypto"); 6316 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 6317 #undef SYSCTL_CAP 6318 6319 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 6320 NULL, sc->tids.nftids, "number of filters"); 6321 6322 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 6323 CTLFLAG_RD, sc, 0, sysctl_temperature, "I", 6324 "chip temperature (in Celsius)"); 6325 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", CTLTYPE_INT | 6326 CTLFLAG_RW, sc, 0, sysctl_reset_sensor, "I", 6327 "reset the chip's temperature sensor."); 6328 6329 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING | 6330 CTLFLAG_RD, sc, 0, sysctl_loadavg, "A", 6331 "microprocessor load averages (debug firmwares only)"); 6332 6333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", CTLTYPE_INT | 6334 CTLFLAG_RD, sc, 0, sysctl_vdd, "I", "core Vdd (in mV)"); 6335 6336 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 6337 CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS, 6338 sysctl_cpus, "A", "local CPUs"); 6339 6340 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 6341 CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS, 6342 sysctl_cpus, "A", "preferred CPUs for interrupts"); 6343 6344 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 6345 &sc->swintr, 0, "software triggered interrupts"); 6346 6347 /* 6348 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 6349 */ 6350 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 6351 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 6352 "logs and miscellaneous information"); 6353 children = SYSCTL_CHILDREN(oid); 6354 6355 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 6356 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6357 sysctl_cctrl, "A", "congestion control"); 6358 6359 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 6360 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6361 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 6362 6363 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 6364 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 6365 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 6366 6367 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 6368 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 6369 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 6370 6371 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 6372 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 6373 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 6374 6375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 6376 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 6377 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 6378 6379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 6380 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 6381 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 6382 6383 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 6384 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la, 6385 "A", "CIM logic analyzer"); 6386 6387 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 6388 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6389 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 6390 6391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 6392 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 6393 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 6394 6395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 6396 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 6397 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 6398 6399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 6400 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 6401 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 6402 6403 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 6404 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 6405 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 6406 6407 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 6408 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 6409 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 6410 6411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 6412 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 6413 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 6414 6415 if (chip_id(sc) > CHELSIO_T4) { 6416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 6417 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 6418 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 6419 6420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 6421 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 6422 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 6423 } 6424 6425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 6426 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6427 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 6428 6429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 6430 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6431 sysctl_cim_qcfg, "A", "CIM queue configuration"); 6432 6433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 6434 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6435 sysctl_cpl_stats, "A", "CPL statistics"); 6436 6437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 6438 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6439 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 6440 6441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 6442 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6443 sysctl_devlog, "A", "firmware's device log"); 6444 6445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 6446 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6447 sysctl_fcoe_stats, "A", "FCoE statistics"); 6448 6449 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 6450 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6451 sysctl_hw_sched, "A", "hardware scheduler "); 6452 6453 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 6454 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6455 sysctl_l2t, "A", "hardware L2 table"); 6456 6457 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 6458 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6459 sysctl_smt, "A", "hardware source MAC table"); 6460 6461 #ifdef INET6 6462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 6463 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6464 sysctl_clip, "A", "active CLIP table entries"); 6465 #endif 6466 6467 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 6468 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6469 sysctl_lb_stats, "A", "loopback statistics"); 6470 6471 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 6472 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6473 sysctl_meminfo, "A", "memory regions"); 6474 6475 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 6476 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6477 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 6478 "A", "MPS TCAM entries"); 6479 6480 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 6481 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6482 sysctl_path_mtus, "A", "path MTUs"); 6483 6484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 6485 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6486 sysctl_pm_stats, "A", "PM statistics"); 6487 6488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 6489 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6490 sysctl_rdma_stats, "A", "RDMA statistics"); 6491 6492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 6493 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6494 sysctl_tcp_stats, "A", "TCP statistics"); 6495 6496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 6497 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6498 sysctl_tids, "A", "TID information"); 6499 6500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 6501 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6502 sysctl_tp_err_stats, "A", "TP error statistics"); 6503 6504 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 6505 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", 6506 "TP logic analyzer event capture mask"); 6507 6508 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 6509 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6510 sysctl_tp_la, "A", "TP logic analyzer"); 6511 6512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 6513 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6514 sysctl_tx_rate, "A", "Tx rate"); 6515 6516 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 6517 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6518 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 6519 6520 if (chip_id(sc) >= CHELSIO_T5) { 6521 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 6522 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 6523 sysctl_wcwr_stats, "A", "write combined work requests"); 6524 } 6525 6526 #ifdef KERN_TLS 6527 if (sc->flags & KERN_TLS_OK) { 6528 /* 6529 * dev.t4nex.0.tls. 6530 */ 6531 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", CTLFLAG_RD, 6532 NULL, "KERN_TLS parameters"); 6533 children = SYSCTL_CHILDREN(oid); 6534 6535 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 6536 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 6537 "keys in work requests (1) or attempt to store TLS keys " 6538 "in card memory."); 6539 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 6540 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 6541 "TCB field updates with TLS record work requests."); 6542 } 6543 #endif 6544 6545 #ifdef TCP_OFFLOAD 6546 if (is_offload(sc)) { 6547 int i; 6548 char s[4]; 6549 6550 /* 6551 * dev.t4nex.X.toe. 6552 */ 6553 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 6554 NULL, "TOE parameters"); 6555 children = SYSCTL_CHILDREN(oid); 6556 6557 sc->tt.cong_algorithm = -1; 6558 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 6559 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 6560 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 6561 "3 = highspeed)"); 6562 6563 sc->tt.sndbuf = -1; 6564 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 6565 &sc->tt.sndbuf, 0, "hardware send buffer"); 6566 6567 sc->tt.ddp = 0; 6568 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 6569 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 6570 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 6571 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 6572 6573 sc->tt.rx_coalesce = -1; 6574 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 6575 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 6576 6577 sc->tt.tls = 0; 6578 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW, 6579 &sc->tt.tls, 0, "Inline TLS allowed"); 6580 6581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 6582 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports, 6583 "I", "TCP ports that use inline TLS+TOE RX"); 6584 6585 sc->tt.tx_align = -1; 6586 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 6587 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 6588 6589 sc->tt.tx_zcopy = 0; 6590 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 6591 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 6592 "Enable zero-copy aio_write(2)"); 6593 6594 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 6595 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6596 "cop_managed_offloading", CTLFLAG_RW, 6597 &sc->tt.cop_managed_offloading, 0, 6598 "COP (Connection Offload Policy) controls all TOE offload"); 6599 6600 sc->tt.autorcvbuf_inc = 16 * 1024; 6601 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 6602 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 6603 "autorcvbuf increment"); 6604 6605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 6606 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", 6607 "TP timer tick (us)"); 6608 6609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 6610 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", 6611 "TCP timestamp tick (us)"); 6612 6613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 6614 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", 6615 "DACK tick (us)"); 6616 6617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 6618 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, 6619 "IU", "DACK timer (us)"); 6620 6621 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 6622 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, 6623 sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); 6624 6625 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 6626 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, 6627 sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); 6628 6629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 6630 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, 6631 sysctl_tp_timer, "LU", "Persist timer min (us)"); 6632 6633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 6634 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, 6635 sysctl_tp_timer, "LU", "Persist timer max (us)"); 6636 6637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 6638 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, 6639 sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); 6640 6641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 6642 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, 6643 sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); 6644 6645 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 6646 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, 6647 sysctl_tp_timer, "LU", "Initial SRTT (us)"); 6648 6649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 6650 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, 6651 sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); 6652 6653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 6654 CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, 6655 sysctl_tp_shift_cnt, "IU", 6656 "Number of SYN retransmissions before abort"); 6657 6658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 6659 CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, 6660 sysctl_tp_shift_cnt, "IU", 6661 "Number of retransmissions before abort"); 6662 6663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 6664 CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, 6665 sysctl_tp_shift_cnt, "IU", 6666 "Number of keepalive probes before abort"); 6667 6668 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 6669 CTLFLAG_RD, NULL, "TOE retransmit backoffs"); 6670 children = SYSCTL_CHILDREN(oid); 6671 for (i = 0; i < 16; i++) { 6672 snprintf(s, sizeof(s), "%u", i); 6673 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 6674 CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, 6675 "IU", "TOE retransmit backoff"); 6676 } 6677 } 6678 #endif 6679 } 6680 6681 void 6682 vi_sysctls(struct vi_info *vi) 6683 { 6684 struct sysctl_ctx_list *ctx; 6685 struct sysctl_oid *oid; 6686 struct sysctl_oid_list *children; 6687 6688 ctx = device_get_sysctl_ctx(vi->dev); 6689 6690 /* 6691 * dev.v?(cxgbe|cxl).X. 6692 */ 6693 oid = device_get_sysctl_tree(vi->dev); 6694 children = SYSCTL_CHILDREN(oid); 6695 6696 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 6697 vi->viid, "VI identifer"); 6698 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 6699 &vi->nrxq, 0, "# of rx queues"); 6700 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 6701 &vi->ntxq, 0, "# of tx queues"); 6702 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 6703 &vi->first_rxq, 0, "index of first rx queue"); 6704 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 6705 &vi->first_txq, 0, "index of first tx queue"); 6706 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 6707 vi->rss_base, "start of RSS indirection table"); 6708 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 6709 vi->rss_size, "size of RSS indirection table"); 6710 6711 if (IS_MAIN_VI(vi)) { 6712 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 6713 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", 6714 "Reserve queue 0 for non-flowid packets"); 6715 } 6716 6717 #ifdef TCP_OFFLOAD 6718 if (vi->nofldrxq != 0) { 6719 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 6720 &vi->nofldrxq, 0, 6721 "# of rx queues for offloaded TCP connections"); 6722 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 6723 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 6724 "index of first TOE rx queue"); 6725 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 6726 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 6727 sysctl_holdoff_tmr_idx_ofld, "I", 6728 "holdoff timer index for TOE queues"); 6729 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 6730 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 6731 sysctl_holdoff_pktc_idx_ofld, "I", 6732 "holdoff packet counter index for TOE queues"); 6733 } 6734 #endif 6735 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6736 if (vi->nofldtxq != 0) { 6737 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 6738 &vi->nofldtxq, 0, 6739 "# of tx queues for TOE/ETHOFLD"); 6740 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 6741 CTLFLAG_RD, &vi->first_ofld_txq, 0, 6742 "index of first TOE/ETHOFLD tx queue"); 6743 } 6744 #endif 6745 #ifdef DEV_NETMAP 6746 if (vi->nnmrxq != 0) { 6747 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 6748 &vi->nnmrxq, 0, "# of netmap rx queues"); 6749 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 6750 &vi->nnmtxq, 0, "# of netmap tx queues"); 6751 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 6752 CTLFLAG_RD, &vi->first_nm_rxq, 0, 6753 "index of first netmap rx queue"); 6754 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 6755 CTLFLAG_RD, &vi->first_nm_txq, 0, 6756 "index of first netmap tx queue"); 6757 } 6758 #endif 6759 6760 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 6761 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", 6762 "holdoff timer index"); 6763 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 6764 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", 6765 "holdoff packet counter index"); 6766 6767 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 6768 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", 6769 "rx queue size"); 6770 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 6771 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", 6772 "tx queue size"); 6773 } 6774 6775 static void 6776 cxgbe_sysctls(struct port_info *pi) 6777 { 6778 struct sysctl_ctx_list *ctx; 6779 struct sysctl_oid *oid; 6780 struct sysctl_oid_list *children, *children2; 6781 struct adapter *sc = pi->adapter; 6782 int i; 6783 char name[16]; 6784 static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; 6785 6786 ctx = device_get_sysctl_ctx(pi->dev); 6787 6788 /* 6789 * dev.cxgbe.X. 6790 */ 6791 oid = device_get_sysctl_tree(pi->dev); 6792 children = SYSCTL_CHILDREN(oid); 6793 6794 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 6795 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 6796 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 6797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 6798 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 6799 "PHY temperature (in Celsius)"); 6800 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 6801 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 6802 "PHY firmware version"); 6803 } 6804 6805 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 6806 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", 6807 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 6808 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 6809 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", 6810 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 6811 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 6812 CTLTYPE_STRING, pi, 0, sysctl_module_fec, "A", 6813 "FEC recommended by the cable/transceiver"); 6814 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 6815 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", 6816 "autonegotiation (-1 = not supported)"); 6817 6818 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 6819 &pi->link_cfg.pcaps, 0, "port capabilities"); 6820 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 6821 &pi->link_cfg.acaps, 0, "advertised capabilities"); 6822 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 6823 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 6824 6825 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 6826 port_top_speed(pi), "max speed (in Gbps)"); 6827 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 6828 pi->mps_bg_map, "MPS buffer group map"); 6829 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 6830 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 6831 6832 if (sc->flags & IS_VF) 6833 return; 6834 6835 /* 6836 * dev.