1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <sys/pciio.h> 48 #include <dev/pci/pcireg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pci_private.h> 51 #include <sys/firmware.h> 52 #include <sys/sbuf.h> 53 #include <sys/smp.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 #include <net/ethernet.h> 58 #include <net/if.h> 59 #include <net/if_types.h> 60 #include <net/if_dl.h> 61 #include <net/if_vlan_var.h> 62 #ifdef RSS 63 #include <net/rss_config.h> 64 #endif 65 #if defined(__i386__) || defined(__amd64__) 66 #include <machine/md_var.h> 67 #include <machine/cputypes.h> 68 #include <vm/vm.h> 69 #include <vm/pmap.h> 70 #endif 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #include <ddb/db_lex.h> 74 #endif 75 76 #include "common/common.h" 77 #include "common/t4_msg.h" 78 #include "common/t4_regs.h" 79 #include "common/t4_regs_values.h" 80 #include "cudbg/cudbg.h" 81 #include "t4_ioctl.h" 82 #include "t4_l2t.h" 83 #include "t4_mp_ring.h" 84 #include "t4_if.h" 85 86 /* T4 bus driver interface */ 87 static int t4_probe(device_t); 88 static int t4_attach(device_t); 89 static int t4_detach(device_t); 90 static int t4_ready(device_t); 91 static int t4_read_port_device(device_t, int, device_t *); 92 static device_method_t t4_methods[] = { 93 DEVMETHOD(device_probe, t4_probe), 94 DEVMETHOD(device_attach, t4_attach), 95 DEVMETHOD(device_detach, t4_detach), 96 97 DEVMETHOD(t4_is_main_ready, t4_ready), 98 DEVMETHOD(t4_read_port_device, t4_read_port_device), 99 100 DEVMETHOD_END 101 }; 102 static driver_t t4_driver = { 103 "t4nex", 104 t4_methods, 105 sizeof(struct adapter) 106 }; 107 108 109 /* T4 port (cxgbe) interface */ 110 static int cxgbe_probe(device_t); 111 static int cxgbe_attach(device_t); 112 static int cxgbe_detach(device_t); 113 device_method_t cxgbe_methods[] = { 114 DEVMETHOD(device_probe, cxgbe_probe), 115 DEVMETHOD(device_attach, cxgbe_attach), 116 DEVMETHOD(device_detach, cxgbe_detach), 117 { 0, 0 } 118 }; 119 static driver_t cxgbe_driver = { 120 "cxgbe", 121 cxgbe_methods, 122 sizeof(struct port_info) 123 }; 124 125 /* T4 VI (vcxgbe) interface */ 126 static int vcxgbe_probe(device_t); 127 static int vcxgbe_attach(device_t); 128 static int vcxgbe_detach(device_t); 129 static device_method_t vcxgbe_methods[] = { 130 DEVMETHOD(device_probe, vcxgbe_probe), 131 DEVMETHOD(device_attach, vcxgbe_attach), 132 DEVMETHOD(device_detach, vcxgbe_detach), 133 { 0, 0 } 134 }; 135 static driver_t vcxgbe_driver = { 136 "vcxgbe", 137 vcxgbe_methods, 138 sizeof(struct vi_info) 139 }; 140 141 static d_ioctl_t t4_ioctl; 142 143 static struct cdevsw t4_cdevsw = { 144 .d_version = D_VERSION, 145 .d_ioctl = t4_ioctl, 146 .d_name = "t4nex", 147 }; 148 149 /* T5 bus driver interface */ 150 static int t5_probe(device_t); 151 static device_method_t t5_methods[] = { 152 DEVMETHOD(device_probe, t5_probe), 153 DEVMETHOD(device_attach, t4_attach), 154 DEVMETHOD(device_detach, t4_detach), 155 156 DEVMETHOD(t4_is_main_ready, t4_ready), 157 DEVMETHOD(t4_read_port_device, t4_read_port_device), 158 159 DEVMETHOD_END 160 }; 161 static driver_t t5_driver = { 162 "t5nex", 163 t5_methods, 164 sizeof(struct adapter) 165 }; 166 167 168 /* T5 port (cxl) interface */ 169 static driver_t cxl_driver = { 170 "cxl", 171 cxgbe_methods, 172 sizeof(struct port_info) 173 }; 174 175 /* T5 VI (vcxl) interface */ 176 static driver_t vcxl_driver = { 177 "vcxl", 178 vcxgbe_methods, 179 sizeof(struct vi_info) 180 }; 181 182 /* T6 bus driver interface */ 183 static int t6_probe(device_t); 184 static device_method_t t6_methods[] = { 185 DEVMETHOD(device_probe, t6_probe), 186 DEVMETHOD(device_attach, t4_attach), 187 DEVMETHOD(device_detach, t4_detach), 188 189 DEVMETHOD(t4_is_main_ready, t4_ready), 190 DEVMETHOD(t4_read_port_device, t4_read_port_device), 191 192 DEVMETHOD_END 193 }; 194 static driver_t t6_driver = { 195 "t6nex", 196 t6_methods, 197 sizeof(struct adapter) 198 }; 199 200 201 /* T6 port (cc) interface */ 202 static driver_t cc_driver = { 203 "cc", 204 cxgbe_methods, 205 sizeof(struct port_info) 206 }; 207 208 /* T6 VI (vcc) interface */ 209 static driver_t vcc_driver = { 210 "vcc", 211 vcxgbe_methods, 212 sizeof(struct vi_info) 213 }; 214 215 /* ifnet + media interface */ 216 static void cxgbe_init(void *); 217 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 218 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 219 static void cxgbe_qflush(struct ifnet *); 220 static int cxgbe_media_change(struct ifnet *); 221 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); 222 223 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 224 225 /* 226 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 227 * then ADAPTER_LOCK, then t4_uld_list_lock. 228 */ 229 static struct sx t4_list_lock; 230 SLIST_HEAD(, adapter) t4_list; 231 #ifdef TCP_OFFLOAD 232 static struct sx t4_uld_list_lock; 233 SLIST_HEAD(, uld_info) t4_uld_list; 234 #endif 235 236 /* 237 * Tunables. See tweak_tunables() too. 238 * 239 * Each tunable is set to a default value here if it's known at compile-time. 240 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 241 * provide a reasonable default (upto n) when the driver is loaded. 242 * 243 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 244 * T5 are under hw.cxl. 245 */ 246 247 /* 248 * Number of queues for tx and rx, NIC and offload. 249 */ 250 #define NTXQ 16 251 int t4_ntxq = -NTXQ; 252 TUNABLE_INT("hw.cxgbe.ntxq", &t4_ntxq); 253 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 254 255 #define NRXQ 8 256 int t4_nrxq = -NRXQ; 257 TUNABLE_INT("hw.cxgbe.nrxq", &t4_nrxq); 258 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 259 260 #define NTXQ_VI 1 261 static int t4_ntxq_vi = -NTXQ_VI; 262 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi); 263 264 #define NRXQ_VI 1 265 static int t4_nrxq_vi = -NRXQ_VI; 266 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi); 267 268 static int t4_rsrv_noflowq = 0; 269 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq); 270 271 #ifdef TCP_OFFLOAD 272 #define NOFLDTXQ 8 273 static int t4_nofldtxq = -NOFLDTXQ; 274 TUNABLE_INT("hw.cxgbe.nofldtxq", &t4_nofldtxq); 275 276 #define NOFLDRXQ 2 277 static int t4_nofldrxq = -NOFLDRXQ; 278 TUNABLE_INT("hw.cxgbe.nofldrxq", &t4_nofldrxq); 279 280 #define NOFLDTXQ_VI 1 281 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 282 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi); 283 284 #define NOFLDRXQ_VI 1 285 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 286 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi); 287 288 #define TMR_IDX_OFLD 1 289 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 290 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld); 291 292 #define PKTC_IDX_OFLD (-1) 293 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 294 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld); 295 296 /* 0 means chip/fw default, non-zero number is value in microseconds */ 297 static u_long t4_toe_keepalive_idle = 0; 298 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle); 299 300 /* 0 means chip/fw default, non-zero number is value in microseconds */ 301 static u_long t4_toe_keepalive_interval = 0; 302 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval); 303 304 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 305 static int t4_toe_keepalive_count = 0; 306 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count); 307 308 /* 0 means chip/fw default, non-zero number is value in microseconds */ 309 static u_long t4_toe_rexmt_min = 0; 310 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min); 311 312 /* 0 means chip/fw default, non-zero number is value in microseconds */ 313 static u_long t4_toe_rexmt_max = 0; 314 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max); 315 316 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 317 static int t4_toe_rexmt_count = 0; 318 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count); 319 320 /* -1 means chip/fw default, other values are raw backoff values to use */ 321 static int t4_toe_rexmt_backoff[16] = { 322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 323 }; 324 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]); 325 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]); 326 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]); 327 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]); 328 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]); 329 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]); 330 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]); 331 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]); 332 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]); 333 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]); 334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]); 335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]); 336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]); 337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]); 338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]); 339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]); 340 #endif 341 342 #ifdef DEV_NETMAP 343 #define NNMTXQ_VI 2 344 static int t4_nnmtxq_vi = -NNMTXQ_VI; 345 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi); 346 347 #define NNMRXQ_VI 2 348 static int t4_nnmrxq_vi = -NNMRXQ_VI; 349 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi); 350 #endif 351 352 /* 353 * Holdoff parameters for ports. 354 */ 355 #define TMR_IDX 1 356 int t4_tmr_idx = TMR_IDX; 357 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx", &t4_tmr_idx); 358 359 #define PKTC_IDX (-1) 360 int t4_pktc_idx = PKTC_IDX; 361 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx", &t4_pktc_idx); 362 363 /* 364 * Size (# of entries) of each tx and rx queue. 365 */ 366 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 367 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); 368 369 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 370 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); 371 372 /* 373 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 374 */ 375 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 376 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); 377 378 /* 379 * Configuration file. 380 */ 381 #define DEFAULT_CF "default" 382 #define FLASH_CF "flash" 383 #define UWIRE_CF "uwire" 384 #define FPGA_CF "fpga" 385 static char t4_cfg_file[32] = DEFAULT_CF; 386 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); 387 388 /* 389 * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively). 390 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 391 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 392 * mark or when signalled to do so, 0 to never emit PAUSE. 393 */ 394 static int t4_pause_settings = PAUSE_TX | PAUSE_RX; 395 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings); 396 397 /* 398 * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS, 399 * FEC_RESERVED respectively). 400 * -1 to run with the firmware default. 401 * 0 to disable FEC. 402 */ 403 static int t4_fec = -1; 404 TUNABLE_INT("hw.cxgbe.fec", &t4_fec); 405 406 /* 407 * Link autonegotiation. 408 * -1 to run with the firmware default. 409 * 0 to disable. 410 * 1 to enable. 411 */ 412 static int t4_autoneg = -1; 413 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg); 414 415 /* 416 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 417 * encouraged respectively). 418 */ 419 static unsigned int t4_fw_install = 1; 420 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install); 421 422 /* 423 * ASIC features that will be used. Disable the ones you don't want so that the 424 * chip resources aren't wasted on features that will not be used. 425 */ 426 static int t4_nbmcaps_allowed = 0; 427 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed); 428 429 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 430 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); 431 432 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 433 FW_CAPS_CONFIG_SWITCH_EGRESS; 434 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed); 435 436 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; 437 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); 438 439 static int t4_toecaps_allowed = -1; 440 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); 441 442 static int t4_rdmacaps_allowed = -1; 443 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); 444 445 static int t4_cryptocaps_allowed = -1; 446 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed); 447 448 static int t4_iscsicaps_allowed = -1; 449 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); 450 451 static int t4_fcoecaps_allowed = 0; 452 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); 453 454 static int t5_write_combine = 1; 455 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine); 456 457 static int t4_num_vis = 1; 458 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis); 459 /* 460 * PCIe Relaxed Ordering. 461 * -1: driver should figure out a good value. 462 * 0: disable RO. 463 * 1: enable RO. 464 * 2: leave RO alone. 465 */ 466 static int pcie_relaxed_ordering = -1; 467 TUNABLE_INT("hw.cxgbe.pcie_relaxed_ordering", &pcie_relaxed_ordering); 468 469 470 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 471 static int vi_mac_funcs[] = { 472 FW_VI_FUNC_ETH, 473 FW_VI_FUNC_OFLD, 474 FW_VI_FUNC_IWARP, 475 FW_VI_FUNC_OPENISCSI, 476 FW_VI_FUNC_OPENFCOE, 477 FW_VI_FUNC_FOISCSI, 478 FW_VI_FUNC_FOFCOE, 479 }; 480 481 struct intrs_and_queues { 482 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 483 uint16_t num_vis; /* number of VIs for each port */ 484 uint16_t nirq; /* Total # of vectors */ 485 uint16_t ntxq; /* # of NIC txq's for each port */ 486 uint16_t nrxq; /* # of NIC rxq's for each port */ 487 uint16_t nofldtxq; /* # of TOE txq's for each port */ 488 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 489 490 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 491 uint16_t ntxq_vi; /* # of NIC txq's */ 492 uint16_t nrxq_vi; /* # of NIC rxq's */ 493 uint16_t nofldtxq_vi; /* # of TOE txq's */ 494 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 495 uint16_t nnmtxq_vi; /* # of netmap txq's */ 496 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 497 }; 498 499 struct filter_entry { 500 uint32_t valid:1; /* filter allocated and valid */ 501 uint32_t locked:1; /* filter is administratively locked */ 502 uint32_t pending:1; /* filter action is pending firmware reply */ 503 uint32_t smtidx:8; /* Source MAC Table index for smac */ 504 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 505 506 struct t4_filter_specification fs; 507 }; 508 509 static void setup_memwin(struct adapter *); 510 static void position_memwin(struct adapter *, int, uint32_t); 511 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int); 512 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *, 513 int); 514 static inline int write_via_memwin(struct adapter *, int, uint32_t, 515 const uint32_t *, int); 516 static int validate_mem_range(struct adapter *, uint32_t, int); 517 static int fwmtype_to_hwmtype(int); 518 static int validate_mt_off_len(struct adapter *, int, uint32_t, int, 519 uint32_t *); 520 static int fixup_devlog_params(struct adapter *); 521 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 522 static int prep_firmware(struct adapter *); 523 static int partition_resources(struct adapter *, const struct firmware *, 524 const char *); 525 static int get_params__pre_init(struct adapter *); 526 static int get_params__post_init(struct adapter *); 527 static int set_params__post_init(struct adapter *); 528 static void t4_set_desc(struct adapter *); 529 static void build_medialist(struct port_info *, struct ifmedia *); 530 static void init_l1cfg(struct port_info *); 531 static int cxgbe_init_synchronized(struct vi_info *); 532 static int cxgbe_uninit_synchronized(struct vi_info *); 533 static void quiesce_txq(struct adapter *, struct sge_txq *); 534 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 535 static void quiesce_iq(struct adapter *, struct sge_iq *); 536 static void quiesce_fl(struct adapter *, struct sge_fl *); 537 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 538 driver_intr_t *, void *, char *); 539 static int t4_free_irq(struct adapter *, struct irq *); 540 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 541 static void vi_refresh_stats(struct adapter *, struct vi_info *); 542 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 543 static void cxgbe_tick(void *); 544 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); 545 static void cxgbe_sysctls(struct port_info *); 546 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 547 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); 548 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 549 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 550 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 551 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 552 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 553 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 554 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 555 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 556 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 557 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 558 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 559 #ifdef SBUF_DRAIN 560 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 561 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 562 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 563 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS); 564 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 565 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 566 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 567 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 568 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 569 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 570 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 571 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 572 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 573 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 574 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 575 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 576 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 577 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 578 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 579 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 580 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 581 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 582 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 583 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 584 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 585 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 586 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 587 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 588 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS); 589 #endif 590 #ifdef TCP_OFFLOAD 591 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 592 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 593 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 594 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 595 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 596 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 597 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 598 #endif 599 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t); 600 static uint32_t mode_to_fconf(uint32_t); 601 static uint32_t mode_to_iconf(uint32_t); 602 static int check_fspec_against_fconf_iconf(struct adapter *, 603 struct t4_filter_specification *); 604 static int get_filter_mode(struct adapter *, uint32_t *); 605 static int set_filter_mode(struct adapter *, uint32_t); 606 static inline uint64_t get_filter_hits(struct adapter *, uint32_t); 607 static int get_filter(struct adapter *, struct t4_filter *); 608 static int set_filter(struct adapter *, struct t4_filter *); 609 static int del_filter(struct adapter *, struct t4_filter *); 610 static void clear_filter(struct filter_entry *); 611 static int set_filter_wr(struct adapter *, int); 612 static int del_filter_wr(struct adapter *, int); 613 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *, 614 struct mbuf *); 615 static int get_sge_context(struct adapter *, struct t4_sge_context *); 616 static int load_fw(struct adapter *, struct t4_data *); 617 static int load_cfg(struct adapter *, struct t4_data *); 618 static int load_boot(struct adapter *, struct t4_bootrom *); 619 static int load_bootcfg(struct adapter *, struct t4_data *); 620 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 621 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 622 static int read_i2c(struct adapter *, struct t4_i2c_data *); 623 #ifdef TCP_OFFLOAD 624 static int toe_capability(struct vi_info *, int); 625 #endif 626 static int mod_event(module_t, int, void *); 627 static int notify_siblings(device_t, int); 628 629 struct { 630 uint16_t device; 631 char *desc; 632 } t4_pciids[] = { 633 {0xa000, "Chelsio Terminator 4 FPGA"}, 634 {0x4400, "Chelsio T440-dbg"}, 635 {0x4401, "Chelsio T420-CR"}, 636 {0x4402, "Chelsio T422-CR"}, 637 {0x4403, "Chelsio T440-CR"}, 638 {0x4404, "Chelsio T420-BCH"}, 639 {0x4405, "Chelsio T440-BCH"}, 640 {0x4406, "Chelsio T440-CH"}, 641 {0x4407, "Chelsio T420-SO"}, 642 {0x4408, "Chelsio T420-CX"}, 643 {0x4409, "Chelsio T420-BT"}, 644 {0x440a, "Chelsio T404-BT"}, 645 {0x440e, "Chelsio T440-LP-CR"}, 646 }, t5_pciids[] = { 647 {0xb000, "Chelsio Terminator 5 FPGA"}, 648 {0x5400, "Chelsio T580-dbg"}, 649 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 650 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 651 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 652 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 653 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 654 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 655 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 656 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 657 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 658 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 659 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 660 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 661 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 662 #ifdef notyet 663 {0x5404, "Chelsio T520-BCH"}, 664 {0x5405, "Chelsio T540-BCH"}, 665 {0x5406, "Chelsio T540-CH"}, 666 {0x5408, "Chelsio T520-CX"}, 667 {0x540b, "Chelsio B520-SR"}, 668 {0x540c, "Chelsio B504-BT"}, 669 {0x540f, "Chelsio Amsterdam"}, 670 {0x5413, "Chelsio T580-CHR"}, 671 #endif 672 }, t6_pciids[] = { 673 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 674 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 675 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 676 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 677 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 678 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 679 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 680 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 681 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 682 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 683 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 684 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 685 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 686 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 687 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 688 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 689 690 /* Custom */ 691 {0x6480, "Chelsio T6225 80"}, 692 {0x6481, "Chelsio T62100 81"}, 693 {0x6484, "Chelsio T62100 84"}, 694 }; 695 696 #ifdef TCP_OFFLOAD 697 /* 698 * service_iq() has an iq and needs the fl. Offset of fl from the iq should be 699 * exactly the same for both rxq and ofld_rxq. 700 */ 701 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 702 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 703 #endif 704 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 705 706 static int 707 t4_probe(device_t dev) 708 { 709 int i; 710 uint16_t v = pci_get_vendor(dev); 711 uint16_t d = pci_get_device(dev); 712 uint8_t f = pci_get_function(dev); 713 714 if (v != PCI_VENDOR_ID_CHELSIO) 715 return (ENXIO); 716 717 /* Attach only to PF0 of the FPGA */ 718 if (d == 0xa000 && f != 0) 719 return (ENXIO); 720 721 for (i = 0; i < nitems(t4_pciids); i++) { 722 if (d == t4_pciids[i].device) { 723 device_set_desc(dev, t4_pciids[i].desc); 724 return (BUS_PROBE_DEFAULT); 725 } 726 } 727 728 return (ENXIO); 729 } 730 731 static int 732 t5_probe(device_t dev) 733 { 734 int i; 735 uint16_t v = pci_get_vendor(dev); 736 uint16_t d = pci_get_device(dev); 737 uint8_t f = pci_get_function(dev); 738 739 if (v != PCI_VENDOR_ID_CHELSIO) 740 return (ENXIO); 741 742 /* Attach only to PF0 of the FPGA */ 743 if (d == 0xb000 && f != 0) 744 return (ENXIO); 745 746 for (i = 0; i < nitems(t5_pciids); i++) { 747 if (d == t5_pciids[i].device) { 748 device_set_desc(dev, t5_pciids[i].desc); 749 return (BUS_PROBE_DEFAULT); 750 } 751 } 752 753 return (ENXIO); 754 } 755 756 static int 757 t6_probe(device_t dev) 758 { 759 int i; 760 uint16_t v = pci_get_vendor(dev); 761 uint16_t d = pci_get_device(dev); 762 763 if (v != PCI_VENDOR_ID_CHELSIO) 764 return (ENXIO); 765 766 for (i = 0; i < nitems(t6_pciids); i++) { 767 if (d == t6_pciids[i].device) { 768 device_set_desc(dev, t6_pciids[i].desc); 769 return (BUS_PROBE_DEFAULT); 770 } 771 } 772 773 return (ENXIO); 774 } 775 776 static void 777 t5_attribute_workaround(device_t dev) 778 { 779 device_t root_port; 780 uint32_t v; 781 782 /* 783 * The T5 chips do not properly echo the No Snoop and Relaxed 784 * Ordering attributes when replying to a TLP from a Root 785 * Port. As a workaround, find the parent Root Port and 786 * disable No Snoop and Relaxed Ordering. Note that this 787 * affects all devices under this root port. 788 */ 789 root_port = pci_find_pcie_root_port(dev); 790 if (root_port == NULL) { 791 device_printf(dev, "Unable to find parent root port\n"); 792 return; 793 } 794 795 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 796 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 797 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 798 0) 799 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 800 device_get_nameunit(root_port)); 801 } 802 803 static const struct devnames devnames[] = { 804 { 805 .nexus_name = "t4nex", 806 .ifnet_name = "cxgbe", 807 .vi_ifnet_name = "vcxgbe", 808 .pf03_drv_name = "t4iov", 809 .vf_nexus_name = "t4vf", 810 .vf_ifnet_name = "cxgbev" 811 }, { 812 .nexus_name = "t5nex", 813 .ifnet_name = "cxl", 814 .vi_ifnet_name = "vcxl", 815 .pf03_drv_name = "t5iov", 816 .vf_nexus_name = "t5vf", 817 .vf_ifnet_name = "cxlv" 818 }, { 819 .nexus_name = "t6nex", 820 .ifnet_name = "cc", 821 .vi_ifnet_name = "vcc", 822 .pf03_drv_name = "t6iov", 823 .vf_nexus_name = "t6vf", 824 .vf_ifnet_name = "ccv" 825 } 826 }; 827 828 void 829 t4_init_devnames(struct adapter *sc) 830 { 831 int id; 832 833 id = chip_id(sc); 834 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 835 sc->names = &devnames[id - CHELSIO_T4]; 836 else { 837 device_printf(sc->dev, "chip id %d is not supported.\n", id); 838 sc->names = NULL; 839 } 840 } 841 842 static int 843 t4_attach(device_t dev) 844 { 845 struct adapter *sc; 846 int rc = 0, i, j, rqidx, tqidx, nports; 847 struct make_dev_args mda; 848 struct intrs_and_queues iaq; 849 struct sge *s; 850 uint32_t *buf; 851 #ifdef TCP_OFFLOAD 852 int ofld_rqidx, ofld_tqidx; 853 #endif 854 #ifdef DEV_NETMAP 855 int nm_rqidx, nm_tqidx; 856 #endif 857 int num_vis; 858 859 sc = device_get_softc(dev); 860 sc->dev = dev; 861 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 862 863 if ((pci_get_device(dev) & 0xff00) == 0x5400) 864 t5_attribute_workaround(dev); 865 pci_enable_busmaster(dev); 866 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 867 uint32_t v; 868 869 pci_set_max_read_req(dev, 4096); 870 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 871 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 872 if (pcie_relaxed_ordering == 0 && 873 (v | PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 874 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 875 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 876 } else if (pcie_relaxed_ordering == 1 && 877 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 878 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 879 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 880 } 881 } 882 883 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 884 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 885 sc->traceq = -1; 886 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 887 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 888 device_get_nameunit(dev)); 889 890 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 891 device_get_nameunit(dev)); 892 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 893 t4_add_adapter(sc); 894 895 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 896 TAILQ_INIT(&sc->sfl); 897 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 898 899 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 900 901 rc = t4_map_bars_0_and_4(sc); 902 if (rc != 0) 903 goto done; /* error message displayed already */ 904 905 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 906 907 /* Prepare the adapter for operation. */ 908 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 909 rc = -t4_prep_adapter(sc, buf); 910 free(buf, M_CXGBE); 911 if (rc != 0) { 912 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 913 goto done; 914 } 915 916 /* 917 * This is the real PF# to which we're attaching. Works from within PCI 918 * passthrough environments too, where pci_get_function() could return a 919 * different PF# depending on the passthrough configuration. We need to 920 * use the real PF# in all our communication with the firmware. 921 */ 922 j = t4_read_reg(sc, A_PL_WHOAMI); 923 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 924 sc->mbox = sc->pf; 925 926 t4_init_devnames(sc); 927 if (sc->names == NULL) { 928 rc = ENOTSUP; 929 goto done; /* error message displayed already */ 930 } 931 932 /* 933 * Do this really early, with the memory windows set up even before the 934 * character device. The userland tool's register i/o and mem read 935 * will work even in "recovery mode". 936 */ 937 setup_memwin(sc); 938 if (t4_init_devlog_params(sc, 0) == 0) 939 fixup_devlog_params(sc); 940 make_dev_args_init(&mda); 941 mda.mda_devsw = &t4_cdevsw; 942 mda.mda_uid = UID_ROOT; 943 mda.mda_gid = GID_WHEEL; 944 mda.mda_mode = 0600; 945 mda.mda_si_drv1 = sc; 946 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 947 if (rc != 0) 948 device_printf(dev, "failed to create nexus char device: %d.\n", 949 rc); 950 951 /* Go no further if recovery mode has been requested. */ 952 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 953 device_printf(dev, "recovery mode.\n"); 954 goto done; 955 } 956 957 #if defined(__i386__) 958 if ((cpu_feature & CPUID_CX8) == 0) { 959 device_printf(dev, "64 bit atomics not available.\n"); 960 rc = ENOTSUP; 961 goto done; 962 } 963 #endif 964 965 /* Prepare the firmware for operation */ 966 rc = prep_firmware(sc); 967 if (rc != 0) 968 goto done; /* error message displayed already */ 969 970 rc = get_params__post_init(sc); 971 if (rc != 0) 972 goto done; /* error message displayed already */ 973 974 rc = set_params__post_init(sc); 975 if (rc != 0) 976 goto done; /* error message displayed already */ 977 978 rc = t4_map_bar_2(sc); 979 if (rc != 0) 980 goto done; /* error message displayed already */ 981 982 rc = t4_create_dma_tag(sc); 983 if (rc != 0) 984 goto done; /* error message displayed already */ 985 986 /* 987 * First pass over all the ports - allocate VIs and initialize some 988 * basic parameters like mac address, port type, etc. 989 */ 990 for_each_port(sc, i) { 991 struct port_info *pi; 992 993 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 994 sc->port[i] = pi; 995 996 /* These must be set before t4_port_init */ 997 pi->adapter = sc; 998 pi->port_id = i; 999 /* 1000 * XXX: vi[0] is special so we can't delay this allocation until 1001 * pi->nvi's final value is known. 1002 */ 1003 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1004 M_ZERO | M_WAITOK); 1005 1006 /* 1007 * Allocate the "main" VI and initialize parameters 1008 * like mac addr. 1009 */ 1010 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1011 if (rc != 0) { 1012 device_printf(dev, "unable to initialize port %d: %d\n", 1013 i, rc); 1014 free(pi->vi, M_CXGBE); 1015 free(pi, M_CXGBE); 1016 sc->port[i] = NULL; 1017 goto done; 1018 } 1019 1020 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1021 device_get_nameunit(dev), i); 1022 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1023 sc->chan_map[pi->tx_chan] = i; 1024 1025 /* All VIs on this port share this media. */ 1026 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1027 cxgbe_media_status); 1028 1029 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1); 1030 if (pi->dev == NULL) { 1031 device_printf(dev, 1032 "failed to add device for port %d.\n", i); 1033 rc = ENXIO; 1034 goto done; 1035 } 1036 pi->vi[0].dev = pi->dev; 1037 device_set_softc(pi->dev, pi); 1038 } 1039 1040 /* 1041 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1042 */ 1043 nports = sc->params.nports; 1044 rc = cfg_itype_and_nqueues(sc, &iaq); 1045 if (rc != 0) 1046 goto done; /* error message displayed already */ 1047 1048 num_vis = iaq.num_vis; 1049 sc->intr_type = iaq.intr_type; 1050 sc->intr_count = iaq.nirq; 1051 1052 s = &sc->sge; 1053 s->nrxq = nports * iaq.nrxq; 1054 s->ntxq = nports * iaq.ntxq; 1055 if (num_vis > 1) { 1056 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1057 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1058 } 1059 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1060 s->neq += nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ 1061 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1062 #ifdef TCP_OFFLOAD 1063 if (is_offload(sc)) { 1064 s->nofldrxq = nports * iaq.nofldrxq; 1065 s->nofldtxq = nports * iaq.nofldtxq; 1066 if (num_vis > 1) { 1067 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1068 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1069 } 1070 s->neq += s->nofldtxq + s->nofldrxq; 1071 s->niq += s->nofldrxq; 1072 1073 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1074 M_CXGBE, M_ZERO | M_WAITOK); 1075 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 1076 M_CXGBE, M_ZERO | M_WAITOK); 1077 } 1078 #endif 1079 #ifdef DEV_NETMAP 1080 if (num_vis > 1) { 1081 s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi; 1082 s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi; 1083 } 1084 s->neq += s->nnmtxq + s->nnmrxq; 1085 s->niq += s->nnmrxq; 1086 1087 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1088 M_CXGBE, M_ZERO | M_WAITOK); 1089 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1090 M_CXGBE, M_ZERO | M_WAITOK); 1091 #endif 1092 1093 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1094 M_ZERO | M_WAITOK); 1095 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1096 M_ZERO | M_WAITOK); 1097 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1098 M_ZERO | M_WAITOK); 1099 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 1100 M_ZERO | M_WAITOK); 1101 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 1102 M_ZERO | M_WAITOK); 1103 1104 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1105 M_ZERO | M_WAITOK); 1106 1107 t4_init_l2t(sc, M_WAITOK); 1108 t4_init_tx_sched(sc); 1109 1110 /* 1111 * Second pass over the ports. This time we know the number of rx and 1112 * tx queues that each port should get. 1113 */ 1114 rqidx = tqidx = 0; 1115 #ifdef TCP_OFFLOAD 1116 ofld_rqidx = ofld_tqidx = 0; 1117 #endif 1118 #ifdef DEV_NETMAP 1119 nm_rqidx = nm_tqidx = 0; 1120 #endif 1121 for_each_port(sc, i) { 1122 struct port_info *pi = sc->port[i]; 1123 struct vi_info *vi; 1124 1125 if (pi == NULL) 1126 continue; 1127 1128 pi->nvi = num_vis; 1129 for_each_vi(pi, j, vi) { 1130 vi->pi = pi; 1131 vi->qsize_rxq = t4_qsize_rxq; 1132 vi->qsize_txq = t4_qsize_txq; 1133 1134 vi->first_rxq = rqidx; 1135 vi->first_txq = tqidx; 1136 vi->tmr_idx = t4_tmr_idx; 1137 vi->pktc_idx = t4_pktc_idx; 1138 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1139 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1140 1141 rqidx += vi->nrxq; 1142 tqidx += vi->ntxq; 1143 1144 if (j == 0 && vi->ntxq > 1) 1145 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1146 else 1147 vi->rsrv_noflowq = 0; 1148 1149 #ifdef TCP_OFFLOAD 1150 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1151 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1152 vi->first_ofld_rxq = ofld_rqidx; 1153 vi->first_ofld_txq = ofld_tqidx; 1154 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1155 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1156 1157 ofld_rqidx += vi->nofldrxq; 1158 ofld_tqidx += vi->nofldtxq; 1159 #endif 1160 #ifdef DEV_NETMAP 1161 if (j > 0) { 1162 vi->first_nm_rxq = nm_rqidx; 1163 vi->first_nm_txq = nm_tqidx; 1164 vi->nnmrxq = iaq.nnmrxq_vi; 1165 vi->nnmtxq = iaq.nnmtxq_vi; 1166 nm_rqidx += vi->nnmrxq; 1167 nm_tqidx += vi->nnmtxq; 1168 } 1169 #endif 1170 } 1171 } 1172 1173 rc = t4_setup_intr_handlers(sc); 1174 if (rc != 0) { 1175 device_printf(dev, 1176 "failed to setup interrupt handlers: %d\n", rc); 1177 goto done; 1178 } 1179 1180 rc = bus_generic_probe(dev); 1181 if (rc != 0) { 1182 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1183 goto done; 1184 } 1185 1186 /* 1187 * Ensure thread-safe mailbox access (in debug builds). 