xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 44682688f038edbf34591b25ce36412a7f2d6d07)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_kern_tls.h"
37 #include "opt_ratelimit.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/priv.h>
43 #include <sys/kernel.h>
44 #include <sys/bus.h>
45 #include <sys/eventhandler.h>
46 #include <sys/module.h>
47 #include <sys/malloc.h>
48 #include <sys/queue.h>
49 #include <sys/taskqueue.h>
50 #include <sys/pciio.h>
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 #include <dev/pci/pci_private.h>
54 #include <sys/firmware.h>
55 #include <sys/sbuf.h>
56 #include <sys/smp.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/sysctl.h>
60 #include <net/ethernet.h>
61 #include <net/if.h>
62 #include <net/if_types.h>
63 #include <net/if_dl.h>
64 #include <net/if_vlan_var.h>
65 #ifdef RSS
66 #include <net/rss_config.h>
67 #endif
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #ifdef KERN_TLS
71 #include <netinet/tcp_seq.h>
72 #endif
73 #if defined(__i386__) || defined(__amd64__)
74 #include <machine/md_var.h>
75 #include <machine/cputypes.h>
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #endif
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #include <ddb/db_lex.h>
82 #endif
83 
84 #include "common/common.h"
85 #include "common/t4_msg.h"
86 #include "common/t4_regs.h"
87 #include "common/t4_regs_values.h"
88 #include "cudbg/cudbg.h"
89 #include "t4_clip.h"
90 #include "t4_ioctl.h"
91 #include "t4_l2t.h"
92 #include "t4_mp_ring.h"
93 #include "t4_if.h"
94 #include "t4_smt.h"
95 
96 /* T4 bus driver interface */
97 static int t4_probe(device_t);
98 static int t4_attach(device_t);
99 static int t4_detach(device_t);
100 static int t4_child_location(device_t, device_t, struct sbuf *);
101 static int t4_ready(device_t);
102 static int t4_read_port_device(device_t, int, device_t *);
103 static int t4_suspend(device_t);
104 static int t4_resume(device_t);
105 static int t4_reset_prepare(device_t, device_t);
106 static int t4_reset_post(device_t, device_t);
107 static device_method_t t4_methods[] = {
108 	DEVMETHOD(device_probe,		t4_probe),
109 	DEVMETHOD(device_attach,	t4_attach),
110 	DEVMETHOD(device_detach,	t4_detach),
111 	DEVMETHOD(device_suspend,	t4_suspend),
112 	DEVMETHOD(device_resume,	t4_resume),
113 
114 	DEVMETHOD(bus_child_location,	t4_child_location),
115 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
116 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
117 
118 	DEVMETHOD(t4_is_main_ready,	t4_ready),
119 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
120 
121 	DEVMETHOD_END
122 };
123 static driver_t t4_driver = {
124 	"t4nex",
125 	t4_methods,
126 	sizeof(struct adapter)
127 };
128 
129 
130 /* T4 port (cxgbe) interface */
131 static int cxgbe_probe(device_t);
132 static int cxgbe_attach(device_t);
133 static int cxgbe_detach(device_t);
134 device_method_t cxgbe_methods[] = {
135 	DEVMETHOD(device_probe,		cxgbe_probe),
136 	DEVMETHOD(device_attach,	cxgbe_attach),
137 	DEVMETHOD(device_detach,	cxgbe_detach),
138 	{ 0, 0 }
139 };
140 static driver_t cxgbe_driver = {
141 	"cxgbe",
142 	cxgbe_methods,
143 	sizeof(struct port_info)
144 };
145 
146 /* T4 VI (vcxgbe) interface */
147 static int vcxgbe_probe(device_t);
148 static int vcxgbe_attach(device_t);
149 static int vcxgbe_detach(device_t);
150 static device_method_t vcxgbe_methods[] = {
151 	DEVMETHOD(device_probe,		vcxgbe_probe),
152 	DEVMETHOD(device_attach,	vcxgbe_attach),
153 	DEVMETHOD(device_detach,	vcxgbe_detach),
154 	{ 0, 0 }
155 };
156 static driver_t vcxgbe_driver = {
157 	"vcxgbe",
158 	vcxgbe_methods,
159 	sizeof(struct vi_info)
160 };
161 
162 static d_ioctl_t t4_ioctl;
163 
164 static struct cdevsw t4_cdevsw = {
165        .d_version = D_VERSION,
166        .d_ioctl = t4_ioctl,
167        .d_name = "t4nex",
168 };
169 
170 /* T5 bus driver interface */
171 static int t5_probe(device_t);
172 static device_method_t t5_methods[] = {
173 	DEVMETHOD(device_probe,		t5_probe),
174 	DEVMETHOD(device_attach,	t4_attach),
175 	DEVMETHOD(device_detach,	t4_detach),
176 	DEVMETHOD(device_suspend,	t4_suspend),
177 	DEVMETHOD(device_resume,	t4_resume),
178 
179 	DEVMETHOD(bus_child_location,	t4_child_location),
180 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
181 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
182 
183 	DEVMETHOD(t4_is_main_ready,	t4_ready),
184 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
185 
186 	DEVMETHOD_END
187 };
188 static driver_t t5_driver = {
189 	"t5nex",
190 	t5_methods,
191 	sizeof(struct adapter)
192 };
193 
194 
195 /* T5 port (cxl) interface */
196 static driver_t cxl_driver = {
197 	"cxl",
198 	cxgbe_methods,
199 	sizeof(struct port_info)
200 };
201 
202 /* T5 VI (vcxl) interface */
203 static driver_t vcxl_driver = {
204 	"vcxl",
205 	vcxgbe_methods,
206 	sizeof(struct vi_info)
207 };
208 
209 /* T6 bus driver interface */
210 static int t6_probe(device_t);
211 static device_method_t t6_methods[] = {
212 	DEVMETHOD(device_probe,		t6_probe),
213 	DEVMETHOD(device_attach,	t4_attach),
214 	DEVMETHOD(device_detach,	t4_detach),
215 	DEVMETHOD(device_suspend,	t4_suspend),
216 	DEVMETHOD(device_resume,	t4_resume),
217 
218 	DEVMETHOD(bus_child_location,	t4_child_location),
219 	DEVMETHOD(bus_reset_prepare, 	t4_reset_prepare),
220 	DEVMETHOD(bus_reset_post, 	t4_reset_post),
221 
222 	DEVMETHOD(t4_is_main_ready,	t4_ready),
223 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
224 
225 	DEVMETHOD_END
226 };
227 static driver_t t6_driver = {
228 	"t6nex",
229 	t6_methods,
230 	sizeof(struct adapter)
231 };
232 
233 
234 /* T6 port (cc) interface */
235 static driver_t cc_driver = {
236 	"cc",
237 	cxgbe_methods,
238 	sizeof(struct port_info)
239 };
240 
241 /* T6 VI (vcc) interface */
242 static driver_t vcc_driver = {
243 	"vcc",
244 	vcxgbe_methods,
245 	sizeof(struct vi_info)
246 };
247 
248 /* ifnet interface */
249 static void cxgbe_init(void *);
250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
251 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
252 static void cxgbe_qflush(struct ifnet *);
253 #if defined(KERN_TLS) || defined(RATELIMIT)
254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *,
255     struct m_snd_tag **);
256 #endif
257 
258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
259 
260 /*
261  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
262  * then ADAPTER_LOCK, then t4_uld_list_lock.
263  */
264 static struct sx t4_list_lock;
265 SLIST_HEAD(, adapter) t4_list;
266 #ifdef TCP_OFFLOAD
267 static struct sx t4_uld_list_lock;
268 SLIST_HEAD(, uld_info) t4_uld_list;
269 #endif
270 
271 /*
272  * Tunables.  See tweak_tunables() too.
273  *
274  * Each tunable is set to a default value here if it's known at compile-time.
275  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
276  * provide a reasonable default (upto n) when the driver is loaded.
277  *
278  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
279  * T5 are under hw.cxl.
280  */
281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) parameters");
283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) T5+ parameters");
285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
286     "cxgbe(4) TOE parameters");
287 
288 /*
289  * Number of queues for tx and rx, NIC and offload.
290  */
291 #define NTXQ 16
292 int t4_ntxq = -NTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
294     "Number of TX queues per port");
295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
296 
297 #define NRXQ 8
298 int t4_nrxq = -NRXQ;
299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
300     "Number of RX queues per port");
301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
302 
303 #define NTXQ_VI 1
304 static int t4_ntxq_vi = -NTXQ_VI;
305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
306     "Number of TX queues per VI");
307 
308 #define NRXQ_VI 1
309 static int t4_nrxq_vi = -NRXQ_VI;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
311     "Number of RX queues per VI");
312 
313 static int t4_rsrv_noflowq = 0;
314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
315     0, "Reserve TX queue 0 of each VI for non-flowid packets");
316 
317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
318 #define NOFLDTXQ 8
319 static int t4_nofldtxq = -NOFLDTXQ;
320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
321     "Number of offload TX queues per port");
322 
323 #define NOFLDRXQ 2
324 static int t4_nofldrxq = -NOFLDRXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
326     "Number of offload RX queues per port");
327 
328 #define NOFLDTXQ_VI 1
329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
331     "Number of offload TX queues per VI");
332 
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336     "Number of offload RX queues per VI");
337 
338 #define TMR_IDX_OFLD 1
339 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342 
343 #define PKTC_IDX_OFLD (-1)
344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347 
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352 
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357 
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362 
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367 
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372 
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377 
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384     "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416     &t4_toe_rexmt_backoff[15], 0, "");
417 
418 static int t4_toe_tls_rx_timeout = 5;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN,
420     &t4_toe_tls_rx_timeout, 0,
421     "Timeout in seconds to downgrade TLS sockets to plain TOE");
422 #endif
423 
424 #ifdef DEV_NETMAP
425 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
426 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
427 static int t4_native_netmap = NN_EXTRA_VI;
428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
429     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
430 
431 #define NNMTXQ 8
432 static int t4_nnmtxq = -NNMTXQ;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
434     "Number of netmap TX queues");
435 
436 #define NNMRXQ 8
437 static int t4_nnmrxq = -NNMRXQ;
438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
439     "Number of netmap RX queues");
440 
441 #define NNMTXQ_VI 2
442 static int t4_nnmtxq_vi = -NNMTXQ_VI;
443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
444     "Number of netmap TX queues per VI");
445 
446 #define NNMRXQ_VI 2
447 static int t4_nnmrxq_vi = -NNMRXQ_VI;
448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
449     "Number of netmap RX queues per VI");
450 #endif
451 
452 /*
453  * Holdoff parameters for ports.
454  */
455 #define TMR_IDX 1
456 int t4_tmr_idx = TMR_IDX;
457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
458     0, "Holdoff timer index");
459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
460 
461 #define PKTC_IDX (-1)
462 int t4_pktc_idx = PKTC_IDX;
463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
464     0, "Holdoff packet counter index");
465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
466 
467 /*
468  * Size (# of entries) of each tx and rx queue.
469  */
470 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
472     "Number of descriptors in each TX queue");
473 
474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
476     "Number of descriptors in each RX queue");
477 
478 /*
479  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
480  */
481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
483     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
484 
485 /*
486  * Configuration file.  All the _CF names here are special.
487  */
488 #define DEFAULT_CF	"default"
489 #define BUILTIN_CF	"built-in"
490 #define FLASH_CF	"flash"
491 #define UWIRE_CF	"uwire"
492 #define FPGA_CF		"fpga"
493 static char t4_cfg_file[32] = DEFAULT_CF;
494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
495     sizeof(t4_cfg_file), "Firmware configuration file");
496 
497 /*
498  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
499  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
500  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
501  *            mark or when signalled to do so, 0 to never emit PAUSE.
502  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
503  *                 negotiated settings will override rx_pause/tx_pause.
504  *                 Otherwise rx_pause/tx_pause are applied forcibly.
505  */
506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
508     &t4_pause_settings, 0,
509     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
510 
511 /*
512  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
513  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
514  *  0 to disable FEC.
515  */
516 static int t4_fec = -1;
517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
518     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
519 
520 /*
521  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
522  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
523  * driver runs as if this is set to 0.
524  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
525  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
526  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
527  *    the firmware anyway (may result in l1cfg errors with old firmwares).
528  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
529  *    means set all FEC bits that are valid for the speed.
530  */
531 static int t4_force_fec = -1;
532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
533     "Controls the use of FORCE_FEC bit in L1 configuration.");
534 
535 /*
536  * Link autonegotiation.
537  * -1 to run with the firmware default.
538  *  0 to disable.
539  *  1 to enable.
540  */
541 static int t4_autoneg = -1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
543     "Link autonegotiation");
544 
545 /*
546  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
547  * encouraged respectively).  '-n' is the same as 'n' except the firmware
548  * version used in the checks is read from the firmware bundled with the driver.
549  */
550 static int t4_fw_install = 1;
551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
552     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
553 
554 /*
555  * ASIC features that will be used.  Disable the ones you don't want so that the
556  * chip resources aren't wasted on features that will not be used.
557  */
558 static int t4_nbmcaps_allowed = 0;
559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
560     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
561 
562 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
564     &t4_linkcaps_allowed, 0, "Default link capabilities");
565 
566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
567     FW_CAPS_CONFIG_SWITCH_EGRESS;
568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
569     &t4_switchcaps_allowed, 0, "Default switch capabilities");
570 
571 #ifdef RATELIMIT
572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
573 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
574 #else
575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
576 	FW_CAPS_CONFIG_NIC_HASHFILTER;
577 #endif
578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
579     &t4_niccaps_allowed, 0, "Default NIC capabilities");
580 
581 static int t4_toecaps_allowed = -1;
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
583     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
584 
585 static int t4_rdmacaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
587     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
588 
589 static int t4_cryptocaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
591     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
592 
593 static int t4_iscsicaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
595     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
596 
597 static int t4_fcoecaps_allowed = 0;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
599     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
600 
601 static int t5_write_combine = 0;
602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
603     0, "Use WC instead of UC for BAR2");
604 
605 static int t4_num_vis = 1;
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
607     "Number of VIs per port");
608 
609 /*
610  * PCIe Relaxed Ordering.
611  * -1: driver should figure out a good value.
612  * 0: disable RO.
613  * 1: enable RO.
614  * 2: leave RO alone.
615  */
616 static int pcie_relaxed_ordering = -1;
617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
618     &pcie_relaxed_ordering, 0,
619     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
620 
621 static int t4_panic_on_fatal_err = 0;
622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
623     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
624 
625 static int t4_reset_on_fatal_err = 0;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
627     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
628 
629 static int t4_tx_vm_wr = 0;
630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
631     "Use VM work requests to transmit packets.");
632 
633 /*
634  * Set to non-zero to enable the attack filter.  A packet that matches any of
635  * these conditions will get dropped on ingress:
636  * 1) IP && source address == destination address.
637  * 2) TCP/IP && source address is not a unicast address.
638  * 3) TCP/IP && destination address is not a unicast address.
639  * 4) IP && source address is loopback (127.x.y.z).
640  * 5) IP && destination address is loopback (127.x.y.z).
641  * 6) IPv6 && source address == destination address.
642  * 7) IPv6 && source address is not a unicast address.
643  * 8) IPv6 && source address is loopback (::1/128).
644  * 9) IPv6 && destination address is loopback (::1/128).
645  * 10) IPv6 && source address is unspecified (::/128).
646  * 11) IPv6 && destination address is unspecified (::/128).
647  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
648  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
649  */
650 static int t4_attack_filter = 0;
651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
652     &t4_attack_filter, 0, "Drop suspicious traffic");
653 
654 static int t4_drop_ip_fragments = 0;
655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
656     &t4_drop_ip_fragments, 0, "Drop IP fragments");
657 
658 static int t4_drop_pkts_with_l2_errors = 1;
659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
660     &t4_drop_pkts_with_l2_errors, 0,
661     "Drop all frames with Layer 2 length or checksum errors");
662 
663 static int t4_drop_pkts_with_l3_errors = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
665     &t4_drop_pkts_with_l3_errors, 0,
666     "Drop all frames with IP version, length, or checksum errors");
667 
668 static int t4_drop_pkts_with_l4_errors = 0;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
670     &t4_drop_pkts_with_l4_errors, 0,
671     "Drop all frames with Layer 4 length, checksum, or other errors");
672 
673 #ifdef TCP_OFFLOAD
674 /*
675  * TOE tunables.
676  */
677 static int t4_cop_managed_offloading = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
679     &t4_cop_managed_offloading, 0,
680     "COP (Connection Offload Policy) controls all TOE offload");
681 #endif
682 
683 #ifdef KERN_TLS
684 /*
685  * This enables KERN_TLS for all adapters if set.
686  */
687 static int t4_kern_tls = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
689     "Enable KERN_TLS mode for all supported adapters");
690 
691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
692     "cxgbe(4) KERN_TLS parameters");
693 
694 static int t4_tls_inline_keys = 0;
695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
696     &t4_tls_inline_keys, 0,
697     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
698     "in card memory.");
699 
700 static int t4_tls_combo_wrs = 0;
701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
702     0, "Attempt to combine TCB field updates with TLS record work requests.");
703 #endif
704 
705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
706 static int vi_mac_funcs[] = {
707 	FW_VI_FUNC_ETH,
708 	FW_VI_FUNC_OFLD,
709 	FW_VI_FUNC_IWARP,
710 	FW_VI_FUNC_OPENISCSI,
711 	FW_VI_FUNC_OPENFCOE,
712 	FW_VI_FUNC_FOISCSI,
713 	FW_VI_FUNC_FOFCOE,
714 };
715 
716 struct intrs_and_queues {
717 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
718 	uint16_t num_vis;	/* number of VIs for each port */
719 	uint16_t nirq;		/* Total # of vectors */
720 	uint16_t ntxq;		/* # of NIC txq's for each port */
721 	uint16_t nrxq;		/* # of NIC rxq's for each port */
722 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
723 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
724 	uint16_t nnmtxq;	/* # of netmap txq's */
725 	uint16_t nnmrxq;	/* # of netmap rxq's */
726 
727 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
728 	uint16_t ntxq_vi;	/* # of NIC txq's */
729 	uint16_t nrxq_vi;	/* # of NIC rxq's */
730 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
731 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
732 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
733 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
734 };
735 
736 static void setup_memwin(struct adapter *);
737 static void position_memwin(struct adapter *, int, uint32_t);
738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
739 static int fwmtype_to_hwmtype(int);
740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
741     uint32_t *);
742 static int fixup_devlog_params(struct adapter *);
743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
744 static int contact_firmware(struct adapter *);
745 static int partition_resources(struct adapter *);
746 static int get_params__pre_init(struct adapter *);
747 static int set_params__pre_init(struct adapter *);
748 static int get_params__post_init(struct adapter *);
749 static int set_params__post_init(struct adapter *);
750 static void t4_set_desc(struct adapter *);
751 static bool fixed_ifmedia(struct port_info *);
752 static void build_medialist(struct port_info *);
753 static void init_link_config(struct port_info *);
754 static int fixup_link_config(struct port_info *);
755 static int apply_link_config(struct port_info *);
756 static int cxgbe_init_synchronized(struct vi_info *);
757 static int cxgbe_uninit_synchronized(struct vi_info *);
758 static int adapter_full_init(struct adapter *);
759 static void adapter_full_uninit(struct adapter *);
760 static int vi_full_init(struct vi_info *);
761 static void vi_full_uninit(struct vi_info *);
762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
763 static void quiesce_txq(struct sge_txq *);
764 static void quiesce_wrq(struct sge_wrq *);
765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
766 static void quiesce_vi(struct vi_info *);
767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
768     driver_intr_t *, void *, char *);
769 static int t4_free_irq(struct adapter *, struct irq *);
770 static void t4_init_atid_table(struct adapter *);
771 static void t4_free_atid_table(struct adapter *);
772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
773 static void vi_refresh_stats(struct vi_info *);
774 static void cxgbe_refresh_stats(struct vi_info *);
775 static void cxgbe_tick(void *);
776 static void vi_tick(void *);
777 static void cxgbe_sysctls(struct port_info *);
778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
829 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
830 #ifdef TCP_OFFLOAD
831 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
841 #endif
842 static int get_sge_context(struct adapter *, struct t4_sge_context *);
843 static int load_fw(struct adapter *, struct t4_data *);
844 static int load_cfg(struct adapter *, struct t4_data *);
845 static int load_boot(struct adapter *, struct t4_bootrom *);
846 static int load_bootcfg(struct adapter *, struct t4_data *);
847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
848 static void free_offload_policy(struct t4_offload_policy *);
849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
851 static int read_i2c(struct adapter *, struct t4_i2c_data *);
852 static int clear_stats(struct adapter *, u_int);
853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
855 #ifdef TCP_OFFLOAD
856 static int toe_capability(struct vi_info *, bool);
857 static void t4_async_event(void *, int);
858 #endif
859 #ifdef KERN_TLS
860 static int ktls_capability(struct adapter *, bool);
861 #endif
862 static int mod_event(module_t, int, void *);
863 static int notify_siblings(device_t, int);
864 static uint64_t vi_get_counter(struct ifnet *, ift_counter);
865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter);
866 static void enable_vxlan_rx(struct adapter *);
867 static void reset_adapter(void *, int);
868 
869 struct {
870 	uint16_t device;
871 	char *desc;
872 } t4_pciids[] = {
873 	{0xa000, "Chelsio Terminator 4 FPGA"},
874 	{0x4400, "Chelsio T440-dbg"},
875 	{0x4401, "Chelsio T420-CR"},
876 	{0x4402, "Chelsio T422-CR"},
877 	{0x4403, "Chelsio T440-CR"},
878 	{0x4404, "Chelsio T420-BCH"},
879 	{0x4405, "Chelsio T440-BCH"},
880 	{0x4406, "Chelsio T440-CH"},
881 	{0x4407, "Chelsio T420-SO"},
882 	{0x4408, "Chelsio T420-CX"},
883 	{0x4409, "Chelsio T420-BT"},
884 	{0x440a, "Chelsio T404-BT"},
885 	{0x440e, "Chelsio T440-LP-CR"},
886 }, t5_pciids[] = {
887 	{0xb000, "Chelsio Terminator 5 FPGA"},
888 	{0x5400, "Chelsio T580-dbg"},
889 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
890 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
891 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
892 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
893 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
894 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
895 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
896 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
897 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
898 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
899 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
900 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
901 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
902 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
903 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
904 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
905 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
906 
907 	/* Custom */
908 	{0x5483, "Custom T540-CR"},
909 	{0x5484, "Custom T540-BT"},
910 }, t6_pciids[] = {
911 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
912 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
913 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
914 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
915 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
916 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
917 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
918 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
919 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
920 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
921 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
922 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
923 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
924 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
925 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
926 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
927 
928 	/* Custom */
929 	{0x6480, "Custom T6225-CR"},
930 	{0x6481, "Custom T62100-CR"},
931 	{0x6482, "Custom T6225-CR"},
932 	{0x6483, "Custom T62100-CR"},
933 	{0x6484, "Custom T64100-CR"},
934 	{0x6485, "Custom T6240-SO"},
935 	{0x6486, "Custom T6225-SO-CR"},
936 	{0x6487, "Custom T6225-CR"},
937 };
938 
939 #ifdef TCP_OFFLOAD
940 /*
941  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
942  * be exactly the same for both rxq and ofld_rxq.
943  */
944 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
945 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
946 #endif
947 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
948 
949 static int
950 t4_probe(device_t dev)
951 {
952 	int i;
953 	uint16_t v = pci_get_vendor(dev);
954 	uint16_t d = pci_get_device(dev);
955 	uint8_t f = pci_get_function(dev);
956 
957 	if (v != PCI_VENDOR_ID_CHELSIO)
958 		return (ENXIO);
959 
960 	/* Attach only to PF0 of the FPGA */
961 	if (d == 0xa000 && f != 0)
962 		return (ENXIO);
963 
964 	for (i = 0; i < nitems(t4_pciids); i++) {
965 		if (d == t4_pciids[i].device) {
966 			device_set_desc(dev, t4_pciids[i].desc);
967 			return (BUS_PROBE_DEFAULT);
968 		}
969 	}
970 
971 	return (ENXIO);
972 }
973 
974 static int
975 t5_probe(device_t dev)
976 {
977 	int i;
978 	uint16_t v = pci_get_vendor(dev);
979 	uint16_t d = pci_get_device(dev);
980 	uint8_t f = pci_get_function(dev);
981 
982 	if (v != PCI_VENDOR_ID_CHELSIO)
983 		return (ENXIO);
984 
985 	/* Attach only to PF0 of the FPGA */
986 	if (d == 0xb000 && f != 0)
987 		return (ENXIO);
988 
989 	for (i = 0; i < nitems(t5_pciids); i++) {
990 		if (d == t5_pciids[i].device) {
991 			device_set_desc(dev, t5_pciids[i].desc);
992 			return (BUS_PROBE_DEFAULT);
993 		}
994 	}
995 
996 	return (ENXIO);
997 }
998 
999 static int
1000 t6_probe(device_t dev)
1001 {
1002 	int i;
1003 	uint16_t v = pci_get_vendor(dev);
1004 	uint16_t d = pci_get_device(dev);
1005 
1006 	if (v != PCI_VENDOR_ID_CHELSIO)
1007 		return (ENXIO);
1008 
1009 	for (i = 0; i < nitems(t6_pciids); i++) {
1010 		if (d == t6_pciids[i].device) {
1011 			device_set_desc(dev, t6_pciids[i].desc);
1012 			return (BUS_PROBE_DEFAULT);
1013 		}
1014 	}
1015 
1016 	return (ENXIO);
1017 }
1018 
1019 static void
1020 t5_attribute_workaround(device_t dev)
1021 {
1022 	device_t root_port;
1023 	uint32_t v;
1024 
1025 	/*
1026 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1027 	 * Ordering attributes when replying to a TLP from a Root
1028 	 * Port.  As a workaround, find the parent Root Port and
1029 	 * disable No Snoop and Relaxed Ordering.  Note that this
1030 	 * affects all devices under this root port.
1031 	 */
1032 	root_port = pci_find_pcie_root_port(dev);
1033 	if (root_port == NULL) {
1034 		device_printf(dev, "Unable to find parent root port\n");
1035 		return;
1036 	}
1037 
1038 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1039 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1040 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1041 	    0)
1042 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1043 		    device_get_nameunit(root_port));
1044 }
1045 
1046 static const struct devnames devnames[] = {
1047 	{
1048 		.nexus_name = "t4nex",
1049 		.ifnet_name = "cxgbe",
1050 		.vi_ifnet_name = "vcxgbe",
1051 		.pf03_drv_name = "t4iov",
1052 		.vf_nexus_name = "t4vf",
1053 		.vf_ifnet_name = "cxgbev"
1054 	}, {
1055 		.nexus_name = "t5nex",
1056 		.ifnet_name = "cxl",
1057 		.vi_ifnet_name = "vcxl",
1058 		.pf03_drv_name = "t5iov",
1059 		.vf_nexus_name = "t5vf",
1060 		.vf_ifnet_name = "cxlv"
1061 	}, {
1062 		.nexus_name = "t6nex",
1063 		.ifnet_name = "cc",
1064 		.vi_ifnet_name = "vcc",
1065 		.pf03_drv_name = "t6iov",
1066 		.vf_nexus_name = "t6vf",
1067 		.vf_ifnet_name = "ccv"
1068 	}
1069 };
1070 
1071 void
1072 t4_init_devnames(struct adapter *sc)
1073 {
1074 	int id;
1075 
1076 	id = chip_id(sc);
1077 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1078 		sc->names = &devnames[id - CHELSIO_T4];
1079 	else {
1080 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1081 		sc->names = NULL;
1082 	}
1083 }
1084 
1085 static int
1086 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1087 {
1088 	const char *parent, *name;
1089 	long value;
1090 	int line, unit;
1091 
1092 	line = 0;
1093 	parent = device_get_nameunit(sc->dev);
1094 	name = sc->names->ifnet_name;
1095 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1096 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1097 		    value == pi->port_id)
1098 			return (unit);
1099 	}
1100 	return (-1);
1101 }
1102 
1103 static int
1104 t4_attach(device_t dev)
1105 {
1106 	struct adapter *sc;
1107 	int rc = 0, i, j, rqidx, tqidx, nports;
1108 	struct make_dev_args mda;
1109 	struct intrs_and_queues iaq;
1110 	struct sge *s;
1111 	uint32_t *buf;
1112 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1113 	int ofld_tqidx;
1114 #endif
1115 #ifdef TCP_OFFLOAD
1116 	int ofld_rqidx;
1117 #endif
1118 #ifdef DEV_NETMAP
1119 	int nm_rqidx, nm_tqidx;
1120 #endif
1121 	int num_vis;
1122 
1123 	sc = device_get_softc(dev);
1124 	sc->dev = dev;
1125 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1126 
1127 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1128 		t5_attribute_workaround(dev);
1129 	pci_enable_busmaster(dev);
1130 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1131 		uint32_t v;
1132 
1133 		pci_set_max_read_req(dev, 4096);
1134 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1135 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1136 		if (pcie_relaxed_ordering == 0 &&
1137 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1138 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1139 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1140 		} else if (pcie_relaxed_ordering == 1 &&
1141 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1142 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1143 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1144 		}
1145 	}
1146 
1147 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1148 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1149 	sc->traceq = -1;
1150 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1151 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1152 	    device_get_nameunit(dev));
1153 
1154 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1155 	    device_get_nameunit(dev));
1156 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1157 	t4_add_adapter(sc);
1158 
1159 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1160 	TAILQ_INIT(&sc->sfl);
1161 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1162 
1163 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1164 
1165 	sc->policy = NULL;
1166 	rw_init(&sc->policy_lock, "connection offload policy");
1167 
1168 	callout_init(&sc->ktls_tick, 1);
1169 
1170 #ifdef TCP_OFFLOAD
1171 	TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc);
1172 #endif
1173 
1174 	refcount_init(&sc->vxlan_refcount, 0);
1175 
1176 	TASK_INIT(&sc->reset_task, 0, reset_adapter, sc);
1177 
1178 	sc->ctrlq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev),
1179 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1180 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1181 	sc->fwq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev),
1182 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1183 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1184 
1185 	rc = t4_map_bars_0_and_4(sc);
1186 	if (rc != 0)
1187 		goto done; /* error message displayed already */
1188 
1189 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1190 
1191 	/* Prepare the adapter for operation. */
1192 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1193 	rc = -t4_prep_adapter(sc, buf);
1194 	free(buf, M_CXGBE);
1195 	if (rc != 0) {
1196 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1197 		goto done;
1198 	}
1199 
1200 	/*
1201 	 * This is the real PF# to which we're attaching.  Works from within PCI
1202 	 * passthrough environments too, where pci_get_function() could return a
1203 	 * different PF# depending on the passthrough configuration.  We need to
1204 	 * use the real PF# in all our communication with the firmware.
1205 	 */
1206 	j = t4_read_reg(sc, A_PL_WHOAMI);
1207 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1208 	sc->mbox = sc->pf;
1209 
1210 	t4_init_devnames(sc);
1211 	if (sc->names == NULL) {
1212 		rc = ENOTSUP;
1213 		goto done; /* error message displayed already */
1214 	}
1215 
1216 	/*
1217 	 * Do this really early, with the memory windows set up even before the
1218 	 * character device.  The userland tool's register i/o and mem read
1219 	 * will work even in "recovery mode".
1220 	 */
1221 	setup_memwin(sc);
1222 	if (t4_init_devlog_params(sc, 0) == 0)
1223 		fixup_devlog_params(sc);
1224 	make_dev_args_init(&mda);
1225 	mda.mda_devsw = &t4_cdevsw;
1226 	mda.mda_uid = UID_ROOT;
1227 	mda.mda_gid = GID_WHEEL;
1228 	mda.mda_mode = 0600;
1229 	mda.mda_si_drv1 = sc;
1230 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1231 	if (rc != 0)
1232 		device_printf(dev, "failed to create nexus char device: %d.\n",
1233 		    rc);
1234 
1235 	/* Go no further if recovery mode has been requested. */
1236 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1237 		device_printf(dev, "recovery mode.\n");
1238 		goto done;
1239 	}
1240 
1241 #if defined(__i386__)
1242 	if ((cpu_feature & CPUID_CX8) == 0) {
1243 		device_printf(dev, "64 bit atomics not available.\n");
1244 		rc = ENOTSUP;
1245 		goto done;
1246 	}
1247 #endif
1248 
1249 	/* Contact the firmware and try to become the master driver. */
1250 	rc = contact_firmware(sc);
1251 	if (rc != 0)
1252 		goto done; /* error message displayed already */
1253 	MPASS(sc->flags & FW_OK);
1254 
1255 	rc = get_params__pre_init(sc);
1256 	if (rc != 0)
1257 		goto done; /* error message displayed already */
1258 
1259 	if (sc->flags & MASTER_PF) {
1260 		rc = partition_resources(sc);
1261 		if (rc != 0)
1262 			goto done; /* error message displayed already */
1263 		t4_intr_clear(sc);
1264 	}
1265 
1266 	rc = get_params__post_init(sc);
1267 	if (rc != 0)
1268 		goto done; /* error message displayed already */
1269 
1270 	rc = set_params__post_init(sc);
1271 	if (rc != 0)
1272 		goto done; /* error message displayed already */
1273 
1274 	rc = t4_map_bar_2(sc);
1275 	if (rc != 0)
1276 		goto done; /* error message displayed already */
1277 
1278 	rc = t4_create_dma_tag(sc);
1279 	if (rc != 0)
1280 		goto done; /* error message displayed already */
1281 
1282 	/*
1283 	 * First pass over all the ports - allocate VIs and initialize some
1284 	 * basic parameters like mac address, port type, etc.
1285 	 */
1286 	for_each_port(sc, i) {
1287 		struct port_info *pi;
1288 
1289 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1290 		sc->port[i] = pi;
1291 
1292 		/* These must be set before t4_port_init */
1293 		pi->adapter = sc;
1294 		pi->port_id = i;
1295 		/*
1296 		 * XXX: vi[0] is special so we can't delay this allocation until
1297 		 * pi->nvi's final value is known.
1298 		 */
1299 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1300 		    M_ZERO | M_WAITOK);
1301 
1302 		/*
1303 		 * Allocate the "main" VI and initialize parameters
1304 		 * like mac addr.
1305 		 */
1306 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1307 		if (rc != 0) {
1308 			device_printf(dev, "unable to initialize port %d: %d\n",
1309 			    i, rc);
1310 			free(pi->vi, M_CXGBE);
1311 			free(pi, M_CXGBE);
1312 			sc->port[i] = NULL;
1313 			goto done;
1314 		}
1315 
1316 		if (is_bt(pi->port_type))
1317 			setbit(&sc->bt_map, pi->tx_chan);
1318 		else
1319 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1320 
1321 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1322 		    device_get_nameunit(dev), i);
1323 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1324 		sc->chan_map[pi->tx_chan] = i;
1325 
1326 		/*
1327 		 * The MPS counter for FCS errors doesn't work correctly on the
1328 		 * T6 so we use the MAC counter here.  Which MAC is in use
1329 		 * depends on the link settings which will be known when the
1330 		 * link comes up.
1331 		 */
1332 		if (is_t6(sc)) {
1333 			pi->fcs_reg = -1;
1334 		} else if (is_t4(sc)) {
1335 			pi->fcs_reg = PORT_REG(pi->tx_chan,
1336 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1337 		} else {
1338 			pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
1339 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1340 		}
1341 		pi->fcs_base = 0;
1342 
1343 		/* All VIs on this port share this media. */
1344 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1345 		    cxgbe_media_status);
1346 
1347 		PORT_LOCK(pi);
1348 		init_link_config(pi);
1349 		fixup_link_config(pi);
1350 		build_medialist(pi);
1351 		if (fixed_ifmedia(pi))
1352 			pi->flags |= FIXED_IFMEDIA;
1353 		PORT_UNLOCK(pi);
1354 
1355 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1356 		    t4_ifnet_unit(sc, pi));
1357 		if (pi->dev == NULL) {
1358 			device_printf(dev,
1359 			    "failed to add device for port %d.\n", i);
1360 			rc = ENXIO;
1361 			goto done;
1362 		}
1363 		pi->vi[0].dev = pi->dev;
1364 		device_set_softc(pi->dev, pi);
1365 	}
1366 
1367 	/*
1368 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1369 	 */
1370 	nports = sc->params.nports;
1371 	rc = cfg_itype_and_nqueues(sc, &iaq);
1372 	if (rc != 0)
1373 		goto done; /* error message displayed already */
1374 
1375 	num_vis = iaq.num_vis;
1376 	sc->intr_type = iaq.intr_type;
1377 	sc->intr_count = iaq.nirq;
1378 
1379 	s = &sc->sge;
1380 	s->nrxq = nports * iaq.nrxq;
1381 	s->ntxq = nports * iaq.ntxq;
1382 	if (num_vis > 1) {
1383 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1384 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1385 	}
1386 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1387 	s->neq += nports;		/* ctrl queues: 1 per port */
1388 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1389 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1390 	if (is_offload(sc) || is_ethoffload(sc)) {
1391 		s->nofldtxq = nports * iaq.nofldtxq;
1392 		if (num_vis > 1)
1393 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1394 		s->neq += s->nofldtxq;
1395 
1396 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1397 		    M_CXGBE, M_ZERO | M_WAITOK);
1398 	}
1399 #endif
1400 #ifdef TCP_OFFLOAD
1401 	if (is_offload(sc)) {
1402 		s->nofldrxq = nports * iaq.nofldrxq;
1403 		if (num_vis > 1)
1404 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1405 		s->neq += s->nofldrxq;	/* free list */
1406 		s->niq += s->nofldrxq;
1407 
1408 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1409 		    M_CXGBE, M_ZERO | M_WAITOK);
1410 	}
1411 #endif
1412 #ifdef DEV_NETMAP
1413 	s->nnmrxq = 0;
1414 	s->nnmtxq = 0;
1415 	if (t4_native_netmap & NN_MAIN_VI) {
1416 		s->nnmrxq += nports * iaq.nnmrxq;
1417 		s->nnmtxq += nports * iaq.nnmtxq;
1418 	}
1419 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1420 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1421 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1422 	}
1423 	s->neq += s->nnmtxq + s->nnmrxq;
1424 	s->niq += s->nnmrxq;
1425 
1426 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1427 	    M_CXGBE, M_ZERO | M_WAITOK);
1428 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1429 	    M_CXGBE, M_ZERO | M_WAITOK);
1430 #endif
1431 	MPASS(s->niq <= s->iqmap_sz);
1432 	MPASS(s->neq <= s->eqmap_sz);
1433 
1434 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1435 	    M_ZERO | M_WAITOK);
1436 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1437 	    M_ZERO | M_WAITOK);
1438 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1439 	    M_ZERO | M_WAITOK);
1440 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1441 	    M_ZERO | M_WAITOK);
1442 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1443 	    M_ZERO | M_WAITOK);
1444 
1445 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1446 	    M_ZERO | M_WAITOK);
1447 
1448 	t4_init_l2t(sc, M_WAITOK);
1449 	t4_init_smt(sc, M_WAITOK);
1450 	t4_init_tx_sched(sc);
1451 	t4_init_atid_table(sc);
1452 #ifdef RATELIMIT
1453 	t4_init_etid_table(sc);
1454 #endif
1455 #ifdef INET6
1456 	t4_init_clip_table(sc);
1457 #endif
1458 	if (sc->vres.key.size != 0)
1459 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1460 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1461 
1462 	/*
1463 	 * Second pass over the ports.  This time we know the number of rx and
1464 	 * tx queues that each port should get.
1465 	 */
1466 	rqidx = tqidx = 0;
1467 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1468 	ofld_tqidx = 0;
1469 #endif
1470 #ifdef TCP_OFFLOAD
1471 	ofld_rqidx = 0;
1472 #endif
1473 #ifdef DEV_NETMAP
1474 	nm_rqidx = nm_tqidx = 0;
1475 #endif
1476 	for_each_port(sc, i) {
1477 		struct port_info *pi = sc->port[i];
1478 		struct vi_info *vi;
1479 
1480 		if (pi == NULL)
1481 			continue;
1482 
1483 		pi->nvi = num_vis;
1484 		for_each_vi(pi, j, vi) {
1485 			vi->pi = pi;
1486 			vi->adapter = sc;
1487 			vi->first_intr = -1;
1488 			vi->qsize_rxq = t4_qsize_rxq;
1489 			vi->qsize_txq = t4_qsize_txq;
1490 
1491 			vi->first_rxq = rqidx;
1492 			vi->first_txq = tqidx;
1493 			vi->tmr_idx = t4_tmr_idx;
1494 			vi->pktc_idx = t4_pktc_idx;
1495 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1496 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1497 
1498 			rqidx += vi->nrxq;
1499 			tqidx += vi->ntxq;
1500 
1501 			if (j == 0 && vi->ntxq > 1)
1502 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1503 			else
1504 				vi->rsrv_noflowq = 0;
1505 
1506 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1507 			vi->first_ofld_txq = ofld_tqidx;
1508 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1509 			ofld_tqidx += vi->nofldtxq;
1510 #endif
1511 #ifdef TCP_OFFLOAD
1512 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1513 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1514 			vi->first_ofld_rxq = ofld_rqidx;
1515 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1516 
1517 			ofld_rqidx += vi->nofldrxq;
1518 #endif
1519 #ifdef DEV_NETMAP
1520 			vi->first_nm_rxq = nm_rqidx;
1521 			vi->first_nm_txq = nm_tqidx;
1522 			if (j == 0) {
1523 				vi->nnmrxq = iaq.nnmrxq;
1524 				vi->nnmtxq = iaq.nnmtxq;
1525 			} else {
1526 				vi->nnmrxq = iaq.nnmrxq_vi;
1527 				vi->nnmtxq = iaq.nnmtxq_vi;
1528 			}
1529 			nm_rqidx += vi->nnmrxq;
1530 			nm_tqidx += vi->nnmtxq;
1531 #endif
1532 		}
1533 	}
1534 
1535 	rc = t4_setup_intr_handlers(sc);
1536 	if (rc != 0) {
1537 		device_printf(dev,
1538 		    "failed to setup interrupt handlers: %d\n", rc);
1539 		goto done;
1540 	}
1541 
1542 	rc = bus_generic_probe(dev);
1543 	if (rc != 0) {
1544 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1545 		goto done;
1546 	}
1547 
1548 	/*
1549 	 * Ensure thread-safe mailbox access (in debug builds).
1550 	 *
1551 	 * So far this was the only thread accessing the mailbox but various
1552 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1553 	 * will access the mailbox from different threads.
