1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 318 #define NOFLDTXQ 8 319 static int t4_nofldtxq = -NOFLDTXQ; 320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 321 "Number of offload TX queues per port"); 322 323 #define NOFLDRXQ 2 324 static int t4_nofldrxq = -NOFLDRXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 326 "Number of offload RX queues per port"); 327 328 #define NOFLDTXQ_VI 1 329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 331 "Number of offload TX queues per VI"); 332 333 #define NOFLDRXQ_VI 1 334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 336 "Number of offload RX queues per VI"); 337 338 #define TMR_IDX_OFLD 1 339 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 342 343 #define PKTC_IDX_OFLD (-1) 344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 347 348 /* 0 means chip/fw default, non-zero number is value in microseconds */ 349 static u_long t4_toe_keepalive_idle = 0; 350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_interval = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 359 static int t4_toe_keepalive_count = 0; 360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 362 363 /* 0 means chip/fw default, non-zero number is value in microseconds */ 364 static u_long t4_toe_rexmt_min = 0; 365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_max = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 374 static int t4_toe_rexmt_count = 0; 375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 377 378 /* -1 means chip/fw default, other values are raw backoff values to use */ 379 static int t4_toe_rexmt_backoff[16] = { 380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 381 }; 382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 384 "cxgbe(4) TOE retransmit backoff values"); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[0], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[1], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[2], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[3], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[4], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[5], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[6], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[7], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[8], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[9], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[10], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[11], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[12], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[13], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[14], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[15], 0, ""); 417 418 static int t4_toe_tls_rx_timeout = 5; 419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 420 &t4_toe_tls_rx_timeout, 0, 421 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 422 #endif 423 424 #ifdef DEV_NETMAP 425 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 426 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 427 static int t4_native_netmap = NN_EXTRA_VI; 428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 429 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 430 431 #define NNMTXQ 8 432 static int t4_nnmtxq = -NNMTXQ; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 434 "Number of netmap TX queues"); 435 436 #define NNMRXQ 8 437 static int t4_nnmrxq = -NNMRXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 439 "Number of netmap RX queues"); 440 441 #define NNMTXQ_VI 2 442 static int t4_nnmtxq_vi = -NNMTXQ_VI; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 444 "Number of netmap TX queues per VI"); 445 446 #define NNMRXQ_VI 2 447 static int t4_nnmrxq_vi = -NNMRXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 449 "Number of netmap RX queues per VI"); 450 #endif 451 452 /* 453 * Holdoff parameters for ports. 454 */ 455 #define TMR_IDX 1 456 int t4_tmr_idx = TMR_IDX; 457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 458 0, "Holdoff timer index"); 459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 460 461 #define PKTC_IDX (-1) 462 int t4_pktc_idx = PKTC_IDX; 463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 464 0, "Holdoff packet counter index"); 465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 466 467 /* 468 * Size (# of entries) of each tx and rx queue. 469 */ 470 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 472 "Number of descriptors in each TX queue"); 473 474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 476 "Number of descriptors in each RX queue"); 477 478 /* 479 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 480 */ 481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 483 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 484 485 /* 486 * Configuration file. All the _CF names here are special. 487 */ 488 #define DEFAULT_CF "default" 489 #define BUILTIN_CF "built-in" 490 #define FLASH_CF "flash" 491 #define UWIRE_CF "uwire" 492 #define FPGA_CF "fpga" 493 static char t4_cfg_file[32] = DEFAULT_CF; 494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 495 sizeof(t4_cfg_file), "Firmware configuration file"); 496 497 /* 498 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 499 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 500 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 501 * mark or when signalled to do so, 0 to never emit PAUSE. 502 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 503 * negotiated settings will override rx_pause/tx_pause. 504 * Otherwise rx_pause/tx_pause are applied forcibly. 505 */ 506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 508 &t4_pause_settings, 0, 509 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 510 511 /* 512 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 513 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 514 * 0 to disable FEC. 515 */ 516 static int t4_fec = -1; 517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 518 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 519 520 /* 521 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 522 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 523 * driver runs as if this is set to 0. 524 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 525 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 526 * transceiver. Multiple FEC bits may not be okay but will be passed on to 527 * the firmware anyway (may result in l1cfg errors with old firmwares). 528 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 529 * means set all FEC bits that are valid for the speed. 530 */ 531 static int t4_force_fec = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 533 "Controls the use of FORCE_FEC bit in L1 configuration."); 534 535 /* 536 * Link autonegotiation. 537 * -1 to run with the firmware default. 538 * 0 to disable. 539 * 1 to enable. 540 */ 541 static int t4_autoneg = -1; 542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 543 "Link autonegotiation"); 544 545 /* 546 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 547 * encouraged respectively). '-n' is the same as 'n' except the firmware 548 * version used in the checks is read from the firmware bundled with the driver. 549 */ 550 static int t4_fw_install = 1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 552 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 553 554 /* 555 * ASIC features that will be used. Disable the ones you don't want so that the 556 * chip resources aren't wasted on features that will not be used. 557 */ 558 static int t4_nbmcaps_allowed = 0; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 560 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 561 562 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 564 &t4_linkcaps_allowed, 0, "Default link capabilities"); 565 566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 567 FW_CAPS_CONFIG_SWITCH_EGRESS; 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 569 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 570 571 #ifdef RATELIMIT 572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 573 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 574 #else 575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 576 FW_CAPS_CONFIG_NIC_HASHFILTER; 577 #endif 578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 579 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 580 581 static int t4_toecaps_allowed = -1; 582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 583 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 584 585 static int t4_rdmacaps_allowed = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 587 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 588 589 static int t4_cryptocaps_allowed = -1; 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 591 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 592 593 static int t4_iscsicaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 595 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 596 597 static int t4_fcoecaps_allowed = 0; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 599 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 600 601 static int t5_write_combine = 0; 602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 603 0, "Use WC instead of UC for BAR2"); 604 605 static int t4_num_vis = 1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 607 "Number of VIs per port"); 608 609 /* 610 * PCIe Relaxed Ordering. 611 * -1: driver should figure out a good value. 612 * 0: disable RO. 613 * 1: enable RO. 614 * 2: leave RO alone. 615 */ 616 static int pcie_relaxed_ordering = -1; 617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 618 &pcie_relaxed_ordering, 0, 619 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 620 621 static int t4_panic_on_fatal_err = 0; 622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 623 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 624 625 static int t4_reset_on_fatal_err = 0; 626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 627 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 628 629 static int t4_tx_vm_wr = 0; 630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 631 "Use VM work requests to transmit packets."); 632 633 /* 634 * Set to non-zero to enable the attack filter. A packet that matches any of 635 * these conditions will get dropped on ingress: 636 * 1) IP && source address == destination address. 637 * 2) TCP/IP && source address is not a unicast address. 638 * 3) TCP/IP && destination address is not a unicast address. 639 * 4) IP && source address is loopback (127.x.y.z). 640 * 5) IP && destination address is loopback (127.x.y.z). 641 * 6) IPv6 && source address == destination address. 642 * 7) IPv6 && source address is not a unicast address. 643 * 8) IPv6 && source address is loopback (::1/128). 644 * 9) IPv6 && destination address is loopback (::1/128). 645 * 10) IPv6 && source address is unspecified (::/128). 646 * 11) IPv6 && destination address is unspecified (::/128). 647 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 648 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 649 */ 650 static int t4_attack_filter = 0; 651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 652 &t4_attack_filter, 0, "Drop suspicious traffic"); 653 654 static int t4_drop_ip_fragments = 0; 655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 656 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 657 658 static int t4_drop_pkts_with_l2_errors = 1; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l2_errors, 0, 661 "Drop all frames with Layer 2 length or checksum errors"); 662 663 static int t4_drop_pkts_with_l3_errors = 0; 664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 665 &t4_drop_pkts_with_l3_errors, 0, 666 "Drop all frames with IP version, length, or checksum errors"); 667 668 static int t4_drop_pkts_with_l4_errors = 0; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 670 &t4_drop_pkts_with_l4_errors, 0, 671 "Drop all frames with Layer 4 length, checksum, or other errors"); 672 673 #ifdef TCP_OFFLOAD 674 /* 675 * TOE tunables. 676 */ 677 static int t4_cop_managed_offloading = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 679 &t4_cop_managed_offloading, 0, 680 "COP (Connection Offload Policy) controls all TOE offload"); 681 #endif 682 683 #ifdef KERN_TLS 684 /* 685 * This enables KERN_TLS for all adapters if set. 686 */ 687 static int t4_kern_tls = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 689 "Enable KERN_TLS mode for all supported adapters"); 690 691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 692 "cxgbe(4) KERN_TLS parameters"); 693 694 static int t4_tls_inline_keys = 0; 695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 696 &t4_tls_inline_keys, 0, 697 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 698 "in card memory."); 699 700 static int t4_tls_combo_wrs = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 702 0, "Attempt to combine TCB field updates with TLS record work requests."); 703 #endif 704 705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 706 static int vi_mac_funcs[] = { 707 FW_VI_FUNC_ETH, 708 FW_VI_FUNC_OFLD, 709 FW_VI_FUNC_IWARP, 710 FW_VI_FUNC_OPENISCSI, 711 FW_VI_FUNC_OPENFCOE, 712 FW_VI_FUNC_FOISCSI, 713 FW_VI_FUNC_FOFCOE, 714 }; 715 716 struct intrs_and_queues { 717 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 718 uint16_t num_vis; /* number of VIs for each port */ 719 uint16_t nirq; /* Total # of vectors */ 720 uint16_t ntxq; /* # of NIC txq's for each port */ 721 uint16_t nrxq; /* # of NIC rxq's for each port */ 722 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 723 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 724 uint16_t nnmtxq; /* # of netmap txq's */ 725 uint16_t nnmrxq; /* # of netmap rxq's */ 726 727 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 728 uint16_t ntxq_vi; /* # of NIC txq's */ 729 uint16_t nrxq_vi; /* # of NIC rxq's */ 730 uint16_t nofldtxq_vi; /* # of TOE txq's */ 731 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 732 uint16_t nnmtxq_vi; /* # of netmap txq's */ 733 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 734 }; 735 736 static void setup_memwin(struct adapter *); 737 static void position_memwin(struct adapter *, int, uint32_t); 738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 739 static int fwmtype_to_hwmtype(int); 740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 741 uint32_t *); 742 static int fixup_devlog_params(struct adapter *); 743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 744 static int contact_firmware(struct adapter *); 745 static int partition_resources(struct adapter *); 746 static int get_params__pre_init(struct adapter *); 747 static int set_params__pre_init(struct adapter *); 748 static int get_params__post_init(struct adapter *); 749 static int set_params__post_init(struct adapter *); 750 static void t4_set_desc(struct adapter *); 751 static bool fixed_ifmedia(struct port_info *); 752 static void build_medialist(struct port_info *); 753 static void init_link_config(struct port_info *); 754 static int fixup_link_config(struct port_info *); 755 static int apply_link_config(struct port_info *); 756 static int cxgbe_init_synchronized(struct vi_info *); 757 static int cxgbe_uninit_synchronized(struct vi_info *); 758 static int adapter_full_init(struct adapter *); 759 static void adapter_full_uninit(struct adapter *); 760 static int vi_full_init(struct vi_info *); 761 static void vi_full_uninit(struct vi_info *); 762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 763 static void quiesce_txq(struct sge_txq *); 764 static void quiesce_wrq(struct sge_wrq *); 765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 766 static void quiesce_vi(struct vi_info *); 767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 768 driver_intr_t *, void *, char *); 769 static int t4_free_irq(struct adapter *, struct irq *); 770 static void t4_init_atid_table(struct adapter *); 771 static void t4_free_atid_table(struct adapter *); 772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 773 static void vi_refresh_stats(struct vi_info *); 774 static void cxgbe_refresh_stats(struct vi_info *); 775 static void cxgbe_tick(void *); 776 static void vi_tick(void *); 777 static void cxgbe_sysctls(struct port_info *); 778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 829 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 830 #ifdef TCP_OFFLOAD 831 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 841 #endif 842 static int get_sge_context(struct adapter *, struct t4_sge_context *); 843 static int load_fw(struct adapter *, struct t4_data *); 844 static int load_cfg(struct adapter *, struct t4_data *); 845 static int load_boot(struct adapter *, struct t4_bootrom *); 846 static int load_bootcfg(struct adapter *, struct t4_data *); 847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 848 static void free_offload_policy(struct t4_offload_policy *); 849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 851 static int read_i2c(struct adapter *, struct t4_i2c_data *); 852 static int clear_stats(struct adapter *, u_int); 853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 855 #ifdef TCP_OFFLOAD 856 static int toe_capability(struct vi_info *, bool); 857 static void t4_async_event(void *, int); 858 #endif 859 #ifdef KERN_TLS 860 static int ktls_capability(struct adapter *, bool); 861 #endif 862 static int mod_event(module_t, int, void *); 863 static int notify_siblings(device_t, int); 864 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 866 static void enable_vxlan_rx(struct adapter *); 867 static void reset_adapter(void *, int); 868 869 struct { 870 uint16_t device; 871 char *desc; 872 } t4_pciids[] = { 873 {0xa000, "Chelsio Terminator 4 FPGA"}, 874 {0x4400, "Chelsio T440-dbg"}, 875 {0x4401, "Chelsio T420-CR"}, 876 {0x4402, "Chelsio T422-CR"}, 877 {0x4403, "Chelsio T440-CR"}, 878 {0x4404, "Chelsio T420-BCH"}, 879 {0x4405, "Chelsio T440-BCH"}, 880 {0x4406, "Chelsio T440-CH"}, 881 {0x4407, "Chelsio T420-SO"}, 882 {0x4408, "Chelsio T420-CX"}, 883 {0x4409, "Chelsio T420-BT"}, 884 {0x440a, "Chelsio T404-BT"}, 885 {0x440e, "Chelsio T440-LP-CR"}, 886 }, t5_pciids[] = { 887 {0xb000, "Chelsio Terminator 5 FPGA"}, 888 {0x5400, "Chelsio T580-dbg"}, 889 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 890 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 891 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 892 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 893 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 894 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 895 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 896 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 897 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 898 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 899 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 900 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 901 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 902 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 903 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 904 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 905 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 906 907 /* Custom */ 908 {0x5483, "Custom T540-CR"}, 909 {0x5484, "Custom T540-BT"}, 910 }, t6_pciids[] = { 911 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 912 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 913 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 914 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 915 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 916 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 917 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 918 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 919 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 920 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 921 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 922 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 923 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 924 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 925 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 926 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 927 928 /* Custom */ 929 {0x6480, "Custom T6225-CR"}, 930 {0x6481, "Custom T62100-CR"}, 931 {0x6482, "Custom T6225-CR"}, 932 {0x6483, "Custom T62100-CR"}, 933 {0x6484, "Custom T64100-CR"}, 934 {0x6485, "Custom T6240-SO"}, 935 {0x6486, "Custom T6225-SO-CR"}, 936 {0x6487, "Custom T6225-CR"}, 937 }; 938 939 #ifdef TCP_OFFLOAD 940 /* 941 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 942 * be exactly the same for both rxq and ofld_rxq. 943 */ 944 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 945 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 946 #endif 947 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 948 949 static int 950 t4_probe(device_t dev) 951 { 952 int i; 953 uint16_t v = pci_get_vendor(dev); 954 uint16_t d = pci_get_device(dev); 955 uint8_t f = pci_get_function(dev); 956 957 if (v != PCI_VENDOR_ID_CHELSIO) 958 return (ENXIO); 959 960 /* Attach only to PF0 of the FPGA */ 961 if (d == 0xa000 && f != 0) 962 return (ENXIO); 963 964 for (i = 0; i < nitems(t4_pciids); i++) { 965 if (d == t4_pciids[i].device) { 966 device_set_desc(dev, t4_pciids[i].desc); 967 return (BUS_PROBE_DEFAULT); 968 } 969 } 970 971 return (ENXIO); 972 } 973 974 static int 975 t5_probe(device_t dev) 976 { 977 int i; 978 uint16_t v = pci_get_vendor(dev); 979 uint16_t d = pci_get_device(dev); 980 uint8_t f = pci_get_function(dev); 981 982 if (v != PCI_VENDOR_ID_CHELSIO) 983 return (ENXIO); 984 985 /* Attach only to PF0 of the FPGA */ 986 if (d == 0xb000 && f != 0) 987 return (ENXIO); 988 989 for (i = 0; i < nitems(t5_pciids); i++) { 990 if (d == t5_pciids[i].device) { 991 device_set_desc(dev, t5_pciids[i].desc); 992 return (BUS_PROBE_DEFAULT); 993 } 994 } 995 996 return (ENXIO); 997 } 998 999 static int 1000 t6_probe(device_t dev) 1001 { 1002 int i; 1003 uint16_t v = pci_get_vendor(dev); 1004 uint16_t d = pci_get_device(dev); 1005 1006 if (v != PCI_VENDOR_ID_CHELSIO) 1007 return (ENXIO); 1008 1009 for (i = 0; i < nitems(t6_pciids); i++) { 1010 if (d == t6_pciids[i].device) { 1011 device_set_desc(dev, t6_pciids[i].desc); 1012 return (BUS_PROBE_DEFAULT); 1013 } 1014 } 1015 1016 return (ENXIO); 1017 } 1018 1019 static void 1020 t5_attribute_workaround(device_t dev) 1021 { 1022 device_t root_port; 1023 uint32_t v; 1024 1025 /* 1026 * The T5 chips do not properly echo the No Snoop and Relaxed 1027 * Ordering attributes when replying to a TLP from a Root 1028 * Port. As a workaround, find the parent Root Port and 1029 * disable No Snoop and Relaxed Ordering. Note that this 1030 * affects all devices under this root port. 1031 */ 1032 root_port = pci_find_pcie_root_port(dev); 1033 if (root_port == NULL) { 1034 device_printf(dev, "Unable to find parent root port\n"); 1035 return; 1036 } 1037 1038 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1039 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1040 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1041 0) 1042 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1043 device_get_nameunit(root_port)); 1044 } 1045 1046 static const struct devnames devnames[] = { 1047 { 1048 .nexus_name = "t4nex", 1049 .ifnet_name = "cxgbe", 1050 .vi_ifnet_name = "vcxgbe", 1051 .pf03_drv_name = "t4iov", 1052 .vf_nexus_name = "t4vf", 1053 .vf_ifnet_name = "cxgbev" 1054 }, { 1055 .nexus_name = "t5nex", 1056 .ifnet_name = "cxl", 1057 .vi_ifnet_name = "vcxl", 1058 .pf03_drv_name = "t5iov", 1059 .vf_nexus_name = "t5vf", 1060 .vf_ifnet_name = "cxlv" 1061 }, { 1062 .nexus_name = "t6nex", 1063 .ifnet_name = "cc", 1064 .vi_ifnet_name = "vcc", 1065 .pf03_drv_name = "t6iov", 1066 .vf_nexus_name = "t6vf", 1067 .vf_ifnet_name = "ccv" 1068 } 1069 }; 1070 1071 void 1072 t4_init_devnames(struct adapter *sc) 1073 { 1074 int id; 1075 1076 id = chip_id(sc); 1077 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1078 sc->names = &devnames[id - CHELSIO_T4]; 1079 else { 1080 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1081 sc->names = NULL; 1082 } 1083 } 1084 1085 static int 1086 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1087 { 1088 const char *parent, *name; 1089 long value; 1090 int line, unit; 1091 1092 line = 0; 1093 parent = device_get_nameunit(sc->dev); 1094 name = sc->names->ifnet_name; 1095 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1096 if (resource_long_value(name, unit, "port", &value) == 0 && 1097 value == pi->port_id) 1098 return (unit); 1099 } 1100 return (-1); 1101 } 1102 1103 static int 1104 t4_attach(device_t dev) 1105 { 1106 struct adapter *sc; 1107 int rc = 0, i, j, rqidx, tqidx, nports; 1108 struct make_dev_args mda; 1109 struct intrs_and_queues iaq; 1110 struct sge *s; 1111 uint32_t *buf; 1112 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1113 int ofld_tqidx; 1114 #endif 1115 #ifdef TCP_OFFLOAD 1116 int ofld_rqidx; 1117 #endif 1118 #ifdef DEV_NETMAP 1119 int nm_rqidx, nm_tqidx; 1120 #endif 1121 int num_vis; 1122 1123 sc = device_get_softc(dev); 1124 sc->dev = dev; 1125 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1126 1127 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1128 t5_attribute_workaround(dev); 1129 pci_enable_busmaster(dev); 1130 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1131 uint32_t v; 1132 1133 pci_set_max_read_req(dev, 4096); 1134 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1135 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1136 if (pcie_relaxed_ordering == 0 && 1137 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1138 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1139 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1140 } else if (pcie_relaxed_ordering == 1 && 1141 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1142 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1143 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1144 } 1145 } 1146 1147 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1148 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1149 sc->traceq = -1; 1150 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1151 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1152 device_get_nameunit(dev)); 1153 1154 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1155 device_get_nameunit(dev)); 1156 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1157 t4_add_adapter(sc); 1158 1159 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1160 TAILQ_INIT(&sc->sfl); 1161 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1162 1163 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1164 1165 sc->policy = NULL; 1166 rw_init(&sc->policy_lock, "connection offload policy"); 1167 1168 callout_init(&sc->ktls_tick, 1); 1169 1170 #ifdef TCP_OFFLOAD 1171 TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc); 1172 #endif 1173 1174 refcount_init(&sc->vxlan_refcount, 0); 1175 1176 TASK_INIT(&sc->reset_task, 0, reset_adapter, sc); 1177 1178 sc->ctrlq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1179 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1180 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1181 sc->fwq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1182 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1183 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1184 1185 rc = t4_map_bars_0_and_4(sc); 1186 if (rc != 0) 1187 goto done; /* error message displayed already */ 1188 1189 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1190 1191 /* Prepare the adapter for operation. */ 1192 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1193 rc = -t4_prep_adapter(sc, buf); 1194 free(buf, M_CXGBE); 1195 if (rc != 0) { 1196 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1197 goto done; 1198 } 1199 1200 /* 1201 * This is the real PF# to which we're attaching. Works from within PCI 1202 * passthrough environments too, where pci_get_function() could return a 1203 * different PF# depending on the passthrough configuration. We need to 1204 * use the real PF# in all our communication with the firmware. 1205 */ 1206 j = t4_read_reg(sc, A_PL_WHOAMI); 1207 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1208 sc->mbox = sc->pf; 1209 1210 t4_init_devnames(sc); 1211 if (sc->names == NULL) { 1212 rc = ENOTSUP; 1213 goto done; /* error message displayed already */ 1214 } 1215 1216 /* 1217 * Do this really early, with the memory windows set up even before the 1218 * character device. The userland tool's register i/o and mem read 1219 * will work even in "recovery mode". 1220 */ 1221 setup_memwin(sc); 1222 if (t4_init_devlog_params(sc, 0) == 0) 1223 fixup_devlog_params(sc); 1224 make_dev_args_init(&mda); 1225 mda.mda_devsw = &t4_cdevsw; 1226 mda.mda_uid = UID_ROOT; 1227 mda.mda_gid = GID_WHEEL; 1228 mda.mda_mode = 0600; 1229 mda.mda_si_drv1 = sc; 1230 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1231 if (rc != 0) 1232 device_printf(dev, "failed to create nexus char device: %d.\n", 1233 rc); 1234 1235 /* Go no further if recovery mode has been requested. */ 1236 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1237 device_printf(dev, "recovery mode.\n"); 1238 goto done; 1239 } 1240 1241 #if defined(__i386__) 1242 if ((cpu_feature & CPUID_CX8) == 0) { 1243 device_printf(dev, "64 bit atomics not available.\n"); 1244 rc = ENOTSUP; 1245 goto done; 1246 } 1247 #endif 1248 1249 /* Contact the firmware and try to become the master driver. */ 1250 rc = contact_firmware(sc); 1251 if (rc != 0) 1252 goto done; /* error message displayed already */ 1253 MPASS(sc->flags & FW_OK); 1254 1255 rc = get_params__pre_init(sc); 1256 if (rc != 0) 1257 goto done; /* error message displayed already */ 1258 1259 if (sc->flags & MASTER_PF) { 1260 rc = partition_resources(sc); 1261 if (rc != 0) 1262 goto done; /* error message displayed already */ 1263 t4_intr_clear(sc); 1264 } 1265 1266 rc = get_params__post_init(sc); 1267 if (rc != 0) 1268 goto done; /* error message displayed already */ 1269 1270 rc = set_params__post_init(sc); 1271 if (rc != 0) 1272 goto done; /* error message displayed already */ 1273 1274 rc = t4_map_bar_2(sc); 1275 if (rc != 0) 1276 goto done; /* error message displayed already */ 1277 1278 rc = t4_create_dma_tag(sc); 1279 if (rc != 0) 1280 goto done; /* error message displayed already */ 1281 1282 /* 1283 * First pass over all the ports - allocate VIs and initialize some 1284 * basic parameters like mac address, port type, etc. 1285 */ 1286 for_each_port(sc, i) { 1287 struct port_info *pi; 1288 1289 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1290 sc->port[i] = pi; 1291 1292 /* These must be set before t4_port_init */ 1293 pi->adapter = sc; 1294 pi->port_id = i; 1295 /* 1296 * XXX: vi[0] is special so we can't delay this allocation until 1297 * pi->nvi's final value is known. 1298 */ 1299 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1300 M_ZERO | M_WAITOK); 1301 1302 /* 1303 * Allocate the "main" VI and initialize parameters 1304 * like mac addr. 1305 */ 1306 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1307 if (rc != 0) { 1308 device_printf(dev, "unable to initialize port %d: %d\n", 1309 i, rc); 1310 free(pi->vi, M_CXGBE); 1311 free(pi, M_CXGBE); 1312 sc->port[i] = NULL; 1313 goto done; 1314 } 1315 1316 if (is_bt(pi->port_type)) 1317 setbit(&sc->bt_map, pi->tx_chan); 1318 else 1319 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1320 1321 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1322 device_get_nameunit(dev), i); 1323 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1324 sc->chan_map[pi->tx_chan] = i; 1325 1326 /* 1327 * The MPS counter for FCS errors doesn't work correctly on the 1328 * T6 so we use the MAC counter here. Which MAC is in use 1329 * depends on the link settings which will be known when the 1330 * link comes up. 1331 */ 1332 if (is_t6(sc)) { 1333 pi->fcs_reg = -1; 1334 } else if (is_t4(sc)) { 1335 pi->fcs_reg = PORT_REG(pi->tx_chan, 1336 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1337 } else { 1338 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1339 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1340 } 1341 pi->fcs_base = 0; 1342 1343 /* All VIs on this port share this media. */ 1344 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1345 cxgbe_media_status); 1346 1347 PORT_LOCK(pi); 1348 init_link_config(pi); 1349 fixup_link_config(pi); 1350 build_medialist(pi); 1351 if (fixed_ifmedia(pi)) 1352 pi->flags |= FIXED_IFMEDIA; 1353 PORT_UNLOCK(pi); 1354 1355 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1356 t4_ifnet_unit(sc, pi)); 1357 if (pi->dev == NULL) { 1358 device_printf(dev, 1359 "failed to add device for port %d.\n", i); 1360 rc = ENXIO; 1361 goto done; 1362 } 1363 pi->vi[0].dev = pi->dev; 1364 device_set_softc(pi->dev, pi); 1365 } 1366 1367 /* 1368 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1369 */ 1370 nports = sc->params.nports; 1371 rc = cfg_itype_and_nqueues(sc, &iaq); 1372 if (rc != 0) 1373 goto done; /* error message displayed already */ 1374 1375 num_vis = iaq.num_vis; 1376 sc->intr_type = iaq.intr_type; 1377 sc->intr_count = iaq.nirq; 1378 1379 s = &sc->sge; 1380 s->nrxq = nports * iaq.nrxq; 1381 s->ntxq = nports * iaq.ntxq; 1382 if (num_vis > 1) { 1383 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1384 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1385 } 1386 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1387 s->neq += nports; /* ctrl queues: 1 per port */ 1388 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1389 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1390 if (is_offload(sc) || is_ethoffload(sc)) { 1391 s->nofldtxq = nports * iaq.nofldtxq; 1392 if (num_vis > 1) 1393 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1394 s->neq += s->nofldtxq; 1395 1396 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1397 M_CXGBE, M_ZERO | M_WAITOK); 1398 } 1399 #endif 1400 #ifdef TCP_OFFLOAD 1401 if (is_offload(sc)) { 1402 s->nofldrxq = nports * iaq.nofldrxq; 1403 if (num_vis > 1) 1404 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1405 s->neq += s->nofldrxq; /* free list */ 1406 s->niq += s->nofldrxq; 1407 1408 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1409 M_CXGBE, M_ZERO | M_WAITOK); 1410 } 1411 #endif 1412 #ifdef DEV_NETMAP 1413 s->nnmrxq = 0; 1414 s->nnmtxq = 0; 1415 if (t4_native_netmap & NN_MAIN_VI) { 1416 s->nnmrxq += nports * iaq.nnmrxq; 1417 s->nnmtxq += nports * iaq.nnmtxq; 1418 } 1419 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1420 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1421 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1422 } 1423 s->neq += s->nnmtxq + s->nnmrxq; 1424 s->niq += s->nnmrxq; 1425 1426 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1427 M_CXGBE, M_ZERO | M_WAITOK); 1428 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1429 M_CXGBE, M_ZERO | M_WAITOK); 1430 #endif 1431 MPASS(s->niq <= s->iqmap_sz); 1432 MPASS(s->neq <= s->eqmap_sz); 1433 1434 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1435 M_ZERO | M_WAITOK); 1436 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1437 M_ZERO | M_WAITOK); 1438 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1439 M_ZERO | M_WAITOK); 1440 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1441 M_ZERO | M_WAITOK); 1442 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1443 M_ZERO | M_WAITOK); 1444 1445 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1446 M_ZERO | M_WAITOK); 1447 1448 t4_init_l2t(sc, M_WAITOK); 1449 t4_init_smt(sc, M_WAITOK); 1450 t4_init_tx_sched(sc); 1451 t4_init_atid_table(sc); 1452 #ifdef RATELIMIT 1453 t4_init_etid_table(sc); 1454 #endif 1455 #ifdef INET6 1456 t4_init_clip_table(sc); 1457 #endif 1458 if (sc->vres.key.size != 0) 1459 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1460 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1461 1462 /* 1463 * Second pass over the ports. This time we know the number of rx and 1464 * tx queues that each port should get. 1465 */ 1466 rqidx = tqidx = 0; 1467 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1468 ofld_tqidx = 0; 1469 #endif 1470 #ifdef TCP_OFFLOAD 1471 ofld_rqidx = 0; 1472 #endif 1473 #ifdef DEV_NETMAP 1474 nm_rqidx = nm_tqidx = 0; 1475 #endif 1476 for_each_port(sc, i) { 1477 struct port_info *pi = sc->port[i]; 1478 struct vi_info *vi; 1479 1480 if (pi == NULL) 1481 continue; 1482 1483 pi->nvi = num_vis; 1484 for_each_vi(pi, j, vi) { 1485 vi->pi = pi; 1486 vi->adapter = sc; 1487 vi->first_intr = -1; 1488 vi->qsize_rxq = t4_qsize_rxq; 1489 vi->qsize_txq = t4_qsize_txq; 1490 1491 vi->first_rxq = rqidx; 1492 vi->first_txq = tqidx; 1493 vi->tmr_idx = t4_tmr_idx; 1494 vi->pktc_idx = t4_pktc_idx; 1495 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1496 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1497 1498 rqidx += vi->nrxq; 1499 tqidx += vi->ntxq; 1500 1501 if (j == 0 && vi->ntxq > 1) 1502 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1503 else 1504 vi->rsrv_noflowq = 0; 1505 1506 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1507 vi->first_ofld_txq = ofld_tqidx; 1508 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1509 ofld_tqidx += vi->nofldtxq; 1510 #endif 1511 #ifdef TCP_OFFLOAD 1512 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1513 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1514 vi->first_ofld_rxq = ofld_rqidx; 1515 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1516 1517 ofld_rqidx += vi->nofldrxq; 1518 #endif 1519 #ifdef DEV_NETMAP 1520 vi->first_nm_rxq = nm_rqidx; 1521 vi->first_nm_txq = nm_tqidx; 1522 if (j == 0) { 1523 vi->nnmrxq = iaq.nnmrxq; 1524 vi->nnmtxq = iaq.nnmtxq; 1525 } else { 1526 vi->nnmrxq = iaq.nnmrxq_vi; 1527 vi->nnmtxq = iaq.nnmtxq_vi; 1528 } 1529 nm_rqidx += vi->nnmrxq; 1530 nm_tqidx += vi->nnmtxq; 1531 #endif 1532 } 1533 } 1534 1535 rc = t4_setup_intr_handlers(sc); 1536 if (rc != 0) { 1537 device_printf(dev, 1538 "failed to setup interrupt handlers: %d\n", rc); 1539 goto done; 1540 } 1541 1542 rc = bus_generic_probe(dev); 1543 if (rc != 0) { 1544 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1545 goto done; 1546 } 1547 1548 /* 1549 * Ensure thread-safe mailbox access (in debug builds). 1550 * 1551 * So far this was the only thread accessing the mailbox but various 1552 * ifnets and sysctls are about to be created and their handlers/ioctls 1553 * will access the mailbox from different threads. 1554 */ 1555 sc->flags |= CHK_MBOX_ACCESS; 1556 1557 rc = bus_generic_attach(dev); 1558 if (rc != 0) { 1559 device_printf(dev, 1560 "failed to attach all child ports: %d\n", rc); 1561 goto done; 1562 } 1563 1564 device_printf(dev, 1565 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1566 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1567 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1568 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1569 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1570 1571 t4_set_desc(sc); 1572 1573 notify_siblings(dev, 0); 1574 1575 done: 1576 if (rc != 0 && sc->cdev) { 1577 /* cdev was created and so cxgbetool works; recover that way. */ 1578 device_printf(dev, 1579 "error during attach, adapter is now in recovery mode.\n"); 1580 rc = 0; 1581 } 1582 1583 if (rc != 0) 1584 t4_detach_common(dev); 1585 else 1586 t4_sysctls(sc); 1587 1588 return (rc); 1589 } 1590 1591 static int 1592 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1593 { 1594 struct adapter *sc; 1595 struct port_info *pi; 1596 int i; 1597 1598 sc = device_get_softc(bus); 1599 for_each_port(sc, i) { 1600 pi = sc->port[i]; 1601 if (pi != NULL && pi->dev == dev) { 1602 sbuf_printf(sb, "port=%d", pi->port_id); 1603 break; 1604 } 1605 } 1606 return (0); 1607 } 1608 1609 static int 1610 t4_ready(device_t dev) 1611 { 1612 struct adapter *sc; 1613 1614 sc = device_get_softc(dev); 1615 if (sc->flags & FW_OK) 1616 return (0); 1617 return (ENXIO); 1618 } 1619 1620 static int 1621 t4_read_port_device(device_t dev, int port, device_t *child) 1622 { 1623 struct adapter *sc; 1624 struct port_info *pi; 1625 1626 sc = device_get_softc(dev); 1627 if (port < 0 || port >= MAX_NPORTS) 1628 return (EINVAL); 1629 pi = sc->port[port]; 1630 if (pi == NULL || pi->dev == NULL) 1631 return (ENXIO); 1632 *child = pi->dev; 1633 return (0); 1634 } 1635 1636 static int 1637 notify_siblings(device_t dev, int detaching) 1638 { 1639 device_t sibling; 1640 int error, i; 1641 1642 error = 0; 1643 for (i = 0; i < PCI_FUNCMAX; i++) { 1644 if (i == pci_get_function(dev)) 1645 continue; 1646 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1647 pci_get_slot(dev), i); 1648 if (sibling == NULL || !device_is_attached(sibling)) 1649 continue; 1650 if (detaching) 1651 error = T4_DETACH_CHILD(sibling); 1652 else 1653 (void)T4_ATTACH_CHILD(sibling); 1654 if (error) 1655 break; 1656 } 1657 return (error); 1658 } 1659 1660 /* 1661 * Idempotent 1662 */ 1663 static int 1664 t4_detach(device_t dev) 1665 { 1666 int rc; 1667 1668 rc = notify_siblings(dev, 1); 1669 if (rc) { 1670 device_printf(dev, 1671 "failed to detach sibling devices: %d\n", rc); 1672 return (rc); 1673 } 1674 1675 return (t4_detach_common(dev)); 1676 } 1677 1678 int 1679 t4_detach_common(device_t dev) 1680 { 1681 struct adapter *sc; 1682 struct port_info *pi; 1683 int i, rc; 1684 1685 sc = device_get_softc(dev); 1686 1687 if (sc->cdev) { 1688 destroy_dev(sc->cdev); 1689 sc->cdev = NULL; 1690 } 1691 1692 sx_xlock(&t4_list_lock); 1693 SLIST_REMOVE(&t4_list, sc, adapter, link); 1694 sx_xunlock(&t4_list_lock); 1695 1696 sc->flags &= ~CHK_MBOX_ACCESS; 1697 if (sc->flags & FULL_INIT_DONE) { 1698 if (!(sc->flags & IS_VF)) 1699 t4_intr_disable(sc); 1700 } 1701 1702 if (device_is_attached(dev)) { 1703 rc = bus_generic_detach(dev); 1704 if (rc) { 1705 device_printf(dev, 1706 "failed to detach child devices: %d\n", rc); 1707 return (rc); 1708 } 1709 } 1710 1711 #ifdef TCP_OFFLOAD 1712 taskqueue_drain(taskqueue_thread, &sc->async_event_task); 1713 #endif 1714 1715 for (i = 0; i < sc->intr_count; i++) 1716 t4_free_irq(sc, &sc->irq[i]); 1717 1718 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1719 t4_free_tx_sched(sc); 1720 1721 for (i = 0; i < MAX_NPORTS; i++) { 1722 pi = sc->port[i]; 1723 if (pi) { 1724 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1725 if (pi->dev) 1726 device_delete_child(dev, pi->dev); 1727 1728 mtx_destroy(&pi->pi_lock); 1729 free(pi->vi, M_CXGBE); 1730 free(pi, M_CXGBE); 1731 } 1732 } 1733 1734 device_delete_children(dev); 1735 adapter_full_uninit(sc); 1736 1737 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1738 t4_fw_bye(sc, sc->mbox); 1739 1740 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1741 pci_release_msi(dev); 1742 1743 if (sc->regs_res) 1744 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1745 sc->regs_res); 1746 1747 if (sc->udbs_res) 1748 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1749 sc->udbs_res); 1750 1751 if (sc->msix_res) 1752 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1753 sc->msix_res); 1754 1755 if (sc->l2t) 1756 t4_free_l2t(sc->l2t); 1757 if (sc->smt) 1758 t4_free_smt(sc->smt); 1759 t4_free_atid_table(sc); 1760 #ifdef RATELIMIT 1761 t4_free_etid_table(sc); 1762 #endif 1763 if (sc->key_map) 1764 vmem_destroy(sc->key_map); 1765 #ifdef INET6 1766 t4_destroy_clip_table(sc); 1767 #endif 1768 1769 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1770 free(sc->sge.ofld_txq, M_CXGBE); 1771 #endif 1772 #ifdef TCP_OFFLOAD 1773 free(sc->sge.ofld_rxq, M_CXGBE); 1774 #endif 1775 #ifdef DEV_NETMAP 1776 free(sc->sge.nm_rxq, M_CXGBE); 1777 free(sc->sge.nm_txq, M_CXGBE); 1778 #endif 1779 free(sc->irq, M_CXGBE); 1780 free(sc->sge.rxq, M_CXGBE); 1781 free(sc->sge.txq, M_CXGBE); 1782 free(sc->sge.ctrlq, M_CXGBE); 1783 free(sc->sge.iqmap, M_CXGBE); 1784 free(sc->sge.eqmap, M_CXGBE); 1785 free(sc->tids.ftid_tab, M_CXGBE); 1786 free(sc->tids.hpftid_tab, M_CXGBE); 1787 free_hftid_hash(&sc->tids); 1788 free(sc->tids.tid_tab, M_CXGBE); 1789 free(sc->tt.tls_rx_ports, M_CXGBE); 1790 t4_destroy_dma_tag(sc); 1791 1792 callout_drain(&sc->ktls_tick); 1793 callout_drain(&sc->sfl_callout); 1794 if (mtx_initialized(&sc->tids.ftid_lock)) { 1795 mtx_destroy(&sc->tids.ftid_lock); 1796 cv_destroy(&sc->tids.ftid_cv); 1797 } 1798 if (mtx_initialized(&sc->tids.atid_lock)) 1799 mtx_destroy(&sc->tids.atid_lock); 1800 if (mtx_initialized(&sc->ifp_lock)) 1801 mtx_destroy(&sc->ifp_lock); 1802 1803 if (rw_initialized(&sc->policy_lock)) { 1804 rw_destroy(&sc->policy_lock); 1805 #ifdef TCP_OFFLOAD 1806 if (sc->policy != NULL) 1807 free_offload_policy(sc->policy); 1808 #endif 1809 } 1810 1811 for (i = 0; i < NUM_MEMWIN; i++) { 1812 struct memwin *mw = &sc->memwin[i]; 1813 1814 if (rw_initialized(&mw->mw_lock)) 1815 rw_destroy(&mw->mw_lock); 1816 } 1817 1818 mtx_destroy(&sc->sfl_lock); 1819 mtx_destroy(&sc->reg_lock); 1820 mtx_destroy(&sc->sc_lock); 1821 1822 bzero(sc, sizeof(*sc)); 1823 1824 return (0); 1825 } 1826 1827 static inline bool 1828 ok_to_reset(struct adapter *sc) 1829 { 1830 struct tid_info *t = &sc->tids; 1831 struct port_info *pi; 1832 struct vi_info *vi; 1833 int i, j; 1834 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1835 1836 ASSERT_SYNCHRONIZED_OP(sc); 1837 MPASS(!(sc->flags & IS_VF)); 1838 1839 for_each_port(sc, i) { 1840 pi = sc->port[i]; 1841 for_each_vi(pi, j, vi) { 1842 if (vi->ifp->if_capenable & caps) 1843 return (false); 1844 } 1845 } 1846 1847 if (atomic_load_int(&t->tids_in_use) > 0) 1848 return (false); 1849 if (atomic_load_int(&t->stids_in_use) > 0) 1850 return (false); 1851 if (atomic_load_int(&t->atids_in_use) > 0) 1852 return (false); 1853 if (atomic_load_int(&t->ftids_in_use) > 0) 1854 return (false); 1855 if (atomic_load_int(&t->hpftids_in_use) > 0) 1856 return (false); 1857 if (atomic_load_int(&t->etids_in_use) > 0) 1858 return (false); 1859 1860 return (true); 1861 } 1862 1863 static int 1864 t4_suspend(device_t dev) 1865 { 1866 struct adapter *sc = device_get_softc(dev); 1867 struct port_info *pi; 1868 struct vi_info *vi; 1869 struct ifnet *ifp; 1870 struct sge_rxq *rxq; 1871 struct sge_txq *txq; 1872 struct sge_wrq *wrq; 1873 #ifdef TCP_OFFLOAD 1874 struct sge_ofld_rxq *ofld_rxq; 1875 #endif 1876 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1877 struct sge_ofld_txq *ofld_txq; 1878 #endif 1879 int rc, i, j, k; 1880 1881 CH_ALERT(sc, "suspend requested\n"); 1882 1883 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1884 if (rc != 0) 1885 return (ENXIO); 1886 1887 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1888 MPASS(!hw_off_limits(sc)); 1889 1890 if (!ok_to_reset(sc)) { 1891 /* XXX: should list what resource is preventing suspend. */ 1892 CH_ERR(sc, "not safe to suspend.