1188 * 1189 * So far this was the only thread accessing the mailbox but various 1190 * ifnets and sysctls are about to be created and their handlers/ioctls 1191 * will access the mailbox from different threads. 1192 */ 1193 sc->flags |= CHK_MBOX_ACCESS; 1194 1195 rc = bus_generic_attach(dev); 1196 if (rc != 0) { 1197 device_printf(dev, 1198 "failed to attach all child ports: %d\n", rc); 1199 goto done; 1200 } 1201 1202 device_printf(dev, 1203 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1204 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1205 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1206 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1207 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1208 1209 t4_set_desc(sc); 1210 1211 notify_siblings(dev, 0); 1212 1213 done: 1214 if (rc != 0 && sc->cdev) { 1215 /* cdev was created and so cxgbetool works; recover that way. */ 1216 device_printf(dev, 1217 "error during attach, adapter is now in recovery mode.\n"); 1218 rc = 0; 1219 } 1220 1221 if (rc != 0) 1222 t4_detach_common(dev); 1223 else 1224 t4_sysctls(sc); 1225 1226 return (rc); 1227 } 1228 1229 static int 1230 t4_ready(device_t dev) 1231 { 1232 struct adapter *sc; 1233 1234 sc = device_get_softc(dev); 1235 if (sc->flags & FW_OK) 1236 return (0); 1237 return (ENXIO); 1238 } 1239 1240 static int 1241 t4_read_port_device(device_t dev, int port, device_t *child) 1242 { 1243 struct adapter *sc; 1244 struct port_info *pi; 1245 1246 sc = device_get_softc(dev); 1247 if (port < 0 || port >= MAX_NPORTS) 1248 return (EINVAL); 1249 pi = sc->port[port]; 1250 if (pi == NULL || pi->dev == NULL) 1251 return (ENXIO); 1252 *child = pi->dev; 1253 return (0); 1254 } 1255 1256 static int 1257 notify_siblings(device_t dev, int detaching) 1258 { 1259 device_t sibling; 1260 int error, i; 1261 1262 error = 0; 1263 for (i = 0; i < PCI_FUNCMAX; i++) { 1264 if (i == pci_get_function(dev)) 1265 continue; 1266 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1267 pci_get_slot(dev), i); 1268 if (sibling == NULL || !device_is_attached(sibling)) 1269 continue; 1270 if (detaching) 1271 error = T4_DETACH_CHILD(sibling); 1272 else 1273 (void)T4_ATTACH_CHILD(sibling); 1274 if (error) 1275 break; 1276 } 1277 return (error); 1278 } 1279 1280 /* 1281 * Idempotent 1282 */ 1283 static int 1284 t4_detach(device_t dev) 1285 { 1286 struct adapter *sc; 1287 int rc; 1288 1289 sc = device_get_softc(dev); 1290 1291 rc = notify_siblings(dev, 1); 1292 if (rc) { 1293 device_printf(dev, 1294 "failed to detach sibling devices: %d\n", rc); 1295 return (rc); 1296 } 1297 1298 return (t4_detach_common(dev)); 1299 } 1300 1301 int 1302 t4_detach_common(device_t dev) 1303 { 1304 struct adapter *sc; 1305 struct port_info *pi; 1306 int i, rc; 1307 1308 sc = device_get_softc(dev); 1309 1310 sc->flags &= ~CHK_MBOX_ACCESS; 1311 if (sc->flags & FULL_INIT_DONE) { 1312 if (!(sc->flags & IS_VF)) 1313 t4_intr_disable(sc); 1314 } 1315 1316 if (sc->cdev) { 1317 destroy_dev(sc->cdev); 1318 sc->cdev = NULL; 1319 } 1320 1321 if (device_is_attached(dev)) { 1322 rc = bus_generic_detach(dev); 1323 if (rc) { 1324 device_printf(dev, 1325 "failed to detach child devices: %d\n", rc); 1326 return (rc); 1327 } 1328 } 1329 1330 for (i = 0; i < sc->intr_count; i++) 1331 t4_free_irq(sc, &sc->irq[i]); 1332 1333 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1334 t4_free_tx_sched(sc); 1335 1336 for (i = 0; i < MAX_NPORTS; i++) { 1337 pi = sc->port[i]; 1338 if (pi) { 1339 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1340 if (pi->dev) 1341 device_delete_child(dev, pi->dev); 1342 1343 mtx_destroy(&pi->pi_lock); 1344 free(pi->vi, M_CXGBE); 1345 free(pi, M_CXGBE); 1346 } 1347 } 1348 1349 device_delete_children(dev); 1350 1351 if (sc->flags & FULL_INIT_DONE) 1352 adapter_full_uninit(sc); 1353 1354 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1355 t4_fw_bye(sc, sc->mbox); 1356 1357 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1358 pci_release_msi(dev); 1359 1360 if (sc->regs_res) 1361 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1362 sc->regs_res); 1363 1364 if (sc->udbs_res) 1365 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1366 sc->udbs_res); 1367 1368 if (sc->msix_res) 1369 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1370 sc->msix_res); 1371 1372 if (sc->l2t) 1373 t4_free_l2t(sc->l2t); 1374 1375 #ifdef TCP_OFFLOAD 1376 free(sc->sge.ofld_rxq, M_CXGBE); 1377 free(sc->sge.ofld_txq, M_CXGBE); 1378 #endif 1379 #ifdef DEV_NETMAP 1380 free(sc->sge.nm_rxq, M_CXGBE); 1381 free(sc->sge.nm_txq, M_CXGBE); 1382 #endif 1383 free(sc->irq, M_CXGBE); 1384 free(sc->sge.rxq, M_CXGBE); 1385 free(sc->sge.txq, M_CXGBE); 1386 free(sc->sge.ctrlq, M_CXGBE); 1387 free(sc->sge.iqmap, M_CXGBE); 1388 free(sc->sge.eqmap, M_CXGBE); 1389 free(sc->tids.ftid_tab, M_CXGBE); 1390 t4_destroy_dma_tag(sc); 1391 if (mtx_initialized(&sc->sc_lock)) { 1392 sx_xlock(&t4_list_lock); 1393 SLIST_REMOVE(&t4_list, sc, adapter, link); 1394 sx_xunlock(&t4_list_lock); 1395 mtx_destroy(&sc->sc_lock); 1396 } 1397 1398 callout_drain(&sc->sfl_callout); 1399 if (mtx_initialized(&sc->tids.ftid_lock)) 1400 mtx_destroy(&sc->tids.ftid_lock); 1401 if (mtx_initialized(&sc->sfl_lock)) 1402 mtx_destroy(&sc->sfl_lock); 1403 if (mtx_initialized(&sc->ifp_lock)) 1404 mtx_destroy(&sc->ifp_lock); 1405 if (mtx_initialized(&sc->reg_lock)) 1406 mtx_destroy(&sc->reg_lock); 1407 1408 for (i = 0; i < NUM_MEMWIN; i++) { 1409 struct memwin *mw = &sc->memwin[i]; 1410 1411 if (rw_initialized(&mw->mw_lock)) 1412 rw_destroy(&mw->mw_lock); 1413 } 1414 1415 bzero(sc, sizeof(*sc)); 1416 1417 return (0); 1418 } 1419 1420 static int 1421 cxgbe_probe(device_t dev) 1422 { 1423 char buf[128]; 1424 struct port_info *pi = device_get_softc(dev); 1425 1426 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1427 device_set_desc_copy(dev, buf); 1428 1429 return (BUS_PROBE_DEFAULT); 1430 } 1431 1432 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1433 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1434 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS) 1435 #define T4_CAP_ENABLE (T4_CAP) 1436 1437 static int 1438 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1439 { 1440 struct ifnet *ifp; 1441 struct sbuf *sb; 1442 1443 vi->xact_addr_filt = -1; 1444 callout_init(&vi->tick, 1); 1445 1446 /* Allocate an ifnet and set it up */ 1447 ifp = if_alloc(IFT_ETHER); 1448 if (ifp == NULL) { 1449 device_printf(dev, "Cannot allocate ifnet\n"); 1450 return (ENOMEM); 1451 } 1452 vi->ifp = ifp; 1453 ifp->if_softc = vi; 1454 1455 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1456 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1457 1458 ifp->if_init = cxgbe_init; 1459 ifp->if_ioctl = cxgbe_ioctl; 1460 ifp->if_transmit = cxgbe_transmit; 1461 ifp->if_qflush = cxgbe_qflush; 1462 ifp->if_get_counter = cxgbe_get_counter; 1463 1464 ifp->if_capabilities = T4_CAP; 1465 #ifdef TCP_OFFLOAD 1466 if (vi->nofldrxq != 0) 1467 ifp->if_capabilities |= IFCAP_TOE; 1468 #endif 1469 #ifdef DEV_NETMAP 1470 if (vi->nnmrxq != 0) 1471 ifp->if_capabilities |= IFCAP_NETMAP; 1472 #endif 1473 ifp->if_capenable = T4_CAP_ENABLE; 1474 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1475 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1476 1477 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 1478 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS; 1479 ifp->if_hw_tsomaxsegsize = 65536; 1480 1481 vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, 1482 EVENTHANDLER_PRI_ANY); 1483 1484 ether_ifattach(ifp, vi->hw_addr); 1485 #ifdef DEV_NETMAP 1486 if (ifp->if_capabilities & IFCAP_NETMAP) 1487 cxgbe_nm_attach(vi); 1488 #endif 1489 sb = sbuf_new_auto(); 1490 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1491 #ifdef TCP_OFFLOAD 1492 if (ifp->if_capabilities & IFCAP_TOE) 1493 sbuf_printf(sb, "; %d txq, %d rxq (TOE)", 1494 vi->nofldtxq, vi->nofldrxq); 1495 #endif 1496 #ifdef DEV_NETMAP 1497 if (ifp->if_capabilities & IFCAP_NETMAP) 1498 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 1499 vi->nnmtxq, vi->nnmrxq); 1500 #endif 1501 sbuf_finish(sb); 1502 device_printf(dev, "%s\n", sbuf_data(sb)); 1503 sbuf_delete(sb); 1504 1505 vi_sysctls(vi); 1506 1507 return (0); 1508 } 1509 1510 static int 1511 cxgbe_attach(device_t dev) 1512 { 1513 struct port_info *pi = device_get_softc(dev); 1514 struct adapter *sc = pi->adapter; 1515 struct vi_info *vi; 1516 int i, rc; 1517 1518 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1519 1520 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1521 if (rc) 1522 return (rc); 1523 1524 for_each_vi(pi, i, vi) { 1525 if (i == 0) 1526 continue; 1527 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 1528 if (vi->dev == NULL) { 1529 device_printf(dev, "failed to add VI %d\n", i); 1530 continue; 1531 } 1532 device_set_softc(vi->dev, vi); 1533 } 1534 1535 cxgbe_sysctls(pi); 1536 1537 bus_generic_attach(dev); 1538 1539 return (0); 1540 } 1541 1542 static void 1543 cxgbe_vi_detach(struct vi_info *vi) 1544 { 1545 struct ifnet *ifp = vi->ifp; 1546 1547 ether_ifdetach(ifp); 1548 1549 if (vi->vlan_c) 1550 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c); 1551 1552 /* Let detach proceed even if these fail. */ 1553 #ifdef DEV_NETMAP 1554 if (ifp->if_capabilities & IFCAP_NETMAP) 1555 cxgbe_nm_detach(vi); 1556 #endif 1557 cxgbe_uninit_synchronized(vi); 1558 callout_drain(&vi->tick); 1559 vi_full_uninit(vi); 1560 1561 if_free(vi->ifp); 1562 vi->ifp = NULL; 1563 } 1564 1565 static int 1566 cxgbe_detach(device_t dev) 1567 { 1568 struct port_info *pi = device_get_softc(dev); 1569 struct adapter *sc = pi->adapter; 1570 int rc; 1571 1572 /* Detach the extra VIs first. */ 1573 rc = bus_generic_detach(dev); 1574 if (rc) 1575 return (rc); 1576 device_delete_children(dev); 1577 1578 doom_vi(sc, &pi->vi[0]); 1579 1580 if (pi->flags & HAS_TRACEQ) { 1581 sc->traceq = -1; /* cloner should not create ifnet */ 1582 t4_tracer_port_detach(sc); 1583 } 1584 1585 cxgbe_vi_detach(&pi->vi[0]); 1586 callout_drain(&pi->tick); 1587 ifmedia_removeall(&pi->media); 1588 1589 end_synchronized_op(sc, 0); 1590 1591 return (0); 1592 } 1593 1594 static void 1595 cxgbe_init(void *arg) 1596 { 1597 struct vi_info *vi = arg; 1598 struct adapter *sc = vi->pi->adapter; 1599 1600 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1601 return; 1602 cxgbe_init_synchronized(vi); 1603 end_synchronized_op(sc, 0); 1604 } 1605 1606 static int 1607 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1608 { 1609 int rc = 0, mtu, flags, can_sleep; 1610 struct vi_info *vi = ifp->if_softc; 1611 struct port_info *pi = vi->pi; 1612 struct adapter *sc = pi->adapter; 1613 struct ifreq *ifr = (struct ifreq *)data; 1614 uint32_t mask; 1615 1616 switch (cmd) { 1617 case SIOCSIFMTU: 1618 mtu = ifr->ifr_mtu; 1619 if (mtu < ETHERMIN || mtu > MAX_MTU) 1620 return (EINVAL); 1621 1622 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 1623 if (rc) 1624 return (rc); 1625 ifp->if_mtu = mtu; 1626 if (vi->flags & VI_INIT_DONE) { 1627 t4_update_fl_bufsize(ifp); 1628 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1629 rc = update_mac_settings(ifp, XGMAC_MTU); 1630 } 1631 end_synchronized_op(sc, 0); 1632 break; 1633 1634 case SIOCSIFFLAGS: 1635 can_sleep = 0; 1636 redo_sifflags: 1637 rc = begin_synchronized_op(sc, vi, 1638 can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg"); 1639 if (rc) 1640 return (rc); 1641 1642 if (ifp->if_flags & IFF_UP) { 1643 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1644 flags = vi->if_flags; 1645 if ((ifp->if_flags ^ flags) & 1646 (IFF_PROMISC | IFF_ALLMULTI)) { 1647 if (can_sleep == 1) { 1648 end_synchronized_op(sc, 0); 1649 can_sleep = 0; 1650 goto redo_sifflags; 1651 } 1652 rc = update_mac_settings(ifp, 1653 XGMAC_PROMISC | XGMAC_ALLMULTI); 1654 } 1655 } else { 1656 if (can_sleep == 0) { 1657 end_synchronized_op(sc, LOCK_HELD); 1658 can_sleep = 1; 1659 goto redo_sifflags; 1660 } 1661 rc = cxgbe_init_synchronized(vi); 1662 } 1663 vi->if_flags = ifp->if_flags; 1664 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1665 if (can_sleep == 0) { 1666 end_synchronized_op(sc, LOCK_HELD); 1667 can_sleep = 1; 1668 goto redo_sifflags; 1669 } 1670 rc = cxgbe_uninit_synchronized(vi); 1671 } 1672 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD); 1673 break; 1674 1675 case SIOCADDMULTI: 1676 case SIOCDELMULTI: /* these two are called with a mutex held :-( */ 1677 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi"); 1678 if (rc) 1679 return (rc); 1680 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1681 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 1682 end_synchronized_op(sc, LOCK_HELD); 1683 break; 1684 1685 case SIOCSIFCAP: 1686 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 1687 if (rc) 1688 return (rc); 1689 1690 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1691 if (mask & IFCAP_TXCSUM) { 1692 ifp->if_capenable ^= IFCAP_TXCSUM; 1693 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1694 1695 if (IFCAP_TSO4 & ifp->if_capenable && 1696 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1697 ifp->if_capenable &= ~IFCAP_TSO4; 1698 if_printf(ifp, 1699 "tso4 disabled due to -txcsum.\n"); 1700 } 1701 } 1702 if (mask & IFCAP_TXCSUM_IPV6) { 1703 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1704 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1705 1706 if (IFCAP_TSO6 & ifp->if_capenable && 1707 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1708 ifp->if_capenable &= ~IFCAP_TSO6; 1709 if_printf(ifp, 1710 "tso6 disabled due to -txcsum6.\n"); 1711 } 1712 } 1713 if (mask & IFCAP_RXCSUM) 1714 ifp->if_capenable ^= IFCAP_RXCSUM; 1715 if (mask & IFCAP_RXCSUM_IPV6) 1716 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1717 1718 /* 1719 * Note that we leave CSUM_TSO alone (it is always set). The 1720 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 1721 * sending a TSO request our way, so it's sufficient to toggle 1722 * IFCAP_TSOx only. 1723 */ 1724 if (mask & IFCAP_TSO4) { 1725 if (!(IFCAP_TSO4 & ifp->if_capenable) && 1726 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1727 if_printf(ifp, "enable txcsum first.\n"); 1728 rc = EAGAIN; 1729 goto fail; 1730 } 1731 ifp->if_capenable ^= IFCAP_TSO4; 1732 } 1733 if (mask & IFCAP_TSO6) { 1734 if (!(IFCAP_TSO6 & ifp->if_capenable) && 1735 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1736 if_printf(ifp, "enable txcsum6 first.\n"); 1737 rc = EAGAIN; 1738 goto fail; 1739 } 1740 ifp->if_capenable ^= IFCAP_TSO6; 1741 } 1742 if (mask & IFCAP_LRO) { 1743 #if defined(INET) || defined(INET6) 1744 int i; 1745 struct sge_rxq *rxq; 1746 1747 ifp->if_capenable ^= IFCAP_LRO; 1748 for_each_rxq(vi, i, rxq) { 1749 if (ifp->if_capenable & IFCAP_LRO) 1750 rxq->iq.flags |= IQ_LRO_ENABLED; 1751 else 1752 rxq->iq.flags &= ~IQ_LRO_ENABLED; 1753 } 1754 #endif 1755 } 1756 #ifdef TCP_OFFLOAD 1757 if (mask & IFCAP_TOE) { 1758 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 1759 1760 rc = toe_capability(vi, enable); 1761 if (rc != 0) 1762 goto fail; 1763 1764 ifp->if_capenable ^= mask; 1765 } 1766 #endif 1767 if (mask & IFCAP_VLAN_HWTAGGING) { 1768 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1769 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1770 rc = update_mac_settings(ifp, XGMAC_VLANEX); 1771 } 1772 if (mask & IFCAP_VLAN_MTU) { 1773 ifp->if_capenable ^= IFCAP_VLAN_MTU; 1774 1775 /* Need to find out how to disable auto-mtu-inflation */ 1776 } 1777 if (mask & IFCAP_VLAN_HWTSO) 1778 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1779 if (mask & IFCAP_VLAN_HWCSUM) 1780 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1781 1782 #ifdef VLAN_CAPABILITIES 1783 VLAN_CAPABILITIES(ifp); 1784 #endif 1785 fail: 1786 end_synchronized_op(sc, 0); 1787 break; 1788 1789 case SIOCSIFMEDIA: 1790 case SIOCGIFMEDIA: 1791 case SIOCGIFXMEDIA: 1792 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 1793 break; 1794 1795 case SIOCGI2C: { 1796 struct ifi2creq i2c; 1797 1798 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c)); 1799 if (rc != 0) 1800 break; 1801 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 1802 rc = EPERM; 1803 break; 1804 } 1805 if (i2c.len > sizeof(i2c.data)) { 1806 rc = EINVAL; 1807 break; 1808 } 1809 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 1810 if (rc) 1811 return (rc); 1812 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 1813 i2c.offset, i2c.len, &i2c.data[0]); 1814 end_synchronized_op(sc, 0); 1815 if (rc == 0) 1816 rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c)); 1817 break; 1818 } 1819 1820 default: 1821 rc = ether_ioctl(ifp, cmd, data); 1822 } 1823 1824 return (rc); 1825 } 1826 1827 static int 1828 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 1829 { 1830 struct vi_info *vi = ifp->if_softc; 1831 struct port_info *pi = vi->pi; 1832 struct adapter *sc = pi->adapter; 1833 struct sge_txq *txq; 1834 void *items[1]; 1835 int rc; 1836 1837 M_ASSERTPKTHDR(m); 1838 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 1839 1840 if (__predict_false(pi->link_cfg.link_ok == 0)) { 1841 m_freem(m); 1842 return (ENETDOWN); 1843 } 1844 1845 rc = parse_pkt(sc, &m); 1846 if (__predict_false(rc != 0)) { 1847 MPASS(m == NULL); /* was freed already */ 1848 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 1849 return (rc); 1850 } 1851 1852 /* Select a txq. */ 1853 txq = &sc->sge.txq[vi->first_txq]; 1854 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 1855 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 1856 vi->rsrv_noflowq); 1857 1858 items[0] = m; 1859 rc = mp_ring_enqueue(txq->r, items, 1, 4096); 1860 if (__predict_false(rc != 0)) 1861 m_freem(m); 1862 1863 return (rc); 1864 } 1865 1866 static void 1867 cxgbe_qflush(struct ifnet *ifp) 1868 { 1869 struct vi_info *vi = ifp->if_softc; 1870 struct sge_txq *txq; 1871 int i; 1872 1873 /* queues do not exist if !VI_INIT_DONE. */ 1874 if (vi->flags & VI_INIT_DONE) { 1875 for_each_txq(vi, i, txq) { 1876 TXQ_LOCK(txq); 1877 txq->eq.flags |= EQ_QFLUSH; 1878 TXQ_UNLOCK(txq); 1879 while (!mp_ring_is_idle(txq->r)) { 1880 mp_ring_check_drainage(txq->r, 0); 1881 pause("qflush", 1); 1882 } 1883 TXQ_LOCK(txq); 1884 txq->eq.flags &= ~EQ_QFLUSH; 1885 TXQ_UNLOCK(txq); 1886 } 1887 } 1888 if_qflush(ifp); 1889 } 1890 1891 static uint64_t 1892 vi_get_counter(struct ifnet *ifp, ift_counter c) 1893 { 1894 struct vi_info *vi = ifp->if_softc; 1895 struct fw_vi_stats_vf *s = &vi->stats; 1896 1897 vi_refresh_stats(vi->pi->adapter, vi); 1898 1899 switch (c) { 1900 case IFCOUNTER_IPACKETS: 1901 return (s->rx_bcast_frames + s->rx_mcast_frames + 1902 s->rx_ucast_frames); 1903 case IFCOUNTER_IERRORS: 1904 return (s->rx_err_frames); 1905 case IFCOUNTER_OPACKETS: 1906 return (s->tx_bcast_frames + s->tx_mcast_frames + 1907 s->tx_ucast_frames + s->tx_offload_frames); 1908 case IFCOUNTER_OERRORS: 1909 return (s->tx_drop_frames); 1910 case IFCOUNTER_IBYTES: 1911 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 1912 s->rx_ucast_bytes); 1913 case IFCOUNTER_OBYTES: 1914 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 1915 s->tx_ucast_bytes + s->tx_offload_bytes); 1916 case IFCOUNTER_IMCASTS: 1917 return (s->rx_mcast_frames); 1918 case IFCOUNTER_OMCASTS: 1919 return (s->tx_mcast_frames); 1920 case IFCOUNTER_OQDROPS: { 1921 uint64_t drops; 1922 1923 drops = 0; 1924 if (vi->flags & VI_INIT_DONE) { 1925 int i; 1926 struct sge_txq *txq; 1927 1928 for_each_txq(vi, i, txq) 1929 drops += counter_u64_fetch(txq->r->drops); 1930 } 1931 1932 return (drops); 1933 1934 } 1935 1936 default: 1937 return (if_get_counter_default(ifp, c)); 1938 } 1939 } 1940 1941 uint64_t 1942 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 1943 { 1944 struct vi_info *vi = ifp->if_softc; 1945 struct port_info *pi = vi->pi; 1946 struct adapter *sc = pi->adapter; 1947 struct port_stats *s = &pi->stats; 1948 1949 if (pi->nvi > 1 || sc->flags & IS_VF) 1950 return (vi_get_counter(ifp, c)); 1951 1952 cxgbe_refresh_stats(sc, pi); 1953 1954 switch (c) { 1955 case IFCOUNTER_IPACKETS: 1956 return (s->rx_frames); 1957 1958 case IFCOUNTER_IERRORS: 1959 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 1960 s->rx_fcs_err + s->rx_len_err); 1961 1962 case IFCOUNTER_OPACKETS: 1963 return (s->tx_frames); 1964 1965 case IFCOUNTER_OERRORS: 1966 return (s->tx_error_frames); 1967 1968 case IFCOUNTER_IBYTES: 1969 return (s->rx_octets); 1970 1971 case IFCOUNTER_OBYTES: 1972 return (s->tx_octets); 1973 1974 case IFCOUNTER_IMCASTS: 1975 return (s->rx_mcast_frames); 1976 1977 case IFCOUNTER_OMCASTS: 1978 return (s->tx_mcast_frames); 1979 1980 case IFCOUNTER_IQDROPS: 1981 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 1982 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 1983 s->rx_trunc3 + pi->tnl_cong_drops); 1984 1985 case IFCOUNTER_OQDROPS: { 1986 uint64_t drops; 1987 1988 drops = s->tx_drop; 1989 if (vi->flags & VI_INIT_DONE) { 1990 int i; 1991 struct sge_txq *txq; 1992 1993 for_each_txq(vi, i, txq) 1994 drops += counter_u64_fetch(txq->r->drops); 1995 } 1996 1997 return (drops); 1998 1999 } 2000 2001 default: 2002 return (if_get_counter_default(ifp, c)); 2003 } 2004 } 2005 2006 static int 2007 cxgbe_media_change(struct ifnet *ifp) 2008 { 2009 struct vi_info *vi = ifp->if_softc; 2010 2011 device_printf(vi->dev, "%s unimplemented.\n", __func__); 2012 2013 return (EOPNOTSUPP); 2014 } 2015 2016 static void 2017 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 2018 { 2019 struct vi_info *vi = ifp->if_softc; 2020 struct port_info *pi = vi->pi; 2021 struct ifmedia_entry *cur; 2022 struct link_config *lc = &pi->link_cfg; 2023 2024 /* 2025 * If all the interfaces are administratively down the firmware does not 2026 * report transceiver changes. Refresh port info here so that ifconfig 2027 * displays accurate information at all times. 2028 */ 2029 if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK, 2030 "t4med") == 0) { 2031 PORT_LOCK(pi); 2032 if (pi->up_vis == 0) { 2033 t4_update_port_info(pi); 2034 build_medialist(pi, &pi->media); 2035 } 2036 PORT_UNLOCK(pi); 2037 end_synchronized_op(pi->adapter, 0); 2038 } 2039 2040 ifmr->ifm_status = IFM_AVALID; 2041 if (lc->link_ok == 0) 2042 return; 2043 2044 ifmr->ifm_status |= IFM_ACTIVE; 2045 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 2046 if (lc->fc & PAUSE_RX) 2047 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2048 if (lc->fc & PAUSE_TX) 2049 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2050 2051 /* active and current will differ iff current media is autoselect. */ 2052 cur = pi->media.ifm_cur; 2053 if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) 2054 return; 2055 2056 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 2057 if (lc->fc & PAUSE_RX) 2058 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2059 if (lc->fc & PAUSE_TX) 2060 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2061 switch (lc->speed) { 2062 case 10000: 2063 ifmr->ifm_active |= IFM_10G_T; 2064 break; 2065 case 1000: 2066 ifmr->ifm_active |= IFM_1000_T; 2067 break; 2068 case 100: 2069 ifmr->ifm_active |= IFM_100_TX; 2070 break; 2071 case 10: 2072 ifmr->ifm_active |= IFM_10_T; 2073 break; 2074 default: 2075 device_printf(vi->dev, "link up but speed unknown (%u)\n", 2076 lc->speed); 2077 } 2078 } 2079 2080 static int 2081 vcxgbe_probe(device_t dev) 2082 { 2083 char buf[128]; 2084 struct vi_info *vi = device_get_softc(dev); 2085 2086 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 2087 vi - vi->pi->vi); 2088 device_set_desc_copy(dev, buf); 2089 2090 return (BUS_PROBE_DEFAULT); 2091 } 2092 2093 static int 2094 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 2095 { 2096 int func, index, rc; 2097 uint32_t param, val; 2098 2099 ASSERT_SYNCHRONIZED_OP(sc); 2100 2101 index = vi - pi->vi; 2102 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 2103 KASSERT(index < nitems(vi_mac_funcs), 2104 ("%s: VI %s doesn't have a MAC func", __func__, 2105 device_get_nameunit(vi->dev))); 2106 func = vi_mac_funcs[index]; 2107 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 2108 vi->hw_addr, &vi->rss_size, func, 0); 2109 if (rc < 0) { 2110 device_printf(vi->dev, "failed to allocate virtual interface %d" 2111 "for port %d: %d\n", index, pi->port_id, -rc); 2112 return (-rc); 2113 } 2114 vi->viid = rc; 2115 if (chip_id(sc) <= CHELSIO_T5) 2116 vi->smt_idx = (rc & 0x7f) << 1; 2117 else 2118 vi->smt_idx = (rc & 0x7f); 2119 2120 if (vi->rss_size == 1) { 2121 /* 2122 * This VI didn't get a slice of the RSS table. Reduce the 2123 * number of VIs being created (hw.cxgbe.num_vis) or modify the 2124 * configuration file (nvi, rssnvi for this PF) if this is a 2125 * problem. 2126 */ 2127 device_printf(vi->dev, "RSS table not available.\n"); 2128 vi->rss_base = 0xffff; 2129 2130 return (0); 2131 } 2132 2133 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 2134 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 2135 V_FW_PARAMS_PARAM_YZ(vi->viid); 2136 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2137 if (rc) 2138 vi->rss_base = 0xffff; 2139 else { 2140 MPASS((val >> 16) == vi->rss_size); 2141 vi->rss_base = val & 0xffff; 2142 } 2143 2144 return (0); 2145 } 2146 2147 static int 2148 vcxgbe_attach(device_t dev) 2149 { 2150 struct vi_info *vi; 2151 struct port_info *pi; 2152 struct adapter *sc; 2153 int rc; 2154 2155 vi = device_get_softc(dev); 2156 pi = vi->pi; 2157 sc = pi->adapter; 2158 2159 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 2160 if (rc) 2161 return (rc); 2162 rc = alloc_extra_vi(sc, pi, vi); 2163 end_synchronized_op(sc, 0); 2164 if (rc) 2165 return (rc); 2166 2167 rc = cxgbe_vi_attach(dev, vi); 2168 if (rc) { 2169 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2170 return (rc); 2171 } 2172 return (0); 2173 } 2174 2175 static int 2176 vcxgbe_detach(device_t dev) 2177 { 2178 struct vi_info *vi; 2179 struct adapter *sc; 2180 2181 vi = device_get_softc(dev); 2182 sc = vi->pi->adapter; 2183 2184 doom_vi(sc, vi); 2185 2186 cxgbe_vi_detach(vi); 2187 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2188 2189 end_synchronized_op(sc, 0); 2190 2191 return (0); 2192 } 2193 2194 void 2195 t4_fatal_err(struct adapter *sc) 2196 { 2197 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); 2198 t4_intr_disable(sc); 2199 log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", 2200 device_get_nameunit(sc->dev)); 2201 } 2202 2203 void 2204 t4_add_adapter(struct adapter *sc) 2205 { 2206 sx_xlock(&t4_list_lock); 2207 SLIST_INSERT_HEAD(&t4_list, sc, link); 2208 sx_xunlock(&t4_list_lock); 2209 } 2210 2211 int 2212 t4_map_bars_0_and_4(struct adapter *sc) 2213 { 2214 sc->regs_rid = PCIR_BAR(0); 2215 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2216 &sc->regs_rid, RF_ACTIVE); 2217 if (sc->regs_res == NULL) { 2218 device_printf(sc->dev, "cannot map registers.\n"); 2219 return (ENXIO); 2220 } 2221 sc->bt = rman_get_bustag(sc->regs_res); 2222 sc->bh = rman_get_bushandle(sc->regs_res); 2223 sc->mmio_len = rman_get_size(sc->regs_res); 2224 setbit(&sc->doorbells, DOORBELL_KDB); 2225 2226 sc->msix_rid = PCIR_BAR(4); 2227 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2228 &sc->msix_rid, RF_ACTIVE); 2229 if (sc->msix_res == NULL) { 2230 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 2231 return (ENXIO); 2232 } 2233 2234 return (0); 2235 } 2236 2237 int 2238 t4_map_bar_2(struct adapter *sc) 2239 { 2240 2241 /* 2242 * T4: only iWARP driver uses the userspace doorbells. There is no need 2243 * to map it if RDMA is disabled. 2244 */ 2245 if (is_t4(sc) && sc->rdmacaps == 0) 2246 return (0); 2247 2248 sc->udbs_rid = PCIR_BAR(2); 2249 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2250 &sc->udbs_rid, RF_ACTIVE); 2251 if (sc->udbs_res == NULL) { 2252 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 2253 return (ENXIO); 2254 } 2255 sc->udbs_base = rman_get_virtual(sc->udbs_res); 2256 2257 if (chip_id(sc) >= CHELSIO_T5) { 2258 setbit(&sc->doorbells, DOORBELL_UDB); 2259 #if defined(__i386__) || defined(__amd64__) 2260 if (t5_write_combine) { 2261 int rc, mode; 2262 2263 /* 2264 * Enable write combining on BAR2. This is the 2265 * userspace doorbell BAR and is split into 128B 2266 * (UDBS_SEG_SIZE) doorbell regions, each associated 2267 * with an egress queue. The first 64B has the doorbell 2268 * and the second 64B can be used to submit a tx work 2269 * request with an implicit doorbell. 2270 */ 2271 2272 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 2273 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 2274 if (rc == 0) { 2275 clrbit(&sc->doorbells, DOORBELL_UDB); 2276 setbit(&sc->doorbells, DOORBELL_WCWR); 2277 setbit(&sc->doorbells, DOORBELL_UDBWC); 2278 } else { 2279 t5_write_combine = 0; 2280 device_printf(sc->dev, 2281 "couldn't enable write combining: %d\n", 2282 rc); 2283 } 2284 2285 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 2286 t4_write_reg(sc, A_SGE_STAT_CFG, 2287 V_STATSOURCE_T5(7) | mode); 2288 } 2289 #else 2290 t5_write_combine = 0; 2291 #endif 2292 sc->iwt.wc_en = t5_write_combine; 2293 } 2294 2295 return (0); 2296 } 2297 2298 struct memwin_init { 2299 uint32_t base; 2300 uint32_t aperture; 2301 }; 2302 2303 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2304 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2305 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2306 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2307 }; 2308 2309 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2310 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2311 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2312 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2313 }; 2314 2315 static void 2316 setup_memwin(struct adapter *sc) 2317 { 2318 const struct memwin_init *mw_init; 2319 struct memwin *mw; 2320 int i; 2321 uint32_t bar0; 2322 2323 if (is_t4(sc)) { 2324 /* 2325 * Read low 32b of bar0 indirectly via the hardware backdoor 2326 * mechanism. Works from within PCI passthrough environments 2327 * too, where rman_get_start() can return a different value. We 2328 * need to program the T4 memory window decoders with the actual 2329 * addresses that will be coming across the PCIe link. 2330 */ 2331 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 2332 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 2333 2334 mw_init = &t4_memwin[0]; 2335 } else { 2336 /* T5+ use the relative offset inside the PCIe BAR */ 2337 bar0 = 0; 2338 2339 mw_init = &t5_memwin[0]; 2340 } 2341 2342 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 2343 rw_init(&mw->mw_lock, "memory window access"); 2344 mw->mw_base = mw_init->base; 2345 mw->mw_aperture = mw_init->aperture; 2346 mw->mw_curpos = 0; 2347 t4_write_reg(sc, 2348 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 2349 (mw->mw_base + bar0) | V_BIR(0) | 2350 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 2351 rw_wlock(&mw->mw_lock); 2352 position_memwin(sc, i, 0); 2353 rw_wunlock(&mw->mw_lock); 2354 } 2355 2356 /* flush */ 2357 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 2358 } 2359 2360 /* 2361 * Positions the memory window at the given address in the card's address space. 2362 * There are some alignment requirements and the actual position may be at an 2363 * address prior to the requested address. mw->mw_curpos always has the actual 2364 * position of the window. 2365 */ 2366 static void 2367 position_memwin(struct adapter *sc, int idx, uint32_t addr) 2368 { 2369 struct memwin *mw; 2370 uint32_t pf; 2371 uint32_t reg; 2372 2373 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2374 mw = &sc->memwin[idx]; 2375 rw_assert(&mw->mw_lock, RA_WLOCKED); 2376 2377 if (is_t4(sc)) { 2378 pf = 0; 2379 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 2380 } else { 2381 pf = V_PFNUM(sc->pf); 2382 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 2383 } 2384 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 2385 t4_write_reg(sc, reg, mw->mw_curpos | pf); 2386 t4_read_reg(sc, reg); /* flush */ 2387 } 2388 2389 static int 2390 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2391 int len, int rw) 2392 { 2393 struct memwin *mw; 2394 uint32_t mw_end, v; 2395 2396 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2397 2398 /* Memory can only be accessed in naturally aligned 4 byte units */ 2399 if (addr & 3 || len & 3 || len <= 0) 2400 return (EINVAL); 2401 2402 mw = &sc->memwin[idx]; 2403 while (len > 0) { 2404 rw_rlock(&mw->mw_lock); 2405 mw_end = mw->mw_curpos + mw->mw_aperture; 2406 if (addr >= mw_end || addr < mw->mw_curpos) { 2407 /* Will need to reposition the window */ 2408 if (!rw_try_upgrade(&mw->mw_lock)) { 2409 rw_runlock(&mw->mw_lock); 2410 rw_wlock(&mw->mw_lock); 2411 } 2412 rw_assert(&mw->mw_lock, RA_WLOCKED); 2413 position_memwin(sc, idx, addr); 2414 rw_downgrade(&mw->mw_lock); 2415 mw_end = mw->mw_curpos + mw->mw_aperture; 2416 } 2417 rw_assert(&mw->mw_lock, RA_RLOCKED); 2418 while (addr < mw_end && len > 0) { 2419 if (rw == 0) { 2420 v = t4_read_reg(sc, mw->mw_base + addr - 2421 mw->mw_curpos); 2422 *val++ = le32toh(v); 2423 } else { 2424 v = *val++; 2425 t4_write_reg(sc, mw->mw_base + addr - 2426 mw->mw_curpos, htole32(v)); 2427 } 2428 addr += 4; 2429 len -= 4; 2430 } 2431 rw_runlock(&mw->mw_lock); 2432 } 2433 2434 return (0); 2435 } 2436 2437 static inline int 2438 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2439 int len) 2440 { 2441 2442 return (rw_via_memwin(sc, idx, addr, val, len, 0)); 2443 } 2444 2445 static inline int 2446 write_via_memwin(struct adapter *sc, int idx, uint32_t addr, 2447 const uint32_t *val, int len) 2448 { 2449 2450 return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1)); 2451 } 2452 2453 static int 2454 t4_range_cmp(const void *a, const void *b) 2455 { 2456 return ((const struct t4_range *)a)->start - 2457 ((const struct t4_range *)b)->start; 2458 } 2459 2460 /* 2461 * Verify that the memory range specified by the addr/len pair is valid within 2462 * the card's address space. 2463 */ 2464 static int 2465 validate_mem_range(struct adapter *sc, uint32_t addr, int len) 2466 { 2467 struct t4_range mem_ranges[4], *r, *next; 2468 uint32_t em, addr_len; 2469 int i, n, remaining; 2470 2471 /* Memory can only be accessed in naturally aligned 4 byte units */ 2472 if (addr & 3 || len & 3 || len <= 0) 2473 return (EINVAL); 2474 2475 /* Enabled memories */ 2476 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2477 2478 r = &mem_ranges[0]; 2479 n = 0; 2480 bzero(r, sizeof(mem_ranges)); 2481 if (em & F_EDRAM0_ENABLE) { 2482 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2483 r->size = G_EDRAM0_SIZE(addr_len) << 20; 2484 if (r->size > 0) { 2485 r->start = G_EDRAM0_BASE(addr_len) << 20; 2486 if (addr >= r->start && 2487 addr + len <= r->start + r->size) 2488 return (0); 2489 r++; 2490 n++; 2491 } 2492 } 2493 if (em & F_EDRAM1_ENABLE) { 2494 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2495 r->size = G_EDRAM1_SIZE(addr_len) << 20; 2496 if (r->size > 0) { 2497 r->start = G_EDRAM1_BASE(addr_len) << 20; 2498 if (addr >= r->start && 2499 addr + len <= r->start + r->size) 2500 return (0); 2501 r++; 2502 n++; 2503 } 2504 } 2505 if (em & F_EXT_MEM_ENABLE) { 2506 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2507 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 2508 if (r->size > 0) { 2509 r->start = G_EXT_MEM_BASE(addr_len) << 20; 2510 if (addr >= r->start && 2511 addr + len <= r->start + r->size) 2512 return (0); 2513 r++; 2514 n++; 2515 } 2516 } 2517 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 2518 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2519 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 2520 if (r->size > 0) { 2521 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 2522 if (addr >= r->start && 2523 addr + len <= r->start + r->size) 2524 return (0); 2525 r++; 2526 n++; 2527 } 2528 } 2529 MPASS(n <= nitems(mem_ranges)); 2530 2531 if (n > 1) { 2532 /* Sort and merge the ranges. */ 2533 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 2534 2535 /* Start from index 0 and examine the next n - 1 entries. */ 2536 r = &mem_ranges[0]; 2537 for (remaining = n - 1; remaining > 0; remaining--, r++) { 2538 2539 MPASS(r->size > 0); /* r is a valid entry. */ 2540 next = r + 1; 2541 MPASS(next->size > 0); /* and so is the next one. */ 2542 2543 while (r->start + r->size >= next->start) { 2544 /* Merge the next one into the current entry. */ 2545 r->size = max(r->start + r->size, 2546 next->start + next->size) - r->start; 2547 n--; /* One fewer entry in total. */ 2548 if (--remaining == 0) 2549 goto done; /* short circuit */ 2550 next++; 2551 } 2552 if (next != r + 1) { 2553 /* 2554 * Some entries were merged into r and next 2555 * points to the first valid entry that couldn't 2556 * be merged. 2557 */ 2558 MPASS(next->size > 0); /* must be valid */ 2559 memcpy(r + 1, next, remaining * sizeof(*r)); 2560 #ifdef INVARIANTS 2561 /* 2562 * This so that the foo->size assertion in the 2563 * next iteration of the loop do the right 2564 * thing for entries that were pulled up and are 2565 * no longer valid. 