1554 	 */
1555 	sc->flags |= CHK_MBOX_ACCESS;
1556 
1557 	rc = bus_generic_attach(dev);
1558 	if (rc != 0) {
1559 		device_printf(dev,
1560 		    "failed to attach all child ports: %d\n", rc);
1561 		goto done;
1562 	}
1563 
1564 	device_printf(dev,
1565 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1566 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1567 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1568 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1569 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1570 
1571 	t4_set_desc(sc);
1572 
1573 	notify_siblings(dev, 0);
1574 
1575 done:
1576 	if (rc != 0 && sc->cdev) {
1577 		/* cdev was created and so cxgbetool works; recover that way. */
1578 		device_printf(dev,
1579 		    "error during attach, adapter is now in recovery mode.\n");
1580 		rc = 0;
1581 	}
1582 
1583 	if (rc != 0)
1584 		t4_detach_common(dev);
1585 	else
1586 		t4_sysctls(sc);
1587 
1588 	return (rc);
1589 }
1590 
1591 static int
1592 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1593 {
1594 	struct adapter *sc;
1595 	struct port_info *pi;
1596 	int i;
1597 
1598 	sc = device_get_softc(bus);
1599 	for_each_port(sc, i) {
1600 		pi = sc->port[i];
1601 		if (pi != NULL && pi->dev == dev) {
1602 			sbuf_printf(sb, "port=%d", pi->port_id);
1603 			break;
1604 		}
1605 	}
1606 	return (0);
1607 }
1608 
1609 static int
1610 t4_ready(device_t dev)
1611 {
1612 	struct adapter *sc;
1613 
1614 	sc = device_get_softc(dev);
1615 	if (sc->flags & FW_OK)
1616 		return (0);
1617 	return (ENXIO);
1618 }
1619 
1620 static int
1621 t4_read_port_device(device_t dev, int port, device_t *child)
1622 {
1623 	struct adapter *sc;
1624 	struct port_info *pi;
1625 
1626 	sc = device_get_softc(dev);
1627 	if (port < 0 || port >= MAX_NPORTS)
1628 		return (EINVAL);
1629 	pi = sc->port[port];
1630 	if (pi == NULL || pi->dev == NULL)
1631 		return (ENXIO);
1632 	*child = pi->dev;
1633 	return (0);
1634 }
1635 
1636 static int
1637 notify_siblings(device_t dev, int detaching)
1638 {
1639 	device_t sibling;
1640 	int error, i;
1641 
1642 	error = 0;
1643 	for (i = 0; i < PCI_FUNCMAX; i++) {
1644 		if (i == pci_get_function(dev))
1645 			continue;
1646 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1647 		    pci_get_slot(dev), i);
1648 		if (sibling == NULL || !device_is_attached(sibling))
1649 			continue;
1650 		if (detaching)
1651 			error = T4_DETACH_CHILD(sibling);
1652 		else
1653 			(void)T4_ATTACH_CHILD(sibling);
1654 		if (error)
1655 			break;
1656 	}
1657 	return (error);
1658 }
1659 
1660 /*
1661  * Idempotent
1662  */
1663 static int
1664 t4_detach(device_t dev)
1665 {
1666 	int rc;
1667 
1668 	rc = notify_siblings(dev, 1);
1669 	if (rc) {
1670 		device_printf(dev,
1671 		    "failed to detach sibling devices: %d\n", rc);
1672 		return (rc);
1673 	}
1674 
1675 	return (t4_detach_common(dev));
1676 }
1677 
1678 int
1679 t4_detach_common(device_t dev)
1680 {
1681 	struct adapter *sc;
1682 	struct port_info *pi;
1683 	int i, rc;
1684 
1685 	sc = device_get_softc(dev);
1686 
1687 	if (sc->cdev) {
1688 		destroy_dev(sc->cdev);
1689 		sc->cdev = NULL;
1690 	}
1691 
1692 	sx_xlock(&t4_list_lock);
1693 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1694 	sx_xunlock(&t4_list_lock);
1695 
1696 	sc->flags &= ~CHK_MBOX_ACCESS;
1697 	if (sc->flags & FULL_INIT_DONE) {
1698 		if (!(sc->flags & IS_VF))
1699 			t4_intr_disable(sc);
1700 	}
1701 
1702 	if (device_is_attached(dev)) {
1703 		rc = bus_generic_detach(dev);
1704 		if (rc) {
1705 			device_printf(dev,
1706 			    "failed to detach child devices: %d\n", rc);
1707 			return (rc);
1708 		}
1709 	}
1710 
1711 #ifdef TCP_OFFLOAD
1712 	taskqueue_drain(taskqueue_thread, &sc->async_event_task);
1713 #endif
1714 
1715 	for (i = 0; i < sc->intr_count; i++)
1716 		t4_free_irq(sc, &sc->irq[i]);
1717 
1718 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1719 		t4_free_tx_sched(sc);
1720 
1721 	for (i = 0; i < MAX_NPORTS; i++) {
1722 		pi = sc->port[i];
1723 		if (pi) {
1724 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1725 			if (pi->dev)
1726 				device_delete_child(dev, pi->dev);
1727 
1728 			mtx_destroy(&pi->pi_lock);
1729 			free(pi->vi, M_CXGBE);
1730 			free(pi, M_CXGBE);
1731 		}
1732 	}
1733 
1734 	device_delete_children(dev);
1735 	adapter_full_uninit(sc);
1736 
1737 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1738 		t4_fw_bye(sc, sc->mbox);
1739 
1740 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1741 		pci_release_msi(dev);
1742 
1743 	if (sc->regs_res)
1744 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1745 		    sc->regs_res);
1746 
1747 	if (sc->udbs_res)
1748 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1749 		    sc->udbs_res);
1750 
1751 	if (sc->msix_res)
1752 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1753 		    sc->msix_res);
1754 
1755 	if (sc->l2t)
1756 		t4_free_l2t(sc->l2t);
1757 	if (sc->smt)
1758 		t4_free_smt(sc->smt);
1759 	t4_free_atid_table(sc);
1760 #ifdef RATELIMIT
1761 	t4_free_etid_table(sc);
1762 #endif
1763 	if (sc->key_map)
1764 		vmem_destroy(sc->key_map);
1765 #ifdef INET6
1766 	t4_destroy_clip_table(sc);
1767 #endif
1768 
1769 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1770 	free(sc->sge.ofld_txq, M_CXGBE);
1771 #endif
1772 #ifdef TCP_OFFLOAD
1773 	free(sc->sge.ofld_rxq, M_CXGBE);
1774 #endif
1775 #ifdef DEV_NETMAP
1776 	free(sc->sge.nm_rxq, M_CXGBE);
1777 	free(sc->sge.nm_txq, M_CXGBE);
1778 #endif
1779 	free(sc->irq, M_CXGBE);
1780 	free(sc->sge.rxq, M_CXGBE);
1781 	free(sc->sge.txq, M_CXGBE);
1782 	free(sc->sge.ctrlq, M_CXGBE);
1783 	free(sc->sge.iqmap, M_CXGBE);
1784 	free(sc->sge.eqmap, M_CXGBE);
1785 	free(sc->tids.ftid_tab, M_CXGBE);
1786 	free(sc->tids.hpftid_tab, M_CXGBE);
1787 	free_hftid_hash(&sc->tids);
1788 	free(sc->tids.tid_tab, M_CXGBE);
1789 	free(sc->tt.tls_rx_ports, M_CXGBE);
1790 	t4_destroy_dma_tag(sc);
1791 
1792 	callout_drain(&sc->ktls_tick);
1793 	callout_drain(&sc->sfl_callout);
1794 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1795 		mtx_destroy(&sc->tids.ftid_lock);
1796 		cv_destroy(&sc->tids.ftid_cv);
1797 	}
1798 	if (mtx_initialized(&sc->tids.atid_lock))
1799 		mtx_destroy(&sc->tids.atid_lock);
1800 	if (mtx_initialized(&sc->ifp_lock))
1801 		mtx_destroy(&sc->ifp_lock);
1802 
1803 	if (rw_initialized(&sc->policy_lock)) {
1804 		rw_destroy(&sc->policy_lock);
1805 #ifdef TCP_OFFLOAD
1806 		if (sc->policy != NULL)
1807 			free_offload_policy(sc->policy);
1808 #endif
1809 	}
1810 
1811 	for (i = 0; i < NUM_MEMWIN; i++) {
1812 		struct memwin *mw = &sc->memwin[i];
1813 
1814 		if (rw_initialized(&mw->mw_lock))
1815 			rw_destroy(&mw->mw_lock);
1816 	}
1817 
1818 	mtx_destroy(&sc->sfl_lock);
1819 	mtx_destroy(&sc->reg_lock);
1820 	mtx_destroy(&sc->sc_lock);
1821 
1822 	bzero(sc, sizeof(*sc));
1823 
1824 	return (0);
1825 }
1826 
1827 static inline bool
1828 ok_to_reset(struct adapter *sc)
1829 {
1830 	struct tid_info *t = &sc->tids;
1831 	struct port_info *pi;
1832 	struct vi_info *vi;
1833 	int i, j;
1834 	const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT;
1835 
1836 	ASSERT_SYNCHRONIZED_OP(sc);
1837 	MPASS(!(sc->flags & IS_VF));
1838 
1839 	for_each_port(sc, i) {
1840 		pi = sc->port[i];
1841 		for_each_vi(pi, j, vi) {
1842 			if (vi->ifp->if_capenable & caps)
1843 				return (false);
1844 		}
1845 	}
1846 
1847 	if (atomic_load_int(&t->tids_in_use) > 0)
1848 		return (false);
1849 	if (atomic_load_int(&t->stids_in_use) > 0)
1850 		return (false);
1851 	if (atomic_load_int(&t->atids_in_use) > 0)
1852 		return (false);
1853 	if (atomic_load_int(&t->ftids_in_use) > 0)
1854 		return (false);
1855 	if (atomic_load_int(&t->hpftids_in_use) > 0)
1856 		return (false);
1857 	if (atomic_load_int(&t->etids_in_use) > 0)
1858 		return (false);
1859 
1860 	return (true);
1861 }
1862 
1863 static int
1864 t4_suspend(device_t dev)
1865 {
1866 	struct adapter *sc = device_get_softc(dev);
1867 	struct port_info *pi;
1868 	struct vi_info *vi;
1869 	struct ifnet *ifp;
1870 	struct sge_rxq *rxq;
1871 	struct sge_txq *txq;
1872 	struct sge_wrq *wrq;
1873 #ifdef TCP_OFFLOAD
1874 	struct sge_ofld_rxq *ofld_rxq;
1875 #endif
1876 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1877 	struct sge_ofld_txq *ofld_txq;
1878 #endif
1879 	int rc, i, j, k;
1880 
1881 	CH_ALERT(sc, "suspend requested\n");
1882 
1883 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1884 	if (rc != 0)
1885 		return (ENXIO);
1886 
1887 	/* XXX: Can the kernel call suspend repeatedly without resume? */
1888 	MPASS(!hw_off_limits(sc));
1889 
1890 	if (!ok_to_reset(sc)) {
1891 		/* XXX: should list what resource is preventing suspend. */
1892 		CH_ERR(sc, "not safe to suspend.\n");
1893 		rc = EBUSY;
1894 		goto done;
1895 	}
1896 
1897 	/* No more DMA or interrupts. */
1898 	t4_shutdown_adapter(sc);
1899 
1900 	/* Quiesce all activity. */
1901 	for_each_port(sc, i) {
1902 		pi = sc->port[i];
1903 		pi->vxlan_tcam_entry = false;
1904 
1905 		PORT_LOCK(pi);
1906 		if (pi->up_vis > 0) {
1907 			/*
1908 			 * t4_shutdown_adapter has already shut down all the
1909 			 * PHYs but it also disables interrupts and DMA so there
1910 			 * won't be a link interrupt.  So we update the state
1911 			 * manually and inform the kernel.
1912 			 */
1913 			pi->link_cfg.link_ok = false;
1914 			t4_os_link_changed(pi);
1915 		}
1916 		PORT_UNLOCK(pi);
1917 
1918 		for_each_vi(pi, j, vi) {
1919 			vi->xact_addr_filt = -1;
1920 			if (!(vi->flags & VI_INIT_DONE))
1921 				continue;
1922 
1923 			ifp = vi->ifp;
1924 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1925 				mtx_lock(&vi->tick_mtx);
1926 				vi->flags |= VI_SKIP_STATS;
1927 				callout_stop(&vi->tick);
1928 				mtx_unlock(&vi->tick_mtx);
1929 				callout_drain(&vi->tick);
1930 			}
1931 
1932 			/*
1933 			 * Note that the HW is not available.
1934 			 */
1935 			for_each_txq(vi, k, txq) {
1936 				TXQ_LOCK(txq);
1937 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
1938 				TXQ_UNLOCK(txq);
1939 			}
1940 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1941 			for_each_ofld_txq(vi, k, ofld_txq) {
1942 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
1943 			}
1944 #endif
1945 			for_each_rxq(vi, k, rxq) {
1946 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1947 			}
1948 #if defined(TCP_OFFLOAD)
1949 			for_each_ofld_rxq(vi, k, ofld_rxq) {
1950 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1951 			}
1952 #endif
1953 
1954 			quiesce_vi(vi);
1955 		}
1956 
1957 		if (sc->flags & FULL_INIT_DONE) {
1958 			/* Control queue */
1959 			wrq = &sc->sge.ctrlq[i];
1960 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
1961 			quiesce_wrq(wrq);
1962 		}
1963 	}
1964 	if (sc->flags & FULL_INIT_DONE) {
1965 		/* Firmware event queue */
1966 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
1967 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
1968 	}
1969 
1970 	/* Mark the adapter totally off limits. */
1971 	mtx_lock(&sc->reg_lock);
1972 	sc->flags |= HW_OFF_LIMITS;
1973 	sc->flags &= ~(FW_OK | MASTER_PF);
1974 	sc->reset_thread = NULL;
1975 	mtx_unlock(&sc->reg_lock);
1976 
1977 	sc->num_resets++;
1978 	CH_ALERT(sc, "suspend completed.\n");
1979 done:
1980 	end_synchronized_op(sc, 0);
1981 	return (rc);
1982 }
1983 
1984 struct adapter_pre_reset_state {
1985 	u_int flags;
1986 	uint16_t nbmcaps;
1987 	uint16_t linkcaps;
1988 	uint16_t switchcaps;
1989 	uint16_t niccaps;
1990 	uint16_t toecaps;
1991 	uint16_t rdmacaps;
1992 	uint16_t cryptocaps;
1993 	uint16_t iscsicaps;
1994 	uint16_t fcoecaps;
1995 
1996 	u_int cfcsum;
1997 	char cfg_file[32];
1998 
1999 	struct adapter_params params;
2000 	struct t4_virt_res vres;
2001 	struct tid_info tids;
2002 	struct sge sge;
2003 
2004 	int rawf_base;
2005 	int nrawf;
2006 
2007 };
2008 
2009 static void
2010 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2011 {
2012 
2013 	ASSERT_SYNCHRONIZED_OP(sc);
2014 
2015 	o->flags = sc->flags;
2016 
2017 	o->nbmcaps =  sc->nbmcaps;
2018 	o->linkcaps = sc->linkcaps;
2019 	o->switchcaps = sc->switchcaps;
2020 	o->niccaps = sc->niccaps;
2021 	o->toecaps = sc->toecaps;
2022 	o->rdmacaps = sc->rdmacaps;
2023 	o->cryptocaps = sc->cryptocaps;
2024 	o->iscsicaps = sc->iscsicaps;
2025 	o->fcoecaps = sc->fcoecaps;
2026 
2027 	o->cfcsum = sc->cfcsum;
2028 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2029 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2030 
2031 	o->params = sc->params;
2032 	o->vres = sc->vres;
2033 	o->tids = sc->tids;
2034 	o->sge = sc->sge;
2035 
2036 	o->rawf_base = sc->rawf_base;
2037 	o->nrawf = sc->nrawf;
2038 }
2039 
2040 static int
2041 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2042 {
2043 	int rc = 0;
2044 
2045 	ASSERT_SYNCHRONIZED_OP(sc);
2046 
2047 	/* Capabilities */
2048 #define COMPARE_CAPS(c) do { \
2049 	if (o->c##caps != sc->c##caps) { \
2050 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2051 		    sc->c##caps); \
2052 		rc = EINVAL; \
2053 	} \
2054 } while (0)
2055 	COMPARE_CAPS(nbm);
2056 	COMPARE_CAPS(link);
2057 	COMPARE_CAPS(switch);
2058 	COMPARE_CAPS(nic);
2059 	COMPARE_CAPS(toe);
2060 	COMPARE_CAPS(rdma);
2061 	COMPARE_CAPS(crypto);
2062 	COMPARE_CAPS(iscsi);
2063 	COMPARE_CAPS(fcoe);
2064 #undef COMPARE_CAPS
2065 
2066 	/* Firmware config file */
2067 	if (o->cfcsum != sc->cfcsum) {
2068 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2069 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2070 		rc = EINVAL;
2071 	}
2072 
2073 #define COMPARE_PARAM(p, name) do { \
2074 	if (o->p != sc->p) { \
2075 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2076 		rc = EINVAL; \
2077 	} \
2078 } while (0)
2079 	COMPARE_PARAM(sge.iq_start, iq_start);
2080 	COMPARE_PARAM(sge.eq_start, eq_start);
2081 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2082 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2083 	COMPARE_PARAM(tids.nftids, nftids);
2084 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2085 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2086 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2087 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2088 	COMPARE_PARAM(tids.tid_base, tid_base);
2089 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2090 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2091 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2092 	COMPARE_PARAM(rawf_base, rawf_base);
2093 	COMPARE_PARAM(nrawf, nrawf);
2094 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2095 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2096 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2097 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2098 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2099 	COMPARE_PARAM(tids.ntids, ntids);
2100 	COMPARE_PARAM(tids.etid_base, etid_base);
2101 	COMPARE_PARAM(tids.etid_end, etid_end);
2102 	COMPARE_PARAM(tids.netids, netids);
2103 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2104 	COMPARE_PARAM(params.ethoffload, ethoffload);
2105 	COMPARE_PARAM(tids.natids, natids);
2106 	COMPARE_PARAM(tids.stid_base, stid_base);
2107 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2108 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2109 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2110 	COMPARE_PARAM(vres.stag.start, stag_start);
2111 	COMPARE_PARAM(vres.stag.size, stag_size);
2112 	COMPARE_PARAM(vres.rq.start, rq_start);
2113 	COMPARE_PARAM(vres.rq.size, rq_size);
2114 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2115 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2116 	COMPARE_PARAM(vres.qp.start, qp_start);
2117 	COMPARE_PARAM(vres.qp.size, qp_size);
2118 	COMPARE_PARAM(vres.cq.start, cq_start);
2119 	COMPARE_PARAM(vres.cq.size, cq_size);
2120 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2121 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2122 	COMPARE_PARAM(vres.srq.start, srq_start);
2123 	COMPARE_PARAM(vres.srq.size, srq_size);
2124 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2125 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2126 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2127 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2128 	COMPARE_PARAM(vres.key.start, key_start);
2129 	COMPARE_PARAM(vres.key.size, key_size);
2130 #undef COMPARE_PARAM
2131 
2132 	return (rc);
2133 }
2134 
2135 static int
2136 t4_resume(device_t dev)
2137 {
2138 	struct adapter *sc = device_get_softc(dev);
2139 	struct adapter_pre_reset_state *old_state = NULL;
2140 	struct port_info *pi;
2141 	struct vi_info *vi;
2142 	struct ifnet *ifp;
2143 	struct sge_txq *txq;
2144 	int rc, i, j, k;
2145 
2146 	CH_ALERT(sc, "resume requested.\n");
2147 
2148 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2149 	if (rc != 0)
2150 		return (ENXIO);
2151 	MPASS(hw_off_limits(sc));
2152 	MPASS((sc->flags & FW_OK) == 0);
2153 	MPASS((sc->flags & MASTER_PF) == 0);
2154 	MPASS(sc->reset_thread == NULL);
2155 	sc->reset_thread = curthread;
2156 
2157 	/* Register access is expected to work by the time we're here. */
2158 	if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2159 		CH_ERR(sc, "%s: can't read device registers\n", __func__);
2160 		rc = ENXIO;
2161 		goto done;
2162 	}
2163 
2164 	/* Restore memory window. */
2165 	setup_memwin(sc);
2166 
2167 	/* Go no further if recovery mode has been requested. */
2168 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2169 		CH_ALERT(sc, "recovery mode on resume.\n");
2170 		rc = 0;
2171 		mtx_lock(&sc->reg_lock);
2172 		sc->flags &= ~HW_OFF_LIMITS;
2173 		mtx_unlock(&sc->reg_lock);
2174 		goto done;
2175 	}
2176 
2177 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2178 	save_caps_and_params(sc, old_state);
2179 
2180 	/* Reestablish contact with firmware and become the primary PF. */
2181 	rc = contact_firmware(sc);
2182 	if (rc != 0)
2183 		goto done; /* error message displayed already */
2184 	MPASS(sc->flags & FW_OK);
2185 
2186 	if (sc->flags & MASTER_PF) {
2187 		rc = partition_resources(sc);
2188 		if (rc != 0)
2189 			goto done; /* error message displayed already */
2190 		t4_intr_clear(sc);
2191 	}
2192 
2193 	rc = get_params__post_init(sc);
2194 	if (rc != 0)
2195 		goto done; /* error message displayed already */
2196 
2197 	rc = set_params__post_init(sc);
2198 	if (rc != 0)
2199 		goto done; /* error message displayed already */
2200 
2201 	rc = compare_caps_and_params(sc, old_state);
2202 	if (rc != 0)
2203 		goto done; /* error message displayed already */
2204 
2205 	for_each_port(sc, i) {
2206 		pi = sc->port[i];
2207 		MPASS(pi != NULL);
2208 		MPASS(pi->vi != NULL);
2209 		MPASS(pi->vi[0].dev == pi->dev);
2210 
2211 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2212 		if (rc != 0) {
2213 			CH_ERR(sc,
2214 			    "failed to re-initialize port %d: %d\n", i, rc);
2215 			goto done;
2216 		}
2217 		MPASS(sc->chan_map[pi->tx_chan] == i);
2218 
2219 		PORT_LOCK(pi);
2220 		fixup_link_config(pi);
2221 		build_medialist(pi);
2222 		PORT_UNLOCK(pi);
2223 		for_each_vi(pi, j, vi) {
2224 			if (IS_MAIN_VI(vi))
2225 				continue;
2226 			rc = alloc_extra_vi(sc, pi, vi);
2227 			if (rc != 0) {
2228 				CH_ERR(vi,
2229 				    "failed to re-allocate extra VI: %d\n", rc);
2230 				goto done;
2231 			}
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * Interrupts and queues are about to be enabled and other threads will
2237 	 * want to access the hardware too.  It is safe to do so.  Note that
2238 	 * this thread is still in the middle of a synchronized_op.
2239 	 */
2240 	mtx_lock(&sc->reg_lock);
2241 	sc->flags &= ~HW_OFF_LIMITS;
2242 	mtx_unlock(&sc->reg_lock);
2243 
2244 	if (sc->flags & FULL_INIT_DONE) {
2245 		rc = adapter_full_init(sc);
2246 		if (rc != 0) {
2247 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2248 			goto done;
2249 		}
2250 
2251 		if (sc->vxlan_refcount > 0)
2252 			enable_vxlan_rx(sc);
2253 
2254 		for_each_port(sc, i) {
2255 			pi = sc->port[i];
2256 			for_each_vi(pi, j, vi) {
2257 				if (!(vi->flags & VI_INIT_DONE))
2258 					continue;
2259 				rc = vi_full_init(vi);
2260 				if (rc != 0) {
2261 					CH_ERR(vi, "failed to re-initialize "
2262 					    "interface: %d\n", rc);
2263 					goto done;
2264 				}
2265 
2266 				ifp = vi->ifp;
2267 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2268 					continue;
2269 				/*
2270 				 * Note that we do not setup multicast addresses
2271 				 * in the first pass.  This ensures that the
2272 				 * unicast DMACs for all VIs on all ports get an
2273 				 * MPS TCAM entry.
2274 				 */
2275 				rc = update_mac_settings(ifp, XGMAC_ALL &
2276 				    ~XGMAC_MCADDRS);
2277 				if (rc != 0) {
2278 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2279 					goto done;
2280 				}
2281 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2282 				    true);
2283 				if (rc != 0) {
2284 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2285 					goto done;
2286 				}
2287 				for_each_txq(vi, k, txq) {
2288 					TXQ_LOCK(txq);
2289 					txq->eq.flags |= EQ_ENABLED;
2290 					TXQ_UNLOCK(txq);
2291 				}
2292 				mtx_lock(&vi->tick_mtx);
2293 				vi->flags &= ~VI_SKIP_STATS;
2294 				callout_schedule(&vi->tick, hz);
2295 				mtx_unlock(&vi->tick_mtx);
2296 			}
2297 			PORT_LOCK(pi);
2298 			if (pi->up_vis > 0) {
2299 				t4_update_port_info(pi);
2300 				fixup_link_config(pi);
2301 				build_medialist(pi);
2302 				apply_link_config(pi);
2303 				if (pi->link_cfg.link_ok)
2304 					t4_os_link_changed(pi);
2305 			}
2306 			PORT_UNLOCK(pi);
2307 		}
2308 
2309 		/* Now reprogram the L2 multicast addresses. */
2310 		for_each_port(sc, i) {
2311 			pi = sc->port[i];
2312 			for_each_vi(pi, j, vi) {
2313 				if (!(vi->flags & VI_INIT_DONE))
2314 					continue;
2315 				ifp = vi->ifp;
2316 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2317 					continue;
2318 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2319 				if (rc != 0) {
2320 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2321 					rc = 0;	/* carry on */
2322 				}
2323 			}
2324 		}
2325 	}
2326 done:
2327 	if (rc == 0) {
2328 		sc->incarnation++;
2329 		CH_ALERT(sc, "resume completed.\n");
2330 	}
2331 	end_synchronized_op(sc, 0);
2332 	free(old_state, M_CXGBE);
2333 	return (rc);
2334 }
2335 
2336 static int
2337 t4_reset_prepare(device_t dev, device_t child)
2338 {
2339 	struct adapter *sc = device_get_softc(dev);
2340 
2341 	CH_ALERT(sc, "reset_prepare.\n");
2342 	return (0);
2343 }
2344 
2345 static int
2346 t4_reset_post(device_t dev, device_t child)
2347 {
2348 	struct adapter *sc = device_get_softc(dev);
2349 
2350 	CH_ALERT(sc, "reset_post.\n");
2351 	return (0);
2352 }
2353 
2354 static void
2355 reset_adapter(void *arg, int pending)
2356 {
2357 	struct adapter *sc = arg;
2358 	int rc;
2359 
2360 	CH_ALERT(sc, "reset requested.\n");
2361 
2362 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2363 	if (rc != 0)
2364 		return;
2365 
2366 	if (hw_off_limits(sc)) {
2367 		CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2368 		rc = ENXIO;
2369 		goto done;
2370 	}
2371 
2372 	if (!ok_to_reset(sc)) {
2373 		/* XXX: should list what resource is preventing reset. */
2374 		CH_ERR(sc, "not safe to reset.\n");
2375 		rc = EBUSY;
2376 		goto done;
2377 	}
2378 
2379 done:
2380 	end_synchronized_op(sc, 0);
2381 	if (rc != 0)
2382 		return;	/* Error logged already. */
2383 
2384 	mtx_lock(&Giant);
2385 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2386 	mtx_unlock(&Giant);
2387 	if (rc != 0)
2388 		CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2389 	else
2390 		CH_ALERT(sc, "bus_reset_child succeeded.\n");
2391 }
2392 
2393 static int
2394 cxgbe_probe(device_t dev)
2395 {
2396 	char buf[128];
2397 	struct port_info *pi = device_get_softc(dev);
2398 
2399 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
2400 	device_set_desc_copy(dev, buf);
2401 
2402 	return (BUS_PROBE_DEFAULT);
2403 }
2404 
2405 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2406     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2407     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2408     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2409 #define T4_CAP_ENABLE (T4_CAP)
2410 
2411 static int
2412 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2413 {
2414 	struct ifnet *ifp;
2415 	struct sbuf *sb;
2416 	struct sysctl_ctx_list *ctx;
2417 	struct sysctl_oid_list *children;
2418 	struct pfil_head_args pa;
2419 	struct adapter *sc = vi->adapter;
2420 
2421 	ctx = device_get_sysctl_ctx(vi->dev);
2422 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2423 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2424 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2425 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2426 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2427 #ifdef DEV_NETMAP
2428 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2429 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2430 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2431 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2432 #endif
2433 #ifdef TCP_OFFLOAD
2434 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2435 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2436 #endif
2437 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2438 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2439 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2440 #endif
2441 
2442 	vi->xact_addr_filt = -1;
2443 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2444 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2445 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2446 		vi->flags |= TX_USES_VM_WR;
2447 
2448 	/* Allocate an ifnet and set it up */
2449 	ifp = if_alloc_dev(IFT_ETHER, dev);
2450 	if (ifp == NULL) {
2451 		device_printf(dev, "Cannot allocate ifnet\n");
2452 		return (ENOMEM);
2453 	}
2454 	vi->ifp = ifp;
2455 	ifp->if_softc = vi;
2456 
2457 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2458 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2459 
2460 	ifp->if_init = cxgbe_init;
2461 	ifp->if_ioctl = cxgbe_ioctl;
2462 	ifp->if_transmit = cxgbe_transmit;
2463 	ifp->if_qflush = cxgbe_qflush;
2464 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2465 		ifp->if_get_counter = vi_get_counter;
2466 	else
2467 		ifp->if_get_counter = cxgbe_get_counter;
2468 #if defined(KERN_TLS) || defined(RATELIMIT)
2469 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
2470 #endif
2471 #ifdef RATELIMIT
2472 	ifp->if_ratelimit_query = cxgbe_ratelimit_query;
2473 #endif
2474 
2475 	ifp->if_capabilities = T4_CAP;
2476 	ifp->if_capenable = T4_CAP_ENABLE;
2477 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2478 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
2479 	if (chip_id(sc) >= CHELSIO_T6) {
2480 		ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2481 		ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2482 		ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2483 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2484 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN;
2485 	}
2486 
2487 #ifdef TCP_OFFLOAD
2488 	if (vi->nofldrxq != 0)
2489 		ifp->if_capabilities |= IFCAP_TOE;
2490 #endif
2491 #ifdef RATELIMIT
2492 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2493 		ifp->if_capabilities |= IFCAP_TXRTLMT;
2494 		ifp->if_capenable |= IFCAP_TXRTLMT;
2495 	}
2496 #endif
2497 
2498 	ifp->if_hw_tsomax = IP_MAXPACKET;
2499 	if (vi->flags & TX_USES_VM_WR)
2500 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
2501 	else
2502 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
2503 #ifdef RATELIMIT
2504 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2505 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
2506 #endif
2507 	ifp->if_hw_tsomaxsegsize = 65536;
2508 #ifdef KERN_TLS
2509 	if (is_ktls(sc)) {
2510 		ifp->if_capabilities |= IFCAP_TXTLS;
2511 		if (sc->flags & KERN_TLS_ON)
2512 			ifp->if_capenable |= IFCAP_TXTLS;
2513 	}
2514 #endif
2515 
2516 	ether_ifattach(ifp, vi->hw_addr);
2517 #ifdef DEV_NETMAP
2518 	if (vi->nnmrxq != 0)
2519 		cxgbe_nm_attach(vi);
2520 #endif
2521 	sb = sbuf_new_auto();
2522 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2523 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2524 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2525 	case IFCAP_TOE:
2526 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2527 		break;
2528 	case IFCAP_TOE | IFCAP_TXRTLMT:
2529 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2530 		break;
2531 	case IFCAP_TXRTLMT:
2532 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2533 		break;
2534 	}
2535 #endif
2536 #ifdef TCP_OFFLOAD
2537 	if (ifp->if_capabilities & IFCAP_TOE)
2538 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2539 #endif
2540 #ifdef DEV_NETMAP
2541 	if (ifp->if_capabilities & IFCAP_NETMAP)
2542 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2543 		    vi->nnmtxq, vi->nnmrxq);
2544 #endif
2545 	sbuf_finish(sb);
2546 	device_printf(dev, "%s\n", sbuf_data(sb));
2547 	sbuf_delete(sb);
2548 
2549 	vi_sysctls(vi);
2550 
2551 	pa.pa_version = PFIL_VERSION;
2552 	pa.pa_flags = PFIL_IN;
2553 	pa.pa_type = PFIL_TYPE_ETHERNET;
2554 	pa.pa_headname = ifp->if_xname;
2555 	vi->pfil = pfil_head_register(&pa);
2556 
2557 	return (0);
2558 }
2559 
2560 static int
2561 cxgbe_attach(device_t dev)
2562 {
2563 	struct port_info *pi = device_get_softc(dev);
2564 	struct adapter *sc = pi->adapter;
2565 	struct vi_info *vi;
2566 	int i, rc;
2567 
2568 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2569 	if (rc)
2570 		return (rc);
2571 
2572 	for_each_vi(pi, i, vi) {
2573 		if (i == 0)
2574 			continue;
2575 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2576 		if (vi->dev == NULL) {
2577 			device_printf(dev, "failed to add VI %d\n", i);
2578 			continue;
2579 		}
2580 		device_set_softc(vi->dev, vi);
2581 	}
2582 
2583 	cxgbe_sysctls(pi);
2584 
2585 	bus_generic_attach(dev);
2586 
2587 	return (0);
2588 }
2589 
2590 static void
2591 cxgbe_vi_detach(struct vi_info *vi)
2592 {
2593 	struct ifnet *ifp = vi->ifp;
2594 
2595 	if (vi->pfil != NULL) {
2596 		pfil_head_unregister(vi->pfil);
2597 		vi->pfil = NULL;
2598 	}
2599 
2600 	ether_ifdetach(ifp);
2601 
2602 	/* Let detach proceed even if these fail. */
2603 #ifdef DEV_NETMAP
2604 	if (ifp->if_capabilities & IFCAP_NETMAP)
2605 		cxgbe_nm_detach(vi);
2606 #endif
2607 	cxgbe_uninit_synchronized(vi);
2608 	callout_drain(&vi->tick);
2609 	vi_full_uninit(vi);
2610 
2611 	if_free(vi->ifp);
2612 	vi->ifp = NULL;
2613 }
2614 
2615 static int
2616 cxgbe_detach(device_t dev)
2617 {
2618 	struct port_info *pi = device_get_softc(dev);
2619 	struct adapter *sc = pi->adapter;
2620 	int rc;
2621 
2622 	/* Detach the extra VIs first. */
2623 	rc = bus_generic_detach(dev);
2624 	if (rc)
2625 		return (rc);
2626 	device_delete_children(dev);
2627 
2628 	doom_vi(sc, &pi->vi[0]);
2629 
2630 	if (pi->flags & HAS_TRACEQ) {
2631 		sc->traceq = -1;	/* cloner should not create ifnet */
2632 		t4_tracer_port_detach(sc);
2633 	}
2634 
2635 	cxgbe_vi_detach(&pi->vi[0]);
2636 	ifmedia_removeall(&pi->media);
2637 
2638 	end_synchronized_op(sc, 0);
2639 
2640 	return (0);
2641 }
2642 
2643 static void
2644 cxgbe_init(void *arg)
2645 {
2646 	struct vi_info *vi = arg;
2647 	struct adapter *sc = vi->adapter;
2648 
2649 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2650 		return;
2651 	cxgbe_init_synchronized(vi);
2652 	end_synchronized_op(sc, 0);
2653 }
2654 
2655 static int
2656 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
2657 {
2658 	int rc = 0, mtu, flags;
2659 	struct vi_info *vi = ifp->if_softc;
2660 	struct port_info *pi = vi->pi;
2661 	struct adapter *sc = pi->adapter;
2662 	struct ifreq *ifr = (struct ifreq *)data;
2663 	uint32_t mask;
2664 
2665 	switch (cmd) {
2666 	case SIOCSIFMTU:
2667 		mtu = ifr->ifr_mtu;
2668 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2669 			return (EINVAL);
2670 
2671 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2672 		if (rc)
2673 			return (rc);
2674 		ifp->if_mtu = mtu;
2675 		if (vi->flags & VI_INIT_DONE) {
2676 			t4_update_fl_bufsize(ifp);
2677 			if (!hw_off_limits(sc) &&
2678 			    ifp->if_drv_flags & IFF_DRV_RUNNING)
2679 				rc = update_mac_settings(ifp, XGMAC_MTU);
2680 		}
2681 		end_synchronized_op(sc, 0);
2682 		break;
2683 
2684 	case SIOCSIFFLAGS:
2685 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2686 		if (rc)
2687 			return (rc);
2688 
2689 		if (hw_off_limits(sc)) {
2690 			rc = ENXIO;
2691 			goto fail;
2692 		}
2693 
2694 		if (ifp->if_flags & IFF_UP) {
2695 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2696 				flags = vi->if_flags;
2697 				if ((ifp->if_flags ^ flags) &
2698 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2699 					rc = update_mac_settings(ifp,
2700 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2701 				}
2702 			} else {
2703 				rc = cxgbe_init_synchronized(vi);
2704 			}
2705 			vi->if_flags = ifp->if_flags;
2706 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2707 			rc = cxgbe_uninit_synchronized(vi);
2708 		}
2709 		end_synchronized_op(sc, 0);
2710 		break;
2711 
2712 	case SIOCADDMULTI:
2713 	case SIOCDELMULTI:
2714 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2715 		if (rc)
2716 			return (rc);
2717 		if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING)
2718 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2719 		end_synchronized_op(sc, 0);
2720 		break;
2721 
2722 	case SIOCSIFCAP:
2723 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2724 		if (rc)
2725 			return (rc);
2726 
2727 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2728 		if (mask & IFCAP_TXCSUM) {
2729 			ifp->if_capenable ^= IFCAP_TXCSUM;
2730 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
2731 
2732 			if (IFCAP_TSO4 & ifp->if_capenable &&
2733 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
2734 				mask &= ~IFCAP_TSO4;
2735 				ifp->if_capenable &= ~IFCAP_TSO4;
2736 				if_printf(ifp,
2737 				    "tso4 disabled due to -txcsum.\n");
2738 			}
2739 		}
2740 		if (mask & IFCAP_TXCSUM_IPV6) {
2741 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
2742 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2743 
2744 			if (IFCAP_TSO6 & ifp->if_capenable &&
2745 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2746 				mask &= ~IFCAP_TSO6;
2747 				ifp->if_capenable &= ~IFCAP_TSO6;
2748 				if_printf(ifp,
2749 				    "tso6 disabled due to -txcsum6.\n");
2750 			}
2751 		}
2752 		if (mask & IFCAP_RXCSUM)
2753 			ifp->if_capenable ^= IFCAP_RXCSUM;
2754 		if (mask & IFCAP_RXCSUM_IPV6)
2755 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
2756 
2757 		/*
2758 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2759 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2760 		 * sending a TSO request our way, so it's sufficient to toggle
2761 		 * IFCAP_TSOx only.
2762 		 */
2763 		if (mask & IFCAP_TSO4) {
2764 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
2765 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
2766 				if_printf(ifp, "enable txcsum first.\n");
2767 				rc = EAGAIN;
2768 				goto fail;
2769 			}
2770 			ifp->if_capenable ^= IFCAP_TSO4;
2771 		}
2772 		if (mask & IFCAP_TSO6) {
2773 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
2774 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2775 				if_printf(ifp, "enable txcsum6 first.\n");
2776 				rc = EAGAIN;
2777 				goto fail;
2778 			}
2779 			ifp->if_capenable ^= IFCAP_TSO6;
2780 		}
2781 		if (mask & IFCAP_LRO) {
2782 #if defined(INET) || defined(INET6)
2783 			int i;
2784 			struct sge_rxq *rxq;
2785 
2786 			ifp->if_capenable ^= IFCAP_LRO;
2787 			for_each_rxq(vi, i, rxq) {
2788 				if (ifp->if_capenable & IFCAP_LRO)
2789 					rxq->iq.flags |= IQ_LRO_ENABLED;
2790 				else
2791 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2792 			}
2793 #endif
2794 		}
2795 #ifdef TCP_OFFLOAD
2796 		if (mask & IFCAP_TOE) {
2797 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
2798 
2799 			rc = toe_capability(vi, enable);
2800 			if (rc != 0)
2801 				goto fail;
2802 
2803 			ifp->if_capenable ^= mask;
2804 		}
2805 #endif
2806 		if (mask & IFCAP_VLAN_HWTAGGING) {
2807 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2808 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2809 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2810 		}
2811 		if (mask & IFCAP_VLAN_MTU) {
2812 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2813 
2814 			/* Need to find out how to disable auto-mtu-inflation */
2815 		}
2816 		if (mask & IFCAP_VLAN_HWTSO)
2817 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2818 		if (mask & IFCAP_VLAN_HWCSUM)
2819 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2820 #ifdef RATELIMIT
2821 		if (mask & IFCAP_TXRTLMT)
2822 			ifp->if_capenable ^= IFCAP_TXRTLMT;
2823 #endif
2824 		if (mask & IFCAP_HWRXTSTMP) {
2825 			int i;
2826 			struct sge_rxq *rxq;
2827 
2828 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
2829 			for_each_rxq(vi, i, rxq) {
2830 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
2831 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2832 				else
2833 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2834 			}
2835 		}
2836 		if (mask & IFCAP_MEXTPG)
2837 			ifp->if_capenable ^= IFCAP_MEXTPG;
2838 
2839 #ifdef KERN_TLS
2840 		if (mask & IFCAP_TXTLS) {
2841 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS;
2842 
2843 			rc = ktls_capability(sc, enable);
2844 			if (rc != 0)
2845 				goto fail;
2846 
2847 			ifp->if_capenable ^= (mask & IFCAP_TXTLS);
2848 		}
2849 #endif
2850 		if (mask & IFCAP_VXLAN_HWCSUM) {
2851 			ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM;
2852 			ifp->if_hwassist ^= CSUM_INNER_IP6_UDP |
2853 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2854 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP;
2855 		}
2856 		if (mask & IFCAP_VXLAN_HWTSO) {
2857 			ifp->if_capenable ^= IFCAP_VXLAN_HWTSO;
2858 			ifp->if_hwassist ^= CSUM_INNER_IP6_TSO |
2859 			    CSUM_INNER_IP_TSO;
2860 		}
2861 
2862 #ifdef VLAN_CAPABILITIES
2863 		VLAN_CAPABILITIES(ifp);
2864 #endif
2865 fail:
2866 		end_synchronized_op(sc, 0);
2867 		break;
2868 
2869 	case SIOCSIFMEDIA:
2870 	case SIOCGIFMEDIA:
2871 	case SIOCGIFXMEDIA:
2872 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2873 		break;
2874 
2875 	case SIOCGI2C: {
2876 		struct ifi2creq i2c;
2877 
2878 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2879 		if (rc != 0)
2880 			break;
2881 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2882 			rc = EPERM;
2883 			break;
2884 		}
2885 		if (i2c.len > sizeof(i2c.data)) {
2886 			rc = EINVAL;
2887 			break;
2888 		}
2889 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2890 		if (rc)
2891 			return (rc);
2892 		if (hw_off_limits(sc))
2893 			rc = ENXIO;
2894 		else
2895 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2896 			    i2c.offset, i2c.len, &i2c.data[0]);
2897 		end_synchronized_op(sc, 0);
2898 		if (rc == 0)
2899 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2900 		break;
2901 	}
2902 
2903 	default:
2904 		rc = ether_ioctl(ifp, cmd, data);
2905 	}
2906 
2907 	return (rc);
2908 }
2909 
2910 static int
2911 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2912 {
2913 	struct vi_info *vi = ifp->if_softc;
2914 	struct port_info *pi = vi->pi;
2915 	struct adapter *sc;
2916 	struct sge_txq *txq;
2917 	void *items[1];
2918 	int rc;
2919 
2920 	M_ASSERTPKTHDR(m);
2921 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2922 #if defined(KERN_TLS) || defined(RATELIMIT)
2923 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
2924 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2925 #endif
2926 
2927 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2928 		m_freem(m);
2929 		return (ENETDOWN);
2930 	}
2931 
2932 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
2933 	if (__predict_false(rc != 0)) {
2934 		MPASS(m == NULL);			/* was freed already */
2935 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2936 		return (rc);
2937 	}
2938 #ifdef RATELIMIT
2939 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2940 		if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT)
2941 			return (ethofld_transmit(ifp, m));
2942 	}
2943 #endif
2944 
2945 	/* Select a txq. */
2946 	sc = vi->adapter;
2947 	txq = &sc->sge.txq[vi->first_txq];
2948 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2949 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2950 		    vi->rsrv_noflowq);
2951 
2952 	items[0] = m;
2953 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
2954 	if (__predict_false(rc != 0))
2955 		m_freem(m);
2956 
2957 	return (rc);
2958 }
2959 
2960 static void
2961 cxgbe_qflush(struct ifnet *ifp)
2962 {
2963 	struct vi_info *vi = ifp->if_softc;
2964 	struct sge_txq *txq;
2965 	int i;
2966 
2967 	/* queues do not exist if !VI_INIT_DONE. */
2968 	if (vi->flags & VI_INIT_DONE) {
2969 		for_each_txq(vi, i, txq) {
2970 			TXQ_LOCK(txq);
2971 			txq->eq.flags |= EQ_QFLUSH;
2972 			TXQ_UNLOCK(txq);
2973 			while (!mp_ring_is_idle(txq->r)) {
2974 				mp_ring_check_drainage(txq->r, 4096);
2975 				pause("qflush", 1);
2976 			}
2977 			TXQ_LOCK(txq);
2978 			txq->eq.flags &= ~EQ_QFLUSH;
2979 			TXQ_UNLOCK(txq);
2980 		}
2981 	}
2982 	if_qflush(ifp);
2983 }
2984 
2985 static uint64_t
2986 vi_get_counter(struct ifnet *ifp, ift_counter c)
2987 {
2988 	struct vi_info *vi = ifp->if_softc;
2989 	struct fw_vi_stats_vf *s = &vi->stats;
2990 
2991 	mtx_lock(&vi->tick_mtx);
2992 	vi_refresh_stats(vi);
2993 	mtx_unlock(&vi->tick_mtx);
2994 
2995 	switch (c) {
2996 	case IFCOUNTER_IPACKETS:
2997 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2998 		    s->rx_ucast_frames);
2999 	case IFCOUNTER_IERRORS:
3000 		return (s->rx_err_frames);
3001 	case IFCOUNTER_OPACKETS:
3002 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3003 		    s->tx_ucast_frames + s->tx_offload_frames);
3004 	case IFCOUNTER_OERRORS:
3005 		return (s->tx_drop_frames);
3006 	case IFCOUNTER_IBYTES:
3007 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3008 		    s->rx_ucast_bytes);
3009 	case IFCOUNTER_OBYTES:
3010 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3011 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3012 	case IFCOUNTER_IMCASTS:
3013 		return (s->rx_mcast_frames);
3014 	case IFCOUNTER_OMCASTS:
3015 		return (s->tx_mcast_frames);
3016 	case IFCOUNTER_OQDROPS: {
3017 		uint64_t drops;
3018 
3019 		drops = 0;
3020 		if (vi->flags & VI_INIT_DONE) {
3021 			int i;
3022 			struct sge_txq *txq;
3023 
3024 			for_each_txq(vi, i, txq)
3025 				drops += counter_u64_fetch(txq->r->dropped);
3026 		}
3027 
3028 		return (drops);
3029 
3030 	}
3031 
3032 	default:
3033 		return (if_get_counter_default(ifp, c));
3034 	}
3035 }
3036 
3037 static uint64_t
3038 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
3039 {
3040 	struct vi_info *vi = ifp->if_softc;
3041 	struct port_info *pi = vi->pi;
3042 	struct port_stats *s = &pi->stats;
3043 
3044 	mtx_lock(&vi->tick_mtx);
3045 	cxgbe_refresh_stats(vi);
3046 	mtx_unlock(&vi->tick_mtx);
3047 
3048 	switch (c) {
3049 	case IFCOUNTER_IPACKETS:
3050 		return (s->rx_frames);
3051 
3052 	case IFCOUNTER_IERRORS:
3053 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3054 		    s->rx_fcs_err + s->rx_len_err);
3055 
3056 	case IFCOUNTER_OPACKETS:
3057 		return (s->tx_frames);
3058 
3059 	case IFCOUNTER_OERRORS:
3060 		return (s->tx_error_frames);
3061 
3062 	case IFCOUNTER_IBYTES:
3063 		return (s->rx_octets);
3064 
3065 	case IFCOUNTER_OBYTES:
3066 		return (s->tx_octets);
3067 
3068 	case IFCOUNTER_IMCASTS:
3069 		return (s->rx_mcast_frames);
3070 
3071 	case IFCOUNTER_OMCASTS:
3072 		return (s->tx_mcast_frames);
3073 
3074 	case IFCOUNTER_IQDROPS:
3075 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3076 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3077 		    s->rx_trunc3 + pi->tnl_cong_drops);
3078 
3079 	case IFCOUNTER_OQDROPS: {
3080 		uint64_t drops;
3081 
3082 		drops = s->tx_drop;
3083 		if (vi->flags & VI_INIT_DONE) {
3084 			int i;
3085 			struct sge_txq *txq;
3086 
3087 			for_each_txq(vi, i, txq)
3088 				drops += counter_u64_fetch(txq->r->dropped);
3089 		}
3090 
3091 		return (drops);
3092 
3093 	}
3094 
3095 	default:
3096 		return (if_get_counter_default(ifp, c));
3097 	}
3098 }
3099 
3100 #if defined(KERN_TLS) || defined(RATELIMIT)
3101 static int
3102 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
3103     struct m_snd_tag **pt)
3104 {
3105 	int error;
3106 
3107 	switch (params->hdr.type) {
3108 #ifdef RATELIMIT
3109 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3110 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3111 		break;
3112 #endif
3113 #ifdef KERN_TLS
3114 	case IF_SND_TAG_TYPE_TLS:
3115 		error = cxgbe_tls_tag_alloc(ifp, params, pt);
3116 		break;
3117 #endif
3118 	default:
3119 		error = EOPNOTSUPP;
3120 	}
3121 	return (error);
3122 }
3123 #endif
3124 
3125 /*
3126  * The kernel picks a media from the list we had provided but we still validate
3127  * the requeste.
3128  */
3129 int
3130 cxgbe_media_change(struct ifnet *ifp)
3131 {
3132 	struct vi_info *vi = ifp->if_softc;
3133 	struct port_info *pi = vi->pi;
3134 	struct ifmedia *ifm = &pi->media;
3135 	struct link_config *lc = &pi->link_cfg;
3136 	struct adapter *sc = pi->adapter;
3137 	int rc;
3138 
3139 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3140 	if (rc != 0)
3141 		return (rc);
3142 	PORT_LOCK(pi);
3143 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3144 		/* ifconfig .. media autoselect */
3145 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3146 			rc = ENOTSUP; /* AN not supported by transceiver */
3147 			goto done;
3148 		}
3149 		lc->requested_aneg = AUTONEG_ENABLE;
3150 		lc->requested_speed = 0;
3151 		lc->requested_fc |= PAUSE_AUTONEG;
3152 	} else {
3153 		lc->requested_aneg = AUTONEG_DISABLE;
3154 		lc->requested_speed =
3155 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3156 		lc->requested_fc = 0;
3157 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3158 			lc->requested_fc |= PAUSE_RX;
3159 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3160 			lc->requested_fc |= PAUSE_TX;
3161 	}
3162 	if (pi->up_vis > 0) {
3163 		fixup_link_config(pi);
3164 		rc = apply_link_config(pi);
3165 	}
3166 done:
3167 	PORT_UNLOCK(pi);
3168 	end_synchronized_op(sc, 0);
3169 	return (rc);
3170 }
3171 
3172 /*
3173  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3174  * given speed.