(cxgbe|cxl).X.tc. 6837 */ 6838 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, 6839 "Tx scheduler traffic classes (cl_rl)"); 6840 children2 = SYSCTL_CHILDREN(oid); 6841 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 6842 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 6843 "pktsize for per-flow cl-rl (0 means up to the driver )"); 6844 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 6845 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 6846 "burstsize for per-flow cl-rl (0 means up to the driver)"); 6847 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 6848 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 6849 6850 snprintf(name, sizeof(name), "%d", i); 6851 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 6852 SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, 6853 "traffic class")); 6854 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 6855 CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags, 6856 sysctl_bitfield_8b, "A", "flags"); 6857 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 6858 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 6859 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 6860 CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, 6861 sysctl_tc_params, "A", "traffic class parameters"); 6862 } 6863 6864 /* 6865 * dev.cxgbe.X.stats. 6866 */ 6867 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 6868 NULL, "port statistics"); 6869 children = SYSCTL_CHILDREN(oid); 6870 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 6871 &pi->tx_parse_error, 0, 6872 "# of tx packets with invalid length or # of segments"); 6873 6874 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 6875 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 6876 CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ 6877 sysctl_handle_t4_reg64, "QU", desc) 6878 6879 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 6880 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 6881 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 6882 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 6883 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 6884 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 6885 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 6886 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 6887 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 6888 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 6889 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 6890 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 6891 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 6892 "# of tx frames in this range", 6893 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 6894 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 6895 "# of tx frames in this range", 6896 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 6897 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 6898 "# of tx frames in this range", 6899 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 6900 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 6901 "# of tx frames in this range", 6902 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 6903 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 6904 "# of tx frames in this range", 6905 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 6906 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 6907 "# of tx frames in this range", 6908 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 6909 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 6910 "# of tx frames in this range", 6911 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 6912 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 6913 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 6914 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 6915 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 6916 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 6917 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 6918 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 6919 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 6920 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 6921 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 6922 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 6923 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 6924 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 6925 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 6926 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 6927 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 6928 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 6929 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 6930 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 6931 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 6932 6933 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 6934 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 6935 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 6936 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 6937 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 6938 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 6939 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 6940 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 6941 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 6942 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 6943 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 6944 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 6945 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 6946 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 6947 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 6948 "# of frames received with bad FCS", 6949 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 6950 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 6951 "# of frames received with length error", 6952 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 6953 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 6954 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 6955 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 6956 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 6957 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 6958 "# of rx frames in this range", 6959 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 6960 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 6961 "# of rx frames in this range", 6962 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 6963 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 6964 "# of rx frames in this range", 6965 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 6966 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 6967 "# of rx frames in this range", 6968 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 6969 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 6970 "# of rx frames in this range", 6971 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 6972 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 6973 "# of rx frames in this range", 6974 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 6975 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 6976 "# of rx frames in this range", 6977 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 6978 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 6979 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 6980 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 6981 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 6982 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 6983 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 6984 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 6985 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 6986 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 6987 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 6988 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 6989 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 6990 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 6991 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 6992 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 6993 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 6994 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 6995 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 6996 6997 #undef SYSCTL_ADD_T4_REG64 6998 6999 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 7000 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7001 &pi->stats.name, desc) 7002 7003 /* We get these from port_stats and they may be stale by up to 1s */ 7004 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 7005 "# drops due to buffer-group 0 overflows"); 7006 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 7007 "# drops due to buffer-group 1 overflows"); 7008 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 7009 "# drops due to buffer-group 2 overflows"); 7010 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 7011 "# drops due to buffer-group 3 overflows"); 7012 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 7013 "# of buffer-group 0 truncated packets"); 7014 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 7015 "# of buffer-group 1 truncated packets"); 7016 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 7017 "# of buffer-group 2 truncated packets"); 7018 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 7019 "# of buffer-group 3 truncated packets"); 7020 7021 #undef SYSCTL_ADD_T4_PORTSTAT 7022 7023 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records", 7024 CTLFLAG_RD, &pi->tx_tls_records, 7025 "# of TOE TLS records transmitted"); 7026 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets", 7027 CTLFLAG_RD, &pi->tx_tls_octets, 7028 "# of payload octets in transmitted TOE TLS records"); 7029 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records", 7030 CTLFLAG_RD, &pi->rx_tls_records, 7031 "# of TOE TLS records received"); 7032 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets", 7033 CTLFLAG_RD, &pi->rx_tls_octets, 7034 "# of payload octets in received TOE TLS records"); 7035 } 7036 7037 static int 7038 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7039 { 7040 int rc, *i, space = 0; 7041 struct sbuf sb; 7042 7043 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7044 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7045 if (space) 7046 sbuf_printf(&sb, " "); 7047 sbuf_printf(&sb, "%d", *i); 7048 space = 1; 7049 } 7050 rc = sbuf_finish(&sb); 7051 sbuf_delete(&sb); 7052 return (rc); 7053 } 7054 7055 static int 7056 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7057 { 7058 int rc; 7059 struct sbuf *sb; 7060 7061 rc = sysctl_wire_old_buffer(req, 0); 7062 if (rc != 0) 7063 return(rc); 7064 7065 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7066 if (sb == NULL) 7067 return (ENOMEM); 7068 7069 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7070 rc = sbuf_finish(sb); 7071 sbuf_delete(sb); 7072 7073 return (rc); 7074 } 7075 7076 static int 7077 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 7078 { 7079 int rc; 7080 struct sbuf *sb; 7081 7082 rc = sysctl_wire_old_buffer(req, 0); 7083 if (rc != 0) 7084 return(rc); 7085 7086 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7087 if (sb == NULL) 7088 return (ENOMEM); 7089 7090 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 7091 rc = sbuf_finish(sb); 7092 sbuf_delete(sb); 7093 7094 return (rc); 7095 } 7096 7097 static int 7098 sysctl_btphy(SYSCTL_HANDLER_ARGS) 7099 { 7100 struct port_info *pi = arg1; 7101 int op = arg2; 7102 struct adapter *sc = pi->adapter; 7103 u_int v; 7104 int rc; 7105 7106 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 7107 if (rc) 7108 return (rc); 7109 /* XXX: magic numbers */ 7110 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 7111 &v); 7112 end_synchronized_op(sc, 0); 7113 if (rc) 7114 return (rc); 7115 if (op == 0) 7116 v /= 256; 7117 7118 rc = sysctl_handle_int(oidp, &v, 0, req); 7119 return (rc); 7120 } 7121 7122 static int 7123 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 7124 { 7125 struct vi_info *vi = arg1; 7126 int rc, val; 7127 7128 val = vi->rsrv_noflowq; 7129 rc = sysctl_handle_int(oidp, &val, 0, req); 7130 if (rc != 0 || req->newptr == NULL) 7131 return (rc); 7132 7133 if ((val >= 1) && (vi->ntxq > 1)) 7134 vi->rsrv_noflowq = 1; 7135 else 7136 vi->rsrv_noflowq = 0; 7137 7138 return (rc); 7139 } 7140 7141 static int 7142 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 7143 { 7144 struct vi_info *vi = arg1; 7145 struct adapter *sc = vi->pi->adapter; 7146 int idx, rc, i; 7147 struct sge_rxq *rxq; 7148 uint8_t v; 7149 7150 idx = vi->tmr_idx; 7151 7152 rc = sysctl_handle_int(oidp, &idx, 0, req); 7153 if (rc != 0 || req->newptr == NULL) 7154 return (rc); 7155 7156 if (idx < 0 || idx >= SGE_NTIMERS) 7157 return (EINVAL); 7158 7159 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7160 "t4tmr"); 7161 if (rc) 7162 return (rc); 7163 7164 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 7165 for_each_rxq(vi, i, rxq) { 7166 #ifdef atomic_store_rel_8 7167 atomic_store_rel_8(&rxq->iq.intr_params, v); 7168 #else 7169 rxq->iq.intr_params = v; 7170 #endif 7171 } 7172 vi->tmr_idx = idx; 7173 7174 end_synchronized_op(sc, LOCK_HELD); 7175 return (0); 7176 } 7177 7178 static int 7179 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 7180 { 7181 struct vi_info *vi = arg1; 7182 struct adapter *sc = vi->pi->adapter; 7183 int idx, rc; 7184 7185 idx = vi->pktc_idx; 7186 7187 rc = sysctl_handle_int(oidp, &idx, 0, req); 7188 if (rc != 0 || req->newptr == NULL) 7189 return (rc); 7190 7191 if (idx < -1 || idx >= SGE_NCOUNTERS) 7192 return (EINVAL); 7193 7194 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7195 "t4pktc"); 7196 if (rc) 7197 return (rc); 7198 7199 if (vi->flags & VI_INIT_DONE) 7200 rc = EBUSY; /* cannot be changed once the queues are created */ 7201 else 7202 vi->pktc_idx = idx; 7203 7204 end_synchronized_op(sc, LOCK_HELD); 7205 return (rc); 7206 } 7207 7208 static int 7209 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 7210 { 7211 struct vi_info *vi = arg1; 7212 struct adapter *sc = vi->pi->adapter; 7213 int qsize, rc; 7214 7215 qsize = vi->qsize_rxq; 7216 7217 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7218 if (rc != 0 || req->newptr == NULL) 7219 return (rc); 7220 7221 if (qsize < 128 || (qsize & 7)) 7222 return (EINVAL); 7223 7224 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7225 "t4rxqs"); 7226 if (rc) 7227 return (rc); 7228 7229 if (vi->flags & VI_INIT_DONE) 7230 rc = EBUSY; /* cannot be changed once the queues are created */ 7231 else 7232 vi->qsize_rxq = qsize; 7233 7234 end_synchronized_op(sc, LOCK_HELD); 7235 return (rc); 7236 } 7237 7238 static int 7239 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 7240 { 7241 struct vi_info *vi = arg1; 7242 struct adapter *sc = vi->pi->adapter; 7243 int qsize, rc; 7244 7245 qsize = vi->qsize_txq; 7246 7247 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7248 if (rc != 0 || req->newptr == NULL) 7249 return (rc); 7250 7251 if (qsize < 128 || qsize > 65536) 7252 return (EINVAL); 7253 7254 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7255 "t4txqs"); 7256 if (rc) 7257 return (rc); 7258 7259 if (vi->flags & VI_INIT_DONE) 7260 rc = EBUSY; /* cannot be changed once the queues are created */ 7261 else 7262 vi->qsize_txq = qsize; 7263 7264 end_synchronized_op(sc, LOCK_HELD); 7265 return (rc); 7266 } 7267 7268 static int 7269 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 7270 { 7271 struct port_info *pi = arg1; 7272 struct adapter *sc = pi->adapter; 7273 struct link_config *lc = &pi->link_cfg; 7274 int rc; 7275 7276 if (req->newptr == NULL) { 7277 struct sbuf *sb; 7278 static char *bits = "\20\1RX\2TX\3AUTO"; 7279 7280 rc = sysctl_wire_old_buffer(req, 0); 7281 if (rc != 0) 7282 return(rc); 7283 7284 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7285 if (sb == NULL) 7286 return (ENOMEM); 7287 7288 if (lc->link_ok) { 7289 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 7290 (lc->requested_fc & PAUSE_AUTONEG), bits); 7291 } else { 7292 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 7293 PAUSE_RX | PAUSE_AUTONEG), bits); 7294 } 7295 rc = sbuf_finish(sb); 7296 sbuf_delete(sb); 7297 } else { 7298 