2566 */ 2567 MPASS(n < nitems(mem_ranges)); 2568 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 2569 sizeof(struct t4_range)); 2570 #endif 2571 } 2572 } 2573 done: 2574 /* Done merging the ranges. */ 2575 MPASS(n > 0); 2576 r = &mem_ranges[0]; 2577 for (i = 0; i < n; i++, r++) { 2578 if (addr >= r->start && 2579 addr + len <= r->start + r->size) 2580 return (0); 2581 } 2582 } 2583 2584 return (EFAULT); 2585 } 2586 2587 static int 2588 fwmtype_to_hwmtype(int mtype) 2589 { 2590 2591 switch (mtype) { 2592 case FW_MEMTYPE_EDC0: 2593 return (MEM_EDC0); 2594 case FW_MEMTYPE_EDC1: 2595 return (MEM_EDC1); 2596 case FW_MEMTYPE_EXTMEM: 2597 return (MEM_MC0); 2598 case FW_MEMTYPE_EXTMEM1: 2599 return (MEM_MC1); 2600 default: 2601 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 2602 } 2603 } 2604 2605 /* 2606 * Verify that the memory range specified by the memtype/offset/len pair is 2607 * valid and lies entirely within the memtype specified. The global address of 2608 * the start of the range is returned in addr. 2609 */ 2610 static int 2611 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len, 2612 uint32_t *addr) 2613 { 2614 uint32_t em, addr_len, maddr; 2615 2616 /* Memory can only be accessed in naturally aligned 4 byte units */ 2617 if (off & 3 || len & 3 || len == 0) 2618 return (EINVAL); 2619 2620 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2621 switch (fwmtype_to_hwmtype(mtype)) { 2622 case MEM_EDC0: 2623 if (!(em & F_EDRAM0_ENABLE)) 2624 return (EINVAL); 2625 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2626 maddr = G_EDRAM0_BASE(addr_len) << 20; 2627 break; 2628 case MEM_EDC1: 2629 if (!(em & F_EDRAM1_ENABLE)) 2630 return (EINVAL); 2631 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2632 maddr = G_EDRAM1_BASE(addr_len) << 20; 2633 break; 2634 case MEM_MC: 2635 if (!(em & F_EXT_MEM_ENABLE)) 2636 return (EINVAL); 2637 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2638 maddr = G_EXT_MEM_BASE(addr_len) << 20; 2639 break; 2640 case MEM_MC1: 2641 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 2642 return (EINVAL); 2643 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2644 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 2645 break; 2646 default: 2647 return (EINVAL); 2648 } 2649 2650 *addr = maddr + off; /* global address */ 2651 return (validate_mem_range(sc, *addr, len)); 2652 } 2653 2654 static int 2655 fixup_devlog_params(struct adapter *sc) 2656 { 2657 struct devlog_params *dparams = &sc->params.devlog; 2658 int rc; 2659 2660 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 2661 dparams->size, &dparams->addr); 2662 2663 return (rc); 2664 } 2665 2666 static void 2667 update_nirq(struct intrs_and_queues *iaq, int nports) 2668 { 2669 int extra = T4_EXTRA_INTR; 2670 2671 iaq->nirq = extra; 2672 iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq); 2673 iaq->nirq += nports * (iaq->num_vis - 1) * 2674 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 2675 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 2676 } 2677 2678 /* 2679 * Adjust requirements to fit the number of interrupts available. 2680 */ 2681 static void 2682 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 2683 int navail) 2684 { 2685 int old_nirq; 2686 const int nports = sc->params.nports; 2687 2688 MPASS(nports > 0); 2689 MPASS(navail > 0); 2690 2691 bzero(iaq, sizeof(*iaq)); 2692 iaq->intr_type = itype; 2693 iaq->num_vis = t4_num_vis; 2694 iaq->ntxq = t4_ntxq; 2695 iaq->ntxq_vi = t4_ntxq_vi; 2696 iaq->nrxq = t4_nrxq; 2697 iaq->nrxq_vi = t4_nrxq_vi; 2698 #ifdef TCP_OFFLOAD 2699 if (is_offload(sc)) { 2700 iaq->nofldtxq = t4_nofldtxq; 2701 iaq->nofldtxq_vi = t4_nofldtxq_vi; 2702 iaq->nofldrxq = t4_nofldrxq; 2703 iaq->nofldrxq_vi = t4_nofldrxq_vi; 2704 } 2705 #endif 2706 #ifdef DEV_NETMAP 2707 iaq->nnmtxq_vi = t4_nnmtxq_vi; 2708 iaq->nnmrxq_vi = t4_nnmrxq_vi; 2709 #endif 2710 2711 update_nirq(iaq, nports); 2712 if (iaq->nirq <= navail && 2713 (itype != INTR_MSI || powerof2(iaq->nirq))) { 2714 /* 2715 * This is the normal case -- there are enough interrupts for 2716 * everything. 2717 */ 2718 goto done; 2719 } 2720 2721 /* 2722 * If extra VIs have been configured try reducing their count and see if 2723 * that works. 2724 */ 2725 while (iaq->num_vis > 1) { 2726 iaq->num_vis--; 2727 update_nirq(iaq, nports); 2728 if (iaq->nirq <= navail && 2729 (itype != INTR_MSI || powerof2(iaq->nirq))) { 2730 device_printf(sc->dev, "virtual interfaces per port " 2731 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 2732 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 2733 "itype %d, navail %u, nirq %d.\n", 2734 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 2735 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 2736 itype, navail, iaq->nirq); 2737 goto done; 2738 } 2739 } 2740 2741 /* 2742 * Extra VIs will not be created. Log a message if they were requested. 2743 */ 2744 MPASS(iaq->num_vis == 1); 2745 iaq->ntxq_vi = iaq->nrxq_vi = 0; 2746 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 2747 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 2748 if (iaq->num_vis != t4_num_vis) { 2749 device_printf(sc->dev, "extra virtual interfaces disabled. " 2750 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 2751 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 2752 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 2753 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 2754 } 2755 2756 /* 2757 * Keep reducing the number of NIC rx queues to the next lower power of 2758 * 2 (for even RSS distribution) and halving the TOE rx queues and see 2759 * if that works. 2760 */ 2761 do { 2762 if (iaq->nrxq > 1) { 2763 do { 2764 iaq->nrxq--; 2765 } while (!powerof2(iaq->nrxq)); 2766 } 2767 if (iaq->nofldrxq > 1) 2768 iaq->nofldrxq >>= 1; 2769 2770 old_nirq = iaq->nirq; 2771 update_nirq(iaq, nports); 2772 if (iaq->nirq <= navail && 2773 (itype != INTR_MSI || powerof2(iaq->nirq))) { 2774 device_printf(sc->dev, "running with reduced number of " 2775 "rx queues because of shortage of interrupts. " 2776 "nrxq=%u, nofldrxq=%u. " 2777 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 2778 iaq->nofldrxq, itype, navail, iaq->nirq); 2779 goto done; 2780 } 2781 } while (old_nirq != iaq->nirq); 2782 2783 /* One interrupt for everything. Ugh. */ 2784 device_printf(sc->dev, "running with minimal number of queues. " 2785 "itype %d, navail %u.\n", itype, navail); 2786 iaq->nirq = 1; 2787 MPASS(iaq->nrxq == 1); 2788 iaq->ntxq = 1; 2789 if (iaq->nofldrxq > 1) 2790 iaq->nofldtxq = 1; 2791 done: 2792 MPASS(iaq->num_vis > 0); 2793 if (iaq->num_vis > 1) { 2794 MPASS(iaq->nrxq_vi > 0); 2795 MPASS(iaq->ntxq_vi > 0); 2796 } 2797 MPASS(iaq->nirq > 0); 2798 MPASS(iaq->nrxq > 0); 2799 MPASS(iaq->ntxq > 0); 2800 if (itype == INTR_MSI) { 2801 MPASS(powerof2(iaq->nirq)); 2802 } 2803 } 2804 2805 static int 2806 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 2807 { 2808 int rc, itype, navail, nalloc; 2809 2810 for (itype = INTR_MSIX; itype; itype >>= 1) { 2811 2812 if ((itype & t4_intr_types) == 0) 2813 continue; /* not allowed */ 2814 2815 if (itype == INTR_MSIX) 2816 navail = pci_msix_count(sc->dev); 2817 else if (itype == INTR_MSI) 2818 navail = pci_msi_count(sc->dev); 2819 else 2820 navail = 1; 2821 restart: 2822 if (navail == 0) 2823 continue; 2824 2825 calculate_iaq(sc, iaq, itype, navail); 2826 nalloc = iaq->nirq; 2827 rc = 0; 2828 if (itype == INTR_MSIX) 2829 rc = pci_alloc_msix(sc->dev, &nalloc); 2830 else if (itype == INTR_MSI) 2831 rc = pci_alloc_msi(sc->dev, &nalloc); 2832 2833 if (rc == 0 && nalloc > 0) { 2834 if (nalloc == iaq->nirq) 2835 return (0); 2836 2837 /* 2838 * Didn't get the number requested. Use whatever number 2839 * the kernel is willing to allocate. 2840 */ 2841 device_printf(sc->dev, "fewer vectors than requested, " 2842 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 2843 itype, iaq->nirq, nalloc); 2844 pci_release_msi(sc->dev); 2845 navail = nalloc; 2846 goto restart; 2847 } 2848 2849 device_printf(sc->dev, 2850 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 2851 itype, rc, iaq->nirq, nalloc); 2852 } 2853 2854 device_printf(sc->dev, 2855 "failed to find a usable interrupt type. " 2856 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 2857 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 2858 2859 return (ENXIO); 2860 } 2861 2862 #define FW_VERSION(chip) ( \ 2863 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 2864 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 2865 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 2866 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 2867 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 2868 2869 struct fw_info { 2870 uint8_t chip; 2871 char *kld_name; 2872 char *fw_mod_name; 2873 struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */ 2874 } fw_info[] = { 2875 { 2876 .chip = CHELSIO_T4, 2877 .kld_name = "t4fw_cfg", 2878 .fw_mod_name = "t4fw", 2879 .fw_hdr = { 2880 .chip = FW_HDR_CHIP_T4, 2881 .fw_ver = htobe32_const(FW_VERSION(T4)), 2882 .intfver_nic = FW_INTFVER(T4, NIC), 2883 .intfver_vnic = FW_INTFVER(T4, VNIC), 2884 .intfver_ofld = FW_INTFVER(T4, OFLD), 2885 .intfver_ri = FW_INTFVER(T4, RI), 2886 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 2887 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 2888 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 2889 .intfver_fcoe = FW_INTFVER(T4, FCOE), 2890 }, 2891 }, { 2892 .chip = CHELSIO_T5, 2893 .kld_name = "t5fw_cfg", 2894 .fw_mod_name = "t5fw", 2895 .fw_hdr = { 2896 .chip = FW_HDR_CHIP_T5, 2897 .fw_ver = htobe32_const(FW_VERSION(T5)), 2898 .intfver_nic = FW_INTFVER(T5, NIC), 2899 .intfver_vnic = FW_INTFVER(T5, VNIC), 2900 .intfver_ofld = FW_INTFVER(T5, OFLD), 2901 .intfver_ri = FW_INTFVER(T5, RI), 2902 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 2903 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 2904 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 2905 .intfver_fcoe = FW_INTFVER(T5, FCOE), 2906 }, 2907 }, { 2908 .chip = CHELSIO_T6, 2909 .kld_name = "t6fw_cfg", 2910 .fw_mod_name = "t6fw", 2911 .fw_hdr = { 2912 .chip = FW_HDR_CHIP_T6, 2913 .fw_ver = htobe32_const(FW_VERSION(T6)), 2914 .intfver_nic = FW_INTFVER(T6, NIC), 2915 .intfver_vnic = FW_INTFVER(T6, VNIC), 2916 .intfver_ofld = FW_INTFVER(T6, OFLD), 2917 .intfver_ri = FW_INTFVER(T6, RI), 2918 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 2919 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 2920 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 2921 .intfver_fcoe = FW_INTFVER(T6, FCOE), 2922 }, 2923 } 2924 }; 2925 2926 static struct fw_info * 2927 find_fw_info(int chip) 2928 { 2929 int i; 2930 2931 for (i = 0; i < nitems(fw_info); i++) { 2932 if (fw_info[i].chip == chip) 2933 return (&fw_info[i]); 2934 } 2935 return (NULL); 2936 } 2937 2938 /* 2939 * Is the given firmware API compatible with the one the driver was compiled 2940 * with? 2941 */ 2942 static int 2943 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 2944 { 2945 2946 /* short circuit if it's the exact same firmware version */ 2947 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 2948 return (1); 2949 2950 /* 2951 * XXX: Is this too conservative? Perhaps I should limit this to the 2952 * features that are supported in the driver. 2953 */ 2954 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 2955 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 2956 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 2957 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 2958 return (1); 2959 #undef SAME_INTF 2960 2961 return (0); 2962 } 2963 2964 /* 2965 * The firmware in the KLD is usable, but should it be installed? This routine 2966 * explains itself in detail if it indicates the KLD firmware should be 2967 * installed. 2968 */ 2969 static int 2970 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c) 2971 { 2972 const char *reason; 2973 2974 if (!card_fw_usable) { 2975 reason = "incompatible or unusable"; 2976 goto install; 2977 } 2978 2979 if (k > c) { 2980 reason = "older than the version bundled with this driver"; 2981 goto install; 2982 } 2983 2984 if (t4_fw_install == 2 && k != c) { 2985 reason = "different than the version bundled with this driver"; 2986 goto install; 2987 } 2988 2989 return (0); 2990 2991 install: 2992 if (t4_fw_install == 0) { 2993 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 2994 "but the driver is prohibited from installing a different " 2995 "firmware on the card.\n", 2996 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 2997 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 2998 2999 return (0); 3000 } 3001 3002 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3003 "installing firmware %u.%u.%u.%u on card.\n", 3004 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3005 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 3006 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3007 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 3008 3009 return (1); 3010 } 3011 3012 /* 3013 * Establish contact with the firmware and determine if we are the master driver 3014 * or not, and whether we are responsible for chip initialization. 3015 */ 3016 static int 3017 prep_firmware(struct adapter *sc) 3018 { 3019 const struct firmware *fw = NULL, *default_cfg; 3020 int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1; 3021 enum dev_state state; 3022 struct fw_info *fw_info; 3023 struct fw_hdr *card_fw; /* fw on the card */ 3024 const struct fw_hdr *kld_fw; /* fw in the KLD */ 3025 const struct fw_hdr *drv_fw; /* fw header the driver was compiled 3026 against */ 3027 3028 /* This is the firmware whose headers the driver was compiled against */ 3029 fw_info = find_fw_info(chip_id(sc)); 3030 if (fw_info == NULL) { 3031 device_printf(sc->dev, 3032 "unable to look up firmware information for chip %d.\n", 3033 chip_id(sc)); 3034 return (EINVAL); 3035 } 3036 drv_fw = &fw_info->fw_hdr; 3037 3038 /* 3039 * The firmware KLD contains many modules. The KLD name is also the 3040 * name of the module that contains the default config file. 3041 */ 3042 default_cfg = firmware_get(fw_info->kld_name); 3043 3044 /* This is the firmware in the KLD */ 3045 fw = firmware_get(fw_info->fw_mod_name); 3046 if (fw != NULL) { 3047 kld_fw = (const void *)fw->data; 3048 kld_fw_usable = fw_compatible(drv_fw, kld_fw); 3049 } else { 3050 kld_fw = NULL; 3051 kld_fw_usable = 0; 3052 } 3053 3054 /* Read the header of the firmware on the card */ 3055 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 3056 rc = -t4_read_flash(sc, FLASH_FW_START, 3057 sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1); 3058 if (rc == 0) { 3059 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw); 3060 if (card_fw->fw_ver == be32toh(0xffffffff)) { 3061 uint32_t d = be32toh(kld_fw->fw_ver); 3062 3063 if (!kld_fw_usable) { 3064 device_printf(sc->dev, 3065 "no firmware on the card and no usable " 3066 "firmware bundled with the driver.\n"); 3067 rc = EIO; 3068 goto done; 3069 } else if (t4_fw_install == 0) { 3070 device_printf(sc->dev, 3071 "no firmware on the card and the driver " 3072 "is prohibited from installing new " 3073 "firmware.\n"); 3074 rc = EIO; 3075 goto done; 3076 } 3077 3078 device_printf(sc->dev, "no firmware on the card, " 3079 "installing firmware %d.%d.%d.%d\n", 3080 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3081 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3082 rc = t4_fw_forceinstall(sc, fw->data, fw->datasize); 3083 if (rc < 0) { 3084 rc = -rc; 3085 device_printf(sc->dev, 3086 "firmware install failed: %d.\n", rc); 3087 goto done; 3088 } 3089 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 3090 card_fw_usable = 1; 3091 need_fw_reset = 0; 3092 } 3093 } else { 3094 device_printf(sc->dev, 3095 "Unable to read card's firmware header: %d\n", rc); 3096 card_fw_usable = 0; 3097 } 3098 3099 /* Contact firmware. */ 3100 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 3101 if (rc < 0 || state == DEV_STATE_ERR) { 3102 rc = -rc; 3103 device_printf(sc->dev, 3104 "failed to connect to the firmware: %d, %d.\n", rc, state); 3105 goto done; 3106 } 3107 pf = rc; 3108 if (pf == sc->mbox) 3109 sc->flags |= MASTER_PF; 3110 else if (state == DEV_STATE_UNINIT) { 3111 /* 3112 * We didn't get to be the master so we definitely won't be 3113 * configuring the chip. It's a bug if someone else hasn't 3114 * configured it already. 3115 */ 3116 device_printf(sc->dev, "couldn't be master(%d), " 3117 "device not already initialized either(%d).\n", rc, state); 3118 rc = EPROTO; 3119 goto done; 3120 } 3121 3122 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3123 (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) { 3124 /* 3125 * Common case: the firmware on the card is an exact match and 3126 * the KLD is an exact match too, or the KLD is 3127 * absent/incompatible. Note that t4_fw_install = 2 is ignored 3128 * here -- use cxgbetool loadfw if you want to reinstall the 3129 * same firmware as the one on the card. 3130 */ 3131 } else if (kld_fw_usable && state == DEV_STATE_UNINIT && 3132 should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver), 3133 be32toh(card_fw->fw_ver))) { 3134 3135 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 3136 if (rc != 0) { 3137 device_printf(sc->dev, 3138 "failed to install firmware: %d\n", rc); 3139 goto done; 3140 } 3141 3142 /* Installed successfully, update the cached header too. */ 3143 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 3144 card_fw_usable = 1; 3145 need_fw_reset = 0; /* already reset as part of load_fw */ 3146 } 3147 3148 if (!card_fw_usable) { 3149 uint32_t d, c, k; 3150 3151 d = ntohl(drv_fw->fw_ver); 3152 c = ntohl(card_fw->fw_ver); 3153 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0; 3154 3155 device_printf(sc->dev, "Cannot find a usable firmware: " 3156 "fw_install %d, chip state %d, " 3157 "driver compiled with %d.%d.%d.%d, " 3158 "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n", 3159 t4_fw_install, state, 3160 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3161 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d), 3162 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3163 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), 3164 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3165 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 3166 rc = EINVAL; 3167 goto done; 3168 } 3169 3170 /* Reset device */ 3171 if (need_fw_reset && 3172 (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) { 3173 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 3174 if (rc != ETIMEDOUT && rc != EIO) 3175 t4_fw_bye(sc, sc->mbox); 3176 goto done; 3177 } 3178 sc->flags |= FW_OK; 3179 3180 rc = get_params__pre_init(sc); 3181 if (rc != 0) 3182 goto done; /* error message displayed already */ 3183 3184 /* Partition adapter resources as specified in the config file. */ 3185 if (state == DEV_STATE_UNINIT) { 3186 3187 KASSERT(sc->flags & MASTER_PF, 3188 ("%s: trying to change chip settings when not master.", 3189 __func__)); 3190 3191 rc = partition_resources(sc, default_cfg, fw_info->kld_name); 3192 if (rc != 0) 3193 goto done; /* error message displayed already */ 3194 3195 t4_tweak_chip_settings(sc); 3196 3197 /* get basic stuff going */ 3198 rc = -t4_fw_initialize(sc, sc->mbox); 3199 if (rc != 0) { 3200 device_printf(sc->dev, "fw init failed: %d.\n", rc); 3201 goto done; 3202 } 3203 } else { 3204 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf); 3205 sc->cfcsum = 0; 3206 } 3207 3208 done: 3209 free(card_fw, M_CXGBE); 3210 if (fw != NULL) 3211 firmware_put(fw, FIRMWARE_UNLOAD); 3212 if (default_cfg != NULL) 3213 firmware_put(default_cfg, FIRMWARE_UNLOAD); 3214 3215 return (rc); 3216 } 3217 3218 #define FW_PARAM_DEV(param) \ 3219 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 3220 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 3221 #define FW_PARAM_PFVF(param) \ 3222 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 3223 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 3224 3225 /* 3226 * Partition chip resources for use between various PFs, VFs, etc. 3227 */ 3228 static int 3229 partition_resources(struct adapter *sc, const struct firmware *default_cfg, 3230 const char *name_prefix) 3231 { 3232 const struct firmware *cfg = NULL; 3233 int rc = 0; 3234 struct fw_caps_config_cmd caps; 3235 uint32_t mtype, moff, finicsum, cfcsum; 3236 3237 /* 3238 * Figure out what configuration file to use. Pick the default config 3239 * file for the card if the user hasn't specified one explicitly. 3240 */ 3241 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file); 3242 if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3243 /* Card specific overrides go here. */ 3244 if (pci_get_device(sc->dev) == 0x440a) 3245 snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF); 3246 if (is_fpga(sc)) 3247 snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF); 3248 } 3249 3250 /* 3251 * We need to load another module if the profile is anything except 3252 * "default" or "flash". 3253 */ 3254 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 && 3255 strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 3256 char s[32]; 3257 3258 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file); 3259 cfg = firmware_get(s); 3260 if (cfg == NULL) { 3261 if (default_cfg != NULL) { 3262 device_printf(sc->dev, 3263 "unable to load module \"%s\" for " 3264 "configuration profile \"%s\", will use " 3265 "the default config file instead.\n", 3266 s, sc->cfg_file); 3267 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 3268 "%s", DEFAULT_CF); 3269 } else { 3270 device_printf(sc->dev, 3271 "unable to load module \"%s\" for " 3272 "configuration profile \"%s\", will use " 3273 "the config file on the card's flash " 3274 "instead.\n", s, sc->cfg_file); 3275 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 3276 "%s", FLASH_CF); 3277 } 3278 } 3279 } 3280 3281 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 && 3282 default_cfg == NULL) { 3283 device_printf(sc->dev, 3284 "default config file not available, will use the config " 3285 "file on the card's flash instead.\n"); 3286 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); 3287 } 3288 3289 if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 3290 u_int cflen; 3291 const uint32_t *cfdata; 3292 uint32_t param, val, addr; 3293 3294 KASSERT(cfg != NULL || default_cfg != NULL, 3295 ("%s: no config to upload", __func__)); 3296 3297 /* 3298 * Ask the firmware where it wants us to upload the config file. 3299 */ 3300 param = FW_PARAM_DEV(CF); 3301 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3302 if (rc != 0) { 3303 /* No support for config file? Shouldn't happen. */ 3304 device_printf(sc->dev, 3305 "failed to query config file location: %d.\n", rc); 3306 goto done; 3307 } 3308 mtype = G_FW_PARAMS_PARAM_Y(val); 3309 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 3310 3311 /* 3312 * XXX: sheer laziness. We deliberately added 4 bytes of 3313 * useless stuffing/comments at the end of the config file so 3314 * it's ok to simply throw away the last remaining bytes when 3315 * the config file is not an exact multiple of 4. This also 3316 * helps with the validate_mt_off_len check. 3317 */ 3318 if (cfg != NULL) { 3319 cflen = cfg->datasize & ~3; 3320 cfdata = cfg->data; 3321 } else { 3322 cflen = default_cfg->datasize & ~3; 3323 cfdata = default_cfg->data; 3324 } 3325 3326 if (cflen > FLASH_CFG_MAX_SIZE) { 3327 device_printf(sc->dev, 3328 "config file too long (%d, max allowed is %d). " 3329 "Will try to use the config on the card, if any.\n", 3330 cflen, FLASH_CFG_MAX_SIZE); 3331 goto use_config_on_flash; 3332 } 3333 3334 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 3335 if (rc != 0) { 3336 device_printf(sc->dev, 3337 "%s: addr (%d/0x%x) or len %d is not valid: %d. " 3338 "Will try to use the config on the card, if any.\n", 3339 __func__, mtype, moff, cflen, rc); 3340 goto use_config_on_flash; 3341 } 3342 write_via_memwin(sc, 2, addr, cfdata, cflen); 3343 } else { 3344 use_config_on_flash: 3345 mtype = FW_MEMTYPE_FLASH; 3346 moff = t4_flash_cfg_addr(sc); 3347 } 3348 3349 bzero(&caps, sizeof(caps)); 3350 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3351 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3352 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 3353 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 3354 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); 3355 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3356 if (rc != 0) { 3357 device_printf(sc->dev, 3358 "failed to pre-process config file: %d " 3359 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 3360 goto done; 3361 } 3362 3363 finicsum = be32toh(caps.finicsum); 3364 cfcsum = be32toh(caps.cfcsum); 3365 if (finicsum != cfcsum) { 3366 device_printf(sc->dev, 3367 "WARNING: config file checksum mismatch: %08x %08x\n", 3368 finicsum, cfcsum); 3369 } 3370 sc->cfcsum = cfcsum; 3371 3372 #define LIMIT_CAPS(x) do { \ 3373 caps.x &= htobe16(t4_##x##_allowed); \ 3374 } while (0) 3375 3376 /* 3377 * Let the firmware know what features will (not) be used so it can tune 3378 * things accordingly. 3379 */ 3380 LIMIT_CAPS(nbmcaps); 3381 LIMIT_CAPS(linkcaps); 3382 LIMIT_CAPS(switchcaps); 3383 LIMIT_CAPS(niccaps); 3384 LIMIT_CAPS(toecaps); 3385 LIMIT_CAPS(rdmacaps); 3386 LIMIT_CAPS(cryptocaps); 3387 LIMIT_CAPS(iscsicaps); 3388 LIMIT_CAPS(fcoecaps); 3389 #undef LIMIT_CAPS 3390 3391 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3392 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 3393 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3394 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 3395 if (rc != 0) { 3396 device_printf(sc->dev, 3397 "failed to process config file: %d.\n", rc); 3398 } 3399 done: 3400 if (cfg != NULL) 3401 firmware_put(cfg, FIRMWARE_UNLOAD); 3402 return (rc); 3403 } 3404 3405 /* 3406 * Retrieve parameters that are needed (or nice to have) very early. 3407 */ 3408 static int 3409 get_params__pre_init(struct adapter *sc) 3410 { 3411 int rc; 3412 uint32_t param[2], val[2]; 3413 3414 t4_get_version_info(sc); 3415 3416 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 3417 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 3418 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 3419 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 3420 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 3421 3422 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 3423 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 3424 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 3425 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 3426 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 3427 3428 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 3429 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 3430 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 3431 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 3432 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 3433 3434 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 3435 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 3436 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 3437 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 3438 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 3439 3440 param[0] = FW_PARAM_DEV(PORTVEC); 3441 param[1] = FW_PARAM_DEV(CCLK); 3442 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3443 if (rc != 0) { 3444 device_printf(sc->dev, 3445 "failed to query parameters (pre_init): %d.\n", rc); 3446 return (rc); 3447 } 3448 3449 sc->params.portvec = val[0]; 3450 sc->params.nports = bitcount32(val[0]); 3451 sc->params.vpd.cclk = val[1]; 3452 3453 /* Read device log parameters. */ 3454 rc = -t4_init_devlog_params(sc, 1); 3455 if (rc == 0) 3456 fixup_devlog_params(sc); 3457 else { 3458 device_printf(sc->dev, 3459 "failed to get devlog parameters: %d.\n", rc); 3460 rc = 0; /* devlog isn't critical for device operation */ 3461 } 3462 3463 return (rc); 3464 } 3465 3466 /* 3467 * Retrieve various parameters that are of interest to the driver. The device 3468 * has been initialized by the firmware at this point. 3469 */ 3470 static int 3471 get_params__post_init(struct adapter *sc) 3472 { 3473 int rc; 3474 uint32_t param[7], val[7]; 3475 struct fw_caps_config_cmd caps; 3476 3477 param[0] = FW_PARAM_PFVF(IQFLINT_START); 3478 param[1] = FW_PARAM_PFVF(EQ_START); 3479 param[2] = FW_PARAM_PFVF(FILTER_START); 3480 param[3] = FW_PARAM_PFVF(FILTER_END); 3481 param[4] = FW_PARAM_PFVF(L2T_START); 3482 param[5] = FW_PARAM_PFVF(L2T_END); 3483 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3484 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 3485 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 3486 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 3487 if (rc != 0) { 3488 device_printf(sc->dev, 3489 "failed to query parameters (post_init): %d.\n", rc); 3490 return (rc); 3491 } 3492 3493 sc->sge.iq_start = val[0]; 3494 sc->sge.eq_start = val[1]; 3495 sc->tids.ftid_base = val[2]; 3496 sc->tids.nftids = val[3] - val[2] + 1; 3497 sc->params.ftid_min = val[2]; 3498 sc->params.ftid_max = val[3]; 3499 sc->vres.l2t.start = val[4]; 3500 sc->vres.l2t.size = val[5] - val[4] + 1; 3501 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 3502 ("%s: L2 table size (%u) larger than expected (%u)", 3503 __func__, sc->vres.l2t.size, L2T_SIZE)); 3504 sc->params.core_vdd = val[6]; 3505 3506 /* 3507 * MPSBGMAP is queried separately because only recent firmwares support 3508 * it as a parameter and we don't want the compound query above to fail 3509 * on older firmwares. 3510 */ 3511 param[0] = FW_PARAM_DEV(MPSBGMAP); 3512 val[0] = 0; 3513 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 3514 if (rc == 0) 3515 sc->params.mps_bg_map = val[0]; 3516 else 3517 sc->params.mps_bg_map = 0; 3518 3519 /* get capabilites */ 3520 bzero(&caps, sizeof(caps)); 3521 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3522 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3523 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3524 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3525 if (rc != 0) { 3526 device_printf(sc->dev, 3527 "failed to get card capabilities: %d.\n", rc); 3528 return (rc); 3529 } 3530 3531 #define READ_CAPS(x) do { \ 3532 sc->x = htobe16(caps.x); \ 3533 } while (0) 3534 READ_CAPS(nbmcaps); 3535 READ_CAPS(linkcaps); 3536 READ_CAPS(switchcaps); 3537 READ_CAPS(niccaps); 3538 READ_CAPS(toecaps); 3539 READ_CAPS(rdmacaps); 3540 READ_CAPS(cryptocaps); 3541 READ_CAPS(iscsicaps); 3542 READ_CAPS(fcoecaps); 3543 3544 /* 3545 * The firmware attempts memfree TOE configuration for -SO cards and 3546 * will report toecaps=0 if it runs out of resources (this depends on 3547 * the config file). It may not report 0 for other capabilities 3548 * dependent on the TOE in this case. Set them to 0 here so that the 3549 * driver doesn't bother tracking resources that will never be used. 3550 */ 3551 if (sc->toecaps == 0) { 3552 sc->iscsicaps = 0; 3553 sc->rdmacaps = 0; 3554 } 3555 3556 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 3557 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 3558 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 3559 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3560 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 3561 if (rc != 0) { 3562 device_printf(sc->dev, 3563 "failed to query NIC parameters: %d.\n", rc); 3564 return (rc); 3565 } 3566 sc->tids.etid_base = val[0]; 3567 sc->params.etid_min = val[0]; 3568 sc->tids.netids = val[1] - val[0] + 1; 3569 sc->params.netids = sc->tids.netids; 3570 sc->params.eo_wr_cred = val[2]; 3571 sc->params.ethoffload = 1; 3572 } 3573 3574 if (sc->toecaps) { 3575 /* query offload-related parameters */ 3576 param[0] = FW_PARAM_DEV(NTID); 3577 param[1] = FW_PARAM_PFVF(SERVER_START); 3578 param[2] = FW_PARAM_PFVF(SERVER_END); 3579 param[3] = FW_PARAM_PFVF(TDDP_START); 3580 param[4] = FW_PARAM_PFVF(TDDP_END); 3581 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3582 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3583 if (rc != 0) { 3584 device_printf(sc->dev, 3585 "failed to query TOE parameters: %d.\n", rc); 3586 return (rc); 3587 } 3588 sc->tids.ntids = val[0]; 3589 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 3590 sc->tids.stid_base = val[1]; 3591 sc->tids.nstids = val[2] - val[1] + 1; 3592 sc->vres.ddp.start = val[3]; 3593 sc->vres.ddp.size = val[4] - val[3] + 1; 3594 sc->params.ofldq_wr_cred = val[5]; 3595 sc->params.offload = 1; 3596 } 3597 if (sc->rdmacaps) { 3598 param[0] = FW_PARAM_PFVF(STAG_START); 3599 param[1] = FW_PARAM_PFVF(STAG_END); 3600 param[2] = FW_PARAM_PFVF(RQ_START); 3601 param[3] = FW_PARAM_PFVF(RQ_END); 3602 param[4] = FW_PARAM_PFVF(PBL_START); 3603 param[5] = FW_PARAM_PFVF(PBL_END); 3604 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3605 if (rc != 0) { 3606 device_printf(sc->dev, 3607 "failed to query RDMA parameters(1): %d.\n", rc); 3608 return (rc); 3609 } 3610 sc->vres.stag.start = val[0]; 3611 sc->vres.stag.size = val[1] - val[0] + 1; 3612 sc->vres.rq.start = val[2]; 3613 sc->vres.rq.size = val[3] - val[2] + 1; 3614 sc->vres.pbl.start = val[4]; 3615 sc->vres.pbl.size = val[5] - val[4] + 1; 3616 3617 param[0] = FW_PARAM_PFVF(SQRQ_START); 3618 param[1] = FW_PARAM_PFVF(SQRQ_END); 3619 param[2] = FW_PARAM_PFVF(CQ_START); 3620 param[3] = FW_PARAM_PFVF(CQ_END); 3621 param[4] = FW_PARAM_PFVF(OCQ_START); 3622 param[5] = FW_PARAM_PFVF(OCQ_END); 3623 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3624 if (rc != 0) { 3625 device_printf(sc->dev, 3626 "failed to query RDMA parameters(2): %d.\n", rc); 3627 return (rc); 3628 } 3629 sc->vres.qp.start = val[0]; 3630 sc->vres.qp.size = val[1] - val[0] + 1; 3631 sc->vres.cq.start = val[2]; 3632 sc->vres.cq.size = val[3] - val[2] + 1; 3633 sc->vres.ocq.start = val[4]; 3634 sc->vres.ocq.size = val[5] - val[4] + 1; 3635 3636 param[0] = FW_PARAM_PFVF(SRQ_START); 3637 param[1] = FW_PARAM_PFVF(SRQ_END); 3638 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 3639 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3640 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 3641 if (rc != 0) { 3642 device_printf(sc->dev, 3643 "failed to query RDMA parameters(3): %d.\n", rc); 3644 return (rc); 3645 } 3646 sc->vres.srq.start = val[0]; 3647 sc->vres.srq.size = val[1] - val[0] + 1; 3648 sc->params.max_ordird_qp = val[2]; 3649 sc->params.max_ird_adapter = val[3]; 3650 } 3651 if (sc->iscsicaps) { 3652 param[0] = FW_PARAM_PFVF(ISCSI_START); 3653 param[1] = FW_PARAM_PFVF(ISCSI_END); 3654 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3655 if (rc != 0) { 3656 device_printf(sc->dev, 3657 "failed to query iSCSI parameters: %d.\n", rc); 3658 return (rc); 3659 } 3660 sc->vres.iscsi.start = val[0]; 3661 sc->vres.iscsi.size = val[1] - val[0] + 1; 3662 } 3663 3664 t4_init_sge_params(sc); 3665 3666 /* 3667 * We've got the params we wanted to query via the firmware. Now grab 3668 * some others directly from the chip. 3669 */ 3670 rc = t4_read_chip_settings(sc); 3671 3672 return (rc); 3673 } 3674 3675 static int 3676 set_params__post_init(struct adapter *sc) 3677 { 3678 uint32_t param, val; 3679 #ifdef TCP_OFFLOAD 3680 int i, v, shift; 3681 #endif 3682 3683 /* ask for encapsulated CPLs */ 3684 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3685 val = 1; 3686 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3687 3688 #ifdef TCP_OFFLOAD 3689 /* 3690 * Override the TOE timers with user provided tunables. This is not the 3691 * recommended way to change the timers (the firmware config file is) so 3692 * these tunables are not documented. 3693 * 3694 * All the timer tunables are in microseconds. 