3175  */
3176 static int
3177 port_mword(struct port_info *pi, uint32_t speed)
3178 {
3179 
3180 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3181 	MPASS(powerof2(speed));
3182 
3183 	switch(pi->port_type) {
3184 	case FW_PORT_TYPE_BT_SGMII:
3185 	case FW_PORT_TYPE_BT_XFI:
3186 	case FW_PORT_TYPE_BT_XAUI:
3187 		/* BaseT */
3188 		switch (speed) {
3189 		case FW_PORT_CAP32_SPEED_100M:
3190 			return (IFM_100_T);
3191 		case FW_PORT_CAP32_SPEED_1G:
3192 			return (IFM_1000_T);
3193 		case FW_PORT_CAP32_SPEED_10G:
3194 			return (IFM_10G_T);
3195 		}
3196 		break;
3197 	case FW_PORT_TYPE_KX4:
3198 		if (speed == FW_PORT_CAP32_SPEED_10G)
3199 			return (IFM_10G_KX4);
3200 		break;
3201 	case FW_PORT_TYPE_CX4:
3202 		if (speed == FW_PORT_CAP32_SPEED_10G)
3203 			return (IFM_10G_CX4);
3204 		break;
3205 	case FW_PORT_TYPE_KX:
3206 		if (speed == FW_PORT_CAP32_SPEED_1G)
3207 			return (IFM_1000_KX);
3208 		break;
3209 	case FW_PORT_TYPE_KR:
3210 	case FW_PORT_TYPE_BP_AP:
3211 	case FW_PORT_TYPE_BP4_AP:
3212 	case FW_PORT_TYPE_BP40_BA:
3213 	case FW_PORT_TYPE_KR4_100G:
3214 	case FW_PORT_TYPE_KR_SFP28:
3215 	case FW_PORT_TYPE_KR_XLAUI:
3216 		switch (speed) {
3217 		case FW_PORT_CAP32_SPEED_1G:
3218 			return (IFM_1000_KX);
3219 		case FW_PORT_CAP32_SPEED_10G:
3220 			return (IFM_10G_KR);
3221 		case FW_PORT_CAP32_SPEED_25G:
3222 			return (IFM_25G_KR);
3223 		case FW_PORT_CAP32_SPEED_40G:
3224 			return (IFM_40G_KR4);
3225 		case FW_PORT_CAP32_SPEED_50G:
3226 			return (IFM_50G_KR2);
3227 		case FW_PORT_CAP32_SPEED_100G:
3228 			return (IFM_100G_KR4);
3229 		}
3230 		break;
3231 	case FW_PORT_TYPE_FIBER_XFI:
3232 	case FW_PORT_TYPE_FIBER_XAUI:
3233 	case FW_PORT_TYPE_SFP:
3234 	case FW_PORT_TYPE_QSFP_10G:
3235 	case FW_PORT_TYPE_QSA:
3236 	case FW_PORT_TYPE_QSFP:
3237 	case FW_PORT_TYPE_CR4_QSFP:
3238 	case FW_PORT_TYPE_CR_QSFP:
3239 	case FW_PORT_TYPE_CR2_QSFP:
3240 	case FW_PORT_TYPE_SFP28:
3241 		/* Pluggable transceiver */
3242 		switch (pi->mod_type) {
3243 		case FW_PORT_MOD_TYPE_LR:
3244 			switch (speed) {
3245 			case FW_PORT_CAP32_SPEED_1G:
3246 				return (IFM_1000_LX);
3247 			case FW_PORT_CAP32_SPEED_10G:
3248 				return (IFM_10G_LR);
3249 			case FW_PORT_CAP32_SPEED_25G:
3250 				return (IFM_25G_LR);
3251 			case FW_PORT_CAP32_SPEED_40G:
3252 				return (IFM_40G_LR4);
3253 			case FW_PORT_CAP32_SPEED_50G:
3254 				return (IFM_50G_LR2);
3255 			case FW_PORT_CAP32_SPEED_100G:
3256 				return (IFM_100G_LR4);
3257 			}
3258 			break;
3259 		case FW_PORT_MOD_TYPE_SR:
3260 			switch (speed) {
3261 			case FW_PORT_CAP32_SPEED_1G:
3262 				return (IFM_1000_SX);
3263 			case FW_PORT_CAP32_SPEED_10G:
3264 				return (IFM_10G_SR);
3265 			case FW_PORT_CAP32_SPEED_25G:
3266 				return (IFM_25G_SR);
3267 			case FW_PORT_CAP32_SPEED_40G:
3268 				return (IFM_40G_SR4);
3269 			case FW_PORT_CAP32_SPEED_50G:
3270 				return (IFM_50G_SR2);
3271 			case FW_PORT_CAP32_SPEED_100G:
3272 				return (IFM_100G_SR4);
3273 			}
3274 			break;
3275 		case FW_PORT_MOD_TYPE_ER:
3276 			if (speed == FW_PORT_CAP32_SPEED_10G)
3277 				return (IFM_10G_ER);
3278 			break;
3279 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3280 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3281 			switch (speed) {
3282 			case FW_PORT_CAP32_SPEED_1G:
3283 				return (IFM_1000_CX);
3284 			case FW_PORT_CAP32_SPEED_10G:
3285 				return (IFM_10G_TWINAX);
3286 			case FW_PORT_CAP32_SPEED_25G:
3287 				return (IFM_25G_CR);
3288 			case FW_PORT_CAP32_SPEED_40G:
3289 				return (IFM_40G_CR4);
3290 			case FW_PORT_CAP32_SPEED_50G:
3291 				return (IFM_50G_CR2);
3292 			case FW_PORT_CAP32_SPEED_100G:
3293 				return (IFM_100G_CR4);
3294 			}
3295 			break;
3296 		case FW_PORT_MOD_TYPE_LRM:
3297 			if (speed == FW_PORT_CAP32_SPEED_10G)
3298 				return (IFM_10G_LRM);
3299 			break;
3300 		case FW_PORT_MOD_TYPE_NA:
3301 			MPASS(0);	/* Not pluggable? */
3302 			/* fall throough */
3303 		case FW_PORT_MOD_TYPE_ERROR:
3304 		case FW_PORT_MOD_TYPE_UNKNOWN:
3305 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3306 			break;
3307 		case FW_PORT_MOD_TYPE_NONE:
3308 			return (IFM_NONE);
3309 		}
3310 		break;
3311 	case FW_PORT_TYPE_NONE:
3312 		return (IFM_NONE);
3313 	}
3314 
3315 	return (IFM_UNKNOWN);
3316 }
3317 
3318 void
3319 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
3320 {
3321 	struct vi_info *vi = ifp->if_softc;
3322 	struct port_info *pi = vi->pi;
3323 	struct adapter *sc = pi->adapter;
3324 	struct link_config *lc = &pi->link_cfg;
3325 
3326 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
3327 		return;
3328 	PORT_LOCK(pi);
3329 
3330 	if (pi->up_vis == 0) {
3331 		/*
3332 		 * If all the interfaces are administratively down the firmware
3333 		 * does not report transceiver changes.  Refresh port info here
3334 		 * so that ifconfig displays accurate ifmedia at all times.
3335 		 * This is the only reason we have a synchronized op in this
3336 		 * function.  Just PORT_LOCK would have been enough otherwise.
3337 		 */
3338 		t4_update_port_info(pi);
3339 		build_medialist(pi);
3340 	}
3341 
3342 	/* ifm_status */
3343 	ifmr->ifm_status = IFM_AVALID;
3344 	if (lc->link_ok == false)
3345 		goto done;
3346 	ifmr->ifm_status |= IFM_ACTIVE;
3347 
3348 	/* ifm_active */
3349 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3350 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3351 	if (lc->fc & PAUSE_RX)
3352 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3353 	if (lc->fc & PAUSE_TX)
3354 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3355 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3356 done:
3357 	PORT_UNLOCK(pi);
3358 	end_synchronized_op(sc, 0);
3359 }
3360 
3361 static int
3362 vcxgbe_probe(device_t dev)
3363 {
3364 	char buf[128];
3365 	struct vi_info *vi = device_get_softc(dev);
3366 
3367 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
3368 	    vi - vi->pi->vi);
3369 	device_set_desc_copy(dev, buf);
3370 
3371 	return (BUS_PROBE_DEFAULT);
3372 }
3373 
3374 static int
3375 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3376 {
3377 	int func, index, rc;
3378 	uint32_t param, val;
3379 
3380 	ASSERT_SYNCHRONIZED_OP(sc);
3381 
3382 	index = vi - pi->vi;
3383 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3384 	KASSERT(index < nitems(vi_mac_funcs),
3385 	    ("%s: VI %s doesn't have a MAC func", __func__,
3386 	    device_get_nameunit(vi->dev)));
3387 	func = vi_mac_funcs[index];
3388 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3389 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3390 	if (rc < 0) {
3391 		CH_ERR(vi, "failed to allocate virtual interface %d"
3392 		    "for port %d: %d\n", index, pi->port_id, -rc);
3393 		return (-rc);
3394 	}
3395 	vi->viid = rc;
3396 
3397 	if (vi->rss_size == 1) {
3398 		/*
3399 		 * This VI didn't get a slice of the RSS table.  Reduce the
3400 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3401 		 * configuration file (nvi, rssnvi for this PF) if this is a
3402 		 * problem.
3403 		 */
3404 		device_printf(vi->dev, "RSS table not available.\n");
3405 		vi->rss_base = 0xffff;
3406 
3407 		return (0);
3408 	}
3409 
3410 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3412 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3413 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3414 	if (rc)
3415 		vi->rss_base = 0xffff;
3416 	else {
3417 		MPASS((val >> 16) == vi->rss_size);
3418 		vi->rss_base = val & 0xffff;
3419 	}
3420 
3421 	return (0);
3422 }
3423 
3424 static int
3425 vcxgbe_attach(device_t dev)
3426 {
3427 	struct vi_info *vi;
3428 	struct port_info *pi;
3429 	struct adapter *sc;
3430 	int rc;
3431 
3432 	vi = device_get_softc(dev);
3433 	pi = vi->pi;
3434 	sc = pi->adapter;
3435 
3436 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3437 	if (rc)
3438 		return (rc);
3439 	rc = alloc_extra_vi(sc, pi, vi);
3440 	end_synchronized_op(sc, 0);
3441 	if (rc)
3442 		return (rc);
3443 
3444 	rc = cxgbe_vi_attach(dev, vi);
3445 	if (rc) {
3446 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3447 		return (rc);
3448 	}
3449 	return (0);
3450 }
3451 
3452 static int
3453 vcxgbe_detach(device_t dev)
3454 {
3455 	struct vi_info *vi;
3456 	struct adapter *sc;
3457 
3458 	vi = device_get_softc(dev);
3459 	sc = vi->adapter;
3460 
3461 	doom_vi(sc, vi);
3462 
3463 	cxgbe_vi_detach(vi);
3464 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3465 
3466 	end_synchronized_op(sc, 0);
3467 
3468 	return (0);
3469 }
3470 
3471 static struct callout fatal_callout;
3472 static struct taskqueue *reset_tq;
3473 
3474 static void
3475 delayed_panic(void *arg)
3476 {
3477 	struct adapter *sc = arg;
3478 
3479 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3480 }
3481 
3482 void
3483 t4_fatal_err(struct adapter *sc, bool fw_error)
3484 {
3485 
3486 	t4_shutdown_adapter(sc);
3487 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n",
3488 	    device_get_nameunit(sc->dev));
3489 	if (fw_error) {
3490 		if (sc->flags & CHK_MBOX_ACCESS)
3491 			ASSERT_SYNCHRONIZED_OP(sc);
3492 		sc->flags |= ADAP_ERR;
3493 	} else {
3494 		ADAPTER_LOCK(sc);
3495 		sc->flags |= ADAP_ERR;
3496 		ADAPTER_UNLOCK(sc);
3497 	}
3498 #ifdef TCP_OFFLOAD
3499 	taskqueue_enqueue(taskqueue_thread, &sc->async_event_task);
3500 #endif
3501 
3502 	if (t4_panic_on_fatal_err) {
3503 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3504 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3505 	} else if (t4_reset_on_fatal_err) {
3506 		CH_ALERT(sc, "resetting on fatal error.\n");
3507 		taskqueue_enqueue(reset_tq, &sc->reset_task);
3508 	}
3509 }
3510 
3511 void
3512 t4_add_adapter(struct adapter *sc)
3513 {
3514 	sx_xlock(&t4_list_lock);
3515 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3516 	sx_xunlock(&t4_list_lock);
3517 }
3518 
3519 int
3520 t4_map_bars_0_and_4(struct adapter *sc)
3521 {
3522 	sc->regs_rid = PCIR_BAR(0);
3523 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3524 	    &sc->regs_rid, RF_ACTIVE);
3525 	if (sc->regs_res == NULL) {
3526 		device_printf(sc->dev, "cannot map registers.\n");
3527 		return (ENXIO);
3528 	}
3529 	sc->bt = rman_get_bustag(sc->regs_res);
3530 	sc->bh = rman_get_bushandle(sc->regs_res);
3531 	sc->mmio_len = rman_get_size(sc->regs_res);
3532 	setbit(&sc->doorbells, DOORBELL_KDB);
3533 
3534 	sc->msix_rid = PCIR_BAR(4);
3535 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3536 	    &sc->msix_rid, RF_ACTIVE);
3537 	if (sc->msix_res == NULL) {
3538 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3539 		return (ENXIO);
3540 	}
3541 
3542 	return (0);
3543 }
3544 
3545 int
3546 t4_map_bar_2(struct adapter *sc)
3547 {
3548 
3549 	/*
3550 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3551 	 * to map it if RDMA is disabled.
3552 	 */
3553 	if (is_t4(sc) && sc->rdmacaps == 0)
3554 		return (0);
3555 
3556 	sc->udbs_rid = PCIR_BAR(2);
3557 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3558 	    &sc->udbs_rid, RF_ACTIVE);
3559 	if (sc->udbs_res == NULL) {
3560 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3561 		return (ENXIO);
3562 	}
3563 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3564 
3565 	if (chip_id(sc) >= CHELSIO_T5) {
3566 		setbit(&sc->doorbells, DOORBELL_UDB);
3567 #if defined(__i386__) || defined(__amd64__)
3568 		if (t5_write_combine) {
3569 			int rc, mode;
3570 
3571 			/*
3572 			 * Enable write combining on BAR2.  This is the
3573 			 * userspace doorbell BAR and is split into 128B
3574 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3575 			 * with an egress queue.  The first 64B has the doorbell
3576 			 * and the second 64B can be used to submit a tx work
3577 			 * request with an implicit doorbell.
3578 			 */
3579 
3580 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3581 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3582 			if (rc == 0) {
3583 				clrbit(&sc->doorbells, DOORBELL_UDB);
3584 				setbit(&sc->doorbells, DOORBELL_WCWR);
3585 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3586 			} else {
3587 				device_printf(sc->dev,
3588 				    "couldn't enable write combining: %d\n",
3589 				    rc);
3590 			}
3591 
3592 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3593 			t4_write_reg(sc, A_SGE_STAT_CFG,
3594 			    V_STATSOURCE_T5(7) | mode);
3595 		}
3596 #endif
3597 	}
3598 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3599 
3600 	return (0);
3601 }
3602 
3603 struct memwin_init {
3604 	uint32_t base;
3605 	uint32_t aperture;
3606 };
3607 
3608 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3609 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3610 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3611 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3612 };
3613 
3614 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3615 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3616 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3617 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3618 };
3619 
3620 static void
3621 setup_memwin(struct adapter *sc)
3622 {
3623 	const struct memwin_init *mw_init;
3624 	struct memwin *mw;
3625 	int i;
3626 	uint32_t bar0;
3627 
3628 	if (is_t4(sc)) {
3629 		/*
3630 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3631 		 * mechanism.  Works from within PCI passthrough environments
3632 		 * too, where rman_get_start() can return a different value.  We
3633 		 * need to program the T4 memory window decoders with the actual
3634 		 * addresses that will be coming across the PCIe link.
3635 		 */
3636 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3637 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3638 
3639 		mw_init = &t4_memwin[0];
3640 	} else {
3641 		/* T5+ use the relative offset inside the PCIe BAR */
3642 		bar0 = 0;
3643 
3644 		mw_init = &t5_memwin[0];
3645 	}
3646 
3647 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3648 		if (!rw_initialized(&mw->mw_lock)) {
3649 			rw_init(&mw->mw_lock, "memory window access");
3650 			mw->mw_base = mw_init->base;
3651 			mw->mw_aperture = mw_init->aperture;
3652 			mw->mw_curpos = 0;
3653 		}
3654 		t4_write_reg(sc,
3655 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3656 		    (mw->mw_base + bar0) | V_BIR(0) |
3657 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3658 		rw_wlock(&mw->mw_lock);
3659 		position_memwin(sc, i, mw->mw_curpos);
3660 		rw_wunlock(&mw->mw_lock);
3661 	}
3662 
3663 	/* flush */
3664 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3665 }
3666 
3667 /*
3668  * Positions the memory window at the given address in the card's address space.
3669  * There are some alignment requirements and the actual position may be at an
3670  * address prior to the requested address.  mw->mw_curpos always has the actual
3671  * position of the window.
3672  */
3673 static void
3674 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3675 {
3676 	struct memwin *mw;
3677 	uint32_t pf;
3678 	uint32_t reg;
3679 
3680 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3681 	mw = &sc->memwin[idx];
3682 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3683 
3684 	if (is_t4(sc)) {
3685 		pf = 0;
3686 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3687 	} else {
3688 		pf = V_PFNUM(sc->pf);
3689 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3690 	}
3691 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3692 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3693 	t4_read_reg(sc, reg);	/* flush */
3694 }
3695 
3696 int
3697 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3698     int len, int rw)
3699 {
3700 	struct memwin *mw;
3701 	uint32_t mw_end, v;
3702 
3703 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3704 
3705 	/* Memory can only be accessed in naturally aligned 4 byte units */
3706 	if (addr & 3 || len & 3 || len <= 0)
3707 		return (EINVAL);
3708 
3709 	mw = &sc->memwin[idx];
3710 	while (len > 0) {
3711 		rw_rlock(&mw->mw_lock);
3712 		mw_end = mw->mw_curpos + mw->mw_aperture;
3713 		if (addr >= mw_end || addr < mw->mw_curpos) {
3714 			/* Will need to reposition the window */
3715 			if (!rw_try_upgrade(&mw->mw_lock)) {
3716 				rw_runlock(&mw->mw_lock);
3717 				rw_wlock(&mw->mw_lock);
3718 			}
3719 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3720 			position_memwin(sc, idx, addr);
3721 			rw_downgrade(&mw->mw_lock);
3722 			mw_end = mw->mw_curpos + mw->mw_aperture;
3723 		}
3724 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3725 		while (addr < mw_end && len > 0) {
3726 			if (rw == 0) {
3727 				v = t4_read_reg(sc, mw->mw_base + addr -
3728 				    mw->mw_curpos);
3729 				*val++ = le32toh(v);
3730 			} else {
3731 				v = *val++;
3732 				t4_write_reg(sc, mw->mw_base + addr -
3733 				    mw->mw_curpos, htole32(v));
3734 			}
3735 			addr += 4;
3736 			len -= 4;
3737 		}
3738 		rw_runlock(&mw->mw_lock);
3739 	}
3740 
3741 	return (0);
3742 }
3743 
3744 static void
3745 t4_init_atid_table(struct adapter *sc)
3746 {
3747 	struct tid_info *t;
3748 	int i;
3749 
3750 	t = &sc->tids;
3751 	if (t->natids == 0)
3752 		return;
3753 
3754 	MPASS(t->atid_tab == NULL);
3755 
3756 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3757 	    M_ZERO | M_WAITOK);
3758 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3759 	t->afree = t->atid_tab;
3760 	t->atids_in_use = 0;
3761 	for (i = 1; i < t->natids; i++)
3762 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3763 	t->atid_tab[t->natids - 1].next = NULL;
3764 }
3765 
3766 static void
3767 t4_free_atid_table(struct adapter *sc)
3768 {
3769 	struct tid_info *t;
3770 
3771 	t = &sc->tids;
3772 
3773 	KASSERT(t->atids_in_use == 0,
3774 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3775 
3776 	if (mtx_initialized(&t->atid_lock))
3777 		mtx_destroy(&t->atid_lock);
3778 	free(t->atid_tab, M_CXGBE);
3779 	t->atid_tab = NULL;
3780 }
3781 
3782 int
3783 alloc_atid(struct adapter *sc, void *ctx)
3784 {
3785 	struct tid_info *t = &sc->tids;
3786 	int atid = -1;
3787 
3788 	mtx_lock(&t->atid_lock);
3789 	if (t->afree) {
3790 		union aopen_entry *p = t->afree;
3791 
3792 		atid = p - t->atid_tab;
3793 		MPASS(atid <= M_TID_TID);
3794 		t->afree = p->next;
3795 		p->data = ctx;
3796 		t->atids_in_use++;
3797 	}
3798 	mtx_unlock(&t->atid_lock);
3799 	return (atid);
3800 }
3801 
3802 void *
3803 lookup_atid(struct adapter *sc, int atid)
3804 {
3805 	struct tid_info *t = &sc->tids;
3806 
3807 	return (t->atid_tab[atid].data);
3808 }
3809 
3810 void
3811 free_atid(struct adapter *sc, int atid)
3812 {
3813 	struct tid_info *t = &sc->tids;
3814 	union aopen_entry *p = &t->atid_tab[atid];
3815 
3816 	mtx_lock(&t->atid_lock);
3817 	p->next = t->afree;
3818 	t->afree = p;
3819 	t->atids_in_use--;
3820 	mtx_unlock(&t->atid_lock);
3821 }
3822 
3823 static void
3824 queue_tid_release(struct adapter *sc, int tid)
3825 {
3826 
3827 	CXGBE_UNIMPLEMENTED("deferred tid release");
3828 }
3829 
3830 void
3831 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3832 {
3833 	struct wrqe *wr;
3834 	struct cpl_tid_release *req;
3835 
3836 	wr = alloc_wrqe(sizeof(*req), ctrlq);
3837 	if (wr == NULL) {
3838 		queue_tid_release(sc, tid);	/* defer */
3839 		return;
3840 	}
3841 	req = wrtod(wr);
3842 
3843 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
3844 
3845 	t4_wrq_tx(sc, wr);
3846 }
3847 
3848 static int
3849 t4_range_cmp(const void *a, const void *b)
3850 {
3851 	return ((const struct t4_range *)a)->start -
3852 	       ((const struct t4_range *)b)->start;
3853 }
3854 
3855 /*
3856  * Verify that the memory range specified by the addr/len pair is valid within
3857  * the card's address space.
3858  */
3859 static int
3860 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
3861 {
3862 	struct t4_range mem_ranges[4], *r, *next;
3863 	uint32_t em, addr_len;
3864 	int i, n, remaining;
3865 
3866 	/* Memory can only be accessed in naturally aligned 4 byte units */
3867 	if (addr & 3 || len & 3 || len == 0)
3868 		return (EINVAL);
3869 
3870 	/* Enabled memories */
3871 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3872 
3873 	r = &mem_ranges[0];
3874 	n = 0;
3875 	bzero(r, sizeof(mem_ranges));
3876 	if (em & F_EDRAM0_ENABLE) {
3877 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3878 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
3879 		if (r->size > 0) {
3880 			r->start = G_EDRAM0_BASE(addr_len) << 20;
3881 			if (addr >= r->start &&
3882 			    addr + len <= r->start + r->size)
3883 				return (0);
3884 			r++;
3885 			n++;
3886 		}
3887 	}
3888 	if (em & F_EDRAM1_ENABLE) {
3889 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3890 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
3891 		if (r->size > 0) {
3892 			r->start = G_EDRAM1_BASE(addr_len) << 20;
3893 			if (addr >= r->start &&
3894 			    addr + len <= r->start + r->size)
3895 				return (0);
3896 			r++;
3897 			n++;
3898 		}
3899 	}
3900 	if (em & F_EXT_MEM_ENABLE) {
3901 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3902 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
3903 		if (r->size > 0) {
3904 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
3905 			if (addr >= r->start &&
3906 			    addr + len <= r->start + r->size)
3907 				return (0);
3908 			r++;
3909 			n++;
3910 		}
3911 	}
3912 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
3913 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3914 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3915 		if (r->size > 0) {
3916 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3917 			if (addr >= r->start &&
3918 			    addr + len <= r->start + r->size)
3919 				return (0);
3920 			r++;
3921 			n++;
3922 		}
3923 	}
3924 	MPASS(n <= nitems(mem_ranges));
3925 
3926 	if (n > 1) {
3927 		/* Sort and merge the ranges. */
3928 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3929 
3930 		/* Start from index 0 and examine the next n - 1 entries. */
3931 		r = &mem_ranges[0];
3932 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
3933 
3934 			MPASS(r->size > 0);	/* r is a valid entry. */
3935 			next = r + 1;
3936 			MPASS(next->size > 0);	/* and so is the next one. */
3937 
3938 			while (r->start + r->size >= next->start) {
3939 				/* Merge the next one into the current entry. */
3940 				r->size = max(r->start + r->size,
3941 				    next->start + next->size) - r->start;
3942 				n--;	/* One fewer entry in total. */
3943 				if (--remaining == 0)
3944 					goto done;	/* short circuit */
3945 				next++;
3946 			}
3947 			if (next != r + 1) {
3948 				/*
3949 				 * Some entries were merged into r and next
3950 				 * points to the first valid entry that couldn't
3951 				 * be merged.
3952 				 */
3953 				MPASS(next->size > 0);	/* must be valid */
3954 				memcpy(r + 1, next, remaining * sizeof(*r));
3955 #ifdef INVARIANTS
3956 				/*
3957 				 * This so that the foo->size assertion in the
3958 				 * next iteration of the loop do the right
3959 				 * thing for entries that were pulled up and are
3960 				 * no longer valid.
3961 				 */
3962 				MPASS(n < nitems(mem_ranges));
3963 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
3964 				    sizeof(struct t4_range));
3965 #endif
3966 			}
3967 		}
3968 done:
3969 		/* Done merging the ranges. */
3970 		MPASS(n > 0);
3971 		r = &mem_ranges[0];
3972 		for (i = 0; i < n; i++, r++) {
3973 			if (addr >= r->start &&
3974 			    addr + len <= r->start + r->size)
3975 				return (0);
3976 		}
3977 	}
3978 
3979 	return (EFAULT);
3980 }
3981 
3982 static int
3983 fwmtype_to_hwmtype(int mtype)
3984 {
3985 
3986 	switch (mtype) {
3987 	case FW_MEMTYPE_EDC0:
3988 		return (MEM_EDC0);
3989 	case FW_MEMTYPE_EDC1:
3990 		return (MEM_EDC1);
3991 	case FW_MEMTYPE_EXTMEM:
3992 		return (MEM_MC0);
3993 	case FW_MEMTYPE_EXTMEM1:
3994 		return (MEM_MC1);
3995 	default:
3996 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
3997 	}
3998 }
3999 
4000 /*
4001  * Verify that the memory range specified by the memtype/offset/len pair is
4002  * valid and lies entirely within the memtype specified.  The global address of
4003  * the start of the range is returned in addr.
4004  */
4005 static int
4006 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4007     uint32_t *addr)
4008 {
4009 	uint32_t em, addr_len, maddr;
4010 
4011 	/* Memory can only be accessed in naturally aligned 4 byte units */
4012 	if (off & 3 || len & 3 || len == 0)
4013 		return (EINVAL);
4014 
4015 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4016 	switch (fwmtype_to_hwmtype(mtype)) {
4017 	case MEM_EDC0:
4018 		if (!(em & F_EDRAM0_ENABLE))
4019 			return (EINVAL);
4020 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4021 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4022 		break;
4023 	case MEM_EDC1:
4024 		if (!(em & F_EDRAM1_ENABLE))
4025 			return (EINVAL);
4026 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4027 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4028 		break;
4029 	case MEM_MC:
4030 		if (!(em & F_EXT_MEM_ENABLE))
4031 			return (EINVAL);
4032 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4033 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4034 		break;
4035 	case MEM_MC1:
4036 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4037 			return (EINVAL);
4038 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4039 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4040 		break;
4041 	default:
4042 		return (EINVAL);
4043 	}
4044 
4045 	*addr = maddr + off;	/* global address */
4046 	return (validate_mem_range(sc, *addr, len));
4047 }
4048 
4049 static int
4050 fixup_devlog_params(struct adapter *sc)
4051 {
4052 	struct devlog_params *dparams = &sc->params.devlog;
4053 	int rc;
4054 
4055 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4056 	    dparams->size, &dparams->addr);
4057 
4058 	return (rc);
4059 }
4060 
4061 static void
4062 update_nirq(struct intrs_and_queues *iaq, int nports)
4063 {
4064 
4065 	iaq->nirq = T4_EXTRA_INTR;
4066 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4067 	iaq->nirq += nports * iaq->nofldrxq;
4068 	iaq->nirq += nports * (iaq->num_vis - 1) *
4069 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4070 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4071 }
4072 
4073 /*
4074  * Adjust requirements to fit the number of interrupts available.
4075  */
4076 static void
4077 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4078     int navail)
4079 {
4080 	int old_nirq;
4081 	const int nports = sc->params.nports;
4082 
4083 	MPASS(nports > 0);
4084 	MPASS(navail > 0);
4085 
4086 	bzero(iaq, sizeof(*iaq));
4087 	iaq->intr_type = itype;
4088 	iaq->num_vis = t4_num_vis;
4089 	iaq->ntxq = t4_ntxq;
4090 	iaq->ntxq_vi = t4_ntxq_vi;
4091 	iaq->nrxq = t4_nrxq;
4092 	iaq->nrxq_vi = t4_nrxq_vi;
4093 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4094 	if (is_offload(sc) || is_ethoffload(sc)) {
4095 		iaq->nofldtxq = t4_nofldtxq;
4096 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4097 	}
4098 #endif
4099 #ifdef TCP_OFFLOAD
4100 	if (is_offload(sc)) {
4101 		iaq->nofldrxq = t4_nofldrxq;
4102 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4103 	}
4104 #endif
4105 #ifdef DEV_NETMAP
4106 	if (t4_native_netmap & NN_MAIN_VI) {
4107 		iaq->nnmtxq = t4_nnmtxq;
4108 		iaq->nnmrxq = t4_nnmrxq;
4109 	}
4110 	if (t4_native_netmap & NN_EXTRA_VI) {
4111 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4112 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4113 	}
4114 #endif
4115 
4116 	update_nirq(iaq, nports);
4117 	if (iaq->nirq <= navail &&
4118 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4119 		/*
4120 		 * This is the normal case -- there are enough interrupts for
4121 		 * everything.
4122 		 */
4123 		goto done;
4124 	}
4125 
4126 	/*
4127 	 * If extra VIs have been configured try reducing their count and see if
4128 	 * that works.
4129 	 */
4130 	while (iaq->num_vis > 1) {
4131 		iaq->num_vis--;
4132 		update_nirq(iaq, nports);
4133 		if (iaq->nirq <= navail &&
4134 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4135 			device_printf(sc->dev, "virtual interfaces per port "
4136 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4137 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4138 			    "itype %d, navail %u, nirq %d.\n",
4139 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4140 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4141 			    itype, navail, iaq->nirq);
4142 			goto done;
4143 		}
4144 	}
4145 
4146 	/*
4147 	 * Extra VIs will not be created.  Log a message if they were requested.
4148 	 */
4149 	MPASS(iaq->num_vis == 1);
4150 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4151 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4152 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4153 	if (iaq->num_vis != t4_num_vis) {
4154 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4155 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4156 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4157 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4158 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4159 	}
4160 
4161 	/*
4162 	 * Keep reducing the number of NIC rx queues to the next lower power of
4163 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4164 	 * if that works.
4165 	 */
4166 	do {
4167 		if (iaq->nrxq > 1) {
4168 			do {
4169 				iaq->nrxq--;
4170 			} while (!powerof2(iaq->nrxq));
4171 			if (iaq->nnmrxq > iaq->nrxq)
4172 				iaq->nnmrxq = iaq->nrxq;
4173 		}
4174 		if (iaq->nofldrxq > 1)
4175 			iaq->nofldrxq >>= 1;
4176 
4177 		old_nirq = iaq->nirq;
4178 		update_nirq(iaq, nports);
4179 		if (iaq->nirq <= navail &&
4180 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4181 			device_printf(sc->dev, "running with reduced number of "
4182 			    "rx queues because of shortage of interrupts.  "
4183 			    "nrxq=%u, nofldrxq=%u.  "
4184 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4185 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4186 			goto done;
4187 		}
4188 	} while (old_nirq != iaq->nirq);
4189 
4190 	/* One interrupt for everything.  Ugh. */
4191 	device_printf(sc->dev, "running with minimal number of queues.  "
4192 	    "itype %d, navail %u.\n", itype, navail);
4193 	iaq->nirq = 1;
4194 	iaq->nrxq = 1;
4195 	iaq->ntxq = 1;
4196 	if (iaq->nofldrxq > 0) {
4197 		iaq->nofldrxq = 1;
4198 		iaq->nofldtxq = 1;
4199 	}
4200 	iaq->nnmtxq = 0;
4201 	iaq->nnmrxq = 0;
4202 done:
4203 	MPASS(iaq->num_vis > 0);
4204 	if (iaq->num_vis > 1) {
4205 		MPASS(iaq->nrxq_vi > 0);
4206 		MPASS(iaq->ntxq_vi > 0);
4207 	}
4208 	MPASS(iaq->nirq > 0);
4209 	MPASS(iaq->nrxq > 0);
4210 	MPASS(iaq->ntxq > 0);
4211 	if (itype == INTR_MSI) {
4212 		MPASS(powerof2(iaq->nirq));
4213 	}
4214 }
4215 
4216 static int
4217 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4218 {
4219 	int rc, itype, navail, nalloc;
4220 
4221 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4222 
4223 		if ((itype & t4_intr_types) == 0)
4224 			continue;	/* not allowed */
4225 
4226 		if (itype == INTR_MSIX)
4227 			navail = pci_msix_count(sc->dev);
4228 		else if (itype == INTR_MSI)
4229 			navail = pci_msi_count(sc->dev);
4230 		else
4231 			navail = 1;
4232 restart:
4233 		if (navail == 0)
4234 			continue;
4235 
4236 		calculate_iaq(sc, iaq, itype, navail);
4237 		nalloc = iaq->nirq;
4238 		rc = 0;
4239 		if (itype == INTR_MSIX)
4240 			rc = pci_alloc_msix(sc->dev, &nalloc);
4241 		else if (itype == INTR_MSI)
4242 			rc = pci_alloc_msi(sc->dev, &nalloc);
4243 
4244 		if (rc == 0 && nalloc > 0) {
4245 			if (nalloc == iaq->nirq)
4246 				return (0);
4247 
4248 			/*
4249 			 * Didn't get the number requested.  Use whatever number
4250 			 * the kernel is willing to allocate.
4251 			 */
4252 			device_printf(sc->dev, "fewer vectors than requested, "
4253 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4254 			    itype, iaq->nirq, nalloc);
4255 			pci_release_msi(sc->dev);
4256 			navail = nalloc;
4257 			goto restart;
4258 		}
4259 
4260 		device_printf(sc->dev,
4261 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4262 		    itype, rc, iaq->nirq, nalloc);
4263 	}
4264 
4265 	device_printf(sc->dev,
4266 	    "failed to find a usable interrupt type.  "
4267 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4268 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4269 
4270 	return (ENXIO);
4271 }
4272 
4273 #define FW_VERSION(chip) ( \
4274     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4275     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4276     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4277     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4278 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4279 
4280 /* Just enough of fw_hdr to cover all version info. */
4281 struct fw_h {
4282 	__u8	ver;
4283 	__u8	chip;
4284 	__be16	len512;
4285 	__be32	fw_ver;
4286 	__be32	tp_microcode_ver;
4287 	__u8	intfver_nic;
4288 	__u8	intfver_vnic;
4289 	__u8	intfver_ofld;
4290 	__u8	intfver_ri;
4291 	__u8	intfver_iscsipdu;
4292 	__u8	intfver_iscsi;
4293 	__u8	intfver_fcoepdu;
4294 	__u8	intfver_fcoe;
4295 };
4296 /* Spot check a couple of fields. */
4297 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4298 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4299 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4300 
4301 struct fw_info {
4302 	uint8_t chip;
4303 	char *kld_name;
4304 	char *fw_mod_name;
4305 	struct fw_h fw_h;
4306 } fw_info[] = {
4307 	{
4308 		.chip = CHELSIO_T4,
4309 		.kld_name = "t4fw_cfg",
4310 		.fw_mod_name = "t4fw",
4311 		.fw_h = {
4312 			.chip = FW_HDR_CHIP_T4,
4313 			.fw_ver = htobe32(FW_VERSION(T4)),
4314 			.intfver_nic = FW_INTFVER(T4, NIC),
4315 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4316 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4317 			.intfver_ri = FW_INTFVER(T4, RI),
4318 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4319 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4320 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4321 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4322 		},
4323 	}, {
4324 		.chip = CHELSIO_T5,
4325 		.kld_name = "t5fw_cfg",
4326 		.fw_mod_name = "t5fw",
4327 		.fw_h = {
4328 			.chip = FW_HDR_CHIP_T5,
4329 			.fw_ver = htobe32(FW_VERSION(T5)),
4330 			.intfver_nic = FW_INTFVER(T5, NIC),
4331 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4332 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4333 			.intfver_ri = FW_INTFVER(T5, RI),
4334 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4335 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4336 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4337 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4338 		},
4339 	}, {
4340 		.chip = CHELSIO_T6,
4341 		.kld_name = "t6fw_cfg",
4342 		.fw_mod_name = "t6fw",
4343 		.fw_h = {
4344 			.chip = FW_HDR_CHIP_T6,
4345 			.fw_ver = htobe32(FW_VERSION(T6)),
4346 			.intfver_nic = FW_INTFVER(T6, NIC),
4347 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4348 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4349 			.intfver_ri = FW_INTFVER(T6, RI),
4350 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4351 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4352 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4353 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4354 		},
4355 	}
4356 };
4357 
4358 static struct fw_info *
4359 find_fw_info(int chip)
4360 {
4361 	int i;
4362 
4363 	for (i = 0; i < nitems(fw_info); i++) {
4364 		if (fw_info[i].chip == chip)
4365 			return (&fw_info[i]);
4366 	}
4367 	return (NULL);
4368 }
4369 
4370 /*
4371  * Is the given firmware API compatible with the one the driver was compiled
4372  * with?
4373  */
4374 static int
4375 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4376 {
4377 
4378 	/* short circuit if it's the exact same firmware version */
4379 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4380 		return (1);
4381 
4382 	/*
4383 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4384 	 * features that are supported in the driver.
4385 	 */
4386 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4387 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4388 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4389 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4390 		return (1);
4391 #undef SAME_INTF
4392 
4393 	return (0);
4394 }
4395 
4396 static int
4397 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4398     const struct firmware **fw)
4399 {
4400 	struct fw_info *fw_info;
4401 
4402 	*dcfg = NULL;
4403 	if (fw != NULL)
4404 		*fw = NULL;
4405 
4406 	fw_info = find_fw_info(chip_id(sc));
4407 	if (fw_info == NULL) {
4408 		device_printf(sc->dev,
4409 		    "unable to look up firmware information for chip %d.\n",
4410 		    chip_id(sc));
4411 		return (EINVAL);
4412 	}
4413 
4414 	*dcfg = firmware_get(fw_info->kld_name);
4415 	if (*dcfg != NULL) {
4416 		if (fw != NULL)
4417 			*fw = firmware_get(fw_info->fw_mod_name);
4418 		return (0);
4419 	}
4420 
4421 	return (ENOENT);
4422 }
4423 
4424 static void
4425 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4426     const struct firmware *fw)
4427 {
4428 
4429 	if (fw != NULL)
4430 		firmware_put(fw, FIRMWARE_UNLOAD);
4431 	if (dcfg != NULL)
4432 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4433 }
4434 
4435 /*
4436  * Return values:
4437  * 0 means no firmware install attempted.
4438  * ERESTART means a firmware install was attempted and was successful.
4439  * +ve errno means a firmware install was attempted but failed.
4440  */
4441 static int
4442 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4443     const struct fw_h *drv_fw, const char *reason, int *already)
4444 {
4445 	const struct firmware *cfg, *fw;
4446 	const uint32_t c = be32toh(card_fw->fw_ver);
4447 	uint32_t d, k;
4448 	int rc, fw_install;
4449 	struct fw_h bundled_fw;
4450 	bool load_attempted;
4451 
4452 	cfg = fw = NULL;
4453 	load_attempted = false;
4454 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4455 
4456 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4457 	if (t4_fw_install < 0) {
4458 		rc = load_fw_module(sc, &cfg, &fw);
4459 		if (rc != 0 || fw == NULL) {
4460 			device_printf(sc->dev,
4461 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4462 			    " will use compiled-in firmware version for"
4463 			    "hw.cxgbe.fw_install checks.\n",
4464 			    rc, cfg, fw);
4465 		} else {
4466 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4467 		}
4468 		load_attempted = true;
4469 	}
4470 	d = be32toh(bundled_fw.fw_ver);
4471 
4472 	if (reason != NULL)
4473 		goto install;
4474 
4475 	if ((sc->flags & FW_OK) == 0) {
4476 
4477 		if (c == 0xffffffff) {
4478 			reason = "missing";
4479 			goto install;
4480 		}
4481 
4482 		rc = 0;
4483 		goto done;
4484 	}
4485 
4486 	if (!fw_compatible(card_fw, &bundled_fw)) {
4487 		reason = "incompatible or unusable";
4488 		goto install;
4489 	}
4490 
4491 	if (d > c) {
4492 		reason = "older than the version bundled with this driver";
4493 		goto install;
4494 	}
4495 
4496 	if (fw_install == 2 && d != c) {
4497 		reason = "different than the version bundled with this driver";
4498 		goto install;
4499 	}
4500 
4501 	/* No reason to do anything to the firmware already on the card. */
4502 	rc = 0;
4503 	goto done;
4504 
4505 install:
4506 	rc = 0;
4507 	if ((*already)++)
4508 		goto done;
4509 
4510 	if (fw_install == 0) {
4511 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4512 		    "but the driver is prohibited from installing a firmware "
4513 		    "on the card.\n",
4514 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4515 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4516 
4517 		goto done;
4518 	}
4519 
4520 	/*
4521 	 * We'll attempt to install a firmware.  Load the module first (if it
4522 	 * hasn't been loaded already).
4523 	 */
4524 	if (!load_attempted) {
4525 		rc = load_fw_module(sc, &cfg, &fw);
4526 		if (rc != 0 || fw == NULL) {
4527 			device_printf(sc->dev,
4528 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4529 			    rc, cfg, fw);
4530 			/* carry on */
4531 		}
4532 	}
4533 	if (fw == NULL) {
4534 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4535 		    "but the driver cannot take corrective action because it "
4536 		    "is unable to load the firmware module.\n",
4537 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4538 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4539 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4540 		goto done;
4541 	}
4542 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4543 	if (k != d) {
4544 		MPASS(t4_fw_install > 0);
4545 		device_printf(sc->dev,
4546 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4547 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4548 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4549 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4550 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4551 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4552 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4553 		goto done;
4554 	}
4555 
4556 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4557 	    "installing firmware %u.%u.%u.%u on card.\n",
4558 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4559 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4560 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4561 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4562 
4563 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4564 	if (rc != 0) {
4565 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4566 	} else {
4567 		/* Installed successfully, update the cached header too. */
4568 		rc = ERESTART;
4569 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4570 	}
4571 done:
4572 	unload_fw_module(sc, cfg, fw);
4573 
4574 	return (rc);
4575 }
4576 
4577 /*
4578  * Establish contact with the firmware and attempt to become the master driver.
4579  *
4580  * A firmware will be installed to the card if needed (if the driver is allowed
4581  * to do so).
4582  */
4583 static int
4584 contact_firmware(struct adapter *sc)
4585 {
4586 	int rc, already = 0;
4587 	enum dev_state state;
4588 	struct fw_info *fw_info;
4589 	struct fw_hdr *card_fw;		/* fw on the card */
4590 	const struct fw_h *drv_fw;
4591 
4592 	fw_info = find_fw_info(chip_id(sc));
4593 	if (fw_info == NULL) {
4594 		device_printf(sc->dev,
4595 		    "unable to look up firmware information for chip %d.\n",
4596 		    chip_id(sc));
4597 		return (EINVAL);
4598 	}
4599 	drv_fw = &fw_info->fw_h;
4600 
4601 	/* Read the header of the firmware on the card */
4602 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4603 restart:
4604 	rc = -t4_get_fw_hdr(sc, card_fw);
4605 	if (rc != 0) {
4606 		device_printf(sc->dev,
4607 		    "unable to read firmware header from card's flash: %d\n",
4608 		    rc);
4609 		goto done;
4610 	}
4611 
4612 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4613 	    &already);
4614 	if (rc == ERESTART)
4615 		goto restart;
4616 	if (rc != 0)
4617 		goto done;
4618 
4619 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4620 	if (rc < 0 || state == DEV_STATE_ERR) {
4621 		rc = -rc;
4622 		device_printf(sc->dev,
4623 		    "failed to connect to the firmware: %d, %d.  "
4624 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4625 #if 0
4626 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4627 		    "not responding properly to HELLO", &already) == ERESTART)
4628 			goto restart;
4629 #endif
4630 		goto done;
4631 	}
4632 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4633 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4634 
4635 	if (rc == sc->pf) {
4636 		sc->flags |= MASTER_PF;
4637 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4638 		    NULL, &already);
4639 		if (rc == ERESTART)
4640 			rc = 0;
4641 		else if (rc != 0)
4642 			goto done;
4643 	} else if (state == DEV_STATE_UNINIT) {
4644 		/*
4645 		 * We didn't get to be the master so we definitely won't be
4646 		 * configuring the chip.  It's a bug if someone else hasn't
4647 		 * configured it already.
4648 		 */
4649 		device_printf(sc->dev, "couldn't be master(%d), "
4650 		    "device not already initialized either(%d).  "
4651 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4652 		rc = EPROTO;
4653 		goto done;
4654 	} else {
4655 		/*
4656 		 * Some other PF is the master and has configured the chip.
4657 		 * This is allowed but untested.
4658 		 */
4659 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4660 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4661 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4662 		sc->cfcsum = 0;
4663 		rc = 0;
4664 	}
4665 done:
4666 	if (rc != 0 && sc->flags & FW_OK) {
4667 		t4_fw_bye(sc, sc->mbox);
4668 		sc->flags &= ~FW_OK;
4669 	}
4670 	free(card_fw, M_CXGBE);
4671 	return (rc);
4672 }
4673 
4674 static int
4675 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4676     uint32_t mtype, uint32_t moff)
4677 {
4678 	struct fw_info *fw_info;
4679 	const struct firmware *dcfg, *rcfg = NULL;
4680 	const uint32_t *cfdata;
4681 	uint32_t cflen, addr;
4682 	int rc;
4683 
4684 	load_fw_module(sc, &dcfg, NULL);
4685 
4686 	/* Card specific interpretation of "default". */
4687 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4688 		if (pci_get_device(sc->dev) == 0x440a)
4689 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4690 		if (is_fpga(sc))
4691 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4692 	}
4693 
4694 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4695 		if (dcfg == NULL) {
4696 			device_printf(sc->dev,
4697 			    "KLD with default config is not available.\n");
4698 			rc = ENOENT;
4699 			goto done;
4700 		}
4701 		cfdata = dcfg->data;
4702 		cflen = dcfg->datasize & ~3;
4703 	} else {
4704 		char s[32];
4705 
4706 		fw_info = find_fw_info(chip_id(sc));
4707 		if (fw_info == NULL) {
4708 			device_printf(sc->dev,
4709 			    "unable to look up firmware information for chip %d.\n",
4710 			    chip_id(sc));
4711 			rc = EINVAL;
4712 			goto done;
4713 		}
4714 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4715 
4716 		rcfg = firmware_get(s);
4717 		if (rcfg == NULL) {
4718 			device_printf(sc->dev,
4719 			    "unable to load module \"%s\" for configuration "
4720 			    "profile \"%s\".\n", s, cfg_file);
4721 			rc = ENOENT;
4722 			goto done;
4723 		}
4724 		cfdata = rcfg->data;
4725 		cflen = rcfg->datasize & ~3;
4726 	}
4727 
4728 	if (cflen > FLASH_CFG_MAX_SIZE) {
4729 		device_printf(sc->dev,
4730 		    "config file too long (%d, max allowed is %d).\n",
4731 		    cflen, FLASH_CFG_MAX_SIZE);
4732 		rc = EINVAL;
4733 		goto done;
4734 	}
4735 
4736 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4737 	if (rc != 0) {
4738 		device_printf(sc->dev,
4739 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4740 		    __func__, mtype, moff, cflen, rc);
4741 		rc = EINVAL;
4742 		goto done;
4743 	}
4744 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4745 done:
4746 	if (rcfg != NULL)
4747 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4748 	unload_fw_module(sc, dcfg, NULL);
4749 	return (rc);
4750 }
4751 
4752 struct caps_allowed {
4753 	uint16_t nbmcaps;
4754 	uint16_t linkcaps;
4755 	uint16_t switchcaps;
4756 	uint16_t niccaps;
4757 	uint16_t toecaps;
4758 	uint16_t rdmacaps;
4759 	uint16_t cryptocaps;
4760 	uint16_t iscsicaps;
4761 	uint16_t fcoecaps;
4762 };
4763 
4764 #define FW_PARAM_DEV(param) \
4765 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4766 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4767 #define FW_PARAM_PFVF(param) \
4768 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4769 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4770 
4771 /*
4772  * Provide a configuration profile to the firmware and have it initialize the
4773  * chip accordingly.  This may involve uploading a configuration file to the
4774  * card.