\n"); 1893 rc = EBUSY; 1894 goto done; 1895 } 1896 1897 /* No more DMA or interrupts. */ 1898 t4_shutdown_adapter(sc); 1899 1900 /* Quiesce all activity. */ 1901 for_each_port(sc, i) { 1902 pi = sc->port[i]; 1903 pi->vxlan_tcam_entry = false; 1904 1905 PORT_LOCK(pi); 1906 if (pi->up_vis > 0) { 1907 /* 1908 * t4_shutdown_adapter has already shut down all the 1909 * PHYs but it also disables interrupts and DMA so there 1910 * won't be a link interrupt. So we update the state 1911 * manually and inform the kernel. 1912 */ 1913 pi->link_cfg.link_ok = false; 1914 t4_os_link_changed(pi); 1915 } 1916 PORT_UNLOCK(pi); 1917 1918 for_each_vi(pi, j, vi) { 1919 vi->xact_addr_filt = -1; 1920 if (!(vi->flags & VI_INIT_DONE)) 1921 continue; 1922 1923 ifp = vi->ifp; 1924 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1925 mtx_lock(&vi->tick_mtx); 1926 vi->flags |= VI_SKIP_STATS; 1927 callout_stop(&vi->tick); 1928 mtx_unlock(&vi->tick_mtx); 1929 callout_drain(&vi->tick); 1930 } 1931 1932 /* 1933 * Note that the HW is not available. 1934 */ 1935 for_each_txq(vi, k, txq) { 1936 TXQ_LOCK(txq); 1937 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1938 TXQ_UNLOCK(txq); 1939 } 1940 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1941 for_each_ofld_txq(vi, k, ofld_txq) { 1942 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1943 } 1944 #endif 1945 for_each_rxq(vi, k, rxq) { 1946 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1947 } 1948 #if defined(TCP_OFFLOAD) 1949 for_each_ofld_rxq(vi, k, ofld_rxq) { 1950 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1951 } 1952 #endif 1953 1954 quiesce_vi(vi); 1955 } 1956 1957 if (sc->flags & FULL_INIT_DONE) { 1958 /* Control queue */ 1959 wrq = &sc->sge.ctrlq[i]; 1960 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1961 quiesce_wrq(wrq); 1962 } 1963 } 1964 if (sc->flags & FULL_INIT_DONE) { 1965 /* Firmware event queue */ 1966 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1967 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1968 } 1969 1970 /* Mark the adapter totally off limits. */ 1971 mtx_lock(&sc->reg_lock); 1972 sc->flags |= HW_OFF_LIMITS; 1973 sc->flags &= ~(FW_OK | MASTER_PF); 1974 sc->reset_thread = NULL; 1975 mtx_unlock(&sc->reg_lock); 1976 1977 sc->num_resets++; 1978 CH_ALERT(sc, "suspend completed.\n"); 1979 done: 1980 end_synchronized_op(sc, 0); 1981 return (rc); 1982 } 1983 1984 struct adapter_pre_reset_state { 1985 u_int flags; 1986 uint16_t nbmcaps; 1987 uint16_t linkcaps; 1988 uint16_t switchcaps; 1989 uint16_t niccaps; 1990 uint16_t toecaps; 1991 uint16_t rdmacaps; 1992 uint16_t cryptocaps; 1993 uint16_t iscsicaps; 1994 uint16_t fcoecaps; 1995 1996 u_int cfcsum; 1997 char cfg_file[32]; 1998 1999 struct adapter_params params; 2000 struct t4_virt_res vres; 2001 struct tid_info tids; 2002 struct sge sge; 2003 2004 int rawf_base; 2005 int nrawf; 2006 2007 }; 2008 2009 static void 2010 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2011 { 2012 2013 ASSERT_SYNCHRONIZED_OP(sc); 2014 2015 o->flags = sc->flags; 2016 2017 o->nbmcaps = sc->nbmcaps; 2018 o->linkcaps = sc->linkcaps; 2019 o->switchcaps = sc->switchcaps; 2020 o->niccaps = sc->niccaps; 2021 o->toecaps = sc->toecaps; 2022 o->rdmacaps = sc->rdmacaps; 2023 o->cryptocaps = sc->cryptocaps; 2024 o->iscsicaps = sc->iscsicaps; 2025 o->fcoecaps = sc->fcoecaps; 2026 2027 o->cfcsum = sc->cfcsum; 2028 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2029 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2030 2031 o->params = sc->params; 2032 o->vres = sc->vres; 2033 o->tids = sc->tids; 2034 o->sge = sc->sge; 2035 2036 o->rawf_base = sc->rawf_base; 2037 o->nrawf = sc->nrawf; 2038 } 2039 2040 static int 2041 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2042 { 2043 int rc = 0; 2044 2045 ASSERT_SYNCHRONIZED_OP(sc); 2046 2047 /* Capabilities */ 2048 #define COMPARE_CAPS(c) do { \ 2049 if (o->c##caps != sc->c##caps) { \ 2050 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2051 sc->c##caps); \ 2052 rc = EINVAL; \ 2053 } \ 2054 } while (0) 2055 COMPARE_CAPS(nbm); 2056 COMPARE_CAPS(link); 2057 COMPARE_CAPS(switch); 2058 COMPARE_CAPS(nic); 2059 COMPARE_CAPS(toe); 2060 COMPARE_CAPS(rdma); 2061 COMPARE_CAPS(crypto); 2062 COMPARE_CAPS(iscsi); 2063 COMPARE_CAPS(fcoe); 2064 #undef COMPARE_CAPS 2065 2066 /* Firmware config file */ 2067 if (o->cfcsum != sc->cfcsum) { 2068 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2069 o->cfcsum, sc->cfg_file, sc->cfcsum); 2070 rc = EINVAL; 2071 } 2072 2073 #define COMPARE_PARAM(p, name) do { \ 2074 if (o->p != sc->p) { \ 2075 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2076 rc = EINVAL; \ 2077 } \ 2078 } while (0) 2079 COMPARE_PARAM(sge.iq_start, iq_start); 2080 COMPARE_PARAM(sge.eq_start, eq_start); 2081 COMPARE_PARAM(tids.ftid_base, ftid_base); 2082 COMPARE_PARAM(tids.ftid_end, ftid_end); 2083 COMPARE_PARAM(tids.nftids, nftids); 2084 COMPARE_PARAM(vres.l2t.start, l2t_start); 2085 COMPARE_PARAM(vres.l2t.size, l2t_size); 2086 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2087 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2088 COMPARE_PARAM(tids.tid_base, tid_base); 2089 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2090 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2091 COMPARE_PARAM(tids.nhpftids, nhpftids); 2092 COMPARE_PARAM(rawf_base, rawf_base); 2093 COMPARE_PARAM(nrawf, nrawf); 2094 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2095 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2096 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2097 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2098 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2099 COMPARE_PARAM(tids.ntids, ntids); 2100 COMPARE_PARAM(tids.etid_base, etid_base); 2101 COMPARE_PARAM(tids.etid_end, etid_end); 2102 COMPARE_PARAM(tids.netids, netids); 2103 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2104 COMPARE_PARAM(params.ethoffload, ethoffload); 2105 COMPARE_PARAM(tids.natids, natids); 2106 COMPARE_PARAM(tids.stid_base, stid_base); 2107 COMPARE_PARAM(vres.ddp.start, ddp_start); 2108 COMPARE_PARAM(vres.ddp.size, ddp_size); 2109 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2110 COMPARE_PARAM(vres.stag.start, stag_start); 2111 COMPARE_PARAM(vres.stag.size, stag_size); 2112 COMPARE_PARAM(vres.rq.start, rq_start); 2113 COMPARE_PARAM(vres.rq.size, rq_size); 2114 COMPARE_PARAM(vres.pbl.start, pbl_start); 2115 COMPARE_PARAM(vres.pbl.size, pbl_size); 2116 COMPARE_PARAM(vres.qp.start, qp_start); 2117 COMPARE_PARAM(vres.qp.size, qp_size); 2118 COMPARE_PARAM(vres.cq.start, cq_start); 2119 COMPARE_PARAM(vres.cq.size, cq_size); 2120 COMPARE_PARAM(vres.ocq.start, ocq_start); 2121 COMPARE_PARAM(vres.ocq.size, ocq_size); 2122 COMPARE_PARAM(vres.srq.start, srq_start); 2123 COMPARE_PARAM(vres.srq.size, srq_size); 2124 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2125 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2126 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2127 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2128 COMPARE_PARAM(vres.key.start, key_start); 2129 COMPARE_PARAM(vres.key.size, key_size); 2130 #undef COMPARE_PARAM 2131 2132 return (rc); 2133 } 2134 2135 static int 2136 t4_resume(device_t dev) 2137 { 2138 struct adapter *sc = device_get_softc(dev); 2139 struct adapter_pre_reset_state *old_state = NULL; 2140 struct port_info *pi; 2141 struct vi_info *vi; 2142 struct ifnet *ifp; 2143 struct sge_txq *txq; 2144 int rc, i, j, k; 2145 2146 CH_ALERT(sc, "resume requested.\n"); 2147 2148 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2149 if (rc != 0) 2150 return (ENXIO); 2151 MPASS(hw_off_limits(sc)); 2152 MPASS((sc->flags & FW_OK) == 0); 2153 MPASS((sc->flags & MASTER_PF) == 0); 2154 MPASS(sc->reset_thread == NULL); 2155 sc->reset_thread = curthread; 2156 2157 /* Register access is expected to work by the time we're here. */ 2158 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2159 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2160 rc = ENXIO; 2161 goto done; 2162 } 2163 2164 /* Restore memory window. */ 2165 setup_memwin(sc); 2166 2167 /* Go no further if recovery mode has been requested. */ 2168 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2169 CH_ALERT(sc, "recovery mode on resume.\n"); 2170 rc = 0; 2171 mtx_lock(&sc->reg_lock); 2172 sc->flags &= ~HW_OFF_LIMITS; 2173 mtx_unlock(&sc->reg_lock); 2174 goto done; 2175 } 2176 2177 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2178 save_caps_and_params(sc, old_state); 2179 2180 /* Reestablish contact with firmware and become the primary PF. */ 2181 rc = contact_firmware(sc); 2182 if (rc != 0) 2183 goto done; /* error message displayed already */ 2184 MPASS(sc->flags & FW_OK); 2185 2186 if (sc->flags & MASTER_PF) { 2187 rc = partition_resources(sc); 2188 if (rc != 0) 2189 goto done; /* error message displayed already */ 2190 t4_intr_clear(sc); 2191 } 2192 2193 rc = get_params__post_init(sc); 2194 if (rc != 0) 2195 goto done; /* error message displayed already */ 2196 2197 rc = set_params__post_init(sc); 2198 if (rc != 0) 2199 goto done; /* error message displayed already */ 2200 2201 rc = compare_caps_and_params(sc, old_state); 2202 if (rc != 0) 2203 goto done; /* error message displayed already */ 2204 2205 for_each_port(sc, i) { 2206 pi = sc->port[i]; 2207 MPASS(pi != NULL); 2208 MPASS(pi->vi != NULL); 2209 MPASS(pi->vi[0].dev == pi->dev); 2210 2211 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2212 if (rc != 0) { 2213 CH_ERR(sc, 2214 "failed to re-initialize port %d: %d\n", i, rc); 2215 goto done; 2216 } 2217 MPASS(sc->chan_map[pi->tx_chan] == i); 2218 2219 PORT_LOCK(pi); 2220 fixup_link_config(pi); 2221 build_medialist(pi); 2222 PORT_UNLOCK(pi); 2223 for_each_vi(pi, j, vi) { 2224 if (IS_MAIN_VI(vi)) 2225 continue; 2226 rc = alloc_extra_vi(sc, pi, vi); 2227 if (rc != 0) { 2228 CH_ERR(vi, 2229 "failed to re-allocate extra VI: %d\n", rc); 2230 goto done; 2231 } 2232 } 2233 } 2234 2235 /* 2236 * Interrupts and queues are about to be enabled and other threads will 2237 * want to access the hardware too. It is safe to do so. Note that 2238 * this thread is still in the middle of a synchronized_op. 2239 */ 2240 mtx_lock(&sc->reg_lock); 2241 sc->flags &= ~HW_OFF_LIMITS; 2242 mtx_unlock(&sc->reg_lock); 2243 2244 if (sc->flags & FULL_INIT_DONE) { 2245 rc = adapter_full_init(sc); 2246 if (rc != 0) { 2247 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2248 goto done; 2249 } 2250 2251 if (sc->vxlan_refcount > 0) 2252 enable_vxlan_rx(sc); 2253 2254 for_each_port(sc, i) { 2255 pi = sc->port[i]; 2256 for_each_vi(pi, j, vi) { 2257 if (!(vi->flags & VI_INIT_DONE)) 2258 continue; 2259 rc = vi_full_init(vi); 2260 if (rc != 0) { 2261 CH_ERR(vi, "failed to re-initialize " 2262 "interface: %d\n", rc); 2263 goto done; 2264 } 2265 2266 ifp = vi->ifp; 2267 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2268 continue; 2269 /* 2270 * Note that we do not setup multicast addresses 2271 * in the first pass. This ensures that the 2272 * unicast DMACs for all VIs on all ports get an 2273 * MPS TCAM entry. 2274 */ 2275 rc = update_mac_settings(ifp, XGMAC_ALL & 2276 ~XGMAC_MCADDRS); 2277 if (rc != 0) { 2278 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2279 goto done; 2280 } 2281 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2282 true); 2283 if (rc != 0) { 2284 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2285 goto done; 2286 } 2287 for_each_txq(vi, k, txq) { 2288 TXQ_LOCK(txq); 2289 txq->eq.flags |= EQ_ENABLED; 2290 TXQ_UNLOCK(txq); 2291 } 2292 mtx_lock(&vi->tick_mtx); 2293 vi->flags &= ~VI_SKIP_STATS; 2294 callout_schedule(&vi->tick, hz); 2295 mtx_unlock(&vi->tick_mtx); 2296 } 2297 PORT_LOCK(pi); 2298 if (pi->up_vis > 0) { 2299 t4_update_port_info(pi); 2300 fixup_link_config(pi); 2301 build_medialist(pi); 2302 apply_link_config(pi); 2303 if (pi->link_cfg.link_ok) 2304 t4_os_link_changed(pi); 2305 } 2306 PORT_UNLOCK(pi); 2307 } 2308 2309 /* Now reprogram the L2 multicast addresses. */ 2310 for_each_port(sc, i) { 2311 pi = sc->port[i]; 2312 for_each_vi(pi, j, vi) { 2313 if (!(vi->flags & VI_INIT_DONE)) 2314 continue; 2315 ifp = vi->ifp; 2316 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2317 continue; 2318 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2319 if (rc != 0) { 2320 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2321 rc = 0; /* carry on */ 2322 } 2323 } 2324 } 2325 } 2326 done: 2327 if (rc == 0) { 2328 sc->incarnation++; 2329 CH_ALERT(sc, "resume completed.\n"); 2330 } 2331 end_synchronized_op(sc, 0); 2332 free(old_state, M_CXGBE); 2333 return (rc); 2334 } 2335 2336 static int 2337 t4_reset_prepare(device_t dev, device_t child) 2338 { 2339 struct adapter *sc = device_get_softc(dev); 2340 2341 CH_ALERT(sc, "reset_prepare.\n"); 2342 return (0); 2343 } 2344 2345 static int 2346 t4_reset_post(device_t dev, device_t child) 2347 { 2348 struct adapter *sc = device_get_softc(dev); 2349 2350 CH_ALERT(sc, "reset_post.\n"); 2351 return (0); 2352 } 2353 2354 static void 2355 reset_adapter(void *arg, int pending) 2356 { 2357 struct adapter *sc = arg; 2358 int rc; 2359 2360 CH_ALERT(sc, "reset requested.\n"); 2361 2362 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2363 if (rc != 0) 2364 return; 2365 2366 if (hw_off_limits(sc)) { 2367 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2368 rc = ENXIO; 2369 goto done; 2370 } 2371 2372 if (!ok_to_reset(sc)) { 2373 /* XXX: should list what resource is preventing reset. */ 2374 CH_ERR(sc, "not safe to reset.\n"); 2375 rc = EBUSY; 2376 goto done; 2377 } 2378 2379 done: 2380 end_synchronized_op(sc, 0); 2381 if (rc != 0) 2382 return; /* Error logged already. */ 2383 2384 mtx_lock(&Giant); 2385 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2386 mtx_unlock(&Giant); 2387 if (rc != 0) 2388 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2389 else 2390 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2391 } 2392 2393 static int 2394 cxgbe_probe(device_t dev) 2395 { 2396 char buf[128]; 2397 struct port_info *pi = device_get_softc(dev); 2398 2399 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2400 device_set_desc_copy(dev, buf); 2401 2402 return (BUS_PROBE_DEFAULT); 2403 } 2404 2405 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2406 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2407 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2408 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2409 #define T4_CAP_ENABLE (T4_CAP) 2410 2411 static int 2412 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2413 { 2414 struct ifnet *ifp; 2415 struct sbuf *sb; 2416 struct sysctl_ctx_list *ctx; 2417 struct sysctl_oid_list *children; 2418 struct pfil_head_args pa; 2419 struct adapter *sc = vi->adapter; 2420 2421 ctx = device_get_sysctl_ctx(vi->dev); 2422 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2423 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2424 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2425 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2426 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2427 #ifdef DEV_NETMAP 2428 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2429 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2430 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2431 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2432 #endif 2433 #ifdef TCP_OFFLOAD 2434 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2435 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2436 #endif 2437 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2438 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2439 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2440 #endif 2441 2442 vi->xact_addr_filt = -1; 2443 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2444 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2445 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2446 vi->flags |= TX_USES_VM_WR; 2447 2448 /* Allocate an ifnet and set it up */ 2449 ifp = if_alloc_dev(IFT_ETHER, dev); 2450 if (ifp == NULL) { 2451 device_printf(dev, "Cannot allocate ifnet\n"); 2452 return (ENOMEM); 2453 } 2454 vi->ifp = ifp; 2455 ifp->if_softc = vi; 2456 2457 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2458 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2459 2460 ifp->if_init = cxgbe_init; 2461 ifp->if_ioctl = cxgbe_ioctl; 2462 ifp->if_transmit = cxgbe_transmit; 2463 ifp->if_qflush = cxgbe_qflush; 2464 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2465 ifp->if_get_counter = vi_get_counter; 2466 else 2467 ifp->if_get_counter = cxgbe_get_counter; 2468 #if defined(KERN_TLS) || defined(RATELIMIT) 2469 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2470 #endif 2471 #ifdef RATELIMIT 2472 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2473 #endif 2474 2475 ifp->if_capabilities = T4_CAP; 2476 ifp->if_capenable = T4_CAP_ENABLE; 2477 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2478 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2479 if (chip_id(sc) >= CHELSIO_T6) { 2480 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2481 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2482 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2483 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2484 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2485 } 2486 2487 #ifdef TCP_OFFLOAD 2488 if (vi->nofldrxq != 0) 2489 ifp->if_capabilities |= IFCAP_TOE; 2490 #endif 2491 #ifdef RATELIMIT 2492 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2493 ifp->if_capabilities |= IFCAP_TXRTLMT; 2494 ifp->if_capenable |= IFCAP_TXRTLMT; 2495 } 2496 #endif 2497 2498 ifp->if_hw_tsomax = IP_MAXPACKET; 2499 if (vi->flags & TX_USES_VM_WR) 2500 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2501 else 2502 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2503 #ifdef RATELIMIT 2504 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2505 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2506 #endif 2507 ifp->if_hw_tsomaxsegsize = 65536; 2508 #ifdef KERN_TLS 2509 if (is_ktls(sc)) { 2510 ifp->if_capabilities |= IFCAP_TXTLS; 2511 if (sc->flags & KERN_TLS_ON) 2512 ifp->if_capenable |= IFCAP_TXTLS; 2513 } 2514 #endif 2515 2516 ether_ifattach(ifp, vi->hw_addr); 2517 #ifdef DEV_NETMAP 2518 if (vi->nnmrxq != 0) 2519 cxgbe_nm_attach(vi); 2520 #endif 2521 sb = sbuf_new_auto(); 2522 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2523 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2524 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2525 case IFCAP_TOE: 2526 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2527 break; 2528 case IFCAP_TOE | IFCAP_TXRTLMT: 2529 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2530 break; 2531 case IFCAP_TXRTLMT: 2532 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2533 break; 2534 } 2535 #endif 2536 #ifdef TCP_OFFLOAD 2537 if (ifp->if_capabilities & IFCAP_TOE) 2538 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2539 #endif 2540 #ifdef DEV_NETMAP 2541 if (ifp->if_capabilities & IFCAP_NETMAP) 2542 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2543 vi->nnmtxq, vi->nnmrxq); 2544 #endif 2545 sbuf_finish(sb); 2546 device_printf(dev, "%s\n", sbuf_data(sb)); 2547 sbuf_delete(sb); 2548 2549 vi_sysctls(vi); 2550 2551 pa.pa_version = PFIL_VERSION; 2552 pa.pa_flags = PFIL_IN; 2553 pa.pa_type = PFIL_TYPE_ETHERNET; 2554 pa.pa_headname = ifp->if_xname; 2555 vi->pfil = pfil_head_register(&pa); 2556 2557 return (0); 2558 } 2559 2560 static int 2561 cxgbe_attach(device_t dev) 2562 { 2563 struct port_info *pi = device_get_softc(dev); 2564 struct adapter *sc = pi->adapter; 2565 struct vi_info *vi; 2566 int i, rc; 2567 2568 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2569 if (rc) 2570 return (rc); 2571 2572 for_each_vi(pi, i, vi) { 2573 if (i == 0) 2574 continue; 2575 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2576 if (vi->dev == NULL) { 2577 device_printf(dev, "failed to add VI %d\n", i); 2578 continue; 2579 } 2580 device_set_softc(vi->dev, vi); 2581 } 2582 2583 cxgbe_sysctls(pi); 2584 2585 bus_generic_attach(dev); 2586 2587 return (0); 2588 } 2589 2590 static void 2591 cxgbe_vi_detach(struct vi_info *vi) 2592 { 2593 struct ifnet *ifp = vi->ifp; 2594 2595 if (vi->pfil != NULL) { 2596 pfil_head_unregister(vi->pfil); 2597 vi->pfil = NULL; 2598 } 2599 2600 ether_ifdetach(ifp); 2601 2602 /* Let detach proceed even if these fail. */ 2603 #ifdef DEV_NETMAP 2604 if (ifp->if_capabilities & IFCAP_NETMAP) 2605 cxgbe_nm_detach(vi); 2606 #endif 2607 cxgbe_uninit_synchronized(vi); 2608 callout_drain(&vi->tick); 2609 vi_full_uninit(vi); 2610 2611 if_free(vi->ifp); 2612 vi->ifp = NULL; 2613 } 2614 2615 static int 2616 cxgbe_detach(device_t dev) 2617 { 2618 struct port_info *pi = device_get_softc(dev); 2619 struct adapter *sc = pi->adapter; 2620 int rc; 2621 2622 /* Detach the extra VIs first. */ 2623 rc = bus_generic_detach(dev); 2624 if (rc) 2625 return (rc); 2626 device_delete_children(dev); 2627 2628 doom_vi(sc, &pi->vi[0]); 2629 2630 if (pi->flags & HAS_TRACEQ) { 2631 sc->traceq = -1; /* cloner should not create ifnet */ 2632 t4_tracer_port_detach(sc); 2633 } 2634 2635 cxgbe_vi_detach(&pi->vi[0]); 2636 ifmedia_removeall(&pi->media); 2637 2638 end_synchronized_op(sc, 0); 2639 2640 return (0); 2641 } 2642 2643 static void 2644 cxgbe_init(void *arg) 2645 { 2646 struct vi_info *vi = arg; 2647 struct adapter *sc = vi->adapter; 2648 2649 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2650 return; 2651 cxgbe_init_synchronized(vi); 2652 end_synchronized_op(sc, 0); 2653 } 2654 2655 static int 2656 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2657 { 2658 int rc = 0, mtu, flags; 2659 struct vi_info *vi = ifp->if_softc; 2660 struct port_info *pi = vi->pi; 2661 struct adapter *sc = pi->adapter; 2662 struct ifreq *ifr = (struct ifreq *)data; 2663 uint32_t mask; 2664 2665 switch (cmd) { 2666 case SIOCSIFMTU: 2667 mtu = ifr->ifr_mtu; 2668 if (mtu < ETHERMIN || mtu > MAX_MTU) 2669 return (EINVAL); 2670 2671 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2672 if (rc) 2673 return (rc); 2674 ifp->if_mtu = mtu; 2675 if (vi->flags & VI_INIT_DONE) { 2676 t4_update_fl_bufsize(ifp); 2677 if (!hw_off_limits(sc) && 2678 ifp->if_drv_flags & IFF_DRV_RUNNING) 2679 rc = update_mac_settings(ifp, XGMAC_MTU); 2680 } 2681 end_synchronized_op(sc, 0); 2682 break; 2683 2684 case SIOCSIFFLAGS: 2685 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2686 if (rc) 2687 return (rc); 2688 2689 if (hw_off_limits(sc)) { 2690 rc = ENXIO; 2691 goto fail; 2692 } 2693 2694 if (ifp->if_flags & IFF_UP) { 2695 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2696 flags = vi->if_flags; 2697 if ((ifp->if_flags ^ flags) & 2698 (IFF_PROMISC | IFF_ALLMULTI)) { 2699 rc = update_mac_settings(ifp, 2700 XGMAC_PROMISC | XGMAC_ALLMULTI); 2701 } 2702 } else { 2703 rc = cxgbe_init_synchronized(vi); 2704 } 2705 vi->if_flags = ifp->if_flags; 2706 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2707 rc = cxgbe_uninit_synchronized(vi); 2708 } 2709 end_synchronized_op(sc, 0); 2710 break; 2711 2712 case SIOCADDMULTI: 2713 case SIOCDELMULTI: 2714 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2715 if (rc) 2716 return (rc); 2717 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2718 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2719 end_synchronized_op(sc, 0); 2720 break; 2721 2722 case SIOCSIFCAP: 2723 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2724 if (rc) 2725 return (rc); 2726 2727 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2728 if (mask & IFCAP_TXCSUM) { 2729 ifp->if_capenable ^= IFCAP_TXCSUM; 2730 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2731 2732 if (IFCAP_TSO4 & ifp->if_capenable && 2733 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2734 mask &= ~IFCAP_TSO4; 2735 ifp->if_capenable &= ~IFCAP_TSO4; 2736 if_printf(ifp, 2737 "tso4 disabled due to -txcsum.\n"); 2738 } 2739 } 2740 if (mask & IFCAP_TXCSUM_IPV6) { 2741 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2742 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2743 2744 if (IFCAP_TSO6 & ifp->if_capenable && 2745 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2746 mask &= ~IFCAP_TSO6; 2747 ifp->if_capenable &= ~IFCAP_TSO6; 2748 if_printf(ifp, 2749 "tso6 disabled due to -txcsum6.\n"); 2750 } 2751 } 2752 if (mask & IFCAP_RXCSUM) 2753 ifp->if_capenable ^= IFCAP_RXCSUM; 2754 if (mask & IFCAP_RXCSUM_IPV6) 2755 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2756 2757 /* 2758 * Note that we leave CSUM_TSO alone (it is always set). The 2759 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2760 * sending a TSO request our way, so it's sufficient to toggle 2761 * IFCAP_TSOx only. 2762 */ 2763 if (mask & IFCAP_TSO4) { 2764 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2765 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2766 if_printf(ifp, "enable txcsum first.\n"); 2767 rc = EAGAIN; 2768 goto fail; 2769 } 2770 ifp->if_capenable ^= IFCAP_TSO4; 2771 } 2772 if (mask & IFCAP_TSO6) { 2773 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2774 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2775 if_printf(ifp, "enable txcsum6 first.\n"); 2776 rc = EAGAIN; 2777 goto fail; 2778 } 2779 ifp->if_capenable ^= IFCAP_TSO6; 2780 } 2781 if (mask & IFCAP_LRO) { 2782 #if defined(INET) || defined(INET6) 2783 int i; 2784 struct sge_rxq *rxq; 2785 2786 ifp->if_capenable ^= IFCAP_LRO; 2787 for_each_rxq(vi, i, rxq) { 2788 if (ifp->if_capenable & IFCAP_LRO) 2789 rxq->iq.flags |= IQ_LRO_ENABLED; 2790 else 2791 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2792 } 2793 #endif 2794 } 2795 #ifdef TCP_OFFLOAD 2796 if (mask & IFCAP_TOE) { 2797 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2798 2799 rc = toe_capability(vi, enable); 2800 if (rc != 0) 2801 goto fail; 2802 2803 ifp->if_capenable ^= mask; 2804 } 2805 #endif 2806 if (mask & IFCAP_VLAN_HWTAGGING) { 2807 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2808 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2809 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2810 } 2811 if (mask & IFCAP_VLAN_MTU) { 2812 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2813 2814 /* Need to find out how to disable auto-mtu-inflation */ 2815 } 2816 if (mask & IFCAP_VLAN_HWTSO) 2817 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2818 if (mask & IFCAP_VLAN_HWCSUM) 2819 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2820 #ifdef RATELIMIT 2821 if (mask & IFCAP_TXRTLMT) 2822 ifp->if_capenable ^= IFCAP_TXRTLMT; 2823 #endif 2824 if (mask & IFCAP_HWRXTSTMP) { 2825 int i; 2826 struct sge_rxq *rxq; 2827 2828 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2829 for_each_rxq(vi, i, rxq) { 2830 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2831 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2832 else 2833 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2834 } 2835 } 2836 if (mask & IFCAP_MEXTPG) 2837 ifp->if_capenable ^= IFCAP_MEXTPG; 2838 2839 #ifdef KERN_TLS 2840 if (mask & IFCAP_TXTLS) { 2841 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2842 2843 rc = ktls_capability(sc, enable); 2844 if (rc != 0) 2845 goto fail; 2846 2847 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2848 } 2849 #endif 2850 if (mask & IFCAP_VXLAN_HWCSUM) { 2851 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2852 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2853 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2854 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2855 } 2856 if (mask & IFCAP_VXLAN_HWTSO) { 2857 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2858 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2859 CSUM_INNER_IP_TSO; 2860 } 2861 2862 #ifdef VLAN_CAPABILITIES 2863 VLAN_CAPABILITIES(ifp); 2864 #endif 2865 fail: 2866 end_synchronized_op(sc, 0); 2867 break; 2868 2869 case SIOCSIFMEDIA: 2870 case SIOCGIFMEDIA: 2871 case SIOCGIFXMEDIA: 2872 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2873 break; 2874 2875 case SIOCGI2C: { 2876 struct ifi2creq i2c; 2877 2878 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2879 if (rc != 0) 2880 break; 2881 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2882 rc = EPERM; 2883 break; 2884 } 2885 if (i2c.len > sizeof(i2c.data)) { 2886 rc = EINVAL; 2887 break; 2888 } 2889 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2890 if (rc) 2891 return (rc); 2892 if (hw_off_limits(sc)) 2893 rc = ENXIO; 2894 else 2895 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2896 i2c.offset, i2c.len, &i2c.data[0]); 2897 end_synchronized_op(sc, 0); 2898 if (rc == 0) 2899 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2900 break; 2901 } 2902 2903 default: 2904 rc = ether_ioctl(ifp, cmd, data); 2905 } 2906 2907 return (rc); 2908 } 2909 2910 static int 2911 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2912 { 2913 struct vi_info *vi = ifp->if_softc; 2914 struct port_info *pi = vi->pi; 2915 struct adapter *sc; 2916 struct sge_txq *txq; 2917 void *items[1]; 2918 int rc; 2919 2920 M_ASSERTPKTHDR(m); 2921 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2922 #if defined(KERN_TLS) || defined(RATELIMIT) 2923 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2924 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2925 #endif 2926 2927 if (__predict_false(pi->link_cfg.link_ok == false)) { 2928 m_freem(m); 2929 return (ENETDOWN); 2930 } 2931 2932 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2933 if (__predict_false(rc != 0)) { 2934 MPASS(m == NULL); /* was freed already */ 2935 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2936 return (rc); 2937 } 2938 #ifdef RATELIMIT 2939 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2940 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2941 return (ethofld_transmit(ifp, m)); 2942 } 2943 #endif 2944 2945 /* Select a txq. */ 2946 sc = vi->adapter; 2947 txq = &sc->sge.txq[vi->first_txq]; 2948 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2949 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2950 vi->rsrv_noflowq); 2951 2952 items[0] = m; 2953 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2954 if (__predict_false(rc != 0)) 2955 m_freem(m); 2956 2957 return (rc); 2958 } 2959 2960 static void 2961 cxgbe_qflush(struct ifnet *ifp) 2962 { 2963 struct vi_info *vi = ifp->if_softc; 2964 struct sge_txq *txq; 2965 int i; 2966 2967 /* queues do not exist if !VI_INIT_DONE. */ 2968 if (vi->flags & VI_INIT_DONE) { 2969 for_each_txq(vi, i, txq) { 2970 TXQ_LOCK(txq); 2971 txq->eq.flags |= EQ_QFLUSH; 2972 TXQ_UNLOCK(txq); 2973 while (!mp_ring_is_idle(txq->r)) { 2974 mp_ring_check_drainage(txq->r, 4096); 2975 pause("qflush", 1); 2976 } 2977 TXQ_LOCK(txq); 2978 txq->eq.flags &= ~EQ_QFLUSH; 2979 TXQ_UNLOCK(txq); 2980 } 2981 } 2982 if_qflush(ifp); 2983 } 2984 2985 static uint64_t 2986 vi_get_counter(struct ifnet *ifp, ift_counter c) 2987 { 2988 struct vi_info *vi = ifp->if_softc; 2989 struct fw_vi_stats_vf *s = &vi->stats; 2990 2991 mtx_lock(&vi->tick_mtx); 2992 vi_refresh_stats(vi); 2993 mtx_unlock(&vi->tick_mtx); 2994 2995 switch (c) { 2996 case IFCOUNTER_IPACKETS: 2997 return (s->rx_bcast_frames + s->rx_mcast_frames + 2998 s->rx_ucast_frames); 2999 case IFCOUNTER_IERRORS: 3000 return (s->rx_err_frames); 3001 case IFCOUNTER_OPACKETS: 3002 return (s->tx_bcast_frames + s->tx_mcast_frames + 3003 s->tx_ucast_frames + s->tx_offload_frames); 3004 case IFCOUNTER_OERRORS: 3005 return (s->tx_drop_frames); 3006 case IFCOUNTER_IBYTES: 3007 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3008 s->rx_ucast_bytes); 3009 case IFCOUNTER_OBYTES: 3010 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3011 s->tx_ucast_bytes + s->tx_offload_bytes); 3012 case IFCOUNTER_IMCASTS: 3013 return (s->rx_mcast_frames); 3014 case IFCOUNTER_OMCASTS: 3015 return (s->tx_mcast_frames); 3016 case IFCOUNTER_OQDROPS: { 3017 uint64_t drops; 3018 3019 drops = 0; 3020 if (vi->flags & VI_INIT_DONE) { 3021 int i; 3022 struct sge_txq *txq; 3023 3024 for_each_txq(vi, i, txq) 3025 drops += counter_u64_fetch(txq->r->dropped); 3026 } 3027 3028 return (drops); 3029 3030 } 3031 3032 default: 3033 return (if_get_counter_default(ifp, c)); 3034 } 3035 } 3036 3037 static uint64_t 3038 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3039 { 3040 struct vi_info *vi = ifp->if_softc; 3041 struct port_info *pi = vi->pi; 3042 struct port_stats *s = &pi->stats; 3043 3044 mtx_lock(&vi->tick_mtx); 3045 cxgbe_refresh_stats(vi); 3046 mtx_unlock(&vi->tick_mtx); 3047 3048 switch (c) { 3049 case IFCOUNTER_IPACKETS: 3050 return (s->rx_frames); 3051 3052 case IFCOUNTER_IERRORS: 3053 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3054 s->rx_fcs_err + s->rx_len_err); 3055 3056 case IFCOUNTER_OPACKETS: 3057 return (s->tx_frames); 3058 3059 case IFCOUNTER_OERRORS: 3060 return (s->tx_error_frames); 3061 3062 case IFCOUNTER_IBYTES: 3063 return (s->rx_octets); 3064 3065 case IFCOUNTER_OBYTES: 3066 return (s->tx_octets); 3067 3068 case IFCOUNTER_IMCASTS: 3069 return (s->rx_mcast_frames); 3070 3071 case IFCOUNTER_OMCASTS: 3072 return (s->tx_mcast_frames); 3073 3074 case IFCOUNTER_IQDROPS: 3075 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3076 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3077 s->rx_trunc3 + pi->tnl_cong_drops); 3078 3079 case IFCOUNTER_OQDROPS: { 3080 uint64_t drops; 3081 3082 drops = s->tx_drop; 3083 if (vi->flags & VI_INIT_DONE) { 3084 int i; 3085 struct sge_txq *txq; 3086 3087 for_each_txq(vi, i, txq) 3088 drops += counter_u64_fetch(txq->r->dropped); 3089 } 3090 3091 return (drops); 3092 3093 } 3094 3095 default: 3096 return (if_get_counter_default(ifp, c)); 3097 } 3098 } 3099 3100 #if defined(KERN_TLS) || defined(RATELIMIT) 3101 static int 3102 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3103 struct m_snd_tag **pt) 3104 { 3105 int error; 3106 3107 switch (params->hdr.type) { 3108 #ifdef RATELIMIT 3109 case IF_SND_TAG_TYPE_RATE_LIMIT: 3110 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3111 break; 3112 #endif 3113 #ifdef KERN_TLS 3114 case IF_SND_TAG_TYPE_TLS: 3115 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3116 break; 3117 #endif 3118 default: 3119 error = EOPNOTSUPP; 3120 } 3121 return (error); 3122 } 3123 #endif 3124 3125 /* 3126 * The kernel picks a media from the list we had provided but we still validate 3127 * the requeste. 3128 */ 3129 int 3130 cxgbe_media_change(struct ifnet *ifp) 3131 { 3132 struct vi_info *vi = ifp->if_softc; 3133 struct port_info *pi = vi->pi; 3134 struct ifmedia *ifm = &pi->media; 3135 struct link_config *lc = &pi->link_cfg; 3136 struct adapter *sc = pi->adapter; 3137 int rc; 3138 3139 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3140 if (rc != 0) 3141 return (rc); 3142 PORT_LOCK(pi); 3143 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3144 /* ifconfig .. media autoselect */ 3145 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3146 rc = ENOTSUP; /* AN not supported by transceiver */ 3147 goto done; 3148 } 3149 lc->requested_aneg = AUTONEG_ENABLE; 3150 lc->requested_speed = 0; 3151 lc->requested_fc |= PAUSE_AUTONEG; 3152 } else { 3153 lc->requested_aneg = AUTONEG_DISABLE; 3154 lc->requested_speed = 3155 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3156 lc->requested_fc = 0; 3157 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3158 lc->requested_fc |= PAUSE_RX; 3159 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3160 lc->requested_fc |= PAUSE_TX; 3161 } 3162 if (pi->up_vis > 0) { 3163 fixup_link_config(pi); 3164 rc = apply_link_config(pi); 3165 } 3166 done: 3167 PORT_UNLOCK(pi); 3168 end_synchronized_op(sc, 0); 3169 return (rc); 3170 } 3171 3172 /* 3173 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3174 * given speed. 3175 */ 3176 static int 3177 port_mword(struct port_info *pi, uint32_t speed) 3178 { 3179 3180 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3181 MPASS(powerof2(speed)); 3182 3183 switch(pi->port_type) { 3184 case FW_PORT_TYPE_BT_SGMII: 3185 case FW_PORT_TYPE_BT_XFI: 3186 case FW_PORT_TYPE_BT_XAUI: 3187 /* BaseT */ 3188 switch (speed) { 3189 case FW_PORT_CAP32_SPEED_100M: 3190 return (IFM_100_T); 3191 case FW_PORT_CAP32_SPEED_1G: 3192 return (IFM_1000_T); 3193 case FW_PORT_CAP32_SPEED_10G: 3194 return (IFM_10G_T); 3195 } 3196 break; 3197 case FW_PORT_TYPE_KX4: 3198 if (speed == FW_PORT_CAP32_SPEED_10G) 3199 return (IFM_10G_KX4); 3200 break; 3201 case FW_PORT_TYPE_CX4: 3202 if (speed == FW_PORT_CAP32_SPEED_10G) 3203 return (IFM_10G_CX4); 3204 break; 3205 case FW_PORT_TYPE_KX: 3206 if (speed == FW_PORT_CAP32_SPEED_1G) 3207 return (IFM_1000_KX); 3208 break; 3209 case FW_PORT_TYPE_KR: 3210 case FW_PORT_TYPE_BP_AP: 3211 case FW_PORT_TYPE_BP4_AP: 3212 case FW_PORT_TYPE_BP40_BA: 3213 case FW_PORT_TYPE_KR4_100G: 3214 case FW_PORT_TYPE_KR_SFP28: 3215 case FW_PORT_TYPE_KR_XLAUI: 3216 switch (speed) { 3217 case FW_PORT_CAP32_SPEED_1G: 3218 return (IFM_1000_KX); 3219 case FW_PORT_CAP32_SPEED_10G: 3220 return (IFM_10G_KR); 3221 case FW_PORT_CAP32_SPEED_25G: 3222 return (IFM_25G_KR); 3223 case FW_PORT_CAP32_SPEED_40G: 3224 return (IFM_40G_KR4); 3225 case FW_PORT_CAP32_SPEED_50G: 3226 return (IFM_50G_KR2); 3227 case FW_PORT_CAP32_SPEED_100G: 3228 return (IFM_100G_KR4); 3229 } 3230 break; 3231 case FW_PORT_TYPE_FIBER_XFI: 3232 case FW_PORT_TYPE_FIBER_XAUI: 3233 case FW_PORT_TYPE_SFP: 3234 case FW_PORT_TYPE_QSFP_10G: 3235 case FW_PORT_TYPE_QSA: 3236 case FW_PORT_TYPE_QSFP: 3237 case FW_PORT_TYPE_CR4_QSFP: 3238 case FW_PORT_TYPE_CR_QSFP: 3239 case FW_PORT_TYPE_CR2_QSFP: 3240 case FW_PORT_TYPE_SFP28: 3241 /* Pluggable transceiver */ 3242 switch (pi->mod_type) { 3243 case FW_PORT_MOD_TYPE_LR: 3244 switch (speed) { 3245 case FW_PORT_CAP32_SPEED_1G: 3246 return (IFM_1000_LX); 3247 case FW_PORT_CAP32_SPEED_10G: 3248 return (IFM_10G_LR); 3249 case FW_PORT_CAP32_SPEED_25G: 3250 return (IFM_25G_LR); 3251 case FW_PORT_CAP32_SPEED_40G: 3252 return (IFM_40G_LR4); 3253 case FW_PORT_CAP32_SPEED_50G: 3254 return (IFM_50G_LR2); 3255 case FW_PORT_CAP32_SPEED_100G: 3256 return (IFM_100G_LR4); 3257 } 3258 break; 3259 case FW_PORT_MOD_TYPE_SR: 3260 switch (speed) { 3261 case FW_PORT_CAP32_SPEED_1G: 3262 return (IFM_1000_SX); 3263 case FW_PORT_CAP32_SPEED_10G: 3264 return (IFM_10G_SR); 3265 case FW_PORT_CAP32_SPEED_25G: 3266 return (IFM_25G_SR); 3267 case FW_PORT_CAP32_SPEED_40G: 3268 return (IFM_40G_SR4); 3269 case FW_PORT_CAP32_SPEED_50G: 3270 return (IFM_50G_SR2); 3271 case FW_PORT_CAP32_SPEED_100G: 3272 return (IFM_100G_SR4); 3273 } 3274 break; 3275 case FW_PORT_MOD_TYPE_ER: 3276 if (speed == FW_PORT_CAP32_SPEED_10G) 3277 return (IFM_10G_ER); 3278 break; 3279 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3280 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3281 switch (speed) { 3282 case FW_PORT_CAP32_SPEED_1G: 3283 return (IFM_1000_CX); 3284 case FW_PORT_CAP32_SPEED_10G: 3285 return (IFM_10G_TWINAX); 3286 case FW_PORT_CAP32_SPEED_25G: 3287 return (IFM_25G_CR); 3288 case FW_PORT_CAP32_SPEED_40G: 3289 return (IFM_40G_CR4); 3290 case FW_PORT_CAP32_SPEED_50G: 3291 return (IFM_50G_CR2); 3292 case FW_PORT_CAP32_SPEED_100G: 3293 return (IFM_100G_CR4); 3294 } 3295 break; 3296 case FW_PORT_MOD_TYPE_LRM: 3297 if (speed == FW_PORT_CAP32_SPEED_10G) 3298 return (IFM_10G_LRM); 3299 break; 3300 case FW_PORT_MOD_TYPE_NA: 3301 MPASS(0); /* Not pluggable? */ 3302 /* fall throough */ 3303 case FW_PORT_MOD_TYPE_ERROR: 3304 case FW_PORT_MOD_TYPE_UNKNOWN: 3305 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3306 break; 3307 case FW_PORT_MOD_TYPE_NONE: 3308 return (IFM_NONE); 3309 } 3310 break; 3311 case FW_PORT_TYPE_NONE: 3312 return (IFM_NONE); 3313 } 3314 3315 return (IFM_UNKNOWN); 3316 } 3317 3318 void 3319 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3320 { 3321 struct vi_info *vi = ifp->if_softc; 3322 struct port_info *pi = vi->pi; 3323 struct adapter *sc = pi->adapter; 3324 struct link_config *lc = &pi->link_cfg; 3325 3326 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3327 return; 3328 PORT_LOCK(pi); 3329 3330 if (pi->up_vis == 0) { 3331 /* 3332 * If all the interfaces are administratively down the firmware 3333 * does not report transceiver changes. Refresh port info here 3334 * so that ifconfig displays accurate ifmedia at all times. 3335 * This is the only reason we have a synchronized op in this 3336 * function. Just PORT_LOCK would have been enough otherwise. 3337 */ 3338 t4_update_port_info(pi); 3339 build_medialist(pi); 3340 } 3341 3342 /* ifm_status */ 3343 ifmr->ifm_status = IFM_AVALID; 3344 if (lc->link_ok == false) 3345 goto done; 3346 ifmr->ifm_status |= IFM_ACTIVE; 3347 3348 /* ifm_active */ 3349 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3350 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3351 if (lc->fc & PAUSE_RX) 3352 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3353 if (lc->fc & PAUSE_TX) 3354 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3355 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3356 done: 3357 PORT_UNLOCK(pi); 3358 end_synchronized_op(sc, 0); 3359 } 3360 3361 static int 3362 vcxgbe_probe(device_t dev) 3363 { 3364 char buf[128]; 3365 struct vi_info *vi = device_get_softc(dev); 3366 3367 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3368 vi - vi->pi->vi); 3369 device_set_desc_copy(dev, buf); 3370 3371 return (BUS_PROBE_DEFAULT); 3372 } 3373 3374 static int 3375 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3376 { 3377 int func, index, rc; 3378 uint32_t param, val; 3379 3380 ASSERT_SYNCHRONIZED_OP(sc); 3381 3382 index = vi - pi->vi; 3383 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3384 KASSERT(index < nitems(vi_mac_funcs), 3385 ("%s: VI %s doesn't have a MAC func", __func__, 3386 device_get_nameunit(vi->dev))); 3387 func = vi_mac_funcs[index]; 3388 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3389 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3390 if (rc < 0) { 3391 CH_ERR(vi, "failed to allocate virtual interface %d" 3392 "for port %d: %d\n", index, pi->port_id, -rc); 3393 return (-rc); 3394 } 3395 vi->viid = rc; 3396 3397 if (vi->rss_size == 1) { 3398 /* 3399 * This VI didn't get a slice of the RSS table. Reduce the 3400 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3401 * configuration file (nvi, rssnvi for this PF) if this is a 3402 * problem. 3403 */ 3404 device_printf(vi->dev, "RSS table not available.\n"); 3405 vi->rss_base = 0xffff; 3406 3407 return (0); 3408 } 3409 3410 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3411 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3412 V_FW_PARAMS_PARAM_YZ(vi->viid); 3413 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3414 if (rc) 3415 vi->rss_base = 0xffff; 3416 else { 3417 MPASS((val >> 16) == vi->rss_size); 3418 vi->rss_base = val & 0xffff; 3419 } 3420 3421 return (0); 3422 } 3423 3424 static int 3425 vcxgbe_attach(device_t dev) 3426 { 3427 struct vi_info *vi; 3428 struct port_info *pi; 3429 struct adapter *sc; 3430 int rc; 3431 3432 vi = device_get_softc(dev); 3433 pi = vi->pi; 3434 sc = pi->adapter; 3435 3436 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3437 if (rc) 3438 return (rc); 3439 rc = alloc_extra_vi(sc, pi, vi); 3440 end_synchronized_op(sc, 0); 3441 if (rc) 3442 return (rc); 3443 3444 rc = cxgbe_vi_attach(dev, vi); 3445 if (rc) { 3446 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3447 return (rc); 3448 } 3449 return (0); 3450 } 3451 3452 static int 3453 vcxgbe_detach(device_t dev) 3454 { 3455 struct vi_info *vi; 3456 struct adapter *sc; 3457 3458 vi = device_get_softc(dev); 3459 sc = vi->adapter; 3460 3461 doom_vi(sc, vi); 3462 3463 cxgbe_vi_detach(vi); 3464 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3465 3466 end_synchronized_op(sc, 0); 3467 3468 return (0); 3469 } 3470 3471 static struct callout fatal_callout; 3472 static struct taskqueue *reset_tq; 3473 3474 static void 3475 delayed_panic(void *arg) 3476 { 3477 struct adapter *sc = arg; 3478 3479 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3480 } 3481 3482 void 3483 t4_fatal_err(struct adapter *sc, bool fw_error) 3484 { 3485 3486 t4_shutdown_adapter(sc); 3487 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 3488 device_get_nameunit(sc->dev)); 3489 if (fw_error) { 3490 if (sc->flags & CHK_MBOX_ACCESS) 3491 ASSERT_SYNCHRONIZED_OP(sc); 3492 sc->flags |= ADAP_ERR; 3493 } else { 3494 ADAPTER_LOCK(sc); 3495 sc->flags |= ADAP_ERR; 3496 ADAPTER_UNLOCK(sc); 3497 } 3498 #ifdef TCP_OFFLOAD 3499 taskqueue_enqueue(taskqueue_thread, &sc->async_event_task); 3500 #endif 3501 3502 if (t4_panic_on_fatal_err) { 3503 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3504 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3505 } else if (t4_reset_on_fatal_err) { 3506 CH_ALERT(sc, "resetting on fatal error.\n"); 3507 taskqueue_enqueue(reset_tq, &sc->reset_task); 3508 } 3509 } 3510 3511 void 3512 t4_add_adapter(struct adapter *sc) 3513 { 3514 sx_xlock(&t4_list_lock); 3515 SLIST_INSERT_HEAD(&t4_list, sc, link); 3516 sx_xunlock(&t4_list_lock); 3517 } 3518 3519 int 3520 t4_map_bars_0_and_4(struct adapter *sc) 3521 { 3522 sc->regs_rid = PCIR_BAR(0); 3523 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3524 &sc->regs_rid, RF_ACTIVE); 3525 if (sc->regs_res == NULL) { 3526 device_printf(sc->dev, "cannot map registers.\n"); 3527 return (ENXIO); 3528 } 3529 sc->bt = rman_get_bustag(sc->regs_res); 3530 sc->bh = rman_get_bushandle(sc->regs_res); 3531 sc->mmio_len = rman_get_size(sc->regs_res); 3532 setbit(&sc->doorbells, DOORBELL_KDB); 3533 3534 sc->msix_rid = PCIR_BAR(4); 3535 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3536 &sc->msix_rid, RF_ACTIVE); 3537 if (sc->msix_res == NULL) { 3538 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3539 return (ENXIO); 3540 } 3541 3542 return (0); 3543 } 3544 3545 int 3546 t4_map_bar_2(struct adapter *sc) 3547 { 3548 3549 /* 3550 * T4: only iWARP driver uses the userspace doorbells. There is no need 3551 * to map it if RDMA is disabled. 3552 */ 3553 if (is_t4(sc) && sc->rdmacaps == 0) 3554 return (0); 3555 3556 sc->udbs_rid = PCIR_BAR(2); 3557 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3558 &sc->udbs_rid, RF_ACTIVE); 3559 if (sc->udbs_res == NULL) { 3560 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3561 return (ENXIO); 3562 } 3563 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3564 3565 if (chip_id(sc) >= CHELSIO_T5) { 3566 setbit(&sc->doorbells, DOORBELL_UDB); 3567 #if defined(__i386__) || defined(__amd64__) 3568 if (t5_write_combine) { 3569 int rc, mode; 3570 3571 /* 3572 * Enable write combining on BAR2. This is the 3573 * userspace doorbell BAR and is split into 128B 3574 * (UDBS_SEG_SIZE) doorbell regions, each associated 3575 * with an egress queue. The first 64B has the doorbell 3576 * and the second 64B can be used to submit a tx work 3577 * request with an implicit doorbell. 