1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_tx_vm_wr = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 631 "Use VM work requests to transmit packets."); 632 633 /* 634 * Set to non-zero to enable the attack filter. A packet that matches any of 635 * these conditions will get dropped on ingress: 636 * 1) IP && source address == destination address. 637 * 2) TCP/IP && source address is not a unicast address. 638 * 3) TCP/IP && destination address is not a unicast address. 639 * 4) IP && source address is loopback (127.x.y.z). 640 * 5) IP && destination address is loopback (127.x.y.z). 641 * 6) IPv6 && source address == destination address. 642 * 7) IPv6 && source address is not a unicast address. 643 * 8) IPv6 && source address is loopback (::1/128). 644 * 9) IPv6 && destination address is loopback (::1/128). 645 * 10) IPv6 && source address is unspecified (::/128). 646 * 11) IPv6 && destination address is unspecified (::/128). 647 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 648 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 649 */ 650 static int t4_attack_filter = 0; 651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 652 &t4_attack_filter, 0, "Drop suspicious traffic"); 653 654 static int t4_drop_ip_fragments = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 656 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 657 658 static int t4_drop_pkts_with_l2_errors = 1; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l2_errors, 0, 661 "Drop all frames with Layer 2 length or checksum errors"); 662 663 static int t4_drop_pkts_with_l3_errors = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 665 &t4_drop_pkts_with_l3_errors, 0, 666 "Drop all frames with IP version, length, or checksum errors"); 667 668 static int t4_drop_pkts_with_l4_errors = 0; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 670 &t4_drop_pkts_with_l4_errors, 0, 671 "Drop all frames with Layer 4 length, checksum, or other errors"); 672 673 #ifdef TCP_OFFLOAD 674 /* 675 * TOE tunables. 676 */ 677 static int t4_cop_managed_offloading = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 679 &t4_cop_managed_offloading, 0, 680 "COP (Connection Offload Policy) controls all TOE offload"); 681 #endif 682 683 #ifdef KERN_TLS 684 /* 685 * This enables KERN_TLS for all adapters if set. 686 */ 687 static int t4_kern_tls = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 689 "Enable KERN_TLS mode for all supported adapters"); 690 691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 692 "cxgbe(4) KERN_TLS parameters"); 693 694 static int t4_tls_inline_keys = 0; 695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 696 &t4_tls_inline_keys, 0, 697 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 698 "in card memory."); 699 700 static int t4_tls_combo_wrs = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 702 0, "Attempt to combine TCB field updates with TLS record work requests."); 703 #endif 704 705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 706 static int vi_mac_funcs[] = { 707 FW_VI_FUNC_ETH, 708 FW_VI_FUNC_OFLD, 709 FW_VI_FUNC_IWARP, 710 FW_VI_FUNC_OPENISCSI, 711 FW_VI_FUNC_OPENFCOE, 712 FW_VI_FUNC_FOISCSI, 713 FW_VI_FUNC_FOFCOE, 714 }; 715 716 struct intrs_and_queues { 717 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 718 uint16_t num_vis; /* number of VIs for each port */ 719 uint16_t nirq; /* Total # of vectors */ 720 uint16_t ntxq; /* # of NIC txq's for each port */ 721 uint16_t nrxq; /* # of NIC rxq's for each port */ 722 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 723 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 724 uint16_t nnmtxq; /* # of netmap txq's */ 725 uint16_t nnmrxq; /* # of netmap rxq's */ 726 727 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 728 uint16_t ntxq_vi; /* # of NIC txq's */ 729 uint16_t nrxq_vi; /* # of NIC rxq's */ 730 uint16_t nofldtxq_vi; /* # of TOE txq's */ 731 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 732 uint16_t nnmtxq_vi; /* # of netmap txq's */ 733 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 734 }; 735 736 static void setup_memwin(struct adapter *); 737 static void position_memwin(struct adapter *, int, uint32_t); 738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 739 static int fwmtype_to_hwmtype(int); 740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 741 uint32_t *); 742 static int fixup_devlog_params(struct adapter *); 743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 744 static int contact_firmware(struct adapter *); 745 static int partition_resources(struct adapter *); 746 static int get_params__pre_init(struct adapter *); 747 static int set_params__pre_init(struct adapter *); 748 static int get_params__post_init(struct adapter *); 749 static int set_params__post_init(struct adapter *); 750 static void t4_set_desc(struct adapter *); 751 static bool fixed_ifmedia(struct port_info *); 752 static void build_medialist(struct port_info *); 753 static void init_link_config(struct port_info *); 754 static int fixup_link_config(struct port_info *); 755 static int apply_link_config(struct port_info *); 756 static int cxgbe_init_synchronized(struct vi_info *); 757 static int cxgbe_uninit_synchronized(struct vi_info *); 758 static int adapter_full_init(struct adapter *); 759 static void adapter_full_uninit(struct adapter *); 760 static int vi_full_init(struct vi_info *); 761 static void vi_full_uninit(struct vi_info *); 762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 763 static void quiesce_txq(struct sge_txq *); 764 static void quiesce_wrq(struct sge_wrq *); 765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 766 static void quiesce_vi(struct vi_info *); 767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 768 driver_intr_t *, void *, char *); 769 static int t4_free_irq(struct adapter *, struct irq *); 770 static void t4_init_atid_table(struct adapter *); 771 static void t4_free_atid_table(struct adapter *); 772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 773 static void vi_refresh_stats(struct vi_info *); 774 static void cxgbe_refresh_stats(struct vi_info *); 775 static void cxgbe_tick(void *); 776 static void vi_tick(void *); 777 static void cxgbe_sysctls(struct port_info *); 778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 829 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 830 #ifdef TCP_OFFLOAD 831 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 841 #endif 842 static int get_sge_context(struct adapter *, struct t4_sge_context *); 843 static int load_fw(struct adapter *, struct t4_data *); 844 static int load_cfg(struct adapter *, struct t4_data *); 845 static int load_boot(struct adapter *, struct t4_bootrom *); 846 static int load_bootcfg(struct adapter *, struct t4_data *); 847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 848 static void free_offload_policy(struct t4_offload_policy *); 849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 851 static int read_i2c(struct adapter *, struct t4_i2c_data *); 852 static int clear_stats(struct adapter *, u_int); 853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 855 #ifdef TCP_OFFLOAD 856 static int toe_capability(struct vi_info *, bool); 857 static void t4_async_event(struct adapter *); 858 #endif 859 #ifdef KERN_TLS 860 static int ktls_capability(struct adapter *, bool); 861 #endif 862 static int mod_event(module_t, int, void *); 863 static int notify_siblings(device_t, int); 864 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 866 static void enable_vxlan_rx(struct adapter *); 867 static void reset_adapter_task(void *, int); 868 static void fatal_error_task(void *, int); 869 static void dump_devlog(struct adapter *); 870 static void dump_cim_regs(struct adapter *); 871 static void dump_cimla(struct adapter *); 872 873 struct { 874 uint16_t device; 875 char *desc; 876 } t4_pciids[] = { 877 {0xa000, "Chelsio Terminator 4 FPGA"}, 878 {0x4400, "Chelsio T440-dbg"}, 879 {0x4401, "Chelsio T420-CR"}, 880 {0x4402, "Chelsio T422-CR"}, 881 {0x4403, "Chelsio T440-CR"}, 882 {0x4404, "Chelsio T420-BCH"}, 883 {0x4405, "Chelsio T440-BCH"}, 884 {0x4406, "Chelsio T440-CH"}, 885 {0x4407, "Chelsio T420-SO"}, 886 {0x4408, "Chelsio T420-CX"}, 887 {0x4409, "Chelsio T420-BT"}, 888 {0x440a, "Chelsio T404-BT"}, 889 {0x440e, "Chelsio T440-LP-CR"}, 890 }, t5_pciids[] = { 891 {0xb000, "Chelsio Terminator 5 FPGA"}, 892 {0x5400, "Chelsio T580-dbg"}, 893 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 894 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 895 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 896 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 897 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 898 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 899 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 900 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 901 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 902 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 903 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 904 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 905 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 906 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 907 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 908 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 909 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 910 911 /* Custom */ 912 {0x5483, "Custom T540-CR"}, 913 {0x5484, "Custom T540-BT"}, 914 }, t6_pciids[] = { 915 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 916 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 917 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 918 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 919 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 920 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 921 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 922 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 923 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 924 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 925 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 926 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 927 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 928 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 929 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 930 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 931 932 /* Custom */ 933 {0x6480, "Custom T6225-CR"}, 934 {0x6481, "Custom T62100-CR"}, 935 {0x6482, "Custom T6225-CR"}, 936 {0x6483, "Custom T62100-CR"}, 937 {0x6484, "Custom T64100-CR"}, 938 {0x6485, "Custom T6240-SO"}, 939 {0x6486, "Custom T6225-SO-CR"}, 940 {0x6487, "Custom T6225-CR"}, 941 }; 942 943 #ifdef TCP_OFFLOAD 944 /* 945 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 946 * be exactly the same for both rxq and ofld_rxq. 947 */ 948 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 949 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 950 #endif 951 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 952 953 static int 954 t4_probe(device_t dev) 955 { 956 int i; 957 uint16_t v = pci_get_vendor(dev); 958 uint16_t d = pci_get_device(dev); 959 uint8_t f = pci_get_function(dev); 960 961 if (v != PCI_VENDOR_ID_CHELSIO) 962 return (ENXIO); 963 964 /* Attach only to PF0 of the FPGA */ 965 if (d == 0xa000 && f != 0) 966 return (ENXIO); 967 968 for (i = 0; i < nitems(t4_pciids); i++) { 969 if (d == t4_pciids[i].device) { 970 device_set_desc(dev, t4_pciids[i].desc); 971 return (BUS_PROBE_DEFAULT); 972 } 973 } 974 975 return (ENXIO); 976 } 977 978 static int 979 t5_probe(device_t dev) 980 { 981 int i; 982 uint16_t v = pci_get_vendor(dev); 983 uint16_t d = pci_get_device(dev); 984 uint8_t f = pci_get_function(dev); 985 986 if (v != PCI_VENDOR_ID_CHELSIO) 987 return (ENXIO); 988 989 /* Attach only to PF0 of the FPGA */ 990 if (d == 0xb000 && f != 0) 991 return (ENXIO); 992 993 for (i = 0; i < nitems(t5_pciids); i++) { 994 if (d == t5_pciids[i].device) { 995 device_set_desc(dev, t5_pciids[i].desc); 996 return (BUS_PROBE_DEFAULT); 997 } 998 } 999 1000 return (ENXIO); 1001 } 1002 1003 static int 1004 t6_probe(device_t dev) 1005 { 1006 int i; 1007 uint16_t v = pci_get_vendor(dev); 1008 uint16_t d = pci_get_device(dev); 1009 1010 if (v != PCI_VENDOR_ID_CHELSIO) 1011 return (ENXIO); 1012 1013 for (i = 0; i < nitems(t6_pciids); i++) { 1014 if (d == t6_pciids[i].device) { 1015 device_set_desc(dev, t6_pciids[i].desc); 1016 return (BUS_PROBE_DEFAULT); 1017 } 1018 } 1019 1020 return (ENXIO); 1021 } 1022 1023 static void 1024 t5_attribute_workaround(device_t dev) 1025 { 1026 device_t root_port; 1027 uint32_t v; 1028 1029 /* 1030 * The T5 chips do not properly echo the No Snoop and Relaxed 1031 * Ordering attributes when replying to a TLP from a Root 1032 * Port. As a workaround, find the parent Root Port and 1033 * disable No Snoop and Relaxed Ordering. Note that this 1034 * affects all devices under this root port. 1035 */ 1036 root_port = pci_find_pcie_root_port(dev); 1037 if (root_port == NULL) { 1038 device_printf(dev, "Unable to find parent root port\n"); 1039 return; 1040 } 1041 1042 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1043 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1044 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1045 0) 1046 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1047 device_get_nameunit(root_port)); 1048 } 1049 1050 static const struct devnames devnames[] = { 1051 { 1052 .nexus_name = "t4nex", 1053 .ifnet_name = "cxgbe", 1054 .vi_ifnet_name = "vcxgbe", 1055 .pf03_drv_name = "t4iov", 1056 .vf_nexus_name = "t4vf", 1057 .vf_ifnet_name = "cxgbev" 1058 }, { 1059 .nexus_name = "t5nex", 1060 .ifnet_name = "cxl", 1061 .vi_ifnet_name = "vcxl", 1062 .pf03_drv_name = "t5iov", 1063 .vf_nexus_name = "t5vf", 1064 .vf_ifnet_name = "cxlv" 1065 }, { 1066 .nexus_name = "t6nex", 1067 .ifnet_name = "cc", 1068 .vi_ifnet_name = "vcc", 1069 .pf03_drv_name = "t6iov", 1070 .vf_nexus_name = "t6vf", 1071 .vf_ifnet_name = "ccv" 1072 } 1073 }; 1074 1075 void 1076 t4_init_devnames(struct adapter *sc) 1077 { 1078 int id; 1079 1080 id = chip_id(sc); 1081 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1082 sc->names = &devnames[id - CHELSIO_T4]; 1083 else { 1084 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1085 sc->names = NULL; 1086 } 1087 } 1088 1089 static int 1090 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1091 { 1092 const char *parent, *name; 1093 long value; 1094 int line, unit; 1095 1096 line = 0; 1097 parent = device_get_nameunit(sc->dev); 1098 name = sc->names->ifnet_name; 1099 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1100 if (resource_long_value(name, unit, "port", &value) == 0 && 1101 value == pi->port_id) 1102 return (unit); 1103 } 1104 return (-1); 1105 } 1106 1107 static int 1108 t4_attach(device_t dev) 1109 { 1110 struct adapter *sc; 1111 int rc = 0, i, j, rqidx, tqidx, nports; 1112 struct make_dev_args mda; 1113 struct intrs_and_queues iaq; 1114 struct sge *s; 1115 uint32_t *buf; 1116 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1117 int ofld_tqidx; 1118 #endif 1119 #ifdef TCP_OFFLOAD 1120 int ofld_rqidx; 1121 #endif 1122 #ifdef DEV_NETMAP 1123 int nm_rqidx, nm_tqidx; 1124 #endif 1125 int num_vis; 1126 1127 sc = device_get_softc(dev); 1128 sc->dev = dev; 1129 sysctl_ctx_init(&sc->ctx); 1130 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1131 1132 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1133 t5_attribute_workaround(dev); 1134 pci_enable_busmaster(dev); 1135 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1136 uint32_t v; 1137 1138 pci_set_max_read_req(dev, 4096); 1139 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1140 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1141 if (pcie_relaxed_ordering == 0 && 1142 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1143 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1144 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1145 } else if (pcie_relaxed_ordering == 1 && 1146 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1147 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1148 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1149 } 1150 } 1151 1152 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1153 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1154 sc->traceq = -1; 1155 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1156 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1157 device_get_nameunit(dev)); 1158 1159 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1160 device_get_nameunit(dev)); 1161 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1162 t4_add_adapter(sc); 1163 1164 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1165 TAILQ_INIT(&sc->sfl); 1166 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1167 1168 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1169 1170 sc->policy = NULL; 1171 rw_init(&sc->policy_lock, "connection offload policy"); 1172 1173 callout_init(&sc->ktls_tick, 1); 1174 1175 refcount_init(&sc->vxlan_refcount, 0); 1176 1177 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1178 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1179 1180 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1181 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1182 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1183 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1184 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1185 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1186 1187 rc = t4_map_bars_0_and_4(sc); 1188 if (rc != 0) 1189 goto done; /* error message displayed already */ 1190 1191 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1192 1193 /* Prepare the adapter for operation. */ 1194 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1195 rc = -t4_prep_adapter(sc, buf); 1196 free(buf, M_CXGBE); 1197 if (rc != 0) { 1198 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1199 goto done; 1200 } 1201 1202 /* 1203 * This is the real PF# to which we're attaching. Works from within PCI 1204 * passthrough environments too, where pci_get_function() could return a 1205 * different PF# depending on the passthrough configuration. We need to 1206 * use the real PF# in all our communication with the firmware. 1207 */ 1208 j = t4_read_reg(sc, A_PL_WHOAMI); 1209 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1210 sc->mbox = sc->pf; 1211 1212 t4_init_devnames(sc); 1213 if (sc->names == NULL) { 1214 rc = ENOTSUP; 1215 goto done; /* error message displayed already */ 1216 } 1217 1218 /* 1219 * Do this really early, with the memory windows set up even before the 1220 * character device. The userland tool's register i/o and mem read 1221 * will work even in "recovery mode". 1222 */ 1223 setup_memwin(sc); 1224 if (t4_init_devlog_params(sc, 0) == 0) 1225 fixup_devlog_params(sc); 1226 make_dev_args_init(&mda); 1227 mda.mda_devsw = &t4_cdevsw; 1228 mda.mda_uid = UID_ROOT; 1229 mda.mda_gid = GID_WHEEL; 1230 mda.mda_mode = 0600; 1231 mda.mda_si_drv1 = sc; 1232 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1233 if (rc != 0) 1234 device_printf(dev, "failed to create nexus char device: %d.\n", 1235 rc); 1236 1237 /* Go no further if recovery mode has been requested. */ 1238 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1239 device_printf(dev, "recovery mode.\n"); 1240 goto done; 1241 } 1242 1243 #if defined(__i386__) 1244 if ((cpu_feature & CPUID_CX8) == 0) { 1245 device_printf(dev, "64 bit atomics not available.\n"); 1246 rc = ENOTSUP; 1247 goto done; 1248 } 1249 #endif 1250 1251 /* Contact the firmware and try to become the master driver. */ 1252 rc = contact_firmware(sc); 1253 if (rc != 0) 1254 goto done; /* error message displayed already */ 1255 MPASS(sc->flags & FW_OK); 1256 1257 rc = get_params__pre_init(sc); 1258 if (rc != 0) 1259 goto done; /* error message displayed already */ 1260 1261 if (sc->flags & MASTER_PF) { 1262 rc = partition_resources(sc); 1263 if (rc != 0) 1264 goto done; /* error message displayed already */ 1265 t4_intr_clear(sc); 1266 } 1267 1268 rc = get_params__post_init(sc); 1269 if (rc != 0) 1270 goto done; /* error message displayed already */ 1271 1272 rc = set_params__post_init(sc); 1273 if (rc != 0) 1274 goto done; /* error message displayed already */ 1275 1276 rc = t4_map_bar_2(sc); 1277 if (rc != 0) 1278 goto done; /* error message displayed already */ 1279 1280 rc = t4_create_dma_tag(sc); 1281 if (rc != 0) 1282 goto done; /* error message displayed already */ 1283 1284 /* 1285 * First pass over all the ports - allocate VIs and initialize some 1286 * basic parameters like mac address, port type, etc. 1287 */ 1288 for_each_port(sc, i) { 1289 struct port_info *pi; 1290 1291 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1292 sc->port[i] = pi; 1293 1294 /* These must be set before t4_port_init */ 1295 pi->adapter = sc; 1296 pi->port_id = i; 1297 /* 1298 * XXX: vi[0] is special so we can't delay this allocation until 1299 * pi->nvi's final value is known. 1300 */ 1301 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1302 M_ZERO | M_WAITOK); 1303 1304 /* 1305 * Allocate the "main" VI and initialize parameters 1306 * like mac addr. 1307 */ 1308 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1309 if (rc != 0) { 1310 device_printf(dev, "unable to initialize port %d: %d\n", 1311 i, rc); 1312 free(pi->vi, M_CXGBE); 1313 free(pi, M_CXGBE); 1314 sc->port[i] = NULL; 1315 goto done; 1316 } 1317 1318 if (is_bt(pi->port_type)) 1319 setbit(&sc->bt_map, pi->tx_chan); 1320 else 1321 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1322 1323 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1324 device_get_nameunit(dev), i); 1325 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1326 sc->chan_map[pi->tx_chan] = i; 1327 1328 /* 1329 * The MPS counter for FCS errors doesn't work correctly on the 1330 * T6 so we use the MAC counter here. Which MAC is in use 1331 * depends on the link settings which will be known when the 1332 * link comes up. 1333 */ 1334 if (is_t6(sc)) { 1335 pi->fcs_reg = -1; 1336 } else if (is_t4(sc)) { 1337 pi->fcs_reg = PORT_REG(pi->tx_chan, 1338 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1339 } else { 1340 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1341 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1342 } 1343 pi->fcs_base = 0; 1344 1345 /* All VIs on this port share this media. */ 1346 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1347 cxgbe_media_status); 1348 1349 PORT_LOCK(pi); 1350 init_link_config(pi); 1351 fixup_link_config(pi); 1352 build_medialist(pi); 1353 if (fixed_ifmedia(pi)) 1354 pi->flags |= FIXED_IFMEDIA; 1355 PORT_UNLOCK(pi); 1356 1357 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1358 t4_ifnet_unit(sc, pi)); 1359 if (pi->dev == NULL) { 1360 device_printf(dev, 1361 "failed to add device for port %d.\n", i); 1362 rc = ENXIO; 1363 goto done; 1364 } 1365 pi->vi[0].dev = pi->dev; 1366 device_set_softc(pi->dev, pi); 1367 } 1368 1369 /* 1370 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1371 */ 1372 nports = sc->params.nports; 1373 rc = cfg_itype_and_nqueues(sc, &iaq); 1374 if (rc != 0) 1375 goto done; /* error message displayed already */ 1376 1377 num_vis = iaq.num_vis; 1378 sc->intr_type = iaq.intr_type; 1379 sc->intr_count = iaq.nirq; 1380 1381 s = &sc->sge; 1382 s->nrxq = nports * iaq.nrxq; 1383 s->ntxq = nports * iaq.ntxq; 1384 if (num_vis > 1) { 1385 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1386 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1387 } 1388 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1389 s->neq += nports; /* ctrl queues: 1 per port */ 1390 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1391 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1392 if (is_offload(sc) || is_ethoffload(sc)) { 1393 s->nofldtxq = nports * iaq.nofldtxq; 1394 if (num_vis > 1) 1395 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1396 s->neq += s->nofldtxq; 1397 1398 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1399 M_CXGBE, M_ZERO | M_WAITOK); 1400 } 1401 #endif 1402 #ifdef TCP_OFFLOAD 1403 if (is_offload(sc)) { 1404 s->nofldrxq = nports * iaq.nofldrxq; 1405 if (num_vis > 1) 1406 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1407 s->neq += s->nofldrxq; /* free list */ 1408 s->niq += s->nofldrxq; 1409 1410 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1411 M_CXGBE, M_ZERO | M_WAITOK); 1412 } 1413 #endif 1414 #ifdef DEV_NETMAP 1415 s->nnmrxq = 0; 1416 s->nnmtxq = 0; 1417 if (t4_native_netmap & NN_MAIN_VI) { 1418 s->nnmrxq += nports * iaq.nnmrxq; 1419 s->nnmtxq += nports * iaq.nnmtxq; 1420 } 1421 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1422 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1423 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1424 } 1425 s->neq += s->nnmtxq + s->nnmrxq; 1426 s->niq += s->nnmrxq; 1427 1428 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1429 M_CXGBE, M_ZERO | M_WAITOK); 1430 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1431 M_CXGBE, M_ZERO | M_WAITOK); 1432 #endif 1433 MPASS(s->niq <= s->iqmap_sz); 1434 MPASS(s->neq <= s->eqmap_sz); 1435 1436 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1437 M_ZERO | M_WAITOK); 1438 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1439 M_ZERO | M_WAITOK); 1440 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1441 M_ZERO | M_WAITOK); 1442 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1443 M_ZERO | M_WAITOK); 1444 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1445 M_ZERO | M_WAITOK); 1446 1447 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1448 M_ZERO | M_WAITOK); 1449 1450 t4_init_l2t(sc, M_WAITOK); 1451 t4_init_smt(sc, M_WAITOK); 1452 t4_init_tx_sched(sc); 1453 t4_init_atid_table(sc); 1454 #ifdef RATELIMIT 1455 t4_init_etid_table(sc); 1456 #endif 1457 #ifdef INET6 1458 t4_init_clip_table(sc); 1459 #endif 1460 if (sc->vres.key.size != 0) 1461 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1462 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1463 1464 /* 1465 * Second pass over the ports. This time we know the number of rx and 1466 * tx queues that each port should get. 1467 */ 1468 rqidx = tqidx = 0; 1469 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1470 ofld_tqidx = 0; 1471 #endif 1472 #ifdef TCP_OFFLOAD 1473 ofld_rqidx = 0; 1474 #endif 1475 #ifdef DEV_NETMAP 1476 nm_rqidx = nm_tqidx = 0; 1477 #endif 1478 for_each_port(sc, i) { 1479 struct port_info *pi = sc->port[i]; 1480 struct vi_info *vi; 1481 1482 if (pi == NULL) 1483 continue; 1484 1485 pi->nvi = num_vis; 1486 for_each_vi(pi, j, vi) { 1487 vi->pi = pi; 1488 vi->adapter = sc; 1489 vi->first_intr = -1; 1490 vi->qsize_rxq = t4_qsize_rxq; 1491 vi->qsize_txq = t4_qsize_txq; 1492 1493 vi->first_rxq = rqidx; 1494 vi->first_txq = tqidx; 1495 vi->tmr_idx = t4_tmr_idx; 1496 vi->pktc_idx = t4_pktc_idx; 1497 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1498 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1499 1500 rqidx += vi->nrxq; 1501 tqidx += vi->ntxq; 1502 1503 if (j == 0 && vi->ntxq > 1) 1504 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1505 else 1506 vi->rsrv_noflowq = 0; 1507 1508 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1509 vi->first_ofld_txq = ofld_tqidx; 1510 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1511 ofld_tqidx += vi->nofldtxq; 1512 #endif 1513 #ifdef TCP_OFFLOAD 1514 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1515 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1516 vi->first_ofld_rxq = ofld_rqidx; 1517 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1518 1519 ofld_rqidx += vi->nofldrxq; 1520 #endif 1521 #ifdef DEV_NETMAP 1522 vi->first_nm_rxq = nm_rqidx; 1523 vi->first_nm_txq = nm_tqidx; 1524 if (j == 0) { 1525 vi->nnmrxq = iaq.nnmrxq; 1526 vi->nnmtxq = iaq.nnmtxq; 1527 } else { 1528 vi->nnmrxq = iaq.nnmrxq_vi; 1529 vi->nnmtxq = iaq.nnmtxq_vi; 1530 } 1531 nm_rqidx += vi->nnmrxq; 1532 nm_tqidx += vi->nnmtxq; 1533 #endif 1534 } 1535 } 1536 1537 rc = t4_setup_intr_handlers(sc); 1538 if (rc != 0) { 1539 device_printf(dev, 1540 "failed to setup interrupt handlers: %d\n", rc); 1541 goto done; 1542 } 1543 1544 rc = bus_generic_probe(dev); 1545 if (rc != 0) { 1546 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1547 goto done; 1548 } 1549 1550 /* 1551 * Ensure thread-safe mailbox access (in debug builds). 1552 * 1553 * So far this was the only thread accessing the mailbox but various 1554 * ifnets and sysctls are about to be created and their handlers/ioctls 1555 * will access the mailbox from different threads. 1556 */ 1557 sc->flags |= CHK_MBOX_ACCESS; 1558 1559 rc = bus_generic_attach(dev); 1560 if (rc != 0) { 1561 device_printf(dev, 1562 "failed to attach all child ports: %d\n", rc); 1563 goto done; 1564 } 1565 1566 device_printf(dev, 1567 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1568 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1569 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1570 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1571 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1572 1573 t4_set_desc(sc); 1574 1575 notify_siblings(dev, 0); 1576 1577 done: 1578 if (rc != 0 && sc->cdev) { 1579 /* cdev was created and so cxgbetool works; recover that way. */ 1580 device_printf(dev, 1581 "error during attach, adapter is now in recovery mode.\n"); 1582 rc = 0; 1583 } 1584 1585 if (rc != 0) 1586 t4_detach_common(dev); 1587 else 1588 t4_sysctls(sc); 1589 1590 return (rc); 1591 } 1592 1593 static int 1594 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1595 { 1596 struct adapter *sc; 1597 struct port_info *pi; 1598 int i; 1599 1600 sc = device_get_softc(bus); 1601 for_each_port(sc, i) { 1602 pi = sc->port[i]; 1603 if (pi != NULL && pi->dev == dev) { 1604 sbuf_printf(sb, "port=%d", pi->port_id); 1605 break; 1606 } 1607 } 1608 return (0); 1609 } 1610 1611 static int 1612 t4_ready(device_t dev) 1613 { 1614 struct adapter *sc; 1615 1616 sc = device_get_softc(dev); 1617 if (sc->flags & FW_OK) 1618 return (0); 1619 return (ENXIO); 1620 } 1621 1622 static int 1623 t4_read_port_device(device_t dev, int port, device_t *child) 1624 { 1625 struct adapter *sc; 1626 struct port_info *pi; 1627 1628 sc = device_get_softc(dev); 1629 if (port < 0 || port >= MAX_NPORTS) 1630 return (EINVAL); 1631 pi = sc->port[port]; 1632 if (pi == NULL || pi->dev == NULL) 1633 return (ENXIO); 1634 *child = pi->dev; 1635 return (0); 1636 } 1637 1638 static int 1639 notify_siblings(device_t dev, int detaching) 1640 { 1641 device_t sibling; 1642 int error, i; 1643 1644 error = 0; 1645 for (i = 0; i < PCI_FUNCMAX; i++) { 1646 if (i == pci_get_function(dev)) 1647 continue; 1648 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1649 pci_get_slot(dev), i); 1650 if (sibling == NULL || !device_is_attached(sibling)) 1651 continue; 1652 if (detaching) 1653 error = T4_DETACH_CHILD(sibling); 1654 else 1655 (void)T4_ATTACH_CHILD(sibling); 1656 if (error) 1657 break; 1658 } 1659 return (error); 1660 } 1661 1662 /* 1663 * Idempotent 1664 */ 1665 static int 1666 t4_detach(device_t dev) 1667 { 1668 int rc; 1669 1670 rc = notify_siblings(dev, 1); 1671 if (rc) { 1672 device_printf(dev, 1673 "failed to detach sibling devices: %d\n", rc); 1674 return (rc); 1675 } 1676 1677 return (t4_detach_common(dev)); 1678 } 1679 1680 int 1681 t4_detach_common(device_t dev) 1682 { 1683 struct adapter *sc; 1684 struct port_info *pi; 1685 int i, rc; 1686 1687 sc = device_get_softc(dev); 1688 1689 if (sc->cdev) { 1690 destroy_dev(sc->cdev); 1691 sc->cdev = NULL; 1692 } 1693 1694 sx_xlock(&t4_list_lock); 1695 SLIST_REMOVE(&t4_list, sc, adapter, link); 1696 sx_xunlock(&t4_list_lock); 1697 1698 sc->flags &= ~CHK_MBOX_ACCESS; 1699 if (sc->flags & FULL_INIT_DONE) { 1700 if (!(sc->flags & IS_VF)) 1701 t4_intr_disable(sc); 1702 } 1703 1704 if (device_is_attached(dev)) { 1705 rc = bus_generic_detach(dev); 1706 if (rc) { 1707 device_printf(dev, 1708 "failed to detach child devices: %d\n", rc); 1709 return (rc); 1710 } 1711 } 1712 1713 for (i = 0; i < sc->intr_count; i++) 1714 t4_free_irq(sc, &sc->irq[i]); 1715 1716 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1717 t4_free_tx_sched(sc); 1718 1719 for (i = 0; i < MAX_NPORTS; i++) { 1720 pi = sc->port[i]; 1721 if (pi) { 1722 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1723 if (pi->dev) 1724 device_delete_child(dev, pi->dev); 1725 1726 mtx_destroy(&pi->pi_lock); 1727 free(pi->vi, M_CXGBE); 1728 free(pi, M_CXGBE); 1729 } 1730 } 1731 1732 device_delete_children(dev); 1733 sysctl_ctx_free(&sc->ctx); 1734 adapter_full_uninit(sc); 1735 1736 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1737 t4_fw_bye(sc, sc->mbox); 1738 1739 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1740 pci_release_msi(dev); 1741 1742 if (sc->regs_res) 1743 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1744 sc->regs_res); 1745 1746 if (sc->udbs_res) 1747 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1748 sc->udbs_res); 1749 1750 if (sc->msix_res) 1751 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1752 sc->msix_res); 1753 1754 if (sc->l2t) 1755 t4_free_l2t(sc->l2t); 1756 if (sc->smt) 1757 t4_free_smt(sc->smt); 1758 t4_free_atid_table(sc); 1759 #ifdef RATELIMIT 1760 t4_free_etid_table(sc); 1761 #endif 1762 if (sc->key_map) 1763 vmem_destroy(sc->key_map); 1764 #ifdef INET6 1765 t4_destroy_clip_table(sc); 1766 #endif 1767 1768 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1769 free(sc->sge.ofld_txq, M_CXGBE); 1770 #endif 1771 #ifdef TCP_OFFLOAD 1772 free(sc->sge.ofld_rxq, M_CXGBE); 1773 #endif 1774 #ifdef DEV_NETMAP 1775 free(sc->sge.nm_rxq, M_CXGBE); 1776 free(sc->sge.nm_txq, M_CXGBE); 1777 #endif 1778 free(sc->irq, M_CXGBE); 1779 free(sc->sge.rxq, M_CXGBE); 1780 free(sc->sge.txq, M_CXGBE); 1781 free(sc->sge.ctrlq, M_CXGBE); 1782 free(sc->sge.iqmap, M_CXGBE); 1783 free(sc->sge.eqmap, M_CXGBE); 1784 free(sc->tids.ftid_tab, M_CXGBE); 1785 free(sc->tids.hpftid_tab, M_CXGBE); 1786 free_hftid_hash(&sc->tids); 1787 free(sc->tids.tid_tab, M_CXGBE); 1788 free(sc->tt.tls_rx_ports, M_CXGBE); 1789 t4_destroy_dma_tag(sc); 1790 1791 callout_drain(&sc->ktls_tick); 1792 callout_drain(&sc->sfl_callout); 1793 if (mtx_initialized(&sc->tids.ftid_lock)) { 1794 mtx_destroy(&sc->tids.ftid_lock); 1795 cv_destroy(&sc->tids.ftid_cv); 1796 } 1797 if (mtx_initialized(&sc->tids.atid_lock)) 1798 mtx_destroy(&sc->tids.atid_lock); 1799 if (mtx_initialized(&sc->ifp_lock)) 1800 mtx_destroy(&sc->ifp_lock); 1801 1802 if (rw_initialized(&sc->policy_lock)) { 1803 rw_destroy(&sc->policy_lock); 1804 #ifdef TCP_OFFLOAD 1805 if (sc->policy != NULL) 1806 free_offload_policy(sc->policy); 1807 #endif 1808 } 1809 1810 for (i = 0; i < NUM_MEMWIN; i++) { 1811 struct memwin *mw = &sc->memwin[i]; 1812 1813 if (rw_initialized(&mw->mw_lock)) 1814 rw_destroy(&mw->mw_lock); 1815 } 1816 1817 mtx_destroy(&sc->sfl_lock); 1818 mtx_destroy(&sc->reg_lock); 1819 mtx_destroy(&sc->sc_lock); 1820 1821 bzero(sc, sizeof(*sc)); 1822 1823 return (0); 1824 } 1825 1826 static inline bool 1827 ok_to_reset(struct adapter *sc) 1828 { 1829 struct tid_info *t = &sc->tids; 1830 struct port_info *pi; 1831 struct vi_info *vi; 1832 int i, j; 1833 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1834 1835 ASSERT_SYNCHRONIZED_OP(sc); 1836 MPASS(!(sc->flags & IS_VF)); 1837 1838 for_each_port(sc, i) { 1839 pi = sc->port[i]; 1840 for_each_vi(pi, j, vi) { 1841 if (vi->ifp->if_capenable & caps) 1842 return (false); 1843 } 1844 } 1845 1846 if (atomic_load_int(&t->tids_in_use) > 0) 1847 return (false); 1848 if (atomic_load_int(&t->stids_in_use) > 0) 1849 return (false); 1850 if (atomic_load_int(&t->atids_in_use) > 0) 1851 return (false); 1852 if (atomic_load_int(&t->ftids_in_use) > 0) 1853 return (false); 1854 if (atomic_load_int(&t->hpftids_in_use) > 0) 1855 return (false); 1856 if (atomic_load_int(&t->etids_in_use) > 0) 1857 return (false); 1858 1859 return (true); 1860 } 1861 1862 static inline int 1863 stop_adapter(struct adapter *sc) 1864 { 1865 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1866 return (1); /* Already stopped. */ 1867 return (t4_shutdown_adapter(sc)); 1868 } 1869 1870 static int 1871 t4_suspend(device_t dev) 1872 { 1873 struct adapter *sc = device_get_softc(dev); 1874 struct port_info *pi; 1875 struct vi_info *vi; 1876 struct ifnet *ifp; 1877 struct sge_rxq *rxq; 1878 struct sge_txq *txq; 1879 struct sge_wrq *wrq; 1880 #ifdef TCP_OFFLOAD 1881 struct sge_ofld_rxq *ofld_rxq; 1882 #endif 1883 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1884 struct sge_ofld_txq *ofld_txq; 1885 #endif 1886 int rc, i, j, k; 1887 1888 CH_ALERT(sc, "suspend requested\n"); 1889 1890 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1891 if (rc != 0) 1892 return (ENXIO); 1893 1894 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1895 MPASS(!hw_off_limits(sc)); 1896 1897 if (!ok_to_reset(sc)) { 1898 /* XXX: should list what resource is preventing suspend. */ 1899 CH_ERR(sc, "not safe to suspend.\n"); 1900 rc = EBUSY; 1901 goto done; 1902 } 1903 1904 /* No more DMA or interrupts. */ 1905 stop_adapter(sc); 1906 1907 /* Quiesce all activity. */ 1908 for_each_port(sc, i) { 1909 pi = sc->port[i]; 1910 pi->vxlan_tcam_entry = false; 1911 1912 PORT_LOCK(pi); 1913 if (pi->up_vis > 0) { 1914 /* 1915 * t4_shutdown_adapter has already shut down all the 1916 * PHYs but it also disables interrupts and DMA so there 1917 * won't be a link interrupt. So we update the state 1918 * manually and inform the kernel. 1919 */ 1920 pi->link_cfg.link_ok = false; 1921 t4_os_link_changed(pi); 1922 } 1923 PORT_UNLOCK(pi); 1924 1925 for_each_vi(pi, j, vi) { 1926 vi->xact_addr_filt = -1; 1927 mtx_lock(&vi->tick_mtx); 1928 vi->flags |= VI_SKIP_STATS; 1929 mtx_unlock(&vi->tick_mtx); 1930 if (!(vi->flags & VI_INIT_DONE)) 1931 continue; 1932 1933 ifp = vi->ifp; 1934 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1935 mtx_lock(&vi->tick_mtx); 1936 callout_stop(&vi->tick); 1937 mtx_unlock(&vi->tick_mtx); 1938 callout_drain(&vi->tick); 1939 } 1940 1941 /* 1942 * Note that the HW is not available. 1943 */ 1944 for_each_txq(vi, k, txq) { 1945 TXQ_LOCK(txq); 1946 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1947 TXQ_UNLOCK(txq); 1948 } 1949 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1950 for_each_ofld_txq(vi, k, ofld_txq) { 1951 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1952 } 1953 #endif 1954 for_each_rxq(vi, k, rxq) { 1955 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1956 } 1957 #if defined(TCP_OFFLOAD) 1958 for_each_ofld_rxq(vi, k, ofld_rxq) { 1959 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1960 } 1961 #endif 1962 1963 quiesce_vi(vi); 1964 } 1965 1966 if (sc->flags & FULL_INIT_DONE) { 1967 /* Control queue */ 1968 wrq = &sc->sge.ctrlq[i]; 1969 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1970 quiesce_wrq(wrq); 1971 } 1972 } 1973 if (sc->flags & FULL_INIT_DONE) { 1974 /* Firmware event queue */ 1975 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1976 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1977 } 1978 1979 /* Mark the adapter totally off limits. */ 1980 mtx_lock(&sc->reg_lock); 1981 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1982 sc->flags &= ~(FW_OK | MASTER_PF); 1983 sc->reset_thread = NULL; 1984 mtx_unlock(&sc->reg_lock); 1985 1986 CH_ALERT(sc, "suspend completed.\n"); 1987 done: 1988 end_synchronized_op(sc, 0); 1989 return (rc); 1990 } 1991 1992 struct adapter_pre_reset_state { 1993 u_int flags; 1994 uint16_t nbmcaps; 1995 uint16_t linkcaps; 1996 uint16_t switchcaps; 1997 uint16_t niccaps; 1998 uint16_t toecaps; 1999 uint16_t rdmacaps; 2000 uint16_t cryptocaps; 2001 uint16_t iscsicaps; 2002 uint16_t fcoecaps; 2003 2004 u_int cfcsum; 2005 char cfg_file[32]; 2006 2007 struct adapter_params params; 2008 struct t4_virt_res vres; 2009 struct tid_info tids; 2010 struct sge sge; 2011 2012 int rawf_base; 2013 int nrawf; 2014 2015 }; 2016 2017 static void 2018 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2019 { 2020 2021 ASSERT_SYNCHRONIZED_OP(sc); 2022 2023 o->flags = sc->flags; 2024 2025 o->nbmcaps = sc->nbmcaps; 2026 o->linkcaps = sc->linkcaps; 2027 o->switchcaps = sc->switchcaps; 2028 o->niccaps = sc->niccaps; 2029 o->toecaps = sc->toecaps; 2030 o->rdmacaps = sc->rdmacaps; 2031 o->cryptocaps = sc->cryptocaps; 2032 o->iscsicaps = sc->iscsicaps; 2033 o->fcoecaps = sc->fcoecaps; 2034 2035 o->cfcsum = sc->cfcsum; 2036 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2037 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2038 2039 o->params = sc->params; 2040 o->vres = sc->vres; 2041 o->tids = sc->tids; 2042 o->sge = sc->sge; 2043 2044 o->rawf_base = sc->rawf_base; 2045 o->nrawf = sc->nrawf; 2046 } 2047 2048 static int 2049 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2050 { 2051 int rc = 0; 2052 2053 ASSERT_SYNCHRONIZED_OP(sc); 2054 2055 /* Capabilities */ 2056 #define COMPARE_CAPS(c) do { \ 2057 if (o->c##caps != sc->c##caps) { \ 2058 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2059 sc->c##caps); \ 2060 rc = EINVAL; \ 2061 } \ 2062 } while (0) 2063 COMPARE_CAPS(nbm); 2064 COMPARE_CAPS(link); 2065 COMPARE_CAPS(switch); 2066 COMPARE_CAPS(nic); 2067 COMPARE_CAPS(toe); 2068 COMPARE_CAPS(rdma); 2069 COMPARE_CAPS(crypto); 2070 COMPARE_CAPS(iscsi); 2071 COMPARE_CAPS(fcoe); 2072 #undef COMPARE_CAPS 2073 2074 /* Firmware config file */ 2075 if (o->cfcsum != sc->cfcsum) { 2076 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2077 o->cfcsum, sc->cfg_file, sc->cfcsum); 2078 rc = EINVAL; 2079 } 2080 2081 #define COMPARE_PARAM(p, name) do { \ 2082 if (o->p != sc->p) { \ 2083 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2084 rc = EINVAL; \ 2085 } \ 2086 } while (0) 2087 COMPARE_PARAM(sge.iq_start, iq_start); 2088 COMPARE_PARAM(sge.eq_start, eq_start); 2089 COMPARE_PARAM(tids.ftid_base, ftid_base); 2090 COMPARE_PARAM(tids.ftid_end, ftid_end); 2091 COMPARE_PARAM(tids.nftids, nftids); 2092 COMPARE_PARAM(vres.l2t.start, l2t_start); 2093 COMPARE_PARAM(vres.l2t.size, l2t_size); 2094 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2095 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2096 COMPARE_PARAM(tids.tid_base, tid_base); 2097 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2098 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2099 COMPARE_PARAM(tids.nhpftids, nhpftids); 2100 COMPARE_PARAM(rawf_base, rawf_base); 2101 COMPARE_PARAM(nrawf, nrawf); 2102 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2103 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2104 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2105 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2106 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2107 COMPARE_PARAM(tids.ntids, ntids); 2108 COMPARE_PARAM(tids.etid_base, etid_base); 2109 COMPARE_PARAM(tids.etid_end, etid_end); 2110 COMPARE_PARAM(tids.netids, netids); 2111 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2112 COMPARE_PARAM(params.ethoffload, ethoffload); 2113 COMPARE_PARAM(tids.natids, natids); 2114 COMPARE_PARAM(tids.stid_base, stid_base); 2115 COMPARE_PARAM(vres.ddp.start, ddp_start); 2116 COMPARE_PARAM(vres.ddp.size, ddp_size); 2117 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2118 COMPARE_PARAM(vres.stag.start, stag_start); 2119 COMPARE_PARAM(vres.stag.size, stag_size); 2120 COMPARE_PARAM(vres.rq.start, rq_start); 2121 COMPARE_PARAM(vres.rq.size, rq_size); 2122 COMPARE_PARAM(vres.pbl.start, pbl_start); 2123 COMPARE_PARAM(vres.pbl.size, pbl_size); 2124 COMPARE_PARAM(vres.qp.start, qp_start); 2125 COMPARE_PARAM(vres.qp.size, qp_size); 2126 COMPARE_PARAM(vres.cq.start, cq_start); 2127 COMPARE_PARAM(vres.cq.size, cq_size); 2128 COMPARE_PARAM(vres.ocq.start, ocq_start); 2129 COMPARE_PARAM(vres.ocq.size, ocq_size); 2130 COMPARE_PARAM(vres.srq.start, srq_start); 2131 COMPARE_PARAM(vres.srq.size, srq_size); 2132 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2133 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2134 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2135 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2136 COMPARE_PARAM(vres.key.start, key_start); 2137 COMPARE_PARAM(vres.key.size, key_size); 2138 #undef COMPARE_PARAM 2139 2140 return (rc); 2141 } 2142 2143 static int 2144 t4_resume(device_t dev) 2145 { 2146 struct adapter *sc = device_get_softc(dev); 2147 struct adapter_pre_reset_state *old_state = NULL; 2148 struct port_info *pi; 2149 struct vi_info *vi; 2150 struct ifnet *ifp; 2151 struct sge_txq *txq; 2152 int rc, i, j, k; 2153 2154 CH_ALERT(sc, "resume requested.\n"); 2155 2156 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2157 if (rc != 0) 2158 return (ENXIO); 2159 MPASS(hw_off_limits(sc)); 2160 MPASS((sc->flags & FW_OK) == 0); 2161 MPASS((sc->flags & MASTER_PF) == 0); 2162 MPASS(sc->reset_thread == NULL); 2163 sc->reset_thread = curthread; 2164 2165 /* Register access is expected to work by the time we're here. */ 2166 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2167 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2168 rc = ENXIO; 2169 goto done; 2170 } 2171 2172 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2173 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2174 2175 /* Restore memory window. */ 2176 setup_memwin(sc); 2177 2178 /* Go no further if recovery mode has been requested. */ 2179 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2180 CH_ALERT(sc, "recovery mode on resume.