4775  */
4776 static int
4777 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4778     const struct caps_allowed *caps_allowed)
4779 {
4780 	int rc;
4781 	struct fw_caps_config_cmd caps;
4782 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4783 
4784 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4785 	if (rc != 0) {
4786 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4787 		return (rc);
4788 	}
4789 
4790 	bzero(&caps, sizeof(caps));
4791 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4792 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4793 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4794 		mtype = 0;
4795 		moff = 0;
4796 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4797 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4798 		mtype = FW_MEMTYPE_FLASH;
4799 		moff = t4_flash_cfg_addr(sc);
4800 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4801 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4802 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4803 		    FW_LEN16(caps));
4804 	} else {
4805 		/*
4806 		 * Ask the firmware where it wants us to upload the config file.
4807 		 */
4808 		param = FW_PARAM_DEV(CF);
4809 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4810 		if (rc != 0) {
4811 			/* No support for config file?  Shouldn't happen. */
4812 			device_printf(sc->dev,
4813 			    "failed to query config file location: %d.\n", rc);
4814 			goto done;
4815 		}
4816 		mtype = G_FW_PARAMS_PARAM_Y(val);
4817 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4818 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4819 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4820 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4821 		    FW_LEN16(caps));
4822 
4823 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4824 		if (rc != 0) {
4825 			device_printf(sc->dev,
4826 			    "failed to upload config file to card: %d.\n", rc);
4827 			goto done;
4828 		}
4829 	}
4830 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4831 	if (rc != 0) {
4832 		device_printf(sc->dev, "failed to pre-process config file: %d "
4833 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
4834 		goto done;
4835 	}
4836 
4837 	finicsum = be32toh(caps.finicsum);
4838 	cfcsum = be32toh(caps.cfcsum);	/* actual */
4839 	if (finicsum != cfcsum) {
4840 		device_printf(sc->dev,
4841 		    "WARNING: config file checksum mismatch: %08x %08x\n",
4842 		    finicsum, cfcsum);
4843 	}
4844 	sc->cfcsum = cfcsum;
4845 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
4846 
4847 	/*
4848 	 * Let the firmware know what features will (not) be used so it can tune
4849 	 * things accordingly.
4850 	 */
4851 #define LIMIT_CAPS(x) do { \
4852 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
4853 } while (0)
4854 	LIMIT_CAPS(nbm);
4855 	LIMIT_CAPS(link);
4856 	LIMIT_CAPS(switch);
4857 	LIMIT_CAPS(nic);
4858 	LIMIT_CAPS(toe);
4859 	LIMIT_CAPS(rdma);
4860 	LIMIT_CAPS(crypto);
4861 	LIMIT_CAPS(iscsi);
4862 	LIMIT_CAPS(fcoe);
4863 #undef LIMIT_CAPS
4864 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4865 		/*
4866 		 * TOE and hashfilters are mutually exclusive.  It is a config
4867 		 * file or firmware bug if both are reported as available.  Try
4868 		 * to cope with the situation in non-debug builds by disabling
4869 		 * TOE.
4870 		 */
4871 		MPASS(caps.toecaps == 0);
4872 
4873 		caps.toecaps = 0;
4874 		caps.rdmacaps = 0;
4875 		caps.iscsicaps = 0;
4876 	}
4877 
4878 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4879 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4880 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4881 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
4882 	if (rc != 0) {
4883 		device_printf(sc->dev,
4884 		    "failed to process config file: %d.\n", rc);
4885 		goto done;
4886 	}
4887 
4888 	t4_tweak_chip_settings(sc);
4889 	set_params__pre_init(sc);
4890 
4891 	/* get basic stuff going */
4892 	rc = -t4_fw_initialize(sc, sc->mbox);
4893 	if (rc != 0) {
4894 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
4895 		goto done;
4896 	}
4897 done:
4898 	return (rc);
4899 }
4900 
4901 /*
4902  * Partition chip resources for use between various PFs, VFs, etc.
4903  */
4904 static int
4905 partition_resources(struct adapter *sc)
4906 {
4907 	char cfg_file[sizeof(t4_cfg_file)];
4908 	struct caps_allowed caps_allowed;
4909 	int rc;
4910 	bool fallback;
4911 
4912 	/* Only the master driver gets to configure the chip resources. */
4913 	MPASS(sc->flags & MASTER_PF);
4914 
4915 #define COPY_CAPS(x) do { \
4916 	caps_allowed.x##caps = t4_##x##caps_allowed; \
4917 } while (0)
4918 	bzero(&caps_allowed, sizeof(caps_allowed));
4919 	COPY_CAPS(nbm);
4920 	COPY_CAPS(link);
4921 	COPY_CAPS(switch);
4922 	COPY_CAPS(nic);
4923 	COPY_CAPS(toe);
4924 	COPY_CAPS(rdma);
4925 	COPY_CAPS(crypto);
4926 	COPY_CAPS(iscsi);
4927 	COPY_CAPS(fcoe);
4928 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4929 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4930 retry:
4931 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
4932 	if (rc != 0 && fallback) {
4933 		device_printf(sc->dev,
4934 		    "failed (%d) to configure card with \"%s\" profile, "
4935 		    "will fall back to a basic configuration and retry.\n",
4936 		    rc, cfg_file);
4937 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
4938 		bzero(&caps_allowed, sizeof(caps_allowed));
4939 		COPY_CAPS(switch);
4940 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
4941 		fallback = false;
4942 		goto retry;
4943 	}
4944 #undef COPY_CAPS
4945 	return (rc);
4946 }
4947 
4948 /*
4949  * Retrieve parameters that are needed (or nice to have) very early.
4950  */
4951 static int
4952 get_params__pre_init(struct adapter *sc)
4953 {
4954 	int rc;
4955 	uint32_t param[2], val[2];
4956 
4957 	t4_get_version_info(sc);
4958 
4959 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
4960 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
4961 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
4962 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
4963 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
4964 
4965 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
4966 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
4967 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
4968 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
4969 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
4970 
4971 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
4972 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
4973 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
4974 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
4975 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
4976 
4977 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
4978 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
4979 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
4980 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
4981 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
4982 
4983 	param[0] = FW_PARAM_DEV(PORTVEC);
4984 	param[1] = FW_PARAM_DEV(CCLK);
4985 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4986 	if (rc != 0) {
4987 		device_printf(sc->dev,
4988 		    "failed to query parameters (pre_init): %d.\n", rc);
4989 		return (rc);
4990 	}
4991 
4992 	sc->params.portvec = val[0];
4993 	sc->params.nports = bitcount32(val[0]);
4994 	sc->params.vpd.cclk = val[1];
4995 
4996 	/* Read device log parameters. */
4997 	rc = -t4_init_devlog_params(sc, 1);
4998 	if (rc == 0)
4999 		fixup_devlog_params(sc);
5000 	else {
5001 		device_printf(sc->dev,
5002 		    "failed to get devlog parameters: %d.\n", rc);
5003 		rc = 0;	/* devlog isn't critical for device operation */
5004 	}
5005 
5006 	return (rc);
5007 }
5008 
5009 /*
5010  * Any params that need to be set before FW_INITIALIZE.
5011  */
5012 static int
5013 set_params__pre_init(struct adapter *sc)
5014 {
5015 	int rc = 0;
5016 	uint32_t param, val;
5017 
5018 	if (chip_id(sc) >= CHELSIO_T6) {
5019 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5020 		val = 1;
5021 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5022 		/* firmwares < 1.20.1.0 do not have this param. */
5023 		if (rc == FW_EINVAL &&
5024 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5025 			rc = 0;
5026 		}
5027 		if (rc != 0) {
5028 			device_printf(sc->dev,
5029 			    "failed to enable high priority filters :%d.\n",
5030 			    rc);
5031 		}
5032 	}
5033 
5034 	/* Enable opaque VIIDs with firmwares that support it. */
5035 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5036 	val = 1;
5037 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5038 	if (rc == 0 && val == 1)
5039 		sc->params.viid_smt_extn_support = true;
5040 	else
5041 		sc->params.viid_smt_extn_support = false;
5042 
5043 	return (rc);
5044 }
5045 
5046 /*
5047  * Retrieve various parameters that are of interest to the driver.  The device
5048  * has been initialized by the firmware at this point.
5049  */
5050 static int
5051 get_params__post_init(struct adapter *sc)
5052 {
5053 	int rc;
5054 	uint32_t param[7], val[7];
5055 	struct fw_caps_config_cmd caps;
5056 
5057 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5058 	param[1] = FW_PARAM_PFVF(EQ_START);
5059 	param[2] = FW_PARAM_PFVF(FILTER_START);
5060 	param[3] = FW_PARAM_PFVF(FILTER_END);
5061 	param[4] = FW_PARAM_PFVF(L2T_START);
5062 	param[5] = FW_PARAM_PFVF(L2T_END);
5063 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5064 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5065 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5066 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5067 	if (rc != 0) {
5068 		device_printf(sc->dev,
5069 		    "failed to query parameters (post_init): %d.\n", rc);
5070 		return (rc);
5071 	}
5072 
5073 	sc->sge.iq_start = val[0];
5074 	sc->sge.eq_start = val[1];
5075 	if ((int)val[3] > (int)val[2]) {
5076 		sc->tids.ftid_base = val[2];
5077 		sc->tids.ftid_end = val[3];
5078 		sc->tids.nftids = val[3] - val[2] + 1;
5079 	}
5080 	sc->vres.l2t.start = val[4];
5081 	sc->vres.l2t.size = val[5] - val[4] + 1;
5082 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5083 	    ("%s: L2 table size (%u) larger than expected (%u)",
5084 	    __func__, sc->vres.l2t.size, L2T_SIZE));
5085 	sc->params.core_vdd = val[6];
5086 
5087 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5088 	param[1] = FW_PARAM_PFVF(EQ_END);
5089 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5090 	if (rc != 0) {
5091 		device_printf(sc->dev,
5092 		    "failed to query parameters (post_init2): %d.\n", rc);
5093 		return (rc);
5094 	}
5095 	MPASS((int)val[0] >= sc->sge.iq_start);
5096 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5097 	MPASS((int)val[1] >= sc->sge.eq_start);
5098 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5099 
5100 	if (chip_id(sc) >= CHELSIO_T6) {
5101 
5102 		sc->tids.tid_base = t4_read_reg(sc,
5103 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5104 
5105 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5106 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5107 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5108 		if (rc != 0) {
5109 			device_printf(sc->dev,
5110 			   "failed to query hpfilter parameters: %d.\n", rc);
5111 			return (rc);
5112 		}
5113 		if ((int)val[1] > (int)val[0]) {
5114 			sc->tids.hpftid_base = val[0];
5115 			sc->tids.hpftid_end = val[1];
5116 			sc->tids.nhpftids = val[1] - val[0] + 1;
5117 
5118 			/*
5119 			 * These should go off if the layout changes and the
5120 			 * driver needs to catch up.
5121 			 */
5122 			MPASS(sc->tids.hpftid_base == 0);
5123 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5124 		}
5125 
5126 		param[0] = FW_PARAM_PFVF(RAWF_START);
5127 		param[1] = FW_PARAM_PFVF(RAWF_END);
5128 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5129 		if (rc != 0) {
5130 			device_printf(sc->dev,
5131 			   "failed to query rawf parameters: %d.\n", rc);
5132 			return (rc);
5133 		}
5134 		if ((int)val[1] > (int)val[0]) {
5135 			sc->rawf_base = val[0];
5136 			sc->nrawf = val[1] - val[0] + 1;
5137 		}
5138 	}
5139 
5140 	/*
5141 	 * MPSBGMAP is queried separately because only recent firmwares support
5142 	 * it as a parameter and we don't want the compound query above to fail
5143 	 * on older firmwares.
5144 	 */
5145 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5146 	val[0] = 0;
5147 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5148 	if (rc == 0)
5149 		sc->params.mps_bg_map = val[0];
5150 	else
5151 		sc->params.mps_bg_map = 0;
5152 
5153 	/*
5154 	 * Determine whether the firmware supports the filter2 work request.
5155 	 * This is queried separately for the same reason as MPSBGMAP above.
5156 	 */
5157 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5158 	val[0] = 0;
5159 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5160 	if (rc == 0)
5161 		sc->params.filter2_wr_support = val[0] != 0;
5162 	else
5163 		sc->params.filter2_wr_support = 0;
5164 
5165 	/*
5166 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5167 	 * This is queried separately for the same reason as other params above.
5168 	 */
5169 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5170 	val[0] = 0;
5171 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5172 	if (rc == 0)
5173 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5174 	else
5175 		sc->params.ulptx_memwrite_dsgl = false;
5176 
5177 	/* FW_RI_FR_NSMR_TPTE_WR support */
5178 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5179 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5180 	if (rc == 0)
5181 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5182 	else
5183 		sc->params.fr_nsmr_tpte_wr_support = false;
5184 
5185 	/* Support for 512 SGL entries per FR MR. */
5186 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5187 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5188 	if (rc == 0)
5189 		sc->params.dev_512sgl_mr = val[0] != 0;
5190 	else
5191 		sc->params.dev_512sgl_mr = false;
5192 
5193 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5194 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5195 	if (rc == 0)
5196 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5197 	else
5198 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5199 
5200 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5201 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5202 	if (rc == 0) {
5203 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5204 		sc->params.nsched_cls = val[0];
5205 	} else
5206 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5207 
5208 	/* get capabilites */
5209 	bzero(&caps, sizeof(caps));
5210 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5211 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5212 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5213 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5214 	if (rc != 0) {
5215 		device_printf(sc->dev,
5216 		    "failed to get card capabilities: %d.\n", rc);
5217 		return (rc);
5218 	}
5219 
5220 #define READ_CAPS(x) do { \
5221 	sc->x = htobe16(caps.x); \
5222 } while (0)
5223 	READ_CAPS(nbmcaps);
5224 	READ_CAPS(linkcaps);
5225 	READ_CAPS(switchcaps);
5226 	READ_CAPS(niccaps);
5227 	READ_CAPS(toecaps);
5228 	READ_CAPS(rdmacaps);
5229 	READ_CAPS(cryptocaps);
5230 	READ_CAPS(iscsicaps);
5231 	READ_CAPS(fcoecaps);
5232 
5233 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5234 		MPASS(chip_id(sc) > CHELSIO_T4);
5235 		MPASS(sc->toecaps == 0);
5236 		sc->toecaps = 0;
5237 
5238 		param[0] = FW_PARAM_DEV(NTID);
5239 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5240 		if (rc != 0) {
5241 			device_printf(sc->dev,
5242 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5243 			return (rc);
5244 		}
5245 		sc->tids.ntids = val[0];
5246 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5247 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5248 			sc->tids.ntids -= sc->tids.nhpftids;
5249 		}
5250 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5251 		sc->params.hash_filter = 1;
5252 	}
5253 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5254 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5255 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5256 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5257 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5258 		if (rc != 0) {
5259 			device_printf(sc->dev,
5260 			    "failed to query NIC parameters: %d.\n", rc);
5261 			return (rc);
5262 		}
5263 		if ((int)val[1] > (int)val[0]) {
5264 			sc->tids.etid_base = val[0];
5265 			sc->tids.etid_end = val[1];
5266 			sc->tids.netids = val[1] - val[0] + 1;
5267 			sc->params.eo_wr_cred = val[2];
5268 			sc->params.ethoffload = 1;
5269 		}
5270 	}
5271 	if (sc->toecaps) {
5272 		/* query offload-related parameters */
5273 		param[0] = FW_PARAM_DEV(NTID);
5274 		param[1] = FW_PARAM_PFVF(SERVER_START);
5275 		param[2] = FW_PARAM_PFVF(SERVER_END);
5276 		param[3] = FW_PARAM_PFVF(TDDP_START);
5277 		param[4] = FW_PARAM_PFVF(TDDP_END);
5278 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5279 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5280 		if (rc != 0) {
5281 			device_printf(sc->dev,
5282 			    "failed to query TOE parameters: %d.\n", rc);
5283 			return (rc);
5284 		}
5285 		sc->tids.ntids = val[0];
5286 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5287 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5288 			sc->tids.ntids -= sc->tids.nhpftids;
5289 		}
5290 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5291 		if ((int)val[2] > (int)val[1]) {
5292 			sc->tids.stid_base = val[1];
5293 			sc->tids.nstids = val[2] - val[1] + 1;
5294 		}
5295 		sc->vres.ddp.start = val[3];
5296 		sc->vres.ddp.size = val[4] - val[3] + 1;
5297 		sc->params.ofldq_wr_cred = val[5];
5298 		sc->params.offload = 1;
5299 	} else {
5300 		/*
5301 		 * The firmware attempts memfree TOE configuration for -SO cards
5302 		 * and will report toecaps=0 if it runs out of resources (this
5303 		 * depends on the config file).  It may not report 0 for other
5304 		 * capabilities dependent on the TOE in this case.  Set them to
5305 		 * 0 here so that the driver doesn't bother tracking resources
5306 		 * that will never be used.
5307 		 */
5308 		sc->iscsicaps = 0;
5309 		sc->rdmacaps = 0;
5310 	}
5311 	if (sc->rdmacaps) {
5312 		param[0] = FW_PARAM_PFVF(STAG_START);
5313 		param[1] = FW_PARAM_PFVF(STAG_END);
5314 		param[2] = FW_PARAM_PFVF(RQ_START);
5315 		param[3] = FW_PARAM_PFVF(RQ_END);
5316 		param[4] = FW_PARAM_PFVF(PBL_START);
5317 		param[5] = FW_PARAM_PFVF(PBL_END);
5318 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5319 		if (rc != 0) {
5320 			device_printf(sc->dev,
5321 			    "failed to query RDMA parameters(1): %d.\n", rc);
5322 			return (rc);
5323 		}
5324 		sc->vres.stag.start = val[0];
5325 		sc->vres.stag.size = val[1] - val[0] + 1;
5326 		sc->vres.rq.start = val[2];
5327 		sc->vres.rq.size = val[3] - val[2] + 1;
5328 		sc->vres.pbl.start = val[4];
5329 		sc->vres.pbl.size = val[5] - val[4] + 1;
5330 
5331 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5332 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5333 		param[2] = FW_PARAM_PFVF(CQ_START);
5334 		param[3] = FW_PARAM_PFVF(CQ_END);
5335 		param[4] = FW_PARAM_PFVF(OCQ_START);
5336 		param[5] = FW_PARAM_PFVF(OCQ_END);
5337 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5338 		if (rc != 0) {
5339 			device_printf(sc->dev,
5340 			    "failed to query RDMA parameters(2): %d.\n", rc);
5341 			return (rc);
5342 		}
5343 		sc->vres.qp.start = val[0];
5344 		sc->vres.qp.size = val[1] - val[0] + 1;
5345 		sc->vres.cq.start = val[2];
5346 		sc->vres.cq.size = val[3] - val[2] + 1;
5347 		sc->vres.ocq.start = val[4];
5348 		sc->vres.ocq.size = val[5] - val[4] + 1;
5349 
5350 		param[0] = FW_PARAM_PFVF(SRQ_START);
5351 		param[1] = FW_PARAM_PFVF(SRQ_END);
5352 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5353 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5354 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5355 		if (rc != 0) {
5356 			device_printf(sc->dev,
5357 			    "failed to query RDMA parameters(3): %d.\n", rc);
5358 			return (rc);
5359 		}
5360 		sc->vres.srq.start = val[0];
5361 		sc->vres.srq.size = val[1] - val[0] + 1;
5362 		sc->params.max_ordird_qp = val[2];
5363 		sc->params.max_ird_adapter = val[3];
5364 	}
5365 	if (sc->iscsicaps) {
5366 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5367 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5368 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5369 		if (rc != 0) {
5370 			device_printf(sc->dev,
5371 			    "failed to query iSCSI parameters: %d.\n", rc);
5372 			return (rc);
5373 		}
5374 		sc->vres.iscsi.start = val[0];
5375 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5376 	}
5377 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5378 		param[0] = FW_PARAM_PFVF(TLS_START);
5379 		param[1] = FW_PARAM_PFVF(TLS_END);
5380 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5381 		if (rc != 0) {
5382 			device_printf(sc->dev,
5383 			    "failed to query TLS parameters: %d.\n", rc);
5384 			return (rc);
5385 		}
5386 		sc->vres.key.start = val[0];
5387 		sc->vres.key.size = val[1] - val[0] + 1;
5388 	}
5389 
5390 	/*
5391 	 * We've got the params we wanted to query directly from the firmware.
5392 	 * Grab some others via other means.
5393 	 */
5394 	t4_init_sge_params(sc);
5395 	t4_init_tp_params(sc);
5396 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5397 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5398 
5399 	rc = t4_verify_chip_settings(sc);
5400 	if (rc != 0)
5401 		return (rc);
5402 	t4_init_rx_buf_info(sc);
5403 
5404 	return (rc);
5405 }
5406 
5407 #ifdef KERN_TLS
5408 static void
5409 ktls_tick(void *arg)
5410 {
5411 	struct adapter *sc;
5412 	uint32_t tstamp;
5413 
5414 	sc = arg;
5415 	tstamp = tcp_ts_getticks();
5416 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5417 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5418 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5419 }
5420 
5421 static int
5422 t4_config_kern_tls(struct adapter *sc, bool enable)
5423 {
5424 	int rc;
5425 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5426 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5427 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5428 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5429 
5430 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5431 	if (rc != 0) {
5432 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5433 		    enable ?  "enable" : "disable", rc);
5434 		return (rc);
5435 	}
5436 
5437 	if (enable) {
5438 		sc->flags |= KERN_TLS_ON;
5439 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5440 		    C_HARDCLOCK);
5441 	} else {
5442 		sc->flags &= ~KERN_TLS_ON;
5443 		callout_stop(&sc->ktls_tick);
5444 	}
5445 
5446 	return (rc);
5447 }
5448 #endif
5449 
5450 static int
5451 set_params__post_init(struct adapter *sc)
5452 {
5453 	uint32_t mask, param, val;
5454 #ifdef TCP_OFFLOAD
5455 	int i, v, shift;
5456 #endif
5457 
5458 	/* ask for encapsulated CPLs */
5459 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5460 	val = 1;
5461 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5462 
5463 	/* Enable 32b port caps if the firmware supports it. */
5464 	param = FW_PARAM_PFVF(PORT_CAPS32);
5465 	val = 1;
5466 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5467 		sc->params.port_caps32 = 1;
5468 
5469 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5470 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5471 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5472 	    V_MASKFILTER(val - 1));
5473 
5474 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5475 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5476 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5477 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5478 	val = 0;
5479 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5480 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5481 		    F_ATTACKFILTERENABLE);
5482 		val |= F_DROPERRORATTACK;
5483 	}
5484 	if (t4_drop_ip_fragments != 0) {
5485 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5486 		    F_FRAGMENTDROP);
5487 		val |= F_DROPERRORFRAG;
5488 	}
5489 	if (t4_drop_pkts_with_l2_errors != 0)
5490 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5491 	if (t4_drop_pkts_with_l3_errors != 0) {
5492 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5493 		    F_DROPERRORCSUMIP;
5494 	}
5495 	if (t4_drop_pkts_with_l4_errors != 0) {
5496 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5497 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5498 	}
5499 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5500 
5501 #ifdef TCP_OFFLOAD
5502 	/*
5503 	 * Override the TOE timers with user provided tunables.  This is not the
5504 	 * recommended way to change the timers (the firmware config file is) so
5505 	 * these tunables are not documented.
5506 	 *
5507 	 * All the timer tunables are in microseconds.
5508 	 */
5509 	if (t4_toe_keepalive_idle != 0) {
5510 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5511 		v &= M_KEEPALIVEIDLE;
5512 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5513 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5514 	}
5515 	if (t4_toe_keepalive_interval != 0) {
5516 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5517 		v &= M_KEEPALIVEINTVL;
5518 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5519 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5520 	}
5521 	if (t4_toe_keepalive_count != 0) {
5522 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5523 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5524 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5525 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5526 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5527 	}
5528 	if (t4_toe_rexmt_min != 0) {
5529 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5530 		v &= M_RXTMIN;
5531 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5532 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5533 	}
5534 	if (t4_toe_rexmt_max != 0) {
5535 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5536 		v &= M_RXTMAX;
5537 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5538 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5539 	}
5540 	if (t4_toe_rexmt_count != 0) {
5541 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5542 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5543 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5544 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5545 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5546 	}
5547 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5548 		if (t4_toe_rexmt_backoff[i] != -1) {
5549 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5550 			shift = (i & 3) << 3;
5551 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5552 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5553 		}
5554 	}
5555 #endif
5556 
5557 #ifdef KERN_TLS
5558 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
5559 	    sc->toecaps & FW_CAPS_CONFIG_TOE) {
5560 		/*
5561 		 * Limit TOE connections to 2 reassembly "islands".  This is
5562 		 * required for TOE TLS connections to downgrade to plain TOE
5563 		 * connections if an unsupported TLS version or ciphersuite is
5564 		 * used.
5565 		 */
5566 		t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG,
5567 		    V_PASSMODE(M_PASSMODE), V_PASSMODE(2));
5568 		if (is_ktls(sc)) {
5569 			sc->tlst.inline_keys = t4_tls_inline_keys;
5570 			sc->tlst.combo_wrs = t4_tls_combo_wrs;
5571 			if (t4_kern_tls != 0)
5572 				t4_config_kern_tls(sc, true);
5573 		}
5574 	}
5575 #endif
5576 	return (0);
5577 }
5578 
5579 #undef FW_PARAM_PFVF
5580 #undef FW_PARAM_DEV
5581 
5582 static void
5583 t4_set_desc(struct adapter *sc)
5584 {
5585 	char buf[128];
5586 	struct adapter_params *p = &sc->params;
5587 
5588 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
5589 
5590 	device_set_desc_copy(sc->dev, buf);
5591 }
5592 
5593 static inline void
5594 ifmedia_add4(struct ifmedia *ifm, int m)
5595 {
5596 
5597 	ifmedia_add(ifm, m, 0, NULL);
5598 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5599 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5600 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5601 }
5602 
5603 /*
5604  * This is the selected media, which is not quite the same as the active media.
5605  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5606  * and active are not the same, and "media: Ethernet selected" otherwise.
5607  */
5608 static void
5609 set_current_media(struct port_info *pi)
5610 {
5611 	struct link_config *lc;
5612 	struct ifmedia *ifm;
5613 	int mword;
5614 	u_int speed;
5615 
5616 	PORT_LOCK_ASSERT_OWNED(pi);
5617 
5618 	/* Leave current media alone if it's already set to IFM_NONE. */
5619 	ifm = &pi->media;
5620 	if (ifm->ifm_cur != NULL &&
5621 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5622 		return;
5623 
5624 	lc = &pi->link_cfg;
5625 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5626 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5627 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5628 		return;
5629 	}
5630 	mword = IFM_ETHER | IFM_FDX;
5631 	if (lc->requested_fc & PAUSE_TX)
5632 		mword |= IFM_ETH_TXPAUSE;
5633 	if (lc->requested_fc & PAUSE_RX)
5634 		mword |= IFM_ETH_RXPAUSE;
5635 	if (lc->requested_speed == 0)
5636 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5637 	else
5638 		speed = lc->requested_speed;
5639 	mword |= port_mword(pi, speed_to_fwcap(speed));
5640 	ifmedia_set(ifm, mword);
5641 }
5642 
5643 /*
5644  * Returns true if the ifmedia list for the port cannot change.
5645  */
5646 static bool
5647 fixed_ifmedia(struct port_info *pi)
5648 {
5649 
5650 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5651 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5652 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5653 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5654 	    pi->port_type == FW_PORT_TYPE_KX ||
5655 	    pi->port_type == FW_PORT_TYPE_KR ||
5656 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5657 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5658 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5659 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5660 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5661 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5662 }
5663 
5664 static void
5665 build_medialist(struct port_info *pi)
5666 {
5667 	uint32_t ss, speed;
5668 	int unknown, mword, bit;
5669 	struct link_config *lc;
5670 	struct ifmedia *ifm;
5671 
5672 	PORT_LOCK_ASSERT_OWNED(pi);
5673 
5674 	if (pi->flags & FIXED_IFMEDIA)
5675 		return;
5676 
5677 	/*
5678 	 * Rebuild the ifmedia list.
5679 	 */
5680 	ifm = &pi->media;
5681 	ifmedia_removeall(ifm);
5682 	lc = &pi->link_cfg;
5683 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5684 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5685 		MPASS(ss != 0);
5686 no_media:
5687 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5688 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5689 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5690 		return;
5691 	}
5692 
5693 	unknown = 0;
5694 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5695 		speed = 1 << bit;
5696 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5697 		if (ss & speed) {
5698 			mword = port_mword(pi, speed);
5699 			if (mword == IFM_NONE) {
5700 				goto no_media;
5701 			} else if (mword == IFM_UNKNOWN)
5702 				unknown++;
5703 			else
5704 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5705 		}
5706 	}
5707 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5708 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5709 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5710 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5711 
5712 	set_current_media(pi);
5713 }
5714 
5715 /*
5716  * Initialize the requested fields in the link config based on driver tunables.
5717  */
5718 static void
5719 init_link_config(struct port_info *pi)
5720 {
5721 	struct link_config *lc = &pi->link_cfg;
5722 
5723 	PORT_LOCK_ASSERT_OWNED(pi);
5724 	MPASS(lc->pcaps != 0);
5725 
5726 	lc->requested_caps = 0;
5727 	lc->requested_speed = 0;
5728 
5729 	if (t4_autoneg == 0)
5730 		lc->requested_aneg = AUTONEG_DISABLE;
5731 	else if (t4_autoneg == 1)
5732 		lc->requested_aneg = AUTONEG_ENABLE;
5733 	else
5734 		lc->requested_aneg = AUTONEG_AUTO;
5735 
5736 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5737 	    PAUSE_AUTONEG);
5738 
5739 	if (t4_fec & FEC_AUTO)
5740 		lc->requested_fec = FEC_AUTO;
5741 	else if (t4_fec == 0)
5742 		lc->requested_fec = FEC_NONE;
5743 	else {
5744 		/* -1 is handled by the FEC_AUTO block above and not here. */
5745 		lc->requested_fec = t4_fec &
5746 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5747 		if (lc->requested_fec == 0)
5748 			lc->requested_fec = FEC_AUTO;
5749 	}
5750 	lc->force_fec = 0;
5751 	if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
5752 		if (t4_force_fec < 0)
5753 			lc->force_fec = -1;
5754 		else if (t4_force_fec > 0)
5755 			lc->force_fec = 1;
5756 	}
5757 }
5758 
5759 /*
5760  * Makes sure that all requested settings comply with what's supported by the
5761  * port.  Returns the number of settings that were invalid and had to be fixed.
5762  */
5763 static int
5764 fixup_link_config(struct port_info *pi)
5765 {
5766 	int n = 0;
5767 	struct link_config *lc = &pi->link_cfg;
5768 	uint32_t fwspeed;
5769 
5770 	PORT_LOCK_ASSERT_OWNED(pi);
5771 
5772 	/* Speed (when not autonegotiating) */
5773 	if (lc->requested_speed != 0) {
5774 		fwspeed = speed_to_fwcap(lc->requested_speed);
5775 		if ((fwspeed & lc->pcaps) == 0) {
5776 			n++;
5777 			lc->requested_speed = 0;
5778 		}
5779 	}
5780 
5781 	/* Link autonegotiation */
5782 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5783 	    lc->requested_aneg == AUTONEG_DISABLE ||
5784 	    lc->requested_aneg == AUTONEG_AUTO);
5785 	if (lc->requested_aneg == AUTONEG_ENABLE &&
5786 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5787 		n++;
5788 		lc->requested_aneg = AUTONEG_AUTO;
5789 	}
5790 
5791 	/* Flow control */
5792 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5793 	if (lc->requested_fc & PAUSE_TX &&
5794 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5795 		n++;
5796 		lc->requested_fc &= ~PAUSE_TX;
5797 	}
5798 	if (lc->requested_fc & PAUSE_RX &&
5799 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5800 		n++;
5801 		lc->requested_fc &= ~PAUSE_RX;
5802 	}
5803 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
5804 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
5805 		n++;
5806 		lc->requested_fc |= PAUSE_AUTONEG;
5807 	}
5808 
5809 	/* FEC */
5810 	if ((lc->requested_fec & FEC_RS &&
5811 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
5812 	    (lc->requested_fec & FEC_BASER_RS &&
5813 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
5814 		n++;
5815 		lc->requested_fec = FEC_AUTO;
5816 	}
5817 
5818 	return (n);
5819 }
5820 
5821 /*
5822  * Apply the requested L1 settings, which are expected to be valid, to the
5823  * hardware.
5824  */
5825 static int
5826 apply_link_config(struct port_info *pi)
5827 {
5828 	struct adapter *sc = pi->adapter;
5829 	struct link_config *lc = &pi->link_cfg;
5830 	int rc;
5831 
5832 #ifdef INVARIANTS
5833 	ASSERT_SYNCHRONIZED_OP(sc);
5834 	PORT_LOCK_ASSERT_OWNED(pi);
5835 
5836 	if (lc->requested_aneg == AUTONEG_ENABLE)
5837 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
5838 	if (!(lc->requested_fc & PAUSE_AUTONEG))
5839 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
5840 	if (lc->requested_fc & PAUSE_TX)
5841 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
5842 	if (lc->requested_fc & PAUSE_RX)
5843 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
5844 	if (lc->requested_fec & FEC_RS)
5845 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
5846 	if (lc->requested_fec & FEC_BASER_RS)
5847 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
5848 #endif
5849 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5850 	if (rc != 0) {
5851 		/* Don't complain if the VF driver gets back an EPERM. */
5852 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
5853 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
5854 	} else {
5855 		/*
5856 		 * An L1_CFG will almost always result in a link-change event if
5857 		 * the link is up, and the driver will refresh the actual
5858 		 * fec/fc/etc. when the notification is processed.  If the link
5859 		 * is down then the actual settings are meaningless.
5860 		 *
5861 		 * This takes care of the case where a change in the L1 settings
5862 		 * may not result in a notification.
5863 		 */
5864 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
5865 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
5866 	}
5867 	return (rc);
5868 }
5869 
5870 #define FW_MAC_EXACT_CHUNK	7
5871 struct mcaddr_ctx {
5872 	struct ifnet *ifp;
5873 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
5874 	uint64_t hash;
5875 	int i;
5876 	int del;
5877 	int rc;
5878 };
5879 
5880 static u_int
5881 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
5882 {
5883 	struct mcaddr_ctx *ctx = arg;
5884 	struct vi_info *vi = ctx->ifp->if_softc;
5885 	struct port_info *pi = vi->pi;
5886 	struct adapter *sc = pi->adapter;
5887 
5888 	if (ctx->rc < 0)
5889 		return (0);
5890 
5891 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
5892 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
5893 	ctx->i++;
5894 
5895 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
5896 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
5897 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
5898 		if (ctx->rc < 0) {
5899 			int j;
5900 
5901 			for (j = 0; j < ctx->i; j++) {
5902 				if_printf(ctx->ifp,
5903 				    "failed to add mc address"
5904 				    " %02x:%02x:%02x:"
5905 				    "%02x:%02x:%02x rc=%d\n",
5906 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
5907 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
5908 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
5909 				    -ctx->rc);
5910 			}
5911 			return (0);
5912 		}
5913 		ctx->del = 0;
5914 		ctx->i = 0;
5915 	}
5916 
5917 	return (1);
5918 }
5919 
5920 /*
5921  * Program the port's XGMAC based on parameters in ifnet.  The caller also
5922  * indicates which parameters should be programmed (the rest are left alone).
5923  */
5924 int
5925 update_mac_settings(struct ifnet *ifp, int flags)
5926 {
5927 	int rc = 0;
5928 	struct vi_info *vi = ifp->if_softc;
5929 	struct port_info *pi = vi->pi;
5930 	struct adapter *sc = pi->adapter;
5931 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
5932 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
5933 
5934 	ASSERT_SYNCHRONIZED_OP(sc);
5935 	KASSERT(flags, ("%s: not told what to update.", __func__));
5936 
5937 	if (flags & XGMAC_MTU)
5938 		mtu = ifp->if_mtu;
5939 
5940 	if (flags & XGMAC_PROMISC)
5941 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
5942 
5943 	if (flags & XGMAC_ALLMULTI)
5944 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
5945 
5946 	if (flags & XGMAC_VLANEX)
5947 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
5948 
5949 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
5950 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
5951 		    allmulti, 1, vlanex, false);
5952 		if (rc) {
5953 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
5954 			    rc);
5955 			return (rc);
5956 		}
5957 	}
5958 
5959 	if (flags & XGMAC_UCADDR) {
5960 		uint8_t ucaddr[ETHER_ADDR_LEN];
5961 
5962 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
5963 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
5964 		    ucaddr, true, &vi->smt_idx);
5965 		if (rc < 0) {
5966 			rc = -rc;
5967 			if_printf(ifp, "change_mac failed: %d\n", rc);
5968 			return (rc);
5969 		} else {
5970 			vi->xact_addr_filt = rc;
5971 			rc = 0;
5972 		}
5973 	}
5974 
5975 	if (flags & XGMAC_MCADDRS) {
5976 		struct epoch_tracker et;
5977 		struct mcaddr_ctx ctx;
5978 		int j;
5979 
5980 		ctx.ifp = ifp;
5981 		ctx.hash = 0;
5982 		ctx.i = 0;
5983 		ctx.del = 1;
5984 		ctx.rc = 0;
5985 		/*
5986 		 * Unlike other drivers, we accumulate list of pointers into
5987 		 * interface address lists and we need to keep it safe even
5988 		 * after if_foreach_llmaddr() returns, thus we must enter the
5989 		 * network epoch.
5990 		 */
5991 		NET_EPOCH_ENTER(et);
5992 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
5993 		if (ctx.rc < 0) {
5994 			NET_EPOCH_EXIT(et);
5995 			rc = -ctx.rc;
5996 			return (rc);
5997 		}
5998 		if (ctx.i > 0) {
5999 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6000 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6001 			NET_EPOCH_EXIT(et);
6002 			if (rc < 0) {
6003 				rc = -rc;
6004 				for (j = 0; j < ctx.i; j++) {
6005 					if_printf(ifp,
6006 					    "failed to add mcast address"
6007 					    " %02x:%02x:%02x:"
6008 					    "%02x:%02x:%02x rc=%d\n",
6009 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6010 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6011 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6012 					    rc);
6013 				}
6014 				return (rc);
6015 			}
6016 			ctx.del = 0;
6017 		} else
6018 			NET_EPOCH_EXIT(et);
6019 
6020 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6021 		if (rc != 0)
6022 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6023 			    rc);
6024 		if (ctx.del == 0) {
6025 			/* We clobbered the VXLAN entry if there was one. */
6026 			pi->vxlan_tcam_entry = false;
6027 		}
6028 	}
6029 
6030 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6031 	    pi->vxlan_tcam_entry == false) {
6032 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6033 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6034 		    true);
6035 		if (rc < 0) {
6036 			rc = -rc;
6037 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6038 			    rc);
6039 		} else {
6040 			MPASS(rc == sc->rawf_base + pi->port_id);
6041 			rc = 0;
6042 			pi->vxlan_tcam_entry = true;
6043 		}
6044 	}
6045 
6046 	return (rc);
6047 }
6048 
6049 /*
6050  * {begin|end}_synchronized_op must be called from the same thread.
6051  */
6052 int
6053 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6054     char *wmesg)
6055 {
6056 	int rc, pri;
6057 
6058 #ifdef WITNESS
6059 	/* the caller thinks it's ok to sleep, but is it really? */
6060 	if (flags & SLEEP_OK)
6061 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6062 		    "begin_synchronized_op");
6063 #endif
6064 
6065 	if (INTR_OK)
6066 		pri = PCATCH;
6067 	else
6068 		pri = 0;
6069 
6070 	ADAPTER_LOCK(sc);
6071 	for (;;) {
6072 
6073 		if (vi && IS_DOOMED(vi)) {
6074 			rc = ENXIO;
6075 			goto done;
6076 		}
6077 
6078 		if (!IS_BUSY(sc)) {
6079 			rc = 0;
6080 			break;
6081 		}
6082 
6083 		if (!(flags & SLEEP_OK)) {
6084 			rc = EBUSY;
6085 			goto done;
6086 		}
6087 
6088 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6089 			rc = EINTR;
6090 			goto done;
6091 		}
6092 	}
6093 
6094 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6095 	SET_BUSY(sc);
6096 #ifdef INVARIANTS
6097 	sc->last_op = wmesg;
6098 	sc->last_op_thr = curthread;
6099 	sc->last_op_flags = flags;
6100 #endif
6101 
6102 done:
6103 	if (!(flags & HOLD_LOCK) || rc)
6104 		ADAPTER_UNLOCK(sc);
6105 
6106 	return (rc);
6107 }
6108 
6109 /*
6110  * Tell if_ioctl and if_init that the VI is going away.  This is
6111  * special variant of begin_synchronized_op and must be paired with a
6112  * call to end_synchronized_op.
6113  */
6114 void
6115 doom_vi(struct adapter *sc, struct vi_info *vi)
6116 {
6117 
6118 	ADAPTER_LOCK(sc);
6119 	SET_DOOMED(vi);
6120 	wakeup(&sc->flags);
6121 	while (IS_BUSY(sc))
6122 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6123 	SET_BUSY(sc);
6124 #ifdef INVARIANTS
6125 	sc->last_op = "t4detach";
6126 	sc->last_op_thr = curthread;
6127 	sc->last_op_flags = 0;
6128 #endif
6129 	ADAPTER_UNLOCK(sc);
6130 }
6131 
6132 /*
6133  * {begin|end}_synchronized_op must be called from the same thread.
6134  */
6135 void
6136 end_synchronized_op(struct adapter *sc, int flags)
6137 {
6138 
6139 	if (flags & LOCK_HELD)
6140 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6141 	else
6142 		ADAPTER_LOCK(sc);
6143 
6144 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6145 	CLR_BUSY(sc);
6146 	wakeup(&sc->flags);
6147 	ADAPTER_UNLOCK(sc);
6148 }
6149 
6150 static int
6151 cxgbe_init_synchronized(struct vi_info *vi)
6152 {
6153 	struct port_info *pi = vi->pi;
6154 	struct adapter *sc = pi->adapter;
6155 	struct ifnet *ifp = vi->ifp;
6156 	int rc = 0, i;
6157 	struct sge_txq *txq;
6158 
6159 	ASSERT_SYNCHRONIZED_OP(sc);
6160 
6161 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6162 		return (0);	/* already running */
6163 
6164 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6165 		return (rc);	/* error message displayed already */
6166 
6167 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6168 		return (rc); /* error message displayed already */
6169 
6170 	rc = update_mac_settings(ifp, XGMAC_ALL);
6171 	if (rc)
6172 		goto done;	/* error message displayed already */
6173 
6174 	PORT_LOCK(pi);
6175 	if (pi->up_vis == 0) {
6176 		t4_update_port_info(pi);
6177 		fixup_link_config(pi);
6178 		build_medialist(pi);
6179 		apply_link_config(pi);
6180 	}
6181 
6182 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6183 	if (rc != 0) {
6184 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6185 		PORT_UNLOCK(pi);
6186 		goto done;
6187 	}
6188 
6189 	/*
6190 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6191 	 * if this changes.
6192 	 */
6193 
6194 	for_each_txq(vi, i, txq) {
6195 		TXQ_LOCK(txq);
6196 		txq->eq.flags |= EQ_ENABLED;
6197 		TXQ_UNLOCK(txq);
6198 	}
6199 
6200 	/*
6201 	 * The first iq of the first port to come up is used for tracing.
6202 	 */
6203 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6204 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6205 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6206 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6207 		    V_QUEUENUMBER(sc->traceq));
6208 		pi->flags |= HAS_TRACEQ;
6209 	}
6210 
6211 	/* all ok */
6212 	pi->up_vis++;
6213 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6214 	if (pi->link_cfg.link_ok)
6215 		t4_os_link_changed(pi);
6216 	PORT_UNLOCK(pi);
6217 
6218 	mtx_lock(&vi->tick_mtx);
6219 	if (ifp->if_get_counter == vi_get_counter)
6220 		callout_reset(&vi->tick, hz, vi_tick, vi);
6221 	else
6222 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6223 	mtx_unlock(&vi->tick_mtx);
6224 done:
6225 	if (rc != 0)
6226 		cxgbe_uninit_synchronized(vi);
6227 
6228 	return (rc);
6229 }
6230 
6231 /*
6232  * Idempotent.
6233  */
6234 static int
6235 cxgbe_uninit_synchronized(struct vi_info *vi)
6236 {
6237 	struct port_info *pi = vi->pi;
6238 	struct adapter *sc = pi->adapter;
6239 	struct ifnet *ifp = vi->ifp;
6240 	int rc, i;
6241 	struct sge_txq *txq;
6242 
6243 	ASSERT_SYNCHRONIZED_OP(sc);
6244 
6245 	if (!(vi->flags & VI_INIT_DONE)) {
6246 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6247 			KASSERT(0, ("uninited VI is running"));
6248 			if_printf(ifp, "uninited VI with running ifnet.  "
6249 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6250 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
6251 			    ifp->if_drv_flags);
6252 		}
6253 		return (0);
6254 	}
6255 
6256 	/*
6257 	 * Disable the VI so that all its data in either direction is discarded
6258 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6259 	 * tick) intact as the TP can deliver negative advice or data that it's
6260 	 * holding in its RAM (for an offloaded connection) even after the VI is
6261 	 * disabled.
6262 	 */
6263 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6264 	if (rc) {
6265 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6266 		return (rc);
6267 	}
6268 
6269 	for_each_txq(vi, i, txq) {
6270 		TXQ_LOCK(txq);
6271 		txq->eq.flags &= ~EQ_ENABLED;
6272 		TXQ_UNLOCK(txq);
6273 	}
6274 
6275 	mtx_lock(&vi->tick_mtx);
6276 	callout_stop(&vi->tick);
6277 	mtx_unlock(&vi->tick_mtx);
6278 
6279 	PORT_LOCK(pi);
6280 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6281 		PORT_UNLOCK(pi);
6282 		return (0);
6283 	}
6284 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6285 	pi->up_vis--;
6286 	if (pi->up_vis > 0) {
6287 		PORT_UNLOCK(pi);
6288 		return (0);
6289 	}
6290 
6291 	pi->link_cfg.link_ok = false;
6292 	pi->link_cfg.speed = 0;
6293 	pi->link_cfg.link_down_rc = 255;
6294 	t4_os_link_changed(pi);
6295 	PORT_UNLOCK(pi);
6296 
6297 	return (0);
6298 }
6299 
6300 /*
6301  * It is ok for this function to fail midway and return right away.  t4_detach
6302  * will walk the entire sc->irq list and clean up whatever is valid.