3578 */ 3579 3580 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3581 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3582 if (rc == 0) { 3583 clrbit(&sc->doorbells, DOORBELL_UDB); 3584 setbit(&sc->doorbells, DOORBELL_WCWR); 3585 setbit(&sc->doorbells, DOORBELL_UDBWC); 3586 } else { 3587 device_printf(sc->dev, 3588 "couldn't enable write combining: %d\n", 3589 rc); 3590 } 3591 3592 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3593 t4_write_reg(sc, A_SGE_STAT_CFG, 3594 V_STATSOURCE_T5(7) | mode); 3595 } 3596 #endif 3597 } 3598 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3599 3600 return (0); 3601 } 3602 3603 struct memwin_init { 3604 uint32_t base; 3605 uint32_t aperture; 3606 }; 3607 3608 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3609 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3610 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3611 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3612 }; 3613 3614 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3615 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3616 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3617 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3618 }; 3619 3620 static void 3621 setup_memwin(struct adapter *sc) 3622 { 3623 const struct memwin_init *mw_init; 3624 struct memwin *mw; 3625 int i; 3626 uint32_t bar0; 3627 3628 if (is_t4(sc)) { 3629 /* 3630 * Read low 32b of bar0 indirectly via the hardware backdoor 3631 * mechanism. Works from within PCI passthrough environments 3632 * too, where rman_get_start() can return a different value. We 3633 * need to program the T4 memory window decoders with the actual 3634 * addresses that will be coming across the PCIe link. 3635 */ 3636 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3637 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3638 3639 mw_init = &t4_memwin[0]; 3640 } else { 3641 /* T5+ use the relative offset inside the PCIe BAR */ 3642 bar0 = 0; 3643 3644 mw_init = &t5_memwin[0]; 3645 } 3646 3647 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3648 if (!rw_initialized(&mw->mw_lock)) { 3649 rw_init(&mw->mw_lock, "memory window access"); 3650 mw->mw_base = mw_init->base; 3651 mw->mw_aperture = mw_init->aperture; 3652 mw->mw_curpos = 0; 3653 } 3654 t4_write_reg(sc, 3655 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3656 (mw->mw_base + bar0) | V_BIR(0) | 3657 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3658 rw_wlock(&mw->mw_lock); 3659 position_memwin(sc, i, mw->mw_curpos); 3660 rw_wunlock(&mw->mw_lock); 3661 } 3662 3663 /* flush */ 3664 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3665 } 3666 3667 /* 3668 * Positions the memory window at the given address in the card's address space. 3669 * There are some alignment requirements and the actual position may be at an 3670 * address prior to the requested address. mw->mw_curpos always has the actual 3671 * position of the window. 3672 */ 3673 static void 3674 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3675 { 3676 struct memwin *mw; 3677 uint32_t pf; 3678 uint32_t reg; 3679 3680 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3681 mw = &sc->memwin[idx]; 3682 rw_assert(&mw->mw_lock, RA_WLOCKED); 3683 3684 if (is_t4(sc)) { 3685 pf = 0; 3686 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3687 } else { 3688 pf = V_PFNUM(sc->pf); 3689 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3690 } 3691 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3692 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3693 t4_read_reg(sc, reg); /* flush */ 3694 } 3695 3696 int 3697 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3698 int len, int rw) 3699 { 3700 struct memwin *mw; 3701 uint32_t mw_end, v; 3702 3703 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3704 3705 /* Memory can only be accessed in naturally aligned 4 byte units */ 3706 if (addr & 3 || len & 3 || len <= 0) 3707 return (EINVAL); 3708 3709 mw = &sc->memwin[idx]; 3710 while (len > 0) { 3711 rw_rlock(&mw->mw_lock); 3712 mw_end = mw->mw_curpos + mw->mw_aperture; 3713 if (addr >= mw_end || addr < mw->mw_curpos) { 3714 /* Will need to reposition the window */ 3715 if (!rw_try_upgrade(&mw->mw_lock)) { 3716 rw_runlock(&mw->mw_lock); 3717 rw_wlock(&mw->mw_lock); 3718 } 3719 rw_assert(&mw->mw_lock, RA_WLOCKED); 3720 position_memwin(sc, idx, addr); 3721 rw_downgrade(&mw->mw_lock); 3722 mw_end = mw->mw_curpos + mw->mw_aperture; 3723 } 3724 rw_assert(&mw->mw_lock, RA_RLOCKED); 3725 while (addr < mw_end && len > 0) { 3726 if (rw == 0) { 3727 v = t4_read_reg(sc, mw->mw_base + addr - 3728 mw->mw_curpos); 3729 *val++ = le32toh(v); 3730 } else { 3731 v = *val++; 3732 t4_write_reg(sc, mw->mw_base + addr - 3733 mw->mw_curpos, htole32(v)); 3734 } 3735 addr += 4; 3736 len -= 4; 3737 } 3738 rw_runlock(&mw->mw_lock); 3739 } 3740 3741 return (0); 3742 } 3743 3744 static void 3745 t4_init_atid_table(struct adapter *sc) 3746 { 3747 struct tid_info *t; 3748 int i; 3749 3750 t = &sc->tids; 3751 if (t->natids == 0) 3752 return; 3753 3754 MPASS(t->atid_tab == NULL); 3755 3756 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3757 M_ZERO | M_WAITOK); 3758 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3759 t->afree = t->atid_tab; 3760 t->atids_in_use = 0; 3761 for (i = 1; i < t->natids; i++) 3762 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3763 t->atid_tab[t->natids - 1].next = NULL; 3764 } 3765 3766 static void 3767 t4_free_atid_table(struct adapter *sc) 3768 { 3769 struct tid_info *t; 3770 3771 t = &sc->tids; 3772 3773 KASSERT(t->atids_in_use == 0, 3774 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3775 3776 if (mtx_initialized(&t->atid_lock)) 3777 mtx_destroy(&t->atid_lock); 3778 free(t->atid_tab, M_CXGBE); 3779 t->atid_tab = NULL; 3780 } 3781 3782 int 3783 alloc_atid(struct adapter *sc, void *ctx) 3784 { 3785 struct tid_info *t = &sc->tids; 3786 int atid = -1; 3787 3788 mtx_lock(&t->atid_lock); 3789 if (t->afree) { 3790 union aopen_entry *p = t->afree; 3791 3792 atid = p - t->atid_tab; 3793 MPASS(atid <= M_TID_TID); 3794 t->afree = p->next; 3795 p->data = ctx; 3796 t->atids_in_use++; 3797 } 3798 mtx_unlock(&t->atid_lock); 3799 return (atid); 3800 } 3801 3802 void * 3803 lookup_atid(struct adapter *sc, int atid) 3804 { 3805 struct tid_info *t = &sc->tids; 3806 3807 return (t->atid_tab[atid].data); 3808 } 3809 3810 void 3811 free_atid(struct adapter *sc, int atid) 3812 { 3813 struct tid_info *t = &sc->tids; 3814 union aopen_entry *p = &t->atid_tab[atid]; 3815 3816 mtx_lock(&t->atid_lock); 3817 p->next = t->afree; 3818 t->afree = p; 3819 t->atids_in_use--; 3820 mtx_unlock(&t->atid_lock); 3821 } 3822 3823 static void 3824 queue_tid_release(struct adapter *sc, int tid) 3825 { 3826 3827 CXGBE_UNIMPLEMENTED("deferred tid release"); 3828 } 3829 3830 void 3831 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3832 { 3833 struct wrqe *wr; 3834 struct cpl_tid_release *req; 3835 3836 wr = alloc_wrqe(sizeof(*req), ctrlq); 3837 if (wr == NULL) { 3838 queue_tid_release(sc, tid); /* defer */ 3839 return; 3840 } 3841 req = wrtod(wr); 3842 3843 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3844 3845 t4_wrq_tx(sc, wr); 3846 } 3847 3848 static int 3849 t4_range_cmp(const void *a, const void *b) 3850 { 3851 return ((const struct t4_range *)a)->start - 3852 ((const struct t4_range *)b)->start; 3853 } 3854 3855 /* 3856 * Verify that the memory range specified by the addr/len pair is valid within 3857 * the card's address space. 3858 */ 3859 static int 3860 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3861 { 3862 struct t4_range mem_ranges[4], *r, *next; 3863 uint32_t em, addr_len; 3864 int i, n, remaining; 3865 3866 /* Memory can only be accessed in naturally aligned 4 byte units */ 3867 if (addr & 3 || len & 3 || len == 0) 3868 return (EINVAL); 3869 3870 /* Enabled memories */ 3871 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3872 3873 r = &mem_ranges[0]; 3874 n = 0; 3875 bzero(r, sizeof(mem_ranges)); 3876 if (em & F_EDRAM0_ENABLE) { 3877 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3878 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3879 if (r->size > 0) { 3880 r->start = G_EDRAM0_BASE(addr_len) << 20; 3881 if (addr >= r->start && 3882 addr + len <= r->start + r->size) 3883 return (0); 3884 r++; 3885 n++; 3886 } 3887 } 3888 if (em & F_EDRAM1_ENABLE) { 3889 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3890 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3891 if (r->size > 0) { 3892 r->start = G_EDRAM1_BASE(addr_len) << 20; 3893 if (addr >= r->start && 3894 addr + len <= r->start + r->size) 3895 return (0); 3896 r++; 3897 n++; 3898 } 3899 } 3900 if (em & F_EXT_MEM_ENABLE) { 3901 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3902 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3903 if (r->size > 0) { 3904 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3905 if (addr >= r->start && 3906 addr + len <= r->start + r->size) 3907 return (0); 3908 r++; 3909 n++; 3910 } 3911 } 3912 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3913 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3914 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3915 if (r->size > 0) { 3916 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3917 if (addr >= r->start && 3918 addr + len <= r->start + r->size) 3919 return (0); 3920 r++; 3921 n++; 3922 } 3923 } 3924 MPASS(n <= nitems(mem_ranges)); 3925 3926 if (n > 1) { 3927 /* Sort and merge the ranges. */ 3928 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3929 3930 /* Start from index 0 and examine the next n - 1 entries. */ 3931 r = &mem_ranges[0]; 3932 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3933 3934 MPASS(r->size > 0); /* r is a valid entry. */ 3935 next = r + 1; 3936 MPASS(next->size > 0); /* and so is the next one. */ 3937 3938 while (r->start + r->size >= next->start) { 3939 /* Merge the next one into the current entry. */ 3940 r->size = max(r->start + r->size, 3941 next->start + next->size) - r->start; 3942 n--; /* One fewer entry in total. */ 3943 if (--remaining == 0) 3944 goto done; /* short circuit */ 3945 next++; 3946 } 3947 if (next != r + 1) { 3948 /* 3949 * Some entries were merged into r and next 3950 * points to the first valid entry that couldn't 3951 * be merged. 3952 */ 3953 MPASS(next->size > 0); /* must be valid */ 3954 memcpy(r + 1, next, remaining * sizeof(*r)); 3955 #ifdef INVARIANTS 3956 /* 3957 * This so that the foo->size assertion in the 3958 * next iteration of the loop do the right 3959 * thing for entries that were pulled up and are 3960 * no longer valid. 3961 */ 3962 MPASS(n < nitems(mem_ranges)); 3963 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 3964 sizeof(struct t4_range)); 3965 #endif 3966 } 3967 } 3968 done: 3969 /* Done merging the ranges. */ 3970 MPASS(n > 0); 3971 r = &mem_ranges[0]; 3972 for (i = 0; i < n; i++, r++) { 3973 if (addr >= r->start && 3974 addr + len <= r->start + r->size) 3975 return (0); 3976 } 3977 } 3978 3979 return (EFAULT); 3980 } 3981 3982 static int 3983 fwmtype_to_hwmtype(int mtype) 3984 { 3985 3986 switch (mtype) { 3987 case FW_MEMTYPE_EDC0: 3988 return (MEM_EDC0); 3989 case FW_MEMTYPE_EDC1: 3990 return (MEM_EDC1); 3991 case FW_MEMTYPE_EXTMEM: 3992 return (MEM_MC0); 3993 case FW_MEMTYPE_EXTMEM1: 3994 return (MEM_MC1); 3995 default: 3996 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 3997 } 3998 } 3999 4000 /* 4001 * Verify that the memory range specified by the memtype/offset/len pair is 4002 * valid and lies entirely within the memtype specified. The global address of 4003 * the start of the range is returned in addr. 4004 */ 4005 static int 4006 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4007 uint32_t *addr) 4008 { 4009 uint32_t em, addr_len, maddr; 4010 4011 /* Memory can only be accessed in naturally aligned 4 byte units */ 4012 if (off & 3 || len & 3 || len == 0) 4013 return (EINVAL); 4014 4015 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4016 switch (fwmtype_to_hwmtype(mtype)) { 4017 case MEM_EDC0: 4018 if (!(em & F_EDRAM0_ENABLE)) 4019 return (EINVAL); 4020 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4021 maddr = G_EDRAM0_BASE(addr_len) << 20; 4022 break; 4023 case MEM_EDC1: 4024 if (!(em & F_EDRAM1_ENABLE)) 4025 return (EINVAL); 4026 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4027 maddr = G_EDRAM1_BASE(addr_len) << 20; 4028 break; 4029 case MEM_MC: 4030 if (!(em & F_EXT_MEM_ENABLE)) 4031 return (EINVAL); 4032 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4033 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4034 break; 4035 case MEM_MC1: 4036 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4037 return (EINVAL); 4038 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4039 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4040 break; 4041 default: 4042 return (EINVAL); 4043 } 4044 4045 *addr = maddr + off; /* global address */ 4046 return (validate_mem_range(sc, *addr, len)); 4047 } 4048 4049 static int 4050 fixup_devlog_params(struct adapter *sc) 4051 { 4052 struct devlog_params *dparams = &sc->params.devlog; 4053 int rc; 4054 4055 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4056 dparams->size, &dparams->addr); 4057 4058 return (rc); 4059 } 4060 4061 static void 4062 update_nirq(struct intrs_and_queues *iaq, int nports) 4063 { 4064 4065 iaq->nirq = T4_EXTRA_INTR; 4066 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4067 iaq->nirq += nports * iaq->nofldrxq; 4068 iaq->nirq += nports * (iaq->num_vis - 1) * 4069 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4070 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4071 } 4072 4073 /* 4074 * Adjust requirements to fit the number of interrupts available. 4075 */ 4076 static void 4077 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4078 int navail) 4079 { 4080 int old_nirq; 4081 const int nports = sc->params.nports; 4082 4083 MPASS(nports > 0); 4084 MPASS(navail > 0); 4085 4086 bzero(iaq, sizeof(*iaq)); 4087 iaq->intr_type = itype; 4088 iaq->num_vis = t4_num_vis; 4089 iaq->ntxq = t4_ntxq; 4090 iaq->ntxq_vi = t4_ntxq_vi; 4091 iaq->nrxq = t4_nrxq; 4092 iaq->nrxq_vi = t4_nrxq_vi; 4093 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4094 if (is_offload(sc) || is_ethoffload(sc)) { 4095 iaq->nofldtxq = t4_nofldtxq; 4096 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4097 } 4098 #endif 4099 #ifdef TCP_OFFLOAD 4100 if (is_offload(sc)) { 4101 iaq->nofldrxq = t4_nofldrxq; 4102 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4103 } 4104 #endif 4105 #ifdef DEV_NETMAP 4106 if (t4_native_netmap & NN_MAIN_VI) { 4107 iaq->nnmtxq = t4_nnmtxq; 4108 iaq->nnmrxq = t4_nnmrxq; 4109 } 4110 if (t4_native_netmap & NN_EXTRA_VI) { 4111 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4112 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4113 } 4114 #endif 4115 4116 update_nirq(iaq, nports); 4117 if (iaq->nirq <= navail && 4118 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4119 /* 4120 * This is the normal case -- there are enough interrupts for 4121 * everything. 4122 */ 4123 goto done; 4124 } 4125 4126 /* 4127 * If extra VIs have been configured try reducing their count and see if 4128 * that works. 4129 */ 4130 while (iaq->num_vis > 1) { 4131 iaq->num_vis--; 4132 update_nirq(iaq, nports); 4133 if (iaq->nirq <= navail && 4134 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4135 device_printf(sc->dev, "virtual interfaces per port " 4136 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4137 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4138 "itype %d, navail %u, nirq %d.\n", 4139 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4140 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4141 itype, navail, iaq->nirq); 4142 goto done; 4143 } 4144 } 4145 4146 /* 4147 * Extra VIs will not be created. Log a message if they were requested. 4148 */ 4149 MPASS(iaq->num_vis == 1); 4150 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4151 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4152 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4153 if (iaq->num_vis != t4_num_vis) { 4154 device_printf(sc->dev, "extra virtual interfaces disabled. " 4155 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4156 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4157 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4158 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4159 } 4160 4161 /* 4162 * Keep reducing the number of NIC rx queues to the next lower power of 4163 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4164 * if that works. 4165 */ 4166 do { 4167 if (iaq->nrxq > 1) { 4168 do { 4169 iaq->nrxq--; 4170 } while (!powerof2(iaq->nrxq)); 4171 if (iaq->nnmrxq > iaq->nrxq) 4172 iaq->nnmrxq = iaq->nrxq; 4173 } 4174 if (iaq->nofldrxq > 1) 4175 iaq->nofldrxq >>= 1; 4176 4177 old_nirq = iaq->nirq; 4178 update_nirq(iaq, nports); 4179 if (iaq->nirq <= navail && 4180 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4181 device_printf(sc->dev, "running with reduced number of " 4182 "rx queues because of shortage of interrupts. " 4183 "nrxq=%u, nofldrxq=%u. " 4184 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4185 iaq->nofldrxq, itype, navail, iaq->nirq); 4186 goto done; 4187 } 4188 } while (old_nirq != iaq->nirq); 4189 4190 /* One interrupt for everything. Ugh. */ 4191 device_printf(sc->dev, "running with minimal number of queues. " 4192 "itype %d, navail %u.\n", itype, navail); 4193 iaq->nirq = 1; 4194 iaq->nrxq = 1; 4195 iaq->ntxq = 1; 4196 if (iaq->nofldrxq > 0) { 4197 iaq->nofldrxq = 1; 4198 iaq->nofldtxq = 1; 4199 } 4200 iaq->nnmtxq = 0; 4201 iaq->nnmrxq = 0; 4202 done: 4203 MPASS(iaq->num_vis > 0); 4204 if (iaq->num_vis > 1) { 4205 MPASS(iaq->nrxq_vi > 0); 4206 MPASS(iaq->ntxq_vi > 0); 4207 } 4208 MPASS(iaq->nirq > 0); 4209 MPASS(iaq->nrxq > 0); 4210 MPASS(iaq->ntxq > 0); 4211 if (itype == INTR_MSI) { 4212 MPASS(powerof2(iaq->nirq)); 4213 } 4214 } 4215 4216 static int 4217 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4218 { 4219 int rc, itype, navail, nalloc; 4220 4221 for (itype = INTR_MSIX; itype; itype >>= 1) { 4222 4223 if ((itype & t4_intr_types) == 0) 4224 continue; /* not allowed */ 4225 4226 if (itype == INTR_MSIX) 4227 navail = pci_msix_count(sc->dev); 4228 else if (itype == INTR_MSI) 4229 navail = pci_msi_count(sc->dev); 4230 else 4231 navail = 1; 4232 restart: 4233 if (navail == 0) 4234 continue; 4235 4236 calculate_iaq(sc, iaq, itype, navail); 4237 nalloc = iaq->nirq; 4238 rc = 0; 4239 if (itype == INTR_MSIX) 4240 rc = pci_alloc_msix(sc->dev, &nalloc); 4241 else if (itype == INTR_MSI) 4242 rc = pci_alloc_msi(sc->dev, &nalloc); 4243 4244 if (rc == 0 && nalloc > 0) { 4245 if (nalloc == iaq->nirq) 4246 return (0); 4247 4248 /* 4249 * Didn't get the number requested. Use whatever number 4250 * the kernel is willing to allocate. 4251 */ 4252 device_printf(sc->dev, "fewer vectors than requested, " 4253 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4254 itype, iaq->nirq, nalloc); 4255 pci_release_msi(sc->dev); 4256 navail = nalloc; 4257 goto restart; 4258 } 4259 4260 device_printf(sc->dev, 4261 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4262 itype, rc, iaq->nirq, nalloc); 4263 } 4264 4265 device_printf(sc->dev, 4266 "failed to find a usable interrupt type. " 4267 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4268 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4269 4270 return (ENXIO); 4271 } 4272 4273 #define FW_VERSION(chip) ( \ 4274 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4275 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4276 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4277 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4278 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4279 4280 /* Just enough of fw_hdr to cover all version info. */ 4281 struct fw_h { 4282 __u8 ver; 4283 __u8 chip; 4284 __be16 len512; 4285 __be32 fw_ver; 4286 __be32 tp_microcode_ver; 4287 __u8 intfver_nic; 4288 __u8 intfver_vnic; 4289 __u8 intfver_ofld; 4290 __u8 intfver_ri; 4291 __u8 intfver_iscsipdu; 4292 __u8 intfver_iscsi; 4293 __u8 intfver_fcoepdu; 4294 __u8 intfver_fcoe; 4295 }; 4296 /* Spot check a couple of fields. */ 4297 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4298 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4299 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4300 4301 struct fw_info { 4302 uint8_t chip; 4303 char *kld_name; 4304 char *fw_mod_name; 4305 struct fw_h fw_h; 4306 } fw_info[] = { 4307 { 4308 .chip = CHELSIO_T4, 4309 .kld_name = "t4fw_cfg", 4310 .fw_mod_name = "t4fw", 4311 .fw_h = { 4312 .chip = FW_HDR_CHIP_T4, 4313 .fw_ver = htobe32(FW_VERSION(T4)), 4314 .intfver_nic = FW_INTFVER(T4, NIC), 4315 .intfver_vnic = FW_INTFVER(T4, VNIC), 4316 .intfver_ofld = FW_INTFVER(T4, OFLD), 4317 .intfver_ri = FW_INTFVER(T4, RI), 4318 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4319 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4320 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4321 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4322 }, 4323 }, { 4324 .chip = CHELSIO_T5, 4325 .kld_name = "t5fw_cfg", 4326 .fw_mod_name = "t5fw", 4327 .fw_h = { 4328 .chip = FW_HDR_CHIP_T5, 4329 .fw_ver = htobe32(FW_VERSION(T5)), 4330 .intfver_nic = FW_INTFVER(T5, NIC), 4331 .intfver_vnic = FW_INTFVER(T5, VNIC), 4332 .intfver_ofld = FW_INTFVER(T5, OFLD), 4333 .intfver_ri = FW_INTFVER(T5, RI), 4334 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4335 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4336 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4337 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4338 }, 4339 }, { 4340 .chip = CHELSIO_T6, 4341 .kld_name = "t6fw_cfg", 4342 .fw_mod_name = "t6fw", 4343 .fw_h = { 4344 .chip = FW_HDR_CHIP_T6, 4345 .fw_ver = htobe32(FW_VERSION(T6)), 4346 .intfver_nic = FW_INTFVER(T6, NIC), 4347 .intfver_vnic = FW_INTFVER(T6, VNIC), 4348 .intfver_ofld = FW_INTFVER(T6, OFLD), 4349 .intfver_ri = FW_INTFVER(T6, RI), 4350 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4351 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4352 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4353 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4354 }, 4355 } 4356 }; 4357 4358 static struct fw_info * 4359 find_fw_info(int chip) 4360 { 4361 int i; 4362 4363 for (i = 0; i < nitems(fw_info); i++) { 4364 if (fw_info[i].chip == chip) 4365 return (&fw_info[i]); 4366 } 4367 return (NULL); 4368 } 4369 4370 /* 4371 * Is the given firmware API compatible with the one the driver was compiled 4372 * with? 4373 */ 4374 static int 4375 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4376 { 4377 4378 /* short circuit if it's the exact same firmware version */ 4379 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4380 return (1); 4381 4382 /* 4383 * XXX: Is this too conservative? Perhaps I should limit this to the 4384 * features that are supported in the driver. 4385 */ 4386 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4387 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4388 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4389 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4390 return (1); 4391 #undef SAME_INTF 4392 4393 return (0); 4394 } 4395 4396 static int 4397 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4398 const struct firmware **fw) 4399 { 4400 struct fw_info *fw_info; 4401 4402 *dcfg = NULL; 4403 if (fw != NULL) 4404 *fw = NULL; 4405 4406 fw_info = find_fw_info(chip_id(sc)); 4407 if (fw_info == NULL) { 4408 device_printf(sc->dev, 4409 "unable to look up firmware information for chip %d.\n", 4410 chip_id(sc)); 4411 return (EINVAL); 4412 } 4413 4414 *dcfg = firmware_get(fw_info->kld_name); 4415 if (*dcfg != NULL) { 4416 if (fw != NULL) 4417 *fw = firmware_get(fw_info->fw_mod_name); 4418 return (0); 4419 } 4420 4421 return (ENOENT); 4422 } 4423 4424 static void 4425 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4426 const struct firmware *fw) 4427 { 4428 4429 if (fw != NULL) 4430 firmware_put(fw, FIRMWARE_UNLOAD); 4431 if (dcfg != NULL) 4432 firmware_put(dcfg, FIRMWARE_UNLOAD); 4433 } 4434 4435 /* 4436 * Return values: 4437 * 0 means no firmware install attempted. 4438 * ERESTART means a firmware install was attempted and was successful. 4439 * +ve errno means a firmware install was attempted but failed. 4440 */ 4441 static int 4442 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4443 const struct fw_h *drv_fw, const char *reason, int *already) 4444 { 4445 const struct firmware *cfg, *fw; 4446 const uint32_t c = be32toh(card_fw->fw_ver); 4447 uint32_t d, k; 4448 int rc, fw_install; 4449 struct fw_h bundled_fw; 4450 bool load_attempted; 4451 4452 cfg = fw = NULL; 4453 load_attempted = false; 4454 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4455 4456 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4457 if (t4_fw_install < 0) { 4458 rc = load_fw_module(sc, &cfg, &fw); 4459 if (rc != 0 || fw == NULL) { 4460 device_printf(sc->dev, 4461 "failed to load firmware module: %d. cfg %p, fw %p;" 4462 " will use compiled-in firmware version for" 4463 "hw.cxgbe.fw_install checks.\n", 4464 rc, cfg, fw); 4465 } else { 4466 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4467 } 4468 load_attempted = true; 4469 } 4470 d = be32toh(bundled_fw.fw_ver); 4471 4472 if (reason != NULL) 4473 goto install; 4474 4475 if ((sc->flags & FW_OK) == 0) { 4476 4477 if (c == 0xffffffff) { 4478 reason = "missing"; 4479 goto install; 4480 } 4481 4482 rc = 0; 4483 goto done; 4484 } 4485 4486 if (!fw_compatible(card_fw, &bundled_fw)) { 4487 reason = "incompatible or unusable"; 4488 goto install; 4489 } 4490 4491 if (d > c) { 4492 reason = "older than the version bundled with this driver"; 4493 goto install; 4494 } 4495 4496 if (fw_install == 2 && d != c) { 4497 reason = "different than the version bundled with this driver"; 4498 goto install; 4499 } 4500 4501 /* No reason to do anything to the firmware already on the card. */ 4502 rc = 0; 4503 goto done; 4504 4505 install: 4506 rc = 0; 4507 if ((*already)++) 4508 goto done; 4509 4510 if (fw_install == 0) { 4511 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4512 "but the driver is prohibited from installing a firmware " 4513 "on the card.\n", 4514 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4515 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4516 4517 goto done; 4518 } 4519 4520 /* 4521 * We'll attempt to install a firmware. Load the module first (if it 4522 * hasn't been loaded already). 4523 */ 4524 if (!load_attempted) { 4525 rc = load_fw_module(sc, &cfg, &fw); 4526 if (rc != 0 || fw == NULL) { 4527 device_printf(sc->dev, 4528 "failed to load firmware module: %d. cfg %p, fw %p\n", 4529 rc, cfg, fw); 4530 /* carry on */ 4531 } 4532 } 4533 if (fw == NULL) { 4534 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4535 "but the driver cannot take corrective action because it " 4536 "is unable to load the firmware module.\n", 4537 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4538 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4539 rc = sc->flags & FW_OK ? 0 : ENOENT; 4540 goto done; 4541 } 4542 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4543 if (k != d) { 4544 MPASS(t4_fw_install > 0); 4545 device_printf(sc->dev, 4546 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4547 "expecting (%u.%u.%u.%u) and will not be used.\n", 4548 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4549 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4550 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4551 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4552 rc = sc->flags & FW_OK ? 0 : EINVAL; 4553 goto done; 4554 } 4555 4556 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4557 "installing firmware %u.%u.%u.%u on card.\n", 4558 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4559 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4560 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4561 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4562 4563 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4564 if (rc != 0) { 4565 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4566 } else { 4567 /* Installed successfully, update the cached header too. */ 4568 rc = ERESTART; 4569 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4570 } 4571 done: 4572 unload_fw_module(sc, cfg, fw); 4573 4574 return (rc); 4575 } 4576 4577 /* 4578 * Establish contact with the firmware and attempt to become the master driver. 4579 * 4580 * A firmware will be installed to the card if needed (if the driver is allowed 4581 * to do so). 4582 */ 4583 static int 4584 contact_firmware(struct adapter *sc) 4585 { 4586 int rc, already = 0; 4587 enum dev_state state; 4588 struct fw_info *fw_info; 4589 struct fw_hdr *card_fw; /* fw on the card */ 4590 const struct fw_h *drv_fw; 4591 4592 fw_info = find_fw_info(chip_id(sc)); 4593 if (fw_info == NULL) { 4594 device_printf(sc->dev, 4595 "unable to look up firmware information for chip %d.\n", 4596 chip_id(sc)); 4597 return (EINVAL); 4598 } 4599 drv_fw = &fw_info->fw_h; 4600 4601 /* Read the header of the firmware on the card */ 4602 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4603 restart: 4604 rc = -t4_get_fw_hdr(sc, card_fw); 4605 if (rc != 0) { 4606 device_printf(sc->dev, 4607 "unable to read firmware header from card's flash: %d\n", 4608 rc); 4609 goto done; 4610 } 4611 4612 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4613 &already); 4614 if (rc == ERESTART) 4615 goto restart; 4616 if (rc != 0) 4617 goto done; 4618 4619 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4620 if (rc < 0 || state == DEV_STATE_ERR) { 4621 rc = -rc; 4622 device_printf(sc->dev, 4623 "failed to connect to the firmware: %d, %d. " 4624 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4625 #if 0 4626 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4627 "not responding properly to HELLO", &already) == ERESTART) 4628 goto restart; 4629 #endif 4630 goto done; 4631 } 4632 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4633 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4634 4635 if (rc == sc->pf) { 4636 sc->flags |= MASTER_PF; 4637 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4638 NULL, &already); 4639 if (rc == ERESTART) 4640 rc = 0; 4641 else if (rc != 0) 4642 goto done; 4643 } else if (state == DEV_STATE_UNINIT) { 4644 /* 4645 * We didn't get to be the master so we definitely won't be 4646 * configuring the chip. It's a bug if someone else hasn't 4647 * configured it already. 4648 */ 4649 device_printf(sc->dev, "couldn't be master(%d), " 4650 "device not already initialized either(%d). " 4651 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4652 rc = EPROTO; 4653 goto done; 4654 } else { 4655 /* 4656 * Some other PF is the master and has configured the chip. 4657 * This is allowed but untested. 4658 */ 4659 device_printf(sc->dev, "PF%d is master, device state %d. " 4660 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4661 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4662 sc->cfcsum = 0; 4663 rc = 0; 4664 } 4665 done: 4666 if (rc != 0 && sc->flags & FW_OK) { 4667 t4_fw_bye(sc, sc->mbox); 4668 sc->flags &= ~FW_OK; 4669 } 4670 free(card_fw, M_CXGBE); 4671 return (rc); 4672 } 4673 4674 static int 4675 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4676 uint32_t mtype, uint32_t moff) 4677 { 4678 struct fw_info *fw_info; 4679 const struct firmware *dcfg, *rcfg = NULL; 4680 const uint32_t *cfdata; 4681 uint32_t cflen, addr; 4682 int rc; 4683 4684 load_fw_module(sc, &dcfg, NULL); 4685 4686 /* Card specific interpretation of "default". */ 4687 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4688 if (pci_get_device(sc->dev) == 0x440a) 4689 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4690 if (is_fpga(sc)) 4691 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4692 } 4693 4694 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4695 if (dcfg == NULL) { 4696 device_printf(sc->dev, 4697 "KLD with default config is not available.\n"); 4698 rc = ENOENT; 4699 goto done; 4700 } 4701 cfdata = dcfg->data; 4702 cflen = dcfg->datasize & ~3; 4703 } else { 4704 char s[32]; 4705 4706 fw_info = find_fw_info(chip_id(sc)); 4707 if (fw_info == NULL) { 4708 device_printf(sc->dev, 4709 "unable to look up firmware information for chip %d.\n", 4710 chip_id(sc)); 4711 rc = EINVAL; 4712 goto done; 4713 } 4714 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4715 4716 rcfg = firmware_get(s); 4717 if (rcfg == NULL) { 4718 device_printf(sc->dev, 4719 "unable to load module \"%s\" for configuration " 4720 "profile \"%s\".\n", s, cfg_file); 4721 rc = ENOENT; 4722 goto done; 4723 } 4724 cfdata = rcfg->data; 4725 cflen = rcfg->datasize & ~3; 4726 } 4727 4728 if (cflen > FLASH_CFG_MAX_SIZE) { 4729 device_printf(sc->dev, 4730 "config file too long (%d, max allowed is %d).\n", 4731 cflen, FLASH_CFG_MAX_SIZE); 4732 rc = EINVAL; 4733 goto done; 4734 } 4735 4736 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4737 if (rc != 0) { 4738 device_printf(sc->dev, 4739 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4740 __func__, mtype, moff, cflen, rc); 4741 rc = EINVAL; 4742 goto done; 4743 } 4744 write_via_memwin(sc, 2, addr, cfdata, cflen); 4745 done: 4746 if (rcfg != NULL) 4747 firmware_put(rcfg, FIRMWARE_UNLOAD); 4748 unload_fw_module(sc, dcfg, NULL); 4749 return (rc); 4750 } 4751 4752 struct caps_allowed { 4753 uint16_t nbmcaps; 4754 uint16_t linkcaps; 4755 uint16_t switchcaps; 4756 uint16_t niccaps; 4757 uint16_t toecaps; 4758 uint16_t rdmacaps; 4759 uint16_t cryptocaps; 4760 uint16_t iscsicaps; 4761 uint16_t fcoecaps; 4762 }; 4763 4764 #define FW_PARAM_DEV(param) \ 4765 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4766 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4767 #define FW_PARAM_PFVF(param) \ 4768 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4769 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4770 4771 /* 4772 * Provide a configuration profile to the firmware and have it initialize the 4773 * chip accordingly. This may involve uploading a configuration file to the 4774 * card. 4775 */ 4776 static int 4777 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4778 const struct caps_allowed *caps_allowed) 4779 { 4780 int rc; 4781 struct fw_caps_config_cmd caps; 4782 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4783 4784 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4785 if (rc != 0) { 4786 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4787 return (rc); 4788 } 4789 4790 bzero(&caps, sizeof(caps)); 4791 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4792 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4793 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4794 mtype = 0; 4795 moff = 0; 4796 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4797 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4798 mtype = FW_MEMTYPE_FLASH; 4799 moff = t4_flash_cfg_addr(sc); 4800 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4801 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4802 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4803 FW_LEN16(caps)); 4804 } else { 4805 /* 4806 * Ask the firmware where it wants us to upload the config file. 4807 */ 4808 param = FW_PARAM_DEV(CF); 4809 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4810 if (rc != 0) { 4811 /* No support for config file? Shouldn't happen. */ 4812 device_printf(sc->dev, 4813 "failed to query config file location: %d.\n", rc); 4814 goto done; 4815 } 4816 mtype = G_FW_PARAMS_PARAM_Y(val); 4817 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4818 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4819 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4820 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4821 FW_LEN16(caps)); 4822 4823 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4824 if (rc != 0) { 4825 device_printf(sc->dev, 4826 "failed to upload config file to card: %d.\n", rc); 4827 goto done; 4828 } 4829 } 4830 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4831 if (rc != 0) { 4832 device_printf(sc->dev, "failed to pre-process config file: %d " 4833 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4834 goto done; 4835 } 4836 4837 finicsum = be32toh(caps.finicsum); 4838 cfcsum = be32toh(caps.cfcsum); /* actual */ 4839 if (finicsum != cfcsum) { 4840 device_printf(sc->dev, 4841 "WARNING: config file checksum mismatch: %08x %08x\n", 4842 finicsum, cfcsum); 4843 } 4844 sc->cfcsum = cfcsum; 4845 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4846 4847 /* 4848 * Let the firmware know what features will (not) be used so it can tune 4849 * things accordingly. 4850 */ 4851 #define LIMIT_CAPS(x) do { \ 4852 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4853 } while (0) 4854 LIMIT_CAPS(nbm); 4855 LIMIT_CAPS(link); 4856 LIMIT_CAPS(switch); 4857 LIMIT_CAPS(nic); 4858 LIMIT_CAPS(toe); 4859 LIMIT_CAPS(rdma); 4860 LIMIT_CAPS(crypto); 4861 LIMIT_CAPS(iscsi); 4862 LIMIT_CAPS(fcoe); 4863 #undef LIMIT_CAPS 4864 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4865 /* 4866 * TOE and hashfilters are mutually exclusive. It is a config 4867 * file or firmware bug if both are reported as available. Try 4868 * to cope with the situation in non-debug builds by disabling 4869 * TOE. 4870 */ 4871 MPASS(caps.toecaps == 0); 4872 4873 caps.toecaps = 0; 4874 caps.rdmacaps = 0; 4875 caps.iscsicaps = 0; 4876 } 4877 4878 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4879 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4880 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4881 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4882 if (rc != 0) { 4883 device_printf(sc->dev, 4884 "failed to process config file: %d.\n", rc); 4885 goto done; 4886 } 4887 4888 t4_tweak_chip_settings(sc); 4889 set_params__pre_init(sc); 4890 4891 /* get basic stuff going */ 4892 rc = -t4_fw_initialize(sc, sc->mbox); 4893 if (rc != 0) { 4894 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4895 goto done; 4896 } 4897 done: 4898 return (rc); 4899 } 4900 4901 /* 4902 * Partition chip resources for use between various PFs, VFs, etc. 4903 */ 4904 static int 4905 partition_resources(struct adapter *sc) 4906 { 4907 char cfg_file[sizeof(t4_cfg_file)]; 4908 struct caps_allowed caps_allowed; 4909 int rc; 4910 bool fallback; 4911 4912 /* Only the master driver gets to configure the chip resources. */ 4913 MPASS(sc->flags & MASTER_PF); 4914 4915 #define COPY_CAPS(x) do { \ 4916 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4917 } while (0) 4918 bzero(&caps_allowed, sizeof(caps_allowed)); 4919 COPY_CAPS(nbm); 4920 COPY_CAPS(link); 4921 COPY_CAPS(switch); 4922 COPY_CAPS(nic); 4923 COPY_CAPS(toe); 4924 COPY_CAPS(rdma); 4925 COPY_CAPS(crypto); 4926 COPY_CAPS(iscsi); 4927 COPY_CAPS(fcoe); 4928 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4929 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4930 retry: 4931 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4932 if (rc != 0 && fallback) { 4933 device_printf(sc->dev, 4934 "failed (%d) to configure card with \"%s\" profile, " 4935 "will fall back to a basic configuration and retry.\n", 4936 rc, cfg_file); 4937 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4938 bzero(&caps_allowed, sizeof(caps_allowed)); 4939 COPY_CAPS(switch); 4940 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4941 fallback = false; 4942 goto retry; 4943 } 4944 #undef COPY_CAPS 4945 return (rc); 4946 } 4947 4948 /* 4949 * Retrieve parameters that are needed (or nice to have) very early. 4950 */ 4951 static int 4952 get_params__pre_init(struct adapter *sc) 4953 { 4954 int rc; 4955 uint32_t param[2], val[2]; 4956 4957 t4_get_version_info(sc); 4958 4959 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4960 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 4961 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 4962 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 4963 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 4964 4965 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 4966 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 4967 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 4968 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 4969 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 4970 4971 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 4972 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 4973 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 4974 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 4975 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 4976 4977 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 4978 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 4979 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 4980 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 4981 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 4982 4983 param[0] = FW_PARAM_DEV(PORTVEC); 4984 param[1] = FW_PARAM_DEV(CCLK); 4985 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4986 if (rc != 0) { 4987 device_printf(sc->dev, 4988 "failed to query parameters (pre_init): %d.\n", rc); 4989 return (rc); 4990 } 4991 4992 sc->params.portvec = val[0]; 4993 sc->params.nports = bitcount32(val[0]); 4994 sc->params.vpd.cclk = val[1]; 4995 4996 /* Read device log parameters. */ 4997 rc = -t4_init_devlog_params(sc, 1); 4998 if (rc == 0) 4999 fixup_devlog_params(sc); 5000 else { 5001 device_printf(sc->dev, 5002 "failed to get devlog parameters: %d.\n", rc); 5003 rc = 0; /* devlog isn't critical for device operation */ 5004 } 5005 5006 return (rc); 5007 } 5008 5009 /* 5010 * Any params that need to be set before FW_INITIALIZE. 5011 */ 5012 static int 5013 set_params__pre_init(struct adapter *sc) 5014 { 5015 int rc = 0; 5016 uint32_t param, val; 5017 5018 if (chip_id(sc) >= CHELSIO_T6) { 5019 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5020 val = 1; 5021 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5022 /* firmwares < 1.20.1.0 do not have this param. */ 5023 if (rc == FW_EINVAL && 5024 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5025 rc = 0; 5026 } 5027 if (rc != 0) { 5028 device_printf(sc->dev, 5029 "failed to enable high priority filters :%d.\n", 5030 rc); 5031 } 5032 } 5033 5034 /* Enable opaque VIIDs with firmwares that support it. */ 5035 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5036 val = 1; 5037 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5038 if (rc == 0 && val == 1) 5039 sc->params.viid_smt_extn_support = true; 5040 else 5041 sc->params.viid_smt_extn_support = false; 5042 5043 return (rc); 5044 } 5045 5046 /* 5047 * Retrieve various parameters that are of interest to the driver. The device 5048 * has been initialized by the firmware at this point. 5049 */ 5050 static int 5051 get_params__post_init(struct adapter *sc) 5052 { 5053 int rc; 5054 uint32_t param[7], val[7]; 5055 struct fw_caps_config_cmd caps; 5056 5057 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5058 param[1] = FW_PARAM_PFVF(EQ_START); 5059 param[2] = FW_PARAM_PFVF(FILTER_START); 5060 param[3] = FW_PARAM_PFVF(FILTER_END); 5061 param[4] = FW_PARAM_PFVF(L2T_START); 5062 param[5] = FW_PARAM_PFVF(L2T_END); 5063 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5064 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5065 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5066 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5067 if (rc != 0) { 5068 device_printf(sc->dev, 5069 "failed to query parameters (post_init): %d.\n", rc); 5070 return (rc); 5071 } 5072 5073 sc->sge.iq_start = val[0]; 5074 sc->sge.eq_start = val[1]; 5075 if ((int)val[3] > (int)val[2]) { 5076 sc->tids.ftid_base = val[2]; 5077 sc->tids.ftid_end = val[3]; 5078 sc->tids.nftids = val[3] - val[2] + 1; 5079 } 5080 sc->vres.l2t.start = val[4]; 5081 sc->vres.l2t.size = val[5] - val[4] + 1; 5082 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5083 ("%s: L2 table size (%u) larger than expected (%u)", 5084 __func__, sc->vres.l2t.size, L2T_SIZE)); 5085 sc->params.core_vdd = val[6]; 5086 5087 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5088 param[1] = FW_PARAM_PFVF(EQ_END); 5089 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5090 if (rc != 0) { 5091 device_printf(sc->dev, 5092 "failed to query parameters (post_init2): %d.\n", rc); 5093 return (rc); 5094 } 5095 MPASS((int)val[0] >= sc->sge.iq_start); 5096 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5097 MPASS((int)val[1] >= sc->sge.eq_start); 5098 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5099 5100 if (chip_id(sc) >= CHELSIO_T6) { 5101 5102 sc->tids.tid_base = t4_read_reg(sc, 5103 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5104 5105 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5106 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5107 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5108 if (rc != 0) { 5109 device_printf(sc->dev, 5110 "failed to query hpfilter parameters: %d.\n", rc); 5111 return (rc); 5112 } 5113 if ((int)val[1] > (int)val[0]) { 5114 sc->tids.hpftid_base = val[0]; 5115 sc->tids.hpftid_end = val[1]; 5116 sc->tids.nhpftids = val[1] - val[0] + 1; 5117 5118 /* 5119 * These should go off if the layout changes and the 5120 * driver needs to catch up. 5121 */ 5122 MPASS(sc->tids.hpftid_base == 0); 5123 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5124 } 5125 5126 param[0] = FW_PARAM_PFVF(RAWF_START); 5127 param[1] = FW_PARAM_PFVF(RAWF_END); 5128 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5129 if (rc != 0) { 5130 device_printf(sc->dev, 5131 "failed to query rawf parameters: %d.\n", rc); 5132 return (rc); 5133 } 5134 if ((int)val[1] > (int)val[0]) { 5135 sc->rawf_base = val[0]; 5136 sc->nrawf = val[1] - val[0] + 1; 5137 } 5138 } 5139 5140 /* 5141 * MPSBGMAP is queried separately because only recent firmwares support 5142 * it as a parameter and we don't want the compound query above to fail 5143 * on older firmwares. 5144 */ 5145 param[0] = FW_PARAM_DEV(MPSBGMAP); 5146 val[0] = 0; 5147 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5148 if (rc == 0) 5149 sc->params.mps_bg_map = val[0]; 5150 else 5151 sc->params.mps_bg_map = 0; 5152 5153 /* 5154 * Determine whether the firmware supports the filter2 work request. 