\n"); 2181 rc = 0; 2182 mtx_lock(&sc->reg_lock); 2183 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2184 mtx_unlock(&sc->reg_lock); 2185 goto done; 2186 } 2187 2188 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2189 save_caps_and_params(sc, old_state); 2190 2191 /* Reestablish contact with firmware and become the primary PF. */ 2192 rc = contact_firmware(sc); 2193 if (rc != 0) 2194 goto done; /* error message displayed already */ 2195 MPASS(sc->flags & FW_OK); 2196 2197 if (sc->flags & MASTER_PF) { 2198 rc = partition_resources(sc); 2199 if (rc != 0) 2200 goto done; /* error message displayed already */ 2201 t4_intr_clear(sc); 2202 } 2203 2204 rc = get_params__post_init(sc); 2205 if (rc != 0) 2206 goto done; /* error message displayed already */ 2207 2208 rc = set_params__post_init(sc); 2209 if (rc != 0) 2210 goto done; /* error message displayed already */ 2211 2212 rc = compare_caps_and_params(sc, old_state); 2213 if (rc != 0) 2214 goto done; /* error message displayed already */ 2215 2216 for_each_port(sc, i) { 2217 pi = sc->port[i]; 2218 MPASS(pi != NULL); 2219 MPASS(pi->vi != NULL); 2220 MPASS(pi->vi[0].dev == pi->dev); 2221 2222 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2223 if (rc != 0) { 2224 CH_ERR(sc, 2225 "failed to re-initialize port %d: %d\n", i, rc); 2226 goto done; 2227 } 2228 MPASS(sc->chan_map[pi->tx_chan] == i); 2229 2230 PORT_LOCK(pi); 2231 fixup_link_config(pi); 2232 build_medialist(pi); 2233 PORT_UNLOCK(pi); 2234 for_each_vi(pi, j, vi) { 2235 if (IS_MAIN_VI(vi)) 2236 continue; 2237 rc = alloc_extra_vi(sc, pi, vi); 2238 if (rc != 0) { 2239 CH_ERR(vi, 2240 "failed to re-allocate extra VI: %d\n", rc); 2241 goto done; 2242 } 2243 } 2244 } 2245 2246 /* 2247 * Interrupts and queues are about to be enabled and other threads will 2248 * want to access the hardware too. It is safe to do so. Note that 2249 * this thread is still in the middle of a synchronized_op. 2250 */ 2251 mtx_lock(&sc->reg_lock); 2252 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2253 mtx_unlock(&sc->reg_lock); 2254 2255 if (sc->flags & FULL_INIT_DONE) { 2256 rc = adapter_full_init(sc); 2257 if (rc != 0) { 2258 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2259 goto done; 2260 } 2261 2262 if (sc->vxlan_refcount > 0) 2263 enable_vxlan_rx(sc); 2264 2265 for_each_port(sc, i) { 2266 pi = sc->port[i]; 2267 for_each_vi(pi, j, vi) { 2268 mtx_lock(&vi->tick_mtx); 2269 vi->flags &= ~VI_SKIP_STATS; 2270 mtx_unlock(&vi->tick_mtx); 2271 if (!(vi->flags & VI_INIT_DONE)) 2272 continue; 2273 rc = vi_full_init(vi); 2274 if (rc != 0) { 2275 CH_ERR(vi, "failed to re-initialize " 2276 "interface: %d\n", rc); 2277 goto done; 2278 } 2279 2280 ifp = vi->ifp; 2281 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2282 continue; 2283 /* 2284 * Note that we do not setup multicast addresses 2285 * in the first pass. This ensures that the 2286 * unicast DMACs for all VIs on all ports get an 2287 * MPS TCAM entry. 2288 */ 2289 rc = update_mac_settings(ifp, XGMAC_ALL & 2290 ~XGMAC_MCADDRS); 2291 if (rc != 0) { 2292 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2293 goto done; 2294 } 2295 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2296 true); 2297 if (rc != 0) { 2298 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2299 goto done; 2300 } 2301 for_each_txq(vi, k, txq) { 2302 TXQ_LOCK(txq); 2303 txq->eq.flags |= EQ_ENABLED; 2304 TXQ_UNLOCK(txq); 2305 } 2306 mtx_lock(&vi->tick_mtx); 2307 callout_schedule(&vi->tick, hz); 2308 mtx_unlock(&vi->tick_mtx); 2309 } 2310 PORT_LOCK(pi); 2311 if (pi->up_vis > 0) { 2312 t4_update_port_info(pi); 2313 fixup_link_config(pi); 2314 build_medialist(pi); 2315 apply_link_config(pi); 2316 if (pi->link_cfg.link_ok) 2317 t4_os_link_changed(pi); 2318 } 2319 PORT_UNLOCK(pi); 2320 } 2321 2322 /* Now reprogram the L2 multicast addresses. */ 2323 for_each_port(sc, i) { 2324 pi = sc->port[i]; 2325 for_each_vi(pi, j, vi) { 2326 if (!(vi->flags & VI_INIT_DONE)) 2327 continue; 2328 ifp = vi->ifp; 2329 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2330 continue; 2331 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2332 if (rc != 0) { 2333 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2334 rc = 0; /* carry on */ 2335 } 2336 } 2337 } 2338 } 2339 done: 2340 if (rc == 0) { 2341 sc->incarnation++; 2342 CH_ALERT(sc, "resume completed.\n"); 2343 } 2344 end_synchronized_op(sc, 0); 2345 free(old_state, M_CXGBE); 2346 return (rc); 2347 } 2348 2349 static int 2350 t4_reset_prepare(device_t dev, device_t child) 2351 { 2352 struct adapter *sc = device_get_softc(dev); 2353 2354 CH_ALERT(sc, "reset_prepare.\n"); 2355 return (0); 2356 } 2357 2358 static int 2359 t4_reset_post(device_t dev, device_t child) 2360 { 2361 struct adapter *sc = device_get_softc(dev); 2362 2363 CH_ALERT(sc, "reset_post.\n"); 2364 return (0); 2365 } 2366 2367 static int 2368 reset_adapter(struct adapter *sc) 2369 { 2370 int rc, oldinc, error_flags; 2371 2372 CH_ALERT(sc, "reset requested.\n"); 2373 2374 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2375 if (rc != 0) 2376 return (EBUSY); 2377 2378 if (hw_off_limits(sc)) { 2379 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2380 rc = ENXIO; 2381 goto done; 2382 } 2383 2384 if (!ok_to_reset(sc)) { 2385 /* XXX: should list what resource is preventing reset. */ 2386 CH_ERR(sc, "not safe to reset.\n"); 2387 rc = EBUSY; 2388 goto done; 2389 } 2390 2391 done: 2392 oldinc = sc->incarnation; 2393 end_synchronized_op(sc, 0); 2394 if (rc != 0) 2395 return (rc); /* Error logged already. */ 2396 2397 atomic_add_int(&sc->num_resets, 1); 2398 mtx_lock(&Giant); 2399 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2400 mtx_unlock(&Giant); 2401 if (rc != 0) 2402 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2403 else { 2404 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2405 if (rc != 0) 2406 return (EBUSY); 2407 error_flags = atomic_load_int(&sc->error_flags); 2408 if (sc->incarnation > oldinc && error_flags == 0) { 2409 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2410 } else { 2411 CH_ERR(sc, "adapter did not reset properly, flags " 2412 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2413 error_flags); 2414 rc = ENXIO; 2415 } 2416 end_synchronized_op(sc, 0); 2417 } 2418 2419 return (rc); 2420 } 2421 2422 static void 2423 reset_adapter_task(void *arg, int pending) 2424 { 2425 /* XXX: t4_async_event here? */ 2426 reset_adapter(arg); 2427 } 2428 2429 static int 2430 cxgbe_probe(device_t dev) 2431 { 2432 char buf[128]; 2433 struct port_info *pi = device_get_softc(dev); 2434 2435 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2436 device_set_desc_copy(dev, buf); 2437 2438 return (BUS_PROBE_DEFAULT); 2439 } 2440 2441 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2442 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2443 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2444 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2445 #define T4_CAP_ENABLE (T4_CAP) 2446 2447 static int 2448 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2449 { 2450 struct ifnet *ifp; 2451 struct sbuf *sb; 2452 struct sysctl_ctx_list *ctx = &vi->ctx; 2453 struct sysctl_oid_list *children; 2454 struct pfil_head_args pa; 2455 struct adapter *sc = vi->adapter; 2456 2457 sysctl_ctx_init(ctx); 2458 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2459 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2460 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2461 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2462 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2463 #ifdef DEV_NETMAP 2464 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2465 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2466 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2467 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2468 #endif 2469 #ifdef TCP_OFFLOAD 2470 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2471 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2472 #endif 2473 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2474 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2475 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2476 #endif 2477 2478 vi->xact_addr_filt = -1; 2479 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2480 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2481 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2482 vi->flags |= TX_USES_VM_WR; 2483 2484 /* Allocate an ifnet and set it up */ 2485 ifp = if_alloc_dev(IFT_ETHER, dev); 2486 if (ifp == NULL) { 2487 device_printf(dev, "Cannot allocate ifnet\n"); 2488 return (ENOMEM); 2489 } 2490 vi->ifp = ifp; 2491 ifp->if_softc = vi; 2492 2493 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2494 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2495 2496 ifp->if_init = cxgbe_init; 2497 ifp->if_ioctl = cxgbe_ioctl; 2498 ifp->if_transmit = cxgbe_transmit; 2499 ifp->if_qflush = cxgbe_qflush; 2500 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2501 ifp->if_get_counter = vi_get_counter; 2502 else 2503 ifp->if_get_counter = cxgbe_get_counter; 2504 #if defined(KERN_TLS) || defined(RATELIMIT) 2505 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2506 #endif 2507 #ifdef RATELIMIT 2508 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2509 #endif 2510 2511 ifp->if_capabilities = T4_CAP; 2512 ifp->if_capenable = T4_CAP_ENABLE; 2513 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2514 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2515 if (chip_id(sc) >= CHELSIO_T6) { 2516 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2517 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2518 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2519 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2520 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2521 } 2522 2523 #ifdef TCP_OFFLOAD 2524 if (vi->nofldrxq != 0) 2525 ifp->if_capabilities |= IFCAP_TOE; 2526 #endif 2527 #ifdef RATELIMIT 2528 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2529 ifp->if_capabilities |= IFCAP_TXRTLMT; 2530 ifp->if_capenable |= IFCAP_TXRTLMT; 2531 } 2532 #endif 2533 2534 ifp->if_hw_tsomax = IP_MAXPACKET; 2535 if (vi->flags & TX_USES_VM_WR) 2536 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2537 else 2538 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2539 #ifdef RATELIMIT 2540 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2541 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2542 #endif 2543 ifp->if_hw_tsomaxsegsize = 65536; 2544 #ifdef KERN_TLS 2545 if (is_ktls(sc)) { 2546 ifp->if_capabilities |= IFCAP_TXTLS; 2547 if (sc->flags & KERN_TLS_ON) 2548 ifp->if_capenable |= IFCAP_TXTLS; 2549 } 2550 #endif 2551 2552 ether_ifattach(ifp, vi->hw_addr); 2553 #ifdef DEV_NETMAP 2554 if (vi->nnmrxq != 0) 2555 cxgbe_nm_attach(vi); 2556 #endif 2557 sb = sbuf_new_auto(); 2558 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2559 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2560 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2561 case IFCAP_TOE: 2562 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2563 break; 2564 case IFCAP_TOE | IFCAP_TXRTLMT: 2565 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2566 break; 2567 case IFCAP_TXRTLMT: 2568 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2569 break; 2570 } 2571 #endif 2572 #ifdef TCP_OFFLOAD 2573 if (ifp->if_capabilities & IFCAP_TOE) 2574 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2575 #endif 2576 #ifdef DEV_NETMAP 2577 if (ifp->if_capabilities & IFCAP_NETMAP) 2578 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2579 vi->nnmtxq, vi->nnmrxq); 2580 #endif 2581 sbuf_finish(sb); 2582 device_printf(dev, "%s\n", sbuf_data(sb)); 2583 sbuf_delete(sb); 2584 2585 vi_sysctls(vi); 2586 2587 pa.pa_version = PFIL_VERSION; 2588 pa.pa_flags = PFIL_IN; 2589 pa.pa_type = PFIL_TYPE_ETHERNET; 2590 pa.pa_headname = ifp->if_xname; 2591 vi->pfil = pfil_head_register(&pa); 2592 2593 return (0); 2594 } 2595 2596 static int 2597 cxgbe_attach(device_t dev) 2598 { 2599 struct port_info *pi = device_get_softc(dev); 2600 struct adapter *sc = pi->adapter; 2601 struct vi_info *vi; 2602 int i, rc; 2603 2604 sysctl_ctx_init(&pi->ctx); 2605 2606 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2607 if (rc) 2608 return (rc); 2609 2610 for_each_vi(pi, i, vi) { 2611 if (i == 0) 2612 continue; 2613 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2614 if (vi->dev == NULL) { 2615 device_printf(dev, "failed to add VI %d\n", i); 2616 continue; 2617 } 2618 device_set_softc(vi->dev, vi); 2619 } 2620 2621 cxgbe_sysctls(pi); 2622 2623 bus_generic_attach(dev); 2624 2625 return (0); 2626 } 2627 2628 static void 2629 cxgbe_vi_detach(struct vi_info *vi) 2630 { 2631 struct ifnet *ifp = vi->ifp; 2632 2633 if (vi->pfil != NULL) { 2634 pfil_head_unregister(vi->pfil); 2635 vi->pfil = NULL; 2636 } 2637 2638 ether_ifdetach(ifp); 2639 2640 /* Let detach proceed even if these fail. */ 2641 #ifdef DEV_NETMAP 2642 if (ifp->if_capabilities & IFCAP_NETMAP) 2643 cxgbe_nm_detach(vi); 2644 #endif 2645 cxgbe_uninit_synchronized(vi); 2646 callout_drain(&vi->tick); 2647 sysctl_ctx_free(&vi->ctx); 2648 vi_full_uninit(vi); 2649 2650 if_free(vi->ifp); 2651 vi->ifp = NULL; 2652 } 2653 2654 static int 2655 cxgbe_detach(device_t dev) 2656 { 2657 struct port_info *pi = device_get_softc(dev); 2658 struct adapter *sc = pi->adapter; 2659 int rc; 2660 2661 /* Detach the extra VIs first. */ 2662 rc = bus_generic_detach(dev); 2663 if (rc) 2664 return (rc); 2665 device_delete_children(dev); 2666 2667 sysctl_ctx_free(&pi->ctx); 2668 doom_vi(sc, &pi->vi[0]); 2669 2670 if (pi->flags & HAS_TRACEQ) { 2671 sc->traceq = -1; /* cloner should not create ifnet */ 2672 t4_tracer_port_detach(sc); 2673 } 2674 2675 cxgbe_vi_detach(&pi->vi[0]); 2676 ifmedia_removeall(&pi->media); 2677 2678 end_synchronized_op(sc, 0); 2679 2680 return (0); 2681 } 2682 2683 static void 2684 cxgbe_init(void *arg) 2685 { 2686 struct vi_info *vi = arg; 2687 struct adapter *sc = vi->adapter; 2688 2689 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2690 return; 2691 cxgbe_init_synchronized(vi); 2692 end_synchronized_op(sc, 0); 2693 } 2694 2695 static int 2696 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2697 { 2698 int rc = 0, mtu, flags; 2699 struct vi_info *vi = ifp->if_softc; 2700 struct port_info *pi = vi->pi; 2701 struct adapter *sc = pi->adapter; 2702 struct ifreq *ifr = (struct ifreq *)data; 2703 uint32_t mask; 2704 2705 switch (cmd) { 2706 case SIOCSIFMTU: 2707 mtu = ifr->ifr_mtu; 2708 if (mtu < ETHERMIN || mtu > MAX_MTU) 2709 return (EINVAL); 2710 2711 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2712 if (rc) 2713 return (rc); 2714 ifp->if_mtu = mtu; 2715 if (vi->flags & VI_INIT_DONE) { 2716 t4_update_fl_bufsize(ifp); 2717 if (!hw_off_limits(sc) && 2718 ifp->if_drv_flags & IFF_DRV_RUNNING) 2719 rc = update_mac_settings(ifp, XGMAC_MTU); 2720 } 2721 end_synchronized_op(sc, 0); 2722 break; 2723 2724 case SIOCSIFFLAGS: 2725 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2726 if (rc) 2727 return (rc); 2728 2729 if (hw_off_limits(sc)) { 2730 rc = ENXIO; 2731 goto fail; 2732 } 2733 2734 if (ifp->if_flags & IFF_UP) { 2735 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2736 flags = vi->if_flags; 2737 if ((ifp->if_flags ^ flags) & 2738 (IFF_PROMISC | IFF_ALLMULTI)) { 2739 rc = update_mac_settings(ifp, 2740 XGMAC_PROMISC | XGMAC_ALLMULTI); 2741 } 2742 } else { 2743 rc = cxgbe_init_synchronized(vi); 2744 } 2745 vi->if_flags = ifp->if_flags; 2746 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2747 rc = cxgbe_uninit_synchronized(vi); 2748 } 2749 end_synchronized_op(sc, 0); 2750 break; 2751 2752 case SIOCADDMULTI: 2753 case SIOCDELMULTI: 2754 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2755 if (rc) 2756 return (rc); 2757 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2758 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2759 end_synchronized_op(sc, 0); 2760 break; 2761 2762 case SIOCSIFCAP: 2763 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2764 if (rc) 2765 return (rc); 2766 2767 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2768 if (mask & IFCAP_TXCSUM) { 2769 ifp->if_capenable ^= IFCAP_TXCSUM; 2770 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2771 2772 if (IFCAP_TSO4 & ifp->if_capenable && 2773 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2774 mask &= ~IFCAP_TSO4; 2775 ifp->if_capenable &= ~IFCAP_TSO4; 2776 if_printf(ifp, 2777 "tso4 disabled due to -txcsum.\n"); 2778 } 2779 } 2780 if (mask & IFCAP_TXCSUM_IPV6) { 2781 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2782 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2783 2784 if (IFCAP_TSO6 & ifp->if_capenable && 2785 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2786 mask &= ~IFCAP_TSO6; 2787 ifp->if_capenable &= ~IFCAP_TSO6; 2788 if_printf(ifp, 2789 "tso6 disabled due to -txcsum6.\n"); 2790 } 2791 } 2792 if (mask & IFCAP_RXCSUM) 2793 ifp->if_capenable ^= IFCAP_RXCSUM; 2794 if (mask & IFCAP_RXCSUM_IPV6) 2795 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2796 2797 /* 2798 * Note that we leave CSUM_TSO alone (it is always set). The 2799 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2800 * sending a TSO request our way, so it's sufficient to toggle 2801 * IFCAP_TSOx only. 2802 */ 2803 if (mask & IFCAP_TSO4) { 2804 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2805 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2806 if_printf(ifp, "enable txcsum first.\n"); 2807 rc = EAGAIN; 2808 goto fail; 2809 } 2810 ifp->if_capenable ^= IFCAP_TSO4; 2811 } 2812 if (mask & IFCAP_TSO6) { 2813 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2814 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2815 if_printf(ifp, "enable txcsum6 first.\n"); 2816 rc = EAGAIN; 2817 goto fail; 2818 } 2819 ifp->if_capenable ^= IFCAP_TSO6; 2820 } 2821 if (mask & IFCAP_LRO) { 2822 #if defined(INET) || defined(INET6) 2823 int i; 2824 struct sge_rxq *rxq; 2825 2826 ifp->if_capenable ^= IFCAP_LRO; 2827 for_each_rxq(vi, i, rxq) { 2828 if (ifp->if_capenable & IFCAP_LRO) 2829 rxq->iq.flags |= IQ_LRO_ENABLED; 2830 else 2831 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2832 } 2833 #endif 2834 } 2835 #ifdef TCP_OFFLOAD 2836 if (mask & IFCAP_TOE) { 2837 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2838 2839 rc = toe_capability(vi, enable); 2840 if (rc != 0) 2841 goto fail; 2842 2843 ifp->if_capenable ^= mask; 2844 } 2845 #endif 2846 if (mask & IFCAP_VLAN_HWTAGGING) { 2847 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2848 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2849 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2850 } 2851 if (mask & IFCAP_VLAN_MTU) { 2852 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2853 2854 /* Need to find out how to disable auto-mtu-inflation */ 2855 } 2856 if (mask & IFCAP_VLAN_HWTSO) 2857 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2858 if (mask & IFCAP_VLAN_HWCSUM) 2859 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2860 #ifdef RATELIMIT 2861 if (mask & IFCAP_TXRTLMT) 2862 ifp->if_capenable ^= IFCAP_TXRTLMT; 2863 #endif 2864 if (mask & IFCAP_HWRXTSTMP) { 2865 int i; 2866 struct sge_rxq *rxq; 2867 2868 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2869 for_each_rxq(vi, i, rxq) { 2870 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2871 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2872 else 2873 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2874 } 2875 } 2876 if (mask & IFCAP_MEXTPG) 2877 ifp->if_capenable ^= IFCAP_MEXTPG; 2878 2879 #ifdef KERN_TLS 2880 if (mask & IFCAP_TXTLS) { 2881 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2882 2883 rc = ktls_capability(sc, enable); 2884 if (rc != 0) 2885 goto fail; 2886 2887 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2888 } 2889 #endif 2890 if (mask & IFCAP_VXLAN_HWCSUM) { 2891 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2892 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2893 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2894 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2895 } 2896 if (mask & IFCAP_VXLAN_HWTSO) { 2897 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2898 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2899 CSUM_INNER_IP_TSO; 2900 } 2901 2902 #ifdef VLAN_CAPABILITIES 2903 VLAN_CAPABILITIES(ifp); 2904 #endif 2905 fail: 2906 end_synchronized_op(sc, 0); 2907 break; 2908 2909 case SIOCSIFMEDIA: 2910 case SIOCGIFMEDIA: 2911 case SIOCGIFXMEDIA: 2912 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2913 break; 2914 2915 case SIOCGI2C: { 2916 struct ifi2creq i2c; 2917 2918 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2919 if (rc != 0) 2920 break; 2921 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2922 rc = EPERM; 2923 break; 2924 } 2925 if (i2c.len > sizeof(i2c.data)) { 2926 rc = EINVAL; 2927 break; 2928 } 2929 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2930 if (rc) 2931 return (rc); 2932 if (hw_off_limits(sc)) 2933 rc = ENXIO; 2934 else 2935 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2936 i2c.offset, i2c.len, &i2c.data[0]); 2937 end_synchronized_op(sc, 0); 2938 if (rc == 0) 2939 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2940 break; 2941 } 2942 2943 default: 2944 rc = ether_ioctl(ifp, cmd, data); 2945 } 2946 2947 return (rc); 2948 } 2949 2950 static int 2951 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2952 { 2953 struct vi_info *vi = ifp->if_softc; 2954 struct port_info *pi = vi->pi; 2955 struct adapter *sc; 2956 struct sge_txq *txq; 2957 void *items[1]; 2958 int rc; 2959 2960 M_ASSERTPKTHDR(m); 2961 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2962 #if defined(KERN_TLS) || defined(RATELIMIT) 2963 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2964 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2965 #endif 2966 2967 if (__predict_false(pi->link_cfg.link_ok == false)) { 2968 m_freem(m); 2969 return (ENETDOWN); 2970 } 2971 2972 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2973 if (__predict_false(rc != 0)) { 2974 MPASS(m == NULL); /* was freed already */ 2975 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2976 return (rc); 2977 } 2978 #ifdef RATELIMIT 2979 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2980 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2981 return (ethofld_transmit(ifp, m)); 2982 } 2983 #endif 2984 2985 /* Select a txq. */ 2986 sc = vi->adapter; 2987 txq = &sc->sge.txq[vi->first_txq]; 2988 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2989 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2990 vi->rsrv_noflowq); 2991 2992 items[0] = m; 2993 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2994 if (__predict_false(rc != 0)) 2995 m_freem(m); 2996 2997 return (rc); 2998 } 2999 3000 static void 3001 cxgbe_qflush(struct ifnet *ifp) 3002 { 3003 struct vi_info *vi = ifp->if_softc; 3004 struct sge_txq *txq; 3005 int i; 3006 3007 /* queues do not exist if !VI_INIT_DONE. */ 3008 if (vi->flags & VI_INIT_DONE) { 3009 for_each_txq(vi, i, txq) { 3010 TXQ_LOCK(txq); 3011 txq->eq.flags |= EQ_QFLUSH; 3012 TXQ_UNLOCK(txq); 3013 while (!mp_ring_is_idle(txq->r)) { 3014 mp_ring_check_drainage(txq->r, 4096); 3015 pause("qflush", 1); 3016 } 3017 TXQ_LOCK(txq); 3018 txq->eq.flags &= ~EQ_QFLUSH; 3019 TXQ_UNLOCK(txq); 3020 } 3021 } 3022 if_qflush(ifp); 3023 } 3024 3025 static uint64_t 3026 vi_get_counter(struct ifnet *ifp, ift_counter c) 3027 { 3028 struct vi_info *vi = ifp->if_softc; 3029 struct fw_vi_stats_vf *s = &vi->stats; 3030 3031 mtx_lock(&vi->tick_mtx); 3032 vi_refresh_stats(vi); 3033 mtx_unlock(&vi->tick_mtx); 3034 3035 switch (c) { 3036 case IFCOUNTER_IPACKETS: 3037 return (s->rx_bcast_frames + s->rx_mcast_frames + 3038 s->rx_ucast_frames); 3039 case IFCOUNTER_IERRORS: 3040 return (s->rx_err_frames); 3041 case IFCOUNTER_OPACKETS: 3042 return (s->tx_bcast_frames + s->tx_mcast_frames + 3043 s->tx_ucast_frames + s->tx_offload_frames); 3044 case IFCOUNTER_OERRORS: 3045 return (s->tx_drop_frames); 3046 case IFCOUNTER_IBYTES: 3047 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3048 s->rx_ucast_bytes); 3049 case IFCOUNTER_OBYTES: 3050 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3051 s->tx_ucast_bytes + s->tx_offload_bytes); 3052 case IFCOUNTER_IMCASTS: 3053 return (s->rx_mcast_frames); 3054 case IFCOUNTER_OMCASTS: 3055 return (s->tx_mcast_frames); 3056 case IFCOUNTER_OQDROPS: { 3057 uint64_t drops; 3058 3059 drops = 0; 3060 if (vi->flags & VI_INIT_DONE) { 3061 int i; 3062 struct sge_txq *txq; 3063 3064 for_each_txq(vi, i, txq) 3065 drops += counter_u64_fetch(txq->r->dropped); 3066 } 3067 3068 return (drops); 3069 3070 } 3071 3072 default: 3073 return (if_get_counter_default(ifp, c)); 3074 } 3075 } 3076 3077 static uint64_t 3078 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3079 { 3080 struct vi_info *vi = ifp->if_softc; 3081 struct port_info *pi = vi->pi; 3082 struct port_stats *s = &pi->stats; 3083 3084 mtx_lock(&vi->tick_mtx); 3085 cxgbe_refresh_stats(vi); 3086 mtx_unlock(&vi->tick_mtx); 3087 3088 switch (c) { 3089 case IFCOUNTER_IPACKETS: 3090 return (s->rx_frames); 3091 3092 case IFCOUNTER_IERRORS: 3093 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3094 s->rx_fcs_err + s->rx_len_err); 3095 3096 case IFCOUNTER_OPACKETS: 3097 return (s->tx_frames); 3098 3099 case IFCOUNTER_OERRORS: 3100 return (s->tx_error_frames); 3101 3102 case IFCOUNTER_IBYTES: 3103 return (s->rx_octets); 3104 3105 case IFCOUNTER_OBYTES: 3106 return (s->tx_octets); 3107 3108 case IFCOUNTER_IMCASTS: 3109 return (s->rx_mcast_frames); 3110 3111 case IFCOUNTER_OMCASTS: 3112 return (s->tx_mcast_frames); 3113 3114 case IFCOUNTER_IQDROPS: 3115 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3116 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3117 s->rx_trunc3 + pi->tnl_cong_drops); 3118 3119 case IFCOUNTER_OQDROPS: { 3120 uint64_t drops; 3121 3122 drops = s->tx_drop; 3123 if (vi->flags & VI_INIT_DONE) { 3124 int i; 3125 struct sge_txq *txq; 3126 3127 for_each_txq(vi, i, txq) 3128 drops += counter_u64_fetch(txq->r->dropped); 3129 } 3130 3131 return (drops); 3132 3133 } 3134 3135 default: 3136 return (if_get_counter_default(ifp, c)); 3137 } 3138 } 3139 3140 #if defined(KERN_TLS) || defined(RATELIMIT) 3141 static int 3142 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3143 struct m_snd_tag **pt) 3144 { 3145 int error; 3146 3147 switch (params->hdr.type) { 3148 #ifdef RATELIMIT 3149 case IF_SND_TAG_TYPE_RATE_LIMIT: 3150 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3151 break; 3152 #endif 3153 #ifdef KERN_TLS 3154 case IF_SND_TAG_TYPE_TLS: 3155 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3156 break; 3157 #endif 3158 default: 3159 error = EOPNOTSUPP; 3160 } 3161 return (error); 3162 } 3163 #endif 3164 3165 /* 3166 * The kernel picks a media from the list we had provided but we still validate 3167 * the requeste. 3168 */ 3169 int 3170 cxgbe_media_change(struct ifnet *ifp) 3171 { 3172 struct vi_info *vi = ifp->if_softc; 3173 struct port_info *pi = vi->pi; 3174 struct ifmedia *ifm = &pi->media; 3175 struct link_config *lc = &pi->link_cfg; 3176 struct adapter *sc = pi->adapter; 3177 int rc; 3178 3179 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3180 if (rc != 0) 3181 return (rc); 3182 PORT_LOCK(pi); 3183 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3184 /* ifconfig .. media autoselect */ 3185 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3186 rc = ENOTSUP; /* AN not supported by transceiver */ 3187 goto done; 3188 } 3189 lc->requested_aneg = AUTONEG_ENABLE; 3190 lc->requested_speed = 0; 3191 lc->requested_fc |= PAUSE_AUTONEG; 3192 } else { 3193 lc->requested_aneg = AUTONEG_DISABLE; 3194 lc->requested_speed = 3195 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3196 lc->requested_fc = 0; 3197 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3198 lc->requested_fc |= PAUSE_RX; 3199 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3200 lc->requested_fc |= PAUSE_TX; 3201 } 3202 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3203 fixup_link_config(pi); 3204 rc = apply_link_config(pi); 3205 } 3206 done: 3207 PORT_UNLOCK(pi); 3208 end_synchronized_op(sc, 0); 3209 return (rc); 3210 } 3211 3212 /* 3213 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3214 * given speed. 3215 */ 3216 static int 3217 port_mword(struct port_info *pi, uint32_t speed) 3218 { 3219 3220 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3221 MPASS(powerof2(speed)); 3222 3223 switch(pi->port_type) { 3224 case FW_PORT_TYPE_BT_SGMII: 3225 case FW_PORT_TYPE_BT_XFI: 3226 case FW_PORT_TYPE_BT_XAUI: 3227 /* BaseT */ 3228 switch (speed) { 3229 case FW_PORT_CAP32_SPEED_100M: 3230 return (IFM_100_T); 3231 case FW_PORT_CAP32_SPEED_1G: 3232 return (IFM_1000_T); 3233 case FW_PORT_CAP32_SPEED_10G: 3234 return (IFM_10G_T); 3235 } 3236 break; 3237 case FW_PORT_TYPE_KX4: 3238 if (speed == FW_PORT_CAP32_SPEED_10G) 3239 return (IFM_10G_KX4); 3240 break; 3241 case FW_PORT_TYPE_CX4: 3242 if (speed == FW_PORT_CAP32_SPEED_10G) 3243 return (IFM_10G_CX4); 3244 break; 3245 case FW_PORT_TYPE_KX: 3246 if (speed == FW_PORT_CAP32_SPEED_1G) 3247 return (IFM_1000_KX); 3248 break; 3249 case FW_PORT_TYPE_KR: 3250 case FW_PORT_TYPE_BP_AP: 3251 case FW_PORT_TYPE_BP4_AP: 3252 case FW_PORT_TYPE_BP40_BA: 3253 case FW_PORT_TYPE_KR4_100G: 3254 case FW_PORT_TYPE_KR_SFP28: 3255 case FW_PORT_TYPE_KR_XLAUI: 3256 switch (speed) { 3257 case FW_PORT_CAP32_SPEED_1G: 3258 return (IFM_1000_KX); 3259 case FW_PORT_CAP32_SPEED_10G: 3260 return (IFM_10G_KR); 3261 case FW_PORT_CAP32_SPEED_25G: 3262 return (IFM_25G_KR); 3263 case FW_PORT_CAP32_SPEED_40G: 3264 return (IFM_40G_KR4); 3265 case FW_PORT_CAP32_SPEED_50G: 3266 return (IFM_50G_KR2); 3267 case FW_PORT_CAP32_SPEED_100G: 3268 return (IFM_100G_KR4); 3269 } 3270 break; 3271 case FW_PORT_TYPE_FIBER_XFI: 3272 case FW_PORT_TYPE_FIBER_XAUI: 3273 case FW_PORT_TYPE_SFP: 3274 case FW_PORT_TYPE_QSFP_10G: 3275 case FW_PORT_TYPE_QSA: 3276 case FW_PORT_TYPE_QSFP: 3277 case FW_PORT_TYPE_CR4_QSFP: 3278 case FW_PORT_TYPE_CR_QSFP: 3279 case FW_PORT_TYPE_CR2_QSFP: 3280 case FW_PORT_TYPE_SFP28: 3281 /* Pluggable transceiver */ 3282 switch (pi->mod_type) { 3283 case FW_PORT_MOD_TYPE_LR: 3284 switch (speed) { 3285 case FW_PORT_CAP32_SPEED_1G: 3286 return (IFM_1000_LX); 3287 case FW_PORT_CAP32_SPEED_10G: 3288 return (IFM_10G_LR); 3289 case FW_PORT_CAP32_SPEED_25G: 3290 return (IFM_25G_LR); 3291 case FW_PORT_CAP32_SPEED_40G: 3292 return (IFM_40G_LR4); 3293 case FW_PORT_CAP32_SPEED_50G: 3294 return (IFM_50G_LR2); 3295 case FW_PORT_CAP32_SPEED_100G: 3296 return (IFM_100G_LR4); 3297 } 3298 break; 3299 case FW_PORT_MOD_TYPE_SR: 3300 switch (speed) { 3301 case FW_PORT_CAP32_SPEED_1G: 3302 return (IFM_1000_SX); 3303 case FW_PORT_CAP32_SPEED_10G: 3304 return (IFM_10G_SR); 3305 case FW_PORT_CAP32_SPEED_25G: 3306 return (IFM_25G_SR); 3307 case FW_PORT_CAP32_SPEED_40G: 3308 return (IFM_40G_SR4); 3309 case FW_PORT_CAP32_SPEED_50G: 3310 return (IFM_50G_SR2); 3311 case FW_PORT_CAP32_SPEED_100G: 3312 return (IFM_100G_SR4); 3313 } 3314 break; 3315 case FW_PORT_MOD_TYPE_ER: 3316 if (speed == FW_PORT_CAP32_SPEED_10G) 3317 return (IFM_10G_ER); 3318 break; 3319 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3320 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3321 switch (speed) { 3322 case FW_PORT_CAP32_SPEED_1G: 3323 return (IFM_1000_CX); 3324 case FW_PORT_CAP32_SPEED_10G: 3325 return (IFM_10G_TWINAX); 3326 case FW_PORT_CAP32_SPEED_25G: 3327 return (IFM_25G_CR); 3328 case FW_PORT_CAP32_SPEED_40G: 3329 return (IFM_40G_CR4); 3330 case FW_PORT_CAP32_SPEED_50G: 3331 return (IFM_50G_CR2); 3332 case FW_PORT_CAP32_SPEED_100G: 3333 return (IFM_100G_CR4); 3334 } 3335 break; 3336 case FW_PORT_MOD_TYPE_LRM: 3337 if (speed == FW_PORT_CAP32_SPEED_10G) 3338 return (IFM_10G_LRM); 3339 break; 3340 case FW_PORT_MOD_TYPE_NA: 3341 MPASS(0); /* Not pluggable? */ 3342 /* fall throough */ 3343 case FW_PORT_MOD_TYPE_ERROR: 3344 case FW_PORT_MOD_TYPE_UNKNOWN: 3345 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3346 break; 3347 case FW_PORT_MOD_TYPE_NONE: 3348 return (IFM_NONE); 3349 } 3350 break; 3351 case FW_PORT_TYPE_NONE: 3352 return (IFM_NONE); 3353 } 3354 3355 return (IFM_UNKNOWN); 3356 } 3357 3358 void 3359 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3360 { 3361 struct vi_info *vi = ifp->if_softc; 3362 struct port_info *pi = vi->pi; 3363 struct adapter *sc = pi->adapter; 3364 struct link_config *lc = &pi->link_cfg; 3365 3366 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3367 return; 3368 PORT_LOCK(pi); 3369 3370 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3371 /* 3372 * If all the interfaces are administratively down the firmware 3373 * does not report transceiver changes. Refresh port info here 3374 * so that ifconfig displays accurate ifmedia at all times. 3375 * This is the only reason we have a synchronized op in this 3376 * function. Just PORT_LOCK would have been enough otherwise. 3377 */ 3378 t4_update_port_info(pi); 3379 build_medialist(pi); 3380 } 3381 3382 /* ifm_status */ 3383 ifmr->ifm_status = IFM_AVALID; 3384 if (lc->link_ok == false) 3385 goto done; 3386 ifmr->ifm_status |= IFM_ACTIVE; 3387 3388 /* ifm_active */ 3389 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3390 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3391 if (lc->fc & PAUSE_RX) 3392 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3393 if (lc->fc & PAUSE_TX) 3394 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3395 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3396 done: 3397 PORT_UNLOCK(pi); 3398 end_synchronized_op(sc, 0); 3399 } 3400 3401 static int 3402 vcxgbe_probe(device_t dev) 3403 { 3404 char buf[128]; 3405 struct vi_info *vi = device_get_softc(dev); 3406 3407 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3408 vi - vi->pi->vi); 3409 device_set_desc_copy(dev, buf); 3410 3411 return (BUS_PROBE_DEFAULT); 3412 } 3413 3414 static int 3415 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3416 { 3417 int func, index, rc; 3418 uint32_t param, val; 3419 3420 ASSERT_SYNCHRONIZED_OP(sc); 3421 3422 index = vi - pi->vi; 3423 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3424 KASSERT(index < nitems(vi_mac_funcs), 3425 ("%s: VI %s doesn't have a MAC func", __func__, 3426 device_get_nameunit(vi->dev))); 3427 func = vi_mac_funcs[index]; 3428 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3429 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3430 if (rc < 0) { 3431 CH_ERR(vi, "failed to allocate virtual interface %d" 3432 "for port %d: %d\n", index, pi->port_id, -rc); 3433 return (-rc); 3434 } 3435 vi->viid = rc; 3436 3437 if (vi->rss_size == 1) { 3438 /* 3439 * This VI didn't get a slice of the RSS table. Reduce the 3440 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3441 * configuration file (nvi, rssnvi for this PF) if this is a 3442 * problem. 3443 */ 3444 device_printf(vi->dev, "RSS table not available.\n"); 3445 vi->rss_base = 0xffff; 3446 3447 return (0); 3448 } 3449 3450 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3452 V_FW_PARAMS_PARAM_YZ(vi->viid); 3453 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3454 if (rc) 3455 vi->rss_base = 0xffff; 3456 else { 3457 MPASS((val >> 16) == vi->rss_size); 3458 vi->rss_base = val & 0xffff; 3459 } 3460 3461 return (0); 3462 } 3463 3464 static int 3465 vcxgbe_attach(device_t dev) 3466 { 3467 struct vi_info *vi; 3468 struct port_info *pi; 3469 struct adapter *sc; 3470 int rc; 3471 3472 vi = device_get_softc(dev); 3473 pi = vi->pi; 3474 sc = pi->adapter; 3475 3476 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3477 if (rc) 3478 return (rc); 3479 rc = alloc_extra_vi(sc, pi, vi); 3480 end_synchronized_op(sc, 0); 3481 if (rc) 3482 return (rc); 3483 3484 rc = cxgbe_vi_attach(dev, vi); 3485 if (rc) { 3486 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3487 return (rc); 3488 } 3489 return (0); 3490 } 3491 3492 static int 3493 vcxgbe_detach(device_t dev) 3494 { 3495 struct vi_info *vi; 3496 struct adapter *sc; 3497 3498 vi = device_get_softc(dev); 3499 sc = vi->adapter; 3500 3501 doom_vi(sc, vi); 3502 3503 cxgbe_vi_detach(vi); 3504 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3505 3506 end_synchronized_op(sc, 0); 3507 3508 return (0); 3509 } 3510 3511 static struct callout fatal_callout; 3512 static struct taskqueue *reset_tq; 3513 3514 static void 3515 delayed_panic(void *arg) 3516 { 3517 struct adapter *sc = arg; 3518 3519 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3520 } 3521 3522 static void 3523 fatal_error_task(void *arg, int pending) 3524 { 3525 struct adapter *sc = arg; 3526 int rc; 3527 3528 #ifdef TCP_OFFLOAD 3529 t4_async_event(sc); 3530 #endif 3531 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3532 dump_cim_regs(sc); 3533 dump_cimla(sc); 3534 dump_devlog(sc); 3535 } 3536 3537 if (t4_reset_on_fatal_err) { 3538 CH_ALERT(sc, "resetting on fatal error.\n"); 3539 rc = reset_adapter(sc); 3540 if (rc == 0 && t4_panic_on_fatal_err) { 3541 CH_ALERT(sc, "reset was successful, " 3542 "system will NOT panic.\n"); 3543 return; 3544 } 3545 } 3546 3547 if (t4_panic_on_fatal_err) { 3548 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3549 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3550 } 3551 } 3552 3553 void 3554 t4_fatal_err(struct adapter *sc, bool fw_error) 3555 { 3556 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3557 3558 stop_adapter(sc); 3559 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3560 return; 3561 if (fw_error) { 3562 /* 3563 * We are here because of a firmware error/timeout and not 3564 * because of a hardware interrupt. It is possible (although 3565 * not very likely) that an error interrupt was also raised but 3566 * this thread ran first and inhibited t4_intr_err. We walk the 3567 * main INT_CAUSE registers here to make sure we haven't missed 3568 * anything interesting. 3569 */ 3570 t4_slow_intr_handler(sc, verbose); 3571 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3572 } 3573 t4_report_fw_error(sc); 3574 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3575 device_get_nameunit(sc->dev), fw_error); 3576 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3577 } 3578 3579 void 3580 t4_add_adapter(struct adapter *sc) 3581 { 3582 sx_xlock(&t4_list_lock); 3583 SLIST_INSERT_HEAD(&t4_list, sc, link); 3584 sx_xunlock(&t4_list_lock); 3585 } 3586 3587 int 3588 t4_map_bars_0_and_4(struct adapter *sc) 3589 { 3590 sc->regs_rid = PCIR_BAR(0); 3591 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3592 &sc->regs_rid, RF_ACTIVE); 3593 if (sc->regs_res == NULL) { 3594 device_printf(sc->dev, "cannot map registers.\n"); 3595 return (ENXIO); 3596 } 3597 sc->bt = rman_get_bustag(sc->regs_res); 3598 sc->bh = rman_get_bushandle(sc->regs_res); 3599 sc->mmio_len = rman_get_size(sc->regs_res); 3600 setbit(&sc->doorbells, DOORBELL_KDB); 3601 3602 sc->msix_rid = PCIR_BAR(4); 3603 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3604 &sc->msix_rid, RF_ACTIVE); 3605 if (sc->msix_res == NULL) { 3606 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3607 return (ENXIO); 3608 } 3609 3610 return (0); 3611 } 3612 3613 int 3614 t4_map_bar_2(struct adapter *sc) 3615 { 3616 3617 /* 3618 * T4: only iWARP driver uses the userspace doorbells. There is no need 3619 * to map it if RDMA is disabled. 3620 */ 3621 if (is_t4(sc) && sc->rdmacaps == 0) 3622 return (0); 3623 3624 sc->udbs_rid = PCIR_BAR(2); 3625 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3626 &sc->udbs_rid, RF_ACTIVE); 3627 if (sc->udbs_res == NULL) { 3628 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3629 return (ENXIO); 3630 } 3631 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3632 3633 if (chip_id(sc) >= CHELSIO_T5) { 3634 setbit(&sc->doorbells, DOORBELL_UDB); 3635 #if defined(__i386__) || defined(__amd64__) 3636 if (t5_write_combine) { 3637 int rc, mode; 3638 3639 /* 3640 * Enable write combining on BAR2. This is the 3641 * userspace doorbell BAR and is split into 128B 3642 * (UDBS_SEG_SIZE) doorbell regions, each associated 3643 * with an egress queue. The first 64B has the doorbell 3644 * and the second 64B can be used to submit a tx work 3645 * request with an implicit doorbell. 3646 */ 3647 3648 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3649 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3650 if (rc == 0) { 3651 clrbit(&sc->doorbells, DOORBELL_UDB); 3652 setbit(&sc->doorbells, DOORBELL_WCWR); 3653 setbit(&sc->doorbells, DOORBELL_UDBWC); 3654 } else { 3655 device_printf(sc->dev, 3656 "couldn't enable write combining: %d\n", 3657 rc); 3658 } 3659 3660 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3661 t4_write_reg(sc, A_SGE_STAT_CFG, 3662 V_STATSOURCE_T5(7) | mode); 3663 } 3664 #endif 3665 } 3666 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3667 3668 return (0); 3669 } 3670 3671 struct memwin_init { 3672 uint32_t base; 3673 uint32_t aperture; 3674 }; 3675 3676 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3677 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3678 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3679 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3680 }; 3681 3682 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3683 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3684 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3685 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3686 }; 3687 3688 static void 3689 setup_memwin(struct adapter *sc) 3690 { 3691 const struct memwin_init *mw_init; 3692 struct memwin *mw; 3693 int i; 3694 uint32_t bar0; 3695 3696 if (is_t4(sc)) { 3697 /* 3698 * Read low 32b of bar0 indirectly via the hardware backdoor 3699 * mechanism. Works from within PCI passthrough environments 3700 * too, where rman_get_start() can return a different value. We 3701 * need to program the T4 memory window decoders with the actual 3702 * addresses that will be coming across the PCIe link. 3703 */ 3704 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3705 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3706 3707 mw_init = &t4_memwin[0]; 3708 } else { 3709 /* T5+ use the relative offset inside the PCIe BAR */ 3710 bar0 = 0; 3711 3712 mw_init = &t5_memwin[0]; 3713 } 3714 3715 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3716 if (!rw_initialized(&mw->mw_lock)) { 3717 rw_init(&mw->mw_lock, "memory window access"); 3718 mw->mw_base = mw_init->base; 3719 mw->mw_aperture = mw_init->aperture; 3720 mw->mw_curpos = 0; 3721 } 3722 t4_write_reg(sc, 3723 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3724 (mw->mw_base + bar0) | V_BIR(0) | 3725 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3726 rw_wlock(&mw->mw_lock); 3727 position_memwin(sc, i, mw->mw_curpos); 3728 rw_wunlock(&mw->mw_lock); 3729 } 3730 3731 /* flush */ 3732 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3733 } 3734 3735 /* 3736 * Positions the memory window at the given address in the card's address space. 3737 * There are some alignment requirements and the actual position may be at an 3738 * address prior to the requested address. mw->mw_curpos always has the actual 3739 * position of the window. 3740 */ 3741 static void 3742 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3743 { 3744 struct memwin *mw; 3745 uint32_t pf; 3746 uint32_t reg; 3747 3748 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3749 mw = &sc->memwin[idx]; 3750 rw_assert(&mw->mw_lock, RA_WLOCKED); 3751 3752 if (is_t4(sc)) { 3753 pf = 0; 3754 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3755 } else { 3756 pf = V_PFNUM(sc->pf); 3757 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3758 } 3759 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3760 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3761 t4_read_reg(sc, reg); /* flush */ 3762 } 3763 3764 int 3765 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3766 int len, int rw) 3767 { 3768 struct memwin *mw; 3769 uint32_t mw_end, v; 3770 3771 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3772 3773 /* Memory can only be accessed in naturally aligned 4 byte units */ 3774 if (addr & 3 || len & 3 || len <= 0) 3775 return (EINVAL); 3776 3777 mw = &sc->memwin[idx]; 3778 while (len > 0) { 3779 rw_rlock(&mw->mw_lock); 3780 mw_end = mw->mw_curpos + mw->mw_aperture; 3781 if (addr >= mw_end || addr < mw->mw_curpos) { 3782 /* Will need to reposition the window */ 3783 if (!rw_try_upgrade(&mw->mw_lock)) { 3784 rw_runlock(&mw->mw_lock); 3785 rw_wlock(&mw->mw_lock); 3786 } 3787 rw_assert(&mw->mw_lock, RA_WLOCKED); 3788 position_memwin(sc, idx, addr); 3789 rw_downgrade(&mw->mw_lock); 3790 mw_end = mw->mw_curpos + mw->mw_aperture; 3791 } 3792 rw_assert(&mw->mw_lock, RA_RLOCKED); 3793 while (addr < mw_end && len > 0) { 3794 if (rw == 0) { 3795 v = t4_read_reg(sc, mw->mw_base + addr - 3796 mw->mw_curpos); 3797 *val++ = le32toh(v); 3798 } else { 3799 v = *val++; 3800 t4_write_reg(sc, mw->mw_base + addr - 3801 mw->mw_curpos, htole32(v)); 3802 } 3803 addr += 4; 3804 len -= 4; 3805 } 3806 rw_runlock(&mw->mw_lock); 3807 } 3808 3809 return (0); 3810 } 3811 3812 static void 3813 t4_init_atid_table(struct adapter *sc) 3814 { 3815 struct tid_info *t; 3816 int i; 3817 3818 t = &sc->tids; 3819 if (t->natids == 0) 3820 return; 3821 3822 MPASS(t->atid_tab == NULL); 3823 3824 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3825 M_ZERO | M_WAITOK); 3826 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3827 t->afree = t->atid_tab; 3828 t->atids_in_use = 0; 3829 for (i = 1; i < t->natids; i++) 3830 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3831 t->atid_tab[t->natids - 1].next = NULL; 3832 } 3833 3834 static void 3835 t4_free_atid_table(struct adapter *sc) 3836 { 3837 struct tid_info *t; 3838 3839 t = &sc->tids; 3840 3841 KASSERT(t->atids_in_use == 0, 3842 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3843 3844 if (mtx_initialized(&t->atid_lock)) 3845 mtx_destroy(&t->atid_lock); 3846 free(t->atid_tab, M_CXGBE); 3847 t->atid_tab = NULL; 3848 } 3849 3850 int 3851 alloc_atid(struct adapter *sc, void *ctx) 3852 { 3853 struct tid_info *t = &sc->tids; 3854 int atid = -1; 3855 3856 mtx_lock(&t->atid_lock); 3857 if (t->afree) { 3858 union aopen_entry *p = t->afree; 3859 3860 atid = p - t->atid_tab; 3861 MPASS(atid <= M_TID_TID); 3862 t->afree = p->next; 3863 p->data = ctx; 3864 t->atids_in_use++; 3865 } 3866 mtx_unlock(&t->atid_lock); 3867 return (atid); 3868 } 3869 3870 void * 3871 lookup_atid(struct adapter *sc, int atid) 3872 { 3873 struct tid_info *t = &sc->tids; 3874 3875 return (t->atid_tab[atid].data); 3876 } 3877 3878 void 3879 free_atid(struct adapter *sc, int atid) 3880 { 3881 struct tid_info *t = &sc->tids; 3882 union aopen_entry *p = &t->atid_tab[atid]; 3883 3884 mtx_lock(&t->atid_lock); 3885 p->next = t->afree; 3886 t->afree = p; 3887 t->atids_in_use--; 3888 mtx_unlock(&t->atid_lock); 3889 } 3890 3891 static void 3892 queue_tid_release(struct adapter *sc, int tid) 3893 { 3894 3895 CXGBE_UNIMPLEMENTED("deferred tid release"); 3896 } 3897 3898 void 3899 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3900 { 3901 struct wrqe *wr; 3902 struct cpl_tid_release *req; 3903 3904 wr = alloc_wrqe(sizeof(*req), ctrlq); 3905 if (wr == NULL) { 3906 queue_tid_release(sc, tid); /* defer */ 3907 return; 3908 } 3909 req = wrtod(wr); 3910 3911 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3912 3913 t4_wrq_tx(sc, wr); 3914 } 3915 3916 static int 3917 t4_range_cmp(const void *a, const void *b) 3918 { 3919 return ((const struct t4_range *)a)->start - 3920 ((const struct t4_range *)b)->start; 3921 } 3922 3923 /* 3924 * Verify that the memory range specified by the addr/len pair is valid within 3925 * the card's address space. 