6303  */
6304 int
6305 t4_setup_intr_handlers(struct adapter *sc)
6306 {
6307 	int rc, rid, p, q, v;
6308 	char s[8];
6309 	struct irq *irq;
6310 	struct port_info *pi;
6311 	struct vi_info *vi;
6312 	struct sge *sge = &sc->sge;
6313 	struct sge_rxq *rxq;
6314 #ifdef TCP_OFFLOAD
6315 	struct sge_ofld_rxq *ofld_rxq;
6316 #endif
6317 #ifdef DEV_NETMAP
6318 	struct sge_nm_rxq *nm_rxq;
6319 #endif
6320 #ifdef RSS
6321 	int nbuckets = rss_getnumbuckets();
6322 #endif
6323 
6324 	/*
6325 	 * Setup interrupts.
6326 	 */
6327 	irq = &sc->irq[0];
6328 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6329 	if (forwarding_intr_to_fwq(sc))
6330 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6331 
6332 	/* Multiple interrupts. */
6333 	if (sc->flags & IS_VF)
6334 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6335 		    ("%s: too few intr.", __func__));
6336 	else
6337 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6338 		    ("%s: too few intr.", __func__));
6339 
6340 	/* The first one is always error intr on PFs */
6341 	if (!(sc->flags & IS_VF)) {
6342 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6343 		if (rc != 0)
6344 			return (rc);
6345 		irq++;
6346 		rid++;
6347 	}
6348 
6349 	/* The second one is always the firmware event queue (first on VFs) */
6350 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6351 	if (rc != 0)
6352 		return (rc);
6353 	irq++;
6354 	rid++;
6355 
6356 	for_each_port(sc, p) {
6357 		pi = sc->port[p];
6358 		for_each_vi(pi, v, vi) {
6359 			vi->first_intr = rid - 1;
6360 
6361 			if (vi->nnmrxq > 0) {
6362 				int n = max(vi->nrxq, vi->nnmrxq);
6363 
6364 				rxq = &sge->rxq[vi->first_rxq];
6365 #ifdef DEV_NETMAP
6366 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6367 #endif
6368 				for (q = 0; q < n; q++) {
6369 					snprintf(s, sizeof(s), "%x%c%x", p,
6370 					    'a' + v, q);
6371 					if (q < vi->nrxq)
6372 						irq->rxq = rxq++;
6373 #ifdef DEV_NETMAP
6374 					if (q < vi->nnmrxq)
6375 						irq->nm_rxq = nm_rxq++;
6376 
6377 					if (irq->nm_rxq != NULL &&
6378 					    irq->rxq == NULL) {
6379 						/* Netmap rx only */
6380 						rc = t4_alloc_irq(sc, irq, rid,
6381 						    t4_nm_intr, irq->nm_rxq, s);
6382 					}
6383 					if (irq->nm_rxq != NULL &&
6384 					    irq->rxq != NULL) {
6385 						/* NIC and Netmap rx */
6386 						rc = t4_alloc_irq(sc, irq, rid,
6387 						    t4_vi_intr, irq, s);
6388 					}
6389 #endif
6390 					if (irq->rxq != NULL &&
6391 					    irq->nm_rxq == NULL) {
6392 						/* NIC rx only */
6393 						rc = t4_alloc_irq(sc, irq, rid,
6394 						    t4_intr, irq->rxq, s);
6395 					}
6396 					if (rc != 0)
6397 						return (rc);
6398 #ifdef RSS
6399 					if (q < vi->nrxq) {
6400 						bus_bind_intr(sc->dev, irq->res,
6401 						    rss_getcpu(q % nbuckets));
6402 					}
6403 #endif
6404 					irq++;
6405 					rid++;
6406 					vi->nintr++;
6407 				}
6408 			} else {
6409 				for_each_rxq(vi, q, rxq) {
6410 					snprintf(s, sizeof(s), "%x%c%x", p,
6411 					    'a' + v, q);
6412 					rc = t4_alloc_irq(sc, irq, rid,
6413 					    t4_intr, rxq, s);
6414 					if (rc != 0)
6415 						return (rc);
6416 #ifdef RSS
6417 					bus_bind_intr(sc->dev, irq->res,
6418 					    rss_getcpu(q % nbuckets));
6419 #endif
6420 					irq++;
6421 					rid++;
6422 					vi->nintr++;
6423 				}
6424 			}
6425 #ifdef TCP_OFFLOAD
6426 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6427 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6428 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6429 				    ofld_rxq, s);
6430 				if (rc != 0)
6431 					return (rc);
6432 				irq++;
6433 				rid++;
6434 				vi->nintr++;
6435 			}
6436 #endif
6437 		}
6438 	}
6439 	MPASS(irq == &sc->irq[sc->intr_count]);
6440 
6441 	return (0);
6442 }
6443 
6444 static void
6445 write_global_rss_key(struct adapter *sc)
6446 {
6447 #ifdef RSS
6448 	int i;
6449 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6450 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6451 
6452 	CTASSERT(RSS_KEYSIZE == 40);
6453 
6454 	rss_getkey((void *)&raw_rss_key[0]);
6455 	for (i = 0; i < nitems(rss_key); i++) {
6456 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6457 	}
6458 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6459 #endif
6460 }
6461 
6462 /*
6463  * Idempotent.
6464  */
6465 static int
6466 adapter_full_init(struct adapter *sc)
6467 {
6468 	int rc, i;
6469 
6470 	ASSERT_SYNCHRONIZED_OP(sc);
6471 
6472 	if (!(sc->flags & ADAP_SYSCTL_CTX)) {
6473 		sysctl_ctx_init(&sc->ctx);
6474 		sc->flags |= ADAP_SYSCTL_CTX;
6475 	}
6476 
6477 	/*
6478 	 * queues that belong to the adapter (not any particular port).
6479 	 */
6480 	rc = t4_setup_adapter_queues(sc);
6481 	if (rc != 0)
6482 		return (rc);
6483 
6484 	for (i = 0; i < nitems(sc->tq); i++) {
6485 		if (sc->tq[i] != NULL)
6486 			continue;
6487 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6488 		    taskqueue_thread_enqueue, &sc->tq[i]);
6489 		if (sc->tq[i] == NULL) {
6490 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6491 			return (ENOMEM);
6492 		}
6493 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6494 		    device_get_nameunit(sc->dev), i);
6495 	}
6496 
6497 	if (!(sc->flags & IS_VF)) {
6498 		write_global_rss_key(sc);
6499 		t4_intr_enable(sc);
6500 	}
6501 	return (0);
6502 }
6503 
6504 int
6505 adapter_init(struct adapter *sc)
6506 {
6507 	int rc;
6508 
6509 	ASSERT_SYNCHRONIZED_OP(sc);
6510 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6511 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6512 	    ("%s: FULL_INIT_DONE already", __func__));
6513 
6514 	rc = adapter_full_init(sc);
6515 	if (rc != 0)
6516 		adapter_full_uninit(sc);
6517 	else
6518 		sc->flags |= FULL_INIT_DONE;
6519 
6520 	return (rc);
6521 }
6522 
6523 /*
6524  * Idempotent.
6525  */
6526 static void
6527 adapter_full_uninit(struct adapter *sc)
6528 {
6529 	int i;
6530 
6531 	/* Do this before freeing the adapter queues. */
6532 	if (sc->flags & ADAP_SYSCTL_CTX) {
6533 		sysctl_ctx_free(&sc->ctx);
6534 		sc->flags &= ~ADAP_SYSCTL_CTX;
6535 	}
6536 
6537 	t4_teardown_adapter_queues(sc);
6538 
6539 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
6540 		taskqueue_free(sc->tq[i]);
6541 		sc->tq[i] = NULL;
6542 	}
6543 
6544 	sc->flags &= ~FULL_INIT_DONE;
6545 }
6546 
6547 #ifdef RSS
6548 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6549     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6550     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6551     RSS_HASHTYPE_RSS_UDP_IPV6)
6552 
6553 /* Translates kernel hash types to hardware. */
6554 static int
6555 hashconfig_to_hashen(int hashconfig)
6556 {
6557 	int hashen = 0;
6558 
6559 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6560 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6561 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6562 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6563 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6564 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6565 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6566 	}
6567 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6568 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6569 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6570 	}
6571 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6572 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6573 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6574 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6575 
6576 	return (hashen);
6577 }
6578 
6579 /* Translates hardware hash types to kernel. */
6580 static int
6581 hashen_to_hashconfig(int hashen)
6582 {
6583 	int hashconfig = 0;
6584 
6585 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6586 		/*
6587 		 * If UDP hashing was enabled it must have been enabled for
6588 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6589 		 * enabling any 4-tuple hash is nonsense configuration.
6590 		 */
6591 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6592 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6593 
6594 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6595 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6596 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6597 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6598 	}
6599 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6600 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6601 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6602 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6603 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6604 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6605 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6606 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6607 
6608 	return (hashconfig);
6609 }
6610 #endif
6611 
6612 /*
6613  * Idempotent.
6614  */
6615 static int
6616 vi_full_init(struct vi_info *vi)
6617 {
6618 	struct adapter *sc = vi->adapter;
6619 	struct sge_rxq *rxq;
6620 	int rc, i, j;
6621 #ifdef RSS
6622 	int nbuckets = rss_getnumbuckets();
6623 	int hashconfig = rss_gethashconfig();
6624 	int extra;
6625 #endif
6626 
6627 	ASSERT_SYNCHRONIZED_OP(sc);
6628 
6629 	if (!(vi->flags & VI_SYSCTL_CTX)) {
6630 		sysctl_ctx_init(&vi->ctx);
6631 		vi->flags |= VI_SYSCTL_CTX;
6632 	}
6633 
6634 	/*
6635 	 * Allocate tx/rx/fl queues for this VI.
6636 	 */
6637 	rc = t4_setup_vi_queues(vi);
6638 	if (rc != 0)
6639 		return (rc);
6640 
6641 	/*
6642 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6643 	 */
6644 	if (vi->nrxq > vi->rss_size) {
6645 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6646 		    "some queues will never receive traffic.\n", vi->nrxq,
6647 		    vi->rss_size);
6648 	} else if (vi->rss_size % vi->nrxq) {
6649 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6650 		    "expect uneven traffic distribution.\n", vi->nrxq,
6651 		    vi->rss_size);
6652 	}
6653 #ifdef RSS
6654 	if (vi->nrxq != nbuckets) {
6655 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6656 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6657 	}
6658 #endif
6659 	if (vi->rss == NULL)
6660 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6661 		    M_ZERO | M_WAITOK);
6662 	for (i = 0; i < vi->rss_size;) {
6663 #ifdef RSS
6664 		j = rss_get_indirection_to_bucket(i);
6665 		j %= vi->nrxq;
6666 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6667 		vi->rss[i++] = rxq->iq.abs_id;
6668 #else
6669 		for_each_rxq(vi, j, rxq) {
6670 			vi->rss[i++] = rxq->iq.abs_id;
6671 			if (i == vi->rss_size)
6672 				break;
6673 		}
6674 #endif
6675 	}
6676 
6677 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6678 	    vi->rss, vi->rss_size);
6679 	if (rc != 0) {
6680 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6681 		return (rc);
6682 	}
6683 
6684 #ifdef RSS
6685 	vi->hashen = hashconfig_to_hashen(hashconfig);
6686 
6687 	/*
6688 	 * We may have had to enable some hashes even though the global config
6689 	 * wants them disabled.  This is a potential problem that must be
6690 	 * reported to the user.
6691 	 */
6692 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6693 
6694 	/*
6695 	 * If we consider only the supported hash types, then the enabled hashes
6696 	 * are a superset of the requested hashes.  In other words, there cannot
6697 	 * be any supported hash that was requested but not enabled, but there
6698 	 * can be hashes that were not requested but had to be enabled.
6699 	 */
6700 	extra &= SUPPORTED_RSS_HASHTYPES;
6701 	MPASS((extra & hashconfig) == 0);
6702 
6703 	if (extra) {
6704 		CH_ALERT(vi,
6705 		    "global RSS config (0x%x) cannot be accommodated.\n",
6706 		    hashconfig);
6707 	}
6708 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6709 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6710 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6711 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6712 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6713 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6714 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6715 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6716 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6717 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6718 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6719 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6720 #else
6721 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6722 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6723 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6724 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6725 #endif
6726 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6727 	    0, 0);
6728 	if (rc != 0) {
6729 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6730 		return (rc);
6731 	}
6732 
6733 	return (0);
6734 }
6735 
6736 int
6737 vi_init(struct vi_info *vi)
6738 {
6739 	int rc;
6740 
6741 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6742 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6743 	    ("%s: VI_INIT_DONE already", __func__));
6744 
6745 	rc = vi_full_init(vi);
6746 	if (rc != 0)
6747 		vi_full_uninit(vi);
6748 	else
6749 		vi->flags |= VI_INIT_DONE;
6750 
6751 	return (rc);
6752 }
6753 
6754 /*
6755  * Idempotent.
6756  */
6757 static void
6758 vi_full_uninit(struct vi_info *vi)
6759 {
6760 
6761 	if (vi->flags & VI_INIT_DONE) {
6762 		quiesce_vi(vi);
6763 		free(vi->rss, M_CXGBE);
6764 		free(vi->nm_rss, M_CXGBE);
6765 	}
6766 
6767 	/* Do this before freeing the VI queues. */
6768 	if (vi->flags & VI_SYSCTL_CTX) {
6769 		sysctl_ctx_free(&vi->ctx);
6770 		vi->flags &= ~VI_SYSCTL_CTX;
6771 	}
6772 
6773 	t4_teardown_vi_queues(vi);
6774 	vi->flags &= ~VI_INIT_DONE;
6775 }
6776 
6777 static void
6778 quiesce_txq(struct sge_txq *txq)
6779 {
6780 	struct sge_eq *eq = &txq->eq;
6781 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6782 
6783 	MPASS(eq->flags & EQ_SW_ALLOCATED);
6784 	MPASS(!(eq->flags & EQ_ENABLED));
6785 
6786 	/* Wait for the mp_ring to empty. */
6787 	while (!mp_ring_is_idle(txq->r)) {
6788 		mp_ring_check_drainage(txq->r, 4096);
6789 		pause("rquiesce", 1);
6790 	}
6791 	MPASS(txq->txp.npkt == 0);
6792 
6793 	if (eq->flags & EQ_HW_ALLOCATED) {
6794 		/*
6795 		 * Hardware is alive and working normally.  Wait for it to
6796 		 * finish and then wait for the driver to catch up and reclaim
6797 		 * all descriptors.
6798 		 */
6799 		while (spg->cidx != htobe16(eq->pidx))
6800 			pause("equiesce", 1);
6801 		while (eq->cidx != eq->pidx)
6802 			pause("dquiesce", 1);
6803 	} else {
6804 		/*
6805 		 * Hardware is unavailable.  Discard all pending tx and reclaim
6806 		 * descriptors directly.
6807 		 */
6808 		TXQ_LOCK(txq);
6809 		while (eq->cidx != eq->pidx) {
6810 			struct mbuf *m, *nextpkt;
6811 			struct tx_sdesc *txsd;
6812 
6813 			txsd = &txq->sdesc[eq->cidx];
6814 			for (m = txsd->m; m != NULL; m = nextpkt) {
6815 				nextpkt = m->m_nextpkt;
6816 				m->m_nextpkt = NULL;
6817 				m_freem(m);
6818 			}
6819 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
6820 		}
6821 		spg->pidx = spg->cidx = htobe16(eq->cidx);
6822 		TXQ_UNLOCK(txq);
6823 	}
6824 }
6825 
6826 static void
6827 quiesce_wrq(struct sge_wrq *wrq)
6828 {
6829 
6830 	/* XXXTX */
6831 }
6832 
6833 static void
6834 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
6835 {
6836 	/* Synchronize with the interrupt handler */
6837 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
6838 		pause("iqfree", 1);
6839 
6840 	if (fl != NULL) {
6841 		MPASS(iq->flags & IQ_HAS_FL);
6842 
6843 		mtx_lock(&sc->sfl_lock);
6844 		FL_LOCK(fl);
6845 		fl->flags |= FL_DOOMED;
6846 		FL_UNLOCK(fl);
6847 		callout_stop(&sc->sfl_callout);
6848 		mtx_unlock(&sc->sfl_lock);
6849 
6850 		KASSERT((fl->flags & FL_STARVING) == 0,
6851 		    ("%s: still starving", __func__));
6852 
6853 		/* Release all buffers if hardware is no longer available. */
6854 		if (!(iq->flags & IQ_HW_ALLOCATED))
6855 			free_fl_buffers(sc, fl);
6856 	}
6857 }
6858 
6859 /*
6860  * Wait for all activity on all the queues of the VI to complete.  It is assumed
6861  * that no new work is being enqueued by the hardware or the driver.  That part
6862  * should be arranged before calling this function.
6863  */
6864 static void
6865 quiesce_vi(struct vi_info *vi)
6866 {
6867 	int i;
6868 	struct adapter *sc = vi->adapter;
6869 	struct sge_rxq *rxq;
6870 	struct sge_txq *txq;
6871 #ifdef TCP_OFFLOAD
6872 	struct sge_ofld_rxq *ofld_rxq;
6873 #endif
6874 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6875 	struct sge_ofld_txq *ofld_txq;
6876 #endif
6877 
6878 	if (!(vi->flags & VI_INIT_DONE))
6879 		return;
6880 
6881 	for_each_txq(vi, i, txq) {
6882 		quiesce_txq(txq);
6883 	}
6884 
6885 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6886 	for_each_ofld_txq(vi, i, ofld_txq) {
6887 		quiesce_wrq(&ofld_txq->wrq);
6888 	}
6889 #endif
6890 
6891 	for_each_rxq(vi, i, rxq) {
6892 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
6893 	}
6894 
6895 #ifdef TCP_OFFLOAD
6896 	for_each_ofld_rxq(vi, i, ofld_rxq) {
6897 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
6898 	}
6899 #endif
6900 }
6901 
6902 static int
6903 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
6904     driver_intr_t *handler, void *arg, char *name)
6905 {
6906 	int rc;
6907 
6908 	irq->rid = rid;
6909 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
6910 	    RF_SHAREABLE | RF_ACTIVE);
6911 	if (irq->res == NULL) {
6912 		device_printf(sc->dev,
6913 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
6914 		return (ENOMEM);
6915 	}
6916 
6917 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
6918 	    NULL, handler, arg, &irq->tag);
6919 	if (rc != 0) {
6920 		device_printf(sc->dev,
6921 		    "failed to setup interrupt for rid %d, name %s: %d\n",
6922 		    rid, name, rc);
6923 	} else if (name)
6924 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
6925 
6926 	return (rc);
6927 }
6928 
6929 static int
6930 t4_free_irq(struct adapter *sc, struct irq *irq)
6931 {
6932 	if (irq->tag)
6933 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
6934 	if (irq->res)
6935 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
6936 
6937 	bzero(irq, sizeof(*irq));
6938 
6939 	return (0);
6940 }
6941 
6942 static void
6943 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
6944 {
6945 
6946 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
6947 	t4_get_regs(sc, buf, regs->len);
6948 }
6949 
6950 #define	A_PL_INDIR_CMD	0x1f8
6951 
6952 #define	S_PL_AUTOINC	31
6953 #define	M_PL_AUTOINC	0x1U
6954 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
6955 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
6956 
6957 #define	S_PL_VFID	20
6958 #define	M_PL_VFID	0xffU
6959 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
6960 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
6961 
6962 #define	S_PL_ADDR	0
6963 #define	M_PL_ADDR	0xfffffU
6964 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
6965 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
6966 
6967 #define	A_PL_INDIR_DATA	0x1fc
6968 
6969 static uint64_t
6970 read_vf_stat(struct adapter *sc, u_int vin, int reg)
6971 {
6972 	u32 stats[2];
6973 
6974 	if (sc->flags & IS_VF) {
6975 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
6976 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
6977 	} else {
6978 		mtx_assert(&sc->reg_lock, MA_OWNED);
6979 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
6980 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
6981 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
6982 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
6983 	}
6984 	return (((uint64_t)stats[1]) << 32 | stats[0]);
6985 }
6986 
6987 static void
6988 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
6989 {
6990 
6991 #define GET_STAT(name) \
6992 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
6993 
6994 	if (!(sc->flags & IS_VF))
6995 		mtx_lock(&sc->reg_lock);
6996 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
6997 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
6998 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
6999 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7000 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7001 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7002 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7003 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7004 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7005 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7006 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7007 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7008 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7009 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7010 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7011 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7012 	if (!(sc->flags & IS_VF))
7013 		mtx_unlock(&sc->reg_lock);
7014 
7015 #undef GET_STAT
7016 }
7017 
7018 static void
7019 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7020 {
7021 	int reg;
7022 
7023 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7024 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7025 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7026 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7027 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7028 }
7029 
7030 static void
7031 vi_refresh_stats(struct vi_info *vi)
7032 {
7033 	struct timeval tv;
7034 	const struct timeval interval = {0, 250000};	/* 250ms */
7035 
7036 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7037 
7038 	if (!(vi->flags & VI_INIT_DONE) || vi->flags & VI_SKIP_STATS)
7039 		return;
7040 
7041 	getmicrotime(&tv);
7042 	timevalsub(&tv, &interval);
7043 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7044 		return;
7045 
7046 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7047 	getmicrotime(&vi->last_refreshed);
7048 }
7049 
7050 static void
7051 cxgbe_refresh_stats(struct vi_info *vi)
7052 {
7053 	u_int i, v, tnl_cong_drops, chan_map;
7054 	struct timeval tv;
7055 	const struct timeval interval = {0, 250000};	/* 250ms */
7056 	struct port_info *pi;
7057 	struct adapter *sc;
7058 
7059 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7060 
7061 	if (vi->flags & VI_SKIP_STATS)
7062 		return;
7063 
7064 	getmicrotime(&tv);
7065 	timevalsub(&tv, &interval);
7066 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7067 		return;
7068 
7069 	pi = vi->pi;
7070 	sc = vi->adapter;
7071 	tnl_cong_drops = 0;
7072 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7073 	chan_map = pi->rx_e_chan_map;
7074 	while (chan_map) {
7075 		i = ffs(chan_map) - 1;
7076 		mtx_lock(&sc->reg_lock);
7077 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7078 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7079 		mtx_unlock(&sc->reg_lock);
7080 		tnl_cong_drops += v;
7081 		chan_map &= ~(1 << i);
7082 	}
7083 	pi->tnl_cong_drops = tnl_cong_drops;
7084 	getmicrotime(&vi->last_refreshed);
7085 }
7086 
7087 static void
7088 cxgbe_tick(void *arg)
7089 {
7090 	struct vi_info *vi = arg;
7091 
7092 	MPASS(IS_MAIN_VI(vi));
7093 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7094 
7095 	cxgbe_refresh_stats(vi);
7096 	callout_schedule(&vi->tick, hz);
7097 }
7098 
7099 static void
7100 vi_tick(void *arg)
7101 {
7102 	struct vi_info *vi = arg;
7103 
7104 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7105 
7106 	vi_refresh_stats(vi);
7107 	callout_schedule(&vi->tick, hz);
7108 }
7109 
7110 /*
7111  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7112  */
7113 static char *caps_decoder[] = {
7114 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7115 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7116 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7117 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7118 	    "\006HASHFILTER\007ETHOFLD",
7119 	"\20\001TOE",					/* 4: TOE */
7120 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7121 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7122 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7123 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7124 	    "\007T10DIF"
7125 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7126 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7127 	    "\004TLS_HW",
7128 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7129 		    "\004PO_INITIATOR\005PO_TARGET",
7130 };
7131 
7132 void
7133 t4_sysctls(struct adapter *sc)
7134 {
7135 	struct sysctl_ctx_list *ctx;
7136 	struct sysctl_oid *oid;
7137 	struct sysctl_oid_list *children, *c0;
7138 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7139 
7140 	ctx = device_get_sysctl_ctx(sc->dev);
7141 
7142 	/*
7143 	 * dev.t4nex.X.
7144 	 */
7145 	oid = device_get_sysctl_tree(sc->dev);
7146 	c0 = children = SYSCTL_CHILDREN(oid);
7147 
7148 	sc->sc_do_rxcopy = 1;
7149 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7150 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7151 
7152 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7153 	    sc->params.nports, "# of ports");
7154 
7155 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7156 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7157 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7158 	    "available doorbells");
7159 
7160 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7161 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7162 
7163 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7164 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7165 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7166 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7167 
7168 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7169 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7170 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7171 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7172 
7173 	t4_sge_sysctls(sc, ctx, children);
7174 
7175 	sc->lro_timeout = 100;
7176 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7177 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7178 
7179 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7180 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7181 
7182 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7183 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7184 
7185 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7186 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7187 
7188 	if (sc->flags & IS_VF)
7189 		return;
7190 
7191 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7192 	    NULL, chip_rev(sc), "chip hardware revision");
7193 
7194 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7195 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7196 
7197 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7198 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7199 
7200 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7201 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7202 
7203 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7204 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7205 
7206 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7207 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7208 
7209 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7210 	    sc->er_version, 0, "expansion ROM version");
7211 
7212 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7213 	    sc->bs_version, 0, "bootstrap firmware version");
7214 
7215 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7216 	    NULL, sc->params.scfg_vers, "serial config version");
7217 
7218 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7219 	    NULL, sc->params.vpd_vers, "VPD version");
7220 
7221 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7222 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7223 
7224 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7225 	    sc->cfcsum, "config file checksum");
7226 
7227 #define SYSCTL_CAP(name, n, text) \
7228 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7229 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7230 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7231 	    "available " text " capabilities")
7232 
7233 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7234 	SYSCTL_CAP(linkcaps, 1, "link");
7235 	SYSCTL_CAP(switchcaps, 2, "switch");
7236 	SYSCTL_CAP(niccaps, 3, "NIC");
7237 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7238 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7239 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7240 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7241 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7242 #undef SYSCTL_CAP
7243 
7244 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7245 	    NULL, sc->tids.nftids, "number of filters");
7246 
7247 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7248 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7249 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7250 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7251 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7252 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7253 
7254 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7255 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7256 	    sysctl_loadavg, "A",
7257 	    "microprocessor load averages (debug firmwares only)");
7258 
7259 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7260 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7261 	    "I", "core Vdd (in mV)");
7262 
7263 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7264 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7265 	    sysctl_cpus, "A", "local CPUs");
7266 
7267 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7268 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7269 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7270 
7271 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7272 	    &sc->swintr, 0, "software triggered interrupts");
7273 
7274 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7275 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7276 	    "1 = reset adapter, 0 = zero reset counter");
7277 
7278 	/*
7279 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7280 	 */
7281 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7282 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7283 	    "logs and miscellaneous information");
7284 	children = SYSCTL_CHILDREN(oid);
7285 
7286 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7287 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7288 	    sysctl_cctrl, "A", "congestion control");
7289 
7290 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7291 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7292 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7293 
7294 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7295 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7296 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7297 
7298 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7299 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7300 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7301 
7302 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7303 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7304 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7305 
7306 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7307 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7308 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7309 
7310 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7311 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7312 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7313 
7314 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7315 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7316 	    sysctl_cim_la, "A", "CIM logic analyzer");
7317 
7318 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7319 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7320 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7321 
7322 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7323 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7324 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7325 
7326 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7327 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7328 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7329 
7330 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7331 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7332 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7333 
7334 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7335 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7336 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7337 
7338 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7339 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7340 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7341 
7342 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7343 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7344 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7345 
7346 	if (chip_id(sc) > CHELSIO_T4) {
7347 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7348 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7349 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7350 		    "CIM OBQ 6 (SGE0-RX)");
7351 
7352 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7353 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7354 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7355 		    "CIM OBQ 7 (SGE1-RX)");
7356 	}
7357 
7358 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7359 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7360 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7361 
7362 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7363 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7364 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7365 
7366 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7367 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7368 	    sysctl_cpl_stats, "A", "CPL statistics");
7369 
7370 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7371 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7372 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7373 
7374 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7375 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7376 	    sysctl_tid_stats, "A", "tid stats");
7377 
7378 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7379 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7380 	    sysctl_devlog, "A", "firmware's device log");
7381 
7382 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7383 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7384 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7385 
7386 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7387 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7388 	    sysctl_hw_sched, "A", "hardware scheduler ");
7389 
7390 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7391 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7392 	    sysctl_l2t, "A", "hardware L2 table");
7393 
7394 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7395 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7396 	    sysctl_smt, "A", "hardware source MAC table");
7397 
7398 #ifdef INET6
7399 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7400 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7401 	    sysctl_clip, "A", "active CLIP table entries");
7402 #endif
7403 
7404 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7405 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7406 	    sysctl_lb_stats, "A", "loopback statistics");
7407 
7408 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7409 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7410 	    sysctl_meminfo, "A", "memory regions");
7411 
7412 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7413 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7414 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7415 	    "A", "MPS TCAM entries");
7416 
7417 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7418 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7419 	    sysctl_path_mtus, "A", "path MTUs");
7420 
7421 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7422 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7423 	    sysctl_pm_stats, "A", "PM statistics");
7424 
7425 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7426 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7427 	    sysctl_rdma_stats, "A", "RDMA statistics");
7428 
7429 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7430 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7431 	    sysctl_tcp_stats, "A", "TCP statistics");
7432 
7433 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7434 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7435 	    sysctl_tids, "A", "TID information");
7436 
7437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7438 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7439 	    sysctl_tp_err_stats, "A", "TP error statistics");
7440 
7441 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7442 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7443 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7444 
7445 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7446 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7447 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7448 
7449 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7450 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7451 	    sysctl_tp_la, "A", "TP logic analyzer");
7452 
7453 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7454 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7455 	    sysctl_tx_rate, "A", "Tx rate");
7456 
7457 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7458 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7459 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7460 
7461 	if (chip_id(sc) >= CHELSIO_T5) {
7462 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7463 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7464 		    sysctl_wcwr_stats, "A", "write combined work requests");
7465 	}
7466 
7467 #ifdef KERN_TLS
7468 	if (is_ktls(sc)) {
7469 		/*
7470 		 * dev.t4nex.0.tls.
7471 		 */
7472 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7473 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7474 		children = SYSCTL_CHILDREN(oid);
7475 
7476 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7477 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7478 		    "keys in work requests (1) or attempt to store TLS keys "
7479 		    "in card memory.");
7480 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7481 		    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine "
7482 		    "TCB field updates with TLS record work requests.");
7483 	}
7484 #endif
7485 
7486 #ifdef TCP_OFFLOAD
7487 	if (is_offload(sc)) {
7488 		int i;
7489 		char s[4];
7490 
7491 		/*
7492 		 * dev.t4nex.X.toe.
7493 		 */
7494 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7495 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7496 		children = SYSCTL_CHILDREN(oid);
7497 
7498 		sc->tt.cong_algorithm = -1;
7499 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7500 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7501 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7502 		    "3 = highspeed)");
7503 
7504 		sc->tt.sndbuf = -1;
7505 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7506 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7507 
7508 		sc->tt.ddp = 0;
7509 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7510 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7511 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7512 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7513 
7514 		sc->tt.rx_coalesce = -1;
7515 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7516 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7517 
7518 		sc->tt.tls = 0;
7519 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7520 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7521 		    "Inline TLS allowed");
7522 
7523 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
7524 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7525 		    sysctl_tls_rx_ports, "I",
7526 		    "TCP ports that use inline TLS+TOE RX");
7527 
7528 		sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout;
7529 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout",
7530 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7531 		    sysctl_tls_rx_timeout, "I",
7532 		    "Timeout in seconds to downgrade TLS sockets to plain TOE");
7533 
7534 		sc->tt.tx_align = -1;
7535 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7536 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7537 
7538 		sc->tt.tx_zcopy = 0;
7539 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7540 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7541 		    "Enable zero-copy aio_write(2)");
7542 
7543 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7544 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7545 		    "cop_managed_offloading", CTLFLAG_RW,
7546 		    &sc->tt.cop_managed_offloading, 0,
7547 		    "COP (Connection Offload Policy) controls all TOE offload");
7548 
7549 		sc->tt.autorcvbuf_inc = 16 * 1024;
7550 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7551 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7552 		    "autorcvbuf increment");
7553 
7554 		sc->tt.update_hc_on_pmtu_change = 1;
7555 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7556 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7557 		    &sc->tt.update_hc_on_pmtu_change, 0,
7558 		    "Update hostcache entry if the PMTU changes");
7559 
7560 		sc->tt.iso = 1;
7561 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7562 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7563 
7564 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7565 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7566 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7567 
7568 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7569 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7570 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7571 
7572 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7573 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7574 		    sysctl_tp_tick, "A", "DACK tick (us)");
7575 
7576 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7577 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7578 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7579 
7580 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7581 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7582 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7583 		    "Minimum retransmit interval (us)");
7584 
7585 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7586 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7587 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7588 		    "Maximum retransmit interval (us)");
7589 
7590 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7591 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7592 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7593 		    "Persist timer min (us)");
7594 
7595 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7596 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7597 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7598 		    "Persist timer max (us)");
7599 
7600 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7601 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7602 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7603 		    "Keepalive idle timer (us)");
7604 
7605 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7606 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7607 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7608 		    "Keepalive interval timer (us)");
7609 
7610 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7611 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7612 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7613 
7614 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7615 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7616 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7617 		    "FINWAIT2 timer (us)");
7618 
7619 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7620 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7621 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7622 		    "Number of SYN retransmissions before abort");
7623 
7624 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7625 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7626 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7627 		    "Number of retransmissions before abort");
7628 
7629 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7630 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7631 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7632 		    "Number of keepalive probes before abort");
7633 
7634 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7635 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7636 		    "TOE retransmit backoffs");
7637 		children = SYSCTL_CHILDREN(oid);
7638 		for (i = 0; i < 16; i++) {
7639 			snprintf(s, sizeof(s), "%u", i);
7640 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7641 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7642 			    i, sysctl_tp_backoff, "IU",
7643 			    "TOE retransmit backoff");
7644 		}
7645 	}
7646 #endif
7647 }
7648 
7649 void
7650 vi_sysctls(struct vi_info *vi)
7651 {
7652 	struct sysctl_ctx_list *ctx;
7653 	struct sysctl_oid *oid;
7654 	struct sysctl_oid_list *children;
7655 
7656 	ctx = device_get_sysctl_ctx(vi->dev);
7657 
7658 	/*
7659 	 * dev.v?(cxgbe|cxl).X.
7660 	 */
7661 	oid = device_get_sysctl_tree(vi->dev);
7662 	children = SYSCTL_CHILDREN(oid);
7663 
7664 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7665 	    vi->viid, "VI identifer");
7666 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7667 	    &vi->nrxq, 0, "# of rx queues");
7668 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7669 	    &vi->ntxq, 0, "# of tx queues");
7670 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7671 	    &vi->first_rxq, 0, "index of first rx queue");
7672 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7673 	    &vi->first_txq, 0, "index of first tx queue");
7674 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7675 	    vi->rss_base, "start of RSS indirection table");
7676 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7677 	    vi->rss_size, "size of RSS indirection table");
7678 
7679 	if (IS_MAIN_VI(vi)) {
7680 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7681 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7682 		    sysctl_noflowq, "IU",
7683 		    "Reserve queue 0 for non-flowid packets");
7684 	}
7685 
7686 	if (vi->adapter->flags & IS_VF) {
7687 		MPASS(vi->flags & TX_USES_VM_WR);
7688 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7689 		    NULL, 1, "use VM work requests for transmit");
7690 	} else {
7691 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7692 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7693 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7694 	}
7695 
7696 #ifdef TCP_OFFLOAD
7697 	if (vi->nofldrxq != 0) {
7698 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7699 		    &vi->nofldrxq, 0,
7700 		    "# of rx queues for offloaded TCP connections");
7701 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7702 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7703 		    "index of first TOE rx queue");
7704 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7705 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7706 		    sysctl_holdoff_tmr_idx_ofld, "I",
7707 		    "holdoff timer index for TOE queues");
7708 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7709 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7710 		    sysctl_holdoff_pktc_idx_ofld, "I",
7711 		    "holdoff packet counter index for TOE queues");
7712 	}
7713 #endif
7714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7715 	if (vi->nofldtxq != 0) {
7716 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7717 		    &vi->nofldtxq, 0,
7718 		    "# of tx queues for TOE/ETHOFLD");
7719 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7720 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7721 		    "index of first TOE/ETHOFLD tx queue");
7722 	}
7723 #endif
7724 #ifdef DEV_NETMAP
7725 	if (vi->nnmrxq != 0) {
7726 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7727 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7728 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7729 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7730 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7731 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7732 		    "index of first netmap rx queue");
7733 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7734 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7735 		    "index of first netmap tx queue");
7736 	}
7737 #endif
7738 
7739 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7740 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7741 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7742 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7743 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7744 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7745 
7746 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7747 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7748 	    sysctl_qsize_rxq, "I", "rx queue size");
7749 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7750 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7751 	    sysctl_qsize_txq, "I", "tx queue size");
7752 }
7753 
7754 static void
7755 cxgbe_sysctls(struct port_info *pi)
7756 {
7757 	struct sysctl_ctx_list *ctx;
7758 	struct sysctl_oid *oid;
7759 	struct sysctl_oid_list *children, *children2;
7760 	struct adapter *sc = pi->adapter;
7761 	int i;
7762 	char name[16];
7763 	static char *tc_flags = {"\20\1USER"};
7764 
7765 	ctx = device_get_sysctl_ctx(pi->dev);
7766 
7767 	/*
7768 	 * dev.cxgbe.X.
7769 	 */
7770 	oid = device_get_sysctl_tree(pi->dev);
7771 	children = SYSCTL_CHILDREN(oid);
7772 
7773 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7774 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7775 	    sysctl_linkdnrc, "A", "reason why link is down");
7776 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7777 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7778 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7779 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
7780 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7781 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7782 		    sysctl_btphy, "I", "PHY firmware version");
7783 	}
7784 
7785 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7786 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7787 	    sysctl_pause_settings, "A",
7788 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7789 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7790 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7791 	    "FEC in use on the link");
7792 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7793 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7794 	    sysctl_requested_fec, "A",
7795 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7796 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7797 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7798 	    "FEC recommended by the cable/transceiver");
7799 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7800 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7801 	    sysctl_autoneg, "I",
7802 	    "autonegotiation (-1 = not supported)");
7803 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7804 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7805 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7806 
7807 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7808 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7809 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7810 	    &pi->link_cfg.pcaps, 0, "port capabilities");
7811 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7812 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
7813 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7814 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7815 
7816 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7817 	    port_top_speed(pi), "max speed (in Gbps)");
7818 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7819 	    pi->mps_bg_map, "MPS buffer group map");
7820 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7821 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7822 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL,
7823 	    pi->rx_c_chan, "TP rx c-channel");
7824 
7825 	if (sc->flags & IS_VF)
7826 		return;
7827 
7828 	/*
7829 	 * dev.(cxgbe|cxl).X.tc.
7830 	 */
7831 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
7832 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7833 	    "Tx scheduler traffic classes (cl_rl)");
7834 	children2 = SYSCTL_CHILDREN(oid);
7835 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
7836 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
7837 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
7838 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
7839 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
7840 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
7841 	for (i = 0; i < sc->params.nsched_cls; i++) {
7842 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
7843 
7844 		snprintf(name, sizeof(name), "%d", i);
7845 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
7846 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
7847 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
7848 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
7849 		    CTLFLAG_RD, &tc->state, 0, "current state");
7850 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
7851 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
7852 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
7853 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
7854 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
7855 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
7856 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7857 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
7858 		    "traffic class parameters");
7859 	}
7860 
7861 	/*
7862 	 * dev.cxgbe.X.stats.
7863 	 */
7864 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
7865 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
7866 	children = SYSCTL_CHILDREN(oid);
7867 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
7868 	    &pi->tx_parse_error, 0,
7869 	    "# of tx packets with invalid length or # of segments");
7870 
7871 #define T4_REGSTAT(name, stat, desc) \
7872     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
7873         CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
7874 	(is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \
7875 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \
7876         sysctl_handle_t4_reg64, "QU", desc)
7877 
7878 /* We get these from port_stats and they may be stale by up to 1s */
7879 #define T4_PORTSTAT(name, desc) \
7880 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
7881 	    &pi->stats.name, desc)
7882 
7883 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
7884 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
7885 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
7886 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
7887 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
7888 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
7889 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
7890 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
7891 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
7892 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
7893 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
7894 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
7895 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
7896 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
7897 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
7898 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
7899 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
7900 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
7901 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
7902 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
7903 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
7904 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
7905 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
7906 
7907 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
7908 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
7909 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
7910 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
7911 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
7912 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
7913 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
7914 	if (is_t6(sc)) {
7915 		T4_PORTSTAT(rx_fcs_err,
7916 		    "# of frames received with bad FCS since last link up");
7917 	} else {
7918 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
7919 		    "# of frames received with bad FCS");
7920 	}
7921 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
7922 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
7923 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
7924 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
7925 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
7926 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
7927 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
7928 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
7929 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
7930 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
7931 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
7932 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
7933 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
7934 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
7935 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
7936 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
7937 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
7938 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
7939 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
7940 
7941 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
7942 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
7943 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
7944 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
7945 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
7946 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
7947 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
7948 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
7949 
7950 #undef T4_REGSTAT
7951 #undef T4_PORTSTAT
7952 }
7953 
7954 static int
7955 sysctl_int_array(SYSCTL_HANDLER_ARGS)
7956 {
7957 	int rc, *i, space = 0;
7958 	struct sbuf sb;
7959 
7960 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
7961 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
7962 		if (space)
7963 			sbuf_printf(&sb, " ");
7964 		sbuf_printf(&sb, "%d", *i);
7965 		space = 1;
7966 	}
7967 	rc = sbuf_finish(&sb);
7968 	sbuf_delete(&sb);
7969 	return (rc);
7970 }
7971 
7972 static int
7973 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
7974 {
7975 	int rc;
7976 	struct sbuf *sb;
7977 
7978 	rc = sysctl_wire_old_buffer(req, 0);
7979 	if (rc != 0)
7980 		return(rc);
7981 
7982 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7983 	if (sb == NULL)
7984 		return (ENOMEM);
7985 
7986 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
7987 	rc = sbuf_finish(sb);
7988 	sbuf_delete(sb);
7989 
7990 	return (rc);
7991 }
7992 
7993 static int
7994 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
7995 {
7996 	int rc;
7997 	struct sbuf *sb;
7998 
7999 	rc = sysctl_wire_old_buffer(req, 0);
8000 	if (rc != 0)
8001 		return(rc);
8002 
8003 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8004 	if (sb == NULL)
8005 		return (ENOMEM);
8006 
8007 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8008 	rc = sbuf_finish(sb);
8009 	sbuf_delete(sb);
8010 
8011 	return (rc);
8012 }
8013 
8014 static int
8015 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8016 {
8017 	struct port_info *pi = arg1;
8018 	int op = arg2;
8019 	struct adapter *sc = pi->adapter;
8020 	u_int v;
8021 	int rc;
8022 
8023 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8024 	if (rc)
8025 		return (rc);
8026 	if (hw_off_limits(sc))
8027 		rc = ENXIO;
8028 	else {
8029 		/* XXX: magic numbers */
8030 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8031 		    op ? 0x20 : 0xc820, &v);
8032 	}
8033 	end_synchronized_op(sc, 0);
8034 	if (rc)
8035 		return (rc);
8036 	if (op == 0)
8037 		v /= 256;
8038 
8039 	rc = sysctl_handle_int(oidp, &v, 0, req);
8040 	return (rc);
8041 }
8042 
8043 static int
8044 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8045 {
8046 	struct vi_info *vi = arg1;
8047 	int rc, val;
8048 
8049 	val = vi->rsrv_noflowq;
8050 	rc = sysctl_handle_int(oidp, &val, 0, req);
8051 	if (rc != 0 || req->newptr == NULL)
8052 		return (rc);
8053 
8054 	if ((val >= 1) && (vi->ntxq > 1))
8055 		vi->rsrv_noflowq = 1;
8056 	else
8057 		vi->rsrv_noflowq = 0;
8058 
8059 	return (rc);
8060 }
8061 
8062 static int
8063 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8064 {
8065 	struct vi_info *vi = arg1;
8066 	struct adapter *sc = vi->adapter;
8067 	int rc, val, i;
8068 
8069 	MPASS(!(sc->flags & IS_VF));
8070 
8071 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8072 	rc = sysctl_handle_int(oidp, &val, 0, req);
8073 	if (rc != 0 || req->newptr == NULL)
8074 		return (rc);
8075 
8076 	if (val != 0 && val != 1)
8077 		return (EINVAL);
8078 
8079 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8080 	    "t4txvm");
8081 	if (rc)
8082 		return (rc);
8083 	if (hw_off_limits(sc))
8084 		rc = ENXIO;
8085 	else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) {
8086 		/*
8087 		 * We don't want parse_pkt to run with one setting (VF or PF)
8088 		 * and then eth_tx to see a different setting but still use
8089 		 * stale information calculated by parse_pkt.