char s[2]; 7299 int n; 7300 7301 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 7302 PAUSE_AUTONEG)); 7303 s[1] = 0; 7304 7305 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7306 if (rc != 0) 7307 return(rc); 7308 7309 if (s[1] != 0) 7310 return (EINVAL); 7311 if (s[0] < '0' || s[0] > '9') 7312 return (EINVAL); /* not a number */ 7313 n = s[0] - '0'; 7314 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 7315 return (EINVAL); /* some other bit is set too */ 7316 7317 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7318 "t4PAUSE"); 7319 if (rc) 7320 return (rc); 7321 PORT_LOCK(pi); 7322 lc->requested_fc = n; 7323 fixup_link_config(pi); 7324 if (pi->up_vis > 0) 7325 rc = apply_link_config(pi); 7326 set_current_media(pi); 7327 PORT_UNLOCK(pi); 7328 end_synchronized_op(sc, 0); 7329 } 7330 7331 return (rc); 7332 } 7333 7334 static int 7335 sysctl_fec(SYSCTL_HANDLER_ARGS) 7336 { 7337 struct port_info *pi = arg1; 7338 struct adapter *sc = pi->adapter; 7339 struct link_config *lc = &pi->link_cfg; 7340 int rc; 7341 int8_t old; 7342 7343 if (req->newptr == NULL) { 7344 struct sbuf *sb; 7345 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 7346 "\5RSVD3\6auto\7module"; 7347 7348 rc = sysctl_wire_old_buffer(req, 0); 7349 if (rc != 0) 7350 return(rc); 7351 7352 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7353 if (sb == NULL) 7354 return (ENOMEM); 7355 7356 /* 7357 * Display the requested_fec when the link is down -- the actual 7358 * FEC makes sense only when the link is up. 7359 */ 7360 if (lc->link_ok) { 7361 sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | 7362 (lc->requested_fec & (FEC_AUTO | FEC_MODULE)), 7363 bits); 7364 } else { 7365 sbuf_printf(sb, "%b", lc->requested_fec, bits); 7366 } 7367 rc = sbuf_finish(sb); 7368 sbuf_delete(sb); 7369 } else { 7370 char s[8]; 7371 int n; 7372 7373 snprintf(s, sizeof(s), "%d", 7374 lc->requested_fec == FEC_AUTO ? -1 : 7375 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 7376 7377 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7378 if (rc != 0) 7379 return(rc); 7380 7381 n = strtol(&s[0], NULL, 0); 7382 if (n < 0 || n & FEC_AUTO) 7383 n = FEC_AUTO; 7384 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 7385 return (EINVAL);/* some other bit is set too */ 7386 7387 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7388 "t4fec"); 7389 if (rc) 7390 return (rc); 7391 PORT_LOCK(pi); 7392 old = lc->requested_fec; 7393 if (n == FEC_AUTO) 7394 lc->requested_fec = FEC_AUTO; 7395 else if (n == 0 || n == FEC_NONE) 7396 lc->requested_fec = FEC_NONE; 7397 else { 7398 if ((lc->pcaps | 7399 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 7400 lc->pcaps) { 7401 rc = ENOTSUP; 7402 goto done; 7403 } 7404 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 7405 FEC_MODULE); 7406 } 7407 fixup_link_config(pi); 7408 if (pi->up_vis > 0) { 7409 rc = apply_link_config(pi); 7410 if (rc != 0) { 7411 lc->requested_fec = old; 7412 if (rc == FW_EPROTO) 7413 rc = ENOTSUP; 7414 } 7415 } 7416 done: 7417 PORT_UNLOCK(pi); 7418 end_synchronized_op(sc, 0); 7419 } 7420 7421 return (rc); 7422 } 7423 7424 static int 7425 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 7426 { 7427 struct port_info *pi = arg1; 7428 struct adapter *sc = pi->adapter; 7429 struct link_config *lc = &pi->link_cfg; 7430 int rc; 7431 int8_t fec; 7432 struct sbuf *sb; 7433 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 7434 7435 rc = sysctl_wire_old_buffer(req, 0); 7436 if (rc != 0) 7437 return (rc); 7438 7439 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7440 if (sb == NULL) 7441 return (ENOMEM); 7442 7443 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) 7444 return (EBUSY); 7445 PORT_LOCK(pi); 7446 if (pi->up_vis == 0) { 7447 /* 7448 * If all the interfaces are administratively down the firmware 7449 * does not report transceiver changes. Refresh port info here. 7450 * This is the only reason we have a synchronized op in this 7451 * function. Just PORT_LOCK would have been enough otherwise. 7452 */ 7453 t4_update_port_info(pi); 7454 } 7455 7456 fec = lc->fec_hint; 7457 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 7458 !fec_supported(lc->pcaps)) { 7459 sbuf_printf(sb, "n/a"); 7460 } else { 7461 if (fec == 0) 7462 fec = FEC_NONE; 7463 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 7464 } 7465 rc = sbuf_finish(sb); 7466 sbuf_delete(sb); 7467 7468 PORT_UNLOCK(pi); 7469 end_synchronized_op(sc, 0); 7470 7471 return (rc); 7472 } 7473 7474 static int 7475 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 7476 { 7477 struct port_info *pi = arg1; 7478 struct adapter *sc = pi->adapter; 7479 struct link_config *lc = &pi->link_cfg; 7480 int rc, val; 7481 7482 if (lc->pcaps & FW_PORT_CAP32_ANEG) 7483 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 7484 else 7485 val = -1; 7486 rc = sysctl_handle_int(oidp, &val, 0, req); 7487 if (rc != 0 || req->newptr == NULL) 7488 return (rc); 7489 if (val == 0) 7490 val = AUTONEG_DISABLE; 7491 else if (val == 1) 7492 val = AUTONEG_ENABLE; 7493 else 7494 val = AUTONEG_AUTO; 7495 7496 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7497 "t4aneg"); 7498 if (rc) 7499 return (rc); 7500 PORT_LOCK(pi); 7501 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 7502 rc = ENOTSUP; 7503 goto done; 7504 } 7505 lc->requested_aneg = val; 7506 fixup_link_config(pi); 7507 if (pi->up_vis > 0) 7508 rc = apply_link_config(pi); 7509 set_current_media(pi); 7510 done: 7511 PORT_UNLOCK(pi); 7512 end_synchronized_op(sc, 0); 7513 return (rc); 7514 } 7515 7516 static int 7517 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 7518 { 7519 struct adapter *sc = arg1; 7520 int reg = arg2; 7521 uint64_t val; 7522 7523 val = t4_read_reg64(sc, reg); 7524 7525 return (sysctl_handle_64(oidp, &val, 0, req)); 7526 } 7527 7528 static int 7529 sysctl_temperature(SYSCTL_HANDLER_ARGS) 7530 { 7531 struct adapter *sc = arg1; 7532 int rc, t; 7533 uint32_t param, val; 7534 7535 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 7536 if (rc) 7537 return (rc); 7538 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7539 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7540 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 7541 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7542 end_synchronized_op(sc, 0); 7543 if (rc) 7544 return (rc); 7545 7546 /* unknown is returned as 0 but we display -1 in that case */ 7547 t = val == 0 ? -1 : val; 7548 7549 rc = sysctl_handle_int(oidp, &t, 0, req); 7550 return (rc); 7551 } 7552 7553 static int 7554 sysctl_vdd(SYSCTL_HANDLER_ARGS) 7555 { 7556 struct adapter *sc = arg1; 7557 int rc; 7558 uint32_t param, val; 7559 7560 if (sc->params.core_vdd == 0) { 7561 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7562 "t4vdd"); 7563 if (rc) 7564 return (rc); 7565 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7566 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7567 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 7568 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7569 end_synchronized_op(sc, 0); 7570 if (rc) 7571 return (rc); 7572 sc->params.core_vdd = val; 7573 } 7574 7575 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 7576 } 7577 7578 static int 7579 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 7580 { 7581 struct adapter *sc = arg1; 7582 int rc, v; 7583 uint32_t param, val; 7584 7585 v = sc->sensor_resets; 7586 rc = sysctl_handle_int(oidp, &v, 0, req); 7587 if (rc != 0 || req->newptr == NULL || v <= 0) 7588 return (rc); 7589 7590 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 7591 chip_id(sc) < CHELSIO_T5) 7592 return (ENOTSUP); 7593 7594 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 7595 if (rc) 7596 return (rc); 7597 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7598 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7599 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 7600 val = 1; 7601 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7602 end_synchronized_op(sc, 0); 7603 if (rc == 0) 7604 sc->sensor_resets++; 7605 return (rc); 7606 } 7607 7608 static int 7609 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 7610 { 7611 struct adapter *sc = arg1; 7612 struct sbuf *sb; 7613 int rc; 7614 uint32_t param, val; 7615 7616 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 7617 if (rc) 7618 return (rc); 7619 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7620 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 7621 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7622 end_synchronized_op(sc, 0); 7623 if (rc) 7624 return (rc); 7625 7626 rc = sysctl_wire_old_buffer(req, 0); 7627 if (rc != 0) 7628 return (rc); 7629 7630 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7631 if (sb == NULL) 7632 return (ENOMEM); 7633 7634 if (val == 0xffffffff) { 7635 /* Only debug and custom firmwares report load averages. */ 7636 sbuf_printf(sb, "not available"); 7637 } else { 7638 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 7639 (val >> 16) & 0xff); 7640 } 7641 rc = sbuf_finish(sb); 7642 sbuf_delete(sb); 7643 7644 return (rc); 7645 } 7646 7647 static int 7648 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 7649 { 7650 struct adapter *sc = arg1; 7651 struct sbuf *sb; 7652 int rc, i; 7653 uint16_t incr[NMTUS][NCCTRL_WIN]; 7654 static const char *dec_fac[] = { 7655 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 7656 "0.9375" 7657 }; 7658 7659 rc = sysctl_wire_old_buffer(req, 0); 7660 if (rc != 0) 7661 return (rc); 7662 7663 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7664 if (sb == NULL) 7665 return (ENOMEM); 7666 7667 t4_read_cong_tbl(sc, incr); 7668 7669 for (i = 0; i < NCCTRL_WIN; ++i) { 7670 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 7671 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 7672 incr[5][i], incr[6][i], incr[7][i]); 7673 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 7674 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 7675 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 7676 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 7677 } 7678 7679 rc = sbuf_finish(sb); 7680 sbuf_delete(sb); 7681 7682 return (rc); 7683 } 7684 7685 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 7686 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 7687 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 7688 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 7689 }; 7690 7691 static int 7692 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 7693 { 7694 struct adapter *sc = arg1; 7695 struct sbuf *sb; 7696 int rc, i, n, qid = arg2; 7697 uint32_t *buf, *p; 7698 char *qtype; 7699 u_int cim_num_obq = sc->chip_params->cim_num_obq; 7700 7701 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 7702 ("%s: bad qid %d\n", __func__, qid)); 7703 7704 if (qid < CIM_NUM_IBQ) { 7705 /* inbound queue */ 7706 qtype = "IBQ"; 7707 n = 4 * CIM_IBQ_SIZE; 7708 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7709 rc = t4_read_cim_ibq(sc, qid, buf, n); 7710 } else { 7711 /* outbound queue */ 7712 qtype = "OBQ"; 7713 qid -= CIM_NUM_IBQ; 7714 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 7715 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7716 rc = t4_read_cim_obq(sc, qid, buf, n); 7717 } 7718 7719 if (rc < 0) { 7720 rc = -rc; 7721 goto done; 7722 } 7723 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 7724 7725 rc = sysctl_wire_old_buffer(req, 0); 7726 if (rc != 0) 7727 goto done; 7728 7729 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 7730 if (sb == NULL) { 7731 rc = ENOMEM; 7732 goto done; 7733 } 7734 7735 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 7736 for (i = 0, p = buf; i < n; i += 16, p += 4) 7737 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 7738 p[2], p[3]); 7739 7740 rc = sbuf_finish(sb); 7741 sbuf_delete(sb); 7742 done: 7743 free(buf, M_CXGBE); 7744 return (rc); 7745 } 7746 7747 static void 7748 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7749 { 7750 uint32_t *p; 7751 7752 sbuf_printf(sb, "Status Data PC%s", 7753 cfg & F_UPDBGLACAPTPCONLY ? "" : 7754 " LS0Stat LS0Addr LS0Data"); 7755 7756 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 7757 if (cfg & F_UPDBGLACAPTPCONLY) { 7758 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 7759 p[6], p[7]); 7760 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 7761 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 7762 p[4] & 0xff, p[5] >> 8); 7763 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 7764 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7765 p[1] & 0xf, p[2] >> 4); 7766 } else { 7767 sbuf_printf(sb, 7768 "\n %02x %x%07x %x%07x %08x %08x " 7769 "%08x%08x%08x%08x", 7770 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7771 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 7772 p[6], p[7]); 7773 } 7774 } 7775 } 7776 7777 static void 7778 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7779 { 7780 uint32_t *p; 7781 7782 sbuf_printf(sb, "Status Inst Data PC%s", 7783 cfg & F_UPDBGLACAPTPCONLY ? "" : 7784 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 7785 7786 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 7787 if (cfg & F_UPDBGLACAPTPCONLY) { 7788 sbuf_printf(sb, "\n %02x %08x %08x %08x", 7789 p[3] & 0xff, p[2], p[1], p[0]); 7790 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 7791 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 7792 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 7793 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 7794 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 7795 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 7796 p[6] >> 16); 7797 } else { 7798 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 7799 "%08x %08x %08x %08x %08x %08x", 7800 (p[9] >> 16) & 0xff, 7801 p[9] & 0xffff, p[8] >> 16, 7802 p[8] & 0xffff, p[7] >> 16, 7803 p[7] & 0xffff, p[6] >> 16, 7804 p[2], p[1], p[0], p[5], p[4], p[3]); 7805 } 7806 } 7807 } 7808 7809 static int 7810 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 7811 { 7812 uint32_t cfg, *buf; 7813 int rc; 7814 7815 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 7816 if (rc != 0) 7817 return (rc); 7818 7819 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 7820 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 7821 M_ZERO | flags); 7822 if (buf == NULL) 7823 return (ENOMEM); 7824 7825 rc = -t4_cim_read_la(sc, buf, NULL); 7826 if (rc != 0) 7827 goto done; 7828 if (chip_id(sc) < CHELSIO_T6) 7829 sbuf_cim_la4(sc, sb, buf, cfg); 7830 else 7831 sbuf_cim_la6(sc, sb, buf, cfg); 7832 7833 done: 7834 free(buf, M_CXGBE); 7835 return (rc); 7836 } 7837 7838 static int 7839 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 7840 { 7841 struct adapter *sc = arg1; 7842 struct sbuf *sb; 7843 int rc; 7844 7845 rc = sysctl_wire_old_buffer(req, 0); 7846 if (rc != 0) 7847 return (rc); 7848 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7849 if (sb == NULL) 7850 return (ENOMEM); 7851 7852 rc = sbuf_cim_la(sc, sb, M_WAITOK); 7853 if (rc == 0) 7854 rc = sbuf_finish(sb); 7855 sbuf_delete(sb); 7856 return (rc); 7857 } 7858 7859 bool 7860 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 7861 { 7862 struct sbuf sb; 7863 int rc; 7864 7865 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 7866 return (false); 7867 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 7868 if (rc == 0) { 7869 rc = sbuf_finish(&sb); 7870 if (rc == 0) { 7871 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 7872 device_get_nameunit(sc->dev), sbuf_data(&sb)); 7873 } 7874 } 7875 sbuf_delete(&sb); 7876 return (false); 7877 } 7878 7879 static int 7880 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 7881 { 7882 struct adapter *sc = arg1; 7883 u_int i; 7884 struct sbuf *sb; 7885 uint32_t *buf, *p; 7886 int rc; 7887 7888 rc = sysctl_wire_old_buffer(req, 0); 7889 if (rc != 0) 7890 return (rc); 7891 7892 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7893 if (sb == NULL) 7894 return (ENOMEM); 7895 7896 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 7897 M_ZERO | M_WAITOK); 7898 7899 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 7900 p = buf; 7901 7902 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 7903 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 7904 p[1], p[0]); 7905 } 7906 7907 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 7908 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 7909 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 7910 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 7911 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 7912 (p[1] >> 2) | ((p[2] & 3) << 30), 7913 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 7914 p[0] & 1); 7915 } 7916 7917 rc = sbuf_finish(sb); 7918 sbuf_delete(sb); 7919 free(buf, M_CXGBE); 7920 return (rc); 7921 } 7922 7923 static int 7924 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 7925 { 7926 struct adapter *sc = arg1; 7927 u_int i; 7928 struct sbuf *sb; 7929 uint32_t *buf, *p; 7930 int rc; 7931 7932 rc = sysctl_wire_old_buffer(req, 0); 7933 if (rc != 0) 7934 return (rc); 7935 7936 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7937 if (sb == NULL) 7938 return (ENOMEM); 7939 7940 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 7941 M_ZERO | M_WAITOK); 7942 7943 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 7944 p = buf; 7945 7946 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 7947 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 7948 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 7949 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 7950 p[4], p[3], p[2], p[1], p[0]); 7951 } 7952 7953 sbuf_printf(sb, "\n\nCntl ID Data"); 7954 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 7955 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 7956 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 7957 } 7958 7959 rc = sbuf_finish(sb); 7960 sbuf_delete(sb); 7961 free(buf, M_CXGBE); 7962 return (rc); 7963 } 7964 7965 static int 7966 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 7967 { 7968 struct adapter *sc = arg1; 7969 struct sbuf *sb; 7970 int rc, i; 7971 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 7972 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 7973 uint16_t thres[CIM_NUM_IBQ]; 7974 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 7975 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 7976 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 7977 7978 cim_num_obq = sc->chip_params->cim_num_obq; 7979 if (is_t4(sc)) { 7980 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 