3926 */ 3927 static int 3928 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3929 { 3930 struct t4_range mem_ranges[4], *r, *next; 3931 uint32_t em, addr_len; 3932 int i, n, remaining; 3933 3934 /* Memory can only be accessed in naturally aligned 4 byte units */ 3935 if (addr & 3 || len & 3 || len == 0) 3936 return (EINVAL); 3937 3938 /* Enabled memories */ 3939 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3940 3941 r = &mem_ranges[0]; 3942 n = 0; 3943 bzero(r, sizeof(mem_ranges)); 3944 if (em & F_EDRAM0_ENABLE) { 3945 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3946 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3947 if (r->size > 0) { 3948 r->start = G_EDRAM0_BASE(addr_len) << 20; 3949 if (addr >= r->start && 3950 addr + len <= r->start + r->size) 3951 return (0); 3952 r++; 3953 n++; 3954 } 3955 } 3956 if (em & F_EDRAM1_ENABLE) { 3957 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3958 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3959 if (r->size > 0) { 3960 r->start = G_EDRAM1_BASE(addr_len) << 20; 3961 if (addr >= r->start && 3962 addr + len <= r->start + r->size) 3963 return (0); 3964 r++; 3965 n++; 3966 } 3967 } 3968 if (em & F_EXT_MEM_ENABLE) { 3969 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3970 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3971 if (r->size > 0) { 3972 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3973 if (addr >= r->start && 3974 addr + len <= r->start + r->size) 3975 return (0); 3976 r++; 3977 n++; 3978 } 3979 } 3980 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3981 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3982 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3983 if (r->size > 0) { 3984 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3985 if (addr >= r->start && 3986 addr + len <= r->start + r->size) 3987 return (0); 3988 r++; 3989 n++; 3990 } 3991 } 3992 MPASS(n <= nitems(mem_ranges)); 3993 3994 if (n > 1) { 3995 /* Sort and merge the ranges. */ 3996 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3997 3998 /* Start from index 0 and examine the next n - 1 entries. */ 3999 r = &mem_ranges[0]; 4000 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4001 4002 MPASS(r->size > 0); /* r is a valid entry. */ 4003 next = r + 1; 4004 MPASS(next->size > 0); /* and so is the next one. */ 4005 4006 while (r->start + r->size >= next->start) { 4007 /* Merge the next one into the current entry. */ 4008 r->size = max(r->start + r->size, 4009 next->start + next->size) - r->start; 4010 n--; /* One fewer entry in total. */ 4011 if (--remaining == 0) 4012 goto done; /* short circuit */ 4013 next++; 4014 } 4015 if (next != r + 1) { 4016 /* 4017 * Some entries were merged into r and next 4018 * points to the first valid entry that couldn't 4019 * be merged. 4020 */ 4021 MPASS(next->size > 0); /* must be valid */ 4022 memcpy(r + 1, next, remaining * sizeof(*r)); 4023 #ifdef INVARIANTS 4024 /* 4025 * This so that the foo->size assertion in the 4026 * next iteration of the loop do the right 4027 * thing for entries that were pulled up and are 4028 * no longer valid. 4029 */ 4030 MPASS(n < nitems(mem_ranges)); 4031 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4032 sizeof(struct t4_range)); 4033 #endif 4034 } 4035 } 4036 done: 4037 /* Done merging the ranges. */ 4038 MPASS(n > 0); 4039 r = &mem_ranges[0]; 4040 for (i = 0; i < n; i++, r++) { 4041 if (addr >= r->start && 4042 addr + len <= r->start + r->size) 4043 return (0); 4044 } 4045 } 4046 4047 return (EFAULT); 4048 } 4049 4050 static int 4051 fwmtype_to_hwmtype(int mtype) 4052 { 4053 4054 switch (mtype) { 4055 case FW_MEMTYPE_EDC0: 4056 return (MEM_EDC0); 4057 case FW_MEMTYPE_EDC1: 4058 return (MEM_EDC1); 4059 case FW_MEMTYPE_EXTMEM: 4060 return (MEM_MC0); 4061 case FW_MEMTYPE_EXTMEM1: 4062 return (MEM_MC1); 4063 default: 4064 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4065 } 4066 } 4067 4068 /* 4069 * Verify that the memory range specified by the memtype/offset/len pair is 4070 * valid and lies entirely within the memtype specified. The global address of 4071 * the start of the range is returned in addr. 4072 */ 4073 static int 4074 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4075 uint32_t *addr) 4076 { 4077 uint32_t em, addr_len, maddr; 4078 4079 /* Memory can only be accessed in naturally aligned 4 byte units */ 4080 if (off & 3 || len & 3 || len == 0) 4081 return (EINVAL); 4082 4083 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4084 switch (fwmtype_to_hwmtype(mtype)) { 4085 case MEM_EDC0: 4086 if (!(em & F_EDRAM0_ENABLE)) 4087 return (EINVAL); 4088 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4089 maddr = G_EDRAM0_BASE(addr_len) << 20; 4090 break; 4091 case MEM_EDC1: 4092 if (!(em & F_EDRAM1_ENABLE)) 4093 return (EINVAL); 4094 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4095 maddr = G_EDRAM1_BASE(addr_len) << 20; 4096 break; 4097 case MEM_MC: 4098 if (!(em & F_EXT_MEM_ENABLE)) 4099 return (EINVAL); 4100 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4101 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4102 break; 4103 case MEM_MC1: 4104 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4105 return (EINVAL); 4106 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4107 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4108 break; 4109 default: 4110 return (EINVAL); 4111 } 4112 4113 *addr = maddr + off; /* global address */ 4114 return (validate_mem_range(sc, *addr, len)); 4115 } 4116 4117 static int 4118 fixup_devlog_params(struct adapter *sc) 4119 { 4120 struct devlog_params *dparams = &sc->params.devlog; 4121 int rc; 4122 4123 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4124 dparams->size, &dparams->addr); 4125 4126 return (rc); 4127 } 4128 4129 static void 4130 update_nirq(struct intrs_and_queues *iaq, int nports) 4131 { 4132 4133 iaq->nirq = T4_EXTRA_INTR; 4134 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4135 iaq->nirq += nports * iaq->nofldrxq; 4136 iaq->nirq += nports * (iaq->num_vis - 1) * 4137 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4138 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4139 } 4140 4141 /* 4142 * Adjust requirements to fit the number of interrupts available. 4143 */ 4144 static void 4145 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4146 int navail) 4147 { 4148 int old_nirq; 4149 const int nports = sc->params.nports; 4150 4151 MPASS(nports > 0); 4152 MPASS(navail > 0); 4153 4154 bzero(iaq, sizeof(*iaq)); 4155 iaq->intr_type = itype; 4156 iaq->num_vis = t4_num_vis; 4157 iaq->ntxq = t4_ntxq; 4158 iaq->ntxq_vi = t4_ntxq_vi; 4159 iaq->nrxq = t4_nrxq; 4160 iaq->nrxq_vi = t4_nrxq_vi; 4161 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4162 if (is_offload(sc) || is_ethoffload(sc)) { 4163 iaq->nofldtxq = t4_nofldtxq; 4164 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4165 } 4166 #endif 4167 #ifdef TCP_OFFLOAD 4168 if (is_offload(sc)) { 4169 iaq->nofldrxq = t4_nofldrxq; 4170 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4171 } 4172 #endif 4173 #ifdef DEV_NETMAP 4174 if (t4_native_netmap & NN_MAIN_VI) { 4175 iaq->nnmtxq = t4_nnmtxq; 4176 iaq->nnmrxq = t4_nnmrxq; 4177 } 4178 if (t4_native_netmap & NN_EXTRA_VI) { 4179 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4180 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4181 } 4182 #endif 4183 4184 update_nirq(iaq, nports); 4185 if (iaq->nirq <= navail && 4186 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4187 /* 4188 * This is the normal case -- there are enough interrupts for 4189 * everything. 4190 */ 4191 goto done; 4192 } 4193 4194 /* 4195 * If extra VIs have been configured try reducing their count and see if 4196 * that works. 4197 */ 4198 while (iaq->num_vis > 1) { 4199 iaq->num_vis--; 4200 update_nirq(iaq, nports); 4201 if (iaq->nirq <= navail && 4202 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4203 device_printf(sc->dev, "virtual interfaces per port " 4204 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4205 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4206 "itype %d, navail %u, nirq %d.\n", 4207 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4208 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4209 itype, navail, iaq->nirq); 4210 goto done; 4211 } 4212 } 4213 4214 /* 4215 * Extra VIs will not be created. Log a message if they were requested. 4216 */ 4217 MPASS(iaq->num_vis == 1); 4218 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4219 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4220 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4221 if (iaq->num_vis != t4_num_vis) { 4222 device_printf(sc->dev, "extra virtual interfaces disabled. " 4223 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4224 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4225 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4226 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4227 } 4228 4229 /* 4230 * Keep reducing the number of NIC rx queues to the next lower power of 4231 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4232 * if that works. 4233 */ 4234 do { 4235 if (iaq->nrxq > 1) { 4236 do { 4237 iaq->nrxq--; 4238 } while (!powerof2(iaq->nrxq)); 4239 if (iaq->nnmrxq > iaq->nrxq) 4240 iaq->nnmrxq = iaq->nrxq; 4241 } 4242 if (iaq->nofldrxq > 1) 4243 iaq->nofldrxq >>= 1; 4244 4245 old_nirq = iaq->nirq; 4246 update_nirq(iaq, nports); 4247 if (iaq->nirq <= navail && 4248 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4249 device_printf(sc->dev, "running with reduced number of " 4250 "rx queues because of shortage of interrupts. " 4251 "nrxq=%u, nofldrxq=%u. " 4252 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4253 iaq->nofldrxq, itype, navail, iaq->nirq); 4254 goto done; 4255 } 4256 } while (old_nirq != iaq->nirq); 4257 4258 /* One interrupt for everything. Ugh. */ 4259 device_printf(sc->dev, "running with minimal number of queues. " 4260 "itype %d, navail %u.\n", itype, navail); 4261 iaq->nirq = 1; 4262 iaq->nrxq = 1; 4263 iaq->ntxq = 1; 4264 if (iaq->nofldrxq > 0) { 4265 iaq->nofldrxq = 1; 4266 iaq->nofldtxq = 1; 4267 } 4268 iaq->nnmtxq = 0; 4269 iaq->nnmrxq = 0; 4270 done: 4271 MPASS(iaq->num_vis > 0); 4272 if (iaq->num_vis > 1) { 4273 MPASS(iaq->nrxq_vi > 0); 4274 MPASS(iaq->ntxq_vi > 0); 4275 } 4276 MPASS(iaq->nirq > 0); 4277 MPASS(iaq->nrxq > 0); 4278 MPASS(iaq->ntxq > 0); 4279 if (itype == INTR_MSI) { 4280 MPASS(powerof2(iaq->nirq)); 4281 } 4282 } 4283 4284 static int 4285 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4286 { 4287 int rc, itype, navail, nalloc; 4288 4289 for (itype = INTR_MSIX; itype; itype >>= 1) { 4290 4291 if ((itype & t4_intr_types) == 0) 4292 continue; /* not allowed */ 4293 4294 if (itype == INTR_MSIX) 4295 navail = pci_msix_count(sc->dev); 4296 else if (itype == INTR_MSI) 4297 navail = pci_msi_count(sc->dev); 4298 else 4299 navail = 1; 4300 restart: 4301 if (navail == 0) 4302 continue; 4303 4304 calculate_iaq(sc, iaq, itype, navail); 4305 nalloc = iaq->nirq; 4306 rc = 0; 4307 if (itype == INTR_MSIX) 4308 rc = pci_alloc_msix(sc->dev, &nalloc); 4309 else if (itype == INTR_MSI) 4310 rc = pci_alloc_msi(sc->dev, &nalloc); 4311 4312 if (rc == 0 && nalloc > 0) { 4313 if (nalloc == iaq->nirq) 4314 return (0); 4315 4316 /* 4317 * Didn't get the number requested. Use whatever number 4318 * the kernel is willing to allocate. 4319 */ 4320 device_printf(sc->dev, "fewer vectors than requested, " 4321 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4322 itype, iaq->nirq, nalloc); 4323 pci_release_msi(sc->dev); 4324 navail = nalloc; 4325 goto restart; 4326 } 4327 4328 device_printf(sc->dev, 4329 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4330 itype, rc, iaq->nirq, nalloc); 4331 } 4332 4333 device_printf(sc->dev, 4334 "failed to find a usable interrupt type. " 4335 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4336 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4337 4338 return (ENXIO); 4339 } 4340 4341 #define FW_VERSION(chip) ( \ 4342 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4343 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4344 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4345 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4346 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4347 4348 /* Just enough of fw_hdr to cover all version info. */ 4349 struct fw_h { 4350 __u8 ver; 4351 __u8 chip; 4352 __be16 len512; 4353 __be32 fw_ver; 4354 __be32 tp_microcode_ver; 4355 __u8 intfver_nic; 4356 __u8 intfver_vnic; 4357 __u8 intfver_ofld; 4358 __u8 intfver_ri; 4359 __u8 intfver_iscsipdu; 4360 __u8 intfver_iscsi; 4361 __u8 intfver_fcoepdu; 4362 __u8 intfver_fcoe; 4363 }; 4364 /* Spot check a couple of fields. */ 4365 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4366 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4367 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4368 4369 struct fw_info { 4370 uint8_t chip; 4371 char *kld_name; 4372 char *fw_mod_name; 4373 struct fw_h fw_h; 4374 } fw_info[] = { 4375 { 4376 .chip = CHELSIO_T4, 4377 .kld_name = "t4fw_cfg", 4378 .fw_mod_name = "t4fw", 4379 .fw_h = { 4380 .chip = FW_HDR_CHIP_T4, 4381 .fw_ver = htobe32(FW_VERSION(T4)), 4382 .intfver_nic = FW_INTFVER(T4, NIC), 4383 .intfver_vnic = FW_INTFVER(T4, VNIC), 4384 .intfver_ofld = FW_INTFVER(T4, OFLD), 4385 .intfver_ri = FW_INTFVER(T4, RI), 4386 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4387 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4388 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4389 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4390 }, 4391 }, { 4392 .chip = CHELSIO_T5, 4393 .kld_name = "t5fw_cfg", 4394 .fw_mod_name = "t5fw", 4395 .fw_h = { 4396 .chip = FW_HDR_CHIP_T5, 4397 .fw_ver = htobe32(FW_VERSION(T5)), 4398 .intfver_nic = FW_INTFVER(T5, NIC), 4399 .intfver_vnic = FW_INTFVER(T5, VNIC), 4400 .intfver_ofld = FW_INTFVER(T5, OFLD), 4401 .intfver_ri = FW_INTFVER(T5, RI), 4402 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4403 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4404 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4405 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4406 }, 4407 }, { 4408 .chip = CHELSIO_T6, 4409 .kld_name = "t6fw_cfg", 4410 .fw_mod_name = "t6fw", 4411 .fw_h = { 4412 .chip = FW_HDR_CHIP_T6, 4413 .fw_ver = htobe32(FW_VERSION(T6)), 4414 .intfver_nic = FW_INTFVER(T6, NIC), 4415 .intfver_vnic = FW_INTFVER(T6, VNIC), 4416 .intfver_ofld = FW_INTFVER(T6, OFLD), 4417 .intfver_ri = FW_INTFVER(T6, RI), 4418 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4419 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4420 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4421 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4422 }, 4423 } 4424 }; 4425 4426 static struct fw_info * 4427 find_fw_info(int chip) 4428 { 4429 int i; 4430 4431 for (i = 0; i < nitems(fw_info); i++) { 4432 if (fw_info[i].chip == chip) 4433 return (&fw_info[i]); 4434 } 4435 return (NULL); 4436 } 4437 4438 /* 4439 * Is the given firmware API compatible with the one the driver was compiled 4440 * with? 4441 */ 4442 static int 4443 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4444 { 4445 4446 /* short circuit if it's the exact same firmware version */ 4447 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4448 return (1); 4449 4450 /* 4451 * XXX: Is this too conservative? Perhaps I should limit this to the 4452 * features that are supported in the driver. 4453 */ 4454 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4455 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4456 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4457 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4458 return (1); 4459 #undef SAME_INTF 4460 4461 return (0); 4462 } 4463 4464 static int 4465 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4466 const struct firmware **fw) 4467 { 4468 struct fw_info *fw_info; 4469 4470 *dcfg = NULL; 4471 if (fw != NULL) 4472 *fw = NULL; 4473 4474 fw_info = find_fw_info(chip_id(sc)); 4475 if (fw_info == NULL) { 4476 device_printf(sc->dev, 4477 "unable to look up firmware information for chip %d.\n", 4478 chip_id(sc)); 4479 return (EINVAL); 4480 } 4481 4482 *dcfg = firmware_get(fw_info->kld_name); 4483 if (*dcfg != NULL) { 4484 if (fw != NULL) 4485 *fw = firmware_get(fw_info->fw_mod_name); 4486 return (0); 4487 } 4488 4489 return (ENOENT); 4490 } 4491 4492 static void 4493 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4494 const struct firmware *fw) 4495 { 4496 4497 if (fw != NULL) 4498 firmware_put(fw, FIRMWARE_UNLOAD); 4499 if (dcfg != NULL) 4500 firmware_put(dcfg, FIRMWARE_UNLOAD); 4501 } 4502 4503 /* 4504 * Return values: 4505 * 0 means no firmware install attempted. 4506 * ERESTART means a firmware install was attempted and was successful. 4507 * +ve errno means a firmware install was attempted but failed. 4508 */ 4509 static int 4510 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4511 const struct fw_h *drv_fw, const char *reason, int *already) 4512 { 4513 const struct firmware *cfg, *fw; 4514 const uint32_t c = be32toh(card_fw->fw_ver); 4515 uint32_t d, k; 4516 int rc, fw_install; 4517 struct fw_h bundled_fw; 4518 bool load_attempted; 4519 4520 cfg = fw = NULL; 4521 load_attempted = false; 4522 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4523 4524 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4525 if (t4_fw_install < 0) { 4526 rc = load_fw_module(sc, &cfg, &fw); 4527 if (rc != 0 || fw == NULL) { 4528 device_printf(sc->dev, 4529 "failed to load firmware module: %d. cfg %p, fw %p;" 4530 " will use compiled-in firmware version for" 4531 "hw.cxgbe.fw_install checks.\n", 4532 rc, cfg, fw); 4533 } else { 4534 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4535 } 4536 load_attempted = true; 4537 } 4538 d = be32toh(bundled_fw.fw_ver); 4539 4540 if (reason != NULL) 4541 goto install; 4542 4543 if ((sc->flags & FW_OK) == 0) { 4544 4545 if (c == 0xffffffff) { 4546 reason = "missing"; 4547 goto install; 4548 } 4549 4550 rc = 0; 4551 goto done; 4552 } 4553 4554 if (!fw_compatible(card_fw, &bundled_fw)) { 4555 reason = "incompatible or unusable"; 4556 goto install; 4557 } 4558 4559 if (d > c) { 4560 reason = "older than the version bundled with this driver"; 4561 goto install; 4562 } 4563 4564 if (fw_install == 2 && d != c) { 4565 reason = "different than the version bundled with this driver"; 4566 goto install; 4567 } 4568 4569 /* No reason to do anything to the firmware already on the card. */ 4570 rc = 0; 4571 goto done; 4572 4573 install: 4574 rc = 0; 4575 if ((*already)++) 4576 goto done; 4577 4578 if (fw_install == 0) { 4579 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4580 "but the driver is prohibited from installing a firmware " 4581 "on the card.\n", 4582 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4583 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4584 4585 goto done; 4586 } 4587 4588 /* 4589 * We'll attempt to install a firmware. Load the module first (if it 4590 * hasn't been loaded already). 4591 */ 4592 if (!load_attempted) { 4593 rc = load_fw_module(sc, &cfg, &fw); 4594 if (rc != 0 || fw == NULL) { 4595 device_printf(sc->dev, 4596 "failed to load firmware module: %d. cfg %p, fw %p\n", 4597 rc, cfg, fw); 4598 /* carry on */ 4599 } 4600 } 4601 if (fw == NULL) { 4602 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4603 "but the driver cannot take corrective action because it " 4604 "is unable to load the firmware module.\n", 4605 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4606 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4607 rc = sc->flags & FW_OK ? 0 : ENOENT; 4608 goto done; 4609 } 4610 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4611 if (k != d) { 4612 MPASS(t4_fw_install > 0); 4613 device_printf(sc->dev, 4614 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4615 "expecting (%u.%u.%u.%u) and will not be used.\n", 4616 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4617 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4618 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4619 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4620 rc = sc->flags & FW_OK ? 0 : EINVAL; 4621 goto done; 4622 } 4623 4624 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4625 "installing firmware %u.%u.%u.%u on card.\n", 4626 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4627 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4628 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4629 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4630 4631 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4632 if (rc != 0) { 4633 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4634 } else { 4635 /* Installed successfully, update the cached header too. */ 4636 rc = ERESTART; 4637 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4638 } 4639 done: 4640 unload_fw_module(sc, cfg, fw); 4641 4642 return (rc); 4643 } 4644 4645 /* 4646 * Establish contact with the firmware and attempt to become the master driver. 4647 * 4648 * A firmware will be installed to the card if needed (if the driver is allowed 4649 * to do so). 4650 */ 4651 static int 4652 contact_firmware(struct adapter *sc) 4653 { 4654 int rc, already = 0; 4655 enum dev_state state; 4656 struct fw_info *fw_info; 4657 struct fw_hdr *card_fw; /* fw on the card */ 4658 const struct fw_h *drv_fw; 4659 4660 fw_info = find_fw_info(chip_id(sc)); 4661 if (fw_info == NULL) { 4662 device_printf(sc->dev, 4663 "unable to look up firmware information for chip %d.\n", 4664 chip_id(sc)); 4665 return (EINVAL); 4666 } 4667 drv_fw = &fw_info->fw_h; 4668 4669 /* Read the header of the firmware on the card */ 4670 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4671 restart: 4672 rc = -t4_get_fw_hdr(sc, card_fw); 4673 if (rc != 0) { 4674 device_printf(sc->dev, 4675 "unable to read firmware header from card's flash: %d\n", 4676 rc); 4677 goto done; 4678 } 4679 4680 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4681 &already); 4682 if (rc == ERESTART) 4683 goto restart; 4684 if (rc != 0) 4685 goto done; 4686 4687 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4688 if (rc < 0 || state == DEV_STATE_ERR) { 4689 rc = -rc; 4690 device_printf(sc->dev, 4691 "failed to connect to the firmware: %d, %d. " 4692 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4693 #if 0 4694 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4695 "not responding properly to HELLO", &already) == ERESTART) 4696 goto restart; 4697 #endif 4698 goto done; 4699 } 4700 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4701 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4702 4703 if (rc == sc->pf) { 4704 sc->flags |= MASTER_PF; 4705 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4706 NULL, &already); 4707 if (rc == ERESTART) 4708 rc = 0; 4709 else if (rc != 0) 4710 goto done; 4711 } else if (state == DEV_STATE_UNINIT) { 4712 /* 4713 * We didn't get to be the master so we definitely won't be 4714 * configuring the chip. It's a bug if someone else hasn't 4715 * configured it already. 4716 */ 4717 device_printf(sc->dev, "couldn't be master(%d), " 4718 "device not already initialized either(%d). " 4719 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4720 rc = EPROTO; 4721 goto done; 4722 } else { 4723 /* 4724 * Some other PF is the master and has configured the chip. 4725 * This is allowed but untested. 4726 */ 4727 device_printf(sc->dev, "PF%d is master, device state %d. " 4728 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4729 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4730 sc->cfcsum = 0; 4731 rc = 0; 4732 } 4733 done: 4734 if (rc != 0 && sc->flags & FW_OK) { 4735 t4_fw_bye(sc, sc->mbox); 4736 sc->flags &= ~FW_OK; 4737 } 4738 free(card_fw, M_CXGBE); 4739 return (rc); 4740 } 4741 4742 static int 4743 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4744 uint32_t mtype, uint32_t moff) 4745 { 4746 struct fw_info *fw_info; 4747 const struct firmware *dcfg, *rcfg = NULL; 4748 const uint32_t *cfdata; 4749 uint32_t cflen, addr; 4750 int rc; 4751 4752 load_fw_module(sc, &dcfg, NULL); 4753 4754 /* Card specific interpretation of "default". */ 4755 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4756 if (pci_get_device(sc->dev) == 0x440a) 4757 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4758 if (is_fpga(sc)) 4759 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4760 } 4761 4762 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4763 if (dcfg == NULL) { 4764 device_printf(sc->dev, 4765 "KLD with default config is not available.\n"); 4766 rc = ENOENT; 4767 goto done; 4768 } 4769 cfdata = dcfg->data; 4770 cflen = dcfg->datasize & ~3; 4771 } else { 4772 char s[32]; 4773 4774 fw_info = find_fw_info(chip_id(sc)); 4775 if (fw_info == NULL) { 4776 device_printf(sc->dev, 4777 "unable to look up firmware information for chip %d.\n", 4778 chip_id(sc)); 4779 rc = EINVAL; 4780 goto done; 4781 } 4782 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4783 4784 rcfg = firmware_get(s); 4785 if (rcfg == NULL) { 4786 device_printf(sc->dev, 4787 "unable to load module \"%s\" for configuration " 4788 "profile \"%s\".\n", s, cfg_file); 4789 rc = ENOENT; 4790 goto done; 4791 } 4792 cfdata = rcfg->data; 4793 cflen = rcfg->datasize & ~3; 4794 } 4795 4796 if (cflen > FLASH_CFG_MAX_SIZE) { 4797 device_printf(sc->dev, 4798 "config file too long (%d, max allowed is %d).\n", 4799 cflen, FLASH_CFG_MAX_SIZE); 4800 rc = EINVAL; 4801 goto done; 4802 } 4803 4804 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4805 if (rc != 0) { 4806 device_printf(sc->dev, 4807 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4808 __func__, mtype, moff, cflen, rc); 4809 rc = EINVAL; 4810 goto done; 4811 } 4812 write_via_memwin(sc, 2, addr, cfdata, cflen); 4813 done: 4814 if (rcfg != NULL) 4815 firmware_put(rcfg, FIRMWARE_UNLOAD); 4816 unload_fw_module(sc, dcfg, NULL); 4817 return (rc); 4818 } 4819 4820 struct caps_allowed { 4821 uint16_t nbmcaps; 4822 uint16_t linkcaps; 4823 uint16_t switchcaps; 4824 uint16_t niccaps; 4825 uint16_t toecaps; 4826 uint16_t rdmacaps; 4827 uint16_t cryptocaps; 4828 uint16_t iscsicaps; 4829 uint16_t fcoecaps; 4830 }; 4831 4832 #define FW_PARAM_DEV(param) \ 4833 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4834 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4835 #define FW_PARAM_PFVF(param) \ 4836 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4837 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4838 4839 /* 4840 * Provide a configuration profile to the firmware and have it initialize the 4841 * chip accordingly. This may involve uploading a configuration file to the 4842 * card. 4843 */ 4844 static int 4845 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4846 const struct caps_allowed *caps_allowed) 4847 { 4848 int rc; 4849 struct fw_caps_config_cmd caps; 4850 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4851 4852 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4853 if (rc != 0) { 4854 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4855 return (rc); 4856 } 4857 4858 bzero(&caps, sizeof(caps)); 4859 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4860 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4861 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4862 mtype = 0; 4863 moff = 0; 4864 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4865 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4866 mtype = FW_MEMTYPE_FLASH; 4867 moff = t4_flash_cfg_addr(sc); 4868 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4869 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4870 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4871 FW_LEN16(caps)); 4872 } else { 4873 /* 4874 * Ask the firmware where it wants us to upload the config file. 4875 */ 4876 param = FW_PARAM_DEV(CF); 4877 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4878 if (rc != 0) { 4879 /* No support for config file? Shouldn't happen. */ 4880 device_printf(sc->dev, 4881 "failed to query config file location: %d.\n", rc); 4882 goto done; 4883 } 4884 mtype = G_FW_PARAMS_PARAM_Y(val); 4885 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4886 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4887 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4888 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4889 FW_LEN16(caps)); 4890 4891 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4892 if (rc != 0) { 4893 device_printf(sc->dev, 4894 "failed to upload config file to card: %d.\n", rc); 4895 goto done; 4896 } 4897 } 4898 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4899 if (rc != 0) { 4900 device_printf(sc->dev, "failed to pre-process config file: %d " 4901 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4902 goto done; 4903 } 4904 4905 finicsum = be32toh(caps.finicsum); 4906 cfcsum = be32toh(caps.cfcsum); /* actual */ 4907 if (finicsum != cfcsum) { 4908 device_printf(sc->dev, 4909 "WARNING: config file checksum mismatch: %08x %08x\n", 4910 finicsum, cfcsum); 4911 } 4912 sc->cfcsum = cfcsum; 4913 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4914 4915 /* 4916 * Let the firmware know what features will (not) be used so it can tune 4917 * things accordingly. 4918 */ 4919 #define LIMIT_CAPS(x) do { \ 4920 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4921 } while (0) 4922 LIMIT_CAPS(nbm); 4923 LIMIT_CAPS(link); 4924 LIMIT_CAPS(switch); 4925 LIMIT_CAPS(nic); 4926 LIMIT_CAPS(toe); 4927 LIMIT_CAPS(rdma); 4928 LIMIT_CAPS(crypto); 4929 LIMIT_CAPS(iscsi); 4930 LIMIT_CAPS(fcoe); 4931 #undef LIMIT_CAPS 4932 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4933 /* 4934 * TOE and hashfilters are mutually exclusive. It is a config 4935 * file or firmware bug if both are reported as available. Try 4936 * to cope with the situation in non-debug builds by disabling 4937 * TOE. 4938 */ 4939 MPASS(caps.toecaps == 0); 4940 4941 caps.toecaps = 0; 4942 caps.rdmacaps = 0; 4943 caps.iscsicaps = 0; 4944 } 4945 4946 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4947 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4948 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4949 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4950 if (rc != 0) { 4951 device_printf(sc->dev, 4952 "failed to process config file: %d.\n", rc); 4953 goto done; 4954 } 4955 4956 t4_tweak_chip_settings(sc); 4957 set_params__pre_init(sc); 4958 4959 /* get basic stuff going */ 4960 rc = -t4_fw_initialize(sc, sc->mbox); 4961 if (rc != 0) { 4962 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4963 goto done; 4964 } 4965 done: 4966 return (rc); 4967 } 4968 4969 /* 4970 * Partition chip resources for use between various PFs, VFs, etc. 4971 */ 4972 static int 4973 partition_resources(struct adapter *sc) 4974 { 4975 char cfg_file[sizeof(t4_cfg_file)]; 4976 struct caps_allowed caps_allowed; 4977 int rc; 4978 bool fallback; 4979 4980 /* Only the master driver gets to configure the chip resources. */ 4981 MPASS(sc->flags & MASTER_PF); 4982 4983 #define COPY_CAPS(x) do { \ 4984 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4985 } while (0) 4986 bzero(&caps_allowed, sizeof(caps_allowed)); 4987 COPY_CAPS(nbm); 4988 COPY_CAPS(link); 4989 COPY_CAPS(switch); 4990 COPY_CAPS(nic); 4991 COPY_CAPS(toe); 4992 COPY_CAPS(rdma); 4993 COPY_CAPS(crypto); 4994 COPY_CAPS(iscsi); 4995 COPY_CAPS(fcoe); 4996 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4997 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4998 retry: 4999 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5000 if (rc != 0 && fallback) { 5001 device_printf(sc->dev, 5002 "failed (%d) to configure card with \"%s\" profile, " 5003 "will fall back to a basic configuration and retry.\n", 5004 rc, cfg_file); 5005 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5006 bzero(&caps_allowed, sizeof(caps_allowed)); 5007 COPY_CAPS(switch); 5008 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5009 fallback = false; 5010 goto retry; 5011 } 5012 #undef COPY_CAPS 5013 return (rc); 5014 } 5015 5016 /* 5017 * Retrieve parameters that are needed (or nice to have) very early. 5018 */ 5019 static int 5020 get_params__pre_init(struct adapter *sc) 5021 { 5022 int rc; 5023 uint32_t param[2], val[2]; 5024 5025 t4_get_version_info(sc); 5026 5027 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5028 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5029 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5030 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5031 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5032 5033 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5034 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5035 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5036 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5037 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5038 5039 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5040 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5041 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5042 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5043 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5044 5045 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5046 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5047 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5048 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5049 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5050 5051 param[0] = FW_PARAM_DEV(PORTVEC); 5052 param[1] = FW_PARAM_DEV(CCLK); 5053 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5054 if (rc != 0) { 5055 device_printf(sc->dev, 5056 "failed to query parameters (pre_init): %d.\n", rc); 5057 return (rc); 5058 } 5059 5060 sc->params.portvec = val[0]; 5061 sc->params.nports = bitcount32(val[0]); 5062 sc->params.vpd.cclk = val[1]; 5063 5064 /* Read device log parameters. */ 5065 rc = -t4_init_devlog_params(sc, 1); 5066 if (rc == 0) 5067 fixup_devlog_params(sc); 5068 else { 5069 device_printf(sc->dev, 5070 "failed to get devlog parameters: %d.\n", rc); 5071 rc = 0; /* devlog isn't critical for device operation */ 5072 } 5073 5074 return (rc); 5075 } 5076 5077 /* 5078 * Any params that need to be set before FW_INITIALIZE. 5079 */ 5080 static int 5081 set_params__pre_init(struct adapter *sc) 5082 { 5083 int rc = 0; 5084 uint32_t param, val; 5085 5086 if (chip_id(sc) >= CHELSIO_T6) { 5087 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5088 val = 1; 5089 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5090 /* firmwares < 1.20.1.0 do not have this param. */ 5091 if (rc == FW_EINVAL && 5092 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5093 rc = 0; 5094 } 5095 if (rc != 0) { 5096 device_printf(sc->dev, 5097 "failed to enable high priority filters :%d.\n", 5098 rc); 5099 } 5100 5101 param = FW_PARAM_DEV(PPOD_EDRAM); 5102 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5103 if (rc == 0 && val == 1) { 5104 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5105 &val); 5106 if (rc != 0) { 5107 device_printf(sc->dev, 5108 "failed to set PPOD_EDRAM: %d.\n", rc); 5109 } 5110 } 5111 } 5112 5113 /* Enable opaque VIIDs with firmwares that support it. */ 5114 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5115 val = 1; 5116 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5117 if (rc == 0 && val == 1) 5118 sc->params.viid_smt_extn_support = true; 5119 else 5120 sc->params.viid_smt_extn_support = false; 5121 5122 return (rc); 5123 } 5124 5125 /* 5126 * Retrieve various parameters that are of interest to the driver. The device 5127 * has been initialized by the firmware at this point. 5128 */ 5129 static int 5130 get_params__post_init(struct adapter *sc) 5131 { 5132 int rc; 5133 uint32_t param[7], val[7]; 5134 struct fw_caps_config_cmd caps; 5135 5136 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5137 param[1] = FW_PARAM_PFVF(EQ_START); 5138 param[2] = FW_PARAM_PFVF(FILTER_START); 5139 param[3] = FW_PARAM_PFVF(FILTER_END); 5140 param[4] = FW_PARAM_PFVF(L2T_START); 5141 param[5] = FW_PARAM_PFVF(L2T_END); 5142 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5143 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5144 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5145 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5146 if (rc != 0) { 5147 device_printf(sc->dev, 5148 "failed to query parameters (post_init): %d.\n", rc); 5149 return (rc); 5150 } 5151 5152 sc->sge.iq_start = val[0]; 5153 sc->sge.eq_start = val[1]; 5154 if ((int)val[3] > (int)val[2]) { 5155 sc->tids.ftid_base = val[2]; 5156 sc->tids.ftid_end = val[3]; 5157 sc->tids.nftids = val[3] - val[2] + 1; 5158 } 5159 sc->vres.l2t.start = val[4]; 5160 sc->vres.l2t.size = val[5] - val[4] + 1; 5161 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5162 ("%s: L2 table size (%u) larger than expected (%u)", 5163 __func__, sc->vres.l2t.size, L2T_SIZE)); 5164 sc->params.core_vdd = val[6]; 5165 5166 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5167 param[1] = FW_PARAM_PFVF(EQ_END); 5168 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5169 if (rc != 0) { 5170 device_printf(sc->dev, 5171 "failed to query parameters (post_init2): %d.\n", rc); 5172 return (rc); 5173 } 5174 MPASS((int)val[0] >= sc->sge.iq_start); 5175 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5176 MPASS((int)val[1] >= sc->sge.eq_start); 5177 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5178 5179 if (chip_id(sc) >= CHELSIO_T6) { 5180 5181 sc->tids.tid_base = t4_read_reg(sc, 5182 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5183 5184 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5185 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5186 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5187 if (rc != 0) { 5188 device_printf(sc->dev, 5189 "failed to query hpfilter parameters: %d.\n", rc); 5190 return (rc); 5191 } 5192 if ((int)val[1] > (int)val[0]) { 5193 sc->tids.hpftid_base = val[0]; 5194 sc->tids.hpftid_end = val[1]; 5195 sc->tids.nhpftids = val[1] - val[0] + 1; 5196 5197 /* 5198 * These should go off if the layout changes and the 5199 * driver needs to catch up. 5200 */ 5201 MPASS(sc->tids.hpftid_base == 0); 5202 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5203 } 5204 5205 param[0] = FW_PARAM_PFVF(RAWF_START); 5206 param[1] = FW_PARAM_PFVF(RAWF_END); 5207 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5208 if (rc != 0) { 5209 device_printf(sc->dev, 5210 "failed to query rawf parameters: %d.\n", rc); 5211 return (rc); 5212 } 5213 if ((int)val[1] > (int)val[0]) { 5214 sc->rawf_base = val[0]; 5215 sc->nrawf = val[1] - val[0] + 1; 5216 } 5217 } 5218 5219 /* 5220 * MPSBGMAP is queried separately because only recent firmwares support 5221 * it as a parameter and we don't want the compound query above to fail 5222 * on older firmwares. 5223 */ 5224 param[0] = FW_PARAM_DEV(MPSBGMAP); 5225 val[0] = 0; 5226 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5227 if (rc == 0) 5228 sc->params.mps_bg_map = val[0]; 5229 else 5230 sc->params.mps_bg_map = 0; 5231 5232 /* 5233 * Determine whether the firmware supports the filter2 work request. 5234 * This is queried separately for the same reason as MPSBGMAP above. 5235 */ 5236 param[0] = FW_PARAM_DEV(FILTER2_WR); 5237 val[0] = 0; 5238 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5239 if (rc == 0) 5240 sc->params.filter2_wr_support = val[0] != 0; 5241 else 5242 sc->params.filter2_wr_support = 0; 5243 5244 /* 5245 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5246 * This is queried separately for the same reason as other params above. 5247 */ 5248 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5249 val[0] = 0; 5250 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5251 if (rc == 0) 5252 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5253 else 5254 sc->params.ulptx_memwrite_dsgl = false; 5255 5256 /* FW_RI_FR_NSMR_TPTE_WR support */ 5257 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5258 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5259 if (rc == 0) 5260 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5261 else 5262 sc->params.fr_nsmr_tpte_wr_support = false; 5263 5264 /* Support for 512 SGL entries per FR MR. */ 5265 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5266 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5267 if (rc == 0) 5268 sc->params.dev_512sgl_mr = val[0] != 0; 5269 else 5270 sc->params.dev_512sgl_mr = false; 5271 5272 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5273 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5274 if (rc == 0) 5275 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5276 else 5277 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5278 5279 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5280 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5281 if (rc == 0) { 5282 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5283 sc->params.nsched_cls = val[0]; 5284 } else 5285 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5286 5287 /* get capabilites */ 5288 bzero(&caps, sizeof(caps)); 5289 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5290 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5291 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5292 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5293 if (rc != 0) { 5294 device_printf(sc->dev, 5295 "failed to get card capabilities: %d.\n", rc); 5296 return (rc); 5297 } 5298 5299 #define READ_CAPS(x) do { \ 5300 sc->x = htobe16(caps.x); \ 5301 } while (0) 5302 READ_CAPS(nbmcaps); 5303 READ_CAPS(linkcaps); 5304 READ_CAPS(switchcaps); 5305 READ_CAPS(niccaps); 5306 READ_CAPS(toecaps); 5307 READ_CAPS(rdmacaps); 5308 READ_CAPS(cryptocaps); 5309 READ_CAPS(iscsicaps); 5310 READ_CAPS(fcoecaps); 5311 5312 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5313 MPASS(chip_id(sc) > CHELSIO_T4); 5314 MPASS(sc->toecaps == 0); 5315 sc->toecaps = 0; 5316 5317 param[0] = FW_PARAM_DEV(NTID); 5318 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5319 if (rc != 0) { 5320 device_printf(sc->dev, 5321 "failed to query HASHFILTER parameters: %d.\n", rc); 5322 return (rc); 5323 } 5324 sc->tids.ntids = val[0]; 5325 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5326 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5327 sc->tids.ntids -= sc->tids.nhpftids; 5328 } 5329 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5330 sc->params.hash_filter = 1; 5331 } 5332 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5333 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5334 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5335 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5336 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5337 if (rc != 0) { 5338 device_printf(sc->dev, 5339 "failed to query NIC parameters: %d.\n", rc); 5340 return (rc); 5341 } 5342 if ((int)val[1] > (int)val[0]) { 5343 sc->tids.etid_base = val[0]; 5344 sc->tids.etid_end = val[1]; 5345 sc->tids.netids = val[1] - val[0] + 1; 5346 sc->params.eo_wr_cred = val[2]; 5347 sc->params.ethoffload = 1; 5348 } 5349 } 5350 if (sc->toecaps) { 5351 /* query offload-related parameters */ 5352 param[0] = FW_PARAM_DEV(NTID); 5353 param[1] = FW_PARAM_PFVF(SERVER_START); 5354 param[2] = FW_PARAM_PFVF(SERVER_END); 5355 param[3] = FW_PARAM_PFVF(TDDP_START); 5356 param[4] = FW_PARAM_PFVF(TDDP_END); 5357 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5358 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5359 if (rc != 0) { 5360 device_printf(sc->dev, 5361 "failed to query TOE parameters: %d.