5155 * This is queried separately for the same reason as MPSBGMAP above. 5156 */ 5157 param[0] = FW_PARAM_DEV(FILTER2_WR); 5158 val[0] = 0; 5159 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5160 if (rc == 0) 5161 sc->params.filter2_wr_support = val[0] != 0; 5162 else 5163 sc->params.filter2_wr_support = 0; 5164 5165 /* 5166 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5167 * This is queried separately for the same reason as other params above. 5168 */ 5169 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5170 val[0] = 0; 5171 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5172 if (rc == 0) 5173 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5174 else 5175 sc->params.ulptx_memwrite_dsgl = false; 5176 5177 /* FW_RI_FR_NSMR_TPTE_WR support */ 5178 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5179 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5180 if (rc == 0) 5181 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5182 else 5183 sc->params.fr_nsmr_tpte_wr_support = false; 5184 5185 /* Support for 512 SGL entries per FR MR. */ 5186 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5187 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5188 if (rc == 0) 5189 sc->params.dev_512sgl_mr = val[0] != 0; 5190 else 5191 sc->params.dev_512sgl_mr = false; 5192 5193 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5194 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5195 if (rc == 0) 5196 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5197 else 5198 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5199 5200 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5201 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5202 if (rc == 0) { 5203 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5204 sc->params.nsched_cls = val[0]; 5205 } else 5206 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5207 5208 /* get capabilites */ 5209 bzero(&caps, sizeof(caps)); 5210 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5211 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5212 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5213 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5214 if (rc != 0) { 5215 device_printf(sc->dev, 5216 "failed to get card capabilities: %d.\n", rc); 5217 return (rc); 5218 } 5219 5220 #define READ_CAPS(x) do { \ 5221 sc->x = htobe16(caps.x); \ 5222 } while (0) 5223 READ_CAPS(nbmcaps); 5224 READ_CAPS(linkcaps); 5225 READ_CAPS(switchcaps); 5226 READ_CAPS(niccaps); 5227 READ_CAPS(toecaps); 5228 READ_CAPS(rdmacaps); 5229 READ_CAPS(cryptocaps); 5230 READ_CAPS(iscsicaps); 5231 READ_CAPS(fcoecaps); 5232 5233 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5234 MPASS(chip_id(sc) > CHELSIO_T4); 5235 MPASS(sc->toecaps == 0); 5236 sc->toecaps = 0; 5237 5238 param[0] = FW_PARAM_DEV(NTID); 5239 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5240 if (rc != 0) { 5241 device_printf(sc->dev, 5242 "failed to query HASHFILTER parameters: %d.\n", rc); 5243 return (rc); 5244 } 5245 sc->tids.ntids = val[0]; 5246 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5247 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5248 sc->tids.ntids -= sc->tids.nhpftids; 5249 } 5250 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5251 sc->params.hash_filter = 1; 5252 } 5253 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5254 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5255 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5256 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5257 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5258 if (rc != 0) { 5259 device_printf(sc->dev, 5260 "failed to query NIC parameters: %d.\n", rc); 5261 return (rc); 5262 } 5263 if ((int)val[1] > (int)val[0]) { 5264 sc->tids.etid_base = val[0]; 5265 sc->tids.etid_end = val[1]; 5266 sc->tids.netids = val[1] - val[0] + 1; 5267 sc->params.eo_wr_cred = val[2]; 5268 sc->params.ethoffload = 1; 5269 } 5270 } 5271 if (sc->toecaps) { 5272 /* query offload-related parameters */ 5273 param[0] = FW_PARAM_DEV(NTID); 5274 param[1] = FW_PARAM_PFVF(SERVER_START); 5275 param[2] = FW_PARAM_PFVF(SERVER_END); 5276 param[3] = FW_PARAM_PFVF(TDDP_START); 5277 param[4] = FW_PARAM_PFVF(TDDP_END); 5278 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5279 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5280 if (rc != 0) { 5281 device_printf(sc->dev, 5282 "failed to query TOE parameters: %d.\n", rc); 5283 return (rc); 5284 } 5285 sc->tids.ntids = val[0]; 5286 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5287 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5288 sc->tids.ntids -= sc->tids.nhpftids; 5289 } 5290 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5291 if ((int)val[2] > (int)val[1]) { 5292 sc->tids.stid_base = val[1]; 5293 sc->tids.nstids = val[2] - val[1] + 1; 5294 } 5295 sc->vres.ddp.start = val[3]; 5296 sc->vres.ddp.size = val[4] - val[3] + 1; 5297 sc->params.ofldq_wr_cred = val[5]; 5298 sc->params.offload = 1; 5299 } else { 5300 /* 5301 * The firmware attempts memfree TOE configuration for -SO cards 5302 * and will report toecaps=0 if it runs out of resources (this 5303 * depends on the config file). It may not report 0 for other 5304 * capabilities dependent on the TOE in this case. Set them to 5305 * 0 here so that the driver doesn't bother tracking resources 5306 * that will never be used. 5307 */ 5308 sc->iscsicaps = 0; 5309 sc->rdmacaps = 0; 5310 } 5311 if (sc->rdmacaps) { 5312 param[0] = FW_PARAM_PFVF(STAG_START); 5313 param[1] = FW_PARAM_PFVF(STAG_END); 5314 param[2] = FW_PARAM_PFVF(RQ_START); 5315 param[3] = FW_PARAM_PFVF(RQ_END); 5316 param[4] = FW_PARAM_PFVF(PBL_START); 5317 param[5] = FW_PARAM_PFVF(PBL_END); 5318 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5319 if (rc != 0) { 5320 device_printf(sc->dev, 5321 "failed to query RDMA parameters(1): %d.\n", rc); 5322 return (rc); 5323 } 5324 sc->vres.stag.start = val[0]; 5325 sc->vres.stag.size = val[1] - val[0] + 1; 5326 sc->vres.rq.start = val[2]; 5327 sc->vres.rq.size = val[3] - val[2] + 1; 5328 sc->vres.pbl.start = val[4]; 5329 sc->vres.pbl.size = val[5] - val[4] + 1; 5330 5331 param[0] = FW_PARAM_PFVF(SQRQ_START); 5332 param[1] = FW_PARAM_PFVF(SQRQ_END); 5333 param[2] = FW_PARAM_PFVF(CQ_START); 5334 param[3] = FW_PARAM_PFVF(CQ_END); 5335 param[4] = FW_PARAM_PFVF(OCQ_START); 5336 param[5] = FW_PARAM_PFVF(OCQ_END); 5337 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5338 if (rc != 0) { 5339 device_printf(sc->dev, 5340 "failed to query RDMA parameters(2): %d.\n", rc); 5341 return (rc); 5342 } 5343 sc->vres.qp.start = val[0]; 5344 sc->vres.qp.size = val[1] - val[0] + 1; 5345 sc->vres.cq.start = val[2]; 5346 sc->vres.cq.size = val[3] - val[2] + 1; 5347 sc->vres.ocq.start = val[4]; 5348 sc->vres.ocq.size = val[5] - val[4] + 1; 5349 5350 param[0] = FW_PARAM_PFVF(SRQ_START); 5351 param[1] = FW_PARAM_PFVF(SRQ_END); 5352 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5353 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5355 if (rc != 0) { 5356 device_printf(sc->dev, 5357 "failed to query RDMA parameters(3): %d.\n", rc); 5358 return (rc); 5359 } 5360 sc->vres.srq.start = val[0]; 5361 sc->vres.srq.size = val[1] - val[0] + 1; 5362 sc->params.max_ordird_qp = val[2]; 5363 sc->params.max_ird_adapter = val[3]; 5364 } 5365 if (sc->iscsicaps) { 5366 param[0] = FW_PARAM_PFVF(ISCSI_START); 5367 param[1] = FW_PARAM_PFVF(ISCSI_END); 5368 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5369 if (rc != 0) { 5370 device_printf(sc->dev, 5371 "failed to query iSCSI parameters: %d.\n", rc); 5372 return (rc); 5373 } 5374 sc->vres.iscsi.start = val[0]; 5375 sc->vres.iscsi.size = val[1] - val[0] + 1; 5376 } 5377 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5378 param[0] = FW_PARAM_PFVF(TLS_START); 5379 param[1] = FW_PARAM_PFVF(TLS_END); 5380 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5381 if (rc != 0) { 5382 device_printf(sc->dev, 5383 "failed to query TLS parameters: %d.\n", rc); 5384 return (rc); 5385 } 5386 sc->vres.key.start = val[0]; 5387 sc->vres.key.size = val[1] - val[0] + 1; 5388 } 5389 5390 /* 5391 * We've got the params we wanted to query directly from the firmware. 5392 * Grab some others via other means. 5393 */ 5394 t4_init_sge_params(sc); 5395 t4_init_tp_params(sc); 5396 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5397 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5398 5399 rc = t4_verify_chip_settings(sc); 5400 if (rc != 0) 5401 return (rc); 5402 t4_init_rx_buf_info(sc); 5403 5404 return (rc); 5405 } 5406 5407 #ifdef KERN_TLS 5408 static void 5409 ktls_tick(void *arg) 5410 { 5411 struct adapter *sc; 5412 uint32_t tstamp; 5413 5414 sc = arg; 5415 tstamp = tcp_ts_getticks(); 5416 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5417 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5418 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5419 } 5420 5421 static int 5422 t4_config_kern_tls(struct adapter *sc, bool enable) 5423 { 5424 int rc; 5425 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5426 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5427 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5428 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5429 5430 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5431 if (rc != 0) { 5432 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5433 enable ? "enable" : "disable", rc); 5434 return (rc); 5435 } 5436 5437 if (enable) { 5438 sc->flags |= KERN_TLS_ON; 5439 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5440 C_HARDCLOCK); 5441 } else { 5442 sc->flags &= ~KERN_TLS_ON; 5443 callout_stop(&sc->ktls_tick); 5444 } 5445 5446 return (rc); 5447 } 5448 #endif 5449 5450 static int 5451 set_params__post_init(struct adapter *sc) 5452 { 5453 uint32_t mask, param, val; 5454 #ifdef TCP_OFFLOAD 5455 int i, v, shift; 5456 #endif 5457 5458 /* ask for encapsulated CPLs */ 5459 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5460 val = 1; 5461 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5462 5463 /* Enable 32b port caps if the firmware supports it. */ 5464 param = FW_PARAM_PFVF(PORT_CAPS32); 5465 val = 1; 5466 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5467 sc->params.port_caps32 = 1; 5468 5469 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5470 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5471 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5472 V_MASKFILTER(val - 1)); 5473 5474 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5475 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5476 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5477 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5478 val = 0; 5479 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5480 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5481 F_ATTACKFILTERENABLE); 5482 val |= F_DROPERRORATTACK; 5483 } 5484 if (t4_drop_ip_fragments != 0) { 5485 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5486 F_FRAGMENTDROP); 5487 val |= F_DROPERRORFRAG; 5488 } 5489 if (t4_drop_pkts_with_l2_errors != 0) 5490 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5491 if (t4_drop_pkts_with_l3_errors != 0) { 5492 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5493 F_DROPERRORCSUMIP; 5494 } 5495 if (t4_drop_pkts_with_l4_errors != 0) { 5496 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5497 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5498 } 5499 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5500 5501 #ifdef TCP_OFFLOAD 5502 /* 5503 * Override the TOE timers with user provided tunables. This is not the 5504 * recommended way to change the timers (the firmware config file is) so 5505 * these tunables are not documented. 5506 * 5507 * All the timer tunables are in microseconds. 5508 */ 5509 if (t4_toe_keepalive_idle != 0) { 5510 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5511 v &= M_KEEPALIVEIDLE; 5512 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5513 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5514 } 5515 if (t4_toe_keepalive_interval != 0) { 5516 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5517 v &= M_KEEPALIVEINTVL; 5518 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5519 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5520 } 5521 if (t4_toe_keepalive_count != 0) { 5522 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5523 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5524 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5525 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5526 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5527 } 5528 if (t4_toe_rexmt_min != 0) { 5529 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5530 v &= M_RXTMIN; 5531 t4_set_reg_field(sc, A_TP_RXT_MIN, 5532 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5533 } 5534 if (t4_toe_rexmt_max != 0) { 5535 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5536 v &= M_RXTMAX; 5537 t4_set_reg_field(sc, A_TP_RXT_MAX, 5538 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5539 } 5540 if (t4_toe_rexmt_count != 0) { 5541 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5542 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5543 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5544 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5545 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5546 } 5547 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5548 if (t4_toe_rexmt_backoff[i] != -1) { 5549 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5550 shift = (i & 3) << 3; 5551 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5552 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5553 } 5554 } 5555 #endif 5556 5557 #ifdef KERN_TLS 5558 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5559 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5560 /* 5561 * Limit TOE connections to 2 reassembly "islands". This is 5562 * required for TOE TLS connections to downgrade to plain TOE 5563 * connections if an unsupported TLS version or ciphersuite is 5564 * used. 5565 */ 5566 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5567 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5568 if (is_ktls(sc)) { 5569 sc->tlst.inline_keys = t4_tls_inline_keys; 5570 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5571 if (t4_kern_tls != 0) 5572 t4_config_kern_tls(sc, true); 5573 } 5574 } 5575 #endif 5576 return (0); 5577 } 5578 5579 #undef FW_PARAM_PFVF 5580 #undef FW_PARAM_DEV 5581 5582 static void 5583 t4_set_desc(struct adapter *sc) 5584 { 5585 char buf[128]; 5586 struct adapter_params *p = &sc->params; 5587 5588 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5589 5590 device_set_desc_copy(sc->dev, buf); 5591 } 5592 5593 static inline void 5594 ifmedia_add4(struct ifmedia *ifm, int m) 5595 { 5596 5597 ifmedia_add(ifm, m, 0, NULL); 5598 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5599 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5600 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5601 } 5602 5603 /* 5604 * This is the selected media, which is not quite the same as the active media. 5605 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5606 * and active are not the same, and "media: Ethernet selected" otherwise. 5607 */ 5608 static void 5609 set_current_media(struct port_info *pi) 5610 { 5611 struct link_config *lc; 5612 struct ifmedia *ifm; 5613 int mword; 5614 u_int speed; 5615 5616 PORT_LOCK_ASSERT_OWNED(pi); 5617 5618 /* Leave current media alone if it's already set to IFM_NONE. */ 5619 ifm = &pi->media; 5620 if (ifm->ifm_cur != NULL && 5621 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5622 return; 5623 5624 lc = &pi->link_cfg; 5625 if (lc->requested_aneg != AUTONEG_DISABLE && 5626 lc->pcaps & FW_PORT_CAP32_ANEG) { 5627 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5628 return; 5629 } 5630 mword = IFM_ETHER | IFM_FDX; 5631 if (lc->requested_fc & PAUSE_TX) 5632 mword |= IFM_ETH_TXPAUSE; 5633 if (lc->requested_fc & PAUSE_RX) 5634 mword |= IFM_ETH_RXPAUSE; 5635 if (lc->requested_speed == 0) 5636 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5637 else 5638 speed = lc->requested_speed; 5639 mword |= port_mword(pi, speed_to_fwcap(speed)); 5640 ifmedia_set(ifm, mword); 5641 } 5642 5643 /* 5644 * Returns true if the ifmedia list for the port cannot change. 5645 */ 5646 static bool 5647 fixed_ifmedia(struct port_info *pi) 5648 { 5649 5650 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5651 pi->port_type == FW_PORT_TYPE_BT_XFI || 5652 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5653 pi->port_type == FW_PORT_TYPE_KX4 || 5654 pi->port_type == FW_PORT_TYPE_KX || 5655 pi->port_type == FW_PORT_TYPE_KR || 5656 pi->port_type == FW_PORT_TYPE_BP_AP || 5657 pi->port_type == FW_PORT_TYPE_BP4_AP || 5658 pi->port_type == FW_PORT_TYPE_BP40_BA || 5659 pi->port_type == FW_PORT_TYPE_KR4_100G || 5660 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5661 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5662 } 5663 5664 static void 5665 build_medialist(struct port_info *pi) 5666 { 5667 uint32_t ss, speed; 5668 int unknown, mword, bit; 5669 struct link_config *lc; 5670 struct ifmedia *ifm; 5671 5672 PORT_LOCK_ASSERT_OWNED(pi); 5673 5674 if (pi->flags & FIXED_IFMEDIA) 5675 return; 5676 5677 /* 5678 * Rebuild the ifmedia list. 5679 */ 5680 ifm = &pi->media; 5681 ifmedia_removeall(ifm); 5682 lc = &pi->link_cfg; 5683 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5684 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5685 MPASS(ss != 0); 5686 no_media: 5687 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5688 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5689 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5690 return; 5691 } 5692 5693 unknown = 0; 5694 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5695 speed = 1 << bit; 5696 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5697 if (ss & speed) { 5698 mword = port_mword(pi, speed); 5699 if (mword == IFM_NONE) { 5700 goto no_media; 5701 } else if (mword == IFM_UNKNOWN) 5702 unknown++; 5703 else 5704 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5705 } 5706 } 5707 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5708 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5709 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5710 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5711 5712 set_current_media(pi); 5713 } 5714 5715 /* 5716 * Initialize the requested fields in the link config based on driver tunables. 5717 */ 5718 static void 5719 init_link_config(struct port_info *pi) 5720 { 5721 struct link_config *lc = &pi->link_cfg; 5722 5723 PORT_LOCK_ASSERT_OWNED(pi); 5724 MPASS(lc->pcaps != 0); 5725 5726 lc->requested_caps = 0; 5727 lc->requested_speed = 0; 5728 5729 if (t4_autoneg == 0) 5730 lc->requested_aneg = AUTONEG_DISABLE; 5731 else if (t4_autoneg == 1) 5732 lc->requested_aneg = AUTONEG_ENABLE; 5733 else 5734 lc->requested_aneg = AUTONEG_AUTO; 5735 5736 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5737 PAUSE_AUTONEG); 5738 5739 if (t4_fec & FEC_AUTO) 5740 lc->requested_fec = FEC_AUTO; 5741 else if (t4_fec == 0) 5742 lc->requested_fec = FEC_NONE; 5743 else { 5744 /* -1 is handled by the FEC_AUTO block above and not here. */ 5745 lc->requested_fec = t4_fec & 5746 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5747 if (lc->requested_fec == 0) 5748 lc->requested_fec = FEC_AUTO; 5749 } 5750 lc->force_fec = 0; 5751 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 5752 if (t4_force_fec < 0) 5753 lc->force_fec = -1; 5754 else if (t4_force_fec > 0) 5755 lc->force_fec = 1; 5756 } 5757 } 5758 5759 /* 5760 * Makes sure that all requested settings comply with what's supported by the 5761 * port. Returns the number of settings that were invalid and had to be fixed. 5762 */ 5763 static int 5764 fixup_link_config(struct port_info *pi) 5765 { 5766 int n = 0; 5767 struct link_config *lc = &pi->link_cfg; 5768 uint32_t fwspeed; 5769 5770 PORT_LOCK_ASSERT_OWNED(pi); 5771 5772 /* Speed (when not autonegotiating) */ 5773 if (lc->requested_speed != 0) { 5774 fwspeed = speed_to_fwcap(lc->requested_speed); 5775 if ((fwspeed & lc->pcaps) == 0) { 5776 n++; 5777 lc->requested_speed = 0; 5778 } 5779 } 5780 5781 /* Link autonegotiation */ 5782 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5783 lc->requested_aneg == AUTONEG_DISABLE || 5784 lc->requested_aneg == AUTONEG_AUTO); 5785 if (lc->requested_aneg == AUTONEG_ENABLE && 5786 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5787 n++; 5788 lc->requested_aneg = AUTONEG_AUTO; 5789 } 5790 5791 /* Flow control */ 5792 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5793 if (lc->requested_fc & PAUSE_TX && 5794 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5795 n++; 5796 lc->requested_fc &= ~PAUSE_TX; 5797 } 5798 if (lc->requested_fc & PAUSE_RX && 5799 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5800 n++; 5801 lc->requested_fc &= ~PAUSE_RX; 5802 } 5803 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5804 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5805 n++; 5806 lc->requested_fc |= PAUSE_AUTONEG; 5807 } 5808 5809 /* FEC */ 5810 if ((lc->requested_fec & FEC_RS && 5811 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5812 (lc->requested_fec & FEC_BASER_RS && 5813 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5814 n++; 5815 lc->requested_fec = FEC_AUTO; 5816 } 5817 5818 return (n); 5819 } 5820 5821 /* 5822 * Apply the requested L1 settings, which are expected to be valid, to the 5823 * hardware. 5824 */ 5825 static int 5826 apply_link_config(struct port_info *pi) 5827 { 5828 struct adapter *sc = pi->adapter; 5829 struct link_config *lc = &pi->link_cfg; 5830 int rc; 5831 5832 #ifdef INVARIANTS 5833 ASSERT_SYNCHRONIZED_OP(sc); 5834 PORT_LOCK_ASSERT_OWNED(pi); 5835 5836 if (lc->requested_aneg == AUTONEG_ENABLE) 5837 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5838 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5839 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5840 if (lc->requested_fc & PAUSE_TX) 5841 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5842 if (lc->requested_fc & PAUSE_RX) 5843 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5844 if (lc->requested_fec & FEC_RS) 5845 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5846 if (lc->requested_fec & FEC_BASER_RS) 5847 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5848 #endif 5849 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5850 if (rc != 0) { 5851 /* Don't complain if the VF driver gets back an EPERM. */ 5852 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5853 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5854 } else { 5855 /* 5856 * An L1_CFG will almost always result in a link-change event if 5857 * the link is up, and the driver will refresh the actual 5858 * fec/fc/etc. when the notification is processed. If the link 5859 * is down then the actual settings are meaningless. 5860 * 5861 * This takes care of the case where a change in the L1 settings 5862 * may not result in a notification. 5863 */ 5864 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5865 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5866 } 5867 return (rc); 5868 } 5869 5870 #define FW_MAC_EXACT_CHUNK 7 5871 struct mcaddr_ctx { 5872 struct ifnet *ifp; 5873 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5874 uint64_t hash; 5875 int i; 5876 int del; 5877 int rc; 5878 }; 5879 5880 static u_int 5881 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5882 { 5883 struct mcaddr_ctx *ctx = arg; 5884 struct vi_info *vi = ctx->ifp->if_softc; 5885 struct port_info *pi = vi->pi; 5886 struct adapter *sc = pi->adapter; 5887 5888 if (ctx->rc < 0) 5889 return (0); 5890 5891 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5892 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5893 ctx->i++; 5894 5895 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5896 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5897 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5898 if (ctx->rc < 0) { 5899 int j; 5900 5901 for (j = 0; j < ctx->i; j++) { 5902 if_printf(ctx->ifp, 5903 "failed to add mc address" 5904 " %02x:%02x:%02x:" 5905 "%02x:%02x:%02x rc=%d\n", 5906 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5907 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5908 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5909 -ctx->rc); 5910 } 5911 return (0); 5912 } 5913 ctx->del = 0; 5914 ctx->i = 0; 5915 } 5916 5917 return (1); 5918 } 5919 5920 /* 5921 * Program the port's XGMAC based on parameters in ifnet. The caller also 5922 * indicates which parameters should be programmed (the rest are left alone). 5923 */ 5924 int 5925 update_mac_settings(struct ifnet *ifp, int flags) 5926 { 5927 int rc = 0; 5928 struct vi_info *vi = ifp->if_softc; 5929 struct port_info *pi = vi->pi; 5930 struct adapter *sc = pi->adapter; 5931 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5932 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 5933 5934 ASSERT_SYNCHRONIZED_OP(sc); 5935 KASSERT(flags, ("%s: not told what to update.", __func__)); 5936 5937 if (flags & XGMAC_MTU) 5938 mtu = ifp->if_mtu; 5939 5940 if (flags & XGMAC_PROMISC) 5941 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5942 5943 if (flags & XGMAC_ALLMULTI) 5944 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5945 5946 if (flags & XGMAC_VLANEX) 5947 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5948 5949 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5950 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5951 allmulti, 1, vlanex, false); 5952 if (rc) { 5953 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5954 rc); 5955 return (rc); 5956 } 5957 } 5958 5959 if (flags & XGMAC_UCADDR) { 5960 uint8_t ucaddr[ETHER_ADDR_LEN]; 5961 5962 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5963 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5964 ucaddr, true, &vi->smt_idx); 5965 if (rc < 0) { 5966 rc = -rc; 5967 if_printf(ifp, "change_mac failed: %d\n", rc); 5968 return (rc); 5969 } else { 5970 vi->xact_addr_filt = rc; 5971 rc = 0; 5972 } 5973 } 5974 5975 if (flags & XGMAC_MCADDRS) { 5976 struct epoch_tracker et; 5977 struct mcaddr_ctx ctx; 5978 int j; 5979 5980 ctx.ifp = ifp; 5981 ctx.hash = 0; 5982 ctx.i = 0; 5983 ctx.del = 1; 5984 ctx.rc = 0; 5985 /* 5986 * Unlike other drivers, we accumulate list of pointers into 5987 * interface address lists and we need to keep it safe even 5988 * after if_foreach_llmaddr() returns, thus we must enter the 5989 * network epoch. 5990 */ 5991 NET_EPOCH_ENTER(et); 5992 if_foreach_llmaddr(ifp, add_maddr, &ctx); 5993 if (ctx.rc < 0) { 5994 NET_EPOCH_EXIT(et); 5995 rc = -ctx.rc; 5996 return (rc); 5997 } 5998 if (ctx.i > 0) { 5999 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6000 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6001 NET_EPOCH_EXIT(et); 6002 if (rc < 0) { 6003 rc = -rc; 6004 for (j = 0; j < ctx.i; j++) { 6005 if_printf(ifp, 6006 "failed to add mcast address" 6007 " %02x:%02x:%02x:" 6008 "%02x:%02x:%02x rc=%d\n", 6009 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6010 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6011 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6012 rc); 6013 } 6014 return (rc); 6015 } 6016 ctx.del = 0; 6017 } else 6018 NET_EPOCH_EXIT(et); 6019 6020 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6021 if (rc != 0) 6022 if_printf(ifp, "failed to set mcast address hash: %d\n", 6023 rc); 6024 if (ctx.del == 0) { 6025 /* We clobbered the VXLAN entry if there was one. */ 6026 pi->vxlan_tcam_entry = false; 6027 } 6028 } 6029 6030 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6031 pi->vxlan_tcam_entry == false) { 6032 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6033 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6034 true); 6035 if (rc < 0) { 6036 rc = -rc; 6037 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6038 rc); 6039 } else { 6040 MPASS(rc == sc->rawf_base + pi->port_id); 6041 rc = 0; 6042 pi->vxlan_tcam_entry = true; 6043 } 6044 } 6045 6046 return (rc); 6047 } 6048 6049 /* 6050 * {begin|end}_synchronized_op must be called from the same thread. 6051 */ 6052 int 6053 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6054 char *wmesg) 6055 { 6056 int rc, pri; 6057 6058 #ifdef WITNESS 6059 /* the caller thinks it's ok to sleep, but is it really? */ 6060 if (flags & SLEEP_OK) 6061 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6062 "begin_synchronized_op"); 6063 #endif 6064 6065 if (INTR_OK) 6066 pri = PCATCH; 6067 else 6068 pri = 0; 6069 6070 ADAPTER_LOCK(sc); 6071 for (;;) { 6072 6073 if (vi && IS_DOOMED(vi)) { 6074 rc = ENXIO; 6075 goto done; 6076 } 6077 6078 if (!IS_BUSY(sc)) { 6079 rc = 0; 6080 break; 6081 } 6082 6083 if (!(flags & SLEEP_OK)) { 6084 rc = EBUSY; 6085 goto done; 6086 } 6087 6088 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6089 rc = EINTR; 6090 goto done; 6091 } 6092 } 6093 6094 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6095 SET_BUSY(sc); 6096 #ifdef INVARIANTS 6097 sc->last_op = wmesg; 6098 sc->last_op_thr = curthread; 6099 sc->last_op_flags = flags; 6100 #endif 6101 6102 done: 6103 if (!(flags & HOLD_LOCK) || rc) 6104 ADAPTER_UNLOCK(sc); 6105 6106 return (rc); 6107 } 6108 6109 /* 6110 * Tell if_ioctl and if_init that the VI is going away. This is 6111 * special variant of begin_synchronized_op and must be paired with a 6112 * call to end_synchronized_op. 6113 */ 6114 void 6115 doom_vi(struct adapter *sc, struct vi_info *vi) 6116 { 6117 6118 ADAPTER_LOCK(sc); 6119 SET_DOOMED(vi); 6120 wakeup(&sc->flags); 6121 while (IS_BUSY(sc)) 6122 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6123 SET_BUSY(sc); 6124 #ifdef INVARIANTS 6125 sc->last_op = "t4detach"; 6126 sc->last_op_thr = curthread; 6127 sc->last_op_flags = 0; 6128 #endif 6129 ADAPTER_UNLOCK(sc); 6130 } 6131 6132 /* 6133 * {begin|end}_synchronized_op must be called from the same thread. 6134 */ 6135 void 6136 end_synchronized_op(struct adapter *sc, int flags) 6137 { 6138 6139 if (flags & LOCK_HELD) 6140 ADAPTER_LOCK_ASSERT_OWNED(sc); 6141 else 6142 ADAPTER_LOCK(sc); 6143 6144 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6145 CLR_BUSY(sc); 6146 wakeup(&sc->flags); 6147 ADAPTER_UNLOCK(sc); 6148 } 6149 6150 static int 6151 cxgbe_init_synchronized(struct vi_info *vi) 6152 { 6153 struct port_info *pi = vi->pi; 6154 struct adapter *sc = pi->adapter; 6155 struct ifnet *ifp = vi->ifp; 6156 int rc = 0, i; 6157 struct sge_txq *txq; 6158 6159 ASSERT_SYNCHRONIZED_OP(sc); 6160 6161 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6162 return (0); /* already running */ 6163 6164 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6165 return (rc); /* error message displayed already */ 6166 6167 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6168 return (rc); /* error message displayed already */ 6169 6170 rc = update_mac_settings(ifp, XGMAC_ALL); 6171 if (rc) 6172 goto done; /* error message displayed already */ 6173 6174 PORT_LOCK(pi); 6175 if (pi->up_vis == 0) { 6176 t4_update_port_info(pi); 6177 fixup_link_config(pi); 6178 build_medialist(pi); 6179 apply_link_config(pi); 6180 } 6181 6182 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6183 if (rc != 0) { 6184 if_printf(ifp, "enable_vi failed: %d\n", rc); 6185 PORT_UNLOCK(pi); 6186 goto done; 6187 } 6188 6189 /* 6190 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6191 * if this changes. 6192 */ 6193 6194 for_each_txq(vi, i, txq) { 6195 TXQ_LOCK(txq); 6196 txq->eq.flags |= EQ_ENABLED; 6197 TXQ_UNLOCK(txq); 6198 } 6199 6200 /* 6201 * The first iq of the first port to come up is used for tracing. 6202 */ 6203 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6204 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6205 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6206 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6207 V_QUEUENUMBER(sc->traceq)); 6208 pi->flags |= HAS_TRACEQ; 6209 } 6210 6211 /* all ok */ 6212 pi->up_vis++; 6213 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6214 if (pi->link_cfg.link_ok) 6215 t4_os_link_changed(pi); 6216 PORT_UNLOCK(pi); 6217 6218 mtx_lock(&vi->tick_mtx); 6219 if (ifp->if_get_counter == vi_get_counter) 6220 callout_reset(&vi->tick, hz, vi_tick, vi); 6221 else 6222 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6223 mtx_unlock(&vi->tick_mtx); 6224 done: 6225 if (rc != 0) 6226 cxgbe_uninit_synchronized(vi); 6227 6228 return (rc); 6229 } 6230 6231 /* 6232 * Idempotent. 6233 */ 6234 static int 6235 cxgbe_uninit_synchronized(struct vi_info *vi) 6236 { 6237 struct port_info *pi = vi->pi; 6238 struct adapter *sc = pi->adapter; 6239 struct ifnet *ifp = vi->ifp; 6240 int rc, i; 6241 struct sge_txq *txq; 6242 6243 ASSERT_SYNCHRONIZED_OP(sc); 6244 6245 if (!(vi->flags & VI_INIT_DONE)) { 6246 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6247 KASSERT(0, ("uninited VI is running")); 6248 if_printf(ifp, "uninited VI with running ifnet. " 6249 "vi->flags 0x%016lx, if_flags 0x%08x, " 6250 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6251 ifp->if_drv_flags); 6252 } 6253 return (0); 6254 } 6255 6256 /* 6257 * Disable the VI so that all its data in either direction is discarded 6258 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6259 * tick) intact as the TP can deliver negative advice or data that it's 6260 * holding in its RAM (for an offloaded connection) even after the VI is 6261 * disabled. 6262 */ 6263 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6264 if (rc) { 6265 if_printf(ifp, "disable_vi failed: %d\n", rc); 6266 return (rc); 6267 } 6268 6269 for_each_txq(vi, i, txq) { 6270 TXQ_LOCK(txq); 6271 txq->eq.flags &= ~EQ_ENABLED; 6272 TXQ_UNLOCK(txq); 6273 } 6274 6275 mtx_lock(&vi->tick_mtx); 6276 callout_stop(&vi->tick); 6277 mtx_unlock(&vi->tick_mtx); 6278 6279 PORT_LOCK(pi); 6280 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6281 PORT_UNLOCK(pi); 6282 return (0); 6283 } 6284 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6285 pi->up_vis--; 6286 if (pi->up_vis > 0) { 6287 PORT_UNLOCK(pi); 6288 return (0); 6289 } 6290 6291 pi->link_cfg.link_ok = false; 6292 pi->link_cfg.speed = 0; 6293 pi->link_cfg.link_down_rc = 255; 6294 t4_os_link_changed(pi); 6295 PORT_UNLOCK(pi); 6296 6297 return (0); 6298 } 6299 6300 /* 6301 * It is ok for this function to fail midway and return right away. t4_detach 6302 * will walk the entire sc->irq list and clean up whatever is valid. 6303 */ 6304 int 6305 t4_setup_intr_handlers(struct adapter *sc) 6306 { 6307 int rc, rid, p, q, v; 6308 char s[8]; 6309 struct irq *irq; 6310 struct port_info *pi; 6311 struct vi_info *vi; 6312 struct sge *sge = &sc->sge; 6313 struct sge_rxq *rxq; 6314 #ifdef TCP_OFFLOAD 6315 struct sge_ofld_rxq *ofld_rxq; 6316 #endif 6317 #ifdef DEV_NETMAP 6318 struct sge_nm_rxq *nm_rxq; 6319 #endif 6320 #ifdef RSS 6321 int nbuckets = rss_getnumbuckets(); 6322 #endif 6323 6324 /* 6325 * Setup interrupts. 6326 */ 6327 irq = &sc->irq[0]; 6328 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6329 if (forwarding_intr_to_fwq(sc)) 6330 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6331 6332 /* Multiple interrupts. */ 6333 if (sc->flags & IS_VF) 6334 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6335 ("%s: too few intr.", __func__)); 6336 else 6337 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6338 ("%s: too few intr.", __func__)); 6339 6340 /* The first one is always error intr on PFs */ 6341 if (!(sc->flags & IS_VF)) { 6342 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6343 if (rc != 0) 6344 return (rc); 6345 irq++; 6346 rid++; 6347 } 6348 6349 /* The second one is always the firmware event queue (first on VFs) */ 6350 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6351 if (rc != 0) 6352 return (rc); 6353 irq++; 6354 rid++; 6355 6356 for_each_port(sc, p) { 6357 pi = sc->port[p]; 6358 for_each_vi(pi, v, vi) { 6359 vi->first_intr = rid - 1; 6360 6361 if (vi->nnmrxq > 0) { 6362 int n = max(vi->nrxq, vi->nnmrxq); 6363 6364 rxq = &sge->rxq[vi->first_rxq]; 6365 #ifdef DEV_NETMAP 6366 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6367 #endif 6368 for (q = 0; q < n; q++) { 6369 snprintf(s, sizeof(s), "%x%c%x", p, 6370 'a' + v, q); 6371 if (q < vi->nrxq) 6372 irq->rxq = rxq++; 6373 #ifdef DEV_NETMAP 6374 if (q < vi->nnmrxq) 6375 irq->nm_rxq = nm_rxq++; 6376 6377 if (irq->nm_rxq != NULL && 6378 irq->rxq == NULL) { 6379 /* Netmap rx only */ 6380 rc = t4_alloc_irq(sc, irq, rid, 6381 t4_nm_intr, irq->nm_rxq, s); 6382 } 6383 if (irq->nm_rxq != NULL && 6384 irq->rxq != NULL) { 6385 /* NIC and Netmap rx */ 6386 rc = t4_alloc_irq(sc, irq, rid, 6387 t4_vi_intr, irq, s); 6388 } 6389 #endif 6390 if (irq->rxq != NULL && 6391 irq->nm_rxq == NULL) { 6392 /* NIC rx only */ 6393 rc = t4_alloc_irq(sc, irq, rid, 6394 t4_intr, irq->rxq, s); 6395 } 6396 if (rc != 0) 6397 return (rc); 6398 #ifdef RSS 6399 if (q < vi->nrxq) { 6400 bus_bind_intr(sc->dev, irq->res, 6401 rss_getcpu(q % nbuckets)); 6402 } 6403 #endif 6404 irq++; 6405 rid++; 6406 vi->nintr++; 6407 } 6408 } else { 6409 for_each_rxq(vi, q, rxq) { 6410 snprintf(s, sizeof(s), "%x%c%x", p, 6411 'a' + v, q); 6412 rc = t4_alloc_irq(sc, irq, rid, 6413 t4_intr, rxq, s); 6414 if (rc != 0) 6415 return (rc); 6416 #ifdef RSS 6417 bus_bind_intr(sc->dev, irq->res, 6418 rss_getcpu(q % nbuckets)); 6419 #endif 6420 irq++; 6421 rid++; 6422 vi->nintr++; 6423 } 6424 } 6425 #ifdef TCP_OFFLOAD 6426 for_each_ofld_rxq(vi, q, ofld_rxq) { 6427 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6428 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6429 ofld_rxq, s); 6430 if (rc != 0) 6431 return (rc); 6432 irq++; 6433 rid++; 6434 vi->nintr++; 6435 } 6436 #endif 6437 } 6438 } 6439 MPASS(irq == &sc->irq[sc->intr_count]); 6440 6441 return (0); 6442 } 6443 6444 static void 6445 write_global_rss_key(struct adapter *sc) 6446 { 6447 #ifdef RSS 6448 int i; 6449 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6450 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6451 6452 CTASSERT(RSS_KEYSIZE == 40); 6453 6454 rss_getkey((void *)&raw_rss_key[0]); 6455 for (i = 0; i < nitems(rss_key); i++) { 6456 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6457 } 6458 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6459 #endif 6460 } 6461 6462 /* 6463 * Idempotent. 6464 */ 6465 static int 6466 adapter_full_init(struct adapter *sc) 6467 { 6468 int rc, i; 6469 6470 ASSERT_SYNCHRONIZED_OP(sc); 6471 6472 if (!(sc->flags & ADAP_SYSCTL_CTX)) { 6473 sysctl_ctx_init(&sc->ctx); 6474 sc->flags |= ADAP_SYSCTL_CTX; 6475 } 6476 6477 /* 6478 * queues that belong to the adapter (not any particular port). 6479 */ 6480 rc = t4_setup_adapter_queues(sc); 6481 if (rc != 0) 6482 return (rc); 6483 6484 for (i = 0; i < nitems(sc->tq); i++) { 6485 if (sc->tq[i] != NULL) 6486 continue; 6487 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6488 taskqueue_thread_enqueue, &sc->tq[i]); 6489 if (sc->tq[i] == NULL) { 6490 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6491 return (ENOMEM); 6492 } 6493 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6494 device_get_nameunit(sc->dev), i); 6495 } 6496 6497 if (!(sc->flags & IS_VF)) { 6498 write_global_rss_key(sc); 6499 t4_intr_enable(sc); 6500 } 6501 return (0); 6502 } 6503 6504 int 6505 adapter_init(struct adapter *sc) 6506 { 6507 int rc; 6508 6509 ASSERT_SYNCHRONIZED_OP(sc); 6510 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6511 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6512 ("%s: FULL_INIT_DONE already", __func__)); 6513 6514 rc = adapter_full_init(sc); 6515 if (rc != 0) 6516 adapter_full_uninit(sc); 6517 else 6518 sc->flags |= FULL_INIT_DONE; 6519 6520 return (rc); 6521 } 6522 6523 /* 6524 * Idempotent. 6525 */ 6526 static void 6527 adapter_full_uninit(struct adapter *sc) 6528 { 6529 int i; 6530 6531 /* Do this before freeing the adapter queues. */ 6532 if (sc->flags & ADAP_SYSCTL_CTX) { 6533 sysctl_ctx_free(&sc->ctx); 6534 sc->flags &= ~ADAP_SYSCTL_CTX; 6535 } 6536 6537 t4_teardown_adapter_queues(sc); 6538 6539 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6540 taskqueue_free(sc->tq[i]); 6541 sc->tq[i] = NULL; 6542 } 6543 6544 sc->flags &= ~FULL_INIT_DONE; 6545 } 6546 6547 #ifdef RSS 6548 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6549 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6550 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6551 RSS_HASHTYPE_RSS_UDP_IPV6) 6552 6553 /* Translates kernel hash types to hardware. */ 6554 static int 6555 hashconfig_to_hashen(int hashconfig) 6556 { 6557 int hashen = 0; 6558 6559 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6560 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6561 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6562 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6563 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6564 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6565 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6566 } 6567 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6568 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6569 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6570 } 6571 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6572 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6573 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6574 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6575 6576 return (hashen); 6577 } 6578 6579 /* Translates hardware hash types to kernel. */ 6580 static int 6581 hashen_to_hashconfig(int hashen) 6582 { 6583 int hashconfig = 0; 6584 6585 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6586 /* 6587 * If UDP hashing was enabled it must have been enabled for 6588 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6589 * enabling any 4-tuple hash is nonsense configuration. 6590 */ 6591 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6592 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6593 6594 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6595 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6596 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6597 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6598 } 6599 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6600 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6601 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6602 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6603 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6604 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6605 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6606 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6607 6608 return (hashconfig); 6609 } 6610 #endif 6611 6612 /* 6613 * Idempotent. 6614 */ 6615 static int 6616 vi_full_init(struct vi_info *vi) 6617 { 6618 struct adapter *sc = vi->adapter; 6619 struct sge_rxq *rxq; 6620 int rc, i, j; 6621 #ifdef RSS 6622 int nbuckets = rss_getnumbuckets(); 6623 int hashconfig = rss_gethashconfig(); 6624 int extra; 6625 #endif 6626 6627 ASSERT_SYNCHRONIZED_OP(sc); 6628 6629 if (!(vi->flags & VI_SYSCTL_CTX)) { 6630 sysctl_ctx_init(&vi->ctx); 6631 vi->flags |= VI_SYSCTL_CTX; 6632 } 6633 6634 /* 6635 * Allocate tx/rx/fl queues for this VI. 6636 */ 6637 rc = t4_setup_vi_queues(vi); 6638 if (rc != 0) 6639 return (rc); 6640 6641 /* 6642 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6643 */ 6644 if (vi->nrxq > vi->rss_size) { 6645 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6646 "some queues will never receive traffic.\n", vi->nrxq, 6647 vi->rss_size); 6648 } else if (vi->rss_size % vi->nrxq) { 6649 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6650 "expect uneven traffic distribution.\n", vi->nrxq, 6651 vi->rss_size); 6652 } 6653 #ifdef RSS 6654 if (vi->nrxq != nbuckets) { 6655 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6656 "performance will be impacted.\n", vi->nrxq, nbuckets); 6657 } 6658 #endif 6659 if (vi->rss == NULL) 6660 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6661 M_ZERO | M_WAITOK); 6662 for (i = 0; i < vi->rss_size;) { 6663 #ifdef RSS 6664 j = rss_get_indirection_to_bucket(i); 6665 j %= vi->nrxq; 6666 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6667 vi->rss[i++] = rxq->iq.abs_id; 6668 #else 6669 for_each_rxq(vi, j, rxq) { 6670 vi->rss[i++] = rxq->iq.abs_id; 6671 if (i == vi->rss_size) 6672 break; 6673 } 6674 #endif 6675 } 6676 6677 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6678 vi->rss, vi->rss_size); 6679 if (rc != 0) { 6680 CH_ERR(vi, "rss_config failed: %d\n", rc); 6681 return (rc); 6682 } 6683 6684 #ifdef RSS 6685 vi->hashen = hashconfig_to_hashen(hashconfig); 6686 6687 /* 6688 * We may have had to enable some hashes even though the global config 6689 * wants them disabled. This is a potential problem that must be 6690 * reported to the user. 6691 */ 6692 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6693 6694 /* 6695 * If we consider only the supported hash types, then the enabled hashes 6696 * are a superset of the requested hashes. In other words, there cannot 6697 * be any supported hash that was requested but not enabled, but there 6698 * can be hashes that were not requested but had to be enabled. 6699 */ 6700 extra &= SUPPORTED_RSS_HASHTYPES; 6701 MPASS((extra & hashconfig) == 0); 6702 6703 if (extra) { 6704 CH_ALERT(vi, 6705 "global RSS config (0x%x) cannot be accommodated.\n", 6706 hashconfig); 6707 } 6708 if (extra & RSS_HASHTYPE_RSS_IPV4) 6709 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6710 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6711 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6712 if (extra & RSS_HASHTYPE_RSS_IPV6) 6713 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6714 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6715 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6716 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6717 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6718 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6719 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6720 #else 6721 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6722 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6723 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6724 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6725 #endif 6726 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6727 0, 0); 6728 if (rc != 0) { 6729 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6730 return (rc); 6731 } 6732 6733 return (0); 6734 } 6735 6736 int 6737 vi_init(struct vi_info *vi) 6738 { 6739 int rc; 6740 6741 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6742 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6743 ("%s: VI_INIT_DONE already", __func__)); 6744 6745 rc = vi_full_init(vi); 6746 if (rc != 0) 6747 vi_full_uninit(vi); 6748 else 6749 vi->flags |= VI_INIT_DONE; 6750 6751 return (rc); 6752 } 6753 6754 /* 6755 * Idempotent. 