7981 obq_rdaddr = A_UP_OBQ_0_REALADDR; 7982 } else { 7983 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 7984 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 7985 } 7986 nq = CIM_NUM_IBQ + cim_num_obq; 7987 7988 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 7989 if (rc == 0) 7990 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 7991 if (rc != 0) 7992 return (rc); 7993 7994 t4_read_cimq_cfg(sc, base, size, thres); 7995 7996 rc = sysctl_wire_old_buffer(req, 0); 7997 if (rc != 0) 7998 return (rc); 7999 8000 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8001 if (sb == NULL) 8002 return (ENOMEM); 8003 8004 sbuf_printf(sb, 8005 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 8006 8007 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 8008 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 8009 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 8010 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 8011 G_QUEREMFLITS(p[2]) * 16); 8012 for ( ; i < nq; i++, p += 4, wr += 2) 8013 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 8014 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 8015 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 8016 G_QUEREMFLITS(p[2]) * 16); 8017 8018 rc = sbuf_finish(sb); 8019 sbuf_delete(sb); 8020 8021 return (rc); 8022 } 8023 8024 static int 8025 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 8026 { 8027 struct adapter *sc = arg1; 8028 struct sbuf *sb; 8029 int rc; 8030 struct tp_cpl_stats stats; 8031 8032 rc = sysctl_wire_old_buffer(req, 0); 8033 if (rc != 0) 8034 return (rc); 8035 8036 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8037 if (sb == NULL) 8038 return (ENOMEM); 8039 8040 mtx_lock(&sc->reg_lock); 8041 t4_tp_get_cpl_stats(sc, &stats, 0); 8042 mtx_unlock(&sc->reg_lock); 8043 8044 if (sc->chip_params->nchan > 2) { 8045 sbuf_printf(sb, " channel 0 channel 1" 8046 " channel 2 channel 3"); 8047 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 8048 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 8049 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 8050 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 8051 } else { 8052 sbuf_printf(sb, " channel 0 channel 1"); 8053 sbuf_printf(sb, "\nCPL requests: %10u %10u", 8054 stats.req[0], stats.req[1]); 8055 sbuf_printf(sb, "\nCPL responses: %10u %10u", 8056 stats.rsp[0], stats.rsp[1]); 8057 } 8058 8059 rc = sbuf_finish(sb); 8060 sbuf_delete(sb); 8061 8062 return (rc); 8063 } 8064 8065 static int 8066 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 8067 { 8068 struct adapter *sc = arg1; 8069 struct sbuf *sb; 8070 int rc; 8071 struct tp_usm_stats stats; 8072 8073 rc = sysctl_wire_old_buffer(req, 0); 8074 if (rc != 0) 8075 return(rc); 8076 8077 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8078 if (sb == NULL) 8079 return (ENOMEM); 8080 8081 t4_get_usm_stats(sc, &stats, 1); 8082 8083 sbuf_printf(sb, "Frames: %u\n", stats.frames); 8084 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 8085 sbuf_printf(sb, "Drops: %u", stats.drops); 8086 8087 rc = sbuf_finish(sb); 8088 sbuf_delete(sb); 8089 8090 return (rc); 8091 } 8092 8093 static const char * const devlog_level_strings[] = { 8094 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 8095 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 8096 [FW_DEVLOG_LEVEL_ERR] = "ERR", 8097 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 8098 [FW_DEVLOG_LEVEL_INFO] = "INFO", 8099 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 8100 }; 8101 8102 static const char * const devlog_facility_strings[] = { 8103 [FW_DEVLOG_FACILITY_CORE] = "CORE", 8104 [FW_DEVLOG_FACILITY_CF] = "CF", 8105 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 8106 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 8107 [FW_DEVLOG_FACILITY_RES] = "RES", 8108 [FW_DEVLOG_FACILITY_HW] = "HW", 8109 [FW_DEVLOG_FACILITY_FLR] = "FLR", 8110 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 8111 [FW_DEVLOG_FACILITY_PHY] = "PHY", 8112 [FW_DEVLOG_FACILITY_MAC] = "MAC", 8113 [FW_DEVLOG_FACILITY_PORT] = "PORT", 8114 [FW_DEVLOG_FACILITY_VI] = "VI", 8115 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 8116 [FW_DEVLOG_FACILITY_ACL] = "ACL", 8117 [FW_DEVLOG_FACILITY_TM] = "TM", 8118 [FW_DEVLOG_FACILITY_QFC] = "QFC", 8119 [FW_DEVLOG_FACILITY_DCB] = "DCB", 8120 [FW_DEVLOG_FACILITY_ETH] = "ETH", 8121 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 8122 [FW_DEVLOG_FACILITY_RI] = "RI", 8123 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 8124 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 8125 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 8126 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 8127 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 8128 }; 8129 8130 static int 8131 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 8132 { 8133 int i, j, rc, nentries, first = 0; 8134 struct devlog_params *dparams = &sc->params.devlog; 8135 struct fw_devlog_e *buf, *e; 8136 uint64_t ftstamp = UINT64_MAX; 8137 8138 if (dparams->addr == 0) 8139 return (ENXIO); 8140 8141 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8142 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 8143 if (buf == NULL) 8144 return (ENOMEM); 8145 8146 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 8147 if (rc != 0) 8148 goto done; 8149 8150 nentries = dparams->size / sizeof(struct fw_devlog_e); 8151 for (i = 0; i < nentries; i++) { 8152 e = &buf[i]; 8153 8154 if (e->timestamp == 0) 8155 break; /* end */ 8156 8157 e->timestamp = be64toh(e->timestamp); 8158 e->seqno = be32toh(e->seqno); 8159 for (j = 0; j < 8; j++) 8160 e->params[j] = be32toh(e->params[j]); 8161 8162 if (e->timestamp < ftstamp) { 8163 ftstamp = e->timestamp; 8164 first = i; 8165 } 8166 } 8167 8168 if (buf[first].timestamp == 0) 8169 goto done; /* nothing in the log */ 8170 8171 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 8172 "Seq#", "Tstamp", "Level", "Facility", "Message"); 8173 8174 i = first; 8175 do { 8176 e = &buf[i]; 8177 if (e->timestamp == 0) 8178 break; /* end */ 8179 8180 sbuf_printf(sb, "%10d %15ju %8s %8s ", 8181 e->seqno, e->timestamp, 8182 (e->level < nitems(devlog_level_strings) ? 8183 devlog_level_strings[e->level] : "UNKNOWN"), 8184 (e->facility < nitems(devlog_facility_strings) ? 8185 devlog_facility_strings[e->facility] : "UNKNOWN")); 8186 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 8187 e->params[2], e->params[3], e->params[4], 8188 e->params[5], e->params[6], e->params[7]); 8189 8190 if (++i == nentries) 8191 i = 0; 8192 } while (i != first); 8193 done: 8194 free(buf, M_CXGBE); 8195 return (rc); 8196 } 8197 8198 static int 8199 sysctl_devlog(SYSCTL_HANDLER_ARGS) 8200 { 8201 struct adapter *sc = arg1; 8202 int rc; 8203 struct sbuf *sb; 8204 8205 rc = sysctl_wire_old_buffer(req, 0); 8206 if (rc != 0) 8207 return (rc); 8208 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8209 if (sb == NULL) 8210 return (ENOMEM); 8211 8212 rc = sbuf_devlog(sc, sb, M_WAITOK); 8213 if (rc == 0) 8214 rc = sbuf_finish(sb); 8215 sbuf_delete(sb); 8216 return (rc); 8217 } 8218 8219 void 8220 t4_os_dump_devlog(struct adapter *sc) 8221 { 8222 int rc; 8223 struct sbuf sb; 8224 8225 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8226 return; 8227 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 8228 if (rc == 0) { 8229 rc = sbuf_finish(&sb); 8230 if (rc == 0) { 8231 log(LOG_DEBUG, "%s: device log follows.\n%s", 8232 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8233 } 8234 } 8235 sbuf_delete(&sb); 8236 } 8237 8238 static int 8239 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 8240 { 8241 struct adapter *sc = arg1; 8242 struct sbuf *sb; 8243 int rc; 8244 struct tp_fcoe_stats stats[MAX_NCHAN]; 8245 int i, nchan = sc->chip_params->nchan; 8246 8247 rc = sysctl_wire_old_buffer(req, 0); 8248 if (rc != 0) 8249 return (rc); 8250 8251 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8252 if (sb == NULL) 8253 return (ENOMEM); 8254 8255 for (i = 0; i < nchan; i++) 8256 t4_get_fcoe_stats(sc, i, &stats[i], 1); 8257 8258 if (nchan > 2) { 8259 sbuf_printf(sb, " channel 0 channel 1" 8260 " channel 2 channel 3"); 8261 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 8262 stats[0].octets_ddp, stats[1].octets_ddp, 8263 stats[2].octets_ddp, stats[3].octets_ddp); 8264 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 8265 stats[0].frames_ddp, stats[1].frames_ddp, 8266 stats[2].frames_ddp, stats[3].frames_ddp); 8267 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 8268 stats[0].frames_drop, stats[1].frames_drop, 8269 stats[2].frames_drop, stats[3].frames_drop); 8270 } else { 8271 sbuf_printf(sb, " channel 0 channel 1"); 8272 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 8273 stats[0].octets_ddp, stats[1].octets_ddp); 8274 sbuf_printf(sb, "\nframesDDP: %16u %16u", 8275 stats[0].frames_ddp, stats[1].frames_ddp); 8276 sbuf_printf(sb, "\nframesDrop: %16u %16u", 8277 stats[0].frames_drop, stats[1].frames_drop); 8278 } 8279 8280 rc = sbuf_finish(sb); 8281 sbuf_delete(sb); 8282 8283 return (rc); 8284 } 8285 8286 static int 8287 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 8288 { 8289 struct adapter *sc = arg1; 8290 struct sbuf *sb; 8291 int rc, i; 8292 unsigned int map, kbps, ipg, mode; 8293 unsigned int pace_tab[NTX_SCHED]; 8294 8295 rc = sysctl_wire_old_buffer(req, 0); 8296 if (rc != 0) 8297 return (rc); 8298 8299 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8300 if (sb == NULL) 8301 return (ENOMEM); 8302 8303 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 8304 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 8305 t4_read_pace_tbl(sc, pace_tab); 8306 8307 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 8308 "Class IPG (0.1 ns) Flow IPG (us)"); 8309 8310 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 8311 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 8312 sbuf_printf(sb, "\n %u %-5s %u ", i, 8313 (mode & (1 << i)) ? "flow" : "class", map & 3); 8314 if (kbps) 8315 sbuf_printf(sb, "%9u ", kbps); 8316 else 8317 sbuf_printf(sb, " disabled "); 8318 8319 if (ipg) 8320 sbuf_printf(sb, "%13u ", ipg); 8321 else 8322 sbuf_printf(sb, " disabled "); 8323 8324 if (pace_tab[i]) 8325 sbuf_printf(sb, "%10u", pace_tab[i]); 8326 else 8327 sbuf_printf(sb, " disabled"); 8328 } 8329 8330 rc = sbuf_finish(sb); 8331 sbuf_delete(sb); 8332 8333 return (rc); 8334 } 8335 8336 static int 8337 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 8338 { 8339 struct adapter *sc = arg1; 8340 struct sbuf *sb; 8341 int rc, i, j; 8342 uint64_t *p0, *p1; 8343 struct lb_port_stats s[2]; 8344 static const char *stat_name[] = { 8345 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 8346 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 8347 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 8348 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 8349 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 8350 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 8351 "BG2FramesTrunc:", "BG3FramesTrunc:" 8352 }; 8353 8354 rc = sysctl_wire_old_buffer(req, 0); 8355 if (rc != 0) 8356 return (rc); 8357 8358 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8359 if (sb == NULL) 8360 return (ENOMEM); 8361 8362 memset(s, 0, sizeof(s)); 8363 8364 for (i = 0; i < sc->chip_params->nchan; i += 2) { 8365 t4_get_lb_stats(sc, i, &s[0]); 8366 t4_get_lb_stats(sc, i + 1, &s[1]); 8367 8368 p0 = &s[0].octets; 8369 p1 = &s[1].octets; 8370 sbuf_printf(sb, "%s Loopback %u" 8371 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 8372 8373 for (j = 0; j < nitems(stat_name); j++) 8374 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 8375 *p0++, *p1++); 8376 } 8377 8378 rc = sbuf_finish(sb); 8379 sbuf_delete(sb); 8380 8381 return (rc); 8382 } 8383 8384 static int 8385 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 8386 { 8387 int rc = 0; 8388 struct port_info *pi = arg1; 8389 struct link_config *lc = &pi->link_cfg; 8390 struct sbuf *sb; 8391 8392 rc = sysctl_wire_old_buffer(req, 0); 8393 if (rc != 0) 8394 return(rc); 8395 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 8396 if (sb == NULL) 8397 return (ENOMEM); 8398 8399 if (lc->link_ok || lc->link_down_rc == 255) 8400 sbuf_printf(sb, "n/a"); 8401 else 8402 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 8403 8404 rc = sbuf_finish(sb); 8405 sbuf_delete(sb); 8406 8407 return (rc); 8408 } 8409 8410 struct mem_desc { 8411 unsigned int base; 8412 unsigned int limit; 8413 unsigned int idx; 8414 }; 8415 8416 static int 8417 mem_desc_cmp(const void *a, const void *b) 8418 { 8419 return ((const struct mem_desc *)a)->base - 8420 ((const struct mem_desc *)b)->base; 8421 } 8422 8423 static void 8424 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 8425 unsigned int to) 8426 { 8427 unsigned int size; 8428 8429 if (from == to) 8430 return; 8431 8432 size = to - from + 1; 8433 if (size == 0) 8434 return; 8435 8436 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 8437 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 8438 } 8439 8440 static int 8441 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 8442 { 8443 struct adapter *sc = arg1; 8444 struct sbuf *sb; 8445 int rc, i, n; 8446 uint32_t lo, hi, used, alloc; 8447 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 8448 static const char *region[] = { 8449 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 8450 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 8451 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 8452 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 8453 "RQUDP region:", "PBL region:", "TXPBL region:", 8454 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 8455 "On-chip queues:", "TLS keys:", 8456 }; 8457 struct mem_desc avail[4]; 8458 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 8459 struct mem_desc *md = mem; 8460 8461 rc = sysctl_wire_old_buffer(req, 0); 8462 if (rc != 0) 8463 return (rc); 8464 8465 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8466 if (sb == NULL) 8467 return (ENOMEM); 8468 8469 for (i = 0; i < nitems(mem); i++) { 8470 mem[i].limit = 0; 8471 mem[i].idx = i; 8472 } 8473 8474 /* Find and sort the populated memory ranges */ 8475 i = 0; 8476 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 8477 if (lo & F_EDRAM0_ENABLE) { 8478 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 8479 avail[i].base = G_EDRAM0_BASE(hi) << 20; 8480 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 8481 avail[i].idx = 0; 8482 i++; 8483 } 8484 if (lo & F_EDRAM1_ENABLE) { 8485 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 8486 avail[i].base = G_EDRAM1_BASE(hi) << 20; 8487 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 8488 avail[i].idx = 1; 8489 i++; 8490 } 8491 if (lo & F_EXT_MEM_ENABLE) { 8492 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 8493 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 8494 avail[i].limit = avail[i].base + 8495 (G_EXT_MEM_SIZE(hi) << 20); 8496 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 8497 i++; 8498 } 8499 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 8500 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 8501 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 8502 avail[i].limit = avail[i].base + 8503 (G_EXT_MEM1_SIZE(hi) << 20); 8504 avail[i].idx = 4; 8505 i++; 8506 } 8507 if (!i) /* no memory available */ 8508 return 0; 8509 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 8510 8511 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 8512 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 8513 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 8514 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 8515 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 8516 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 8517 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 8518 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 8519 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 8520 8521 /* the next few have explicit upper bounds */ 8522 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 8523 md->limit = md->base - 1 + 8524 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 8525 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 8526 md++; 8527 8528 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 8529 md->limit = md->base - 1 + 8530 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 8531 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 8532 md++; 8533 8534 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 8535 if (chip_id(sc) <= CHELSIO_T5) 8536 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 8537 else 8538 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 8539 md->limit = 0; 8540 } else { 8541 md->base = 0; 8542 md->idx = nitems(region); /* hide it */ 8543 } 8544 md++; 8545 8546 #define ulp_region(reg) \ 8547 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 8548 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 8549 8550 ulp_region(RX_ISCSI); 8551 ulp_region(RX_TDDP); 8552 ulp_region(TX_TPT); 8553 ulp_region(RX_STAG); 8554 ulp_region(RX_RQ); 8555 ulp_region(RX_RQUDP); 8556 ulp_region(RX_PBL); 8557 ulp_region(TX_PBL); 8558 #undef ulp_region 8559 8560 md->base = 0; 8561 md->idx = nitems(region); 8562 if (!is_t4(sc)) { 8563 uint32_t size = 0; 8564 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 8565 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 8566 8567 if (is_t5(sc)) { 8568 if (sge_ctrl & F_VFIFO_ENABLE) 8569 size = G_DBVFIFO_SIZE(fifo_size); 8570 } else 8571 size = G_T6_DBVFIFO_SIZE(fifo_size); 8572 8573 if (size) { 8574 md->base = G_BASEADDR(t4_read_reg(sc, 8575 A_SGE_DBVFIFO_BADDR)); 8576 md->limit = md->base + (size << 2) - 1; 8577 } 8578 } 8579 md++; 8580 8581 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 8582 md->limit = 0; 8583 md++; 8584 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 8585 md->limit = 0; 8586 md++; 8587 8588 md->base = sc->vres.ocq.start; 8589 if (sc->vres.ocq.size) 8590 md->limit = md->base + sc->vres.ocq.size - 1; 8591 else 8592 md->idx = nitems(region); /* hide it */ 8593 md++; 8594 8595 md->base = sc->vres.key.start; 8596 if (sc->vres.key.size) 8597 md->limit = md->base + sc->vres.key.size - 1; 8598 else 8599 md->idx = nitems(region); /* hide it */ 8600 md++; 8601 8602 /* add any address-space holes, there can be up to 3 */ 8603 for (n = 0; n < i - 1; n++) 8604 if (avail[n].limit < avail[n + 1].base) 8605 (md++)->base = avail[n].limit; 8606 if (avail[n].limit) 8607 (md++)->base = avail[n].limit; 8608 8609 n = md - mem; 8610 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 8611 8612 for (lo = 0; lo < i; lo++) 8613 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 8614 avail[lo].limit - 1); 8615 8616 sbuf_printf(sb, "\n"); 8617 for (i = 0; i < n; i++) { 8618 if (mem[i].idx >= nitems(region)) 8619 continue; /* skip holes */ 8620 if (!mem[i].limit) 8621 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 8622 mem_region_show(sb, region[mem[i].idx], mem[i].base, 8623 mem[i].limit); 8624 } 8625 8626 sbuf_printf(sb, "\n"); 8627 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 8628 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 8629 mem_region_show(sb, "uP RAM:", lo, hi); 8630 8631 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 8632 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 8633 mem_region_show(sb, "uP Extmem2:", lo, hi); 8634 8635 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 8636 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 8637 G_PMRXMAXPAGE(lo), 8638 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 8639 (lo & F_PMRXNUMCHN) ? 