\n", rc); 5362 return (rc); 5363 } 5364 sc->tids.ntids = val[0]; 5365 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5366 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5367 sc->tids.ntids -= sc->tids.nhpftids; 5368 } 5369 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5370 if ((int)val[2] > (int)val[1]) { 5371 sc->tids.stid_base = val[1]; 5372 sc->tids.nstids = val[2] - val[1] + 1; 5373 } 5374 sc->vres.ddp.start = val[3]; 5375 sc->vres.ddp.size = val[4] - val[3] + 1; 5376 sc->params.ofldq_wr_cred = val[5]; 5377 sc->params.offload = 1; 5378 } else { 5379 /* 5380 * The firmware attempts memfree TOE configuration for -SO cards 5381 * and will report toecaps=0 if it runs out of resources (this 5382 * depends on the config file). It may not report 0 for other 5383 * capabilities dependent on the TOE in this case. Set them to 5384 * 0 here so that the driver doesn't bother tracking resources 5385 * that will never be used. 5386 */ 5387 sc->iscsicaps = 0; 5388 sc->rdmacaps = 0; 5389 } 5390 if (sc->rdmacaps) { 5391 param[0] = FW_PARAM_PFVF(STAG_START); 5392 param[1] = FW_PARAM_PFVF(STAG_END); 5393 param[2] = FW_PARAM_PFVF(RQ_START); 5394 param[3] = FW_PARAM_PFVF(RQ_END); 5395 param[4] = FW_PARAM_PFVF(PBL_START); 5396 param[5] = FW_PARAM_PFVF(PBL_END); 5397 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5398 if (rc != 0) { 5399 device_printf(sc->dev, 5400 "failed to query RDMA parameters(1): %d.\n", rc); 5401 return (rc); 5402 } 5403 sc->vres.stag.start = val[0]; 5404 sc->vres.stag.size = val[1] - val[0] + 1; 5405 sc->vres.rq.start = val[2]; 5406 sc->vres.rq.size = val[3] - val[2] + 1; 5407 sc->vres.pbl.start = val[4]; 5408 sc->vres.pbl.size = val[5] - val[4] + 1; 5409 5410 param[0] = FW_PARAM_PFVF(SQRQ_START); 5411 param[1] = FW_PARAM_PFVF(SQRQ_END); 5412 param[2] = FW_PARAM_PFVF(CQ_START); 5413 param[3] = FW_PARAM_PFVF(CQ_END); 5414 param[4] = FW_PARAM_PFVF(OCQ_START); 5415 param[5] = FW_PARAM_PFVF(OCQ_END); 5416 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5417 if (rc != 0) { 5418 device_printf(sc->dev, 5419 "failed to query RDMA parameters(2): %d.\n", rc); 5420 return (rc); 5421 } 5422 sc->vres.qp.start = val[0]; 5423 sc->vres.qp.size = val[1] - val[0] + 1; 5424 sc->vres.cq.start = val[2]; 5425 sc->vres.cq.size = val[3] - val[2] + 1; 5426 sc->vres.ocq.start = val[4]; 5427 sc->vres.ocq.size = val[5] - val[4] + 1; 5428 5429 param[0] = FW_PARAM_PFVF(SRQ_START); 5430 param[1] = FW_PARAM_PFVF(SRQ_END); 5431 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5432 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5433 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5434 if (rc != 0) { 5435 device_printf(sc->dev, 5436 "failed to query RDMA parameters(3): %d.\n", rc); 5437 return (rc); 5438 } 5439 sc->vres.srq.start = val[0]; 5440 sc->vres.srq.size = val[1] - val[0] + 1; 5441 sc->params.max_ordird_qp = val[2]; 5442 sc->params.max_ird_adapter = val[3]; 5443 } 5444 if (sc->iscsicaps) { 5445 param[0] = FW_PARAM_PFVF(ISCSI_START); 5446 param[1] = FW_PARAM_PFVF(ISCSI_END); 5447 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5448 if (rc != 0) { 5449 device_printf(sc->dev, 5450 "failed to query iSCSI parameters: %d.\n", rc); 5451 return (rc); 5452 } 5453 sc->vres.iscsi.start = val[0]; 5454 sc->vres.iscsi.size = val[1] - val[0] + 1; 5455 } 5456 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5457 param[0] = FW_PARAM_PFVF(TLS_START); 5458 param[1] = FW_PARAM_PFVF(TLS_END); 5459 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5460 if (rc != 0) { 5461 device_printf(sc->dev, 5462 "failed to query TLS parameters: %d.\n", rc); 5463 return (rc); 5464 } 5465 sc->vres.key.start = val[0]; 5466 sc->vres.key.size = val[1] - val[0] + 1; 5467 } 5468 5469 /* 5470 * We've got the params we wanted to query directly from the firmware. 5471 * Grab some others via other means. 5472 */ 5473 t4_init_sge_params(sc); 5474 t4_init_tp_params(sc); 5475 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5476 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5477 5478 rc = t4_verify_chip_settings(sc); 5479 if (rc != 0) 5480 return (rc); 5481 t4_init_rx_buf_info(sc); 5482 5483 return (rc); 5484 } 5485 5486 #ifdef KERN_TLS 5487 static void 5488 ktls_tick(void *arg) 5489 { 5490 struct adapter *sc; 5491 uint32_t tstamp; 5492 5493 sc = arg; 5494 tstamp = tcp_ts_getticks(); 5495 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5496 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5497 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5498 } 5499 5500 static int 5501 t4_config_kern_tls(struct adapter *sc, bool enable) 5502 { 5503 int rc; 5504 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5505 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5506 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5507 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5508 5509 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5510 if (rc != 0) { 5511 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5512 enable ? "enable" : "disable", rc); 5513 return (rc); 5514 } 5515 5516 if (enable) { 5517 sc->flags |= KERN_TLS_ON; 5518 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5519 C_HARDCLOCK); 5520 } else { 5521 sc->flags &= ~KERN_TLS_ON; 5522 callout_stop(&sc->ktls_tick); 5523 } 5524 5525 return (rc); 5526 } 5527 #endif 5528 5529 static int 5530 set_params__post_init(struct adapter *sc) 5531 { 5532 uint32_t mask, param, val; 5533 #ifdef TCP_OFFLOAD 5534 int i, v, shift; 5535 #endif 5536 5537 /* ask for encapsulated CPLs */ 5538 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5539 val = 1; 5540 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5541 5542 /* Enable 32b port caps if the firmware supports it. */ 5543 param = FW_PARAM_PFVF(PORT_CAPS32); 5544 val = 1; 5545 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5546 sc->params.port_caps32 = 1; 5547 5548 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5549 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5550 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5551 V_MASKFILTER(val - 1)); 5552 5553 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5554 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5555 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5556 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5557 val = 0; 5558 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5559 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5560 F_ATTACKFILTERENABLE); 5561 val |= F_DROPERRORATTACK; 5562 } 5563 if (t4_drop_ip_fragments != 0) { 5564 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5565 F_FRAGMENTDROP); 5566 val |= F_DROPERRORFRAG; 5567 } 5568 if (t4_drop_pkts_with_l2_errors != 0) 5569 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5570 if (t4_drop_pkts_with_l3_errors != 0) { 5571 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5572 F_DROPERRORCSUMIP; 5573 } 5574 if (t4_drop_pkts_with_l4_errors != 0) { 5575 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5576 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5577 } 5578 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5579 5580 #ifdef TCP_OFFLOAD 5581 /* 5582 * Override the TOE timers with user provided tunables. This is not the 5583 * recommended way to change the timers (the firmware config file is) so 5584 * these tunables are not documented. 5585 * 5586 * All the timer tunables are in microseconds. 5587 */ 5588 if (t4_toe_keepalive_idle != 0) { 5589 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5590 v &= M_KEEPALIVEIDLE; 5591 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5592 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5593 } 5594 if (t4_toe_keepalive_interval != 0) { 5595 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5596 v &= M_KEEPALIVEINTVL; 5597 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5598 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5599 } 5600 if (t4_toe_keepalive_count != 0) { 5601 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5602 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5603 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5604 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5605 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5606 } 5607 if (t4_toe_rexmt_min != 0) { 5608 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5609 v &= M_RXTMIN; 5610 t4_set_reg_field(sc, A_TP_RXT_MIN, 5611 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5612 } 5613 if (t4_toe_rexmt_max != 0) { 5614 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5615 v &= M_RXTMAX; 5616 t4_set_reg_field(sc, A_TP_RXT_MAX, 5617 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5618 } 5619 if (t4_toe_rexmt_count != 0) { 5620 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5621 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5622 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5623 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5624 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5625 } 5626 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5627 if (t4_toe_rexmt_backoff[i] != -1) { 5628 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5629 shift = (i & 3) << 3; 5630 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5631 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5632 } 5633 } 5634 #endif 5635 5636 #ifdef KERN_TLS 5637 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5638 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5639 /* 5640 * Limit TOE connections to 2 reassembly "islands". This is 5641 * required for TOE TLS connections to downgrade to plain TOE 5642 * connections if an unsupported TLS version or ciphersuite is 5643 * used. 5644 */ 5645 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5646 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5647 if (is_ktls(sc)) { 5648 sc->tlst.inline_keys = t4_tls_inline_keys; 5649 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5650 if (t4_kern_tls != 0) 5651 t4_config_kern_tls(sc, true); 5652 } 5653 } 5654 #endif 5655 return (0); 5656 } 5657 5658 #undef FW_PARAM_PFVF 5659 #undef FW_PARAM_DEV 5660 5661 static void 5662 t4_set_desc(struct adapter *sc) 5663 { 5664 char buf[128]; 5665 struct adapter_params *p = &sc->params; 5666 5667 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5668 5669 device_set_desc_copy(sc->dev, buf); 5670 } 5671 5672 static inline void 5673 ifmedia_add4(struct ifmedia *ifm, int m) 5674 { 5675 5676 ifmedia_add(ifm, m, 0, NULL); 5677 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5678 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5679 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5680 } 5681 5682 /* 5683 * This is the selected media, which is not quite the same as the active media. 5684 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5685 * and active are not the same, and "media: Ethernet selected" otherwise. 5686 */ 5687 static void 5688 set_current_media(struct port_info *pi) 5689 { 5690 struct link_config *lc; 5691 struct ifmedia *ifm; 5692 int mword; 5693 u_int speed; 5694 5695 PORT_LOCK_ASSERT_OWNED(pi); 5696 5697 /* Leave current media alone if it's already set to IFM_NONE. */ 5698 ifm = &pi->media; 5699 if (ifm->ifm_cur != NULL && 5700 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5701 return; 5702 5703 lc = &pi->link_cfg; 5704 if (lc->requested_aneg != AUTONEG_DISABLE && 5705 lc->pcaps & FW_PORT_CAP32_ANEG) { 5706 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5707 return; 5708 } 5709 mword = IFM_ETHER | IFM_FDX; 5710 if (lc->requested_fc & PAUSE_TX) 5711 mword |= IFM_ETH_TXPAUSE; 5712 if (lc->requested_fc & PAUSE_RX) 5713 mword |= IFM_ETH_RXPAUSE; 5714 if (lc->requested_speed == 0) 5715 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5716 else 5717 speed = lc->requested_speed; 5718 mword |= port_mword(pi, speed_to_fwcap(speed)); 5719 ifmedia_set(ifm, mword); 5720 } 5721 5722 /* 5723 * Returns true if the ifmedia list for the port cannot change. 5724 */ 5725 static bool 5726 fixed_ifmedia(struct port_info *pi) 5727 { 5728 5729 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5730 pi->port_type == FW_PORT_TYPE_BT_XFI || 5731 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5732 pi->port_type == FW_PORT_TYPE_KX4 || 5733 pi->port_type == FW_PORT_TYPE_KX || 5734 pi->port_type == FW_PORT_TYPE_KR || 5735 pi->port_type == FW_PORT_TYPE_BP_AP || 5736 pi->port_type == FW_PORT_TYPE_BP4_AP || 5737 pi->port_type == FW_PORT_TYPE_BP40_BA || 5738 pi->port_type == FW_PORT_TYPE_KR4_100G || 5739 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5740 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5741 } 5742 5743 static void 5744 build_medialist(struct port_info *pi) 5745 { 5746 uint32_t ss, speed; 5747 int unknown, mword, bit; 5748 struct link_config *lc; 5749 struct ifmedia *ifm; 5750 5751 PORT_LOCK_ASSERT_OWNED(pi); 5752 5753 if (pi->flags & FIXED_IFMEDIA) 5754 return; 5755 5756 /* 5757 * Rebuild the ifmedia list. 5758 */ 5759 ifm = &pi->media; 5760 ifmedia_removeall(ifm); 5761 lc = &pi->link_cfg; 5762 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5763 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5764 MPASS(ss != 0); 5765 no_media: 5766 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5767 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5768 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5769 return; 5770 } 5771 5772 unknown = 0; 5773 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5774 speed = 1 << bit; 5775 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5776 if (ss & speed) { 5777 mword = port_mword(pi, speed); 5778 if (mword == IFM_NONE) { 5779 goto no_media; 5780 } else if (mword == IFM_UNKNOWN) 5781 unknown++; 5782 else 5783 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5784 } 5785 } 5786 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5787 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5788 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5789 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5790 5791 set_current_media(pi); 5792 } 5793 5794 /* 5795 * Initialize the requested fields in the link config based on driver tunables. 5796 */ 5797 static void 5798 init_link_config(struct port_info *pi) 5799 { 5800 struct link_config *lc = &pi->link_cfg; 5801 5802 PORT_LOCK_ASSERT_OWNED(pi); 5803 5804 lc->requested_caps = 0; 5805 lc->requested_speed = 0; 5806 5807 if (t4_autoneg == 0) 5808 lc->requested_aneg = AUTONEG_DISABLE; 5809 else if (t4_autoneg == 1) 5810 lc->requested_aneg = AUTONEG_ENABLE; 5811 else 5812 lc->requested_aneg = AUTONEG_AUTO; 5813 5814 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5815 PAUSE_AUTONEG); 5816 5817 if (t4_fec & FEC_AUTO) 5818 lc->requested_fec = FEC_AUTO; 5819 else if (t4_fec == 0) 5820 lc->requested_fec = FEC_NONE; 5821 else { 5822 /* -1 is handled by the FEC_AUTO block above and not here. */ 5823 lc->requested_fec = t4_fec & 5824 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5825 if (lc->requested_fec == 0) 5826 lc->requested_fec = FEC_AUTO; 5827 } 5828 if (t4_force_fec < 0) 5829 lc->force_fec = -1; 5830 else if (t4_force_fec > 0) 5831 lc->force_fec = 1; 5832 else 5833 lc->force_fec = 0; 5834 } 5835 5836 /* 5837 * Makes sure that all requested settings comply with what's supported by the 5838 * port. Returns the number of settings that were invalid and had to be fixed. 5839 */ 5840 static int 5841 fixup_link_config(struct port_info *pi) 5842 { 5843 int n = 0; 5844 struct link_config *lc = &pi->link_cfg; 5845 uint32_t fwspeed; 5846 5847 PORT_LOCK_ASSERT_OWNED(pi); 5848 5849 /* Speed (when not autonegotiating) */ 5850 if (lc->requested_speed != 0) { 5851 fwspeed = speed_to_fwcap(lc->requested_speed); 5852 if ((fwspeed & lc->pcaps) == 0) { 5853 n++; 5854 lc->requested_speed = 0; 5855 } 5856 } 5857 5858 /* Link autonegotiation */ 5859 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5860 lc->requested_aneg == AUTONEG_DISABLE || 5861 lc->requested_aneg == AUTONEG_AUTO); 5862 if (lc->requested_aneg == AUTONEG_ENABLE && 5863 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5864 n++; 5865 lc->requested_aneg = AUTONEG_AUTO; 5866 } 5867 5868 /* Flow control */ 5869 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5870 if (lc->requested_fc & PAUSE_TX && 5871 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5872 n++; 5873 lc->requested_fc &= ~PAUSE_TX; 5874 } 5875 if (lc->requested_fc & PAUSE_RX && 5876 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5877 n++; 5878 lc->requested_fc &= ~PAUSE_RX; 5879 } 5880 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5881 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5882 n++; 5883 lc->requested_fc |= PAUSE_AUTONEG; 5884 } 5885 5886 /* FEC */ 5887 if ((lc->requested_fec & FEC_RS && 5888 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5889 (lc->requested_fec & FEC_BASER_RS && 5890 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5891 n++; 5892 lc->requested_fec = FEC_AUTO; 5893 } 5894 5895 return (n); 5896 } 5897 5898 /* 5899 * Apply the requested L1 settings, which are expected to be valid, to the 5900 * hardware. 5901 */ 5902 static int 5903 apply_link_config(struct port_info *pi) 5904 { 5905 struct adapter *sc = pi->adapter; 5906 struct link_config *lc = &pi->link_cfg; 5907 int rc; 5908 5909 #ifdef INVARIANTS 5910 ASSERT_SYNCHRONIZED_OP(sc); 5911 PORT_LOCK_ASSERT_OWNED(pi); 5912 5913 if (lc->requested_aneg == AUTONEG_ENABLE) 5914 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5915 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5916 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5917 if (lc->requested_fc & PAUSE_TX) 5918 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5919 if (lc->requested_fc & PAUSE_RX) 5920 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5921 if (lc->requested_fec & FEC_RS) 5922 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5923 if (lc->requested_fec & FEC_BASER_RS) 5924 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5925 #endif 5926 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5927 if (rc != 0) { 5928 /* Don't complain if the VF driver gets back an EPERM. */ 5929 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5930 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5931 } else { 5932 /* 5933 * An L1_CFG will almost always result in a link-change event if 5934 * the link is up, and the driver will refresh the actual 5935 * fec/fc/etc. when the notification is processed. If the link 5936 * is down then the actual settings are meaningless. 5937 * 5938 * This takes care of the case where a change in the L1 settings 5939 * may not result in a notification. 5940 */ 5941 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5942 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5943 } 5944 return (rc); 5945 } 5946 5947 #define FW_MAC_EXACT_CHUNK 7 5948 struct mcaddr_ctx { 5949 struct ifnet *ifp; 5950 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5951 uint64_t hash; 5952 int i; 5953 int del; 5954 int rc; 5955 }; 5956 5957 static u_int 5958 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5959 { 5960 struct mcaddr_ctx *ctx = arg; 5961 struct vi_info *vi = ctx->ifp->if_softc; 5962 struct port_info *pi = vi->pi; 5963 struct adapter *sc = pi->adapter; 5964 5965 if (ctx->rc < 0) 5966 return (0); 5967 5968 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5969 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5970 ctx->i++; 5971 5972 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5973 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5974 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5975 if (ctx->rc < 0) { 5976 int j; 5977 5978 for (j = 0; j < ctx->i; j++) { 5979 if_printf(ctx->ifp, 5980 "failed to add mc address" 5981 " %02x:%02x:%02x:" 5982 "%02x:%02x:%02x rc=%d\n", 5983 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5984 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5985 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5986 -ctx->rc); 5987 } 5988 return (0); 5989 } 5990 ctx->del = 0; 5991 ctx->i = 0; 5992 } 5993 5994 return (1); 5995 } 5996 5997 /* 5998 * Program the port's XGMAC based on parameters in ifnet. The caller also 5999 * indicates which parameters should be programmed (the rest are left alone). 6000 */ 6001 int 6002 update_mac_settings(struct ifnet *ifp, int flags) 6003 { 6004 int rc = 0; 6005 struct vi_info *vi = ifp->if_softc; 6006 struct port_info *pi = vi->pi; 6007 struct adapter *sc = pi->adapter; 6008 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6009 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6010 6011 ASSERT_SYNCHRONIZED_OP(sc); 6012 KASSERT(flags, ("%s: not told what to update.", __func__)); 6013 6014 if (flags & XGMAC_MTU) 6015 mtu = ifp->if_mtu; 6016 6017 if (flags & XGMAC_PROMISC) 6018 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 6019 6020 if (flags & XGMAC_ALLMULTI) 6021 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 6022 6023 if (flags & XGMAC_VLANEX) 6024 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6025 6026 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6027 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6028 allmulti, 1, vlanex, false); 6029 if (rc) { 6030 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6031 rc); 6032 return (rc); 6033 } 6034 } 6035 6036 if (flags & XGMAC_UCADDR) { 6037 uint8_t ucaddr[ETHER_ADDR_LEN]; 6038 6039 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 6040 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6041 ucaddr, true, &vi->smt_idx); 6042 if (rc < 0) { 6043 rc = -rc; 6044 if_printf(ifp, "change_mac failed: %d\n", rc); 6045 return (rc); 6046 } else { 6047 vi->xact_addr_filt = rc; 6048 rc = 0; 6049 } 6050 } 6051 6052 if (flags & XGMAC_MCADDRS) { 6053 struct epoch_tracker et; 6054 struct mcaddr_ctx ctx; 6055 int j; 6056 6057 ctx.ifp = ifp; 6058 ctx.hash = 0; 6059 ctx.i = 0; 6060 ctx.del = 1; 6061 ctx.rc = 0; 6062 /* 6063 * Unlike other drivers, we accumulate list of pointers into 6064 * interface address lists and we need to keep it safe even 6065 * after if_foreach_llmaddr() returns, thus we must enter the 6066 * network epoch. 6067 */ 6068 NET_EPOCH_ENTER(et); 6069 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6070 if (ctx.rc < 0) { 6071 NET_EPOCH_EXIT(et); 6072 rc = -ctx.rc; 6073 return (rc); 6074 } 6075 if (ctx.i > 0) { 6076 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6077 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6078 NET_EPOCH_EXIT(et); 6079 if (rc < 0) { 6080 rc = -rc; 6081 for (j = 0; j < ctx.i; j++) { 6082 if_printf(ifp, 6083 "failed to add mcast address" 6084 " %02x:%02x:%02x:" 6085 "%02x:%02x:%02x rc=%d\n", 6086 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6087 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6088 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6089 rc); 6090 } 6091 return (rc); 6092 } 6093 ctx.del = 0; 6094 } else 6095 NET_EPOCH_EXIT(et); 6096 6097 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6098 if (rc != 0) 6099 if_printf(ifp, "failed to set mcast address hash: %d\n", 6100 rc); 6101 if (ctx.del == 0) { 6102 /* We clobbered the VXLAN entry if there was one. */ 6103 pi->vxlan_tcam_entry = false; 6104 } 6105 } 6106 6107 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6108 pi->vxlan_tcam_entry == false) { 6109 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6110 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6111 true); 6112 if (rc < 0) { 6113 rc = -rc; 6114 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6115 rc); 6116 } else { 6117 MPASS(rc == sc->rawf_base + pi->port_id); 6118 rc = 0; 6119 pi->vxlan_tcam_entry = true; 6120 } 6121 } 6122 6123 return (rc); 6124 } 6125 6126 /* 6127 * {begin|end}_synchronized_op must be called from the same thread. 6128 */ 6129 int 6130 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6131 char *wmesg) 6132 { 6133 int rc, pri; 6134 6135 #ifdef WITNESS 6136 /* the caller thinks it's ok to sleep, but is it really? */ 6137 if (flags & SLEEP_OK) 6138 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6139 "begin_synchronized_op"); 6140 #endif 6141 6142 if (INTR_OK) 6143 pri = PCATCH; 6144 else 6145 pri = 0; 6146 6147 ADAPTER_LOCK(sc); 6148 for (;;) { 6149 6150 if (vi && IS_DOOMED(vi)) { 6151 rc = ENXIO; 6152 goto done; 6153 } 6154 6155 if (!IS_BUSY(sc)) { 6156 rc = 0; 6157 break; 6158 } 6159 6160 if (!(flags & SLEEP_OK)) { 6161 rc = EBUSY; 6162 goto done; 6163 } 6164 6165 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6166 rc = EINTR; 6167 goto done; 6168 } 6169 } 6170 6171 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6172 SET_BUSY(sc); 6173 #ifdef INVARIANTS 6174 sc->last_op = wmesg; 6175 sc->last_op_thr = curthread; 6176 sc->last_op_flags = flags; 6177 #endif 6178 6179 done: 6180 if (!(flags & HOLD_LOCK) || rc) 6181 ADAPTER_UNLOCK(sc); 6182 6183 return (rc); 6184 } 6185 6186 /* 6187 * Tell if_ioctl and if_init that the VI is going away. This is 6188 * special variant of begin_synchronized_op and must be paired with a 6189 * call to end_synchronized_op. 6190 */ 6191 void 6192 doom_vi(struct adapter *sc, struct vi_info *vi) 6193 { 6194 6195 ADAPTER_LOCK(sc); 6196 SET_DOOMED(vi); 6197 wakeup(&sc->flags); 6198 while (IS_BUSY(sc)) 6199 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6200 SET_BUSY(sc); 6201 #ifdef INVARIANTS 6202 sc->last_op = "t4detach"; 6203 sc->last_op_thr = curthread; 6204 sc->last_op_flags = 0; 6205 #endif 6206 ADAPTER_UNLOCK(sc); 6207 } 6208 6209 /* 6210 * {begin|end}_synchronized_op must be called from the same thread. 6211 */ 6212 void 6213 end_synchronized_op(struct adapter *sc, int flags) 6214 { 6215 6216 if (flags & LOCK_HELD) 6217 ADAPTER_LOCK_ASSERT_OWNED(sc); 6218 else 6219 ADAPTER_LOCK(sc); 6220 6221 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6222 CLR_BUSY(sc); 6223 wakeup(&sc->flags); 6224 ADAPTER_UNLOCK(sc); 6225 } 6226 6227 static int 6228 cxgbe_init_synchronized(struct vi_info *vi) 6229 { 6230 struct port_info *pi = vi->pi; 6231 struct adapter *sc = pi->adapter; 6232 struct ifnet *ifp = vi->ifp; 6233 int rc = 0, i; 6234 struct sge_txq *txq; 6235 6236 ASSERT_SYNCHRONIZED_OP(sc); 6237 6238 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6239 return (0); /* already running */ 6240 6241 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6242 return (rc); /* error message displayed already */ 6243 6244 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6245 return (rc); /* error message displayed already */ 6246 6247 rc = update_mac_settings(ifp, XGMAC_ALL); 6248 if (rc) 6249 goto done; /* error message displayed already */ 6250 6251 PORT_LOCK(pi); 6252 if (pi->up_vis == 0) { 6253 t4_update_port_info(pi); 6254 fixup_link_config(pi); 6255 build_medialist(pi); 6256 apply_link_config(pi); 6257 } 6258 6259 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6260 if (rc != 0) { 6261 if_printf(ifp, "enable_vi failed: %d\n", rc); 6262 PORT_UNLOCK(pi); 6263 goto done; 6264 } 6265 6266 /* 6267 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6268 * if this changes. 6269 */ 6270 6271 for_each_txq(vi, i, txq) { 6272 TXQ_LOCK(txq); 6273 txq->eq.flags |= EQ_ENABLED; 6274 TXQ_UNLOCK(txq); 6275 } 6276 6277 /* 6278 * The first iq of the first port to come up is used for tracing. 6279 */ 6280 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6281 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6282 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6283 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6284 V_QUEUENUMBER(sc->traceq)); 6285 pi->flags |= HAS_TRACEQ; 6286 } 6287 6288 /* all ok */ 6289 pi->up_vis++; 6290 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6291 if (pi->link_cfg.link_ok) 6292 t4_os_link_changed(pi); 6293 PORT_UNLOCK(pi); 6294 6295 mtx_lock(&vi->tick_mtx); 6296 if (ifp->if_get_counter == vi_get_counter) 6297 callout_reset(&vi->tick, hz, vi_tick, vi); 6298 else 6299 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6300 mtx_unlock(&vi->tick_mtx); 6301 done: 6302 if (rc != 0) 6303 cxgbe_uninit_synchronized(vi); 6304 6305 return (rc); 6306 } 6307 6308 /* 6309 * Idempotent. 6310 */ 6311 static int 6312 cxgbe_uninit_synchronized(struct vi_info *vi) 6313 { 6314 struct port_info *pi = vi->pi; 6315 struct adapter *sc = pi->adapter; 6316 struct ifnet *ifp = vi->ifp; 6317 int rc, i; 6318 struct sge_txq *txq; 6319 6320 ASSERT_SYNCHRONIZED_OP(sc); 6321 6322 if (!(vi->flags & VI_INIT_DONE)) { 6323 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6324 KASSERT(0, ("uninited VI is running")); 6325 if_printf(ifp, "uninited VI with running ifnet. " 6326 "vi->flags 0x%016lx, if_flags 0x%08x, " 6327 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6328 ifp->if_drv_flags); 6329 } 6330 return (0); 6331 } 6332 6333 /* 6334 * Disable the VI so that all its data in either direction is discarded 6335 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6336 * tick) intact as the TP can deliver negative advice or data that it's 6337 * holding in its RAM (for an offloaded connection) even after the VI is 6338 * disabled. 6339 */ 6340 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6341 if (rc) { 6342 if_printf(ifp, "disable_vi failed: %d\n", rc); 6343 return (rc); 6344 } 6345 6346 for_each_txq(vi, i, txq) { 6347 TXQ_LOCK(txq); 6348 txq->eq.flags &= ~EQ_ENABLED; 6349 TXQ_UNLOCK(txq); 6350 } 6351 6352 mtx_lock(&vi->tick_mtx); 6353 callout_stop(&vi->tick); 6354 mtx_unlock(&vi->tick_mtx); 6355 6356 PORT_LOCK(pi); 6357 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6358 PORT_UNLOCK(pi); 6359 return (0); 6360 } 6361 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6362 pi->up_vis--; 6363 if (pi->up_vis > 0) { 6364 PORT_UNLOCK(pi); 6365 return (0); 6366 } 6367 6368 pi->link_cfg.link_ok = false; 6369 pi->link_cfg.speed = 0; 6370 pi->link_cfg.link_down_rc = 255; 6371 t4_os_link_changed(pi); 6372 PORT_UNLOCK(pi); 6373 6374 return (0); 6375 } 6376 6377 /* 6378 * It is ok for this function to fail midway and return right away. t4_detach 6379 * will walk the entire sc->irq list and clean up whatever is valid. 6380 */ 6381 int 6382 t4_setup_intr_handlers(struct adapter *sc) 6383 { 6384 int rc, rid, p, q, v; 6385 char s[8]; 6386 struct irq *irq; 6387 struct port_info *pi; 6388 struct vi_info *vi; 6389 struct sge *sge = &sc->sge; 6390 struct sge_rxq *rxq; 6391 #ifdef TCP_OFFLOAD 6392 struct sge_ofld_rxq *ofld_rxq; 6393 #endif 6394 #ifdef DEV_NETMAP 6395 struct sge_nm_rxq *nm_rxq; 6396 #endif 6397 #ifdef RSS 6398 int nbuckets = rss_getnumbuckets(); 6399 #endif 6400 6401 /* 6402 * Setup interrupts. 6403 */ 6404 irq = &sc->irq[0]; 6405 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6406 if (forwarding_intr_to_fwq(sc)) 6407 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6408 6409 /* Multiple interrupts. */ 6410 if (sc->flags & IS_VF) 6411 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6412 ("%s: too few intr.", __func__)); 6413 else 6414 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6415 ("%s: too few intr.", __func__)); 6416 6417 /* The first one is always error intr on PFs */ 6418 if (!(sc->flags & IS_VF)) { 6419 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6420 if (rc != 0) 6421 return (rc); 6422 irq++; 6423 rid++; 6424 } 6425 6426 /* The second one is always the firmware event queue (first on VFs) */ 6427 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6428 if (rc != 0) 6429 return (rc); 6430 irq++; 6431 rid++; 6432 6433 for_each_port(sc, p) { 6434 pi = sc->port[p]; 6435 for_each_vi(pi, v, vi) { 6436 vi->first_intr = rid - 1; 6437 6438 if (vi->nnmrxq > 0) { 6439 int n = max(vi->nrxq, vi->nnmrxq); 6440 6441 rxq = &sge->rxq[vi->first_rxq]; 6442 #ifdef DEV_NETMAP 6443 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6444 #endif 6445 for (q = 0; q < n; q++) { 6446 snprintf(s, sizeof(s), "%x%c%x", p, 6447 'a' + v, q); 6448 if (q < vi->nrxq) 6449 irq->rxq = rxq++; 6450 #ifdef DEV_NETMAP 6451 if (q < vi->nnmrxq) 6452 irq->nm_rxq = nm_rxq++; 6453 6454 if (irq->nm_rxq != NULL && 6455 irq->rxq == NULL) { 6456 /* Netmap rx only */ 6457 rc = t4_alloc_irq(sc, irq, rid, 6458 t4_nm_intr, irq->nm_rxq, s); 6459 } 6460 if (irq->nm_rxq != NULL && 6461 irq->rxq != NULL) { 6462 /* NIC and Netmap rx */ 6463 rc = t4_alloc_irq(sc, irq, rid, 6464 t4_vi_intr, irq, s); 6465 } 6466 #endif 6467 if (irq->rxq != NULL && 6468 irq->nm_rxq == NULL) { 6469 /* NIC rx only */ 6470 rc = t4_alloc_irq(sc, irq, rid, 6471 t4_intr, irq->rxq, s); 6472 } 6473 if (rc != 0) 6474 return (rc); 6475 #ifdef RSS 6476 if (q < vi->nrxq) { 6477 bus_bind_intr(sc->dev, irq->res, 6478 rss_getcpu(q % nbuckets)); 6479 } 6480 #endif 6481 irq++; 6482 rid++; 6483 vi->nintr++; 6484 } 6485 } else { 6486 for_each_rxq(vi, q, rxq) { 6487 snprintf(s, sizeof(s), "%x%c%x", p, 6488 'a' + v, q); 6489 rc = t4_alloc_irq(sc, irq, rid, 6490 t4_intr, rxq, s); 6491 if (rc != 0) 6492 return (rc); 6493 #ifdef RSS 6494 bus_bind_intr(sc->dev, irq->res, 6495 rss_getcpu(q % nbuckets)); 6496 #endif 6497 irq++; 6498 rid++; 6499 vi->nintr++; 6500 } 6501 } 6502 #ifdef TCP_OFFLOAD 6503 for_each_ofld_rxq(vi, q, ofld_rxq) { 6504 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6505 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6506 ofld_rxq, s); 6507 if (rc != 0) 6508 return (rc); 6509 irq++; 6510 rid++; 6511 vi->nintr++; 6512 } 6513 #endif 6514 } 6515 } 6516 MPASS(irq == &sc->irq[sc->intr_count]); 6517 6518 return (0); 6519 } 6520 6521 static void 6522 write_global_rss_key(struct adapter *sc) 6523 { 6524 #ifdef RSS 6525 int i; 6526 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6527 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6528 6529 CTASSERT(RSS_KEYSIZE == 40); 6530 6531 rss_getkey((void *)&raw_rss_key[0]); 6532 for (i = 0; i < nitems(rss_key); i++) { 6533 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6534 } 6535 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6536 #endif 6537 } 6538 6539 /* 6540 * Idempotent. 6541 */ 6542 static int 6543 adapter_full_init(struct adapter *sc) 6544 { 6545 int rc, i; 6546 6547 ASSERT_SYNCHRONIZED_OP(sc); 6548 6549 /* 6550 * queues that belong to the adapter (not any particular port). 6551 */ 6552 rc = t4_setup_adapter_queues(sc); 6553 if (rc != 0) 6554 return (rc); 6555 6556 for (i = 0; i < nitems(sc->tq); i++) { 6557 if (sc->tq[i] != NULL) 6558 continue; 6559 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6560 taskqueue_thread_enqueue, &sc->tq[i]); 6561 if (sc->tq[i] == NULL) { 6562 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6563 return (ENOMEM); 6564 } 6565 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6566 device_get_nameunit(sc->dev), i); 6567 } 6568 6569 if (!(sc->flags & IS_VF)) { 6570 write_global_rss_key(sc); 6571 t4_intr_enable(sc); 6572 } 6573 return (0); 6574 } 6575 6576 int 6577 adapter_init(struct adapter *sc) 6578 { 6579 int rc; 6580 6581 ASSERT_SYNCHRONIZED_OP(sc); 6582 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6583 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6584 ("%s: FULL_INIT_DONE already", __func__)); 6585 6586 rc = adapter_full_init(sc); 6587 if (rc != 0) 6588 adapter_full_uninit(sc); 6589 else 6590 sc->flags |= FULL_INIT_DONE; 6591 6592 return (rc); 6593 } 6594 6595 /* 6596 * Idempotent. 6597 */ 6598 static void 6599 adapter_full_uninit(struct adapter *sc) 6600 { 6601 int i; 6602 6603 t4_teardown_adapter_queues(sc); 6604 6605 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6606 taskqueue_free(sc->tq[i]); 6607 sc->tq[i] = NULL; 6608 } 6609 6610 sc->flags &= ~FULL_INIT_DONE; 6611 } 6612 6613 #ifdef RSS 6614 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6615 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6616 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6617 RSS_HASHTYPE_RSS_UDP_IPV6) 6618 6619 /* Translates kernel hash types to hardware. */ 6620 static int 6621 hashconfig_to_hashen(int hashconfig) 6622 { 6623 int hashen = 0; 6624 6625 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6626 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6627 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6628 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6629 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6630 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6631 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6632 } 6633 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6634 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6635 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6636 } 6637 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6638 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6639 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6640 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6641 6642 return (hashen); 6643 } 6644 6645 /* Translates hardware hash types to kernel. */ 6646 static int 6647 hashen_to_hashconfig(int hashen) 6648 { 6649 int hashconfig = 0; 6650 6651 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6652 /* 6653 * If UDP hashing was enabled it must have been enabled for 6654 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6655 * enabling any 4-tuple hash is nonsense configuration. 6656 */ 6657 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6658 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6659 6660 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6661 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6662 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6663 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6664 } 6665 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6666 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6667 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6668 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6669 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6670 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6671 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6672 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6673 6674 return (hashconfig); 6675 } 6676 #endif 6677 6678 /* 6679 * Idempotent. 6680 */ 6681 static int 6682 vi_full_init(struct vi_info *vi) 6683 { 6684 struct adapter *sc = vi->adapter; 6685 struct sge_rxq *rxq; 6686 int rc, i, j; 6687 #ifdef RSS 6688 int nbuckets = rss_getnumbuckets(); 6689 int hashconfig = rss_gethashconfig(); 6690 int extra; 6691 #endif 6692 6693 ASSERT_SYNCHRONIZED_OP(sc); 6694 6695 /* 6696 * Allocate tx/rx/fl queues for this VI. 6697 */ 6698 rc = t4_setup_vi_queues(vi); 6699 if (rc != 0) 6700 return (rc); 6701 6702 /* 6703 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6704 */ 6705 if (vi->nrxq > vi->rss_size) { 6706 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6707 "some queues will never receive traffic.\n", vi->nrxq, 6708 vi->rss_size); 6709 } else if (vi->rss_size % vi->nrxq) { 6710 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6711 "expect uneven traffic distribution.\n", vi->nrxq, 6712 vi->rss_size); 6713 } 6714 #ifdef RSS 6715 if (vi->nrxq != nbuckets) { 6716 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6717 "performance will be impacted.\n", vi->nrxq, nbuckets); 6718 } 6719 #endif 6720 if (vi->rss == NULL) 6721 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6722 M_ZERO | M_WAITOK); 6723 for (i = 0; i < vi->rss_size;) { 6724 #ifdef RSS 6725 j = rss_get_indirection_to_bucket(i); 6726 j %= vi->nrxq; 6727 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6728 vi->rss[i++] = rxq->iq.abs_id; 6729 #else 6730 for_each_rxq(vi, j, rxq) { 6731 vi->rss[i++] = rxq->iq.abs_id; 6732 if (i == vi->rss_size) 6733 break; 6734 } 6735 #endif 6736 } 6737 6738 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6739 vi->rss, vi->rss_size); 6740 if (rc != 0) { 6741 CH_ERR(vi, "rss_config failed: %d\n", rc); 6742 return (rc); 6743 } 6744 6745 #ifdef RSS 6746 vi->hashen = hashconfig_to_hashen(hashconfig); 6747 6748 /* 6749 * We may have had to enable some hashes even though the global config 6750 * wants them disabled. This is a potential problem that must be 6751 * reported to the user. 6752 */ 6753 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6754 6755 /* 6756 * If we consider only the supported hash types, then the enabled hashes 6757 * are a superset of the requested hashes. In other words, there cannot 6758 * be any supported hash that was requested but not enabled, but there 6759 * can be hashes that were not requested but had to be enabled. 6760 */ 6761 extra &= SUPPORTED_RSS_HASHTYPES; 6762 MPASS((extra & hashconfig) == 0); 6763 6764 if (extra) { 6765 CH_ALERT(vi, 6766 "global RSS config (0x%x) cannot be accommodated.\n", 6767 hashconfig); 6768 } 6769 if (extra & RSS_HASHTYPE_RSS_IPV4) 6770 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6771 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6772 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6773 if (extra & RSS_HASHTYPE_RSS_IPV6) 6774 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6775 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6776 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6777 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6778 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6779 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6780 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6781 #else 6782 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6783 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6784 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6785 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6786 #endif 6787 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6788 0, 0); 6789 if (rc != 0) { 6790 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6791 return (rc); 6792 } 6793 6794 return (0); 6795 } 6796 6797 int 6798 vi_init(struct vi_info *vi) 6799 { 6800 int rc; 6801 6802 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6803 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6804 ("%s: VI_INIT_DONE already", __func__)); 6805 6806 rc = vi_full_init(vi); 6807 if (rc != 0) 6808 vi_full_uninit(vi); 6809 else 6810 vi->flags |= VI_INIT_DONE; 6811 6812 return (rc); 6813 } 6814 6815 /* 6816 * Idempotent. 6817 */ 6818 static void 6819 vi_full_uninit(struct vi_info *vi) 6820 { 6821 6822 if (vi->flags & VI_INIT_DONE) { 6823 quiesce_vi(vi); 6824 free(vi->rss, M_CXGBE); 6825 free(vi->nm_rss, M_CXGBE); 6826 } 6827 6828 t4_teardown_vi_queues(vi); 6829 vi->flags &= ~VI_INIT_DONE; 6830 } 6831 6832 static void 6833 quiesce_txq(struct sge_txq *txq) 6834 { 6835 struct sge_eq *eq = &txq->eq; 6836 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6837 6838 MPASS(eq->flags & EQ_SW_ALLOCATED); 6839 MPASS(!(eq->flags & EQ_ENABLED)); 6840 6841 /* Wait for the mp_ring to empty. */ 6842 while (!mp_ring_is_idle(txq->r)) { 6843 mp_ring_check_drainage(txq->r, 4096); 6844 pause("rquiesce", 1); 6845 } 6846 MPASS(txq->txp.npkt == 0); 6847 6848 if (eq->flags & EQ_HW_ALLOCATED) { 6849 /* 6850 * Hardware is alive and working normally. Wait for it to 6851 * finish and then wait for the driver to catch up and reclaim 6852 * all descriptors. 6853 */ 6854 while (spg->cidx != htobe16(eq->pidx)) 6855 pause("equiesce", 1); 6856 while (eq->cidx != eq->pidx) 6857 pause("dquiesce", 1); 6858 } else { 6859 /* 6860 * Hardware is unavailable. Discard all pending tx and reclaim 6861 * descriptors directly. 6862 */ 6863 TXQ_LOCK(txq); 6864 while (eq->cidx != eq->pidx) { 6865 struct mbuf *m, *nextpkt; 6866 struct tx_sdesc *txsd; 6867 6868 txsd = &txq->sdesc[eq->cidx]; 6869 for (m = txsd->m; m != NULL; m = nextpkt) { 6870 nextpkt = m->m_nextpkt; 6871 m->m_nextpkt = NULL; 6872 m_freem(m); 6873 } 6874 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6875 } 6876 spg->pidx = spg->cidx = htobe16(eq->cidx); 6877 TXQ_UNLOCK(txq); 6878 } 6879 } 6880 6881 static void 6882 quiesce_wrq(struct sge_wrq *wrq) 6883 { 6884 6885 /* XXXTX */ 6886 } 6887 6888 static void 6889 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6890 { 6891 /* Synchronize with the interrupt handler */ 6892 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6893 pause("iqfree", 1); 6894 6895 if (fl != NULL) { 6896 MPASS(iq->flags & IQ_HAS_FL); 6897 6898 mtx_lock(&sc->sfl_lock); 6899 FL_LOCK(fl); 6900 fl->flags |= FL_DOOMED; 6901 FL_UNLOCK(fl); 6902 callout_stop(&sc->sfl_callout); 6903 mtx_unlock(&sc->sfl_lock); 6904 6905 KASSERT((fl->flags & FL_STARVING) == 0, 6906 ("%s: still starving", __func__)); 6907 6908 /* Release all buffers if hardware is no longer available. */ 6909 if (!(iq->flags & IQ_HW_ALLOCATED)) 6910 free_fl_buffers(sc, fl); 6911 } 6912 } 6913 6914 /* 6915 * Wait for all activity on all the queues of the VI to complete. It is assumed 6916 * that no new work is being enqueued by the hardware or the driver. That part 6917 * should be arranged before calling this function. 6918 */ 6919 static void 6920 quiesce_vi(struct vi_info *vi) 6921 { 6922 int i; 6923 struct adapter *sc = vi->adapter; 6924 struct sge_rxq *rxq; 6925 struct sge_txq *txq; 6926 #ifdef TCP_OFFLOAD 6927 struct sge_ofld_rxq *ofld_rxq; 6928 #endif 6929 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6930 struct sge_ofld_txq *ofld_txq; 6931 #endif 6932 6933 if (!