6756 */ 6757 static void 6758 vi_full_uninit(struct vi_info *vi) 6759 { 6760 6761 if (vi->flags & VI_INIT_DONE) { 6762 quiesce_vi(vi); 6763 free(vi->rss, M_CXGBE); 6764 free(vi->nm_rss, M_CXGBE); 6765 } 6766 6767 /* Do this before freeing the VI queues. */ 6768 if (vi->flags & VI_SYSCTL_CTX) { 6769 sysctl_ctx_free(&vi->ctx); 6770 vi->flags &= ~VI_SYSCTL_CTX; 6771 } 6772 6773 t4_teardown_vi_queues(vi); 6774 vi->flags &= ~VI_INIT_DONE; 6775 } 6776 6777 static void 6778 quiesce_txq(struct sge_txq *txq) 6779 { 6780 struct sge_eq *eq = &txq->eq; 6781 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6782 6783 MPASS(eq->flags & EQ_SW_ALLOCATED); 6784 MPASS(!(eq->flags & EQ_ENABLED)); 6785 6786 /* Wait for the mp_ring to empty. */ 6787 while (!mp_ring_is_idle(txq->r)) { 6788 mp_ring_check_drainage(txq->r, 4096); 6789 pause("rquiesce", 1); 6790 } 6791 MPASS(txq->txp.npkt == 0); 6792 6793 if (eq->flags & EQ_HW_ALLOCATED) { 6794 /* 6795 * Hardware is alive and working normally. Wait for it to 6796 * finish and then wait for the driver to catch up and reclaim 6797 * all descriptors. 6798 */ 6799 while (spg->cidx != htobe16(eq->pidx)) 6800 pause("equiesce", 1); 6801 while (eq->cidx != eq->pidx) 6802 pause("dquiesce", 1); 6803 } else { 6804 /* 6805 * Hardware is unavailable. Discard all pending tx and reclaim 6806 * descriptors directly. 6807 */ 6808 TXQ_LOCK(txq); 6809 while (eq->cidx != eq->pidx) { 6810 struct mbuf *m, *nextpkt; 6811 struct tx_sdesc *txsd; 6812 6813 txsd = &txq->sdesc[eq->cidx]; 6814 for (m = txsd->m; m != NULL; m = nextpkt) { 6815 nextpkt = m->m_nextpkt; 6816 m->m_nextpkt = NULL; 6817 m_freem(m); 6818 } 6819 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6820 } 6821 spg->pidx = spg->cidx = htobe16(eq->cidx); 6822 TXQ_UNLOCK(txq); 6823 } 6824 } 6825 6826 static void 6827 quiesce_wrq(struct sge_wrq *wrq) 6828 { 6829 6830 /* XXXTX */ 6831 } 6832 6833 static void 6834 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6835 { 6836 /* Synchronize with the interrupt handler */ 6837 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6838 pause("iqfree", 1); 6839 6840 if (fl != NULL) { 6841 MPASS(iq->flags & IQ_HAS_FL); 6842 6843 mtx_lock(&sc->sfl_lock); 6844 FL_LOCK(fl); 6845 fl->flags |= FL_DOOMED; 6846 FL_UNLOCK(fl); 6847 callout_stop(&sc->sfl_callout); 6848 mtx_unlock(&sc->sfl_lock); 6849 6850 KASSERT((fl->flags & FL_STARVING) == 0, 6851 ("%s: still starving", __func__)); 6852 6853 /* Release all buffers if hardware is no longer available. */ 6854 if (!(iq->flags & IQ_HW_ALLOCATED)) 6855 free_fl_buffers(sc, fl); 6856 } 6857 } 6858 6859 /* 6860 * Wait for all activity on all the queues of the VI to complete. It is assumed 6861 * that no new work is being enqueued by the hardware or the driver. That part 6862 * should be arranged before calling this function. 6863 */ 6864 static void 6865 quiesce_vi(struct vi_info *vi) 6866 { 6867 int i; 6868 struct adapter *sc = vi->adapter; 6869 struct sge_rxq *rxq; 6870 struct sge_txq *txq; 6871 #ifdef TCP_OFFLOAD 6872 struct sge_ofld_rxq *ofld_rxq; 6873 #endif 6874 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6875 struct sge_ofld_txq *ofld_txq; 6876 #endif 6877 6878 if (!(vi->flags & VI_INIT_DONE)) 6879 return; 6880 6881 for_each_txq(vi, i, txq) { 6882 quiesce_txq(txq); 6883 } 6884 6885 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6886 for_each_ofld_txq(vi, i, ofld_txq) { 6887 quiesce_wrq(&ofld_txq->wrq); 6888 } 6889 #endif 6890 6891 for_each_rxq(vi, i, rxq) { 6892 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6893 } 6894 6895 #ifdef TCP_OFFLOAD 6896 for_each_ofld_rxq(vi, i, ofld_rxq) { 6897 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6898 } 6899 #endif 6900 } 6901 6902 static int 6903 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6904 driver_intr_t *handler, void *arg, char *name) 6905 { 6906 int rc; 6907 6908 irq->rid = rid; 6909 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6910 RF_SHAREABLE | RF_ACTIVE); 6911 if (irq->res == NULL) { 6912 device_printf(sc->dev, 6913 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6914 return (ENOMEM); 6915 } 6916 6917 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6918 NULL, handler, arg, &irq->tag); 6919 if (rc != 0) { 6920 device_printf(sc->dev, 6921 "failed to setup interrupt for rid %d, name %s: %d\n", 6922 rid, name, rc); 6923 } else if (name) 6924 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6925 6926 return (rc); 6927 } 6928 6929 static int 6930 t4_free_irq(struct adapter *sc, struct irq *irq) 6931 { 6932 if (irq->tag) 6933 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6934 if (irq->res) 6935 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6936 6937 bzero(irq, sizeof(*irq)); 6938 6939 return (0); 6940 } 6941 6942 static void 6943 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6944 { 6945 6946 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6947 t4_get_regs(sc, buf, regs->len); 6948 } 6949 6950 #define A_PL_INDIR_CMD 0x1f8 6951 6952 #define S_PL_AUTOINC 31 6953 #define M_PL_AUTOINC 0x1U 6954 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6955 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6956 6957 #define S_PL_VFID 20 6958 #define M_PL_VFID 0xffU 6959 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6960 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6961 6962 #define S_PL_ADDR 0 6963 #define M_PL_ADDR 0xfffffU 6964 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6965 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6966 6967 #define A_PL_INDIR_DATA 0x1fc 6968 6969 static uint64_t 6970 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6971 { 6972 u32 stats[2]; 6973 6974 if (sc->flags & IS_VF) { 6975 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 6976 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 6977 } else { 6978 mtx_assert(&sc->reg_lock, MA_OWNED); 6979 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 6980 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 6981 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 6982 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 6983 } 6984 return (((uint64_t)stats[1]) << 32 | stats[0]); 6985 } 6986 6987 static void 6988 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 6989 { 6990 6991 #define GET_STAT(name) \ 6992 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 6993 6994 if (!(sc->flags & IS_VF)) 6995 mtx_lock(&sc->reg_lock); 6996 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 6997 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 6998 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 6999 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7000 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7001 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7002 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7003 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7004 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7005 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7006 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7007 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7008 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7009 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7010 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7011 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7012 if (!(sc->flags & IS_VF)) 7013 mtx_unlock(&sc->reg_lock); 7014 7015 #undef GET_STAT 7016 } 7017 7018 static void 7019 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7020 { 7021 int reg; 7022 7023 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7024 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7025 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7026 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7027 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7028 } 7029 7030 static void 7031 vi_refresh_stats(struct vi_info *vi) 7032 { 7033 struct timeval tv; 7034 const struct timeval interval = {0, 250000}; /* 250ms */ 7035 7036 mtx_assert(&vi->tick_mtx, MA_OWNED); 7037 7038 if (!(vi->flags & VI_INIT_DONE) || vi->flags & VI_SKIP_STATS) 7039 return; 7040 7041 getmicrotime(&tv); 7042 timevalsub(&tv, &interval); 7043 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7044 return; 7045 7046 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7047 getmicrotime(&vi->last_refreshed); 7048 } 7049 7050 static void 7051 cxgbe_refresh_stats(struct vi_info *vi) 7052 { 7053 u_int i, v, tnl_cong_drops, chan_map; 7054 struct timeval tv; 7055 const struct timeval interval = {0, 250000}; /* 250ms */ 7056 struct port_info *pi; 7057 struct adapter *sc; 7058 7059 mtx_assert(&vi->tick_mtx, MA_OWNED); 7060 7061 if (vi->flags & VI_SKIP_STATS) 7062 return; 7063 7064 getmicrotime(&tv); 7065 timevalsub(&tv, &interval); 7066 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7067 return; 7068 7069 pi = vi->pi; 7070 sc = vi->adapter; 7071 tnl_cong_drops = 0; 7072 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7073 chan_map = pi->rx_e_chan_map; 7074 while (chan_map) { 7075 i = ffs(chan_map) - 1; 7076 mtx_lock(&sc->reg_lock); 7077 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7078 A_TP_MIB_TNL_CNG_DROP_0 + i); 7079 mtx_unlock(&sc->reg_lock); 7080 tnl_cong_drops += v; 7081 chan_map &= ~(1 << i); 7082 } 7083 pi->tnl_cong_drops = tnl_cong_drops; 7084 getmicrotime(&vi->last_refreshed); 7085 } 7086 7087 static void 7088 cxgbe_tick(void *arg) 7089 { 7090 struct vi_info *vi = arg; 7091 7092 MPASS(IS_MAIN_VI(vi)); 7093 mtx_assert(&vi->tick_mtx, MA_OWNED); 7094 7095 cxgbe_refresh_stats(vi); 7096 callout_schedule(&vi->tick, hz); 7097 } 7098 7099 static void 7100 vi_tick(void *arg) 7101 { 7102 struct vi_info *vi = arg; 7103 7104 mtx_assert(&vi->tick_mtx, MA_OWNED); 7105 7106 vi_refresh_stats(vi); 7107 callout_schedule(&vi->tick, hz); 7108 } 7109 7110 /* 7111 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7112 */ 7113 static char *caps_decoder[] = { 7114 "\20\001IPMI\002NCSI", /* 0: NBM */ 7115 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7116 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7117 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7118 "\006HASHFILTER\007ETHOFLD", 7119 "\20\001TOE", /* 4: TOE */ 7120 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7121 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7122 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7123 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7124 "\007T10DIF" 7125 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7126 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7127 "\004TLS_HW", 7128 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7129 "\004PO_INITIATOR\005PO_TARGET", 7130 }; 7131 7132 void 7133 t4_sysctls(struct adapter *sc) 7134 { 7135 struct sysctl_ctx_list *ctx; 7136 struct sysctl_oid *oid; 7137 struct sysctl_oid_list *children, *c0; 7138 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7139 7140 ctx = device_get_sysctl_ctx(sc->dev); 7141 7142 /* 7143 * dev.t4nex.X. 7144 */ 7145 oid = device_get_sysctl_tree(sc->dev); 7146 c0 = children = SYSCTL_CHILDREN(oid); 7147 7148 sc->sc_do_rxcopy = 1; 7149 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7150 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7151 7152 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7153 sc->params.nports, "# of ports"); 7154 7155 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7156 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7157 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7158 "available doorbells"); 7159 7160 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7161 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7162 7163 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7164 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7165 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7166 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7167 7168 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7169 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7170 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7171 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7172 7173 t4_sge_sysctls(sc, ctx, children); 7174 7175 sc->lro_timeout = 100; 7176 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7177 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7178 7179 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7180 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7181 7182 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7183 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7184 7185 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7186 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7187 7188 if (sc->flags & IS_VF) 7189 return; 7190 7191 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7192 NULL, chip_rev(sc), "chip hardware revision"); 7193 7194 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7195 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7196 7197 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7198 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7199 7200 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7201 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7202 7203 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7204 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7205 7206 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7207 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7208 7209 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7210 sc->er_version, 0, "expansion ROM version"); 7211 7212 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7213 sc->bs_version, 0, "bootstrap firmware version"); 7214 7215 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7216 NULL, sc->params.scfg_vers, "serial config version"); 7217 7218 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7219 NULL, sc->params.vpd_vers, "VPD version"); 7220 7221 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7222 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7223 7224 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7225 sc->cfcsum, "config file checksum"); 7226 7227 #define SYSCTL_CAP(name, n, text) \ 7228 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7229 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7230 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7231 "available " text " capabilities") 7232 7233 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7234 SYSCTL_CAP(linkcaps, 1, "link"); 7235 SYSCTL_CAP(switchcaps, 2, "switch"); 7236 SYSCTL_CAP(niccaps, 3, "NIC"); 7237 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7238 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7239 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7240 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7241 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7242 #undef SYSCTL_CAP 7243 7244 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7245 NULL, sc->tids.nftids, "number of filters"); 7246 7247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7248 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7249 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7251 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7252 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7253 7254 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7255 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7256 sysctl_loadavg, "A", 7257 "microprocessor load averages (debug firmwares only)"); 7258 7259 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7260 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7261 "I", "core Vdd (in mV)"); 7262 7263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7264 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7265 sysctl_cpus, "A", "local CPUs"); 7266 7267 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7268 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7269 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7270 7271 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7272 &sc->swintr, 0, "software triggered interrupts"); 7273 7274 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7275 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7276 "1 = reset adapter, 0 = zero reset counter"); 7277 7278 /* 7279 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7280 */ 7281 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7282 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7283 "logs and miscellaneous information"); 7284 children = SYSCTL_CHILDREN(oid); 7285 7286 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7287 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7288 sysctl_cctrl, "A", "congestion control"); 7289 7290 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7291 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7292 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7293 7294 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7295 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7296 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7297 7298 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7299 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7300 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7301 7302 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7303 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7304 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7305 7306 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7307 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7308 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7309 7310 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7311 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7312 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7313 7314 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7315 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7316 sysctl_cim_la, "A", "CIM logic analyzer"); 7317 7318 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7320 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7321 7322 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7323 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7324 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7325 7326 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7327 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7328 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7329 7330 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7331 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7332 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7333 7334 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7335 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7336 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7337 7338 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7339 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7340 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7341 7342 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7343 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7344 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7345 7346 if (chip_id(sc) > CHELSIO_T4) { 7347 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7348 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7349 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7350 "CIM OBQ 6 (SGE0-RX)"); 7351 7352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7353 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7354 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7355 "CIM OBQ 7 (SGE1-RX)"); 7356 } 7357 7358 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7359 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7360 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7361 7362 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7363 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7364 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7365 7366 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7367 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7368 sysctl_cpl_stats, "A", "CPL statistics"); 7369 7370 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7371 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7372 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7373 7374 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7375 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7376 sysctl_tid_stats, "A", "tid stats"); 7377 7378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7379 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7380 sysctl_devlog, "A", "firmware's device log"); 7381 7382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7383 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7384 sysctl_fcoe_stats, "A", "FCoE statistics"); 7385 7386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7387 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7388 sysctl_hw_sched, "A", "hardware scheduler "); 7389 7390 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7391 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7392 sysctl_l2t, "A", "hardware L2 table"); 7393 7394 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7395 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7396 sysctl_smt, "A", "hardware source MAC table"); 7397 7398 #ifdef INET6 7399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7400 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7401 sysctl_clip, "A", "active CLIP table entries"); 7402 #endif 7403 7404 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7405 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7406 sysctl_lb_stats, "A", "loopback statistics"); 7407 7408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7410 sysctl_meminfo, "A", "memory regions"); 7411 7412 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7413 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7414 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7415 "A", "MPS TCAM entries"); 7416 7417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7418 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7419 sysctl_path_mtus, "A", "path MTUs"); 7420 7421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7422 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7423 sysctl_pm_stats, "A", "PM statistics"); 7424 7425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7426 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7427 sysctl_rdma_stats, "A", "RDMA statistics"); 7428 7429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7430 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7431 sysctl_tcp_stats, "A", "TCP statistics"); 7432 7433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7434 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7435 sysctl_tids, "A", "TID information"); 7436 7437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7438 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7439 sysctl_tp_err_stats, "A", "TP error statistics"); 7440 7441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7442 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7443 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7444 7445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7446 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7447 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7448 7449 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7450 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7451 sysctl_tp_la, "A", "TP logic analyzer"); 7452 7453 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7454 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7455 sysctl_tx_rate, "A", "Tx rate"); 7456 7457 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7458 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7459 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7460 7461 if (chip_id(sc) >= CHELSIO_T5) { 7462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7463 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7464 sysctl_wcwr_stats, "A", "write combined work requests"); 7465 } 7466 7467 #ifdef KERN_TLS 7468 if (is_ktls(sc)) { 7469 /* 7470 * dev.t4nex.0.tls. 7471 */ 7472 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7473 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7474 children = SYSCTL_CHILDREN(oid); 7475 7476 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7477 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7478 "keys in work requests (1) or attempt to store TLS keys " 7479 "in card memory."); 7480 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7481 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7482 "TCB field updates with TLS record work requests."); 7483 } 7484 #endif 7485 7486 #ifdef TCP_OFFLOAD 7487 if (is_offload(sc)) { 7488 int i; 7489 char s[4]; 7490 7491 /* 7492 * dev.t4nex.X.toe. 7493 */ 7494 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7495 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7496 children = SYSCTL_CHILDREN(oid); 7497 7498 sc->tt.cong_algorithm = -1; 7499 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7500 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7501 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7502 "3 = highspeed)"); 7503 7504 sc->tt.sndbuf = -1; 7505 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7506 &sc->tt.sndbuf, 0, "hardware send buffer"); 7507 7508 sc->tt.ddp = 0; 7509 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7510 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7511 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7512 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7513 7514 sc->tt.rx_coalesce = -1; 7515 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7516 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7517 7518 sc->tt.tls = 0; 7519 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7520 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7521 "Inline TLS allowed"); 7522 7523 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7524 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7525 sysctl_tls_rx_ports, "I", 7526 "TCP ports that use inline TLS+TOE RX"); 7527 7528 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7529 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7530 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7531 sysctl_tls_rx_timeout, "I", 7532 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7533 7534 sc->tt.tx_align = -1; 7535 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7536 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7537 7538 sc->tt.tx_zcopy = 0; 7539 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7540 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7541 "Enable zero-copy aio_write(2)"); 7542 7543 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7544 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7545 "cop_managed_offloading", CTLFLAG_RW, 7546 &sc->tt.cop_managed_offloading, 0, 7547 "COP (Connection Offload Policy) controls all TOE offload"); 7548 7549 sc->tt.autorcvbuf_inc = 16 * 1024; 7550 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7551 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7552 "autorcvbuf increment"); 7553 7554 sc->tt.update_hc_on_pmtu_change = 1; 7555 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7556 "update_hc_on_pmtu_change", CTLFLAG_RW, 7557 &sc->tt.update_hc_on_pmtu_change, 0, 7558 "Update hostcache entry if the PMTU changes"); 7559 7560 sc->tt.iso = 1; 7561 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7562 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7563 7564 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7565 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7566 sysctl_tp_tick, "A", "TP timer tick (us)"); 7567 7568 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7569 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7570 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7571 7572 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7573 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7574 sysctl_tp_tick, "A", "DACK tick (us)"); 7575 7576 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7577 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7578 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7579 7580 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7581 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7582 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7583 "Minimum retransmit interval (us)"); 7584 7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7586 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7587 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7588 "Maximum retransmit interval (us)"); 7589 7590 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7591 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7592 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7593 "Persist timer min (us)"); 7594 7595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7596 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7597 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7598 "Persist timer max (us)"); 7599 7600 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7601 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7602 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7603 "Keepalive idle timer (us)"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7606 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7607 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7608 "Keepalive interval timer (us)"); 7609 7610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7611 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7612 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7613 7614 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7615 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7616 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7617 "FINWAIT2 timer (us)"); 7618 7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7620 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7621 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7622 "Number of SYN retransmissions before abort"); 7623 7624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7625 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7626 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7627 "Number of retransmissions before abort"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7630 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7631 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7632 "Number of keepalive probes before abort"); 7633 7634 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7635 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7636 "TOE retransmit backoffs"); 7637 children = SYSCTL_CHILDREN(oid); 7638 for (i = 0; i < 16; i++) { 7639 snprintf(s, sizeof(s), "%u", i); 7640 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7641 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7642 i, sysctl_tp_backoff, "IU", 7643 "TOE retransmit backoff"); 7644 } 7645 } 7646 #endif 7647 } 7648 7649 void 7650 vi_sysctls(struct vi_info *vi) 7651 { 7652 struct sysctl_ctx_list *ctx; 7653 struct sysctl_oid *oid; 7654 struct sysctl_oid_list *children; 7655 7656 ctx = device_get_sysctl_ctx(vi->dev); 7657 7658 /* 7659 * dev.v?(cxgbe|cxl).X. 7660 */ 7661 oid = device_get_sysctl_tree(vi->dev); 7662 children = SYSCTL_CHILDREN(oid); 7663 7664 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7665 vi->viid, "VI identifer"); 7666 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7667 &vi->nrxq, 0, "# of rx queues"); 7668 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7669 &vi->ntxq, 0, "# of tx queues"); 7670 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7671 &vi->first_rxq, 0, "index of first rx queue"); 7672 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7673 &vi->first_txq, 0, "index of first tx queue"); 7674 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7675 vi->rss_base, "start of RSS indirection table"); 7676 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7677 vi->rss_size, "size of RSS indirection table"); 7678 7679 if (IS_MAIN_VI(vi)) { 7680 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7681 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7682 sysctl_noflowq, "IU", 7683 "Reserve queue 0 for non-flowid packets"); 7684 } 7685 7686 if (vi->adapter->flags & IS_VF) { 7687 MPASS(vi->flags & TX_USES_VM_WR); 7688 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7689 NULL, 1, "use VM work requests for transmit"); 7690 } else { 7691 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7692 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7693 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7694 } 7695 7696 #ifdef TCP_OFFLOAD 7697 if (vi->nofldrxq != 0) { 7698 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7699 &vi->nofldrxq, 0, 7700 "# of rx queues for offloaded TCP connections"); 7701 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7702 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7703 "index of first TOE rx queue"); 7704 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7705 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7706 sysctl_holdoff_tmr_idx_ofld, "I", 7707 "holdoff timer index for TOE queues"); 7708 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7709 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7710 sysctl_holdoff_pktc_idx_ofld, "I", 7711 "holdoff packet counter index for TOE queues"); 7712 } 7713 #endif 7714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7715 if (vi->nofldtxq != 0) { 7716 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7717 &vi->nofldtxq, 0, 7718 "# of tx queues for TOE/ETHOFLD"); 7719 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7720 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7721 "index of first TOE/ETHOFLD tx queue"); 7722 } 7723 #endif 7724 #ifdef DEV_NETMAP 7725 if (vi->nnmrxq != 0) { 7726 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7727 &vi->nnmrxq, 0, "# of netmap rx queues"); 7728 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7729 &vi->nnmtxq, 0, "# of netmap tx queues"); 7730 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7731 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7732 "index of first netmap rx queue"); 7733 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7734 CTLFLAG_RD, &vi->first_nm_txq, 0, 7735 "index of first netmap tx queue"); 7736 } 7737 #endif 7738 7739 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7740 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7741 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7743 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7744 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7745 7746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7747 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7748 sysctl_qsize_rxq, "I", "rx queue size"); 7749 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7750 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7751 sysctl_qsize_txq, "I", "tx queue size"); 7752 } 7753 7754 static void 7755 cxgbe_sysctls(struct port_info *pi) 7756 { 7757 struct sysctl_ctx_list *ctx; 7758 struct sysctl_oid *oid; 7759 struct sysctl_oid_list *children, *children2; 7760 struct adapter *sc = pi->adapter; 7761 int i; 7762 char name[16]; 7763 static char *tc_flags = {"\20\1USER"}; 7764 7765 ctx = device_get_sysctl_ctx(pi->dev); 7766 7767 /* 7768 * dev.cxgbe.X. 7769 */ 7770 oid = device_get_sysctl_tree(pi->dev); 7771 children = SYSCTL_CHILDREN(oid); 7772 7773 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7774 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7775 sysctl_linkdnrc, "A", "reason why link is down"); 7776 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7777 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7778 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7779 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7780 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7781 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7782 sysctl_btphy, "I", "PHY firmware version"); 7783 } 7784 7785 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7786 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7787 sysctl_pause_settings, "A", 7788 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7789 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7790 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7791 "FEC in use on the link"); 7792 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7793 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7794 sysctl_requested_fec, "A", 7795 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7796 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7797 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7798 "FEC recommended by the cable/transceiver"); 7799 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7800 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7801 sysctl_autoneg, "I", 7802 "autonegotiation (-1 = not supported)"); 7803 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7804 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7805 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7806 7807 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7808 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7809 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7810 &pi->link_cfg.pcaps, 0, "port capabilities"); 7811 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7812 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7814 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7815 7816 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7817 port_top_speed(pi), "max speed (in Gbps)"); 7818 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7819 pi->mps_bg_map, "MPS buffer group map"); 7820 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7821 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7822 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7823 pi->rx_c_chan, "TP rx c-channel"); 7824 7825 if (sc->flags & IS_VF) 7826 return; 7827 7828 /* 7829 * dev.(cxgbe|cxl).X.tc. 7830 */ 7831 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7832 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7833 "Tx scheduler traffic classes (cl_rl)"); 7834 children2 = SYSCTL_CHILDREN(oid); 7835 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7836 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7837 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7838 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7839 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7840 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7841 for (i = 0; i < sc->params.nsched_cls; i++) { 7842 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7843 7844 snprintf(name, sizeof(name), "%d", i); 7845 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7846 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7848 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7849 CTLFLAG_RD, &tc->state, 0, "current state"); 7850 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7851 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7852 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7853 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7854 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7855 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7856 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7857 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7858 "traffic class parameters"); 7859 } 7860 7861 /* 7862 * dev.cxgbe.X.stats. 7863 */ 7864 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7865 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7866 children = SYSCTL_CHILDREN(oid); 7867 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7868 &pi->tx_parse_error, 0, 7869 "# of tx packets with invalid length or # of segments"); 7870 7871 #define T4_REGSTAT(name, stat, desc) \ 7872 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7873 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7874 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7875 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7876 sysctl_handle_t4_reg64, "QU", desc) 7877 7878 /* We get these from port_stats and they may be stale by up to 1s */ 7879 #define T4_PORTSTAT(name, desc) \ 7880 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7881 &pi->stats.name, desc) 7882 7883 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7884 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7885 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7886 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7887 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7888 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7889 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7890 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7891 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7892 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7893 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7894 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7895 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7896 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7897 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7898 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7899 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7900 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7901 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7902 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7903 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7904 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7905 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7906 7907 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7908 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7909 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7910 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7911 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7912 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7913 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7914 if (is_t6(sc)) { 7915 T4_PORTSTAT(rx_fcs_err, 7916 "# of frames received with bad FCS since last link up"); 7917 } else { 7918 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7919 "# of frames received with bad FCS"); 7920 } 7921 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7922 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7923 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7924 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7925 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7926 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7927 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7928 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7929 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7930 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7931 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7932 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7933 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7934 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7935 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7936 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7937 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7938 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7939 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7940 7941 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7942 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7943 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7944 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7945 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7946 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7947 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7948 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7949 7950 #undef T4_REGSTAT 7951 #undef T4_PORTSTAT 7952 } 7953 7954 static int 7955 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7956 { 7957 int rc, *i, space = 0; 7958 struct sbuf sb; 7959 7960 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7961 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7962 if (space) 7963 sbuf_printf(&sb, " "); 7964 sbuf_printf(&sb, "%d", *i); 7965 space = 1; 7966 } 7967 rc = sbuf_finish(&sb); 7968 sbuf_delete(&sb); 7969 return (rc); 7970 } 7971 7972 static int 7973 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7974 { 7975 int rc; 7976 struct sbuf *sb; 7977 7978 rc = sysctl_wire_old_buffer(req, 0); 7979 if (rc != 0) 7980 return(rc); 7981 7982 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7983 if (sb == NULL) 7984 return (ENOMEM); 7985 7986 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7987 rc = sbuf_finish(sb); 7988 sbuf_delete(sb); 7989 7990 return (rc); 7991 } 7992 7993 static int 7994 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 7995 { 7996 int rc; 7997 struct sbuf *sb; 7998 7999 rc = sysctl_wire_old_buffer(req, 0); 8000 if (rc != 0) 8001 return(rc); 8002 8003 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8004 if (sb == NULL) 8005 return (ENOMEM); 8006 8007 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8008 rc = sbuf_finish(sb); 8009 sbuf_delete(sb); 8010 8011 return (rc); 8012 } 8013 8014 static int 8015 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8016 { 8017 struct port_info *pi = arg1; 8018 int op = arg2; 8019 struct adapter *sc = pi->adapter; 8020 u_int v; 8021 int rc; 8022 8023 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8024 if (rc) 8025 return (rc); 8026 if (hw_off_limits(sc)) 8027 rc = ENXIO; 8028 else { 8029 /* XXX: magic numbers */ 8030 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8031 op ? 