8090 		 */
8091 		rc = EBUSY;
8092 	} else {
8093 		struct port_info *pi = vi->pi;
8094 		struct sge_txq *txq;
8095 		uint32_t ctrl0;
8096 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8097 
8098 		if (val) {
8099 			vi->flags |= TX_USES_VM_WR;
8100 			vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
8101 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8102 			    V_TXPKT_INTF(pi->tx_chan));
8103 			if (!(sc->flags & IS_VF))
8104 				npkt--;
8105 		} else {
8106 			vi->flags &= ~TX_USES_VM_WR;
8107 			vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
8108 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8109 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8110 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8111 		}
8112 		for_each_txq(vi, i, txq) {
8113 			txq->cpl_ctrl0 = ctrl0;
8114 			txq->txp.max_npkt = npkt;
8115 		}
8116 	}
8117 	end_synchronized_op(sc, LOCK_HELD);
8118 	return (rc);
8119 }
8120 
8121 static int
8122 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8123 {
8124 	struct vi_info *vi = arg1;
8125 	struct adapter *sc = vi->adapter;
8126 	int idx, rc, i;
8127 	struct sge_rxq *rxq;
8128 	uint8_t v;
8129 
8130 	idx = vi->tmr_idx;
8131 
8132 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8133 	if (rc != 0 || req->newptr == NULL)
8134 		return (rc);
8135 
8136 	if (idx < 0 || idx >= SGE_NTIMERS)
8137 		return (EINVAL);
8138 
8139 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8140 	    "t4tmr");
8141 	if (rc)
8142 		return (rc);
8143 
8144 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8145 	for_each_rxq(vi, i, rxq) {
8146 #ifdef atomic_store_rel_8
8147 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8148 #else
8149 		rxq->iq.intr_params = v;
8150 #endif
8151 	}
8152 	vi->tmr_idx = idx;
8153 
8154 	end_synchronized_op(sc, LOCK_HELD);
8155 	return (0);
8156 }
8157 
8158 static int
8159 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8160 {
8161 	struct vi_info *vi = arg1;
8162 	struct adapter *sc = vi->adapter;
8163 	int idx, rc;
8164 
8165 	idx = vi->pktc_idx;
8166 
8167 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8168 	if (rc != 0 || req->newptr == NULL)
8169 		return (rc);
8170 
8171 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8172 		return (EINVAL);
8173 
8174 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8175 	    "t4pktc");
8176 	if (rc)
8177 		return (rc);
8178 
8179 	if (vi->flags & VI_INIT_DONE)
8180 		rc = EBUSY; /* cannot be changed once the queues are created */
8181 	else
8182 		vi->pktc_idx = idx;
8183 
8184 	end_synchronized_op(sc, LOCK_HELD);
8185 	return (rc);
8186 }
8187 
8188 static int
8189 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8190 {
8191 	struct vi_info *vi = arg1;
8192 	struct adapter *sc = vi->adapter;
8193 	int qsize, rc;
8194 
8195 	qsize = vi->qsize_rxq;
8196 
8197 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8198 	if (rc != 0 || req->newptr == NULL)
8199 		return (rc);
8200 
8201 	if (qsize < 128 || (qsize & 7))
8202 		return (EINVAL);
8203 
8204 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8205 	    "t4rxqs");
8206 	if (rc)
8207 		return (rc);
8208 
8209 	if (vi->flags & VI_INIT_DONE)
8210 		rc = EBUSY; /* cannot be changed once the queues are created */
8211 	else
8212 		vi->qsize_rxq = qsize;
8213 
8214 	end_synchronized_op(sc, LOCK_HELD);
8215 	return (rc);
8216 }
8217 
8218 static int
8219 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8220 {
8221 	struct vi_info *vi = arg1;
8222 	struct adapter *sc = vi->adapter;
8223 	int qsize, rc;
8224 
8225 	qsize = vi->qsize_txq;
8226 
8227 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8228 	if (rc != 0 || req->newptr == NULL)
8229 		return (rc);
8230 
8231 	if (qsize < 128 || qsize > 65536)
8232 		return (EINVAL);
8233 
8234 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8235 	    "t4txqs");
8236 	if (rc)
8237 		return (rc);
8238 
8239 	if (vi->flags & VI_INIT_DONE)
8240 		rc = EBUSY; /* cannot be changed once the queues are created */
8241 	else
8242 		vi->qsize_txq = qsize;
8243 
8244 	end_synchronized_op(sc, LOCK_HELD);
8245 	return (rc);
8246 }
8247 
8248 static int
8249 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8250 {
8251 	struct port_info *pi = arg1;
8252 	struct adapter *sc = pi->adapter;
8253 	struct link_config *lc = &pi->link_cfg;
8254 	int rc;
8255 
8256 	if (req->newptr == NULL) {
8257 		struct sbuf *sb;
8258 		static char *bits = "\20\1RX\2TX\3AUTO";
8259 
8260 		rc = sysctl_wire_old_buffer(req, 0);
8261 		if (rc != 0)
8262 			return(rc);
8263 
8264 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8265 		if (sb == NULL)
8266 			return (ENOMEM);
8267 
8268 		if (lc->link_ok) {
8269 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8270 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8271 		} else {
8272 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8273 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8274 		}
8275 		rc = sbuf_finish(sb);
8276 		sbuf_delete(sb);
8277 	} else {
8278 		char s[2];
8279 		int n;
8280 
8281 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8282 		    PAUSE_AUTONEG));
8283 		s[1] = 0;
8284 
8285 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8286 		if (rc != 0)
8287 			return(rc);
8288 
8289 		if (s[1] != 0)
8290 			return (EINVAL);
8291 		if (s[0] < '0' || s[0] > '9')
8292 			return (EINVAL);	/* not a number */
8293 		n = s[0] - '0';
8294 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8295 			return (EINVAL);	/* some other bit is set too */
8296 
8297 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8298 		    "t4PAUSE");
8299 		if (rc)
8300 			return (rc);
8301 		if (!hw_off_limits(sc)) {
8302 			PORT_LOCK(pi);
8303 			lc->requested_fc = n;
8304 			fixup_link_config(pi);
8305 			if (pi->up_vis > 0)
8306 				rc = apply_link_config(pi);
8307 			set_current_media(pi);
8308 			PORT_UNLOCK(pi);
8309 		}
8310 		end_synchronized_op(sc, 0);
8311 	}
8312 
8313 	return (rc);
8314 }
8315 
8316 static int
8317 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8318 {
8319 	struct port_info *pi = arg1;
8320 	struct link_config *lc = &pi->link_cfg;
8321 	int rc;
8322 	struct sbuf *sb;
8323 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8324 
8325 	rc = sysctl_wire_old_buffer(req, 0);
8326 	if (rc != 0)
8327 		return(rc);
8328 
8329 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8330 	if (sb == NULL)
8331 		return (ENOMEM);
8332 	if (lc->link_ok)
8333 		sbuf_printf(sb, "%b", lc->fec, bits);
8334 	else
8335 		sbuf_printf(sb, "no link");
8336 	rc = sbuf_finish(sb);
8337 	sbuf_delete(sb);
8338 
8339 	return (rc);
8340 }
8341 
8342 static int
8343 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8344 {
8345 	struct port_info *pi = arg1;
8346 	struct adapter *sc = pi->adapter;
8347 	struct link_config *lc = &pi->link_cfg;
8348 	int rc;
8349 	int8_t old;
8350 
8351 	if (req->newptr == NULL) {
8352 		struct sbuf *sb;
8353 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8354 		    "\5RSVD3\6auto\7module";
8355 
8356 		rc = sysctl_wire_old_buffer(req, 0);
8357 		if (rc != 0)
8358 			return(rc);
8359 
8360 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8361 		if (sb == NULL)
8362 			return (ENOMEM);
8363 
8364 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8365 		rc = sbuf_finish(sb);
8366 		sbuf_delete(sb);
8367 	} else {
8368 		char s[8];
8369 		int n;
8370 
8371 		snprintf(s, sizeof(s), "%d",
8372 		    lc->requested_fec == FEC_AUTO ? -1 :
8373 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8374 
8375 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8376 		if (rc != 0)
8377 			return(rc);
8378 
8379 		n = strtol(&s[0], NULL, 0);
8380 		if (n < 0 || n & FEC_AUTO)
8381 			n = FEC_AUTO;
8382 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8383 			return (EINVAL);/* some other bit is set too */
8384 
8385 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8386 		    "t4reqf");
8387 		if (rc)
8388 			return (rc);
8389 		PORT_LOCK(pi);
8390 		old = lc->requested_fec;
8391 		if (n == FEC_AUTO)
8392 			lc->requested_fec = FEC_AUTO;
8393 		else if (n == 0 || n == FEC_NONE)
8394 			lc->requested_fec = FEC_NONE;
8395 		else {
8396 			if ((lc->pcaps |
8397 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8398 			    lc->pcaps) {
8399 				rc = ENOTSUP;
8400 				goto done;
8401 			}
8402 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8403 			    FEC_MODULE);
8404 		}
8405 		if (!hw_off_limits(sc)) {
8406 			fixup_link_config(pi);
8407 			if (pi->up_vis > 0) {
8408 				rc = apply_link_config(pi);
8409 				if (rc != 0) {
8410 					lc->requested_fec = old;
8411 					if (rc == FW_EPROTO)
8412 						rc = ENOTSUP;
8413 				}
8414 			}
8415 		}
8416 done:
8417 		PORT_UNLOCK(pi);
8418 		end_synchronized_op(sc, 0);
8419 	}
8420 
8421 	return (rc);
8422 }
8423 
8424 static int
8425 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8426 {
8427 	struct port_info *pi = arg1;
8428 	struct adapter *sc = pi->adapter;
8429 	struct link_config *lc = &pi->link_cfg;
8430 	int rc;
8431 	int8_t fec;
8432 	struct sbuf *sb;
8433 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8434 
8435 	rc = sysctl_wire_old_buffer(req, 0);
8436 	if (rc != 0)
8437 		return (rc);
8438 
8439 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8440 	if (sb == NULL)
8441 		return (ENOMEM);
8442 
8443 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8444 		rc = EBUSY;
8445 		goto done;
8446 	}
8447 	if (hw_off_limits(sc)) {
8448 		rc = ENXIO;
8449 		goto done;
8450 	}
8451 	PORT_LOCK(pi);
8452 	if (pi->up_vis == 0) {
8453 		/*
8454 		 * If all the interfaces are administratively down the firmware
8455 		 * does not report transceiver changes.  Refresh port info here.
8456 		 * This is the only reason we have a synchronized op in this
8457 		 * function.  Just PORT_LOCK would have been enough otherwise.
8458 		 */
8459 		t4_update_port_info(pi);
8460 	}
8461 
8462 	fec = lc->fec_hint;
8463 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8464 	    !fec_supported(lc->pcaps)) {
8465 		sbuf_printf(sb, "n/a");
8466 	} else {
8467 		if (fec == 0)
8468 			fec = FEC_NONE;
8469 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8470 	}
8471 	rc = sbuf_finish(sb);
8472 	PORT_UNLOCK(pi);
8473 done:
8474 	sbuf_delete(sb);
8475 	end_synchronized_op(sc, 0);
8476 
8477 	return (rc);
8478 }
8479 
8480 static int
8481 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8482 {
8483 	struct port_info *pi = arg1;
8484 	struct adapter *sc = pi->adapter;
8485 	struct link_config *lc = &pi->link_cfg;
8486 	int rc, val;
8487 
8488 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8489 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8490 	else
8491 		val = -1;
8492 	rc = sysctl_handle_int(oidp, &val, 0, req);
8493 	if (rc != 0 || req->newptr == NULL)
8494 		return (rc);
8495 	if (val == 0)
8496 		val = AUTONEG_DISABLE;
8497 	else if (val == 1)
8498 		val = AUTONEG_ENABLE;
8499 	else
8500 		val = AUTONEG_AUTO;
8501 
8502 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8503 	    "t4aneg");
8504 	if (rc)
8505 		return (rc);
8506 	PORT_LOCK(pi);
8507 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8508 		rc = ENOTSUP;
8509 		goto done;
8510 	}
8511 	lc->requested_aneg = val;
8512 	if (!hw_off_limits(sc)) {
8513 		fixup_link_config(pi);
8514 		if (pi->up_vis > 0)
8515 			rc = apply_link_config(pi);
8516 		set_current_media(pi);
8517 	}
8518 done:
8519 	PORT_UNLOCK(pi);
8520 	end_synchronized_op(sc, 0);
8521 	return (rc);
8522 }
8523 
8524 static int
8525 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8526 {
8527 	struct port_info *pi = arg1;
8528 	struct adapter *sc = pi->adapter;
8529 	struct link_config *lc = &pi->link_cfg;
8530 	int rc, val;
8531 
8532 	val = lc->force_fec;
8533 	MPASS(val >= -1 && val <= 1);
8534 	rc = sysctl_handle_int(oidp, &val, 0, req);
8535 	if (rc != 0 || req->newptr == NULL)
8536 		return (rc);
8537 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8538 		return (ENOTSUP);
8539 	if (val < -1 || val > 1)
8540 		return (EINVAL);
8541 
8542 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8543 	if (rc)
8544 		return (rc);
8545 	PORT_LOCK(pi);
8546 	lc->force_fec = val;
8547 	if (!hw_off_limits(sc)) {
8548 		fixup_link_config(pi);
8549 		if (pi->up_vis > 0)
8550 			rc = apply_link_config(pi);
8551 	}
8552 	PORT_UNLOCK(pi);
8553 	end_synchronized_op(sc, 0);
8554 	return (rc);
8555 }
8556 
8557 static int
8558 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8559 {
8560 	struct adapter *sc = arg1;
8561 	int rc, reg = arg2;
8562 	uint64_t val;
8563 
8564 	mtx_lock(&sc->reg_lock);
8565 	if (hw_off_limits(sc))
8566 		rc = ENXIO;
8567 	else {
8568 		rc = 0;
8569 		val = t4_read_reg64(sc, reg);
8570 	}
8571 	mtx_unlock(&sc->reg_lock);
8572 	if (rc == 0)
8573 		rc = sysctl_handle_64(oidp, &val, 0, req);
8574 	return (rc);
8575 }
8576 
8577 static int
8578 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8579 {
8580 	struct adapter *sc = arg1;
8581 	int rc, t;
8582 	uint32_t param, val;
8583 
8584 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8585 	if (rc)
8586 		return (rc);
8587 	if (hw_off_limits(sc))
8588 		rc = ENXIO;
8589 	else {
8590 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8591 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8592 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8593 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8594 	}
8595 	end_synchronized_op(sc, 0);
8596 	if (rc)
8597 		return (rc);
8598 
8599 	/* unknown is returned as 0 but we display -1 in that case */
8600 	t = val == 0 ? -1 : val;
8601 
8602 	rc = sysctl_handle_int(oidp, &t, 0, req);
8603 	return (rc);
8604 }
8605 
8606 static int
8607 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8608 {
8609 	struct adapter *sc = arg1;
8610 	int rc;
8611 	uint32_t param, val;
8612 
8613 	if (sc->params.core_vdd == 0) {
8614 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8615 		    "t4vdd");
8616 		if (rc)
8617 			return (rc);
8618 		if (hw_off_limits(sc))
8619 			rc = ENXIO;
8620 		else {
8621 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8622 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8623 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8624 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8625 			    &param, &val);
8626 		}
8627 		end_synchronized_op(sc, 0);
8628 		if (rc)
8629 			return (rc);
8630 		sc->params.core_vdd = val;
8631 	}
8632 
8633 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8634 }
8635 
8636 static int
8637 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8638 {
8639 	struct adapter *sc = arg1;
8640 	int rc, v;
8641 	uint32_t param, val;
8642 
8643 	v = sc->sensor_resets;
8644 	rc = sysctl_handle_int(oidp, &v, 0, req);
8645 	if (rc != 0 || req->newptr == NULL || v <= 0)
8646 		return (rc);
8647 
8648 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8649 	    chip_id(sc) < CHELSIO_T5)
8650 		return (ENOTSUP);
8651 
8652 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8653 	if (rc)
8654 		return (rc);
8655 	if (hw_off_limits(sc))
8656 		rc = ENXIO;
8657 	else {
8658 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8659 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8660 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8661 		val = 1;
8662 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8663 	}
8664 	end_synchronized_op(sc, 0);
8665 	if (rc == 0)
8666 		sc->sensor_resets++;
8667 	return (rc);
8668 }
8669 
8670 static int
8671 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8672 {
8673 	struct adapter *sc = arg1;
8674 	struct sbuf *sb;
8675 	int rc;
8676 	uint32_t param, val;
8677 
8678 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8679 	if (rc)
8680 		return (rc);
8681 	if (hw_off_limits(sc))
8682 		rc = ENXIO;
8683 	else {
8684 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8685 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8686 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8687 	}
8688 	end_synchronized_op(sc, 0);
8689 	if (rc)
8690 		return (rc);
8691 
8692 	rc = sysctl_wire_old_buffer(req, 0);
8693 	if (rc != 0)
8694 		return (rc);
8695 
8696 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8697 	if (sb == NULL)
8698 		return (ENOMEM);
8699 
8700 	if (val == 0xffffffff) {
8701 		/* Only debug and custom firmwares report load averages. */
8702 		sbuf_printf(sb, "not available");
8703 	} else {
8704 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8705 		    (val >> 16) & 0xff);
8706 	}
8707 	rc = sbuf_finish(sb);
8708 	sbuf_delete(sb);
8709 
8710 	return (rc);
8711 }
8712 
8713 static int
8714 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8715 {
8716 	struct adapter *sc = arg1;
8717 	struct sbuf *sb;
8718 	int rc, i;
8719 	uint16_t incr[NMTUS][NCCTRL_WIN];
8720 	static const char *dec_fac[] = {
8721 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8722 		"0.9375"
8723 	};
8724 
8725 	rc = sysctl_wire_old_buffer(req, 0);
8726 	if (rc != 0)
8727 		return (rc);
8728 
8729 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8730 	if (sb == NULL)
8731 		return (ENOMEM);
8732 
8733 	mtx_lock(&sc->reg_lock);
8734 	if (hw_off_limits(sc))
8735 		rc = ENXIO;
8736 	else
8737 		t4_read_cong_tbl(sc, incr);
8738 	mtx_unlock(&sc->reg_lock);
8739 	if (rc)
8740 		goto done;
8741 
8742 	for (i = 0; i < NCCTRL_WIN; ++i) {
8743 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8744 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8745 		    incr[5][i], incr[6][i], incr[7][i]);
8746 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8747 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8748 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8749 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8750 	}
8751 
8752 	rc = sbuf_finish(sb);
8753 done:
8754 	sbuf_delete(sb);
8755 	return (rc);
8756 }
8757 
8758 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8759 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8760 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8761 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8762 };
8763 
8764 static int
8765 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8766 {
8767 	struct adapter *sc = arg1;
8768 	struct sbuf *sb;
8769 	int rc, i, n, qid = arg2;
8770 	uint32_t *buf, *p;
8771 	char *qtype;
8772 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8773 
8774 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8775 	    ("%s: bad qid %d\n", __func__, qid));
8776 
8777 	if (qid < CIM_NUM_IBQ) {
8778 		/* inbound queue */
8779 		qtype = "IBQ";
8780 		n = 4 * CIM_IBQ_SIZE;
8781 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8782 		mtx_lock(&sc->reg_lock);
8783 		if (hw_off_limits(sc))
8784 			rc = -ENXIO;
8785 		else
8786 			rc = t4_read_cim_ibq(sc, qid, buf, n);
8787 		mtx_unlock(&sc->reg_lock);
8788 	} else {
8789 		/* outbound queue */
8790 		qtype = "OBQ";
8791 		qid -= CIM_NUM_IBQ;
8792 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8793 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8794 		mtx_lock(&sc->reg_lock);
8795 		if (hw_off_limits(sc))
8796 			rc = -ENXIO;
8797 		else
8798 			rc = t4_read_cim_obq(sc, qid, buf, n);
8799 		mtx_unlock(&sc->reg_lock);
8800 	}
8801 
8802 	if (rc < 0) {
8803 		rc = -rc;
8804 		goto done;
8805 	}
8806 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
8807 
8808 	rc = sysctl_wire_old_buffer(req, 0);
8809 	if (rc != 0)
8810 		goto done;
8811 
8812 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8813 	if (sb == NULL) {
8814 		rc = ENOMEM;
8815 		goto done;
8816 	}
8817 
8818 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8819 	for (i = 0, p = buf; i < n; i += 16, p += 4)
8820 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8821 		    p[2], p[3]);
8822 
8823 	rc = sbuf_finish(sb);
8824 	sbuf_delete(sb);
8825 done:
8826 	free(buf, M_CXGBE);
8827 	return (rc);
8828 }
8829 
8830 static void
8831 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8832 {
8833 	uint32_t *p;
8834 
8835 	sbuf_printf(sb, "Status   Data      PC%s",
8836 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8837 	    "     LS0Stat  LS0Addr             LS0Data");
8838 
8839 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
8840 		if (cfg & F_UPDBGLACAPTPCONLY) {
8841 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
8842 			    p[6], p[7]);
8843 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
8844 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
8845 			    p[4] & 0xff, p[5] >> 8);
8846 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
8847 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8848 			    p[1] & 0xf, p[2] >> 4);
8849 		} else {
8850 			sbuf_printf(sb,
8851 			    "\n  %02x   %x%07x %x%07x %08x %08x "
8852 			    "%08x%08x%08x%08x",
8853 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8854 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
8855 			    p[6], p[7]);
8856 		}
8857 	}
8858 }
8859 
8860 static void
8861 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8862 {
8863 	uint32_t *p;
8864 
8865 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
8866 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8867 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
8868 
8869 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
8870 		if (cfg & F_UPDBGLACAPTPCONLY) {
8871 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
8872 			    p[3] & 0xff, p[2], p[1], p[0]);
8873 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
8874 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
8875 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
8876 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
8877 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
8878 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
8879 			    p[6] >> 16);
8880 		} else {
8881 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
8882 			    "%08x %08x %08x %08x %08x %08x",
8883 			    (p[9] >> 16) & 0xff,
8884 			    p[9] & 0xffff, p[8] >> 16,
8885 			    p[8] & 0xffff, p[7] >> 16,
8886 			    p[7] & 0xffff, p[6] >> 16,
8887 			    p[2], p[1], p[0], p[5], p[4], p[3]);
8888 		}
8889 	}
8890 }
8891 
8892 static int
8893 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
8894 {
8895 	uint32_t cfg, *buf;
8896 	int rc;
8897 
8898 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
8899 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
8900 	    M_ZERO | flags);
8901 	if (buf == NULL)
8902 		return (ENOMEM);
8903 
8904 	mtx_lock(&sc->reg_lock);
8905 	if (hw_off_limits(sc))
8906 		rc = ENXIO;
8907 	else {
8908 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8909 		if (rc == 0)
8910 			rc = -t4_cim_read_la(sc, buf, NULL);
8911 	}
8912 	mtx_unlock(&sc->reg_lock);
8913 	if (rc == 0) {
8914 		if (chip_id(sc) < CHELSIO_T6)
8915 			sbuf_cim_la4(sc, sb, buf, cfg);
8916 		else
8917 			sbuf_cim_la6(sc, sb, buf, cfg);
8918 	}
8919 	free(buf, M_CXGBE);
8920 	return (rc);
8921 }
8922 
8923 static int
8924 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
8925 {
8926 	struct adapter *sc = arg1;
8927 	struct sbuf *sb;
8928 	int rc;
8929 
8930 	rc = sysctl_wire_old_buffer(req, 0);
8931 	if (rc != 0)
8932 		return (rc);
8933 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8934 	if (sb == NULL)
8935 		return (ENOMEM);
8936 
8937 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
8938 	if (rc == 0)
8939 		rc = sbuf_finish(sb);
8940 	sbuf_delete(sb);
8941 	return (rc);
8942 }
8943 
8944 bool
8945 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose)
8946 {
8947 	struct sbuf sb;
8948 	int rc;
8949 
8950 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
8951 		return (false);
8952 	rc = sbuf_cim_la(sc, &sb, M_NOWAIT);
8953 	if (rc == 0) {
8954 		rc = sbuf_finish(&sb);
8955 		if (rc == 0) {
8956 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s",
8957 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
8958 		}
8959 	}
8960 	sbuf_delete(&sb);
8961 	return (false);
8962 }
8963 
8964 static int
8965 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
8966 {
8967 	struct adapter *sc = arg1;
8968 	u_int i;
8969 	struct sbuf *sb;
8970 	uint32_t *buf, *p;
8971 	int rc;
8972 
8973 	rc = sysctl_wire_old_buffer(req, 0);
8974 	if (rc != 0)
8975 		return (rc);
8976 
8977 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8978 	if (sb == NULL)
8979 		return (ENOMEM);
8980 
8981 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
8982 	    M_ZERO | M_WAITOK);
8983 
8984 	mtx_lock(&sc->reg_lock);
8985 	if (hw_off_limits(sc))
8986 		rc = ENXIO;
8987 	else
8988 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
8989 	mtx_unlock(&sc->reg_lock);
8990 	if (rc)
8991 		goto done;
8992 
8993 	p = buf;
8994 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
8995 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
8996 		    p[1], p[0]);
8997 	}
8998 
8999 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9000 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9001 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9002 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9003 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9004 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9005 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9006 		    p[0] & 1);
9007 	}
9008 	rc = sbuf_finish(sb);
9009 done:
9010 	sbuf_delete(sb);
9011 	free(buf, M_CXGBE);
9012 	return (rc);
9013 }
9014 
9015 static int
9016 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9017 {
9018 	struct adapter *sc = arg1;
9019 	u_int i;
9020 	struct sbuf *sb;
9021 	uint32_t *buf, *p;
9022 	int rc;
9023 
9024 	rc = sysctl_wire_old_buffer(req, 0);
9025 	if (rc != 0)
9026 		return (rc);
9027 
9028 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9029 	if (sb == NULL)
9030 		return (ENOMEM);
9031 
9032 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9033 	    M_ZERO | M_WAITOK);
9034 
9035 	mtx_lock(&sc->reg_lock);
9036 	if (hw_off_limits(sc))
9037 		rc = ENXIO;
9038 	else
9039 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9040 	mtx_unlock(&sc->reg_lock);
9041 	if (rc)
9042 		goto done;
9043 
9044 	p = buf;
9045 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9046 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9047 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9048 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9049 		    p[4], p[3], p[2], p[1], p[0]);
9050 	}
9051 
9052 	sbuf_printf(sb, "\n\nCntl ID               Data");
9053 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9054 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9055 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9056 	}
9057 
9058 	rc = sbuf_finish(sb);
9059 done:
9060 	sbuf_delete(sb);
9061 	free(buf, M_CXGBE);
9062 	return (rc);
9063 }
9064 
9065 static int
9066 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9067 {
9068 	struct adapter *sc = arg1;
9069 	struct sbuf *sb;
9070 	int rc, i;
9071 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9072 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9073 	uint16_t thres[CIM_NUM_IBQ];
9074 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9075 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9076 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9077 
9078 	cim_num_obq = sc->chip_params->cim_num_obq;
9079 	if (is_t4(sc)) {
9080 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9081 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9082 	} else {
9083 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9084 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9085 	}
9086 	nq = CIM_NUM_IBQ + cim_num_obq;
9087 
9088 	mtx_lock(&sc->reg_lock);
9089 	if (hw_off_limits(sc))
9090 		rc = ENXIO;
9091 	else {
9092 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9093 		if (rc == 0) {
9094 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9095 			    obq_wr);
9096 			if (rc == 0)
9097 				t4_read_cimq_cfg(sc, base, size, thres);
9098 		}
9099 	}
9100 	mtx_unlock(&sc->reg_lock);
9101 	if (rc)
9102 		return (rc);
9103 
9104 	rc = sysctl_wire_old_buffer(req, 0);
9105 	if (rc != 0)
9106 		return (rc);
9107 
9108 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9109 	if (sb == NULL)
9110 		return (ENOMEM);
9111 
9112 	sbuf_printf(sb,
9113 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9114 
9115 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9116 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9117 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9118 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9119 		    G_QUEREMFLITS(p[2]) * 16);
9120 	for ( ; i < nq; i++, p += 4, wr += 2)
9121 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9122 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9123 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9124 		    G_QUEREMFLITS(p[2]) * 16);
9125 
9126 	rc = sbuf_finish(sb);
9127 	sbuf_delete(sb);
9128 
9129 	return (rc);
9130 }
9131 
9132 static int
9133 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9134 {
9135 	struct adapter *sc = arg1;
9136 	struct sbuf *sb;
9137 	int rc;
9138 	struct tp_cpl_stats stats;
9139 
9140 	rc = sysctl_wire_old_buffer(req, 0);
9141 	if (rc != 0)
9142 		return (rc);
9143 
9144 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9145 	if (sb == NULL)
9146 		return (ENOMEM);
9147 
9148 	mtx_lock(&sc->reg_lock);
9149 	if (hw_off_limits(sc))
9150 		rc = ENXIO;
9151 	else
9152 		t4_tp_get_cpl_stats(sc, &stats, 0);
9153 	mtx_unlock(&sc->reg_lock);
9154 	if (rc)
9155 		goto done;
9156 
9157 	if (sc->chip_params->nchan > 2) {
9158 		sbuf_printf(sb, "                 channel 0  channel 1"
9159 		    "  channel 2  channel 3");
9160 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9161 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9162 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9163 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9164 	} else {
9165 		sbuf_printf(sb, "                 channel 0  channel 1");
9166 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9167 		    stats.req[0], stats.req[1]);
9168 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9169 		    stats.rsp[0], stats.rsp[1]);
9170 	}
9171 
9172 	rc = sbuf_finish(sb);
9173 done:
9174 	sbuf_delete(sb);
9175 	return (rc);
9176 }
9177 
9178 static int
9179 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9180 {
9181 	struct adapter *sc = arg1;
9182 	struct sbuf *sb;
9183 	int rc;
9184 	struct tp_usm_stats stats;
9185 
9186 	rc = sysctl_wire_old_buffer(req, 0);
9187 	if (rc != 0)
9188 		return(rc);
9189 
9190 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9191 	if (sb == NULL)
9192 		return (ENOMEM);
9193 
9194 	mtx_lock(&sc->reg_lock);
9195 	if (hw_off_limits(sc))
9196 		rc = ENXIO;
9197 	else
9198 		t4_get_usm_stats(sc, &stats, 1);
9199 	mtx_unlock(&sc->reg_lock);
9200 	if (rc == 0) {
9201 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9202 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9203 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9204 		rc = sbuf_finish(sb);
9205 	}
9206 	sbuf_delete(sb);
9207 
9208 	return (rc);
9209 }
9210 
9211 static int
9212 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9213 {
9214 	struct adapter *sc = arg1;
9215 	struct sbuf *sb;
9216 	int rc;
9217 	struct tp_tid_stats stats;
9218 
9219 	rc = sysctl_wire_old_buffer(req, 0);
9220 	if (rc != 0)
9221 		return(rc);
9222 
9223 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9224 	if (sb == NULL)
9225 		return (ENOMEM);
9226 
9227 	mtx_lock(&sc->reg_lock);
9228 	if (hw_off_limits(sc))
9229 		rc = ENXIO;
9230 	else
9231 		t4_tp_get_tid_stats(sc, &stats, 1);
9232 	mtx_unlock(&sc->reg_lock);
9233 	if (rc == 0) {
9234 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9235 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9236 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9237 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9238 		rc = sbuf_finish(sb);
9239 	}
9240 	sbuf_delete(sb);
9241 
9242 	return (rc);
9243 }
9244 
9245 static const char * const devlog_level_strings[] = {
9246 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9247 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9248 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9249 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9250 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9251 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9252 };
9253 
9254 static const char * const devlog_facility_strings[] = {
9255 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9256 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9257 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9258 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9259 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9260 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9261 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9262 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9263 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9264 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9265 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9266 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9267 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9268 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9269 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9270 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9271 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9272 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9273 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9274 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9275 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9276 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9277 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9278 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9279 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9280 };
9281 
9282 static int
9283 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9284 {
9285 	int i, j, rc, nentries, first = 0;
9286 	struct devlog_params *dparams = &sc->params.devlog;
9287 	struct fw_devlog_e *buf, *e;
9288 	uint64_t ftstamp = UINT64_MAX;
9289 
9290 	if (dparams->addr == 0)
9291 		return (ENXIO);
9292 
9293 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9294 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9295 	if (buf == NULL)
9296 		return (ENOMEM);
9297 
9298 	mtx_lock(&sc->reg_lock);
9299 	if (hw_off_limits(sc))
9300 		rc = ENXIO;
9301 	else
9302 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9303 		    dparams->size);
9304 	mtx_unlock(&sc->reg_lock);
9305 	if (rc != 0)
9306 		goto done;
9307 
9308 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9309 	for (i = 0; i < nentries; i++) {
9310 		e = &buf[i];
9311 
9312 		if (e->timestamp == 0)
9313 			break;	/* end */
9314 
9315 		e->timestamp = be64toh(e->timestamp);
9316 		e->seqno = be32toh(e->seqno);
9317 		for (j = 0; j < 8; j++)
9318 			e->params[j] = be32toh(e->params[j]);
9319 
9320 		if (e->timestamp < ftstamp) {
9321 			ftstamp = e->timestamp;
9322 			first = i;
9323 		}
9324 	}
9325 
9326 	if (buf[first].timestamp == 0)
9327 		goto done;	/* nothing in the log */
9328 
9329 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9330 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9331 
9332 	i = first;
9333 	do {
9334 		e = &buf[i];
9335 		if (e->timestamp == 0)
9336 			break;	/* end */
9337 
9338 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9339 		    e->seqno, e->timestamp,
9340 		    (e->level < nitems(devlog_level_strings) ?
9341 			devlog_level_strings[e->level] : "UNKNOWN"),
9342 		    (e->facility < nitems(devlog_facility_strings) ?
9343 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9344 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9345 		    e->params[2], e->params[3], e->params[4],
9346 		    e->params[5], e->params[6], e->params[7]);
9347 
9348 		if (++i == nentries)
9349 			i = 0;
9350 	} while (i != first);
9351 done:
9352 	free(buf, M_CXGBE);
9353 	return (rc);
9354 }
9355 
9356 static int
9357 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9358 {
9359 	struct adapter *sc = arg1;
9360 	int rc;
9361 	struct sbuf *sb;
9362 
9363 	rc = sysctl_wire_old_buffer(req, 0);
9364 	if (rc != 0)
9365 		return (rc);
9366 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9367 	if (sb == NULL)
9368 		return (ENOMEM);
9369 
9370 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9371 	if (rc == 0)
9372 		rc = sbuf_finish(sb);
9373 	sbuf_delete(sb);
9374 	return (rc);
9375 }
9376 
9377 void
9378 t4_os_dump_devlog(struct adapter *sc)
9379 {
9380 	int rc;
9381 	struct sbuf sb;
9382 
9383 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
9384 		return;
9385 	rc = sbuf_devlog(sc, &sb, M_NOWAIT);
9386 	if (rc == 0) {
9387 		rc = sbuf_finish(&sb);
9388 		if (rc == 0) {
9389 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9390 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
9391 		}
9392 	}
9393 	sbuf_delete(&sb);
9394 }
9395 
9396 static int
9397 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9398 {
9399 	struct adapter *sc = arg1;
9400 	struct sbuf *sb;
9401 	int rc;
9402 	struct tp_fcoe_stats stats[MAX_NCHAN];
9403 	int i, nchan = sc->chip_params->nchan;
9404 
9405 	rc = sysctl_wire_old_buffer(req, 0);
9406 	if (rc != 0)
9407 		return (rc);
9408 
9409 	mtx_lock(&sc->reg_lock);
9410 	if (hw_off_limits(sc))
9411 		rc = ENXIO;
9412 	else {
9413 		for (i = 0; i < nchan; i++)
9414 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9415 	}
9416 	mtx_unlock(&sc->reg_lock);
9417 	if (rc != 0)
9418 		return (rc);
9419 
9420 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9421 	if (sb == NULL)
9422 		return (ENOMEM);
9423 
9424 	if (nchan > 2) {
9425 		sbuf_printf(sb, "                   channel 0        channel 1"
9426 		    "        channel 2        channel 3");
9427 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9428 		    stats[0].octets_ddp, stats[1].octets_ddp,
9429 		    stats[2].octets_ddp, stats[3].octets_ddp);
9430 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9431 		    stats[0].frames_ddp, stats[1].frames_ddp,
9432 		    stats[2].frames_ddp, stats[3].frames_ddp);
9433 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9434 		    stats[0].frames_drop, stats[1].frames_drop,
9435 		    stats[2].frames_drop, stats[3].frames_drop);
9436 	} else {
9437 		sbuf_printf(sb, "                   channel 0        channel 1");
9438 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9439 		    stats[0].octets_ddp, stats[1].octets_ddp);
9440 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9441 		    stats[0].frames_ddp, stats[1].frames_ddp);
9442 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9443 		    stats[0].frames_drop, stats[1].frames_drop);
9444 	}
9445 
9446 	rc = sbuf_finish(sb);
9447 	sbuf_delete(sb);
9448 
9449 	return (rc);
9450 }
9451 
9452 static int
9453 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9454 {
9455 	struct adapter *sc = arg1;
9456 	struct sbuf *sb;
9457 	int rc, i;
9458 	unsigned int map, kbps, ipg, mode;
9459 	unsigned int pace_tab[NTX_SCHED];
9460 
9461 	rc = sysctl_wire_old_buffer(req, 0);
9462 	if (rc != 0)
9463 		return (rc);
9464 
9465 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9466 	if (sb == NULL)
9467 		return (ENOMEM);
9468 
9469 	mtx_lock(&sc->reg_lock);
9470 	if (hw_off_limits(sc)) {
9471 		rc = ENXIO;
9472 		goto done;
9473 	}
9474 
9475 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9476 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9477 	t4_read_pace_tbl(sc, pace_tab);
9478 
9479 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9480 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9481 
9482 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9483 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9484 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9485 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9486 		if (kbps)
9487 			sbuf_printf(sb, "%9u     ", kbps);
9488 		else
9489 			sbuf_printf(sb, " disabled     ");
9490 
9491 		if (ipg)
9492 			sbuf_printf(sb, "%13u        ", ipg);
9493 		else
9494 			sbuf_printf(sb, "     disabled        ");
9495 
9496 		if (pace_tab[i])
9497 			sbuf_printf(sb, "%10u", pace_tab[i]);
9498 		else
9499 			sbuf_printf(sb, "  disabled");
9500 	}
9501 	rc = sbuf_finish(sb);
9502 done:
9503 	mtx_unlock(&sc->reg_lock);
9504 	sbuf_delete(sb);
9505 	return (rc);
9506 }
9507 
9508 static int
9509 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9510 {
9511 	struct adapter *sc = arg1;
9512 	struct sbuf *sb;
9513 	int rc, i, j;
9514 	uint64_t *p0, *p1;
9515 	struct lb_port_stats s[2];
9516 	static const char *stat_name[] = {
9517 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9518 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9519 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9520 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9521 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9522 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9523 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9524 	};
9525 
9526 	rc = sysctl_wire_old_buffer(req, 0);
9527 	if (rc != 0)
9528 		return (rc);
9529 
9530 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9531 	if (sb == NULL)
9532 		return (ENOMEM);
9533 
9534 	memset(s, 0, sizeof(s));
9535 
9536 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9537 		mtx_lock(&sc->reg_lock);
9538 		if (hw_off_limits(sc))
9539 			rc = ENXIO;
9540 		else {
9541 			t4_get_lb_stats(sc, i, &s[0]);
9542 			t4_get_lb_stats(sc, i + 1, &s[1]);
9543 		}
9544 		mtx_unlock(&sc->reg_lock);
9545 		if (rc != 0)
9546 			break;
9547 
9548 		p0 = &s[0].octets;
9549 		p1 = &s[1].octets;
9550 		sbuf_printf(sb, "%s                       Loopback %u"
9551 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9552 
9553 		for (j = 0; j < nitems(stat_name); j++)
9554 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9555 				   *p0++, *p1++);
9556 	}
9557 
9558 	rc = sbuf_finish(sb);
9559 	sbuf_delete(sb);
9560 
9561 	return (rc);
9562 }
9563 
9564 static int
9565 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9566 {
9567 	int rc = 0;
9568 	struct port_info *pi = arg1;
9569 	struct link_config *lc = &pi->link_cfg;
9570 	struct sbuf *sb;
9571 
9572 	rc = sysctl_wire_old_buffer(req, 0);
9573 	if (rc != 0)
9574 		return(rc);
9575 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9576 	if (sb == NULL)
9577 		return (ENOMEM);
9578 
9579 	if (lc->link_ok || lc->link_down_rc == 255)
9580 		sbuf_printf(sb, "n/a");
9581 	else
9582 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9583 
9584 	rc = sbuf_finish(sb);
9585 	sbuf_delete(sb);
9586 
9587 	return (rc);
9588 }
9589 
9590 struct mem_desc {
9591 	unsigned int base;
9592 	unsigned int limit;
9593 	unsigned int idx;
9594 };
9595 
9596 static int
9597 mem_desc_cmp(const void *a, const void *b)
9598 {
9599 	return ((const struct mem_desc *)a)->base -
9600 	       ((const struct mem_desc *)b)->base;
9601 }
9602 
9603 static void
9604 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9605     unsigned int to)
9606 {
9607 	unsigned int size;
9608 
9609 	if (from == to)
9610 		return;
9611 
9612 	size = to - from + 1;
9613 	if (size == 0)
9614 		return;
9615 
9616 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9617 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9618 }
9619 
9620 static int
9621 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9622 {
9623 	struct adapter *sc = arg1;
9624 	struct sbuf *sb;
9625 	int rc, i, n;
9626 	uint32_t lo, hi, used, alloc;
9627 	static const char *memory[] = {
9628 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9629 	};
9630 	static const char *region[] = {
9631 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9632 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9633 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9634 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9635 		"RQUDP region:", "PBL region:", "TXPBL region:",
9636 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
9637 		"On-chip queues:", "TLS keys:",
9638 	};
9639 	struct mem_desc avail[4];
9640 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9641 	struct mem_desc *md = mem;
9642 
9643 	rc = sysctl_wire_old_buffer(req, 0);
9644 	if (rc != 0)
9645 		return (rc);
9646 
9647 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9648 	if (sb == NULL)
9649 		return (ENOMEM);
9650 
9651 	for (i = 0; i < nitems(mem); i++) {
9652 		mem[i].limit = 0;
9653 		mem[i].idx = i;
9654 	}
9655 
9656 	mtx_lock(&sc->reg_lock);
9657 	if (hw_off_limits(sc)) {
9658 		rc = ENXIO;
9659 		goto done;
9660 	}
9661 
9662 	/* Find and sort the populated memory ranges */
9663 	i = 0;
9664 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9665 	if (lo & F_EDRAM0_ENABLE) {
9666 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9667 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9668 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9669 		avail[i].idx = 0;
9670 		i++;
9671 	}
9672 	if (lo & F_EDRAM1_ENABLE) {
9673 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9674 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9675 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9676 		avail[i].idx = 1;
9677 		i++;
9678 	}
9679 	if (lo & F_EXT_MEM_ENABLE) {
9680 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9681 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9682 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9683 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9684 		i++;
9685 	}
9686 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9687 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9688 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9689 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9690 		avail[i].idx = 4;
9691 		i++;
9692 	}
9693 	if (is_t6(sc) && lo & F_HMA_MUX) {
9694 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9695 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9696 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9697 		avail[i].idx = 5;
9698 		i++;
9699 	}
9700 	MPASS(i <= nitems(avail));
9701 	if (!i)                                    /* no memory available */
9702 		goto done;
9703 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9704 
9705 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9706 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9707 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9708 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9709 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9710 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9711 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9712 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9713 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9714 
9715 	/* the next few have explicit upper bounds */
9716 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9717 	md->limit = md->base - 1 +
9718 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9719 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9720 	md++;
9721 
9722 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9723 	md->limit = md->base - 1 +
9724 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9725 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9726 	md++;
9727 
9728 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9729 		if (chip_id(sc) <= CHELSIO_T5)
9730 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9731 		else
9732 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9733 		md->limit = 0;
9734 	} else {
9735 		md->base = 0;
9736 		md->idx = nitems(region);  /* hide it */
9737 	}
9738 	md++;
9739 
9740 #define ulp_region(reg) \
9741 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9742 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9743 
9744 	ulp_region(RX_ISCSI);
9745 	ulp_region(RX_TDDP);
9746 	ulp_region(TX_TPT);
9747 	ulp_region(RX_STAG);
9748 	ulp_region(RX_RQ);
9749 	ulp_region(RX_RQUDP);
9750 	ulp_region(RX_PBL);
9751 	ulp_region(TX_PBL);
9752 #undef ulp_region
9753 
9754 	md->base = 0;
9755 	if (is_t4(sc))
9756 		md->idx = nitems(region);
9757 	else {
9758 		uint32_t size = 0;
9759 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9760 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9761 
9762 		if (is_t5(sc)) {
9763 			if (sge_ctrl & F_VFIFO_ENABLE)
9764 				size = fifo_size << 2;
9765 		} else
9766 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9767 
9768 		if (size) {
9769 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9770 			md->limit = md->base + size - 1;
9771 		} else
9772 			md->idx = nitems(region);
9773 	}
9774 	md++;
9775 
9776 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9777 	md->limit = 0;
9778 	md++;
9779 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9780 	md->limit = 0;
9781 	md++;
9782 
9783 	md->base = sc->vres.ocq.start;
9784 	if (sc->vres.ocq.size)
9785 		md->limit = md->base + sc->vres.ocq.size - 1;
9786 	else
9787 		md->idx = nitems(region);  /* hide it */
9788 	md++;
9789 
9790 	md->base = sc->vres.key.start;