3695 */ 3696 if (t4_toe_keepalive_idle != 0) { 3697 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 3698 v &= M_KEEPALIVEIDLE; 3699 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 3700 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 3701 } 3702 if (t4_toe_keepalive_interval != 0) { 3703 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 3704 v &= M_KEEPALIVEINTVL; 3705 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 3706 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 3707 } 3708 if (t4_toe_keepalive_count != 0) { 3709 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 3710 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 3711 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 3712 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 3713 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 3714 } 3715 if (t4_toe_rexmt_min != 0) { 3716 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 3717 v &= M_RXTMIN; 3718 t4_set_reg_field(sc, A_TP_RXT_MIN, 3719 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 3720 } 3721 if (t4_toe_rexmt_max != 0) { 3722 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 3723 v &= M_RXTMAX; 3724 t4_set_reg_field(sc, A_TP_RXT_MAX, 3725 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 3726 } 3727 if (t4_toe_rexmt_count != 0) { 3728 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 3729 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 3730 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 3731 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 3732 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 3733 } 3734 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 3735 if (t4_toe_rexmt_backoff[i] != -1) { 3736 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 3737 shift = (i & 3) << 3; 3738 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 3739 M_TIMERBACKOFFINDEX0 << shift, v << shift); 3740 } 3741 } 3742 #endif 3743 return (0); 3744 } 3745 3746 #undef FW_PARAM_PFVF 3747 #undef FW_PARAM_DEV 3748 3749 static void 3750 t4_set_desc(struct adapter *sc) 3751 { 3752 char buf[128]; 3753 struct adapter_params *p = &sc->params; 3754 3755 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 3756 3757 device_set_desc_copy(sc->dev, buf); 3758 } 3759 3760 static void 3761 build_medialist(struct port_info *pi, struct ifmedia *media) 3762 { 3763 int m; 3764 3765 PORT_LOCK_ASSERT_OWNED(pi); 3766 3767 ifmedia_removeall(media); 3768 3769 /* 3770 * XXX: Would it be better to ifmedia_add all 4 combinations of pause 3771 * settings for every speed instead of just txpause|rxpause? ifconfig 3772 * media display looks much better if autoselect is the only case where 3773 * ifm_current is different from ifm_active. If the user picks anything 3774 * except txpause|rxpause the display is ugly. 3775 */ 3776 m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 3777 3778 switch(pi->port_type) { 3779 case FW_PORT_TYPE_BT_XFI: 3780 case FW_PORT_TYPE_BT_XAUI: 3781 ifmedia_add(media, m | IFM_10G_T, 0, NULL); 3782 /* fall through */ 3783 3784 case FW_PORT_TYPE_BT_SGMII: 3785 ifmedia_add(media, m | IFM_1000_T, 0, NULL); 3786 ifmedia_add(media, m | IFM_100_TX, 0, NULL); 3787 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL); 3788 ifmedia_set(media, IFM_ETHER | IFM_AUTO); 3789 break; 3790 3791 case FW_PORT_TYPE_CX4: 3792 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL); 3793 ifmedia_set(media, m | IFM_10G_CX4); 3794 break; 3795 3796 case FW_PORT_TYPE_QSFP_10G: 3797 case FW_PORT_TYPE_SFP: 3798 case FW_PORT_TYPE_FIBER_XFI: 3799 case FW_PORT_TYPE_FIBER_XAUI: 3800 switch (pi->mod_type) { 3801 3802 case FW_PORT_MOD_TYPE_LR: 3803 ifmedia_add(media, m | IFM_10G_LR, 0, NULL); 3804 ifmedia_set(media, m | IFM_10G_LR); 3805 break; 3806 3807 case FW_PORT_MOD_TYPE_SR: 3808 ifmedia_add(media, m | IFM_10G_SR, 0, NULL); 3809 ifmedia_set(media, m | IFM_10G_SR); 3810 break; 3811 3812 case FW_PORT_MOD_TYPE_LRM: 3813 ifmedia_add(media, m | IFM_10G_LRM, 0, NULL); 3814 ifmedia_set(media, m | IFM_10G_LRM); 3815 break; 3816 3817 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3818 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3819 ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL); 3820 ifmedia_set(media, m | IFM_10G_TWINAX); 3821 break; 3822 3823 case FW_PORT_MOD_TYPE_NONE: 3824 m &= ~IFM_FDX; 3825 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3826 ifmedia_set(media, m | IFM_NONE); 3827 break; 3828 3829 case FW_PORT_MOD_TYPE_NA: 3830 case FW_PORT_MOD_TYPE_ER: 3831 default: 3832 device_printf(pi->dev, 3833 "unknown port_type (%d), mod_type (%d)\n", 3834 pi->port_type, pi->mod_type); 3835 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3836 ifmedia_set(media, m | IFM_UNKNOWN); 3837 break; 3838 } 3839 break; 3840 3841 case FW_PORT_TYPE_CR_QSFP: 3842 case FW_PORT_TYPE_SFP28: 3843 case FW_PORT_TYPE_KR_SFP28: 3844 switch (pi->mod_type) { 3845 3846 case FW_PORT_MOD_TYPE_SR: 3847 ifmedia_add(media, m | IFM_25G_SR, 0, NULL); 3848 ifmedia_set(media, m | IFM_25G_SR); 3849 break; 3850 3851 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3852 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3853 ifmedia_add(media, m | IFM_25G_CR, 0, NULL); 3854 ifmedia_set(media, m | IFM_25G_CR); 3855 break; 3856 3857 case FW_PORT_MOD_TYPE_NONE: 3858 m &= ~IFM_FDX; 3859 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3860 ifmedia_set(media, m | IFM_NONE); 3861 break; 3862 3863 default: 3864 device_printf(pi->dev, 3865 "unknown port_type (%d), mod_type (%d)\n", 3866 pi->port_type, pi->mod_type); 3867 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3868 ifmedia_set(media, m | IFM_UNKNOWN); 3869 break; 3870 } 3871 break; 3872 3873 case FW_PORT_TYPE_QSFP: 3874 switch (pi->mod_type) { 3875 3876 case FW_PORT_MOD_TYPE_LR: 3877 ifmedia_add(media, m | IFM_40G_LR4, 0, NULL); 3878 ifmedia_set(media, m | IFM_40G_LR4); 3879 break; 3880 3881 case FW_PORT_MOD_TYPE_SR: 3882 ifmedia_add(media, m | IFM_40G_SR4, 0, NULL); 3883 ifmedia_set(media, m | IFM_40G_SR4); 3884 break; 3885 3886 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3887 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3888 ifmedia_add(media, m | IFM_40G_CR4, 0, NULL); 3889 ifmedia_set(media, m | IFM_40G_CR4); 3890 break; 3891 3892 case FW_PORT_MOD_TYPE_NONE: 3893 m &= ~IFM_FDX; 3894 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3895 ifmedia_set(media, m | IFM_NONE); 3896 break; 3897 3898 default: 3899 device_printf(pi->dev, 3900 "unknown port_type (%d), mod_type (%d)\n", 3901 pi->port_type, pi->mod_type); 3902 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3903 ifmedia_set(media, m | IFM_UNKNOWN); 3904 break; 3905 } 3906 break; 3907 3908 case FW_PORT_TYPE_KR4_100G: 3909 case FW_PORT_TYPE_CR4_QSFP: 3910 switch (pi->mod_type) { 3911 3912 case FW_PORT_MOD_TYPE_LR: 3913 ifmedia_add(media, m | IFM_100G_LR4, 0, NULL); 3914 ifmedia_set(media, m | IFM_100G_LR4); 3915 break; 3916 3917 case FW_PORT_MOD_TYPE_SR: 3918 ifmedia_add(media, m | IFM_100G_SR4, 0, NULL); 3919 ifmedia_set(media, m | IFM_100G_SR4); 3920 break; 3921 3922 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3923 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3924 ifmedia_add(media, m | IFM_100G_CR4, 0, NULL); 3925 ifmedia_set(media, m | IFM_100G_CR4); 3926 break; 3927 3928 case FW_PORT_MOD_TYPE_NONE: 3929 m &= ~IFM_FDX; 3930 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3931 ifmedia_set(media, m | IFM_NONE); 3932 break; 3933 3934 default: 3935 device_printf(pi->dev, 3936 "unknown port_type (%d), mod_type (%d)\n", 3937 pi->port_type, pi->mod_type); 3938 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3939 ifmedia_set(media, m | IFM_UNKNOWN); 3940 break; 3941 } 3942 break; 3943 3944 default: 3945 device_printf(pi->dev, 3946 "unknown port_type (%d), mod_type (%d)\n", pi->port_type, 3947 pi->mod_type); 3948 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3949 ifmedia_set(media, m | IFM_UNKNOWN); 3950 break; 3951 } 3952 } 3953 3954 /* 3955 * Update all the requested_* fields in the link config and then send a mailbox 3956 * command to apply the settings. 3957 */ 3958 static void 3959 init_l1cfg(struct port_info *pi) 3960 { 3961 struct adapter *sc = pi->adapter; 3962 struct link_config *lc = &pi->link_cfg; 3963 int rc; 3964 3965 ASSERT_SYNCHRONIZED_OP(sc); 3966 3967 if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) { 3968 lc->requested_aneg = AUTONEG_ENABLE; 3969 lc->requested_speed = 0; 3970 } else { 3971 lc->requested_aneg = AUTONEG_DISABLE; 3972 lc->requested_speed = port_top_speed(pi); /* in Gbps */ 3973 } 3974 3975 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX); 3976 3977 if (t4_fec != -1) { 3978 lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS | 3979 FEC_RESERVED); 3980 } else { 3981 /* Use the suggested value provided by the firmware in acaps */ 3982 if (lc->advertising & FW_PORT_CAP_FEC_RS) 3983 lc->requested_fec = FEC_RS; 3984 else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS) 3985 lc->requested_fec = FEC_BASER_RS; 3986 else if (lc->advertising & FW_PORT_CAP_FEC_RESERVED) 3987 lc->requested_fec = FEC_RESERVED; 3988 else 3989 lc->requested_fec = 0; 3990 } 3991 3992 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 3993 if (rc != 0) { 3994 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 3995 } else { 3996 lc->fc = lc->requested_fc; 3997 lc->fec = lc->requested_fec; 3998 } 3999 } 4000 4001 #define FW_MAC_EXACT_CHUNK 7 4002 4003 /* 4004 * Program the port's XGMAC based on parameters in ifnet. The caller also 4005 * indicates which parameters should be programmed (the rest are left alone). 4006 */ 4007 int 4008 update_mac_settings(struct ifnet *ifp, int flags) 4009 { 4010 int rc = 0; 4011 struct vi_info *vi = ifp->if_softc; 4012 struct port_info *pi = vi->pi; 4013 struct adapter *sc = pi->adapter; 4014 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 4015 4016 ASSERT_SYNCHRONIZED_OP(sc); 4017 KASSERT(flags, ("%s: not told what to update.", __func__)); 4018 4019 if (flags & XGMAC_MTU) 4020 mtu = ifp->if_mtu; 4021 4022 if (flags & XGMAC_PROMISC) 4023 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 4024 4025 if (flags & XGMAC_ALLMULTI) 4026 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 4027 4028 if (flags & XGMAC_VLANEX) 4029 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 4030 4031 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 4032 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 4033 allmulti, 1, vlanex, false); 4034 if (rc) { 4035 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 4036 rc); 4037 return (rc); 4038 } 4039 } 4040 4041 if (flags & XGMAC_UCADDR) { 4042 uint8_t ucaddr[ETHER_ADDR_LEN]; 4043 4044 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 4045 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 4046 ucaddr, true, true); 4047 if (rc < 0) { 4048 rc = -rc; 4049 if_printf(ifp, "change_mac failed: %d\n", rc); 4050 return (rc); 4051 } else { 4052 vi->xact_addr_filt = rc; 4053 rc = 0; 4054 } 4055 } 4056 4057 if (flags & XGMAC_MCADDRS) { 4058 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 4059 int del = 1; 4060 uint64_t hash = 0; 4061 struct ifmultiaddr *ifma; 4062 int i = 0, j; 4063 4064 if_maddr_rlock(ifp); 4065 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4066 if (ifma->ifma_addr->sa_family != AF_LINK) 4067 continue; 4068 mcaddr[i] = 4069 LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 4070 MPASS(ETHER_IS_MULTICAST(mcaddr[i])); 4071 i++; 4072 4073 if (i == FW_MAC_EXACT_CHUNK) { 4074 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 4075 del, i, mcaddr, NULL, &hash, 0); 4076 if (rc < 0) { 4077 rc = -rc; 4078 for (j = 0; j < i; j++) { 4079 if_printf(ifp, 4080 "failed to add mc address" 4081 " %02x:%02x:%02x:" 4082 "%02x:%02x:%02x rc=%d\n", 4083 mcaddr[j][0], mcaddr[j][1], 4084 mcaddr[j][2], mcaddr[j][3], 4085 mcaddr[j][4], mcaddr[j][5], 4086 rc); 4087 } 4088 goto mcfail; 4089 } 4090 del = 0; 4091 i = 0; 4092 } 4093 } 4094 if (i > 0) { 4095 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, 4096 mcaddr, NULL, &hash, 0); 4097 if (rc < 0) { 4098 rc = -rc; 4099 for (j = 0; j < i; j++) { 4100 if_printf(ifp, 4101 "failed to add mc address" 4102 " %02x:%02x:%02x:" 4103 "%02x:%02x:%02x rc=%d\n", 4104 mcaddr[j][0], mcaddr[j][1], 4105 mcaddr[j][2], mcaddr[j][3], 4106 mcaddr[j][4], mcaddr[j][5], 4107 rc); 4108 } 4109 goto mcfail; 4110 } 4111 } 4112 4113 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0); 4114 if (rc != 0) 4115 if_printf(ifp, "failed to set mc address hash: %d", rc); 4116 mcfail: 4117 if_maddr_runlock(ifp); 4118 } 4119 4120 return (rc); 4121 } 4122 4123 /* 4124 * {begin|end}_synchronized_op must be called from the same thread. 4125 */ 4126 int 4127 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 4128 char *wmesg) 4129 { 4130 int rc, pri; 4131 4132 #ifdef WITNESS 4133 /* the caller thinks it's ok to sleep, but is it really? */ 4134 if (flags & SLEEP_OK) 4135 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 4136 "begin_synchronized_op"); 4137 #endif 4138 4139 if (INTR_OK) 4140 pri = PCATCH; 4141 else 4142 pri = 0; 4143 4144 ADAPTER_LOCK(sc); 4145 for (;;) { 4146 4147 if (vi && IS_DOOMED(vi)) { 4148 rc = ENXIO; 4149 goto done; 4150 } 4151 4152 if (!IS_BUSY(sc)) { 4153 rc = 0; 4154 break; 4155 } 4156 4157 if (!(flags & SLEEP_OK)) { 4158 rc = EBUSY; 4159 goto done; 4160 } 4161 4162 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 4163 rc = EINTR; 4164 goto done; 4165 } 4166 } 4167 4168 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 4169 SET_BUSY(sc); 4170 #ifdef INVARIANTS 4171 sc->last_op = wmesg; 4172 sc->last_op_thr = curthread; 4173 sc->last_op_flags = flags; 4174 #endif 4175 4176 done: 4177 if (!(flags & HOLD_LOCK) || rc) 4178 ADAPTER_UNLOCK(sc); 4179 4180 return (rc); 4181 } 4182 4183 /* 4184 * Tell if_ioctl and if_init that the VI is going away. This is 4185 * special variant of begin_synchronized_op and must be paired with a 4186 * call to end_synchronized_op. 4187 */ 4188 void 4189 doom_vi(struct adapter *sc, struct vi_info *vi) 4190 { 4191 4192 ADAPTER_LOCK(sc); 4193 SET_DOOMED(vi); 4194 wakeup(&sc->flags); 4195 while (IS_BUSY(sc)) 4196 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 4197 SET_BUSY(sc); 4198 #ifdef INVARIANTS 4199 sc->last_op = "t4detach"; 4200 sc->last_op_thr = curthread; 4201 sc->last_op_flags = 0; 4202 #endif 4203 ADAPTER_UNLOCK(sc); 4204 } 4205 4206 /* 4207 * {begin|end}_synchronized_op must be called from the same thread. 4208 */ 4209 void 4210 end_synchronized_op(struct adapter *sc, int flags) 4211 { 4212 4213 if (flags & LOCK_HELD) 4214 ADAPTER_LOCK_ASSERT_OWNED(sc); 4215 else 4216 ADAPTER_LOCK(sc); 4217 4218 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 4219 CLR_BUSY(sc); 4220 wakeup(&sc->flags); 4221 ADAPTER_UNLOCK(sc); 4222 } 4223 4224 static int 4225 cxgbe_init_synchronized(struct vi_info *vi) 4226 { 4227 struct port_info *pi = vi->pi; 4228 struct adapter *sc = pi->adapter; 4229 struct ifnet *ifp = vi->ifp; 4230 int rc = 0, i; 4231 struct sge_txq *txq; 4232 4233 ASSERT_SYNCHRONIZED_OP(sc); 4234 4235 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4236 return (0); /* already running */ 4237 4238 if (!(sc->flags & FULL_INIT_DONE) && 4239 ((rc = adapter_full_init(sc)) != 0)) 4240 return (rc); /* error message displayed already */ 4241 4242 if (!(vi->flags & VI_INIT_DONE) && 4243 ((rc = vi_full_init(vi)) != 0)) 4244 return (rc); /* error message displayed already */ 4245 4246 rc = update_mac_settings(ifp, XGMAC_ALL); 4247 if (rc) 4248 goto done; /* error message displayed already */ 4249 4250 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 4251 if (rc != 0) { 4252 if_printf(ifp, "enable_vi failed: %d\n", rc); 4253 goto done; 4254 } 4255 4256 /* 4257 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 4258 * if this changes. 4259 */ 4260 4261 for_each_txq(vi, i, txq) { 4262 TXQ_LOCK(txq); 4263 txq->eq.flags |= EQ_ENABLED; 4264 TXQ_UNLOCK(txq); 4265 } 4266 4267 /* 4268 * The first iq of the first port to come up is used for tracing. 4269 */ 4270 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 4271 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 4272 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 4273 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 4274 V_QUEUENUMBER(sc->traceq)); 4275 pi->flags |= HAS_TRACEQ; 4276 } 4277 4278 /* all ok */ 4279 PORT_LOCK(pi); 4280 if (pi->up_vis++ == 0) { 4281 t4_update_port_info(pi); 4282 build_medialist(pi, &pi->media); 4283 init_l1cfg(pi); 4284 } 4285 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4286 4287 if (pi->nvi > 1 || sc->flags & IS_VF) 4288 callout_reset(&vi->tick, hz, vi_tick, vi); 4289 else 4290 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 4291 PORT_UNLOCK(pi); 4292 done: 4293 if (rc != 0) 4294 cxgbe_uninit_synchronized(vi); 4295 4296 return (rc); 4297 } 4298 4299 /* 4300 * Idempotent. 4301 */ 4302 static int 4303 cxgbe_uninit_synchronized(struct vi_info *vi) 4304 { 4305 struct port_info *pi = vi->pi; 4306 struct adapter *sc = pi->adapter; 4307 struct ifnet *ifp = vi->ifp; 4308 int rc, i; 4309 struct sge_txq *txq; 4310 4311 ASSERT_SYNCHRONIZED_OP(sc); 4312 4313 if (!(vi->flags & VI_INIT_DONE)) { 4314 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING), 4315 ("uninited VI is running")); 4316 return (0); 4317 } 4318 4319 /* 4320 * Disable the VI so that all its data in either direction is discarded 4321 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 4322 * tick) intact as the TP can deliver negative advice or data that it's 4323 * holding in its RAM (for an offloaded connection) even after the VI is 4324 * disabled. 4325 */ 4326 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 4327 if (rc) { 4328 if_printf(ifp, "disable_vi failed: %d\n", rc); 4329 return (rc); 4330 } 4331 4332 for_each_txq(vi, i, txq) { 4333 TXQ_LOCK(txq); 4334 txq->eq.flags &= ~EQ_ENABLED; 4335 TXQ_UNLOCK(txq); 4336 } 4337 4338 PORT_LOCK(pi); 4339 if (pi->nvi > 1 || sc->flags & IS_VF) 4340 callout_stop(&vi->tick); 4341 else 4342 callout_stop(&pi->tick); 4343 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4344 PORT_UNLOCK(pi); 4345 return (0); 4346 } 4347 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 4348 pi->up_vis--; 4349 if (pi->up_vis > 0) { 4350 PORT_UNLOCK(pi); 4351 return (0); 4352 } 4353 PORT_UNLOCK(pi); 4354 4355 pi->link_cfg.link_ok = 0; 4356 pi->link_cfg.speed = 0; 4357 pi->link_cfg.link_down_rc = 255; 4358 t4_os_link_changed(pi); 4359 pi->old_link_cfg = pi->link_cfg; 4360 4361 return (0); 4362 } 4363 4364 /* 4365 * It is ok for this function to fail midway and return right away. t4_detach 4366 * will walk the entire sc->irq list and clean up whatever is valid. 4367 */ 4368 int 4369 t4_setup_intr_handlers(struct adapter *sc) 4370 { 4371 int rc, rid, p, q, v; 4372 char s[8]; 4373 struct irq *irq; 4374 struct port_info *pi; 4375 struct vi_info *vi; 4376 struct sge *sge = &sc->sge; 4377 struct sge_rxq *rxq; 4378 #ifdef TCP_OFFLOAD 4379 struct sge_ofld_rxq *ofld_rxq; 4380 #endif 4381 #ifdef DEV_NETMAP 4382 struct sge_nm_rxq *nm_rxq; 4383 #endif 4384 #ifdef RSS 4385 int nbuckets = rss_getnumbuckets(); 4386 #endif 4387 4388 /* 4389 * Setup interrupts. 4390 */ 4391 irq = &sc->irq[0]; 4392 rid = sc->intr_type == INTR_INTX ? 0 : 1; 4393 if (forwarding_intr_to_fwq(sc)) 4394 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 4395 4396 /* Multiple interrupts. */ 4397 if (sc->flags & IS_VF) 4398 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 4399 ("%s: too few intr.", __func__)); 4400 else 4401 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 4402 ("%s: too few intr.", __func__)); 4403 4404 /* The first one is always error intr on PFs */ 4405 if (!(sc->flags & IS_VF)) { 4406 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 4407 if (rc != 0) 4408 return (rc); 4409 irq++; 4410 rid++; 4411 } 4412 4413 /* The second one is always the firmware event queue (first on VFs) */ 4414 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 4415 if (rc != 0) 4416 return (rc); 4417 irq++; 4418 rid++; 4419 4420 for_each_port(sc, p) { 4421 pi = sc->port[p]; 4422 for_each_vi(pi, v, vi) { 4423 vi->first_intr = rid - 1; 4424 4425 if (vi->nnmrxq > 0) { 4426 int n = max(vi->nrxq, vi->nnmrxq); 4427 4428 rxq = &sge->rxq[vi->first_rxq]; 4429 #ifdef DEV_NETMAP 4430 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 4431 #endif 4432 for (q = 0; q < n; q++) { 4433 snprintf(s, sizeof(s), "%x%c%x", p, 4434 'a' + v, q); 4435 if (q < vi->nrxq) 4436 irq->rxq = rxq++; 4437 #ifdef DEV_NETMAP 4438 if (q < vi->nnmrxq) 4439 irq->nm_rxq = nm_rxq++; 4440 #endif 4441 rc = t4_alloc_irq(sc, irq, rid, 4442 t4_vi_intr, irq, s); 4443 if (rc != 0) 4444 return (rc); 4445 #ifdef RSS 4446 if (q < vi->nrxq) { 4447 bus_bind_intr(sc->dev, irq->res, 4448 rss_getcpu(q % nbuckets)); 4449 } 4450 #endif 4451 irq++; 4452 rid++; 4453 vi->nintr++; 4454 } 4455 } else { 4456 for_each_rxq(vi, q, rxq) { 4457 snprintf(s, sizeof(s), "%x%c%x", p, 4458 'a' + v, q); 4459 rc = t4_alloc_irq(sc, irq, rid, 4460 t4_intr, rxq, s); 4461 if (rc != 0) 4462 return (rc); 4463 #ifdef RSS 4464 bus_bind_intr(sc->dev, irq->res, 4465 rss_getcpu(q % nbuckets)); 4466 #endif 4467 irq++; 4468 rid++; 4469 vi->nintr++; 4470 } 4471 } 4472 #ifdef TCP_OFFLOAD 4473 for_each_ofld_rxq(vi, q, ofld_rxq) { 4474 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 4475 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 4476 ofld_rxq, s); 4477 if (rc != 0) 4478 return (rc); 4479 irq++; 4480 rid++; 4481 vi->nintr++; 4482 } 4483 #endif 4484 } 4485 } 4486 MPASS(irq == &sc->irq[sc->intr_count]); 4487 4488 return (0); 4489 } 4490 4491 int 4492 adapter_full_init(struct adapter *sc) 4493 { 4494 int rc, i; 4495 #ifdef RSS 4496 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4497 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4498 #endif 4499 4500 ASSERT_SYNCHRONIZED_OP(sc); 4501 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 4502 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 4503 ("%s: FULL_INIT_DONE already", __func__)); 4504 4505 /* 4506 * queues that belong to the adapter (not any particular port). 4507 */ 4508 rc = t4_setup_adapter_queues(sc); 4509 if (rc != 0) 4510 goto done; 4511 4512 for (i = 0; i < nitems(sc->tq); i++) { 4513 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 4514 taskqueue_thread_enqueue, &sc->tq[i]); 4515 if (sc->tq[i] == NULL) { 4516 device_printf(sc->dev, 4517 "failed to allocate task queue %d\n", i); 4518 rc = ENOMEM; 4519 goto done; 4520 } 4521 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 4522 device_get_nameunit(sc->dev), i); 4523 } 4524 #ifdef RSS 4525 MPASS(RSS_KEYSIZE == 40); 4526 rss_getkey((void *)&raw_rss_key[0]); 4527 for (i = 0; i < nitems(rss_key); i++) { 4528 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 4529 } 4530 t4_write_rss_key(sc, &rss_key[0], -1, 1); 4531 #endif 4532 4533 if (!(sc->flags & IS_VF)) 4534 t4_intr_enable(sc); 4535 sc->flags |= FULL_INIT_DONE; 4536 done: 4537 if (rc != 0) 4538 adapter_full_uninit(sc); 4539 4540 return (rc); 4541 } 4542 4543 int 4544 adapter_full_uninit(struct adapter *sc) 4545 { 4546 int i; 4547 4548 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 4549 4550 t4_teardown_adapter_queues(sc); 4551 4552 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 4553 taskqueue_free(sc->tq[i]); 4554 sc->tq[i] = NULL; 4555 } 4556 4557 sc->flags &= ~FULL_INIT_DONE; 4558 4559 return (0); 4560 } 4561 4562 #ifdef RSS 4563 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 4564 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 4565 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 4566 RSS_HASHTYPE_RSS_UDP_IPV6) 4567 4568 /* Translates kernel hash types to hardware. */ 4569 static int 4570 hashconfig_to_hashen(int hashconfig) 4571 { 4572 int hashen = 0; 4573 4574 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 4575 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 4576 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 4577 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 4578 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 4579 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 4580 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 4581 } 4582 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 4583 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 4584 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4585 } 4586 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 4587 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 4588 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 4589 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4590 4591 return (hashen); 4592 } 4593 4594 /* Translates hardware hash types to kernel. */ 4595 static int 4596 hashen_to_hashconfig(int hashen) 4597 { 4598 int hashconfig = 0; 4599 4600 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 4601 /* 4602 * If UDP hashing was enabled it must have been enabled for 4603 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 4604 * enabling any 4-tuple hash is nonsense configuration. 4605 */ 4606 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4607 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 4608 4609 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4610 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 4611 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4612 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 4613 } 4614 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4615 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 4616 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4617 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 4618 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 4619 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 4620 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 4621 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 4622 4623 return (hashconfig); 4624 } 4625 #endif 4626 4627 int 4628 vi_full_init(struct vi_info *vi) 4629 { 4630 struct adapter *sc = vi->pi->adapter; 4631 struct ifnet *ifp = vi->ifp; 4632 uint16_t *rss; 4633 struct sge_rxq *rxq; 4634 int rc, i, j, hashen; 4635 #ifdef RSS 4636 int nbuckets = rss_getnumbuckets(); 4637 int hashconfig = rss_gethashconfig(); 4638 int extra; 4639 #endif 4640 4641 ASSERT_SYNCHRONIZED_OP(sc); 4642 KASSERT((vi->flags & VI_INIT_DONE) == 0, 4643 ("%s: VI_INIT_DONE already", __func__)); 4644 4645 sysctl_ctx_init(&vi->ctx); 4646 vi->flags |= VI_SYSCTL_CTX; 4647 4648 /* 4649 * Allocate tx/rx/fl queues for this VI. 4650 */ 4651 rc = t4_setup_vi_queues(vi); 4652 if (rc != 0) 4653 goto done; /* error message displayed already */ 4654 4655 /* 4656 * Setup RSS for this VI. Save a copy of the RSS table for later use. 4657 */ 4658 if (vi->nrxq > vi->rss_size) { 4659 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 4660 "some queues will never receive traffic.\n", vi->nrxq, 4661 vi->rss_size); 4662 } else if (vi->rss_size % vi->nrxq) { 4663 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 4664 "expect uneven traffic distribution.\n", vi->nrxq, 4665 vi->rss_size); 4666 } 4667 #ifdef RSS 4668 if (vi->nrxq != nbuckets) { 4669 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 4670 "performance will be impacted.\n", vi->nrxq, nbuckets); 4671 } 4672 #endif 4673 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 4674 for (i = 0; i < vi->rss_size;) { 4675 #ifdef RSS 4676 j = rss_get_indirection_to_bucket(i); 4677 j %= vi->nrxq; 4678 rxq = &sc->sge.rxq[vi->first_rxq + j]; 4679 rss[i++] = rxq->iq.abs_id; 4680 #else 4681 for_each_rxq(vi, j, rxq) { 4682 rss[i++] = rxq->iq.abs_id; 4683 if (i == vi->rss_size) 4684 break; 4685 } 4686 #endif 4687 } 4688 4689 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 4690 vi->rss_size); 4691 if (rc != 0) { 4692 if_printf(ifp, "rss_config failed: %d\n", rc); 4693 goto done; 4694 } 4695 4696 #ifdef RSS 4697 hashen = hashconfig_to_hashen(hashconfig); 4698 4699 /* 4700 * We may have had to enable some hashes even though the global config 4701 * wants them disabled. This is a potential problem that must be 4702 * reported to the user. 4703 */ 4704 extra = hashen_to_hashconfig(hashen) ^ hashconfig; 4705 4706 /* 4707 * If we consider only the supported hash types, then the enabled hashes 4708 * are a superset of the requested hashes. In other words, there cannot 4709 * be any supported hash that was requested but not enabled, but there 4710 * can be hashes that were not requested but had to be enabled. 4711 */ 4712 extra &= SUPPORTED_RSS_HASHTYPES; 4713 MPASS((extra & hashconfig) == 0); 4714 4715 if (extra) { 4716 if_printf(ifp, 4717 "global RSS config (0x%x) cannot be accommodated.\n", 4718 hashconfig); 4719 } 4720 if (extra & RSS_HASHTYPE_RSS_IPV4) 4721 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 4722 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 4723 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 4724 if (extra & RSS_HASHTYPE_RSS_IPV6) 4725 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 4726 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 4727 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 4728 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 4729 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 4730 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 4731 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 4732 #else 4733 hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 4734 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 4735 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4736 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 4737 #endif 4738 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0); 4739 if (rc != 0) { 4740 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 4741 goto done; 4742 } 4743 4744 vi->rss = rss; 4745 vi->flags |= VI_INIT_DONE; 4746 done: 4747 if (rc != 0) 4748 vi_full_uninit(vi); 4749 4750 return (rc); 4751 } 4752 4753 /* 4754 * Idempotent. 4755 */ 4756 int 4757 vi_full_uninit(struct vi_info *vi) 4758 { 4759 struct port_info *pi = vi->pi; 4760 struct adapter *sc = pi->adapter; 4761 int i; 4762 struct sge_rxq *rxq; 4763 struct sge_txq *txq; 4764 #ifdef TCP_OFFLOAD 4765 struct sge_ofld_rxq *ofld_rxq; 4766 struct sge_wrq *ofld_txq; 4767 #endif 4768 4769 if (vi->flags & VI_INIT_DONE) { 4770 4771 /* Need to quiesce queues. */ 4772 4773 /* XXX: Only for the first VI? */ 4774 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 4775 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 4776 4777 for_each_txq(vi, i, txq) { 4778 quiesce_txq(sc, txq); 4779 } 4780 4781 #ifdef TCP_OFFLOAD 4782 for_each_ofld_txq(vi, i, ofld_txq) { 4783 quiesce_wrq(sc, ofld_txq); 4784 } 4785 #endif 4786 4787 for_each_rxq(vi, i, rxq) { 4788 quiesce_iq(sc, &rxq->iq); 4789 quiesce_fl(sc, &rxq->fl); 4790 } 4791 4792 #ifdef TCP_OFFLOAD 4793 for_each_ofld_rxq(vi, i, ofld_rxq) { 4794 quiesce_iq(sc, &ofld_rxq->iq); 4795 quiesce_fl(sc, &ofld_rxq->fl); 4796 } 4797 #endif 4798 free(vi->rss, M_CXGBE); 4799 free(vi->nm_rss, M_CXGBE); 4800 } 4801 4802 t4_teardown_vi_queues(vi); 4803 vi->flags &= ~VI_INIT_DONE; 4804 4805 return (0); 4806 } 4807 4808 static void 4809 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 4810 { 4811 struct sge_eq *eq = &txq->eq; 4812 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4813 4814 (void) sc; /* unused */ 4815 4816 #ifdef INVARIANTS 4817 TXQ_LOCK(txq); 4818 MPASS((eq->flags & EQ_ENABLED) == 0); 4819 TXQ_UNLOCK(txq); 4820 #endif 4821 4822 /* Wait for the mp_ring to empty. */ 4823 while (!mp_ring_is_idle(txq->r)) { 4824 mp_ring_check_drainage(txq->r, 0); 4825 pause("rquiesce", 1); 4826 } 4827 4828 /* Then wait for the hardware to finish. */ 4829 while (spg->cidx != htobe16(eq->pidx)) 4830 pause("equiesce", 1); 4831 4832 /* Finally, wait for the driver to reclaim all descriptors. */ 4833 while (eq->cidx != eq->pidx) 4834 pause("dquiesce", 1); 4835 } 4836 4837 static void 4838 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 4839 { 4840 4841 /* XXXTX */ 4842 } 4843 4844 static void 4845 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 4846 { 4847 (void) sc; /* unused */ 4848 4849 /* Synchronize with the interrupt handler */ 4850 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 4851 pause("iqfree", 1); 4852 } 4853 4854 static void 4855 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 4856 { 4857 mtx_lock(&sc->sfl_lock); 4858 FL_LOCK(fl); 4859 fl->flags |= FL_DOOMED; 4860 FL_UNLOCK(fl); 4861 callout_stop(&sc->sfl_callout); 4862 mtx_unlock(&sc->sfl_lock); 4863 4864 KASSERT((fl->flags & FL_STARVING) == 0, 4865 ("%s: still starving", __func__)); 4866 } 4867 4868 static int 4869 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 4870 driver_intr_t *handler, void *arg, char *name) 4871 { 4872 int rc; 4873 4874 irq->rid = rid; 4875 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 4876 RF_SHAREABLE | RF_ACTIVE); 4877 if (irq->res == NULL) { 4878 device_printf(sc->dev, 4879 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 4880 return (ENOMEM); 4881 } 4882 4883 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 4884 NULL, handler, arg, &irq->tag); 4885 if (rc != 0) { 4886 device_printf(sc->dev, 4887 "failed to setup interrupt for rid %d, name %s: %d\n", 4888 rid, name, rc); 4889 } else if (name) 4890 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 4891 4892 return (rc); 4893 } 4894 4895 static int 4896 t4_free_irq(struct adapter *sc, struct irq *irq) 4897 { 4898 if (irq->tag) 4899 bus_teardown_intr(sc->dev, irq->res, irq->tag); 4900 if (irq->res) 4901 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 4902 4903 bzero(irq, sizeof(*irq)); 4904 4905 return (0); 4906 } 4907 4908 static void 4909 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 4910 { 4911 4912 regs->version = chip_id(sc) | chip_rev(sc) << 10; 4913 t4_get_regs(sc, buf, regs->len); 4914 } 4915 4916 #define A_PL_INDIR_CMD 0x1f8 4917 4918 #define S_PL_AUTOINC 31 4919 #define M_PL_AUTOINC 0x1U 4920 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 4921 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 4922 4923 #define S_PL_VFID 20 4924 #define M_PL_VFID 0xffU 4925 #define V_PL_VFID(x) ((x) << S_PL_VFID) 4926 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 4927 4928 #define S_PL_ADDR 0 4929 #define M_PL_ADDR 0xfffffU 4930 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 4931 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 4932 4933 #define A_PL_INDIR_DATA 0x1fc 4934 4935 static uint64_t 4936 read_vf_stat(struct adapter *sc, unsigned int viid, int reg) 4937 { 4938 u32 stats[2]; 4939 4940 mtx_assert(&sc->reg_lock, MA_OWNED); 4941 if (sc->flags & IS_VF) { 4942 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 4943 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 4944 } else { 4945 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 4946 V_PL_VFID(G_FW_VIID_VIN(viid)) | 4947 V_PL_ADDR(VF_MPS_REG(reg))); 4948 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 4949 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 4950 } 4951 return (((uint64_t)stats[1]) << 32 | stats[0]); 4952 } 4953 4954 static void 4955 t4_get_vi_stats(struct adapter *sc, unsigned int viid, 4956 struct fw_vi_stats_vf *stats) 4957 { 4958 4959 #define GET_STAT(name) \ 4960 read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L) 4961 4962 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 4963 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 4964 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 4965 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 4966 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 4967 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 4968 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 4969 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 4970 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 4971 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 4972 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 4973 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 4974 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 4975 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 4976 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 4977 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 4978 4979 #undef GET_STAT 4980 } 4981 4982 static void 4983 t4_clr_vi_stats(struct adapter *sc, unsigned int viid) 4984 { 4985 int reg; 4986 4987 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 4988 V_PL_VFID(G_FW_VIID_VIN(viid)) | 4989 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 4990 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 4991 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 4992 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 4993 } 4994 4995 static void 4996 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 4997 { 4998 struct timeval tv; 4999 const struct timeval interval = {0, 250000}; /* 250ms */ 5000 5001 if (!