2 : 1); 8640 8641 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 8642 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 8643 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 8644 G_PMTXMAXPAGE(lo), 8645 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 8646 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 8647 sbuf_printf(sb, "%u p-structs\n", 8648 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 8649 8650 for (i = 0; i < 4; i++) { 8651 if (chip_id(sc) > CHELSIO_T5) 8652 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 8653 else 8654 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 8655 if (is_t5(sc)) { 8656 used = G_T5_USED(lo); 8657 alloc = G_T5_ALLOC(lo); 8658 } else { 8659 used = G_USED(lo); 8660 alloc = G_ALLOC(lo); 8661 } 8662 /* For T6 these are MAC buffer groups */ 8663 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 8664 i, used, alloc); 8665 } 8666 for (i = 0; i < sc->chip_params->nchan; i++) { 8667 if (chip_id(sc) > CHELSIO_T5) 8668 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 8669 else 8670 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 8671 if (is_t5(sc)) { 8672 used = G_T5_USED(lo); 8673 alloc = G_T5_ALLOC(lo); 8674 } else { 8675 used = G_USED(lo); 8676 alloc = G_ALLOC(lo); 8677 } 8678 /* For T6 these are MAC buffer groups */ 8679 sbuf_printf(sb, 8680 "\nLoopback %d using %u pages out of %u allocated", 8681 i, used, alloc); 8682 } 8683 8684 rc = sbuf_finish(sb); 8685 sbuf_delete(sb); 8686 8687 return (rc); 8688 } 8689 8690 static inline void 8691 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 8692 { 8693 *mask = x | y; 8694 y = htobe64(y); 8695 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 8696 } 8697 8698 static int 8699 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 8700 { 8701 struct adapter *sc = arg1; 8702 struct sbuf *sb; 8703 int rc, i; 8704 8705 MPASS(chip_id(sc) <= CHELSIO_T5); 8706 8707 rc = sysctl_wire_old_buffer(req, 0); 8708 if (rc != 0) 8709 return (rc); 8710 8711 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8712 if (sb == NULL) 8713 return (ENOMEM); 8714 8715 sbuf_printf(sb, 8716 "Idx Ethernet address Mask Vld Ports PF" 8717 " VF Replication P0 P1 P2 P3 ML"); 8718 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 8719 uint64_t tcamx, tcamy, mask; 8720 uint32_t cls_lo, cls_hi; 8721 uint8_t addr[ETHER_ADDR_LEN]; 8722 8723 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 8724 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 8725 if (tcamx & tcamy) 8726 continue; 8727 tcamxy2valmask(tcamx, tcamy, addr, &mask); 8728 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 8729 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 8730 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 8731 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 8732 addr[3], addr[4], addr[5], (uintmax_t)mask, 8733 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 8734 G_PORTMAP(cls_hi), G_PF(cls_lo), 8735 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 8736 8737 if (cls_lo & F_REPLICATE) { 8738 struct fw_ldst_cmd ldst_cmd; 8739 8740 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 8741 ldst_cmd.op_to_addrspace = 8742 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 8743 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8744 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 8745 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 8746 ldst_cmd.u.mps.rplc.fid_idx = 8747 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 8748 V_FW_LDST_CMD_IDX(i)); 8749 8750 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8751 "t4mps"); 8752 if (rc) 8753 break; 8754 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 8755 sizeof(ldst_cmd), &ldst_cmd); 8756 end_synchronized_op(sc, 0); 8757 8758 if (rc != 0) { 8759 sbuf_printf(sb, "%36d", rc); 8760 rc = 0; 8761 } else { 8762 sbuf_printf(sb, " %08x %08x %08x %08x", 8763 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 8764 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 8765 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 8766 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 8767 } 8768 } else 8769 sbuf_printf(sb, "%36s", ""); 8770 8771 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 8772 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 8773 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 8774 } 8775 8776 if (rc) 8777 (void) sbuf_finish(sb); 8778 else 8779 rc = sbuf_finish(sb); 8780 sbuf_delete(sb); 8781 8782 return (rc); 8783 } 8784 8785 static int 8786 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 8787 { 8788 struct adapter *sc = arg1; 8789 struct sbuf *sb; 8790 int rc, i; 8791 8792 MPASS(chip_id(sc) > CHELSIO_T5); 8793 8794 rc = sysctl_wire_old_buffer(req, 0); 8795 if (rc != 0) 8796 return (rc); 8797 8798 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8799 if (sb == NULL) 8800 return (ENOMEM); 8801 8802 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 8803 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 8804 " Replication" 8805 " P0 P1 P2 P3 ML\n"); 8806 8807 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 8808 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 8809 uint16_t ivlan; 8810 uint64_t tcamx, tcamy, val, mask; 8811 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 8812 uint8_t addr[ETHER_ADDR_LEN]; 8813 8814 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 8815 if (i < 256) 8816 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 8817 else 8818 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 8819 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 8820 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 8821 tcamy = G_DMACH(val) << 32; 8822 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 8823 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 8824 lookup_type = G_DATALKPTYPE(data2); 8825 port_num = G_DATAPORTNUM(data2); 8826 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8827 /* Inner header VNI */ 8828 vniy = ((data2 & F_DATAVIDH2) << 23) | 8829 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 8830 dip_hit = data2 & F_DATADIPHIT; 8831 vlan_vld = 0; 8832 } else { 8833 vniy = 0; 8834 dip_hit = 0; 8835 vlan_vld = data2 & F_DATAVIDH2; 8836 ivlan = G_VIDL(val); 8837 } 8838 8839 ctl |= V_CTLXYBITSEL(1); 8840 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 8841 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 8842 tcamx = G_DMACH(val) << 32; 8843 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 8844 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 8845 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8846 /* Inner header VNI mask */ 8847 vnix = ((data2 & F_DATAVIDH2) << 23) | 8848 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 8849 } else 8850 vnix = 0; 8851 8852 if (tcamx & tcamy) 8853 continue; 8854 tcamxy2valmask(tcamx, tcamy, addr, &mask); 8855 8856 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 8857 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 8858 8859 if (lookup_type && lookup_type != M_DATALKPTYPE) { 8860 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 8861 "%012jx %06x %06x - - %3c" 8862 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 8863 addr[1], addr[2], addr[3], addr[4], addr[5], 8864 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 8865 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 8866 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 8867 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 8868 } else { 8869 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 8870 "%012jx - - ", i, addr[0], addr[1], 8871 addr[2], addr[3], addr[4], addr[5], 8872 (uintmax_t)mask); 8873 8874 if (vlan_vld) 8875 sbuf_printf(sb, "%4u Y ", ivlan); 8876 else 8877 sbuf_printf(sb, " - N "); 8878 8879 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 8880 lookup_type ? 'I' : 'O', port_num, 8881 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 8882 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 8883 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 8884 } 8885 8886 8887 if (cls_lo & F_T6_REPLICATE) { 8888 struct fw_ldst_cmd ldst_cmd; 8889 8890 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 8891 ldst_cmd.op_to_addrspace = 8892 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 8893 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8894 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 8895 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 8896 ldst_cmd.u.mps.rplc.fid_idx = 8897 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 8898 V_FW_LDST_CMD_IDX(i)); 8899 8900 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8901 "t6mps"); 8902 if (rc) 8903 break; 8904 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 8905 sizeof(ldst_cmd), &ldst_cmd); 8906 end_synchronized_op(sc, 0); 8907 8908 if (rc != 0) { 8909 sbuf_printf(sb, "%72d", rc); 8910 rc = 0; 8911 } else { 8912 sbuf_printf(sb, " %08x %08x %08x %08x" 8913 " %08x %08x %08x %08x", 8914 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 8915 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 8916 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 8917 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 8918 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 8919 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 8920 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 8921 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 8922 } 8923 } else 8924 sbuf_printf(sb, "%72s", ""); 8925 8926 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 8927 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 8928 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 8929 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 8930 } 8931 8932 if (rc) 8933 (void) sbuf_finish(sb); 8934 else 8935 rc = sbuf_finish(sb); 8936 sbuf_delete(sb); 8937 8938 return (rc); 8939 } 8940 8941 static int 8942 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 8943 { 8944 struct adapter *sc = arg1; 8945 struct sbuf *sb; 8946 int rc; 8947 uint16_t mtus[NMTUS]; 8948 8949 rc = sysctl_wire_old_buffer(req, 0); 8950 if (rc != 0) 8951 return (rc); 8952 8953 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8954 if (sb == NULL) 8955 return (ENOMEM); 8956 8957 t4_read_mtu_tbl(sc, mtus, NULL); 8958 8959 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 8960 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 8961 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 8962 mtus[14], mtus[15]); 8963 8964 rc = sbuf_finish(sb); 8965 sbuf_delete(sb); 8966 8967 return (rc); 8968 } 8969 8970 static int 8971 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 8972 { 8973 struct adapter *sc = arg1; 8974 struct sbuf *sb; 8975 int rc, i; 8976 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 8977 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 8978 static const char *tx_stats[MAX_PM_NSTATS] = { 8979 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 8980 "Tx FIFO wait", NULL, "Tx latency" 8981 }; 8982 static const char *rx_stats[MAX_PM_NSTATS] = { 8983 "Read:", "Write bypass:", "Write mem:", "Flush:", 8984 "Rx FIFO wait", NULL, "Rx latency" 8985 }; 8986 8987 rc = sysctl_wire_old_buffer(req, 0); 8988 if (rc != 0) 8989 return (rc); 8990 8991 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8992 if (sb == NULL) 8993 return (ENOMEM); 8994 8995 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 8996 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 8997 8998 sbuf_printf(sb, " Tx pcmds Tx bytes"); 8999 for (i = 0; i < 4; i++) { 9000 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9001 tx_cyc[i]); 9002 } 9003 9004 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 9005 for (i = 0; i < 4; i++) { 9006 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9007 rx_cyc[i]); 9008 } 9009 9010 if (chip_id(sc) > CHELSIO_T5) { 9011 sbuf_printf(sb, 9012 "\n Total wait Total occupancy"); 9013 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9014 tx_cyc[i]); 9015 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9016 rx_cyc[i]); 9017 9018 i += 2; 9019 MPASS(i < nitems(tx_stats)); 9020 9021 sbuf_printf(sb, 9022 "\n Reads Total wait"); 9023 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9024 tx_cyc[i]); 9025 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9026 rx_cyc[i]); 9027 } 9028 9029 rc = sbuf_finish(sb); 9030 sbuf_delete(sb); 9031 9032 return (rc); 9033 } 9034 9035 static int 9036 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 9037 { 9038 struct adapter *sc = arg1; 9039 struct sbuf *sb; 9040 int rc; 9041 struct tp_rdma_stats stats; 9042 9043 rc = sysctl_wire_old_buffer(req, 0); 9044 if (rc != 0) 9045 return (rc); 9046 9047 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9048 if (sb == NULL) 9049 return (ENOMEM); 9050 9051 mtx_lock(&sc->reg_lock); 9052 t4_tp_get_rdma_stats(sc, &stats, 0); 9053 mtx_unlock(&sc->reg_lock); 9054 9055 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 9056 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 9057 9058 rc = sbuf_finish(sb); 9059 sbuf_delete(sb); 9060 9061 return (rc); 9062 } 9063 9064 static int 9065 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 9066 { 9067 struct adapter *sc = arg1; 9068 struct sbuf *sb; 9069 int rc; 9070 struct tp_tcp_stats v4, v6; 9071 9072 rc = sysctl_wire_old_buffer(req, 0); 9073 if (rc != 0) 9074 return (rc); 9075 9076 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9077 if (sb == NULL) 9078 return (ENOMEM); 9079 9080 mtx_lock(&sc->reg_lock); 9081 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 9082 mtx_unlock(&sc->reg_lock); 9083 9084 sbuf_printf(sb, 9085 " IP IPv6\n"); 9086 sbuf_printf(sb, "OutRsts: %20u %20u\n", 9087 v4.tcp_out_rsts, v6.tcp_out_rsts); 9088 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 9089 v4.tcp_in_segs, v6.tcp_in_segs); 9090 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 9091 v4.tcp_out_segs, v6.tcp_out_segs); 9092 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 9093 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 9094 9095 rc = sbuf_finish(sb); 9096 sbuf_delete(sb); 9097 9098 return (rc); 9099 } 9100 9101 static int 9102 sysctl_tids(SYSCTL_HANDLER_ARGS) 9103 { 9104 struct adapter *sc = arg1; 9105 struct sbuf *sb; 9106 int rc; 9107 struct tid_info *t = &sc->tids; 9108 9109 rc = sysctl_wire_old_buffer(req, 0); 9110 if (rc != 0) 9111 return (rc); 9112 9113 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9114 if (sb == NULL) 9115 return (ENOMEM); 9116 9117 if (t->natids) { 9118 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 9119 t->atids_in_use); 9120 } 9121 9122 if (t->nhpftids) { 9123 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 9124 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 9125 } 9126 9127 if (t->ntids) { 9128 sbuf_printf(sb, "TID range: "); 9129 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9130 uint32_t b, hb; 9131 9132 if (chip_id(sc) <= CHELSIO_T5) { 9133 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 9134 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 9135 } else { 9136 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 9137 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 9138 } 9139 9140 if (b) 9141 sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1); 9142 sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); 9143 } else 9144 sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1); 9145 sbuf_printf(sb, ", in use: %u\n", 9146 atomic_load_acq_int(&t->tids_in_use)); 9147 } 9148 9149 if (t->nstids) { 9150 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 9151 t->stid_base + t->nstids - 1, t->stids_in_use); 9152 } 9153 9154 if (t->nftids) { 9155 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 9156 t->ftid_end, t->ftids_in_use); 9157 } 9158 9159 if (t->netids) { 9160 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 9161 t->etid_base + t->netids - 1, t->etids_in_use); 9162 } 9163 9164 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 9165 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 9166 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 9167 9168 rc = sbuf_finish(sb); 9169 sbuf_delete(sb); 9170 9171 return (rc); 9172 } 9173 9174 static int 9175 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 9176 { 9177 struct adapter *sc = arg1; 9178 struct sbuf *sb; 9179 int rc; 9180 struct tp_err_stats stats; 9181 9182 rc = sysctl_wire_old_buffer(req, 0); 9183 if (rc != 0) 9184 return (rc); 9185 9186 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9187 if (sb == NULL) 9188 return (ENOMEM); 9189 9190 mtx_lock(&sc->reg_lock); 9191 t4_tp_get_err_stats(sc, &stats, 0); 9192 mtx_unlock(&sc->reg_lock); 9193 9194 if (sc->chip_params->nchan > 2) { 9195 sbuf_printf(sb, " channel 0 channel 1" 9196 " channel 2 channel 3\n"); 9197 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 9198 stats.mac_in_errs[0], stats.mac_in_errs[1], 9199 stats.mac_in_errs[2], stats.mac_in_errs[3]); 9200 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 9201 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 9202 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 9203 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 9204 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 9205 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 9206 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 9207 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 9208 