9791 	if (sc->vres.key.size)
9792 		md->limit = md->base + sc->vres.key.size - 1;
9793 	else
9794 		md->idx = nitems(region);  /* hide it */
9795 	md++;
9796 
9797 	/* add any address-space holes, there can be up to 3 */
9798 	for (n = 0; n < i - 1; n++)
9799 		if (avail[n].limit < avail[n + 1].base)
9800 			(md++)->base = avail[n].limit;
9801 	if (avail[n].limit)
9802 		(md++)->base = avail[n].limit;
9803 
9804 	n = md - mem;
9805 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
9806 
9807 	for (lo = 0; lo < i; lo++)
9808 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
9809 				avail[lo].limit - 1);
9810 
9811 	sbuf_printf(sb, "\n");
9812 	for (i = 0; i < n; i++) {
9813 		if (mem[i].idx >= nitems(region))
9814 			continue;                        /* skip holes */
9815 		if (!mem[i].limit)
9816 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
9817 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
9818 				mem[i].limit);
9819 	}
9820 
9821 	sbuf_printf(sb, "\n");
9822 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
9823 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
9824 	mem_region_show(sb, "uP RAM:", lo, hi);
9825 
9826 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
9827 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
9828 	mem_region_show(sb, "uP Extmem2:", lo, hi);
9829 
9830 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
9831 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
9832 		   G_PMRXMAXPAGE(lo),
9833 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
9834 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
9835 
9836 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
9837 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
9838 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
9839 		   G_PMTXMAXPAGE(lo),
9840 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
9841 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
9842 	sbuf_printf(sb, "%u p-structs\n",
9843 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
9844 
9845 	for (i = 0; i < 4; i++) {
9846 		if (chip_id(sc) > CHELSIO_T5)
9847 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
9848 		else
9849 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
9850 		if (is_t5(sc)) {
9851 			used = G_T5_USED(lo);
9852 			alloc = G_T5_ALLOC(lo);
9853 		} else {
9854 			used = G_USED(lo);
9855 			alloc = G_ALLOC(lo);
9856 		}
9857 		/* For T6 these are MAC buffer groups */
9858 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
9859 		    i, used, alloc);
9860 	}
9861 	for (i = 0; i < sc->chip_params->nchan; i++) {
9862 		if (chip_id(sc) > CHELSIO_T5)
9863 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
9864 		else
9865 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
9866 		if (is_t5(sc)) {
9867 			used = G_T5_USED(lo);
9868 			alloc = G_T5_ALLOC(lo);
9869 		} else {
9870 			used = G_USED(lo);
9871 			alloc = G_ALLOC(lo);
9872 		}
9873 		/* For T6 these are MAC buffer groups */
9874 		sbuf_printf(sb,
9875 		    "\nLoopback %d using %u pages out of %u allocated",
9876 		    i, used, alloc);
9877 	}
9878 done:
9879 	mtx_unlock(&sc->reg_lock);
9880 	if (rc == 0)
9881 		rc = sbuf_finish(sb);
9882 	sbuf_delete(sb);
9883 	return (rc);
9884 }
9885 
9886 static inline void
9887 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
9888 {
9889 	*mask = x | y;
9890 	y = htobe64(y);
9891 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
9892 }
9893 
9894 static int
9895 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
9896 {
9897 	struct adapter *sc = arg1;
9898 	struct sbuf *sb;
9899 	int rc, i;
9900 
9901 	MPASS(chip_id(sc) <= CHELSIO_T5);
9902 
9903 	rc = sysctl_wire_old_buffer(req, 0);
9904 	if (rc != 0)
9905 		return (rc);
9906 
9907 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9908 	if (sb == NULL)
9909 		return (ENOMEM);
9910 
9911 	sbuf_printf(sb,
9912 	    "Idx  Ethernet address     Mask     Vld Ports PF"
9913 	    "  VF              Replication             P0 P1 P2 P3  ML");
9914 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
9915 		uint64_t tcamx, tcamy, mask;
9916 		uint32_t cls_lo, cls_hi;
9917 		uint8_t addr[ETHER_ADDR_LEN];
9918 
9919 		mtx_lock(&sc->reg_lock);
9920 		if (hw_off_limits(sc))
9921 			rc = ENXIO;
9922 		else {
9923 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
9924 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
9925 		}
9926 		mtx_unlock(&sc->reg_lock);
9927 		if (rc != 0)
9928 			break;
9929 		if (tcamx & tcamy)
9930 			continue;
9931 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
9932 		mtx_lock(&sc->reg_lock);
9933 		if (hw_off_limits(sc))
9934 			rc = ENXIO;
9935 		else {
9936 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
9937 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
9938 		}
9939 		mtx_unlock(&sc->reg_lock);
9940 		if (rc != 0)
9941 			break;
9942 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
9943 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
9944 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
9945 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
9946 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
9947 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
9948 
9949 		if (cls_lo & F_REPLICATE) {
9950 			struct fw_ldst_cmd ldst_cmd;
9951 
9952 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
9953 			ldst_cmd.op_to_addrspace =
9954 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
9955 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
9956 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
9957 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
9958 			ldst_cmd.u.mps.rplc.fid_idx =
9959 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
9960 				V_FW_LDST_CMD_IDX(i));
9961 
9962 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9963 			    "t4mps");
9964 			if (rc)
9965 				break;
9966 			if (hw_off_limits(sc))
9967 				rc = ENXIO;
9968 			else
9969 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
9970 				    sizeof(ldst_cmd), &ldst_cmd);
9971 			end_synchronized_op(sc, 0);
9972 			if (rc != 0)
9973 				break;
9974 			else {
9975 				sbuf_printf(sb, " %08x %08x %08x %08x",
9976 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
9977 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
9978 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
9979 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
9980 			}
9981 		} else
9982 			sbuf_printf(sb, "%36s", "");
9983 
9984 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
9985 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
9986 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
9987 	}
9988 
9989 	if (rc)
9990 		(void) sbuf_finish(sb);
9991 	else
9992 		rc = sbuf_finish(sb);
9993 	sbuf_delete(sb);
9994 
9995 	return (rc);
9996 }
9997 
9998 static int
9999 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10000 {
10001 	struct adapter *sc = arg1;
10002 	struct sbuf *sb;
10003 	int rc, i;
10004 
10005 	MPASS(chip_id(sc) > CHELSIO_T5);
10006 
10007 	rc = sysctl_wire_old_buffer(req, 0);
10008 	if (rc != 0)
10009 		return (rc);
10010 
10011 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10012 	if (sb == NULL)
10013 		return (ENOMEM);
10014 
10015 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10016 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10017 	    "                           Replication"
10018 	    "                                    P0 P1 P2 P3  ML\n");
10019 
10020 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10021 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10022 		uint16_t ivlan;
10023 		uint64_t tcamx, tcamy, val, mask;
10024 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10025 		uint8_t addr[ETHER_ADDR_LEN];
10026 
10027 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10028 		if (i < 256)
10029 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10030 		else
10031 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10032 		mtx_lock(&sc->reg_lock);
10033 		if (hw_off_limits(sc))
10034 			rc = ENXIO;
10035 		else {
10036 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10037 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10038 			tcamy = G_DMACH(val) << 32;
10039 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10040 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10041 		}
10042 		mtx_unlock(&sc->reg_lock);
10043 		if (rc != 0)
10044 			break;
10045 
10046 		lookup_type = G_DATALKPTYPE(data2);
10047 		port_num = G_DATAPORTNUM(data2);
10048 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10049 			/* Inner header VNI */
10050 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10051 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10052 			dip_hit = data2 & F_DATADIPHIT;
10053 			vlan_vld = 0;
10054 		} else {
10055 			vniy = 0;
10056 			dip_hit = 0;
10057 			vlan_vld = data2 & F_DATAVIDH2;
10058 			ivlan = G_VIDL(val);
10059 		}
10060 
10061 		ctl |= V_CTLXYBITSEL(1);
10062 		mtx_lock(&sc->reg_lock);
10063 		if (hw_off_limits(sc))
10064 			rc = ENXIO;
10065 		else {
10066 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10067 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10068 			tcamx = G_DMACH(val) << 32;
10069 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10070 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10071 		}
10072 		mtx_unlock(&sc->reg_lock);
10073 		if (rc != 0)
10074 			break;
10075 
10076 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10077 			/* Inner header VNI mask */
10078 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10079 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10080 		} else
10081 			vnix = 0;
10082 
10083 		if (tcamx & tcamy)
10084 			continue;
10085 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10086 
10087 		mtx_lock(&sc->reg_lock);
10088 		if (hw_off_limits(sc))
10089 			rc = ENXIO;
10090 		else {
10091 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10092 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10093 		}
10094 		mtx_unlock(&sc->reg_lock);
10095 		if (rc != 0)
10096 			break;
10097 
10098 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10099 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10100 			    "%012jx %06x %06x    -    -   %3c"
10101 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10102 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10103 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10104 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10105 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10106 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10107 		} else {
10108 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10109 			    "%012jx    -       -   ", i, addr[0], addr[1],
10110 			    addr[2], addr[3], addr[4], addr[5],
10111 			    (uintmax_t)mask);
10112 
10113 			if (vlan_vld)
10114 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10115 			else
10116 				sbuf_printf(sb, "  -    N     ");
10117 
10118 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10119 			    lookup_type ? 'I' : 'O', port_num,
10120 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10121 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10122 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10123 		}
10124 
10125 
10126 		if (cls_lo & F_T6_REPLICATE) {
10127 			struct fw_ldst_cmd ldst_cmd;
10128 
10129 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10130 			ldst_cmd.op_to_addrspace =
10131 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10132 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10133 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10134 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10135 			ldst_cmd.u.mps.rplc.fid_idx =
10136 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10137 				V_FW_LDST_CMD_IDX(i));
10138 
10139 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10140 			    "t6mps");
10141 			if (rc)
10142 				break;
10143 			if (hw_off_limits(sc))
10144 				rc = ENXIO;
10145 			else
10146 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10147 				    sizeof(ldst_cmd), &ldst_cmd);
10148 			end_synchronized_op(sc, 0);
10149 			if (rc != 0)
10150 				break;
10151 			else {
10152 				sbuf_printf(sb, " %08x %08x %08x %08x"
10153 				    " %08x %08x %08x %08x",
10154 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10155 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10156 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10157 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10158 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10159 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10160 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10161 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10162 			}
10163 		} else
10164 			sbuf_printf(sb, "%72s", "");
10165 
10166 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10167 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10168 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10169 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10170 	}
10171 
10172 	if (rc)
10173 		(void) sbuf_finish(sb);
10174 	else
10175 		rc = sbuf_finish(sb);
10176 	sbuf_delete(sb);
10177 
10178 	return (rc);
10179 }
10180 
10181 static int
10182 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10183 {
10184 	struct adapter *sc = arg1;
10185 	struct sbuf *sb;
10186 	int rc;
10187 	uint16_t mtus[NMTUS];
10188 
10189 	rc = sysctl_wire_old_buffer(req, 0);
10190 	if (rc != 0)
10191 		return (rc);
10192 
10193 	mtx_lock(&sc->reg_lock);
10194 	if (hw_off_limits(sc))
10195 		rc = ENXIO;
10196 	else
10197 		t4_read_mtu_tbl(sc, mtus, NULL);
10198 	mtx_unlock(&sc->reg_lock);
10199 	if (rc != 0)
10200 		return (rc);
10201 
10202 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10203 	if (sb == NULL)
10204 		return (ENOMEM);
10205 
10206 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10207 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10208 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10209 	    mtus[14], mtus[15]);
10210 
10211 	rc = sbuf_finish(sb);
10212 	sbuf_delete(sb);
10213 
10214 	return (rc);
10215 }
10216 
10217 static int
10218 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10219 {
10220 	struct adapter *sc = arg1;
10221 	struct sbuf *sb;
10222 	int rc, i;
10223 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10224 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10225 	static const char *tx_stats[MAX_PM_NSTATS] = {
10226 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10227 		"Tx FIFO wait", NULL, "Tx latency"
10228 	};
10229 	static const char *rx_stats[MAX_PM_NSTATS] = {
10230 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10231 		"Rx FIFO wait", NULL, "Rx latency"
10232 	};
10233 
10234 	rc = sysctl_wire_old_buffer(req, 0);
10235 	if (rc != 0)
10236 		return (rc);
10237 
10238 	mtx_lock(&sc->reg_lock);
10239 	if (hw_off_limits(sc))
10240 		rc = ENXIO;
10241 	else {
10242 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10243 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10244 	}
10245 	mtx_unlock(&sc->reg_lock);
10246 	if (rc != 0)
10247 		return (rc);
10248 
10249 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10250 	if (sb == NULL)
10251 		return (ENOMEM);
10252 
10253 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10254 	for (i = 0; i < 4; i++) {
10255 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10256 		    tx_cyc[i]);
10257 	}
10258 
10259 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10260 	for (i = 0; i < 4; i++) {
10261 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10262 		    rx_cyc[i]);
10263 	}
10264 
10265 	if (chip_id(sc) > CHELSIO_T5) {
10266 		sbuf_printf(sb,
10267 		    "\n              Total wait      Total occupancy");
10268 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10269 		    tx_cyc[i]);
10270 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10271 		    rx_cyc[i]);
10272 
10273 		i += 2;
10274 		MPASS(i < nitems(tx_stats));
10275 
10276 		sbuf_printf(sb,
10277 		    "\n                   Reads           Total wait");
10278 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10279 		    tx_cyc[i]);
10280 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10281 		    rx_cyc[i]);
10282 	}
10283 
10284 	rc = sbuf_finish(sb);
10285 	sbuf_delete(sb);
10286 
10287 	return (rc);
10288 }
10289 
10290 static int
10291 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10292 {
10293 	struct adapter *sc = arg1;
10294 	struct sbuf *sb;
10295 	int rc;
10296 	struct tp_rdma_stats stats;
10297 
10298 	rc = sysctl_wire_old_buffer(req, 0);
10299 	if (rc != 0)
10300 		return (rc);
10301 
10302 	mtx_lock(&sc->reg_lock);
10303 	if (hw_off_limits(sc))
10304 		rc = ENXIO;
10305 	else
10306 		t4_tp_get_rdma_stats(sc, &stats, 0);
10307 	mtx_unlock(&sc->reg_lock);
10308 	if (rc != 0)
10309 		return (rc);
10310 
10311 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10312 	if (sb == NULL)
10313 		return (ENOMEM);
10314 
10315 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10316 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10317 
10318 	rc = sbuf_finish(sb);
10319 	sbuf_delete(sb);
10320 
10321 	return (rc);
10322 }
10323 
10324 static int
10325 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10326 {
10327 	struct adapter *sc = arg1;
10328 	struct sbuf *sb;
10329 	int rc;
10330 	struct tp_tcp_stats v4, v6;
10331 
10332 	rc = sysctl_wire_old_buffer(req, 0);
10333 	if (rc != 0)
10334 		return (rc);
10335 
10336 	mtx_lock(&sc->reg_lock);
10337 	if (hw_off_limits(sc))
10338 		rc = ENXIO;
10339 	else
10340 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10341 	mtx_unlock(&sc->reg_lock);
10342 	if (rc != 0)
10343 		return (rc);
10344 
10345 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10346 	if (sb == NULL)
10347 		return (ENOMEM);
10348 
10349 	sbuf_printf(sb,
10350 	    "                                IP                 IPv6\n");
10351 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10352 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10353 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10354 	    v4.tcp_in_segs, v6.tcp_in_segs);
10355 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10356 	    v4.tcp_out_segs, v6.tcp_out_segs);
10357 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10358 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10359 
10360 	rc = sbuf_finish(sb);
10361 	sbuf_delete(sb);
10362 
10363 	return (rc);
10364 }
10365 
10366 static int
10367 sysctl_tids(SYSCTL_HANDLER_ARGS)
10368 {
10369 	struct adapter *sc = arg1;
10370 	struct sbuf *sb;
10371 	int rc;
10372 	uint32_t x, y;
10373 	struct tid_info *t = &sc->tids;
10374 
10375 	rc = sysctl_wire_old_buffer(req, 0);
10376 	if (rc != 0)
10377 		return (rc);
10378 
10379 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10380 	if (sb == NULL)
10381 		return (ENOMEM);
10382 
10383 	if (t->natids) {
10384 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10385 		    t->atids_in_use);
10386 	}
10387 
10388 	if (t->nhpftids) {
10389 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10390 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10391 	}
10392 
10393 	if (t->ntids) {
10394 		bool hashen = false;
10395 
10396 		mtx_lock(&sc->reg_lock);
10397 		if (hw_off_limits(sc))
10398 			rc = ENXIO;
10399 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10400 			hashen = true;
10401 			if (chip_id(sc) <= CHELSIO_T5) {
10402 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10403 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10404 			} else {
10405 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10406 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10407 			}
10408 		}
10409 		mtx_unlock(&sc->reg_lock);
10410 		if (rc != 0)
10411 			goto done;
10412 
10413 		sbuf_printf(sb, "TID range: ");
10414 		if (hashen) {
10415 			if (x)
10416 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10417 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10418 		} else {
10419 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10420 			    t->ntids - 1);
10421 		}
10422 		sbuf_printf(sb, ", in use: %u\n",
10423 		    atomic_load_acq_int(&t->tids_in_use));
10424 	}
10425 
10426 	if (t->nstids) {
10427 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10428 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10429 	}
10430 
10431 	if (t->nftids) {
10432 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10433 		    t->ftid_end, t->ftids_in_use);
10434 	}
10435 
10436 	if (t->netids) {
10437 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10438 		    t->etid_base + t->netids - 1, t->etids_in_use);
10439 	}
10440 
10441 	mtx_lock(&sc->reg_lock);
10442 	if (hw_off_limits(sc))
10443 		rc = ENXIO;
10444 	else {
10445 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10446 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10447 	}
10448 	mtx_unlock(&sc->reg_lock);
10449 	if (rc != 0)
10450 		goto done;
10451 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10452 done:
10453 	if (rc == 0)
10454 		rc = sbuf_finish(sb);
10455 	else
10456 		(void)sbuf_finish(sb);
10457 	sbuf_delete(sb);
10458 
10459 	return (rc);
10460 }
10461 
10462 static int
10463 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10464 {
10465 	struct adapter *sc = arg1;
10466 	struct sbuf *sb;
10467 	int rc;
10468 	struct tp_err_stats stats;
10469 
10470 	rc = sysctl_wire_old_buffer(req, 0);
10471 	if (rc != 0)
10472 		return (rc);
10473 
10474 	mtx_lock(&sc->reg_lock);
10475 	if (hw_off_limits(sc))
10476 		rc = ENXIO;
10477 	else
10478 		t4_tp_get_err_stats(sc, &stats, 0);
10479 	mtx_unlock(&sc->reg_lock);
10480 	if (rc != 0)
10481 		return (rc);
10482 
10483 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10484 	if (sb == NULL)
10485 		return (ENOMEM);
10486 
10487 	if (sc->chip_params->nchan > 2) {
10488 		sbuf_printf(sb, "                 channel 0  channel 1"
10489 		    "  channel 2  channel 3\n");
10490 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10491 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10492 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10493 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10494 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10495 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10496 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10497 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10498 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10499 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10500 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10501 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10502 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10503 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10504 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10505 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10506 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10507 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10508 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10509 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10510 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10511 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10512 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10513 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10514 	} else {
10515 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10516 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10517 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10518 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10519 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10520 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10521 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10522 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10523 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10524 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10525 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10526 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10527 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10528 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10529 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10530 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10531 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10532 	}
10533 
10534 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10535 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10536 
10537 	rc = sbuf_finish(sb);
10538 	sbuf_delete(sb);
10539 
10540 	return (rc);
10541 }
10542 
10543 static int
10544 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10545 {
10546 	struct adapter *sc = arg1;
10547 	struct sbuf *sb;
10548 	int rc;
10549 	struct tp_tnl_stats stats;
10550 
10551 	rc = sysctl_wire_old_buffer(req, 0);
10552 	if (rc != 0)
10553 		return(rc);
10554 
10555 	mtx_lock(&sc->reg_lock);
10556 	if (hw_off_limits(sc))
10557 		rc = ENXIO;
10558 	else
10559 		t4_tp_get_tnl_stats(sc, &stats, 1);
10560 	mtx_unlock(&sc->reg_lock);
10561 	if (rc != 0)
10562 		return (rc);
10563 
10564 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10565 	if (sb == NULL)
10566 		return (ENOMEM);
10567 
10568 	if (sc->chip_params->nchan > 2) {
10569 		sbuf_printf(sb, "           channel 0  channel 1"
10570 		    "  channel 2  channel 3\n");
10571 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10572 		    stats.out_pkt[0], stats.out_pkt[1],
10573 		    stats.out_pkt[2], stats.out_pkt[3]);
10574 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10575 		    stats.in_pkt[0], stats.in_pkt[1],
10576 		    stats.in_pkt[2], stats.in_pkt[3]);
10577 	} else {
10578 		sbuf_printf(sb, "           channel 0  channel 1\n");
10579 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10580 		    stats.out_pkt[0], stats.out_pkt[1]);
10581 		sbuf_printf(sb, "InPkts:   %10u %10u",
10582 		    stats.in_pkt[0], stats.in_pkt[1]);
10583 	}
10584 
10585 	rc = sbuf_finish(sb);
10586 	sbuf_delete(sb);
10587 
10588 	return (rc);
10589 }
10590 
10591 static int
10592 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10593 {
10594 	struct adapter *sc = arg1;
10595 	struct tp_params *tpp = &sc->params.tp;
10596 	u_int mask;
10597 	int rc;
10598 
10599 	mask = tpp->la_mask >> 16;
10600 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10601 	if (rc != 0 || req->newptr == NULL)
10602 		return (rc);
10603 	if (mask > 0xffff)
10604 		return (EINVAL);
10605 	mtx_lock(&sc->reg_lock);
10606 	if (hw_off_limits(sc))
10607 		rc = ENXIO;
10608 	else {
10609 		tpp->la_mask = mask << 16;
10610 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10611 		    tpp->la_mask);
10612 	}
10613 	mtx_unlock(&sc->reg_lock);
10614 
10615 	return (rc);
10616 }
10617 
10618 struct field_desc {
10619 	const char *name;
10620 	u_int start;
10621 	u_int width;
10622 };
10623 
10624 static void
10625 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10626 {
10627 	char buf[32];
10628 	int line_size = 0;
10629 
10630 	while (f->name) {
10631 		uint64_t mask = (1ULL << f->width) - 1;
10632 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10633 		    ((uintmax_t)v >> f->start) & mask);
10634 
10635 		if (line_size + len >= 79) {
10636 			line_size = 8;
10637 			sbuf_printf(sb, "\n        ");
10638 		}
10639 		sbuf_printf(sb, "%s ", buf);
10640 		line_size += len + 1;
10641 		f++;
10642 	}
10643 	sbuf_printf(sb, "\n");
10644 }
10645 
10646 static const struct field_desc tp_la0[] = {
10647 	{ "RcfOpCodeOut", 60, 4 },
10648 	{ "State", 56, 4 },
10649 	{ "WcfState", 52, 4 },
10650 	{ "RcfOpcSrcOut", 50, 2 },
10651 	{ "CRxError", 49, 1 },
10652 	{ "ERxError", 48, 1 },
10653 	{ "SanityFailed", 47, 1 },
10654 	{ "SpuriousMsg", 46, 1 },
10655 	{ "FlushInputMsg", 45, 1 },
10656 	{ "FlushInputCpl", 44, 1 },
10657 	{ "RssUpBit", 43, 1 },
10658 	{ "RssFilterHit", 42, 1 },
10659 	{ "Tid", 32, 10 },
10660 	{ "InitTcb", 31, 1 },
10661 	{ "LineNumber", 24, 7 },
10662 	{ "Emsg", 23, 1 },
10663 	{ "EdataOut", 22, 1 },
10664 	{ "Cmsg", 21, 1 },
10665 	{ "CdataOut", 20, 1 },
10666 	{ "EreadPdu", 19, 1 },
10667 	{ "CreadPdu", 18, 1 },
10668 	{ "TunnelPkt", 17, 1 },
10669 	{ "RcfPeerFin", 16, 1 },
10670 	{ "RcfReasonOut", 12, 4 },
10671 	{ "TxCchannel", 10, 2 },
10672 	{ "RcfTxChannel", 8, 2 },
10673 	{ "RxEchannel", 6, 2 },
10674 	{ "RcfRxChannel", 5, 1 },
10675 	{ "RcfDataOutSrdy", 4, 1 },
10676 	{ "RxDvld", 3, 1 },
10677 	{ "RxOoDvld", 2, 1 },
10678 	{ "RxCongestion", 1, 1 },
10679 	{ "TxCongestion", 0, 1 },
10680 	{ NULL }
10681 };
10682 
10683 static const struct field_desc tp_la1[] = {
10684 	{ "CplCmdIn", 56, 8 },
10685 	{ "CplCmdOut", 48, 8 },
10686 	{ "ESynOut", 47, 1 },
10687 	{ "EAckOut", 46, 1 },
10688 	{ "EFinOut", 45, 1 },
10689 	{ "ERstOut", 44, 1 },
10690 	{ "SynIn", 43, 1 },
10691 	{ "AckIn", 42, 1 },
10692 	{ "FinIn", 41, 1 },
10693 	{ "RstIn", 40, 1 },
10694 	{ "DataIn", 39, 1 },
10695 	{ "DataInVld", 38, 1 },
10696 	{ "PadIn", 37, 1 },
10697 	{ "RxBufEmpty", 36, 1 },
10698 	{ "RxDdp", 35, 1 },
10699 	{ "RxFbCongestion", 34, 1 },
10700 	{ "TxFbCongestion", 33, 1 },
10701 	{ "TxPktSumSrdy", 32, 1 },
10702 	{ "RcfUlpType", 28, 4 },
10703 	{ "Eread", 27, 1 },
10704 	{ "Ebypass", 26, 1 },
10705 	{ "Esave", 25, 1 },
10706 	{ "Static0", 24, 1 },
10707 	{ "Cread", 23, 1 },
10708 	{ "Cbypass", 22, 1 },
10709 	{ "Csave", 21, 1 },
10710 	{ "CPktOut", 20, 1 },
10711 	{ "RxPagePoolFull", 18, 2 },
10712 	{ "RxLpbkPkt", 17, 1 },
10713 	{ "TxLpbkPkt", 16, 1 },
10714 	{ "RxVfValid", 15, 1 },
10715 	{ "SynLearned", 14, 1 },
10716 	{ "SetDelEntry", 13, 1 },
10717 	{ "SetInvEntry", 12, 1 },
10718 	{ "CpcmdDvld", 11, 1 },
10719 	{ "CpcmdSave", 10, 1 },
10720 	{ "RxPstructsFull", 8, 2 },
10721 	{ "EpcmdDvld", 7, 1 },
10722 	{ "EpcmdFlush", 6, 1 },
10723 	{ "EpcmdTrimPrefix", 5, 1 },
10724 	{ "EpcmdTrimPostfix", 4, 1 },
10725 	{ "ERssIp4Pkt", 3, 1 },
10726 	{ "ERssIp6Pkt", 2, 1 },
10727 	{ "ERssTcpUdpPkt", 1, 1 },
10728 	{ "ERssFceFipPkt", 0, 1 },
10729 	{ NULL }
10730 };
10731 
10732 static const struct field_desc tp_la2[] = {
10733 	{ "CplCmdIn", 56, 8 },
10734 	{ "MpsVfVld", 55, 1 },
10735 	{ "MpsPf", 52, 3 },
10736 	{ "MpsVf", 44, 8 },
10737 	{ "SynIn", 43, 1 },
10738 	{ "AckIn", 42, 1 },
10739 	{ "FinIn", 41, 1 },
10740 	{ "RstIn", 40, 1 },
10741 	{ "DataIn", 39, 1 },
10742 	{ "DataInVld", 38, 1 },
10743 	{ "PadIn", 37, 1 },
10744 	{ "RxBufEmpty", 36, 1 },
10745 	{ "RxDdp", 35, 1 },
10746 	{ "RxFbCongestion", 34, 1 },
10747 	{ "TxFbCongestion", 33, 1 },
10748 	{ "TxPktSumSrdy", 32, 1 },
10749 	{ "RcfUlpType", 28, 4 },
10750 	{ "Eread", 27, 1 },
10751 	{ "Ebypass", 26, 1 },
10752 	{ "Esave", 25, 1 },
10753 	{ "Static0", 24, 1 },
10754 	{ "Cread", 23, 1 },
10755 	{ "Cbypass", 22, 1 },
10756 	{ "Csave", 21, 1 },
10757 	{ "CPktOut", 20, 1 },
10758 	{ "RxPagePoolFull", 18, 2 },
10759 	{ "RxLpbkPkt", 17, 1 },
10760 	{ "TxLpbkPkt", 16, 1 },
10761 	{ "RxVfValid", 15, 1 },
10762 	{ "SynLearned", 14, 1 },
10763 	{ "SetDelEntry", 13, 1 },
10764 	{ "SetInvEntry", 12, 1 },
10765 	{ "CpcmdDvld", 11, 1 },
10766 	{ "CpcmdSave", 10, 1 },
10767 	{ "RxPstructsFull", 8, 2 },
10768 	{ "EpcmdDvld", 7, 1 },
10769 	{ "EpcmdFlush", 6, 1 },
10770 	{ "EpcmdTrimPrefix", 5, 1 },
10771 	{ "EpcmdTrimPostfix", 4, 1 },
10772 	{ "ERssIp4Pkt", 3, 1 },
10773 	{ "ERssIp6Pkt", 2, 1 },
10774 	{ "ERssTcpUdpPkt", 1, 1 },
10775 	{ "ERssFceFipPkt", 0, 1 },
10776 	{ NULL }
10777 };
10778 
10779 static void
10780 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10781 {
10782 
10783 	field_desc_show(sb, *p, tp_la0);
10784 }
10785 
10786 static void
10787 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10788 {
10789 
10790 	if (idx)
10791 		sbuf_printf(sb, "\n");
10792 	field_desc_show(sb, p[0], tp_la0);
10793 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10794 		field_desc_show(sb, p[1], tp_la0);
10795 }
10796 
10797 static void
10798 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10799 {
10800 
10801 	if (idx)
10802 		sbuf_printf(sb, "\n");
10803 	field_desc_show(sb, p[0], tp_la0);
10804 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10805 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
10806 }
10807 
10808 static int
10809 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
10810 {
10811 	struct adapter *sc = arg1;
10812 	struct sbuf *sb;
10813 	uint64_t *buf, *p;
10814 	int rc;
10815 	u_int i, inc;
10816 	void (*show_func)(struct sbuf *, uint64_t *, int);
10817 
10818 	rc = sysctl_wire_old_buffer(req, 0);
10819 	if (rc != 0)
10820 		return (rc);
10821 
10822 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10823 	if (sb == NULL)
10824 		return (ENOMEM);
10825 
10826 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
10827 
10828 	mtx_lock(&sc->reg_lock);
10829 	if (hw_off_limits(sc))
10830 		rc = ENXIO;
10831 	else {
10832 		t4_tp_read_la(sc, buf, NULL);
10833 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
10834 		case 2:
10835 			inc = 2;
10836 			show_func = tp_la_show2;
10837 			break;
10838 		case 3:
10839 			inc = 2;
10840 			show_func = tp_la_show3;
10841 			break;
10842 		default:
10843 			inc = 1;
10844 			show_func = tp_la_show;
10845 		}
10846 	}
10847 	mtx_unlock(&sc->reg_lock);
10848 	if (rc != 0)
10849 		goto done;
10850 
10851 	p = buf;
10852 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
10853 		(*show_func)(sb, p, i);
10854 	rc = sbuf_finish(sb);
10855 done:
10856 	sbuf_delete(sb);
10857 	free(buf, M_CXGBE);
10858 	return (rc);
10859 }
10860 
10861 static int
10862 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
10863 {
10864 	struct adapter *sc = arg1;
10865 	struct sbuf *sb;
10866 	int rc;
10867 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
10868 
10869 	rc = sysctl_wire_old_buffer(req, 0);
10870 	if (rc != 0)
10871 		return (rc);
10872 
10873 	mtx_lock(&sc->reg_lock);
10874 	if (hw_off_limits(sc))
10875 		rc = ENXIO;
10876 	else
10877 		t4_get_chan_txrate(sc, nrate, orate);
10878 	mtx_unlock(&sc->reg_lock);
10879 	if (rc != 0)
10880 		return (rc);
10881 
10882 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10883 	if (sb == NULL)
10884 		return (ENOMEM);
10885 
10886 	if (sc->chip_params->nchan > 2) {
10887 		sbuf_printf(sb, "              channel 0   channel 1"
10888 		    "   channel 2   channel 3\n");
10889 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
10890 		    nrate[0], nrate[1], nrate[2], nrate[3]);
10891 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
10892 		    orate[0], orate[1], orate[2], orate[3]);
10893 	} else {
10894 		sbuf_printf(sb, "              channel 0   channel 1\n");
10895 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
10896 		    nrate[0], nrate[1]);
10897 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
10898 		    orate[0], orate[1]);
10899 	}
10900 
10901 	rc = sbuf_finish(sb);
10902 	sbuf_delete(sb);
10903 
10904 	return (rc);
10905 }
10906 
10907 static int
10908 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
10909 {
10910 	struct adapter *sc = arg1;
10911 	struct sbuf *sb;
10912 	uint32_t *buf, *p;
10913 	int rc, i;
10914 
10915 	rc = sysctl_wire_old_buffer(req, 0);
10916 	if (rc != 0)
10917 		return (rc);
10918 
10919 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10920 	if (sb == NULL)
10921 		return (ENOMEM);
10922 
10923 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
10924 	    M_ZERO | M_WAITOK);
10925 
10926 	mtx_lock(&sc->reg_lock);
10927 	if (hw_off_limits(sc))
10928 		rc = ENXIO;
10929 	else
10930 		t4_ulprx_read_la(sc, buf);
10931 	mtx_unlock(&sc->reg_lock);
10932 	if (rc != 0)
10933 		goto done;
10934 
10935 	p = buf;
10936 	sbuf_printf(sb, "      Pcmd        Type   Message"
10937 	    "                Data");
10938 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
10939 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
10940 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
10941 	}
10942 	rc = sbuf_finish(sb);
10943 done:
10944 	sbuf_delete(sb);
10945 	free(buf, M_CXGBE);
10946 	return (rc);
10947 }
10948 
10949 static int
10950 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
10951 {
10952 	struct adapter *sc = arg1;
10953 	struct sbuf *sb;
10954 	int rc;
10955 	uint32_t cfg, s1, s2;
10956 
10957 	MPASS(chip_id(sc) >= CHELSIO_T5);
10958 
10959 	rc = sysctl_wire_old_buffer(req, 0);
10960 	if (rc != 0)
10961 		return (rc);
10962 
10963 	mtx_lock(&sc->reg_lock);
10964 	if (hw_off_limits(sc))
10965 		rc = ENXIO;
10966 	else {
10967 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
10968 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
10969 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
10970 	}
10971 	mtx_unlock(&sc->reg_lock);
10972 	if (rc != 0)
10973 		return (rc);
10974 
10975 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10976 	if (sb == NULL)
10977 		return (ENOMEM);
10978 
10979 	if (G_STATSOURCE_T5(cfg) == 7) {
10980 		int mode;
10981 
10982 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
10983 		if (mode == 0)
10984 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
10985 		else if (mode == 1)
10986 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
10987 		else
10988 			sbuf_printf(sb, "unknown mode %d", mode);
10989 	}
10990 	rc = sbuf_finish(sb);
10991 	sbuf_delete(sb);
10992 
10993 	return (rc);
10994 }
10995 
10996 static int
10997 sysctl_cpus(SYSCTL_HANDLER_ARGS)
10998 {
10999 	struct adapter *sc = arg1;
11000 	enum cpu_sets op = arg2;
11001 	cpuset_t cpuset;
11002 	struct sbuf *sb;
11003 	int i, rc;
11004 
11005 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11006 
11007 	CPU_ZERO(&cpuset);
11008 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11009 	if (rc != 0)
11010 		return (rc);
11011 
11012 	rc = sysctl_wire_old_buffer(req, 0);
11013 	if (rc != 0)
11014 		return (rc);
11015 
11016 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11017 	if (sb == NULL)
11018 		return (ENOMEM);
11019 
11020 	CPU_FOREACH(i)
11021 		sbuf_printf(sb, "%d ", i);
11022 	rc = sbuf_finish(sb);
11023 	sbuf_delete(sb);
11024 
11025 	return (rc);
11026 }
11027 
11028 static int
11029 sysctl_reset(SYSCTL_HANDLER_ARGS)
11030 {
11031 	struct adapter *sc = arg1;
11032 	u_int val;
11033 	int rc;
11034 
11035 	val = sc->num_resets;
11036 	rc = sysctl_handle_int(oidp, &val, 0, req);
11037 	if (rc != 0 || req->newptr == NULL)
11038 		return (rc);
11039 
11040 	if (val == 0) {
11041 		/* Zero out the counter that tracks reset. */
11042 		sc->num_resets = 0;
11043 		return (0);
11044 	}
11045 
11046 	if (val != 1)
11047 		return (EINVAL);	/* 0 or 1 are the only legal values */
11048 
11049 	if (hw_off_limits(sc))		/* harmless race */
11050 		return (EALREADY);
11051 
11052 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11053 	return (0);
11054 }
11055 
11056 #ifdef TCP_OFFLOAD
11057 static int
11058 sysctl_tls(SYSCTL_HANDLER_ARGS)
11059 {
11060 	struct adapter *sc = arg1;
11061 	int i, j, v, rc;
11062 	struct vi_info *vi;
11063 
11064 	v = sc->tt.tls;
11065 	rc = sysctl_handle_int(oidp, &v, 0, req);
11066 	if (rc != 0 || req->newptr == NULL)
11067 		return (rc);
11068 
11069 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11070 		return (ENOTSUP);
11071 
11072 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11073 	if (rc)
11074 		return (rc);
11075 	if (hw_off_limits(sc))
11076 		rc = ENXIO;
11077 	else {
11078 		sc->tt.tls = !!v;
11079 		for_each_port(sc, i) {
11080 			for_each_vi(sc->port[i], j, vi) {
11081 				if (vi->flags & VI_INIT_DONE)
11082 					t4_update_fl_bufsize(vi->ifp);
11083 			}
11084 		}
11085 	}
11086 	end_synchronized_op(sc, 0);
11087 
11088 	return (rc);
11089 
11090 }
11091 
11092 static int
11093 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
11094 {
11095 	struct adapter *sc = arg1;
11096 	int *old_ports, *new_ports;
11097 	int i, new_count, rc;
11098 
11099 	if (req->newptr == NULL && req->oldptr == NULL)
11100 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
11101 		    sizeof(sc->tt.tls_rx_ports[0])));
11102 
11103 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
11104 	if (rc)
11105 		return (rc);
11106 
11107 	if (hw_off_limits(sc)) {
11108 		rc = ENXIO;
11109 		goto done;
11110 	}
11111 
11112 	if (sc->tt.num_tls_rx_ports == 0) {
11113 		i = -1;
11114 		rc = SYSCTL_OUT(req, &i, sizeof(i));
11115 	} else
11116 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
11117 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
11118 	if (rc == 0 && req->newptr != NULL) {
11119 		new_count = req->newlen / sizeof(new_ports[0]);
11120 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
11121 		    M_WAITOK);
11122 		rc = SYSCTL_IN(req, new_ports, new_count *
11123 		    sizeof(new_ports[0]));
11124 		if (rc)
11125 			goto err;
11126 
11127 		/* Allow setting to a single '-1' to clear the list. */
11128 		if (new_count == 1 && new_ports[0] == -1) {
11129 			ADAPTER_LOCK(sc);
11130 			old_ports = sc->tt.tls_rx_ports;
11131 			sc->tt.tls_rx_ports = NULL;
11132 			sc->tt.num_tls_rx_ports = 0;
11133 			ADAPTER_UNLOCK(sc);
11134 			free(old_ports, M_CXGBE);
11135 		} else {
11136 			for (i = 0; i < new_count; i++) {
11137 				if (new_ports[i] < 1 ||
11138 				    new_ports[i] > IPPORT_MAX) {
11139 					rc = EINVAL;
11140 					goto err;
11141 				}
11142 			}
11143 
11144 			ADAPTER_LOCK(sc);
11145 			old_ports = sc->tt.tls_rx_ports;
11146 			sc->tt.tls_rx_ports = new_ports;
11147 			sc->tt.num_tls_rx_ports = new_count;
11148 			ADAPTER_UNLOCK(sc);
11149 			free(old_ports, M_CXGBE);
11150 			new_ports = NULL;
11151 		}
11152 	err:
11153 		free(new_ports, M_CXGBE);
11154 	}
11155 done:
11156 	end_synchronized_op(sc, 0);
11157 	return (rc);
11158 }
11159 
11160 static int
11161 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS)
11162 {
11163 	struct adapter *sc = arg1;
11164 	int v, rc;
11165 
11166 	v = sc->tt.tls_rx_timeout;
11167 	rc = sysctl_handle_int(oidp, &v, 0, req);
11168 	if (rc != 0 || req->newptr == NULL)
11169 		return (rc);
11170 
11171 	if (v < 0)
11172 		return (EINVAL);
11173 
11174 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11175 		return (ENOTSUP);
11176 
11177 	sc->tt.tls_rx_timeout = v;
11178 
11179 	return (0);
11180 
11181 }
11182 
11183 static void
11184 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11185 {
11186 	u_int rem = val % factor;
11187 
11188 	if (rem == 0)
11189 		snprintf(buf, len, "%u", val / factor);
11190 	else {
11191 		while (rem % 10 == 0)
11192 			rem /= 10;
11193 		snprintf(buf, len, "%u.%u", val / factor, rem);
11194 	}
11195 }
11196 
11197 static int
11198 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11199 {
11200 	struct adapter *sc = arg1;
11201 	char buf[16];
11202 	u_int res, re;
11203 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11204 
11205 	mtx_lock(&sc->reg_lock);
11206 	if (hw_off_limits(sc))
11207 		res = (u_int)-1;
11208 	else
11209 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11210 	mtx_unlock(&sc->reg_lock);
11211 	if (res == (u_int)-1)
11212 		return (ENXIO);
11213 
11214 	switch (arg2) {
11215 	case 0:
11216 		/* timer_tick */
11217 		re = G_TIMERRESOLUTION(res);
11218 		break;
11219 	case 1:
11220 		/* TCP timestamp tick */
11221 		re = G_TIMESTAMPRESOLUTION(res);
11222 		break;
11223 	case 2:
11224 		/* DACK tick */
11225 		re = G_DELAYEDACKRESOLUTION(res);
11226 		break;
11227 	default:
11228 		return (EDOOFUS);
11229 	}
11230 
11231 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11232 
11233 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11234 }
11235 
11236 static int
11237 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11238 {
11239 	struct adapter *sc = arg1;
11240 	int rc;
11241 	u_int dack_tmr, dack_re, v;
11242 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11243 
11244 	mtx_lock(&sc->reg_lock);
11245 	if (hw_off_limits(sc))
11246 		rc = ENXIO;
11247 	else {
11248 		rc = 0;
11249 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11250 		    A_TP_TIMER_RESOLUTION));
11251 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11252 	}
11253 	mtx_unlock(&sc->reg_lock);
11254 	if (rc != 0)
11255 		return (rc);
11256 
11257 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11258 
11259 	return (sysctl_handle_int(oidp, &v, 0, req));
11260 }
11261 
11262 static int
11263 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11264 {
11265 	struct adapter *sc = arg1;
11266 	int rc, reg = arg2;
11267 	u_int tre;
11268 	u_long tp_tick_us, v;
11269 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11270 
11271 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11272 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11273 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11274 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11275 
11276 	mtx_lock(&sc->reg_lock);
11277 	if (hw_off_limits(sc))
11278 		rc = ENXIO;
11279 	else {
11280 		rc = 0;
11281 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11282 		tp_tick_us = (cclk_ps << tre) / 1000000;
11283 		if (reg == A_TP_INIT_SRTT)
11284 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11285 		else
11286 			v = tp_tick_us * t4_read_reg(sc, reg);
11287 	}
11288 	mtx_unlock(&sc->reg_lock);
11289 	if (rc != 0)
11290 		return (rc);
11291 	else
11292 		return (sysctl_handle_long(oidp, &v, 0, req));
11293 }
11294 
11295 /*
11296  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11297  * passed to this function.
11298  */
11299 static int
11300 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11301 {
11302 	struct adapter *sc = arg1;
11303 	int rc, idx = arg2;
11304 	u_int v;
11305 
11306 	MPASS(idx >= 0 && idx <= 24);
11307 
11308 	mtx_lock(&sc->reg_lock);
11309 	if (hw_off_limits(sc))
11310 		rc = ENXIO;
11311 	else {
11312 		rc = 0;
11313 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11314 	}
11315 	mtx_unlock(&sc->reg_lock);
11316 	if (rc != 0)
11317 		return (rc);
11318 	else
11319 		return (sysctl_handle_int(oidp, &v, 0, req));
11320 }
11321 
11322 static int
11323 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11324 {
11325 	struct adapter *sc = arg1;
11326 	int rc, idx = arg2;
11327 	u_int shift, v, r;
11328 
11329 	MPASS(idx >= 0 && idx < 16);
11330 
11331 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11332 	shift = (idx & 3) << 3;
11333 	mtx_lock(&sc->reg_lock);
11334 	if (hw_off_limits(sc))
11335 		rc = ENXIO;
11336 	else {
11337 		rc = 0;
11338 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11339 	}
11340 	mtx_unlock(&sc->reg_lock);
11341 	if (rc != 0)
11342 		return (rc);
11343 	else
11344 		return (sysctl_handle_int(oidp, &v, 0, req));
11345 }
11346 
11347 static int
11348 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11349 {
11350 	struct vi_info *vi = arg1;
11351 	struct adapter *sc = vi->adapter;
11352 	int idx, rc, i;
11353 	struct sge_ofld_rxq *ofld_rxq;
11354 	uint8_t v;
11355 
11356 	idx = vi->ofld_tmr_idx;
11357 
11358 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11359 	if (rc != 0 || req->newptr == NULL)
11360 		return (rc);
11361 
11362 	if (idx < 0 || idx >= SGE_NTIMERS)
11363 		return (EINVAL);
11364 
11365 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11366 	    "t4otmr");
11367 	if (rc)
11368 		return (rc);
11369 
11370 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11371 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11372 #ifdef atomic_store_rel_8
11373 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11374 #else
11375 		ofld_rxq->iq.intr_params = v;
11376 #endif
11377 	}
11378 	vi->ofld_tmr_idx = idx;
11379 
11380 	end_synchronized_op(sc, LOCK_HELD);
11381 	return (0);
11382 }
11383 
11384 static int
11385 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11386 {
11387 	struct vi_info *vi = arg1;
11388 	struct adapter *sc = vi->adapter;
11389 	int idx, rc;
11390 
11391 	idx = vi->ofld_pktc_idx;
11392 
11393 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11394 	if (rc != 0 || req->newptr == NULL)
11395 		return (rc);
11396 
11397 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11398 		return (EINVAL);
11399 
11400 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11401 	    "t4opktc");
11402 	if (rc)
11403 		return (rc);
11404 
11405 	if (vi->flags & VI_INIT_DONE)
11406 		rc = EBUSY; /* cannot be changed once the queues are created */
11407 	else
11408 		vi->ofld_pktc_idx = idx;
11409 
11410 	end_synchronized_op(sc, LOCK_HELD);
11411 	return (rc);
11412 }
11413 #endif
11414 
11415 static int
11416 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11417 {
11418 	int rc;
11419 
11420 	if (cntxt->cid > M_CTXTQID)
11421 		return (EINVAL);
11422 
11423 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11424 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11425 		return (EINVAL);
11426 
11427 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11428 	if (rc)
11429 		return (rc);
11430 
11431 	if (hw_off_limits(sc)) {
11432 		rc = ENXIO;
11433 		goto done;
11434 	}
11435 
11436 	if (sc->flags & FW_OK) {
11437 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11438 		    &cntxt->data[0]);
11439 		if (rc == 0)
11440 			goto done;
11441 	}
11442 
11443 	/*
11444 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11445 	 * the backdoor.