0x20 : 0xc820, &v); 8032 } 8033 end_synchronized_op(sc, 0); 8034 if (rc) 8035 return (rc); 8036 if (op == 0) 8037 v /= 256; 8038 8039 rc = sysctl_handle_int(oidp, &v, 0, req); 8040 return (rc); 8041 } 8042 8043 static int 8044 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8045 { 8046 struct vi_info *vi = arg1; 8047 int rc, val; 8048 8049 val = vi->rsrv_noflowq; 8050 rc = sysctl_handle_int(oidp, &val, 0, req); 8051 if (rc != 0 || req->newptr == NULL) 8052 return (rc); 8053 8054 if ((val >= 1) && (vi->ntxq > 1)) 8055 vi->rsrv_noflowq = 1; 8056 else 8057 vi->rsrv_noflowq = 0; 8058 8059 return (rc); 8060 } 8061 8062 static int 8063 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8064 { 8065 struct vi_info *vi = arg1; 8066 struct adapter *sc = vi->adapter; 8067 int rc, val, i; 8068 8069 MPASS(!(sc->flags & IS_VF)); 8070 8071 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8072 rc = sysctl_handle_int(oidp, &val, 0, req); 8073 if (rc != 0 || req->newptr == NULL) 8074 return (rc); 8075 8076 if (val != 0 && val != 1) 8077 return (EINVAL); 8078 8079 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8080 "t4txvm"); 8081 if (rc) 8082 return (rc); 8083 if (hw_off_limits(sc)) 8084 rc = ENXIO; 8085 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8086 /* 8087 * We don't want parse_pkt to run with one setting (VF or PF) 8088 * and then eth_tx to see a different setting but still use 8089 * stale information calculated by parse_pkt. 8090 */ 8091 rc = EBUSY; 8092 } else { 8093 struct port_info *pi = vi->pi; 8094 struct sge_txq *txq; 8095 uint32_t ctrl0; 8096 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8097 8098 if (val) { 8099 vi->flags |= TX_USES_VM_WR; 8100 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8101 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8102 V_TXPKT_INTF(pi->tx_chan)); 8103 if (!(sc->flags & IS_VF)) 8104 npkt--; 8105 } else { 8106 vi->flags &= ~TX_USES_VM_WR; 8107 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8108 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8109 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8110 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8111 } 8112 for_each_txq(vi, i, txq) { 8113 txq->cpl_ctrl0 = ctrl0; 8114 txq->txp.max_npkt = npkt; 8115 } 8116 } 8117 end_synchronized_op(sc, LOCK_HELD); 8118 return (rc); 8119 } 8120 8121 static int 8122 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8123 { 8124 struct vi_info *vi = arg1; 8125 struct adapter *sc = vi->adapter; 8126 int idx, rc, i; 8127 struct sge_rxq *rxq; 8128 uint8_t v; 8129 8130 idx = vi->tmr_idx; 8131 8132 rc = sysctl_handle_int(oidp, &idx, 0, req); 8133 if (rc != 0 || req->newptr == NULL) 8134 return (rc); 8135 8136 if (idx < 0 || idx >= SGE_NTIMERS) 8137 return (EINVAL); 8138 8139 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8140 "t4tmr"); 8141 if (rc) 8142 return (rc); 8143 8144 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8145 for_each_rxq(vi, i, rxq) { 8146 #ifdef atomic_store_rel_8 8147 atomic_store_rel_8(&rxq->iq.intr_params, v); 8148 #else 8149 rxq->iq.intr_params = v; 8150 #endif 8151 } 8152 vi->tmr_idx = idx; 8153 8154 end_synchronized_op(sc, LOCK_HELD); 8155 return (0); 8156 } 8157 8158 static int 8159 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8160 { 8161 struct vi_info *vi = arg1; 8162 struct adapter *sc = vi->adapter; 8163 int idx, rc; 8164 8165 idx = vi->pktc_idx; 8166 8167 rc = sysctl_handle_int(oidp, &idx, 0, req); 8168 if (rc != 0 || req->newptr == NULL) 8169 return (rc); 8170 8171 if (idx < -1 || idx >= SGE_NCOUNTERS) 8172 return (EINVAL); 8173 8174 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8175 "t4pktc"); 8176 if (rc) 8177 return (rc); 8178 8179 if (vi->flags & VI_INIT_DONE) 8180 rc = EBUSY; /* cannot be changed once the queues are created */ 8181 else 8182 vi->pktc_idx = idx; 8183 8184 end_synchronized_op(sc, LOCK_HELD); 8185 return (rc); 8186 } 8187 8188 static int 8189 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8190 { 8191 struct vi_info *vi = arg1; 8192 struct adapter *sc = vi->adapter; 8193 int qsize, rc; 8194 8195 qsize = vi->qsize_rxq; 8196 8197 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8198 if (rc != 0 || req->newptr == NULL) 8199 return (rc); 8200 8201 if (qsize < 128 || (qsize & 7)) 8202 return (EINVAL); 8203 8204 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8205 "t4rxqs"); 8206 if (rc) 8207 return (rc); 8208 8209 if (vi->flags & VI_INIT_DONE) 8210 rc = EBUSY; /* cannot be changed once the queues are created */ 8211 else 8212 vi->qsize_rxq = qsize; 8213 8214 end_synchronized_op(sc, LOCK_HELD); 8215 return (rc); 8216 } 8217 8218 static int 8219 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8220 { 8221 struct vi_info *vi = arg1; 8222 struct adapter *sc = vi->adapter; 8223 int qsize, rc; 8224 8225 qsize = vi->qsize_txq; 8226 8227 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8228 if (rc != 0 || req->newptr == NULL) 8229 return (rc); 8230 8231 if (qsize < 128 || qsize > 65536) 8232 return (EINVAL); 8233 8234 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8235 "t4txqs"); 8236 if (rc) 8237 return (rc); 8238 8239 if (vi->flags & VI_INIT_DONE) 8240 rc = EBUSY; /* cannot be changed once the queues are created */ 8241 else 8242 vi->qsize_txq = qsize; 8243 8244 end_synchronized_op(sc, LOCK_HELD); 8245 return (rc); 8246 } 8247 8248 static int 8249 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8250 { 8251 struct port_info *pi = arg1; 8252 struct adapter *sc = pi->adapter; 8253 struct link_config *lc = &pi->link_cfg; 8254 int rc; 8255 8256 if (req->newptr == NULL) { 8257 struct sbuf *sb; 8258 static char *bits = "\20\1RX\2TX\3AUTO"; 8259 8260 rc = sysctl_wire_old_buffer(req, 0); 8261 if (rc != 0) 8262 return(rc); 8263 8264 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8265 if (sb == NULL) 8266 return (ENOMEM); 8267 8268 if (lc->link_ok) { 8269 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8270 (lc->requested_fc & PAUSE_AUTONEG), bits); 8271 } else { 8272 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8273 PAUSE_RX | PAUSE_AUTONEG), bits); 8274 } 8275 rc = sbuf_finish(sb); 8276 sbuf_delete(sb); 8277 } else { 8278 char s[2]; 8279 int n; 8280 8281 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8282 PAUSE_AUTONEG)); 8283 s[1] = 0; 8284 8285 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8286 if (rc != 0) 8287 return(rc); 8288 8289 if (s[1] != 0) 8290 return (EINVAL); 8291 if (s[0] < '0' || s[0] > '9') 8292 return (EINVAL); /* not a number */ 8293 n = s[0] - '0'; 8294 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8295 return (EINVAL); /* some other bit is set too */ 8296 8297 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8298 "t4PAUSE"); 8299 if (rc) 8300 return (rc); 8301 if (!hw_off_limits(sc)) { 8302 PORT_LOCK(pi); 8303 lc->requested_fc = n; 8304 fixup_link_config(pi); 8305 if (pi->up_vis > 0) 8306 rc = apply_link_config(pi); 8307 set_current_media(pi); 8308 PORT_UNLOCK(pi); 8309 } 8310 end_synchronized_op(sc, 0); 8311 } 8312 8313 return (rc); 8314 } 8315 8316 static int 8317 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8318 { 8319 struct port_info *pi = arg1; 8320 struct link_config *lc = &pi->link_cfg; 8321 int rc; 8322 struct sbuf *sb; 8323 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8324 8325 rc = sysctl_wire_old_buffer(req, 0); 8326 if (rc != 0) 8327 return(rc); 8328 8329 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8330 if (sb == NULL) 8331 return (ENOMEM); 8332 if (lc->link_ok) 8333 sbuf_printf(sb, "%b", lc->fec, bits); 8334 else 8335 sbuf_printf(sb, "no link"); 8336 rc = sbuf_finish(sb); 8337 sbuf_delete(sb); 8338 8339 return (rc); 8340 } 8341 8342 static int 8343 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8344 { 8345 struct port_info *pi = arg1; 8346 struct adapter *sc = pi->adapter; 8347 struct link_config *lc = &pi->link_cfg; 8348 int rc; 8349 int8_t old; 8350 8351 if (req->newptr == NULL) { 8352 struct sbuf *sb; 8353 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8354 "\5RSVD3\6auto\7module"; 8355 8356 rc = sysctl_wire_old_buffer(req, 0); 8357 if (rc != 0) 8358 return(rc); 8359 8360 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8361 if (sb == NULL) 8362 return (ENOMEM); 8363 8364 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8365 rc = sbuf_finish(sb); 8366 sbuf_delete(sb); 8367 } else { 8368 char s[8]; 8369 int n; 8370 8371 snprintf(s, sizeof(s), "%d", 8372 lc->requested_fec == FEC_AUTO ? -1 : 8373 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8374 8375 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8376 if (rc != 0) 8377 return(rc); 8378 8379 n = strtol(&s[0], NULL, 0); 8380 if (n < 0 || n & FEC_AUTO) 8381 n = FEC_AUTO; 8382 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8383 return (EINVAL);/* some other bit is set too */ 8384 8385 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8386 "t4reqf"); 8387 if (rc) 8388 return (rc); 8389 PORT_LOCK(pi); 8390 old = lc->requested_fec; 8391 if (n == FEC_AUTO) 8392 lc->requested_fec = FEC_AUTO; 8393 else if (n == 0 || n == FEC_NONE) 8394 lc->requested_fec = FEC_NONE; 8395 else { 8396 if ((lc->pcaps | 8397 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8398 lc->pcaps) { 8399 rc = ENOTSUP; 8400 goto done; 8401 } 8402 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8403 FEC_MODULE); 8404 } 8405 if (!hw_off_limits(sc)) { 8406 fixup_link_config(pi); 8407 if (pi->up_vis > 0) { 8408 rc = apply_link_config(pi); 8409 if (rc != 0) { 8410 lc->requested_fec = old; 8411 if (rc == FW_EPROTO) 8412 rc = ENOTSUP; 8413 } 8414 } 8415 } 8416 done: 8417 PORT_UNLOCK(pi); 8418 end_synchronized_op(sc, 0); 8419 } 8420 8421 return (rc); 8422 } 8423 8424 static int 8425 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8426 { 8427 struct port_info *pi = arg1; 8428 struct adapter *sc = pi->adapter; 8429 struct link_config *lc = &pi->link_cfg; 8430 int rc; 8431 int8_t fec; 8432 struct sbuf *sb; 8433 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8434 8435 rc = sysctl_wire_old_buffer(req, 0); 8436 if (rc != 0) 8437 return (rc); 8438 8439 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8440 if (sb == NULL) 8441 return (ENOMEM); 8442 8443 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8444 rc = EBUSY; 8445 goto done; 8446 } 8447 if (hw_off_limits(sc)) { 8448 rc = ENXIO; 8449 goto done; 8450 } 8451 PORT_LOCK(pi); 8452 if (pi->up_vis == 0) { 8453 /* 8454 * If all the interfaces are administratively down the firmware 8455 * does not report transceiver changes. Refresh port info here. 8456 * This is the only reason we have a synchronized op in this 8457 * function. Just PORT_LOCK would have been enough otherwise. 8458 */ 8459 t4_update_port_info(pi); 8460 } 8461 8462 fec = lc->fec_hint; 8463 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8464 !fec_supported(lc->pcaps)) { 8465 sbuf_printf(sb, "n/a"); 8466 } else { 8467 if (fec == 0) 8468 fec = FEC_NONE; 8469 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8470 } 8471 rc = sbuf_finish(sb); 8472 PORT_UNLOCK(pi); 8473 done: 8474 sbuf_delete(sb); 8475 end_synchronized_op(sc, 0); 8476 8477 return (rc); 8478 } 8479 8480 static int 8481 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8482 { 8483 struct port_info *pi = arg1; 8484 struct adapter *sc = pi->adapter; 8485 struct link_config *lc = &pi->link_cfg; 8486 int rc, val; 8487 8488 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8489 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8490 else 8491 val = -1; 8492 rc = sysctl_handle_int(oidp, &val, 0, req); 8493 if (rc != 0 || req->newptr == NULL) 8494 return (rc); 8495 if (val == 0) 8496 val = AUTONEG_DISABLE; 8497 else if (val == 1) 8498 val = AUTONEG_ENABLE; 8499 else 8500 val = AUTONEG_AUTO; 8501 8502 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8503 "t4aneg"); 8504 if (rc) 8505 return (rc); 8506 PORT_LOCK(pi); 8507 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8508 rc = ENOTSUP; 8509 goto done; 8510 } 8511 lc->requested_aneg = val; 8512 if (!hw_off_limits(sc)) { 8513 fixup_link_config(pi); 8514 if (pi->up_vis > 0) 8515 rc = apply_link_config(pi); 8516 set_current_media(pi); 8517 } 8518 done: 8519 PORT_UNLOCK(pi); 8520 end_synchronized_op(sc, 0); 8521 return (rc); 8522 } 8523 8524 static int 8525 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8526 { 8527 struct port_info *pi = arg1; 8528 struct adapter *sc = pi->adapter; 8529 struct link_config *lc = &pi->link_cfg; 8530 int rc, val; 8531 8532 val = lc->force_fec; 8533 MPASS(val >= -1 && val <= 1); 8534 rc = sysctl_handle_int(oidp, &val, 0, req); 8535 if (rc != 0 || req->newptr == NULL) 8536 return (rc); 8537 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8538 return (ENOTSUP); 8539 if (val < -1 || val > 1) 8540 return (EINVAL); 8541 8542 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8543 if (rc) 8544 return (rc); 8545 PORT_LOCK(pi); 8546 lc->force_fec = val; 8547 if (!hw_off_limits(sc)) { 8548 fixup_link_config(pi); 8549 if (pi->up_vis > 0) 8550 rc = apply_link_config(pi); 8551 } 8552 PORT_UNLOCK(pi); 8553 end_synchronized_op(sc, 0); 8554 return (rc); 8555 } 8556 8557 static int 8558 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8559 { 8560 struct adapter *sc = arg1; 8561 int rc, reg = arg2; 8562 uint64_t val; 8563 8564 mtx_lock(&sc->reg_lock); 8565 if (hw_off_limits(sc)) 8566 rc = ENXIO; 8567 else { 8568 rc = 0; 8569 val = t4_read_reg64(sc, reg); 8570 } 8571 mtx_unlock(&sc->reg_lock); 8572 if (rc == 0) 8573 rc = sysctl_handle_64(oidp, &val, 0, req); 8574 return (rc); 8575 } 8576 8577 static int 8578 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8579 { 8580 struct adapter *sc = arg1; 8581 int rc, t; 8582 uint32_t param, val; 8583 8584 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8585 if (rc) 8586 return (rc); 8587 if (hw_off_limits(sc)) 8588 rc = ENXIO; 8589 else { 8590 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8591 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8592 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8593 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8594 } 8595 end_synchronized_op(sc, 0); 8596 if (rc) 8597 return (rc); 8598 8599 /* unknown is returned as 0 but we display -1 in that case */ 8600 t = val == 0 ? -1 : val; 8601 8602 rc = sysctl_handle_int(oidp, &t, 0, req); 8603 return (rc); 8604 } 8605 8606 static int 8607 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8608 { 8609 struct adapter *sc = arg1; 8610 int rc; 8611 uint32_t param, val; 8612 8613 if (sc->params.core_vdd == 0) { 8614 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8615 "t4vdd"); 8616 if (rc) 8617 return (rc); 8618 if (hw_off_limits(sc)) 8619 rc = ENXIO; 8620 else { 8621 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8622 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8623 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8624 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8625 ¶m, &val); 8626 } 8627 end_synchronized_op(sc, 0); 8628 if (rc) 8629 return (rc); 8630 sc->params.core_vdd = val; 8631 } 8632 8633 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8634 } 8635 8636 static int 8637 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8638 { 8639 struct adapter *sc = arg1; 8640 int rc, v; 8641 uint32_t param, val; 8642 8643 v = sc->sensor_resets; 8644 rc = sysctl_handle_int(oidp, &v, 0, req); 8645 if (rc != 0 || req->newptr == NULL || v <= 0) 8646 return (rc); 8647 8648 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8649 chip_id(sc) < CHELSIO_T5) 8650 return (ENOTSUP); 8651 8652 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8653 if (rc) 8654 return (rc); 8655 if (hw_off_limits(sc)) 8656 rc = ENXIO; 8657 else { 8658 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8659 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8660 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8661 val = 1; 8662 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8663 } 8664 end_synchronized_op(sc, 0); 8665 if (rc == 0) 8666 sc->sensor_resets++; 8667 return (rc); 8668 } 8669 8670 static int 8671 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8672 { 8673 struct adapter *sc = arg1; 8674 struct sbuf *sb; 8675 int rc; 8676 uint32_t param, val; 8677 8678 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8679 if (rc) 8680 return (rc); 8681 if (hw_off_limits(sc)) 8682 rc = ENXIO; 8683 else { 8684 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8685 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8686 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8687 } 8688 end_synchronized_op(sc, 0); 8689 if (rc) 8690 return (rc); 8691 8692 rc = sysctl_wire_old_buffer(req, 0); 8693 if (rc != 0) 8694 return (rc); 8695 8696 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8697 if (sb == NULL) 8698 return (ENOMEM); 8699 8700 if (val == 0xffffffff) { 8701 /* Only debug and custom firmwares report load averages. */ 8702 sbuf_printf(sb, "not available"); 8703 } else { 8704 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8705 (val >> 16) & 0xff); 8706 } 8707 rc = sbuf_finish(sb); 8708 sbuf_delete(sb); 8709 8710 return (rc); 8711 } 8712 8713 static int 8714 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8715 { 8716 struct adapter *sc = arg1; 8717 struct sbuf *sb; 8718 int rc, i; 8719 uint16_t incr[NMTUS][NCCTRL_WIN]; 8720 static const char *dec_fac[] = { 8721 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8722 "0.9375" 8723 }; 8724 8725 rc = sysctl_wire_old_buffer(req, 0); 8726 if (rc != 0) 8727 return (rc); 8728 8729 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8730 if (sb == NULL) 8731 return (ENOMEM); 8732 8733 mtx_lock(&sc->reg_lock); 8734 if (hw_off_limits(sc)) 8735 rc = ENXIO; 8736 else 8737 t4_read_cong_tbl(sc, incr); 8738 mtx_unlock(&sc->reg_lock); 8739 if (rc) 8740 goto done; 8741 8742 for (i = 0; i < NCCTRL_WIN; ++i) { 8743 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8744 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8745 incr[5][i], incr[6][i], incr[7][i]); 8746 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8747 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8748 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8749 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8750 } 8751 8752 rc = sbuf_finish(sb); 8753 done: 8754 sbuf_delete(sb); 8755 return (rc); 8756 } 8757 8758 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8759 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8760 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8761 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8762 }; 8763 8764 static int 8765 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8766 { 8767 struct adapter *sc = arg1; 8768 struct sbuf *sb; 8769 int rc, i, n, qid = arg2; 8770 uint32_t *buf, *p; 8771 char *qtype; 8772 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8773 8774 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8775 ("%s: bad qid %d\n", __func__, qid)); 8776 8777 if (qid < CIM_NUM_IBQ) { 8778 /* inbound queue */ 8779 qtype = "IBQ"; 8780 n = 4 * CIM_IBQ_SIZE; 8781 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8782 mtx_lock(&sc->reg_lock); 8783 if (hw_off_limits(sc)) 8784 rc = -ENXIO; 8785 else 8786 rc = t4_read_cim_ibq(sc, qid, buf, n); 8787 mtx_unlock(&sc->reg_lock); 8788 } else { 8789 /* outbound queue */ 8790 qtype = "OBQ"; 8791 qid -= CIM_NUM_IBQ; 8792 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8793 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8794 mtx_lock(&sc->reg_lock); 8795 if (hw_off_limits(sc)) 8796 rc = -ENXIO; 8797 else 8798 rc = t4_read_cim_obq(sc, qid, buf, n); 8799 mtx_unlock(&sc->reg_lock); 8800 } 8801 8802 if (rc < 0) { 8803 rc = -rc; 8804 goto done; 8805 } 8806 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8807 8808 rc = sysctl_wire_old_buffer(req, 0); 8809 if (rc != 0) 8810 goto done; 8811 8812 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8813 if (sb == NULL) { 8814 rc = ENOMEM; 8815 goto done; 8816 } 8817 8818 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8819 for (i = 0, p = buf; i < n; i += 16, p += 4) 8820 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8821 p[2], p[3]); 8822 8823 rc = sbuf_finish(sb); 8824 sbuf_delete(sb); 8825 done: 8826 free(buf, M_CXGBE); 8827 return (rc); 8828 } 8829 8830 static void 8831 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8832 { 8833 uint32_t *p; 8834 8835 sbuf_printf(sb, "Status Data PC%s", 8836 cfg & F_UPDBGLACAPTPCONLY ? "" : 8837 " LS0Stat LS0Addr LS0Data"); 8838 8839 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8840 if (cfg & F_UPDBGLACAPTPCONLY) { 8841 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8842 p[6], p[7]); 8843 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8844 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8845 p[4] & 0xff, p[5] >> 8); 8846 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8847 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8848 p[1] & 0xf, p[2] >> 4); 8849 } else { 8850 sbuf_printf(sb, 8851 "\n %02x %x%07x %x%07x %08x %08x " 8852 "%08x%08x%08x%08x", 8853 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8854 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8855 p[6], p[7]); 8856 } 8857 } 8858 } 8859 8860 static void 8861 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8862 { 8863 uint32_t *p; 8864 8865 sbuf_printf(sb, "Status Inst Data PC%s", 8866 cfg & F_UPDBGLACAPTPCONLY ? "" : 8867 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8868 8869 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8870 if (cfg & F_UPDBGLACAPTPCONLY) { 8871 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8872 p[3] & 0xff, p[2], p[1], p[0]); 8873 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8874 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8875 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8876 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8877 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8878 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8879 p[6] >> 16); 8880 } else { 8881 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8882 "%08x %08x %08x %08x %08x %08x", 8883 (p[9] >> 16) & 0xff, 8884 p[9] & 0xffff, p[8] >> 16, 8885 p[8] & 0xffff, p[7] >> 16, 8886 p[7] & 0xffff, p[6] >> 16, 8887 p[2], p[1], p[0], p[5], p[4], p[3]); 8888 } 8889 } 8890 } 8891 8892 static int 8893 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8894 { 8895 uint32_t cfg, *buf; 8896 int rc; 8897 8898 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8899 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8900 M_ZERO | flags); 8901 if (buf == NULL) 8902 return (ENOMEM); 8903 8904 mtx_lock(&sc->reg_lock); 8905 if (hw_off_limits(sc)) 8906 rc = ENXIO; 8907 else { 8908 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8909 if (rc == 0) 8910 rc = -t4_cim_read_la(sc, buf, NULL); 8911 } 8912 mtx_unlock(&sc->reg_lock); 8913 if (rc == 0) { 8914 if (chip_id(sc) < CHELSIO_T6) 8915 sbuf_cim_la4(sc, sb, buf, cfg); 8916 else 8917 sbuf_cim_la6(sc, sb, buf, cfg); 8918 } 8919 free(buf, M_CXGBE); 8920 return (rc); 8921 } 8922 8923 static int 8924 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8925 { 8926 struct adapter *sc = arg1; 8927 struct sbuf *sb; 8928 int rc; 8929 8930 rc = sysctl_wire_old_buffer(req, 0); 8931 if (rc != 0) 8932 return (rc); 8933 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8934 if (sb == NULL) 8935 return (ENOMEM); 8936 8937 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8938 if (rc == 0) 8939 rc = sbuf_finish(sb); 8940 sbuf_delete(sb); 8941 return (rc); 8942 } 8943 8944 bool 8945 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 8946 { 8947 struct sbuf sb; 8948 int rc; 8949 8950 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8951 return (false); 8952 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 8953 if (rc == 0) { 8954 rc = sbuf_finish(&sb); 8955 if (rc == 0) { 8956 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 8957 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8958 } 8959 } 8960 sbuf_delete(&sb); 8961 return (false); 8962 } 8963 8964 static int 8965 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 8966 { 8967 struct adapter *sc = arg1; 8968 u_int i; 8969 struct sbuf *sb; 8970 uint32_t *buf, *p; 8971 int rc; 8972 8973 rc = sysctl_wire_old_buffer(req, 0); 8974 if (rc != 0) 8975 return (rc); 8976 8977 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8978 if (sb == NULL) 8979 return (ENOMEM); 8980 8981 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 8982 M_ZERO | M_WAITOK); 8983 8984 mtx_lock(&sc->reg_lock); 8985 if (hw_off_limits(sc)) 8986 rc = ENXIO; 8987 else 8988 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 8989 mtx_unlock(&sc->reg_lock); 8990 if (rc) 8991 goto done; 8992 8993 p = buf; 8994 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8995 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 8996 p[1], p[0]); 8997 } 8998 8999 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9000 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9001 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9002 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9003 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9004 (p[1] >> 2) | ((p[2] & 3) << 30), 9005 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9006 p[0] & 1); 9007 } 9008 rc = sbuf_finish(sb); 9009 done: 9010 sbuf_delete(sb); 9011 free(buf, M_CXGBE); 9012 return (rc); 9013 } 9014 9015 static int 9016 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9017 { 9018 struct adapter *sc = arg1; 9019 u_int i; 9020 struct sbuf *sb; 9021 uint32_t *buf, *p; 9022 int rc; 9023 9024 rc = sysctl_wire_old_buffer(req, 0); 9025 if (rc != 0) 9026 return (rc); 9027 9028 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9029 if (sb == NULL) 9030 return (ENOMEM); 9031 9032 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9033 M_ZERO | M_WAITOK); 9034 9035 mtx_lock(&sc->reg_lock); 9036 if (hw_off_limits(sc)) 9037 rc = ENXIO; 9038 else 9039 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9040 mtx_unlock(&sc->reg_lock); 9041 if (rc) 9042 goto done; 9043 9044 p = buf; 9045 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9046 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9047 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9048 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9049 p[4], p[3], p[2], p[1], p[0]); 9050 } 9051 9052 sbuf_printf(sb, "\n\nCntl ID Data"); 9053 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9054 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9055 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9056 } 9057 9058 rc = sbuf_finish(sb); 9059 done: 9060 sbuf_delete(sb); 9061 free(buf, M_CXGBE); 9062 return (rc); 9063 } 9064 9065 static int 9066 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9067 { 9068 struct adapter *sc = arg1; 9069 struct sbuf *sb; 9070 int rc, i; 9071 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9072 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9073 uint16_t thres[CIM_NUM_IBQ]; 9074 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9075 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9076 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9077 9078 cim_num_obq = sc->chip_params->cim_num_obq; 9079 if (is_t4(sc)) { 9080 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9081 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9082 } else { 9083 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9084 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9085 } 9086 nq = CIM_NUM_IBQ + cim_num_obq; 9087 9088 mtx_lock(&sc->reg_lock); 9089 if (hw_off_limits(sc)) 9090 rc = ENXIO; 9091 else { 9092 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9093 if (rc == 0) { 9094 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9095 obq_wr); 9096 if (rc == 0) 9097 t4_read_cimq_cfg(sc, base, size, thres); 9098 } 9099 } 9100 mtx_unlock(&sc->reg_lock); 9101 if (rc) 9102 return (rc); 9103 9104 rc = sysctl_wire_old_buffer(req, 0); 9105 if (rc != 0) 9106 return (rc); 9107 9108 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9109 if (sb == NULL) 9110 return (ENOMEM); 9111 9112 sbuf_printf(sb, 9113 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9114 9115 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9116 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9117 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9118 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9119 G_QUEREMFLITS(p[2]) * 16); 9120 for ( ; i < nq; i++, p += 4, wr += 2) 9121 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9122 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9123 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9124 G_QUEREMFLITS(p[2]) * 16); 9125 9126 rc = sbuf_finish(sb); 9127 sbuf_delete(sb); 9128 9129 return (rc); 9130 } 9131 9132 static int 9133 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9134 { 9135 struct adapter *sc = arg1; 9136 struct sbuf *sb; 9137 int rc; 9138 struct tp_cpl_stats stats; 9139 9140 rc = sysctl_wire_old_buffer(req, 0); 9141 if (rc != 0) 9142 return (rc); 9143 9144 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9145 if (sb == NULL) 9146 return (ENOMEM); 9147 9148 mtx_lock(&sc->reg_lock); 9149 if (hw_off_limits(sc)) 9150 rc = ENXIO; 9151 else 9152 t4_tp_get_cpl_stats(sc, &stats, 0); 9153 mtx_unlock(&sc->reg_lock); 9154 if (rc) 9155 goto done; 9156 9157 if (sc->chip_params->nchan > 2) { 9158 sbuf_printf(sb, " channel 0 channel 1" 9159 " channel 2 channel 3"); 9160 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9161 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9162 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9163 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9164 } else { 9165 sbuf_printf(sb, " channel 0 channel 1"); 9166 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9167 stats.req[0], stats.req[1]); 9168 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9169 stats.rsp[0], stats.rsp[1]); 9170 } 9171 9172 rc = sbuf_finish(sb); 9173 done: 9174 sbuf_delete(sb); 9175 return (rc); 9176 } 9177 9178 static int 9179 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9180 { 9181 struct adapter *sc = arg1; 9182 struct sbuf *sb; 9183 int rc; 9184 struct tp_usm_stats stats; 9185 9186 rc = sysctl_wire_old_buffer(req, 0); 9187 if (rc != 0) 9188 return(rc); 9189 9190 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9191 if (sb == NULL) 9192 return (ENOMEM); 9193 9194 mtx_lock(&sc->reg_lock); 9195 if (hw_off_limits(sc)) 9196 rc = ENXIO; 9197 else 9198 t4_get_usm_stats(sc, &stats, 1); 9199 mtx_unlock(&sc->reg_lock); 9200 if (rc == 0) { 9201 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9202 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9203 sbuf_printf(sb, "Drops: %u", stats.drops); 9204 rc = sbuf_finish(sb); 9205 } 9206 sbuf_delete(sb); 9207 9208 return (rc); 9209 } 9210 9211 static int 9212 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9213 { 9214 struct adapter *sc = arg1; 9215 struct sbuf *sb; 9216 int rc; 9217 struct tp_tid_stats stats; 9218 9219 rc = sysctl_wire_old_buffer(req, 0); 9220 if (rc != 0) 9221 return(rc); 9222 9223 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9224 if (sb == NULL) 9225 return (ENOMEM); 9226 9227 mtx_lock(&sc->reg_lock); 9228 if (hw_off_limits(sc)) 9229 rc = ENXIO; 9230 else 9231 t4_tp_get_tid_stats(sc, &stats, 1); 9232 mtx_unlock(&sc->reg_lock); 9233 if (rc == 0) { 9234 sbuf_printf(sb, "Delete: %u\n", stats.del); 9235 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9236 sbuf_printf(sb, "Active: %u\n", stats.act); 9237 sbuf_printf(sb, "Passive: %u", stats.pas); 9238 rc = sbuf_finish(sb); 9239 } 9240 sbuf_delete(sb); 9241 9242 return (rc); 9243 } 9244 9245 static const char * const devlog_level_strings[] = { 9246 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9247 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9248 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9249 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9250 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9251 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9252 }; 9253 9254 static const char * const devlog_facility_strings[] = { 9255 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9256 [FW_DEVLOG_FACILITY_CF] = "CF", 9257 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9258 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9259 [FW_DEVLOG_FACILITY_RES] = "RES", 9260 [FW_DEVLOG_FACILITY_HW] = "HW", 9261 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9262 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9263 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9264 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9265 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9266 [FW_DEVLOG_FACILITY_VI] = "VI", 9267 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9268 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9269 [FW_DEVLOG_FACILITY_TM] = "TM", 9270 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9271 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9272 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9273 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9274 [FW_DEVLOG_FACILITY_RI] = "RI", 9275 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9276 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9277 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9278 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9279 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9280 }; 9281 9282 static int 9283 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9284 { 9285 int i, j, rc, nentries, first = 0; 9286 struct devlog_params *dparams = &sc->params.devlog; 9287 struct fw_devlog_e *buf, *e; 9288 uint64_t ftstamp = UINT64_MAX; 9289 9290 if (dparams->addr == 0) 9291 return (ENXIO); 9292 9293 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9294 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9295 if (buf == NULL) 9296 return (ENOMEM); 9297 9298 mtx_lock(&sc->reg_lock); 9299 if (hw_off_limits(sc)) 9300 rc = ENXIO; 9301 else 9302 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9303 dparams->size); 9304 mtx_unlock(&sc->reg_lock); 9305 if (rc != 0) 9306 goto done; 9307 9308 nentries = dparams->size / sizeof(struct fw_devlog_e); 9309 for (i = 0; i < nentries; i++) { 9310 e = &buf[i]; 9311 9312 if (e->timestamp == 0) 9313 break; /* end */ 9314 9315 e->timestamp = be64toh(e->timestamp); 9316 e->seqno = be32toh(e->seqno); 9317 for (j = 0; j < 8; j++) 9318 e->params[j] = be32toh(e->params[j]); 9319 9320 if (e->timestamp < ftstamp) { 9321 ftstamp = e->timestamp; 9322 first = i; 9323 } 9324 } 9325 9326 if (buf[first].timestamp == 0) 9327 goto done; /* nothing in the log */ 9328 9329 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9330 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9331 9332 i = first; 9333 do { 9334 e = &buf[i]; 9335 if (e->timestamp == 0) 9336 break; /* end */ 9337 9338 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9339 e->seqno, e->timestamp, 9340 (e->level < nitems(devlog_level_strings) ? 9341 devlog_level_strings[e->level] : "UNKNOWN"), 9342 (e->facility < nitems(devlog_facility_strings) ? 9343 devlog_facility_strings[e->facility] : "UNKNOWN")); 9344 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9345 e->params[2], e->params[3], e->params[4], 9346 e->params[5], e->params[6], e->params[7]); 9347 9348 if (++i == nentries) 9349 i = 0; 9350 } while (i != first); 9351 done: 9352 free(buf, M_CXGBE); 9353 return (rc); 9354 } 9355 9356 static int 9357 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9358 { 9359 struct adapter *sc = arg1; 9360 int rc; 9361 struct sbuf *sb; 9362 9363 rc = sysctl_wire_old_buffer(req, 0); 9364 if (rc != 0) 9365 return (rc); 9366 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9367 if (sb == NULL) 9368 return (ENOMEM); 9369 9370 rc = sbuf_devlog(sc, sb, M_WAITOK); 9371 if (rc == 0) 9372 rc = sbuf_finish(sb); 9373 sbuf_delete(sb); 9374 return (rc); 9375 } 9376 9377 void 9378 t4_os_dump_devlog(struct adapter *sc) 9379 { 9380 int rc; 9381 struct sbuf sb; 9382 9383 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 9384 return; 9385 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 9386 if (rc == 0) { 9387 rc = sbuf_finish(&sb); 9388 if (rc == 0) { 9389 log(LOG_DEBUG, "%s: device log follows.\n%s", 9390 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9391 } 9392 } 9393 sbuf_delete(&sb); 9394 } 9395 9396 static int 9397 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9398 { 9399 struct adapter *sc = arg1; 9400 struct sbuf *sb; 9401 int rc; 9402 struct tp_fcoe_stats stats[MAX_NCHAN]; 9403 int i, nchan = sc->chip_params->nchan; 9404 9405 rc = sysctl_wire_old_buffer(req, 0); 9406 if (rc != 0) 9407 return (rc); 9408 9409 mtx_lock(&sc->reg_lock); 9410 if (hw_off_limits(sc)) 9411 rc = ENXIO; 9412 else { 9413 for (i = 0; i < nchan; i++) 9414 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9415 } 9416 mtx_unlock(&sc->reg_lock); 9417 if (rc != 0) 9418 return (rc); 9419 9420 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9421 if (sb == NULL) 9422 return (ENOMEM); 9423 9424 if (nchan > 2) { 9425 sbuf_printf(sb, " channel 0 channel 1" 9426 " channel 2 channel 3"); 9427 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9428 stats[0].octets_ddp, stats[1].octets_ddp, 9429 stats[2].octets_ddp, stats[3].octets_ddp); 9430 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9431 stats[0].frames_ddp, stats[1].frames_ddp, 9432 stats[2].frames_ddp, stats[3].frames_ddp); 9433 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9434 stats[0].frames_drop, stats[1].frames_drop, 9435 stats[2].frames_drop, stats[3].frames_drop); 9436 } else { 9437 sbuf_printf(sb, " channel 0 channel 1"); 9438 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9439 stats[0].octets_ddp, stats[1].octets_ddp); 9440 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9441 stats[0].frames_ddp, stats[1].frames_ddp); 9442 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9443 stats[0].frames_drop, stats[1].frames_drop); 9444 } 9445 9446 rc = sbuf_finish(sb); 9447 sbuf_delete(sb); 9448 9449 return (rc); 9450 } 9451 9452 static int 9453 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9454 { 9455 struct adapter *sc = arg1; 9456 struct sbuf *sb; 9457 int rc, i; 9458 unsigned int map, kbps, ipg, mode; 9459 unsigned int pace_tab[NTX_SCHED]; 9460 9461 rc = sysctl_wire_old_buffer(req, 0); 9462 if (rc != 0) 9463 return (rc); 9464 9465 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9466 if (sb == NULL) 9467 return (ENOMEM); 9468 9469 mtx_lock(&sc->reg_lock); 9470 if (hw_off_limits(sc)) { 9471 rc = ENXIO; 9472 goto done; 9473 } 9474 9475 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9476 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9477 t4_read_pace_tbl(sc, pace_tab); 9478 9479 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9480 "Class IPG (0.1 ns) Flow IPG (us)"); 9481 9482 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9483 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9484 sbuf_printf(sb, "\n %u %-5s %u ", i, 9485 (mode & (1 << i)) ? "flow" : "class", map & 3); 9486 if (kbps) 9487 sbuf_printf(sb, "%9u ", kbps); 9488 else 9489 sbuf_printf(sb, " disabled "); 9490 9491 if (ipg) 9492 sbuf_printf(sb, "%13u ", ipg); 9493 else 9494 sbuf_printf(sb, " disabled "); 9495 9496 if (pace_tab[i]) 9497 sbuf_printf(sb, "%10u", pace_tab[i]); 9498 else 9499 sbuf_printf(sb, " disabled"); 9500 } 9501 rc = sbuf_finish(sb); 9502 done: 9503 mtx_unlock(&sc->reg_lock); 9504 sbuf_delete(sb); 9505 return (rc); 9506 } 9507 9508 static int 9509 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9510 { 9511 struct adapter *sc = arg1; 9512 struct sbuf *sb; 9513 int rc, i, j; 9514 uint64_t *p0, *p1; 9515 struct lb_port_stats s[2]; 9516 static const char *stat_name[] = { 9517 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9518 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9519 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9520 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9521 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9522 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9523 "BG2FramesTrunc:", "BG3FramesTrunc:" 9524 }; 9525 9526 rc = sysctl_wire_old_buffer(req, 0); 9527 if (rc != 0) 9528 return (rc); 9529 9530 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9531 if (sb == NULL) 9532 return (ENOMEM); 9533 9534 memset(s, 0, sizeof(s)); 9535 9536 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9537 mtx_lock(&sc->reg_lock); 9538 if (hw_off_limits(sc)) 9539 rc = ENXIO; 9540 else { 9541 t4_get_lb_stats(sc, i, &s[0]); 9542 t4_get_lb_stats(sc, i + 1, &s[1]); 9543 } 9544 mtx_unlock(&sc->reg_lock); 9545 if (rc != 0) 9546 break; 9547 9548 p0 = &s[0].octets; 9549 p1 = &s[1].octets; 9550 sbuf_printf(sb, "%s Loopback %u" 9551 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9552 9553 for (j = 0; j < nitems(stat_name); j++) 9554 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9555 *p0++, *p1++); 9556 } 9557 9558 rc = sbuf_finish(sb); 9559 sbuf_delete(sb); 9560 9561 return (rc); 9562 } 9563 9564 static int 9565 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9566 { 9567 int rc = 0; 9568 struct port_info *pi = arg1; 9569 struct link_config *lc = &pi->link_cfg; 9570 struct sbuf *sb; 9571 9572 rc = sysctl_wire_old_buffer(req, 0); 9573 if (rc != 0) 9574 return(rc); 9575 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9576 if (sb == NULL) 9577 return (ENOMEM); 9578 9579 if (lc->link_ok || lc->link_down_rc == 255) 9580 sbuf_printf(sb, "n/a"); 9581 else 9582 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9583 9584 rc = sbuf_finish(sb); 9585 sbuf_delete(sb); 9586 9587 return (rc); 9588 } 9589 9590 struct mem_desc { 9591 unsigned int base; 9592 unsigned int limit; 9593 unsigned int idx; 9594 }; 9595 9596 static int 9597 mem_desc_cmp(const void *a, const void *b) 9598 { 9599 return ((const struct mem_desc *)a)->base - 9600 ((const struct mem_desc *)b)->base; 9601 } 9602 9603 static void 9604 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9605 unsigned int to) 9606 { 9607 unsigned int size; 9608 9609 if (from == to) 9610 return; 9611 9612 size = to - from + 1; 9613 if (size == 0) 9614 return; 9615 9616 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9617 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9618 } 9619 9620 static int 9621 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9622 { 9623 struct adapter *sc = arg1; 9624 struct sbuf *sb; 9625 int rc, i, n; 9626 uint32_t lo, hi, used, alloc; 9627 static const char *memory[] = { 9628 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9629 }; 9630 static const char *region[] = { 9631 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9632 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9633 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9634 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9635 "RQUDP region:", "PBL region:", "TXPBL region:", 9636 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 9637 "On-chip queues:", "TLS keys:", 9638 }; 9639 struct mem_desc avail[4]; 9640 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9641 struct mem_desc *md = mem; 9642 9643 rc = sysctl_wire_old_buffer(req, 0); 9644 if (rc != 0) 9645 return (rc); 9646 9647 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9648 if (sb == NULL) 9649 return (ENOMEM); 9650 9651 for (i = 0; i < nitems(mem); i++) { 9652 mem[i].limit = 0; 9653 mem[i].idx = i; 9654 } 9655 9656 mtx_lock(&sc->reg_lock); 9657 if (hw_off_limits(sc)) { 9658 rc = ENXIO; 9659 goto done; 9660 } 9661 9662 /* Find and sort the populated memory ranges */ 9663 i = 0; 9664 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9665 if (lo & F_EDRAM0_ENABLE) { 9666 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9667 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9668 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9669 avail[i].idx = 0; 9670 i++; 9671 } 9672 if (lo & F_EDRAM1_ENABLE) { 9673 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9674 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9675 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9676 avail[i].idx = 1; 9677 i++; 9678 } 9679 if (lo & F_EXT_MEM_ENABLE) { 9680 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9681 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9682 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9683 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9684 i++; 9685 } 9686 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9687 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9688 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9689 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9690 avail[i].idx = 4; 9691 i++; 9692 } 9693 if (is_t6(sc) && lo & F_HMA_MUX) { 9694 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9695 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9696 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9697 avail[i].idx = 5; 9698 i++; 9699 } 9700 MPASS(i <= nitems(avail)); 9701 if (!i) /* no memory available */ 9702 goto done; 9703 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9704 9705 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9706 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9707 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9708 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9709 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9710 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9711 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9712 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9713 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9714 9715 /* the next few have explicit upper bounds */ 9716 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9717 md->limit = md->base - 1 + 9718 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9719 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9720 md++; 9721 9722 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9723 md->limit = md->base - 1 + 9724 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9725 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9726 md++; 9727 9728 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9729 if (chip_id(sc) <= CHELSIO_T5) 9730 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9731 else 9732 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9733 md->limit = 0; 9734 } else { 9735 md->base = 0; 9736 md->idx = nitems(region); /* hide it */ 9737 } 9738 md++; 9739 9740 #define ulp_region(reg) \ 9741 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9742 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9743 9744 ulp_region(RX_ISCSI); 9745 ulp_region(RX_TDDP); 9746 ulp_region(TX_TPT); 9747 ulp_region(RX_STAG); 9748 ulp_region(RX_RQ); 9749 ulp_region(RX_RQUDP); 9750 ulp_region(RX_PBL); 9751 ulp_region(TX_PBL); 9752 #undef ulp_region 9753 9754 md->base = 0; 9755 if (is_t4(sc)) 9756 md->idx = nitems(region); 9757 else { 9758 uint32_t size = 0; 9759 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9760 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9761 9762 if (is_t5(sc)) { 9763 if (sge_ctrl & F_VFIFO_ENABLE) 9764 size = fifo_size << 2; 9765 } else 9766 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9767 9768 if (size) { 9769 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9770 md->limit = md->base + size - 1; 9771 } else 9772 md->idx = nitems(region); 9773 } 9774 md++; 9775 9776 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9777 md->limit = 0; 9778 md++; 9779 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9780 md->limit = 0; 9781 md++; 9782 9783 md->base = sc->vres.ocq.start; 9784 if (sc->vres.ocq.size) 9785 md->limit = md->base + sc->vres.ocq.size - 1; 9786 else 9787 md->idx = nitems(region); /* hide it */ 9788 md++; 9789 9790 md->base = sc->vres.key.start; 9791 if (sc->vres.key.size) 9792 md->limit = md->base + sc->vres.key.size - 1; 9793 else 9794 md->idx = nitems(region); /* hide it */ 9795 md++; 9796 9797 /* add any address-space holes, there can be up to 3 */ 9798 for (n = 0; n < i - 1; n++) 9799 if (avail[n].limit < avail[n + 1].base) 9800 (md++)->base = avail[n].limit; 9801 if (avail[n].limit) 9802 (md++)->base = avail[n].limit; 9803 9804 n = md - mem; 9805 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9806 9807 for (lo = 0; lo < i; lo++) 9808 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9809 avail[lo].limit - 1); 9810 9811 sbuf_printf(sb, "\n"); 9812 for (i = 0; i < n; i++) { 9813 if (mem[i].idx >= nitems(region)) 9814 continue; /* skip holes */ 9815 if (!mem[i].limit) 9816 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9817 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9818 mem[i].limit); 9819 } 9820 9821 sbuf_printf(sb, "\n"); 9822 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9823 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9824 mem_region_show(sb, "uP RAM:", lo, hi); 9825 9826 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9827 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9828 mem_region_show(sb, "uP Extmem2:", lo, hi); 9829 9830 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9831 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 9832 G_PMRXMAXPAGE(lo), 9833 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9834 (lo & F_PMRXNUMCHN) ? 