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 9209 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 9210 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 9211 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 9212 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 9213 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 9214 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 9215 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 9216 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 9217 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 9218 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 9219 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 9220 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 9221 } else { 9222 sbuf_printf(sb, " channel 0 channel 1\n"); 9223 sbuf_printf(sb, "macInErrs: %10u %10u\n", 9224 stats.mac_in_errs[0], stats.mac_in_errs[1]); 9225 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 9226 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 9227 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 9228 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 9229 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 9230 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 9231 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 9232 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 9233 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 9234 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 9235 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 9236 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 9237 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 9238 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 9239 } 9240 9241 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 9242 stats.ofld_no_neigh, stats.ofld_cong_defer); 9243 9244 rc = sbuf_finish(sb); 9245 sbuf_delete(sb); 9246 9247 return (rc); 9248 } 9249 9250 static int 9251 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 9252 { 9253 struct adapter *sc = arg1; 9254 struct tp_params *tpp = &sc->params.tp; 9255 u_int mask; 9256 int rc; 9257 9258 mask = tpp->la_mask >> 16; 9259 rc = sysctl_handle_int(oidp, &mask, 0, req); 9260 if (rc != 0 || req->newptr == NULL) 9261 return (rc); 9262 if (mask > 0xffff) 9263 return (EINVAL); 9264 tpp->la_mask = mask << 16; 9265 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 9266 9267 return (0); 9268 } 9269 9270 struct field_desc { 9271 const char *name; 9272 u_int start; 9273 u_int width; 9274 }; 9275 9276 static void 9277 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 9278 { 9279 char buf[32]; 9280 int line_size = 0; 9281 9282 while (f->name) { 9283 uint64_t mask = (1ULL << f->width) - 1; 9284 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 9285 ((uintmax_t)v >> f->start) & mask); 9286 9287 if (line_size + len >= 79) { 9288 line_size = 8; 9289 sbuf_printf(sb, "\n "); 9290 } 9291 sbuf_printf(sb, "%s ", buf); 9292 line_size += len + 1; 9293 f++; 9294 } 9295 sbuf_printf(sb, "\n"); 9296 } 9297 9298 static const struct field_desc tp_la0[] = { 9299 { "RcfOpCodeOut", 60, 4 }, 9300 { "State", 56, 4 }, 9301 { "WcfState", 52, 4 }, 9302 { "RcfOpcSrcOut", 50, 2 }, 9303 { "CRxError", 49, 1 }, 9304 { "ERxError", 48, 1 }, 9305 { "SanityFailed", 47, 1 }, 9306 { "SpuriousMsg", 46, 1 }, 9307 { "FlushInputMsg", 45, 1 }, 9308 { "FlushInputCpl", 44, 1 }, 9309 { "RssUpBit", 43, 1 }, 9310 { "RssFilterHit", 42, 1 }, 9311 { "Tid", 32, 10 }, 9312 { "InitTcb", 31, 1 }, 9313 { "LineNumber", 24, 7 }, 9314 { "Emsg", 23, 1 }, 9315 { "EdataOut", 22, 1 }, 9316 { "Cmsg", 21, 1 }, 9317 { "CdataOut", 20, 1 }, 9318 { "EreadPdu", 19, 1 }, 9319 { "CreadPdu", 18, 1 }, 9320 { "TunnelPkt", 17, 1 }, 9321 { "RcfPeerFin", 16, 1 }, 9322 { "RcfReasonOut", 12, 4 }, 9323 { "TxCchannel", 10, 2 }, 9324 { "RcfTxChannel", 8, 2 }, 9325 { "RxEchannel", 6, 2 }, 9326 { "RcfRxChannel", 5, 1 }, 9327 { "RcfDataOutSrdy", 4, 1 }, 9328 { "RxDvld", 3, 1 }, 9329 { "RxOoDvld", 2, 1 }, 9330 { "RxCongestion", 1, 1 }, 9331 { "TxCongestion", 0, 1 }, 9332 { NULL } 9333 }; 9334 9335 static const struct field_desc tp_la1[] = { 9336 { "CplCmdIn", 56, 8 }, 9337 { "CplCmdOut", 48, 8 }, 9338 { "ESynOut", 47, 1 }, 9339 { "EAckOut", 46, 1 }, 9340 { "EFinOut", 45, 1 }, 9341 { "ERstOut", 44, 1 }, 9342 { "SynIn", 43, 1 }, 9343 { "AckIn", 42, 1 }, 9344 { "FinIn", 41, 1 }, 9345 { "RstIn", 40, 1 }, 9346 { "DataIn", 39, 1 }, 9347 { "DataInVld", 38, 1 }, 9348 { "PadIn", 37, 1 }, 9349 { "RxBufEmpty", 36, 1 }, 9350 { "RxDdp", 35, 1 }, 9351 { "RxFbCongestion", 34, 1 }, 9352 { "TxFbCongestion", 33, 1 }, 9353 { "TxPktSumSrdy", 32, 1 }, 9354 { "RcfUlpType", 28, 4 }, 9355 { "Eread", 27, 1 }, 9356 { "Ebypass", 26, 1 }, 9357 { "Esave", 25, 1 }, 9358 { "Static0", 24, 1 }, 9359 { "Cread", 23, 1 }, 9360 { "Cbypass", 22, 1 }, 9361 { "Csave", 21, 1 }, 9362 { "CPktOut", 20, 1 }, 9363 { "RxPagePoolFull", 18, 2 }, 9364 { "RxLpbkPkt", 17, 1 }, 9365 { "TxLpbkPkt", 16, 1 }, 9366 { "RxVfValid", 15, 1 }, 9367 { "SynLearned", 14, 1 }, 9368 { "SetDelEntry", 13, 1 }, 9369 { "SetInvEntry", 12, 1 }, 9370 { "CpcmdDvld", 11, 1 }, 9371 { "CpcmdSave", 10, 1 }, 9372 { "RxPstructsFull", 8, 2 }, 9373 { "EpcmdDvld", 7, 1 }, 9374 { "EpcmdFlush", 6, 1 }, 9375 { "EpcmdTrimPrefix", 5, 1 }, 9376 { "EpcmdTrimPostfix", 4, 1 }, 9377 { "ERssIp4Pkt", 3, 1 }, 9378 { "ERssIp6Pkt", 2, 1 }, 9379 { "ERssTcpUdpPkt", 1, 1 }, 9380 { "ERssFceFipPkt", 0, 1 }, 9381 { NULL } 9382 }; 9383 9384 static const struct field_desc tp_la2[] = { 9385 { "CplCmdIn", 56, 8 }, 9386 { "MpsVfVld", 55, 1 }, 9387 { "MpsPf", 52, 3 }, 9388 { "MpsVf", 44, 8 }, 9389 { "SynIn", 43, 1 }, 9390 { "AckIn", 42, 1 }, 9391 { "FinIn", 41, 1 }, 9392 { "RstIn", 40, 1 }, 9393 { "DataIn", 39, 1 }, 9394 { "DataInVld", 38, 1 }, 9395 { "PadIn", 37, 1 }, 9396 { "RxBufEmpty", 36, 1 }, 9397 { "RxDdp", 35, 1 }, 9398 { "RxFbCongestion", 34, 1 }, 9399 { "TxFbCongestion", 33, 1 }, 9400 { "TxPktSumSrdy", 32, 1 }, 9401 { "RcfUlpType", 28, 4 }, 9402 { "Eread", 27, 1 }, 9403 { "Ebypass", 26, 1 }, 9404 { "Esave", 25, 1 }, 9405 { "Static0", 24, 1 }, 9406 { "Cread", 23, 1 }, 9407 { "Cbypass", 22, 1 }, 9408 { "Csave", 21, 1 }, 9409 { "CPktOut", 20, 1 }, 9410 { "RxPagePoolFull", 18, 2 }, 9411 { "RxLpbkPkt", 17, 1 }, 9412 { "TxLpbkPkt", 16, 1 }, 9413 { "RxVfValid", 15, 1 }, 9414 { "SynLearned", 14, 1 }, 9415 { "SetDelEntry", 13, 1 }, 9416 { "SetInvEntry", 12, 1 }, 9417 { "CpcmdDvld", 11, 1 }, 9418 { "CpcmdSave", 10, 1 }, 9419 { "RxPstructsFull", 8, 2 }, 9420 { "EpcmdDvld", 7, 1 }, 9421 { "EpcmdFlush", 6, 1 }, 9422 { "EpcmdTrimPrefix", 5, 1 }, 9423 { "EpcmdTrimPostfix", 4, 1 }, 9424 { "ERssIp4Pkt", 3, 1 }, 9425 { "ERssIp6Pkt", 2, 1 }, 9426 { "ERssTcpUdpPkt", 1, 1 }, 9427 { "ERssFceFipPkt", 0, 1 }, 9428 { NULL } 9429 }; 9430 9431 static void 9432 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 9433 { 9434 9435 field_desc_show(sb, *p, tp_la0); 9436 } 9437 9438 static void 9439 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 9440 { 9441 9442 if (idx) 9443 sbuf_printf(sb, "\n"); 9444 field_desc_show(sb, p[0], tp_la0); 9445 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9446 field_desc_show(sb, p[1], tp_la0); 9447 } 9448 9449 static void 9450 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 9451 { 9452 9453 if (idx) 9454 sbuf_printf(sb, "\n"); 9455 field_desc_show(sb, p[0], tp_la0); 9456 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9457 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 9458 } 9459 9460 static int 9461 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 9462 { 9463 struct adapter *sc = arg1; 9464 struct sbuf *sb; 9465 uint64_t *buf, *p; 9466 int rc; 9467 u_int i, inc; 9468 void (*show_func)(struct sbuf *, uint64_t *, int); 9469 9470 rc = sysctl_wire_old_buffer(req, 0); 9471 if (rc != 0) 9472 return (rc); 9473 9474 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9475 if (sb == NULL) 9476 return (ENOMEM); 9477 9478 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 9479 9480 t4_tp_read_la(sc, buf, NULL); 9481 p = buf; 9482 9483 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 9484 case 2: 9485 inc = 2; 9486 show_func = tp_la_show2; 9487 break; 9488 case 3: 9489 inc = 2; 9490 show_func = tp_la_show3; 9491 break; 9492 default: 9493 inc = 1; 9494 show_func = tp_la_show; 9495 } 9496 9497 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 9498 (*show_func)(sb, p, i); 9499 9500 rc = sbuf_finish(sb); 9501 sbuf_delete(sb); 9502 free(buf, M_CXGBE); 9503 return (rc); 9504 } 9505 9506 static int 9507 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 9508 { 9509 struct adapter *sc = arg1; 9510 struct sbuf *sb; 9511 int rc; 9512 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 9513 9514 rc = sysctl_wire_old_buffer(req, 0); 9515 if (rc != 0) 9516 return (rc); 9517 9518 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9519 if (sb == NULL) 9520 return (ENOMEM); 9521 9522 t4_get_chan_txrate(sc, nrate, orate); 9523 9524 if (sc->chip_params->nchan > 2) { 9525 sbuf_printf(sb, " channel 0 channel 1" 9526 " channel 2 channel 3\n"); 9527 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 9528 nrate[0], nrate[1], nrate[2], nrate[3]); 9529 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 9530 orate[0], orate[1], orate[2], orate[3]); 9531 } else { 9532 sbuf_printf(sb, " channel 0 channel 1\n"); 9533 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 9534 nrate[0], nrate[1]); 9535 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 9536 orate[0], orate[1]); 9537 } 9538 9539 rc = sbuf_finish(sb); 9540 sbuf_delete(sb); 9541 9542 return (rc); 9543 } 9544 9545 static int 9546 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 9547 { 9548 struct adapter *sc = arg1; 9549 struct sbuf *sb; 9550 uint32_t *buf, *p; 9551 int rc, i; 9552 9553 rc = sysctl_wire_old_buffer(req, 0); 9554 if (rc != 0) 9555 return (rc); 9556 9557 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9558 if (sb == NULL) 9559 return (ENOMEM); 9560 9561 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 9562 M_ZERO | M_WAITOK); 9563 9564 t4_ulprx_read_la(sc, buf); 9565 p = buf; 9566 9567 sbuf_printf(sb, " Pcmd Type Message" 9568 " Data"); 9569 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 9570 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 9571 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 9572 } 9573 9574 rc = sbuf_finish(sb); 9575 sbuf_delete(sb); 9576 free(buf, M_CXGBE); 9577 return (rc); 9578 } 9579 9580 static int 9581 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 9582 { 9583 struct adapter *sc = arg1; 9584 struct sbuf *sb; 9585 int rc, v; 9586 9587 MPASS(chip_id(sc) >= CHELSIO_T5); 9588 9589 rc = sysctl_wire_old_buffer(req, 0); 9590 if (rc != 0) 9591 return (rc); 9592 9593 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9594 if (sb == NULL) 9595 return (ENOMEM); 9596 9597 v = t4_read_reg(sc, A_SGE_STAT_CFG); 9598 if (G_STATSOURCE_T5(v) == 7) { 9599 int mode; 9600 9601 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); 9602 if (mode == 0) { 9603 sbuf_printf(sb, "total %d, incomplete %d", 9604 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9605 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9606 } else if (mode == 1) { 9607 sbuf_printf(sb, "total %d, data overflow %d", 9608 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9609 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9610 } else { 9611 sbuf_printf(sb, "unknown mode %d", mode); 9612 } 9613 } 9614 rc = sbuf_finish(sb); 9615 sbuf_delete(sb); 9616 9617 return (rc); 9618 } 9619 9620 static int 9621 sysctl_cpus(SYSCTL_HANDLER_ARGS) 9622 { 9623 struct adapter *sc = arg1; 9624 enum cpu_sets op = arg2; 9625 cpuset_t cpuset; 9626 struct sbuf *sb; 9627 int i, rc; 9628 9629 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 9630 9631 CPU_ZERO(&cpuset); 9632 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 9633 if (rc != 0) 9634 return (rc); 9635 9636 rc = sysctl_wire_old_buffer(req, 0); 9637 if (rc != 0) 9638 return (rc); 9639 9640 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9641 if (sb == NULL) 9642 return (ENOMEM); 9643 9644 CPU_FOREACH(i) 9645 sbuf_printf(sb, "%d ", i); 9646 rc = sbuf_finish(sb); 9647 sbuf_delete(sb); 9648 9649 return (rc); 9650 } 9651 9652 #ifdef TCP_OFFLOAD 9653 static int 9654 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 9655 { 9656 struct adapter *sc = arg1; 9657 int *old_ports, *new_ports; 9658 int i, new_count, rc; 9659 9660 if (req->newptr == NULL && req->oldptr == NULL) 9661 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 9662 sizeof(sc->tt.tls_rx_ports[0]))); 9663 9664 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 9665 if (rc) 9666 return (rc); 9667 9668 if (sc->tt.num_tls_rx_ports == 0) { 9669 i = -1; 9670 rc = SYSCTL_OUT(req, &i, sizeof(i)); 9671 } else 9672 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 9673 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 9674 if (rc == 0 && req->newptr != NULL) { 9675 new_count = req->newlen / sizeof(new_ports[0]); 9676 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 9677 M_WAITOK); 9678 rc = SYSCTL_IN(req, new_ports, new_count * 9679 sizeof(new_ports[0])); 9680 if (rc) 9681 goto err; 9682 9683 /* Allow setting to a single '-1' to clear the list. */ 9684 if (new_count == 1 && new_ports[0] == -1) { 9685 ADAPTER_LOCK(sc); 9686 old_ports = sc->tt.tls_rx_ports; 9687 sc->tt.tls_rx_ports = NULL; 9688 sc->tt.num_tls_rx_ports = 0; 9689 ADAPTER_UNLOCK(sc); 9690 free(old_ports, M_CXGBE); 9691 } else { 9692 for (i = 0; i < new_count; i++) { 9693 if (new_ports[i] < 1 || 9694 new_ports[i] > IPPORT_MAX) { 9695 rc = EINVAL; 9696 goto err; 9697 } 9698 } 9699 9700 ADAPTER_LOCK(sc); 9701 old_ports = sc->tt.tls_rx_ports; 9702 sc->tt.tls_rx_ports = new_ports; 9703 sc->tt.num_tls_rx_ports = new_count; 9704 ADAPTER_UNLOCK(sc); 9705 free(old_ports, M_CXGBE); 9706 new_ports = NULL; 9707 } 9708 err: 9709 free(new_ports, M_CXGBE); 9710 } 9711 end_synchronized_op(sc, 0); 9712 return (rc); 9713 } 9714 9715 static void 9716 unit_conv(char *buf, size_t len, u_int val, u_int factor) 9717 { 9718 u_int rem = val % factor; 9719 9720 if (rem == 0) 9721 snprintf(buf, len, "%u", val / factor); 9722 else { 9723 while (rem % 10 == 0) 9724 rem /= 10; 9725 snprintf(buf, len, "%u.%u", val / factor, rem); 9726 } 9727 } 9728 9729 static int 9730 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 9731 { 9732 struct adapter *sc = arg1; 9733 char buf[16]; 9734 u_int res, re; 9735 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9736 9737 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 9738 switch (arg2) { 9739 case 0: 9740 /* timer_tick */ 9741 re = G_TIMERRESOLUTION(res); 9742 break; 9743 case 1: 9744 /* TCP timestamp tick */ 9745 re = G_TIMESTAMPRESOLUTION(res); 9746 break; 9747 case 2: 9748 /* DACK tick */ 9749 re = G_DELAYEDACKRESOLUTION(res); 9750 break; 9751 default: 9752 return (EDOOFUS); 9753 } 9754 9755 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 9756 9757 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 9758 } 9759 9760 static int 9761 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 9762 { 9763 struct adapter *sc = arg1; 9764 u_int res, dack_re, v; 9765 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9766 9767 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 9768 dack_re = G_DELAYEDACKRESOLUTION(res); 9769 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 9770 9771 return (sysctl_handle_int(oidp, &v, 0, req)); 9772 } 9773 9774 static int 9775 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 9776 { 9777 struct adapter *sc = arg1; 9778 int reg = arg2; 9779 u_int tre; 9780 u_long tp_tick_us, v; 9781 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9782 9783 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 9784 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 9785 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 9786 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 9787 9788 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 9789 tp_tick_us = (cclk_ps << tre) / 1000000; 9790 9791 if (reg == A_TP_INIT_SRTT) 9792 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 9793 else 9794 v = tp_tick_us * t4_read_reg(sc, reg); 9795 9796 return (sysctl_handle_long(oidp, &v, 0, req)); 9797 } 9798 9799 /* 9800 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 9801 * passed to this function. 9802 */ 9803 static int 9804 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 9805 { 9806 struct adapter *sc = arg1; 9807 int idx = arg2; 9808 u_int v; 9809 9810 MPASS(idx >= 0 && idx <= 24); 9811 9812 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 9813 9814 return (sysctl_handle_int(oidp, &v, 0, req)); 9815 } 9816 9817 static int 9818 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 9819 { 9820 struct adapter *sc = arg1; 9821 int idx = arg2; 9822 u_int shift, v, r; 9823 9824 MPASS(idx >= 0 && idx < 16); 9825 9826 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 9827 shift = (idx & 3) << 3; 9828 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 9829 9830 return (sysctl_handle_int(oidp, &v, 0, req)); 9831 } 9832 9833 static int 9834 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 9835 { 9836 struct vi_info *vi = arg1; 9837 struct adapter *sc = vi->pi->adapter; 9838 int idx, rc, i; 9839 struct sge_ofld_rxq *ofld_rxq; 9840 uint8_t v; 9841 9842 idx = vi->ofld_tmr_idx; 9843 9844 rc = sysctl_handle_int(oidp, &idx, 0, req); 9845 if (rc != 0 || req->newptr == NULL) 9846 return (rc); 9847 9848 if (idx < 0 || idx >= SGE_NTIMERS) 9849 return (EINVAL); 9850 9851 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 9852 "t4otmr"); 9853 if (rc) 9854 return (rc); 9855 9856 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 9857 for_each_ofld_rxq(vi, i, ofld_rxq) { 9858 #ifdef atomic_store_rel_8 9859 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 9860 #else 9861 ofld_rxq->iq.intr_params = v; 9862 #endif 9863 } 9864 vi->ofld_tmr_idx = idx; 9865 9866 end_synchronized_op(sc, LOCK_HELD); 9867 return (0); 9868 } 9869 9870 static int 9871 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 9872 { 9873 struct vi_info *vi = arg1; 9874 struct adapter *sc = vi->pi->adapter; 9875 int idx, rc; 9876 9877 idx = vi->ofld_pktc_idx; 9878 9879 rc = sysctl_handle_int(oidp, &idx, 0, req); 9880 if (rc != 0 || req->newptr == NULL) 9881 return (rc); 9882 9883 if (idx < -1 || idx >= SGE_NCOUNTERS) 9884 return (EINVAL); 9885 9886 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 9887 "t4opktc"); 9888 if (rc) 9889 return (rc); 9890 9891 if (vi->flags & VI_INIT_DONE) 9892 rc = EBUSY; /* cannot be changed once the queues are created */ 9893 else 9894 vi->ofld_pktc_idx = idx; 9895 9896 end_synchronized_op(sc, LOCK_HELD); 9897 return (rc); 9898 } 9899 #endif 9900 9901 static int 9902 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 9903 { 9904 int rc; 9905 9906 if (cntxt->cid > M_CTXTQID) 9907 return (EINVAL); 9908 9909 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 9910 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 9911 return (EINVAL); 9912 9913 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 9914 if (rc) 9915 return (rc); 9916 9917 if (sc->flags & FW_OK) { 9918 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 9919 &cntxt->data[0]); 9920 if (rc == 0) 9921 goto done; 9922 } 9923 9924 /* 9925 * Read via firmware failed or wasn't even attempted. Read directly via 9926 * the backdoor. 