(vi->flags & VI_INIT_DONE)) 6934 return; 6935 6936 for_each_txq(vi, i, txq) { 6937 quiesce_txq(txq); 6938 } 6939 6940 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6941 for_each_ofld_txq(vi, i, ofld_txq) { 6942 quiesce_wrq(&ofld_txq->wrq); 6943 } 6944 #endif 6945 6946 for_each_rxq(vi, i, rxq) { 6947 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6948 } 6949 6950 #ifdef TCP_OFFLOAD 6951 for_each_ofld_rxq(vi, i, ofld_rxq) { 6952 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6953 } 6954 #endif 6955 } 6956 6957 static int 6958 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6959 driver_intr_t *handler, void *arg, char *name) 6960 { 6961 int rc; 6962 6963 irq->rid = rid; 6964 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6965 RF_SHAREABLE | RF_ACTIVE); 6966 if (irq->res == NULL) { 6967 device_printf(sc->dev, 6968 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6969 return (ENOMEM); 6970 } 6971 6972 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6973 NULL, handler, arg, &irq->tag); 6974 if (rc != 0) { 6975 device_printf(sc->dev, 6976 "failed to setup interrupt for rid %d, name %s: %d\n", 6977 rid, name, rc); 6978 } else if (name) 6979 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6980 6981 return (rc); 6982 } 6983 6984 static int 6985 t4_free_irq(struct adapter *sc, struct irq *irq) 6986 { 6987 if (irq->tag) 6988 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6989 if (irq->res) 6990 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6991 6992 bzero(irq, sizeof(*irq)); 6993 6994 return (0); 6995 } 6996 6997 static void 6998 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6999 { 7000 7001 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7002 t4_get_regs(sc, buf, regs->len); 7003 } 7004 7005 #define A_PL_INDIR_CMD 0x1f8 7006 7007 #define S_PL_AUTOINC 31 7008 #define M_PL_AUTOINC 0x1U 7009 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7010 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7011 7012 #define S_PL_VFID 20 7013 #define M_PL_VFID 0xffU 7014 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7015 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7016 7017 #define S_PL_ADDR 0 7018 #define M_PL_ADDR 0xfffffU 7019 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7020 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7021 7022 #define A_PL_INDIR_DATA 0x1fc 7023 7024 static uint64_t 7025 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7026 { 7027 u32 stats[2]; 7028 7029 if (sc->flags & IS_VF) { 7030 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7031 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7032 } else { 7033 mtx_assert(&sc->reg_lock, MA_OWNED); 7034 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7035 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7036 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7037 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7038 } 7039 return (((uint64_t)stats[1]) << 32 | stats[0]); 7040 } 7041 7042 static void 7043 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7044 { 7045 7046 #define GET_STAT(name) \ 7047 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7048 7049 if (!(sc->flags & IS_VF)) 7050 mtx_lock(&sc->reg_lock); 7051 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7052 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7053 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7054 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7055 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7056 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7057 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7058 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7059 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7060 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7061 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7062 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7063 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7064 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7065 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7066 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7067 if (!(sc->flags & IS_VF)) 7068 mtx_unlock(&sc->reg_lock); 7069 7070 #undef GET_STAT 7071 } 7072 7073 static void 7074 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7075 { 7076 int reg; 7077 7078 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7079 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7080 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7081 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7082 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7083 } 7084 7085 static void 7086 vi_refresh_stats(struct vi_info *vi) 7087 { 7088 struct timeval tv; 7089 const struct timeval interval = {0, 250000}; /* 250ms */ 7090 7091 mtx_assert(&vi->tick_mtx, MA_OWNED); 7092 7093 if (vi->flags & VI_SKIP_STATS) 7094 return; 7095 7096 getmicrotime(&tv); 7097 timevalsub(&tv, &interval); 7098 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7099 return; 7100 7101 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7102 getmicrotime(&vi->last_refreshed); 7103 } 7104 7105 static void 7106 cxgbe_refresh_stats(struct vi_info *vi) 7107 { 7108 u_int i, v, tnl_cong_drops, chan_map; 7109 struct timeval tv; 7110 const struct timeval interval = {0, 250000}; /* 250ms */ 7111 struct port_info *pi; 7112 struct adapter *sc; 7113 7114 mtx_assert(&vi->tick_mtx, MA_OWNED); 7115 7116 if (vi->flags & VI_SKIP_STATS) 7117 return; 7118 7119 getmicrotime(&tv); 7120 timevalsub(&tv, &interval); 7121 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7122 return; 7123 7124 pi = vi->pi; 7125 sc = vi->adapter; 7126 tnl_cong_drops = 0; 7127 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7128 chan_map = pi->rx_e_chan_map; 7129 while (chan_map) { 7130 i = ffs(chan_map) - 1; 7131 mtx_lock(&sc->reg_lock); 7132 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7133 A_TP_MIB_TNL_CNG_DROP_0 + i); 7134 mtx_unlock(&sc->reg_lock); 7135 tnl_cong_drops += v; 7136 chan_map &= ~(1 << i); 7137 } 7138 pi->tnl_cong_drops = tnl_cong_drops; 7139 getmicrotime(&vi->last_refreshed); 7140 } 7141 7142 static void 7143 cxgbe_tick(void *arg) 7144 { 7145 struct vi_info *vi = arg; 7146 7147 MPASS(IS_MAIN_VI(vi)); 7148 mtx_assert(&vi->tick_mtx, MA_OWNED); 7149 7150 cxgbe_refresh_stats(vi); 7151 callout_schedule(&vi->tick, hz); 7152 } 7153 7154 static void 7155 vi_tick(void *arg) 7156 { 7157 struct vi_info *vi = arg; 7158 7159 mtx_assert(&vi->tick_mtx, MA_OWNED); 7160 7161 vi_refresh_stats(vi); 7162 callout_schedule(&vi->tick, hz); 7163 } 7164 7165 /* 7166 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7167 */ 7168 static char *caps_decoder[] = { 7169 "\20\001IPMI\002NCSI", /* 0: NBM */ 7170 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7171 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7172 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7173 "\006HASHFILTER\007ETHOFLD", 7174 "\20\001TOE", /* 4: TOE */ 7175 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7176 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7177 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7178 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7179 "\007T10DIF" 7180 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7181 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7182 "\004TLS_HW", 7183 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7184 "\004PO_INITIATOR\005PO_TARGET", 7185 }; 7186 7187 void 7188 t4_sysctls(struct adapter *sc) 7189 { 7190 struct sysctl_ctx_list *ctx = &sc->ctx; 7191 struct sysctl_oid *oid; 7192 struct sysctl_oid_list *children, *c0; 7193 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7194 7195 /* 7196 * dev.t4nex.X. 7197 */ 7198 oid = device_get_sysctl_tree(sc->dev); 7199 c0 = children = SYSCTL_CHILDREN(oid); 7200 7201 sc->sc_do_rxcopy = 1; 7202 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7203 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7204 7205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7206 sc->params.nports, "# of ports"); 7207 7208 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7209 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7210 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7211 "available doorbells"); 7212 7213 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7214 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7215 7216 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7217 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7218 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7219 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7220 7221 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7222 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7223 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7224 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7225 7226 t4_sge_sysctls(sc, ctx, children); 7227 7228 sc->lro_timeout = 100; 7229 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7230 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7231 7232 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7233 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7234 7235 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7236 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7237 7238 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7239 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7240 7241 if (sc->flags & IS_VF) 7242 return; 7243 7244 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7245 NULL, chip_rev(sc), "chip hardware revision"); 7246 7247 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7248 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7249 7250 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7251 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7252 7253 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7254 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7255 7256 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7257 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7258 7259 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7260 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7261 7262 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7263 sc->er_version, 0, "expansion ROM version"); 7264 7265 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7266 sc->bs_version, 0, "bootstrap firmware version"); 7267 7268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7269 NULL, sc->params.scfg_vers, "serial config version"); 7270 7271 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7272 NULL, sc->params.vpd_vers, "VPD version"); 7273 7274 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7275 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7276 7277 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7278 sc->cfcsum, "config file checksum"); 7279 7280 #define SYSCTL_CAP(name, n, text) \ 7281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7282 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7283 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7284 "available " text " capabilities") 7285 7286 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7287 SYSCTL_CAP(linkcaps, 1, "link"); 7288 SYSCTL_CAP(switchcaps, 2, "switch"); 7289 SYSCTL_CAP(niccaps, 3, "NIC"); 7290 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7291 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7292 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7293 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7294 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7295 #undef SYSCTL_CAP 7296 7297 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7298 NULL, sc->tids.nftids, "number of filters"); 7299 7300 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7301 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7302 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7303 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7304 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7305 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7306 7307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7308 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7309 sysctl_loadavg, "A", 7310 "microprocessor load averages (debug firmwares only)"); 7311 7312 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7313 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7314 "I", "core Vdd (in mV)"); 7315 7316 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7317 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7318 sysctl_cpus, "A", "local CPUs"); 7319 7320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7321 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7322 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7323 7324 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7325 &sc->swintr, 0, "software triggered interrupts"); 7326 7327 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7328 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7329 "1 = reset adapter, 0 = zero reset counter"); 7330 7331 /* 7332 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7333 */ 7334 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7335 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7336 "logs and miscellaneous information"); 7337 children = SYSCTL_CHILDREN(oid); 7338 7339 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7340 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7341 sysctl_cctrl, "A", "congestion control"); 7342 7343 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7344 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7345 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7346 7347 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7348 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7349 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7350 7351 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7352 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7353 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7354 7355 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7356 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7357 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7358 7359 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7361 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7362 7363 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7364 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7365 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7366 7367 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7368 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7369 sysctl_cim_la, "A", "CIM logic analyzer"); 7370 7371 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7372 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7373 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7374 7375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7376 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7377 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7378 7379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7380 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7381 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7382 7383 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7384 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7385 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7386 7387 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7388 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7389 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7390 7391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7392 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7393 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7394 7395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7396 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7397 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7398 7399 if (chip_id(sc) > CHELSIO_T4) { 7400 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7401 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7402 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7403 "CIM OBQ 6 (SGE0-RX)"); 7404 7405 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7406 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7407 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7408 "CIM OBQ 7 (SGE1-RX)"); 7409 } 7410 7411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7412 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7413 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7414 7415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7416 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7417 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7418 7419 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7420 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7421 sysctl_cpl_stats, "A", "CPL statistics"); 7422 7423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7424 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7425 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7428 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7429 sysctl_tid_stats, "A", "tid stats"); 7430 7431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7432 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7433 sysctl_devlog, "A", "firmware's device log"); 7434 7435 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7436 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7437 sysctl_fcoe_stats, "A", "FCoE statistics"); 7438 7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7440 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7441 sysctl_hw_sched, "A", "hardware scheduler "); 7442 7443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7444 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7445 sysctl_l2t, "A", "hardware L2 table"); 7446 7447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7448 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7449 sysctl_smt, "A", "hardware source MAC table"); 7450 7451 #ifdef INET6 7452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7453 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7454 sysctl_clip, "A", "active CLIP table entries"); 7455 #endif 7456 7457 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7458 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7459 sysctl_lb_stats, "A", "loopback statistics"); 7460 7461 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7462 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7463 sysctl_meminfo, "A", "memory regions"); 7464 7465 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7466 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7467 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7468 "A", "MPS TCAM entries"); 7469 7470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7471 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7472 sysctl_path_mtus, "A", "path MTUs"); 7473 7474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7475 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7476 sysctl_pm_stats, "A", "PM statistics"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7479 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7480 sysctl_rdma_stats, "A", "RDMA statistics"); 7481 7482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7483 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7484 sysctl_tcp_stats, "A", "TCP statistics"); 7485 7486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7487 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7488 sysctl_tids, "A", "TID information"); 7489 7490 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7491 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7492 sysctl_tp_err_stats, "A", "TP error statistics"); 7493 7494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7495 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7496 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7497 7498 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7499 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7500 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7501 7502 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7503 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7504 sysctl_tp_la, "A", "TP logic analyzer"); 7505 7506 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7507 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7508 sysctl_tx_rate, "A", "Tx rate"); 7509 7510 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7511 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7512 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7513 7514 if (chip_id(sc) >= CHELSIO_T5) { 7515 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7516 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7517 sysctl_wcwr_stats, "A", "write combined work requests"); 7518 } 7519 7520 #ifdef KERN_TLS 7521 if (is_ktls(sc)) { 7522 /* 7523 * dev.t4nex.0.tls. 7524 */ 7525 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7526 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7527 children = SYSCTL_CHILDREN(oid); 7528 7529 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7530 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7531 "keys in work requests (1) or attempt to store TLS keys " 7532 "in card memory."); 7533 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7534 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7535 "TCB field updates with TLS record work requests."); 7536 } 7537 #endif 7538 7539 #ifdef TCP_OFFLOAD 7540 if (is_offload(sc)) { 7541 int i; 7542 char s[4]; 7543 7544 /* 7545 * dev.t4nex.X.toe. 7546 */ 7547 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7548 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7549 children = SYSCTL_CHILDREN(oid); 7550 7551 sc->tt.cong_algorithm = -1; 7552 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7553 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7554 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7555 "3 = highspeed)"); 7556 7557 sc->tt.sndbuf = -1; 7558 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7559 &sc->tt.sndbuf, 0, "hardware send buffer"); 7560 7561 sc->tt.ddp = 0; 7562 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7563 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7564 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7565 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7566 7567 sc->tt.rx_coalesce = -1; 7568 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7569 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7570 7571 sc->tt.tls = 0; 7572 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7573 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7574 "Inline TLS allowed"); 7575 7576 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7577 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7578 sysctl_tls_rx_ports, "I", 7579 "TCP ports that use inline TLS+TOE RX"); 7580 7581 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7583 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7584 sysctl_tls_rx_timeout, "I", 7585 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7586 7587 sc->tt.tx_align = -1; 7588 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7589 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7590 7591 sc->tt.tx_zcopy = 0; 7592 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7593 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7594 "Enable zero-copy aio_write(2)"); 7595 7596 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7597 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7598 "cop_managed_offloading", CTLFLAG_RW, 7599 &sc->tt.cop_managed_offloading, 0, 7600 "COP (Connection Offload Policy) controls all TOE offload"); 7601 7602 sc->tt.autorcvbuf_inc = 16 * 1024; 7603 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7604 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7605 "autorcvbuf increment"); 7606 7607 sc->tt.update_hc_on_pmtu_change = 1; 7608 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7609 "update_hc_on_pmtu_change", CTLFLAG_RW, 7610 &sc->tt.update_hc_on_pmtu_change, 0, 7611 "Update hostcache entry if the PMTU changes"); 7612 7613 sc->tt.iso = 1; 7614 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7615 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7616 7617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7618 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7619 sysctl_tp_tick, "A", "TP timer tick (us)"); 7620 7621 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7622 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7623 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7624 7625 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7626 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7627 sysctl_tp_tick, "A", "DACK tick (us)"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7630 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7631 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7632 7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7634 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7635 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7636 "Minimum retransmit interval (us)"); 7637 7638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7639 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7640 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7641 "Maximum retransmit interval (us)"); 7642 7643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7644 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7645 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7646 "Persist timer min (us)"); 7647 7648 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7649 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7650 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7651 "Persist timer max (us)"); 7652 7653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7654 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7655 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7656 "Keepalive idle timer (us)"); 7657 7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7659 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7660 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7661 "Keepalive interval timer (us)"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7664 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7665 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7666 7667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7668 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7669 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7670 "FINWAIT2 timer (us)"); 7671 7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7673 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7674 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7675 "Number of SYN retransmissions before abort"); 7676 7677 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7678 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7679 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7680 "Number of retransmissions before abort"); 7681 7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7683 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7684 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7685 "Number of keepalive probes before abort"); 7686 7687 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7688 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7689 "TOE retransmit backoffs"); 7690 children = SYSCTL_CHILDREN(oid); 7691 for (i = 0; i < 16; i++) { 7692 snprintf(s, sizeof(s), "%u", i); 7693 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7694 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7695 i, sysctl_tp_backoff, "IU", 7696 "TOE retransmit backoff"); 7697 } 7698 } 7699 #endif 7700 } 7701 7702 void 7703 vi_sysctls(struct vi_info *vi) 7704 { 7705 struct sysctl_ctx_list *ctx = &vi->ctx; 7706 struct sysctl_oid *oid; 7707 struct sysctl_oid_list *children; 7708 7709 /* 7710 * dev.v?(cxgbe|cxl).X. 7711 */ 7712 oid = device_get_sysctl_tree(vi->dev); 7713 children = SYSCTL_CHILDREN(oid); 7714 7715 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7716 vi->viid, "VI identifer"); 7717 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7718 &vi->nrxq, 0, "# of rx queues"); 7719 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7720 &vi->ntxq, 0, "# of tx queues"); 7721 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7722 &vi->first_rxq, 0, "index of first rx queue"); 7723 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7724 &vi->first_txq, 0, "index of first tx queue"); 7725 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7726 vi->rss_base, "start of RSS indirection table"); 7727 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7728 vi->rss_size, "size of RSS indirection table"); 7729 7730 if (IS_MAIN_VI(vi)) { 7731 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7732 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7733 sysctl_noflowq, "IU", 7734 "Reserve queue 0 for non-flowid packets"); 7735 } 7736 7737 if (vi->adapter->flags & IS_VF) { 7738 MPASS(vi->flags & TX_USES_VM_WR); 7739 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7740 NULL, 1, "use VM work requests for transmit"); 7741 } else { 7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7743 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7744 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7745 } 7746 7747 #ifdef TCP_OFFLOAD 7748 if (vi->nofldrxq != 0) { 7749 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7750 &vi->nofldrxq, 0, 7751 "# of rx queues for offloaded TCP connections"); 7752 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7753 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7754 "index of first TOE rx queue"); 7755 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7756 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7757 sysctl_holdoff_tmr_idx_ofld, "I", 7758 "holdoff timer index for TOE queues"); 7759 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7760 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7761 sysctl_holdoff_pktc_idx_ofld, "I", 7762 "holdoff packet counter index for TOE queues"); 7763 } 7764 #endif 7765 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7766 if (vi->nofldtxq != 0) { 7767 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7768 &vi->nofldtxq, 0, 7769 "# of tx queues for TOE/ETHOFLD"); 7770 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7771 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7772 "index of first TOE/ETHOFLD tx queue"); 7773 } 7774 #endif 7775 #ifdef DEV_NETMAP 7776 if (vi->nnmrxq != 0) { 7777 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7778 &vi->nnmrxq, 0, "# of netmap rx queues"); 7779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7780 &vi->nnmtxq, 0, "# of netmap tx queues"); 7781 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7782 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7783 "index of first netmap rx queue"); 7784 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7785 CTLFLAG_RD, &vi->first_nm_txq, 0, 7786 "index of first netmap tx queue"); 7787 } 7788 #endif 7789 7790 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7791 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7792 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7794 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7795 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7796 7797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7798 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7799 sysctl_qsize_rxq, "I", "rx queue size"); 7800 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7801 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7802 sysctl_qsize_txq, "I", "tx queue size"); 7803 } 7804 7805 static void 7806 cxgbe_sysctls(struct port_info *pi) 7807 { 7808 struct sysctl_ctx_list *ctx = &pi->ctx; 7809 struct sysctl_oid *oid; 7810 struct sysctl_oid_list *children, *children2; 7811 struct adapter *sc = pi->adapter; 7812 int i; 7813 char name[16]; 7814 static char *tc_flags = {"\20\1USER"}; 7815 7816 /* 7817 * dev.cxgbe.X. 7818 */ 7819 oid = device_get_sysctl_tree(pi->dev); 7820 children = SYSCTL_CHILDREN(oid); 7821 7822 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7823 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7824 sysctl_linkdnrc, "A", "reason why link is down"); 7825 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7826 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7827 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7828 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7829 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7830 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7831 sysctl_btphy, "I", "PHY firmware version"); 7832 } 7833 7834 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7835 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7836 sysctl_pause_settings, "A", 7837 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7838 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7839 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7840 "FEC in use on the link"); 7841 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7842 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7843 sysctl_requested_fec, "A", 7844 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7845 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7846 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7847 "FEC recommended by the cable/transceiver"); 7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7849 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7850 sysctl_autoneg, "I", 7851 "autonegotiation (-1 = not supported)"); 7852 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7853 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7854 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7855 7856 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7857 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7858 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7859 &pi->link_cfg.pcaps, 0, "port capabilities"); 7860 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7861 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7862 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7863 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7864 7865 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7866 port_top_speed(pi), "max speed (in Gbps)"); 7867 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7868 pi->mps_bg_map, "MPS buffer group map"); 7869 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7870 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7871 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7872 pi->rx_c_chan, "TP rx c-channel"); 7873 7874 if (sc->flags & IS_VF) 7875 return; 7876 7877 /* 7878 * dev.(cxgbe|cxl).X.tc. 7879 */ 7880 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7881 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7882 "Tx scheduler traffic classes (cl_rl)"); 7883 children2 = SYSCTL_CHILDREN(oid); 7884 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7885 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7886 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7887 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7888 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7889 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7890 for (i = 0; i < sc->params.nsched_cls; i++) { 7891 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7892 7893 snprintf(name, sizeof(name), "%d", i); 7894 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7895 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7896 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7897 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7898 CTLFLAG_RD, &tc->state, 0, "current state"); 7899 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7900 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7901 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7902 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7903 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7904 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7905 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7906 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7907 "traffic class parameters"); 7908 } 7909 7910 /* 7911 * dev.cxgbe.X.stats. 7912 */ 7913 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7914 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7915 children = SYSCTL_CHILDREN(oid); 7916 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7917 &pi->tx_parse_error, 0, 7918 "# of tx packets with invalid length or # of segments"); 7919 7920 #define T4_REGSTAT(name, stat, desc) \ 7921 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7922 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7923 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7924 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7925 sysctl_handle_t4_reg64, "QU", desc) 7926 7927 /* We get these from port_stats and they may be stale by up to 1s */ 7928 #define T4_PORTSTAT(name, desc) \ 7929 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7930 &pi->stats.name, desc) 7931 7932 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7933 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7934 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7935 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7936 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7937 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7938 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7939 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7940 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7941 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7942 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7943 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7944 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7945 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7946 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7947 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7948 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7949 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7950 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7951 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7952 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7953 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7954 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7955 7956 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7957 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7958 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7959 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7960 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7961 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7962 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7963 if (is_t6(sc)) { 7964 T4_PORTSTAT(rx_fcs_err, 7965 "# of frames received with bad FCS since last link up"); 7966 } else { 7967 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7968 "# of frames received with bad FCS"); 7969 } 7970 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7971 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7972 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7973 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7974 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7975 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7976 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7977 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7978 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7979 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7980 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7981 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7982 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7983 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7984 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7985 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7986 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7987 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7988 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7989 7990 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7991 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7992 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7993 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7994 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7995 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7996 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7997 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7998 7999 #undef T4_REGSTAT 8000 #undef T4_PORTSTAT 8001 } 8002 8003 static int 8004 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8005 { 8006 int rc, *i, space = 0; 8007 struct sbuf sb; 8008 8009 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8010 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8011 if (space) 8012 sbuf_printf(&sb, " "); 8013 sbuf_printf(&sb, "%d", *i); 8014 space = 1; 8015 } 8016 rc = sbuf_finish(&sb); 8017 sbuf_delete(&sb); 8018 return (rc); 8019 } 8020 8021 static int 8022 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8023 { 8024 int rc; 8025 struct sbuf *sb; 8026 8027 rc = sysctl_wire_old_buffer(req, 0); 8028 if (rc != 0) 8029 return(rc); 8030 8031 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8032 if (sb == NULL) 8033 return (ENOMEM); 8034 8035 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8036 rc = sbuf_finish(sb); 8037 sbuf_delete(sb); 8038 8039 return (rc); 8040 } 8041 8042 static int 8043 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8044 { 8045 int rc; 8046 struct sbuf *sb; 8047 8048 rc = sysctl_wire_old_buffer(req, 0); 8049 if (rc != 0) 8050 return(rc); 8051 8052 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8053 if (sb == NULL) 8054 return (ENOMEM); 8055 8056 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8057 rc = sbuf_finish(sb); 8058 sbuf_delete(sb); 8059 8060 return (rc); 8061 } 8062 8063 static int 8064 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8065 { 8066 struct port_info *pi = arg1; 8067 int op = arg2; 8068 struct adapter *sc = pi->adapter; 8069 u_int v; 8070 int rc; 8071 8072 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8073 if (rc) 8074 return (rc); 8075 if (hw_off_limits(sc)) 8076 rc = ENXIO; 8077 else { 8078 /* XXX: magic numbers */ 8079 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8080 op ? 0x20 : 0xc820, &v); 8081 } 8082 end_synchronized_op(sc, 0); 8083 if (rc) 8084 return (rc); 8085 if (op == 0) 8086 v /= 256; 8087 8088 rc = sysctl_handle_int(oidp, &v, 0, req); 8089 return (rc); 8090 } 8091 8092 static int 8093 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8094 { 8095 struct vi_info *vi = arg1; 8096 int rc, val; 8097 8098 val = vi->rsrv_noflowq; 8099 rc = sysctl_handle_int(oidp, &val, 0, req); 8100 if (rc != 0 || req->newptr == NULL) 8101 return (rc); 8102 8103 if ((val >= 1) && (vi->ntxq > 1)) 8104 vi->rsrv_noflowq = 1; 8105 else 8106 vi->rsrv_noflowq = 0; 8107 8108 return (rc); 8109 } 8110 8111 static int 8112 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8113 { 8114 struct vi_info *vi = arg1; 8115 struct adapter *sc = vi->adapter; 8116 int rc, val, i; 8117 8118 MPASS(!(sc->flags & IS_VF)); 8119 8120 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8121 rc = sysctl_handle_int(oidp, &val, 0, req); 8122 if (rc != 0 || req->newptr == NULL) 8123 return (rc); 8124 8125 if (val != 0 && val != 1) 8126 return (EINVAL); 8127 8128 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8129 "t4txvm"); 8130 if (rc) 8131 return (rc); 8132 if (hw_off_limits(sc)) 8133 rc = ENXIO; 8134 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8135 /* 8136 * We don't want parse_pkt to run with one setting (VF or PF) 8137 * and then eth_tx to see a different setting but still use 8138 * stale information calculated by parse_pkt. 8139 */ 8140 rc = EBUSY; 8141 } else { 8142 struct port_info *pi = vi->pi; 8143 struct sge_txq *txq; 8144 uint32_t ctrl0; 8145 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8146 8147 if (val) { 8148 vi->flags |= TX_USES_VM_WR; 8149 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8150 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8151 V_TXPKT_INTF(pi->tx_chan)); 8152 if (!