(vi->flags & VI_INIT_DONE)) 5002 return; 5003 5004 getmicrotime(&tv); 5005 timevalsub(&tv, &interval); 5006 if (timevalcmp(&tv, &vi->last_refreshed, <)) 5007 return; 5008 5009 mtx_lock(&sc->reg_lock); 5010 t4_get_vi_stats(sc, vi->viid, &vi->stats); 5011 getmicrotime(&vi->last_refreshed); 5012 mtx_unlock(&sc->reg_lock); 5013 } 5014 5015 static void 5016 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 5017 { 5018 u_int i, v, tnl_cong_drops, bg_map; 5019 struct timeval tv; 5020 const struct timeval interval = {0, 250000}; /* 250ms */ 5021 5022 getmicrotime(&tv); 5023 timevalsub(&tv, &interval); 5024 if (timevalcmp(&tv, &pi->last_refreshed, <)) 5025 return; 5026 5027 tnl_cong_drops = 0; 5028 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 5029 bg_map = pi->mps_bg_map; 5030 while (bg_map) { 5031 i = ffs(bg_map) - 1; 5032 mtx_lock(&sc->reg_lock); 5033 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 5034 A_TP_MIB_TNL_CNG_DROP_0 + i); 5035 mtx_unlock(&sc->reg_lock); 5036 tnl_cong_drops += v; 5037 bg_map &= ~(1 << i); 5038 } 5039 pi->tnl_cong_drops = tnl_cong_drops; 5040 getmicrotime(&pi->last_refreshed); 5041 } 5042 5043 static void 5044 cxgbe_tick(void *arg) 5045 { 5046 struct port_info *pi = arg; 5047 struct adapter *sc = pi->adapter; 5048 5049 PORT_LOCK_ASSERT_OWNED(pi); 5050 cxgbe_refresh_stats(sc, pi); 5051 5052 callout_schedule(&pi->tick, hz); 5053 } 5054 5055 void 5056 vi_tick(void *arg) 5057 { 5058 struct vi_info *vi = arg; 5059 struct adapter *sc = vi->pi->adapter; 5060 5061 vi_refresh_stats(sc, vi); 5062 5063 callout_schedule(&vi->tick, hz); 5064 } 5065 5066 static void 5067 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) 5068 { 5069 struct ifnet *vlan; 5070 5071 if (arg != ifp || ifp->if_type != IFT_ETHER) 5072 return; 5073 5074 vlan = VLAN_DEVAT(ifp, vid); 5075 VLAN_SETCOOKIE(vlan, ifp); 5076 } 5077 5078 /* 5079 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 5080 */ 5081 static char *caps_decoder[] = { 5082 "\20\001IPMI\002NCSI", /* 0: NBM */ 5083 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 5084 "\20\001INGRESS\002EGRESS", /* 2: switch */ 5085 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 5086 "\006HASHFILTER\007ETHOFLD", 5087 "\20\001TOE", /* 4: TOE */ 5088 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 5089 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 5090 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 5091 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 5092 "\007T10DIF" 5093 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 5094 "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ 5095 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 5096 "\004PO_INITIATOR\005PO_TARGET", 5097 }; 5098 5099 void 5100 t4_sysctls(struct adapter *sc) 5101 { 5102 struct sysctl_ctx_list *ctx; 5103 struct sysctl_oid *oid; 5104 struct sysctl_oid_list *children, *c0; 5105 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 5106 5107 ctx = device_get_sysctl_ctx(sc->dev); 5108 5109 /* 5110 * dev.t4nex.X. 5111 */ 5112 oid = device_get_sysctl_tree(sc->dev); 5113 c0 = children = SYSCTL_CHILDREN(oid); 5114 5115 sc->sc_do_rxcopy = 1; 5116 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 5117 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 5118 5119 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 5120 sc->params.nports, "# of ports"); 5121 5122 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 5123 CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells, 5124 sysctl_bitfield, "A", "available doorbells"); 5125 5126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 5127 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 5128 5129 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 5130 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, 5131 sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", 5132 "interrupt holdoff timer values (us)"); 5133 5134 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 5135 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, 5136 sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", 5137 "interrupt holdoff packet counter values"); 5138 5139 t4_sge_sysctls(sc, ctx, children); 5140 5141 sc->lro_timeout = 100; 5142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 5143 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 5144 5145 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 5146 &sc->debug_flags, 0, "flags to enable runtime debugging"); 5147 5148 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 5149 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 5150 5151 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 5152 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 5153 5154 if (sc->flags & IS_VF) 5155 return; 5156 5157 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 5158 NULL, chip_rev(sc), "chip hardware revision"); 5159 5160 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 5161 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 5162 5163 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 5164 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 5165 5166 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 5167 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 5168 5169 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 5170 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 5171 5172 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 5173 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 5174 5175 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 5176 sc->er_version, 0, "expansion ROM version"); 5177 5178 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 5179 sc->bs_version, 0, "bootstrap firmware version"); 5180 5181 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 5182 NULL, sc->params.scfg_vers, "serial config version"); 5183 5184 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 5185 NULL, sc->params.vpd_vers, "VPD version"); 5186 5187 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 5188 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 5189 5190 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 5191 sc->cfcsum, "config file checksum"); 5192 5193 #define SYSCTL_CAP(name, n, text) \ 5194 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 5195 CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \ 5196 sysctl_bitfield, "A", "available " text " capabilities") 5197 5198 SYSCTL_CAP(nbmcaps, 0, "NBM"); 5199 SYSCTL_CAP(linkcaps, 1, "link"); 5200 SYSCTL_CAP(switchcaps, 2, "switch"); 5201 SYSCTL_CAP(niccaps, 3, "NIC"); 5202 SYSCTL_CAP(toecaps, 4, "TCP offload"); 5203 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 5204 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 5205 SYSCTL_CAP(cryptocaps, 7, "crypto"); 5206 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 5207 #undef SYSCTL_CAP 5208 5209 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 5210 NULL, sc->tids.nftids, "number of filters"); 5211 5212 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 5213 CTLFLAG_RD, sc, 0, sysctl_temperature, "I", 5214 "chip temperature (in Celsius)"); 5215 5216 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD, 5217 &sc->params.core_vdd, 0, "core Vdd (in mV)"); 5218 5219 #ifdef SBUF_DRAIN 5220 /* 5221 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 5222 */ 5223 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 5224 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 5225 "logs and miscellaneous information"); 5226 children = SYSCTL_CHILDREN(oid); 5227 5228 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 5229 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5230 sysctl_cctrl, "A", "congestion control"); 5231 5232 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 5233 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5234 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 5235 5236 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 5237 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 5238 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 5239 5240 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 5241 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 5242 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 5243 5244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 5245 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 5246 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 5247 5248 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 5249 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 5250 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 5251 5252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 5253 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 5254 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 5255 5256 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 5257 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5258 chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6, 5259 "A", "CIM logic analyzer"); 5260 5261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 5262 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5263 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 5264 5265 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 5266 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 5267 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 5268 5269 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 5270 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 5271 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 5272 5273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 5274 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 5275 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 5276 5277 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 5278 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 5279 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 5280 5281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 5282 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 5283 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 5284 5285 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 5286 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 5287 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 5288 5289 if (chip_id(sc) > CHELSIO_T4) { 5290 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 5291 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 5292 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 5293 5294 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 5295 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 5296 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 5297 } 5298 5299 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 5300 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5301 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 5302 5303 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 5304 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5305 sysctl_cim_qcfg, "A", "CIM queue configuration"); 5306 5307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 5308 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5309 sysctl_cpl_stats, "A", "CPL statistics"); 5310 5311 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 5312 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5313 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 5314 5315 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 5316 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5317 sysctl_devlog, "A", "firmware's device log"); 5318 5319 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 5320 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5321 sysctl_fcoe_stats, "A", "FCoE statistics"); 5322 5323 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 5324 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5325 sysctl_hw_sched, "A", "hardware scheduler "); 5326 5327 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 5328 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5329 sysctl_l2t, "A", "hardware L2 table"); 5330 5331 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 5332 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5333 sysctl_lb_stats, "A", "loopback statistics"); 5334 5335 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 5336 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5337 sysctl_meminfo, "A", "memory regions"); 5338 5339 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 5340 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5341 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 5342 "A", "MPS TCAM entries"); 5343 5344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 5345 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5346 sysctl_path_mtus, "A", "path MTUs"); 5347 5348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 5349 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5350 sysctl_pm_stats, "A", "PM statistics"); 5351 5352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 5353 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5354 sysctl_rdma_stats, "A", "RDMA statistics"); 5355 5356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 5357 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5358 sysctl_tcp_stats, "A", "TCP statistics"); 5359 5360 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 5361 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5362 sysctl_tids, "A", "TID information"); 5363 5364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 5365 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5366 sysctl_tp_err_stats, "A", "TP error statistics"); 5367 5368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 5369 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", 5370 "TP logic analyzer event capture mask"); 5371 5372 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 5373 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5374 sysctl_tp_la, "A", "TP logic analyzer"); 5375 5376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 5377 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5378 sysctl_tx_rate, "A", "Tx rate"); 5379 5380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 5381 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5382 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 5383 5384 if (chip_id(sc) >= CHELSIO_T5) { 5385 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 5386 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5387 sysctl_wcwr_stats, "A", "write combined work requests"); 5388 } 5389 #endif 5390 5391 #ifdef TCP_OFFLOAD 5392 if (is_offload(sc)) { 5393 int i; 5394 char s[4]; 5395 5396 /* 5397 * dev.t4nex.X.toe. 5398 */ 5399 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 5400 NULL, "TOE parameters"); 5401 children = SYSCTL_CHILDREN(oid); 5402 5403 sc->tt.cong_algorithm = -1; 5404 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 5405 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 5406 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 5407 "3 = highspeed)"); 5408 5409 sc->tt.sndbuf = 256 * 1024; 5410 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 5411 &sc->tt.sndbuf, 0, "max hardware send buffer size"); 5412 5413 sc->tt.ddp = 0; 5414 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, 5415 &sc->tt.ddp, 0, "DDP allowed"); 5416 5417 sc->tt.rx_coalesce = 1; 5418 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 5419 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 5420 5421 sc->tt.tx_align = 1; 5422 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 5423 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 5424 5425 sc->tt.tx_zcopy = 0; 5426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 5427 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 5428 "Enable zero-copy aio_write(2)"); 5429 5430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 5431 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", 5432 "TP timer tick (us)"); 5433 5434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 5435 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", 5436 "TCP timestamp tick (us)"); 5437 5438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 5439 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", 5440 "DACK tick (us)"); 5441 5442 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 5443 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, 5444 "IU", "DACK timer (us)"); 5445 5446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 5447 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, 5448 sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); 5449 5450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 5451 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, 5452 sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); 5453 5454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 5455 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, 5456 sysctl_tp_timer, "LU", "Persist timer min (us)"); 5457 5458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 5459 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, 5460 sysctl_tp_timer, "LU", "Persist timer max (us)"); 5461 5462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 5463 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, 5464 sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); 5465 5466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 5467 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, 5468 sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); 5469 5470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 5471 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, 5472 sysctl_tp_timer, "LU", "Initial SRTT (us)"); 5473 5474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 5475 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, 5476 sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); 5477 5478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 5479 CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, 5480 sysctl_tp_shift_cnt, "IU", 5481 "Number of SYN retransmissions before abort"); 5482 5483 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 5484 CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, 5485 sysctl_tp_shift_cnt, "IU", 5486 "Number of retransmissions before abort"); 5487 5488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 5489 CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, 5490 sysctl_tp_shift_cnt, "IU", 5491 "Number of keepalive probes before abort"); 5492 5493 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 5494 CTLFLAG_RD, NULL, "TOE retransmit backoffs"); 5495 children = SYSCTL_CHILDREN(oid); 5496 for (i = 0; i < 16; i++) { 5497 snprintf(s, sizeof(s), "%u", i); 5498 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 5499 CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, 5500 "IU", "TOE retransmit backoff"); 5501 } 5502 } 5503 #endif 5504 } 5505 5506 void 5507 vi_sysctls(struct vi_info *vi) 5508 { 5509 struct sysctl_ctx_list *ctx; 5510 struct sysctl_oid *oid; 5511 struct sysctl_oid_list *children; 5512 5513 ctx = device_get_sysctl_ctx(vi->dev); 5514 5515 /* 5516 * dev.v?(cxgbe|cxl).X. 5517 */ 5518 oid = device_get_sysctl_tree(vi->dev); 5519 children = SYSCTL_CHILDREN(oid); 5520 5521 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 5522 vi->viid, "VI identifer"); 5523 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 5524 &vi->nrxq, 0, "# of rx queues"); 5525 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 5526 &vi->ntxq, 0, "# of tx queues"); 5527 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 5528 &vi->first_rxq, 0, "index of first rx queue"); 5529 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 5530 &vi->first_txq, 0, "index of first tx queue"); 5531 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 5532 vi->rss_size, "size of RSS indirection table"); 5533 5534 if (IS_MAIN_VI(vi)) { 5535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 5536 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", 5537 "Reserve queue 0 for non-flowid packets"); 5538 } 5539 5540 #ifdef TCP_OFFLOAD 5541 if (vi->nofldrxq != 0) { 5542 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 5543 &vi->nofldrxq, 0, 5544 "# of rx queues for offloaded TCP connections"); 5545 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 5546 &vi->nofldtxq, 0, 5547 "# of tx queues for offloaded TCP connections"); 5548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 5549 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 5550 "index of first TOE rx queue"); 5551 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 5552 CTLFLAG_RD, &vi->first_ofld_txq, 0, 5553 "index of first TOE tx queue"); 5554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 5555 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 5556 sysctl_holdoff_tmr_idx_ofld, "I", 5557 "holdoff timer index for TOE queues"); 5558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 5559 CTLTYPE_INT | CTLFLAG_RW, vi, 0, 5560 sysctl_holdoff_pktc_idx_ofld, "I", 5561 "holdoff packet counter index for TOE queues"); 5562 } 5563 #endif 5564 #ifdef DEV_NETMAP 5565 if (vi->nnmrxq != 0) { 5566 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 5567 &vi->nnmrxq, 0, "# of netmap rx queues"); 5568 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 5569 &vi->nnmtxq, 0, "# of netmap tx queues"); 5570 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 5571 CTLFLAG_RD, &vi->first_nm_rxq, 0, 5572 "index of first netmap rx queue"); 5573 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 5574 CTLFLAG_RD, &vi->first_nm_txq, 0, 5575 "index of first netmap tx queue"); 5576 } 5577 #endif 5578 5579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 5580 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", 5581 "holdoff timer index"); 5582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 5583 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", 5584 "holdoff packet counter index"); 5585 5586 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 5587 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", 5588 "rx queue size"); 5589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 5590 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", 5591 "tx queue size"); 5592 } 5593 5594 static void 5595 cxgbe_sysctls(struct port_info *pi) 5596 { 5597 struct sysctl_ctx_list *ctx; 5598 struct sysctl_oid *oid; 5599 struct sysctl_oid_list *children, *children2; 5600 struct adapter *sc = pi->adapter; 5601 int i; 5602 char name[16]; 5603 5604 ctx = device_get_sysctl_ctx(pi->dev); 5605 5606 /* 5607 * dev.cxgbe.X. 5608 */ 5609 oid = device_get_sysctl_tree(pi->dev); 5610 children = SYSCTL_CHILDREN(oid); 5611 5612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 5613 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 5614 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 5615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 5616 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 5617 "PHY temperature (in Celsius)"); 5618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 5619 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 5620 "PHY firmware version"); 5621 } 5622 5623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 5624 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", 5625 "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)"); 5626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 5627 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", 5628 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 5629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 5630 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", 5631 "autonegotiation (-1 = not supported)"); 5632 5633 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 5634 port_top_speed(pi), "max speed (in Gbps)"); 5635 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 5636 pi->mps_bg_map, "MPS buffer group map"); 5637 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 5638 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 5639 5640 if (sc->flags & IS_VF) 5641 return; 5642 5643 /* 5644 * dev.(cxgbe|cxl).X.tc. 5645 */ 5646 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, 5647 "Tx scheduler traffic classes (cl_rl)"); 5648 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 5649 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 5650 5651 snprintf(name, sizeof(name), "%d", i); 5652 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 5653 SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, 5654 "traffic class")); 5655 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD, 5656 &tc->flags, 0, "flags"); 5657 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 5658 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 5659 #ifdef SBUF_DRAIN 5660 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 5661 CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, 5662 sysctl_tc_params, "A", "traffic class parameters"); 5663 #endif 5664 } 5665 5666 /* 5667 * dev.cxgbe.X.stats. 5668 */ 5669 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 5670 NULL, "port statistics"); 5671 children = SYSCTL_CHILDREN(oid); 5672 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 5673 &pi->tx_parse_error, 0, 5674 "# of tx packets with invalid length or # of segments"); 5675 5676 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 5677 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 5678 CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ 5679 sysctl_handle_t4_reg64, "QU", desc) 5680 5681 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 5682 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 5683 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 5684 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 5685 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 5686 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 5687 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 5688 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 5689 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 5690 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 5691 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 5692 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 5693 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 5694 "# of tx frames in this range", 5695 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 5696 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 5697 "# of tx frames in this range", 5698 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 5699 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 5700 "# of tx frames in this range", 5701 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 5702 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 5703 "# of tx frames in this range", 5704 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 5705 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 5706 "# of tx frames in this range", 5707 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 5708 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 5709 "# of tx frames in this range", 5710 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 5711 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 5712 "# of tx frames in this range", 5713 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 5714 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 5715 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 5716 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 5717 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 5718 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 5719 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 5720 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 5721 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 5722 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 5723 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 5724 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 5725 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 5726 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 5727 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 5728 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 5729 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 5730 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 5731 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 5732 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 5733 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 5734 5735 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 5736 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 5737 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 5738 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 5739 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 5740 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 5741 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 5742 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 5743 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 5744 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 5745 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 5746 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 5747 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 5748 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 5749 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 5750 "# of frames received with bad FCS", 5751 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 5752 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 5753 "# of frames received with length error", 5754 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 5755 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 5756 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 5757 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 5758 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 5759 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 5760 "# of rx frames in this range", 5761 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 5762 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 5763 "# of rx frames in this range", 5764 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 5765 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 5766 "# of rx frames in this range", 5767 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 5768 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 5769 "# of rx frames in this range", 5770 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 5771 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 5772 "# of rx frames in this range", 5773 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 5774 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 5775 "# of rx frames in this range", 5776 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 5777 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 5778 "# of rx frames in this range", 5779 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 5780 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 5781 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 5782 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 5783 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 5784 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 5785 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 5786 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 5787 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 5788 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 5789 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 5790 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 5791 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 5792 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 5793 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 5794 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 5795 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 5796 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 5797 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 5798 5799 #undef SYSCTL_ADD_T4_REG64 5800 5801 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 5802 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 5803 &pi->stats.name, desc) 5804 5805 /* We get these from port_stats and they may be stale by up to 1s */ 5806 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 5807 "# drops due to buffer-group 0 overflows"); 5808 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 5809 "# drops due to buffer-group 1 overflows"); 5810 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 5811 "# drops due to buffer-group 2 overflows"); 5812 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 5813 "# drops due to buffer-group 3 overflows"); 5814 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 5815 "# of buffer-group 0 truncated packets"); 5816 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 5817 "# of buffer-group 1 truncated packets"); 5818 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 5819 "# of buffer-group 2 truncated packets"); 5820 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 5821 "# of buffer-group 3 truncated packets"); 5822 5823 #undef SYSCTL_ADD_T4_PORTSTAT 5824 } 5825 5826 static int 5827 sysctl_int_array(SYSCTL_HANDLER_ARGS) 5828 { 5829 int rc, *i, space = 0; 5830 struct sbuf sb; 5831 5832 sbuf_new_for_sysctl(&sb, NULL, 64, req); 5833 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 5834 if (space) 5835 sbuf_printf(&sb, " "); 5836 sbuf_printf(&sb, "%d", *i); 5837 space = 1; 5838 } 5839 rc = sbuf_finish(&sb); 5840 sbuf_delete(&sb); 5841 return (rc); 5842 } 5843 5844 static int 5845 sysctl_bitfield(SYSCTL_HANDLER_ARGS) 5846 { 5847 int rc; 5848 struct sbuf *sb; 5849 5850 rc = sysctl_wire_old_buffer(req, 0); 5851 if (rc != 0) 5852 return(rc); 5853 5854 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 5855 if (sb == NULL) 5856 return (ENOMEM); 5857 5858 sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); 5859 rc = sbuf_finish(sb); 5860 sbuf_delete(sb); 5861 5862 return (rc); 5863 } 5864 5865 static int 5866 sysctl_btphy(SYSCTL_HANDLER_ARGS) 5867 { 5868 struct port_info *pi = arg1; 5869 int op = arg2; 5870 struct adapter *sc = pi->adapter; 5871 u_int v; 5872 int rc; 5873 5874 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 5875 if (rc) 5876 return (rc); 5877 /* XXX: magic numbers */ 5878 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 5879 &v); 5880 end_synchronized_op(sc, 0); 5881 if (rc) 5882 return (rc); 5883 if (op == 0) 5884 v /= 256; 5885 5886 rc = sysctl_handle_int(oidp, &v, 0, req); 5887 return (rc); 5888 } 5889 5890 static int 5891 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 5892 { 5893 struct vi_info *vi = arg1; 5894 int rc, val; 5895 5896 val = vi->rsrv_noflowq; 5897 rc = sysctl_handle_int(oidp, &val, 0, req); 5898 if (rc != 0 || req->newptr == NULL) 5899 return (rc); 5900 5901 if ((val >= 1) && (vi->ntxq > 1)) 5902 vi->rsrv_noflowq = 1; 5903 else 5904 vi->rsrv_noflowq = 0; 5905 5906 return (rc); 5907 } 5908 5909 static int 5910 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 5911 { 5912 struct vi_info *vi = arg1; 5913 struct adapter *sc = vi->pi->adapter; 5914 int idx, rc, i; 5915 struct sge_rxq *rxq; 5916 uint8_t v; 5917 5918 idx = vi->tmr_idx; 5919 5920 rc = sysctl_handle_int(oidp, &idx, 0, req); 5921 if (rc != 0 || req->newptr == NULL) 5922 return (rc); 5923 5924 if (idx < 0 || idx >= SGE_NTIMERS) 5925 return (EINVAL); 5926 5927 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5928 "t4tmr"); 5929 if (rc) 5930 return (rc); 5931 5932 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 5933 for_each_rxq(vi, i, rxq) { 5934 #ifdef atomic_store_rel_8 5935 atomic_store_rel_8(&rxq->iq.intr_params, v); 5936 #else 5937 rxq->iq.intr_params = v; 5938 #endif 5939 } 5940 vi->tmr_idx = idx; 5941 5942 end_synchronized_op(sc, LOCK_HELD); 5943 return (0); 5944 } 5945 5946 static int 5947 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 5948 { 5949 struct vi_info *vi = arg1; 5950 struct adapter *sc = vi->pi->adapter; 5951 int idx, rc; 5952 5953 idx = vi->pktc_idx; 5954 5955 rc = sysctl_handle_int(oidp, &idx, 0, req); 5956 if (rc != 0 || req->newptr == NULL) 5957 return (rc); 5958 5959 if (idx < -1 || idx >= SGE_NCOUNTERS) 5960 return (EINVAL); 5961 5962 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5963 "t4pktc"); 5964 if (rc) 5965 return (rc); 5966 5967 if (vi->flags & VI_INIT_DONE) 5968 rc = EBUSY; /* cannot be changed once the queues are created */ 5969 else 5970 vi->pktc_idx = idx; 5971 5972 end_synchronized_op(sc, LOCK_HELD); 5973 return (rc); 5974 } 5975 5976 static int 5977 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 5978 { 5979 struct vi_info *vi = arg1; 5980 struct adapter *sc = vi->pi->adapter; 5981 int qsize, rc; 5982 5983 qsize = vi->qsize_rxq; 5984 5985 rc = sysctl_handle_int(oidp, &qsize, 0, req); 5986 if (rc != 0 || req->newptr == NULL) 5987 return (rc); 5988 5989 if (qsize < 128 || (qsize & 7)) 5990 return (EINVAL); 5991 5992 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5993 "t4rxqs"); 5994 if (rc) 5995 return (rc); 5996 5997 if (vi->flags & VI_INIT_DONE) 5998 rc = EBUSY; /* cannot be changed once the queues are created */ 5999 else 6000 vi->qsize_rxq = qsize; 6001 6002 end_synchronized_op(sc, LOCK_HELD); 6003 return (rc); 6004 } 6005 6006 static int 6007 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 6008 { 6009 struct vi_info *vi = arg1; 6010 struct adapter *sc = vi->pi->adapter; 6011 int qsize, rc; 6012 6013 qsize = vi->qsize_txq; 6014 6015 rc = sysctl_handle_int(oidp, &qsize, 0, req); 6016 if (rc != 0 || req->newptr == NULL) 6017 return (rc); 6018 6019 if (qsize < 128 || qsize > 65536) 6020 return (EINVAL); 6021 6022 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 6023 "t4txqs"); 6024 if (rc) 6025 return (rc); 6026 6027 if (vi->flags & VI_INIT_DONE) 6028 rc = EBUSY; /* cannot be changed once the queues are created */ 6029 else 6030 vi->qsize_txq = qsize; 6031 6032 end_synchronized_op(sc, LOCK_HELD); 6033 return (rc); 6034 } 6035 6036 static int 6037 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 6038 { 6039 struct port_info *pi = arg1; 6040 struct adapter *sc = pi->adapter; 6041 struct link_config *lc = &pi->link_cfg; 6042 int rc; 6043 6044 if (req->newptr == NULL) { 6045 struct sbuf *sb; 6046 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX"; 6047 6048 rc = sysctl_wire_old_buffer(req, 0); 6049 if (rc != 0) 6050 return(rc); 6051 6052 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 6053 if (sb == NULL) 6054 return (ENOMEM); 6055 6056 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits); 6057 rc = sbuf_finish(sb); 6058 sbuf_delete(sb); 6059 } else { 6060 char s[2]; 6061 int n; 6062 6063 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX)); 6064 s[1] = 0; 6065 6066 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 6067 if (rc != 0) 6068 return(rc); 6069 6070 if (s[1] != 0) 6071 return (EINVAL); 6072 if (s[0] < '0' || s[0] > '9') 6073 return (EINVAL); /* not a number */ 6074 n = s[0] - '0'; 6075 if (n & ~(PAUSE_TX | PAUSE_RX)) 6076 return (EINVAL); /* some other bit is set too */ 6077 6078 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6079 "t4PAUSE"); 6080 if (rc) 6081 return (rc); 6082 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) { 6083 lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX); 6084 lc->requested_fc |= n; 6085 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6086 if (rc == 0) { 6087 lc->fc = lc->requested_fc; 6088 } 6089 } 6090 end_synchronized_op(sc, 0); 6091 } 6092 6093 return (rc); 6094 } 6095 6096 static int 6097 sysctl_fec(SYSCTL_HANDLER_ARGS) 6098 { 6099 struct port_info *pi = arg1; 6100 struct adapter *sc = pi->adapter; 6101 struct link_config *lc = &pi->link_cfg; 6102 int rc; 6103 6104 if (req->newptr == NULL) { 6105 struct sbuf *sb; 6106 static char *bits = "\20\1RS\2BASER_RS\3RESERVED"; 6107 6108 rc = sysctl_wire_old_buffer(req, 0); 6109 if (rc != 0) 6110 return(rc); 6111 6112 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 6113 if (sb == NULL) 6114 return (ENOMEM); 6115 6116 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits); 6117 rc = sbuf_finish(sb); 6118 sbuf_delete(sb); 6119 } else { 6120 char s[2]; 6121 int n; 6122 6123 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC); 6124 s[1] = 0; 6125 6126 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 6127 if (rc != 0) 6128 return(rc); 6129 6130 if (s[1] != 0) 6131 return (EINVAL); 6132 if (s[0] < '0' || s[0] > '9') 6133 return (EINVAL); /* not a number */ 6134 n = s[0] - '0'; 6135 if (n & ~M_FW_PORT_CAP_FEC) 6136 return (EINVAL); /* some other bit is set too */ 6137 6138 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6139 "t4fec"); 6140 if (rc) 6141 return (rc); 6142 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) { 6143 lc->requested_fec = n & 6144 G_FW_PORT_CAP_FEC(lc->supported); 6145 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6146 if (rc == 0) { 6147 lc->fec = lc->requested_fec; 6148 } 6149 } 6150 end_synchronized_op(sc, 0); 6151 } 6152 6153 return (rc); 6154 } 6155 6156 static int 6157 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 6158 { 6159 struct port_info *pi = arg1; 6160 struct adapter *sc = pi->adapter; 6161 struct link_config *lc = &pi->link_cfg; 6162 int rc, val, old; 6163 6164 if (lc->supported & FW_PORT_CAP_ANEG) 6165 val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0; 6166 else 6167 val = -1; 6168 rc = sysctl_handle_int(oidp, &val, 0, req); 6169 if (rc != 0 || req->newptr == NULL) 6170 return (rc); 6171 if ((lc->supported & FW_PORT_CAP_ANEG) == 0) 6172 return (ENOTSUP); 6173 6174 if (val == 0) 6175 val = AUTONEG_DISABLE; 6176 else if (val == 1) 6177 val = AUTONEG_ENABLE; 6178 else 6179 return (EINVAL); 6180 if (lc->requested_aneg == val) 6181 return (0); /* no change */ 6182 6183 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6184 "t4aneg"); 6185 if (rc) 6186 return (rc); 6187 old = lc->requested_aneg; 6188 lc->requested_aneg = val; 6189 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6190 if (rc != 0) 6191 lc->requested_aneg = old; 6192 end_synchronized_op(sc, 0); 6193 return (rc); 6194 } 6195 6196 static int 6197 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 6198 { 6199 struct adapter *sc = arg1; 6200 int reg = arg2; 6201 uint64_t val; 6202 6203 val = t4_read_reg64(sc, reg); 6204 6205 return (sysctl_handle_64(oidp, &val, 0, req)); 6206 } 6207 6208 static int 6209 sysctl_temperature(SYSCTL_HANDLER_ARGS) 6210 { 6211 struct adapter *sc = arg1; 6212 int rc, t; 6213 uint32_t param, val; 6214 6215 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 6216 if (rc) 6217 return (rc); 6218 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6219 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 6220 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 6221 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6222 end_synchronized_op(sc, 0); 6223 if (rc) 6224 return (rc); 6225 6226 /* unknown is returned as 0 but we display -1 in that case */ 6227 t = val == 0 ? -1 : val; 6228 6229 rc = sysctl_handle_int(oidp, &t, 0, req); 6230 return (rc); 6231 } 6232 6233 #ifdef SBUF_DRAIN 6234 static int 6235 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 6236 { 6237 struct adapter *sc = arg1; 6238 struct sbuf *sb; 6239 int rc, i; 6240 uint16_t incr[NMTUS][NCCTRL_WIN]; 6241 static const char *dec_fac[] = { 6242 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 6243 "0.9375" 6244 }; 6245 6246 rc = sysctl_wire_old_buffer(req, 0); 6247 if (rc != 0) 6248 return (rc); 6249 6250 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6251 if (sb == NULL) 6252 return (ENOMEM); 6253 6254 t4_read_cong_tbl(sc, incr); 6255 6256 for (i = 0; i < NCCTRL_WIN; ++i) { 6257 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 6258 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 6259 incr[5][i], incr[6][i], incr[7][i]); 6260 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 6261 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 6262 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 6263 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 6264 } 6265 6266 rc = sbuf_finish(sb); 6267 sbuf_delete(sb); 6268 6269 return (rc); 6270 } 6271 6272 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 6273 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 6274 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 6275 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 6276 }; 6277 6278 static int 6279 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 6280 { 6281 struct adapter *sc = arg1; 6282 struct sbuf *sb; 6283 int rc, i, n, qid = arg2; 6284 uint32_t *buf, *p; 6285 char *qtype; 6286 u_int cim_num_obq = sc->chip_params->cim_num_obq; 6287 6288 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 6289 ("%s: bad qid %d\n", __func__, qid)); 6290 6291 if (qid < CIM_NUM_IBQ) { 6292 /* inbound queue */ 6293 qtype = "IBQ"; 6294 n = 4 * CIM_IBQ_SIZE; 6295 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 6296 rc = t4_read_cim_ibq(sc, qid, buf, n); 6297 } else { 6298 /* outbound queue */ 6299 qtype = "OBQ"; 6300 qid -= CIM_NUM_IBQ; 6301 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 6302 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 6303 rc = t4_read_cim_obq(sc, qid, buf, n); 6304 } 6305 6306 if (rc < 0) { 6307 rc = -rc; 6308 goto done; 6309 } 6310 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 6311 6312 rc = sysctl_wire_old_buffer(req, 0); 6313 if (rc != 0) 6314 goto done; 6315 6316 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 6317 if (sb == NULL) { 6318 rc = ENOMEM; 6319 goto done; 6320 } 6321 6322 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 6323 for (i = 0, p = buf; i < n; i += 16, p += 4) 6324 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 6325 p[2], p[3]); 6326 6327 rc = sbuf_finish(sb); 6328 sbuf_delete(sb); 6329 done: 6330 free(buf, M_CXGBE); 6331 return (rc); 6332 } 6333 6334 static int 6335 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 6336 { 6337 struct adapter *sc = arg1; 6338 u_int cfg; 6339 struct sbuf *sb; 6340 uint32_t *buf, *p; 6341 int rc; 6342 6343 MPASS(chip_id(sc) <= CHELSIO_T5); 6344 6345 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 6346 if (rc != 0) 6347 return (rc); 6348 6349 rc = sysctl_wire_old_buffer(req, 0); 6350 if (rc != 0) 6351 return (rc); 6352 6353 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6354 if (sb == NULL) 6355 return (ENOMEM); 6356 6357 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 6358 M_ZERO | M_WAITOK); 6359 6360 rc = -t4_cim_read_la(sc, buf, NULL); 6361 if (rc != 0) 6362 goto done; 6363 6364 sbuf_printf(sb, "Status Data PC%s", 6365 cfg & F_UPDBGLACAPTPCONLY ? "" : 6366 " LS0Stat LS0Addr LS0Data"); 6367 6368 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 6369 if (cfg & F_UPDBGLACAPTPCONLY) { 6370 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 6371 p[6], p[7]); 6372 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 6373 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 6374 p[4] & 0xff, p[5] >> 8); 6375 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 6376 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 6377 p[1] & 0xf, p[2] >> 4); 6378 } else { 6379 sbuf_printf(sb, 6380 "\n %02x %x%07x %x%07x %08x %08x " 6381 "%08x%08x%08x%08x", 6382 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 6383 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 6384 p[6], p[7]); 6385 } 6386 } 6387 6388 rc = sbuf_finish(sb); 6389 sbuf_delete(sb); 6390 done: 6391 free(buf, M_CXGBE); 6392 return (rc); 6393 } 6394 6395 static int 6396 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS) 6397 { 6398 struct adapter *sc = arg1; 6399 u_int cfg; 6400 struct sbuf *sb; 6401 uint32_t *buf, *p; 6402 int rc; 6403 6404 MPASS(chip_id(sc) > CHELSIO_T5); 6405 6406 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 6407 if (rc != 0) 6408 return (rc); 6409 6410 rc = sysctl_wire_old_buffer(req, 0); 6411 if (rc != 0) 6412 return (rc); 6413 6414 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6415 if (sb == NULL) 6416 return (ENOMEM); 6417 6418 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 6419 M_ZERO | M_WAITOK); 6420 6421 rc = -t4_cim_read_la(sc, buf, NULL); 6422 if (rc != 0) 6423 goto done; 6424 6425 sbuf_printf(sb, "Status Inst Data PC%s", 6426 cfg & F_UPDBGLACAPTPCONLY ? "" : 6427 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 6428 6429 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 6430 if (cfg & F_UPDBGLACAPTPCONLY) { 6431 sbuf_printf(sb, "\n %02x %08x %08x %08x", 6432 p[3] & 0xff, p[2], p[1], p[0]); 6433 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 6434 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 6435 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 6436 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 6437 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 6438 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 6439 p[6] >> 16); 6440 } else { 6441 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 6442 "%08x %08x %08x %08x %08x %08x", 6443 (p[9] >> 16) & 0xff, 6444 p[9] & 0xffff, p[8] >> 16, 6445 p[8] & 0xffff, p[7] >> 16, 6446 p[7] & 0xffff, p[6] >> 16, 6447 p[2], p[1], p[0], p[5], p[4], p[3]); 6448 } 6449 } 6450 6451 rc = sbuf_finish(sb); 6452 sbuf_delete(sb); 6453 done: 6454 free(buf, M_CXGBE); 6455 return (rc); 6456 } 6457 6458 static int 6459 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 6460 { 6461 struct adapter *sc = arg1; 6462 u_int i; 6463 struct sbuf *sb; 6464 uint32_t *buf, *p; 6465 int rc; 6466 6467 rc = sysctl_wire_old_buffer(req, 0); 6468 if (rc != 0) 6469 return (rc); 6470 6471 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6472 if (sb == NULL) 6473 return (ENOMEM); 6474 6475 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 6476 M_ZERO | M_WAITOK); 6477 6478 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 6479 p = buf; 6480 6481 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 6482 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 6483 p[1], p[0]); 6484 } 6485 6486 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 6487 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 6488 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 6489 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 6490 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 6491 (p[1] >> 2) | ((p[2] & 3) << 30), 6492 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 6493 p[0] & 1); 6494 } 6495 6496 rc = sbuf_finish(sb); 6497 sbuf_delete(sb); 6498 free(buf, M_CXGBE); 6499 return (rc); 6500 } 6501 6502 static int 6503 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 6504 { 6505 struct adapter *sc = arg1; 6506 u_int i; 6507 struct sbuf *sb; 6508 uint32_t *buf, *p; 6509 int rc; 6510 6511 rc = sysctl_wire_old_buffer(req, 0); 6512 if (rc != 0) 6513 return (rc); 6514 6515 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6516 if (sb == NULL) 6517 return (ENOMEM); 6518 6519 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 6520 M_ZERO | M_WAITOK); 6521 6522 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 6523 p = buf; 6524 6525 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 6526 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 6527 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 6528 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 6529 p[4], p[3], p[2], p[1], p[0]); 6530 } 6531 6532 sbuf_printf(sb, "\n\nCntl ID Data"); 6533 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 6534 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 6535 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 6536 } 6537 6538 rc = sbuf_finish(sb); 6539 sbuf_delete(sb); 6540 free(buf, M_CXGBE); 6541 return (rc); 6542 } 6543 6544 static int 6545 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 6546 { 6547 struct adapter *sc = arg1; 6548 struct sbuf *sb; 6549 int rc, i; 6550 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 6551 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 6552 uint16_t thres[CIM_NUM_IBQ]; 6553 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 6554 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 6555 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 6556 6557 cim_num_obq = sc->chip_params->cim_num_obq; 6558 if (is_t4(sc)) { 6559 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 6560 obq_rdaddr = A_UP_OBQ_0_REALADDR; 6561 } else { 6562 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 6563 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 6564 } 6565 nq = CIM_NUM_IBQ + cim_num_obq; 6566 6567 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 6568 if (rc == 0) 6569 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 6570 if (rc != 0) 6571 return (rc); 6572 6573 t4_read_cimq_cfg(sc, base, size, thres); 6574 6575 rc = sysctl_wire_old_buffer(req, 0); 6576 if (rc != 0) 6577 return (rc); 6578 6579 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 6580 if (sb == NULL) 6581 return (ENOMEM); 6582 6583 sbuf_printf(sb, 6584 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 6585 6586 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 6587 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 6588 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 6589 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 6590 G_QUEREMFLITS(p[2]) * 16); 6591 for ( ; i < nq; i++, p += 4, wr += 2) 6592 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 6593 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 6594 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 6595 G_QUEREMFLITS(p[2]) * 16); 6596 6597 rc = sbuf_finish(sb); 6598 sbuf_delete(sb); 6599 6600 return (rc); 6601 } 6602 6603 static int 6604 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 6605 { 6606 struct adapter *sc = arg1; 6607 struct sbuf *sb; 6608 int rc; 6609 struct tp_cpl_stats stats; 6610 6611 rc = sysctl_wire_old_buffer(req, 0); 6612 if (rc != 0) 6613 return (rc); 6614 6615 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6616 if (sb == NULL) 6617 return (ENOMEM); 6618 6619 mtx_lock(&sc->reg_lock); 6620 t4_tp_get_cpl_stats(sc, &stats, 0); 6621 mtx_unlock(&sc->reg_lock); 6622 6623 if (sc->chip_params->nchan > 2) { 6624 sbuf_printf(sb, " channel 0 channel 1" 6625 " channel 2 channel 3"); 6626 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 6627 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 6628 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 6629 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 6630 } else { 6631 sbuf_printf(sb, " channel 0 channel 1"); 6632 sbuf_printf(sb, "\nCPL requests: %10u %10u", 6633 stats.req[0], stats.req[1]); 6634 sbuf_printf(sb, "\nCPL responses: %10u %10u", 6635 stats.rsp[0], stats.rsp[1]); 6636 } 6637 6638 rc = sbuf_finish(sb); 6639 sbuf_delete(sb); 6640 6641 return (rc); 6642 } 6643 6644 static int 6645 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 6646 { 6647 struct adapter *sc = arg1; 6648 struct sbuf *sb; 6649 int rc; 6650 struct tp_usm_stats stats; 6651 6652 rc = sysctl_wire_old_buffer(req, 0); 6653 if (rc != 0) 6654 return(rc); 6655 6656 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6657 if (sb == NULL) 6658 return (ENOMEM); 6659 6660 t4_get_usm_stats(sc, &stats, 1); 6661 6662 sbuf_printf(sb, "Frames: %u\n", stats.frames); 6663 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 6664 sbuf_printf(sb, "Drops: %u", stats.drops); 6665 6666 rc = sbuf_finish(sb); 6667 sbuf_delete(sb); 6668 6669 return (rc); 6670 } 6671 6672 static const char * const devlog_level_strings[] = { 6673 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 6674 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 6675 [FW_DEVLOG_LEVEL_ERR] = "ERR", 6676 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 6677 [FW_DEVLOG_LEVEL_INFO] = "INFO", 6678 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 6679 }; 6680 6681 static const char * const devlog_facility_strings[] = { 6682 [FW_DEVLOG_FACILITY_CORE] = "CORE", 6683 [FW_DEVLOG_FACILITY_CF] = "CF", 6684 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 6685 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 6686 [FW_DEVLOG_FACILITY_RES] = "RES", 6687 [FW_DEVLOG_FACILITY_HW] = "HW", 6688 [FW_DEVLOG_FACILITY_FLR] = "FLR", 6689 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 6690 [FW_DEVLOG_FACILITY_PHY] = "PHY", 6691 [FW_DEVLOG_FACILITY_MAC] = "MAC", 6692 [FW_DEVLOG_FACILITY_PORT] = "PORT", 6693 [FW_DEVLOG_FACILITY_VI] = "VI", 6694 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 6695 [FW_DEVLOG_FACILITY_ACL] = "ACL", 6696 [FW_DEVLOG_FACILITY_TM] = "TM", 6697 [FW_DEVLOG_FACILITY_QFC] = "QFC", 6698 [FW_DEVLOG_FACILITY_DCB] = "DCB", 6699 [FW_DEVLOG_FACILITY_ETH] = "ETH", 6700 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 6701 [FW_DEVLOG_FACILITY_RI] = "RI", 6702 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 6703 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 6704 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 6705 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 6706 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 6707 }; 6708 6709 static int 6710 sysctl_devlog(SYSCTL_HANDLER_ARGS) 6711 { 6712 struct adapter *sc = arg1; 6713 struct devlog_params *dparams = &sc->params.devlog; 6714 struct fw_devlog_e *buf, *e; 6715 int i, j, rc, nentries, first = 0; 6716 struct sbuf *sb; 6717 uint64_t ftstamp = UINT64_MAX; 6718 6719 if (dparams->addr == 0) 6720 return (ENXIO); 6721 6722 buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); 6723 if (buf == NULL) 6724 return (ENOMEM); 6725 6726 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 6727 if (rc != 0) 6728 goto done; 6729 6730 nentries = dparams->size / sizeof(struct fw_devlog_e); 6731 for (i = 0; i < nentries; i++) { 6732 e = &buf[i]; 6733 6734 if (e->timestamp == 0) 6735 break; /* end */ 6736 6737 e->timestamp = be64toh(e->timestamp); 6738 e->seqno = be32toh(e->seqno); 6739 for (j = 0; j < 8; j++) 6740 e->params[j] = be32toh(e->params[j]); 6741 6742 if (e->timestamp < ftstamp) { 6743 ftstamp = e->timestamp; 6744 first = i; 6745 } 6746 } 6747 6748 if (buf[first].timestamp == 0) 6749 goto done; /* nothing in the log */ 6750 6751 rc = sysctl_wire_old_buffer(req, 0); 6752 if (rc != 0) 6753 goto done; 6754 6755 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6756 if (sb == NULL) { 6757 rc = ENOMEM; 6758 goto done; 6759 } 6760 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 6761 "Seq#", "Tstamp", "Level", "Facility", "Message"); 6762 6763 i = first; 6764 do { 6765 e = &buf[i]; 6766 if (e->timestamp == 0) 6767 break; /* end */ 6768 6769 sbuf_printf(sb, "%10d %15ju %8s %8s ", 6770 e->seqno, e->timestamp, 6771 (e->level < nitems(devlog_level_strings) ? 6772 devlog_level_strings[e->level] : "UNKNOWN"), 6773 (e->facility < nitems(devlog_facility_strings) ? 6774 devlog_facility_strings[e->facility] : "UNKNOWN")); 6775 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 6776 e->params[2], e->params[3], e->params[4], 6777 e->params[5], e->params[6], e->params[7]); 6778 6779 if (++i == nentries) 6780 i = 0; 6781 } while (i != first); 6782 6783 rc = sbuf_finish(sb); 6784 sbuf_delete(sb); 6785 done: 6786 free(buf, M_CXGBE); 6787 return (rc); 6788 } 6789 6790 static int 6791 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 6792 { 6793 struct adapter *sc = arg1; 6794 struct sbuf *sb; 6795 int rc; 6796 struct tp_fcoe_stats stats[MAX_NCHAN]; 6797 int i, nchan = sc->chip_params->nchan; 6798 6799 rc = sysctl_wire_old_buffer(req, 0); 6800 if (rc != 0) 6801 return (rc); 6802 6803 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6804 if (sb == NULL) 6805 return (ENOMEM); 6806 6807 for (i = 0; i < nchan; i++) 6808 t4_get_fcoe_stats(sc, i, &stats[i], 1); 6809 6810 if (nchan > 2) { 6811 sbuf_printf(sb, " channel 0 channel 1" 6812 " channel 2 channel 3"); 6813 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 6814 stats[0].octets_ddp, stats[1].octets_ddp, 6815 stats[2].octets_ddp, stats[3].octets_ddp); 6816 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 6817 stats[0].frames_ddp, stats[1].frames_ddp, 6818 stats[2].frames_ddp, stats[3].frames_ddp); 6819 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 6820 stats[0].frames_drop, stats[1].frames_drop, 6821 stats[2].frames_drop, stats[3].frames_drop); 6822 } else { 6823 sbuf_printf(sb, " channel 0 channel 1"); 6824 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 6825 stats[0].octets_ddp, stats[1].octets_ddp); 6826 sbuf_printf(sb, "\nframesDDP: %16u %16u", 6827 stats[0].frames_ddp, stats[1].frames_ddp); 6828 sbuf_printf(sb, "\nframesDrop: %16u %16u", 6829 stats[0].frames_drop, stats[1].frames_drop); 6830 } 6831 6832 rc = sbuf_finish(sb); 6833 sbuf_delete(sb); 6834 6835 return (rc); 6836 } 6837 6838 static int 6839 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 6840 { 6841 struct adapter *sc = arg1; 6842 struct sbuf *sb; 6843 int rc, i; 6844 unsigned int map, kbps, ipg, mode; 6845 unsigned int pace_tab[NTX_SCHED]; 6846 6847 rc = sysctl_wire_old_buffer(req, 0); 6848 if (rc != 0) 6849 return (rc); 6850 6851 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6852 if (sb == NULL) 6853 return (ENOMEM); 6854 6855 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 6856 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 6857 t4_read_pace_tbl(sc, pace_tab); 6858 6859 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 6860 "Class IPG (0.1 ns) Flow IPG (us)"); 6861 6862 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 6863 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 6864 sbuf_printf(sb, "\n %u %-5s %u ", i, 6865 (mode & (1 << i)) ? "flow" : "class", map & 3); 6866 if (kbps) 6867 sbuf_printf(sb, "%9u ", kbps); 6868 else 6869 sbuf_printf(sb, " disabled "); 6870 6871 if (ipg) 6872 sbuf_printf(sb, "%13u ", ipg); 6873 else 6874 sbuf_printf(sb, " disabled "); 6875 6876 if (pace_tab[i]) 6877 sbuf_printf(sb, "%10u", pace_tab[i]); 6878 else 6879 sbuf_printf(sb, " disabled"); 6880 } 6881 6882 rc = sbuf_finish(sb); 6883 sbuf_delete(sb); 6884 6885 return (rc); 6886 } 6887 6888 static int 6889 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 6890 { 6891 struct adapter *sc = arg1; 6892 struct sbuf *sb; 6893 int rc, i, j; 6894 uint64_t *p0, *p1; 6895 struct lb_port_stats s[2]; 6896 static const char *stat_name[] = { 6897 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 6898 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 6899 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 6900 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 6901 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 6902 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 6903 "BG2FramesTrunc:", "BG3FramesTrunc:" 6904 }; 6905 6906 rc = sysctl_wire_old_buffer(req, 0); 6907 if (rc != 0) 6908 return (rc); 6909 6910 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6911 if (sb == NULL) 6912 return (ENOMEM); 6913 6914 memset(s, 0, sizeof(s)); 6915 6916 for (i = 0; i < sc->chip_params->nchan; i += 2) { 6917 t4_get_lb_stats(sc, i, &s[0]); 6918 t4_get_lb_stats(sc, i + 1, &s[1]); 6919 6920 p0 = &s[0].octets; 6921 p1 = &s[1].octets; 6922 sbuf_printf(sb, "%s Loopback %u" 6923 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 6924 6925 for (j = 0; j < nitems(stat_name); j++) 6926 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 6927 *p0++, *p1++); 6928 } 6929 6930 rc = sbuf_finish(sb); 6931 sbuf_delete(sb); 6932 6933 return (rc); 6934 } 6935 6936 static int 6937 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 6938 { 6939 int rc = 0; 6940 struct port_info *pi = arg1; 6941 struct link_config *lc = &pi->link_cfg; 6942 struct sbuf *sb; 6943 6944 rc = sysctl_wire_old_buffer(req, 0); 6945 if (rc != 0) 6946 return(rc); 6947 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 6948 if (sb == NULL) 6949 return (ENOMEM); 6950 6951 if (lc->link_ok || lc->link_down_rc == 255) 6952 sbuf_printf(sb, "n/a"); 6953 else 6954 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 6955 6956 rc = sbuf_finish(sb); 6957 sbuf_delete(sb); 6958 6959 return (rc); 6960 } 6961 6962 struct mem_desc { 6963 unsigned int base; 6964 unsigned int limit; 6965 unsigned int idx; 6966 }; 6967 6968 static int 6969 mem_desc_cmp(const void *a, const void *b) 6970 { 6971 return ((const struct mem_desc *)a)->base - 6972 ((const struct mem_desc *)b)->base; 6973 } 6974 6975 static void 6976 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 6977 unsigned int to) 6978 { 6979 unsigned int size; 6980 6981 if (from == to) 6982 return; 6983 6984 size = to - from + 1; 6985 if (size == 0) 6986 return; 6987 6988 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 6989 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 6990 } 6991 6992 static int 6993 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 6994 { 6995 struct adapter *sc = arg1; 6996 struct sbuf *sb; 6997 int rc, i, n; 6998 uint32_t lo, hi, used, alloc; 6999 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 7000 static const char *region[] = { 7001 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 7002 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 7003 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 7004 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 7005 "RQUDP region:", "PBL region:", "TXPBL region:", 7006 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 7007 "On-chip queues:" 7008 }; 7009 struct mem_desc avail[4]; 7010 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 7011 struct mem_desc *md = mem; 7012 7013 rc = sysctl_wire_old_buffer(req, 0); 7014 if (rc != 0) 7015 return (rc); 7016 7017 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7018 if (sb == NULL) 7019 return (ENOMEM); 7020 7021 for (i = 0; i < nitems(mem); i++) { 7022 mem[i].limit = 0; 7023 mem[i].idx = i; 7024 } 7025 7026 /* Find and sort the populated memory ranges */ 7027 i = 0; 7028 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 7029 if (lo & F_EDRAM0_ENABLE) { 7030 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 7031 avail[i].base = G_EDRAM0_BASE(hi) << 20; 7032 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 7033 avail[i].idx = 0; 7034 i++; 7035 } 7036 if (lo & F_EDRAM1_ENABLE) { 7037 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 7038 avail[i].base = G_EDRAM1_BASE(hi) << 20; 7039 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 7040 avail[i].idx = 1; 7041 i++; 7042 } 7043 if (lo & F_EXT_MEM_ENABLE) { 7044 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 7045 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 7046 avail[i].limit = avail[i].base + 7047 (G_EXT_MEM_SIZE(hi) << 20); 7048 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 7049 i++; 7050 } 7051 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 7052 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 7053 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 7054 avail[i].limit = avail[i].base + 7055 (G_EXT_MEM1_SIZE(hi) << 20); 7056 avail[i].idx = 4; 7057 i++; 7058 } 7059 if (!i) /* no memory available */ 7060 return 0; 7061 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 7062 7063 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 7064 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 7065 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 7066 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 7067 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 7068 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 7069 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 7070 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 7071 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 7072 7073 /* the next few have explicit upper bounds */ 7074 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 7075 md->limit = md->base - 1 + 7076 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 7077 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 7078 md++; 7079 7080 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 7081 md->limit = md->base - 1 + 7082 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 7083 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 7084 md++; 7085 7086 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 7087 if (chip_id(sc) <= CHELSIO_T5) 7088 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 7089 else 7090 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 7091 md->limit = 0; 7092 } else { 7093 md->base = 0; 7094 md->idx = nitems(region); /* hide it */ 7095 } 7096 md++; 7097 7098 #define ulp_region(reg) \ 7099 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 7100 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 7101 7102 ulp_region(RX_ISCSI); 7103 ulp_region(RX_TDDP); 7104 ulp_region(TX_TPT); 7105 ulp_region(RX_STAG); 7106 ulp_region(RX_RQ); 7107 ulp_region(RX_RQUDP); 7108 ulp_region(RX_PBL); 7109 ulp_region(TX_PBL); 7110 #undef ulp_region 7111 7112 md->base = 0; 7113 md->idx = nitems(region); 7114 if (!is_t4(sc)) { 7115 uint32_t size = 0; 7116 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 7117 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 7118 7119 if (is_t5(sc)) { 7120 if (sge_ctrl & F_VFIFO_ENABLE) 7121 size = G_DBVFIFO_SIZE(fifo_size); 7122 } else 7123 size = G_T6_DBVFIFO_SIZE(fifo_size); 7124 7125 if (size) { 7126 md->base = G_BASEADDR(t4_read_reg(sc, 7127 A_SGE_DBVFIFO_BADDR)); 7128 md->limit = md->base + (size << 2) - 1; 7129 } 7130 } 7131 md++; 7132 7133 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 7134 md->limit = 0; 7135 md++; 7136 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 7137 md->limit = 0; 7138 md++; 7139 7140 md->base = sc->vres.ocq.start; 7141 if (sc->vres.ocq.size) 7142 md->limit = md->base + sc->vres.ocq.size - 1; 7143 else 7144 md->idx = nitems(region); /* hide it */ 7145 md++; 7146 7147 /* add any address-space holes, there can be up to 3 */ 7148 for (n = 0; n < i - 1; n++) 7149 if (avail[n].limit < avail[n + 1].base) 7150 (md++)->base = avail[n].limit; 7151 if (avail[n].limit) 7152 (md++)->base = avail[n].limit; 7153 7154 n = md - mem; 7155 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 7156 7157 for (lo = 0; lo < i; lo++) 7158 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 7159 avail[lo].limit - 1); 7160 7161 sbuf_printf(sb, "\n"); 7162 for (i = 0; i < n; i++) { 7163 if (mem[i].idx >= nitems(region)) 7164 continue; /* skip holes */ 7165 if (!mem[i].limit) 7166 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 7167 mem_region_show(sb, region[mem[i].idx], mem[i].base, 7168 mem[i].limit); 7169 } 7170 7171 sbuf_printf(sb, "\n"); 7172 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 7173 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 7174 mem_region_show(sb, "uP RAM:", lo, hi); 7175 7176 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 7177 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 7178 mem_region_show(sb, "uP Extmem2:", lo, hi); 7179 7180 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 7181 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 7182 G_PMRXMAXPAGE(lo), 7183 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 7184 (lo & F_PMRXNUMCHN) ? 2 : 1); 7185 7186 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 7187 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 7188 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 7189 G_PMTXMAXPAGE(lo), 7190 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 7191 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 7192 sbuf_printf(sb, "%u p-structs\n", 7193 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 7194 7195 for (i = 0; i < 4; i++) { 7196 if (chip_id(sc) > CHELSIO_T5) 7197 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 7198 else 7199 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 7200 if (is_t5(sc)) { 7201 used = G_T5_USED(lo); 7202 alloc = G_T5_ALLOC(lo); 7203 } else { 7204 used = G_USED(lo); 7205 alloc = G_ALLOC(lo); 7206 } 7207 /* For T6 these are MAC buffer groups */ 7208 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 7209 i, used, alloc); 7210 } 7211 for (i = 0; i < sc->chip_params->nchan; i++) { 7212 if (chip_id(sc) > CHELSIO_T5) 7213 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 7214 else 7215 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 7216 if (is_t5(sc)) { 7217 used = G_T5_USED(lo); 7218 alloc = G_T5_ALLOC(lo); 7219 } else { 7220 used = G_USED(lo); 7221 alloc = G_ALLOC(lo); 7222 } 7223 /* For T6 these are MAC buffer groups */ 7224 sbuf_printf(sb, 7225 "\nLoopback %d using %u pages out of %u allocated", 7226 i, used, alloc); 7227 } 7228 7229 rc = sbuf_finish(sb); 7230 sbuf_delete(sb); 7231 7232 return (rc); 7233 } 7234 7235 static inline void 7236 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 7237 { 7238 *mask = x | y; 7239 y = htobe64(y); 7240 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 7241 } 7242 7243 static int 7244 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 7245 { 7246 struct adapter *sc = arg1; 7247 struct sbuf *sb; 7248 int rc, i; 7249 7250 MPASS(chip_id(sc) <= CHELSIO_T5); 7251 7252 rc = sysctl_wire_old_buffer(req, 0); 7253 if (rc != 0) 7254 return (rc); 7255 7256 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7257 if (sb == NULL) 7258 return (ENOMEM); 7259 7260 sbuf_printf(sb, 7261 "Idx Ethernet address Mask Vld Ports PF" 7262 " VF Replication P0 P1 P2 P3 ML"); 7263 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 7264 uint64_t tcamx, tcamy, mask; 7265 uint32_t cls_lo, cls_hi; 7266 uint8_t addr[ETHER_ADDR_LEN]; 7267 7268 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 7269 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 7270 if (tcamx & tcamy) 7271 continue; 7272 tcamxy2valmask(tcamx, tcamy, addr, &mask); 7273 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 7274 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 7275 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 7276 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 7277 addr[3], addr[4], addr[5], (uintmax_t)mask, 7278 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 7279 G_PORTMAP(cls_hi), G_PF(cls_lo), 7280 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 7281 7282 if (cls_lo & F_REPLICATE) { 7283 struct fw_ldst_cmd ldst_cmd; 7284 7285 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 7286 ldst_cmd.op_to_addrspace = 7287 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 7288 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7289 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 7290 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 7291 ldst_cmd.u.mps.rplc.fid_idx = 7292 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 7293 V_FW_LDST_CMD_IDX(i)); 7294 7295 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7296 "t4mps"); 7297 if (rc) 7298 break; 7299 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 7300 sizeof(ldst_cmd), &ldst_cmd); 7301 end_synchronized_op(sc, 0); 7302 7303 if (rc != 0) { 7304 sbuf_printf(sb, "%36d", rc); 7305 rc = 0; 7306 } else { 7307 sbuf_printf(sb, " %08x %08x %08x %08x", 7308 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 7309 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 7310 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 7311 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 7312 } 7313 } else 7314 sbuf_printf(sb, "%36s", ""); 7315 7316 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 7317 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 7318 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 7319 } 7320 7321 if (rc) 7322 (void) sbuf_finish(sb); 7323 else 7324 rc = sbuf_finish(sb); 7325 sbuf_delete(sb); 7326 7327 return (rc); 7328 } 7329 7330 static int 7331 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 7332 { 7333 struct adapter *sc = arg1; 7334 struct sbuf *sb; 7335 int rc, i; 7336 7337 MPASS(chip_id(sc) > CHELSIO_T5); 7338 7339 rc = sysctl_wire_old_buffer(req, 0); 7340 if (rc != 0) 7341 return (rc); 7342 7343 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7344 if (sb == NULL) 7345 return (ENOMEM); 7346 7347 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 7348 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 7349 " Replication" 7350 " P0 P1 P2 P3 ML\n"); 7351 7352 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 7353 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 7354 uint16_t ivlan; 7355 uint64_t tcamx, tcamy, val, mask; 7356 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 7357 uint8_t addr[ETHER_ADDR_LEN]; 7358 7359 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 7360 if (i < 256) 7361 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 7362 else 7363 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 7364 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 7365 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 7366 tcamy = G_DMACH(val) << 32; 7367 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 7368 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 7369 lookup_type = G_DATALKPTYPE(data2); 7370 port_num = G_DATAPORTNUM(data2); 7371 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7372 /* Inner header VNI */ 7373 vniy = ((data2 & F_DATAVIDH2) << 23) | 7374 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 7375 dip_hit = data2 & F_DATADIPHIT; 7376 vlan_vld = 0; 7377 } else { 7378 vniy = 0; 7379 dip_hit = 0; 7380 vlan_vld = data2 & F_DATAVIDH2; 7381 ivlan = G_VIDL(val); 7382 } 7383 7384 ctl |= V_CTLXYBITSEL(1); 7385 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 7386 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 7387 tcamx = G_DMACH(val) << 32; 7388 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 7389 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 7390 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7391 /* Inner header VNI mask */ 7392 vnix = ((data2 & F_DATAVIDH2) << 23) | 7393 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 7394 } else 7395 vnix = 0; 7396 7397 if (tcamx & tcamy) 7398 continue; 7399 tcamxy2valmask(tcamx, tcamy, addr, &mask); 7400 7401 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 7402 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 7403 7404 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7405 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 7406 "%012jx %06x %06x - - %3c" 7407 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 7408 addr[1], addr[2], addr[3], addr[4], addr[5], 7409 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 7410 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 7411 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 7412 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 7413 } else { 7414 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 7415 "%012jx - - ", i, addr[0], addr[1], 7416 addr[2], addr[3], addr[4], addr[5], 7417 (uintmax_t)mask); 7418 7419 if (vlan_vld) 7420 sbuf_printf(sb, "%4u Y ", ivlan); 7421 else 7422 sbuf_printf(sb, " - N "); 7423 7424 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 7425 lookup_type ? 