11446 	 */
11447 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11448 done:
11449 	end_synchronized_op(sc, 0);
11450 	return (rc);
11451 }
11452 
11453 static int
11454 load_fw(struct adapter *sc, struct t4_data *fw)
11455 {
11456 	int rc;
11457 	uint8_t *fw_data;
11458 
11459 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11460 	if (rc)
11461 		return (rc);
11462 
11463 	if (hw_off_limits(sc)) {
11464 		rc = ENXIO;
11465 		goto done;
11466 	}
11467 
11468 	/*
11469 	 * The firmware, with the sole exception of the memory parity error
11470 	 * handler, runs from memory and not flash.  It is almost always safe to
11471 	 * install a new firmware on a running system.  Just set bit 1 in
11472 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11473 	 */
11474 	if (sc->flags & FULL_INIT_DONE &&
11475 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11476 		rc = EBUSY;
11477 		goto done;
11478 	}
11479 
11480 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11481 
11482 	rc = copyin(fw->data, fw_data, fw->len);
11483 	if (rc == 0)
11484 		rc = -t4_load_fw(sc, fw_data, fw->len);
11485 
11486 	free(fw_data, M_CXGBE);
11487 done:
11488 	end_synchronized_op(sc, 0);
11489 	return (rc);
11490 }
11491 
11492 static int
11493 load_cfg(struct adapter *sc, struct t4_data *cfg)
11494 {
11495 	int rc;
11496 	uint8_t *cfg_data = NULL;
11497 
11498 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11499 	if (rc)
11500 		return (rc);
11501 
11502 	if (hw_off_limits(sc)) {
11503 		rc = ENXIO;
11504 		goto done;
11505 	}
11506 
11507 	if (cfg->len == 0) {
11508 		/* clear */
11509 		rc = -t4_load_cfg(sc, NULL, 0);
11510 		goto done;
11511 	}
11512 
11513 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11514 
11515 	rc = copyin(cfg->data, cfg_data, cfg->len);
11516 	if (rc == 0)
11517 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11518 
11519 	free(cfg_data, M_CXGBE);
11520 done:
11521 	end_synchronized_op(sc, 0);
11522 	return (rc);
11523 }
11524 
11525 static int
11526 load_boot(struct adapter *sc, struct t4_bootrom *br)
11527 {
11528 	int rc;
11529 	uint8_t *br_data = NULL;
11530 	u_int offset;
11531 
11532 	if (br->len > 1024 * 1024)
11533 		return (EFBIG);
11534 
11535 	if (br->pf_offset == 0) {
11536 		/* pfidx */
11537 		if (br->pfidx_addr > 7)
11538 			return (EINVAL);
11539 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11540 		    A_PCIE_PF_EXPROM_OFST)));
11541 	} else if (br->pf_offset == 1) {
11542 		/* offset */
11543 		offset = G_OFFSET(br->pfidx_addr);
11544 	} else {
11545 		return (EINVAL);
11546 	}
11547 
11548 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11549 	if (rc)
11550 		return (rc);
11551 
11552 	if (hw_off_limits(sc)) {
11553 		rc = ENXIO;
11554 		goto done;
11555 	}
11556 
11557 	if (br->len == 0) {
11558 		/* clear */
11559 		rc = -t4_load_boot(sc, NULL, offset, 0);
11560 		goto done;
11561 	}
11562 
11563 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11564 
11565 	rc = copyin(br->data, br_data, br->len);
11566 	if (rc == 0)
11567 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11568 
11569 	free(br_data, M_CXGBE);
11570 done:
11571 	end_synchronized_op(sc, 0);
11572 	return (rc);
11573 }
11574 
11575 static int
11576 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11577 {
11578 	int rc;
11579 	uint8_t *bc_data = NULL;
11580 
11581 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11582 	if (rc)
11583 		return (rc);
11584 
11585 	if (hw_off_limits(sc)) {
11586 		rc = ENXIO;
11587 		goto done;
11588 	}
11589 
11590 	if (bc->len == 0) {
11591 		/* clear */
11592 		rc = -t4_load_bootcfg(sc, NULL, 0);
11593 		goto done;
11594 	}
11595 
11596 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11597 
11598 	rc = copyin(bc->data, bc_data, bc->len);
11599 	if (rc == 0)
11600 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11601 
11602 	free(bc_data, M_CXGBE);
11603 done:
11604 	end_synchronized_op(sc, 0);
11605 	return (rc);
11606 }
11607 
11608 static int
11609 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11610 {
11611 	int rc;
11612 	struct cudbg_init *cudbg;
11613 	void *handle, *buf;
11614 
11615 	/* buf is large, don't block if no memory is available */
11616 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11617 	if (buf == NULL)
11618 		return (ENOMEM);
11619 
11620 	handle = cudbg_alloc_handle();
11621 	if (handle == NULL) {
11622 		rc = ENOMEM;
11623 		goto done;
11624 	}
11625 
11626 	cudbg = cudbg_get_init(handle);
11627 	cudbg->adap = sc;
11628 	cudbg->print = (cudbg_print_cb)printf;
11629 
11630 #ifndef notyet
11631 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11632 	    __func__, dump->wr_flash, dump->len, dump->data);
11633 #endif
11634 
11635 	if (dump->wr_flash)
11636 		cudbg->use_flash = 1;
11637 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11638 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11639 
11640 	rc = cudbg_collect(handle, buf, &dump->len);
11641 	if (rc != 0)
11642 		goto done;
11643 
11644 	rc = copyout(buf, dump->data, dump->len);
11645 done:
11646 	cudbg_free_handle(handle);
11647 	free(buf, M_CXGBE);
11648 	return (rc);
11649 }
11650 
11651 static void
11652 free_offload_policy(struct t4_offload_policy *op)
11653 {
11654 	struct offload_rule *r;
11655 	int i;
11656 
11657 	if (op == NULL)
11658 		return;
11659 
11660 	r = &op->rule[0];
11661 	for (i = 0; i < op->nrules; i++, r++) {
11662 		free(r->bpf_prog.bf_insns, M_CXGBE);
11663 	}
11664 	free(op->rule, M_CXGBE);
11665 	free(op, M_CXGBE);
11666 }
11667 
11668 static int
11669 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11670 {
11671 	int i, rc, len;
11672 	struct t4_offload_policy *op, *old;
11673 	struct bpf_program *bf;
11674 	const struct offload_settings *s;
11675 	struct offload_rule *r;
11676 	void *u;
11677 
11678 	if (!is_offload(sc))
11679 		return (ENODEV);
11680 
11681 	if (uop->nrules == 0) {
11682 		/* Delete installed policies. */
11683 		op = NULL;
11684 		goto set_policy;
11685 	} else if (uop->nrules > 256) { /* arbitrary */
11686 		return (E2BIG);
11687 	}
11688 
11689 	/* Copy userspace offload policy to kernel */
11690 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11691 	op->nrules = uop->nrules;
11692 	len = op->nrules * sizeof(struct offload_rule);
11693 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11694 	rc = copyin(uop->rule, op->rule, len);
11695 	if (rc) {
11696 		free(op->rule, M_CXGBE);
11697 		free(op, M_CXGBE);
11698 		return (rc);
11699 	}
11700 
11701 	r = &op->rule[0];
11702 	for (i = 0; i < op->nrules; i++, r++) {
11703 
11704 		/* Validate open_type */
11705 		if (r->open_type != OPEN_TYPE_LISTEN &&
11706 		    r->open_type != OPEN_TYPE_ACTIVE &&
11707 		    r->open_type != OPEN_TYPE_PASSIVE &&
11708 		    r->open_type != OPEN_TYPE_DONTCARE) {
11709 error:
11710 			/*
11711 			 * Rules 0 to i have malloc'd filters that need to be
11712 			 * freed.  Rules i+1 to nrules have userspace pointers
11713 			 * and should be left alone.
11714 			 */
11715 			op->nrules = i;
11716 			free_offload_policy(op);
11717 			return (rc);
11718 		}
11719 
11720 		/* Validate settings */
11721 		s = &r->settings;
11722 		if ((s->offload != 0 && s->offload != 1) ||
11723 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11724 		    s->sched_class < -1 ||
11725 		    s->sched_class >= sc->params.nsched_cls) {
11726 			rc = EINVAL;
11727 			goto error;
11728 		}
11729 
11730 		bf = &r->bpf_prog;
11731 		u = bf->bf_insns;	/* userspace ptr */
11732 		bf->bf_insns = NULL;
11733 		if (bf->bf_len == 0) {
11734 			/* legal, matches everything */
11735 			continue;
11736 		}
11737 		len = bf->bf_len * sizeof(*bf->bf_insns);
11738 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11739 		rc = copyin(u, bf->bf_insns, len);
11740 		if (rc != 0)
11741 			goto error;
11742 
11743 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11744 			rc = EINVAL;
11745 			goto error;
11746 		}
11747 	}
11748 set_policy:
11749 	rw_wlock(&sc->policy_lock);
11750 	old = sc->policy;
11751 	sc->policy = op;
11752 	rw_wunlock(&sc->policy_lock);
11753 	free_offload_policy(old);
11754 
11755 	return (0);
11756 }
11757 
11758 #define MAX_READ_BUF_SIZE (128 * 1024)
11759 static int
11760 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11761 {
11762 	uint32_t addr, remaining, n;
11763 	uint32_t *buf;
11764 	int rc;
11765 	uint8_t *dst;
11766 
11767 	mtx_lock(&sc->reg_lock);
11768 	if (hw_off_limits(sc))
11769 		rc = ENXIO;
11770 	else
11771 		rc = validate_mem_range(sc, mr->addr, mr->len);
11772 	mtx_unlock(&sc->reg_lock);
11773 	if (rc != 0)
11774 		return (rc);
11775 
11776 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11777 	addr = mr->addr;
11778 	remaining = mr->len;
11779 	dst = (void *)mr->data;
11780 
11781 	while (remaining) {
11782 		n = min(remaining, MAX_READ_BUF_SIZE);
11783 		mtx_lock(&sc->reg_lock);
11784 		if (hw_off_limits(sc))
11785 			rc = ENXIO;
11786 		else
11787 			read_via_memwin(sc, 2, addr, buf, n);
11788 		mtx_unlock(&sc->reg_lock);
11789 		if (rc != 0)
11790 			break;
11791 
11792 		rc = copyout(buf, dst, n);
11793 		if (rc != 0)
11794 			break;
11795 
11796 		dst += n;
11797 		remaining -= n;
11798 		addr += n;
11799 	}
11800 
11801 	free(buf, M_CXGBE);
11802 	return (rc);
11803 }
11804 #undef MAX_READ_BUF_SIZE
11805 
11806 static int
11807 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11808 {
11809 	int rc;
11810 
11811 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11812 		return (EINVAL);
11813 
11814 	if (i2cd->len > sizeof(i2cd->data))
11815 		return (EFBIG);
11816 
11817 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11818 	if (rc)
11819 		return (rc);
11820 	if (hw_off_limits(sc))
11821 		rc = ENXIO;
11822 	else
11823 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11824 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11825 	end_synchronized_op(sc, 0);
11826 
11827 	return (rc);
11828 }
11829 
11830 static int
11831 clear_stats(struct adapter *sc, u_int port_id)
11832 {
11833 	int i, v, chan_map;
11834 	struct port_info *pi;
11835 	struct vi_info *vi;
11836 	struct sge_rxq *rxq;
11837 	struct sge_txq *txq;
11838 	struct sge_wrq *wrq;
11839 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11840 	struct sge_ofld_txq *ofld_txq;
11841 #endif
11842 #ifdef TCP_OFFLOAD
11843 	struct sge_ofld_rxq *ofld_rxq;
11844 #endif
11845 
11846 	if (port_id >= sc->params.nports)
11847 		return (EINVAL);
11848 	pi = sc->port[port_id];
11849 	if (pi == NULL)
11850 		return (EIO);
11851 
11852 	mtx_lock(&sc->reg_lock);
11853 	if (!hw_off_limits(sc)) {
11854 		/* MAC stats */
11855 		t4_clr_port_stats(sc, pi->tx_chan);
11856 		if (is_t6(sc)) {
11857 			if (pi->fcs_reg != -1)
11858 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11859 			else
11860 				pi->stats.rx_fcs_err = 0;
11861 		}
11862 		for_each_vi(pi, v, vi) {
11863 			if (vi->flags & VI_INIT_DONE)
11864 				t4_clr_vi_stats(sc, vi->vin);
11865 		}
11866 		chan_map = pi->rx_e_chan_map;
11867 		v = 0;	/* reuse */
11868 		while (chan_map) {
11869 			i = ffs(chan_map) - 1;
11870 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11871 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11872 			chan_map &= ~(1 << i);
11873 		}
11874 	}
11875 	mtx_unlock(&sc->reg_lock);
11876 	pi->tx_parse_error = 0;
11877 	pi->tnl_cong_drops = 0;
11878 
11879 	/*
11880 	 * Since this command accepts a port, clear stats for
11881 	 * all VIs on this port.
11882 	 */
11883 	for_each_vi(pi, v, vi) {
11884 		if (vi->flags & VI_INIT_DONE) {
11885 
11886 			for_each_rxq(vi, i, rxq) {
11887 #if defined(INET) || defined(INET6)
11888 				rxq->lro.lro_queued = 0;
11889 				rxq->lro.lro_flushed = 0;
11890 #endif
11891 				rxq->rxcsum = 0;
11892 				rxq->vlan_extraction = 0;
11893 				rxq->vxlan_rxcsum = 0;
11894 
11895 				rxq->fl.cl_allocated = 0;
11896 				rxq->fl.cl_recycled = 0;
11897 				rxq->fl.cl_fast_recycled = 0;
11898 			}
11899 
11900 			for_each_txq(vi, i, txq) {
11901 				txq->txcsum = 0;
11902 				txq->tso_wrs = 0;
11903 				txq->vlan_insertion = 0;
11904 				txq->imm_wrs = 0;
11905 				txq->sgl_wrs = 0;
11906 				txq->txpkt_wrs = 0;
11907 				txq->txpkts0_wrs = 0;
11908 				txq->txpkts1_wrs = 0;
11909 				txq->txpkts0_pkts = 0;
11910 				txq->txpkts1_pkts = 0;
11911 				txq->txpkts_flush = 0;
11912 				txq->raw_wrs = 0;
11913 				txq->vxlan_tso_wrs = 0;
11914 				txq->vxlan_txcsum = 0;
11915 				txq->kern_tls_records = 0;
11916 				txq->kern_tls_short = 0;
11917 				txq->kern_tls_partial = 0;
11918 				txq->kern_tls_full = 0;
11919 				txq->kern_tls_octets = 0;
11920 				txq->kern_tls_waste = 0;
11921 				txq->kern_tls_options = 0;
11922 				txq->kern_tls_header = 0;
11923 				txq->kern_tls_fin = 0;
11924 				txq->kern_tls_fin_short = 0;
11925 				txq->kern_tls_cbc = 0;
11926 				txq->kern_tls_gcm = 0;
11927 				mp_ring_reset_stats(txq->r);
11928 			}
11929 
11930 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11931 			for_each_ofld_txq(vi, i, ofld_txq) {
11932 				ofld_txq->wrq.tx_wrs_direct = 0;
11933 				ofld_txq->wrq.tx_wrs_copied = 0;
11934 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
11935 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
11936 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
11937 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
11938 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
11939 			}
11940 #endif
11941 #ifdef TCP_OFFLOAD
11942 			for_each_ofld_rxq(vi, i, ofld_rxq) {
11943 				ofld_rxq->fl.cl_allocated = 0;
11944 				ofld_rxq->fl.cl_recycled = 0;
11945 				ofld_rxq->fl.cl_fast_recycled = 0;
11946 				counter_u64_zero(
11947 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
11948 				counter_u64_zero(
11949 				    ofld_rxq->rx_iscsi_ddp_setup_error);
11950 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
11951 				ofld_rxq->rx_iscsi_ddp_octets = 0;
11952 				ofld_rxq->rx_iscsi_fl_pdus = 0;
11953 				ofld_rxq->rx_iscsi_fl_octets = 0;
11954 				ofld_rxq->rx_toe_tls_records = 0;
11955 				ofld_rxq->rx_toe_tls_octets = 0;
11956 			}
11957 #endif
11958 
11959 			if (IS_MAIN_VI(vi)) {
11960 				wrq = &sc->sge.ctrlq[pi->port_id];
11961 				wrq->tx_wrs_direct = 0;
11962 				wrq->tx_wrs_copied = 0;
11963 			}
11964 		}
11965 	}
11966 
11967 	return (0);
11968 }
11969 
11970 static int
11971 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
11972 {
11973 #ifdef INET6
11974 	struct in6_addr in6;
11975 
11976 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
11977 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
11978 		return (0);
11979 	else
11980 		return (EIO);
11981 #else
11982 	return (ENOTSUP);
11983 #endif
11984 }
11985 
11986 static int
11987 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
11988 {
11989 #ifdef INET6
11990 	struct in6_addr in6;
11991 
11992 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
11993 	return (t4_release_clip_addr(sc, &in6));
11994 #else
11995 	return (ENOTSUP);
11996 #endif
11997 }
11998 
11999 int
12000 t4_os_find_pci_capability(struct adapter *sc, int cap)
12001 {
12002 	int i;
12003 
12004 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12005 }
12006 
12007 int
12008 t4_os_pci_save_state(struct adapter *sc)
12009 {
12010 	device_t dev;
12011 	struct pci_devinfo *dinfo;
12012 
12013 	dev = sc->dev;
12014 	dinfo = device_get_ivars(dev);
12015 
12016 	pci_cfg_save(dev, dinfo, 0);
12017 	return (0);
12018 }
12019 
12020 int
12021 t4_os_pci_restore_state(struct adapter *sc)
12022 {
12023 	device_t dev;
12024 	struct pci_devinfo *dinfo;
12025 
12026 	dev = sc->dev;
12027 	dinfo = device_get_ivars(dev);
12028 
12029 	pci_cfg_restore(dev, dinfo);
12030 	return (0);
12031 }
12032 
12033 void
12034 t4_os_portmod_changed(struct port_info *pi)
12035 {
12036 	struct adapter *sc = pi->adapter;
12037 	struct vi_info *vi;
12038 	struct ifnet *ifp;
12039 	static const char *mod_str[] = {
12040 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12041 	};
12042 
12043 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12044 	    ("%s: port_type %u", __func__, pi->port_type));
12045 
12046 	vi = &pi->vi[0];
12047 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12048 		PORT_LOCK(pi);
12049 		build_medialist(pi);
12050 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12051 			fixup_link_config(pi);
12052 			apply_link_config(pi);
12053 		}
12054 		PORT_UNLOCK(pi);
12055 		end_synchronized_op(sc, LOCK_HELD);
12056 	}
12057 
12058 	ifp = vi->ifp;
12059 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12060 		if_printf(ifp, "transceiver unplugged.\n");
12061 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12062 		if_printf(ifp, "unknown transceiver inserted.\n");
12063 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12064 		if_printf(ifp, "unsupported transceiver inserted.\n");
12065 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12066 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12067 		    port_top_speed(pi), mod_str[pi->mod_type]);
12068 	} else {
12069 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12070 		    pi->mod_type);
12071 	}
12072 }
12073 
12074 void
12075 t4_os_link_changed(struct port_info *pi)
12076 {
12077 	struct vi_info *vi;
12078 	struct ifnet *ifp;
12079 	struct link_config *lc = &pi->link_cfg;
12080 	struct adapter *sc = pi->adapter;
12081 	int v;
12082 
12083 	PORT_LOCK_ASSERT_OWNED(pi);
12084 
12085 	if (is_t6(sc)) {
12086 		if (lc->link_ok) {
12087 			if (lc->speed > 25000 ||
12088 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12089 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12090 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12091 			} else {
12092 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12093 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12094 			}
12095 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12096 			pi->stats.rx_fcs_err = 0;
12097 		} else {
12098 			pi->fcs_reg = -1;
12099 		}
12100 	} else {
12101 		MPASS(pi->fcs_reg != -1);
12102 		MPASS(pi->fcs_base == 0);
12103 	}
12104 
12105 	for_each_vi(pi, v, vi) {
12106 		ifp = vi->ifp;
12107 		if (ifp == NULL)
12108 			continue;
12109 
12110 		if (lc->link_ok) {
12111 			ifp->if_baudrate = IF_Mbps(lc->speed);
12112 			if_link_state_change(ifp, LINK_STATE_UP);
12113 		} else {
12114 			if_link_state_change(ifp, LINK_STATE_DOWN);
12115 		}
12116 	}
12117 }
12118 
12119 void
12120 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12121 {
12122 	struct adapter *sc;
12123 
12124 	sx_slock(&t4_list_lock);
12125 	SLIST_FOREACH(sc, &t4_list, link) {
12126 		/*
12127 		 * func should not make any assumptions about what state sc is
12128 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12129 		 */
12130 		func(sc, arg);
12131 	}
12132 	sx_sunlock(&t4_list_lock);
12133 }
12134 
12135 static int
12136 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12137     struct thread *td)
12138 {
12139 	int rc;
12140 	struct adapter *sc = dev->si_drv1;
12141 
12142 	rc = priv_check(td, PRIV_DRIVER);
12143 	if (rc != 0)
12144 		return (rc);
12145 
12146 	switch (cmd) {
12147 	case CHELSIO_T4_GETREG: {
12148 		struct t4_reg *edata = (struct t4_reg *)data;
12149 
12150 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12151 			return (EFAULT);
12152 
12153 		mtx_lock(&sc->reg_lock);
12154 		if (hw_off_limits(sc))
12155 			rc = ENXIO;
12156 		else if (edata->size == 4)
12157 			edata->val = t4_read_reg(sc, edata->addr);
12158 		else if (edata->size == 8)
12159 			edata->val = t4_read_reg64(sc, edata->addr);
12160 		else
12161 			rc = EINVAL;
12162 		mtx_unlock(&sc->reg_lock);
12163 
12164 		break;
12165 	}
12166 	case CHELSIO_T4_SETREG: {
12167 		struct t4_reg *edata = (struct t4_reg *)data;
12168 
12169 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12170 			return (EFAULT);
12171 
12172 		mtx_lock(&sc->reg_lock);
12173 		if (hw_off_limits(sc))
12174 			rc = ENXIO;
12175 		else if (edata->size == 4) {
12176 			if (edata->val & 0xffffffff00000000)
12177 				rc = EINVAL;
12178 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12179 		} else if (edata->size == 8)
12180 			t4_write_reg64(sc, edata->addr, edata->val);
12181 		else
12182 			rc = EINVAL;
12183 		mtx_unlock(&sc->reg_lock);
12184 
12185 		break;
12186 	}
12187 	case CHELSIO_T4_REGDUMP: {
12188 		struct t4_regdump *regs = (struct t4_regdump *)data;
12189 		int reglen = t4_get_regs_len(sc);
12190 		uint8_t *buf;
12191 
12192 		if (regs->len < reglen) {
12193 			regs->len = reglen; /* hint to the caller */
12194 			return (ENOBUFS);
12195 		}
12196 
12197 		regs->len = reglen;
12198 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12199 		mtx_lock(&sc->reg_lock);
12200 		if (hw_off_limits(sc))
12201 			rc = ENXIO;
12202 		else
12203 			get_regs(sc, regs, buf);
12204 		mtx_unlock(&sc->reg_lock);
12205 		if (rc == 0)
12206 			rc = copyout(buf, regs->data, reglen);
12207 		free(buf, M_CXGBE);
12208 		break;
12209 	}
12210 	case CHELSIO_T4_GET_FILTER_MODE:
12211 		rc = get_filter_mode(sc, (uint32_t *)data);
12212 		break;
12213 	case CHELSIO_T4_SET_FILTER_MODE:
12214 		rc = set_filter_mode(sc, *(uint32_t *)data);
12215 		break;
12216 	case CHELSIO_T4_SET_FILTER_MASK:
12217 		rc = set_filter_mask(sc, *(uint32_t *)data);
12218 		break;
12219 	case CHELSIO_T4_GET_FILTER:
12220 		rc = get_filter(sc, (struct t4_filter *)data);
12221 		break;
12222 	case CHELSIO_T4_SET_FILTER:
12223 		rc = set_filter(sc, (struct t4_filter *)data);
12224 		break;
12225 	case CHELSIO_T4_DEL_FILTER:
12226 		rc = del_filter(sc, (struct t4_filter *)data);
12227 		break;
12228 	case CHELSIO_T4_GET_SGE_CONTEXT:
12229 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12230 		break;
12231 	case CHELSIO_T4_LOAD_FW:
12232 		rc = load_fw(sc, (struct t4_data *)data);
12233 		break;
12234 	case CHELSIO_T4_GET_MEM:
12235 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12236 		break;
12237 	case CHELSIO_T4_GET_I2C:
12238 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12239 		break;
12240 	case CHELSIO_T4_CLEAR_STATS:
12241 		rc = clear_stats(sc, *(uint32_t *)data);
12242 		break;
12243 	case CHELSIO_T4_SCHED_CLASS:
12244 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12245 		break;
12246 	case CHELSIO_T4_SCHED_QUEUE:
12247 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12248 		break;
12249 	case CHELSIO_T4_GET_TRACER:
12250 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12251 		break;
12252 	case CHELSIO_T4_SET_TRACER:
12253 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12254 		break;
12255 	case CHELSIO_T4_LOAD_CFG:
12256 		rc = load_cfg(sc, (struct t4_data *)data);
12257 		break;
12258 	case CHELSIO_T4_LOAD_BOOT:
12259 		rc = load_boot(sc, (struct t4_bootrom *)data);
12260 		break;
12261 	case CHELSIO_T4_LOAD_BOOTCFG:
12262 		rc = load_bootcfg(sc, (struct t4_data *)data);
12263 		break;
12264 	case CHELSIO_T4_CUDBG_DUMP:
12265 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12266 		break;
12267 	case CHELSIO_T4_SET_OFLD_POLICY:
12268 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12269 		break;
12270 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12271 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12272 		break;
12273 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12274 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12275 		break;
12276 	default:
12277 		rc = ENOTTY;
12278 	}
12279 
12280 	return (rc);
12281 }
12282 
12283 #ifdef TCP_OFFLOAD
12284 static int
12285 toe_capability(struct vi_info *vi, bool enable)
12286 {
12287 	int rc;
12288 	struct port_info *pi = vi->pi;
12289 	struct adapter *sc = pi->adapter;
12290 
12291 	ASSERT_SYNCHRONIZED_OP(sc);
12292 
12293 	if (!is_offload(sc))
12294 		return (ENODEV);
12295 	if (hw_off_limits(sc))
12296 		return (ENXIO);
12297 
12298 	if (enable) {
12299 #ifdef KERN_TLS
12300 		if (sc->flags & KERN_TLS_ON) {
12301 			int i, j, n;
12302 			struct port_info *p;
12303 			struct vi_info *v;
12304 
12305 			/*
12306 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12307 			 * on any ifnet.
12308 			 */
12309 			n = 0;
12310 			for_each_port(sc, i) {
12311 				p = sc->port[i];
12312 				for_each_vi(p, j, v) {
12313 					if (v->ifp->if_capenable & IFCAP_TXTLS) {
12314 						CH_WARN(sc,
12315 						    "%s has NIC TLS enabled.\n",
12316 						    device_get_nameunit(v->dev));
12317 						n++;
12318 					}
12319 				}
12320 			}
12321 			if (n > 0) {
12322 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12323 				    "associated with this adapter before "
12324 				    "trying to enable TOE.\n");
12325 				return (EAGAIN);
12326 			}
12327 			rc = t4_config_kern_tls(sc, false);
12328 			if (rc)
12329 				return (rc);
12330 		}
12331 #endif
12332 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
12333 			/* TOE is already enabled. */
12334 			return (0);
12335 		}
12336 
12337 		/*
12338 		 * We need the port's queues around so that we're able to send
12339 		 * and receive CPLs to/from the TOE even if the ifnet for this
12340 		 * port has never been UP'd administratively.
12341 		 */
12342 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12343 			return (rc);
12344 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12345 		    ((rc = vi_init(&pi->vi[0])) != 0))
12346 			return (rc);
12347 
12348 		if (isset(&sc->offload_map, pi->port_id)) {
12349 			/* TOE is enabled on another VI of this port. */
12350 			pi->uld_vis++;
12351 			return (0);
12352 		}
12353 
12354 		if (!uld_active(sc, ULD_TOM)) {
12355 			rc = t4_activate_uld(sc, ULD_TOM);
12356 			if (rc == EAGAIN) {
12357 				log(LOG_WARNING,
12358 				    "You must kldload t4_tom.ko before trying "
12359 				    "to enable TOE on a cxgbe interface.\n");
12360 			}
12361 			if (rc != 0)
12362 				return (rc);
12363 			KASSERT(sc->tom_softc != NULL,
12364 			    ("%s: TOM activated but softc NULL", __func__));
12365 			KASSERT(uld_active(sc, ULD_TOM),
12366 			    ("%s: TOM activated but flag not set", __func__));
12367 		}
12368 
12369 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12370 		if (!uld_active(sc, ULD_IWARP))
12371 			(void) t4_activate_uld(sc, ULD_IWARP);
12372 		if (!uld_active(sc, ULD_ISCSI))
12373 			(void) t4_activate_uld(sc, ULD_ISCSI);
12374 
12375 		pi->uld_vis++;
12376 		setbit(&sc->offload_map, pi->port_id);
12377 	} else {
12378 		pi->uld_vis--;
12379 
12380 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12381 			return (0);
12382 
12383 		KASSERT(uld_active(sc, ULD_TOM),
12384 		    ("%s: TOM never initialized?", __func__));
12385 		clrbit(&sc->offload_map, pi->port_id);
12386 	}
12387 
12388 	return (0);
12389 }
12390 
12391 /*
12392  * Add an upper layer driver to the global list.
12393  */
12394 int
12395 t4_register_uld(struct uld_info *ui)
12396 {
12397 	int rc = 0;
12398 	struct uld_info *u;
12399 
12400 	sx_xlock(&t4_uld_list_lock);
12401 	SLIST_FOREACH(u, &t4_uld_list, link) {
12402 	    if (u->uld_id == ui->uld_id) {
12403 		    rc = EEXIST;
12404 		    goto done;
12405 	    }
12406 	}
12407 
12408 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12409 	ui->refcount = 0;
12410 done:
12411 	sx_xunlock(&t4_uld_list_lock);
12412 	return (rc);
12413 }
12414 
12415 int
12416 t4_unregister_uld(struct uld_info *ui)
12417 {
12418 	int rc = EINVAL;
12419 	struct uld_info *u;
12420 
12421 	sx_xlock(&t4_uld_list_lock);
12422 
12423 	SLIST_FOREACH(u, &t4_uld_list, link) {
12424 	    if (u == ui) {
12425 		    if (ui->refcount > 0) {
12426 			    rc = EBUSY;
12427 			    goto done;
12428 		    }
12429 
12430 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12431 		    rc = 0;
12432 		    goto done;
12433 	    }
12434 	}
12435 done:
12436 	sx_xunlock(&t4_uld_list_lock);
12437 	return (rc);
12438 }
12439 
12440 int
12441 t4_activate_uld(struct adapter *sc, int id)
12442 {
12443 	int rc;
12444 	struct uld_info *ui;
12445 
12446 	ASSERT_SYNCHRONIZED_OP(sc);
12447 
12448 	if (id < 0 || id > ULD_MAX)
12449 		return (EINVAL);
12450 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
12451 
12452 	sx_slock(&t4_uld_list_lock);
12453 
12454 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12455 		if (ui->uld_id == id) {
12456 			if (!(sc->flags & FULL_INIT_DONE)) {
12457 				rc = adapter_init(sc);
12458 				if (rc != 0)
12459 					break;
12460 			}
12461 
12462 			rc = ui->activate(sc);
12463 			if (rc == 0) {
12464 				setbit(&sc->active_ulds, id);
12465 				ui->refcount++;
12466 			}
12467 			break;
12468 		}
12469 	}
12470 
12471 	sx_sunlock(&t4_uld_list_lock);
12472 
12473 	return (rc);
12474 }
12475 
12476 int
12477 t4_deactivate_uld(struct adapter *sc, int id)
12478 {
12479 	int rc;
12480 	struct uld_info *ui;
12481 
12482 	ASSERT_SYNCHRONIZED_OP(sc);
12483 
12484 	if (id < 0 || id > ULD_MAX)
12485 		return (EINVAL);
12486 	rc = ENXIO;
12487 
12488 	sx_slock(&t4_uld_list_lock);
12489 
12490 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12491 		if (ui->uld_id == id) {
12492 			rc = ui->deactivate(sc);
12493 			if (rc == 0) {
12494 				clrbit(&sc->active_ulds, id);
12495 				ui->refcount--;
12496 			}
12497 			break;
12498 		}
12499 	}
12500 
12501 	sx_sunlock(&t4_uld_list_lock);
12502 
12503 	return (rc);
12504 }
12505 
12506 static void
12507 t4_async_event(void *arg, int n)
12508 {
12509 	struct uld_info *ui;
12510 	struct adapter *sc = (struct adapter *)arg;
12511 
12512 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12513 		return;
12514 	sx_slock(&t4_uld_list_lock);
12515 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12516 		if (ui->uld_id == ULD_IWARP) {
12517 			ui->async_event(sc);
12518 			break;
12519 		}
12520 	}
12521 	sx_sunlock(&t4_uld_list_lock);
12522 	end_synchronized_op(sc, 0);
12523 }
12524 
12525 int
12526 uld_active(struct adapter *sc, int uld_id)
12527 {
12528 
12529 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12530 
12531 	return (isset(&sc->active_ulds, uld_id));
12532 }
12533 #endif
12534 
12535 #ifdef KERN_TLS
12536 static int
12537 ktls_capability(struct adapter *sc, bool enable)
12538 {
12539 	ASSERT_SYNCHRONIZED_OP(sc);
12540 
12541 	if (!is_ktls(sc))
12542 		return (ENODEV);
12543 	if (hw_off_limits(sc))
12544 		return (ENXIO);
12545 
12546 	if (enable) {
12547 		if (sc->flags & KERN_TLS_ON)
12548 			return (0);	/* already on */
12549 		if (sc->offload_map != 0) {
12550 			CH_WARN(sc,
12551 			    "Disable TOE on all interfaces associated with "
12552 			    "this adapter before trying to enable NIC TLS.\n");
12553 			return (EAGAIN);
12554 		}
12555 		return (t4_config_kern_tls(sc, true));
12556 	} else {
12557 		/*
12558 		 * Nothing to do for disable.  If TOE is enabled sometime later
12559 		 * then toe_capability will reconfigure the hardware.
12560 		 */
12561 		return (0);
12562 	}
12563 }
12564 #endif
12565 
12566 /*
12567  * t  = ptr to tunable.
12568  * nc = number of CPUs.
12569  * c  = compiled in default for that tunable.
12570  */
12571 static void
12572 calculate_nqueues(int *t, int nc, const int c)
12573 {
12574 	int nq;
12575 
12576 	if (*t > 0)
12577 		return;
12578 	nq = *t < 0 ? -*t : c;
12579 	*t = min(nc, nq);
12580 }
12581 
12582 /*
12583  * Come up with reasonable defaults for some of the tunables, provided they're
12584  * not set by the user (in which case we'll use the values as is).
12585  */
12586 static void
12587 tweak_tunables(void)
12588 {
12589 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12590 
12591 	if (t4_ntxq < 1) {
12592 #ifdef RSS
12593 		t4_ntxq = rss_getnumbuckets();
12594 #else
12595 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12596 #endif
12597 	}
12598 
12599 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12600 
12601 	if (t4_nrxq < 1) {
12602 #ifdef RSS
12603 		t4_nrxq = rss_getnumbuckets();
12604 #else
12605 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12606 #endif
12607 	}
12608 
12609 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12610 
12611 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12612 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12613 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12614 #endif
12615 #ifdef TCP_OFFLOAD
12616 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12617 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12618 #endif
12619 
12620 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12621 	if (t4_toecaps_allowed == -1)
12622 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12623 #else
12624 	if (t4_toecaps_allowed == -1)
12625 		t4_toecaps_allowed = 0;
12626 #endif
12627 
12628 #ifdef TCP_OFFLOAD
12629 	if (t4_rdmacaps_allowed == -1) {
12630 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12631 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12632 	}
12633 
12634 	if (t4_iscsicaps_allowed == -1) {
12635 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12636 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12637 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12638 	}
12639 
12640 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12641 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12642 
12643 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12644 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12645 
12646 	if (t4_toe_tls_rx_timeout < 0)
12647 		t4_toe_tls_rx_timeout = 0;
12648 #else
12649 	if (t4_rdmacaps_allowed == -1)
12650 		t4_rdmacaps_allowed = 0;
12651 
12652 	if (t4_iscsicaps_allowed == -1)
12653 		t4_iscsicaps_allowed = 0;
12654 #endif
12655 
12656 #ifdef DEV_NETMAP
12657 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12658 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12659 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12660 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12661 #endif
12662 
12663 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12664 		t4_tmr_idx = TMR_IDX;
12665 
12666 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12667 		t4_pktc_idx = PKTC_IDX;
12668 
12669 	if (t4_qsize_txq < 128)
12670 		t4_qsize_txq = 128;
12671 
12672 	if (t4_qsize_rxq < 128)
12673 		t4_qsize_rxq = 128;
12674 	while (t4_qsize_rxq & 7)
12675 		t4_qsize_rxq++;
12676 
12677 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12678 
12679 	/*
12680 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12681 	 * VI for the port.  The rest are additional virtual interfaces on the
12682 	 * same physical port.  Note that the main VI does not have native
12683 	 * netmap support but the extra VIs do.
12684 	 *
12685 	 * Limit the number of VIs per port to the number of available
12686 	 * MAC addresses per port.
12687 	 */
12688 	if (t4_num_vis < 1)
12689 		t4_num_vis = 1;
12690 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12691 		t4_num_vis = nitems(vi_mac_funcs);
12692 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12693 	}
12694 
12695 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12696 		pcie_relaxed_ordering = 1;
12697 #if defined(__i386__) || defined(__amd64__)
12698 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12699 			pcie_relaxed_ordering = 0;
12700 #endif
12701 	}
12702 }
12703 
12704 #ifdef DDB
12705 static void
12706 t4_dump_tcb(struct adapter *sc, int tid)
12707 {
12708 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12709 
12710 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12711 	save = t4_read_reg(sc, reg);
12712 	base = sc->memwin[2].mw_base;
12713 
12714 	/* Dump TCB for the tid */
12715 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12716 	tcb_addr += tid * TCB_SIZE;
12717 
12718 	if (is_t4(sc)) {
12719 		pf = 0;
12720 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
12721 	} else {
12722 		pf = V_PFNUM(sc->pf);
12723 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
12724 	}
12725 	t4_write_reg(sc, reg, win_pos | pf);
12726 	t4_read_reg(sc, reg);
12727 
12728 	off = tcb_addr - win_pos;
12729 	for (i = 0; i < 4; i++) {
12730 		uint32_t buf[8];
12731 		for (j = 0; j < 8; j++, off += 4)
12732 			buf[j] = htonl(t4_read_reg(sc, base + off));
12733 
12734 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12735 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12736 		    buf[7]);
12737 	}
12738 
12739 	t4_write_reg(sc, reg, save);
12740 	t4_read_reg(sc, reg);
12741 }
12742 
12743 static void
12744 t4_dump_devlog(struct adapter *sc)
12745 {
12746 	struct devlog_params *dparams = &sc->params.devlog;
12747 	struct fw_devlog_e e;
12748 	int i, first, j, m, nentries, rc;
12749 	uint64_t ftstamp = UINT64_MAX;
12750 
12751 	if (dparams->start == 0) {
12752 		db_printf("devlog params not valid\n");
12753 		return;
12754 	}
12755 
12756 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12757 	m = fwmtype_to_hwmtype(dparams->memtype);
12758 
12759 	/* Find the first entry. */
12760 	first = -1;
12761 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12762 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12763 		    sizeof(e), (void *)&e);
12764 		if (rc != 0)
12765 			break;
12766 
12767 		if (e.timestamp == 0)
12768 			break;
12769 
12770 		e.timestamp = be64toh(e.timestamp);
12771 		if (e.timestamp < ftstamp) {
12772 			ftstamp = e.timestamp;
12773 			first = i;
12774 		}
12775 	}
12776 
12777 	if (first == -1)
12778 		return;
12779 
12780 	i = first;
12781 	do {
12782 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12783 		    sizeof(e), (void *)&e);
12784 		if (rc != 0)
12785 			return;
12786 
12787 		if (e.timestamp == 0)
12788 			return;
12789 
12790 		e.timestamp = be64toh(e.timestamp);
12791 		e.seqno = be32toh(e.seqno);
12792 		for (j = 0; j < 8; j++)
12793 			e.params[j] = be32toh(e.params[j]);
12794 
12795 		db_printf("%10d  %15ju  %8s  %8s  ",
12796 		    e.seqno, e.timestamp,
12797 		    (e.level < nitems(devlog_level_strings) ?
12798 			devlog_level_strings[e.level] : "UNKNOWN"),
12799 		    (e.facility < nitems(devlog_facility_strings) ?
12800 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12801 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12802 		    e.params[3], e.params[4], e.params[5], e.params[6],
12803 		    e.params[7]);
12804 
12805 		if (++i == nentries)
12806 			i = 0;
12807 	} while (i != first && !db_pager_quit);
12808 }
12809 
12810 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
12811 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
12812 
12813 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
12814 {
12815 	device_t dev;
12816 	int t;
12817 	bool valid;
12818 
12819 	valid = false;
12820 	t = db_read_token();
12821 	if (t == tIDENT) {
12822 		dev = device_lookup_by_name(db_tok_string);
12823 		valid = true;
12824 	}
12825 	db_skip_to_eol();
12826 	if (!valid) {
12827 		db_printf("usage: show t4 devlog <nexus>\n");
12828 		return;
12829 	}
12830 
12831 	if (dev == NULL) {
12832 		db_printf("device not found\n");
12833 		return;
12834 	}
12835 
12836 	t4_dump_devlog(device_get_softc(dev));
12837 }
12838 
12839 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
12840 {
12841 	device_t dev;
12842 	int radix, tid, t;
12843 	bool valid;
12844 
12845 	valid = false;
12846 	radix = db_radix;
12847 	db_radix = 10;
12848 	t = db_read_token();
12849 	if (t == tIDENT) {
12850 		dev = device_lookup_by_name(db_tok_string);
12851 		t = db_read_token();
12852 		if (t == tNUMBER) {
12853 			tid = db_tok_number;
12854 			valid = true;
12855 		}
12856 	}
12857 	db_radix = radix;
12858 	db_skip_to_eol();
12859 	if (!valid) {
12860 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12861 		return;
12862 	}
12863 
12864 	if (dev == NULL) {
12865 		db_printf("device not found\n");
12866 		return;
12867 	}
12868 	if (tid < 0) {
12869 		db_printf("invalid tid\n");
12870 		return;
12871 	}
12872 
12873 	t4_dump_tcb(device_get_softc(dev), tid);
12874 }
12875 #endif
12876 
12877 static eventhandler_tag vxlan_start_evtag;
12878 static eventhandler_tag vxlan_stop_evtag;
12879 
12880 struct vxlan_evargs {
12881 	struct ifnet *ifp;
12882 	uint16_t port;
12883 };
12884 
12885 static void
12886 enable_vxlan_rx(struct adapter *sc)
12887 {
12888 	int i, rc;
12889 	struct port_info *pi;
12890 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
12891 
12892 	ASSERT_SYNCHRONIZED_OP(sc);
12893 
12894 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
12895 	    F_VXLAN_EN);
12896 	for_each_port(sc, i) {
12897 		pi = sc->port[i];
12898 		if (pi->vxlan_tcam_entry == true)
12899 			continue;
12900 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
12901 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
12902 		    true);
12903 		if (rc < 0) {
12904 			rc = -rc;
12905 			CH_ERR(&pi->vi[0],
12906 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
12907 		} else {
12908 			MPASS(rc == sc->rawf_base + pi->port_id);
12909 			pi->vxlan_tcam_entry = true;
12910 		}
12911 	}
12912 }
12913 
12914 static void
12915 t4_vxlan_start(struct adapter *sc, void *arg)
12916 {
12917 	struct vxlan_evargs *v = arg;
12918 
12919 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
12920 		return;
12921 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
12922 		return;
12923 
12924 	if (sc->vxlan_refcount == 0) {
12925 		sc->vxlan_port = v->port;
12926 		sc->vxlan_refcount = 1;
12927 		if (!hw_off_limits(sc))
12928 			enable_vxlan_rx(sc);
12929 	} else if (sc->vxlan_port == v->port) {
12930 		sc->vxlan_refcount++;
12931 	} else {
12932 		CH_ERR(sc, "VXLAN already configured on port  %d; "
12933 		    "ignoring attempt to configure it on port %d\n",
12934 		    sc->vxlan_port, v->port);
12935 	}
12936 	end_synchronized_op(sc, 0);
12937 }
12938 
12939 static void
12940 t4_vxlan_stop(struct adapter *sc, void *arg)
12941 {
12942 	struct vxlan_evargs *v = arg;
12943 
12944 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
12945 		return;
12946 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
12947 		return;
12948 
12949 	/*
12950 	 * VXLANs may have been configured before the driver was loaded so we
12951 	 * may see more stops than starts.  This is not handled cleanly but at
12952 	 * least we keep the refcount sane.
12953 	 */
12954 	if (sc->vxlan_port != v->port)
12955 		goto done;
12956 	if (sc->vxlan_refcount == 0) {
12957 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
12958 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
12959 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
12960 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
12961 done:
12962 	end_synchronized_op(sc, 0);
12963 }
12964 
12965 static void
12966 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp,
12967     sa_family_t family, u_int port)
12968 {
12969 	struct vxlan_evargs v;
12970 
12971 	MPASS(family == AF_INET || family == AF_INET6);
12972 	v.ifp = ifp;
12973 	v.port = port;
12974 
12975 	t4_iterate(t4_vxlan_start, &v);
12976 }
12977 
12978 static void
12979 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family,
12980     u_int port)
12981 {
12982 	struct vxlan_evargs v;
12983 
12984 	MPASS(family == AF_INET || family == AF_INET6);
12985 	v.ifp = ifp;
12986 	v.port = port;
12987 
12988 	t4_iterate(t4_vxlan_stop, &v);
12989 }
12990 
12991 
12992 static struct sx mlu;	/* mod load unload */
12993 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
12994 
12995 static int
12996 mod_event(module_t mod, int cmd, void *arg)
12997 {
12998 	int rc = 0;
12999 	static int loaded = 0;
13000 
13001 	switch (cmd) {
13002 	case MOD_LOAD:
13003 		sx_xlock(&mlu);
13004 		if (loaded++ == 0) {
13005 			t4_sge_modload();
13006 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13007 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13008 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13009 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13010 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13011 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13012 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13013 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13014 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13015 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13016 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13017 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13018 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13019 			    do_smt_write_rpl);
13020 			sx_init(&t4_list_lock, "T4/T5 adapters");
13021 			SLIST_INIT(&t4_list);
13022 			callout_init(&fatal_callout, 1);
13023 #ifdef TCP_OFFLOAD
13024 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13025 			SLIST_INIT(&t4_uld_list);
13026 #endif
13027 #ifdef INET6
13028 			t4_clip_modload();
13029 #endif
13030 #ifdef KERN_TLS
13031 			t6_ktls_modload();
13032 #endif
13033 			t4_tracer_modload();
13034 			tweak_tunables();
13035 			vxlan_start_evtag =
13036 			    EVENTHANDLER_REGISTER(vxlan_start,
13037 				t4_vxlan_start_handler, NULL,
13038 				EVENTHANDLER_PRI_ANY);
13039 			vxlan_stop_evtag =
13040 			    EVENTHANDLER_REGISTER(vxlan_stop,
13041 				t4_vxlan_stop_handler, NULL,
13042 				EVENTHANDLER_PRI_ANY);
13043 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13044 			    taskqueue_thread_enqueue, &reset_tq);
13045 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13046 			    "t4_rst_thr");
13047 		}
13048 		sx_xunlock(&mlu);
13049 		break;
13050 
13051 	case MOD_UNLOAD:
13052 		sx_xlock(&mlu);
13053 		if (--loaded == 0) {
13054 			int tries;
13055 
13056 			taskqueue_free(reset_tq);
13057 			sx_slock(&t4_list_lock);
13058 			if (!SLIST_EMPTY(&t4_list)) {
13059 				rc = EBUSY;
13060 				sx_sunlock(&t4_list_lock);
13061 				goto done_unload;
13062 			}
13063 #ifdef TCP_OFFLOAD
13064 			sx_slock(&t4_uld_list_lock);
13065 			if (!SLIST_EMPTY(&t4_uld_list)) {
13066 				rc = EBUSY;
13067 				sx_sunlock(&t4_uld_list_lock);
13068 				sx_sunlock(&t4_list_lock);
13069 				goto done_unload;
13070 			}
13071 #endif
13072 			tries = 0;
13073 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13074 				uprintf("%ju clusters with custom free routine "
13075 				    "still is use.\n", t4_sge_extfree_refs());
13076 				pause("t4unload", 2 * hz);
13077 			}
13078 #ifdef TCP_OFFLOAD
13079 			sx_sunlock(&t4_uld_list_lock);
13080 #endif
13081 			sx_sunlock(&t4_list_lock);
13082 
13083 			if (t4_sge_extfree_refs() == 0) {
13084 				EVENTHANDLER_DEREGISTER(vxlan_start,
13085 				    vxlan_start_evtag);
13086 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13087 				    vxlan_stop_evtag);
13088 				t4_tracer_modunload();
13089 #ifdef KERN_TLS
13090 				t6_ktls_modunload();
13091 #endif
13092 #ifdef INET6
13093 				t4_clip_modunload();
13094 #endif
13095 #ifdef TCP_OFFLOAD
13096 				sx_destroy(&t4_uld_list_lock);
13097 #endif
13098 				sx_destroy(&t4_list_lock);
13099 				t4_sge_modunload();
13100 				loaded = 0;
13101 			} else {
13102 				rc = EBUSY;
13103 				loaded++;	/* undo earlier decrement */
13104 			}
13105 		}
13106 done_unload:
13107 		sx_xunlock(&mlu);
13108 		break;
13109 	}
13110 
13111 	return (rc);
13112 }
13113 
13114 static devclass_t t4_devclass, t5_devclass, t6_devclass;
13115 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
13116 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
13117 
13118 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
13119 MODULE_VERSION(t4nex, 1);
13120 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13121 #ifdef DEV_NETMAP
13122 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13123 #endif /* DEV_NETMAP */
13124 
13125 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
13126 MODULE_VERSION(t5nex, 1);
13127 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13128 #ifdef DEV_NETMAP
13129 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13130 #endif /* DEV_NETMAP */
13131 
13132 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
13133 MODULE_VERSION(t6nex, 1);
13134 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13135 #ifdef DEV_NETMAP
13136 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13137 #endif /* DEV_NETMAP */
13138 
13139 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
13140 MODULE_VERSION(cxgbe, 1);
13141 
13142 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
13143 MODULE_VERSION(cxl, 1);
13144 
13145 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
13146 MODULE_VERSION(cc, 1);
13147 
13148 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
13149 MODULE_VERSION(vcxgbe, 1);
13150 
13151 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
13152 MODULE_VERSION(vcxl, 1);
13153 
13154 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
13155 MODULE_VERSION(vcc, 1);
13156