9927 */ 9928 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 9929 done: 9930 end_synchronized_op(sc, 0); 9931 return (rc); 9932 } 9933 9934 static int 9935 load_fw(struct adapter *sc, struct t4_data *fw) 9936 { 9937 int rc; 9938 uint8_t *fw_data; 9939 9940 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 9941 if (rc) 9942 return (rc); 9943 9944 /* 9945 * The firmware, with the sole exception of the memory parity error 9946 * handler, runs from memory and not flash. It is almost always safe to 9947 * install a new firmware on a running system. Just set bit 1 in 9948 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 9949 */ 9950 if (sc->flags & FULL_INIT_DONE && 9951 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 9952 rc = EBUSY; 9953 goto done; 9954 } 9955 9956 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 9957 if (fw_data == NULL) { 9958 rc = ENOMEM; 9959 goto done; 9960 } 9961 9962 rc = copyin(fw->data, fw_data, fw->len); 9963 if (rc == 0) 9964 rc = -t4_load_fw(sc, fw_data, fw->len); 9965 9966 free(fw_data, M_CXGBE); 9967 done: 9968 end_synchronized_op(sc, 0); 9969 return (rc); 9970 } 9971 9972 static int 9973 load_cfg(struct adapter *sc, struct t4_data *cfg) 9974 { 9975 int rc; 9976 uint8_t *cfg_data = NULL; 9977 9978 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9979 if (rc) 9980 return (rc); 9981 9982 if (cfg->len == 0) { 9983 /* clear */ 9984 rc = -t4_load_cfg(sc, NULL, 0); 9985 goto done; 9986 } 9987 9988 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 9989 if (cfg_data == NULL) { 9990 rc = ENOMEM; 9991 goto done; 9992 } 9993 9994 rc = copyin(cfg->data, cfg_data, cfg->len); 9995 if (rc == 0) 9996 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 9997 9998 free(cfg_data, M_CXGBE); 9999 done: 10000 end_synchronized_op(sc, 0); 10001 return (rc); 10002 } 10003 10004 static int 10005 load_boot(struct adapter *sc, struct t4_bootrom *br) 10006 { 10007 int rc; 10008 uint8_t *br_data = NULL; 10009 u_int offset; 10010 10011 if (br->len > 1024 * 1024) 10012 return (EFBIG); 10013 10014 if (br->pf_offset == 0) { 10015 /* pfidx */ 10016 if (br->pfidx_addr > 7) 10017 return (EINVAL); 10018 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 10019 A_PCIE_PF_EXPROM_OFST))); 10020 } else if (br->pf_offset == 1) { 10021 /* offset */ 10022 offset = G_OFFSET(br->pfidx_addr); 10023 } else { 10024 return (EINVAL); 10025 } 10026 10027 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 10028 if (rc) 10029 return (rc); 10030 10031 if (br->len == 0) { 10032 /* clear */ 10033 rc = -t4_load_boot(sc, NULL, offset, 0); 10034 goto done; 10035 } 10036 10037 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 10038 if (br_data == NULL) { 10039 rc = ENOMEM; 10040 goto done; 10041 } 10042 10043 rc = copyin(br->data, br_data, br->len); 10044 if (rc == 0) 10045 rc = -t4_load_boot(sc, br_data, offset, br->len); 10046 10047 free(br_data, M_CXGBE); 10048 done: 10049 end_synchronized_op(sc, 0); 10050 return (rc); 10051 } 10052 10053 static int 10054 load_bootcfg(struct adapter *sc, struct t4_data *bc) 10055 { 10056 int rc; 10057 uint8_t *bc_data = NULL; 10058 10059 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 10060 if (rc) 10061 return (rc); 10062 10063 if (bc->len == 0) { 10064 /* clear */ 10065 rc = -t4_load_bootcfg(sc, NULL, 0); 10066 goto done; 10067 } 10068 10069 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 10070 if (bc_data == NULL) { 10071 rc = ENOMEM; 10072 goto done; 10073 } 10074 10075 rc = copyin(bc->data, bc_data, bc->len); 10076 if (rc == 0) 10077 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 10078 10079 free(bc_data, M_CXGBE); 10080 done: 10081 end_synchronized_op(sc, 0); 10082 return (rc); 10083 } 10084 10085 static int 10086 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 10087 { 10088 int rc; 10089 struct cudbg_init *cudbg; 10090 void *handle, *buf; 10091 10092 /* buf is large, don't block if no memory is available */ 10093 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 10094 if (buf == NULL) 10095 return (ENOMEM); 10096 10097 handle = cudbg_alloc_handle(); 10098 if (handle == NULL) { 10099 rc = ENOMEM; 10100 goto done; 10101 } 10102 10103 cudbg = cudbg_get_init(handle); 10104 cudbg->adap = sc; 10105 cudbg->print = (cudbg_print_cb)printf; 10106 10107 #ifndef notyet 10108 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 10109 __func__, dump->wr_flash, dump->len, dump->data); 10110 #endif 10111 10112 if (dump->wr_flash) 10113 cudbg->use_flash = 1; 10114 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 10115 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 10116 10117 rc = cudbg_collect(handle, buf, &dump->len); 10118 if (rc != 0) 10119 goto done; 10120 10121 rc = copyout(buf, dump->data, dump->len); 10122 done: 10123 cudbg_free_handle(handle); 10124 free(buf, M_CXGBE); 10125 return (rc); 10126 } 10127 10128 static void 10129 free_offload_policy(struct t4_offload_policy *op) 10130 { 10131 struct offload_rule *r; 10132 int i; 10133 10134 if (op == NULL) 10135 return; 10136 10137 r = &op->rule[0]; 10138 for (i = 0; i < op->nrules; i++, r++) { 10139 free(r->bpf_prog.bf_insns, M_CXGBE); 10140 } 10141 free(op->rule, M_CXGBE); 10142 free(op, M_CXGBE); 10143 } 10144 10145 static int 10146 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 10147 { 10148 int i, rc, len; 10149 struct t4_offload_policy *op, *old; 10150 struct bpf_program *bf; 10151 const struct offload_settings *s; 10152 struct offload_rule *r; 10153 void *u; 10154 10155 if (!is_offload(sc)) 10156 return (ENODEV); 10157 10158 if (uop->nrules == 0) { 10159 /* Delete installed policies. */ 10160 op = NULL; 10161 goto set_policy; 10162 } else if (uop->nrules > 256) { /* arbitrary */ 10163 return (E2BIG); 10164 } 10165 10166 /* Copy userspace offload policy to kernel */ 10167 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 10168 op->nrules = uop->nrules; 10169 len = op->nrules * sizeof(struct offload_rule); 10170 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10171 rc = copyin(uop->rule, op->rule, len); 10172 if (rc) { 10173 free(op->rule, M_CXGBE); 10174 free(op, M_CXGBE); 10175 return (rc); 10176 } 10177 10178 r = &op->rule[0]; 10179 for (i = 0; i < op->nrules; i++, r++) { 10180 10181 /* Validate open_type */ 10182 if (r->open_type != OPEN_TYPE_LISTEN && 10183 r->open_type != OPEN_TYPE_ACTIVE && 10184 r->open_type != OPEN_TYPE_PASSIVE && 10185 r->open_type != OPEN_TYPE_DONTCARE) { 10186 error: 10187 /* 10188 * Rules 0 to i have malloc'd filters that need to be 10189 * freed. Rules i+1 to nrules have userspace pointers 10190 * and should be left alone. 10191 */ 10192 op->nrules = i; 10193 free_offload_policy(op); 10194 return (rc); 10195 } 10196 10197 /* Validate settings */ 10198 s = &r->settings; 10199 if ((s->offload != 0 && s->offload != 1) || 10200 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 10201 s->sched_class < -1 || 10202 s->sched_class >= sc->chip_params->nsched_cls) { 10203 rc = EINVAL; 10204 goto error; 10205 } 10206 10207 bf = &r->bpf_prog; 10208 u = bf->bf_insns; /* userspace ptr */ 10209 bf->bf_insns = NULL; 10210 if (bf->bf_len == 0) { 10211 /* legal, matches everything */ 10212 continue; 10213 } 10214 len = bf->bf_len * sizeof(*bf->bf_insns); 10215 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10216 rc = copyin(u, bf->bf_insns, len); 10217 if (rc != 0) 10218 goto error; 10219 10220 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 10221 rc = EINVAL; 10222 goto error; 10223 } 10224 } 10225 set_policy: 10226 rw_wlock(&sc->policy_lock); 10227 old = sc->policy; 10228 sc->policy = op; 10229 rw_wunlock(&sc->policy_lock); 10230 free_offload_policy(old); 10231 10232 return (0); 10233 } 10234 10235 #define MAX_READ_BUF_SIZE (128 * 1024) 10236 static int 10237 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 10238 { 10239 uint32_t addr, remaining, n; 10240 uint32_t *buf; 10241 int rc; 10242 uint8_t *dst; 10243 10244 rc = validate_mem_range(sc, mr->addr, mr->len); 10245 if (rc != 0) 10246 return (rc); 10247 10248 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 10249 addr = mr->addr; 10250 remaining = mr->len; 10251 dst = (void *)mr->data; 10252 10253 while (remaining) { 10254 n = min(remaining, MAX_READ_BUF_SIZE); 10255 read_via_memwin(sc, 2, addr, buf, n); 10256 10257 rc = copyout(buf, dst, n); 10258 if (rc != 0) 10259 break; 10260 10261 dst += n; 10262 remaining -= n; 10263 addr += n; 10264 } 10265 10266 free(buf, M_CXGBE); 10267 return (rc); 10268 } 10269 #undef MAX_READ_BUF_SIZE 10270 10271 static int 10272 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 10273 { 10274 int rc; 10275 10276 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 10277 return (EINVAL); 10278 10279 if (i2cd->len > sizeof(i2cd->data)) 10280 return (EFBIG); 10281 10282 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 10283 if (rc) 10284 return (rc); 10285 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 10286 i2cd->offset, i2cd->len, &i2cd->data[0]); 10287 end_synchronized_op(sc, 0); 10288 10289 return (rc); 10290 } 10291 10292 static int 10293 clear_stats(struct adapter *sc, u_int port_id) 10294 { 10295 int i, v, bg_map; 10296 struct port_info *pi; 10297 struct vi_info *vi; 10298 struct sge_rxq *rxq; 10299 struct sge_txq *txq; 10300 struct sge_wrq *wrq; 10301 #ifdef TCP_OFFLOAD 10302 struct sge_ofld_rxq *ofld_rxq; 10303 #endif 10304 10305 if (port_id >= sc->params.nports) 10306 return (EINVAL); 10307 pi = sc->port[port_id]; 10308 if (pi == NULL) 10309 return (EIO); 10310 10311 /* MAC stats */ 10312 t4_clr_port_stats(sc, pi->tx_chan); 10313 pi->tx_parse_error = 0; 10314 pi->tnl_cong_drops = 0; 10315 mtx_lock(&sc->reg_lock); 10316 for_each_vi(pi, v, vi) { 10317 if (vi->flags & VI_INIT_DONE) 10318 t4_clr_vi_stats(sc, vi->vin); 10319 } 10320 bg_map = pi->mps_bg_map; 10321 v = 0; /* reuse */ 10322 while (bg_map) { 10323 i = ffs(bg_map) - 1; 10324 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 10325 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 10326 bg_map &= ~(1 << i); 10327 } 10328 mtx_unlock(&sc->reg_lock); 10329 10330 /* 10331 * Since this command accepts a port, clear stats for 10332 * all VIs on this port. 10333 */ 10334 for_each_vi(pi, v, vi) { 10335 if (vi->flags & VI_INIT_DONE) { 10336 10337 for_each_rxq(vi, i, rxq) { 10338 #if defined(INET) || defined(INET6) 10339 rxq->lro.lro_queued = 0; 10340 rxq->lro.lro_flushed = 0; 10341 #endif 10342 rxq->rxcsum = 0; 10343 rxq->vlan_extraction = 0; 10344 10345 rxq->fl.cl_allocated = 0; 10346 rxq->fl.cl_recycled = 0; 10347 rxq->fl.cl_fast_recycled = 0; 10348 } 10349 10350 for_each_txq(vi, i, txq) { 10351 txq->txcsum = 0; 10352 txq->tso_wrs = 0; 10353 txq->vlan_insertion = 0; 10354 txq->imm_wrs = 0; 10355 txq->sgl_wrs = 0; 10356 txq->txpkt_wrs = 0; 10357 txq->txpkts0_wrs = 0; 10358 txq->txpkts1_wrs = 0; 10359 txq->txpkts0_pkts = 0; 10360 txq->txpkts1_pkts = 0; 10361 txq->raw_wrs = 0; 10362 txq->tls_wrs = 0; 10363 txq->kern_tls_records = 0; 10364 txq->kern_tls_short = 0; 10365 txq->kern_tls_partial = 0; 10366 txq->kern_tls_full = 0; 10367 txq->kern_tls_octets = 0; 10368 txq->kern_tls_waste = 0; 10369 txq->kern_tls_options = 0; 10370 txq->kern_tls_header = 0; 10371 txq->kern_tls_fin = 0; 10372 txq->kern_tls_fin_short = 0; 10373 txq->kern_tls_cbc = 0; 10374 txq->kern_tls_gcm = 0; 10375 mp_ring_reset_stats(txq->r); 10376 } 10377 10378 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 10379 for_each_ofld_txq(vi, i, wrq) { 10380 wrq->tx_wrs_direct = 0; 10381 wrq->tx_wrs_copied = 0; 10382 } 10383 #endif 10384 #ifdef TCP_OFFLOAD 10385 for_each_ofld_rxq(vi, i, ofld_rxq) { 10386 ofld_rxq->fl.cl_allocated = 0; 10387 ofld_rxq->fl.cl_recycled = 0; 10388 ofld_rxq->fl.cl_fast_recycled = 0; 10389 } 10390 #endif 10391 10392 if (IS_MAIN_VI(vi)) { 10393 wrq = &sc->sge.ctrlq[pi->port_id]; 10394 wrq->tx_wrs_direct = 0; 10395 wrq->tx_wrs_copied = 0; 10396 } 10397 } 10398 } 10399 10400 return (0); 10401 } 10402 10403 int 10404 t4_os_find_pci_capability(struct adapter *sc, int cap) 10405 { 10406 int i; 10407 10408 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 10409 } 10410 10411 int 10412 t4_os_pci_save_state(struct adapter *sc) 10413 { 10414 device_t dev; 10415 struct pci_devinfo *dinfo; 10416 10417 dev = sc->dev; 10418 dinfo = device_get_ivars(dev); 10419 10420 pci_cfg_save(dev, dinfo, 0); 10421 return (0); 10422 } 10423 10424 int 10425 t4_os_pci_restore_state(struct adapter *sc) 10426 { 10427 device_t dev; 10428 struct pci_devinfo *dinfo; 10429 10430 dev = sc->dev; 10431 dinfo = device_get_ivars(dev); 10432 10433 pci_cfg_restore(dev, dinfo); 10434 return (0); 10435 } 10436 10437 void 10438 t4_os_portmod_changed(struct port_info *pi) 10439 { 10440 struct adapter *sc = pi->adapter; 10441 struct vi_info *vi; 10442 struct ifnet *ifp; 10443 static const char *mod_str[] = { 10444 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 10445 }; 10446 10447 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 10448 ("%s: port_type %u", __func__, pi->port_type)); 10449 10450 vi = &pi->vi[0]; 10451 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 10452 PORT_LOCK(pi); 10453 build_medialist(pi); 10454 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 10455 fixup_link_config(pi); 10456 apply_link_config(pi); 10457 } 10458 PORT_UNLOCK(pi); 10459 end_synchronized_op(sc, LOCK_HELD); 10460 } 10461 10462 ifp = vi->ifp; 10463 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 10464 if_printf(ifp, "transceiver unplugged.\n"); 10465 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 10466 if_printf(ifp, "unknown transceiver inserted.\n"); 10467 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 10468 if_printf(ifp, "unsupported transceiver inserted.\n"); 10469 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 10470 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 10471 port_top_speed(pi), mod_str[pi->mod_type]); 10472 } else { 10473 if_printf(ifp, "transceiver (type %d) inserted.\n", 10474 pi->mod_type); 10475 } 10476 } 10477 10478 void 10479 t4_os_link_changed(struct port_info *pi) 10480 { 10481 struct vi_info *vi; 10482 struct ifnet *ifp; 10483 struct link_config *lc; 10484 int v; 10485 10486 PORT_LOCK_ASSERT_OWNED(pi); 10487 10488 for_each_vi(pi, v, vi) { 10489 ifp = vi->ifp; 10490 if (ifp == NULL) 10491 continue; 10492 10493 lc = &pi->link_cfg; 10494 if (lc->link_ok) { 10495 ifp->if_baudrate = IF_Mbps(lc->speed); 10496 if_link_state_change(ifp, LINK_STATE_UP); 10497 } else { 10498 if_link_state_change(ifp, LINK_STATE_DOWN); 10499 } 10500 } 10501 } 10502 10503 void 10504 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 10505 { 10506 struct adapter *sc; 10507 10508 sx_slock(&t4_list_lock); 10509 SLIST_FOREACH(sc, &t4_list, link) { 10510 /* 10511 * func should not make any assumptions about what state sc is 10512 * in - the only guarantee is that sc->sc_lock is a valid lock. 10513 */ 10514 func(sc, arg); 10515 } 10516 sx_sunlock(&t4_list_lock); 10517 } 10518 10519 static int 10520 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 10521 struct thread *td) 10522 { 10523 int rc; 10524 struct adapter *sc = dev->si_drv1; 10525 10526 rc = priv_check(td, PRIV_DRIVER); 10527 if (rc != 0) 10528 return (rc); 10529 10530 switch (cmd) { 10531 case CHELSIO_T4_GETREG: { 10532 struct t4_reg *edata = (struct t4_reg *)data; 10533 10534 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10535 return (EFAULT); 10536 10537 if (edata->size == 4) 10538 edata->val = t4_read_reg(sc, edata->addr); 10539 else if (edata->size == 8) 10540 edata->val = t4_read_reg64(sc, edata->addr); 10541 else 10542 return (EINVAL); 10543 10544 break; 10545 } 10546 case CHELSIO_T4_SETREG: { 10547 struct t4_reg *edata = (struct t4_reg *)data; 10548 10549 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10550 return (EFAULT); 10551 10552 if (edata->size == 4) { 10553 if (edata->val & 0xffffffff00000000) 10554 return (EINVAL); 10555 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 10556 } else if (edata->size == 8) 10557 t4_write_reg64(sc, edata->addr, edata->val); 10558 else 10559 return (EINVAL); 10560 break; 10561 } 10562 case CHELSIO_T4_REGDUMP: { 10563 struct t4_regdump *regs = (struct t4_regdump *)data; 10564 int reglen = t4_get_regs_len(sc); 10565 uint8_t *buf; 10566 10567 if (regs->len < reglen) { 10568 regs->len = reglen; /* hint to the caller */ 10569 return (ENOBUFS); 10570 } 10571 10572 regs->len = reglen; 10573 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 10574 get_regs(sc, regs, buf); 10575 rc = copyout(buf, regs->data, reglen); 10576 free(buf, M_CXGBE); 10577 break; 10578 } 10579 case CHELSIO_T4_GET_FILTER_MODE: 10580 rc = get_filter_mode(sc, (uint32_t *)data); 10581 break; 10582 case CHELSIO_T4_SET_FILTER_MODE: 10583 rc = set_filter_mode(sc, *(uint32_t *)data); 10584 break; 10585 case CHELSIO_T4_GET_FILTER: 10586 rc = get_filter(sc, (struct t4_filter *)data); 10587 break; 10588 case CHELSIO_T4_SET_FILTER: 10589 rc = set_filter(sc, (struct t4_filter *)data); 10590 break; 10591 case CHELSIO_T4_DEL_FILTER: 10592 rc = del_filter(sc, (struct t4_filter *)data); 10593 break; 10594 case CHELSIO_T4_GET_SGE_CONTEXT: 10595 rc = get_sge_context(sc, (struct t4_sge_context *)data); 10596 break; 10597 case CHELSIO_T4_LOAD_FW: 10598 rc = load_fw(sc, (struct t4_data *)data); 10599 break; 10600 case CHELSIO_T4_GET_MEM: 10601 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 10602 break; 10603 case CHELSIO_T4_GET_I2C: 10604 rc = read_i2c(sc, (struct t4_i2c_data *)data); 10605 break; 10606 case CHELSIO_T4_CLEAR_STATS: 10607 rc = clear_stats(sc, *(uint32_t *)data); 10608 break; 10609 case CHELSIO_T4_SCHED_CLASS: 10610 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 10611 break; 10612 case CHELSIO_T4_SCHED_QUEUE: 10613 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 10614 break; 10615 case CHELSIO_T4_GET_TRACER: 10616 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 10617 break; 10618 case CHELSIO_T4_SET_TRACER: 10619 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 10620 break; 10621 case CHELSIO_T4_LOAD_CFG: 10622 rc = load_cfg(sc, (struct t4_data *)data); 10623 break; 10624 case CHELSIO_T4_LOAD_BOOT: 10625 rc = load_boot(sc, (struct t4_bootrom *)data); 10626 break; 10627 case CHELSIO_T4_LOAD_BOOTCFG: 10628 rc = load_bootcfg(sc, (struct t4_data *)data); 10629 break; 10630 case CHELSIO_T4_CUDBG_DUMP: 10631 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 10632 break; 10633 case CHELSIO_T4_SET_OFLD_POLICY: 10634 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 10635 break; 10636 default: 10637 rc = ENOTTY; 10638 } 10639 10640 return (rc); 10641 } 10642 10643 #ifdef TCP_OFFLOAD 10644 static int 10645 toe_capability(struct vi_info *vi, int enable) 10646 { 10647 int rc; 10648 struct port_info *pi = vi->pi; 10649 struct adapter *sc = pi->adapter; 10650 10651 ASSERT_SYNCHRONIZED_OP(sc); 10652 10653 if (!is_offload(sc)) 10654 return (ENODEV); 10655 10656 if (enable) { 10657 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 10658 /* TOE is already enabled. */ 10659 return (0); 10660 } 10661 10662 /* 10663 * We need the port's queues around so that we're able to send 10664 * and receive CPLs to/from the TOE even if the ifnet for this 10665 * port has never been UP'd administratively. 