(sc->flags & IS_VF)) 8153 npkt--; 8154 } else { 8155 vi->flags &= ~TX_USES_VM_WR; 8156 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8157 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8158 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8159 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8160 } 8161 for_each_txq(vi, i, txq) { 8162 txq->cpl_ctrl0 = ctrl0; 8163 txq->txp.max_npkt = npkt; 8164 } 8165 } 8166 end_synchronized_op(sc, LOCK_HELD); 8167 return (rc); 8168 } 8169 8170 static int 8171 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8172 { 8173 struct vi_info *vi = arg1; 8174 struct adapter *sc = vi->adapter; 8175 int idx, rc, i; 8176 struct sge_rxq *rxq; 8177 uint8_t v; 8178 8179 idx = vi->tmr_idx; 8180 8181 rc = sysctl_handle_int(oidp, &idx, 0, req); 8182 if (rc != 0 || req->newptr == NULL) 8183 return (rc); 8184 8185 if (idx < 0 || idx >= SGE_NTIMERS) 8186 return (EINVAL); 8187 8188 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8189 "t4tmr"); 8190 if (rc) 8191 return (rc); 8192 8193 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8194 for_each_rxq(vi, i, rxq) { 8195 #ifdef atomic_store_rel_8 8196 atomic_store_rel_8(&rxq->iq.intr_params, v); 8197 #else 8198 rxq->iq.intr_params = v; 8199 #endif 8200 } 8201 vi->tmr_idx = idx; 8202 8203 end_synchronized_op(sc, LOCK_HELD); 8204 return (0); 8205 } 8206 8207 static int 8208 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8209 { 8210 struct vi_info *vi = arg1; 8211 struct adapter *sc = vi->adapter; 8212 int idx, rc; 8213 8214 idx = vi->pktc_idx; 8215 8216 rc = sysctl_handle_int(oidp, &idx, 0, req); 8217 if (rc != 0 || req->newptr == NULL) 8218 return (rc); 8219 8220 if (idx < -1 || idx >= SGE_NCOUNTERS) 8221 return (EINVAL); 8222 8223 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8224 "t4pktc"); 8225 if (rc) 8226 return (rc); 8227 8228 if (vi->flags & VI_INIT_DONE) 8229 rc = EBUSY; /* cannot be changed once the queues are created */ 8230 else 8231 vi->pktc_idx = idx; 8232 8233 end_synchronized_op(sc, LOCK_HELD); 8234 return (rc); 8235 } 8236 8237 static int 8238 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8239 { 8240 struct vi_info *vi = arg1; 8241 struct adapter *sc = vi->adapter; 8242 int qsize, rc; 8243 8244 qsize = vi->qsize_rxq; 8245 8246 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8247 if (rc != 0 || req->newptr == NULL) 8248 return (rc); 8249 8250 if (qsize < 128 || (qsize & 7)) 8251 return (EINVAL); 8252 8253 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8254 "t4rxqs"); 8255 if (rc) 8256 return (rc); 8257 8258 if (vi->flags & VI_INIT_DONE) 8259 rc = EBUSY; /* cannot be changed once the queues are created */ 8260 else 8261 vi->qsize_rxq = qsize; 8262 8263 end_synchronized_op(sc, LOCK_HELD); 8264 return (rc); 8265 } 8266 8267 static int 8268 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8269 { 8270 struct vi_info *vi = arg1; 8271 struct adapter *sc = vi->adapter; 8272 int qsize, rc; 8273 8274 qsize = vi->qsize_txq; 8275 8276 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8277 if (rc != 0 || req->newptr == NULL) 8278 return (rc); 8279 8280 if (qsize < 128 || qsize > 65536) 8281 return (EINVAL); 8282 8283 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8284 "t4txqs"); 8285 if (rc) 8286 return (rc); 8287 8288 if (vi->flags & VI_INIT_DONE) 8289 rc = EBUSY; /* cannot be changed once the queues are created */ 8290 else 8291 vi->qsize_txq = qsize; 8292 8293 end_synchronized_op(sc, LOCK_HELD); 8294 return (rc); 8295 } 8296 8297 static int 8298 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8299 { 8300 struct port_info *pi = arg1; 8301 struct adapter *sc = pi->adapter; 8302 struct link_config *lc = &pi->link_cfg; 8303 int rc; 8304 8305 if (req->newptr == NULL) { 8306 struct sbuf *sb; 8307 static char *bits = "\20\1RX\2TX\3AUTO"; 8308 8309 rc = sysctl_wire_old_buffer(req, 0); 8310 if (rc != 0) 8311 return(rc); 8312 8313 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8314 if (sb == NULL) 8315 return (ENOMEM); 8316 8317 if (lc->link_ok) { 8318 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8319 (lc->requested_fc & PAUSE_AUTONEG), bits); 8320 } else { 8321 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8322 PAUSE_RX | PAUSE_AUTONEG), bits); 8323 } 8324 rc = sbuf_finish(sb); 8325 sbuf_delete(sb); 8326 } else { 8327 char s[2]; 8328 int n; 8329 8330 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8331 PAUSE_AUTONEG)); 8332 s[1] = 0; 8333 8334 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8335 if (rc != 0) 8336 return(rc); 8337 8338 if (s[1] != 0) 8339 return (EINVAL); 8340 if (s[0] < '0' || s[0] > '9') 8341 return (EINVAL); /* not a number */ 8342 n = s[0] - '0'; 8343 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8344 return (EINVAL); /* some other bit is set too */ 8345 8346 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8347 "t4PAUSE"); 8348 if (rc) 8349 return (rc); 8350 if (!hw_off_limits(sc)) { 8351 PORT_LOCK(pi); 8352 lc->requested_fc = n; 8353 fixup_link_config(pi); 8354 if (pi->up_vis > 0) 8355 rc = apply_link_config(pi); 8356 set_current_media(pi); 8357 PORT_UNLOCK(pi); 8358 } 8359 end_synchronized_op(sc, 0); 8360 } 8361 8362 return (rc); 8363 } 8364 8365 static int 8366 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8367 { 8368 struct port_info *pi = arg1; 8369 struct link_config *lc = &pi->link_cfg; 8370 int rc; 8371 struct sbuf *sb; 8372 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8373 8374 rc = sysctl_wire_old_buffer(req, 0); 8375 if (rc != 0) 8376 return(rc); 8377 8378 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8379 if (sb == NULL) 8380 return (ENOMEM); 8381 if (lc->link_ok) 8382 sbuf_printf(sb, "%b", lc->fec, bits); 8383 else 8384 sbuf_printf(sb, "no link"); 8385 rc = sbuf_finish(sb); 8386 sbuf_delete(sb); 8387 8388 return (rc); 8389 } 8390 8391 static int 8392 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8393 { 8394 struct port_info *pi = arg1; 8395 struct adapter *sc = pi->adapter; 8396 struct link_config *lc = &pi->link_cfg; 8397 int rc; 8398 int8_t old; 8399 8400 if (req->newptr == NULL) { 8401 struct sbuf *sb; 8402 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8403 "\5RSVD3\6auto\7module"; 8404 8405 rc = sysctl_wire_old_buffer(req, 0); 8406 if (rc != 0) 8407 return(rc); 8408 8409 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8410 if (sb == NULL) 8411 return (ENOMEM); 8412 8413 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8414 rc = sbuf_finish(sb); 8415 sbuf_delete(sb); 8416 } else { 8417 char s[8]; 8418 int n; 8419 8420 snprintf(s, sizeof(s), "%d", 8421 lc->requested_fec == FEC_AUTO ? -1 : 8422 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8423 8424 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8425 if (rc != 0) 8426 return(rc); 8427 8428 n = strtol(&s[0], NULL, 0); 8429 if (n < 0 || n & FEC_AUTO) 8430 n = FEC_AUTO; 8431 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8432 return (EINVAL);/* some other bit is set too */ 8433 8434 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8435 "t4reqf"); 8436 if (rc) 8437 return (rc); 8438 PORT_LOCK(pi); 8439 old = lc->requested_fec; 8440 if (n == FEC_AUTO) 8441 lc->requested_fec = FEC_AUTO; 8442 else if (n == 0 || n == FEC_NONE) 8443 lc->requested_fec = FEC_NONE; 8444 else { 8445 if ((lc->pcaps | 8446 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8447 lc->pcaps) { 8448 rc = ENOTSUP; 8449 goto done; 8450 } 8451 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8452 FEC_MODULE); 8453 } 8454 if (!hw_off_limits(sc)) { 8455 fixup_link_config(pi); 8456 if (pi->up_vis > 0) { 8457 rc = apply_link_config(pi); 8458 if (rc != 0) { 8459 lc->requested_fec = old; 8460 if (rc == FW_EPROTO) 8461 rc = ENOTSUP; 8462 } 8463 } 8464 } 8465 done: 8466 PORT_UNLOCK(pi); 8467 end_synchronized_op(sc, 0); 8468 } 8469 8470 return (rc); 8471 } 8472 8473 static int 8474 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8475 { 8476 struct port_info *pi = arg1; 8477 struct adapter *sc = pi->adapter; 8478 struct link_config *lc = &pi->link_cfg; 8479 int rc; 8480 int8_t fec; 8481 struct sbuf *sb; 8482 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8483 8484 rc = sysctl_wire_old_buffer(req, 0); 8485 if (rc != 0) 8486 return (rc); 8487 8488 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8489 if (sb == NULL) 8490 return (ENOMEM); 8491 8492 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8493 rc = EBUSY; 8494 goto done; 8495 } 8496 if (hw_off_limits(sc)) { 8497 rc = ENXIO; 8498 goto done; 8499 } 8500 PORT_LOCK(pi); 8501 if (pi->up_vis == 0) { 8502 /* 8503 * If all the interfaces are administratively down the firmware 8504 * does not report transceiver changes. Refresh port info here. 8505 * This is the only reason we have a synchronized op in this 8506 * function. Just PORT_LOCK would have been enough otherwise. 8507 */ 8508 t4_update_port_info(pi); 8509 } 8510 8511 fec = lc->fec_hint; 8512 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8513 !fec_supported(lc->pcaps)) { 8514 sbuf_printf(sb, "n/a"); 8515 } else { 8516 if (fec == 0) 8517 fec = FEC_NONE; 8518 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8519 } 8520 rc = sbuf_finish(sb); 8521 PORT_UNLOCK(pi); 8522 done: 8523 sbuf_delete(sb); 8524 end_synchronized_op(sc, 0); 8525 8526 return (rc); 8527 } 8528 8529 static int 8530 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8531 { 8532 struct port_info *pi = arg1; 8533 struct adapter *sc = pi->adapter; 8534 struct link_config *lc = &pi->link_cfg; 8535 int rc, val; 8536 8537 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8538 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8539 else 8540 val = -1; 8541 rc = sysctl_handle_int(oidp, &val, 0, req); 8542 if (rc != 0 || req->newptr == NULL) 8543 return (rc); 8544 if (val == 0) 8545 val = AUTONEG_DISABLE; 8546 else if (val == 1) 8547 val = AUTONEG_ENABLE; 8548 else 8549 val = AUTONEG_AUTO; 8550 8551 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8552 "t4aneg"); 8553 if (rc) 8554 return (rc); 8555 PORT_LOCK(pi); 8556 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8557 rc = ENOTSUP; 8558 goto done; 8559 } 8560 lc->requested_aneg = val; 8561 if (!hw_off_limits(sc)) { 8562 fixup_link_config(pi); 8563 if (pi->up_vis > 0) 8564 rc = apply_link_config(pi); 8565 set_current_media(pi); 8566 } 8567 done: 8568 PORT_UNLOCK(pi); 8569 end_synchronized_op(sc, 0); 8570 return (rc); 8571 } 8572 8573 static int 8574 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8575 { 8576 struct port_info *pi = arg1; 8577 struct adapter *sc = pi->adapter; 8578 struct link_config *lc = &pi->link_cfg; 8579 int rc, val; 8580 8581 val = lc->force_fec; 8582 MPASS(val >= -1 && val <= 1); 8583 rc = sysctl_handle_int(oidp, &val, 0, req); 8584 if (rc != 0 || req->newptr == NULL) 8585 return (rc); 8586 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8587 return (ENOTSUP); 8588 if (val < -1 || val > 1) 8589 return (EINVAL); 8590 8591 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8592 if (rc) 8593 return (rc); 8594 PORT_LOCK(pi); 8595 lc->force_fec = val; 8596 if (!hw_off_limits(sc)) { 8597 fixup_link_config(pi); 8598 if (pi->up_vis > 0) 8599 rc = apply_link_config(pi); 8600 } 8601 PORT_UNLOCK(pi); 8602 end_synchronized_op(sc, 0); 8603 return (rc); 8604 } 8605 8606 static int 8607 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8608 { 8609 struct adapter *sc = arg1; 8610 int rc, reg = arg2; 8611 uint64_t val; 8612 8613 mtx_lock(&sc->reg_lock); 8614 if (hw_off_limits(sc)) 8615 rc = ENXIO; 8616 else { 8617 rc = 0; 8618 val = t4_read_reg64(sc, reg); 8619 } 8620 mtx_unlock(&sc->reg_lock); 8621 if (rc == 0) 8622 rc = sysctl_handle_64(oidp, &val, 0, req); 8623 return (rc); 8624 } 8625 8626 static int 8627 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8628 { 8629 struct adapter *sc = arg1; 8630 int rc, t; 8631 uint32_t param, val; 8632 8633 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8634 if (rc) 8635 return (rc); 8636 if (hw_off_limits(sc)) 8637 rc = ENXIO; 8638 else { 8639 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8640 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8641 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8642 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8643 } 8644 end_synchronized_op(sc, 0); 8645 if (rc) 8646 return (rc); 8647 8648 /* unknown is returned as 0 but we display -1 in that case */ 8649 t = val == 0 ? -1 : val; 8650 8651 rc = sysctl_handle_int(oidp, &t, 0, req); 8652 return (rc); 8653 } 8654 8655 static int 8656 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8657 { 8658 struct adapter *sc = arg1; 8659 int rc; 8660 uint32_t param, val; 8661 8662 if (sc->params.core_vdd == 0) { 8663 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8664 "t4vdd"); 8665 if (rc) 8666 return (rc); 8667 if (hw_off_limits(sc)) 8668 rc = ENXIO; 8669 else { 8670 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8671 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8672 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8673 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8674 ¶m, &val); 8675 } 8676 end_synchronized_op(sc, 0); 8677 if (rc) 8678 return (rc); 8679 sc->params.core_vdd = val; 8680 } 8681 8682 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8683 } 8684 8685 static int 8686 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8687 { 8688 struct adapter *sc = arg1; 8689 int rc, v; 8690 uint32_t param, val; 8691 8692 v = sc->sensor_resets; 8693 rc = sysctl_handle_int(oidp, &v, 0, req); 8694 if (rc != 0 || req->newptr == NULL || v <= 0) 8695 return (rc); 8696 8697 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8698 chip_id(sc) < CHELSIO_T5) 8699 return (ENOTSUP); 8700 8701 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8702 if (rc) 8703 return (rc); 8704 if (hw_off_limits(sc)) 8705 rc = ENXIO; 8706 else { 8707 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8708 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8709 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8710 val = 1; 8711 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8712 } 8713 end_synchronized_op(sc, 0); 8714 if (rc == 0) 8715 sc->sensor_resets++; 8716 return (rc); 8717 } 8718 8719 static int 8720 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8721 { 8722 struct adapter *sc = arg1; 8723 struct sbuf *sb; 8724 int rc; 8725 uint32_t param, val; 8726 8727 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8728 if (rc) 8729 return (rc); 8730 if (hw_off_limits(sc)) 8731 rc = ENXIO; 8732 else { 8733 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8734 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8736 } 8737 end_synchronized_op(sc, 0); 8738 if (rc) 8739 return (rc); 8740 8741 rc = sysctl_wire_old_buffer(req, 0); 8742 if (rc != 0) 8743 return (rc); 8744 8745 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8746 if (sb == NULL) 8747 return (ENOMEM); 8748 8749 if (val == 0xffffffff) { 8750 /* Only debug and custom firmwares report load averages. */ 8751 sbuf_printf(sb, "not available"); 8752 } else { 8753 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8754 (val >> 16) & 0xff); 8755 } 8756 rc = sbuf_finish(sb); 8757 sbuf_delete(sb); 8758 8759 return (rc); 8760 } 8761 8762 static int 8763 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8764 { 8765 struct adapter *sc = arg1; 8766 struct sbuf *sb; 8767 int rc, i; 8768 uint16_t incr[NMTUS][NCCTRL_WIN]; 8769 static const char *dec_fac[] = { 8770 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8771 "0.9375" 8772 }; 8773 8774 rc = sysctl_wire_old_buffer(req, 0); 8775 if (rc != 0) 8776 return (rc); 8777 8778 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8779 if (sb == NULL) 8780 return (ENOMEM); 8781 8782 mtx_lock(&sc->reg_lock); 8783 if (hw_off_limits(sc)) 8784 rc = ENXIO; 8785 else 8786 t4_read_cong_tbl(sc, incr); 8787 mtx_unlock(&sc->reg_lock); 8788 if (rc) 8789 goto done; 8790 8791 for (i = 0; i < NCCTRL_WIN; ++i) { 8792 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8793 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8794 incr[5][i], incr[6][i], incr[7][i]); 8795 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8796 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8797 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8798 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8799 } 8800 8801 rc = sbuf_finish(sb); 8802 done: 8803 sbuf_delete(sb); 8804 return (rc); 8805 } 8806 8807 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8808 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8809 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8810 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8811 }; 8812 8813 static int 8814 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8815 { 8816 struct adapter *sc = arg1; 8817 struct sbuf *sb; 8818 int rc, i, n, qid = arg2; 8819 uint32_t *buf, *p; 8820 char *qtype; 8821 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8822 8823 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8824 ("%s: bad qid %d\n", __func__, qid)); 8825 8826 if (qid < CIM_NUM_IBQ) { 8827 /* inbound queue */ 8828 qtype = "IBQ"; 8829 n = 4 * CIM_IBQ_SIZE; 8830 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8831 mtx_lock(&sc->reg_lock); 8832 if (hw_off_limits(sc)) 8833 rc = -ENXIO; 8834 else 8835 rc = t4_read_cim_ibq(sc, qid, buf, n); 8836 mtx_unlock(&sc->reg_lock); 8837 } else { 8838 /* outbound queue */ 8839 qtype = "OBQ"; 8840 qid -= CIM_NUM_IBQ; 8841 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8842 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8843 mtx_lock(&sc->reg_lock); 8844 if (hw_off_limits(sc)) 8845 rc = -ENXIO; 8846 else 8847 rc = t4_read_cim_obq(sc, qid, buf, n); 8848 mtx_unlock(&sc->reg_lock); 8849 } 8850 8851 if (rc < 0) { 8852 rc = -rc; 8853 goto done; 8854 } 8855 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8856 8857 rc = sysctl_wire_old_buffer(req, 0); 8858 if (rc != 0) 8859 goto done; 8860 8861 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8862 if (sb == NULL) { 8863 rc = ENOMEM; 8864 goto done; 8865 } 8866 8867 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8868 for (i = 0, p = buf; i < n; i += 16, p += 4) 8869 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8870 p[2], p[3]); 8871 8872 rc = sbuf_finish(sb); 8873 sbuf_delete(sb); 8874 done: 8875 free(buf, M_CXGBE); 8876 return (rc); 8877 } 8878 8879 static void 8880 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8881 { 8882 uint32_t *p; 8883 8884 sbuf_printf(sb, "Status Data PC%s", 8885 cfg & F_UPDBGLACAPTPCONLY ? "" : 8886 " LS0Stat LS0Addr LS0Data"); 8887 8888 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8889 if (cfg & F_UPDBGLACAPTPCONLY) { 8890 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8891 p[6], p[7]); 8892 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8893 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8894 p[4] & 0xff, p[5] >> 8); 8895 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8896 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8897 p[1] & 0xf, p[2] >> 4); 8898 } else { 8899 sbuf_printf(sb, 8900 "\n %02x %x%07x %x%07x %08x %08x " 8901 "%08x%08x%08x%08x", 8902 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8903 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8904 p[6], p[7]); 8905 } 8906 } 8907 } 8908 8909 static void 8910 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8911 { 8912 uint32_t *p; 8913 8914 sbuf_printf(sb, "Status Inst Data PC%s", 8915 cfg & F_UPDBGLACAPTPCONLY ? "" : 8916 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8917 8918 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8919 if (cfg & F_UPDBGLACAPTPCONLY) { 8920 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8921 p[3] & 0xff, p[2], p[1], p[0]); 8922 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8923 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8924 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8925 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8926 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8927 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8928 p[6] >> 16); 8929 } else { 8930 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8931 "%08x %08x %08x %08x %08x %08x", 8932 (p[9] >> 16) & 0xff, 8933 p[9] & 0xffff, p[8] >> 16, 8934 p[8] & 0xffff, p[7] >> 16, 8935 p[7] & 0xffff, p[6] >> 16, 8936 p[2], p[1], p[0], p[5], p[4], p[3]); 8937 } 8938 } 8939 } 8940 8941 static int 8942 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8943 { 8944 uint32_t cfg, *buf; 8945 int rc; 8946 8947 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8948 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8949 M_ZERO | flags); 8950 if (buf == NULL) 8951 return (ENOMEM); 8952 8953 mtx_lock(&sc->reg_lock); 8954 if (hw_off_limits(sc)) 8955 rc = ENXIO; 8956 else { 8957 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8958 if (rc == 0) 8959 rc = -t4_cim_read_la(sc, buf, NULL); 8960 } 8961 mtx_unlock(&sc->reg_lock); 8962 if (rc == 0) { 8963 if (chip_id(sc) < CHELSIO_T6) 8964 sbuf_cim_la4(sc, sb, buf, cfg); 8965 else 8966 sbuf_cim_la6(sc, sb, buf, cfg); 8967 } 8968 free(buf, M_CXGBE); 8969 return (rc); 8970 } 8971 8972 static int 8973 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8974 { 8975 struct adapter *sc = arg1; 8976 struct sbuf *sb; 8977 int rc; 8978 8979 rc = sysctl_wire_old_buffer(req, 0); 8980 if (rc != 0) 8981 return (rc); 8982 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8983 if (sb == NULL) 8984 return (ENOMEM); 8985 8986 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8987 if (rc == 0) 8988 rc = sbuf_finish(sb); 8989 sbuf_delete(sb); 8990 return (rc); 8991 } 8992 8993 static void 8994 dump_cim_regs(struct adapter *sc) 8995 { 8996 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 8997 device_get_nameunit(sc->dev), 8998 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 8999 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9000 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9001 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9002 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9003 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9004 device_get_nameunit(sc->dev), 9005 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9006 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9007 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9008 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9009 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9010 } 9011 9012 static void 9013 dump_cimla(struct adapter *sc) 9014 { 9015 struct sbuf sb; 9016 int rc; 9017 9018 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9019 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9020 device_get_nameunit(sc->dev)); 9021 return; 9022 } 9023 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9024 if (rc == 0) { 9025 rc = sbuf_finish(&sb); 9026 if (rc == 0) { 9027 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9028 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9029 } 9030 } 9031 sbuf_delete(&sb); 9032 } 9033 9034 void 9035 t4_os_cim_err(struct adapter *sc) 9036 { 9037 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9038 } 9039 9040 static int 9041 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9042 { 9043 struct adapter *sc = arg1; 9044 u_int i; 9045 struct sbuf *sb; 9046 uint32_t *buf, *p; 9047 int rc; 9048 9049 rc = sysctl_wire_old_buffer(req, 0); 9050 if (rc != 0) 9051 return (rc); 9052 9053 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9054 if (sb == NULL) 9055 return (ENOMEM); 9056 9057 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9058 M_ZERO | M_WAITOK); 9059 9060 mtx_lock(&sc->reg_lock); 9061 if (hw_off_limits(sc)) 9062 rc = ENXIO; 9063 else 9064 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9065 mtx_unlock(&sc->reg_lock); 9066 if (rc) 9067 goto done; 9068 9069 p = buf; 9070 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9071 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9072 p[1], p[0]); 9073 } 9074 9075 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9076 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9077 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9078 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9079 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9080 (p[1] >> 2) | ((p[2] & 3) << 30), 9081 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9082 p[0] & 1); 9083 } 9084 rc = sbuf_finish(sb); 9085 done: 9086 sbuf_delete(sb); 9087 free(buf, M_CXGBE); 9088 return (rc); 9089 } 9090 9091 static int 9092 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9093 { 9094 struct adapter *sc = arg1; 9095 u_int i; 9096 struct sbuf *sb; 9097 uint32_t *buf, *p; 9098 int rc; 9099 9100 rc = sysctl_wire_old_buffer(req, 0); 9101 if (rc != 0) 9102 return (rc); 9103 9104 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9105 if (sb == NULL) 9106 return (ENOMEM); 9107 9108 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9109 M_ZERO | M_WAITOK); 9110 9111 mtx_lock(&sc->reg_lock); 9112 if (hw_off_limits(sc)) 9113 rc = ENXIO; 9114 else 9115 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9116 mtx_unlock(&sc->reg_lock); 9117 if (rc) 9118 goto done; 9119 9120 p = buf; 9121 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9122 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9123 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9124 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9125 p[4], p[3], p[2], p[1], p[0]); 9126 } 9127 9128 sbuf_printf(sb, "\n\nCntl ID Data"); 9129 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9130 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9131 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9132 } 9133 9134 rc = sbuf_finish(sb); 9135 done: 9136 sbuf_delete(sb); 9137 free(buf, M_CXGBE); 9138 return (rc); 9139 } 9140 9141 static int 9142 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9143 { 9144 struct adapter *sc = arg1; 9145 struct sbuf *sb; 9146 int rc, i; 9147 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9148 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9149 uint16_t thres[CIM_NUM_IBQ]; 9150 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9151 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9152 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9153 9154 cim_num_obq = sc->chip_params->cim_num_obq; 9155 if (is_t4(sc)) { 9156 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9157 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9158 } else { 9159 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9160 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9161 } 9162 nq = CIM_NUM_IBQ + cim_num_obq; 9163 9164 mtx_lock(&sc->reg_lock); 9165 if (hw_off_limits(sc)) 9166 rc = ENXIO; 9167 else { 9168 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9169 if (rc == 0) { 9170 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9171 obq_wr); 9172 if (rc == 0) 9173 t4_read_cimq_cfg(sc, base, size, thres); 9174 } 9175 } 9176 mtx_unlock(&sc->reg_lock); 9177 if (rc) 9178 return (rc); 9179 9180 rc = sysctl_wire_old_buffer(req, 0); 9181 if (rc != 0) 9182 return (rc); 9183 9184 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9185 if (sb == NULL) 9186 return (ENOMEM); 9187 9188 sbuf_printf(sb, 9189 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9190 9191 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9192 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9193 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9194 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9195 G_QUEREMFLITS(p[2]) * 16); 9196 for ( ; i < nq; i++, p += 4, wr += 2) 9197 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9198 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9199 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9200 G_QUEREMFLITS(p[2]) * 16); 9201 9202 rc = sbuf_finish(sb); 9203 sbuf_delete(sb); 9204 9205 return (rc); 9206 } 9207 9208 static int 9209 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9210 { 9211 struct adapter *sc = arg1; 9212 struct sbuf *sb; 9213 int rc; 9214 struct tp_cpl_stats stats; 9215 9216 rc = sysctl_wire_old_buffer(req, 0); 9217 if (rc != 0) 9218 return (rc); 9219 9220 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9221 if (sb == NULL) 9222 return (ENOMEM); 9223 9224 mtx_lock(&sc->reg_lock); 9225 if (hw_off_limits(sc)) 9226 rc = ENXIO; 9227 else 9228 t4_tp_get_cpl_stats(sc, &stats, 0); 9229 mtx_unlock(&sc->reg_lock); 9230 if (rc) 9231 goto done; 9232 9233 if (sc->chip_params->nchan > 2) { 9234 sbuf_printf(sb, " channel 0 channel 1" 9235 " channel 2 channel 3"); 9236 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9237 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9238 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9239 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9240 } else { 9241 sbuf_printf(sb, " channel 0 channel 1"); 9242 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9243 stats.req[0], stats.req[1]); 9244 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9245 stats.rsp[0], stats.rsp[1]); 9246 } 9247 9248 rc = sbuf_finish(sb); 9249 done: 9250 sbuf_delete(sb); 9251 return (rc); 9252 } 9253 9254 static int 9255 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9256 { 9257 struct adapter *sc = arg1; 9258 struct sbuf *sb; 9259 int rc; 9260 struct tp_usm_stats stats; 9261 9262 rc = sysctl_wire_old_buffer(req, 0); 9263 if (rc != 0) 9264 return(rc); 9265 9266 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9267 if (sb == NULL) 9268 return (ENOMEM); 9269 9270 mtx_lock(&sc->reg_lock); 9271 if (hw_off_limits(sc)) 9272 rc = ENXIO; 9273 else 9274 t4_get_usm_stats(sc, &stats, 1); 9275 mtx_unlock(&sc->reg_lock); 9276 if (rc == 0) { 9277 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9278 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9279 sbuf_printf(sb, "Drops: %u", stats.drops); 9280 rc = sbuf_finish(sb); 9281 } 9282 sbuf_delete(sb); 9283 9284 return (rc); 9285 } 9286 9287 static int 9288 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9289 { 9290 struct adapter *sc = arg1; 9291 struct sbuf *sb; 9292 int rc; 9293 struct tp_tid_stats stats; 9294 9295 rc = sysctl_wire_old_buffer(req, 0); 9296 if (rc != 0) 9297 return(rc); 9298 9299 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9300 if (sb == NULL) 9301 return (ENOMEM); 9302 9303 mtx_lock(&sc->reg_lock); 9304 if (hw_off_limits(sc)) 9305 rc = ENXIO; 9306 else 9307 t4_tp_get_tid_stats(sc, &stats, 1); 9308 mtx_unlock(&sc->reg_lock); 9309 if (rc == 0) { 9310 sbuf_printf(sb, "Delete: %u\n", stats.del); 9311 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9312 sbuf_printf(sb, "Active: %u\n", stats.act); 9313 sbuf_printf(sb, "Passive: %u", stats.pas); 9314 rc = sbuf_finish(sb); 9315 } 9316 sbuf_delete(sb); 9317 9318 return (rc); 9319 } 9320 9321 static const char * const devlog_level_strings[] = { 9322 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9323 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9324 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9325 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9326 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9327 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9328 }; 9329 9330 static const char * const devlog_facility_strings[] = { 9331 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9332 [FW_DEVLOG_FACILITY_CF] = "CF", 9333 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9334 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9335 [FW_DEVLOG_FACILITY_RES] = "RES", 9336 [FW_DEVLOG_FACILITY_HW] = "HW", 9337 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9338 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9339 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9340 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9341 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9342 [FW_DEVLOG_FACILITY_VI] = "VI", 9343 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9344 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9345 [FW_DEVLOG_FACILITY_TM] = "TM", 9346 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9347 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9348 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9349 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9350 [FW_DEVLOG_FACILITY_RI] = "RI", 9351 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9352 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9353 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9354 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9355 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9356 }; 9357 9358 static int 9359 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9360 { 9361 int i, j, rc, nentries, first = 0; 9362 struct devlog_params *dparams = &sc->params.devlog; 9363 struct fw_devlog_e *buf, *e; 9364 uint64_t ftstamp = UINT64_MAX; 9365 9366 if (dparams->addr == 0) 9367 return (ENXIO); 9368 9369 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9370 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9371 if (buf == NULL) 9372 return (ENOMEM); 9373 9374 mtx_lock(&sc->reg_lock); 9375 if (hw_off_limits(sc)) 9376 rc = ENXIO; 9377 else 9378 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9379 dparams->size); 9380 mtx_unlock(&sc->reg_lock); 9381 if (rc != 0) 9382 goto done; 9383 9384 nentries = dparams->size / sizeof(struct fw_devlog_e); 9385 for (i = 0; i < nentries; i++) { 9386 e = &buf[i]; 9387 9388 if (e->timestamp == 0) 9389 break; /* end */ 9390 9391 e->timestamp = be64toh(e->timestamp); 9392 e->seqno = be32toh(e->seqno); 9393 for (j = 0; j < 8; j++) 9394 e->params[j] = be32toh(e->params[j]); 9395 9396 if (e->timestamp < ftstamp) { 9397 ftstamp = e->timestamp; 9398 first = i; 9399 } 9400 } 9401 9402 if (buf[first].timestamp == 0) 9403 goto done; /* nothing in the log */ 9404 9405 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9406 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9407 9408 i = first; 9409 do { 9410 e = &buf[i]; 9411 if (e->timestamp == 0) 9412 break; /* end */ 9413 9414 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9415 e->seqno, e->timestamp, 9416 (e->level < nitems(devlog_level_strings) ? 9417 devlog_level_strings[e->level] : "UNKNOWN"), 9418 (e->facility < nitems(devlog_facility_strings) ? 9419 devlog_facility_strings[e->facility] : "UNKNOWN")); 9420 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9421 e->params[2], e->params[3], e->params[4], 9422 e->params[5], e->params[6], e->params[7]); 9423 9424 if (++i == nentries) 9425 i = 0; 9426 } while (i != first); 9427 done: 9428 free(buf, M_CXGBE); 9429 return (rc); 9430 } 9431 9432 static int 9433 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9434 { 9435 struct adapter *sc = arg1; 9436 int rc; 9437 struct sbuf *sb; 9438 9439 rc = sysctl_wire_old_buffer(req, 0); 9440 if (rc != 0) 9441 return (rc); 9442 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9443 if (sb == NULL) 9444 return (ENOMEM); 9445 9446 rc = sbuf_devlog(sc, sb, M_WAITOK); 9447 if (rc == 0) 9448 rc = sbuf_finish(sb); 9449 sbuf_delete(sb); 9450 return (rc); 9451 } 9452 9453 static void 9454 dump_devlog(struct adapter *sc) 9455 { 9456 int rc; 9457 struct sbuf sb; 9458 9459 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9460 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9461 device_get_nameunit(sc->dev)); 9462 return; 9463 } 9464 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9465 if (rc == 0) { 9466 rc = sbuf_finish(&sb); 9467 if (rc == 0) { 9468 log(LOG_DEBUG, "%s: device log follows.\n%s", 9469 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9470 } 9471 } 9472 sbuf_delete(&sb); 9473 } 9474 9475 static int 9476 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9477 { 9478 struct adapter *sc = arg1; 9479 struct sbuf *sb; 9480 int rc; 9481 struct tp_fcoe_stats stats[MAX_NCHAN]; 9482 int i, nchan = sc->chip_params->nchan; 9483 9484 rc = sysctl_wire_old_buffer(req, 0); 9485 if (rc != 0) 9486 return (rc); 9487 9488 mtx_lock(&sc->reg_lock); 9489 if (hw_off_limits(sc)) 9490 rc = ENXIO; 9491 else { 9492 for (i = 0; i < nchan; i++) 9493 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9494 } 9495 mtx_unlock(&sc->reg_lock); 9496 if (rc != 0) 9497 return (rc); 9498 9499 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9500 if (sb == NULL) 9501 return (ENOMEM); 9502 9503 if (nchan > 2) { 9504 sbuf_printf(sb, " channel 0 channel 1" 9505 " channel 2 channel 3"); 9506 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9507 stats[0].octets_ddp, stats[1].octets_ddp, 9508 stats[2].octets_ddp, stats[3].octets_ddp); 9509 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9510 stats[0].frames_ddp, stats[1].frames_ddp, 9511 stats[2].frames_ddp, stats[3].frames_ddp); 9512 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9513 stats[0].frames_drop, stats[1].frames_drop, 9514 stats[2].frames_drop, stats[3].frames_drop); 9515 } else { 9516 sbuf_printf(sb, " channel 0 channel 1"); 9517 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9518 stats[0].octets_ddp, stats[1].octets_ddp); 9519 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9520 stats[0].frames_ddp, stats[1].frames_ddp); 9521 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9522 stats[0].frames_drop, stats[1].frames_drop); 9523 } 9524 9525 rc = sbuf_finish(sb); 9526 sbuf_delete(sb); 9527 9528 return (rc); 9529 } 9530 9531 static int 9532 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9533 { 9534 struct adapter *sc = arg1; 9535 struct sbuf *sb; 9536 int rc, i; 9537 unsigned int map, kbps, ipg, mode; 9538 unsigned int pace_tab[NTX_SCHED]; 9539 9540 rc = sysctl_wire_old_buffer(req, 0); 9541 if (rc != 0) 9542 return (rc); 9543 9544 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9545 if (sb == NULL) 9546 return (ENOMEM); 9547 9548 mtx_lock(&sc->reg_lock); 9549 if (hw_off_limits(sc)) { 9550 rc = ENXIO; 9551 goto done; 9552 } 9553 9554 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9555 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9556 t4_read_pace_tbl(sc, pace_tab); 9557 9558 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9559 "Class IPG (0.1 ns) Flow IPG (us)"); 9560 9561 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9562 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9563 sbuf_printf(sb, "\n %u %-5s %u ", i, 9564 (mode & (1 << i)) ? "flow" : "class", map & 3); 9565 if (kbps) 9566 sbuf_printf(sb, "%9u ", kbps); 9567 else 9568 sbuf_printf(sb, " disabled "); 9569 9570 if (ipg) 9571 sbuf_printf(sb, "%13u ", ipg); 9572 else 9573 sbuf_printf(sb, " disabled "); 9574 9575 if (pace_tab[i]) 9576 sbuf_printf(sb, "%10u", pace_tab[i]); 9577 else 9578 sbuf_printf(sb, " disabled"); 9579 } 9580 rc = sbuf_finish(sb); 9581 done: 9582 mtx_unlock(&sc->reg_lock); 9583 sbuf_delete(sb); 9584 return (rc); 9585 } 9586 9587 static int 9588 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9589 { 9590 struct adapter *sc = arg1; 9591 struct sbuf *sb; 9592 int rc, i, j; 9593 uint64_t *p0, *p1; 9594 struct lb_port_stats s[2]; 9595 static const char *stat_name[] = { 9596 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9597 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9598 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9599 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9600 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9601 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9602 "BG2FramesTrunc:", "BG3FramesTrunc:" 9603 }; 9604 9605 rc = sysctl_wire_old_buffer(req, 0); 9606 if (rc != 0) 9607 return (rc); 9608 9609 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9610 if (sb == NULL) 9611 return (ENOMEM); 9612 9613 memset(s, 0, sizeof(s)); 9614 9615 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9616 mtx_lock(&sc->reg_lock); 9617 if (hw_off_limits(sc)) 9618 rc = ENXIO; 9619 else { 9620 t4_get_lb_stats(sc, i, &s[0]); 9621 t4_get_lb_stats(sc, i + 1, &s[1]); 9622 } 9623 mtx_unlock(&sc->reg_lock); 9624 if (rc != 0) 9625 break; 9626 9627 p0 = &s[0].octets; 9628 p1 = &s[1].octets; 9629 sbuf_printf(sb, "%s Loopback %u" 9630 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9631 9632 for (j = 0; j < nitems(stat_name); j++) 9633 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9634 *p0++, *p1++); 9635 } 9636 9637 rc = sbuf_finish(sb); 9638 sbuf_delete(sb); 9639 9640 return (rc); 9641 } 9642 9643 static int 9644 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9645 { 9646 int rc = 0; 9647 struct port_info *pi = arg1; 9648 struct link_config *lc = &pi->link_cfg; 9649 struct sbuf *sb; 9650 9651 rc = sysctl_wire_old_buffer(req, 0); 9652 if (rc != 0) 9653 return(rc); 9654 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9655 if (sb == NULL) 9656 return (ENOMEM); 9657 9658 if (lc->link_ok || lc->link_down_rc == 255) 9659 sbuf_printf(sb, "n/a"); 9660 else 9661 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9662 9663 rc = sbuf_finish(sb); 9664 sbuf_delete(sb); 9665 9666 return (rc); 9667 } 9668 9669 struct mem_desc { 9670 u_int base; 9671 u_int limit; 9672 u_int idx; 9673 }; 9674 9675 static int 9676 mem_desc_cmp(const void *a, const void *b) 9677 { 9678 const u_int v1 = ((const struct mem_desc *)a)->base; 9679 const u_int v2 = ((const struct mem_desc *)b)->base; 9680 9681 if (v1 < v2) 9682 return (-1); 9683 else if (v1 > v2) 9684 return (1); 9685 9686 return (0); 9687 } 9688 9689 static void 9690 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9691 unsigned int to) 9692 { 9693 unsigned int size; 9694 9695 if (from == to) 9696 return; 9697 9698 size = to - from + 1; 9699 if (size == 0) 9700 return; 9701 9702 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9703 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9704 } 9705 9706 static int 9707 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9708 { 9709 struct adapter *sc = arg1; 9710 struct sbuf *sb; 9711 int rc, i, n; 9712 uint32_t lo, hi, used, free, alloc; 9713 static const char *memory[] = { 9714 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9715 }; 9716 static const char *region[] = { 9717 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9718 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9719 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9720 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9721 "RQUDP region:", "PBL region:", "TXPBL region:", 9722 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9723 "ULPTX state:", "On-chip queues:", 9724 }; 9725 struct mem_desc avail[4]; 9726 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9727 struct mem_desc *md = mem; 9728 9729 rc = sysctl_wire_old_buffer(req, 0); 9730 if (rc != 0) 9731 return (rc); 9732 9733 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9734 if (sb == NULL) 9735 return (ENOMEM); 9736 9737 for (i = 0; i < nitems(mem); i++) { 9738 mem[i].limit = 0; 9739 mem[i].idx = i; 9740 } 9741 9742 mtx_lock(&sc->reg_lock); 9743 if (hw_off_limits(sc)) { 9744 rc = ENXIO; 9745 goto done; 9746 } 9747 9748 /* Find and sort the populated memory ranges */ 9749 i = 0; 9750 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9751 if (lo & F_EDRAM0_ENABLE) { 9752 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9753 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9754 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9755 avail[i].idx = 0; 9756 i++; 9757 } 9758 if (lo & F_EDRAM1_ENABLE) { 9759 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9760 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9761 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9762 avail[i].idx = 1; 9763 i++; 9764 } 9765 if (lo & F_EXT_MEM_ENABLE) { 9766 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9767 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9768 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9769 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9770 i++; 9771 } 9772 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9773 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9774 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9775 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9776 avail[i].idx = 4; 9777 i++; 9778 } 9779 if (is_t6(sc) && lo & F_HMA_MUX) { 9780 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9781 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9782 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9783 avail[i].idx = 5; 9784 i++; 9785 } 9786 MPASS(i <= nitems(avail)); 9787 if (!i) /* no memory available */ 9788 goto done; 9789 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9790 9791 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9792 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9793 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9794 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9795 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9796 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9797 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9798 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9799 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9800 9801 /* the next few have explicit upper bounds */ 9802 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9803 md->limit = md->base - 1 + 9804 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9805 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9806 md++; 9807 9808 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9809 md->limit = md->base - 1 + 9810 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9811 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9812 md++; 9813 9814 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9815 if (chip_id(sc) <= CHELSIO_T5) 9816 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9817 else 9818 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9819 md->limit = 0; 9820 } else { 9821 md->base = 0; 9822 md->idx = nitems(region); /* hide it */ 9823 } 9824 md++; 9825 9826 #define ulp_region(reg) \ 9827 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9828 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9829 9830 ulp_region(RX_ISCSI); 9831 ulp_region(RX_TDDP); 9832 ulp_region(TX_TPT); 9833 ulp_region(RX_STAG); 9834 ulp_region(RX_RQ); 9835 ulp_region(RX_RQUDP); 9836 ulp_region(RX_PBL); 9837 ulp_region(TX_PBL); 9838 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9839 ulp_region(RX_TLS_KEY); 9840 } 9841 #undef ulp_region 9842 9843 md->base = 0; 9844 if (is_t4(sc)) 9845 md->idx = nitems(region); 9846 else { 9847 uint32_t size = 0; 9848 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9849 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9850 9851 if (is_t5(sc)) { 9852 if (sge_ctrl & F_VFIFO_ENABLE) 9853 size = fifo_size << 2; 9854 } else 9855 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9856 9857 if (size) { 9858 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9859 md->limit = md->base + size - 1; 9860 } else 9861 md->idx = nitems(region); 9862 } 9863 md++; 9864 9865 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9866 md->limit = 0; 9867 md++; 9868 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9869 md->limit = 0; 9870 md++; 9871 9872 md->base = sc->vres.ocq.start; 9873 if (sc->vres.ocq.size) 9874 md->limit = md->base + sc->vres.ocq.size - 1; 9875 else 9876 md->idx = nitems(region); /* hide it */ 9877 md++; 9878 9879 /* add any address-space holes, there can be up to 3 */ 9880 for (n = 0; n < i - 1; n++) 9881 if (avail[n].limit < avail[n + 1].base) 9882 (md++)->base = avail[n].limit; 9883 if (avail[n].limit) 9884 (md++)->base = avail[n].limit; 9885 9886 n = md - mem; 9887 MPASS(n <= nitems(mem)); 9888 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9889 9890 for (lo = 0; lo < i; lo++) 9891 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9892 avail[lo].limit - 1); 9893 9894 sbuf_printf(sb, "\n"); 9895 for (i = 0; i < n; i++) { 9896 if (mem[i].idx >= nitems(region)) 9897 continue; /* skip holes */ 9898 if (!mem[i].limit) 9899 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9900 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9901 mem[i].limit); 9902 } 9903 9904 sbuf_printf(sb, "\n"); 9905 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9906 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9907 mem_region_show(sb, "uP RAM:", lo, hi); 9908 9909 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9910 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9911 mem_region_show(sb, "uP Extmem2:", lo, hi); 9912 9913 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9914 for (i = 0, free = 0; i < 2; i++) 9915 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 9916 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 9917 G_PMRXMAXPAGE(lo), free, 9918 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9919 (lo & F_PMRXNUMCHN) ? 