2 : 1); 9835 9836 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9837 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9838 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 9839 G_PMTXMAXPAGE(lo), 9840 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9841 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9842 sbuf_printf(sb, "%u p-structs\n", 9843 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 9844 9845 for (i = 0; i < 4; i++) { 9846 if (chip_id(sc) > CHELSIO_T5) 9847 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9848 else 9849 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9850 if (is_t5(sc)) { 9851 used = G_T5_USED(lo); 9852 alloc = G_T5_ALLOC(lo); 9853 } else { 9854 used = G_USED(lo); 9855 alloc = G_ALLOC(lo); 9856 } 9857 /* For T6 these are MAC buffer groups */ 9858 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9859 i, used, alloc); 9860 } 9861 for (i = 0; i < sc->chip_params->nchan; i++) { 9862 if (chip_id(sc) > CHELSIO_T5) 9863 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9864 else 9865 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9866 if (is_t5(sc)) { 9867 used = G_T5_USED(lo); 9868 alloc = G_T5_ALLOC(lo); 9869 } else { 9870 used = G_USED(lo); 9871 alloc = G_ALLOC(lo); 9872 } 9873 /* For T6 these are MAC buffer groups */ 9874 sbuf_printf(sb, 9875 "\nLoopback %d using %u pages out of %u allocated", 9876 i, used, alloc); 9877 } 9878 done: 9879 mtx_unlock(&sc->reg_lock); 9880 if (rc == 0) 9881 rc = sbuf_finish(sb); 9882 sbuf_delete(sb); 9883 return (rc); 9884 } 9885 9886 static inline void 9887 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9888 { 9889 *mask = x | y; 9890 y = htobe64(y); 9891 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9892 } 9893 9894 static int 9895 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9896 { 9897 struct adapter *sc = arg1; 9898 struct sbuf *sb; 9899 int rc, i; 9900 9901 MPASS(chip_id(sc) <= CHELSIO_T5); 9902 9903 rc = sysctl_wire_old_buffer(req, 0); 9904 if (rc != 0) 9905 return (rc); 9906 9907 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9908 if (sb == NULL) 9909 return (ENOMEM); 9910 9911 sbuf_printf(sb, 9912 "Idx Ethernet address Mask Vld Ports PF" 9913 " VF Replication P0 P1 P2 P3 ML"); 9914 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9915 uint64_t tcamx, tcamy, mask; 9916 uint32_t cls_lo, cls_hi; 9917 uint8_t addr[ETHER_ADDR_LEN]; 9918 9919 mtx_lock(&sc->reg_lock); 9920 if (hw_off_limits(sc)) 9921 rc = ENXIO; 9922 else { 9923 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 9924 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 9925 } 9926 mtx_unlock(&sc->reg_lock); 9927 if (rc != 0) 9928 break; 9929 if (tcamx & tcamy) 9930 continue; 9931 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9932 mtx_lock(&sc->reg_lock); 9933 if (hw_off_limits(sc)) 9934 rc = ENXIO; 9935 else { 9936 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 9937 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 9938 } 9939 mtx_unlock(&sc->reg_lock); 9940 if (rc != 0) 9941 break; 9942 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 9943 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 9944 addr[3], addr[4], addr[5], (uintmax_t)mask, 9945 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 9946 G_PORTMAP(cls_hi), G_PF(cls_lo), 9947 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 9948 9949 if (cls_lo & F_REPLICATE) { 9950 struct fw_ldst_cmd ldst_cmd; 9951 9952 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9953 ldst_cmd.op_to_addrspace = 9954 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 9955 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9956 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 9957 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 9958 ldst_cmd.u.mps.rplc.fid_idx = 9959 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 9960 V_FW_LDST_CMD_IDX(i)); 9961 9962 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9963 "t4mps"); 9964 if (rc) 9965 break; 9966 if (hw_off_limits(sc)) 9967 rc = ENXIO; 9968 else 9969 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 9970 sizeof(ldst_cmd), &ldst_cmd); 9971 end_synchronized_op(sc, 0); 9972 if (rc != 0) 9973 break; 9974 else { 9975 sbuf_printf(sb, " %08x %08x %08x %08x", 9976 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 9977 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 9978 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 9979 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 9980 } 9981 } else 9982 sbuf_printf(sb, "%36s", ""); 9983 9984 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 9985 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 9986 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 9987 } 9988 9989 if (rc) 9990 (void) sbuf_finish(sb); 9991 else 9992 rc = sbuf_finish(sb); 9993 sbuf_delete(sb); 9994 9995 return (rc); 9996 } 9997 9998 static int 9999 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10000 { 10001 struct adapter *sc = arg1; 10002 struct sbuf *sb; 10003 int rc, i; 10004 10005 MPASS(chip_id(sc) > CHELSIO_T5); 10006 10007 rc = sysctl_wire_old_buffer(req, 0); 10008 if (rc != 0) 10009 return (rc); 10010 10011 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10012 if (sb == NULL) 10013 return (ENOMEM); 10014 10015 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10016 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10017 " Replication" 10018 " P0 P1 P2 P3 ML\n"); 10019 10020 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10021 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10022 uint16_t ivlan; 10023 uint64_t tcamx, tcamy, val, mask; 10024 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10025 uint8_t addr[ETHER_ADDR_LEN]; 10026 10027 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10028 if (i < 256) 10029 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10030 else 10031 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10032 mtx_lock(&sc->reg_lock); 10033 if (hw_off_limits(sc)) 10034 rc = ENXIO; 10035 else { 10036 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10037 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10038 tcamy = G_DMACH(val) << 32; 10039 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10040 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10041 } 10042 mtx_unlock(&sc->reg_lock); 10043 if (rc != 0) 10044 break; 10045 10046 lookup_type = G_DATALKPTYPE(data2); 10047 port_num = G_DATAPORTNUM(data2); 10048 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10049 /* Inner header VNI */ 10050 vniy = ((data2 & F_DATAVIDH2) << 23) | 10051 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10052 dip_hit = data2 & F_DATADIPHIT; 10053 vlan_vld = 0; 10054 } else { 10055 vniy = 0; 10056 dip_hit = 0; 10057 vlan_vld = data2 & F_DATAVIDH2; 10058 ivlan = G_VIDL(val); 10059 } 10060 10061 ctl |= V_CTLXYBITSEL(1); 10062 mtx_lock(&sc->reg_lock); 10063 if (hw_off_limits(sc)) 10064 rc = ENXIO; 10065 else { 10066 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10067 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10068 tcamx = G_DMACH(val) << 32; 10069 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10070 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10071 } 10072 mtx_unlock(&sc->reg_lock); 10073 if (rc != 0) 10074 break; 10075 10076 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10077 /* Inner header VNI mask */ 10078 vnix = ((data2 & F_DATAVIDH2) << 23) | 10079 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10080 } else 10081 vnix = 0; 10082 10083 if (tcamx & tcamy) 10084 continue; 10085 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10086 10087 mtx_lock(&sc->reg_lock); 10088 if (hw_off_limits(sc)) 10089 rc = ENXIO; 10090 else { 10091 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10092 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10093 } 10094 mtx_unlock(&sc->reg_lock); 10095 if (rc != 0) 10096 break; 10097 10098 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10099 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10100 "%012jx %06x %06x - - %3c" 10101 " I %4x %3c %#x%4u%4d", i, addr[0], 10102 addr[1], addr[2], addr[3], addr[4], addr[5], 10103 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10104 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10105 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10106 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10107 } else { 10108 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10109 "%012jx - - ", i, addr[0], addr[1], 10110 addr[2], addr[3], addr[4], addr[5], 10111 (uintmax_t)mask); 10112 10113 if (vlan_vld) 10114 sbuf_printf(sb, "%4u Y ", ivlan); 10115 else 10116 sbuf_printf(sb, " - N "); 10117 10118 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10119 lookup_type ? 'I' : 'O', port_num, 10120 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10121 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10122 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10123 } 10124 10125 10126 if (cls_lo & F_T6_REPLICATE) { 10127 struct fw_ldst_cmd ldst_cmd; 10128 10129 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10130 ldst_cmd.op_to_addrspace = 10131 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10132 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10133 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10134 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10135 ldst_cmd.u.mps.rplc.fid_idx = 10136 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10137 V_FW_LDST_CMD_IDX(i)); 10138 10139 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10140 "t6mps"); 10141 if (rc) 10142 break; 10143 if (hw_off_limits(sc)) 10144 rc = ENXIO; 10145 else 10146 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10147 sizeof(ldst_cmd), &ldst_cmd); 10148 end_synchronized_op(sc, 0); 10149 if (rc != 0) 10150 break; 10151 else { 10152 sbuf_printf(sb, " %08x %08x %08x %08x" 10153 " %08x %08x %08x %08x", 10154 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10155 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10156 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10157 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10158 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10159 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10160 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10161 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10162 } 10163 } else 10164 sbuf_printf(sb, "%72s", ""); 10165 10166 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10167 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10168 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10169 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10170 } 10171 10172 if (rc) 10173 (void) sbuf_finish(sb); 10174 else 10175 rc = sbuf_finish(sb); 10176 sbuf_delete(sb); 10177 10178 return (rc); 10179 } 10180 10181 static int 10182 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10183 { 10184 struct adapter *sc = arg1; 10185 struct sbuf *sb; 10186 int rc; 10187 uint16_t mtus[NMTUS]; 10188 10189 rc = sysctl_wire_old_buffer(req, 0); 10190 if (rc != 0) 10191 return (rc); 10192 10193 mtx_lock(&sc->reg_lock); 10194 if (hw_off_limits(sc)) 10195 rc = ENXIO; 10196 else 10197 t4_read_mtu_tbl(sc, mtus, NULL); 10198 mtx_unlock(&sc->reg_lock); 10199 if (rc != 0) 10200 return (rc); 10201 10202 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10203 if (sb == NULL) 10204 return (ENOMEM); 10205 10206 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10207 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10208 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10209 mtus[14], mtus[15]); 10210 10211 rc = sbuf_finish(sb); 10212 sbuf_delete(sb); 10213 10214 return (rc); 10215 } 10216 10217 static int 10218 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10219 { 10220 struct adapter *sc = arg1; 10221 struct sbuf *sb; 10222 int rc, i; 10223 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10224 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10225 static const char *tx_stats[MAX_PM_NSTATS] = { 10226 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10227 "Tx FIFO wait", NULL, "Tx latency" 10228 }; 10229 static const char *rx_stats[MAX_PM_NSTATS] = { 10230 "Read:", "Write bypass:", "Write mem:", "Flush:", 10231 "Rx FIFO wait", NULL, "Rx latency" 10232 }; 10233 10234 rc = sysctl_wire_old_buffer(req, 0); 10235 if (rc != 0) 10236 return (rc); 10237 10238 mtx_lock(&sc->reg_lock); 10239 if (hw_off_limits(sc)) 10240 rc = ENXIO; 10241 else { 10242 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10243 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10244 } 10245 mtx_unlock(&sc->reg_lock); 10246 if (rc != 0) 10247 return (rc); 10248 10249 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10250 if (sb == NULL) 10251 return (ENOMEM); 10252 10253 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10254 for (i = 0; i < 4; i++) { 10255 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10256 tx_cyc[i]); 10257 } 10258 10259 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10260 for (i = 0; i < 4; i++) { 10261 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10262 rx_cyc[i]); 10263 } 10264 10265 if (chip_id(sc) > CHELSIO_T5) { 10266 sbuf_printf(sb, 10267 "\n Total wait Total occupancy"); 10268 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10269 tx_cyc[i]); 10270 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10271 rx_cyc[i]); 10272 10273 i += 2; 10274 MPASS(i < nitems(tx_stats)); 10275 10276 sbuf_printf(sb, 10277 "\n Reads Total wait"); 10278 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10279 tx_cyc[i]); 10280 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10281 rx_cyc[i]); 10282 } 10283 10284 rc = sbuf_finish(sb); 10285 sbuf_delete(sb); 10286 10287 return (rc); 10288 } 10289 10290 static int 10291 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10292 { 10293 struct adapter *sc = arg1; 10294 struct sbuf *sb; 10295 int rc; 10296 struct tp_rdma_stats stats; 10297 10298 rc = sysctl_wire_old_buffer(req, 0); 10299 if (rc != 0) 10300 return (rc); 10301 10302 mtx_lock(&sc->reg_lock); 10303 if (hw_off_limits(sc)) 10304 rc = ENXIO; 10305 else 10306 t4_tp_get_rdma_stats(sc, &stats, 0); 10307 mtx_unlock(&sc->reg_lock); 10308 if (rc != 0) 10309 return (rc); 10310 10311 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10312 if (sb == NULL) 10313 return (ENOMEM); 10314 10315 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10316 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10317 10318 rc = sbuf_finish(sb); 10319 sbuf_delete(sb); 10320 10321 return (rc); 10322 } 10323 10324 static int 10325 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10326 { 10327 struct adapter *sc = arg1; 10328 struct sbuf *sb; 10329 int rc; 10330 struct tp_tcp_stats v4, v6; 10331 10332 rc = sysctl_wire_old_buffer(req, 0); 10333 if (rc != 0) 10334 return (rc); 10335 10336 mtx_lock(&sc->reg_lock); 10337 if (hw_off_limits(sc)) 10338 rc = ENXIO; 10339 else 10340 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10341 mtx_unlock(&sc->reg_lock); 10342 if (rc != 0) 10343 return (rc); 10344 10345 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10346 if (sb == NULL) 10347 return (ENOMEM); 10348 10349 sbuf_printf(sb, 10350 " IP IPv6\n"); 10351 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10352 v4.tcp_out_rsts, v6.tcp_out_rsts); 10353 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10354 v4.tcp_in_segs, v6.tcp_in_segs); 10355 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10356 v4.tcp_out_segs, v6.tcp_out_segs); 10357 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10358 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10359 10360 rc = sbuf_finish(sb); 10361 sbuf_delete(sb); 10362 10363 return (rc); 10364 } 10365 10366 static int 10367 sysctl_tids(SYSCTL_HANDLER_ARGS) 10368 { 10369 struct adapter *sc = arg1; 10370 struct sbuf *sb; 10371 int rc; 10372 uint32_t x, y; 10373 struct tid_info *t = &sc->tids; 10374 10375 rc = sysctl_wire_old_buffer(req, 0); 10376 if (rc != 0) 10377 return (rc); 10378 10379 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10380 if (sb == NULL) 10381 return (ENOMEM); 10382 10383 if (t->natids) { 10384 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10385 t->atids_in_use); 10386 } 10387 10388 if (t->nhpftids) { 10389 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10390 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10391 } 10392 10393 if (t->ntids) { 10394 bool hashen = false; 10395 10396 mtx_lock(&sc->reg_lock); 10397 if (hw_off_limits(sc)) 10398 rc = ENXIO; 10399 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10400 hashen = true; 10401 if (chip_id(sc) <= CHELSIO_T5) { 10402 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10403 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10404 } else { 10405 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10406 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10407 } 10408 } 10409 mtx_unlock(&sc->reg_lock); 10410 if (rc != 0) 10411 goto done; 10412 10413 sbuf_printf(sb, "TID range: "); 10414 if (hashen) { 10415 if (x) 10416 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10417 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10418 } else { 10419 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10420 t->ntids - 1); 10421 } 10422 sbuf_printf(sb, ", in use: %u\n", 10423 atomic_load_acq_int(&t->tids_in_use)); 10424 } 10425 10426 if (t->nstids) { 10427 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10428 t->stid_base + t->nstids - 1, t->stids_in_use); 10429 } 10430 10431 if (t->nftids) { 10432 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10433 t->ftid_end, t->ftids_in_use); 10434 } 10435 10436 if (t->netids) { 10437 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10438 t->etid_base + t->netids - 1, t->etids_in_use); 10439 } 10440 10441 mtx_lock(&sc->reg_lock); 10442 if (hw_off_limits(sc)) 10443 rc = ENXIO; 10444 else { 10445 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10446 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10447 } 10448 mtx_unlock(&sc->reg_lock); 10449 if (rc != 0) 10450 goto done; 10451 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10452 done: 10453 if (rc == 0) 10454 rc = sbuf_finish(sb); 10455 else 10456 (void)sbuf_finish(sb); 10457 sbuf_delete(sb); 10458 10459 return (rc); 10460 } 10461 10462 static int 10463 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10464 { 10465 struct adapter *sc = arg1; 10466 struct sbuf *sb; 10467 int rc; 10468 struct tp_err_stats stats; 10469 10470 rc = sysctl_wire_old_buffer(req, 0); 10471 if (rc != 0) 10472 return (rc); 10473 10474 mtx_lock(&sc->reg_lock); 10475 if (hw_off_limits(sc)) 10476 rc = ENXIO; 10477 else 10478 t4_tp_get_err_stats(sc, &stats, 0); 10479 mtx_unlock(&sc->reg_lock); 10480 if (rc != 0) 10481 return (rc); 10482 10483 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10484 if (sb == NULL) 10485 return (ENOMEM); 10486 10487 if (sc->chip_params->nchan > 2) { 10488 sbuf_printf(sb, " channel 0 channel 1" 10489 " channel 2 channel 3\n"); 10490 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10491 stats.mac_in_errs[0], stats.mac_in_errs[1], 10492 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10493 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10494 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10495 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10496 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10497 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10498 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10499 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10500 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10501 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10502 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10503 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10504 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10505 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10506 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10507 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10508 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10509 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10510 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10511 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10512 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10513 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10514 } else { 10515 sbuf_printf(sb, " channel 0 channel 1\n"); 10516 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10517 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10518 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10519 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10520 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10521 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10522 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10523 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10524 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10525 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10526 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10527 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10528 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10529 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10530 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10531 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10532 } 10533 10534 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10535 stats.ofld_no_neigh, stats.ofld_cong_defer); 10536 10537 rc = sbuf_finish(sb); 10538 sbuf_delete(sb); 10539 10540 return (rc); 10541 } 10542 10543 static int 10544 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10545 { 10546 struct adapter *sc = arg1; 10547 struct sbuf *sb; 10548 int rc; 10549 struct tp_tnl_stats stats; 10550 10551 rc = sysctl_wire_old_buffer(req, 0); 10552 if (rc != 0) 10553 return(rc); 10554 10555 mtx_lock(&sc->reg_lock); 10556 if (hw_off_limits(sc)) 10557 rc = ENXIO; 10558 else 10559 t4_tp_get_tnl_stats(sc, &stats, 1); 10560 mtx_unlock(&sc->reg_lock); 10561 if (rc != 0) 10562 return (rc); 10563 10564 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10565 if (sb == NULL) 10566 return (ENOMEM); 10567 10568 if (sc->chip_params->nchan > 2) { 10569 sbuf_printf(sb, " channel 0 channel 1" 10570 " channel 2 channel 3\n"); 10571 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10572 stats.out_pkt[0], stats.out_pkt[1], 10573 stats.out_pkt[2], stats.out_pkt[3]); 10574 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10575 stats.in_pkt[0], stats.in_pkt[1], 10576 stats.in_pkt[2], stats.in_pkt[3]); 10577 } else { 10578 sbuf_printf(sb, " channel 0 channel 1\n"); 10579 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10580 stats.out_pkt[0], stats.out_pkt[1]); 10581 sbuf_printf(sb, "InPkts: %10u %10u", 10582 stats.in_pkt[0], stats.in_pkt[1]); 10583 } 10584 10585 rc = sbuf_finish(sb); 10586 sbuf_delete(sb); 10587 10588 return (rc); 10589 } 10590 10591 static int 10592 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10593 { 10594 struct adapter *sc = arg1; 10595 struct tp_params *tpp = &sc->params.tp; 10596 u_int mask; 10597 int rc; 10598 10599 mask = tpp->la_mask >> 16; 10600 rc = sysctl_handle_int(oidp, &mask, 0, req); 10601 if (rc != 0 || req->newptr == NULL) 10602 return (rc); 10603 if (mask > 0xffff) 10604 return (EINVAL); 10605 mtx_lock(&sc->reg_lock); 10606 if (hw_off_limits(sc)) 10607 rc = ENXIO; 10608 else { 10609 tpp->la_mask = mask << 16; 10610 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10611 tpp->la_mask); 10612 } 10613 mtx_unlock(&sc->reg_lock); 10614 10615 return (rc); 10616 } 10617 10618 struct field_desc { 10619 const char *name; 10620 u_int start; 10621 u_int width; 10622 }; 10623 10624 static void 10625 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10626 { 10627 char buf[32]; 10628 int line_size = 0; 10629 10630 while (f->name) { 10631 uint64_t mask = (1ULL << f->width) - 1; 10632 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10633 ((uintmax_t)v >> f->start) & mask); 10634 10635 if (line_size + len >= 79) { 10636 line_size = 8; 10637 sbuf_printf(sb, "\n "); 10638 } 10639 sbuf_printf(sb, "%s ", buf); 10640 line_size += len + 1; 10641 f++; 10642 } 10643 sbuf_printf(sb, "\n"); 10644 } 10645 10646 static const struct field_desc tp_la0[] = { 10647 { "RcfOpCodeOut", 60, 4 }, 10648 { "State", 56, 4 }, 10649 { "WcfState", 52, 4 }, 10650 { "RcfOpcSrcOut", 50, 2 }, 10651 { "CRxError", 49, 1 }, 10652 { "ERxError", 48, 1 }, 10653 { "SanityFailed", 47, 1 }, 10654 { "SpuriousMsg", 46, 1 }, 10655 { "FlushInputMsg", 45, 1 }, 10656 { "FlushInputCpl", 44, 1 }, 10657 { "RssUpBit", 43, 1 }, 10658 { "RssFilterHit", 42, 1 }, 10659 { "Tid", 32, 10 }, 10660 { "InitTcb", 31, 1 }, 10661 { "LineNumber", 24, 7 }, 10662 { "Emsg", 23, 1 }, 10663 { "EdataOut", 22, 1 }, 10664 { "Cmsg", 21, 1 }, 10665 { "CdataOut", 20, 1 }, 10666 { "EreadPdu", 19, 1 }, 10667 { "CreadPdu", 18, 1 }, 10668 { "TunnelPkt", 17, 1 }, 10669 { "RcfPeerFin", 16, 1 }, 10670 { "RcfReasonOut", 12, 4 }, 10671 { "TxCchannel", 10, 2 }, 10672 { "RcfTxChannel", 8, 2 }, 10673 { "RxEchannel", 6, 2 }, 10674 { "RcfRxChannel", 5, 1 }, 10675 { "RcfDataOutSrdy", 4, 1 }, 10676 { "RxDvld", 3, 1 }, 10677 { "RxOoDvld", 2, 1 }, 10678 { "RxCongestion", 1, 1 }, 10679 { "TxCongestion", 0, 1 }, 10680 { NULL } 10681 }; 10682 10683 static const struct field_desc tp_la1[] = { 10684 { "CplCmdIn", 56, 8 }, 10685 { "CplCmdOut", 48, 8 }, 10686 { "ESynOut", 47, 1 }, 10687 { "EAckOut", 46, 1 }, 10688 { "EFinOut", 45, 1 }, 10689 { "ERstOut", 44, 1 }, 10690 { "SynIn", 43, 1 }, 10691 { "AckIn", 42, 1 }, 10692 { "FinIn", 41, 1 }, 10693 { "RstIn", 40, 1 }, 10694 { "DataIn", 39, 1 }, 10695 { "DataInVld", 38, 1 }, 10696 { "PadIn", 37, 1 }, 10697 { "RxBufEmpty", 36, 1 }, 10698 { "RxDdp", 35, 1 }, 10699 { "RxFbCongestion", 34, 1 }, 10700 { "TxFbCongestion", 33, 1 }, 10701 { "TxPktSumSrdy", 32, 1 }, 10702 { "RcfUlpType", 28, 4 }, 10703 { "Eread", 27, 1 }, 10704 { "Ebypass", 26, 1 }, 10705 { "Esave", 25, 1 }, 10706 { "Static0", 24, 1 }, 10707 { "Cread", 23, 1 }, 10708 { "Cbypass", 22, 1 }, 10709 { "Csave", 21, 1 }, 10710 { "CPktOut", 20, 1 }, 10711 { "RxPagePoolFull", 18, 2 }, 10712 { "RxLpbkPkt", 17, 1 }, 10713 { "TxLpbkPkt", 16, 1 }, 10714 { "RxVfValid", 15, 1 }, 10715 { "SynLearned", 14, 1 }, 10716 { "SetDelEntry", 13, 1 }, 10717 { "SetInvEntry", 12, 1 }, 10718 { "CpcmdDvld", 11, 1 }, 10719 { "CpcmdSave", 10, 1 }, 10720 { "RxPstructsFull", 8, 2 }, 10721 { "EpcmdDvld", 7, 1 }, 10722 { "EpcmdFlush", 6, 1 }, 10723 { "EpcmdTrimPrefix", 5, 1 }, 10724 { "EpcmdTrimPostfix", 4, 1 }, 10725 { "ERssIp4Pkt", 3, 1 }, 10726 { "ERssIp6Pkt", 2, 1 }, 10727 { "ERssTcpUdpPkt", 1, 1 }, 10728 { "ERssFceFipPkt", 0, 1 }, 10729 { NULL } 10730 }; 10731 10732 static const struct field_desc tp_la2[] = { 10733 { "CplCmdIn", 56, 8 }, 10734 { "MpsVfVld", 55, 1 }, 10735 { "MpsPf", 52, 3 }, 10736 { "MpsVf", 44, 8 }, 10737 { "SynIn", 43, 1 }, 10738 { "AckIn", 42, 1 }, 10739 { "FinIn", 41, 1 }, 10740 { "RstIn", 40, 1 }, 10741 { "DataIn", 39, 1 }, 10742 { "DataInVld", 38, 1 }, 10743 { "PadIn", 37, 1 }, 10744 { "RxBufEmpty", 36, 1 }, 10745 { "RxDdp", 35, 1 }, 10746 { "RxFbCongestion", 34, 1 }, 10747 { "TxFbCongestion", 33, 1 }, 10748 { "TxPktSumSrdy", 32, 1 }, 10749 { "RcfUlpType", 28, 4 }, 10750 { "Eread", 27, 1 }, 10751 { "Ebypass", 26, 1 }, 10752 { "Esave", 25, 1 }, 10753 { "Static0", 24, 1 }, 10754 { "Cread", 23, 1 }, 10755 { "Cbypass", 22, 1 }, 10756 { "Csave", 21, 1 }, 10757 { "CPktOut", 20, 1 }, 10758 { "RxPagePoolFull", 18, 2 }, 10759 { "RxLpbkPkt", 17, 1 }, 10760 { "TxLpbkPkt", 16, 1 }, 10761 { "RxVfValid", 15, 1 }, 10762 { "SynLearned", 14, 1 }, 10763 { "SetDelEntry", 13, 1 }, 10764 { "SetInvEntry", 12, 1 }, 10765 { "CpcmdDvld", 11, 1 }, 10766 { "CpcmdSave", 10, 1 }, 10767 { "RxPstructsFull", 8, 2 }, 10768 { "EpcmdDvld", 7, 1 }, 10769 { "EpcmdFlush", 6, 1 }, 10770 { "EpcmdTrimPrefix", 5, 1 }, 10771 { "EpcmdTrimPostfix", 4, 1 }, 10772 { "ERssIp4Pkt", 3, 1 }, 10773 { "ERssIp6Pkt", 2, 1 }, 10774 { "ERssTcpUdpPkt", 1, 1 }, 10775 { "ERssFceFipPkt", 0, 1 }, 10776 { NULL } 10777 }; 10778 10779 static void 10780 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10781 { 10782 10783 field_desc_show(sb, *p, tp_la0); 10784 } 10785 10786 static void 10787 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10788 { 10789 10790 if (idx) 10791 sbuf_printf(sb, "\n"); 10792 field_desc_show(sb, p[0], tp_la0); 10793 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10794 field_desc_show(sb, p[1], tp_la0); 10795 } 10796 10797 static void 10798 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10799 { 10800 10801 if (idx) 10802 sbuf_printf(sb, "\n"); 10803 field_desc_show(sb, p[0], tp_la0); 10804 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10805 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10806 } 10807 10808 static int 10809 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10810 { 10811 struct adapter *sc = arg1; 10812 struct sbuf *sb; 10813 uint64_t *buf, *p; 10814 int rc; 10815 u_int i, inc; 10816 void (*show_func)(struct sbuf *, uint64_t *, int); 10817 10818 rc = sysctl_wire_old_buffer(req, 0); 10819 if (rc != 0) 10820 return (rc); 10821 10822 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10823 if (sb == NULL) 10824 return (ENOMEM); 10825 10826 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10827 10828 mtx_lock(&sc->reg_lock); 10829 if (hw_off_limits(sc)) 10830 rc = ENXIO; 10831 else { 10832 t4_tp_read_la(sc, buf, NULL); 10833 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10834 case 2: 10835 inc = 2; 10836 show_func = tp_la_show2; 10837 break; 10838 case 3: 10839 inc = 2; 10840 show_func = tp_la_show3; 10841 break; 10842 default: 10843 inc = 1; 10844 show_func = tp_la_show; 10845 } 10846 } 10847 mtx_unlock(&sc->reg_lock); 10848 if (rc != 0) 10849 goto done; 10850 10851 p = buf; 10852 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10853 (*show_func)(sb, p, i); 10854 rc = sbuf_finish(sb); 10855 done: 10856 sbuf_delete(sb); 10857 free(buf, M_CXGBE); 10858 return (rc); 10859 } 10860 10861 static int 10862 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10863 { 10864 struct adapter *sc = arg1; 10865 struct sbuf *sb; 10866 int rc; 10867 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10868 10869 rc = sysctl_wire_old_buffer(req, 0); 10870 if (rc != 0) 10871 return (rc); 10872 10873 mtx_lock(&sc->reg_lock); 10874 if (hw_off_limits(sc)) 10875 rc = ENXIO; 10876 else 10877 t4_get_chan_txrate(sc, nrate, orate); 10878 mtx_unlock(&sc->reg_lock); 10879 if (rc != 0) 10880 return (rc); 10881 10882 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10883 if (sb == NULL) 10884 return (ENOMEM); 10885 10886 if (sc->chip_params->nchan > 2) { 10887 sbuf_printf(sb, " channel 0 channel 1" 10888 " channel 2 channel 3\n"); 10889 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10890 nrate[0], nrate[1], nrate[2], nrate[3]); 10891 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10892 orate[0], orate[1], orate[2], orate[3]); 10893 } else { 10894 sbuf_printf(sb, " channel 0 channel 1\n"); 10895 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10896 nrate[0], nrate[1]); 10897 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10898 orate[0], orate[1]); 10899 } 10900 10901 rc = sbuf_finish(sb); 10902 sbuf_delete(sb); 10903 10904 return (rc); 10905 } 10906 10907 static int 10908 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10909 { 10910 struct adapter *sc = arg1; 10911 struct sbuf *sb; 10912 uint32_t *buf, *p; 10913 int rc, i; 10914 10915 rc = sysctl_wire_old_buffer(req, 0); 10916 if (rc != 0) 10917 return (rc); 10918 10919 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10920 if (sb == NULL) 10921 return (ENOMEM); 10922 10923 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 10924 M_ZERO | M_WAITOK); 10925 10926 mtx_lock(&sc->reg_lock); 10927 if (hw_off_limits(sc)) 10928 rc = ENXIO; 10929 else 10930 t4_ulprx_read_la(sc, buf); 10931 mtx_unlock(&sc->reg_lock); 10932 if (rc != 0) 10933 goto done; 10934 10935 p = buf; 10936 sbuf_printf(sb, " Pcmd Type Message" 10937 " Data"); 10938 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 10939 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 10940 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 10941 } 10942 rc = sbuf_finish(sb); 10943 done: 10944 sbuf_delete(sb); 10945 free(buf, M_CXGBE); 10946 return (rc); 10947 } 10948 10949 static int 10950 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 10951 { 10952 struct adapter *sc = arg1; 10953 struct sbuf *sb; 10954 int rc; 10955 uint32_t cfg, s1, s2; 10956 10957 MPASS(chip_id(sc) >= CHELSIO_T5); 10958 10959 rc = sysctl_wire_old_buffer(req, 0); 10960 if (rc != 0) 10961 return (rc); 10962 10963 mtx_lock(&sc->reg_lock); 10964 if (hw_off_limits(sc)) 10965 rc = ENXIO; 10966 else { 10967 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 10968 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 10969 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 10970 } 10971 mtx_unlock(&sc->reg_lock); 10972 if (rc != 0) 10973 return (rc); 10974 10975 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10976 if (sb == NULL) 10977 return (ENOMEM); 10978 10979 if (G_STATSOURCE_T5(cfg) == 7) { 10980 int mode; 10981 10982 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 10983 if (mode == 0) 10984 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 10985 else if (mode == 1) 10986 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 10987 else 10988 sbuf_printf(sb, "unknown mode %d", mode); 10989 } 10990 rc = sbuf_finish(sb); 10991 sbuf_delete(sb); 10992 10993 return (rc); 10994 } 10995 10996 static int 10997 sysctl_cpus(SYSCTL_HANDLER_ARGS) 10998 { 10999 struct adapter *sc = arg1; 11000 enum cpu_sets op = arg2; 11001 cpuset_t cpuset; 11002 struct sbuf *sb; 11003 int i, rc; 11004 11005 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11006 11007 CPU_ZERO(&cpuset); 11008 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11009 if (rc != 0) 11010 return (rc); 11011 11012 rc = sysctl_wire_old_buffer(req, 0); 11013 if (rc != 0) 11014 return (rc); 11015 11016 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11017 if (sb == NULL) 11018 return (ENOMEM); 11019 11020 CPU_FOREACH(i) 11021 sbuf_printf(sb, "%d ", i); 11022 rc = sbuf_finish(sb); 11023 sbuf_delete(sb); 11024 11025 return (rc); 11026 } 11027 11028 static int 11029 sysctl_reset(SYSCTL_HANDLER_ARGS) 11030 { 11031 struct adapter *sc = arg1; 11032 u_int val; 11033 int rc; 11034 11035 val = sc->num_resets; 11036 rc = sysctl_handle_int(oidp, &val, 0, req); 11037 if (rc != 0 || req->newptr == NULL) 11038 return (rc); 11039 11040 if (val == 0) { 11041 /* Zero out the counter that tracks reset. */ 11042 sc->num_resets = 0; 11043 return (0); 11044 } 11045 11046 if (val != 1) 11047 return (EINVAL); /* 0 or 1 are the only legal values */ 11048 11049 if (hw_off_limits(sc)) /* harmless race */ 11050 return (EALREADY); 11051 11052 taskqueue_enqueue(reset_tq, &sc->reset_task); 11053 return (0); 11054 } 11055 11056 #ifdef TCP_OFFLOAD 11057 static int 11058 sysctl_tls(SYSCTL_HANDLER_ARGS) 11059 { 11060 struct adapter *sc = arg1; 11061 int i, j, v, rc; 11062 struct vi_info *vi; 11063 11064 v = sc->tt.tls; 11065 rc = sysctl_handle_int(oidp, &v, 0, req); 11066 if (rc != 0 || req->newptr == NULL) 11067 return (rc); 11068 11069 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11070 return (ENOTSUP); 11071 11072 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11073 if (rc) 11074 return (rc); 11075 if (hw_off_limits(sc)) 11076 rc = ENXIO; 11077 else { 11078 sc->tt.tls = !!v; 11079 for_each_port(sc, i) { 11080 for_each_vi(sc->port[i], j, vi) { 11081 if (vi->flags & VI_INIT_DONE) 11082 t4_update_fl_bufsize(vi->ifp); 11083 } 11084 } 11085 } 11086 end_synchronized_op(sc, 0); 11087 11088 return (rc); 11089 11090 } 11091 11092 static int 11093 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11094 { 11095 struct adapter *sc = arg1; 11096 int *old_ports, *new_ports; 11097 int i, new_count, rc; 11098 11099 if (req->newptr == NULL && req->oldptr == NULL) 11100 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11101 sizeof(sc->tt.tls_rx_ports[0]))); 11102 11103 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11104 if (rc) 11105 return (rc); 11106 11107 if (hw_off_limits(sc)) { 11108 rc = ENXIO; 11109 goto done; 11110 } 11111 11112 if (sc->tt.num_tls_rx_ports == 0) { 11113 i = -1; 11114 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11115 } else 11116 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11117 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11118 if (rc == 0 && req->newptr != NULL) { 11119 new_count = req->newlen / sizeof(new_ports[0]); 11120 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11121 M_WAITOK); 11122 rc = SYSCTL_IN(req, new_ports, new_count * 11123 sizeof(new_ports[0])); 11124 if (rc) 11125 goto err; 11126 11127 /* Allow setting to a single '-1' to clear the list. */ 11128 if (new_count == 1 && new_ports[0] == -1) { 11129 ADAPTER_LOCK(sc); 11130 old_ports = sc->tt.tls_rx_ports; 11131 sc->tt.tls_rx_ports = NULL; 11132 sc->tt.num_tls_rx_ports = 0; 11133 ADAPTER_UNLOCK(sc); 11134 free(old_ports, M_CXGBE); 11135 } else { 11136 for (i = 0; i < new_count; i++) { 11137 if (new_ports[i] < 1 || 11138 new_ports[i] > IPPORT_MAX) { 11139 rc = EINVAL; 11140 goto err; 11141 } 11142 } 11143 11144 ADAPTER_LOCK(sc); 11145 old_ports = sc->tt.tls_rx_ports; 11146 sc->tt.tls_rx_ports = new_ports; 11147 sc->tt.num_tls_rx_ports = new_count; 11148 ADAPTER_UNLOCK(sc); 11149 free(old_ports, M_CXGBE); 11150 new_ports = NULL; 11151 } 11152 err: 11153 free(new_ports, M_CXGBE); 11154 } 11155 done: 11156 end_synchronized_op(sc, 0); 11157 return (rc); 11158 } 11159 11160 static int 11161 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11162 { 11163 struct adapter *sc = arg1; 11164 int v, rc; 11165 11166 v = sc->tt.tls_rx_timeout; 11167 rc = sysctl_handle_int(oidp, &v, 0, req); 11168 if (rc != 0 || req->newptr == NULL) 11169 return (rc); 11170 11171 if (v < 0) 11172 return (EINVAL); 11173 11174 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11175 return (ENOTSUP); 11176 11177 sc->tt.tls_rx_timeout = v; 11178 11179 return (0); 11180 11181 } 11182 11183 static void 11184 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11185 { 11186 u_int rem = val % factor; 11187 11188 if (rem == 0) 11189 snprintf(buf, len, "%u", val / factor); 11190 else { 11191 while (rem % 10 == 0) 11192 rem /= 10; 11193 snprintf(buf, len, "%u.%u", val / factor, rem); 11194 } 11195 } 11196 11197 static int 11198 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11199 { 11200 struct adapter *sc = arg1; 11201 char buf[16]; 11202 u_int res, re; 11203 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11204 11205 mtx_lock(&sc->reg_lock); 11206 if (hw_off_limits(sc)) 11207 res = (u_int)-1; 11208 else 11209 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11210 mtx_unlock(&sc->reg_lock); 11211 if (res == (u_int)-1) 11212 return (ENXIO); 11213 11214 switch (arg2) { 11215 case 0: 11216 /* timer_tick */ 11217 re = G_TIMERRESOLUTION(res); 11218 break; 11219 case 1: 11220 /* TCP timestamp tick */ 11221 re = G_TIMESTAMPRESOLUTION(res); 11222 break; 11223 case 2: 11224 /* DACK tick */ 11225 re = G_DELAYEDACKRESOLUTION(res); 11226 break; 11227 default: 11228 return (EDOOFUS); 11229 } 11230 11231 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11232 11233 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11234 } 11235 11236 static int 11237 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11238 { 11239 struct adapter *sc = arg1; 11240 int rc; 11241 u_int dack_tmr, dack_re, v; 11242 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11243 11244 mtx_lock(&sc->reg_lock); 11245 if (hw_off_limits(sc)) 11246 rc = ENXIO; 11247 else { 11248 rc = 0; 11249 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11250 A_TP_TIMER_RESOLUTION)); 11251 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11252 } 11253 mtx_unlock(&sc->reg_lock); 11254 if (rc != 0) 11255 return (rc); 11256 11257 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11258 11259 return (sysctl_handle_int(oidp, &v, 0, req)); 11260 } 11261 11262 static int 11263 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11264 { 11265 struct adapter *sc = arg1; 11266 int rc, reg = arg2; 11267 u_int tre; 11268 u_long tp_tick_us, v; 11269 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11270 11271 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11272 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11273 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11274 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11275 11276 mtx_lock(&sc->reg_lock); 11277 if (hw_off_limits(sc)) 11278 rc = ENXIO; 11279 else { 11280 rc = 0; 11281 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11282 tp_tick_us = (cclk_ps << tre) / 1000000; 11283 if (reg == A_TP_INIT_SRTT) 11284 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11285 else 11286 v = tp_tick_us * t4_read_reg(sc, reg); 11287 } 11288 mtx_unlock(&sc->reg_lock); 11289 if (rc != 0) 11290 return (rc); 11291 else 11292 return (sysctl_handle_long(oidp, &v, 0, req)); 11293 } 11294 11295 /* 11296 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11297 * passed to this function. 11298 */ 11299 static int 11300 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11301 { 11302 struct adapter *sc = arg1; 11303 int rc, idx = arg2; 11304 u_int v; 11305 11306 MPASS(idx >= 0 && idx <= 24); 11307 11308 mtx_lock(&sc->reg_lock); 11309 if (hw_off_limits(sc)) 11310 rc = ENXIO; 11311 else { 11312 rc = 0; 11313 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11314 } 11315 mtx_unlock(&sc->reg_lock); 11316 if (rc != 0) 11317 return (rc); 11318 else 11319 return (sysctl_handle_int(oidp, &v, 0, req)); 11320 } 11321 11322 static int 11323 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11324 { 11325 struct adapter *sc = arg1; 11326 int rc, idx = arg2; 11327 u_int shift, v, r; 11328 11329 MPASS(idx >= 0 && idx < 16); 11330 11331 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11332 shift = (idx & 3) << 3; 11333 mtx_lock(&sc->reg_lock); 11334 if (hw_off_limits(sc)) 11335 rc = ENXIO; 11336 else { 11337 rc = 0; 11338 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11339 } 11340 mtx_unlock(&sc->reg_lock); 11341 if (rc != 0) 11342 return (rc); 11343 else 11344 return (sysctl_handle_int(oidp, &v, 0, req)); 11345 } 11346 11347 static int 11348 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11349 { 11350 struct vi_info *vi = arg1; 11351 struct adapter *sc = vi->adapter; 11352 int idx, rc, i; 11353 struct sge_ofld_rxq *ofld_rxq; 11354 uint8_t v; 11355 11356 idx = vi->ofld_tmr_idx; 11357 11358 rc = sysctl_handle_int(oidp, &idx, 0, req); 11359 if (rc != 0 || req->newptr == NULL) 11360 return (rc); 11361 11362 if (idx < 0 || idx >= SGE_NTIMERS) 11363 return (EINVAL); 11364 11365 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11366 "t4otmr"); 11367 if (rc) 11368 return (rc); 11369 11370 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11371 for_each_ofld_rxq(vi, i, ofld_rxq) { 11372 #ifdef atomic_store_rel_8 11373 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11374 #else 11375 ofld_rxq->iq.intr_params = v; 11376 #endif 11377 } 11378 vi->ofld_tmr_idx = idx; 11379 11380 end_synchronized_op(sc, LOCK_HELD); 11381 return (0); 11382 } 11383 11384 static int 11385 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11386 { 11387 struct vi_info *vi = arg1; 11388 struct adapter *sc = vi->adapter; 11389 int idx, rc; 11390 11391 idx = vi->ofld_pktc_idx; 11392 11393 rc = sysctl_handle_int(oidp, &idx, 0, req); 11394 if (rc != 0 || req->newptr == NULL) 11395 return (rc); 11396 11397 if (idx < -1 || idx >= SGE_NCOUNTERS) 11398 return (EINVAL); 11399 11400 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11401 "t4opktc"); 11402 if (rc) 11403 return (rc); 11404 11405 if (vi->flags & VI_INIT_DONE) 11406 rc = EBUSY; /* cannot be changed once the queues are created */ 11407 else 11408 vi->ofld_pktc_idx = idx; 11409 11410 end_synchronized_op(sc, LOCK_HELD); 11411 return (rc); 11412 } 11413 #endif 11414 11415 static int 11416 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11417 { 11418 int rc; 11419 11420 if (cntxt->cid > M_CTXTQID) 11421 return (EINVAL); 11422 11423 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11424 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11425 return (EINVAL); 11426 11427 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11428 if (rc) 11429 return (rc); 11430 11431 if (hw_off_limits(sc)) { 11432 rc = ENXIO; 11433 goto done; 11434 } 11435 11436 if (sc->flags & FW_OK) { 11437 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11438 &cntxt->data[0]); 11439 if (rc == 0) 11440 goto done; 11441 } 11442 11443 /* 11444 * Read via firmware failed or wasn't even attempted. Read directly via 11445 * the backdoor. 