10666 */ 10667 if (!(vi->flags & VI_INIT_DONE)) { 10668 rc = vi_full_init(vi); 10669 if (rc) 10670 return (rc); 10671 } 10672 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 10673 rc = vi_full_init(&pi->vi[0]); 10674 if (rc) 10675 return (rc); 10676 } 10677 10678 if (isset(&sc->offload_map, pi->port_id)) { 10679 /* TOE is enabled on another VI of this port. */ 10680 pi->uld_vis++; 10681 return (0); 10682 } 10683 10684 if (!uld_active(sc, ULD_TOM)) { 10685 rc = t4_activate_uld(sc, ULD_TOM); 10686 if (rc == EAGAIN) { 10687 log(LOG_WARNING, 10688 "You must kldload t4_tom.ko before trying " 10689 "to enable TOE on a cxgbe interface.\n"); 10690 } 10691 if (rc != 0) 10692 return (rc); 10693 KASSERT(sc->tom_softc != NULL, 10694 ("%s: TOM activated but softc NULL", __func__)); 10695 KASSERT(uld_active(sc, ULD_TOM), 10696 ("%s: TOM activated but flag not set", __func__)); 10697 } 10698 10699 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 10700 if (!uld_active(sc, ULD_IWARP)) 10701 (void) t4_activate_uld(sc, ULD_IWARP); 10702 if (!uld_active(sc, ULD_ISCSI)) 10703 (void) t4_activate_uld(sc, ULD_ISCSI); 10704 10705 pi->uld_vis++; 10706 setbit(&sc->offload_map, pi->port_id); 10707 } else { 10708 pi->uld_vis--; 10709 10710 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 10711 return (0); 10712 10713 KASSERT(uld_active(sc, ULD_TOM), 10714 ("%s: TOM never initialized?", __func__)); 10715 clrbit(&sc->offload_map, pi->port_id); 10716 } 10717 10718 return (0); 10719 } 10720 10721 /* 10722 * Add an upper layer driver to the global list. 10723 */ 10724 int 10725 t4_register_uld(struct uld_info *ui) 10726 { 10727 int rc = 0; 10728 struct uld_info *u; 10729 10730 sx_xlock(&t4_uld_list_lock); 10731 SLIST_FOREACH(u, &t4_uld_list, link) { 10732 if (u->uld_id == ui->uld_id) { 10733 rc = EEXIST; 10734 goto done; 10735 } 10736 } 10737 10738 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 10739 ui->refcount = 0; 10740 done: 10741 sx_xunlock(&t4_uld_list_lock); 10742 return (rc); 10743 } 10744 10745 int 10746 t4_unregister_uld(struct uld_info *ui) 10747 { 10748 int rc = EINVAL; 10749 struct uld_info *u; 10750 10751 sx_xlock(&t4_uld_list_lock); 10752 10753 SLIST_FOREACH(u, &t4_uld_list, link) { 10754 if (u == ui) { 10755 if (ui->refcount > 0) { 10756 rc = EBUSY; 10757 goto done; 10758 } 10759 10760 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 10761 rc = 0; 10762 goto done; 10763 } 10764 } 10765 done: 10766 sx_xunlock(&t4_uld_list_lock); 10767 return (rc); 10768 } 10769 10770 int 10771 t4_activate_uld(struct adapter *sc, int id) 10772 { 10773 int rc; 10774 struct uld_info *ui; 10775 10776 ASSERT_SYNCHRONIZED_OP(sc); 10777 10778 if (id < 0 || id > ULD_MAX) 10779 return (EINVAL); 10780 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 10781 10782 sx_slock(&t4_uld_list_lock); 10783 10784 SLIST_FOREACH(ui, &t4_uld_list, link) { 10785 if (ui->uld_id == id) { 10786 if (!(sc->flags & FULL_INIT_DONE)) { 10787 rc = adapter_full_init(sc); 10788 if (rc != 0) 10789 break; 10790 } 10791 10792 rc = ui->activate(sc); 10793 if (rc == 0) { 10794 setbit(&sc->active_ulds, id); 10795 ui->refcount++; 10796 } 10797 break; 10798 } 10799 } 10800 10801 sx_sunlock(&t4_uld_list_lock); 10802 10803 return (rc); 10804 } 10805 10806 int 10807 t4_deactivate_uld(struct adapter *sc, int id) 10808 { 10809 int rc; 10810 struct uld_info *ui; 10811 10812 ASSERT_SYNCHRONIZED_OP(sc); 10813 10814 if (id < 0 || id > ULD_MAX) 10815 return (EINVAL); 10816 rc = ENXIO; 10817 10818 sx_slock(&t4_uld_list_lock); 10819 10820 SLIST_FOREACH(ui, &t4_uld_list, link) { 10821 if (ui->uld_id == id) { 10822 rc = ui->deactivate(sc); 10823 if (rc == 0) { 10824 clrbit(&sc->active_ulds, id); 10825 ui->refcount--; 10826 } 10827 break; 10828 } 10829 } 10830 10831 sx_sunlock(&t4_uld_list_lock); 10832 10833 return (rc); 10834 } 10835 10836 int 10837 uld_active(struct adapter *sc, int uld_id) 10838 { 10839 10840 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 10841 10842 return (isset(&sc->active_ulds, uld_id)); 10843 } 10844 #endif 10845 10846 /* 10847 * t = ptr to tunable. 10848 * nc = number of CPUs. 10849 * c = compiled in default for that tunable. 10850 */ 10851 static void 10852 calculate_nqueues(int *t, int nc, const int c) 10853 { 10854 int nq; 10855 10856 if (*t > 0) 10857 return; 10858 nq = *t < 0 ? -*t : c; 10859 *t = min(nc, nq); 10860 } 10861 10862 /* 10863 * Come up with reasonable defaults for some of the tunables, provided they're 10864 * not set by the user (in which case we'll use the values as is). 10865 */ 10866 static void 10867 tweak_tunables(void) 10868 { 10869 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 10870 10871 if (t4_ntxq < 1) { 10872 #ifdef RSS 10873 t4_ntxq = rss_getnumbuckets(); 10874 #else 10875 calculate_nqueues(&t4_ntxq, nc, NTXQ); 10876 #endif 10877 } 10878 10879 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 10880 10881 if (t4_nrxq < 1) { 10882 #ifdef RSS 10883 t4_nrxq = rss_getnumbuckets(); 10884 #else 10885 calculate_nqueues(&t4_nrxq, nc, NRXQ); 10886 #endif 10887 } 10888 10889 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 10890 10891 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 10892 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 10893 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 10894 #endif 10895 #ifdef TCP_OFFLOAD 10896 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 10897 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 10898 #endif 10899 10900 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 10901 if (t4_toecaps_allowed == -1) 10902 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 10903 #else 10904 if (t4_toecaps_allowed == -1) 10905 t4_toecaps_allowed = 0; 10906 #endif 10907 10908 #ifdef TCP_OFFLOAD 10909 if (t4_rdmacaps_allowed == -1) { 10910 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 10911 FW_CAPS_CONFIG_RDMA_RDMAC; 10912 } 10913 10914 if (t4_iscsicaps_allowed == -1) { 10915 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 10916 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 10917 FW_CAPS_CONFIG_ISCSI_T10DIF; 10918 } 10919 10920 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 10921 t4_tmr_idx_ofld = TMR_IDX_OFLD; 10922 10923 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 10924 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 10925 #else 10926 if (t4_rdmacaps_allowed == -1) 10927 t4_rdmacaps_allowed = 0; 10928 10929 if (t4_iscsicaps_allowed == -1) 10930 t4_iscsicaps_allowed = 0; 10931 #endif 10932 10933 #ifdef DEV_NETMAP 10934 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 10935 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 10936 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 10937 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 10938 #endif 10939 10940 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 10941 t4_tmr_idx = TMR_IDX; 10942 10943 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 10944 t4_pktc_idx = PKTC_IDX; 10945 10946 if (t4_qsize_txq < 128) 10947 t4_qsize_txq = 128; 10948 10949 if (t4_qsize_rxq < 128) 10950 t4_qsize_rxq = 128; 10951 while (t4_qsize_rxq & 7) 10952 t4_qsize_rxq++; 10953 10954 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 10955 10956 /* 10957 * Number of VIs to create per-port. The first VI is the "main" regular 10958 * VI for the port. The rest are additional virtual interfaces on the 10959 * same physical port. Note that the main VI does not have native 10960 * netmap support but the extra VIs do. 10961 * 10962 * Limit the number of VIs per port to the number of available 10963 * MAC addresses per port. 10964 */ 10965 if (t4_num_vis < 1) 10966 t4_num_vis = 1; 10967 if (t4_num_vis > nitems(vi_mac_funcs)) { 10968 t4_num_vis = nitems(vi_mac_funcs); 10969 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 10970 } 10971 10972 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 10973 pcie_relaxed_ordering = 1; 10974 #if defined(__i386__) || defined(__amd64__) 10975 if (cpu_vendor_id == CPU_VENDOR_INTEL) 10976 pcie_relaxed_ordering = 0; 10977 #endif 10978 } 10979 } 10980 10981 #ifdef DDB 10982 static void 10983 t4_dump_tcb(struct adapter *sc, int tid) 10984 { 10985 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 10986 10987 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 10988 save = t4_read_reg(sc, reg); 10989 base = sc->memwin[2].mw_base; 10990 10991 /* Dump TCB for the tid */ 10992 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10993 tcb_addr += tid * TCB_SIZE; 10994 10995 if (is_t4(sc)) { 10996 pf = 0; 10997 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 10998 } else { 10999 pf = V_PFNUM(sc->pf); 11000 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 11001 } 11002 t4_write_reg(sc, reg, win_pos | pf); 11003 t4_read_reg(sc, reg); 11004 11005 off = tcb_addr - win_pos; 11006 for (i = 0; i < 4; i++) { 11007 uint32_t buf[8]; 11008 for (j = 0; j < 8; j++, off += 4) 11009 buf[j] = htonl(t4_read_reg(sc, base + off)); 11010 11011 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 11012 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 11013 buf[7]); 11014 } 11015 11016 t4_write_reg(sc, reg, save); 11017 t4_read_reg(sc, reg); 11018 } 11019 11020 static void 11021 t4_dump_devlog(struct adapter *sc) 11022 { 11023 struct devlog_params *dparams = &sc->params.devlog; 11024 struct fw_devlog_e e; 11025 int i, first, j, m, nentries, rc; 11026 uint64_t ftstamp = UINT64_MAX; 11027 11028 if (dparams->start == 0) { 11029 db_printf("devlog params not valid\n"); 11030 return; 11031 } 11032 11033 nentries = dparams->size / sizeof(struct fw_devlog_e); 11034 m = fwmtype_to_hwmtype(dparams->memtype); 11035 11036 /* Find the first entry. */ 11037 first = -1; 11038 for (i = 0; i < nentries && !db_pager_quit; i++) { 11039 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 11040 sizeof(e), (void *)&e); 11041 if (rc != 0) 11042 break; 11043 11044 if (e.timestamp == 0) 11045 break; 11046 11047 e.timestamp = be64toh(e.timestamp); 11048 if (e.timestamp < ftstamp) { 11049 ftstamp = e.timestamp; 11050 first = i; 11051 } 11052 } 11053 11054 if (first == -1) 11055 return; 11056 11057 i = first; 11058 do { 11059 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 11060 sizeof(e), (void *)&e); 11061 if (rc != 0) 11062 return; 11063 11064 if (e.timestamp == 0) 11065 return; 11066 11067 e.timestamp = be64toh(e.timestamp); 11068 e.seqno = be32toh(e.seqno); 11069 for (j = 0; j < 8; j++) 11070 e.params[j] = be32toh(e.params[j]); 11071 11072 db_printf("%10d %15ju %8s %8s ", 11073 e.seqno, e.timestamp, 11074 (e.level < nitems(devlog_level_strings) ? 11075 devlog_level_strings[e.level] : "UNKNOWN"), 11076 (e.facility < nitems(devlog_facility_strings) ? 11077 devlog_facility_strings[e.facility] : "UNKNOWN")); 11078 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 11079 e.params[3], e.params[4], e.params[5], e.params[6], 11080 e.params[7]); 11081 11082 if (++i == nentries) 11083 i = 0; 11084 } while (i != first && !db_pager_quit); 11085 } 11086 11087 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 11088 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 11089 11090 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 11091 { 11092 device_t dev; 11093 int t; 11094 bool valid; 11095 11096 valid = false; 11097 t = db_read_token(); 11098 if (t == tIDENT) { 11099 dev = device_lookup_by_name(db_tok_string); 11100 valid = true; 11101 } 11102 db_skip_to_eol(); 11103 if (!valid) { 11104 db_printf("usage: show t4 devlog <nexus>\n"); 11105 return; 11106 } 11107 11108 if (dev == NULL) { 11109 db_printf("device not found\n"); 11110 return; 11111 } 11112 11113 t4_dump_devlog(device_get_softc(dev)); 11114 } 11115 11116 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 11117 { 11118 device_t dev; 11119 int radix, tid, t; 11120 bool valid; 11121 11122 valid = false; 11123 radix = db_radix; 11124 db_radix = 10; 11125 t = db_read_token(); 11126 if (t == tIDENT) { 11127 dev = device_lookup_by_name(db_tok_string); 11128 t = db_read_token(); 11129 if (t == tNUMBER) { 11130 tid = db_tok_number; 11131 valid = true; 11132 } 11133 } 11134 db_radix = radix; 11135 db_skip_to_eol(); 11136 if (!valid) { 11137 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 11138 return; 11139 } 11140 11141 if (dev == NULL) { 11142 db_printf("device not found\n"); 11143 return; 11144 } 11145 if (tid < 0) { 11146 db_printf("invalid tid\n"); 11147 return; 11148 } 11149 11150 t4_dump_tcb(device_get_softc(dev), tid); 11151 } 11152 #endif 11153 11154 static struct sx mlu; /* mod load unload */ 11155 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 11156 11157 static int 11158 mod_event(module_t mod, int cmd, void *arg) 11159 { 11160 int rc = 0; 11161 static int loaded = 0; 11162 11163 switch (cmd) { 11164 case MOD_LOAD: 11165 sx_xlock(&mlu); 11166 if (loaded++ == 0) { 11167 t4_sge_modload(); 11168 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11169 t4_filter_rpl, CPL_COOKIE_FILTER); 11170 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 11171 do_l2t_write_rpl, CPL_COOKIE_FILTER); 11172 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 11173 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 11174 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11175 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 11176 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 11177 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 11178 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 11179 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 11180 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 11181 do_smt_write_rpl); 11182 sx_init(&t4_list_lock, "T4/T5 adapters"); 11183 SLIST_INIT(&t4_list); 11184 callout_init(&fatal_callout, 1); 11185 #ifdef TCP_OFFLOAD 11186 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 11187 SLIST_INIT(&t4_uld_list); 11188 #endif 11189 #ifdef INET6 11190 t4_clip_modload(); 11191 #endif 11192 #ifdef KERN_TLS 11193 t6_ktls_modload(); 11194 #endif 11195 t4_tracer_modload(); 11196 tweak_tunables(); 11197 } 11198 sx_xunlock(&mlu); 11199 break; 11200 11201 case MOD_UNLOAD: 11202 sx_xlock(&mlu); 11203 if (--loaded == 0) { 11204 int tries; 11205 11206 sx_slock(&t4_list_lock); 11207 if (!SLIST_EMPTY(&t4_list)) { 11208 rc = EBUSY; 11209 sx_sunlock(&t4_list_lock); 11210 goto done_unload; 11211 } 11212 #ifdef TCP_OFFLOAD 11213 sx_slock(&t4_uld_list_lock); 11214 if (!SLIST_EMPTY(&t4_uld_list)) { 11215 rc = EBUSY; 11216 sx_sunlock(&t4_uld_list_lock); 11217 sx_sunlock(&t4_list_lock); 11218 goto done_unload; 11219 } 11220 #endif 11221 tries = 0; 11222 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 11223 uprintf("%ju clusters with custom free routine " 11224 "still is use.\n", t4_sge_extfree_refs()); 11225 pause("t4unload", 2 * hz); 11226 } 11227 #ifdef TCP_OFFLOAD 11228 sx_sunlock(&t4_uld_list_lock); 11229 #endif 11230 sx_sunlock(&t4_list_lock); 11231 11232 if (t4_sge_extfree_refs() == 0) { 11233 t4_tracer_modunload(); 11234 #ifdef KERN_TLS 11235 t6_ktls_modunload(); 11236 #endif 11237 #ifdef INET6 11238 t4_clip_modunload(); 11239 #endif 11240 #ifdef TCP_OFFLOAD 11241 sx_destroy(&t4_uld_list_lock); 11242 #endif 11243 sx_destroy(&t4_list_lock); 11244 t4_sge_modunload(); 11245 loaded = 0; 11246 } else { 11247 rc = EBUSY; 11248 loaded++; /* undo earlier decrement */ 11249 } 11250 } 11251 done_unload: 11252 sx_xunlock(&mlu); 11253 break; 11254 } 11255 11256 return (rc); 11257 } 11258 11259 static devclass_t t4_devclass, t5_devclass, t6_devclass; 11260 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 11261 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 11262 11263 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 11264 MODULE_VERSION(t4nex, 1); 11265 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 11266 #ifdef DEV_NETMAP 11267 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 11268 #endif /* DEV_NETMAP */ 11269 11270 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 11271 MODULE_VERSION(t5nex, 1); 11272 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 11273 #ifdef DEV_NETMAP 11274 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 11275 #endif /* DEV_NETMAP */ 11276 11277 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 11278 MODULE_VERSION(t6nex, 1); 11279 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 11280 #ifdef DEV_NETMAP 11281 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 11282 #endif /* DEV_NETMAP */ 11283 11284 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 11285 MODULE_VERSION(cxgbe, 1); 11286 11287 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 11288 MODULE_VERSION(cxl, 1); 11289 11290 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 11291 MODULE_VERSION(cc, 1); 11292 11293 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 11294 MODULE_VERSION(vcxgbe, 1); 11295 11296 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 11297 MODULE_VERSION(vcxl, 1); 11298 11299 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 11300 MODULE_VERSION(vcc, 1); 11301