2 : 1); 9920 9921 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9922 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9923 for (i = 0, free = 0; i < 4; i++) 9924 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 9925 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 9926 G_PMTXMAXPAGE(lo), free, 9927 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9928 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9929 sbuf_printf(sb, "%u p-structs (%u free)\n", 9930 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 9931 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 9932 9933 for (i = 0; i < 4; i++) { 9934 if (chip_id(sc) > CHELSIO_T5) 9935 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9936 else 9937 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9938 if (is_t5(sc)) { 9939 used = G_T5_USED(lo); 9940 alloc = G_T5_ALLOC(lo); 9941 } else { 9942 used = G_USED(lo); 9943 alloc = G_ALLOC(lo); 9944 } 9945 /* For T6 these are MAC buffer groups */ 9946 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9947 i, used, alloc); 9948 } 9949 for (i = 0; i < sc->chip_params->nchan; i++) { 9950 if (chip_id(sc) > CHELSIO_T5) 9951 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9952 else 9953 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9954 if (is_t5(sc)) { 9955 used = G_T5_USED(lo); 9956 alloc = G_T5_ALLOC(lo); 9957 } else { 9958 used = G_USED(lo); 9959 alloc = G_ALLOC(lo); 9960 } 9961 /* For T6 these are MAC buffer groups */ 9962 sbuf_printf(sb, 9963 "\nLoopback %d using %u pages out of %u allocated", 9964 i, used, alloc); 9965 } 9966 done: 9967 mtx_unlock(&sc->reg_lock); 9968 if (rc == 0) 9969 rc = sbuf_finish(sb); 9970 sbuf_delete(sb); 9971 return (rc); 9972 } 9973 9974 static inline void 9975 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9976 { 9977 *mask = x | y; 9978 y = htobe64(y); 9979 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9980 } 9981 9982 static int 9983 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9984 { 9985 struct adapter *sc = arg1; 9986 struct sbuf *sb; 9987 int rc, i; 9988 9989 MPASS(chip_id(sc) <= CHELSIO_T5); 9990 9991 rc = sysctl_wire_old_buffer(req, 0); 9992 if (rc != 0) 9993 return (rc); 9994 9995 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9996 if (sb == NULL) 9997 return (ENOMEM); 9998 9999 sbuf_printf(sb, 10000 "Idx Ethernet address Mask Vld Ports PF" 10001 " VF Replication P0 P1 P2 P3 ML"); 10002 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10003 uint64_t tcamx, tcamy, mask; 10004 uint32_t cls_lo, cls_hi; 10005 uint8_t addr[ETHER_ADDR_LEN]; 10006 10007 mtx_lock(&sc->reg_lock); 10008 if (hw_off_limits(sc)) 10009 rc = ENXIO; 10010 else { 10011 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10012 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10013 } 10014 mtx_unlock(&sc->reg_lock); 10015 if (rc != 0) 10016 break; 10017 if (tcamx & tcamy) 10018 continue; 10019 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10020 mtx_lock(&sc->reg_lock); 10021 if (hw_off_limits(sc)) 10022 rc = ENXIO; 10023 else { 10024 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10025 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10026 } 10027 mtx_unlock(&sc->reg_lock); 10028 if (rc != 0) 10029 break; 10030 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10031 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10032 addr[3], addr[4], addr[5], (uintmax_t)mask, 10033 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10034 G_PORTMAP(cls_hi), G_PF(cls_lo), 10035 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10036 10037 if (cls_lo & F_REPLICATE) { 10038 struct fw_ldst_cmd ldst_cmd; 10039 10040 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10041 ldst_cmd.op_to_addrspace = 10042 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10043 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10044 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10045 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10046 ldst_cmd.u.mps.rplc.fid_idx = 10047 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10048 V_FW_LDST_CMD_IDX(i)); 10049 10050 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10051 "t4mps"); 10052 if (rc) 10053 break; 10054 if (hw_off_limits(sc)) 10055 rc = ENXIO; 10056 else 10057 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10058 sizeof(ldst_cmd), &ldst_cmd); 10059 end_synchronized_op(sc, 0); 10060 if (rc != 0) 10061 break; 10062 else { 10063 sbuf_printf(sb, " %08x %08x %08x %08x", 10064 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10065 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10066 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10067 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10068 } 10069 } else 10070 sbuf_printf(sb, "%36s", ""); 10071 10072 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10073 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10074 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10075 } 10076 10077 if (rc) 10078 (void) sbuf_finish(sb); 10079 else 10080 rc = sbuf_finish(sb); 10081 sbuf_delete(sb); 10082 10083 return (rc); 10084 } 10085 10086 static int 10087 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10088 { 10089 struct adapter *sc = arg1; 10090 struct sbuf *sb; 10091 int rc, i; 10092 10093 MPASS(chip_id(sc) > CHELSIO_T5); 10094 10095 rc = sysctl_wire_old_buffer(req, 0); 10096 if (rc != 0) 10097 return (rc); 10098 10099 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10100 if (sb == NULL) 10101 return (ENOMEM); 10102 10103 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10104 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10105 " Replication" 10106 " P0 P1 P2 P3 ML\n"); 10107 10108 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10109 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10110 uint16_t ivlan; 10111 uint64_t tcamx, tcamy, val, mask; 10112 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10113 uint8_t addr[ETHER_ADDR_LEN]; 10114 10115 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10116 if (i < 256) 10117 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10118 else 10119 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10120 mtx_lock(&sc->reg_lock); 10121 if (hw_off_limits(sc)) 10122 rc = ENXIO; 10123 else { 10124 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10125 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10126 tcamy = G_DMACH(val) << 32; 10127 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10128 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10129 } 10130 mtx_unlock(&sc->reg_lock); 10131 if (rc != 0) 10132 break; 10133 10134 lookup_type = G_DATALKPTYPE(data2); 10135 port_num = G_DATAPORTNUM(data2); 10136 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10137 /* Inner header VNI */ 10138 vniy = ((data2 & F_DATAVIDH2) << 23) | 10139 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10140 dip_hit = data2 & F_DATADIPHIT; 10141 vlan_vld = 0; 10142 } else { 10143 vniy = 0; 10144 dip_hit = 0; 10145 vlan_vld = data2 & F_DATAVIDH2; 10146 ivlan = G_VIDL(val); 10147 } 10148 10149 ctl |= V_CTLXYBITSEL(1); 10150 mtx_lock(&sc->reg_lock); 10151 if (hw_off_limits(sc)) 10152 rc = ENXIO; 10153 else { 10154 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10155 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10156 tcamx = G_DMACH(val) << 32; 10157 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10158 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10159 } 10160 mtx_unlock(&sc->reg_lock); 10161 if (rc != 0) 10162 break; 10163 10164 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10165 /* Inner header VNI mask */ 10166 vnix = ((data2 & F_DATAVIDH2) << 23) | 10167 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10168 } else 10169 vnix = 0; 10170 10171 if (tcamx & tcamy) 10172 continue; 10173 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10174 10175 mtx_lock(&sc->reg_lock); 10176 if (hw_off_limits(sc)) 10177 rc = ENXIO; 10178 else { 10179 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10180 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10181 } 10182 mtx_unlock(&sc->reg_lock); 10183 if (rc != 0) 10184 break; 10185 10186 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10187 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10188 "%012jx %06x %06x - - %3c" 10189 " I %4x %3c %#x%4u%4d", i, addr[0], 10190 addr[1], addr[2], addr[3], addr[4], addr[5], 10191 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10192 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10193 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10194 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10195 } else { 10196 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10197 "%012jx - - ", i, addr[0], addr[1], 10198 addr[2], addr[3], addr[4], addr[5], 10199 (uintmax_t)mask); 10200 10201 if (vlan_vld) 10202 sbuf_printf(sb, "%4u Y ", ivlan); 10203 else 10204 sbuf_printf(sb, " - N "); 10205 10206 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10207 lookup_type ? 'I' : 'O', port_num, 10208 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10209 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10210 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10211 } 10212 10213 10214 if (cls_lo & F_T6_REPLICATE) { 10215 struct fw_ldst_cmd ldst_cmd; 10216 10217 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10218 ldst_cmd.op_to_addrspace = 10219 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10220 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10221 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10222 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10223 ldst_cmd.u.mps.rplc.fid_idx = 10224 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10225 V_FW_LDST_CMD_IDX(i)); 10226 10227 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10228 "t6mps"); 10229 if (rc) 10230 break; 10231 if (hw_off_limits(sc)) 10232 rc = ENXIO; 10233 else 10234 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10235 sizeof(ldst_cmd), &ldst_cmd); 10236 end_synchronized_op(sc, 0); 10237 if (rc != 0) 10238 break; 10239 else { 10240 sbuf_printf(sb, " %08x %08x %08x %08x" 10241 " %08x %08x %08x %08x", 10242 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10243 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10244 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10245 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10246 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10247 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10248 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10249 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10250 } 10251 } else 10252 sbuf_printf(sb, "%72s", ""); 10253 10254 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10255 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10256 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10257 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10258 } 10259 10260 if (rc) 10261 (void) sbuf_finish(sb); 10262 else 10263 rc = sbuf_finish(sb); 10264 sbuf_delete(sb); 10265 10266 return (rc); 10267 } 10268 10269 static int 10270 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10271 { 10272 struct adapter *sc = arg1; 10273 struct sbuf *sb; 10274 int rc; 10275 uint16_t mtus[NMTUS]; 10276 10277 rc = sysctl_wire_old_buffer(req, 0); 10278 if (rc != 0) 10279 return (rc); 10280 10281 mtx_lock(&sc->reg_lock); 10282 if (hw_off_limits(sc)) 10283 rc = ENXIO; 10284 else 10285 t4_read_mtu_tbl(sc, mtus, NULL); 10286 mtx_unlock(&sc->reg_lock); 10287 if (rc != 0) 10288 return (rc); 10289 10290 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10291 if (sb == NULL) 10292 return (ENOMEM); 10293 10294 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10295 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10296 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10297 mtus[14], mtus[15]); 10298 10299 rc = sbuf_finish(sb); 10300 sbuf_delete(sb); 10301 10302 return (rc); 10303 } 10304 10305 static int 10306 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10307 { 10308 struct adapter *sc = arg1; 10309 struct sbuf *sb; 10310 int rc, i; 10311 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10312 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10313 static const char *tx_stats[MAX_PM_NSTATS] = { 10314 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10315 "Tx FIFO wait", NULL, "Tx latency" 10316 }; 10317 static const char *rx_stats[MAX_PM_NSTATS] = { 10318 "Read:", "Write bypass:", "Write mem:", "Flush:", 10319 "Rx FIFO wait", NULL, "Rx latency" 10320 }; 10321 10322 rc = sysctl_wire_old_buffer(req, 0); 10323 if (rc != 0) 10324 return (rc); 10325 10326 mtx_lock(&sc->reg_lock); 10327 if (hw_off_limits(sc)) 10328 rc = ENXIO; 10329 else { 10330 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10331 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10332 } 10333 mtx_unlock(&sc->reg_lock); 10334 if (rc != 0) 10335 return (rc); 10336 10337 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10338 if (sb == NULL) 10339 return (ENOMEM); 10340 10341 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10342 for (i = 0; i < 4; i++) { 10343 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10344 tx_cyc[i]); 10345 } 10346 10347 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10348 for (i = 0; i < 4; i++) { 10349 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10350 rx_cyc[i]); 10351 } 10352 10353 if (chip_id(sc) > CHELSIO_T5) { 10354 sbuf_printf(sb, 10355 "\n Total wait Total occupancy"); 10356 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10357 tx_cyc[i]); 10358 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10359 rx_cyc[i]); 10360 10361 i += 2; 10362 MPASS(i < nitems(tx_stats)); 10363 10364 sbuf_printf(sb, 10365 "\n Reads Total wait"); 10366 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10367 tx_cyc[i]); 10368 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10369 rx_cyc[i]); 10370 } 10371 10372 rc = sbuf_finish(sb); 10373 sbuf_delete(sb); 10374 10375 return (rc); 10376 } 10377 10378 static int 10379 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10380 { 10381 struct adapter *sc = arg1; 10382 struct sbuf *sb; 10383 int rc; 10384 struct tp_rdma_stats stats; 10385 10386 rc = sysctl_wire_old_buffer(req, 0); 10387 if (rc != 0) 10388 return (rc); 10389 10390 mtx_lock(&sc->reg_lock); 10391 if (hw_off_limits(sc)) 10392 rc = ENXIO; 10393 else 10394 t4_tp_get_rdma_stats(sc, &stats, 0); 10395 mtx_unlock(&sc->reg_lock); 10396 if (rc != 0) 10397 return (rc); 10398 10399 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10400 if (sb == NULL) 10401 return (ENOMEM); 10402 10403 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10404 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10405 10406 rc = sbuf_finish(sb); 10407 sbuf_delete(sb); 10408 10409 return (rc); 10410 } 10411 10412 static int 10413 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10414 { 10415 struct adapter *sc = arg1; 10416 struct sbuf *sb; 10417 int rc; 10418 struct tp_tcp_stats v4, v6; 10419 10420 rc = sysctl_wire_old_buffer(req, 0); 10421 if (rc != 0) 10422 return (rc); 10423 10424 mtx_lock(&sc->reg_lock); 10425 if (hw_off_limits(sc)) 10426 rc = ENXIO; 10427 else 10428 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10429 mtx_unlock(&sc->reg_lock); 10430 if (rc != 0) 10431 return (rc); 10432 10433 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10434 if (sb == NULL) 10435 return (ENOMEM); 10436 10437 sbuf_printf(sb, 10438 " IP IPv6\n"); 10439 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10440 v4.tcp_out_rsts, v6.tcp_out_rsts); 10441 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10442 v4.tcp_in_segs, v6.tcp_in_segs); 10443 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10444 v4.tcp_out_segs, v6.tcp_out_segs); 10445 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10446 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10447 10448 rc = sbuf_finish(sb); 10449 sbuf_delete(sb); 10450 10451 return (rc); 10452 } 10453 10454 static int 10455 sysctl_tids(SYSCTL_HANDLER_ARGS) 10456 { 10457 struct adapter *sc = arg1; 10458 struct sbuf *sb; 10459 int rc; 10460 uint32_t x, y; 10461 struct tid_info *t = &sc->tids; 10462 10463 rc = sysctl_wire_old_buffer(req, 0); 10464 if (rc != 0) 10465 return (rc); 10466 10467 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10468 if (sb == NULL) 10469 return (ENOMEM); 10470 10471 if (t->natids) { 10472 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10473 t->atids_in_use); 10474 } 10475 10476 if (t->nhpftids) { 10477 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10478 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10479 } 10480 10481 if (t->ntids) { 10482 bool hashen = false; 10483 10484 mtx_lock(&sc->reg_lock); 10485 if (hw_off_limits(sc)) 10486 rc = ENXIO; 10487 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10488 hashen = true; 10489 if (chip_id(sc) <= CHELSIO_T5) { 10490 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10491 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10492 } else { 10493 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10494 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10495 } 10496 } 10497 mtx_unlock(&sc->reg_lock); 10498 if (rc != 0) 10499 goto done; 10500 10501 sbuf_printf(sb, "TID range: "); 10502 if (hashen) { 10503 if (x) 10504 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10505 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10506 } else { 10507 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10508 t->ntids - 1); 10509 } 10510 sbuf_printf(sb, ", in use: %u\n", 10511 atomic_load_acq_int(&t->tids_in_use)); 10512 } 10513 10514 if (t->nstids) { 10515 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10516 t->stid_base + t->nstids - 1, t->stids_in_use); 10517 } 10518 10519 if (t->nftids) { 10520 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10521 t->ftid_end, t->ftids_in_use); 10522 } 10523 10524 if (t->netids) { 10525 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10526 t->etid_base + t->netids - 1, t->etids_in_use); 10527 } 10528 10529 mtx_lock(&sc->reg_lock); 10530 if (hw_off_limits(sc)) 10531 rc = ENXIO; 10532 else { 10533 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10534 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10535 } 10536 mtx_unlock(&sc->reg_lock); 10537 if (rc != 0) 10538 goto done; 10539 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10540 done: 10541 if (rc == 0) 10542 rc = sbuf_finish(sb); 10543 else 10544 (void)sbuf_finish(sb); 10545 sbuf_delete(sb); 10546 10547 return (rc); 10548 } 10549 10550 static int 10551 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10552 { 10553 struct adapter *sc = arg1; 10554 struct sbuf *sb; 10555 int rc; 10556 struct tp_err_stats stats; 10557 10558 rc = sysctl_wire_old_buffer(req, 0); 10559 if (rc != 0) 10560 return (rc); 10561 10562 mtx_lock(&sc->reg_lock); 10563 if (hw_off_limits(sc)) 10564 rc = ENXIO; 10565 else 10566 t4_tp_get_err_stats(sc, &stats, 0); 10567 mtx_unlock(&sc->reg_lock); 10568 if (rc != 0) 10569 return (rc); 10570 10571 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10572 if (sb == NULL) 10573 return (ENOMEM); 10574 10575 if (sc->chip_params->nchan > 2) { 10576 sbuf_printf(sb, " channel 0 channel 1" 10577 " channel 2 channel 3\n"); 10578 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10579 stats.mac_in_errs[0], stats.mac_in_errs[1], 10580 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10581 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10582 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10583 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10584 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10585 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10586 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10587 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10588 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10589 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10590 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10591 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10592 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10593 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10594 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10595 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10596 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10597 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10598 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10599 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10600 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10601 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10602 } else { 10603 sbuf_printf(sb, " channel 0 channel 1\n"); 10604 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10605 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10606 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10607 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10608 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10609 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10610 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10611 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10612 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10613 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10614 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10615 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10616 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10617 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10618 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10619 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10620 } 10621 10622 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10623 stats.ofld_no_neigh, stats.ofld_cong_defer); 10624 10625 rc = sbuf_finish(sb); 10626 sbuf_delete(sb); 10627 10628 return (rc); 10629 } 10630 10631 static int 10632 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10633 { 10634 struct adapter *sc = arg1; 10635 struct sbuf *sb; 10636 int rc; 10637 struct tp_tnl_stats stats; 10638 10639 rc = sysctl_wire_old_buffer(req, 0); 10640 if (rc != 0) 10641 return(rc); 10642 10643 mtx_lock(&sc->reg_lock); 10644 if (hw_off_limits(sc)) 10645 rc = ENXIO; 10646 else 10647 t4_tp_get_tnl_stats(sc, &stats, 1); 10648 mtx_unlock(&sc->reg_lock); 10649 if (rc != 0) 10650 return (rc); 10651 10652 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10653 if (sb == NULL) 10654 return (ENOMEM); 10655 10656 if (sc->chip_params->nchan > 2) { 10657 sbuf_printf(sb, " channel 0 channel 1" 10658 " channel 2 channel 3\n"); 10659 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10660 stats.out_pkt[0], stats.out_pkt[1], 10661 stats.out_pkt[2], stats.out_pkt[3]); 10662 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10663 stats.in_pkt[0], stats.in_pkt[1], 10664 stats.in_pkt[2], stats.in_pkt[3]); 10665 } else { 10666 sbuf_printf(sb, " channel 0 channel 1\n"); 10667 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10668 stats.out_pkt[0], stats.out_pkt[1]); 10669 sbuf_printf(sb, "InPkts: %10u %10u", 10670 stats.in_pkt[0], stats.in_pkt[1]); 10671 } 10672 10673 rc = sbuf_finish(sb); 10674 sbuf_delete(sb); 10675 10676 return (rc); 10677 } 10678 10679 static int 10680 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10681 { 10682 struct adapter *sc = arg1; 10683 struct tp_params *tpp = &sc->params.tp; 10684 u_int mask; 10685 int rc; 10686 10687 mask = tpp->la_mask >> 16; 10688 rc = sysctl_handle_int(oidp, &mask, 0, req); 10689 if (rc != 0 || req->newptr == NULL) 10690 return (rc); 10691 if (mask > 0xffff) 10692 return (EINVAL); 10693 mtx_lock(&sc->reg_lock); 10694 if (hw_off_limits(sc)) 10695 rc = ENXIO; 10696 else { 10697 tpp->la_mask = mask << 16; 10698 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10699 tpp->la_mask); 10700 } 10701 mtx_unlock(&sc->reg_lock); 10702 10703 return (rc); 10704 } 10705 10706 struct field_desc { 10707 const char *name; 10708 u_int start; 10709 u_int width; 10710 }; 10711 10712 static void 10713 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10714 { 10715 char buf[32]; 10716 int line_size = 0; 10717 10718 while (f->name) { 10719 uint64_t mask = (1ULL << f->width) - 1; 10720 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10721 ((uintmax_t)v >> f->start) & mask); 10722 10723 if (line_size + len >= 79) { 10724 line_size = 8; 10725 sbuf_printf(sb, "\n "); 10726 } 10727 sbuf_printf(sb, "%s ", buf); 10728 line_size += len + 1; 10729 f++; 10730 } 10731 sbuf_printf(sb, "\n"); 10732 } 10733 10734 static const struct field_desc tp_la0[] = { 10735 { "RcfOpCodeOut", 60, 4 }, 10736 { "State", 56, 4 }, 10737 { "WcfState", 52, 4 }, 10738 { "RcfOpcSrcOut", 50, 2 }, 10739 { "CRxError", 49, 1 }, 10740 { "ERxError", 48, 1 }, 10741 { "SanityFailed", 47, 1 }, 10742 { "SpuriousMsg", 46, 1 }, 10743 { "FlushInputMsg", 45, 1 }, 10744 { "FlushInputCpl", 44, 1 }, 10745 { "RssUpBit", 43, 1 }, 10746 { "RssFilterHit", 42, 1 }, 10747 { "Tid", 32, 10 }, 10748 { "InitTcb", 31, 1 }, 10749 { "LineNumber", 24, 7 }, 10750 { "Emsg", 23, 1 }, 10751 { "EdataOut", 22, 1 }, 10752 { "Cmsg", 21, 1 }, 10753 { "CdataOut", 20, 1 }, 10754 { "EreadPdu", 19, 1 }, 10755 { "CreadPdu", 18, 1 }, 10756 { "TunnelPkt", 17, 1 }, 10757 { "RcfPeerFin", 16, 1 }, 10758 { "RcfReasonOut", 12, 4 }, 10759 { "TxCchannel", 10, 2 }, 10760 { "RcfTxChannel", 8, 2 }, 10761 { "RxEchannel", 6, 2 }, 10762 { "RcfRxChannel", 5, 1 }, 10763 { "RcfDataOutSrdy", 4, 1 }, 10764 { "RxDvld", 3, 1 }, 10765 { "RxOoDvld", 2, 1 }, 10766 { "RxCongestion", 1, 1 }, 10767 { "TxCongestion", 0, 1 }, 10768 { NULL } 10769 }; 10770 10771 static const struct field_desc tp_la1[] = { 10772 { "CplCmdIn", 56, 8 }, 10773 { "CplCmdOut", 48, 8 }, 10774 { "ESynOut", 47, 1 }, 10775 { "EAckOut", 46, 1 }, 10776 { "EFinOut", 45, 1 }, 10777 { "ERstOut", 44, 1 }, 10778 { "SynIn", 43, 1 }, 10779 { "AckIn", 42, 1 }, 10780 { "FinIn", 41, 1 }, 10781 { "RstIn", 40, 1 }, 10782 { "DataIn", 39, 1 }, 10783 { "DataInVld", 38, 1 }, 10784 { "PadIn", 37, 1 }, 10785 { "RxBufEmpty", 36, 1 }, 10786 { "RxDdp", 35, 1 }, 10787 { "RxFbCongestion", 34, 1 }, 10788 { "TxFbCongestion", 33, 1 }, 10789 { "TxPktSumSrdy", 32, 1 }, 10790 { "RcfUlpType", 28, 4 }, 10791 { "Eread", 27, 1 }, 10792 { "Ebypass", 26, 1 }, 10793 { "Esave", 25, 1 }, 10794 { "Static0", 24, 1 }, 10795 { "Cread", 23, 1 }, 10796 { "Cbypass", 22, 1 }, 10797 { "Csave", 21, 1 }, 10798 { "CPktOut", 20, 1 }, 10799 { "RxPagePoolFull", 18, 2 }, 10800 { "RxLpbkPkt", 17, 1 }, 10801 { "TxLpbkPkt", 16, 1 }, 10802 { "RxVfValid", 15, 1 }, 10803 { "SynLearned", 14, 1 }, 10804 { "SetDelEntry", 13, 1 }, 10805 { "SetInvEntry", 12, 1 }, 10806 { "CpcmdDvld", 11, 1 }, 10807 { "CpcmdSave", 10, 1 }, 10808 { "RxPstructsFull", 8, 2 }, 10809 { "EpcmdDvld", 7, 1 }, 10810 { "EpcmdFlush", 6, 1 }, 10811 { "EpcmdTrimPrefix", 5, 1 }, 10812 { "EpcmdTrimPostfix", 4, 1 }, 10813 { "ERssIp4Pkt", 3, 1 }, 10814 { "ERssIp6Pkt", 2, 1 }, 10815 { "ERssTcpUdpPkt", 1, 1 }, 10816 { "ERssFceFipPkt", 0, 1 }, 10817 { NULL } 10818 }; 10819 10820 static const struct field_desc tp_la2[] = { 10821 { "CplCmdIn", 56, 8 }, 10822 { "MpsVfVld", 55, 1 }, 10823 { "MpsPf", 52, 3 }, 10824 { "MpsVf", 44, 8 }, 10825 { "SynIn", 43, 1 }, 10826 { "AckIn", 42, 1 }, 10827 { "FinIn", 41, 1 }, 10828 { "RstIn", 40, 1 }, 10829 { "DataIn", 39, 1 }, 10830 { "DataInVld", 38, 1 }, 10831 { "PadIn", 37, 1 }, 10832 { "RxBufEmpty", 36, 1 }, 10833 { "RxDdp", 35, 1 }, 10834 { "RxFbCongestion", 34, 1 }, 10835 { "TxFbCongestion", 33, 1 }, 10836 { "TxPktSumSrdy", 32, 1 }, 10837 { "RcfUlpType", 28, 4 }, 10838 { "Eread", 27, 1 }, 10839 { "Ebypass", 26, 1 }, 10840 { "Esave", 25, 1 }, 10841 { "Static0", 24, 1 }, 10842 { "Cread", 23, 1 }, 10843 { "Cbypass", 22, 1 }, 10844 { "Csave", 21, 1 }, 10845 { "CPktOut", 20, 1 }, 10846 { "RxPagePoolFull", 18, 2 }, 10847 { "RxLpbkPkt", 17, 1 }, 10848 { "TxLpbkPkt", 16, 1 }, 10849 { "RxVfValid", 15, 1 }, 10850 { "SynLearned", 14, 1 }, 10851 { "SetDelEntry", 13, 1 }, 10852 { "SetInvEntry", 12, 1 }, 10853 { "CpcmdDvld", 11, 1 }, 10854 { "CpcmdSave", 10, 1 }, 10855 { "RxPstructsFull", 8, 2 }, 10856 { "EpcmdDvld", 7, 1 }, 10857 { "EpcmdFlush", 6, 1 }, 10858 { "EpcmdTrimPrefix", 5, 1 }, 10859 { "EpcmdTrimPostfix", 4, 1 }, 10860 { "ERssIp4Pkt", 3, 1 }, 10861 { "ERssIp6Pkt", 2, 1 }, 10862 { "ERssTcpUdpPkt", 1, 1 }, 10863 { "ERssFceFipPkt", 0, 1 }, 10864 { NULL } 10865 }; 10866 10867 static void 10868 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10869 { 10870 10871 field_desc_show(sb, *p, tp_la0); 10872 } 10873 10874 static void 10875 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10876 { 10877 10878 if (idx) 10879 sbuf_printf(sb, "\n"); 10880 field_desc_show(sb, p[0], tp_la0); 10881 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10882 field_desc_show(sb, p[1], tp_la0); 10883 } 10884 10885 static void 10886 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10887 { 10888 10889 if (idx) 10890 sbuf_printf(sb, "\n"); 10891 field_desc_show(sb, p[0], tp_la0); 10892 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10893 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10894 } 10895 10896 static int 10897 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10898 { 10899 struct adapter *sc = arg1; 10900 struct sbuf *sb; 10901 uint64_t *buf, *p; 10902 int rc; 10903 u_int i, inc; 10904 void (*show_func)(struct sbuf *, uint64_t *, int); 10905 10906 rc = sysctl_wire_old_buffer(req, 0); 10907 if (rc != 0) 10908 return (rc); 10909 10910 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10911 if (sb == NULL) 10912 return (ENOMEM); 10913 10914 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10915 10916 mtx_lock(&sc->reg_lock); 10917 if (hw_off_limits(sc)) 10918 rc = ENXIO; 10919 else { 10920 t4_tp_read_la(sc, buf, NULL); 10921 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10922 case 2: 10923 inc = 2; 10924 show_func = tp_la_show2; 10925 break; 10926 case 3: 10927 inc = 2; 10928 show_func = tp_la_show3; 10929 break; 10930 default: 10931 inc = 1; 10932 show_func = tp_la_show; 10933 } 10934 } 10935 mtx_unlock(&sc->reg_lock); 10936 if (rc != 0) 10937 goto done; 10938 10939 p = buf; 10940 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10941 (*show_func)(sb, p, i); 10942 rc = sbuf_finish(sb); 10943 done: 10944 sbuf_delete(sb); 10945 free(buf, M_CXGBE); 10946 return (rc); 10947 } 10948 10949 static int 10950 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10951 { 10952 struct adapter *sc = arg1; 10953 struct sbuf *sb; 10954 int rc; 10955 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10956 10957 rc = sysctl_wire_old_buffer(req, 0); 10958 if (rc != 0) 10959 return (rc); 10960 10961 mtx_lock(&sc->reg_lock); 10962 if (hw_off_limits(sc)) 10963 rc = ENXIO; 10964 else 10965 t4_get_chan_txrate(sc, nrate, orate); 10966 mtx_unlock(&sc->reg_lock); 10967 if (rc != 0) 10968 return (rc); 10969 10970 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10971 if (sb == NULL) 10972 return (ENOMEM); 10973 10974 if (sc->chip_params->nchan > 2) { 10975 sbuf_printf(sb, " channel 0 channel 1" 10976 " channel 2 channel 3\n"); 10977 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10978 nrate[0], nrate[1], nrate[2], nrate[3]); 10979 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10980 orate[0], orate[1], orate[2], orate[3]); 10981 } else { 10982 sbuf_printf(sb, " channel 0 channel 1\n"); 10983 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10984 nrate[0], nrate[1]); 10985 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10986 orate[0], orate[1]); 10987 } 10988 10989 rc = sbuf_finish(sb); 10990 sbuf_delete(sb); 10991 10992 return (rc); 10993 } 10994 10995 static int 10996 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10997 { 10998 struct adapter *sc = arg1; 10999 struct sbuf *sb; 11000 uint32_t *buf, *p; 11001 int rc, i; 11002 11003 rc = sysctl_wire_old_buffer(req, 0); 11004 if (rc != 0) 11005 return (rc); 11006 11007 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11008 if (sb == NULL) 11009 return (ENOMEM); 11010 11011 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11012 M_ZERO | M_WAITOK); 11013 11014 mtx_lock(&sc->reg_lock); 11015 if (hw_off_limits(sc)) 11016 rc = ENXIO; 11017 else 11018 t4_ulprx_read_la(sc, buf); 11019 mtx_unlock(&sc->reg_lock); 11020 if (rc != 0) 11021 goto done; 11022 11023 p = buf; 11024 sbuf_printf(sb, " Pcmd Type Message" 11025 " Data"); 11026 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11027 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11028 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11029 } 11030 rc = sbuf_finish(sb); 11031 done: 11032 sbuf_delete(sb); 11033 free(buf, M_CXGBE); 11034 return (rc); 11035 } 11036 11037 static int 11038 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11039 { 11040 struct adapter *sc = arg1; 11041 struct sbuf *sb; 11042 int rc; 11043 uint32_t cfg, s1, s2; 11044 11045 MPASS(chip_id(sc) >= CHELSIO_T5); 11046 11047 rc = sysctl_wire_old_buffer(req, 0); 11048 if (rc != 0) 11049 return (rc); 11050 11051 mtx_lock(&sc->reg_lock); 11052 if (hw_off_limits(sc)) 11053 rc = ENXIO; 11054 else { 11055 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11056 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11057 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11058 } 11059 mtx_unlock(&sc->reg_lock); 11060 if (rc != 0) 11061 return (rc); 11062 11063 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11064 if (sb == NULL) 11065 return (ENOMEM); 11066 11067 if (G_STATSOURCE_T5(cfg) == 7) { 11068 int mode; 11069 11070 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11071 if (mode == 0) 11072 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11073 else if (mode == 1) 11074 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11075 else 11076 sbuf_printf(sb, "unknown mode %d", mode); 11077 } 11078 rc = sbuf_finish(sb); 11079 sbuf_delete(sb); 11080 11081 return (rc); 11082 } 11083 11084 static int 11085 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11086 { 11087 struct adapter *sc = arg1; 11088 enum cpu_sets op = arg2; 11089 cpuset_t cpuset; 11090 struct sbuf *sb; 11091 int i, rc; 11092 11093 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11094 11095 CPU_ZERO(&cpuset); 11096 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11097 if (rc != 0) 11098 return (rc); 11099 11100 rc = sysctl_wire_old_buffer(req, 0); 11101 if (rc != 0) 11102 return (rc); 11103 11104 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11105 if (sb == NULL) 11106 return (ENOMEM); 11107 11108 CPU_FOREACH(i) 11109 sbuf_printf(sb, "%d ", i); 11110 rc = sbuf_finish(sb); 11111 sbuf_delete(sb); 11112 11113 return (rc); 11114 } 11115 11116 static int 11117 sysctl_reset(SYSCTL_HANDLER_ARGS) 11118 { 11119 struct adapter *sc = arg1; 11120 u_int val; 11121 int rc; 11122 11123 val = atomic_load_int(&sc->num_resets); 11124 rc = sysctl_handle_int(oidp, &val, 0, req); 11125 if (rc != 0 || req->newptr == NULL) 11126 return (rc); 11127 11128 if (val == 0) { 11129 /* Zero out the counter that tracks reset. */ 11130 atomic_store_int(&sc->num_resets, 0); 11131 return (0); 11132 } 11133 11134 if (val != 1) 11135 return (EINVAL); /* 0 or 1 are the only legal values */ 11136 11137 if (hw_off_limits(sc)) /* harmless race */ 11138 return (EALREADY); 11139 11140 taskqueue_enqueue(reset_tq, &sc->reset_task); 11141 return (0); 11142 } 11143 11144 #ifdef TCP_OFFLOAD 11145 static int 11146 sysctl_tls(SYSCTL_HANDLER_ARGS) 11147 { 11148 struct adapter *sc = arg1; 11149 int i, j, v, rc; 11150 struct vi_info *vi; 11151 11152 v = sc->tt.tls; 11153 rc = sysctl_handle_int(oidp, &v, 0, req); 11154 if (rc != 0 || req->newptr == NULL) 11155 return (rc); 11156 11157 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11158 return (ENOTSUP); 11159 11160 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11161 if (rc) 11162 return (rc); 11163 if (hw_off_limits(sc)) 11164 rc = ENXIO; 11165 else { 11166 sc->tt.tls = !!v; 11167 for_each_port(sc, i) { 11168 for_each_vi(sc->port[i], j, vi) { 11169 if (vi->flags & VI_INIT_DONE) 11170 t4_update_fl_bufsize(vi->ifp); 11171 } 11172 } 11173 } 11174 end_synchronized_op(sc, 0); 11175 11176 return (rc); 11177 11178 } 11179 11180 static int 11181 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11182 { 11183 struct adapter *sc = arg1; 11184 int *old_ports, *new_ports; 11185 int i, new_count, rc; 11186 11187 if (req->newptr == NULL && req->oldptr == NULL) 11188 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11189 sizeof(sc->tt.tls_rx_ports[0]))); 11190 11191 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11192 if (rc) 11193 return (rc); 11194 11195 if (hw_off_limits(sc)) { 11196 rc = ENXIO; 11197 goto done; 11198 } 11199 11200 if (sc->tt.num_tls_rx_ports == 0) { 11201 i = -1; 11202 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11203 } else 11204 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11205 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11206 if (rc == 0 && req->newptr != NULL) { 11207 new_count = req->newlen / sizeof(new_ports[0]); 11208 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11209 M_WAITOK); 11210 rc = SYSCTL_IN(req, new_ports, new_count * 11211 sizeof(new_ports[0])); 11212 if (rc) 11213 goto err; 11214 11215 /* Allow setting to a single '-1' to clear the list. */ 11216 if (new_count == 1 && new_ports[0] == -1) { 11217 ADAPTER_LOCK(sc); 11218 old_ports = sc->tt.tls_rx_ports; 11219 sc->tt.tls_rx_ports = NULL; 11220 sc->tt.num_tls_rx_ports = 0; 11221 ADAPTER_UNLOCK(sc); 11222 free(old_ports, M_CXGBE); 11223 } else { 11224 for (i = 0; i < new_count; i++) { 11225 if (new_ports[i] < 1 || 11226 new_ports[i] > IPPORT_MAX) { 11227 rc = EINVAL; 11228 goto err; 11229 } 11230 } 11231 11232 ADAPTER_LOCK(sc); 11233 old_ports = sc->tt.tls_rx_ports; 11234 sc->tt.tls_rx_ports = new_ports; 11235 sc->tt.num_tls_rx_ports = new_count; 11236 ADAPTER_UNLOCK(sc); 11237 free(old_ports, M_CXGBE); 11238 new_ports = NULL; 11239 } 11240 err: 11241 free(new_ports, M_CXGBE); 11242 } 11243 done: 11244 end_synchronized_op(sc, 0); 11245 return (rc); 11246 } 11247 11248 static int 11249 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11250 { 11251 struct adapter *sc = arg1; 11252 int v, rc; 11253 11254 v = sc->tt.tls_rx_timeout; 11255 rc = sysctl_handle_int(oidp, &v, 0, req); 11256 if (rc != 0 || req->newptr == NULL) 11257 return (rc); 11258 11259 if (v < 0) 11260 return (EINVAL); 11261 11262 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11263 return (ENOTSUP); 11264 11265 sc->tt.tls_rx_timeout = v; 11266 11267 return (0); 11268 11269 } 11270 11271 static void 11272 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11273 { 11274 u_int rem = val % factor; 11275 11276 if (rem == 0) 11277 snprintf(buf, len, "%u", val / factor); 11278 else { 11279 while (rem % 10 == 0) 11280 rem /= 10; 11281 snprintf(buf, len, "%u.%u", val / factor, rem); 11282 } 11283 } 11284 11285 static int 11286 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11287 { 11288 struct adapter *sc = arg1; 11289 char buf[16]; 11290 u_int res, re; 11291 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11292 11293 mtx_lock(&sc->reg_lock); 11294 if (hw_off_limits(sc)) 11295 res = (u_int)-1; 11296 else 11297 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11298 mtx_unlock(&sc->reg_lock); 11299 if (res == (u_int)-1) 11300 return (ENXIO); 11301 11302 switch (arg2) { 11303 case 0: 11304 /* timer_tick */ 11305 re = G_TIMERRESOLUTION(res); 11306 break; 11307 case 1: 11308 /* TCP timestamp tick */ 11309 re = G_TIMESTAMPRESOLUTION(res); 11310 break; 11311 case 2: 11312 /* DACK tick */ 11313 re = G_DELAYEDACKRESOLUTION(res); 11314 break; 11315 default: 11316 return (EDOOFUS); 11317 } 11318 11319 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11320 11321 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11322 } 11323 11324 static int 11325 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11326 { 11327 struct adapter *sc = arg1; 11328 int rc; 11329 u_int dack_tmr, dack_re, v; 11330 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11331 11332 mtx_lock(&sc->reg_lock); 11333 if (hw_off_limits(sc)) 11334 rc = ENXIO; 11335 else { 11336 rc = 0; 11337 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11338 A_TP_TIMER_RESOLUTION)); 11339 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11340 } 11341 mtx_unlock(&sc->reg_lock); 11342 if (rc != 0) 11343 return (rc); 11344 11345 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11346 11347 return (sysctl_handle_int(oidp, &v, 0, req)); 11348 } 11349 11350 static int 11351 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11352 { 11353 struct adapter *sc = arg1; 11354 int rc, reg = arg2; 11355 u_int tre; 11356 u_long tp_tick_us, v; 11357 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11358 11359 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11360 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11361 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11362 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11363 11364 mtx_lock(&sc->reg_lock); 11365 if (hw_off_limits(sc)) 11366 rc = ENXIO; 11367 else { 11368 rc = 0; 11369 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11370 tp_tick_us = (cclk_ps << tre) / 1000000; 11371 if (reg == A_TP_INIT_SRTT) 11372 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11373 else 11374 v = tp_tick_us * t4_read_reg(sc, reg); 11375 } 11376 mtx_unlock(&sc->reg_lock); 11377 if (rc != 0) 11378 return (rc); 11379 else 11380 return (sysctl_handle_long(oidp, &v, 0, req)); 11381 } 11382 11383 /* 11384 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11385 * passed to this function. 11386 */ 11387 static int 11388 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11389 { 11390 struct adapter *sc = arg1; 11391 int rc, idx = arg2; 11392 u_int v; 11393 11394 MPASS(idx >= 0 && idx <= 24); 11395 11396 mtx_lock(&sc->reg_lock); 11397 if (hw_off_limits(sc)) 11398 rc = ENXIO; 11399 else { 11400 rc = 0; 11401 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11402 } 11403 mtx_unlock(&sc->reg_lock); 11404 if (rc != 0) 11405 return (rc); 11406 else 11407 return (sysctl_handle_int(oidp, &v, 0, req)); 11408 } 11409 11410 static int 11411 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11412 { 11413 struct adapter *sc = arg1; 11414 int rc, idx = arg2; 11415 u_int shift, v, r; 11416 11417 MPASS(idx >= 0 && idx < 16); 11418 11419 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11420 shift = (idx & 3) << 3; 11421 mtx_lock(&sc->reg_lock); 11422 if (hw_off_limits(sc)) 11423 rc = ENXIO; 11424 else { 11425 rc = 0; 11426 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11427 } 11428 mtx_unlock(&sc->reg_lock); 11429 if (rc != 0) 11430 return (rc); 11431 else 11432 return (sysctl_handle_int(oidp, &v, 0, req)); 11433 } 11434 11435 static int 11436 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11437 { 11438 struct vi_info *vi = arg1; 11439 struct adapter *sc = vi->adapter; 11440 int idx, rc, i; 11441 struct sge_ofld_rxq *ofld_rxq; 11442 uint8_t v; 11443 11444 idx = vi->ofld_tmr_idx; 11445 11446 rc = sysctl_handle_int(oidp, &idx, 0, req); 11447 if (rc != 0 || req->newptr == NULL) 11448 return (rc); 11449 11450 if (idx < 0 || idx >= SGE_NTIMERS) 11451 return (EINVAL); 11452 11453 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11454 "t4otmr"); 11455 if (rc) 11456 return (rc); 11457 11458 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11459 for_each_ofld_rxq(vi, i, ofld_rxq) { 11460 #ifdef atomic_store_rel_8 11461 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11462 #else 11463 ofld_rxq->iq.intr_params = v; 11464 #endif 11465 } 11466 vi->ofld_tmr_idx = idx; 11467 11468 end_synchronized_op(sc, LOCK_HELD); 11469 return (0); 11470 } 11471 11472 static int 11473 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11474 { 11475 struct vi_info *vi = arg1; 11476 struct adapter *sc = vi->adapter; 11477 int idx, rc; 11478 11479 idx = vi->ofld_pktc_idx; 11480 11481 rc = sysctl_handle_int(oidp, &idx, 0, req); 11482 if (rc != 0 || req->newptr == NULL) 11483 return (rc); 11484 11485 if (idx < -1 || idx >= SGE_NCOUNTERS) 11486 return (EINVAL); 11487 11488 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11489 "t4opktc"); 11490 if (rc) 11491 return (rc); 11492 11493 if (vi->flags & VI_INIT_DONE) 11494 rc = EBUSY; /* cannot be changed once the queues are created */ 11495 else 11496 vi->ofld_pktc_idx = idx; 11497 11498 end_synchronized_op(sc, LOCK_HELD); 11499 return (rc); 11500 } 11501 #endif 11502 11503 static int 11504 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11505 { 11506 int rc; 11507 11508 if (cntxt->cid > M_CTXTQID) 11509 return (EINVAL); 11510 11511 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11512 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11513 return (EINVAL); 11514 11515 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11516 if (rc) 11517 return (rc); 11518 11519 if (hw_off_limits(sc)) { 11520 rc = ENXIO; 11521 goto done; 11522 } 11523 11524 if (sc->flags & FW_OK) { 11525 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11526 &cntxt->data[0]); 11527 if (rc == 0) 11528 goto done; 11529 } 11530 11531 /* 11532 * Read via firmware failed or wasn't even attempted. Read directly via 11533 * the backdoor. 