'I' : 'O', port_num, 7426 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 7427 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 7428 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 7429 } 7430 7431 7432 if (cls_lo & F_T6_REPLICATE) { 7433 struct fw_ldst_cmd ldst_cmd; 7434 7435 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 7436 ldst_cmd.op_to_addrspace = 7437 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 7438 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7439 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 7440 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 7441 ldst_cmd.u.mps.rplc.fid_idx = 7442 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 7443 V_FW_LDST_CMD_IDX(i)); 7444 7445 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7446 "t6mps"); 7447 if (rc) 7448 break; 7449 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 7450 sizeof(ldst_cmd), &ldst_cmd); 7451 end_synchronized_op(sc, 0); 7452 7453 if (rc != 0) { 7454 sbuf_printf(sb, "%72d", rc); 7455 rc = 0; 7456 } else { 7457 sbuf_printf(sb, " %08x %08x %08x %08x" 7458 " %08x %08x %08x %08x", 7459 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 7460 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 7461 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 7462 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 7463 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 7464 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 7465 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 7466 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 7467 } 7468 } else 7469 sbuf_printf(sb, "%72s", ""); 7470 7471 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 7472 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 7473 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 7474 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 7475 } 7476 7477 if (rc) 7478 (void) sbuf_finish(sb); 7479 else 7480 rc = sbuf_finish(sb); 7481 sbuf_delete(sb); 7482 7483 return (rc); 7484 } 7485 7486 static int 7487 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 7488 { 7489 struct adapter *sc = arg1; 7490 struct sbuf *sb; 7491 int rc; 7492 uint16_t mtus[NMTUS]; 7493 7494 rc = sysctl_wire_old_buffer(req, 0); 7495 if (rc != 0) 7496 return (rc); 7497 7498 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7499 if (sb == NULL) 7500 return (ENOMEM); 7501 7502 t4_read_mtu_tbl(sc, mtus, NULL); 7503 7504 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 7505 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 7506 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 7507 mtus[14], mtus[15]); 7508 7509 rc = sbuf_finish(sb); 7510 sbuf_delete(sb); 7511 7512 return (rc); 7513 } 7514 7515 static int 7516 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 7517 { 7518 struct adapter *sc = arg1; 7519 struct sbuf *sb; 7520 int rc, i; 7521 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 7522 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 7523 static const char *tx_stats[MAX_PM_NSTATS] = { 7524 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 7525 "Tx FIFO wait", NULL, "Tx latency" 7526 }; 7527 static const char *rx_stats[MAX_PM_NSTATS] = { 7528 "Read:", "Write bypass:", "Write mem:", "Flush:", 7529 "Rx FIFO wait", NULL, "Rx latency" 7530 }; 7531 7532 rc = sysctl_wire_old_buffer(req, 0); 7533 if (rc != 0) 7534 return (rc); 7535 7536 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7537 if (sb == NULL) 7538 return (ENOMEM); 7539 7540 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 7541 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 7542 7543 sbuf_printf(sb, " Tx pcmds Tx bytes"); 7544 for (i = 0; i < 4; i++) { 7545 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7546 tx_cyc[i]); 7547 } 7548 7549 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 7550 for (i = 0; i < 4; i++) { 7551 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7552 rx_cyc[i]); 7553 } 7554 7555 if (chip_id(sc) > CHELSIO_T5) { 7556 sbuf_printf(sb, 7557 "\n Total wait Total occupancy"); 7558 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7559 tx_cyc[i]); 7560 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7561 rx_cyc[i]); 7562 7563 i += 2; 7564 MPASS(i < nitems(tx_stats)); 7565 7566 sbuf_printf(sb, 7567 "\n Reads Total wait"); 7568 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7569 tx_cyc[i]); 7570 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7571 rx_cyc[i]); 7572 } 7573 7574 rc = sbuf_finish(sb); 7575 sbuf_delete(sb); 7576 7577 return (rc); 7578 } 7579 7580 static int 7581 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 7582 { 7583 struct adapter *sc = arg1; 7584 struct sbuf *sb; 7585 int rc; 7586 struct tp_rdma_stats stats; 7587 7588 rc = sysctl_wire_old_buffer(req, 0); 7589 if (rc != 0) 7590 return (rc); 7591 7592 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7593 if (sb == NULL) 7594 return (ENOMEM); 7595 7596 mtx_lock(&sc->reg_lock); 7597 t4_tp_get_rdma_stats(sc, &stats, 0); 7598 mtx_unlock(&sc->reg_lock); 7599 7600 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 7601 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 7602 7603 rc = sbuf_finish(sb); 7604 sbuf_delete(sb); 7605 7606 return (rc); 7607 } 7608 7609 static int 7610 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 7611 { 7612 struct adapter *sc = arg1; 7613 struct sbuf *sb; 7614 int rc; 7615 struct tp_tcp_stats v4, v6; 7616 7617 rc = sysctl_wire_old_buffer(req, 0); 7618 if (rc != 0) 7619 return (rc); 7620 7621 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7622 if (sb == NULL) 7623 return (ENOMEM); 7624 7625 mtx_lock(&sc->reg_lock); 7626 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 7627 mtx_unlock(&sc->reg_lock); 7628 7629 sbuf_printf(sb, 7630 " IP IPv6\n"); 7631 sbuf_printf(sb, "OutRsts: %20u %20u\n", 7632 v4.tcp_out_rsts, v6.tcp_out_rsts); 7633 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 7634 v4.tcp_in_segs, v6.tcp_in_segs); 7635 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 7636 v4.tcp_out_segs, v6.tcp_out_segs); 7637 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 7638 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 7639 7640 rc = sbuf_finish(sb); 7641 sbuf_delete(sb); 7642 7643 return (rc); 7644 } 7645 7646 static int 7647 sysctl_tids(SYSCTL_HANDLER_ARGS) 7648 { 7649 struct adapter *sc = arg1; 7650 struct sbuf *sb; 7651 int rc; 7652 struct tid_info *t = &sc->tids; 7653 7654 rc = sysctl_wire_old_buffer(req, 0); 7655 if (rc != 0) 7656 return (rc); 7657 7658 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7659 if (sb == NULL) 7660 return (ENOMEM); 7661 7662 if (t->natids) { 7663 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 7664 t->atids_in_use); 7665 } 7666 7667 if (t->ntids) { 7668 sbuf_printf(sb, "TID range: "); 7669 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 7670 uint32_t b, hb; 7671 7672 if (chip_id(sc) <= CHELSIO_T5) { 7673 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 7674 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 7675 } else { 7676 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 7677 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 7678 } 7679 7680 if (b) 7681 sbuf_printf(sb, "0-%u, ", b - 1); 7682 sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); 7683 } else 7684 sbuf_printf(sb, "0-%u", t->ntids - 1); 7685 sbuf_printf(sb, ", in use: %u\n", 7686 atomic_load_acq_int(&t->tids_in_use)); 7687 } 7688 7689 if (t->nstids) { 7690 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 7691 t->stid_base + t->nstids - 1, t->stids_in_use); 7692 } 7693 7694 if (t->nftids) { 7695 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, 7696 t->ftid_base + t->nftids - 1); 7697 } 7698 7699 if (t->netids) { 7700 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base, 7701 t->etid_base + t->netids - 1); 7702 } 7703 7704 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 7705 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 7706 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 7707 7708 rc = sbuf_finish(sb); 7709 sbuf_delete(sb); 7710 7711 return (rc); 7712 } 7713 7714 static int 7715 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 7716 { 7717 struct adapter *sc = arg1; 7718 struct sbuf *sb; 7719 int rc; 7720 struct tp_err_stats stats; 7721 7722 rc = sysctl_wire_old_buffer(req, 0); 7723 if (rc != 0) 7724 return (rc); 7725 7726 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7727 if (sb == NULL) 7728 return (ENOMEM); 7729 7730 mtx_lock(&sc->reg_lock); 7731 t4_tp_get_err_stats(sc, &stats, 0); 7732 mtx_unlock(&sc->reg_lock); 7733 7734 if (sc->chip_params->nchan > 2) { 7735 sbuf_printf(sb, " channel 0 channel 1" 7736 " channel 2 channel 3\n"); 7737 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 7738 stats.mac_in_errs[0], stats.mac_in_errs[1], 7739 stats.mac_in_errs[2], stats.mac_in_errs[3]); 7740 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 7741 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 7742 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 7743 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 7744 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 7745 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 7746 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 7747 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 7748 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 7749 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 7750 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 7751 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 7752 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 7753 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 7754 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 7755 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 7756 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 7757 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 7758 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 7759 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 7760 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 7761 } else { 7762 sbuf_printf(sb, " channel 0 channel 1\n"); 7763 sbuf_printf(sb, "macInErrs: %10u %10u\n", 7764 stats.mac_in_errs[0], stats.mac_in_errs[1]); 7765 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 7766 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 7767 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 7768 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 7769 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 7770 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 7771 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 7772 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 7773 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 7774 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 7775 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 7776 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 7777 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 7778 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 7779 } 7780 7781 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 7782 stats.ofld_no_neigh, stats.ofld_cong_defer); 7783 7784 rc = sbuf_finish(sb); 7785 sbuf_delete(sb); 7786 7787 return (rc); 7788 } 7789 7790 static int 7791 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 7792 { 7793 struct adapter *sc = arg1; 7794 struct tp_params *tpp = &sc->params.tp; 7795 u_int mask; 7796 int rc; 7797 7798 mask = tpp->la_mask >> 16; 7799 rc = sysctl_handle_int(oidp, &mask, 0, req); 7800 if (rc != 0 || req->newptr == NULL) 7801 return (rc); 7802 if (mask > 0xffff) 7803 return (EINVAL); 7804 tpp->la_mask = mask << 16; 7805 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 7806 7807 return (0); 7808 } 7809 7810 struct field_desc { 7811 const char *name; 7812 u_int start; 7813 u_int width; 7814 }; 7815 7816 static void 7817 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 7818 { 7819 char buf[32]; 7820 int line_size = 0; 7821 7822 while (f->name) { 7823 uint64_t mask = (1ULL << f->width) - 1; 7824 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 7825 ((uintmax_t)v >> f->start) & mask); 7826 7827 if (line_size + len >= 79) { 7828 line_size = 8; 7829 sbuf_printf(sb, "\n "); 7830 } 7831 sbuf_printf(sb, "%s ", buf); 7832 line_size += len + 1; 7833 f++; 7834 } 7835 sbuf_printf(sb, "\n"); 7836 } 7837 7838 static const struct field_desc tp_la0[] = { 7839 { "RcfOpCodeOut", 60, 4 }, 7840 { "State", 56, 4 }, 7841 { "WcfState", 52, 4 }, 7842 { "RcfOpcSrcOut", 50, 2 }, 7843 { "CRxError", 49, 1 }, 7844 { "ERxError", 48, 1 }, 7845 { "SanityFailed", 47, 1 }, 7846 { "SpuriousMsg", 46, 1 }, 7847 { "FlushInputMsg", 45, 1 }, 7848 { "FlushInputCpl", 44, 1 }, 7849 { "RssUpBit", 43, 1 }, 7850 { "RssFilterHit", 42, 1 }, 7851 { "Tid", 32, 10 }, 7852 { "InitTcb", 31, 1 }, 7853 { "LineNumber", 24, 7 }, 7854 { "Emsg", 23, 1 }, 7855 { "EdataOut", 22, 1 }, 7856 { "Cmsg", 21, 1 }, 7857 { "CdataOut", 20, 1 }, 7858 { "EreadPdu", 19, 1 }, 7859 { "CreadPdu", 18, 1 }, 7860 { "TunnelPkt", 17, 1 }, 7861 { "RcfPeerFin", 16, 1 }, 7862 { "RcfReasonOut", 12, 4 }, 7863 { "TxCchannel", 10, 2 }, 7864 { "RcfTxChannel", 8, 2 }, 7865 { "RxEchannel", 6, 2 }, 7866 { "RcfRxChannel", 5, 1 }, 7867 { "RcfDataOutSrdy", 4, 1 }, 7868 { "RxDvld", 3, 1 }, 7869 { "RxOoDvld", 2, 1 }, 7870 { "RxCongestion", 1, 1 }, 7871 { "TxCongestion", 0, 1 }, 7872 { NULL } 7873 }; 7874 7875 static const struct field_desc tp_la1[] = { 7876 { "CplCmdIn", 56, 8 }, 7877 { "CplCmdOut", 48, 8 }, 7878 { "ESynOut", 47, 1 }, 7879 { "EAckOut", 46, 1 }, 7880 { "EFinOut", 45, 1 }, 7881 { "ERstOut", 44, 1 }, 7882 { "SynIn", 43, 1 }, 7883 { "AckIn", 42, 1 }, 7884 { "FinIn", 41, 1 }, 7885 { "RstIn", 40, 1 }, 7886 { "DataIn", 39, 1 }, 7887 { "DataInVld", 38, 1 }, 7888 { "PadIn", 37, 1 }, 7889 { "RxBufEmpty", 36, 1 }, 7890 { "RxDdp", 35, 1 }, 7891 { "RxFbCongestion", 34, 1 }, 7892 { "TxFbCongestion", 33, 1 }, 7893 { "TxPktSumSrdy", 32, 1 }, 7894 { "RcfUlpType", 28, 4 }, 7895 { "Eread", 27, 1 }, 7896 { "Ebypass", 26, 1 }, 7897 { "Esave", 25, 1 }, 7898 { "Static0", 24, 1 }, 7899 { "Cread", 23, 1 }, 7900 { "Cbypass", 22, 1 }, 7901 { "Csave", 21, 1 }, 7902 { "CPktOut", 20, 1 }, 7903 { "RxPagePoolFull", 18, 2 }, 7904 { "RxLpbkPkt", 17, 1 }, 7905 { "TxLpbkPkt", 16, 1 }, 7906 { "RxVfValid", 15, 1 }, 7907 { "SynLearned", 14, 1 }, 7908 { "SetDelEntry", 13, 1 }, 7909 { "SetInvEntry", 12, 1 }, 7910 { "CpcmdDvld", 11, 1 }, 7911 { "CpcmdSave", 10, 1 }, 7912 { "RxPstructsFull", 8, 2 }, 7913 { "EpcmdDvld", 7, 1 }, 7914 { "EpcmdFlush", 6, 1 }, 7915 { "EpcmdTrimPrefix", 5, 1 }, 7916 { "EpcmdTrimPostfix", 4, 1 }, 7917 { "ERssIp4Pkt", 3, 1 }, 7918 { "ERssIp6Pkt", 2, 1 }, 7919 { "ERssTcpUdpPkt", 1, 1 }, 7920 { "ERssFceFipPkt", 0, 1 }, 7921 { NULL } 7922 }; 7923 7924 static const struct field_desc tp_la2[] = { 7925 { "CplCmdIn", 56, 8 }, 7926 { "MpsVfVld", 55, 1 }, 7927 { "MpsPf", 52, 3 }, 7928 { "MpsVf", 44, 8 }, 7929 { "SynIn", 43, 1 }, 7930 { "AckIn", 42, 1 }, 7931 { "FinIn", 41, 1 }, 7932 { "RstIn", 40, 1 }, 7933 { "DataIn", 39, 1 }, 7934 { "DataInVld", 38, 1 }, 7935 { "PadIn", 37, 1 }, 7936 { "RxBufEmpty", 36, 1 }, 7937 { "RxDdp", 35, 1 }, 7938 { "RxFbCongestion", 34, 1 }, 7939 { "TxFbCongestion", 33, 1 }, 7940 { "TxPktSumSrdy", 32, 1 }, 7941 { "RcfUlpType", 28, 4 }, 7942 { "Eread", 27, 1 }, 7943 { "Ebypass", 26, 1 }, 7944 { "Esave", 25, 1 }, 7945 { "Static0", 24, 1 }, 7946 { "Cread", 23, 1 }, 7947 { "Cbypass", 22, 1 }, 7948 { "Csave", 21, 1 }, 7949 { "CPktOut", 20, 1 }, 7950 { "RxPagePoolFull", 18, 2 }, 7951 { "RxLpbkPkt", 17, 1 }, 7952 { "TxLpbkPkt", 16, 1 }, 7953 { "RxVfValid", 15, 1 }, 7954 { "SynLearned", 14, 1 }, 7955 { "SetDelEntry", 13, 1 }, 7956 { "SetInvEntry", 12, 1 }, 7957 { "CpcmdDvld", 11, 1 }, 7958 { "CpcmdSave", 10, 1 }, 7959 { "RxPstructsFull", 8, 2 }, 7960 { "EpcmdDvld", 7, 1 }, 7961 { "EpcmdFlush", 6, 1 }, 7962 { "EpcmdTrimPrefix", 5, 1 }, 7963 { "EpcmdTrimPostfix", 4, 1 }, 7964 { "ERssIp4Pkt", 3, 1 }, 7965 { "ERssIp6Pkt", 2, 1 }, 7966 { "ERssTcpUdpPkt", 1, 1 }, 7967 { "ERssFceFipPkt", 0, 1 }, 7968 { NULL } 7969 }; 7970 7971 static void 7972 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 7973 { 7974 7975 field_desc_show(sb, *p, tp_la0); 7976 } 7977 7978 static void 7979 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 7980 { 7981 7982 if (idx) 7983 sbuf_printf(sb, "\n"); 7984 field_desc_show(sb, p[0], tp_la0); 7985 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 7986 field_desc_show(sb, p[1], tp_la0); 7987 } 7988 7989 static void 7990 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 7991 { 7992 7993 if (idx) 7994 sbuf_printf(sb, "\n"); 7995 field_desc_show(sb, p[0], tp_la0); 7996 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 7997 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 7998 } 7999 8000 static int 8001 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 8002 { 8003 struct adapter *sc = arg1; 8004 struct sbuf *sb; 8005 uint64_t *buf, *p; 8006 int rc; 8007 u_int i, inc; 8008 void (*show_func)(struct sbuf *, uint64_t *, int); 8009 8010 rc = sysctl_wire_old_buffer(req, 0); 8011 if (rc != 0) 8012 return (rc); 8013 8014 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8015 if (sb == NULL) 8016 return (ENOMEM); 8017 8018 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 8019 8020 t4_tp_read_la(sc, buf, NULL); 8021 p = buf; 8022 8023 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 8024 case 2: 8025 inc = 2; 8026 show_func = tp_la_show2; 8027 break; 8028 case 3: 8029 inc = 2; 8030 show_func = tp_la_show3; 8031 break; 8032 default: 8033 inc = 1; 8034 show_func = tp_la_show; 8035 } 8036 8037 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 8038 (*show_func)(sb, p, i); 8039 8040 rc = sbuf_finish(sb); 8041 sbuf_delete(sb); 8042 free(buf, M_CXGBE); 8043 return (rc); 8044 } 8045 8046 static int 8047 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 8048 { 8049 struct adapter *sc = arg1; 8050 struct sbuf *sb; 8051 int rc; 8052 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 8053 8054 rc = sysctl_wire_old_buffer(req, 0); 8055 if (rc != 0) 8056 return (rc); 8057 8058 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8059 if (sb == NULL) 8060 return (ENOMEM); 8061 8062 t4_get_chan_txrate(sc, nrate, orate); 8063 8064 if (sc->chip_params->nchan > 2) { 8065 sbuf_printf(sb, " channel 0 channel 1" 8066 " channel 2 channel 3\n"); 8067 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 8068 nrate[0], nrate[1], nrate[2], nrate[3]); 8069 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 8070 orate[0], orate[1], orate[2], orate[3]); 8071 } else { 8072 sbuf_printf(sb, " channel 0 channel 1\n"); 8073 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 8074 nrate[0], nrate[1]); 8075 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 8076 orate[0], orate[1]); 8077 } 8078 8079 rc = sbuf_finish(sb); 8080 sbuf_delete(sb); 8081 8082 return (rc); 8083 } 8084 8085 static int 8086 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 8087 { 8088 struct adapter *sc = arg1; 8089 struct sbuf *sb; 8090 uint32_t *buf, *p; 8091 int rc, i; 8092 8093 rc = sysctl_wire_old_buffer(req, 0); 8094 if (rc != 0) 8095 return (rc); 8096 8097 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8098 if (sb == NULL) 8099 return (ENOMEM); 8100 8101 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 8102 M_ZERO | M_WAITOK); 8103 8104 t4_ulprx_read_la(sc, buf); 8105 p = buf; 8106 8107 sbuf_printf(sb, " Pcmd Type Message" 8108 " Data"); 8109 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 8110 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 8111 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 8112 } 8113 8114 rc = sbuf_finish(sb); 8115 sbuf_delete(sb); 8116 free(buf, M_CXGBE); 8117 return (rc); 8118 } 8119 8120 static int 8121 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 8122 { 8123 struct adapter *sc = arg1; 8124 struct sbuf *sb; 8125 int rc, v; 8126 8127 MPASS(chip_id(sc) >= CHELSIO_T5); 8128 8129 rc = sysctl_wire_old_buffer(req, 0); 8130 if (rc != 0) 8131 return (rc); 8132 8133 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8134 if (sb == NULL) 8135 return (ENOMEM); 8136 8137 v = t4_read_reg(sc, A_SGE_STAT_CFG); 8138 if (G_STATSOURCE_T5(v) == 7) { 8139 int mode; 8140 8141 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); 8142 if (mode == 0) { 8143 sbuf_printf(sb, "total %d, incomplete %d", 8144 t4_read_reg(sc, A_SGE_STAT_TOTAL), 8145 t4_read_reg(sc, A_SGE_STAT_MATCH)); 8146 } else if (mode == 1) { 8147 sbuf_printf(sb, "total %d, data overflow %d", 8148 t4_read_reg(sc, A_SGE_STAT_TOTAL), 8149 t4_read_reg(sc, A_SGE_STAT_MATCH)); 8150 } else { 8151 sbuf_printf(sb, "unknown mode %d", mode); 8152 } 8153 } 8154 rc = sbuf_finish(sb); 8155 sbuf_delete(sb); 8156 8157 return (rc); 8158 } 8159 8160 static int 8161 sysctl_tc_params(SYSCTL_HANDLER_ARGS) 8162 { 8163 struct adapter *sc = arg1; 8164 struct tx_cl_rl_params tc; 8165 struct sbuf *sb; 8166 int i, rc, port_id, mbps, gbps; 8167 8168 rc = sysctl_wire_old_buffer(req, 0); 8169 if (rc != 0) 8170 return (rc); 8171 8172 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8173 if (sb == NULL) 8174 return (ENOMEM); 8175 8176 port_id = arg2 >> 16; 8177 MPASS(port_id < sc->params.nports); 8178 MPASS(sc->port[port_id] != NULL); 8179 i = arg2 & 0xffff; 8180 MPASS(i < sc->chip_params->nsched_cls); 8181 8182 mtx_lock(&sc->tc_lock); 8183 tc = sc->port[port_id]->sched_params->cl_rl[i]; 8184 mtx_unlock(&sc->tc_lock); 8185 8186 if (tc.flags & TX_CLRL_ERROR) { 8187 sbuf_printf(sb, "error"); 8188 goto done; 8189 } 8190 8191 if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) { 8192 /* XXX: top speed or actual link speed? */ 8193 gbps = port_top_speed(sc->port[port_id]); 8194 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps); 8195 } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) { 8196 switch (tc.rateunit) { 8197 case SCHED_CLASS_RATEUNIT_BITS: 8198 mbps = tc.maxrate / 1000; 8199 gbps = tc.maxrate / 1000000; 8200 if (tc.maxrate == gbps * 1000000) 8201 sbuf_printf(sb, " %uGbps", gbps); 8202 else if (tc.maxrate == mbps * 1000) 8203 sbuf_printf(sb, " %uMbps", mbps); 8204 else 8205 sbuf_printf(sb, " %uKbps", tc.maxrate); 8206 break; 8207 case SCHED_CLASS_RATEUNIT_PKTS: 8208 sbuf_printf(sb, " %upps", tc.maxrate); 8209 break; 8210 default: 8211 rc = ENXIO; 8212 goto done; 8213 } 8214 } 8215 8216 switch (tc.mode) { 8217 case SCHED_CLASS_MODE_CLASS: 8218 sbuf_printf(sb, " aggregate"); 8219 break; 8220 case SCHED_CLASS_MODE_FLOW: 8221 sbuf_printf(sb, " per-flow"); 8222 break; 8223 default: 8224 rc = ENXIO; 8225 goto done; 8226 } 8227 8228 done: 8229 if (rc == 0) 8230 rc = sbuf_finish(sb); 8231 sbuf_delete(sb); 8232 8233 return (rc); 8234 } 8235 #endif 8236 8237 #ifdef TCP_OFFLOAD 8238 static void 8239 unit_conv(char *buf, size_t len, u_int val, u_int factor) 8240 { 8241 u_int rem = val % factor; 8242 8243 if (rem == 0) 8244 snprintf(buf, len, "%u", val / factor); 8245 else { 8246 while (rem % 10 == 0) 8247 rem /= 10; 8248 snprintf(buf, len, "%u.%u", val / factor, rem); 8249 } 8250 } 8251 8252 static int 8253 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 8254 { 8255 struct adapter *sc = arg1; 8256 char buf[16]; 8257 u_int res, re; 8258 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8259 8260 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 8261 switch (arg2) { 8262 case 0: 8263 /* timer_tick */ 8264 re = G_TIMERRESOLUTION(res); 8265 break; 8266 case 1: 8267 /* TCP timestamp tick */ 8268 re = G_TIMESTAMPRESOLUTION(res); 8269 break; 8270 case 2: 8271 /* DACK tick */ 8272 re = G_DELAYEDACKRESOLUTION(res); 8273 break; 8274 default: 8275 return (EDOOFUS); 8276 } 8277 8278 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 8279 8280 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 8281 } 8282 8283 static int 8284 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 8285 { 8286 struct adapter *sc = arg1; 8287 u_int res, dack_re, v; 8288 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8289 8290 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 8291 dack_re = G_DELAYEDACKRESOLUTION(res); 8292 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 8293 8294 return (sysctl_handle_int(oidp, &v, 0, req)); 8295 } 8296 8297 static int 8298 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 8299 { 8300 struct adapter *sc = arg1; 8301 int reg = arg2; 8302 u_int tre; 8303 u_long tp_tick_us, v; 8304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8305 8306 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 8307 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 8308 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 8309 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 8310 8311 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 8312 tp_tick_us = (cclk_ps << tre) / 1000000; 8313 8314 if (reg == A_TP_INIT_SRTT) 8315 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 8316 else 8317 v = tp_tick_us * t4_read_reg(sc, reg); 8318 8319 return (sysctl_handle_long(oidp, &v, 0, req)); 8320 } 8321 8322 /* 8323 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 8324 * passed to this function. 8325 */ 8326 static int 8327 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 8328 { 8329 struct adapter *sc = arg1; 8330 int idx = arg2; 8331 u_int v; 8332 8333 MPASS(idx >= 0 && idx <= 24); 8334 8335 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 8336 8337 return (sysctl_handle_int(oidp, &v, 0, req)); 8338 } 8339 8340 static int 8341 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 8342 { 8343 struct adapter *sc = arg1; 8344 int idx = arg2; 8345 u_int shift, v, r; 8346 8347 MPASS(idx >= 0 && idx < 16); 8348 8349 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 8350 shift = (idx & 3) << 3; 8351 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 8352 8353 return (sysctl_handle_int(oidp, &v, 0, req)); 8354 } 8355 8356 static int 8357 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 8358 { 8359 struct vi_info *vi = arg1; 8360 struct adapter *sc = vi->pi->adapter; 8361 int idx, rc, i; 8362 struct sge_ofld_rxq *ofld_rxq; 8363 uint8_t v; 8364 8365 idx = vi->ofld_tmr_idx; 8366 8367 rc = sysctl_handle_int(oidp, &idx, 0, req); 8368 if (rc != 0 || req->newptr == NULL) 8369 return (rc); 8370 8371 if (idx < 0 || idx >= SGE_NTIMERS) 8372 return (EINVAL); 8373 8374 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8375 "t4otmr"); 8376 if (rc) 8377 return (rc); 8378 8379 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 8380 for_each_ofld_rxq(vi, i, ofld_rxq) { 8381 #ifdef atomic_store_rel_8 8382 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 8383 #else 8384 ofld_rxq->iq.intr_params = v; 8385 #endif 8386 } 8387 vi->ofld_tmr_idx = idx; 8388 8389 end_synchronized_op(sc, LOCK_HELD); 8390 return (0); 8391 } 8392 8393 static int 8394 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 8395 { 8396 struct vi_info *vi = arg1; 8397 struct adapter *sc = vi->pi->adapter; 8398 int idx, rc; 8399 8400 idx = vi->ofld_pktc_idx; 8401 8402 rc = sysctl_handle_int(oidp, &idx, 0, req); 8403 if (rc != 0 || req->newptr == NULL) 8404 return (rc); 8405 8406 if (idx < -1 || idx >= SGE_NCOUNTERS) 8407 return (EINVAL); 8408 8409 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8410 "t4opktc"); 8411 if (rc) 8412 return (rc); 8413 8414 if (vi->flags & VI_INIT_DONE) 8415 rc = EBUSY; /* cannot be changed once the queues are created */ 8416 else 8417 vi->ofld_pktc_idx = idx; 8418 8419 end_synchronized_op(sc, LOCK_HELD); 8420 return (rc); 8421 } 8422 #endif 8423 8424 static uint32_t 8425 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf) 8426 { 8427 uint32_t mode; 8428 8429 mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | 8430 T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; 8431 8432 if (fconf & F_FRAGMENTATION) 8433 mode |= T4_FILTER_IP_FRAGMENT; 8434 8435 if (fconf & F_MPSHITTYPE) 8436 mode |= T4_FILTER_MPS_HIT_TYPE; 8437 8438 if (fconf & F_MACMATCH) 8439 mode |= T4_FILTER_MAC_IDX; 8440 8441 if (fconf & F_ETHERTYPE) 8442 mode |= T4_FILTER_ETH_TYPE; 8443 8444 if (fconf & F_PROTOCOL) 8445 mode |= T4_FILTER_IP_PROTO; 8446 8447 if (fconf & F_TOS) 8448 mode |= T4_FILTER_IP_TOS; 8449 8450 if (fconf & F_VLAN) 8451 mode |= T4_FILTER_VLAN; 8452 8453 if (fconf & F_VNIC_ID) { 8454 mode |= T4_FILTER_VNIC; 8455 if (iconf & F_VNIC) 8456 mode |= T4_FILTER_IC_VNIC; 8457 } 8458 8459 if (fconf & F_PORT) 8460 mode |= T4_FILTER_PORT; 8461 8462 if (fconf & F_FCOE) 8463 mode |= T4_FILTER_FCoE; 8464 8465 return (mode); 8466 } 8467 8468 static uint32_t 8469 mode_to_fconf(uint32_t mode) 8470 { 8471 uint32_t fconf = 0; 8472 8473 if (mode & T4_FILTER_IP_FRAGMENT) 8474 fconf |= F_FRAGMENTATION; 8475 8476 if (mode & T4_FILTER_MPS_HIT_TYPE) 8477 fconf |= F_MPSHITTYPE; 8478 8479 if (mode & T4_FILTER_MAC_IDX) 8480 fconf |= F_MACMATCH; 8481 8482 if (mode & T4_FILTER_ETH_TYPE) 8483 fconf |= F_ETHERTYPE; 8484 8485 if (mode & T4_FILTER_IP_PROTO) 8486 fconf |= F_PROTOCOL; 8487 8488 if (mode & T4_FILTER_IP_TOS) 8489 fconf |= F_TOS; 8490 8491 if (mode & T4_FILTER_VLAN) 8492 fconf |= F_VLAN; 8493 8494 if (mode & T4_FILTER_VNIC) 8495 fconf |= F_VNIC_ID; 8496 8497 if (mode & T4_FILTER_PORT) 8498 fconf |= F_PORT; 8499 8500 if (mode & T4_FILTER_FCoE) 8501 fconf |= F_FCOE; 8502 8503 return (fconf); 8504 } 8505 8506 static uint32_t 8507 mode_to_iconf(uint32_t mode) 8508 { 8509 8510 if (mode & T4_FILTER_IC_VNIC) 8511 return (F_VNIC); 8512 return (0); 8513 } 8514 8515 static int check_fspec_against_fconf_iconf(struct adapter *sc, 8516 struct t4_filter_specification *fs) 8517 { 8518 struct tp_params *tpp = &sc->params.tp; 8519 uint32_t fconf = 0; 8520 8521 if (fs->val.frag || fs->mask.frag) 8522 fconf |= F_FRAGMENTATION; 8523 8524 if (fs->val.matchtype || fs->mask.matchtype) 8525 fconf |= F_MPSHITTYPE; 8526 8527 if (fs->val.macidx || fs->mask.macidx) 8528 fconf |= F_MACMATCH; 8529 8530 if (fs->val.ethtype || fs->mask.ethtype) 8531 fconf |= F_ETHERTYPE; 8532 8533 if (fs->val.proto || fs->mask.proto) 8534 fconf |= F_PROTOCOL; 8535 8536 if (fs->val.tos || fs->mask.tos) 8537 fconf |= F_TOS; 8538 8539 if (fs->val.vlan_vld || fs->mask.vlan_vld) 8540 fconf |= F_VLAN; 8541 8542 if (fs->val.ovlan_vld || fs->mask.ovlan_vld) { 8543 fconf |= F_VNIC_ID; 8544 if (tpp->ingress_config & F_VNIC) 8545 return (EINVAL); 8546 } 8547 8548 if (fs->val.pfvf_vld || fs->mask.pfvf_vld) { 8549 fconf |= F_VNIC_ID; 8550 if ((tpp->ingress_config & F_VNIC) == 0) 8551 return (EINVAL); 8552 } 8553 8554 if (fs->val.iport || fs->mask.iport) 8555 fconf |= F_PORT; 8556 8557 if (fs->val.fcoe || fs->mask.fcoe) 8558 fconf |= F_FCOE; 8559 8560 if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map) 8561 return (E2BIG); 8562 8563 return (0); 8564 } 8565 8566 static int 8567 get_filter_mode(struct adapter *sc, uint32_t *mode) 8568 { 8569 struct tp_params *tpp = &sc->params.tp; 8570 8571 /* 8572 * We trust the cached values of the relevant TP registers. This means 8573 * things work reliably only if writes to those registers are always via 8574 * t4_set_filter_mode. 8575 */ 8576 *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config); 8577 8578 return (0); 8579 } 8580 8581 static int 8582 set_filter_mode(struct adapter *sc, uint32_t mode) 8583 { 8584 struct tp_params *tpp = &sc->params.tp; 8585 uint32_t fconf, iconf; 8586 int rc; 8587 8588 iconf = mode_to_iconf(mode); 8589 if ((iconf ^ tpp->ingress_config) & F_VNIC) { 8590 /* 8591 * For now we just complain if A_TP_INGRESS_CONFIG is not 8592 * already set to the correct value for the requested filter 8593 * mode. It's not clear if it's safe to write to this register 8594 * on the fly. (And we trust the cached value of the register). 8595 */ 8596 return (EBUSY); 8597 } 8598 8599 fconf = mode_to_fconf(mode); 8600 8601 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 8602 "t4setfm"); 8603 if (rc) 8604 return (rc); 8605 8606 if (sc->tids.ftids_in_use > 0) { 8607 rc = EBUSY; 8608 goto done; 8609 } 8610 8611 #ifdef TCP_OFFLOAD 8612 if (uld_active(sc, ULD_TOM)) { 8613 rc = EBUSY; 8614 goto done; 8615 } 8616 #endif 8617 8618 rc = -t4_set_filter_mode(sc, fconf, true); 8619 done: 8620 end_synchronized_op(sc, LOCK_HELD); 8621 return (rc); 8622 } 8623 8624 static inline uint64_t 8625 get_filter_hits(struct adapter *sc, uint32_t fid) 8626 { 8627 uint32_t tcb_addr; 8628 8629 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + 8630 (fid + sc->tids.ftid_base) * TCB_SIZE; 8631 8632 if (is_t4(sc)) { 8633 uint64_t hits; 8634 8635 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8); 8636 return (be64toh(hits)); 8637 } else { 8638 uint32_t hits; 8639 8640 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4); 8641 return (be32toh(hits)); 8642 } 8643 } 8644 8645 static int 8646 get_filter(struct adapter *sc, struct t4_filter *t) 8647 { 8648 int i, rc, nfilters = sc->tids.nftids; 8649 struct filter_entry *f; 8650 8651 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 8652 "t4getf"); 8653 if (rc) 8654 return (rc); 8655 8656 if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || 8657 t->idx >= nfilters) { 8658 t->idx = 0xffffffff; 8659 goto done; 8660 } 8661 8662 f = &sc->tids.ftid_tab[t->idx]; 8663 for (i = t->idx; i < nfilters; i++, f++) { 8664 if (f->valid) { 8665 t->idx = i; 8666 t->l2tidx = f->l2t ? f->l2t->idx : 0; 8667 t->smtidx = f->smtidx; 8668 if (f->fs.hitcnts) 8669 t->hits = get_filter_hits(sc, t->idx); 8670 else 8671 t->hits = UINT64_MAX; 8672 t->fs = f->fs; 8673 8674 goto done; 8675 } 8676 } 8677 8678 t->idx = 0xffffffff; 8679 done: 8680 end_synchronized_op(sc, LOCK_HELD); 8681 return (0); 8682 } 8683 8684 static int 8685 set_filter(struct adapter *sc, struct t4_filter *t) 8686 { 8687 unsigned int nfilters, nports; 8688 struct filter_entry *f; 8689 int i, rc; 8690 8691 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf"); 8692 if (rc) 8693 return (rc); 8694 8695 nfilters = sc->tids.nftids; 8696 nports = sc->params.nports; 8697 8698 if (nfilters == 0) { 8699 rc = ENOTSUP; 8700 goto done; 8701 } 8702 8703 if (t->idx >= nfilters) { 8704 rc = EINVAL; 8705 goto done; 8706 } 8707 8708 /* Validate against the global filter mode and ingress config */ 8709 rc = check_fspec_against_fconf_iconf(sc, &t->fs); 8710 if (rc != 0) 8711 goto done; 8712 8713 if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) { 8714 rc = EINVAL; 8715 goto done; 8716 } 8717 8718 if (t->fs.val.iport >= nports) { 8719 rc = EINVAL; 8720 goto done; 8721 } 8722 8723 /* Can't specify an iq if not steering to it */ 8724 if (!t->fs.dirsteer && t->fs.iq) { 8725 rc = EINVAL; 8726 goto done; 8727 } 8728 8729 /* IPv6 filter idx must be 4 aligned */ 8730 if (t->fs.type == 1 && 8731 ((t->idx & 0x3) || t->idx + 4 >= nfilters)) { 8732 rc = EINVAL; 8733 goto done; 8734 } 8735 8736 if (!(sc->flags & FULL_INIT_DONE) && 8737 ((rc = adapter_full_init(sc)) != 0)) 8738 goto done; 8739 8740 if (sc->tids.ftid_tab == NULL) { 8741 KASSERT(sc->tids.ftids_in_use == 0, 8742 ("%s: no memory allocated but filters_in_use > 0", 8743 __func__)); 8744 8745 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * 8746 nfilters, M_CXGBE, M_NOWAIT | M_ZERO); 8747 if (sc->tids.ftid_tab == NULL) { 8748 rc = ENOMEM; 8749 goto done; 8750 } 8751 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF); 8752 } 8753 8754 for (i = 0; i < 4; i++) { 8755 f = &sc->tids.ftid_tab[t->idx + i]; 8756 8757 if (f->pending || f->valid) { 8758 rc = EBUSY; 8759 goto done; 8760 } 8761 if (f->locked) { 8762 rc = EPERM; 8763 goto done; 8764 } 8765 8766 if (t->fs.type == 0) 8767 break; 8768 } 8769 8770 f = &sc->tids.ftid_tab[t->idx]; 8771 f->fs = t->fs; 8772 8773 rc = set_filter_wr(sc, t->idx); 8774 done: 8775 end_synchronized_op(sc, 0); 8776 8777 if (rc == 0) { 8778 mtx_lock(&sc->tids.ftid_lock); 8779 for (;;) { 8780 if (f->pending == 0) { 8781 rc = f->valid ? 0 : EIO; 8782 break; 8783 } 8784 8785 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 8786 PCATCH, "t4setfw", 0)) { 8787 rc = EINPROGRESS; 8788 break; 8789 } 8790 } 8791 mtx_unlock(&sc->tids.ftid_lock); 8792 } 8793 return (rc); 8794 } 8795 8796 static int 8797 del_filter(struct adapter *sc, struct t4_filter *t) 8798 { 8799 unsigned int nfilters; 8800 struct filter_entry *f; 8801 int rc; 8802 8803 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf"); 8804 if (rc) 8805 return (rc); 8806 8807 nfilters = sc->tids.nftids; 8808 8809 if (nfilters == 0) { 8810 rc = ENOTSUP; 8811 goto done; 8812 } 8813 8814 if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || 8815 t->idx >= nfilters) { 8816 rc = EINVAL; 8817 goto done; 8818 } 8819 8820 if (!