11446 */ 11447 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11448 done: 11449 end_synchronized_op(sc, 0); 11450 return (rc); 11451 } 11452 11453 static int 11454 load_fw(struct adapter *sc, struct t4_data *fw) 11455 { 11456 int rc; 11457 uint8_t *fw_data; 11458 11459 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11460 if (rc) 11461 return (rc); 11462 11463 if (hw_off_limits(sc)) { 11464 rc = ENXIO; 11465 goto done; 11466 } 11467 11468 /* 11469 * The firmware, with the sole exception of the memory parity error 11470 * handler, runs from memory and not flash. It is almost always safe to 11471 * install a new firmware on a running system. Just set bit 1 in 11472 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11473 */ 11474 if (sc->flags & FULL_INIT_DONE && 11475 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11476 rc = EBUSY; 11477 goto done; 11478 } 11479 11480 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11481 11482 rc = copyin(fw->data, fw_data, fw->len); 11483 if (rc == 0) 11484 rc = -t4_load_fw(sc, fw_data, fw->len); 11485 11486 free(fw_data, M_CXGBE); 11487 done: 11488 end_synchronized_op(sc, 0); 11489 return (rc); 11490 } 11491 11492 static int 11493 load_cfg(struct adapter *sc, struct t4_data *cfg) 11494 { 11495 int rc; 11496 uint8_t *cfg_data = NULL; 11497 11498 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11499 if (rc) 11500 return (rc); 11501 11502 if (hw_off_limits(sc)) { 11503 rc = ENXIO; 11504 goto done; 11505 } 11506 11507 if (cfg->len == 0) { 11508 /* clear */ 11509 rc = -t4_load_cfg(sc, NULL, 0); 11510 goto done; 11511 } 11512 11513 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11514 11515 rc = copyin(cfg->data, cfg_data, cfg->len); 11516 if (rc == 0) 11517 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11518 11519 free(cfg_data, M_CXGBE); 11520 done: 11521 end_synchronized_op(sc, 0); 11522 return (rc); 11523 } 11524 11525 static int 11526 load_boot(struct adapter *sc, struct t4_bootrom *br) 11527 { 11528 int rc; 11529 uint8_t *br_data = NULL; 11530 u_int offset; 11531 11532 if (br->len > 1024 * 1024) 11533 return (EFBIG); 11534 11535 if (br->pf_offset == 0) { 11536 /* pfidx */ 11537 if (br->pfidx_addr > 7) 11538 return (EINVAL); 11539 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11540 A_PCIE_PF_EXPROM_OFST))); 11541 } else if (br->pf_offset == 1) { 11542 /* offset */ 11543 offset = G_OFFSET(br->pfidx_addr); 11544 } else { 11545 return (EINVAL); 11546 } 11547 11548 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11549 if (rc) 11550 return (rc); 11551 11552 if (hw_off_limits(sc)) { 11553 rc = ENXIO; 11554 goto done; 11555 } 11556 11557 if (br->len == 0) { 11558 /* clear */ 11559 rc = -t4_load_boot(sc, NULL, offset, 0); 11560 goto done; 11561 } 11562 11563 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11564 11565 rc = copyin(br->data, br_data, br->len); 11566 if (rc == 0) 11567 rc = -t4_load_boot(sc, br_data, offset, br->len); 11568 11569 free(br_data, M_CXGBE); 11570 done: 11571 end_synchronized_op(sc, 0); 11572 return (rc); 11573 } 11574 11575 static int 11576 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11577 { 11578 int rc; 11579 uint8_t *bc_data = NULL; 11580 11581 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11582 if (rc) 11583 return (rc); 11584 11585 if (hw_off_limits(sc)) { 11586 rc = ENXIO; 11587 goto done; 11588 } 11589 11590 if (bc->len == 0) { 11591 /* clear */ 11592 rc = -t4_load_bootcfg(sc, NULL, 0); 11593 goto done; 11594 } 11595 11596 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11597 11598 rc = copyin(bc->data, bc_data, bc->len); 11599 if (rc == 0) 11600 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11601 11602 free(bc_data, M_CXGBE); 11603 done: 11604 end_synchronized_op(sc, 0); 11605 return (rc); 11606 } 11607 11608 static int 11609 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11610 { 11611 int rc; 11612 struct cudbg_init *cudbg; 11613 void *handle, *buf; 11614 11615 /* buf is large, don't block if no memory is available */ 11616 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11617 if (buf == NULL) 11618 return (ENOMEM); 11619 11620 handle = cudbg_alloc_handle(); 11621 if (handle == NULL) { 11622 rc = ENOMEM; 11623 goto done; 11624 } 11625 11626 cudbg = cudbg_get_init(handle); 11627 cudbg->adap = sc; 11628 cudbg->print = (cudbg_print_cb)printf; 11629 11630 #ifndef notyet 11631 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11632 __func__, dump->wr_flash, dump->len, dump->data); 11633 #endif 11634 11635 if (dump->wr_flash) 11636 cudbg->use_flash = 1; 11637 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11638 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11639 11640 rc = cudbg_collect(handle, buf, &dump->len); 11641 if (rc != 0) 11642 goto done; 11643 11644 rc = copyout(buf, dump->data, dump->len); 11645 done: 11646 cudbg_free_handle(handle); 11647 free(buf, M_CXGBE); 11648 return (rc); 11649 } 11650 11651 static void 11652 free_offload_policy(struct t4_offload_policy *op) 11653 { 11654 struct offload_rule *r; 11655 int i; 11656 11657 if (op == NULL) 11658 return; 11659 11660 r = &op->rule[0]; 11661 for (i = 0; i < op->nrules; i++, r++) { 11662 free(r->bpf_prog.bf_insns, M_CXGBE); 11663 } 11664 free(op->rule, M_CXGBE); 11665 free(op, M_CXGBE); 11666 } 11667 11668 static int 11669 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11670 { 11671 int i, rc, len; 11672 struct t4_offload_policy *op, *old; 11673 struct bpf_program *bf; 11674 const struct offload_settings *s; 11675 struct offload_rule *r; 11676 void *u; 11677 11678 if (!is_offload(sc)) 11679 return (ENODEV); 11680 11681 if (uop->nrules == 0) { 11682 /* Delete installed policies. */ 11683 op = NULL; 11684 goto set_policy; 11685 } else if (uop->nrules > 256) { /* arbitrary */ 11686 return (E2BIG); 11687 } 11688 11689 /* Copy userspace offload policy to kernel */ 11690 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11691 op->nrules = uop->nrules; 11692 len = op->nrules * sizeof(struct offload_rule); 11693 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11694 rc = copyin(uop->rule, op->rule, len); 11695 if (rc) { 11696 free(op->rule, M_CXGBE); 11697 free(op, M_CXGBE); 11698 return (rc); 11699 } 11700 11701 r = &op->rule[0]; 11702 for (i = 0; i < op->nrules; i++, r++) { 11703 11704 /* Validate open_type */ 11705 if (r->open_type != OPEN_TYPE_LISTEN && 11706 r->open_type != OPEN_TYPE_ACTIVE && 11707 r->open_type != OPEN_TYPE_PASSIVE && 11708 r->open_type != OPEN_TYPE_DONTCARE) { 11709 error: 11710 /* 11711 * Rules 0 to i have malloc'd filters that need to be 11712 * freed. Rules i+1 to nrules have userspace pointers 11713 * and should be left alone. 11714 */ 11715 op->nrules = i; 11716 free_offload_policy(op); 11717 return (rc); 11718 } 11719 11720 /* Validate settings */ 11721 s = &r->settings; 11722 if ((s->offload != 0 && s->offload != 1) || 11723 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11724 s->sched_class < -1 || 11725 s->sched_class >= sc->params.nsched_cls) { 11726 rc = EINVAL; 11727 goto error; 11728 } 11729 11730 bf = &r->bpf_prog; 11731 u = bf->bf_insns; /* userspace ptr */ 11732 bf->bf_insns = NULL; 11733 if (bf->bf_len == 0) { 11734 /* legal, matches everything */ 11735 continue; 11736 } 11737 len = bf->bf_len * sizeof(*bf->bf_insns); 11738 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11739 rc = copyin(u, bf->bf_insns, len); 11740 if (rc != 0) 11741 goto error; 11742 11743 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11744 rc = EINVAL; 11745 goto error; 11746 } 11747 } 11748 set_policy: 11749 rw_wlock(&sc->policy_lock); 11750 old = sc->policy; 11751 sc->policy = op; 11752 rw_wunlock(&sc->policy_lock); 11753 free_offload_policy(old); 11754 11755 return (0); 11756 } 11757 11758 #define MAX_READ_BUF_SIZE (128 * 1024) 11759 static int 11760 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11761 { 11762 uint32_t addr, remaining, n; 11763 uint32_t *buf; 11764 int rc; 11765 uint8_t *dst; 11766 11767 mtx_lock(&sc->reg_lock); 11768 if (hw_off_limits(sc)) 11769 rc = ENXIO; 11770 else 11771 rc = validate_mem_range(sc, mr->addr, mr->len); 11772 mtx_unlock(&sc->reg_lock); 11773 if (rc != 0) 11774 return (rc); 11775 11776 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11777 addr = mr->addr; 11778 remaining = mr->len; 11779 dst = (void *)mr->data; 11780 11781 while (remaining) { 11782 n = min(remaining, MAX_READ_BUF_SIZE); 11783 mtx_lock(&sc->reg_lock); 11784 if (hw_off_limits(sc)) 11785 rc = ENXIO; 11786 else 11787 read_via_memwin(sc, 2, addr, buf, n); 11788 mtx_unlock(&sc->reg_lock); 11789 if (rc != 0) 11790 break; 11791 11792 rc = copyout(buf, dst, n); 11793 if (rc != 0) 11794 break; 11795 11796 dst += n; 11797 remaining -= n; 11798 addr += n; 11799 } 11800 11801 free(buf, M_CXGBE); 11802 return (rc); 11803 } 11804 #undef MAX_READ_BUF_SIZE 11805 11806 static int 11807 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11808 { 11809 int rc; 11810 11811 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11812 return (EINVAL); 11813 11814 if (i2cd->len > sizeof(i2cd->data)) 11815 return (EFBIG); 11816 11817 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11818 if (rc) 11819 return (rc); 11820 if (hw_off_limits(sc)) 11821 rc = ENXIO; 11822 else 11823 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11824 i2cd->offset, i2cd->len, &i2cd->data[0]); 11825 end_synchronized_op(sc, 0); 11826 11827 return (rc); 11828 } 11829 11830 static int 11831 clear_stats(struct adapter *sc, u_int port_id) 11832 { 11833 int i, v, chan_map; 11834 struct port_info *pi; 11835 struct vi_info *vi; 11836 struct sge_rxq *rxq; 11837 struct sge_txq *txq; 11838 struct sge_wrq *wrq; 11839 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11840 struct sge_ofld_txq *ofld_txq; 11841 #endif 11842 #ifdef TCP_OFFLOAD 11843 struct sge_ofld_rxq *ofld_rxq; 11844 #endif 11845 11846 if (port_id >= sc->params.nports) 11847 return (EINVAL); 11848 pi = sc->port[port_id]; 11849 if (pi == NULL) 11850 return (EIO); 11851 11852 mtx_lock(&sc->reg_lock); 11853 if (!hw_off_limits(sc)) { 11854 /* MAC stats */ 11855 t4_clr_port_stats(sc, pi->tx_chan); 11856 if (is_t6(sc)) { 11857 if (pi->fcs_reg != -1) 11858 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11859 else 11860 pi->stats.rx_fcs_err = 0; 11861 } 11862 for_each_vi(pi, v, vi) { 11863 if (vi->flags & VI_INIT_DONE) 11864 t4_clr_vi_stats(sc, vi->vin); 11865 } 11866 chan_map = pi->rx_e_chan_map; 11867 v = 0; /* reuse */ 11868 while (chan_map) { 11869 i = ffs(chan_map) - 1; 11870 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11871 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11872 chan_map &= ~(1 << i); 11873 } 11874 } 11875 mtx_unlock(&sc->reg_lock); 11876 pi->tx_parse_error = 0; 11877 pi->tnl_cong_drops = 0; 11878 11879 /* 11880 * Since this command accepts a port, clear stats for 11881 * all VIs on this port. 11882 */ 11883 for_each_vi(pi, v, vi) { 11884 if (vi->flags & VI_INIT_DONE) { 11885 11886 for_each_rxq(vi, i, rxq) { 11887 #if defined(INET) || defined(INET6) 11888 rxq->lro.lro_queued = 0; 11889 rxq->lro.lro_flushed = 0; 11890 #endif 11891 rxq->rxcsum = 0; 11892 rxq->vlan_extraction = 0; 11893 rxq->vxlan_rxcsum = 0; 11894 11895 rxq->fl.cl_allocated = 0; 11896 rxq->fl.cl_recycled = 0; 11897 rxq->fl.cl_fast_recycled = 0; 11898 } 11899 11900 for_each_txq(vi, i, txq) { 11901 txq->txcsum = 0; 11902 txq->tso_wrs = 0; 11903 txq->vlan_insertion = 0; 11904 txq->imm_wrs = 0; 11905 txq->sgl_wrs = 0; 11906 txq->txpkt_wrs = 0; 11907 txq->txpkts0_wrs = 0; 11908 txq->txpkts1_wrs = 0; 11909 txq->txpkts0_pkts = 0; 11910 txq->txpkts1_pkts = 0; 11911 txq->txpkts_flush = 0; 11912 txq->raw_wrs = 0; 11913 txq->vxlan_tso_wrs = 0; 11914 txq->vxlan_txcsum = 0; 11915 txq->kern_tls_records = 0; 11916 txq->kern_tls_short = 0; 11917 txq->kern_tls_partial = 0; 11918 txq->kern_tls_full = 0; 11919 txq->kern_tls_octets = 0; 11920 txq->kern_tls_waste = 0; 11921 txq->kern_tls_options = 0; 11922 txq->kern_tls_header = 0; 11923 txq->kern_tls_fin = 0; 11924 txq->kern_tls_fin_short = 0; 11925 txq->kern_tls_cbc = 0; 11926 txq->kern_tls_gcm = 0; 11927 mp_ring_reset_stats(txq->r); 11928 } 11929 11930 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11931 for_each_ofld_txq(vi, i, ofld_txq) { 11932 ofld_txq->wrq.tx_wrs_direct = 0; 11933 ofld_txq->wrq.tx_wrs_copied = 0; 11934 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 11935 counter_u64_zero(ofld_txq->tx_iscsi_octets); 11936 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 11937 counter_u64_zero(ofld_txq->tx_toe_tls_records); 11938 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 11939 } 11940 #endif 11941 #ifdef TCP_OFFLOAD 11942 for_each_ofld_rxq(vi, i, ofld_rxq) { 11943 ofld_rxq->fl.cl_allocated = 0; 11944 ofld_rxq->fl.cl_recycled = 0; 11945 ofld_rxq->fl.cl_fast_recycled = 0; 11946 counter_u64_zero( 11947 ofld_rxq->rx_iscsi_ddp_setup_ok); 11948 counter_u64_zero( 11949 ofld_rxq->rx_iscsi_ddp_setup_error); 11950 ofld_rxq->rx_iscsi_ddp_pdus = 0; 11951 ofld_rxq->rx_iscsi_ddp_octets = 0; 11952 ofld_rxq->rx_iscsi_fl_pdus = 0; 11953 ofld_rxq->rx_iscsi_fl_octets = 0; 11954 ofld_rxq->rx_toe_tls_records = 0; 11955 ofld_rxq->rx_toe_tls_octets = 0; 11956 } 11957 #endif 11958 11959 if (IS_MAIN_VI(vi)) { 11960 wrq = &sc->sge.ctrlq[pi->port_id]; 11961 wrq->tx_wrs_direct = 0; 11962 wrq->tx_wrs_copied = 0; 11963 } 11964 } 11965 } 11966 11967 return (0); 11968 } 11969 11970 static int 11971 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11972 { 11973 #ifdef INET6 11974 struct in6_addr in6; 11975 11976 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11977 if (t4_get_clip_entry(sc, &in6, true) != NULL) 11978 return (0); 11979 else 11980 return (EIO); 11981 #else 11982 return (ENOTSUP); 11983 #endif 11984 } 11985 11986 static int 11987 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11988 { 11989 #ifdef INET6 11990 struct in6_addr in6; 11991 11992 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11993 return (t4_release_clip_addr(sc, &in6)); 11994 #else 11995 return (ENOTSUP); 11996 #endif 11997 } 11998 11999 int 12000 t4_os_find_pci_capability(struct adapter *sc, int cap) 12001 { 12002 int i; 12003 12004 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12005 } 12006 12007 int 12008 t4_os_pci_save_state(struct adapter *sc) 12009 { 12010 device_t dev; 12011 struct pci_devinfo *dinfo; 12012 12013 dev = sc->dev; 12014 dinfo = device_get_ivars(dev); 12015 12016 pci_cfg_save(dev, dinfo, 0); 12017 return (0); 12018 } 12019 12020 int 12021 t4_os_pci_restore_state(struct adapter *sc) 12022 { 12023 device_t dev; 12024 struct pci_devinfo *dinfo; 12025 12026 dev = sc->dev; 12027 dinfo = device_get_ivars(dev); 12028 12029 pci_cfg_restore(dev, dinfo); 12030 return (0); 12031 } 12032 12033 void 12034 t4_os_portmod_changed(struct port_info *pi) 12035 { 12036 struct adapter *sc = pi->adapter; 12037 struct vi_info *vi; 12038 struct ifnet *ifp; 12039 static const char *mod_str[] = { 12040 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12041 }; 12042 12043 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12044 ("%s: port_type %u", __func__, pi->port_type)); 12045 12046 vi = &pi->vi[0]; 12047 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12048 PORT_LOCK(pi); 12049 build_medialist(pi); 12050 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12051 fixup_link_config(pi); 12052 apply_link_config(pi); 12053 } 12054 PORT_UNLOCK(pi); 12055 end_synchronized_op(sc, LOCK_HELD); 12056 } 12057 12058 ifp = vi->ifp; 12059 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12060 if_printf(ifp, "transceiver unplugged.\n"); 12061 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12062 if_printf(ifp, "unknown transceiver inserted.\n"); 12063 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12064 if_printf(ifp, "unsupported transceiver inserted.\n"); 12065 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12066 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12067 port_top_speed(pi), mod_str[pi->mod_type]); 12068 } else { 12069 if_printf(ifp, "transceiver (type %d) inserted.\n", 12070 pi->mod_type); 12071 } 12072 } 12073 12074 void 12075 t4_os_link_changed(struct port_info *pi) 12076 { 12077 struct vi_info *vi; 12078 struct ifnet *ifp; 12079 struct link_config *lc = &pi->link_cfg; 12080 struct adapter *sc = pi->adapter; 12081 int v; 12082 12083 PORT_LOCK_ASSERT_OWNED(pi); 12084 12085 if (is_t6(sc)) { 12086 if (lc->link_ok) { 12087 if (lc->speed > 25000 || 12088 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12089 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12090 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12091 } else { 12092 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12093 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12094 } 12095 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12096 pi->stats.rx_fcs_err = 0; 12097 } else { 12098 pi->fcs_reg = -1; 12099 } 12100 } else { 12101 MPASS(pi->fcs_reg != -1); 12102 MPASS(pi->fcs_base == 0); 12103 } 12104 12105 for_each_vi(pi, v, vi) { 12106 ifp = vi->ifp; 12107 if (ifp == NULL) 12108 continue; 12109 12110 if (lc->link_ok) { 12111 ifp->if_baudrate = IF_Mbps(lc->speed); 12112 if_link_state_change(ifp, LINK_STATE_UP); 12113 } else { 12114 if_link_state_change(ifp, LINK_STATE_DOWN); 12115 } 12116 } 12117 } 12118 12119 void 12120 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12121 { 12122 struct adapter *sc; 12123 12124 sx_slock(&t4_list_lock); 12125 SLIST_FOREACH(sc, &t4_list, link) { 12126 /* 12127 * func should not make any assumptions about what state sc is 12128 * in - the only guarantee is that sc->sc_lock is a valid lock. 12129 */ 12130 func(sc, arg); 12131 } 12132 sx_sunlock(&t4_list_lock); 12133 } 12134 12135 static int 12136 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12137 struct thread *td) 12138 { 12139 int rc; 12140 struct adapter *sc = dev->si_drv1; 12141 12142 rc = priv_check(td, PRIV_DRIVER); 12143 if (rc != 0) 12144 return (rc); 12145 12146 switch (cmd) { 12147 case CHELSIO_T4_GETREG: { 12148 struct t4_reg *edata = (struct t4_reg *)data; 12149 12150 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12151 return (EFAULT); 12152 12153 mtx_lock(&sc->reg_lock); 12154 if (hw_off_limits(sc)) 12155 rc = ENXIO; 12156 else if (edata->size == 4) 12157 edata->val = t4_read_reg(sc, edata->addr); 12158 else if (edata->size == 8) 12159 edata->val = t4_read_reg64(sc, edata->addr); 12160 else 12161 rc = EINVAL; 12162 mtx_unlock(&sc->reg_lock); 12163 12164 break; 12165 } 12166 case CHELSIO_T4_SETREG: { 12167 struct t4_reg *edata = (struct t4_reg *)data; 12168 12169 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12170 return (EFAULT); 12171 12172 mtx_lock(&sc->reg_lock); 12173 if (hw_off_limits(sc)) 12174 rc = ENXIO; 12175 else if (edata->size == 4) { 12176 if (edata->val & 0xffffffff00000000) 12177 rc = EINVAL; 12178 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12179 } else if (edata->size == 8) 12180 t4_write_reg64(sc, edata->addr, edata->val); 12181 else 12182 rc = EINVAL; 12183 mtx_unlock(&sc->reg_lock); 12184 12185 break; 12186 } 12187 case CHELSIO_T4_REGDUMP: { 12188 struct t4_regdump *regs = (struct t4_regdump *)data; 12189 int reglen = t4_get_regs_len(sc); 12190 uint8_t *buf; 12191 12192 if (regs->len < reglen) { 12193 regs->len = reglen; /* hint to the caller */ 12194 return (ENOBUFS); 12195 } 12196 12197 regs->len = reglen; 12198 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12199 mtx_lock(&sc->reg_lock); 12200 if (hw_off_limits(sc)) 12201 rc = ENXIO; 12202 else 12203 get_regs(sc, regs, buf); 12204 mtx_unlock(&sc->reg_lock); 12205 if (rc == 0) 12206 rc = copyout(buf, regs->data, reglen); 12207 free(buf, M_CXGBE); 12208 break; 12209 } 12210 case CHELSIO_T4_GET_FILTER_MODE: 12211 rc = get_filter_mode(sc, (uint32_t *)data); 12212 break; 12213 case CHELSIO_T4_SET_FILTER_MODE: 12214 rc = set_filter_mode(sc, *(uint32_t *)data); 12215 break; 12216 case CHELSIO_T4_SET_FILTER_MASK: 12217 rc = set_filter_mask(sc, *(uint32_t *)data); 12218 break; 12219 case CHELSIO_T4_GET_FILTER: 12220 rc = get_filter(sc, (struct t4_filter *)data); 12221 break; 12222 case CHELSIO_T4_SET_FILTER: 12223 rc = set_filter(sc, (struct t4_filter *)data); 12224 break; 12225 case CHELSIO_T4_DEL_FILTER: 12226 rc = del_filter(sc, (struct t4_filter *)data); 12227 break; 12228 case CHELSIO_T4_GET_SGE_CONTEXT: 12229 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12230 break; 12231 case CHELSIO_T4_LOAD_FW: 12232 rc = load_fw(sc, (struct t4_data *)data); 12233 break; 12234 case CHELSIO_T4_GET_MEM: 12235 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12236 break; 12237 case CHELSIO_T4_GET_I2C: 12238 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12239 break; 12240 case CHELSIO_T4_CLEAR_STATS: 12241 rc = clear_stats(sc, *(uint32_t *)data); 12242 break; 12243 case CHELSIO_T4_SCHED_CLASS: 12244 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12245 break; 12246 case CHELSIO_T4_SCHED_QUEUE: 12247 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12248 break; 12249 case CHELSIO_T4_GET_TRACER: 12250 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12251 break; 12252 case CHELSIO_T4_SET_TRACER: 12253 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12254 break; 12255 case CHELSIO_T4_LOAD_CFG: 12256 rc = load_cfg(sc, (struct t4_data *)data); 12257 break; 12258 case CHELSIO_T4_LOAD_BOOT: 12259 rc = load_boot(sc, (struct t4_bootrom *)data); 12260 break; 12261 case CHELSIO_T4_LOAD_BOOTCFG: 12262 rc = load_bootcfg(sc, (struct t4_data *)data); 12263 break; 12264 case CHELSIO_T4_CUDBG_DUMP: 12265 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12266 break; 12267 case CHELSIO_T4_SET_OFLD_POLICY: 12268 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12269 break; 12270 case CHELSIO_T4_HOLD_CLIP_ADDR: 12271 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12272 break; 12273 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12274 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12275 break; 12276 default: 12277 rc = ENOTTY; 12278 } 12279 12280 return (rc); 12281 } 12282 12283 #ifdef TCP_OFFLOAD 12284 static int 12285 toe_capability(struct vi_info *vi, bool enable) 12286 { 12287 int rc; 12288 struct port_info *pi = vi->pi; 12289 struct adapter *sc = pi->adapter; 12290 12291 ASSERT_SYNCHRONIZED_OP(sc); 12292 12293 if (!is_offload(sc)) 12294 return (ENODEV); 12295 if (hw_off_limits(sc)) 12296 return (ENXIO); 12297 12298 if (enable) { 12299 #ifdef KERN_TLS 12300 if (sc->flags & KERN_TLS_ON) { 12301 int i, j, n; 12302 struct port_info *p; 12303 struct vi_info *v; 12304 12305 /* 12306 * Reconfigure hardware for TOE if TXTLS is not enabled 12307 * on any ifnet. 12308 */ 12309 n = 0; 12310 for_each_port(sc, i) { 12311 p = sc->port[i]; 12312 for_each_vi(p, j, v) { 12313 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12314 CH_WARN(sc, 12315 "%s has NIC TLS enabled.\n", 12316 device_get_nameunit(v->dev)); 12317 n++; 12318 } 12319 } 12320 } 12321 if (n > 0) { 12322 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12323 "associated with this adapter before " 12324 "trying to enable TOE.\n"); 12325 return (EAGAIN); 12326 } 12327 rc = t4_config_kern_tls(sc, false); 12328 if (rc) 12329 return (rc); 12330 } 12331 #endif 12332 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12333 /* TOE is already enabled. */ 12334 return (0); 12335 } 12336 12337 /* 12338 * We need the port's queues around so that we're able to send 12339 * and receive CPLs to/from the TOE even if the ifnet for this 12340 * port has never been UP'd administratively. 12341 */ 12342 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12343 return (rc); 12344 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12345 ((rc = vi_init(&pi->vi[0])) != 0)) 12346 return (rc); 12347 12348 if (isset(&sc->offload_map, pi->port_id)) { 12349 /* TOE is enabled on another VI of this port. */ 12350 pi->uld_vis++; 12351 return (0); 12352 } 12353 12354 if (!uld_active(sc, ULD_TOM)) { 12355 rc = t4_activate_uld(sc, ULD_TOM); 12356 if (rc == EAGAIN) { 12357 log(LOG_WARNING, 12358 "You must kldload t4_tom.ko before trying " 12359 "to enable TOE on a cxgbe interface.\n"); 12360 } 12361 if (rc != 0) 12362 return (rc); 12363 KASSERT(sc->tom_softc != NULL, 12364 ("%s: TOM activated but softc NULL", __func__)); 12365 KASSERT(uld_active(sc, ULD_TOM), 12366 ("%s: TOM activated but flag not set", __func__)); 12367 } 12368 12369 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12370 if (!uld_active(sc, ULD_IWARP)) 12371 (void) t4_activate_uld(sc, ULD_IWARP); 12372 if (!uld_active(sc, ULD_ISCSI)) 12373 (void) t4_activate_uld(sc, ULD_ISCSI); 12374 12375 pi->uld_vis++; 12376 setbit(&sc->offload_map, pi->port_id); 12377 } else { 12378 pi->uld_vis--; 12379 12380 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12381 return (0); 12382 12383 KASSERT(uld_active(sc, ULD_TOM), 12384 ("%s: TOM never initialized?", __func__)); 12385 clrbit(&sc->offload_map, pi->port_id); 12386 } 12387 12388 return (0); 12389 } 12390 12391 /* 12392 * Add an upper layer driver to the global list. 12393 */ 12394 int 12395 t4_register_uld(struct uld_info *ui) 12396 { 12397 int rc = 0; 12398 struct uld_info *u; 12399 12400 sx_xlock(&t4_uld_list_lock); 12401 SLIST_FOREACH(u, &t4_uld_list, link) { 12402 if (u->uld_id == ui->uld_id) { 12403 rc = EEXIST; 12404 goto done; 12405 } 12406 } 12407 12408 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12409 ui->refcount = 0; 12410 done: 12411 sx_xunlock(&t4_uld_list_lock); 12412 return (rc); 12413 } 12414 12415 int 12416 t4_unregister_uld(struct uld_info *ui) 12417 { 12418 int rc = EINVAL; 12419 struct uld_info *u; 12420 12421 sx_xlock(&t4_uld_list_lock); 12422 12423 SLIST_FOREACH(u, &t4_uld_list, link) { 12424 if (u == ui) { 12425 if (ui->refcount > 0) { 12426 rc = EBUSY; 12427 goto done; 12428 } 12429 12430 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12431 rc = 0; 12432 goto done; 12433 } 12434 } 12435 done: 12436 sx_xunlock(&t4_uld_list_lock); 12437 return (rc); 12438 } 12439 12440 int 12441 t4_activate_uld(struct adapter *sc, int id) 12442 { 12443 int rc; 12444 struct uld_info *ui; 12445 12446 ASSERT_SYNCHRONIZED_OP(sc); 12447 12448 if (id < 0 || id > ULD_MAX) 12449 return (EINVAL); 12450 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12451 12452 sx_slock(&t4_uld_list_lock); 12453 12454 SLIST_FOREACH(ui, &t4_uld_list, link) { 12455 if (ui->uld_id == id) { 12456 if (!(sc->flags & FULL_INIT_DONE)) { 12457 rc = adapter_init(sc); 12458 if (rc != 0) 12459 break; 12460 } 12461 12462 rc = ui->activate(sc); 12463 if (rc == 0) { 12464 setbit(&sc->active_ulds, id); 12465 ui->refcount++; 12466 } 12467 break; 12468 } 12469 } 12470 12471 sx_sunlock(&t4_uld_list_lock); 12472 12473 return (rc); 12474 } 12475 12476 int 12477 t4_deactivate_uld(struct adapter *sc, int id) 12478 { 12479 int rc; 12480 struct uld_info *ui; 12481 12482 ASSERT_SYNCHRONIZED_OP(sc); 12483 12484 if (id < 0 || id > ULD_MAX) 12485 return (EINVAL); 12486 rc = ENXIO; 12487 12488 sx_slock(&t4_uld_list_lock); 12489 12490 SLIST_FOREACH(ui, &t4_uld_list, link) { 12491 if (ui->uld_id == id) { 12492 rc = ui->deactivate(sc); 12493 if (rc == 0) { 12494 clrbit(&sc->active_ulds, id); 12495 ui->refcount--; 12496 } 12497 break; 12498 } 12499 } 12500 12501 sx_sunlock(&t4_uld_list_lock); 12502 12503 return (rc); 12504 } 12505 12506 static void 12507 t4_async_event(void *arg, int n) 12508 { 12509 struct uld_info *ui; 12510 struct adapter *sc = (struct adapter *)arg; 12511 12512 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12513 return; 12514 sx_slock(&t4_uld_list_lock); 12515 SLIST_FOREACH(ui, &t4_uld_list, link) { 12516 if (ui->uld_id == ULD_IWARP) { 12517 ui->async_event(sc); 12518 break; 12519 } 12520 } 12521 sx_sunlock(&t4_uld_list_lock); 12522 end_synchronized_op(sc, 0); 12523 } 12524 12525 int 12526 uld_active(struct adapter *sc, int uld_id) 12527 { 12528 12529 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12530 12531 return (isset(&sc->active_ulds, uld_id)); 12532 } 12533 #endif 12534 12535 #ifdef KERN_TLS 12536 static int 12537 ktls_capability(struct adapter *sc, bool enable) 12538 { 12539 ASSERT_SYNCHRONIZED_OP(sc); 12540 12541 if (!is_ktls(sc)) 12542 return (ENODEV); 12543 if (hw_off_limits(sc)) 12544 return (ENXIO); 12545 12546 if (enable) { 12547 if (sc->flags & KERN_TLS_ON) 12548 return (0); /* already on */ 12549 if (sc->offload_map != 0) { 12550 CH_WARN(sc, 12551 "Disable TOE on all interfaces associated with " 12552 "this adapter before trying to enable NIC TLS.\n"); 12553 return (EAGAIN); 12554 } 12555 return (t4_config_kern_tls(sc, true)); 12556 } else { 12557 /* 12558 * Nothing to do for disable. If TOE is enabled sometime later 12559 * then toe_capability will reconfigure the hardware. 12560 */ 12561 return (0); 12562 } 12563 } 12564 #endif 12565 12566 /* 12567 * t = ptr to tunable. 12568 * nc = number of CPUs. 12569 * c = compiled in default for that tunable. 12570 */ 12571 static void 12572 calculate_nqueues(int *t, int nc, const int c) 12573 { 12574 int nq; 12575 12576 if (*t > 0) 12577 return; 12578 nq = *t < 0 ? -*t : c; 12579 *t = min(nc, nq); 12580 } 12581 12582 /* 12583 * Come up with reasonable defaults for some of the tunables, provided they're 12584 * not set by the user (in which case we'll use the values as is). 12585 */ 12586 static void 12587 tweak_tunables(void) 12588 { 12589 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12590 12591 if (t4_ntxq < 1) { 12592 #ifdef RSS 12593 t4_ntxq = rss_getnumbuckets(); 12594 #else 12595 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12596 #endif 12597 } 12598 12599 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12600 12601 if (t4_nrxq < 1) { 12602 #ifdef RSS 12603 t4_nrxq = rss_getnumbuckets(); 12604 #else 12605 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12606 #endif 12607 } 12608 12609 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12610 12611 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12612 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12613 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12614 #endif 12615 #ifdef TCP_OFFLOAD 12616 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12617 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12618 #endif 12619 12620 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12621 if (t4_toecaps_allowed == -1) 12622 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12623 #else 12624 if (t4_toecaps_allowed == -1) 12625 t4_toecaps_allowed = 0; 12626 #endif 12627 12628 #ifdef TCP_OFFLOAD 12629 if (t4_rdmacaps_allowed == -1) { 12630 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12631 FW_CAPS_CONFIG_RDMA_RDMAC; 12632 } 12633 12634 if (t4_iscsicaps_allowed == -1) { 12635 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12636 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12637 FW_CAPS_CONFIG_ISCSI_T10DIF; 12638 } 12639 12640 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12641 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12642 12643 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12644 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12645 12646 if (t4_toe_tls_rx_timeout < 0) 12647 t4_toe_tls_rx_timeout = 0; 12648 #else 12649 if (t4_rdmacaps_allowed == -1) 12650 t4_rdmacaps_allowed = 0; 12651 12652 if (t4_iscsicaps_allowed == -1) 12653 t4_iscsicaps_allowed = 0; 12654 #endif 12655 12656 #ifdef DEV_NETMAP 12657 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12658 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12659 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12660 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12661 #endif 12662 12663 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12664 t4_tmr_idx = TMR_IDX; 12665 12666 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12667 t4_pktc_idx = PKTC_IDX; 12668 12669 if (t4_qsize_txq < 128) 12670 t4_qsize_txq = 128; 12671 12672 if (t4_qsize_rxq < 128) 12673 t4_qsize_rxq = 128; 12674 while (t4_qsize_rxq & 7) 12675 t4_qsize_rxq++; 12676 12677 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12678 12679 /* 12680 * Number of VIs to create per-port. The first VI is the "main" regular 12681 * VI for the port. The rest are additional virtual interfaces on the 12682 * same physical port. Note that the main VI does not have native 12683 * netmap support but the extra VIs do. 12684 * 12685 * Limit the number of VIs per port to the number of available 12686 * MAC addresses per port. 12687 */ 12688 if (t4_num_vis < 1) 12689 t4_num_vis = 1; 12690 if (t4_num_vis > nitems(vi_mac_funcs)) { 12691 t4_num_vis = nitems(vi_mac_funcs); 12692 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12693 } 12694 12695 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12696 pcie_relaxed_ordering = 1; 12697 #if defined(__i386__) || defined(__amd64__) 12698 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12699 pcie_relaxed_ordering = 0; 12700 #endif 12701 } 12702 } 12703 12704 #ifdef DDB 12705 static void 12706 t4_dump_tcb(struct adapter *sc, int tid) 12707 { 12708 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12709 12710 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12711 save = t4_read_reg(sc, reg); 12712 base = sc->memwin[2].mw_base; 12713 12714 /* Dump TCB for the tid */ 12715 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12716 tcb_addr += tid * TCB_SIZE; 12717 12718 if (is_t4(sc)) { 12719 pf = 0; 12720 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12721 } else { 12722 pf = V_PFNUM(sc->pf); 12723 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12724 } 12725 t4_write_reg(sc, reg, win_pos | pf); 12726 t4_read_reg(sc, reg); 12727 12728 off = tcb_addr - win_pos; 12729 for (i = 0; i < 4; i++) { 12730 uint32_t buf[8]; 12731 for (j = 0; j < 8; j++, off += 4) 12732 buf[j] = htonl(t4_read_reg(sc, base + off)); 12733 12734 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12735 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12736 buf[7]); 12737 } 12738 12739 t4_write_reg(sc, reg, save); 12740 t4_read_reg(sc, reg); 12741 } 12742 12743 static void 12744 t4_dump_devlog(struct adapter *sc) 12745 { 12746 struct devlog_params *dparams = &sc->params.devlog; 12747 struct fw_devlog_e e; 12748 int i, first, j, m, nentries, rc; 12749 uint64_t ftstamp = UINT64_MAX; 12750 12751 if (dparams->start == 0) { 12752 db_printf("devlog params not valid\n"); 12753 return; 12754 } 12755 12756 nentries = dparams->size / sizeof(struct fw_devlog_e); 12757 m = fwmtype_to_hwmtype(dparams->memtype); 12758 12759 /* Find the first entry. */ 12760 first = -1; 12761 for (i = 0; i < nentries && !db_pager_quit; i++) { 12762 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12763 sizeof(e), (void *)&e); 12764 if (rc != 0) 12765 break; 12766 12767 if (e.timestamp == 0) 12768 break; 12769 12770 e.timestamp = be64toh(e.timestamp); 12771 if (e.timestamp < ftstamp) { 12772 ftstamp = e.timestamp; 12773 first = i; 12774 } 12775 } 12776 12777 if (first == -1) 12778 return; 12779 12780 i = first; 12781 do { 12782 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12783 sizeof(e), (void *)&e); 12784 if (rc != 0) 12785 return; 12786 12787 if (e.timestamp == 0) 12788 return; 12789 12790 e.timestamp = be64toh(e.timestamp); 12791 e.seqno = be32toh(e.seqno); 12792 for (j = 0; j < 8; j++) 12793 e.params[j] = be32toh(e.params[j]); 12794 12795 db_printf("%10d %15ju %8s %8s ", 12796 e.seqno, e.timestamp, 12797 (e.level < nitems(devlog_level_strings) ? 12798 devlog_level_strings[e.level] : "UNKNOWN"), 12799 (e.facility < nitems(devlog_facility_strings) ? 12800 devlog_facility_strings[e.facility] : "UNKNOWN")); 12801 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12802 e.params[3], e.params[4], e.params[5], e.params[6], 12803 e.params[7]); 12804 12805 if (++i == nentries) 12806 i = 0; 12807 } while (i != first && !db_pager_quit); 12808 } 12809 12810 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12811 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12812 12813 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12814 { 12815 device_t dev; 12816 int t; 12817 bool valid; 12818 12819 valid = false; 12820 t = db_read_token(); 12821 if (t == tIDENT) { 12822 dev = device_lookup_by_name(db_tok_string); 12823 valid = true; 12824 } 12825 db_skip_to_eol(); 12826 if (!valid) { 12827 db_printf("usage: show t4 devlog <nexus>\n"); 12828 return; 12829 } 12830 12831 if (dev == NULL) { 12832 db_printf("device not found\n"); 12833 return; 12834 } 12835 12836 t4_dump_devlog(device_get_softc(dev)); 12837 } 12838 12839 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12840 { 12841 device_t dev; 12842 int radix, tid, t; 12843 bool valid; 12844 12845 valid = false; 12846 radix = db_radix; 12847 db_radix = 10; 12848 t = db_read_token(); 12849 if (t == tIDENT) { 12850 dev = device_lookup_by_name(db_tok_string); 12851 t = db_read_token(); 12852 if (t == tNUMBER) { 12853 tid = db_tok_number; 12854 valid = true; 12855 } 12856 } 12857 db_radix = radix; 12858 db_skip_to_eol(); 12859 if (!valid) { 12860 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12861 return; 12862 } 12863 12864 if (dev == NULL) { 12865 db_printf("device not found\n"); 12866 return; 12867 } 12868 if (tid < 0) { 12869 db_printf("invalid tid\n"); 12870 return; 12871 } 12872 12873 t4_dump_tcb(device_get_softc(dev), tid); 12874 } 12875 #endif 12876 12877 static eventhandler_tag vxlan_start_evtag; 12878 static eventhandler_tag vxlan_stop_evtag; 12879 12880 struct vxlan_evargs { 12881 struct ifnet *ifp; 12882 uint16_t port; 12883 }; 12884 12885 static void 12886 enable_vxlan_rx(struct adapter *sc) 12887 { 12888 int i, rc; 12889 struct port_info *pi; 12890 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12891 12892 ASSERT_SYNCHRONIZED_OP(sc); 12893 12894 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12895 F_VXLAN_EN); 12896 for_each_port(sc, i) { 12897 pi = sc->port[i]; 12898 if (pi->vxlan_tcam_entry == true) 12899 continue; 12900 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12901 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12902 true); 12903 if (rc < 0) { 12904 rc = -rc; 12905 CH_ERR(&pi->vi[0], 12906 "failed to add VXLAN TCAM entry: %d.\n", rc); 12907 } else { 12908 MPASS(rc == sc->rawf_base + pi->port_id); 12909 pi->vxlan_tcam_entry = true; 12910 } 12911 } 12912 } 12913 12914 static void 12915 t4_vxlan_start(struct adapter *sc, void *arg) 12916 { 12917 struct vxlan_evargs *v = arg; 12918 12919 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12920 return; 12921 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 12922 return; 12923 12924 if (sc->vxlan_refcount == 0) { 12925 sc->vxlan_port = v->port; 12926 sc->vxlan_refcount = 1; 12927 if (!hw_off_limits(sc)) 12928 enable_vxlan_rx(sc); 12929 } else if (sc->vxlan_port == v->port) { 12930 sc->vxlan_refcount++; 12931 } else { 12932 CH_ERR(sc, "VXLAN already configured on port %d; " 12933 "ignoring attempt to configure it on port %d\n", 12934 sc->vxlan_port, v->port); 12935 } 12936 end_synchronized_op(sc, 0); 12937 } 12938 12939 static void 12940 t4_vxlan_stop(struct adapter *sc, void *arg) 12941 { 12942 struct vxlan_evargs *v = arg; 12943 12944 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12945 return; 12946 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 12947 return; 12948 12949 /* 12950 * VXLANs may have been configured before the driver was loaded so we 12951 * may see more stops than starts. This is not handled cleanly but at 12952 * least we keep the refcount sane. 12953 */ 12954 if (sc->vxlan_port != v->port) 12955 goto done; 12956 if (sc->vxlan_refcount == 0) { 12957 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 12958 "ignoring attempt to stop it again.\n", sc->vxlan_port); 12959 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 12960 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 12961 done: 12962 end_synchronized_op(sc, 0); 12963 } 12964 12965 static void 12966 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 12967 sa_family_t family, u_int port) 12968 { 12969 struct vxlan_evargs v; 12970 12971 MPASS(family == AF_INET || family == AF_INET6); 12972 v.ifp = ifp; 12973 v.port = port; 12974 12975 t4_iterate(t4_vxlan_start, &v); 12976 } 12977 12978 static void 12979 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 12980 u_int port) 12981 { 12982 struct vxlan_evargs v; 12983 12984 MPASS(family == AF_INET || family == AF_INET6); 12985 v.ifp = ifp; 12986 v.port = port; 12987 12988 t4_iterate(t4_vxlan_stop, &v); 12989 } 12990 12991 12992 static struct sx mlu; /* mod load unload */ 12993 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 12994 12995 static int 12996 mod_event(module_t mod, int cmd, void *arg) 12997 { 12998 int rc = 0; 12999 static int loaded = 0; 13000 13001 switch (cmd) { 13002 case MOD_LOAD: 13003 sx_xlock(&mlu); 13004 if (loaded++ == 0) { 13005 t4_sge_modload(); 13006 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13007 t4_filter_rpl, CPL_COOKIE_FILTER); 13008 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13009 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13010 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13011 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13012 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13013 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13014 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13015 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13016 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13017 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13018 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13019 do_smt_write_rpl); 13020 sx_init(&t4_list_lock, "T4/T5 adapters"); 13021 SLIST_INIT(&t4_list); 13022 callout_init(&fatal_callout, 1); 13023 #ifdef TCP_OFFLOAD 13024 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13025 SLIST_INIT(&t4_uld_list); 13026 #endif 13027 #ifdef INET6 13028 t4_clip_modload(); 13029 #endif 13030 #ifdef KERN_TLS 13031 t6_ktls_modload(); 13032 #endif 13033 t4_tracer_modload(); 13034 tweak_tunables(); 13035 vxlan_start_evtag = 13036 EVENTHANDLER_REGISTER(vxlan_start, 13037 t4_vxlan_start_handler, NULL, 13038 EVENTHANDLER_PRI_ANY); 13039 vxlan_stop_evtag = 13040 EVENTHANDLER_REGISTER(vxlan_stop, 13041 t4_vxlan_stop_handler, NULL, 13042 EVENTHANDLER_PRI_ANY); 13043 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13044 taskqueue_thread_enqueue, &reset_tq); 13045 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13046 "t4_rst_thr"); 13047 } 13048 sx_xunlock(&mlu); 13049 break; 13050 13051 case MOD_UNLOAD: 13052 sx_xlock(&mlu); 13053 if (--loaded == 0) { 13054 int tries; 13055 13056 taskqueue_free(reset_tq); 13057 sx_slock(&t4_list_lock); 13058 if (!SLIST_EMPTY(&t4_list)) { 13059 rc = EBUSY; 13060 sx_sunlock(&t4_list_lock); 13061 goto done_unload; 13062 } 13063 #ifdef TCP_OFFLOAD 13064 sx_slock(&t4_uld_list_lock); 13065 if (!SLIST_EMPTY(&t4_uld_list)) { 13066 rc = EBUSY; 13067 sx_sunlock(&t4_uld_list_lock); 13068 sx_sunlock(&t4_list_lock); 13069 goto done_unload; 13070 } 13071 #endif 13072 tries = 0; 13073 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13074 uprintf("%ju clusters with custom free routine " 13075 "still is use.\n", t4_sge_extfree_refs()); 13076 pause("t4unload", 2 * hz); 13077 } 13078 #ifdef TCP_OFFLOAD 13079 sx_sunlock(&t4_uld_list_lock); 13080 #endif 13081 sx_sunlock(&t4_list_lock); 13082 13083 if (t4_sge_extfree_refs() == 0) { 13084 EVENTHANDLER_DEREGISTER(vxlan_start, 13085 vxlan_start_evtag); 13086 EVENTHANDLER_DEREGISTER(vxlan_stop, 13087 vxlan_stop_evtag); 13088 t4_tracer_modunload(); 13089 #ifdef KERN_TLS 13090 t6_ktls_modunload(); 13091 #endif 13092 #ifdef INET6 13093 t4_clip_modunload(); 13094 #endif 13095 #ifdef TCP_OFFLOAD 13096 sx_destroy(&t4_uld_list_lock); 13097 #endif 13098 sx_destroy(&t4_list_lock); 13099 t4_sge_modunload(); 13100 loaded = 0; 13101 } else { 13102 rc = EBUSY; 13103 loaded++; /* undo earlier decrement */ 13104 } 13105 } 13106 done_unload: 13107 sx_xunlock(&mlu); 13108 break; 13109 } 13110 13111 return (rc); 13112 } 13113 13114 static devclass_t t4_devclass, t5_devclass, t6_devclass; 13115 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 13116 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 13117 13118 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 13119 MODULE_VERSION(t4nex, 1); 13120 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13121 #ifdef DEV_NETMAP 13122 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13123 #endif /* DEV_NETMAP */ 13124 13125 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 13126 MODULE_VERSION(t5nex, 1); 13127 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13128 #ifdef DEV_NETMAP 13129 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13130 #endif /* DEV_NETMAP */ 13131 13132 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 13133 MODULE_VERSION(t6nex, 1); 13134 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13135 #ifdef DEV_NETMAP 13136 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13137 #endif /* DEV_NETMAP */ 13138 13139 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 13140 MODULE_VERSION(cxgbe, 1); 13141 13142 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 13143 MODULE_VERSION(cxl, 1); 13144 13145 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 13146 MODULE_VERSION(cc, 1); 13147 13148 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 13149 MODULE_VERSION(vcxgbe, 1); 13150 13151 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 13152 MODULE_VERSION(vcxl, 1); 13153 13154 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 13155 MODULE_VERSION(vcc, 1); 13156