11534 */ 11535 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11536 done: 11537 end_synchronized_op(sc, 0); 11538 return (rc); 11539 } 11540 11541 static int 11542 load_fw(struct adapter *sc, struct t4_data *fw) 11543 { 11544 int rc; 11545 uint8_t *fw_data; 11546 11547 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11548 if (rc) 11549 return (rc); 11550 11551 if (hw_off_limits(sc)) { 11552 rc = ENXIO; 11553 goto done; 11554 } 11555 11556 /* 11557 * The firmware, with the sole exception of the memory parity error 11558 * handler, runs from memory and not flash. It is almost always safe to 11559 * install a new firmware on a running system. Just set bit 1 in 11560 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11561 */ 11562 if (sc->flags & FULL_INIT_DONE && 11563 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11564 rc = EBUSY; 11565 goto done; 11566 } 11567 11568 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11569 11570 rc = copyin(fw->data, fw_data, fw->len); 11571 if (rc == 0) 11572 rc = -t4_load_fw(sc, fw_data, fw->len); 11573 11574 free(fw_data, M_CXGBE); 11575 done: 11576 end_synchronized_op(sc, 0); 11577 return (rc); 11578 } 11579 11580 static int 11581 load_cfg(struct adapter *sc, struct t4_data *cfg) 11582 { 11583 int rc; 11584 uint8_t *cfg_data = NULL; 11585 11586 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11587 if (rc) 11588 return (rc); 11589 11590 if (hw_off_limits(sc)) { 11591 rc = ENXIO; 11592 goto done; 11593 } 11594 11595 if (cfg->len == 0) { 11596 /* clear */ 11597 rc = -t4_load_cfg(sc, NULL, 0); 11598 goto done; 11599 } 11600 11601 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11602 11603 rc = copyin(cfg->data, cfg_data, cfg->len); 11604 if (rc == 0) 11605 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11606 11607 free(cfg_data, M_CXGBE); 11608 done: 11609 end_synchronized_op(sc, 0); 11610 return (rc); 11611 } 11612 11613 static int 11614 load_boot(struct adapter *sc, struct t4_bootrom *br) 11615 { 11616 int rc; 11617 uint8_t *br_data = NULL; 11618 u_int offset; 11619 11620 if (br->len > 1024 * 1024) 11621 return (EFBIG); 11622 11623 if (br->pf_offset == 0) { 11624 /* pfidx */ 11625 if (br->pfidx_addr > 7) 11626 return (EINVAL); 11627 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11628 A_PCIE_PF_EXPROM_OFST))); 11629 } else if (br->pf_offset == 1) { 11630 /* offset */ 11631 offset = G_OFFSET(br->pfidx_addr); 11632 } else { 11633 return (EINVAL); 11634 } 11635 11636 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11637 if (rc) 11638 return (rc); 11639 11640 if (hw_off_limits(sc)) { 11641 rc = ENXIO; 11642 goto done; 11643 } 11644 11645 if (br->len == 0) { 11646 /* clear */ 11647 rc = -t4_load_boot(sc, NULL, offset, 0); 11648 goto done; 11649 } 11650 11651 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11652 11653 rc = copyin(br->data, br_data, br->len); 11654 if (rc == 0) 11655 rc = -t4_load_boot(sc, br_data, offset, br->len); 11656 11657 free(br_data, M_CXGBE); 11658 done: 11659 end_synchronized_op(sc, 0); 11660 return (rc); 11661 } 11662 11663 static int 11664 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11665 { 11666 int rc; 11667 uint8_t *bc_data = NULL; 11668 11669 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11670 if (rc) 11671 return (rc); 11672 11673 if (hw_off_limits(sc)) { 11674 rc = ENXIO; 11675 goto done; 11676 } 11677 11678 if (bc->len == 0) { 11679 /* clear */ 11680 rc = -t4_load_bootcfg(sc, NULL, 0); 11681 goto done; 11682 } 11683 11684 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11685 11686 rc = copyin(bc->data, bc_data, bc->len); 11687 if (rc == 0) 11688 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11689 11690 free(bc_data, M_CXGBE); 11691 done: 11692 end_synchronized_op(sc, 0); 11693 return (rc); 11694 } 11695 11696 static int 11697 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11698 { 11699 int rc; 11700 struct cudbg_init *cudbg; 11701 void *handle, *buf; 11702 11703 /* buf is large, don't block if no memory is available */ 11704 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11705 if (buf == NULL) 11706 return (ENOMEM); 11707 11708 handle = cudbg_alloc_handle(); 11709 if (handle == NULL) { 11710 rc = ENOMEM; 11711 goto done; 11712 } 11713 11714 cudbg = cudbg_get_init(handle); 11715 cudbg->adap = sc; 11716 cudbg->print = (cudbg_print_cb)printf; 11717 11718 #ifndef notyet 11719 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11720 __func__, dump->wr_flash, dump->len, dump->data); 11721 #endif 11722 11723 if (dump->wr_flash) 11724 cudbg->use_flash = 1; 11725 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11726 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11727 11728 rc = cudbg_collect(handle, buf, &dump->len); 11729 if (rc != 0) 11730 goto done; 11731 11732 rc = copyout(buf, dump->data, dump->len); 11733 done: 11734 cudbg_free_handle(handle); 11735 free(buf, M_CXGBE); 11736 return (rc); 11737 } 11738 11739 static void 11740 free_offload_policy(struct t4_offload_policy *op) 11741 { 11742 struct offload_rule *r; 11743 int i; 11744 11745 if (op == NULL) 11746 return; 11747 11748 r = &op->rule[0]; 11749 for (i = 0; i < op->nrules; i++, r++) { 11750 free(r->bpf_prog.bf_insns, M_CXGBE); 11751 } 11752 free(op->rule, M_CXGBE); 11753 free(op, M_CXGBE); 11754 } 11755 11756 static int 11757 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11758 { 11759 int i, rc, len; 11760 struct t4_offload_policy *op, *old; 11761 struct bpf_program *bf; 11762 const struct offload_settings *s; 11763 struct offload_rule *r; 11764 void *u; 11765 11766 if (!is_offload(sc)) 11767 return (ENODEV); 11768 11769 if (uop->nrules == 0) { 11770 /* Delete installed policies. */ 11771 op = NULL; 11772 goto set_policy; 11773 } else if (uop->nrules > 256) { /* arbitrary */ 11774 return (E2BIG); 11775 } 11776 11777 /* Copy userspace offload policy to kernel */ 11778 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11779 op->nrules = uop->nrules; 11780 len = op->nrules * sizeof(struct offload_rule); 11781 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11782 rc = copyin(uop->rule, op->rule, len); 11783 if (rc) { 11784 free(op->rule, M_CXGBE); 11785 free(op, M_CXGBE); 11786 return (rc); 11787 } 11788 11789 r = &op->rule[0]; 11790 for (i = 0; i < op->nrules; i++, r++) { 11791 11792 /* Validate open_type */ 11793 if (r->open_type != OPEN_TYPE_LISTEN && 11794 r->open_type != OPEN_TYPE_ACTIVE && 11795 r->open_type != OPEN_TYPE_PASSIVE && 11796 r->open_type != OPEN_TYPE_DONTCARE) { 11797 error: 11798 /* 11799 * Rules 0 to i have malloc'd filters that need to be 11800 * freed. Rules i+1 to nrules have userspace pointers 11801 * and should be left alone. 11802 */ 11803 op->nrules = i; 11804 free_offload_policy(op); 11805 return (rc); 11806 } 11807 11808 /* Validate settings */ 11809 s = &r->settings; 11810 if ((s->offload != 0 && s->offload != 1) || 11811 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11812 s->sched_class < -1 || 11813 s->sched_class >= sc->params.nsched_cls) { 11814 rc = EINVAL; 11815 goto error; 11816 } 11817 11818 bf = &r->bpf_prog; 11819 u = bf->bf_insns; /* userspace ptr */ 11820 bf->bf_insns = NULL; 11821 if (bf->bf_len == 0) { 11822 /* legal, matches everything */ 11823 continue; 11824 } 11825 len = bf->bf_len * sizeof(*bf->bf_insns); 11826 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11827 rc = copyin(u, bf->bf_insns, len); 11828 if (rc != 0) 11829 goto error; 11830 11831 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11832 rc = EINVAL; 11833 goto error; 11834 } 11835 } 11836 set_policy: 11837 rw_wlock(&sc->policy_lock); 11838 old = sc->policy; 11839 sc->policy = op; 11840 rw_wunlock(&sc->policy_lock); 11841 free_offload_policy(old); 11842 11843 return (0); 11844 } 11845 11846 #define MAX_READ_BUF_SIZE (128 * 1024) 11847 static int 11848 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11849 { 11850 uint32_t addr, remaining, n; 11851 uint32_t *buf; 11852 int rc; 11853 uint8_t *dst; 11854 11855 mtx_lock(&sc->reg_lock); 11856 if (hw_off_limits(sc)) 11857 rc = ENXIO; 11858 else 11859 rc = validate_mem_range(sc, mr->addr, mr->len); 11860 mtx_unlock(&sc->reg_lock); 11861 if (rc != 0) 11862 return (rc); 11863 11864 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11865 addr = mr->addr; 11866 remaining = mr->len; 11867 dst = (void *)mr->data; 11868 11869 while (remaining) { 11870 n = min(remaining, MAX_READ_BUF_SIZE); 11871 mtx_lock(&sc->reg_lock); 11872 if (hw_off_limits(sc)) 11873 rc = ENXIO; 11874 else 11875 read_via_memwin(sc, 2, addr, buf, n); 11876 mtx_unlock(&sc->reg_lock); 11877 if (rc != 0) 11878 break; 11879 11880 rc = copyout(buf, dst, n); 11881 if (rc != 0) 11882 break; 11883 11884 dst += n; 11885 remaining -= n; 11886 addr += n; 11887 } 11888 11889 free(buf, M_CXGBE); 11890 return (rc); 11891 } 11892 #undef MAX_READ_BUF_SIZE 11893 11894 static int 11895 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11896 { 11897 int rc; 11898 11899 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11900 return (EINVAL); 11901 11902 if (i2cd->len > sizeof(i2cd->data)) 11903 return (EFBIG); 11904 11905 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11906 if (rc) 11907 return (rc); 11908 if (hw_off_limits(sc)) 11909 rc = ENXIO; 11910 else 11911 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11912 i2cd->offset, i2cd->len, &i2cd->data[0]); 11913 end_synchronized_op(sc, 0); 11914 11915 return (rc); 11916 } 11917 11918 static int 11919 clear_stats(struct adapter *sc, u_int port_id) 11920 { 11921 int i, v, chan_map; 11922 struct port_info *pi; 11923 struct vi_info *vi; 11924 struct sge_rxq *rxq; 11925 struct sge_txq *txq; 11926 struct sge_wrq *wrq; 11927 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11928 struct sge_ofld_txq *ofld_txq; 11929 #endif 11930 #ifdef TCP_OFFLOAD 11931 struct sge_ofld_rxq *ofld_rxq; 11932 #endif 11933 11934 if (port_id >= sc->params.nports) 11935 return (EINVAL); 11936 pi = sc->port[port_id]; 11937 if (pi == NULL) 11938 return (EIO); 11939 11940 mtx_lock(&sc->reg_lock); 11941 if (!hw_off_limits(sc)) { 11942 /* MAC stats */ 11943 t4_clr_port_stats(sc, pi->tx_chan); 11944 if (is_t6(sc)) { 11945 if (pi->fcs_reg != -1) 11946 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11947 else 11948 pi->stats.rx_fcs_err = 0; 11949 } 11950 for_each_vi(pi, v, vi) { 11951 if (vi->flags & VI_INIT_DONE) 11952 t4_clr_vi_stats(sc, vi->vin); 11953 } 11954 chan_map = pi->rx_e_chan_map; 11955 v = 0; /* reuse */ 11956 while (chan_map) { 11957 i = ffs(chan_map) - 1; 11958 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11959 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11960 chan_map &= ~(1 << i); 11961 } 11962 } 11963 mtx_unlock(&sc->reg_lock); 11964 pi->tx_parse_error = 0; 11965 pi->tnl_cong_drops = 0; 11966 11967 /* 11968 * Since this command accepts a port, clear stats for 11969 * all VIs on this port. 11970 */ 11971 for_each_vi(pi, v, vi) { 11972 if (vi->flags & VI_INIT_DONE) { 11973 11974 for_each_rxq(vi, i, rxq) { 11975 #if defined(INET) || defined(INET6) 11976 rxq->lro.lro_queued = 0; 11977 rxq->lro.lro_flushed = 0; 11978 #endif 11979 rxq->rxcsum = 0; 11980 rxq->vlan_extraction = 0; 11981 rxq->vxlan_rxcsum = 0; 11982 11983 rxq->fl.cl_allocated = 0; 11984 rxq->fl.cl_recycled = 0; 11985 rxq->fl.cl_fast_recycled = 0; 11986 } 11987 11988 for_each_txq(vi, i, txq) { 11989 txq->txcsum = 0; 11990 txq->tso_wrs = 0; 11991 txq->vlan_insertion = 0; 11992 txq->imm_wrs = 0; 11993 txq->sgl_wrs = 0; 11994 txq->txpkt_wrs = 0; 11995 txq->txpkts0_wrs = 0; 11996 txq->txpkts1_wrs = 0; 11997 txq->txpkts0_pkts = 0; 11998 txq->txpkts1_pkts = 0; 11999 txq->txpkts_flush = 0; 12000 txq->raw_wrs = 0; 12001 txq->vxlan_tso_wrs = 0; 12002 txq->vxlan_txcsum = 0; 12003 txq->kern_tls_records = 0; 12004 txq->kern_tls_short = 0; 12005 txq->kern_tls_partial = 0; 12006 txq->kern_tls_full = 0; 12007 txq->kern_tls_octets = 0; 12008 txq->kern_tls_waste = 0; 12009 txq->kern_tls_options = 0; 12010 txq->kern_tls_header = 0; 12011 txq->kern_tls_fin = 0; 12012 txq->kern_tls_fin_short = 0; 12013 txq->kern_tls_cbc = 0; 12014 txq->kern_tls_gcm = 0; 12015 mp_ring_reset_stats(txq->r); 12016 } 12017 12018 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12019 for_each_ofld_txq(vi, i, ofld_txq) { 12020 ofld_txq->wrq.tx_wrs_direct = 0; 12021 ofld_txq->wrq.tx_wrs_copied = 0; 12022 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12023 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12024 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12025 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12026 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12027 } 12028 #endif 12029 #ifdef TCP_OFFLOAD 12030 for_each_ofld_rxq(vi, i, ofld_rxq) { 12031 ofld_rxq->fl.cl_allocated = 0; 12032 ofld_rxq->fl.cl_recycled = 0; 12033 ofld_rxq->fl.cl_fast_recycled = 0; 12034 counter_u64_zero( 12035 ofld_rxq->rx_iscsi_ddp_setup_ok); 12036 counter_u64_zero( 12037 ofld_rxq->rx_iscsi_ddp_setup_error); 12038 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12039 ofld_rxq->rx_iscsi_ddp_octets = 0; 12040 ofld_rxq->rx_iscsi_fl_pdus = 0; 12041 ofld_rxq->rx_iscsi_fl_octets = 0; 12042 ofld_rxq->rx_toe_tls_records = 0; 12043 ofld_rxq->rx_toe_tls_octets = 0; 12044 } 12045 #endif 12046 12047 if (IS_MAIN_VI(vi)) { 12048 wrq = &sc->sge.ctrlq[pi->port_id]; 12049 wrq->tx_wrs_direct = 0; 12050 wrq->tx_wrs_copied = 0; 12051 } 12052 } 12053 } 12054 12055 return (0); 12056 } 12057 12058 static int 12059 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12060 { 12061 #ifdef INET6 12062 struct in6_addr in6; 12063 12064 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12065 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12066 return (0); 12067 else 12068 return (EIO); 12069 #else 12070 return (ENOTSUP); 12071 #endif 12072 } 12073 12074 static int 12075 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12076 { 12077 #ifdef INET6 12078 struct in6_addr in6; 12079 12080 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12081 return (t4_release_clip_addr(sc, &in6)); 12082 #else 12083 return (ENOTSUP); 12084 #endif 12085 } 12086 12087 int 12088 t4_os_find_pci_capability(struct adapter *sc, int cap) 12089 { 12090 int i; 12091 12092 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12093 } 12094 12095 int 12096 t4_os_pci_save_state(struct adapter *sc) 12097 { 12098 device_t dev; 12099 struct pci_devinfo *dinfo; 12100 12101 dev = sc->dev; 12102 dinfo = device_get_ivars(dev); 12103 12104 pci_cfg_save(dev, dinfo, 0); 12105 return (0); 12106 } 12107 12108 int 12109 t4_os_pci_restore_state(struct adapter *sc) 12110 { 12111 device_t dev; 12112 struct pci_devinfo *dinfo; 12113 12114 dev = sc->dev; 12115 dinfo = device_get_ivars(dev); 12116 12117 pci_cfg_restore(dev, dinfo); 12118 return (0); 12119 } 12120 12121 void 12122 t4_os_portmod_changed(struct port_info *pi) 12123 { 12124 struct adapter *sc = pi->adapter; 12125 struct vi_info *vi; 12126 struct ifnet *ifp; 12127 static const char *mod_str[] = { 12128 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12129 }; 12130 12131 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12132 ("%s: port_type %u", __func__, pi->port_type)); 12133 12134 vi = &pi->vi[0]; 12135 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12136 PORT_LOCK(pi); 12137 build_medialist(pi); 12138 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12139 fixup_link_config(pi); 12140 apply_link_config(pi); 12141 } 12142 PORT_UNLOCK(pi); 12143 end_synchronized_op(sc, LOCK_HELD); 12144 } 12145 12146 ifp = vi->ifp; 12147 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12148 if_printf(ifp, "transceiver unplugged.\n"); 12149 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12150 if_printf(ifp, "unknown transceiver inserted.\n"); 12151 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12152 if_printf(ifp, "unsupported transceiver inserted.\n"); 12153 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12154 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12155 port_top_speed(pi), mod_str[pi->mod_type]); 12156 } else { 12157 if_printf(ifp, "transceiver (type %d) inserted.\n", 12158 pi->mod_type); 12159 } 12160 } 12161 12162 void 12163 t4_os_link_changed(struct port_info *pi) 12164 { 12165 struct vi_info *vi; 12166 struct ifnet *ifp; 12167 struct link_config *lc = &pi->link_cfg; 12168 struct adapter *sc = pi->adapter; 12169 int v; 12170 12171 PORT_LOCK_ASSERT_OWNED(pi); 12172 12173 if (is_t6(sc)) { 12174 if (lc->link_ok) { 12175 if (lc->speed > 25000 || 12176 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12177 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12178 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12179 } else { 12180 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12181 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12182 } 12183 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12184 pi->stats.rx_fcs_err = 0; 12185 } else { 12186 pi->fcs_reg = -1; 12187 } 12188 } else { 12189 MPASS(pi->fcs_reg != -1); 12190 MPASS(pi->fcs_base == 0); 12191 } 12192 12193 for_each_vi(pi, v, vi) { 12194 ifp = vi->ifp; 12195 if (ifp == NULL) 12196 continue; 12197 12198 if (lc->link_ok) { 12199 ifp->if_baudrate = IF_Mbps(lc->speed); 12200 if_link_state_change(ifp, LINK_STATE_UP); 12201 } else { 12202 if_link_state_change(ifp, LINK_STATE_DOWN); 12203 } 12204 } 12205 } 12206 12207 void 12208 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12209 { 12210 struct adapter *sc; 12211 12212 sx_slock(&t4_list_lock); 12213 SLIST_FOREACH(sc, &t4_list, link) { 12214 /* 12215 * func should not make any assumptions about what state sc is 12216 * in - the only guarantee is that sc->sc_lock is a valid lock. 12217 */ 12218 func(sc, arg); 12219 } 12220 sx_sunlock(&t4_list_lock); 12221 } 12222 12223 static int 12224 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12225 struct thread *td) 12226 { 12227 int rc; 12228 struct adapter *sc = dev->si_drv1; 12229 12230 rc = priv_check(td, PRIV_DRIVER); 12231 if (rc != 0) 12232 return (rc); 12233 12234 switch (cmd) { 12235 case CHELSIO_T4_GETREG: { 12236 struct t4_reg *edata = (struct t4_reg *)data; 12237 12238 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12239 return (EFAULT); 12240 12241 mtx_lock(&sc->reg_lock); 12242 if (hw_off_limits(sc)) 12243 rc = ENXIO; 12244 else if (edata->size == 4) 12245 edata->val = t4_read_reg(sc, edata->addr); 12246 else if (edata->size == 8) 12247 edata->val = t4_read_reg64(sc, edata->addr); 12248 else 12249 rc = EINVAL; 12250 mtx_unlock(&sc->reg_lock); 12251 12252 break; 12253 } 12254 case CHELSIO_T4_SETREG: { 12255 struct t4_reg *edata = (struct t4_reg *)data; 12256 12257 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12258 return (EFAULT); 12259 12260 mtx_lock(&sc->reg_lock); 12261 if (hw_off_limits(sc)) 12262 rc = ENXIO; 12263 else if (edata->size == 4) { 12264 if (edata->val & 0xffffffff00000000) 12265 rc = EINVAL; 12266 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12267 } else if (edata->size == 8) 12268 t4_write_reg64(sc, edata->addr, edata->val); 12269 else 12270 rc = EINVAL; 12271 mtx_unlock(&sc->reg_lock); 12272 12273 break; 12274 } 12275 case CHELSIO_T4_REGDUMP: { 12276 struct t4_regdump *regs = (struct t4_regdump *)data; 12277 int reglen = t4_get_regs_len(sc); 12278 uint8_t *buf; 12279 12280 if (regs->len < reglen) { 12281 regs->len = reglen; /* hint to the caller */ 12282 return (ENOBUFS); 12283 } 12284 12285 regs->len = reglen; 12286 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12287 mtx_lock(&sc->reg_lock); 12288 if (hw_off_limits(sc)) 12289 rc = ENXIO; 12290 else 12291 get_regs(sc, regs, buf); 12292 mtx_unlock(&sc->reg_lock); 12293 if (rc == 0) 12294 rc = copyout(buf, regs->data, reglen); 12295 free(buf, M_CXGBE); 12296 break; 12297 } 12298 case CHELSIO_T4_GET_FILTER_MODE: 12299 rc = get_filter_mode(sc, (uint32_t *)data); 12300 break; 12301 case CHELSIO_T4_SET_FILTER_MODE: 12302 rc = set_filter_mode(sc, *(uint32_t *)data); 12303 break; 12304 case CHELSIO_T4_SET_FILTER_MASK: 12305 rc = set_filter_mask(sc, *(uint32_t *)data); 12306 break; 12307 case CHELSIO_T4_GET_FILTER: 12308 rc = get_filter(sc, (struct t4_filter *)data); 12309 break; 12310 case CHELSIO_T4_SET_FILTER: 12311 rc = set_filter(sc, (struct t4_filter *)data); 12312 break; 12313 case CHELSIO_T4_DEL_FILTER: 12314 rc = del_filter(sc, (struct t4_filter *)data); 12315 break; 12316 case CHELSIO_T4_GET_SGE_CONTEXT: 12317 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12318 break; 12319 case CHELSIO_T4_LOAD_FW: 12320 rc = load_fw(sc, (struct t4_data *)data); 12321 break; 12322 case CHELSIO_T4_GET_MEM: 12323 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12324 break; 12325 case CHELSIO_T4_GET_I2C: 12326 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12327 break; 12328 case CHELSIO_T4_CLEAR_STATS: 12329 rc = clear_stats(sc, *(uint32_t *)data); 12330 break; 12331 case CHELSIO_T4_SCHED_CLASS: 12332 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12333 break; 12334 case CHELSIO_T4_SCHED_QUEUE: 12335 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12336 break; 12337 case CHELSIO_T4_GET_TRACER: 12338 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12339 break; 12340 case CHELSIO_T4_SET_TRACER: 12341 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12342 break; 12343 case CHELSIO_T4_LOAD_CFG: 12344 rc = load_cfg(sc, (struct t4_data *)data); 12345 break; 12346 case CHELSIO_T4_LOAD_BOOT: 12347 rc = load_boot(sc, (struct t4_bootrom *)data); 12348 break; 12349 case CHELSIO_T4_LOAD_BOOTCFG: 12350 rc = load_bootcfg(sc, (struct t4_data *)data); 12351 break; 12352 case CHELSIO_T4_CUDBG_DUMP: 12353 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12354 break; 12355 case CHELSIO_T4_SET_OFLD_POLICY: 12356 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12357 break; 12358 case CHELSIO_T4_HOLD_CLIP_ADDR: 12359 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12360 break; 12361 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12362 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12363 break; 12364 default: 12365 rc = ENOTTY; 12366 } 12367 12368 return (rc); 12369 } 12370 12371 #ifdef TCP_OFFLOAD 12372 static int 12373 toe_capability(struct vi_info *vi, bool enable) 12374 { 12375 int rc; 12376 struct port_info *pi = vi->pi; 12377 struct adapter *sc = pi->adapter; 12378 12379 ASSERT_SYNCHRONIZED_OP(sc); 12380 12381 if (!is_offload(sc)) 12382 return (ENODEV); 12383 if (hw_off_limits(sc)) 12384 return (ENXIO); 12385 12386 if (enable) { 12387 #ifdef KERN_TLS 12388 if (sc->flags & KERN_TLS_ON) { 12389 int i, j, n; 12390 struct port_info *p; 12391 struct vi_info *v; 12392 12393 /* 12394 * Reconfigure hardware for TOE if TXTLS is not enabled 12395 * on any ifnet. 12396 */ 12397 n = 0; 12398 for_each_port(sc, i) { 12399 p = sc->port[i]; 12400 for_each_vi(p, j, v) { 12401 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12402 CH_WARN(sc, 12403 "%s has NIC TLS enabled.\n", 12404 device_get_nameunit(v->dev)); 12405 n++; 12406 } 12407 } 12408 } 12409 if (n > 0) { 12410 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12411 "associated with this adapter before " 12412 "trying to enable TOE.\n"); 12413 return (EAGAIN); 12414 } 12415 rc = t4_config_kern_tls(sc, false); 12416 if (rc) 12417 return (rc); 12418 } 12419 #endif 12420 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12421 /* TOE is already enabled. */ 12422 return (0); 12423 } 12424 12425 /* 12426 * We need the port's queues around so that we're able to send 12427 * and receive CPLs to/from the TOE even if the ifnet for this 12428 * port has never been UP'd administratively. 12429 */ 12430 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12431 return (rc); 12432 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12433 ((rc = vi_init(&pi->vi[0])) != 0)) 12434 return (rc); 12435 12436 if (isset(&sc->offload_map, pi->port_id)) { 12437 /* TOE is enabled on another VI of this port. */ 12438 pi->uld_vis++; 12439 return (0); 12440 } 12441 12442 if (!uld_active(sc, ULD_TOM)) { 12443 rc = t4_activate_uld(sc, ULD_TOM); 12444 if (rc == EAGAIN) { 12445 log(LOG_WARNING, 12446 "You must kldload t4_tom.ko before trying " 12447 "to enable TOE on a cxgbe interface.\n"); 12448 } 12449 if (rc != 0) 12450 return (rc); 12451 KASSERT(sc->tom_softc != NULL, 12452 ("%s: TOM activated but softc NULL", __func__)); 12453 KASSERT(uld_active(sc, ULD_TOM), 12454 ("%s: TOM activated but flag not set", __func__)); 12455 } 12456 12457 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12458 if (!uld_active(sc, ULD_IWARP)) 12459 (void) t4_activate_uld(sc, ULD_IWARP); 12460 if (!uld_active(sc, ULD_ISCSI)) 12461 (void) t4_activate_uld(sc, ULD_ISCSI); 12462 12463 pi->uld_vis++; 12464 setbit(&sc->offload_map, pi->port_id); 12465 } else { 12466 pi->uld_vis--; 12467 12468 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12469 return (0); 12470 12471 KASSERT(uld_active(sc, ULD_TOM), 12472 ("%s: TOM never initialized?", __func__)); 12473 clrbit(&sc->offload_map, pi->port_id); 12474 } 12475 12476 return (0); 12477 } 12478 12479 /* 12480 * Add an upper layer driver to the global list. 12481 */ 12482 int 12483 t4_register_uld(struct uld_info *ui) 12484 { 12485 int rc = 0; 12486 struct uld_info *u; 12487 12488 sx_xlock(&t4_uld_list_lock); 12489 SLIST_FOREACH(u, &t4_uld_list, link) { 12490 if (u->uld_id == ui->uld_id) { 12491 rc = EEXIST; 12492 goto done; 12493 } 12494 } 12495 12496 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12497 ui->refcount = 0; 12498 done: 12499 sx_xunlock(&t4_uld_list_lock); 12500 return (rc); 12501 } 12502 12503 int 12504 t4_unregister_uld(struct uld_info *ui) 12505 { 12506 int rc = EINVAL; 12507 struct uld_info *u; 12508 12509 sx_xlock(&t4_uld_list_lock); 12510 12511 SLIST_FOREACH(u, &t4_uld_list, link) { 12512 if (u == ui) { 12513 if (ui->refcount > 0) { 12514 rc = EBUSY; 12515 goto done; 12516 } 12517 12518 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12519 rc = 0; 12520 goto done; 12521 } 12522 } 12523 done: 12524 sx_xunlock(&t4_uld_list_lock); 12525 return (rc); 12526 } 12527 12528 int 12529 t4_activate_uld(struct adapter *sc, int id) 12530 { 12531 int rc; 12532 struct uld_info *ui; 12533 12534 ASSERT_SYNCHRONIZED_OP(sc); 12535 12536 if (id < 0 || id > ULD_MAX) 12537 return (EINVAL); 12538 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12539 12540 sx_slock(&t4_uld_list_lock); 12541 12542 SLIST_FOREACH(ui, &t4_uld_list, link) { 12543 if (ui->uld_id == id) { 12544 if (!(sc->flags & FULL_INIT_DONE)) { 12545 rc = adapter_init(sc); 12546 if (rc != 0) 12547 break; 12548 } 12549 12550 rc = ui->activate(sc); 12551 if (rc == 0) { 12552 setbit(&sc->active_ulds, id); 12553 ui->refcount++; 12554 } 12555 break; 12556 } 12557 } 12558 12559 sx_sunlock(&t4_uld_list_lock); 12560 12561 return (rc); 12562 } 12563 12564 int 12565 t4_deactivate_uld(struct adapter *sc, int id) 12566 { 12567 int rc; 12568 struct uld_info *ui; 12569 12570 ASSERT_SYNCHRONIZED_OP(sc); 12571 12572 if (id < 0 || id > ULD_MAX) 12573 return (EINVAL); 12574 rc = ENXIO; 12575 12576 sx_slock(&t4_uld_list_lock); 12577 12578 SLIST_FOREACH(ui, &t4_uld_list, link) { 12579 if (ui->uld_id == id) { 12580 rc = ui->deactivate(sc); 12581 if (rc == 0) { 12582 clrbit(&sc->active_ulds, id); 12583 ui->refcount--; 12584 } 12585 break; 12586 } 12587 } 12588 12589 sx_sunlock(&t4_uld_list_lock); 12590 12591 return (rc); 12592 } 12593 12594 static void 12595 t4_async_event(struct adapter *sc) 12596 { 12597 struct uld_info *ui; 12598 12599 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12600 return; 12601 sx_slock(&t4_uld_list_lock); 12602 SLIST_FOREACH(ui, &t4_uld_list, link) { 12603 if (ui->uld_id == ULD_IWARP) { 12604 ui->async_event(sc); 12605 break; 12606 } 12607 } 12608 sx_sunlock(&t4_uld_list_lock); 12609 end_synchronized_op(sc, 0); 12610 } 12611 12612 int 12613 uld_active(struct adapter *sc, int uld_id) 12614 { 12615 12616 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12617 12618 return (isset(&sc->active_ulds, uld_id)); 12619 } 12620 #endif 12621 12622 #ifdef KERN_TLS 12623 static int 12624 ktls_capability(struct adapter *sc, bool enable) 12625 { 12626 ASSERT_SYNCHRONIZED_OP(sc); 12627 12628 if (!is_ktls(sc)) 12629 return (ENODEV); 12630 if (hw_off_limits(sc)) 12631 return (ENXIO); 12632 12633 if (enable) { 12634 if (sc->flags & KERN_TLS_ON) 12635 return (0); /* already on */ 12636 if (sc->offload_map != 0) { 12637 CH_WARN(sc, 12638 "Disable TOE on all interfaces associated with " 12639 "this adapter before trying to enable NIC TLS.\n"); 12640 return (EAGAIN); 12641 } 12642 return (t4_config_kern_tls(sc, true)); 12643 } else { 12644 /* 12645 * Nothing to do for disable. If TOE is enabled sometime later 12646 * then toe_capability will reconfigure the hardware. 12647 */ 12648 return (0); 12649 } 12650 } 12651 #endif 12652 12653 /* 12654 * t = ptr to tunable. 12655 * nc = number of CPUs. 12656 * c = compiled in default for that tunable. 12657 */ 12658 static void 12659 calculate_nqueues(int *t, int nc, const int c) 12660 { 12661 int nq; 12662 12663 if (*t > 0) 12664 return; 12665 nq = *t < 0 ? -*t : c; 12666 *t = min(nc, nq); 12667 } 12668 12669 /* 12670 * Come up with reasonable defaults for some of the tunables, provided they're 12671 * not set by the user (in which case we'll use the values as is). 12672 */ 12673 static void 12674 tweak_tunables(void) 12675 { 12676 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12677 12678 if (t4_ntxq < 1) { 12679 #ifdef RSS 12680 t4_ntxq = rss_getnumbuckets(); 12681 #else 12682 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12683 #endif 12684 } 12685 12686 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12687 12688 if (t4_nrxq < 1) { 12689 #ifdef RSS 12690 t4_nrxq = rss_getnumbuckets(); 12691 #else 12692 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12693 #endif 12694 } 12695 12696 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12697 12698 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12699 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12700 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12701 #endif 12702 #ifdef TCP_OFFLOAD 12703 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12704 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12705 #endif 12706 12707 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12708 if (t4_toecaps_allowed == -1) 12709 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12710 #else 12711 if (t4_toecaps_allowed == -1) 12712 t4_toecaps_allowed = 0; 12713 #endif 12714 12715 #ifdef TCP_OFFLOAD 12716 if (t4_rdmacaps_allowed == -1) { 12717 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12718 FW_CAPS_CONFIG_RDMA_RDMAC; 12719 } 12720 12721 if (t4_iscsicaps_allowed == -1) { 12722 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12723 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12724 FW_CAPS_CONFIG_ISCSI_T10DIF; 12725 } 12726 12727 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12728 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12729 12730 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12731 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12732 12733 if (t4_toe_tls_rx_timeout < 0) 12734 t4_toe_tls_rx_timeout = 0; 12735 #else 12736 if (t4_rdmacaps_allowed == -1) 12737 t4_rdmacaps_allowed = 0; 12738 12739 if (t4_iscsicaps_allowed == -1) 12740 t4_iscsicaps_allowed = 0; 12741 #endif 12742 12743 #ifdef DEV_NETMAP 12744 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12745 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12746 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12747 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12748 #endif 12749 12750 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12751 t4_tmr_idx = TMR_IDX; 12752 12753 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12754 t4_pktc_idx = PKTC_IDX; 12755 12756 if (t4_qsize_txq < 128) 12757 t4_qsize_txq = 128; 12758 12759 if (t4_qsize_rxq < 128) 12760 t4_qsize_rxq = 128; 12761 while (t4_qsize_rxq & 7) 12762 t4_qsize_rxq++; 12763 12764 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12765 12766 /* 12767 * Number of VIs to create per-port. The first VI is the "main" regular 12768 * VI for the port. The rest are additional virtual interfaces on the 12769 * same physical port. Note that the main VI does not have native 12770 * netmap support but the extra VIs do. 12771 * 12772 * Limit the number of VIs per port to the number of available 12773 * MAC addresses per port. 12774 */ 12775 if (t4_num_vis < 1) 12776 t4_num_vis = 1; 12777 if (t4_num_vis > nitems(vi_mac_funcs)) { 12778 t4_num_vis = nitems(vi_mac_funcs); 12779 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12780 } 12781 12782 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12783 pcie_relaxed_ordering = 1; 12784 #if defined(__i386__) || defined(__amd64__) 12785 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12786 pcie_relaxed_ordering = 0; 12787 #endif 12788 } 12789 } 12790 12791 #ifdef DDB 12792 static void 12793 t4_dump_tcb(struct adapter *sc, int tid) 12794 { 12795 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12796 12797 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12798 save = t4_read_reg(sc, reg); 12799 base = sc->memwin[2].mw_base; 12800 12801 /* Dump TCB for the tid */ 12802 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12803 tcb_addr += tid * TCB_SIZE; 12804 12805 if (is_t4(sc)) { 12806 pf = 0; 12807 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12808 } else { 12809 pf = V_PFNUM(sc->pf); 12810 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12811 } 12812 t4_write_reg(sc, reg, win_pos | pf); 12813 t4_read_reg(sc, reg); 12814 12815 off = tcb_addr - win_pos; 12816 for (i = 0; i < 4; i++) { 12817 uint32_t buf[8]; 12818 for (j = 0; j < 8; j++, off += 4) 12819 buf[j] = htonl(t4_read_reg(sc, base + off)); 12820 12821 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12822 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12823 buf[7]); 12824 } 12825 12826 t4_write_reg(sc, reg, save); 12827 t4_read_reg(sc, reg); 12828 } 12829 12830 static void 12831 t4_dump_devlog(struct adapter *sc) 12832 { 12833 struct devlog_params *dparams = &sc->params.devlog; 12834 struct fw_devlog_e e; 12835 int i, first, j, m, nentries, rc; 12836 uint64_t ftstamp = UINT64_MAX; 12837 12838 if (dparams->start == 0) { 12839 db_printf("devlog params not valid\n"); 12840 return; 12841 } 12842 12843 nentries = dparams->size / sizeof(struct fw_devlog_e); 12844 m = fwmtype_to_hwmtype(dparams->memtype); 12845 12846 /* Find the first entry. */ 12847 first = -1; 12848 for (i = 0; i < nentries && !db_pager_quit; i++) { 12849 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12850 sizeof(e), (void *)&e); 12851 if (rc != 0) 12852 break; 12853 12854 if (e.timestamp == 0) 12855 break; 12856 12857 e.timestamp = be64toh(e.timestamp); 12858 if (e.timestamp < ftstamp) { 12859 ftstamp = e.timestamp; 12860 first = i; 12861 } 12862 } 12863 12864 if (first == -1) 12865 return; 12866 12867 i = first; 12868 do { 12869 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12870 sizeof(e), (void *)&e); 12871 if (rc != 0) 12872 return; 12873 12874 if (e.timestamp == 0) 12875 return; 12876 12877 e.timestamp = be64toh(e.timestamp); 12878 e.seqno = be32toh(e.seqno); 12879 for (j = 0; j < 8; j++) 12880 e.params[j] = be32toh(e.params[j]); 12881 12882 db_printf("%10d %15ju %8s %8s ", 12883 e.seqno, e.timestamp, 12884 (e.level < nitems(devlog_level_strings) ? 12885 devlog_level_strings[e.level] : "UNKNOWN"), 12886 (e.facility < nitems(devlog_facility_strings) ? 12887 devlog_facility_strings[e.facility] : "UNKNOWN")); 12888 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12889 e.params[3], e.params[4], e.params[5], e.params[6], 12890 e.params[7]); 12891 12892 if (++i == nentries) 12893 i = 0; 12894 } while (i != first && !db_pager_quit); 12895 } 12896 12897 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12898 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12899 12900 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12901 { 12902 device_t dev; 12903 int t; 12904 bool valid; 12905 12906 valid = false; 12907 t = db_read_token(); 12908 if (t == tIDENT) { 12909 dev = device_lookup_by_name(db_tok_string); 12910 valid = true; 12911 } 12912 db_skip_to_eol(); 12913 if (!valid) { 12914 db_printf("usage: show t4 devlog <nexus>\n"); 12915 return; 12916 } 12917 12918 if (dev == NULL) { 12919 db_printf("device not found\n"); 12920 return; 12921 } 12922 12923 t4_dump_devlog(device_get_softc(dev)); 12924 } 12925 12926 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12927 { 12928 device_t dev; 12929 int radix, tid, t; 12930 bool valid; 12931 12932 valid = false; 12933 radix = db_radix; 12934 db_radix = 10; 12935 t = db_read_token(); 12936 if (t == tIDENT) { 12937 dev = device_lookup_by_name(db_tok_string); 12938 t = db_read_token(); 12939 if (t == tNUMBER) { 12940 tid = db_tok_number; 12941 valid = true; 12942 } 12943 } 12944 db_radix = radix; 12945 db_skip_to_eol(); 12946 if (!valid) { 12947 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12948 return; 12949 } 12950 12951 if (dev == NULL) { 12952 db_printf("device not found\n"); 12953 return; 12954 } 12955 if (tid < 0) { 12956 db_printf("invalid tid\n"); 12957 return; 12958 } 12959 12960 t4_dump_tcb(device_get_softc(dev), tid); 12961 } 12962 #endif 12963 12964 static eventhandler_tag vxlan_start_evtag; 12965 static eventhandler_tag vxlan_stop_evtag; 12966 12967 struct vxlan_evargs { 12968 struct ifnet *ifp; 12969 uint16_t port; 12970 }; 12971 12972 static void 12973 enable_vxlan_rx(struct adapter *sc) 12974 { 12975 int i, rc; 12976 struct port_info *pi; 12977 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12978 12979 ASSERT_SYNCHRONIZED_OP(sc); 12980 12981 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12982 F_VXLAN_EN); 12983 for_each_port(sc, i) { 12984 pi = sc->port[i]; 12985 if (pi->vxlan_tcam_entry == true) 12986 continue; 12987 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12988 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12989 true); 12990 if (rc < 0) { 12991 rc = -rc; 12992 CH_ERR(&pi->vi[0], 12993 "failed to add VXLAN TCAM entry: %d.\n", rc); 12994 } else { 12995 MPASS(rc == sc->rawf_base + pi->port_id); 12996 pi->vxlan_tcam_entry = true; 12997 } 12998 } 12999 } 13000 13001 static void 13002 t4_vxlan_start(struct adapter *sc, void *arg) 13003 { 13004 struct vxlan_evargs *v = arg; 13005 13006 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13007 return; 13008 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13009 return; 13010 13011 if (sc->vxlan_refcount == 0) { 13012 sc->vxlan_port = v->port; 13013 sc->vxlan_refcount = 1; 13014 if (!hw_off_limits(sc)) 13015 enable_vxlan_rx(sc); 13016 } else if (sc->vxlan_port == v->port) { 13017 sc->vxlan_refcount++; 13018 } else { 13019 CH_ERR(sc, "VXLAN already configured on port %d; " 13020 "ignoring attempt to configure it on port %d\n", 13021 sc->vxlan_port, v->port); 13022 } 13023 end_synchronized_op(sc, 0); 13024 } 13025 13026 static void 13027 t4_vxlan_stop(struct adapter *sc, void *arg) 13028 { 13029 struct vxlan_evargs *v = arg; 13030 13031 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13032 return; 13033 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13034 return; 13035 13036 /* 13037 * VXLANs may have been configured before the driver was loaded so we 13038 * may see more stops than starts. This is not handled cleanly but at 13039 * least we keep the refcount sane. 13040 */ 13041 if (sc->vxlan_port != v->port) 13042 goto done; 13043 if (sc->vxlan_refcount == 0) { 13044 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13045 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13046 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13047 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13048 done: 13049 end_synchronized_op(sc, 0); 13050 } 13051 13052 static void 13053 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 13054 sa_family_t family, u_int port) 13055 { 13056 struct vxlan_evargs v; 13057 13058 MPASS(family == AF_INET || family == AF_INET6); 13059 v.ifp = ifp; 13060 v.port = port; 13061 13062 t4_iterate(t4_vxlan_start, &v); 13063 } 13064 13065 static void 13066 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 13067 u_int port) 13068 { 13069 struct vxlan_evargs v; 13070 13071 MPASS(family == AF_INET || family == AF_INET6); 13072 v.ifp = ifp; 13073 v.port = port; 13074 13075 t4_iterate(t4_vxlan_stop, &v); 13076 } 13077 13078 13079 static struct sx mlu; /* mod load unload */ 13080 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13081 13082 static int 13083 mod_event(module_t mod, int cmd, void *arg) 13084 { 13085 int rc = 0; 13086 static int loaded = 0; 13087 13088 switch (cmd) { 13089 case MOD_LOAD: 13090 sx_xlock(&mlu); 13091 if (loaded++ == 0) { 13092 t4_sge_modload(); 13093 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13094 t4_filter_rpl, CPL_COOKIE_FILTER); 13095 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13096 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13097 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13098 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13099 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13100 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13101 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13102 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13103 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13104 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13105 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13106 do_smt_write_rpl); 13107 sx_init(&t4_list_lock, "T4/T5 adapters"); 13108 SLIST_INIT(&t4_list); 13109 callout_init(&fatal_callout, 1); 13110 #ifdef TCP_OFFLOAD 13111 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13112 SLIST_INIT(&t4_uld_list); 13113 #endif 13114 #ifdef INET6 13115 t4_clip_modload(); 13116 #endif 13117 #ifdef KERN_TLS 13118 t6_ktls_modload(); 13119 #endif 13120 t4_tracer_modload(); 13121 tweak_tunables(); 13122 vxlan_start_evtag = 13123 EVENTHANDLER_REGISTER(vxlan_start, 13124 t4_vxlan_start_handler, NULL, 13125 EVENTHANDLER_PRI_ANY); 13126 vxlan_stop_evtag = 13127 EVENTHANDLER_REGISTER(vxlan_stop, 13128 t4_vxlan_stop_handler, NULL, 13129 EVENTHANDLER_PRI_ANY); 13130 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13131 taskqueue_thread_enqueue, &reset_tq); 13132 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13133 "t4_rst_thr"); 13134 } 13135 sx_xunlock(&mlu); 13136 break; 13137 13138 case MOD_UNLOAD: 13139 sx_xlock(&mlu); 13140 if (--loaded == 0) { 13141 int tries; 13142 13143 taskqueue_free(reset_tq); 13144 sx_slock(&t4_list_lock); 13145 if (!SLIST_EMPTY(&t4_list)) { 13146 rc = EBUSY; 13147 sx_sunlock(&t4_list_lock); 13148 goto done_unload; 13149 } 13150 #ifdef TCP_OFFLOAD 13151 sx_slock(&t4_uld_list_lock); 13152 if (!SLIST_EMPTY(&t4_uld_list)) { 13153 rc = EBUSY; 13154 sx_sunlock(&t4_uld_list_lock); 13155 sx_sunlock(&t4_list_lock); 13156 goto done_unload; 13157 } 13158 #endif 13159 tries = 0; 13160 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13161 uprintf("%ju clusters with custom free routine " 13162 "still is use.\n", t4_sge_extfree_refs()); 13163 pause("t4unload", 2 * hz); 13164 } 13165 #ifdef TCP_OFFLOAD 13166 sx_sunlock(&t4_uld_list_lock); 13167 #endif 13168 sx_sunlock(&t4_list_lock); 13169 13170 if (t4_sge_extfree_refs() == 0) { 13171 EVENTHANDLER_DEREGISTER(vxlan_start, 13172 vxlan_start_evtag); 13173 EVENTHANDLER_DEREGISTER(vxlan_stop, 13174 vxlan_stop_evtag); 13175 t4_tracer_modunload(); 13176 #ifdef KERN_TLS 13177 t6_ktls_modunload(); 13178 #endif 13179 #ifdef INET6 13180 t4_clip_modunload(); 13181 #endif 13182 #ifdef TCP_OFFLOAD 13183 sx_destroy(&t4_uld_list_lock); 13184 #endif 13185 sx_destroy(&t4_list_lock); 13186 t4_sge_modunload(); 13187 loaded = 0; 13188 } else { 13189 rc = EBUSY; 13190 loaded++; /* undo earlier decrement */ 13191 } 13192 } 13193 done_unload: 13194 sx_xunlock(&mlu); 13195 break; 13196 } 13197 13198 return (rc); 13199 } 13200 13201 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13202 MODULE_VERSION(t4nex, 1); 13203 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13204 #ifdef DEV_NETMAP 13205 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13206 #endif /* DEV_NETMAP */ 13207 13208 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13209 MODULE_VERSION(t5nex, 1); 13210 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13211 #ifdef DEV_NETMAP 13212 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13213 #endif /* DEV_NETMAP */ 13214 13215 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13216 MODULE_VERSION(t6nex, 1); 13217 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13218 #ifdef DEV_NETMAP 13219 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13220 #endif /* DEV_NETMAP */ 13221 13222 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13223 MODULE_VERSION(cxgbe, 1); 13224 13225 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13226 MODULE_VERSION(cxl, 1); 13227 13228 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13229 MODULE_VERSION(cc, 1); 13230 13231 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13232 MODULE_VERSION(vcxgbe, 1); 13233 13234 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13235 MODULE_VERSION(vcxl, 1); 13236 13237 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13238 MODULE_VERSION(vcc, 1); 13239