(sc->flags & FULL_INIT_DONE)) { 8821 rc = EAGAIN; 8822 goto done; 8823 } 8824 8825 f = &sc->tids.ftid_tab[t->idx]; 8826 8827 if (f->pending) { 8828 rc = EBUSY; 8829 goto done; 8830 } 8831 if (f->locked) { 8832 rc = EPERM; 8833 goto done; 8834 } 8835 8836 if (f->valid) { 8837 t->fs = f->fs; /* extra info for the caller */ 8838 rc = del_filter_wr(sc, t->idx); 8839 } 8840 8841 done: 8842 end_synchronized_op(sc, 0); 8843 8844 if (rc == 0) { 8845 mtx_lock(&sc->tids.ftid_lock); 8846 for (;;) { 8847 if (f->pending == 0) { 8848 rc = f->valid ? EIO : 0; 8849 break; 8850 } 8851 8852 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 8853 PCATCH, "t4delfw", 0)) { 8854 rc = EINPROGRESS; 8855 break; 8856 } 8857 } 8858 mtx_unlock(&sc->tids.ftid_lock); 8859 } 8860 8861 return (rc); 8862 } 8863 8864 static void 8865 clear_filter(struct filter_entry *f) 8866 { 8867 if (f->l2t) 8868 t4_l2t_release(f->l2t); 8869 8870 bzero(f, sizeof (*f)); 8871 } 8872 8873 static int 8874 set_filter_wr(struct adapter *sc, int fidx) 8875 { 8876 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8877 struct fw_filter_wr *fwr; 8878 unsigned int ftid, vnic_vld, vnic_vld_mask; 8879 struct wrq_cookie cookie; 8880 8881 ASSERT_SYNCHRONIZED_OP(sc); 8882 8883 if (f->fs.newdmac || f->fs.newvlan) { 8884 /* This filter needs an L2T entry; allocate one. */ 8885 f->l2t = t4_l2t_alloc_switching(sc->l2t); 8886 if (f->l2t == NULL) 8887 return (EAGAIN); 8888 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, 8889 f->fs.dmac)) { 8890 t4_l2t_release(f->l2t); 8891 f->l2t = NULL; 8892 return (ENOMEM); 8893 } 8894 } 8895 8896 /* Already validated against fconf, iconf */ 8897 MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0); 8898 MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0); 8899 if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld) 8900 vnic_vld = 1; 8901 else 8902 vnic_vld = 0; 8903 if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld) 8904 vnic_vld_mask = 1; 8905 else 8906 vnic_vld_mask = 0; 8907 8908 ftid = sc->tids.ftid_base + fidx; 8909 8910 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8911 if (fwr == NULL) 8912 return (ENOMEM); 8913 bzero(fwr, sizeof(*fwr)); 8914 8915 fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); 8916 fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); 8917 fwr->tid_to_iq = 8918 htobe32(V_FW_FILTER_WR_TID(ftid) | 8919 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 8920 V_FW_FILTER_WR_NOREPLY(0) | 8921 V_FW_FILTER_WR_IQ(f->fs.iq)); 8922 fwr->del_filter_to_l2tix = 8923 htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 8924 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 8925 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 8926 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 8927 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 8928 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 8929 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 8930 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 8931 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 8932 f->fs.newvlan == VLAN_REWRITE) | 8933 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 8934 f->fs.newvlan == VLAN_REWRITE) | 8935 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 8936 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 8937 V_FW_FILTER_WR_PRIO(f->fs.prio) | 8938 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 8939 fwr->ethtype = htobe16(f->fs.val.ethtype); 8940 fwr->ethtypem = htobe16(f->fs.mask.ethtype); 8941 fwr->frag_to_ovlan_vldm = 8942 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 8943 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 8944 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | 8945 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) | 8946 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | 8947 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask)); 8948 fwr->smac_sel = 0; 8949 fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | 8950 V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); 8951 fwr->maci_to_matchtypem = 8952 htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 8953 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 8954 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 8955 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 8956 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 8957 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 8958 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 8959 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 8960 fwr->ptcl = f->fs.val.proto; 8961 fwr->ptclm = f->fs.mask.proto; 8962 fwr->ttyp = f->fs.val.tos; 8963 fwr->ttypm = f->fs.mask.tos; 8964 fwr->ivlan = htobe16(f->fs.val.vlan); 8965 fwr->ivlanm = htobe16(f->fs.mask.vlan); 8966 fwr->ovlan = htobe16(f->fs.val.vnic); 8967 fwr->ovlanm = htobe16(f->fs.mask.vnic); 8968 bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); 8969 bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); 8970 bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); 8971 bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); 8972 fwr->lp = htobe16(f->fs.val.dport); 8973 fwr->lpm = htobe16(f->fs.mask.dport); 8974 fwr->fp = htobe16(f->fs.val.sport); 8975 fwr->fpm = htobe16(f->fs.mask.sport); 8976 if (f->fs.newsmac) 8977 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); 8978 8979 f->pending = 1; 8980 sc->tids.ftids_in_use++; 8981 8982 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 8983 return (0); 8984 } 8985 8986 static int 8987 del_filter_wr(struct adapter *sc, int fidx) 8988 { 8989 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8990 struct fw_filter_wr *fwr; 8991 unsigned int ftid; 8992 struct wrq_cookie cookie; 8993 8994 ftid = sc->tids.ftid_base + fidx; 8995 8996 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8997 if (fwr == NULL) 8998 return (ENOMEM); 8999 bzero(fwr, sizeof (*fwr)); 9000 9001 t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); 9002 9003 f->pending = 1; 9004 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 9005 return (0); 9006 } 9007 9008 int 9009 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 9010 { 9011 struct adapter *sc = iq->adapter; 9012 const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); 9013 unsigned int idx = GET_TID(rpl); 9014 unsigned int rc; 9015 struct filter_entry *f; 9016 9017 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 9018 rss->opcode)); 9019 MPASS(iq == &sc->sge.fwq); 9020 MPASS(is_ftid(sc, idx)); 9021 9022 idx -= sc->tids.ftid_base; 9023 f = &sc->tids.ftid_tab[idx]; 9024 rc = G_COOKIE(rpl->cookie); 9025 9026 mtx_lock(&sc->tids.ftid_lock); 9027 if (rc == FW_FILTER_WR_FLT_ADDED) { 9028 KASSERT(f->pending, ("%s: filter[%u] isn't pending.", 9029 __func__, idx)); 9030 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; 9031 f->pending = 0; /* asynchronous setup completed */ 9032 f->valid = 1; 9033 } else { 9034 if (rc != FW_FILTER_WR_FLT_DELETED) { 9035 /* Add or delete failed, display an error */ 9036 log(LOG_ERR, 9037 "filter %u setup failed with error %u\n", 9038 idx, rc); 9039 } 9040 9041 clear_filter(f); 9042 sc->tids.ftids_in_use--; 9043 } 9044 wakeup(&sc->tids.ftid_tab); 9045 mtx_unlock(&sc->tids.ftid_lock); 9046 9047 return (0); 9048 } 9049 9050 static int 9051 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 9052 { 9053 9054 MPASS(iq->set_tcb_rpl != NULL); 9055 return (iq->set_tcb_rpl(iq, rss, m)); 9056 } 9057 9058 static int 9059 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 9060 { 9061 9062 MPASS(iq->l2t_write_rpl != NULL); 9063 return (iq->l2t_write_rpl(iq, rss, m)); 9064 } 9065 9066 static int 9067 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 9068 { 9069 int rc; 9070 9071 if (cntxt->cid > M_CTXTQID) 9072 return (EINVAL); 9073 9074 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 9075 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 9076 return (EINVAL); 9077 9078 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 9079 if (rc) 9080 return (rc); 9081 9082 if (sc->flags & FW_OK) { 9083 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 9084 &cntxt->data[0]); 9085 if (rc == 0) 9086 goto done; 9087 } 9088 9089 /* 9090 * Read via firmware failed or wasn't even attempted. Read directly via 9091 * the backdoor. 9092 */ 9093 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 9094 done: 9095 end_synchronized_op(sc, 0); 9096 return (rc); 9097 } 9098 9099 static int 9100 load_fw(struct adapter *sc, struct t4_data *fw) 9101 { 9102 int rc; 9103 uint8_t *fw_data; 9104 9105 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 9106 if (rc) 9107 return (rc); 9108 9109 /* 9110 * The firmware, with the sole exception of the memory parity error 9111 * handler, runs from memory and not flash. It is almost always safe to 9112 * install a new firmware on a running system. Just set bit 1 in 9113 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 9114 */ 9115 if (sc->flags & FULL_INIT_DONE && 9116 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 9117 rc = EBUSY; 9118 goto done; 9119 } 9120 9121 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 9122 if (fw_data == NULL) { 9123 rc = ENOMEM; 9124 goto done; 9125 } 9126 9127 rc = copyin(fw->data, fw_data, fw->len); 9128 if (rc == 0) 9129 rc = -t4_load_fw(sc, fw_data, fw->len); 9130 9131 free(fw_data, M_CXGBE); 9132 done: 9133 end_synchronized_op(sc, 0); 9134 return (rc); 9135 } 9136 9137 static int 9138 load_cfg(struct adapter *sc, struct t4_data *cfg) 9139 { 9140 int rc; 9141 uint8_t *cfg_data = NULL; 9142 9143 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9144 if (rc) 9145 return (rc); 9146 9147 if (cfg->len == 0) { 9148 /* clear */ 9149 rc = -t4_load_cfg(sc, NULL, 0); 9150 goto done; 9151 } 9152 9153 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 9154 if (cfg_data == NULL) { 9155 rc = ENOMEM; 9156 goto done; 9157 } 9158 9159 rc = copyin(cfg->data, cfg_data, cfg->len); 9160 if (rc == 0) 9161 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 9162 9163 free(cfg_data, M_CXGBE); 9164 done: 9165 end_synchronized_op(sc, 0); 9166 return (rc); 9167 } 9168 9169 static int 9170 load_boot(struct adapter *sc, struct t4_bootrom *br) 9171 { 9172 int rc; 9173 uint8_t *br_data = NULL; 9174 u_int offset; 9175 9176 if (br->len > 1024 * 1024) 9177 return (EFBIG); 9178 9179 if (br->pf_offset == 0) { 9180 /* pfidx */ 9181 if (br->pfidx_addr > 7) 9182 return (EINVAL); 9183 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 9184 A_PCIE_PF_EXPROM_OFST))); 9185 } else if (br->pf_offset == 1) { 9186 /* offset */ 9187 offset = G_OFFSET(br->pfidx_addr); 9188 } else { 9189 return (EINVAL); 9190 } 9191 9192 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 9193 if (rc) 9194 return (rc); 9195 9196 if (br->len == 0) { 9197 /* clear */ 9198 rc = -t4_load_boot(sc, NULL, offset, 0); 9199 goto done; 9200 } 9201 9202 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 9203 if (br_data == NULL) { 9204 rc = ENOMEM; 9205 goto done; 9206 } 9207 9208 rc = copyin(br->data, br_data, br->len); 9209 if (rc == 0) 9210 rc = -t4_load_boot(sc, br_data, offset, br->len); 9211 9212 free(br_data, M_CXGBE); 9213 done: 9214 end_synchronized_op(sc, 0); 9215 return (rc); 9216 } 9217 9218 static int 9219 load_bootcfg(struct adapter *sc, struct t4_data *bc) 9220 { 9221 int rc; 9222 uint8_t *bc_data = NULL; 9223 9224 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9225 if (rc) 9226 return (rc); 9227 9228 if (bc->len == 0) { 9229 /* clear */ 9230 rc = -t4_load_bootcfg(sc, NULL, 0); 9231 goto done; 9232 } 9233 9234 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 9235 if (bc_data == NULL) { 9236 rc = ENOMEM; 9237 goto done; 9238 } 9239 9240 rc = copyin(bc->data, bc_data, bc->len); 9241 if (rc == 0) 9242 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 9243 9244 free(bc_data, M_CXGBE); 9245 done: 9246 end_synchronized_op(sc, 0); 9247 return (rc); 9248 } 9249 9250 static int 9251 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 9252 { 9253 int rc; 9254 struct cudbg_init *cudbg; 9255 void *handle, *buf; 9256 9257 /* buf is large, don't block if no memory is available */ 9258 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 9259 if (buf == NULL) 9260 return (ENOMEM); 9261 9262 handle = cudbg_alloc_handle(); 9263 if (handle == NULL) { 9264 rc = ENOMEM; 9265 goto done; 9266 } 9267 9268 cudbg = cudbg_get_init(handle); 9269 cudbg->adap = sc; 9270 cudbg->print = (cudbg_print_cb)printf; 9271 9272 #ifndef notyet 9273 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 9274 __func__, dump->wr_flash, dump->len, dump->data); 9275 #endif 9276 9277 if (dump->wr_flash) 9278 cudbg->use_flash = 1; 9279 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 9280 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 9281 9282 rc = cudbg_collect(handle, buf, &dump->len); 9283 if (rc != 0) 9284 goto done; 9285 9286 rc = copyout(buf, dump->data, dump->len); 9287 done: 9288 cudbg_free_handle(handle); 9289 free(buf, M_CXGBE); 9290 return (rc); 9291 } 9292 9293 #define MAX_READ_BUF_SIZE (128 * 1024) 9294 static int 9295 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 9296 { 9297 uint32_t addr, remaining, n; 9298 uint32_t *buf; 9299 int rc; 9300 uint8_t *dst; 9301 9302 rc = validate_mem_range(sc, mr->addr, mr->len); 9303 if (rc != 0) 9304 return (rc); 9305 9306 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 9307 addr = mr->addr; 9308 remaining = mr->len; 9309 dst = (void *)mr->data; 9310 9311 while (remaining) { 9312 n = min(remaining, MAX_READ_BUF_SIZE); 9313 read_via_memwin(sc, 2, addr, buf, n); 9314 9315 rc = copyout(buf, dst, n); 9316 if (rc != 0) 9317 break; 9318 9319 dst += n; 9320 remaining -= n; 9321 addr += n; 9322 } 9323 9324 free(buf, M_CXGBE); 9325 return (rc); 9326 } 9327 #undef MAX_READ_BUF_SIZE 9328 9329 static int 9330 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 9331 { 9332 int rc; 9333 9334 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 9335 return (EINVAL); 9336 9337 if (i2cd->len > sizeof(i2cd->data)) 9338 return (EFBIG); 9339 9340 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 9341 if (rc) 9342 return (rc); 9343 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 9344 i2cd->offset, i2cd->len, &i2cd->data[0]); 9345 end_synchronized_op(sc, 0); 9346 9347 return (rc); 9348 } 9349 9350 int 9351 t4_os_find_pci_capability(struct adapter *sc, int cap) 9352 { 9353 int i; 9354 9355 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 9356 } 9357 9358 int 9359 t4_os_pci_save_state(struct adapter *sc) 9360 { 9361 device_t dev; 9362 struct pci_devinfo *dinfo; 9363 9364 dev = sc->dev; 9365 dinfo = device_get_ivars(dev); 9366 9367 pci_cfg_save(dev, dinfo, 0); 9368 return (0); 9369 } 9370 9371 int 9372 t4_os_pci_restore_state(struct adapter *sc) 9373 { 9374 device_t dev; 9375 struct pci_devinfo *dinfo; 9376 9377 dev = sc->dev; 9378 dinfo = device_get_ivars(dev); 9379 9380 pci_cfg_restore(dev, dinfo); 9381 return (0); 9382 } 9383 9384 void 9385 t4_os_portmod_changed(struct port_info *pi) 9386 { 9387 struct adapter *sc = pi->adapter; 9388 struct vi_info *vi; 9389 struct ifnet *ifp; 9390 static const char *mod_str[] = { 9391 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 9392 }; 9393 9394 PORT_LOCK(pi); 9395 build_medialist(pi, &pi->media); 9396 PORT_UNLOCK(pi); 9397 vi = &pi->vi[0]; 9398 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 9399 init_l1cfg(pi); 9400 end_synchronized_op(sc, LOCK_HELD); 9401 } 9402 9403 ifp = vi->ifp; 9404 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 9405 if_printf(ifp, "transceiver unplugged.\n"); 9406 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 9407 if_printf(ifp, "unknown transceiver inserted.\n"); 9408 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 9409 if_printf(ifp, "unsupported transceiver inserted.\n"); 9410 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 9411 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 9412 port_top_speed(pi), mod_str[pi->mod_type]); 9413 } else { 9414 if_printf(ifp, "transceiver (type %d) inserted.\n", 9415 pi->mod_type); 9416 } 9417 } 9418 9419 void 9420 t4_os_link_changed(struct port_info *pi) 9421 { 9422 struct vi_info *vi; 9423 struct ifnet *ifp; 9424 struct link_config *lc; 9425 int v; 9426 9427 for_each_vi(pi, v, vi) { 9428 ifp = vi->ifp; 9429 if (ifp == NULL) 9430 continue; 9431 9432 lc = &pi->link_cfg; 9433 if (lc->link_ok) { 9434 ifp->if_baudrate = IF_Mbps(lc->speed); 9435 if_link_state_change(ifp, LINK_STATE_UP); 9436 } else { 9437 if_link_state_change(ifp, LINK_STATE_DOWN); 9438 } 9439 } 9440 } 9441 9442 void 9443 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 9444 { 9445 struct adapter *sc; 9446 9447 sx_slock(&t4_list_lock); 9448 SLIST_FOREACH(sc, &t4_list, link) { 9449 /* 9450 * func should not make any assumptions about what state sc is 9451 * in - the only guarantee is that sc->sc_lock is a valid lock. 9452 */ 9453 func(sc, arg); 9454 } 9455 sx_sunlock(&t4_list_lock); 9456 } 9457 9458 static int 9459 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 9460 struct thread *td) 9461 { 9462 int rc; 9463 struct adapter *sc = dev->si_drv1; 9464 9465 rc = priv_check(td, PRIV_DRIVER); 9466 if (rc != 0) 9467 return (rc); 9468 9469 switch (cmd) { 9470 case CHELSIO_T4_GETREG: { 9471 struct t4_reg *edata = (struct t4_reg *)data; 9472 9473 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 9474 return (EFAULT); 9475 9476 if (edata->size == 4) 9477 edata->val = t4_read_reg(sc, edata->addr); 9478 else if (edata->size == 8) 9479 edata->val = t4_read_reg64(sc, edata->addr); 9480 else 9481 return (EINVAL); 9482 9483 break; 9484 } 9485 case CHELSIO_T4_SETREG: { 9486 struct t4_reg *edata = (struct t4_reg *)data; 9487 9488 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 9489 return (EFAULT); 9490 9491 if (edata->size == 4) { 9492 if (edata->val & 0xffffffff00000000) 9493 return (EINVAL); 9494 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 9495 } else if (edata->size == 8) 9496 t4_write_reg64(sc, edata->addr, edata->val); 9497 else 9498 return (EINVAL); 9499 break; 9500 } 9501 case CHELSIO_T4_REGDUMP: { 9502 struct t4_regdump *regs = (struct t4_regdump *)data; 9503 int reglen = t4_get_regs_len(sc); 9504 uint8_t *buf; 9505 9506 if (regs->len < reglen) { 9507 regs->len = reglen; /* hint to the caller */ 9508 return (ENOBUFS); 9509 } 9510 9511 regs->len = reglen; 9512 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 9513 get_regs(sc, regs, buf); 9514 rc = copyout(buf, regs->data, reglen); 9515 free(buf, M_CXGBE); 9516 break; 9517 } 9518 case CHELSIO_T4_GET_FILTER_MODE: 9519 rc = get_filter_mode(sc, (uint32_t *)data); 9520 break; 9521 case CHELSIO_T4_SET_FILTER_MODE: 9522 rc = set_filter_mode(sc, *(uint32_t *)data); 9523 break; 9524 case CHELSIO_T4_GET_FILTER: 9525 rc = get_filter(sc, (struct t4_filter *)data); 9526 break; 9527 case CHELSIO_T4_SET_FILTER: 9528 rc = set_filter(sc, (struct t4_filter *)data); 9529 break; 9530 case CHELSIO_T4_DEL_FILTER: 9531 rc = del_filter(sc, (struct t4_filter *)data); 9532 break; 9533 case CHELSIO_T4_GET_SGE_CONTEXT: 9534 rc = get_sge_context(sc, (struct t4_sge_context *)data); 9535 break; 9536 case CHELSIO_T4_LOAD_FW: 9537 rc = load_fw(sc, (struct t4_data *)data); 9538 break; 9539 case CHELSIO_T4_GET_MEM: 9540 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 9541 break; 9542 case CHELSIO_T4_GET_I2C: 9543 rc = read_i2c(sc, (struct t4_i2c_data *)data); 9544 break; 9545 case CHELSIO_T4_CLEAR_STATS: { 9546 int i, v; 9547 u_int port_id = *(uint32_t *)data; 9548 struct port_info *pi; 9549 struct vi_info *vi; 9550 9551 if (port_id >= sc->params.nports) 9552 return (EINVAL); 9553 pi = sc->port[port_id]; 9554 if (pi == NULL) 9555 return (EIO); 9556 9557 /* MAC stats */ 9558 t4_clr_port_stats(sc, pi->tx_chan); 9559 pi->tx_parse_error = 0; 9560 mtx_lock(&sc->reg_lock); 9561 for_each_vi(pi, v, vi) { 9562 if (vi->flags & VI_INIT_DONE) 9563 t4_clr_vi_stats(sc, vi->viid); 9564 } 9565 mtx_unlock(&sc->reg_lock); 9566 9567 /* 9568 * Since this command accepts a port, clear stats for 9569 * all VIs on this port. 9570 */ 9571 for_each_vi(pi, v, vi) { 9572 if (vi->flags & VI_INIT_DONE) { 9573 struct sge_rxq *rxq; 9574 struct sge_txq *txq; 9575 struct sge_wrq *wrq; 9576 9577 for_each_rxq(vi, i, rxq) { 9578 #if defined(INET) || defined(INET6) 9579 rxq->lro.lro_queued = 0; 9580 rxq->lro.lro_flushed = 0; 9581 #endif 9582 rxq->rxcsum = 0; 9583 rxq->vlan_extraction = 0; 9584 } 9585 9586 for_each_txq(vi, i, txq) { 9587 txq->txcsum = 0; 9588 txq->tso_wrs = 0; 9589 txq->vlan_insertion = 0; 9590 txq->imm_wrs = 0; 9591 txq->sgl_wrs = 0; 9592 txq->txpkt_wrs = 0; 9593 txq->txpkts0_wrs = 0; 9594 txq->txpkts1_wrs = 0; 9595 txq->txpkts0_pkts = 0; 9596 txq->txpkts1_pkts = 0; 9597 mp_ring_reset_stats(txq->r); 9598 } 9599 9600 #ifdef TCP_OFFLOAD 9601 /* nothing to clear for each ofld_rxq */ 9602 9603 for_each_ofld_txq(vi, i, wrq) { 9604 wrq->tx_wrs_direct = 0; 9605 wrq->tx_wrs_copied = 0; 9606 } 9607 #endif 9608 9609 if (IS_MAIN_VI(vi)) { 9610 wrq = &sc->sge.ctrlq[pi->port_id]; 9611 wrq->tx_wrs_direct = 0; 9612 wrq->tx_wrs_copied = 0; 9613 } 9614 } 9615 } 9616 break; 9617 } 9618 case CHELSIO_T4_SCHED_CLASS: 9619 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 9620 break; 9621 case CHELSIO_T4_SCHED_QUEUE: 9622 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 9623 break; 9624 case CHELSIO_T4_GET_TRACER: 9625 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 9626 break; 9627 case CHELSIO_T4_SET_TRACER: 9628 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 9629 break; 9630 case CHELSIO_T4_LOAD_CFG: 9631 rc = load_cfg(sc, (struct t4_data *)data); 9632 break; 9633 case CHELSIO_T4_LOAD_BOOT: 9634 rc = load_boot(sc, (struct t4_bootrom *)data); 9635 break; 9636 case CHELSIO_T4_LOAD_BOOTCFG: 9637 rc = load_bootcfg(sc, (struct t4_data *)data); 9638 break; 9639 case CHELSIO_T4_CUDBG_DUMP: 9640 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 9641 break; 9642 default: 9643 rc = ENOTTY; 9644 } 9645 9646 return (rc); 9647 } 9648 9649 void 9650 t4_db_full(struct adapter *sc) 9651 { 9652 9653 CXGBE_UNIMPLEMENTED(__func__); 9654 } 9655 9656 void 9657 t4_db_dropped(struct adapter *sc) 9658 { 9659 9660 CXGBE_UNIMPLEMENTED(__func__); 9661 } 9662 9663 #ifdef TCP_OFFLOAD 9664 static int 9665 toe_capability(struct vi_info *vi, int enable) 9666 { 9667 int rc; 9668 struct port_info *pi = vi->pi; 9669 struct adapter *sc = pi->adapter; 9670 9671 ASSERT_SYNCHRONIZED_OP(sc); 9672 9673 if (!is_offload(sc)) 9674 return (ENODEV); 9675 9676 if (enable) { 9677 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 9678 /* TOE is already enabled. */ 9679 return (0); 9680 } 9681 9682 /* 9683 * We need the port's queues around so that we're able to send 9684 * and receive CPLs to/from the TOE even if the ifnet for this 9685 * port has never been UP'd administratively. 9686 */ 9687 if (!(vi->flags & VI_INIT_DONE)) { 9688 rc = vi_full_init(vi); 9689 if (rc) 9690 return (rc); 9691 } 9692 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 9693 rc = vi_full_init(&pi->vi[0]); 9694 if (rc) 9695 return (rc); 9696 } 9697 9698 if (isset(&sc->offload_map, pi->port_id)) { 9699 /* TOE is enabled on another VI of this port. */ 9700 pi->uld_vis++; 9701 return (0); 9702 } 9703 9704 if (!uld_active(sc, ULD_TOM)) { 9705 rc = t4_activate_uld(sc, ULD_TOM); 9706 if (rc == EAGAIN) { 9707 log(LOG_WARNING, 9708 "You must kldload t4_tom.ko before trying " 9709 "to enable TOE on a cxgbe interface.\n"); 9710 } 9711 if (rc != 0) 9712 return (rc); 9713 KASSERT(sc->tom_softc != NULL, 9714 ("%s: TOM activated but softc NULL", __func__)); 9715 KASSERT(uld_active(sc, ULD_TOM), 9716 ("%s: TOM activated but flag not set", __func__)); 9717 } 9718 9719 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 9720 if (!uld_active(sc, ULD_IWARP)) 9721 (void) t4_activate_uld(sc, ULD_IWARP); 9722 if (!uld_active(sc, ULD_ISCSI)) 9723 (void) t4_activate_uld(sc, ULD_ISCSI); 9724 9725 pi->uld_vis++; 9726 setbit(&sc->offload_map, pi->port_id); 9727 } else { 9728 pi->uld_vis--; 9729 9730 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 9731 return (0); 9732 9733 KASSERT(uld_active(sc, ULD_TOM), 9734 ("%s: TOM never initialized?", __func__)); 9735 clrbit(&sc->offload_map, pi->port_id); 9736 } 9737 9738 return (0); 9739 } 9740 9741 /* 9742 * Add an upper layer driver to the global list. 9743 */ 9744 int 9745 t4_register_uld(struct uld_info *ui) 9746 { 9747 int rc = 0; 9748 struct uld_info *u; 9749 9750 sx_xlock(&t4_uld_list_lock); 9751 SLIST_FOREACH(u, &t4_uld_list, link) { 9752 if (u->uld_id == ui->uld_id) { 9753 rc = EEXIST; 9754 goto done; 9755 } 9756 } 9757 9758 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 9759 ui->refcount = 0; 9760 done: 9761 sx_xunlock(&t4_uld_list_lock); 9762 return (rc); 9763 } 9764 9765 int 9766 t4_unregister_uld(struct uld_info *ui) 9767 { 9768 int rc = EINVAL; 9769 struct uld_info *u; 9770 9771 sx_xlock(&t4_uld_list_lock); 9772 9773 SLIST_FOREACH(u, &t4_uld_list, link) { 9774 if (u == ui) { 9775 if (ui->refcount > 0) { 9776 rc = EBUSY; 9777 goto done; 9778 } 9779 9780 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 9781 rc = 0; 9782 goto done; 9783 } 9784 } 9785 done: 9786 sx_xunlock(&t4_uld_list_lock); 9787 return (rc); 9788 } 9789 9790 int 9791 t4_activate_uld(struct adapter *sc, int id) 9792 { 9793 int rc; 9794 struct uld_info *ui; 9795 9796 ASSERT_SYNCHRONIZED_OP(sc); 9797 9798 if (id < 0 || id > ULD_MAX) 9799 return (EINVAL); 9800 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 9801 9802 sx_slock(&t4_uld_list_lock); 9803 9804 SLIST_FOREACH(ui, &t4_uld_list, link) { 9805 if (ui->uld_id == id) { 9806 if (!(sc->flags & FULL_INIT_DONE)) { 9807 rc = adapter_full_init(sc); 9808 if (rc != 0) 9809 break; 9810 } 9811 9812 rc = ui->activate(sc); 9813 if (rc == 0) { 9814 setbit(&sc->active_ulds, id); 9815 ui->refcount++; 9816 } 9817 break; 9818 } 9819 } 9820 9821 sx_sunlock(&t4_uld_list_lock); 9822 9823 return (rc); 9824 } 9825 9826 int 9827 t4_deactivate_uld(struct adapter *sc, int id) 9828 { 9829 int rc; 9830 struct uld_info *ui; 9831 9832 ASSERT_SYNCHRONIZED_OP(sc); 9833 9834 if (id < 0 || id > ULD_MAX) 9835 return (EINVAL); 9836 rc = ENXIO; 9837 9838 sx_slock(&t4_uld_list_lock); 9839 9840 SLIST_FOREACH(ui, &t4_uld_list, link) { 9841 if (ui->uld_id == id) { 9842 rc = ui->deactivate(sc); 9843 if (rc == 0) { 9844 clrbit(&sc->active_ulds, id); 9845 ui->refcount--; 9846 } 9847 break; 9848 } 9849 } 9850 9851 sx_sunlock(&t4_uld_list_lock); 9852 9853 return (rc); 9854 } 9855 9856 int 9857 uld_active(struct adapter *sc, int uld_id) 9858 { 9859 9860 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 9861 9862 return (isset(&sc->active_ulds, uld_id)); 9863 } 9864 #endif 9865 9866 /* 9867 * t = ptr to tunable. 9868 * nc = number of CPUs. 9869 * c = compiled in default for that tunable. 9870 */ 9871 static void 9872 calculate_nqueues(int *t, int nc, const int c) 9873 { 9874 int nq; 9875 9876 if (*t > 0) 9877 return; 9878 nq = *t < 0 ? -*t : c; 9879 *t = min(nc, nq); 9880 } 9881 9882 /* 9883 * Come up with reasonable defaults for some of the tunables, provided they're 9884 * not set by the user (in which case we'll use the values as is). 9885 */ 9886 static void 9887 tweak_tunables(void) 9888 { 9889 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 9890 9891 if (t4_ntxq < 1) { 9892 #ifdef RSS 9893 t4_ntxq = rss_getnumbuckets(); 9894 #else 9895 calculate_nqueues(&t4_ntxq, nc, NTXQ); 9896 #endif 9897 } 9898 9899 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 9900 9901 if (t4_nrxq < 1) { 9902 #ifdef RSS 9903 t4_nrxq = rss_getnumbuckets(); 9904 #else 9905 calculate_nqueues(&t4_nrxq, nc, NRXQ); 9906 #endif 9907 } 9908 9909 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 9910 9911 #ifdef TCP_OFFLOAD 9912 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 9913 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 9914 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 9915 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 9916 9917 if (t4_toecaps_allowed == -1) 9918 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 9919 9920 if (t4_rdmacaps_allowed == -1) { 9921 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 9922 FW_CAPS_CONFIG_RDMA_RDMAC; 9923 } 9924 9925 if (t4_iscsicaps_allowed == -1) { 9926 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 9927 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 9928 FW_CAPS_CONFIG_ISCSI_T10DIF; 9929 } 9930 9931 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 9932 t4_tmr_idx_ofld = TMR_IDX_OFLD; 9933 9934 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 9935 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 9936 #else 9937 if (t4_toecaps_allowed == -1) 9938 t4_toecaps_allowed = 0; 9939 9940 if (t4_rdmacaps_allowed == -1) 9941 t4_rdmacaps_allowed = 0; 9942 9943 if (t4_iscsicaps_allowed == -1) 9944 t4_iscsicaps_allowed = 0; 9945 #endif 9946 9947 #ifdef DEV_NETMAP 9948 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 9949 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 9950 #endif 9951 9952 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 9953 t4_tmr_idx = TMR_IDX; 9954 9955 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 9956 t4_pktc_idx = PKTC_IDX; 9957 9958 if (t4_qsize_txq < 128) 9959 t4_qsize_txq = 128; 9960 9961 if (t4_qsize_rxq < 128) 9962 t4_qsize_rxq = 128; 9963 while (t4_qsize_rxq & 7) 9964 t4_qsize_rxq++; 9965 9966 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 9967 9968 /* 9969 * Number of VIs to create per-port. The first VI is the "main" regular 9970 * VI for the port. The rest are additional virtual interfaces on the 9971 * same physical port. Note that the main VI does not have native 9972 * netmap support but the extra VIs do. 9973 * 9974 * Limit the number of VIs per port to the number of available 9975 * MAC addresses per port. 9976 */ 9977 if (t4_num_vis < 1) 9978 t4_num_vis = 1; 9979 if (t4_num_vis > nitems(vi_mac_funcs)) { 9980 t4_num_vis = nitems(vi_mac_funcs); 9981 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 9982 } 9983 9984 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 9985 pcie_relaxed_ordering = 1; 9986 #if defined(__i386__) || defined(__amd64__) 9987 if (cpu_vendor_id == CPU_VENDOR_INTEL) 9988 pcie_relaxed_ordering = 0; 9989 #endif 9990 } 9991 } 9992 9993 #ifdef DDB 9994 static void 9995 t4_dump_tcb(struct adapter *sc, int tid) 9996 { 9997 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 9998 9999 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 10000 save = t4_read_reg(sc, reg); 10001 base = sc->memwin[2].mw_base; 10002 10003 /* Dump TCB for the tid */ 10004 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10005 tcb_addr += tid * TCB_SIZE; 10006 10007 if (is_t4(sc)) { 10008 pf = 0; 10009 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 10010 } else { 10011 pf = V_PFNUM(sc->pf); 10012 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 10013 } 10014 t4_write_reg(sc, reg, win_pos | pf); 10015 t4_read_reg(sc, reg); 10016 10017 off = tcb_addr - win_pos; 10018 for (i = 0; i < 4; i++) { 10019 uint32_t buf[8]; 10020 for (j = 0; j < 8; j++, off += 4) 10021 buf[j] = htonl(t4_read_reg(sc, base + off)); 10022 10023 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 10024 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 10025 buf[7]); 10026 } 10027 10028 t4_write_reg(sc, reg, save); 10029 t4_read_reg(sc, reg); 10030 } 10031 10032 static void 10033 t4_dump_devlog(struct adapter *sc) 10034 { 10035 struct devlog_params *dparams = &sc->params.devlog; 10036 struct fw_devlog_e e; 10037 int i, first, j, m, nentries, rc; 10038 uint64_t ftstamp = UINT64_MAX; 10039 10040 if (dparams->start == 0) { 10041 db_printf("devlog params not valid\n"); 10042 return; 10043 } 10044 10045 nentries = dparams->size / sizeof(struct fw_devlog_e); 10046 m = fwmtype_to_hwmtype(dparams->memtype); 10047 10048 /* Find the first entry. */ 10049 first = -1; 10050 for (i = 0; i < nentries && !db_pager_quit; i++) { 10051 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 10052 sizeof(e), (void *)&e); 10053 if (rc != 0) 10054 break; 10055 10056 if (e.timestamp == 0) 10057 break; 10058 10059 e.timestamp = be64toh(e.timestamp); 10060 if (e.timestamp < ftstamp) { 10061 ftstamp = e.timestamp; 10062 first = i; 10063 } 10064 } 10065 10066 if (first == -1) 10067 return; 10068 10069 i = first; 10070 do { 10071 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 10072 sizeof(e), (void *)&e); 10073 if (rc != 0) 10074 return; 10075 10076 if (e.timestamp == 0) 10077 return; 10078 10079 e.timestamp = be64toh(e.timestamp); 10080 e.seqno = be32toh(e.seqno); 10081 for (j = 0; j < 8; j++) 10082 e.params[j] = be32toh(e.params[j]); 10083 10084 db_printf("%10d %15ju %8s %8s ", 10085 e.seqno, e.timestamp, 10086 (e.level < nitems(devlog_level_strings) ? 10087 devlog_level_strings[e.level] : "UNKNOWN"), 10088 (e.facility < nitems(devlog_facility_strings) ? 10089 devlog_facility_strings[e.facility] : "UNKNOWN")); 10090 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 10091 e.params[3], e.params[4], e.params[5], e.params[6], 10092 e.params[7]); 10093 10094 if (++i == nentries) 10095 i = 0; 10096 } while (i != first && !db_pager_quit); 10097 } 10098 10099 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 10100 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 10101 10102 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 10103 { 10104 device_t dev; 10105 int t; 10106 bool valid; 10107 10108 valid = false; 10109 t = db_read_token(); 10110 if (t == tIDENT) { 10111 dev = device_lookup_by_name(db_tok_string); 10112 valid = true; 10113 } 10114 db_skip_to_eol(); 10115 if (!valid) { 10116 db_printf("usage: show t4 devlog <nexus>\n"); 10117 return; 10118 } 10119 10120 if (dev == NULL) { 10121 db_printf("device not found\n"); 10122 return; 10123 } 10124 10125 t4_dump_devlog(device_get_softc(dev)); 10126 } 10127 10128 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 10129 { 10130 device_t dev; 10131 int radix, tid, t; 10132 bool valid; 10133 10134 valid = false; 10135 radix = db_radix; 10136 db_radix = 10; 10137 t = db_read_token(); 10138 if (t == tIDENT) { 10139 dev = device_lookup_by_name(db_tok_string); 10140 t = db_read_token(); 10141 if (t == tNUMBER) { 10142 tid = db_tok_number; 10143 valid = true; 10144 } 10145 } 10146 db_radix = radix; 10147 db_skip_to_eol(); 10148 if (!valid) { 10149 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 10150 return; 10151 } 10152 10153 if (dev == NULL) { 10154 db_printf("device not found\n"); 10155 return; 10156 } 10157 if (tid < 0) { 10158 db_printf("invalid tid\n"); 10159 return; 10160 } 10161 10162 t4_dump_tcb(device_get_softc(dev), tid); 10163 } 10164 #endif 10165 10166 static struct sx mlu; /* mod load unload */ 10167 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 10168 10169 static int 10170 mod_event(module_t mod, int cmd, void *arg) 10171 { 10172 int rc = 0; 10173 static int loaded = 0; 10174 10175 switch (cmd) { 10176 case MOD_LOAD: 10177 sx_xlock(&mlu); 10178 if (loaded++ == 0) { 10179 t4_sge_modload(); 10180 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl); 10181 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl); 10182 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 10183 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 10184 sx_init(&t4_list_lock, "T4/T5 adapters"); 10185 SLIST_INIT(&t4_list); 10186 #ifdef TCP_OFFLOAD 10187 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 10188 SLIST_INIT(&t4_uld_list); 10189 #endif 10190 t4_tracer_modload(); 10191 tweak_tunables(); 10192 } 10193 sx_xunlock(&mlu); 10194 break; 10195 10196 case MOD_UNLOAD: 10197 sx_xlock(&mlu); 10198 if (--loaded == 0) { 10199 int tries; 10200 10201 sx_slock(&t4_list_lock); 10202 if (!SLIST_EMPTY(&t4_list)) { 10203 rc = EBUSY; 10204 sx_sunlock(&t4_list_lock); 10205 goto done_unload; 10206 } 10207 #ifdef TCP_OFFLOAD 10208 sx_slock(&t4_uld_list_lock); 10209 if (!SLIST_EMPTY(&t4_uld_list)) { 10210 rc = EBUSY; 10211 sx_sunlock(&t4_uld_list_lock); 10212 sx_sunlock(&t4_list_lock); 10213 goto done_unload; 10214 } 10215 #endif 10216 tries = 0; 10217 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 10218 uprintf("%ju clusters with custom free routine " 10219 "still is use.\n", t4_sge_extfree_refs()); 10220 pause("t4unload", 2 * hz); 10221 } 10222 #ifdef TCP_OFFLOAD 10223 sx_sunlock(&t4_uld_list_lock); 10224 #endif 10225 sx_sunlock(&t4_list_lock); 10226 10227 if (t4_sge_extfree_refs() == 0) { 10228 t4_tracer_modunload(); 10229 #ifdef TCP_OFFLOAD 10230 sx_destroy(&t4_uld_list_lock); 10231 #endif 10232 sx_destroy(&t4_list_lock); 10233 t4_sge_modunload(); 10234 loaded = 0; 10235 } else { 10236 rc = EBUSY; 10237 loaded++; /* undo earlier decrement */ 10238 } 10239 } 10240 done_unload: 10241 sx_xunlock(&mlu); 10242 break; 10243 } 10244 10245 return (rc); 10246 } 10247 10248 static devclass_t t4_devclass, t5_devclass, t6_devclass; 10249 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 10250 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 10251 10252 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 10253 MODULE_VERSION(t4nex, 1); 10254 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 10255 #ifdef DEV_NETMAP 10256 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 10257 #endif /* DEV_NETMAP */ 10258 10259 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 10260 MODULE_VERSION(t5nex, 1); 10261 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 10262 #ifdef DEV_NETMAP 10263 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 10264 #endif /* DEV_NETMAP */ 10265 10266 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 10267 MODULE_VERSION(t6nex, 1); 10268 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 10269 #ifdef DEV_NETMAP 10270 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 10271 #endif /* DEV_NETMAP */ 10272 10273 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 10274 MODULE_VERSION(cxgbe, 1); 10275 10276 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 10277 MODULE_VERSION(cxl, 1); 10278 10279 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 10280 MODULE_VERSION(cc, 1); 10281 10282 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 10283 MODULE_VERSION(vcxgbe, 1); 10284 10285 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 10286 MODULE_VERSION(vcxl, 1); 10287 10288 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 10289 MODULE_VERSION(vcc, 1); 10290